Sample records for ensemble pocket detection

  1. Selectivity by Small-Molecule Inhibitors of Protein Interactions Can Be Driven by Protein Surface Fluctuations

    PubMed Central

    Johnson, David K.; Karanicolas, John

    2015-01-01

    Small-molecules that inhibit interactions between specific pairs of proteins have long represented a promising avenue for therapeutic intervention in a variety of settings. Structural studies have shown that in many cases, the inhibitor-bound protein adopts a conformation that is distinct from its unbound and its protein-bound conformations. This plasticity of the protein surface presents a major challenge in predicting which members of a protein family will be inhibited by a given ligand. Here, we use biased simulations of Bcl-2-family proteins to generate ensembles of low-energy conformations that contain surface pockets suitable for small molecule binding. We find that the resulting conformational ensembles include surface pockets that mimic those observed in inhibitor-bound crystal structures. Next, we find that the ensembles generated using different members of this protein family are overlapping but distinct, and that the activity of a given compound against a particular family member (ligand selectivity) can be predicted from whether the corresponding ensemble samples a complementary surface pocket. Finally, we find that each ensemble includes certain surface pockets that are not shared by any other family member: while no inhibitors have yet been identified to take advantage of these pockets, we expect that chemical scaffolds complementing these “distinct” pockets will prove highly selective for their targets. The opportunity to achieve target selectivity within a protein family by exploiting differences in surface fluctuations represents a new paradigm that may facilitate design of family-selective small-molecule inhibitors of protein-protein interactions. PMID:25706586

  2. What induces pocket openings on protein surface patches involved in protein-protein interactions?

    PubMed

    Eyrisch, Susanne; Helms, Volkhard

    2009-02-01

    We previously showed for the proteins BCL-X(L), IL-2, and MDM2 that transient pockets at their protein-protein binding interfaces can be identified by applying the PASS algorithm to molecular dynamics (MD) snapshots. We now investigated which aspects of the natural conformational dynamics of proteins induce the formation of such pockets. The pocket detection protocol was applied to three different conformational ensembles for the same proteins that were extracted from MD simulations of the inhibitor bound crystal conformation in water and the free crystal/NMR structure in water and in methanol. Additional MD simulations studied the impact of backbone mobility. The more efficient CONCOORD or normal mode analysis (NMA) techniques gave significantly smaller pockets than MD simulations, whereas tCONCOORD generated pockets comparable to those observed in MD simulations for two of the three systems. Our findings emphasize the influence of solvent polarity and backbone rearrangements on the formation of pockets on protein surfaces and should be helpful in future generation of transient pockets as putative ligand binding sites at protein-protein interfaces.

  3. What induces pocket openings on protein surface patches involved in protein-protein interactions?

    NASA Astrophysics Data System (ADS)

    Eyrisch, Susanne; Helms, Volkhard

    2009-02-01

    We previously showed for the proteins BCL-XL, IL-2, and MDM2 that transient pockets at their protein-protein binding interfaces can be identified by applying the PASS algorithm to molecular dynamics (MD) snapshots. We now investigated which aspects of the natural conformational dynamics of proteins induce the formation of such pockets. The pocket detection protocol was applied to three different conformational ensembles for the same proteins that were extracted from MD simulations of the inhibitor bound crystal conformation in water and the free crystal/NMR structure in water and in methanol. Additional MD simulations studied the impact of backbone mobility. The more efficient CONCOORD or normal mode analysis (NMA) techniques gave significantly smaller pockets than MD simulations, whereas tCONCOORD generated pockets comparable to those observed in MD simulations for two of the three systems. Our findings emphasize the influence of solvent polarity and backbone rearrangements on the formation of pockets on protein surfaces and should be helpful in future generation of transient pockets as putative ligand binding sites at protein-protein interfaces.

  4. New Insights into Vitamin D Sterol-VDR Proteolysis, Allostery, Structure-Function from the Perspective of a Conformational Ensemble Model

    PubMed Central

    Mizwicki, Mathew T.; Bula, Craig M.; Bishop, June E.; Norman, Anthony W.

    2007-01-01

    Recently, we have developed a vitamin D sterol (VDS)-VDR conformational ensemble model. This model can be broken down into three individual, yet interlinked parts: a) the conformationally flexible VDS, b) the apo/holo-VDR helix-12 (H12) conformational ensemble, and c) the presence of two VDR ligand binding pockets (LBPs); one thermodynamically favored (the genomic pocket, G-pocket) and the other kinetically favored by VDSs (the alternative pocket, A-pocket). One focus of this study is to use directed VDR mutagenesis to 1) demonstrate H12 is stabilized in the transcriptionally active closed conformation (hVDR-c1) by three salt-bridges that span the length of H12 (cationic residues R154, K264 and R402), 2) to elucidate the VDR trypsin sites [R173 (hVDR-c1), K413 (hVDR-c2) and R402 (hVDR-c3)] and 3) demonstrate the apo-VDR H12 equilibrium can be shifted. The other focus of this study is to apply the model to generate a mechanistic understanding to discrepancies observed in structure-function data obtained with a variety of 1α,25(OH)2-vitamin D3 (1,25D) A-ring and side-chain analogs, and side-chain metabolites. We will demonstrate that these structure-function conundrums can be rationalized, for the most part by focusing on alterations in the VDS conformational flexibility and the elementary interaction between the VDS and the VDR A- and G-pockets, relative to the control, 1,25D. PMID:17368177

  5. Druggable protein interaction sites are more predisposed to surface pocket formation than the rest of the protein surface.

    PubMed

    Johnson, David K; Karanicolas, John

    2013-01-01

    Despite intense interest and considerable effort via high-throughput screening, there are few examples of small molecules that directly inhibit protein-protein interactions. This suggests that many protein interaction surfaces may not be intrinsically "druggable" by small molecules, and elevates in importance the few successful examples as model systems for improving our fundamental understanding of druggability. Here we describe an approach for exploring protein fluctuations enriched in conformations containing surface pockets suitable for small molecule binding. Starting from a set of seven unbound protein structures, we find that the presence of low-energy pocket-containing conformations is indeed a signature of druggable protein interaction sites and that analogous surface pockets are not formed elsewhere on the protein. We further find that ensembles of conformations generated with this biased approach structurally resemble known inhibitor-bound structures more closely than equivalent ensembles of unbiased conformations. Collectively these results suggest that "druggability" is a property encoded on a protein surface through its propensity to form pockets, and inspire a model in which the crude features of the predisposed pocket(s) restrict the range of complementary ligands; additional smaller conformational changes then respond to details of a particular ligand. We anticipate that the insights described here will prove useful in selecting protein targets for therapeutic intervention.

  6. Druggable Protein Interaction Sites Are More Predisposed to Surface Pocket Formation than the Rest of the Protein Surface

    PubMed Central

    Johnson, David K.; Karanicolas, John

    2013-01-01

    Despite intense interest and considerable effort via high-throughput screening, there are few examples of small molecules that directly inhibit protein-protein interactions. This suggests that many protein interaction surfaces may not be intrinsically “druggable” by small molecules, and elevates in importance the few successful examples as model systems for improving our fundamental understanding of druggability. Here we describe an approach for exploring protein fluctuations enriched in conformations containing surface pockets suitable for small molecule binding. Starting from a set of seven unbound protein structures, we find that the presence of low-energy pocket-containing conformations is indeed a signature of druggable protein interaction sites and that analogous surface pockets are not formed elsewhere on the protein. We further find that ensembles of conformations generated with this biased approach structurally resemble known inhibitor-bound structures more closely than equivalent ensembles of unbiased conformations. Collectively these results suggest that “druggability” is a property encoded on a protein surface through its propensity to form pockets, and inspire a model in which the crude features of the predisposed pocket(s) restrict the range of complementary ligands; additional smaller conformational changes then respond to details of a particular ligand. We anticipate that the insights described here will prove useful in selecting protein targets for therapeutic intervention. PMID:23505360

  7. Visualisation of variable binding pockets on protein surfaces by probabilistic analysis of related structure sets.

    PubMed

    Ashford, Paul; Moss, David S; Alex, Alexander; Yeap, Siew K; Povia, Alice; Nobeli, Irene; Williams, Mark A

    2012-03-14

    Protein structures provide a valuable resource for rational drug design. For a protein with no known ligand, computational tools can predict surface pockets that are of suitable size and shape to accommodate a complementary small-molecule drug. However, pocket prediction against single static structures may miss features of pockets that arise from proteins' dynamic behaviour. In particular, ligand-binding conformations can be observed as transiently populated states of the apo protein, so it is possible to gain insight into ligand-bound forms by considering conformational variation in apo proteins. This variation can be explored by considering sets of related structures: computationally generated conformers, solution NMR ensembles, multiple crystal structures, homologues or homology models. It is non-trivial to compare pockets, either from different programs or across sets of structures. For a single structure, difficulties arise in defining particular pocket's boundaries. For a set of conformationally distinct structures the challenge is how to make reasonable comparisons between them given that a perfect structural alignment is not possible. We have developed a computational method, Provar, that provides a consistent representation of predicted binding pockets across sets of related protein structures. The outputs are probabilities that each atom or residue of the protein borders a predicted pocket. These probabilities can be readily visualised on a protein using existing molecular graphics software. We show how Provar simplifies comparison of the outputs of different pocket prediction algorithms, of pockets across multiple simulated conformations and between homologous structures. We demonstrate the benefits of use of multiple structures for protein-ligand and protein-protein interface analysis on a set of complexes and consider three case studies in detail: i) analysis of a kinase superfamily highlights the conserved occurrence of surface pockets at the active and regulatory sites; ii) a simulated ensemble of unliganded Bcl2 structures reveals extensions of a known ligand-binding pocket not apparent in the apo crystal structure; iii) visualisations of interleukin-2 and its homologues highlight conserved pockets at the known receptor interfaces and regions whose conformation is known to change on inhibitor binding. Through post-processing of the output of a variety of pocket prediction software, Provar provides a flexible approach to the analysis and visualization of the persistence or variability of pockets in sets of related protein structures.

  8. Diffusion in random networks

    DOE PAGES

    Zhang, Duan Z.; Padrino, Juan C.

    2017-06-01

    The ensemble averaging technique is applied to model mass transport by diffusion in random networks. The system consists of an ensemble of random networks, where each network is made of pockets connected by tortuous channels. Inside a channel, fluid transport is assumed to be governed by the one-dimensional diffusion equation. Mass balance leads to an integro-differential equation for the pocket mass density. The so-called dual-porosity model is found to be equivalent to the leading order approximation of the integration kernel when the diffusion time scale inside the channels is small compared to the macroscopic time scale. As a test problem,more » we consider the one-dimensional mass diffusion in a semi-infinite domain. Because of the required time to establish the linear concentration profile inside a channel, for early times the similarity variable is xt $-$1/4 rather than xt $-$1/2 as in the traditional theory. We found this early time similarity can be explained by random walk theory through the network.« less

  9. Spatial Analysis and Quantification of the Thermodynamic Driving Forces in Protein-Ligand Binding: Binding Site Variability

    PubMed Central

    Raman, E. Prabhu; MacKerell, Alexander D.

    2015-01-01

    The thermodynamic driving forces behind small molecule-protein binding are still not well understood, including the variability of those forces associated with different types of ligands in different binding pockets. To better understand these phenomena we calculate spatially resolved thermodynamic contributions of the different molecular degrees of freedom for the binding of propane and methanol to multiple pockets on the proteins Factor Xa and p38 MAP kinase. Binding thermodynamics are computed using a statistical thermodynamics based end-point method applied on a canonical ensemble comprising the protein-ligand complexes and the corresponding free states in an explicit solvent environment. Energetic and entropic contributions of water and ligand degrees of freedom computed from the configurational ensemble provides an unprecedented level of detail into the mechanisms of binding. Direct protein-ligand interaction energies play a significant role in both non-polar and polar binding, which is comparable to water reorganization energy. Loss of interactions with water upon binding strongly compensates these contributions leading to relatively small binding enthalpies. For both solutes, the entropy of water reorganization is found to favor binding in agreement with the classical view of the “hydrophobic effect”. Depending on the specifics of the binding pocket, both energy-entropy compensation and reinforcement mechanisms are observed. Notable is the ability to visualize the spatial distribution of the thermodynamic contributions to binding at atomic resolution showing significant differences in the thermodynamic contributions of water to the binding of propane versus methanol. PMID:25625202

  10. Designing small molecules to target cryptic pockets yields both positive and negative allosteric modulators

    PubMed Central

    Moeder, Katelyn E.; Ho, Chris M. W.; Zimmerman, Maxwell I.; Frederick, Thomas E.; Bowman, Gregory R.

    2017-01-01

    Allosteric drugs, which bind to proteins in regions other than their main ligand-binding or active sites, make it possible to target proteins considered “undruggable” and to develop new therapies that circumvent existing resistance. Despite growing interest in allosteric drug discovery, rational design is limited by a lack of sufficient structural information about alternative binding sites in proteins. Previously, we used Markov State Models (MSMs) to identify such “cryptic pockets,” and here we describe a method for identifying compounds that bind in these cryptic pockets and modulate enzyme activity. Experimental tests validate our approach by revealing both an inhibitor and two activators of TEM β-lactamase (TEM). To identify hits, a library of compounds is first virtually screened against either the crystal structure of a known cryptic pocket or an ensemble of structures containing the same cryptic pocket that is extracted from an MSM. Hit compounds are then screened experimentally and characterized kinetically in individual assays. We identify three hits, one inhibitor and two activators, demonstrating that screening for binding to allosteric sites can result in both positive and negative modulation. The hit compounds have modest effects on TEM activity, but all have higher affinities than previously identified inhibitors, which bind the same cryptic pocket but were found, by chance, via a computational screen targeting the active site. Site-directed mutagenesis of key contact residues predicted by the docking models is used to confirm that the compounds bind in the cryptic pocket as intended. Because hit compounds are identified from docking against both the crystal structure and structures from the MSM, this platform should prove suitable for many proteins, particularly targets whose crystal structures lack obvious druggable pockets, and for identifying both inhibitory and activating small-molecule modulators. PMID:28570708

  11. Plasticity of the Binding Site of Renin: Optimized Selection of Protein Structures for Ensemble Docking.

    PubMed

    Strecker, Claas; Meyer, Bernd

    2018-05-29

    Protein flexibility poses a major challenge to docking of potential ligands in that the binding site can adopt different shapes. Docking algorithms usually keep the protein rigid and only allow the ligand to be treated as flexible. However, a wrong assessment of the shape of the binding pocket can prevent a ligand from adapting a correct pose. Ensemble docking is a simple yet promising method to solve this problem: Ligands are docked into multiple structures, and the results are subsequently merged. Selection of protein structures is a significant factor for this approach. In this work we perform a comprehensive and comparative study evaluating the impact of structure selection on ensemble docking. We perform ensemble docking with several crystal structures and with structures derived from molecular dynamics simulations of renin, an attractive target for antihypertensive drugs. Here, 500 ns of MD simulations revealed binding site shapes not found in any available crystal structure. We evaluate the importance of structure selection for ensemble docking by comparing binding pose prediction, ability to rank actives above nonactives (screening utility), and scoring accuracy. As a result, for ensemble definition k-means clustering appears to be better suited than hierarchical clustering with average linkage. The best performing ensemble consists of four crystal structures and is able to reproduce the native ligand poses better than any individual crystal structure. Moreover this ensemble outperforms 88% of all individual crystal structures in terms of screening utility as well as scoring accuracy. Similarly, ensembles of MD-derived structures perform on average better than 75% of any individual crystal structure in terms of scoring accuracy at all inspected ensembles sizes.

  12. Validity of a Smartphone-Based Fall Detection Application on Different Phones Worn on a Belt or in a Trouser Pocket.

    PubMed

    Vermeulen, Joan; Willard, Sarah; Aguiar, Bruno; De Witte, Luc P

    2015-01-01

    The objective of this study was to evaluate the sensitivity and specificity of a smartphone-based fall detection application when different smartphone models are worn on a belt or in a trouser pocket. Eight healthy adults aged between 18 and 24 years old simulated 10 different types of true falls, 5 different types of falls with recovery, and 11 daily activities, five consecutive times. Participants wore one smartphone in a pocket that was attached to their belt and another one in their trouser pocket. All smartphones were equipped with a built-in accelerometer and the fall detection application. Four participants tested the application on a Samsung S3 and four tested the application on a Samsung S3 mini. Sensitivity scores were .75 (Samsung S3 belt), .88 (Samsung S3 mini trouser pocket), and .90 (Samsung S3 mini belt/Samsung S3 trouser pocket). Specificity scores were .87 (Samsung S3 trouser pocket), .91 (Samsung S3 mini trouser pocket), .97 (Samsung S3 belt), and .99 (Samsung S3 mini belt). These results suggest that an application on a smartphone can generate valid fall alarms when worn on a belt or in a trouser pocket. However, sensitivity should be improved before implementation of the application in practice.

  13. Cosolvent-Based Molecular Dynamics for Ensemble Docking: Practical Method for Generating Druggable Protein Conformations.

    PubMed

    Uehara, Shota; Tanaka, Shigenori

    2017-04-24

    Protein flexibility is a major hurdle in current structure-based virtual screening (VS). In spite of the recent advances in high-performance computing, protein-ligand docking methods still demand tremendous computational cost to take into account the full degree of protein flexibility. In this context, ensemble docking has proven its utility and efficiency for VS studies, but it still needs a rational and efficient method to select and/or generate multiple protein conformations. Molecular dynamics (MD) simulations are useful to produce distinct protein conformations without abundant experimental structures. In this study, we present a novel strategy that makes use of cosolvent-based molecular dynamics (CMD) simulations for ensemble docking. By mixing small organic molecules into a solvent, CMD can stimulate dynamic protein motions and induce partial conformational changes of binding pocket residues appropriate for the binding of diverse ligands. The present method has been applied to six diverse target proteins and assessed by VS experiments using many actives and decoys of DEKOIS 2.0. The simulation results have revealed that the CMD is beneficial for ensemble docking. Utilizing cosolvent simulation allows the generation of druggable protein conformations, improving the VS performance compared with the use of a single experimental structure or ensemble docking by standard MD with pure water as the solvent.

  14. An Augmented Pocketome: Detection and Analysis of Small-Molecule Binding Pockets in Proteins of Known 3D Structure.

    PubMed

    Bhagavat, Raghu; Sankar, Santhosh; Srinivasan, Narayanaswamy; Chandra, Nagasuma

    2018-03-06

    Protein-ligand interactions form the basis of most cellular events. Identifying ligand binding pockets in proteins will greatly facilitate rationalizing and predicting protein function. Ligand binding sites are unknown for many proteins of known three-dimensional (3D) structure, creating a gap in our understanding of protein structure-function relationships. To bridge this gap, we detect pockets in proteins of known 3D structures, using computational techniques. This augmented pocketome (PocketDB) consists of 249,096 pockets, which is about seven times larger than what is currently known. We deduce possible ligand associations for about 46% of the newly identified pockets. The augmented pocketome, when subjected to clustering based on similarities among pockets, yielded 2,161 site types, which are associated with 1,037 ligand types, together providing fold-site-type-ligand-type associations. The PocketDB resource facilitates a structure-based function annotation, delineation of the structural basis of ligand recognition, and provides functional clues for domains of unknown functions, allosteric proteins, and druggable pockets. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Investigating the Importance of the Pocket-estimation Method in Pocket-based Approaches: An Illustration Using Pocket-ligand Classification.

    PubMed

    Caumes, Géraldine; Borrel, Alexandre; Abi Hussein, Hiba; Camproux, Anne-Claude; Regad, Leslie

    2017-09-01

    Small molecules interact with their protein target on surface cavities known as binding pockets. Pocket-based approaches are very useful in all of the phases of drug design. Their first step is estimating the binding pocket based on protein structure. The available pocket-estimation methods produce different pockets for the same target. The aim of this work is to investigate the effects of different pocket-estimation methods on the results of pocket-based approaches. We focused on the effect of three pocket-estimation methods on a pocket-ligand (PL) classification. This pocket-based approach is useful for understanding the correspondence between the pocket and ligand spaces and to develop pharmacological profiling models. We found pocket-estimation methods yield different binding pockets in terms of boundaries and properties. These differences are responsible for the variation in the PL classification results that can have an impact on the detected correspondence between pocket and ligand profiles. Thus, we highlighted the importance of the pocket-estimation method choice in pocket-based approaches. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Image Change Detection via Ensemble Learning

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Benjamin W; Vatsavai, Raju

    2013-01-01

    The concept of geographic change detection is relevant in many areas. Changes in geography can reveal much information about a particular location. For example, analysis of changes in geography can identify regions of population growth, change in land use, and potential environmental disturbance. A common way to perform change detection is to use a simple method such as differencing to detect regions of change. Though these techniques are simple, often the application of these techniques is very limited. Recently, use of machine learning methods such as neural networks for change detection has been explored with great success. In this work,more » we explore the use of ensemble learning methodologies for detecting changes in bitemporal synthetic aperture radar (SAR) images. Ensemble learning uses a collection of weak machine learning classifiers to create a stronger classifier which has higher accuracy than the individual classifiers in the ensemble. The strength of the ensemble lies in the fact that the individual classifiers in the ensemble create a mixture of experts in which the final classification made by the ensemble classifier is calculated from the outputs of the individual classifiers. Our methodology leverages this aspect of ensemble learning by training collections of weak decision tree based classifiers to identify regions of change in SAR images collected of a region in the Staten Island, New York area during Hurricane Sandy. Preliminary studies show that the ensemble method has approximately 11.5% higher change detection accuracy than an individual classifier.« less

  17. Ultra-High-Throughput Structure-Based Virtual Screening for Small-Molecule Inhibitors of Protein-Protein Interactions

    PubMed Central

    Johnson, David K.; Karanicolas, John

    2016-01-01

    Protein-protein interactions play important roles in virtually all cellular processes, making them enticing targets for modulation by small-molecule therapeutics: specific examples have been well validated in diseases ranging from cancer and autoimmune disorders, to bacterial and viral infections. Despite several notable successes, however, overall these remain a very challenging target class. Protein interaction sites are especially challenging for computational approaches, because the target protein surface often undergoes a conformational change to enable ligand binding: this confounds traditional approaches for virtual screening. Through previous studies, we demonstrated that biased “pocket optimization” simulations could be used to build collections of low-energy pocket-containing conformations, starting from an unbound protein structure. Here, we demonstrate that these pockets can further be used to identify ligands that complement the protein surface. To do so, we first build from a given pocket its “exemplar”: a perfect, but non-physical, pseudo-ligand that would optimally match the shape and chemical features of the pocket. In our previous studies, we used these exemplars to quantitatively compare protein surface pockets to one another. Here, we now introduce this exemplar as a template for pharmacophore-based screening of chemical libraries. Through a series of benchmark experiments, we demonstrate that this approach exhibits comparable performance as traditional docking methods for identifying known inhibitors acting at protein interaction sites. However, because this approach is predicated on ligand/exemplar overlays, and thus does not require explicit calculation of protein-ligand interactions, exemplar screening provides a tremendous speed advantage over docking: 6 million compounds can be screened in about 15 minutes on a single 16-core, dual-GPU computer. The extreme speed at which large compound libraries can be traversed easily enables screening against a “pocket-optimized” ensemble of protein conformations, which in turn facilitates identification of more diverse classes of active compounds for a given protein target. PMID:26726827

  18. Ultrasonic detection of knots, cross grain and bark pockets in wooden pallet parts

    Treesearch

    Mohammed F. Kabir; Daniel L. Schmoldt; Mark E. Schafer

    2000-01-01

    This study investigates defect detection in wooden pallet parts using ultrasonic scanning. Yellow-poplar (Liriodendron tulipifera, L.) deckboards were scanned using two rolling transducers in a pitch-catch arrangement to detect unsound and sound knots, bark pockets and cross grain. Data were collected, stored, and processed using LabView? software. Six ultrasonic...

  19. Control Mechanisms of Photoisomerization in Protonated Schiff Bases.

    PubMed

    Vuković, Lela; Burmeister, Carl F; Král, Petr; Groenhof, Gerrit

    2013-03-21

    We performed ab initio excited-state molecular dynamics simulations of a gas-phase photoexcited protonated Schiff base (C1-N2═C3-C4═C5-C6) to search for control mechanisms of its photoisomerization. The excited molecule twists by ∼90° around either the N2C3 bond or the C4C5 bond and relaxes to the ground electronic state through a conical intersection with either a trans or cis outcome. We show that a large initial distortion of several dihedral angles and a specific normal vibrational mode combining pyramidalization and double-bond twisting can lead to a preferential rotation of atoms around the C4C5 bond. We also show that selective pretwisting of several dihedral angles in the initial ground state thermal ensemble (by analogy to a protein pocket) can significantly increase the fraction of photoreactive (cis → trans) trajectories. We demonstrate that new ensembles with higher degrees of control over the photoisomerization reaction can be obtained by a computational directed evolution approach on the ensembles of molecules with the pretwisted geometries.

  20. Design of an Evolutionary Approach for Intrusion Detection

    PubMed Central

    2013-01-01

    A novel evolutionary approach is proposed for effective intrusion detection based on benchmark datasets. The proposed approach can generate a pool of noninferior individual solutions and ensemble solutions thereof. The generated ensembles can be used to detect the intrusions accurately. For intrusion detection problem, the proposed approach could consider conflicting objectives simultaneously like detection rate of each attack class, error rate, accuracy, diversity, and so forth. The proposed approach can generate a pool of noninferior solutions and ensembles thereof having optimized trade-offs values of multiple conflicting objectives. In this paper, a three-phase, approach is proposed to generate solutions to a simple chromosome design in the first phase. In the first phase, a Pareto front of noninferior individual solutions is approximated. In the second phase of the proposed approach, the entire solution set is further refined to determine effective ensemble solutions considering solution interaction. In this phase, another improved Pareto front of ensemble solutions over that of individual solutions is approximated. The ensemble solutions in improved Pareto front reported improved detection results based on benchmark datasets for intrusion detection. In the third phase, a combination method like majority voting method is used to fuse the predictions of individual solutions for determining prediction of ensemble solution. Benchmark datasets, namely, KDD cup 1999 and ISCX 2012 dataset, are used to demonstrate and validate the performance of the proposed approach for intrusion detection. The proposed approach can discover individual solutions and ensemble solutions thereof with a good support and a detection rate from benchmark datasets (in comparison with well-known ensemble methods like bagging and boosting). In addition, the proposed approach is a generalized classification approach that is applicable to the problem of any field having multiple conflicting objectives, and a dataset can be represented in the form of labelled instances in terms of its features. PMID:24376390

  1. Mitosis detection using generic features and an ensemble of cascade adaboosts.

    PubMed

    Tek, F Boray

    2013-01-01

    Mitosis count is one of the factors that pathologists use to assess the risk of metastasis and survival of the patients, which are affected by the breast cancer. We investigate an application of a set of generic features and an ensemble of cascade adaboosts to the automated mitosis detection. Calculation of the features rely minimally on object-level descriptions and thus require minimal segmentation. The proposed work was developed and tested on International Conference on Pattern Recognition (ICPR) 2012 mitosis detection contest data. We plotted receiver operating characteristics curves of true positive versus false positive rates; calculated recall, precision, F-measure, and region overlap ratio measures. WE TESTED OUR FEATURES WITH TWO DIFFERENT CLASSIFIER CONFIGURATIONS: 1) An ensemble of single adaboosts, 2) an ensemble of cascade adaboosts. On the ICPR 2012 mitosis detection contest evaluation, the cascade ensemble scored 54, 62.7, and 58, whereas the non-cascade version scored 68, 28.1, and 39.7 for the recall, precision, and F-measure measures, respectively. Mostly used features in the adaboost classifier rules were a shape-based feature, which counted granularity and a color-based feature, which relied on Red, Green, and Blue channel statistics. The features, which express the granular structure and color variations, are found useful for mitosis detection. The ensemble of adaboosts performs better than the individual adaboost classifiers. Moreover, the ensemble of cascaded adaboosts was better than the ensemble of single adaboosts for mitosis detection.

  2. An Ultrasonographic Periodontal Probe

    NASA Astrophysics Data System (ADS)

    Bertoncini, C. A.; Hinders, M. K.

    2010-02-01

    Periodontal disease, commonly known as gum disease, affects millions of people. The current method of detecting periodontal pocket depth is painful, invasive, and inaccurate. As an alternative to manual probing, an ultrasonographic periodontal probe is being developed to use ultrasound echo waveforms to measure periodontal pocket depth, which is the main measure of periodontal disease. Wavelet transforms and pattern classification techniques are implemented in artificial intelligence routines that can automatically detect pocket depth. The main pattern classification technique used here, called a binary classification algorithm, compares test objects with only two possible pocket depth measurements at a time and relies on dimensionality reduction for the final determination. This method correctly identifies up to 90% of the ultrasonographic probe measurements within the manual probe's tolerance.

  3. Gating by tryptophan 73 exposes a cryptic pocket at the protein-binding interface of the oncogenic eIF4E protein.

    PubMed

    Lama, Dilraj; Brown, Christopher J; Lane, David P; Verma, Chandra S

    2015-10-27

    Targeting protein-protein interacting sites for potential therapeutic applications is a challenge in the development of inhibitors, and this becomes more difficult when these interfaces are relatively planar, as in the eukaryotic translation initiation factor 4E (eIF4E) protein. eIF4E is an oncogene that is overexpressed in numerous forms of cancer, making it a prime target as a therapeutic molecule. We report here the presence of a cryptic pocket at the protein-binding interface of eIF4E, which opens transiently during molecular dynamics simulations of the protein in solvent water and is observed to be stable when solvent water is mixed with benzene molecules. This pocket can also be seen in the ensemble of structures available from the solution-state conformations of eIF4E. The accessibility of the pocket is gated by the side-chain transitions of an evolutionarily conserved tryptophan residue. It is found to be feasible for accommodating clusters of benzene molecules, which signify the plasticity and ligandability of the pocket. We also observe that the newly formed cavity provides a favorable binding environment for interaction of a well-recognized small molecule inhibitor of eIF4E. The occurrence of this transiently accessible cavity highlights the existence of a more pronounced binding groove in a region that has traditionally been considered to be planar. Together, the data suggest that an alternate binding cavity exists on eIF4E and could be exploited for the rational design and development of a new class of lead compounds against the protein.

  4. Polyphony: superposition independent methods for ensemble-based drug discovery.

    PubMed

    Pitt, William R; Montalvão, Rinaldo W; Blundell, Tom L

    2014-09-30

    Structure-based drug design is an iterative process, following cycles of structural biology, computer-aided design, synthetic chemistry and bioassay. In favorable circumstances, this process can lead to the structures of hundreds of protein-ligand crystal structures. In addition, molecular dynamics simulations are increasingly being used to further explore the conformational landscape of these complexes. Currently, methods capable of the analysis of ensembles of crystal structures and MD trajectories are limited and usually rely upon least squares superposition of coordinates. Novel methodologies are described for the analysis of multiple structures of a protein. Statistical approaches that rely upon residue equivalence, but not superposition, are developed. Tasks that can be performed include the identification of hinge regions, allosteric conformational changes and transient binding sites. The approaches are tested on crystal structures of CDK2 and other CMGC protein kinases and a simulation of p38α. Known interaction - conformational change relationships are highlighted but also new ones are revealed. A transient but druggable allosteric pocket in CDK2 is predicted to occur under the CMGC insert. Furthermore, an evolutionarily-conserved conformational link from the location of this pocket, via the αEF-αF loop, to phosphorylation sites on the activation loop is discovered. New methodologies are described and validated for the superimposition independent conformational analysis of large collections of structures or simulation snapshots of the same protein. The methodologies are encoded in a Python package called Polyphony, which is released as open source to accompany this paper [http://wrpitt.bitbucket.org/polyphony/].

  5. Visualizing electron pockets in cuprate superconductors

    NASA Astrophysics Data System (ADS)

    Das, Tanmoy; Markiewicz, R. S.; Bansil, A.; Balatsky, A. V.

    2012-06-01

    Fingerprints of the electron pocket in cuprates have been obtained only in numerous magnetotransport measurements, but its absence in spectroscopic observations poses a long-standing mystery. We develop a theoretical tool to provide ways to detect electron pockets via spectroscopies including scanning tunneling microscopy (STM) spectra, inelastic neutron scattering (INS), and angle-resolved photoemission spectroscopy (ARPES). We show that the quasiparticle-interference (QPI) pattern, measured by STM, shows an additional seven q vectors associated with the scattering on the electron pocket than that on the hole pocket. Furthermore, the Bogolyubov quasiparticle scatterings of the electron pocket lead to a second magnetic resonance mode in the INS spectra at a higher resonance energy. Finally, we reanalyze some STM, INS, and ARPES experimental data of several cuprates which dictates the direct fingerprints of electron pockets in these systems.

  6. Effectiveness of Several NDE Technologies in Detecting Moisture Pockets and: Artificial Defects in Sawn Timber and Glulam

    Treesearch

    James P. Wacker; Christopher Adam Senalik; Xiping Wang; Frank Jalinoos

    2016-01-01

    Several nondestructive evaluation (NDE) technologies were studied to determine their efficacy as scanning devices to detect internal moisture and artificial decay pockets. Large bridge-sized test specimens, including sawn timber and glued-laminated timber members, were fabricated with various internal defects. NDE Technologies evaluated in this research were ground...

  7. Efficient ensemble system based on the copper binding motif for highly sensitive and selective detection of cyanide ions in 100% aqueous solutions by fluorescent and colorimetric changes.

    PubMed

    Jung, Kwan Ho; Lee, Keun-Hyeung

    2015-09-15

    A peptide-based ensemble for the detection of cyanide ions in 100% aqueous solutions was designed on the basis of the copper binding motif. 7-Nitro-2,1,3-benzoxadiazole-labeled tripeptide (NBD-SSH, NBD-SerSerHis) formed the ensemble with Cu(2+), leading to a change in the color of the solution from yellow to orange and a complete decrease of fluorescence emission. The ensemble (NBD-SSH-Cu(2+)) sensitively and selectively detected a low concentration of cyanide ions in 100% aqueous solutions by a colorimetric change as well as a fluorescent change. The addition of cyanide ions instantly removed Cu(2+) from the ensemble (NBD-SSH-Cu(2+)) in 100% aqueous solutions, resulting in a color change of the solution from orange to yellow and a "turn-on" fluorescent response. The detection limits for cyanide ions were lower than the maximum allowable level of cyanide ions in drinking water set by the World Health Organization. The peptide-based ensemble system is expected to be a potential and practical way for the detection of submicromolar concentrations of cyanide ions in 100% aqueous solutions.

  8. Druggable pockets and binding site centric chemical space: a paradigm shift in drug discovery.

    PubMed

    Pérot, Stéphanie; Sperandio, Olivier; Miteva, Maria A; Camproux, Anne-Claude; Villoutreix, Bruno O

    2010-08-01

    Detection, comparison and analyses of binding pockets are pivotal to structure-based drug design endeavors, from hit identification, screening of exosites and de-orphanization of protein functions to the anticipation of specific and non-specific binding to off- and anti-targets. Here, we analyze protein-ligand complexes and discuss methods that assist binding site identification, prediction of druggability and binding site comparison. The full potential of pockets is yet to be harnessed, and we envision that better understanding of the pocket space will have far-reaching implications in the field of drug discovery, such as the design of pocket-specific compound libraries and scoring functions.

  9. Ensemble based adaptive over-sampling method for imbalanced data learning in computer aided detection of microaneurysm.

    PubMed

    Ren, Fulong; Cao, Peng; Li, Wei; Zhao, Dazhe; Zaiane, Osmar

    2017-01-01

    Diabetic retinopathy (DR) is a progressive disease, and its detection at an early stage is crucial for saving a patient's vision. An automated screening system for DR can help in reduce the chances of complete blindness due to DR along with lowering the work load on ophthalmologists. Among the earliest signs of DR are microaneurysms (MAs). However, current schemes for MA detection appear to report many false positives because detection algorithms have high sensitivity. Inevitably some non-MAs structures are labeled as MAs in the initial MAs identification step. This is a typical "class imbalance problem". Class imbalanced data has detrimental effects on the performance of conventional classifiers. In this work, we propose an ensemble based adaptive over-sampling algorithm for overcoming the class imbalance problem in the false positive reduction, and we use Boosting, Bagging, Random subspace as the ensemble framework to improve microaneurysm detection. The ensemble based over-sampling methods we proposed combine the strength of adaptive over-sampling and ensemble. The objective of the amalgamation of ensemble and adaptive over-sampling is to reduce the induction biases introduced from imbalanced data and to enhance the generalization classification performance of extreme learning machines (ELM). Experimental results show that our ASOBoost method has higher area under the ROC curve (AUC) and G-mean values than many existing class imbalance learning methods. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. An ensemble of dynamic neural network identifiers for fault detection and isolation of gas turbine engines.

    PubMed

    Amozegar, M; Khorasani, K

    2016-04-01

    In this paper, a new approach for Fault Detection and Isolation (FDI) of gas turbine engines is proposed by developing an ensemble of dynamic neural network identifiers. For health monitoring of the gas turbine engine, its dynamics is first identified by constructing three separate or individual dynamic neural network architectures. Specifically, a dynamic multi-layer perceptron (MLP), a dynamic radial-basis function (RBF) neural network, and a dynamic support vector machine (SVM) are trained to individually identify and represent the gas turbine engine dynamics. Next, three ensemble-based techniques are developed to represent the gas turbine engine dynamics, namely, two heterogeneous ensemble models and one homogeneous ensemble model. It is first shown that all ensemble approaches do significantly improve the overall performance and accuracy of the developed system identification scheme when compared to each of the stand-alone solutions. The best selected stand-alone model (i.e., the dynamic RBF network) and the best selected ensemble architecture (i.e., the heterogeneous ensemble) in terms of their performances in achieving an accurate system identification are then selected for solving the FDI task. The required residual signals are generated by using both a single model-based solution and an ensemble-based solution under various gas turbine engine health conditions. Our extensive simulation studies demonstrate that the fault detection and isolation task achieved by using the residuals that are obtained from the dynamic ensemble scheme results in a significantly more accurate and reliable performance as illustrated through detailed quantitative confusion matrix analysis and comparative studies. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. A molecular description of ligand binding to the two overlapping binding pockets of the nuclear vitamin D receptor (VDR): structure-function implications

    PubMed Central

    Mizwicki, Mathew T.; Menegaz, Danusa; Yaghmaei, Sepideh; Henry, Helen L.; Norman, Anthony W.

    2010-01-01

    Molecular modeling results indicate that the VDR contains two overlapping ligand binding pockets (LBP). Differential ligand stability and fractional occupancy of the two LBP has been physiochemically linked to the regulation of VDR-dependent genomic and non-genomic cellular responses. The purpose of this report is to develop an unbiased molecular modeling protocol that serves as a good starting point in simulating the dynamic interaction between 1α,25(OH)2-vitamin D3 (1,25D3) and the VDR LBP. To accomplish this goal, the flexible docking protocol developed allowed for flexibility in the VDR ligand and the VDR atoms that form the surfaces of the VDR LBP. This approach blindly replicated the 1,25D3 conformation and side-chain dynamics observed in the VDR x-ray structure. The results are also consistent with the previously published tenants of the vitamin D sterol (VDS)-VDR conformational ensemble model. Furthermore, we used flexible docking in combination with whole cell patch clamp electrophysiology and steroid competition assays to demonstrate that a) new non-vitamin D VDR ligands show a different pocket selectivity when compared to 1,25D3 that is qualitatively consistent with their ability to stimulate chloride channels and b) a new route of ligand binding provides a novel hypothesis describing the structural nuances that underlie hypercalceamia. PMID:20398762

  12. Tb3+-cleavage assays reveal specific Mg2+ binding sites necessary to pre-fold the btuB riboswitch for AdoCbl binding

    NASA Astrophysics Data System (ADS)

    Choudhary, Pallavi K.; Gallo, Sofia; Sigel, Roland K. O.

    2017-03-01

    Riboswitches are RNA elements that bind specific metabolites in order to regulate the gene expression involved in controlling the cellular concentration of the respective molecule or ion. Ligand recognition is mostly facilitated by Mg2+ mediated pre-organization of the riboswitch to an active tertiary fold. To predict these specific Mg2+ induced tertiary interactions of the btuB riboswitch from E. coli, we here report Mg2+ binding pockets in its aptameric part in both, the ligand-free and the ligand-bound form. An ensemble of weak and strong metal ion binding sites distributed over the entire aptamer was detected by terbium(III) cleavage assays, Tb3+ being an established Mg2+ mimic. Interestingly many of the Mn+ (n = 2 or 3) binding sites involve conserved bases within the class of coenzyme B12-binding riboswitches. Comparison with the published crystal structure of the coenzyme B12 riboswitch of S. thermophilum aided in identifying a common set of Mn+ binding sites that might be crucial for tertiary interactions involved in the organization of the aptamer. Our results suggest that Mn+ binding at strategic locations of the btuB riboswitch indeed facilitates the assembly of the binding pocket needed for ligand recognition. Binding of the specific ligand, coenzyme B12 (AdoCbl), to the btuB aptamer does however not lead to drastic alterations of these Mn+ binding cores, indicating the lack of a major rearrangement within the three-dimensional structure of the RNA. This finding is strengthened by Tb3+ mediated footprints of the riboswitch's structure in its ligand-free and ligand-bound state indicating that AdoCbl indeed induces local changes rather than a global structural rearrangement.

  13. Multi-complexity ensemble measures for gait time series analysis: application to diagnostics, monitoring and biometrics.

    PubMed

    Gavrishchaka, Valeriy; Senyukova, Olga; Davis, Kristina

    2015-01-01

    Previously, we have proposed to use complementary complexity measures discovered by boosting-like ensemble learning for the enhancement of quantitative indicators dealing with necessarily short physiological time series. We have confirmed robustness of such multi-complexity measures for heart rate variability analysis with the emphasis on detection of emerging and intermittent cardiac abnormalities. Recently, we presented preliminary results suggesting that such ensemble-based approach could be also effective in discovering universal meta-indicators for early detection and convenient monitoring of neurological abnormalities using gait time series. Here, we argue and demonstrate that these multi-complexity ensemble measures for gait time series analysis could have significantly wider application scope ranging from diagnostics and early detection of physiological regime change to gait-based biometrics applications.

  14. MSPocket: an orientation-independent algorithm for the detection of ligand binding pockets.

    PubMed

    Zhu, Hongbo; Pisabarro, M Teresa

    2011-02-01

    Identification of ligand binding pockets on proteins is crucial for the characterization of protein functions. It provides valuable information for protein-ligand docking and rational engineering of small molecules that regulate protein functions. A major number of current prediction algorithms of ligand binding pockets are based on cubic grid representation of proteins and, thus, the results are often protein orientation dependent. We present the MSPocket program for detecting pockets on the solvent excluded surface of proteins. The core algorithm of the MSPocket approach does not use any cubic grid system to represent proteins and is therefore independent of protein orientations. We demonstrate that MSPocket is able to achieve an accuracy of 75% in predicting ligand binding pockets on a test dataset used for evaluating several existing methods. The accuracy is 92% if the top three predictions are considered. Comparison to one of the recently published best performing methods shows that MSPocket reaches similar performance with the additional feature of being protein orientation independent. Interestingly, some of the predictions are different, meaning that the two methods can be considered complementary and combined to achieve better prediction accuracy. MSPocket also provides a graphical user interface for interactive investigation of the predicted ligand binding pockets. In addition, we show that overlap criterion is a better strategy for the evaluation of predicted ligand binding pockets than the single point distance criterion. The MSPocket source code can be downloaded from http://appserver.biotec.tu-dresden.de/MSPocket/. MSPocket is also available as a PyMOL plugin with a graphical user interface.

  15. Is there foul play in the leaf pocket? The metagenome of floating fern Azolla reveals endophytes that do not fix N2 but may denitrify.

    PubMed

    Dijkhuizen, Laura W; Brouwer, Paul; Bolhuis, Henk; Reichart, Gert-Jan; Koppers, Nils; Huettel, Bruno; Bolger, Anthony M; Li, Fay-Wei; Cheng, Shifeng; Liu, Xin; Wong, Gane Ka-Shu; Pryer, Kathleen; Weber, Andreas; Bräutigam, Andrea; Schluepmann, Henriette

    2018-01-01

    Dinitrogen fixation by Nostoc azollae residing in specialized leaf pockets supports prolific growth of the floating fern Azolla filiculoides. To evaluate contributions by further microorganisms, the A. filiculoides microbiome and nitrogen metabolism in bacteria persistently associated with Azolla ferns were characterized. A metagenomic approach was taken complemented by detection of N 2 O released and nitrogen isotope determinations of fern biomass. Ribosomal RNA genes in sequenced DNA of natural ferns, their enriched leaf pockets and water filtrate from the surrounding ditch established that bacteria of A. filiculoides differed entirely from surrounding water and revealed species of the order Rhizobiales. Analyses of seven cultivated Azolla species confirmed persistent association with Rhizobiales. Two distinct nearly full-length Rhizobiales genomes were identified in leaf-pocket-enriched samples from ditch grown A. filiculoides. Their annotation revealed genes for denitrification but not N 2 -fixation. 15 N 2 incorporation was active in ferns with N. azollae but not in ferns without. N 2 O was not detectably released from surface-sterilized ferns with the Rhizobiales. N 2 -fixing N. azollae, we conclude, dominated the microbiome of Azolla ferns. The persistent but less abundant heterotrophic Rhizobiales bacteria possibly contributed to lowering O 2 levels in leaf pockets but did not release detectable amounts of the strong greenhouse gas N 2 O. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  16. Evidence for a small hole pocket in the Fermi surface of underdoped YBa2Cu3Oy

    PubMed Central

    Doiron-Leyraud, N.; Badoux, S.; René de Cotret, S.; Lepault, S.; LeBoeuf, D.; Laliberté, F.; Hassinger, E.; Ramshaw, B. J.; Bonn, D. A.; Hardy, W. N.; Liang, R.; Park, J.-H..; Vignolles, D.; Vignolle, B.; Taillefer, L.; Proust, C.

    2015-01-01

    In underdoped cuprate superconductors, the Fermi surface undergoes a reconstruction that produces a small electron pocket, but whether there is another, as yet, undetected portion to the Fermi surface is unknown. Establishing the complete topology of the Fermi surface is key to identifying the mechanism responsible for its reconstruction. Here we report evidence for a second Fermi pocket in underdoped YBa2Cu3Oy, detected as a small quantum oscillation frequency in the thermoelectric response and in the c-axis resistance. The field-angle dependence of the frequency shows that it is a distinct Fermi surface, and the normal-state thermopower requires it to be a hole pocket. A Fermi surface consisting of one electron pocket and two hole pockets with the measured areas and masses is consistent with a Fermi-surface reconstruction by the charge–density–wave order observed in YBa2Cu3Oy, provided other parts of the reconstructed Fermi surface are removed by a separate mechanism, possibly the pseudogap. PMID:25616011

  17. 21 CFR 872.1870 - Sulfide detection device.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    .... A sulfide detection device is a device consisting of an AC-powered control unit, probe handle, probe... periodontal pocket probing depths, detect the presence or absence of bleeding on probing, and detect the...

  18. 21 CFR 872.1870 - Sulfide detection device.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    .... A sulfide detection device is a device consisting of an AC-powered control unit, probe handle, probe... periodontal pocket probing depths, detect the presence or absence of bleeding on probing, and detect the...

  19. 21 CFR 872.1870 - Sulfide detection device.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    .... A sulfide detection device is a device consisting of an AC-powered control unit, probe handle, probe... periodontal pocket probing depths, detect the presence or absence of bleeding on probing, and detect the...

  20. 21 CFR 872.1870 - Sulfide detection device.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    .... A sulfide detection device is a device consisting of an AC-powered control unit, probe handle, probe... periodontal pocket probing depths, detect the presence or absence of bleeding on probing, and detect the...

  1. Three-dimensionality of the bulk electronic structure in WTe 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yun; Jo, Na Hyun; Mou, Daixiang

    Inmore » this paper, we use temperature- and field-dependent resistivity measurements (Shubnikov–de Haas quantum oscillations) and ultrahigh-resolution, tunable, vacuum ultraviolet laser-based angle-resolved photoemission spectroscopy (ARPES) to study the three-dimensionality (3D) of the bulk electronic structure in WTe 2 , a type II Weyl semimetal. The bulk Fermi surface (FS) consists of two pairs of electron pockets and two pairs of hole pockets along the Χ–Γ–Χ direction as detected by using an incident photon energy of 6.7 eV, which is consistent with the previously reported data. However, if using an incident photon energy of 6.36 eV, another pair of tiny electron pockets is detected on both sides of the Γ point, which is in agreement with the small quantum oscillation frequency peak observed in the magnetoresistance. Therefore, the bulk, 3D FS consists of three pairs of electron pockets and two pairs of hole pockets in total. With the ability of fine tuning the incident photon energy, we demonstrate the strong three-dimensionality of the bulk electronic structure in WTe 2 . Finally, the combination of resistivity and ARPES measurements reveals the complete, and consistent, picture of the bulk electronic structure of this material.« less

  2. Three-dimensionality of the bulk electronic structure in WTe 2

    DOE PAGES

    Wu, Yun; Jo, Na Hyun; Mou, Daixiang; ...

    2017-05-18

    Inmore » this paper, we use temperature- and field-dependent resistivity measurements (Shubnikov–de Haas quantum oscillations) and ultrahigh-resolution, tunable, vacuum ultraviolet laser-based angle-resolved photoemission spectroscopy (ARPES) to study the three-dimensionality (3D) of the bulk electronic structure in WTe 2 , a type II Weyl semimetal. The bulk Fermi surface (FS) consists of two pairs of electron pockets and two pairs of hole pockets along the Χ–Γ–Χ direction as detected by using an incident photon energy of 6.7 eV, which is consistent with the previously reported data. However, if using an incident photon energy of 6.36 eV, another pair of tiny electron pockets is detected on both sides of the Γ point, which is in agreement with the small quantum oscillation frequency peak observed in the magnetoresistance. Therefore, the bulk, 3D FS consists of three pairs of electron pockets and two pairs of hole pockets in total. With the ability of fine tuning the incident photon energy, we demonstrate the strong three-dimensionality of the bulk electronic structure in WTe 2 . Finally, the combination of resistivity and ARPES measurements reveals the complete, and consistent, picture of the bulk electronic structure of this material.« less

  3. Detecting Local Ligand-Binding Site Similarity in Non-Homologous Proteins by Surface Patch Comparison

    PubMed Central

    Sael, Lee; Kihara, Daisuke

    2012-01-01

    Functional elucidation of proteins is one of the essential tasks in biology. Function of a protein, specifically, small ligand molecules that bind to a protein, can be predicted by finding similar local surface regions in binding sites of known proteins. Here, we developed an alignment free local surface comparison method for predicting a ligand molecule which binds to a query protein. The algorithm, named Patch-Surfer, represents a binding pocket as a combination of segmented surface patches, each of which is characterized by its geometrical shape, the electrostatic potential, the hydrophobicity, and the concaveness. Representing a pocket by a set of patches is effective to absorb difference of global pocket shape while capturing local similarity of pockets. The shape and the physicochemical properties of surface patches are represented using the 3D Zernike descriptor, which is a series expansion of mathematical 3D function. Two pockets are compared using a modified weighted bipartite matching algorithm, which matches similar patches from the two pockets. Patch-Surfer was benchmarked on three datasets, which consist in total of 390 proteins that bind to one of 21 ligands. Patch-Surfer showed superior performance to existing methods including a global pocket comparison method, Pocket-Surfer, which we have previously introduced. Particularly, as intended, the accuracy showed large improvement for flexible ligand molecules, which bind to pockets in different conformations. PMID:22275074

  4. Detecting local ligand-binding site similarity in nonhomologous proteins by surface patch comparison.

    PubMed

    Sael, Lee; Kihara, Daisuke

    2012-04-01

    Functional elucidation of proteins is one of the essential tasks in biology. Function of a protein, specifically, small ligand molecules that bind to a protein, can be predicted by finding similar local surface regions in binding sites of known proteins. Here, we developed an alignment free local surface comparison method for predicting a ligand molecule which binds to a query protein. The algorithm, named Patch-Surfer, represents a binding pocket as a combination of segmented surface patches, each of which is characterized by its geometrical shape, the electrostatic potential, the hydrophobicity, and the concaveness. Representing a pocket by a set of patches is effective to absorb difference of global pocket shape while capturing local similarity of pockets. The shape and the physicochemical properties of surface patches are represented using the 3D Zernike descriptor, which is a series expansion of mathematical 3D function. Two pockets are compared using a modified weighted bipartite matching algorithm, which matches similar patches from the two pockets. Patch-Surfer was benchmarked on three datasets, which consist in total of 390 proteins that bind to one of 21 ligands. Patch-Surfer showed superior performance to existing methods including a global pocket comparison method, Pocket-Surfer, which we have previously introduced. Particularly, as intended, the accuracy showed large improvement for flexible ligand molecules, which bind to pockets in different conformations. Copyright © 2011 Wiley Periodicals, Inc.

  5. The Role of the Acid Pocket in Gastroesophageal Reflux Disease.

    PubMed

    Mitchell, David R; Derakhshan, Mohammad H; Robertson, Elaine V; McColl, Kenneth E L

    2016-02-01

    Gastroesophageal reflux disease is one of the commonest chronic conditions in the western world and its prevalence is increasing worldwide. The discovery of the acid pocket explained the paradox of acid reflux occurring more frequently in the postprandial period despite intragastric acidity being low due to the buffering effect of the meal. The acid pocket was first described in 2001 when it was detected as an area of low pH immediately distal to the cardia using dual pH electrode pull-through studies 15 minutes after a meal. It was hypothesized that there was a local pocket of acid close to the gastroesophageal junction that escapes the buffering effect of the meal, and that this is the source of postprandial acidic reflux. The presence of the acid pocket has been confirmed in other studies using different techniques including high-resolution pHmetry, Bravo capsule, magnetic resonance imaging, and scintigraphy. This review aims to describe what we know about the acid pocket including its length, volume, fluid constituents, and its relationship to the lower esophageal sphincter and squamocolumnar junction. We will discuss the possible mechanisms that lead to the formation of the acid pocket and examine what differences exist in patients who suffer from acid reflux. Treatments for reflux disease that affect the acid pocket will also be discussed.

  6. Structure/function implications in a dynamic complex of the intrinsically disordered Sic1 with the Cdc4 subunit of an SCF ubiquitin ligase

    PubMed Central

    Mittag, Tanja; Marsh, Joseph; Grishaev, Alexander; Orlicky, Stephen; Lin, Hong; Sicheri, Frank; Tyers, Mike; Forman-Kay, Julie D.

    2010-01-01

    Summary Intrinsically disordered proteins can form highly dynamic complexes with partner proteins. One such dynamic complex involves the intrinsically disordered Sic1 with its partner Cdc4 in regulation of yeast cell cycle progression. Phosphorylation of six N-terminal Sic1 sites leads to equilibrium engagement of each phosphorylation site with the primary binding pocket in Cdc4, the substrate recognition subunit of a ubiquitin ligase. ENSEMBLE calculations utilizing experimental NMR and small-angle x-ray scattering data reveal significant transient structure in both phosphorylation states of the isolated ensembles (Sic1 and pSic1) that modulates their electrostatic potential, suggesting a structural basis for the proposed strong contribution of electrostatics to binding. A structural model of the dynamic pSic1-Cdc4 complex demonstrates the spatial arrangements in the ubiquitin ligase complex. These results provide a physical picture of a protein that is predominantly disordered in both its free and bound states, enabling aspects of its structure/function relationship to be elucidated. PMID:20399186

  7. Application of Ensemble Detection and Analysis to Modeling Uncertainty in Non Stationary Process

    NASA Technical Reports Server (NTRS)

    Racette, Paul

    2010-01-01

    Characterization of non stationary and nonlinear processes is a challenge in many engineering and scientific disciplines. Climate change modeling and projection, retrieving information from Doppler measurements of hydrometeors, and modeling calibration architectures and algorithms in microwave radiometers are example applications that can benefit from improvements in the modeling and analysis of non stationary processes. Analyses of measured signals have traditionally been limited to a single measurement series. Ensemble Detection is a technique whereby mixing calibrated noise produces an ensemble measurement set. The collection of ensemble data sets enables new methods for analyzing random signals and offers powerful new approaches to studying and analyzing non stationary processes. Derived information contained in the dynamic stochastic moments of a process will enable many novel applications.

  8. Power to Detect Intervention Effects on Ensembles of Social Networks

    ERIC Educational Resources Information Center

    Sweet, Tracy M.; Junker, Brian W.

    2016-01-01

    The hierarchical network model (HNM) is a framework introduced by Sweet, Thomas, and Junker for modeling interventions and other covariate effects on ensembles of social networks, such as what would be found in randomized controlled trials in education research. In this article, we develop calculations for the power to detect an intervention…

  9. Benefits of an ultra large and multiresolution ensemble for estimating available wind power

    NASA Astrophysics Data System (ADS)

    Berndt, Jonas; Hoppe, Charlotte; Elbern, Hendrik

    2016-04-01

    In this study we investigate the benefits of an ultra large ensemble with up to 1000 members including multiple nesting with a target horizontal resolution of 1 km. The ensemble shall be used as a basis to detect events of extreme errors in wind power forecasting. Forecast value is the wind vector at wind turbine hub height (~ 100 m) in the short range (1 to 24 hour). Current wind power forecast systems rest already on NWP ensemble models. However, only calibrated ensembles from meteorological institutions serve as input so far, with limited spatial resolution (˜10 - 80 km) and member number (˜ 50). Perturbations related to the specific merits of wind power production are yet missing. Thus, single extreme error events which are not detected by such ensemble power forecasts occur infrequently. The numerical forecast model used in this study is the Weather Research and Forecasting Model (WRF). Model uncertainties are represented by stochastic parametrization of sub-grid processes via stochastically perturbed parametrization tendencies and in conjunction via the complementary stochastic kinetic-energy backscatter scheme already provided by WRF. We perform continuous ensemble updates by comparing each ensemble member with available observations using a sequential importance resampling filter to improve the model accuracy while maintaining ensemble spread. Additionally, we use different ensemble systems from global models (ECMWF and GFS) as input and boundary conditions to capture different synoptic conditions. Critical weather situations which are connected to extreme error events are located and corresponding perturbation techniques are applied. The demanding computational effort is overcome by utilising the supercomputer JUQUEEN at the Forschungszentrum Juelich.

  10. Ensemble Pruning for Glaucoma Detection in an Unbalanced Data Set.

    PubMed

    Adler, Werner; Gefeller, Olaf; Gul, Asma; Horn, Folkert K; Khan, Zardad; Lausen, Berthold

    2016-12-07

    Random forests are successful classifier ensemble methods consisting of typically 100 to 1000 classification trees. Ensemble pruning techniques reduce the computational cost, especially the memory demand, of random forests by reducing the number of trees without relevant loss of performance or even with increased performance of the sub-ensemble. The application to the problem of an early detection of glaucoma, a severe eye disease with low prevalence, based on topographical measurements of the eye background faces specific challenges. We examine the performance of ensemble pruning strategies for glaucoma detection in an unbalanced data situation. The data set consists of 102 topographical features of the eye background of 254 healthy controls and 55 glaucoma patients. We compare the area under the receiver operating characteristic curve (AUC), and the Brier score on the total data set, in the majority class, and in the minority class of pruned random forest ensembles obtained with strategies based on the prediction accuracy of greedily grown sub-ensembles, the uncertainty weighted accuracy, and the similarity between single trees. To validate the findings and to examine the influence of the prevalence of glaucoma in the data set, we additionally perform a simulation study with lower prevalences of glaucoma. In glaucoma classification all three pruning strategies lead to improved AUC and smaller Brier scores on the total data set with sub-ensembles as small as 30 to 80 trees compared to the classification results obtained with the full ensemble consisting of 1000 trees. In the simulation study, we were able to show that the prevalence of glaucoma is a critical factor and lower prevalence decreases the performance of our pruning strategies. The memory demand for glaucoma classification in an unbalanced data situation based on random forests could effectively be reduced by the application of pruning strategies without loss of performance in a population with increased risk of glaucoma.

  11. Microbial changes in patients with acute periodontal abscess after treatment detected by PadoTest.

    PubMed

    Eguchi, T; Koshy, G; Umeda, M; Iwanami, T; Suga, J; Nomura, Y; Kawanami, M; Ishikawa, I

    2008-03-01

    To investigate changes in bacterial counts in subgingival plaque from patients with acute periodontal abscess by IAI-PadoTest. Ninety-one patients were randomly allocated to either test or control groups. In all the patients, pockets with acute periodontal abscess were irrigated with sterilized physiological saline, and in the test group, 2% minocycline hydrochloride ointment was applied once into the pocket in addition. Subgingival plaque samples were collected by paper point before treatment and 7 days after treatment. The total bacterial count was determined and Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, Treponema denticola, and Tannerella forsythia, were detected using IAI-PadoTest, a DNA/RNA probe method. The total bacterial count decreased in both groups, with a significant decrease in the test group. The counts and number of sites positive for P. gingivalis, T. forsythia and T. denticola significantly decreased in the test group after treatment, compared with those in the control group. Pocket depth decreased in the both groups, with a statistically significant decrease in the test group. Topical treatment with minocycline in pockets with acute periodontal abscess was effective in reducing the bacterial counts as shown by the microbiological investigation using PadoTest 4.5.

  12. Equity in out-of-pocket payment in Chile

    PubMed Central

    Mondaca, Alicia Lorena Núñez; Chi, Chunhuei

    2017-01-01

    ABSTRACT OBJECTIVE To assess the distribution of financial burden in Chile, with a focus on the burden and progressivity of out-of-pocket payment. METHODS Based on the principle of ability to pay, we explore factors that contribute to inequities in the health system finance and issues about the burden of out-of-pocket payment, as well as the progressivity and redistributive effect of out-of-pocket payment in Chile. Our analysis is based on data from the 2006 National Survey on Satisfaction and Out-of-Pocket Payments. RESULTS Results from this study indicate evidence of inequity, in spite of the progressivity of the healthcare system. Our analysis also identifies relevant policy variables such as education, insurance system, and method of payment that should be taken into consideration in the ongoing debates and research in improving the Chilean system. CONCLUSIONS In order to reduce the detected disparities among income groups, healthcare priorities should target low-income groups. Furthermore, policies should explore changes in the access to education and its impact on equity. PMID:28492762

  13. Equity in out-of-pocket payment in Chile.

    PubMed

    Mondaca, Alicia Lorena Núñez; Chi, Chunhuei

    2017-05-04

    To assess the distribution of financial burden in Chile, with a focus on the burden and progressivity of out-of-pocket payment. Based on the principle of ability to pay, we explore factors that contribute to inequities in the health system finance and issues about the burden of out-of-pocket payment, as well as the progressivity and redistributive effect of out-of-pocket payment in Chile. Our analysis is based on data from the 2006 National Survey on Satisfaction and Out-of-Pocket Payments. Results from this study indicate evidence of inequity, in spite of the progressivity of the healthcare system. Our analysis also identifies relevant policy variables such as education, insurance system, and method of payment that should be taken into consideration in the ongoing debates and research in improving the Chilean system. In order to reduce the detected disparities among income groups, healthcare priorities should target low-income groups. Furthermore, policies should explore changes in the access to education and its impact on equity.

  14. Inhomogeneous ensembles of radical pairs in chemical compasses

    PubMed Central

    Procopio, Maria; Ritz, Thorsten

    2016-01-01

    The biophysical basis for the ability of animals to detect the geomagnetic field and to use it for finding directions remains a mystery of sensory biology. One much debated hypothesis suggests that an ensemble of specialized light-induced radical pair reactions can provide the primary signal for a magnetic compass sensor. The question arises what features of such a radical pair ensemble could be optimized by evolution so as to improve the detection of the direction of weak magnetic fields. Here, we focus on the overlooked aspect of the noise arising from inhomogeneity of copies of biomolecules in a realistic biological environment. Such inhomogeneity leads to variations of the radical pair parameters, thereby deteriorating the signal arising from an ensemble and providing a source of noise. We investigate the effect of variations in hyperfine interactions between different copies of simple radical pairs on the directional response of a compass system. We find that the choice of radical pair parameters greatly influences how strongly the directional response of an ensemble is affected by inhomogeneity. PMID:27804956

  15. Inhomogeneous ensembles of radical pairs in chemical compasses

    NASA Astrophysics Data System (ADS)

    Procopio, Maria; Ritz, Thorsten

    2016-11-01

    The biophysical basis for the ability of animals to detect the geomagnetic field and to use it for finding directions remains a mystery of sensory biology. One much debated hypothesis suggests that an ensemble of specialized light-induced radical pair reactions can provide the primary signal for a magnetic compass sensor. The question arises what features of such a radical pair ensemble could be optimized by evolution so as to improve the detection of the direction of weak magnetic fields. Here, we focus on the overlooked aspect of the noise arising from inhomogeneity of copies of biomolecules in a realistic biological environment. Such inhomogeneity leads to variations of the radical pair parameters, thereby deteriorating the signal arising from an ensemble and providing a source of noise. We investigate the effect of variations in hyperfine interactions between different copies of simple radical pairs on the directional response of a compass system. We find that the choice of radical pair parameters greatly influences how strongly the directional response of an ensemble is affected by inhomogeneity.

  16. Drug-like density: a method of quantifying the "bindability" of a protein target based on a very large set of pockets and drug-like ligands from the Protein Data Bank.

    PubMed

    Sheridan, Robert P; Maiorov, Vladimir N; Holloway, M Katharine; Cornell, Wendy D; Gao, Ying-Duo

    2010-11-22

    One approach to estimating the "chemical tractability" of a candidate protein target where we know the atomic resolution structure is to examine the physical properties of potential binding sites. A number of other workers have addressed this issue. We characterize ~290,000 "pockets" from ~42,000 protein crystal structures in terms of a three parameter "pocket space": volume, buriedness, and hydrophobicity. A metric DLID (drug-like density) measures how likely a pocket is to bind a drug-like molecule. This is calculated from the count of other pockets in its local neighborhood in pocket space that contain drug-like cocrystallized ligands and the count of total pockets in the neighborhood. Surprisingly, despite being defined locally, a global trend in DLID can be predicted by a simple linear regression on log(volume), buriedness, and hydrophobicity. Two levels of simplification are necessary to relate the DLID of individual pockets to "targets": taking the best DLID per Protein Data Bank (PDB) entry (because any given crystal structure can have many pockets), and taking the median DLID over all PDB entries for the same target (because different crystal structures of the same protein can vary because of artifacts and real conformational changes). We can show that median DLIDs for targets that are detectably homologous in sequence are reasonably similar and that median DLIDs correlate with the "druggability" estimate of Cheng et al. (Nature Biotechnology 2007, 25, 71-75).

  17. A Novel Data-Driven Learning Method for Radar Target Detection in Nonstationary Environments

    DTIC Science & Technology

    2016-05-01

    Classifier ensembles for changing environments,” in Multiple Classifier Systems, vol. 3077, F. Roli, J. Kittler and T. Windeatt, Eds. New York, NY...Dec. 2006, pp. 1113–1118. [21] J. Z. Kolter and M. A. Maloof, “Dynamic weighted majority: An ensemble method for drifting concepts,” J. Mach. Learn...Trans. Neural Netw., vol. 22, no. 10, pp. 1517–1531, Oct. 2011. [23] R. Polikar, “ Ensemble learning,” in Ensemble Machine Learning: Methods and

  18. Efficient screening for COPD using three steps: a cross-sectional study in Mexico City.

    PubMed

    Franco-Marina, Francisco; Fernandez-Plata, Rosario; Torre-Bouscoulet, Luis; García-Sancho, Cecilia; Sanchez-Gallen, Elisa; Martinez, David; Perez-Padilla, Rogelio

    2014-05-20

    Underdiagnosis of chronic obstructive pulmonary disease (COPD) in primary care can be improved by a more efficient screening strategy. To evaluate a three-step method of screening for COPD consisting of an initial short questionnaire followed by measurement of forced expiratory volume in 1s/forced expiratory volume in 6s (FEV1/FEV6) using an inexpensive pocket spirometer in those with high risk, and diagnostic quality spirometry in those with a low FEV1/FEV6. We analysed two related Mexico City cross-sectional samples. The 2003 Mexico City PLATINO survey (n=542) was used to develop a short questionnaire to determine the risk of COPD and a 2010 survey (n=737) additionally used a pocket spirometer. The discriminatory power of the two instruments was assessed with receiver operator characteristic (ROC) curves using three COPD definitions. The developed COPD scale included two variables from a simple questionnaire and, in ROC analysis, an area under the curve (AUC) between 0.64 and 0.77 was found to detect COPD. The pocket spirometer had an AUC between 0.85 and 0.88 to detect COPD. Using the COPD scale as a first screening step excluded 35-48% of the total population from further testing at the cost of not detecting 8-18% of those with COPD. Using the pocket spirometer and sending those with a FEV1/FEV6<0.80 for diagnostic quality spirometry is very efficient, and substantially improved the positive predictive value at the cost of not detecting one-third of COPD cases. A three-step screening strategy for COPD substantially reduces the need for spirometry testing when only a COPD scale is used for screening.

  19. AlphaSpace: Fragment-Centric Topographical Mapping To Target Protein–Protein Interaction Interfaces

    PubMed Central

    2016-01-01

    Inhibition of protein–protein interactions (PPIs) is emerging as a promising therapeutic strategy despite the difficulty in targeting such interfaces with drug-like small molecules. PPIs generally feature large and flat binding surfaces as compared to typical drug targets. These features pose a challenge for structural characterization of the surface using geometry-based pocket-detection methods. An attractive mapping strategy—that builds on the principles of fragment-based drug discovery (FBDD)—is to detect the fragment-centric modularity at the protein surface and then characterize the large PPI interface as a set of localized, fragment-targetable interaction regions. Here, we introduce AlphaSpace, a computational analysis tool designed for fragment-centric topographical mapping (FCTM) of PPI interfaces. Our approach uses the alpha sphere construct, a geometric feature of a protein’s Voronoi diagram, to map out concave interaction space at the protein surface. We introduce two new features—alpha-atom and alpha-space—and the concept of the alpha-atom/alpha-space pair to rank pockets for fragment-targetability and to facilitate the evaluation of pocket/fragment complementarity. The resulting high-resolution interfacial map of targetable pocket space can be used to guide the rational design and optimization of small molecule or biomimetic PPI inhibitors. PMID:26225450

  20. Spectral partitioning in equitable graphs.

    PubMed

    Barucca, Paolo

    2017-06-01

    Graph partitioning problems emerge in a wide variety of complex systems, ranging from biology to finance, but can be rigorously analyzed and solved only for a few graph ensembles. Here, an ensemble of equitable graphs, i.e., random graphs with a block-regular structure, is studied, for which analytical results can be obtained. In particular, the spectral density of this ensemble is computed exactly for a modular and bipartite structure. Kesten-McKay's law for random regular graphs is found analytically to apply also for modular and bipartite structures when blocks are homogeneous. An exact solution to graph partitioning for two equal-sized communities is proposed and verified numerically, and a conjecture on the absence of an efficient recovery detectability transition in equitable graphs is suggested. A final discussion summarizes results and outlines their relevance for the solution of graph partitioning problems in other graph ensembles, in particular for the study of detectability thresholds and resolution limits in stochastic block models.

  1. Spectral partitioning in equitable graphs

    NASA Astrophysics Data System (ADS)

    Barucca, Paolo

    2017-06-01

    Graph partitioning problems emerge in a wide variety of complex systems, ranging from biology to finance, but can be rigorously analyzed and solved only for a few graph ensembles. Here, an ensemble of equitable graphs, i.e., random graphs with a block-regular structure, is studied, for which analytical results can be obtained. In particular, the spectral density of this ensemble is computed exactly for a modular and bipartite structure. Kesten-McKay's law for random regular graphs is found analytically to apply also for modular and bipartite structures when blocks are homogeneous. An exact solution to graph partitioning for two equal-sized communities is proposed and verified numerically, and a conjecture on the absence of an efficient recovery detectability transition in equitable graphs is suggested. A final discussion summarizes results and outlines their relevance for the solution of graph partitioning problems in other graph ensembles, in particular for the study of detectability thresholds and resolution limits in stochastic block models.

  2. Accuracy of detection of carboxyhemoglobin and methemoglobin in human and bovine blood with an inexpensive, pocket-size infrared scanner.

    PubMed

    Bickler, Margot P; Rhodes, Laura J

    2018-01-01

    Detecting life-threatening common dyshemoglobins such as carboxyhemoglobin (COHb, resulting from carbon monoxide poisoning) or methemoglobin (MetHb, caused by exposure to nitrates) typically requires a laboratory CO-oximeter. Because of cost, these spectrophotometer-based instrument are often inaccessible in resource-poor settings. The aim of this study was to determine if an inexpensive pocket infrared spectrometer and smartphone (SCiO®Pocket Molecular Sensor, Consumer Physics Ltd., Israel) accurately detects COHb and MetHb in single drops of blood. COHb was created by adding carbon monoxide gas to syringes of heparinized blood human or cow blood. In separate syringes, MetHb was produced by addition of sodium nitrite solution. After incubation and mixing, fractional concentrations of COHb or MetHb were measured using a Radiometer ABL-90 Flex® CO-oximeter. Fifty microliters of the sample were then placed on a microscope slide, a cover slip applied and scanned with the SCiO spectrometer. The spectrograms were used to create simple linear models predicting [COHb] or [MetHb] based on spectrogram maxima, minima and isobestic wavelengths. Our model predicted clinically significant carbon monoxide poisoning (COHb ≥15%) with a sensitivity of 93% and specificity of 88% (regression r2 = 0.63, slope P<0.0001), with a mean bias of 0.11% and an RMS error of 21%. Methemoglobinemia severe enough to cause symptoms (>20% MetHb) was detected with a sensitivity of 100% and specificity of 71% (regression r2 = 0.92, slope P<0.001) mean bias 2.7% and RMS error 21%. Although not as precise as a laboratory CO-oximeter, an inexpensive pocket-sized infrared scanner/smartphone detects >15% COHb or >20% MetHb on a single drop of blood with enough accuracy to be useful as an initial clinical screening. The SCiO and similar relatively low cost spectrometers could be developed as inexpensive diagnostic tools for developing countries.

  3. Selecting a Classification Ensemble and Detecting Process Drift in an Evolving Data Stream

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heredia-Langner, Alejandro; Rodriguez, Luke R.; Lin, Andy

    2015-09-30

    We characterize the commercial behavior of a group of companies in a common line of business using a small ensemble of classifiers on a stream of records containing commercial activity information. This approach is able to effectively find a subset of classifiers that can be used to predict company labels with reasonable accuracy. Performance of the ensemble, its error rate under stable conditions, can be characterized using an exponentially weighted moving average (EWMA) statistic. The behavior of the EWMA statistic can be used to monitor a record stream from the commercial network and determine when significant changes have occurred. Resultsmore » indicate that larger classification ensembles may not necessarily be optimal, pointing to the need to search the combinatorial classifier space in a systematic way. Results also show that current and past performance of an ensemble can be used to detect when statistically significant changes in the activity of the network have occurred. The dataset used in this work contains tens of thousands of high level commercial activity records with continuous and categorical variables and hundreds of labels, making classification challenging.« less

  4. Computational approaches for identification of conserved/unique binding pockets in the A chain of ricin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ecale Zhou, C L; Zemla, A T; Roe, D

    2005-01-29

    Specific and sensitive ligand-based protein detection assays that employ antibodies or small molecules such as peptides, aptamers, or other small molecules require that the corresponding surface region of the protein be accessible and that there be minimal cross-reactivity with non-target proteins. To reduce the time and cost of laboratory screening efforts for diagnostic reagents, we developed new methods for evaluating and selecting protein surface regions for ligand targeting. We devised combined structure- and sequence-based methods for identifying 3D epitopes and binding pockets on the surface of the A chain of ricin that are conserved with respect to a set ofmore » ricin A chains and unique with respect to other proteins. We (1) used structure alignment software to detect structural deviations and extracted from this analysis the residue-residue correspondence, (2) devised a method to compare corresponding residues across sets of ricin structures and structures of closely related proteins, (3) devised a sequence-based approach to determine residue infrequency in local sequence context, and (4) modified a pocket-finding algorithm to identify surface crevices in close proximity to residues determined to be conserved/unique based on our structure- and sequence-based methods. In applying this combined informatics approach to ricin A we identified a conserved/unique pocket in close proximity (but not overlapping) the active site that is suitable for bi-dentate ligand development. These methods are generally applicable to identification of surface epitopes and binding pockets for development of diagnostic reagents, therapeutics, and vaccines.« less

  5. Exploring Strategies for Labeling Viruses with Gold Nanoclusters through Non-equilibrium Molecular Dynamics Simulations.

    PubMed

    Pohjolainen, Emmi; Malola, Sami; Groenhof, Gerrit; Häkkinen, Hannu

    2017-09-20

    Biocompatible gold nanoclusters can be utilized as contrast agents in virus imaging. The labeling of viruses can be achieved noncovalently but site-specifically by linking the cluster to the hydrophobic pocket of a virus via a lipid-like pocket factor. We have estimated the binding affinities of three different pocket factors of echovirus 1 (EV1) in molecular dynamics simulations combined with non-equilibrium free-energy calculations. We have also studied the effects on binding affinities with a pocket factor linked to the Au 102 pMBA 44 nanocluster in different protonation states. Although the absolute binding affinities are over-estimated for all the systems, the trend is in agreement with recent experiments.3 Our results suggest that the natural pocket factor (palmitic acid) can be replaced by molecules pleconaril (drug) and its derivative Kirtan1 that have higher estimated binding affinities. Our results also suggest that including the gold nanocluster does not decrease the affinity of the pocket factor to the virus, but the affinity is sensitive to the protonation state of the nanocluster, i.e., to pH conditions. The methodology introduced in this work helps in the design of optimal strategies for gold-virus bioconjugation for virus detection and manipulation.

  6. An alginate-antacid formulation localizes to the acid pocket to reduce acid reflux in patients with gastroesophageal reflux disease.

    PubMed

    Rohof, Wout O; Bennink, Roel J; Smout, Andre J P M; Thomas, Edward; Boeckxstaens, Guy E

    2013-12-01

    Alginate rafts (polysaccharide polymers that precipitate into a low-density viscous gel when they contact gastric acid) have been reported to form at the acid pocket, an unbuffered pool of acid that floats on top of ingested food and causes postprandial acid reflux. We studied the location of an alginate formulation in relation to the acid pocket and the corresponding effects on reflux parameters and acid pocket positioning in patients with gastroesophageal reflux disease (GERD). We randomly assigned patients with symptomatic GERD and large hiatal hernias to groups who were given either (111)In-labeled alginate-antacid (n = 8, Gaviscon Double Action Liquid) or antacid (n = 8, Antagel) after a standard meal. The relative positions of labeled alginate and acid pocket were analyzed for 2 hours by using scintigraphy; reflux episodes were detected by using high-resolution manometry and pH-impedance monitoring. The alginate-antacid label localized to the acid pocket. The number of acid reflux episodes was significantly reduced in patients receiving alginate-antacid (3.5; range, 0-6.5; P = .03) compared with those receiving antacid (15; range, 5-20), whereas time to acid reflux was significantly increased in patients receiving alginate-antacid (63 minutes; range, 23-92) vs those receiving antacid (14 minutes; range, 9-23; P = .01). The acid pocket was located below the diaphragm in 71% of patients given alginate-antacid vs 21% of those given antacid (P = .08). There was an inverse correlation between a subdiaphragm position of the acid pocket and acid reflux (r = -0.76, P < .001). In a study of 16 patients with GERD, we observed that the alginate-antacid raft localizes to the postprandial acid pocket and displaces it below the diaphragm to reduce postprandial acid reflux. These findings indicate the importance of the acid pocket in GERD pathogenesis and establish alginate-antacid as an appropriate therapy for postprandial acid reflux. Copyright © 2013 AGA Institute. Published by Elsevier Inc. All rights reserved.

  7. An adaptive incremental approach to constructing ensemble classifiers: application in an information-theoretic computer-aided decision system for detection of masses in mammograms.

    PubMed

    Mazurowski, Maciej A; Zurada, Jacek M; Tourassi, Georgia D

    2009-07-01

    Ensemble classifiers have been shown efficient in multiple applications. In this article, the authors explore the effectiveness of ensemble classifiers in a case-based computer-aided diagnosis system for detection of masses in mammograms. They evaluate two general ways of constructing subclassifiers by resampling of the available development dataset: Random division and random selection. Furthermore, they discuss the problem of selecting the ensemble size and propose two adaptive incremental techniques that automatically select the size for the problem at hand. All the techniques are evaluated with respect to a previously proposed information-theoretic CAD system (IT-CAD). The experimental results show that the examined ensemble techniques provide a statistically significant improvement (AUC = 0.905 +/- 0.024) in performance as compared to the original IT-CAD system (AUC = 0.865 +/- 0.029). Some of the techniques allow for a notable reduction in the total number of examples stored in the case base (to 1.3% of the original size), which, in turn, results in lower storage requirements and a shorter response time of the system. Among the methods examined in this article, the two proposed adaptive techniques are by far the most effective for this purpose. Furthermore, the authors provide some discussion and guidance for choosing the ensemble parameters.

  8. Closing the Loop for Memory Prostheses: Detecting the Role of Hippocampal Neural Ensembles Using Nonlinear Models

    PubMed Central

    Hampson, Robert E.; Song, Dong; Chan, Rosa H.M.; Sweatt, Andrew J.; Riley, Mitchell R.; Goonawardena, Anushka V.; Marmarelis, Vasilis Z.; Gerhardt, Greg A.; Berger, Theodore W.; Deadwyler, Sam A.

    2012-01-01

    A major factor involved in providing closed loop feedback for control of neural function is to understand how neural ensembles encode online information critical to the final behavioral endpoint. This issue was directly assessed in rats performing a short-term delay memory task in which successful encoding of task information is dependent upon specific spatiotemporal firing patterns recorded from ensembles of CA3 and CA1 hippocampal neurons. Such patterns, extracted by a specially designed nonlinear multi-input multi-output (MIMO) nonlinear mathematical model, were used to predict successful performance online via a closed loop paradigm which regulated trial difficulty (time of retention) as a function of the “strength” of stimulus encoding. The significance of the MIMO model as a neural prosthesis has been demonstrated by substituting trains of electrical stimulation pulses to mimic these same ensemble firing patterns. This feature was used repeatedly to vary “normal” encoding as a means of understanding how neural ensembles can be “tuned” to mimic the inherent process of selecting codes of different strength and functional specificity. The capacity to enhance and tune hippocampal encoding via MIMO model detection and insertion of critical ensemble firing patterns shown here provides the basis for possible extension to other disrupted brain circuitry. PMID:22498704

  9. Exploiting ensemble learning for automatic cataract detection and grading.

    PubMed

    Yang, Ji-Jiang; Li, Jianqiang; Shen, Ruifang; Zeng, Yang; He, Jian; Bi, Jing; Li, Yong; Zhang, Qinyan; Peng, Lihui; Wang, Qing

    2016-02-01

    Cataract is defined as a lenticular opacity presenting usually with poor visual acuity. It is one of the most common causes of visual impairment worldwide. Early diagnosis demands the expertise of trained healthcare professionals, which may present a barrier to early intervention due to underlying costs. To date, studies reported in the literature utilize a single learning model for retinal image classification in grading cataract severity. We present an ensemble learning based approach as a means to improving diagnostic accuracy. Three independent feature sets, i.e., wavelet-, sketch-, and texture-based features, are extracted from each fundus image. For each feature set, two base learning models, i.e., Support Vector Machine and Back Propagation Neural Network, are built. Then, the ensemble methods, majority voting and stacking, are investigated to combine the multiple base learning models for final fundus image classification. Empirical experiments are conducted for cataract detection (two-class task, i.e., cataract or non-cataractous) and cataract grading (four-class task, i.e., non-cataractous, mild, moderate or severe) tasks. The best performance of the ensemble classifier is 93.2% and 84.5% in terms of the correct classification rates for cataract detection and grading tasks, respectively. The results demonstrate that the ensemble classifier outperforms the single learning model significantly, which also illustrates the effectiveness of the proposed approach. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  10. Representation of photon limited data in emission tomography using origin ensembles

    NASA Astrophysics Data System (ADS)

    Sitek, A.

    2008-06-01

    Representation and reconstruction of data obtained by emission tomography scanners are challenging due to high noise levels in the data. Typically, images obtained using tomographic measurements are represented using grids. In this work, we define images as sets of origins of events detected during tomographic measurements; we call these origin ensembles (OEs). A state in the ensemble is characterized by a vector of 3N parameters Y, where the parameters are the coordinates of origins of detected events in a three-dimensional space and N is the number of detected events. The 3N-dimensional probability density function (PDF) for that ensemble is derived, and we present an algorithm for OE image estimation from tomographic measurements. A displayable image (e.g. grid based image) is derived from the OE formulation by calculating ensemble expectations based on the PDF using the Markov chain Monte Carlo method. The approach was applied to computer-simulated 3D list-mode positron emission tomography data. The reconstruction errors for a 10 000 000 event acquisition for simulated ranged from 0.1 to 34.8%, depending on object size and sampling density. The method was also applied to experimental data and the results of the OE method were consistent with those obtained by a standard maximum-likelihood approach. The method is a new approach to representation and reconstruction of data obtained by photon-limited emission tomography measurements.

  11. A Novel Bearing Multi-Fault Diagnosis Approach Based on Weighted Permutation Entropy and an Improved SVM Ensemble Classifier.

    PubMed

    Zhou, Shenghan; Qian, Silin; Chang, Wenbing; Xiao, Yiyong; Cheng, Yang

    2018-06-14

    Timely and accurate state detection and fault diagnosis of rolling element bearings are very critical to ensuring the reliability of rotating machinery. This paper proposes a novel method of rolling bearing fault diagnosis based on a combination of ensemble empirical mode decomposition (EEMD), weighted permutation entropy (WPE) and an improved support vector machine (SVM) ensemble classifier. A hybrid voting (HV) strategy that combines SVM-based classifiers and cloud similarity measurement (CSM) was employed to improve the classification accuracy. First, the WPE value of the bearing vibration signal was calculated to detect the fault. Secondly, if a bearing fault occurred, the vibration signal was decomposed into a set of intrinsic mode functions (IMFs) by EEMD. The WPE values of the first several IMFs were calculated to form the fault feature vectors. Then, the SVM ensemble classifier was composed of binary SVM and the HV strategy to identify the bearing multi-fault types. Finally, the proposed model was fully evaluated by experiments and comparative studies. The results demonstrate that the proposed method can effectively detect bearing faults and maintain a high accuracy rate of fault recognition when a small number of training samples are available.

  12. PoSSuM v.2.0: data update and a new function for investigating ligand analogs and target proteins of small-molecule drugs.

    PubMed

    Ito, Jun-ichi; Ikeda, Kazuyoshi; Yamada, Kazunori; Mizuguchi, Kenji; Tomii, Kentaro

    2015-01-01

    PoSSuM (http://possum.cbrc.jp/PoSSuM/) is a database for detecting similar small-molecule binding sites on proteins. Since its initial release in 2011, PoSSuM has grown to provide information related to 49 million pairs of similar binding sites discovered among 5.5 million known and putative binding sites. This enlargement of the database is expected to enhance opportunities for biological and pharmaceutical applications, such as predictions of new functions and drug discovery. In this release, we have provided a new service named PoSSuM drug search (PoSSuMds) at http://possum.cbrc.jp/PoSSuM/drug_search/, in which we selected 194 approved drug compounds retrieved from ChEMBL, and detected their known binding pockets and pockets that are similar to them. Users can access and download all of the search results via a new web interface, which is useful for finding ligand analogs as well as potential target proteins. Furthermore, PoSSuMds enables users to explore the binding pocket universe within PoSSuM. Additionally, we have improved the web interface with new functions, including sortable tables and a viewer for visualizing and downloading superimposed pockets. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  13. Light-up fluorescent probes utilizing binding behavior of perylenediimide derivatives to a hydrophobic pocket within DNA.

    PubMed

    Takada, Tadao; Yamaguchi, Kosato; Tsukamoto, Suguru; Nakamura, Mitsunobu; Yamana, Kazushige

    2014-08-21

    Here we study the binding behavior of perylenediimide () derivatives to a hydrophobic pocket created inside DNA and their photochemical properties capable of designing a light-up fluorescent sensor for short single-stranded DNA or RNA. The perylenediimide derivative with alkoxy groups () suppressing electron transfer quenching was examined. The bound randomly to DNA showed negligible fluorescence due to the aggregation-induced quenching, whereas the bound to the pocket as a monomeric form showed more than 100-fold fluorescence enhancement. Switching the binding states of the corresponded to a change in the fluorescence response for the hybridization event, which allowed us to design a fluorescent sensor of nucleic acids with a nanomolar detection limit.

  14. Entanglement of 3000 atoms by detecting one photon

    NASA Astrophysics Data System (ADS)

    Vuletic, Vladan

    2016-05-01

    Quantum-mechanically correlated (entangled) states of many particles are of interest in quantum information, quantum computing and quantum metrology. In particular, entangled states of many particles can be used to overcome limits on measurements performed with ensembles of independent atoms (standard quantum limit). Metrologically useful entangled states of large atomic ensembles (spin squeezed states) have been experimentally realized. These states display Gaussian spin distribution functions with a non-negative Wigner quasiprobability distribution function. We report the generation of entanglement in a large atomic ensemble via an interaction with a very weak laser pulse; remarkably, the detection of a single photon prepares several thousand atoms in an entangled state. We reconstruct a negative-valued Wigner function, and verify an entanglement depth (the minimum number of mutually entangled atoms) that comprises 90% of the atomic ensemble containing 3100 atoms. Further technical improvement should allow the generation of more complex Schrödinger cat states, and of states the overcome the standard quantum limit.

  15. An adaptive incremental approach to constructing ensemble classifiers: Application in an information-theoretic computer-aided decision system for detection of masses in mammograms

    PubMed Central

    Mazurowski, Maciej A.; Zurada, Jacek M.; Tourassi, Georgia D.

    2009-01-01

    Ensemble classifiers have been shown efficient in multiple applications. In this article, the authors explore the effectiveness of ensemble classifiers in a case-based computer-aided diagnosis system for detection of masses in mammograms. They evaluate two general ways of constructing subclassifiers by resampling of the available development dataset: Random division and random selection. Furthermore, they discuss the problem of selecting the ensemble size and propose two adaptive incremental techniques that automatically select the size for the problem at hand. All the techniques are evaluated with respect to a previously proposed information-theoretic CAD system (IT-CAD). The experimental results show that the examined ensemble techniques provide a statistically significant improvement (AUC=0.905±0.024) in performance as compared to the original IT-CAD system (AUC=0.865±0.029). Some of the techniques allow for a notable reduction in the total number of examples stored in the case base (to 1.3% of the original size), which, in turn, results in lower storage requirements and a shorter response time of the system. Among the methods examined in this article, the two proposed adaptive techniques are by far the most effective for this purpose. Furthermore, the authors provide some discussion and guidance for choosing the ensemble parameters. PMID:19673196

  16. Mercury assisted fluorescent supramolecular assembly of hexaphenylbenzene derivative for femtogram detection of picric acid.

    PubMed

    Pramanik, Subhamay; Bhalla, Vandana; Kumar, Manoj

    2013-09-02

    Aggregates of hexaphenylbenzene derivatives 3, having pyrene groups form network of fluorescent nanofibres in presence of mercury ions. Further, fluorescent nanofibres of 3-Hg(2+) supramolecular ensemble exhibit sensitive and pronounced response towards the picric acid. In addition, the solution coated paper strips of 3-Hg(2+) supramolecular ensemble can detect picric acid in the range of 2.29 fg/cm(2), thus, providing a simple, portable and low cost method for detection of picric acid in solution and in contact mode. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Ensemble empirical mode decomposition based fluorescence spectral noise reduction for low concentration PAHs

    NASA Astrophysics Data System (ADS)

    Wang, Shu-tao; Yang, Xue-ying; Kong, De-ming; Wang, Yu-tian

    2017-11-01

    A new noise reduction method based on ensemble empirical mode decomposition (EEMD) is proposed to improve the detection effect for fluorescence spectra. Polycyclic aromatic hydrocarbons (PAHs) pollutants, as a kind of important current environmental pollution source, are highly oncogenic. Using the fluorescence spectroscopy method, the PAHs pollutants can be detected. However, instrument will produce noise in the experiment. Weak fluorescent signals can be affected by noise, so we propose a way to denoise and improve the detection effect. Firstly, we use fluorescence spectrometer to detect PAHs to obtain fluorescence spectra. Subsequently, noises are reduced by EEMD algorithm. Finally, the experiment results show the proposed method is feasible.

  18. Ensemble of One-Class Classifiers for Personal Risk Detection Based on Wearable Sensor Data.

    PubMed

    Rodríguez, Jorge; Barrera-Animas, Ari Y; Trejo, Luis A; Medina-Pérez, Miguel Angel; Monroy, Raúl

    2016-09-29

    This study introduces the One-Class K-means with Randomly-projected features Algorithm (OCKRA). OCKRA is an ensemble of one-class classifiers built over multiple projections of a dataset according to random feature subsets. Algorithms found in the literature spread over a wide range of applications where ensembles of one-class classifiers have been satisfactorily applied; however, none is oriented to the area under our study: personal risk detection. OCKRA has been designed with the aim of improving the detection performance in the problem posed by the Personal RIsk DEtection(PRIDE) dataset. PRIDE was built based on 23 test subjects, where the data for each user were captured using a set of sensors embedded in a wearable band. The performance of OCKRA was compared against support vector machine and three versions of the Parzen window classifier. On average, experimental results show that OCKRA outperformed the other classifiers for at least 0.53% of the area under the curve (AUC). In addition, OCKRA achieved an AUC above 90% for more than 57% of the users.

  19. Ensemble of One-Class Classifiers for Personal Risk Detection Based on Wearable Sensor Data

    PubMed Central

    Rodríguez, Jorge; Barrera-Animas, Ari Y.; Trejo, Luis A.; Medina-Pérez, Miguel Angel; Monroy, Raúl

    2016-01-01

    This study introduces the One-Class K-means with Randomly-projected features Algorithm (OCKRA). OCKRA is an ensemble of one-class classifiers built over multiple projections of a dataset according to random feature subsets. Algorithms found in the literature spread over a wide range of applications where ensembles of one-class classifiers have been satisfactorily applied; however, none is oriented to the area under our study: personal risk detection. OCKRA has been designed with the aim of improving the detection performance in the problem posed by the Personal RIsk DEtection(PRIDE) dataset. PRIDE was built based on 23 test subjects, where the data for each user were captured using a set of sensors embedded in a wearable band. The performance of OCKRA was compared against support vector machine and three versions of the Parzen window classifier. On average, experimental results show that OCKRA outperformed the other classifiers for at least 0.53% of the area under the curve (AUC). In addition, OCKRA achieved an AUC above 90% for more than 57% of the users. PMID:27690054

  20. Ensembles of radial basis function networks for spectroscopic detection of cervical precancer

    NASA Technical Reports Server (NTRS)

    Tumer, K.; Ramanujam, N.; Ghosh, J.; Richards-Kortum, R.

    1998-01-01

    The mortality related to cervical cancer can be substantially reduced through early detection and treatment. However, current detection techniques, such as Pap smear and colposcopy, fail to achieve a concurrently high sensitivity and specificity. In vivo fluorescence spectroscopy is a technique which quickly, noninvasively and quantitatively probes the biochemical and morphological changes that occur in precancerous tissue. A multivariate statistical algorithm was used to extract clinically useful information from tissue spectra acquired from 361 cervical sites from 95 patients at 337-, 380-, and 460-nm excitation wavelengths. The multivariate statistical analysis was also employed to reduce the number of fluorescence excitation-emission wavelength pairs required to discriminate healthy tissue samples from precancerous tissue samples. The use of connectionist methods such as multilayered perceptrons, radial basis function (RBF) networks, and ensembles of such networks was investigated. RBF ensemble algorithms based on fluorescence spectra potentially provide automated and near real-time implementation of precancer detection in the hands of nonexperts. The results are more reliable, direct, and accurate than those achieved by either human experts or multivariate statistical algorithms.

  1. Direct experimental observation of nonclassicality in ensembles of single-photon emitters

    NASA Astrophysics Data System (ADS)

    Moreva, E.; Traina, P.; Forneris, J.; Degiovanni, I. P.; Ditalia Tchernij, S.; Picollo, F.; Brida, G.; Olivero, P.; Genovese, M.

    2017-11-01

    In this work we experimentally demonstrate a recently proposed criterion addressed to detect nonclassical behavior in the fluorescence emission of ensembles of single-photon emitters. In particular, we apply the method to study clusters of nitrogen-vacancy centers in diamond characterized with single-photon-sensitive confocal microscopy. Theoretical considerations on the behavior of the parameter at any arbitrary order in the presence of Poissonian noise are presented and, finally, the opportunity of detecting manifold coincidences is discussed.

  2. A Machine Learning Ensemble Classifier for Early Prediction of Diabetic Retinopathy.

    PubMed

    S K, Somasundaram; P, Alli

    2017-11-09

    The main complication of diabetes is Diabetic retinopathy (DR), retinal vascular disease and it leads to the blindness. Regular screening for early DR disease detection is considered as an intensive labor and resource oriented task. Therefore, automatic detection of DR diseases is performed only by using the computational technique is the great solution. An automatic method is more reliable to determine the presence of an abnormality in Fundus images (FI) but, the classification process is poorly performed. Recently, few research works have been designed for analyzing texture discrimination capacity in FI to distinguish the healthy images. However, the feature extraction (FE) process was not performed well, due to the high dimensionality. Therefore, to identify retinal features for DR disease diagnosis and early detection using Machine Learning and Ensemble Classification method, called, Machine Learning Bagging Ensemble Classifier (ML-BEC) is designed. The ML-BEC method comprises of two stages. The first stage in ML-BEC method comprises extraction of the candidate objects from Retinal Images (RI). The candidate objects or the features for DR disease diagnosis include blood vessels, optic nerve, neural tissue, neuroretinal rim, optic disc size, thickness and variance. These features are initially extracted by applying Machine Learning technique called, t-distributed Stochastic Neighbor Embedding (t-SNE). Besides, t-SNE generates a probability distribution across high-dimensional images where the images are separated into similar and dissimilar pairs. Then, t-SNE describes a similar probability distribution across the points in the low-dimensional map. This lessens the Kullback-Leibler divergence among two distributions regarding the locations of the points on the map. The second stage comprises of application of ensemble classifiers to the extracted features for providing accurate analysis of digital FI using machine learning. In this stage, an automatic detection of DR screening system using Bagging Ensemble Classifier (BEC) is investigated. With the help of voting the process in ML-BEC, bagging minimizes the error due to variance of the base classifier. With the publicly available retinal image databases, our classifier is trained with 25% of RI. Results show that the ensemble classifier can achieve better classification accuracy (CA) than single classification models. Empirical experiments suggest that the machine learning-based ensemble classifier is efficient for further reducing DR classification time (CT).

  3. Automatic Estimation of Osteoporotic Fracture Cases by Using Ensemble Learning Approaches.

    PubMed

    Kilic, Niyazi; Hosgormez, Erkan

    2016-03-01

    Ensemble learning methods are one of the most powerful tools for the pattern classification problems. In this paper, the effects of ensemble learning methods and some physical bone densitometry parameters on osteoporotic fracture detection were investigated. Six feature set models were constructed including different physical parameters and they fed into the ensemble classifiers as input features. As ensemble learning techniques, bagging, gradient boosting and random subspace (RSM) were used. Instance based learning (IBk) and random forest (RF) classifiers applied to six feature set models. The patients were classified into three groups such as osteoporosis, osteopenia and control (healthy), using ensemble classifiers. Total classification accuracy and f-measure were also used to evaluate diagnostic performance of the proposed ensemble classification system. The classification accuracy has reached to 98.85 % by the combination of model 6 (five BMD + five T-score values) using RSM-RF classifier. The findings of this paper suggest that the patients will be able to be warned before a bone fracture occurred, by just examining some physical parameters that can easily be measured without invasive operations.

  4. An optimized ensemble local mean decomposition method for fault detection of mechanical components

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Li, Zhixiong; Hu, Chao; Chen, Shuai; Wang, Jianguo; Zhang, Xiaogang

    2017-03-01

    Mechanical transmission systems have been widely adopted in most of industrial applications, and issues related to the maintenance of these systems have attracted considerable attention in the past few decades. The recently developed ensemble local mean decomposition (ELMD) method shows satisfactory performance in fault detection of mechanical components for preventing catastrophic failures and reducing maintenance costs. However, the performance of ELMD often heavily depends on proper selection of its model parameters. To this end, this paper proposes an optimized ensemble local mean decomposition (OELMD) method to determinate an optimum set of ELMD parameters for vibration signal analysis. In OELMD, an error index termed the relative root-mean-square error (Relative RMSE) is used to evaluate the decomposition performance of ELMD with a certain amplitude of the added white noise. Once a maximum Relative RMSE, corresponding to an optimal noise amplitude, is determined, OELMD then identifies optimal noise bandwidth and ensemble number based on the Relative RMSE and signal-to-noise ratio (SNR), respectively. Thus, all three critical parameters of ELMD (i.e. noise amplitude and bandwidth, and ensemble number) are optimized by OELMD. The effectiveness of OELMD was evaluated using experimental vibration signals measured from three different mechanical components (i.e. the rolling bearing, gear and diesel engine) under faulty operation conditions.

  5. A Statistical Description of Neural Ensemble Dynamics

    PubMed Central

    Long, John D.; Carmena, Jose M.

    2011-01-01

    The growing use of multi-channel neural recording techniques in behaving animals has produced rich datasets that hold immense potential for advancing our understanding of how the brain mediates behavior. One limitation of these techniques is they do not provide important information about the underlying anatomical connections among the recorded neurons within an ensemble. Inferring these connections is often intractable because the set of possible interactions grows exponentially with ensemble size. This is a fundamental challenge one confronts when interpreting these data. Unfortunately, the combination of expert knowledge and ensemble data is often insufficient for selecting a unique model of these interactions. Our approach shifts away from modeling the network diagram of the ensemble toward analyzing changes in the dynamics of the ensemble as they relate to behavior. Our contribution consists of adapting techniques from signal processing and Bayesian statistics to track the dynamics of ensemble data on time-scales comparable with behavior. We employ a Bayesian estimator to weigh prior information against the available ensemble data, and use an adaptive quantization technique to aggregate poorly estimated regions of the ensemble data space. Importantly, our method is capable of detecting changes in both the magnitude and structure of correlations among neurons missed by firing rate metrics. We show that this method is scalable across a wide range of time-scales and ensemble sizes. Lastly, the performance of this method on both simulated and real ensemble data is used to demonstrate its utility. PMID:22319486

  6. A new large initial condition ensemble to assess avoided impacts in a climate mitigation scenario

    NASA Astrophysics Data System (ADS)

    Sanderson, B. M.; Tebaldi, C.; Knutti, R.; Oleson, K. W.

    2014-12-01

    It has recently been demonstrated that when considering timescales of up to 50 years, natural variability may play an equal role to anthropogenic forcing on subcontinental trends for a variety of climate indicators. Thus, for many questions assessing climate impacts on such time and spatial scales, it has become clear that a significant number of ensemble members may be required to produce robust statistics (and especially so for extreme events). However, large ensemble experiments to date have considered the role of variability in a single scenario, leaving uncertain the relationship between the forced climate trajectory and the variability about that path. To address this issue, we present a new, publicly available, 15 member initial condition ensemble of 21st century climate projections for the RCP 4.5 scenario using the CESM1.1 Earth System Model, which we propose as a companion project to the existing 40 member CESM large ensemble which uses the higher greenhouse gas emission future of RCP8.5. This provides a valuable data set for assessing what societal and ecological impacts might be avoided through a moderate mitigation strategy in contrast to a fossil fuel intensive future. We present some early analyses of these combined ensembles to assess to what degree the climate variability can be considered to combine linearly with the underlying forced response. In regions where there is no detectable relationship between the mean state and the variability about the mean trajectory, then linear assumptions can be trivially exploited to utilize a single ensemble or control simulation to characterize the variability in any scenario of interest. We highlight regions where there is a detectable nonlinearity in extreme event frequency, how far in the future they will be manifested and propose mechanisms to account for these effects.

  7. An Ensemble of Neural Networks for Stock Trading Decision Making

    NASA Astrophysics Data System (ADS)

    Chang, Pei-Chann; Liu, Chen-Hao; Fan, Chin-Yuan; Lin, Jun-Lin; Lai, Chih-Ming

    Stock turning signals detection are very interesting subject arising in numerous financial and economic planning problems. In this paper, Ensemble Neural Network system with Intelligent Piecewise Linear Representation for stock turning points detection is presented. The Intelligent piecewise linear representation method is able to generate numerous stocks turning signals from the historic data base, then Ensemble Neural Network system will be applied to train the pattern and retrieve similar stock price patterns from historic data for training. These turning signals represent short-term and long-term trading signals for selling or buying stocks from the market which are applied to forecast the future turning points from the set of test data. Experimental results demonstrate that the hybrid system can make a significant and constant amount of profit when compared with other approaches using stock data available in the market.

  8. Single Walled Carbon Nanotube Based Air Pocket Encapsulated Ultraviolet Sensor.

    PubMed

    Kim, Sun Jin; Han, Jin-Woo; Kim, Beomseok; Meyyappan, M

    2017-11-22

    Carbon nanotube (CNT) is a promising candidate as a sensor material for the sensitive detection of gases/vapors, biomarkers, and even some radiation, as all these external variables affect the resistance and other properties of nanotubes, which forms the basis for sensing. Ultraviolet (UV) radiation does not impact the nanotube properties given the substantial mismatch of bandgaps and therefore, CNTs have never been considered for UV sensing, unlike the popular ZnO and other oxide nanwires. It is well-known that UV assists the adsorption/desorption characteristics of oxygen on carbon nanotubes, which changes the nanotube resistance. Here, we demonstrate a novel sensor structure encapsulated with an air pocket, where the confined air is responsible for the UV sensing mechanism and assures sensor stability and repeatability over time. In addition to the protection from any contamination, the air pocket encapsulated sensor offers negligible baseline drift and fast recovery compared to previously reported sensors. The air pocket isolated from the outside environment can act as a stationary oxygen reservoir, resulting in consistent sensor characteristics. Furthermore, this sensor can be used even in liquid environments.

  9. Effect of azithromycin on acid reflux, hiatus hernia and proximal acid pocket in the postprandial period.

    PubMed

    Rohof, W O; Bennink, R J; de Ruigh, A A; Hirsch, D P; Zwinderman, A H; Boeckxstaens, G E

    2012-12-01

    The risk for acidic reflux is mainly determined by the position of the gastric acid pocket. It was hypothesised that compounds affecting proximal stomach tone might reduce gastro-oesophageal reflux by changing the acid pocket position. To study the effect of azithromycin (Azi) on acid pocket position and acid exposure in patients with gastro-oesophageal reflux disease (GORD). Nineteen patients with GORD were included, of whom seven had a large hiatal hernia (≥3 cm) (L-HH) and 12 had a small or no hiatal hernia (S-HH). Patients were randomised to Azi 250 mg/day or placebo during 3 days in a crossover manner. On each study day, reflux episodes were detected using concurrent high-resolution manometry and pH-impedance monitoring after a standardised meal. The acid pocket was visualised using scintigraphy, and its position was determined relative to the diaphragm. Azi reduced the number of acid reflux events (placebo 8.0±2.2 vs Azi 5.6±1.8, p<0.01) and postprandial acid exposure (placebo 10.5±3.8% vs Azi 5.9±2.5%, p<0.05) in all patients without affecting the total number of reflux episodes. Acid reflux occurred mainly when the acid pocket was located above, or at the level of, the diaphragm, rather than below the diaphragm. Treatment with Azi reduced hiatal hernia size and resulted in a more distal position of the acid pocket compared with placebo (below the diaphragm 39% vs 29%, p=0.03). Azi reduced the rate of acid reflux episodes in patients with S-HH (38% to 17%) to a greater extent than in patients with L-HH (69% to 62%, p=0.04). Azi reduces acid reflux episodes and oesophageal acid exposure. This effect was associated with a smaller hiatal hernia size and a more distal position of the acid pocket, further indicating the importance of the acid pocket in the pathogenesis of GORD. http://www.trialregister.nl/trialreg/admin/rctview.asp?TC=1970 NTR1970.

  10. Detection of fungal hyphae using smartphone and pocket magnifier: going cellular.

    PubMed

    Agarwal, Tushar; Bandivadekar, Pooja; Satpathy, Gita; Sharma, Namrata; Titiyal, Jeewan S

    2015-03-01

    The aim of this study was to detect fungal hyphae in a corneal scraping sample using a cost-effective assembly of smartphone and pocket magnifier. In this case report, a tissue sample was obtained by conventional corneal scraping from a clinically suspicious case of mycotic keratitis. The smear was stained with Gram stain, and a 10% potassium hydroxide mount was prepared. It was imaged using a smartphone coupled with a compact pocket magnifier and integrated light-emitting diode assembly at point-of-care. Photographs of multiple sections of slides were viewed using smartphone screen and pinch-to-zoom function. The same slides were subsequently screened under a light microscope by an experienced microbiologist. The scraping from the ulcer was also inoculated on blood agar and Sabouraud dextrose agar. Smartphone-based digital imaging revealed the presence of gram-positive organism with hyphae. Examination under a light microscope also yielded similar findings. Fusarium was cultured from the corneal scraping, confirming the diagnosis of mycotic keratitis. The patient responded to topical 5% natamycin therapy, with resolution of the ulcer after 4 weeks. Smartphones can be successfully used as novel point-of-care, cost-effective, reliable microscopic screening tools.

  11. Deciphering neuronal population codes for acute thermal pain

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Zhang, Qiaosheng; Phuong Sieu Tong, Ai; Manders, Toby R.; Wang, Jing

    2017-06-01

    Objective. Pain is defined as an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage. Current pain research mostly focuses on molecular and synaptic changes at the spinal and peripheral levels. However, a complete understanding of pain mechanisms requires the physiological study of the neocortex. Our goal is to apply a neural decoding approach to read out the onset of acute thermal pain signals, which can be used for brain-machine interface. Approach. We used micro wire arrays to record ensemble neuronal activities from the primary somatosensory cortex (S1) and anterior cingulate cortex (ACC) in freely behaving rats. We further investigated neural codes for acute thermal pain at both single-cell and population levels. To detect the onset of acute thermal pain signals, we developed a novel latent state-space framework to decipher the sorted or unsorted S1 and ACC ensemble spike activities, which reveal information about the onset of pain signals. Main results. The state space analysis allows us to uncover a latent state process that drives the observed ensemble spike activity, and to further detect the ‘neuronal threshold’ for acute thermal pain on a single-trial basis. Our method achieved good detection performance in sensitivity and specificity. In addition, our results suggested that an optimal strategy for detecting the onset of acute thermal pain signals may be based on combined evidence from S1 and ACC population codes. Significance. Our study is the first to detect the onset of acute pain signals based on neuronal ensemble spike activity. It is important from a mechanistic viewpoint as it relates to the significance of S1 and ACC activities in the regulation of the acute pain onset.

  12. Ensembles of novelty detection classifiers for structural health monitoring using guided waves

    NASA Astrophysics Data System (ADS)

    Dib, Gerges; Karpenko, Oleksii; Koricho, Ermias; Khomenko, Anton; Haq, Mahmoodul; Udpa, Lalita

    2018-01-01

    Guided wave structural health monitoring uses sparse sensor networks embedded in sophisticated structures for defect detection and characterization. The biggest challenge of those sensor networks is developing robust techniques for reliable damage detection under changing environmental and operating conditions (EOC). To address this challenge, we develop a novelty classifier for damage detection based on one class support vector machines. We identify appropriate features for damage detection and introduce a feature aggregation method which quadratically increases the number of available training observations. We adopt a two-level voting scheme by using an ensemble of classifiers and predictions. Each classifier is trained on a different segment of the guided wave signal, and each classifier makes an ensemble of predictions based on a single observation. Using this approach, the classifier can be trained using a small number of baseline signals. We study the performance using Monte-Carlo simulations of an analytical model and data from impact damage experiments on a glass fiber composite plate. We also demonstrate the classifier performance using two types of baseline signals: fixed and rolling baseline training set. The former requires prior knowledge of baseline signals from all EOC, while the latter does not and leverages the fact that EOC vary slowly over time and can be modeled as a Gaussian process.

  13. Detection of Mogibacterium timidum in subgingival biofilm of aggressive and non-diabetic and diabetic chronic periodontitis patients

    PubMed Central

    Casarin, Renato Corrêa Viana; Saito, Daniel; Santos, Vanessa Renata; Pimentel, Suzana Peres; Duarte, Poliana Mendes; Casati, Márcio Zaffalon; Gonçalves, Reginaldo Bruno

    2012-01-01

    The aim of the present study was to evaluate the frequency of detection of Mogibacterium timidum in subgingival samples of subjects with generalized aggressive periodontitis (GAgP) and uncontrolled diabetic and non-diabetic subjects with generalized chronic periodontitis (GChP). 48 patients with GAgP, 50 non-diabetic and 39 uncontrolled (glycated hemoglobin >7%) type 2 diabetic subjects with GChP were enrolled in this study. Subgingival biofilm were collected from deep pockets (probing depth > 7 mm). After DNA extraction, M. timidum was detected by Nested Polymerase Chain Reaction and chi-square test was used to data analysis (p>0.05). There were no differences in the frequency of detection of M. timidum between subjects with GAgP (35%) and non-diabetic subjects with GChP (40%) (p>0.05). The frequency of detection of M. timidum was significantly higher in deep pockets of diabetic subjects with GChP (56%) when compared to GAgP (p<0.05), but similar to non-diabetic subjects with GChP (p>0.05). The frequency of detection of M. timidum was higher in subjects GChP presenting uncontrolled type 2 diabetes mellitus, when compared to GAgP subjects. PMID:24031909

  14. Detection of Mogibacterium timidum in subgingival biofilm of aggressive and non-diabetic and diabetic chronic periodontitis patients.

    PubMed

    Casarin, Renato Corrêa Viana; Saito, Daniel; Santos, Vanessa Renata; Pimentel, Suzana Peres; Duarte, Poliana Mendes; Casati, Márcio Zaffalon; Gonçalves, Reginaldo Bruno

    2012-07-01

    The aim of the present study was to evaluate the frequency of detection of Mogibacterium timidum in subgingival samples of subjects with generalized aggressive periodontitis (GAgP) and uncontrolled diabetic and non-diabetic subjects with generalized chronic periodontitis (GChP). 48 patients with GAgP, 50 non-diabetic and 39 uncontrolled (glycated hemoglobin >7%) type 2 diabetic subjects with GChP were enrolled in this study. Subgingival biofilm were collected from deep pockets (probing depth > 7 mm). After DNA extraction, M. timidum was detected by Nested Polymerase Chain Reaction and chi-square test was used to data analysis (p>0.05). There were no differences in the frequency of detection of M. timidum between subjects with GAgP (35%) and non-diabetic subjects with GChP (40%) (p>0.05). The frequency of detection of M. timidum was significantly higher in deep pockets of diabetic subjects with GChP (56%) when compared to GAgP (p<0.05), but similar to non-diabetic subjects with GChP (p>0.05). The frequency of detection of M. timidum was higher in subjects GChP presenting uncontrolled type 2 diabetes mellitus, when compared to GAgP subjects.

  15. Deterministically Entangling Two Remote Atomic Ensembles via Light-Atom Mixed Entanglement Swapping

    PubMed Central

    Liu, Yanhong; Yan, Zhihui; Jia, Xiaojun; Xie, Changde

    2016-01-01

    Entanglement of two distant macroscopic objects is a key element for implementing large-scale quantum networks consisting of quantum channels and quantum nodes. Entanglement swapping can entangle two spatially separated quantum systems without direct interaction. Here we propose a scheme of deterministically entangling two remote atomic ensembles via continuous-variable entanglement swapping between two independent quantum systems involving light and atoms. Each of two stationary atomic ensembles placed at two remote nodes in a quantum network is prepared to a mixed entangled state of light and atoms respectively. Then, the entanglement swapping is unconditionally implemented between the two prepared quantum systems by means of the balanced homodyne detection of light and the feedback of the measured results. Finally, the established entanglement between two macroscopic atomic ensembles is verified by the inseparability criterion of correlation variances between two anti-Stokes optical beams respectively coming from the two atomic ensembles. PMID:27165122

  16. Online breakage detection of multitooth tools using classifier ensembles for imbalanced data

    NASA Astrophysics Data System (ADS)

    Bustillo, Andrés; Rodríguez, Juan J.

    2014-12-01

    Cutting tool breakage detection is an important task, due to its economic impact on mass production lines in the automobile industry. This task presents a central limitation: real data-sets are extremely imbalanced because breakage occurs in very few cases compared with normal operation of the cutting process. In this paper, we present an analysis of different data-mining techniques applied to the detection of insert breakage in multitooth tools. The analysis applies only one experimental variable: the electrical power consumption of the tool drive. This restriction profiles real industrial conditions more accurately than other physical variables, such as acoustic or vibration signals, which are not so easily measured. Many efforts have been made to design a method that is able to identify breakages with a high degree of reliability within a short period of time. The solution is based on classifier ensembles for imbalanced data-sets. Classifier ensembles are combinations of classifiers, which in many situations are more accurate than individual classifiers. Six different base classifiers are tested: Decision Trees, Rules, Naïve Bayes, Nearest Neighbour, Multilayer Perceptrons and Logistic Regression. Three different balancing strategies are tested with each of the classifier ensembles and compared to their performance with the original data-set: Synthetic Minority Over-Sampling Technique (SMOTE), undersampling and a combination of SMOTE and undersampling. To identify the most suitable data-mining solution, Receiver Operating Characteristics (ROC) graph and Recall-precision graph are generated and discussed. The performance of logistic regression ensembles on the balanced data-set using the combination of SMOTE and undersampling turned out to be the most suitable technique. Finally a comparison using industrial performance measures is presented, which concludes that this technique is also more suited to this industrial problem than the other techniques presented in the bibliography.

  17. An Effective and Novel Neural Network Ensemble for Shift Pattern Detection in Control Charts.

    PubMed

    Barghash, Mahmoud

    2015-01-01

    Pattern recognition in control charts is critical to make a balance between discovering faults as early as possible and reducing the number of false alarms. This work is devoted to designing a multistage neural network ensemble that achieves this balance which reduces rework and scrape without reducing productivity. The ensemble under focus is composed of a series of neural network stages and a series of decision points. Initially, this work compared using multidecision points and single-decision point on the performance of the ANN which showed that multidecision points are highly preferable to single-decision points. This work also tested the effect of population percentages on the ANN and used this to optimize the ANN's performance. Also this work used optimized and nonoptimized ANNs in an ensemble and proved that using nonoptimized ANN may reduce the performance of the ensemble. The ensemble that used only optimized ANNs has improved performance over individual ANNs and three-sigma level rule. In that respect using the designed ensemble can help in reducing the number of false stops and increasing productivity. It also can be used to discover even small shifts in the mean as early as possible.

  18. 46 CFR 62.35-20 - Oil-fired main boilers.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... to prevent pocketing and explosive accumulations of combustible gases. (iii) The burner igniter must... of automatic detection of unsafe trip conditions. (h) Burner safety trip control system. (1) Each...

  19. 46 CFR 62.35-20 - Oil-fired main boilers.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... to prevent pocketing and explosive accumulations of combustible gases. (iii) The burner igniter must... of automatic detection of unsafe trip conditions. (h) Burner safety trip control system. (1) Each...

  20. 46 CFR 62.35-20 - Oil-fired main boilers.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... to prevent pocketing and explosive accumulations of combustible gases. (iii) The burner igniter must... of automatic detection of unsafe trip conditions. (h) Burner safety trip control system. (1) Each...

  1. 46 CFR 62.35-20 - Oil-fired main boilers.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... to prevent pocketing and explosive accumulations of combustible gases. (iii) The burner igniter must... of automatic detection of unsafe trip conditions. (h) Burner safety trip control system. (1) Each...

  2. 46 CFR 62.35-20 - Oil-fired main boilers.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... to prevent pocketing and explosive accumulations of combustible gases. (iii) The burner igniter must... of automatic detection of unsafe trip conditions. (h) Burner safety trip control system. (1) Each...

  3. An ensemble-based approach for breast mass classification in mammography images

    NASA Astrophysics Data System (ADS)

    Ribeiro, Patricia B.; Papa, João. P.; Romero, Roseli A. F.

    2017-03-01

    Mammography analysis is an important tool that helps detecting breast cancer at the very early stages of the disease, thus increasing the quality of life of hundreds of thousands of patients worldwide. In Computer-Aided Detection systems, the identification of mammograms with and without masses (without clinical findings) is highly needed to reduce the false positive rates regarding the automatic selection of regions of interest that may contain some suspicious content. In this work, the introduce a variant of the Optimum-Path Forest (OPF) classifier for breast mass identification, as well as we employed an ensemble-based approach that can enhance the effectiveness of individual classifiers aiming at dealing with the aforementioned purpose. The experimental results also comprise the naïve OPF and a traditional neural network, being the most accurate results obtained through the ensemble of classifiers, with an accuracy nearly to 86%.

  4. A novel approach to malignant-benign classification of pulmonary nodules by using ensemble learning classifiers.

    PubMed

    Tartar, A; Akan, A; Kilic, N

    2014-01-01

    Computer-aided detection systems can help radiologists to detect pulmonary nodules at an early stage. In this paper, a novel Computer-Aided Diagnosis system (CAD) is proposed for the classification of pulmonary nodules as malignant and benign. The proposed CAD system using ensemble learning classifiers, provides an important support to radiologists at the diagnosis process of the disease, achieves high classification performance. The proposed approach with bagging classifier results in 94.7 %, 90.0 % and 77.8 % classification sensitivities for benign, malignant and undetermined classes (89.5 % accuracy), respectively.

  5. Anomaly Detection Using an Ensemble of Feature Models

    PubMed Central

    Noto, Keith; Brodley, Carla; Slonim, Donna

    2011-01-01

    We present a new approach to semi-supervised anomaly detection. Given a set of training examples believed to come from the same distribution or class, the task is to learn a model that will be able to distinguish examples in the future that do not belong to the same class. Traditional approaches typically compare the position of a new data point to the set of “normal” training data points in a chosen representation of the feature space. For some data sets, the normal data may not have discernible positions in feature space, but do have consistent relationships among some features that fail to appear in the anomalous examples. Our approach learns to predict the values of training set features from the values of other features. After we have formed an ensemble of predictors, we apply this ensemble to new data points. To combine the contribution of each predictor in our ensemble, we have developed a novel, information-theoretic anomaly measure that our experimental results show selects against noisy and irrelevant features. Our results on 47 data sets show that for most data sets, this approach significantly improves performance over current state-of-the-art feature space distance and density-based approaches. PMID:22020249

  6. Detection of chewing from piezoelectric film sensor signals using ensemble classifiers.

    PubMed

    Farooq, Muhammad; Sazonov, Edward

    2016-08-01

    Selection and use of pattern recognition algorithms is application dependent. In this work, we explored the use of several ensembles of weak classifiers to classify signals captured from a wearable sensor system to detect food intake based on chewing. Three sensor signals (Piezoelectric sensor, accelerometer, and hand to mouth gesture) were collected from 12 subjects in free-living conditions for 24 hrs. Sensor signals were divided into 10 seconds epochs and for each epoch combination of time and frequency domain features were computed. In this work, we present a comparison of three different ensemble techniques: boosting (AdaBoost), bootstrap aggregation (bagging) and stacking, each trained with 3 different weak classifiers (Decision Trees, Linear Discriminant Analysis (LDA) and Logistic Regression). Type of feature normalization used can also impact the classification results. For each ensemble method, three feature normalization techniques: (no-normalization, z-score normalization, and minmax normalization) were tested. A 12 fold cross-validation scheme was used to evaluate the performance of each model where the performance was evaluated in terms of precision, recall, and accuracy. Best results achieved here show an improvement of about 4% over our previous algorithms.

  7. Uncovering representations of sleep-associated hippocampal ensemble spike activity

    NASA Astrophysics Data System (ADS)

    Chen, Zhe; Grosmark, Andres D.; Penagos, Hector; Wilson, Matthew A.

    2016-08-01

    Pyramidal neurons in the rodent hippocampus exhibit spatial tuning during spatial navigation, and they are reactivated in specific temporal order during sharp-wave ripples observed in quiet wakefulness or slow wave sleep. However, analyzing representations of sleep-associated hippocampal ensemble spike activity remains a great challenge. In contrast to wake, during sleep there is a complete absence of animal behavior, and the ensemble spike activity is sparse (low occurrence) and fragmental in time. To examine important issues encountered in sleep data analysis, we constructed synthetic sleep-like hippocampal spike data (short epochs, sparse and sporadic firing, compressed timescale) for detailed investigations. Based upon two Bayesian population-decoding methods (one receptive field-based, and the other not), we systematically investigated their representation power and detection reliability. Notably, the receptive-field-free decoding method was found to be well-tuned for hippocampal ensemble spike data in slow wave sleep (SWS), even in the absence of prior behavioral measure or ground truth. Our results showed that in addition to the sample length, bin size, and firing rate, number of active hippocampal pyramidal neurons are critical for reliable representation of the space as well as for detection of spatiotemporal reactivated patterns in SWS or quiet wakefulness.

  8. Diffusion in random networks: Asymptotic properties, and numerical and engineering approximations

    NASA Astrophysics Data System (ADS)

    Padrino, Juan C.; Zhang, Duan Z.

    2016-11-01

    The ensemble phase averaging technique is applied to model mass transport by diffusion in random networks. The system consists of an ensemble of random networks, where each network is made of a set of pockets connected by tortuous channels. Inside a channel, we assume that fluid transport is governed by the one-dimensional diffusion equation. Mass balance leads to an integro-differential equation for the pores mass density. The so-called dual porosity model is found to be equivalent to the leading order approximation of the integration kernel when the diffusion time scale inside the channels is small compared to the macroscopic time scale. As a test problem, we consider the one-dimensional mass diffusion in a semi-infinite domain, whose solution is sought numerically. Because of the required time to establish the linear concentration profile inside a channel, for early times the similarity variable is xt- 1 / 4 rather than xt- 1 / 2 as in the traditional theory. This early time sub-diffusive similarity can be explained by random walk theory through the network. In addition, by applying concepts of fractional calculus, we show that, for small time, the governing equation reduces to a fractional diffusion equation with known solution. We recast this solution in terms of special functions easier to compute. Comparison of the numerical and exact solutions shows excellent agreement.

  9. Single transcriptional and translational preQ1 riboswitches adopt similar pre-folded ensembles that follow distinct folding pathways into the same ligand-bound structure

    PubMed Central

    Suddala, Krishna C.; Rinaldi, Arlie J.; Feng, Jun; Mustoe, Anthony M.; Eichhorn, Catherine D.; Liberman, Joseph A.; Wedekind, Joseph E.; Al-Hashimi, Hashim M.; Brooks, Charles L.; Walter, Nils G.

    2013-01-01

    Riboswitches are structural elements in the 5′ untranslated regions of many bacterial messenger RNAs that regulate gene expression in response to changing metabolite concentrations by inhibition of either transcription or translation initiation. The preQ1 (7-aminomethyl-7-deazaguanine) riboswitch family comprises some of the smallest metabolite sensing RNAs found in nature. Once ligand-bound, the transcriptional Bacillus subtilis and translational Thermoanaerobacter tengcongensis preQ1 riboswitch aptamers are structurally similar RNA pseudoknots; yet, prior structural studies have characterized their ligand-free conformations as largely unfolded and folded, respectively. In contrast, through single molecule observation, we now show that, at near-physiological Mg2+ concentration and pH, both ligand-free aptamers adopt similar pre-folded state ensembles that differ in their ligand-mediated folding. Structure-based Gō-model simulations of the two aptamers suggest that the ligand binds late (Bacillus subtilis) and early (Thermoanaerobacter tengcongensis) relative to pseudoknot folding, leading to the proposal that the principal distinction between the two riboswitches lies in their relative tendencies to fold via mechanisms of conformational selection and induced fit, respectively. These mechanistic insights are put to the test by rationally designing a single nucleotide swap distal from the ligand binding pocket that we find to predictably control the aptamers′ pre-folded states and their ligand binding affinities. PMID:24003028

  10. Cryptic binding sites on proteins: definition, detection, and druggability.

    PubMed

    Vajda, Sandor; Beglov, Dmitri; Wakefield, Amanda E; Egbert, Megan; Whitty, Adrian

    2018-05-22

    Many proteins in their unbound structures lack surface pockets appropriately sized for drug binding. Hence, a variety of experimental and computational tools have been developed for the identification of cryptic sites that are not evident in the unbound protein but form upon ligand binding, and can provide tractable drug target sites. The goal of this review is to discuss the definition, detection, and druggability of such sites, and their potential value for drug discovery. Novel methods based on molecular dynamics simulations are particularly promising and yield a large number of transient pockets, but it has been shown that only a minority of such sites are generally capable of binding ligands with substantial affinity. Based on recent studies, current methodology can be improved by combining molecular dynamics with fragment docking and machine learning approaches. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Experimental Demonstration of Quantum Stationary Light Pulses in an Atomic Ensemble

    NASA Astrophysics Data System (ADS)

    Park, Kwang-Kyoon; Cho, Young-Wook; Chough, Young-Tak; Kim, Yoon-Ho

    2018-04-01

    We report an experimental demonstration of the nonclassical stationary light pulse (SLP) in a cold atomic ensemble. A single collective atomic excitation is created and heralded by detecting a Stokes photon in the spontaneous Raman scattering process. The heralded single atomic excitation is converted into a single stationary optical excitation or the single-photon SLP, whose effective group velocity is zero, effectively forming a trapped single-photon pulse within the cold atomic ensemble. The single-photon SLP is then released from the atomic ensemble as an anti-Stokes photon after a specified trapping time. The second-order correlation measurement between the Stokes and anti-Stokes photons reveals the nonclassical nature of the single-photon SLP. Our work paves the way toward quantum nonlinear optics without a cavity.

  12. POCKET $beta$ AND $gamma$ RADIOMETER (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markelov, V.V.; Lushikhin, A.M.; Nikoforov, V.I.

    A pocket BETA and gamma rate meter was designed by the Academy of Medical Sciences of U.S.S.R. for detecting gamma radiation of 0.25 to 2 Mev and for BETA particles of 0 to 50 and 0 to 500 particles/cm/sup 2/sec, with energies of 0.5 to 2 Mev. Measurements of BETA particles are made through the hack wall opening in the appuratus. The opening is closed durtng the recording of gamma radiation, which permits differentiation between the BETA and gamma radiation. The accuracy of the counter is within plus or minus 15%. (R.V.J.)

  13. Ensembles of novelty detection classifiers for structural health monitoring using guided waves

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dib, Gerges; Karpenko, Oleksii; Koricho, Ermias

    Guided wave structural health monitoring uses sparse sensor networks embedded in sophisticated structures for defect detection and characterization. The biggest challenge of those sensor networks is developing robust techniques for reliable damage detection under changing environmental and operating conditions. To address this challenge, we develop a novelty classifier for damage detection based on one class support vector machines. We identify appropriate features for damage detection and introduce a feature aggregation method which quadratically increases the number of available training observations.We adopt a two-level voting scheme by using an ensemble of classifiers and predictions. Each classifier is trained on a differentmore » segment of the guided wave signal, and each classifier makes an ensemble of predictions based on a single observation. Using this approach, the classifier can be trained using a small number of baseline signals. We study the performance using monte-carlo simulations of an analytical model and data from impact damage experiments on a glass fiber composite plate.We also demonstrate the classifier performance using two types of baseline signals: fixed and rolling baseline training set. The former requires prior knowledge of baseline signals from all environmental and operating conditions, while the latter does not and leverages the fact that environmental and operating conditions vary slowly over time and can be modeled as a Gaussian process.« less

  14. Significance of maxillary sinus mucosal thickening in patients with periodontal disease.

    PubMed

    Ren, Song; Zhao, Haijiao; Liu, Jingbo; Wang, Qingxuan; Pan, Yaping

    2015-12-01

    To characterise and measure the Schneiderian membranes of individuals with periodontal diseases in China and to analyse the factors impacting maxillary sinus mucosal thickness using cone-beam computed tomography (CBCT). A cohort of 221 patients with periodontal disease was subjected to cross-sectional CBCT examination. Various parameters, including age, sex, alveolar bone loss, furcation lesions and vertical infrabony pockets, were analysed as correlates of mucosal thickening (MT). Sinus mucosal thickness ≥ 2 mm qualified as MT. MT was detected in 103 (48.9%) patients, increasing in frequency as the degree of alveolar bone loss advanced (mild, 14.5%; moderate, 29.5%; severe, 87.9%). The association between MT and vertical infrabony pockets was statistically significant (P < 0.001). The likelihood of MT increased with moderate [odds ratio (OR) = 1.02] and severe (OR = 4.62) periodontal bone loss (P < 0.001), as well as with furcation lesions (OR = 2.76) and vertical infrabony pockets (OR = 13.58). Relative to the case in patients with periodontitis and normal mucosa, the probability of MT increased dramatically as alveolar bone loss worsened. Periodontal pathologies (i.e. furcation lesions and vertical infrabony pockets) were also more likely to coincide with MT. © 2015 FDI World Dental Federation.

  15. A Framework for Speech Activity Detection Using Adaptive Auditory Receptive Fields.

    PubMed

    Carlin, Michael A; Elhilali, Mounya

    2015-12-01

    One of the hallmarks of sound processing in the brain is the ability of the nervous system to adapt to changing behavioral demands and surrounding soundscapes. It can dynamically shift sensory and cognitive resources to focus on relevant sounds. Neurophysiological studies indicate that this ability is supported by adaptively retuning the shapes of cortical spectro-temporal receptive fields (STRFs) to enhance features of target sounds while suppressing those of task-irrelevant distractors. Because an important component of human communication is the ability of a listener to dynamically track speech in noisy environments, the solution obtained by auditory neurophysiology implies a useful adaptation strategy for speech activity detection (SAD). SAD is an important first step in a number of automated speech processing systems, and performance is often reduced in highly noisy environments. In this paper, we describe how task-driven adaptation is induced in an ensemble of neurophysiological STRFs, and show how speech-adapted STRFs reorient themselves to enhance spectro-temporal modulations of speech while suppressing those associated with a variety of nonspeech sounds. We then show how an adapted ensemble of STRFs can better detect speech in unseen noisy environments compared to an unadapted ensemble and a noise-robust baseline. Finally, we use a stimulus reconstruction task to demonstrate how the adapted STRF ensemble better captures the spectrotemporal modulations of attended speech in clean and noisy conditions. Our results suggest that a biologically plausible adaptation framework can be applied to speech processing systems to dynamically adapt feature representations for improving noise robustness.

  16. High risk human papillomavirus in the periodontium : A case control study.

    PubMed

    Shipilova, Anna; Dayakar, Manjunath Mundoor; Gupta, Dinesh

    2017-01-01

    Human papilloma viruses (HPVs) are small DNA viruses that have been identified in periodontal pocket as well as gingival sulcus. High risk HPVs are also associated with a subset of head and neck carcinomas. It is thought that the periodontium could be a reservoir for HPV. 1. Detection of Human Papilloma virus (HPV) in periodontal pocket as well as gingival of patients having localized chronic periodontitis and gingival sulcus of periodontally healthy subjects. 2. Quantitative estimation of E6 and E7 mRNA in subjects showing presence of HPV3. To assess whether periodontal pocket is a reservoir for HPV. This case-control study included 30 subjects with localized chronic Periodontitis (cases) and 30 periodontally healthy subjects (controls). Two samples were taken from cases, one from periodontal pocket and one from gingival sulcus and one sample was taken from controls. Samples were collected in the form of pocket scrapings and gingival sulcus scrapings from cases and controls respectively. These samples were sent in storage media for identification and estimation of E6/E7 mRNA of HPV using in situ hybridization and flow cytometry. Statistical analysis was done by using, mean, percentage and Chi Square test. A statistical package SPSS version 13.0 was used to analyze the data. P value < 0.05 was considered as statistically significant. pocket samples as well as sulcus samples for both cases and controls were found to contain HPV E6/E7 mRNAInterpretation and. Presence of HPV E6/E7 mRNA in periodontium supports the hypothesis that periodontal tissues serve as a reservoir for latent HPV and there may be a synergy between oral cancer, periodontitis and HPV. However prospective studies are required to further explore this link.

  17. Bayesian refinement of protein structures and ensembles against SAXS data using molecular dynamics

    PubMed Central

    Shevchuk, Roman; Hub, Jochen S.

    2017-01-01

    Small-angle X-ray scattering is an increasingly popular technique used to detect protein structures and ensembles in solution. However, the refinement of structures and ensembles against SAXS data is often ambiguous due to the low information content of SAXS data, unknown systematic errors, and unknown scattering contributions from the solvent. We offer a solution to such problems by combining Bayesian inference with all-atom molecular dynamics simulations and explicit-solvent SAXS calculations. The Bayesian formulation correctly weights the SAXS data versus prior physical knowledge, it quantifies the precision or ambiguity of fitted structures and ensembles, and it accounts for unknown systematic errors due to poor buffer matching. The method further provides a probabilistic criterion for identifying the number of states required to explain the SAXS data. The method is validated by refining ensembles of a periplasmic binding protein against calculated SAXS curves. Subsequently, we derive the solution ensembles of the eukaryotic chaperone heat shock protein 90 (Hsp90) against experimental SAXS data. We find that the SAXS data of the apo state of Hsp90 is compatible with a single wide-open conformation, whereas the SAXS data of Hsp90 bound to ATP or to an ATP-analogue strongly suggest heterogenous ensembles of a closed and a wide-open state. PMID:29045407

  18. Multi-Parameter Scattering Sensor and Methods

    NASA Technical Reports Server (NTRS)

    Greenberg, Paul S. (Inventor); Fischer, David G. (Inventor)

    2016-01-01

    Methods, detectors and systems detect particles and/or measure particle properties. According to one embodiment, a detector for detecting particles comprises: a sensor for receiving radiation scattered by an ensemble of particles; and a processor for determining a physical parameter for the detector, or an optimal detection angle or a bound for an optimal detection angle, for measuring at least one moment or integrated moment of the ensemble of particles, the physical parameter, or detection angle, or detection angle bound being determined based on one or more of properties (a) and/or (b) and/or (c) and/or (d) or ranges for one or more of properties (a) and/or (b) and/or (c) and/or (d), wherein (a)-(d) are the following: (a) is a wavelength of light incident on the particles, (b) is a count median diameter or other characteristic size parameter of the particle size distribution, (c) is a standard deviation or other characteristic width parameter of the particle size distribution, and (d) is a refractive index of particles.

  19. Direct Extraction of Tumor Response Based on Ensemble Empirical Mode Decomposition for Image Reconstruction of Early Breast Cancer Detection by UWB.

    PubMed

    Li, Qinwei; Xiao, Xia; Wang, Liang; Song, Hang; Kono, Hayato; Liu, Peifang; Lu, Hong; Kikkawa, Takamaro

    2015-10-01

    A direct extraction method of tumor response based on ensemble empirical mode decomposition (EEMD) is proposed for early breast cancer detection by ultra-wide band (UWB) microwave imaging. With this approach, the image reconstruction for the tumor detection can be realized with only extracted signals from as-detected waveforms. The calibration process executed in the previous research for obtaining reference waveforms which stand for signals detected from the tumor-free model is not required. The correctness of the method is testified by successfully detecting a 4 mm tumor located inside the glandular region in one breast model and by the model located at the interface between the gland and the fat, respectively. The reliability of the method is checked by distinguishing a tumor buried in the glandular tissue whose dielectric constant is 35. The feasibility of the method is confirmed by showing the correct tumor information in both simulation results and experimental results for the realistic 3-D printed breast phantom.

  20. Andrographolide derivatives inhibit guanine nucleotide exchange and abrogate oncogenic Ras function

    PubMed Central

    Hocker, Harrison J.; Cho, Kwang-Jin; Chen, Chung-Ying K.; Rambahal, Nandini; Sagineedu, Sreenivasa Rao; Shaari, Khozirah; Stanslas, Johnson; Hancock, John F.; Gorfe, Alemayehu A.

    2013-01-01

    Aberrant signaling by oncogenic mutant rat sarcoma (Ras) proteins occurs in ∼15% of all human tumors, yet direct inhibition of Ras by small molecules has remained elusive. Recently, several small-molecule ligands have been discovered that directly bind Ras and inhibit its function by interfering with exchange factor binding. However, it is unclear whether, or how, these ligands could lead to drugs that act against constitutively active oncogenic mutant Ras. Using a dynamics-based pocket identification scheme, ensemble docking, and innovative cell-based assays, here we show that andrographolide (AGP)—a bicyclic diterpenoid lactone isolated from Andrographis paniculata—and its benzylidene derivatives bind to transient pockets on Kirsten-Ras (K-Ras) and inhibit GDP–GTP exchange. As expected for inhibitors of exchange factor binding, AGP derivatives reduced GTP loading of wild-type K-Ras in response to acute EGF stimulation with a concomitant reduction in MAPK activation. Remarkably, however, prolonged treatment with AGP derivatives also reduced GTP loading of, and signal transmission by, oncogenic mutant K-RasG12V. In sum, the combined analysis of our computational and cell biology results show that AGP derivatives directly bind Ras, block GDP–GTP exchange, and inhibit both wild-type and oncogenic K-Ras signaling. Importantly, our findings not only show that nucleotide exchange factors are required for oncogenic Ras signaling but also demonstrate that inhibiting nucleotide exchange is a valid approach to abrogating the function of oncogenic mutant Ras. PMID:23737504

  1. Psychologist in a pocket: towards depression screening on mobile phones.

    PubMed

    Bitsch, Jó Ágila; Ramos, Roann; Ix, Tim; Ferrer-Cheng, Paula Glenda; Wehrle, Klaus

    2015-01-01

    Depression is the most prevalent clinical disorder and one of the main causes of disability. This makes early detection of depressive symptoms critical in its prevention and management. This paper presents and discusses the development of Psychologist in a Pocket (PiaP), a mental mHealth application for Android which screens and monitors for these symptoms, and-given the explicit permission of the user-alerts a trusted contact such as the mental health professional or a close friend, if it detects symptoms. All text inputted electronically-such as short message services, emails, social network posts-is analyzed based on keywords related to depression based on DSM-5 and ICD criteria as well as Beck's Cognitive Theory of Depression and the Self-Focus Model. Data evaluation and collection happen in the background, on-device, without requiring any user involvement. Currently, the application is in an early prototype phase entering initial clinical validation.

  2. Naked-eye determination of oxalate anion in aqueous solution with copper ion and pyrocatechol violet.

    PubMed

    Su, Jing; Sun, Yuan-Qiang; Huo, Fang-Jun; Yang, Yu-Tao; Yin, Cai-Xia

    2010-11-01

    A novel strategy for the determination of oxalate anions was successfully established using a copper ion and pyrocatechol violet (PV) ensemble. The sensor ensemble can discriminate oxalate over other common anions including F(-), Cl(-), I(-), Br(-), HPO(4)(2-), PO(4)(3-), AcO(-), CO(3)(2-), SO(4)(2-), ClO(4)(-), P(2)O(7)(4-), S(2-) (deposited by Ag(+)), CN(-) (shielded by Fe(3+)) and can detect oxalate at low microgram levels in quasi-physiological aqueous solutions. The detection of the oxalate anion gives rise to a rapid observable visual color change from blue to yellow.

  3. Quantum teleportation of four-dimensional qudits

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Al-Amri, M.; Max-Planck-Institut fuer Kernphysik, Saupfercheckweg 1, D-69117 Heidelberg; Evers, Joerg

    2010-08-15

    A protocol for the teleportation of arbitrary quantum states of four-dimensional qudits is presented. The qudit to be teleported is encoded in the combined state of two ensembles of atoms placed in a cavity at the sender's side. The receiver uses a similar setup, with his atoms prepared in a particular initial state. The teleportation protocol then consists of adiabatic mapping of the ensemble states onto photonic degrees of freedom, which are then directed onto a specific beam splitter and detection setup. For part of the measurement outcome, the qudit state is fully transferred to the receiver. Other detection eventsmore » lead to partial teleportation or failed teleportation attempts. The interpretation of the different detection outcomes and possible ways of improving the full teleportation probability are discussed.« less

  4. Intraoral fiber-optic-based diagnostic for periodontal disease

    NASA Astrophysics Data System (ADS)

    Colston, Bill W., Jr.; Gutierrez, Dora M.; Everett, Matthew J.; Brown, Steve B.; Langry, Kevin C.; Cox, Weldon R.; Johnson, Paul W.; Roe, Jeffrey N.

    2000-05-01

    The purpose of this initial study was to begin development of a new, objective diagnostic instrument that will allow simultaneous quantitation of multiple proteases within a single periodontal pocket using a chemical fiber optic senor. This approach could potentially be adapted to use specific antibodies and chemiluminescence to detect and quantitate virtually any compound and compare concentrations of different compounds within the same periodontal pocket. The device could also be used to assay secretions in salivary ducts or from a variety of wounds. The applicability is, therefore, not solely limited to dentistry and the device would be important both for clinical diagnostics and as a research too.

  5. Polymorphic microsatellite loci for the sand pocket mouse Chaetodipus arenarius, an endemic from the Baja California Peninsula

    USGS Publications Warehouse

    Munguia-Vega, A.; Rodriguez-Estrella, R.; Nachman, M.; Culver, M.

    2009-01-01

    Fifteen polymorphic microsatellite loci were isolated from an enriched genomic library of the sand pocket mouse Chaetodipus arenarius. The mean number of alleles per locus was 11.53 (range five to 19) and the average observed heterozygosity was 0.764 (range 0.121 to 1.0). The markers will be used for detecting the impact of human-induced habitat fragmentation on patterns of gene flow, genetic structure, and extinction risk. In addition, these markers will be useful across the genus because most of the loci cross-amplified and were polymorphic in three other species of Chaetodipus. ?? 2008 The Authors.

  6. A novel colorimetric aptasensor for ultrasensitive detection of cocaine based on the formation of three-way junction pockets on the surfaces of gold nanoparticles.

    PubMed

    Abnous, Khalil; Danesh, Noor Mohammad; Ramezani, Mohammad; Taghdisi, Seyed Mohammad; Emrani, Ahmad Sarreshtehdar

    2018-08-22

    Herein, a novel colorimetric aptasensor was introduced for detection of cocaine based on the formation of three-way junction pockets on the surfaces of gold nanoparticles (AuNPs) and the catalytic activity of the surfaces of AuNPs. Simplicity and detection of cocaine in a short time (only 35 min) are some of the unique features of the proposed sensing strategy. In the presence of cocaine, triple-fragment aptamer (TFA) forms on the surfaces of AuNPs, leading to a significant decrease of the catalytic activity of AuNPs and the color of samples remains yellow. In the absence of target, TFA does not form on the surfaces of AuNPs and 4-Nitrophenol, as a colorimetric agent, has more access to the surfaces of AuNPs, resulting in the reduction of 4-Nitrophenol and the color of sample changes from yellow to colorless. The sensing strategy showed good specificity, a limit of detection (LOD) of 440 pM and a dynamic range over 2-100 nM. The sensing method was also successfully applied to detect cocaine in spiked human serum samples with recovery of 94.71-98.63%. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Quantifying rapid changes in cardiovascular state with a moving ensemble average.

    PubMed

    Cieslak, Matthew; Ryan, William S; Babenko, Viktoriya; Erro, Hannah; Rathbun, Zoe M; Meiring, Wendy; Kelsey, Robert M; Blascovich, Jim; Grafton, Scott T

    2018-04-01

    MEAP, the moving ensemble analysis pipeline, is a new open-source tool designed to perform multisubject preprocessing and analysis of cardiovascular data, including electrocardiogram (ECG), impedance cardiogram (ICG), and continuous blood pressure (BP). In addition to traditional ensemble averaging, MEAP implements a moving ensemble averaging method that allows for the continuous estimation of indices related to cardiovascular state, including cardiac output, preejection period, heart rate variability, and total peripheral resistance, among others. Here, we define the moving ensemble technique mathematically, highlighting its differences from fixed-window ensemble averaging. We describe MEAP's interface and features for signal processing, artifact correction, and cardiovascular-based fMRI analysis. We demonstrate the accuracy of MEAP's novel B point detection algorithm on a large collection of hand-labeled ICG waveforms. As a proof of concept, two subjects completed a series of four physical and cognitive tasks (cold pressor, Valsalva maneuver, video game, random dot kinetogram) on 3 separate days while ECG, ICG, and BP were recorded. Critically, the moving ensemble method reliably captures the rapid cyclical cardiovascular changes related to the baroreflex during the Valsalva maneuver and the classic cold pressor response. Cardiovascular measures were seen to vary considerably within repetitions of the same cognitive task for each individual, suggesting that a carefully designed paradigm could be used to capture fast-acting event-related changes in cardiovascular state. © 2017 Society for Psychophysiological Research.

  8. Oligonucleotide Microarray for 16S rRNA Gene-Based Detection of All Recognized Lineages of Sulfate-Reducing Prokaryotes in the Environment

    PubMed Central

    Loy, Alexander; Lehner, Angelika; Lee, Natuschka; Adamczyk, Justyna; Meier, Harald; Ernst, Jens; Schleifer, Karl-Heinz; Wagner, Michael

    2002-01-01

    For cultivation-independent detection of sulfate-reducing prokaryotes (SRPs) an oligonucleotide microarray consisting of 132 16S rRNA gene-targeted oligonucleotide probes (18-mers) having hierarchical and parallel (identical) specificity for the detection of all known lineages of sulfate-reducing prokaryotes (SRP-PhyloChip) was designed and subsequently evaluated with 41 suitable pure cultures of SRPs. The applicability of SRP-PhyloChip for diversity screening of SRPs in environmental and clinical samples was tested by using samples from periodontal tooth pockets and from the chemocline of a hypersaline cyanobacterial mat from Solar Lake (Sinai, Egypt). Consistent with previous studies, SRP-PhyloChip indicated the occurrence of Desulfomicrobium spp. in the tooth pockets and the presence of Desulfonema- and Desulfomonile-like SRPs (together with other SRPs) in the chemocline of the mat. The SRP-PhyloChip results were confirmed by several DNA microarray-independent techniques, including specific PCR amplification, cloning, and sequencing of SRP 16S rRNA genes and the genes encoding the dissimilatory (bi)sulfite reductase (dsrAB). PMID:12324358

  9. Effects of Listening Conditions, Error Types, and Ensemble Textures on Error Detection Skills

    ERIC Educational Resources Information Center

    Waggoner, Dori T.

    2011-01-01

    This study was designed with three main purposes: (a) to investigate the effects of two listening conditions on error detection accuracy, (b) to compare error detection responses for rhythm errors and pitch errors, and (c) to examine the influences of texture on error detection accuracy. Undergraduate music education students (N = 18) listened to…

  10. Clinical tests of an ultrasonic periodontal probe

    NASA Astrophysics Data System (ADS)

    Hinders, Mark K.; Lynch, John E.; McCombs, Gayle B.

    2002-05-01

    A new ultrasonic periodontal probe has been developed that offers the potential for earlier detection of periodontal disease activity, non-invasive diagnosis, and greater reliability of measurement. A comparison study of the ultrasonic probe to both a manual probe, and a controlled-force probe was conducted to evaluate its clinical effectiveness. Twelve patients enrolled into this study. Two half-month examinations were conducted on each patient, scheduled one hour apart. A one-way analysis of variance was performed to compare the results for the three sets of probing depth measurements, followed by a repeated measures analysis to assess the reproducibility of the different probing techniques. These preliminary findings indicate that manual and ultrasonic probing measure different features of the pocket. Therefore, it is not obvious how the two depth measurements correspond to each other. However, both methods exhibited a similar tendency toward increasing pocket depths as Gingival Index scores increased. Based on the small sample size, further studies need to be conducted using a larger population of patients exhibiting a wider range of disease activity. In addition, studies that allow histological examination of the pocket after probing will help further evaluate the clinical effectiveness the ultrasonic probe. Future studies will also aid in the development of more effective automated feature recognition algorithms that convert the ultrasonic echoes into pocket depth readings.

  11. Toward a generalized computational workflow for exploiting transient pockets as new targets for small molecule stabilizers: Application to the homogentisate 1,2-dioxygenase mutants at the base of rare disease Alkaptonuria.

    PubMed

    Bernini, Andrea; Galderisi, Silvia; Spiga, Ottavia; Bernardini, Giulia; Niccolai, Neri; Manetti, Fabrizio; Santucci, Annalisa

    2017-10-01

    Alkaptonuria (AKU) is an inborn error of metabolism where mutation of homogentisate 1,2-dioxygenase (HGD) gene leads to a deleterious or misfolded product with subsequent loss of enzymatic degradation of homogentisic acid (HGA) whose accumulation in tissues causes ochronosis and degeneration. There is no licensed therapy for AKU. Many missense mutations have been individuated as responsible for quaternary structure disruption of the native hexameric HGD. A new approach to the treatment of AKU is here proposed aiming to totally or partially rescue enzyme activity by targeting of HGD with pharmacological chaperones, i.e. small molecules helping structural stability. Co-factor pockets from oligomeric proteins have already been successfully exploited as targets for such a strategy, but no similar sites are present at HGD surface; hence, transient pockets are here proposed as a target for pharmacological chaperones. Transient pockets are detected along the molecular dynamics trajectory of the protein and filtered down to a set of suitable sites for structural stabilization by mean of biochemical and pharmacological criteria. The result is a computational workflow relevant to other inborn errors of metabolism requiring rescue of oligomeric, misfolded enzymes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Lead isotope ratios in tree bark pockets: an indicator of past air pollution in the Czech Republic.

    PubMed

    Conkova, M; Kubiznakova, J

    2008-10-15

    Tree bark pockets were collected at four sites in the Czech Republic with differing levels of lead (Pb) pollution. The samples, spanning 1923-2005, were separated from beech (Fagus sylvatica) and spruce (Picea abies). Elevated Pb content (0.1-42.4 microg g(-1)) reflected air pollution in the city of Prague. The lowest Pb content (0.3-2.6 microg g(-1)) was found at the Kosetice EMEP "background pollution" site. Changes in (206)Pb/(207)Pb and (208)Pb/(206)Pb isotope ratios were in agreement with operation times of the Czech main anthropogenic Pb sources. Shortly after the Second World War, the (206)Pb/(207)Pb isotope ratio in bark pockets decreased from 1.17 to 1.14 and the (208)Pb/(206)Pb isotope ratio increased from 2.12 to 2.16. Two dominant emission sources responsible for these changes, lignite and leaded petrol combustion, contributed to the shifts in Pb isotope ratios. Low-radiogenic petrol Pb ((206)Pb/(207)Pb of 1.11) lead to lower (206)Pb/(207)Pb in bark pockets over time. High-radiogenic lignite-derived Pb ((206)Pb/(207)Pb of 1.18 to 1.19) was detected in areas affected by coal combustion rather than by traffic.

  13. Nine time steps: ultra-fast statistical consistency testing of the Community Earth System Model (pyCECT v3.0)

    NASA Astrophysics Data System (ADS)

    Milroy, Daniel J.; Baker, Allison H.; Hammerling, Dorit M.; Jessup, Elizabeth R.

    2018-02-01

    The Community Earth System Model Ensemble Consistency Test (CESM-ECT) suite was developed as an alternative to requiring bitwise identical output for quality assurance. This objective test provides a statistical measurement of consistency between an accepted ensemble created by small initial temperature perturbations and a test set of CESM simulations. In this work, we extend the CESM-ECT suite with an inexpensive and robust test for ensemble consistency that is applied to Community Atmospheric Model (CAM) output after only nine model time steps. We demonstrate that adequate ensemble variability is achieved with instantaneous variable values at the ninth step, despite rapid perturbation growth and heterogeneous variable spread. We refer to this new test as the Ultra-Fast CAM Ensemble Consistency Test (UF-CAM-ECT) and demonstrate its effectiveness in practice, including its ability to detect small-scale events and its applicability to the Community Land Model (CLM). The new ultra-fast test facilitates CESM development, porting, and optimization efforts, particularly when used to complement information from the original CESM-ECT suite of tools.

  14. A Diagnostics Tool to detect ensemble forecast system anomaly and guide operational decisions

    NASA Astrophysics Data System (ADS)

    Park, G. H.; Srivastava, A.; Shrestha, E.; Thiemann, M.; Day, G. N.; Draijer, S.

    2017-12-01

    The hydrologic community is moving toward using ensemble forecasts to take uncertainty into account during the decision-making process. The New York City Department of Environmental Protection (DEP) implements several types of ensemble forecasts in their decision-making process: ensemble products for a statistical model (Hirsch and enhanced Hirsch); the National Weather Service (NWS) Advanced Hydrologic Prediction Service (AHPS) forecasts based on the classical Ensemble Streamflow Prediction (ESP) technique; and the new NWS Hydrologic Ensemble Forecasting Service (HEFS) forecasts. To remove structural error and apply the forecasts to additional forecast points, the DEP post processes both the AHPS and the HEFS forecasts. These ensemble forecasts provide mass quantities of complex data, and drawing conclusions from these forecasts is time-consuming and difficult. The complexity of these forecasts also makes it difficult to identify system failures resulting from poor data, missing forecasts, and server breakdowns. To address these issues, we developed a diagnostic tool that summarizes ensemble forecasts and provides additional information such as historical forecast statistics, forecast skill, and model forcing statistics. This additional information highlights the key information that enables operators to evaluate the forecast in real-time, dynamically interact with the data, and review additional statistics, if needed, to make better decisions. We used Bokeh, a Python interactive visualization library, and a multi-database management system to create this interactive tool. This tool compiles and stores data into HTML pages that allows operators to readily analyze the data with built-in user interaction features. This paper will present a brief description of the ensemble forecasts, forecast verification results, and the intended applications for the diagnostic tool.

  15. Ensemble Architecture for Prediction of Enzyme-ligand Binding Residues Using Evolutionary Information.

    PubMed

    Pai, Priyadarshini P; Dattatreya, Rohit Kadam; Mondal, Sukanta

    2017-11-01

    Enzyme interactions with ligands are crucial for various biochemical reactions governing life. Over many years attempts to identify these residues for biotechnological manipulations have been made using experimental and computational techniques. The computational approaches have gathered impetus with the accruing availability of sequence and structure information, broadly classified into template-based and de novo methods. One of the predominant de novo methods using sequence information involves application of biological properties for supervised machine learning. Here, we propose a support vector machines-based ensemble for prediction of protein-ligand interacting residues using one of the most important discriminative contributing properties in the interacting residue neighbourhood, i. e., evolutionary information in the form of position-specific- scoring matrix (PSSM). The study has been performed on a non-redundant dataset comprising of 9269 interacting and 91773 non-interacting residues for prediction model generation and further evaluation. Of the various PSSM-based models explored, the proposed method named ROBBY (pRediction Of Biologically relevant small molecule Binding residues on enzYmes) shows an accuracy of 84.0 %, Matthews Correlation Coefficient of 0.343 and F-measure of 39.0 % on 78 test enzymes. Further, scope of adding domain knowledge such as pocket information has also been investigated; results showed significant enhancement in method precision. Findings are hoped to boost the reliability of small-molecule ligand interaction prediction for enzyme applications and drug design. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Cd(II)-terpyridine-based complex as a ratiometric fluorescent probe for pyrophosphate detection in solution and as an imaging agent in living cells.

    PubMed

    Jiao, Shu-Yan; Li, Kun; Zhang, Wei; Liu, Yan-Hong; Huang, Zeng; Yu, Xiao-Qi

    2015-01-21

    The terpyridine anthracene ligand was synthesized and characterized. is a ratiometric fluorescent probe for Cd(2+) with a recognition mechanism based on intramolecular charge transfer (ICT). An complex was isolated, and its structure was established using single-crystal XRD. The complex was able to serve as a novel reversible chemosensing ensemble to allow ratiometric response to pyrophosphate (PPi) in aqueous media. Moreover, the fluorescence imaging in living cells from these two emission channels suggested that was a ratiometric probe for Cd(2+), and the in situ generated complex was also a ratiometric ensemble for PPi detection in living cells.

  17. Model Independence in Downscaled Climate Projections: a Case Study in the Southeast United States

    NASA Astrophysics Data System (ADS)

    Gray, G. M. E.; Boyles, R.

    2016-12-01

    Downscaled climate projections are used to deduce how the climate will change in future decades at local and regional scales. It is important to use multiple models to characterize part of the future uncertainty given the impact on adaptation decision making. This is traditionally employed through an equally-weighted ensemble of multiple GCMs downscaled using one technique. Newer practices include several downscaling techniques in an effort to increase the ensemble's representation of future uncertainty. However, this practice may be adding statistically dependent models to the ensemble. Previous research has shown a dependence problem in the GCM ensemble in multiple generations, but has not been shown in the downscaled ensemble. In this case study, seven downscaled climate projections on the daily time scale are considered: CLAREnCE10, SERAP, BCCA (CMIP5 and CMIP3 versions), Hostetler, CCR, and MACA-LIVNEH. These data represent 83 ensemble members, 44 GCMs, and two generations of GCMs. Baseline periods are compared against the University of Idaho's METDATA gridded observation dataset. Hierarchical agglomerative clustering is applied to the correlated errors to determine dependent clusters. Redundant GCMs across different downscaling techniques show the most dependence, while smaller dependence signals are detected within downscaling datasets and across generations of GCMs. These results indicate that using additional downscaled projections to increase the ensemble size must be done with care to avoid redundant GCMs and the process of downscaling may increase the dependence of those downscaled GCMs. Climate model generation does not appear dissimilar enough to be treated as two separate statistical populations for ensemble building at the local and regional scales.

  18. Development and Validation of a Computational Model Ensemble for the Early Detection of BCRP/ABCG2 Substrates during the Drug Design Stage.

    PubMed

    Gantner, Melisa E; Peroni, Roxana N; Morales, Juan F; Villalba, María L; Ruiz, María E; Talevi, Alan

    2017-08-28

    Breast Cancer Resistance Protein (BCRP) is an ATP-dependent efflux transporter linked to the multidrug resistance phenomenon in many diseases such as epilepsy and cancer and a potential source of drug interactions. For these reasons, the early identification of substrates and nonsubstrates of this transporter during the drug discovery stage is of great interest. We have developed a computational nonlinear model ensemble based on conformational independent molecular descriptors using a combined strategy of genetic algorithms, J48 decision tree classifiers, and data fusion. The best model ensemble consists in averaging the ranking of the 12 decision trees that showed the best performance on the training set, which also demonstrated a good performance for the test set. It was experimentally validated using the ex vivo everted rat intestinal sac model. Five anticonvulsant drugs classified as nonsubstrates for BRCP by the model ensemble were experimentally evaluated, and none of them proved to be a BCRP substrate under the experimental conditions used, thus confirming the predictive ability of the model ensemble. The model ensemble reported here is a potentially valuable tool to be used as an in silico ADME filter in computer-aided drug discovery campaigns intended to overcome BCRP-mediated multidrug resistance issues and to prevent drug-drug interactions.

  19. Minimal ensemble based on subset selection using ECG to diagnose categories of CAN.

    PubMed

    Abawajy, Jemal; Kelarev, Andrei; Yi, Xun; Jelinek, Herbert F

    2018-07-01

    Early diagnosis of cardiac autonomic neuropathy (CAN) is critical for reversing or decreasing its progression and prevent complications. Diagnostic accuracy or precision is one of the core requirements of CAN detection. As the standard Ewing battery tests suffer from a number of shortcomings, research in automating and improving the early detection of CAN has recently received serious attention in identifying additional clinical variables and designing advanced ensembles of classifiers to improve the accuracy or precision of CAN diagnostics. Although large ensembles are commonly proposed for the automated diagnosis of CAN, large ensembles are characterized by slow processing speed and computational complexity. This paper applies ECG features and proposes a new ensemble-based approach for diagnosis of CAN progression. We introduce a Minimal Ensemble Based On Subset Selection (MEBOSS) for the diagnosis of all categories of CAN including early, definite and atypical CAN. MEBOSS is based on a novel multi-tier architecture applying classifier subset selection as well as the training subset selection during several steps of its operation. Our experiments determined the diagnostic accuracy or precision obtained in 5 × 2 cross-validation for various options employed in MEBOSS and other classification systems. The experiments demonstrate the operation of the MEBOSS procedure invoking the most effective classifiers available in the open source software environment SageMath. The results of our experiments show that for the large DiabHealth database of CAN related parameters MEBOSS outperformed other classification systems available in SageMath and achieved 94% to 97% precision in 5 × 2 cross-validation correctly distinguishing any two CAN categories to a maximum of five categorizations including control, early, definite, severe and atypical CAN. These results show that MEBOSS architecture is effective and can be recommended for practical implementations in systems for the diagnosis of CAN progression. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Development of new near-infrared and leuco-dye optical systems for forensic and crime fighting applications

    NASA Astrophysics Data System (ADS)

    Patonay, Gabor; Strekowski, Lucjan; Salon, Jozef; Medou-Ovono, Martial; Krutak, James J.; Leggitt, Jeffrey; Seubert, Heather; Craig, Rhonda

    2004-12-01

    New chemistry for leuco fluorescin and leuco rhodamine for latent bloodstain and fingerprint detection has been developed in our laboratories. The use of these leuco dyes results in excellent contrast for several hours. The FBI's Evidence Response Team and DNA I unit collaborated with Georgia State University to validate the new fluorescin chemistry for use in the field. In addition, several new NIR dyes have been developed in our laboratories that can be used to detect different chemical residues, e.g., pepper spray, latent fingerprint, latent blood, metal ions, or other trace evidence during crime scene investigations. Proof of principle experiments showed that NIR dyes reacting with such residues can be activated with appropriately filtered semiconductor lasers and LEDs to emit NIR fluorescence that can be observed using optimally filtered night vision intensifiers or pocket scopes, digital cameras, CCD and CMOS cameras, or other NIR detection systems. The main advantage of NIR detection is that the color of the background has very little influence on detection and that there are very few materials that would interfere by exhibiting NIR fluorescence. The use of pocket scopes permits sensitive and convenient detection. Once the residues are located, digital images of the fluorescence can be recorded and samples obtained for further analyses. NIR dyes do not interfere with subsequent follow-up or confirmation methods such as DNA or LC/MS analysis. Near-infrared absorbing dyes will be summarized along with detection mechanisms.

  1. Intraoral fiber optic-based diagnostic for periodontal disease

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, P W; Gutierrez, D M; Everett, M J

    2000-01-21

    The purpose of this initial study was to begin development of a new, objective diagnostic instrument that will allow simultaneous quantitation of multiple proteases within a single periodontal pocket using a chemical fiber optic sensor. This approach could potentially be adapted to use specific antibodies and chemiluminescence to detect and quantitate virtually any compound and compare concentrations of different compounds within the same periodontal pocket. The device could also be used to assay secretions in salivary ducts or from a variety of wounds. The applicability is, therefore, not solely limited to dentistry and the device would be important both formore » clinical diagnostics and as a research tool.« less

  2. Early sinkhole detection using a drone-based thermal camera and image processing

    NASA Astrophysics Data System (ADS)

    Lee, Eun Ju; Shin, Sang Young; Ko, Byoung Chul; Chang, Chunho

    2016-09-01

    Accurate advance detection of the sinkholes that are occurring more frequently now is an important way of preventing human fatalities and property damage. Unlike naturally occurring sinkholes, human-induced ones in urban areas are typically due to groundwater disturbances and leaks of water and sewage caused by large-scale construction. Although many sinkhole detection methods have been developed, it is still difficult to predict sinkholes that occur in depth areas. In addition, conventional methods are inappropriate for scanning a large area because of their high cost. Therefore, this paper uses a drone combined with a thermal far-infrared (FIR) camera to detect potential sinkholes over a large area based on computer vision and pattern classification techniques. To make a standard dataset, we dug eight holes of depths 0.5-2 m in increments of 0.5 m and with a maximum width of 1 m. We filmed these using the drone-based FIR camera at a height of 50 m. We first detect candidate regions by analysing cold spots in the thermal images based on the fact that a sinkhole typically has a lower thermal energy than its background. Then, these regions are classified into sinkhole and non-sinkhole classes using a pattern classifier. In this study, we ensemble the classification results based on a light convolutional neural network (CNN) and those based on a Boosted Random Forest (BRF) with handcrafted features. We apply the proposed ensemble method successfully to sinkhole data for various sizes and depths in different environments, and prove that the CNN ensemble and the BRF one with handcrafted features are better at detecting sinkholes than other classifiers or standalone CNN.

  3. Automated detection of pulmonary nodules in PET/CT images: Ensemble false-positive reduction using a convolutional neural network technique

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Teramoto, Atsushi, E-mail: teramoto@fujita-hu.ac.jp; Fujita, Hiroshi; Yamamuro, Osamu

    Purpose: Automated detection of solitary pulmonary nodules using positron emission tomography (PET) and computed tomography (CT) images shows good sensitivity; however, it is difficult to detect nodules in contact with normal organs, and additional efforts are needed so that the number of false positives (FPs) can be further reduced. In this paper, the authors propose an improved FP-reduction method for the detection of pulmonary nodules in PET/CT images by means of convolutional neural networks (CNNs). Methods: The overall scheme detects pulmonary nodules using both CT and PET images. In the CT images, a massive region is first detected using anmore » active contour filter, which is a type of contrast enhancement filter that has a deformable kernel shape. Subsequently, high-uptake regions detected by the PET images are merged with the regions detected by the CT images. FP candidates are eliminated using an ensemble method; it consists of two feature extractions, one by shape/metabolic feature analysis and the other by a CNN, followed by a two-step classifier, one step being rule based and the other being based on support vector machines. Results: The authors evaluated the detection performance using 104 PET/CT images collected by a cancer-screening program. The sensitivity in detecting candidates at an initial stage was 97.2%, with 72.8 FPs/case. After performing the proposed FP-reduction method, the sensitivity of detection was 90.1%, with 4.9 FPs/case; the proposed method eliminated approximately half the FPs existing in the previous study. Conclusions: An improved FP-reduction scheme using CNN technique has been developed for the detection of pulmonary nodules in PET/CT images. The authors’ ensemble FP-reduction method eliminated 93% of the FPs; their proposed method using CNN technique eliminates approximately half the FPs existing in the previous study. These results indicate that their method may be useful in the computer-aided detection of pulmonary nodules using PET/CT images.« less

  4. Atomic-level insights into metabolite recognition and specificity of the SAM-II riboswitch.

    PubMed

    Doshi, Urmi; Kelley, Jennifer M; Hamelberg, Donald

    2012-02-01

    Although S-adenosylhomocysteine (SAH), a metabolic by-product of S-adenosylmethionine (SAM), differs from SAM only by a single methyl group and an overall positive charge, SAH binds the SAM-II riboswitch with more than 1000-fold less affinity than SAM. Using atomistic molecular dynamics simulations, we investigated the molecular basis of such high selectivity in ligand recognition by SAM-II riboswitch. The biosynthesis of SAM exclusively generates the (S,S) stereoisomer, and (S,S)-SAM can spontaneously convert to the (R,S) form. We, therefore, also examined the effects of (R,S)-SAM binding to SAM-II and its potential biological function. We find that the unfavorable loss in entropy in SAM-II binding is greater for (S,S)- and (R,S)-SAM than SAH, which is compensated by stabilizing electrostatic interactions with the riboswitch. The positively charged sulfonium moiety on SAM acts as the crucial anchor point responsible for the formation of key ionic interactions as it fits favorably in the negatively charged binding pocket. In contrast, SAH, with its lone pair of electrons on the sulfur, experiences repulsion in the binding pocket of SAM-II and is enthalpically destabilized. In the presence of SAH, similar to the unbound riboswitch, the pseudoknot structure of SAM-II is not completely formed, thus exposing the Shine-Dalgarno sequence. Unlike SAM, this may further facilitate ribosomal assembly and translation initiation. Our analysis of the conformational ensemble sampled by SAM-II in the absence of ligands and when bound to SAM or SAH reveals that ligand binding follows a combination of conformational selection and induced-fit mechanisms.

  5. Development of full-field optical spatial coherence tomography system for automated identification of malaria using the multilevel ensemble classifier.

    PubMed

    Singla, Neeru; Srivastava, Vishal; Mehta, Dalip Singh

    2018-05-01

    Malaria is a life-threatening infectious blood disease affecting humans and other animals caused by parasitic protozoans belonging to the Plasmodium type especially in developing countries. The gold standard method for the detection of malaria is through the microscopic method of chemically treated blood smears. We developed an automated optical spatial coherence tomographic system using a machine learning approach for a fast identification of malaria cells. In this study, 28 samples (15 healthy, 13 malaria infected stages of red blood cells) were imaged by the developed system and 13 features were extracted. We designed a multilevel ensemble-based classifier for the quantitative prediction of different stages of the malaria cells. The proposed classifier was used by repeating k-fold cross validation dataset and achieve a high-average accuracy of 97.9% for identifying malaria infected late trophozoite stage of cells. Overall, our proposed system and multilevel ensemble model has a substantial quantifiable potential to detect the different stages of malaria infection without staining or expert. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Unique Structure and Dynamics of the EphA5 Ligand Binding Domain Mediate Its Binding Specificity as Revealed by X-ray Crystallography, NMR and MD Simulations

    PubMed Central

    Mitra, Sayantan; Zhu, Wanlong; Qin, Haina; Pasquale, Elena B.; Song, Jianxing

    2013-01-01

    The 16 EphA and EphB receptors represent the largest family of receptor tyrosine kinases, and their interactions with 9 ephrin-A and ephrin-B ligands initiate bidirectional signals controlling many physiological and pathological processes. Most interactions occur between receptor and ephrins of the same class, and only EphA4 can bind all A and B ephrins. To understand the structural and dynamic principles that enable Eph receptors to utilize the same jellyroll β-sandwich fold to bind ephrins, the VAPB-MSP domain, peptides and small molecules, we have used crystallography, NMR and molecular dynamics (MD) simulations to determine the first structure and dynamics of the EphA5 ligand-binding domain (LBD), which only binds ephrin-A ligands. Unexpectedly, despite being unbound, the high affinity ephrin-binding pocket of EphA5 resembles that of other Eph receptors bound to ephrins, with a helical conformation over the J–K loop and an open pocket. The openness of the pocket is further supported by NMR hydrogen/deuterium exchange data and MD simulations. Additionally, the EphA5 LBD undergoes significant picosecond-nanosecond conformational exchanges over the loops, as revealed by NMR and MD simulations, but lacks global conformational exchanges on the microsecond-millisecond time scale. This is markedly different from the EphA4 LBD, which shares 74% sequence identity and 87% homology. Consequently, the unbound EphA5 LBD appears to comprise an ensemble of open conformations that have only small variations over the loops and appear ready to bind ephrin-A ligands. These findings show how two proteins with high sequence homology and structural similarity are still able to achieve distinctive binding specificities through different dynamics, which may represent a general mechanism whereby the same protein fold can serve for different functions. Our findings also suggest that a promising strategy to design agonists/antagonists with high affinity and selectivity might be to target specific dynamic states of the Eph receptor LBDs. PMID:24086308

  7. Statistical Analysis of Protein Ensembles

    NASA Astrophysics Data System (ADS)

    Máté, Gabriell; Heermann, Dieter

    2014-04-01

    As 3D protein-configuration data is piling up, there is an ever-increasing need for well-defined, mathematically rigorous analysis approaches, especially that the vast majority of the currently available methods rely heavily on heuristics. We propose an analysis framework which stems from topology, the field of mathematics which studies properties preserved under continuous deformations. First, we calculate a barcode representation of the molecules employing computational topology algorithms. Bars in this barcode represent different topological features. Molecules are compared through their barcodes by statistically determining the difference in the set of their topological features. As a proof-of-principle application, we analyze a dataset compiled of ensembles of different proteins, obtained from the Ensemble Protein Database. We demonstrate that our approach correctly detects the different protein groupings.

  8. Broadband magnetometry by infrared-absorption detection of nitrogen-vacancy ensembles in diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Acosta, V. M.; Bauch, E.; Jarmola, A.

    We demonstrate magnetometry by detection of the spin state of high-density nitrogen-vacancy ensembles in diamond using optical absorption at 1042 nm. With this technique, measurement contrast, and collection efficiency can approach unity, leading to an increase in magnetic sensitivity compared to the more common method of collecting red fluorescence. Working at 75 K with a sensor with effective volume 50x50x300 {mu}m{sup 3}, we project photon shot-noise limited sensitivity of 5 pT in one second of acquisition and bandwidth from dc to a few megahertz. Operation in a gradiometer configuration yields a noise floor of 7 nT{sub rms} at {approx}110 Hzmore » in one second of acquisition.« less

  9. Protein-protein interface analysis and hot spots identification for chemical ligand design.

    PubMed

    Chen, Jing; Ma, Xiaomin; Yuan, Yaxia; Pei, Jianfeng; Lai, Luhua

    2014-01-01

    Rational design for chemical compounds targeting protein-protein interactions has grown from a dream to reality after a decade of efforts. There are an increasing number of successful examples, though major challenges remain in the field. In this paper, we will first give a brief review of the available methods that can be used to analyze protein-protein interface and predict hot spots for chemical ligand design. New developments of binding sites detection, ligandability and hot spots prediction from the author's group will also be described. Pocket V.3 is an improved program for identifying hot spots in protein-protein interface using only an apo protein structure. It has been developed based on Pocket V.2 that can derive receptor-based pharmacophore model for ligand binding cavity. Given similarities and differences between the essence of pharmacophore and hot spots for guiding design of chemical compounds, not only energetic but also spatial properties of protein-protein interface are used in Pocket V.3 for dealing with protein-protein interface. In order to illustrate the capability of Pocket V.3, two datasets have been used. One is taken from ASEdb and BID having experimental alanine scanning results for testing hot spots prediction. The other is taken from the 2P2I database containing complex structures of protein-ligand binding at the original protein-protein interface for testing hot spots application in ligand design.

  10. [Impact of volatile sulphur compounds in periodontal pockets on initial periodontal therapy].

    PubMed

    Li, Xiao-Jun; Dong, Ling-Ling; Kong, Jing-Jia

    2008-07-01

    To investigate the relationship of volatile sulphur compounds((VSC)levels in periodontal pockets with severity of periodontitis, and the impact of VSC on the result of initial periodontal therapy. Twenty-five patients with chronic periodontitis(CP)(13 males and 12 females with average age of 35) were included in this study. Clinical periodontal parameters, plaque index, probing depth(PD), attachment loss(AL), and bleeding on probing(BOP) were recorded before and 3 months after the initial therapy. VSC levels were measured with a portable monitor in a digital score ranging from 0.0 to 5.0. All of 5 054 sites for 840 teeth were included in this study. Before treatment the percentage of VSC-positive sites was 17.1%, 52.3% and 86.0% for shallow (PD<3 mm), moderate(PD 4-6 mm) and deep (PD>7 mm) pocket, respectively (P<0.001). In most VSC-positive sites the VSC levels were<1.0. Percentage of sites with a high VSC levels was significantly different among three groups (P<0.01). All clinical parameters in VSC-negative sites were reduced significantly following the initial therapy. The reduction of PD and AL in VSC-positive sites by treatment was less marked than that in VSC-negative sites. VSC in periodontal pockets may be a potential indicator for detecting severity of CP and a useful predictor for therapeutic success.

  11. Fluorescent Binary Ensemble Based on Pyrene Derivative and Sodium Dodecyl Sulfate Assemblies as a Chemical Tongue for Discriminating Metal Ions and Brand Water.

    PubMed

    Zhang, Lijun; Huang, Xinyan; Cao, Yuan; Xin, Yunhong; Ding, Liping

    2017-12-22

    Enormous effort has been put to the detection and recognition of various heavy metal ions due to their involvement in serious environmental pollution and many major diseases. The present work has developed a single fluorescent sensor ensemble that can distinguish and identify a variety of heavy metal ions. A pyrene-based fluorophore (PB) containing a metal ion receptor group was specially designed and synthesized. Anionic surfactant sodium dodecyl sulfate (SDS) assemblies can effectively adjust its fluorescence behavior. The selected binary ensemble based on PB/SDS assemblies can exhibit multiple emission bands and provide wavelength-based cross-reactive responses to a series of metal ions to realize pattern recognition ability. The combination of surfactant assembly modulation and the receptor for metal ions empowers the present sensor ensemble with strong discrimination power, which could well differentiate 13 metal ions, including Cu 2+ , Co 2+ , Ni 2+ , Cr 3+ , Hg 2+ , Fe 3+ , Zn 2+ , Cd 2+ , Al 3+ , Pb 2+ , Ca 2+ , Mg 2+ , and Ba 2+ . Moreover, this single sensing ensemble could be further applied for identifying different brands of drinking water.

  12. Kernel parameter variation-based selective ensemble support vector data description for oil spill detection on the ocean via hyperspectral imaging

    NASA Astrophysics Data System (ADS)

    Uslu, Faruk Sukru

    2017-07-01

    Oil spills on the ocean surface cause serious environmental, political, and economic problems. Therefore, these catastrophic threats to marine ecosystems require detection and monitoring. Hyperspectral sensors are powerful optical sensors used for oil spill detection with the help of detailed spectral information of materials. However, huge amounts of data in hyperspectral imaging (HSI) require fast and accurate computation methods for detection problems. Support vector data description (SVDD) is one of the most suitable methods for detection, especially for large data sets. Nevertheless, the selection of kernel parameters is one of the main problems in SVDD. This paper presents a method, inspired by ensemble learning, for improving performance of SVDD without tuning its kernel parameters. Additionally, a classifier selection technique is proposed to get more gain. The proposed approach also aims to solve the small sample size problem, which is very important for processing high-dimensional data in HSI. The algorithm is applied to two HSI data sets for detection problems. In the first HSI data set, various targets are detected; in the second HSI data set, oil spill detection in situ is realized. The experimental results demonstrate the feasibility and performance improvement of the proposed algorithm for oil spill detection problems.

  13. Measurement-induced entanglement for excitation stored in remote atomic ensembles.

    PubMed

    Chou, C W; de Riedmatten, H; Felinto, D; Polyakov, S V; van Enk, S J; Kimble, H J

    2005-12-08

    A critical requirement for diverse applications in quantum information science is the capability to disseminate quantum resources over complex quantum networks. For example, the coherent distribution of entangled quantum states together with quantum memory (for storing the states) can enable scalable architectures for quantum computation, communication and metrology. Here we report observations of entanglement between two atomic ensembles located in distinct, spatially separated set-ups. Quantum interference in the detection of a photon emitted by one of the samples projects the otherwise independent ensembles into an entangled state with one joint excitation stored remotely in 10(5) atoms at each site. After a programmable delay, we confirm entanglement by mapping the state of the atoms to optical fields and measuring mutual coherences and photon statistics for these fields. We thereby determine a quantitative lower bound for the entanglement of the joint state of the ensembles. Our observations represent significant progress in the ability to distribute and store entangled quantum states.

  14. Molecular simulation to investigate the cofactor specificity for pichia stipitis Xylose reductase.

    PubMed

    Xia, Xiao-Le; Cong, Shan; Weng, Xiao-Rong; Chen, Jin-Hua; Wang, Jing-Fang; Chou, Kuo-Chen

    2013-11-01

    Xylose is one of the most abundant carbohydrates in nature, and widely used to produce bioethanol via fermentation in industry. Xylulose can produce two key enzymes: xylose reductase and xylitol dehydrogenase. Owing to the disparate cofactor specificities of xylose reductase and xylitol dehydrogenase, intracellular redox imbalance is detected during the xylose fermentation, resulting in low ethanol yields. To overcome this barrier, a common strategy is applied to artificially modify the cofactor specificity of xylose reductase. In this study, we utilized molecular simulation approaches to construct a 3D (three-dimensional) structural model for the NADP-dependent Pichia stipitis xylose reductase (PsXR). Based on the 3D model, the favourable binding modes for both cofactors NAD and NADP were obtained using the flexible docking procedure and molecular dynamics simulation. Structural analysis of the favourable binding modes showed that the cofactor binding site of PsXR was composed of 3 major components: a hydrophilic pocket, a hydrophobic pocket as well as a linker channel between the aforementioned two pockets. The hydrophilic pocket could recognize the nicotinamide moiety of the cofactors by hydrogen bonding networks, while the hydrophobic pocket functioned to position the adenine moiety of the cofactors by hydrophobic and Π-Π stacking interactions. The linker channel contained some key residues for ligand-binding; their mutation could have impact to the specificity of PsXR. Finally, it was found that any of the two single mutations, K21A and K270N, might reverse the cofactor specificity of PsXR from major NADP- to NADdependent, which was further confirmed by the additional experiments. Our findings may provide useful insights into the cofactor specificity of PsXR, stimulating new strategies for better designing xylose reductase and improving ethanol production in industry.

  15. Discrepancy between culture and DNA probe analysis for the detection of periodontal bacteria.

    PubMed

    van Steenbergen, T J; Timmerman, M F; Mikx, F H; de Quincey, G; van der Weijden, G A; van der Velden, U; de Graaff, J

    1996-10-01

    The purpose of this study was to compare a commercially available DNA probe technique with conventional cultural techniques for the detection of Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis and Prevotella intermedia in subgingival plaque samples. Samples from 20 patients with moderate to severe periodontitis were evaluated at baseline and during a 15 months period of periodontal treatment. Paperpoints from 4 periodontal pockets per patient were forwarded to Omnigene for DNA probe analysis, and simultaneously inserted paperpoints from the same pockets were analyzed by standard culture techniques. In addition, mixed bacterial samples were constructed harbouring known proportions of 25 strains of A. actinomycetemcomitans, P. gingivalis and P. intermedia each. A relatively low concordance was found between both methods. At baseline a higher detection frequency was found for A. actinomycetemcomitans and P. gingivalis for the DNA probe technique; for P. intermedia the detection frequency by culture was higher. For A. actinomycetemcomitans, 21% of the culture positive samples was positive with the DNA probe. Testing the constructed bacterial samples with the DNA probe method resulted in about 16% false positive results for the 3 species tested. Furthermore, 40% of P. gingivalis strains were not detected by the DNA probe. The present data suggest that at least part of the discrepancies found between the DNA probe technique used and cultural methods are caused by false positive and false negative DNA probe results. Therefore, the value of this DNA probe method for the detection of periodontal pathogens is questionable.

  16. Selecting climate simulations for impact studies based on multivariate patterns of climate change.

    PubMed

    Mendlik, Thomas; Gobiet, Andreas

    In climate change impact research it is crucial to carefully select the meteorological input for impact models. We present a method for model selection that enables the user to shrink the ensemble to a few representative members, conserving the model spread and accounting for model similarity. This is done in three steps: First, using principal component analysis for a multitude of meteorological parameters, to find common patterns of climate change within the multi-model ensemble. Second, detecting model similarities with regard to these multivariate patterns using cluster analysis. And third, sampling models from each cluster, to generate a subset of representative simulations. We present an application based on the ENSEMBLES regional multi-model ensemble with the aim to provide input for a variety of climate impact studies. We find that the two most dominant patterns of climate change relate to temperature and humidity patterns. The ensemble can be reduced from 25 to 5 simulations while still maintaining its essential characteristics. Having such a representative subset of simulations reduces computational costs for climate impact modeling and enhances the quality of the ensemble at the same time, as it prevents double-counting of dependent simulations that would lead to biased statistics. The online version of this article (doi:10.1007/s10584-015-1582-0) contains supplementary material, which is available to authorized users.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adhikary, Suraj; Eichman, Brandt F.

    DNA glycosylases specialized for the repair of alkylation damage must identify, with fine specificity, a diverse array of subtle modifications within DNA. The current mechanism involves damage sensing through interrogation of the DNA duplex, followed by more specific recognition of the target base inside the active site pocket. To better understand the physical basis for alkylpurine detection, we determined the crystal structure of Schizosaccharomyces pombe Mag1 (spMag1) in complex with DNA and performed a mutational analysis of spMag1 and the close homologue from Saccharomyces cerevisiae (scMag). Despite strong homology, spMag1 and scMag differ in substrate specificity and cellular alkylation sensitivity,more » although the enzymological basis for their functional differences is unknown. We show that Mag preference for 1,N{sup 6}-ethenoadenine ({var_epsilon}A) is influenced by a minor groove-interrogating residue more than the composition of the nucleobase-binding pocket. Exchanging this residue between Mag proteins swapped their {var_epsilon}A activities, providing evidence that residues outside the extrahelical base-binding pocket have a role in identification of a particular modification in addition to sensing damage.« less

  18. PockDrug-Server: a new web server for predicting pocket druggability on holo and apo proteins

    PubMed Central

    Hussein, Hiba Abi; Borrel, Alexandre; Geneix, Colette; Petitjean, Michel; Regad, Leslie; Camproux, Anne-Claude

    2015-01-01

    Predicting protein pocket's ability to bind drug-like molecules with high affinity, i.e. druggability, is of major interest in the target identification phase of drug discovery. Therefore, pocket druggability investigations represent a key step of compound clinical progression projects. Currently computational druggability prediction models are attached to one unique pocket estimation method despite pocket estimation uncertainties. In this paper, we propose ‘PockDrug-Server’ to predict pocket druggability, efficient on both (i) estimated pockets guided by the ligand proximity (extracted by proximity to a ligand from a holo protein structure) and (ii) estimated pockets based solely on protein structure information (based on amino atoms that form the surface of potential binding cavities). PockDrug-Server provides consistent druggability results using different pocket estimation methods. It is robust with respect to pocket boundary and estimation uncertainties, thus efficient using apo pockets that are challenging to estimate. It clearly distinguishes druggable from less druggable pockets using different estimation methods and outperformed recent druggability models for apo pockets. It can be carried out from one or a set of apo/holo proteins using different pocket estimation methods proposed by our web server or from any pocket previously estimated by the user. PockDrug-Server is publicly available at: http://pockdrug.rpbs.univ-paris-diderot.fr. PMID:25956651

  19. PockDrug-Server: a new web server for predicting pocket druggability on holo and apo proteins.

    PubMed

    Hussein, Hiba Abi; Borrel, Alexandre; Geneix, Colette; Petitjean, Michel; Regad, Leslie; Camproux, Anne-Claude

    2015-07-01

    Predicting protein pocket's ability to bind drug-like molecules with high affinity, i.e. druggability, is of major interest in the target identification phase of drug discovery. Therefore, pocket druggability investigations represent a key step of compound clinical progression projects. Currently computational druggability prediction models are attached to one unique pocket estimation method despite pocket estimation uncertainties. In this paper, we propose 'PockDrug-Server' to predict pocket druggability, efficient on both (i) estimated pockets guided by the ligand proximity (extracted by proximity to a ligand from a holo protein structure) and (ii) estimated pockets based solely on protein structure information (based on amino atoms that form the surface of potential binding cavities). PockDrug-Server provides consistent druggability results using different pocket estimation methods. It is robust with respect to pocket boundary and estimation uncertainties, thus efficient using apo pockets that are challenging to estimate. It clearly distinguishes druggable from less druggable pockets using different estimation methods and outperformed recent druggability models for apo pockets. It can be carried out from one or a set of apo/holo proteins using different pocket estimation methods proposed by our web server or from any pocket previously estimated by the user. PockDrug-Server is publicly available at: http://pockdrug.rpbs.univ-paris-diderot.fr. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Conformational energy landscape of the acyl pocket loop in acetylcholinesterase: a Monte Carlo-generalized Born model study.

    PubMed

    Carlacci, Louis; Millard, Charles B; Olson, Mark A

    2004-10-01

    The X-ray crystal structure of the reaction product of acetylcholinesterase (AChE) with the inhibitor diisopropylphosphorofluoridate (DFP) showed significant structural displacement in a loop segment of residues 287-290. To understand this conformational selection, a Monte Carlo (MC) simulation study was performed of the energy landscape for the loop segment. A computational strategy was applied by using a combined simulated annealing and room temperature Metropolis sampling approach with solvent polarization modeled by a generalized Born (GB) approximation. Results from thermal annealing reveal a landscape topology of broader basin opening and greater distribution of energies for the displaced loop conformation, while the ensemble average of conformations at 298 K favored a shift in populations toward the native by a free-energy difference in good agreement with the estimated experimental value. Residue motions along a reaction profile of loop conformational reorganization are proposed where Arg-289 is critical in determining electrostatic effects of solvent interaction versus Coulombic charging.

  1. Comparison of initial perturbation methods for the mesoscale ensemble prediction system of the Meteorological Research Institute for the WWRP Beijing 2008 Olympics Research and Development Project (B08RDP)

    NASA Astrophysics Data System (ADS)

    Saito, Kazuo; Hara, Masahiro; Kunii, Masaru; Seko, Hiromu; Yamaguchi, Munehiko

    2011-05-01

    Different initial perturbation methods for the mesoscale ensemble prediction were compared by the Meteorological Research Institute (MRI) as a part of the intercomparison of mesoscale ensemble prediction systems (EPSs) of the World Weather Research Programme (WWRP) Beijing 2008 Olympics Research and Development Project (B08RDP). Five initial perturbation methods for mesoscale ensemble prediction were developed for B08RDP and compared at MRI: (1) a downscaling method of the Japan Meteorological Agency (JMA)'s operational one-week EPS (WEP), (2) a targeted global model singular vector (GSV) method, (3) a mesoscale model singular vector (MSV) method based on the adjoint model of the JMA non-hydrostatic model (NHM), (4) a mesoscale breeding growing mode (MBD) method based on the NHM forecast and (5) a local ensemble transform (LET) method based on the local ensemble transform Kalman filter (LETKF) using NHM. These perturbation methods were applied to the preliminary experiments of the B08RDP Tier-1 mesoscale ensemble prediction with a horizontal resolution of 15 km. To make the comparison easier, the same horizontal resolution (40 km) was employed for the three mesoscale model-based initial perturbation methods (MSV, MBD and LET). The GSV method completely outperformed the WEP method, confirming the advantage of targeting in mesoscale EPS. The GSV method generally performed well with regard to root mean square errors of the ensemble mean, large growth rates of ensemble spreads throughout the 36-h forecast period, and high detection rates and high Brier skill scores (BSSs) for weak rains. On the other hand, the mesoscale model-based initial perturbation methods showed good detection rates and BSSs for intense rains. The MSV method showed a rapid growth in the ensemble spread of precipitation up to a forecast time of 6 h, which suggests suitability of the mesoscale SV for short-range EPSs, but the initial large growth of the perturbation did not last long. The performance of the MBD method was good for ensemble prediction of intense rain with a relatively small computing cost. The LET method showed similar characteristics to the MBD method, but the spread and growth rate were slightly smaller and the relative operating characteristic area skill score and BSS did not surpass those of MBD. These characteristic features of the five methods were confirmed by checking the evolution of the total energy norms and their growth rates. Characteristics of the initial perturbations obtained by four methods (GSV, MSV, MBD and LET) were examined for the case of a synoptic low-pressure system passing over eastern China. With GSV and MSV, the regions of large spread were near the low-pressure system, but with MSV, the distribution was more concentrated on the mesoscale disturbance. On the other hand, large-spread areas were observed southwest of the disturbance in MBD and LET. The horizontal pattern of LET perturbation was similar to that of MBD, but the amplitude of the LET perturbation reflected the observation density.

  2. Numerical weather prediction model tuning via ensemble prediction system

    NASA Astrophysics Data System (ADS)

    Jarvinen, H.; Laine, M.; Ollinaho, P.; Solonen, A.; Haario, H.

    2011-12-01

    This paper discusses a novel approach to tune predictive skill of numerical weather prediction (NWP) models. NWP models contain tunable parameters which appear in parameterizations schemes of sub-grid scale physical processes. Currently, numerical values of these parameters are specified manually. In a recent dual manuscript (QJRMS, revised) we developed a new concept and method for on-line estimation of the NWP model parameters. The EPPES ("Ensemble prediction and parameter estimation system") method requires only minimal changes to the existing operational ensemble prediction infra-structure and it seems very cost-effective because practically no new computations are introduced. The approach provides an algorithmic decision making tool for model parameter optimization in operational NWP. In EPPES, statistical inference about the NWP model tunable parameters is made by (i) generating each member of the ensemble of predictions using different model parameter values, drawn from a proposal distribution, and (ii) feeding-back the relative merits of the parameter values to the proposal distribution, based on evaluation of a suitable likelihood function against verifying observations. In the presentation, the method is first illustrated in low-order numerical tests using a stochastic version of the Lorenz-95 model which effectively emulates the principal features of ensemble prediction systems. The EPPES method correctly detects the unknown and wrongly specified parameters values, and leads to an improved forecast skill. Second, results with an atmospheric general circulation model based ensemble prediction system show that the NWP model tuning capacity of EPPES scales up to realistic models and ensemble prediction systems. Finally, a global top-end NWP model tuning exercise with preliminary results is published.

  3. Bayesian Tracking of Emerging Epidemics Using Ensemble Optimal Statistical Interpolation

    PubMed Central

    Cobb, Loren; Krishnamurthy, Ashok; Mandel, Jan; Beezley, Jonathan D.

    2014-01-01

    We present a preliminary test of the Ensemble Optimal Statistical Interpolation (EnOSI) method for the statistical tracking of an emerging epidemic, with a comparison to its popular relative for Bayesian data assimilation, the Ensemble Kalman Filter (EnKF). The spatial data for this test was generated by a spatial susceptible-infectious-removed (S-I-R) epidemic model of an airborne infectious disease. Both tracking methods in this test employed Poisson rather than Gaussian noise, so as to handle epidemic data more accurately. The EnOSI and EnKF tracking methods worked well on the main body of the simulated spatial epidemic, but the EnOSI was able to detect and track a distant secondary focus of infection that the EnKF missed entirely. PMID:25113590

  4. Multi-model ensemble hydrological simulation using a BP Neural Network for the upper Yalongjiang River Basin, China

    NASA Astrophysics Data System (ADS)

    Li, Zhanjie; Yu, Jingshan; Xu, Xinyi; Sun, Wenchao; Pang, Bo; Yue, Jiajia

    2018-06-01

    Hydrological models are important and effective tools for detecting complex hydrological processes. Different models have different strengths when capturing the various aspects of hydrological processes. Relying on a single model usually leads to simulation uncertainties. Ensemble approaches, based on multi-model hydrological simulations, can improve application performance over single models. In this study, the upper Yalongjiang River Basin was selected for a case study. Three commonly used hydrological models (SWAT, VIC, and BTOPMC) were selected and used for independent simulations with the same input and initial values. Then, the BP neural network method was employed to combine the results from the three models. The results show that the accuracy of BP ensemble simulation is better than that of the single models.

  5. PockDrug: A Model for Predicting Pocket Druggability That Overcomes Pocket Estimation Uncertainties.

    PubMed

    Borrel, Alexandre; Regad, Leslie; Xhaard, Henri; Petitjean, Michel; Camproux, Anne-Claude

    2015-04-27

    Predicting protein druggability is a key interest in the target identification phase of drug discovery. Here, we assess the pocket estimation methods' influence on druggability predictions by comparing statistical models constructed from pockets estimated using different pocket estimation methods: a proximity of either 4 or 5.5 Å to a cocrystallized ligand or DoGSite and fpocket estimation methods. We developed PockDrug, a robust pocket druggability model that copes with uncertainties in pocket boundaries. It is based on a linear discriminant analysis from a pool of 52 descriptors combined with a selection of the most stable and efficient models using different pocket estimation methods. PockDrug retains the best combinations of three pocket properties which impact druggability: geometry, hydrophobicity, and aromaticity. It results in an average accuracy of 87.9% ± 4.7% using a test set and exhibits higher accuracy (∼5-10%) than previous studies that used an identical apo set. In conclusion, this study confirms the influence of pocket estimation on pocket druggability prediction and proposes PockDrug as a new model that overcomes pocket estimation variability.

  6. 77 FR 24355 - Airworthiness Directives; The Boeing Company Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-24

    ... cracks found in the Web pockets of the wing center section (WCS) spanwise beams. This AD requires repetitive detailed inspections and high frequency eddy current inspections for cracks of the WCS spanwise beams, and repair if necessary. We are issuing this AD to detect and correct cracking in the WCS...

  7. The Limits of Coding with Joint Constraints on Detected and Undetected Error Rates

    NASA Technical Reports Server (NTRS)

    Dolinar, Sam; Andrews, Kenneth; Pollara, Fabrizio; Divsalar, Dariush

    2008-01-01

    We develop a remarkably tight upper bound on the performance of a parameterized family of bounded angle maximum-likelihood (BA-ML) incomplete decoders. The new bound for this class of incomplete decoders is calculated from the code's weight enumerator, and is an extension of Poltyrev-type bounds developed for complete ML decoders. This bound can also be applied to bound the average performance of random code ensembles in terms of an ensemble average weight enumerator. We also formulate conditions defining a parameterized family of optimal incomplete decoders, defined to minimize both the total codeword error probability and the undetected error probability for any fixed capability of the decoder to detect errors. We illustrate the gap between optimal and BA-ML incomplete decoding via simulation of a small code.

  8. Near-Unity Internal Quantum Efficiency of Luminescent Silicon Nanocrystals with Ligand Passivation.

    PubMed

    Sangghaleh, Fatemeh; Sychugov, Ilya; Yang, Zhenyu; Veinot, Jonathan G C; Linnros, Jan

    2015-07-28

    Spectrally resolved photoluminescence (PL) decays were measured for samples of colloidal, ligand-passivated silicon nanocrystals. These samples have PL emission energies with peak positions in the range ∼1.4-1.8 eV and quantum yields of ∼30-70%. Their ensemble PL decays are characterized by a stretched-exponential decay with a dispersion factor of ∼0.8, which changes to an almost monoexponential character at fixed detection energies. The dispersion factors and decay rates for various detection energies were extracted from spectrally resolved curves using a mathematical approach that excluded the effect of homogeneous line width broadening. Since nonradiative recombination would introduce a random lifetime variation, leading to a stretched-exponential decay for an ensemble, we conclude that the observed monoexponential decay in size-selected ensembles signifies negligible nonradiative transitions of a similar strength to the radiative one. This conjecture is further supported as extracted decay rates agree with radiative rates reported in the literature, suggesting 100% internal quantum efficiency over a broad range of emission wavelengths. The apparent differences in the quantum yields can then be explained by a varying fraction of "dark" or blinking nanocrystals.

  9. A comparison of ensemble post-processing approaches that preserve correlation structures

    NASA Astrophysics Data System (ADS)

    Schefzik, Roman; Van Schaeybroeck, Bert; Vannitsem, Stéphane

    2016-04-01

    Despite the fact that ensemble forecasts address the major sources of uncertainty, they exhibit biases and dispersion errors and therefore are known to improve by calibration or statistical post-processing. For instance the ensemble model output statistics (EMOS) method, also known as non-homogeneous regression approach (Gneiting et al., 2005) is known to strongly improve forecast skill. EMOS is based on fitting and adjusting a parametric probability density function (PDF). However, EMOS and other common post-processing approaches apply to a single weather quantity at a single location for a single look-ahead time. They are therefore unable of taking into account spatial, inter-variable and temporal dependence structures. Recently many research efforts have been invested in designing post-processing methods that resolve this drawback but also in verification methods that enable the detection of dependence structures. New verification methods are applied on two classes of post-processing methods, both generating physically coherent ensembles. A first class uses the ensemble copula coupling (ECC) that starts from EMOS but adjusts the rank structure (Schefzik et al., 2013). The second class is a member-by-member post-processing (MBM) approach that maps each raw ensemble member to a corrected one (Van Schaeybroeck and Vannitsem, 2015). We compare variants of the EMOS-ECC and MBM classes and highlight a specific theoretical connection between them. All post-processing variants are applied in the context of the ensemble system of the European Centre of Weather Forecasts (ECMWF) and compared using multivariate verification tools including the energy score, the variogram score (Scheuerer and Hamill, 2015) and the band depth rank histogram (Thorarinsdottir et al., 2015). Gneiting, Raftery, Westveld, and Goldman, 2005: Calibrated probabilistic forecasting using ensemble model output statistics and minimum CRPS estimation. Mon. Wea. Rev., {133}, 1098-1118. Scheuerer and Hamill, 2015. Variogram-based proper scoring rules for probabilistic forecasts of multivariate quantities. Mon. Wea. Rev. {143},1321-1334. Schefzik, Thorarinsdottir, Gneiting. Uncertainty quantification in complex simulation models using ensemble copula coupling. Statistical Science {28},616-640, 2013. Thorarinsdottir, M. Scheuerer, and C. Heinz, 2015. Assessing the calibration of high-dimensional ensemble forecasts using rank histograms, arXiv:1310.0236. Van Schaeybroeck and Vannitsem, 2015: Ensemble post-processing using member-by-member approaches: theoretical aspects. Q.J.R. Meteorol. Soc., 141: 807-818.

  10. Nanosecond to submillisecond dynamics in dye-labeled single-stranded DNA, as revealed by ensemble measurements and photon statistics at single-molecule level.

    PubMed

    Kaji, Takahiro; Ito, Syoji; Iwai, Shigenori; Miyasaka, Hiroshi

    2009-10-22

    Single-molecule and ensemble time-resolved fluorescence measurements were applied for the investigation of the conformational dynamics of single-stranded DNA, ssDNA, connected with a fluorescein dye by a C6 linker, where the motions both of DNA and the C6 linker affect the geometry of the system. From the ensemble measurement of the fluorescence quenching via photoinduced electron transfer with a guanine base in the DNA sequence, three main conformations were found in aqueous solution: a conformation unaffected by the guanine base in the excited state lifetime of fluorescein, a conformation in which the fluorescence is dynamically quenched in the excited-state lifetime, and a conformation leading to rapid quenching via nonfluorescent complex. The analysis by using the parameters acquired from the ensemble measurements for interphoton time distribution histograms and FCS autocorrelations by the single-molecule measurement revealed that interconversion in these three conformations took place with two characteristic time constants of several hundreds of nanoseconds and tens of microseconds. The advantage of the combination use of the ensemble measurements with the single-molecule detections for rather complex dynamic motions is discussed by integrating the experimental results with those obtained by molecular dynamics simulation.

  11. Entanglement with negative Wigner function of three thousand atoms heralded by one photon

    NASA Astrophysics Data System (ADS)

    McConnell, Robert; Zhang, Hao; Hu, Jiazhong; Ćuk, Senka; Vuletić, Vladan

    2016-06-01

    Quantum-mechanically correlated (entangled) states of many particles are of interest in quantum information, quantum computing and quantum metrology. Metrologically useful entangled states of large atomic ensembles have been experimentally realized [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], but these states display Gaussian spin distribution functions with a non-negative Wigner function. Non-Gaussian entangled states have been produced in small ensembles of ions [11, 12], and very recently in large atomic ensembles [13, 14, 15]. Here, we generate entanglement in a large atomic ensemble via the interaction with a very weak laser pulse; remarkably, the detection of a single photon prepares several thousand atoms in an entangled state. We reconstruct a negative-valued Wigner function, an important hallmark of nonclassicality, and verify an entanglement depth (minimum number of mutually entangled atoms) of 2910 ± 190 out of 3100 atoms. Attaining such a negative Wigner function and the mutual entanglement of virtually all atoms is unprecedented for an ensemble containing more than a few particles. While the achieved purity of the state is slightly below the threshold for entanglement-induced metrological gain, further technical improvement should allow the generation of states that surpass this threshold, and of more complex Schrödinger cat states for quantum metrology and information processing.

  12. Ensemble asteroseismology of solar-type stars with the NASA Kepler mission.

    PubMed

    Chaplin, W J; Kjeldsen, H; Christensen-Dalsgaard, J; Basu, S; Miglio, A; Appourchaux, T; Bedding, T R; Elsworth, Y; García, R A; Gilliland, R L; Girardi, L; Houdek, G; Karoff, C; Kawaler, S D; Metcalfe, T S; Molenda-Żakowicz, J; Monteiro, M J P F G; Thompson, M J; Verner, G A; Ballot, J; Bonanno, A; Brandão, I M; Broomhall, A-M; Bruntt, H; Campante, T L; Corsaro, E; Creevey, O L; Doğan, G; Esch, L; Gai, N; Gaulme, P; Hale, S J; Handberg, R; Hekker, S; Huber, D; Jiménez, A; Mathur, S; Mazumdar, A; Mosser, B; New, R; Pinsonneault, M H; Pricopi, D; Quirion, P-O; Régulo, C; Salabert, D; Serenelli, A M; Silva Aguirre, V; Sousa, S G; Stello, D; Stevens, I R; Suran, M D; Uytterhoeven, K; White, T R; Borucki, W J; Brown, T M; Jenkins, J M; Kinemuchi, K; Van Cleve, J; Klaus, T C

    2011-04-08

    In addition to its search for extrasolar planets, the NASA Kepler mission provides exquisite data on stellar oscillations. We report the detections of oscillations in 500 solar-type stars in the Kepler field of view, an ensemble that is large enough to allow statistical studies of intrinsic stellar properties (such as mass, radius, and age) and to test theories of stellar evolution. We find that the distribution of observed masses of these stars shows intriguing differences to predictions from models of synthetic stellar populations in the Galaxy.

  13. Occurrence of silver minerals in a silver-rich pocket in the massive sulfide zinc-lead ores in the Edwards mine, New York

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Serviss, C.R.; Grout, C.M.; Hagni, R.D.

    1985-01-01

    Ore microscopic examination of uncommon silver-rich ores from the Edwards mine has detected three silver minerals, native silver, freibergite, and argentite, that were previously unreported in the literature from the Balmat-Edwards district. The zinc-lead ore deposits of the Balmat-Edwards District in northern New York are composed of very coarse-grained massive sulfides, principally sphalerite, galena, and pyrite. The typical ores contain small amounts of silver in solid solution galena. Galena concentrates produced from those ores have contained an average of 15 ounces of silver per ton of 60% lead concentrates. In contrast to the typical ore a silver-rich pocket, that measuredmore » three feet by three feet on the vertical mine face and was the subject of this study, contained nearly 1% silver in a zinc ore. Ore microscopic study shows that this ore is especially characterized by abundant, relatively fine-grained chalcopyrite with anhedral pyrite inclusions. Fine-grained sphalerite, native silver, argentite, freibergite and arsenopyrite occur in association with the chalcopyrite and as fracture-fillings in gangue minerals. Geochemically anomalous amounts of tin, barium, chromium, and nickel also are present in the silver-rich pocket. The silver-rich pocket may mark the locus of an early feeder vent or alternatively it may record a hydrothermal event that was superimposed upon the event responsible for the metamorphic ore textures.« less

  14. A new EEMD-based scheme for detection of insect damaged wheat kernels using impact acoustics

    USDA-ARS?s Scientific Manuscript database

    Internally feeding insects inside wheat kernels cause significant, but unseen economic damage to stored grain. In this paper, a new scheme based on ensemble empirical mode decomposition (EEMD) using impact acoustics is proposed for detection of insect-damaged wheat kernels, based on its capability t...

  15. Cavity Versus Ligand Shape Descriptors: Application to Urokinase Binding Pockets.

    PubMed

    Cerisier, Natacha; Regad, Leslie; Triki, Dhoha; Camproux, Anne-Claude; Petitjean, Michel

    2017-11-01

    We analyzed 78 binding pockets of the human urokinase plasminogen activator (uPA) catalytic domain extracted from a data set of crystallized uPA-ligand complexes. These binding pockets were computed with an original geometric method that does NOT involve any arbitrary parameter, such as cutoff distances, angles, and so on. We measured the deviation from convexity of each pocket shape with the pocket convexity index (PCI). We defined a new pocket descriptor called distributional sphericity coefficient (DISC), which indicates to which extent the protein atoms of a given pocket lie on the surface of a sphere. The DISC values were computed with the freeware PCI. The pocket descriptors and their high correspondences with ligand descriptors are crucial for polypharmacology prediction. We found that the protein heavy atoms lining the urokinases binding pockets are either located on the surface of their convex hull or lie close to this surface. We also found that the radii of the urokinases binding pockets and the radii of their ligands are highly correlated (r = 0.9).

  16. Gold nanoclusters-Cu(2+) ensemble-based fluorescence turn-on and real-time assay for acetylcholinesterase activity and inhibitor screening.

    PubMed

    Sun, Jian; Yang, Xiurong

    2015-12-15

    Based on the specific binding of Cu(2+) ions to the 11-mercaptoundecanoic acid (11-MUA)-protected AuNCs with intense orange-red emission, we have proposed and constructed a novel fluorescent nanomaterials-metal ions ensemble at a nonfluorescence off-state. Subsequently, an AuNCs@11-MUA-Cu(2+) ensemble-based fluorescent chemosensor, which is amenable to convenient, sensitive, selective, turn-on and real-time assay of acetylcholinesterase (AChE), could be developed by using acetylthiocholine (ATCh) as the substrate. Herein, the sensing ensemble solution exhibits a marvelous fluorescent enhancement in the presence of AChE and ATCh, where AChE hydrolyzes its active substrate ATCh into thiocholine (TCh), and then TCh captures Cu(2+) from the ensemble, accompanied by the conversion from fluorescence off-state to on-state of the AuNCs. The AChE activity could be detected less than 0.05 mU/mL within a good linear range from 0.05 to 2.5 mU/mL. Our proposed fluorescence assay can be utilized to evaluate the AChE activity quantitatively in real biological sample, and furthermore to screen the inhibitor of AChE. As far as we know, the present study has reported the first analytical proposal for sensing AChE activity in real time by using a fluorescent nanomaterials-Cu(2+) ensemble or focusing on the Cu(2+)-triggered fluorescence quenching/recovery. This strategy paves a new avenue for exploring the biosensing applications of fluorescent AuNCs, and presents the prospect of AuNCs@11-MUA-Cu(2+) ensemble as versatile enzyme activity assay platforms by means of other appropriate substrates/analytes. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Atomic-level insights into metabolite recognition and specificity of the SAM-II riboswitch

    PubMed Central

    Doshi, Urmi; Kelley, Jennifer M.; Hamelberg, Donald

    2012-01-01

    Although S-adenosylhomocysteine (SAH), a metabolic by-product of S-adenosylmethionine (SAM), differs from SAM only by a single methyl group and an overall positive charge, SAH binds the SAM-II riboswitch with more than 1000-fold less affinity than SAM. Using atomistic molecular dynamics simulations, we investigated the molecular basis of such high selectivity in ligand recognition by SAM-II riboswitch. The biosynthesis of SAM exclusively generates the (S,S) stereoisomer, and (S,S)-SAM can spontaneously convert to the (R,S) form. We, therefore, also examined the effects of (R,S)-SAM binding to SAM-II and its potential biological function. We find that the unfavorable loss in entropy in SAM-II binding is greater for (S,S)- and (R,S)-SAM than SAH, which is compensated by stabilizing electrostatic interactions with the riboswitch. The positively charged sulfonium moiety on SAM acts as the crucial anchor point responsible for the formation of key ionic interactions as it fits favorably in the negatively charged binding pocket. In contrast, SAH, with its lone pair of electrons on the sulfur, experiences repulsion in the binding pocket of SAM-II and is enthalpically destabilized. In the presence of SAH, similar to the unbound riboswitch, the pseudoknot structure of SAM-II is not completely formed, thus exposing the Shine-Dalgarno sequence. Unlike SAM, this may further facilitate ribosomal assembly and translation initiation. Our analysis of the conformational ensemble sampled by SAM-II in the absence of ligands and when bound to SAM or SAH reveals that ligand binding follows a combination of conformational selection and induced-fit mechanisms. PMID:22194311

  18. Interplay between Magnetism, Superconductivity, and Orbital Order in 5-Pocket Model for Iron-Based Superconductors: Parquet Renormalization Group Study.

    PubMed

    Classen, Laura; Xing, Rui-Qi; Khodas, Maxim; Chubukov, Andrey V

    2017-01-20

    We report the results of the parquet renormalization group (RG) analysis of the phase diagram of the most general 5-pocket model for Fe-based superconductors. We use as an input the orbital structure of excitations near the five pockets made out of d_{xz}, d_{yz}, and d_{xy} orbitals and argue that there are 40 different interactions between low-energy fermions in the orbital basis. All interactions flow under the RG, as one progressively integrates out fermions with higher energies. We find that the low-energy behavior is amazingly simple, despite the large number of interactions. Namely, at low energies the full 5-pocket model effectively reduces either to a 3-pocket model made of one d_{xy} hole pocket and two electron pockets or a 4-pocket model made of two d_{xz}/d_{yz} hole pockets and two electron pockets. The leading instability in the effective 4-pocket model is a spontaneous orbital (nematic) order, followed by s^{+-} superconductivity. In the effective 3-pocket model, orbital fluctuations are weaker, and the system develops either s^{+-} superconductivity or a stripe spin-density wave. In the latter case, nematicity is induced by composite spin fluctuations.

  19. Hong-Ou-Mandel Interference between Two Deterministic Collective Excitations in an Atomic Ensemble

    NASA Astrophysics Data System (ADS)

    Li, Jun; Zhou, Ming-Ti; Jing, Bo; Wang, Xu-Jie; Yang, Sheng-Jun; Jiang, Xiao; Mølmer, Klaus; Bao, Xiao-Hui; Pan, Jian-Wei

    2016-10-01

    We demonstrate deterministic generation of two distinct collective excitations in one atomic ensemble, and we realize the Hong-Ou-Mandel interference between them. Using Rydberg blockade we create single collective excitations in two different Zeeman levels, and we use stimulated Raman transitions to perform a beam-splitter operation between the excited atomic modes. By converting the atomic excitations into photons, the two-excitation interference is measured by photon coincidence detection with a visibility of 0.89(6). The Hong-Ou-Mandel interference witnesses an entangled NOON state of the collective atomic excitations, and we demonstrate its two times enhanced sensitivity to a magnetic field compared with a single excitation. Our work implements a minimal instance of boson sampling and paves the way for further multimode and multiexcitation studies with collective excitations of atomic ensembles.

  20. Coupling an Ensemble of Electrons on Superfluid Helium to a Superconducting Circuit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ge; Fragner, A.; Koolstra, G.

    2016-03-01

    The quantized lateral motional states and the spin states of electrons trapped on the surface of superfluid helium have been proposed as basic building blocks of a scalable quantum computer. Circuit quantum electrodynamics allows strong dipole coupling between electrons and a high-Q superconducting microwave resonator, enabling such sensitive detection and manipulation of electron degrees of freedom. Here, we present the first realization of a hybrid circuit in which a large number of electrons are trapped on the surface of superfluid helium inside a coplanar waveguide resonator. The high finesse of the resonator allows us to observe large dispersive shifts thatmore » are many times the linewidth and make fast and sensitive measurements on the collective vibrational modes of the electron ensemble, as well as the superfluid helium film underneath. Furthermore, a large ensemble coupling is observed in the dispersive regime during experiment, and it shows excellent agreement with our numeric model. The coupling strength of the ensemble to the cavity is found to be approximate to 1 MHz per electron, indicating the feasibility of achieving single electron strong coupling.« less

  1. Automatic categorization of anatomical landmark-local appearances based on diffeomorphic demons and spectral clustering for constructing detector ensembles.

    PubMed

    Hanaoka, Shouhei; Masutani, Yoshitaka; Nemoto, Mitsutaka; Nomura, Yukihiro; Yoshikawa, Takeharu; Hayashi, Naoto; Ohtomo, Kuni

    2012-01-01

    A method for categorizing landmark-local appearances extracted from computed tomography (CT) datasets is presented. Anatomical landmarks in the human body inevitably have inter-individual variations that cause difficulty in automatic landmark detection processes. The goal of this study is to categorize subjects (i.e., training datasets) according to local shape variations of such a landmark so that each subgroup has less shape variation and thus the machine learning of each landmark detector is much easier. The similarity between each subject pair is measured based on the non-rigid registration result between them. These similarities are used by the spectral clustering process. After the clustering, all training datasets in each cluster, as well as synthesized intermediate images calculated from all subject-pairs in the cluster, are used to train the corresponding subgroup detector. All of these trained detectors compose a detector ensemble to detect the target landmark. Evaluation with clinical CT datasets showed great improvement in the detection performance.

  2. Colorimetric and fluorometric dual sensing of trace water in methanol based on a Schiff Base-Al3+ ensemble probe.

    PubMed

    Feng, Jia; Duan, Li Xin; Shang, Zhuo Bin; Chao, Jian Bin; Wang, Yu; Jin, Wei Jun

    2018-05-04

    A new julolidine based Schiff base receptor (L) was synthesized and characterized. L forms a 1:1 complex with Al 3+ in methanol, resulting in an immediate color change from chartreuse to orange and a remarkable enhancement in its emission intensity along with a bathochromic shift from 540 nm to 570 nm. Addition of trace amounts of water significantly quenches the fluorescence emission, where a decomplexation of Al 3+ from the L-Al 3+ complex takes place. The significant quenching effect indicated that the L-Al 3+ ensemble system can be used to detect trace water in commercial methanol. From the fluorescence titration, the detection limit for sensing water in methanol was estimated to be 0.0047%. We have also made an easy-to-prepare test strip of L-Al 3+ to detect water in methanol through naked-eye observation, which is possible to realize in situ monitoring. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Roller-transducer scanning of wooden pallet parts for defect detection

    Treesearch

    Mohammed F. Kabir; Daniel L. Schmoldt; Mark E. Schafer

    2001-01-01

    Ultrasonic scanning experiments were conducted on two species of pallet deckboards using rolling transducers in a pitch-catch arrangement. Sound and unsound knots, cross grain, bark pockets, holes, splits, decay, and wane were characterized using several ultrasound parameters. Almost all parameters displayed sensitivity to defects distinctly from clear wood regions—...

  4. Black-pigmented anaerobic rods in closed periapical lesions.

    PubMed

    Bogen, G; Slots, J

    1999-05-01

    This study determined the frequency of Porphyromonas endodontalis, Porphyromonas gingivalis, Prevotella intermedia and Prevotella nigrescens in 20 closed periapical lesions associated with symptomatic and asymptomatic refractory endodontic disease. To deliniate possible oral sources of P. endodontalis, the presence of the organism was assessed in selected subgingival sites and saliva in the same study patients. Periapical samples were obtained by paper points during surgical endodontic procedures using methods designed to minimize contamination by non-endodontic microorganisms. Subgingival plaque samples were obtained by paper points from three periodontal pockets and from the pocket of the tooth associated with the closed periapical lesion. Unstimulated saliva was collected from the surface of the soft palate. Bacterial identification was performed using a species-specific polymerase chain reaction (PCR) detection method. P. endodontalis was not identified in any periapical lesion, even though subgingival samples from eight patients (40%) revealed the P. endodontalis-specific amplicon. P. gingivalis occurred in one periapical lesion that was associated with moderate pain. P. nigrescens, P. endodontalis and P. intermedia were not detected in any periapical lesion studied. Black-pigmented anaerobic rods appear to be infrequent inhabitants of the closed periapical lesion.

  5. From baroclinic to barotropic: the evolution of Medicane Cornelia

    NASA Astrophysics Data System (ADS)

    Mazza, Edoardo; Ulbrich, Uwe; Klein, Rupert

    2015-04-01

    The Mediterranean Basin is a very cyclogenetic area with more than 100 cyclones developing on average every year, most of which evolve as baroclinic, mid-latitude disturbances. There is, however, a restricted group of cyclones that acquire barotropic characteristics during their development. Given their similarities with hurricanes they are generally referred to as "medicanes". They can be associated with severe wind gusts and intense rainfall and represent a serious threat to coastal areas. Medicane Cornelia (6-10 October 1996) formed in the western Mediterranean Sea, under the influence of a large, cut-off low in the upper levels located over the Iberian Peninsula. It is the longest-lived among the recorded medicanes. In this work, a domain shifting method is used to initialize full-physics ensemble simulations of Cornelia using COSMO-CLM. Different atmospheric states are obtained by integrating the model over domains that are shifted with respect to each other. This enables us to stress the relevance of dynamical and thermodynamical mechanisms involved in the tropical transition of Cornelia. Cyclones in the ensemble exhibit significant differences both in their structures and in their temporal evolutions. A comparison of the ensemble members shows that medicanes develop from a baroclinic, frontal system, located to the east of the cut-off low, that undergoes warm seclusion. A first intensification stage occurs during the seclusion process, a second one takes place after the cyclones crossed Sardinia. Convection is known to be a crucial mechanism in the tropical transition process, both in terms of shear reduction and contribution to sea-level pressure fall via latent heat release. During warm seclusion, a bent-back occluded front develops and a pocket of warm air is secluded from the warm sector. Remarkable differences in the vertical motions are found along the developing bent-back front in each member. Cyclones that feature stronger bent-back fronts show more intense convection and larger diabatic heating, resulting in a faster sea-level pressure minimum deepening. The interaction of cyclones with the complex topography of Sardinia appears to be responsible for the differences in the second intensification stage.

  6. Assessment of Drug Binding Potential of Pockets in the NS2B/NS3 Dengue Virus Protein

    NASA Astrophysics Data System (ADS)

    Amelia, F.; Iryani; Sari, P. Y.; Parikesit, A. A.; Bakri, R.; Toepak, E. P.; Tambunan, U. S. F.

    2018-04-01

    Every year an endemic dengue fever estimated to affect over 390 million cases in over 128 countries occurs. However, the antigen types which stimulate the human immune response are variable, as a result, neither effective vaccines nor antiviral treatments have been successfully developed for this disease. The NS2B/NS3 protease of the dengue virus (DENV) responsible for viral replication is a potential drug target. The ligand-enzyme binding site determination is a key role in the success of virtual screening of new inhibitors. The NS2B/NS3 protease of DENV (PDB ID: 2FOM) has two pockets consisting of 37 (Pocket 1) and 27 (Pocket 2) amino acid residues in each pocket. In this research, we characterized the amino acid residues for binding sites in NS3/NS2B based on the hydrophobicity, the percentage of charged residues, volume, depth, ΔGbinding, hydrogen bonding and bond length. The hydrophobic percentages of both pockets are high, 59 % (Pocket 1) and 41% (Pocket 2) and the percentage of charged residues in Pocket 1 and 2 are 22% and 48%, and the pocket volume is less than 700 Å3. An interaction analysis using molecular docking showed that interaction between the ligand complex and protein in Pocket 1 is more negative than Pocket 2. As a result, Pocket 1 is the better potential target for a ligand to inhibit the action of NS2B/NS3 DENV.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jha, Ramesh K.; Kern, Theresa L.; Kim, Youngchang

    A whole-cell biosensor utilizing a transcription factor (TF) is an effective tool for sensitive and selective detection of specialty chemicals or anthropogenic molecules, but requires an access to an expanded repertoire of TFs. Using ligand docked homology models for binding pocket identification, assisted by conservative mutations in the pocket, we engineered a novel specificity in an Acinetobacter TF, PobR, to ‘sense’ a chemical p-nitrophenol (pNP) and measured the response via a fluorescent protein reporter expressed from a PobR promoter. Out of 10 7 variants of PobR, four were active when pNP was added as an inducer, with two mutants showingmore » a specificity switch from the native effector 4-hydroxybenzoate (4HB). One of the mutants, pNPmut1 was then used to create a smart microbial cell responding to pNP production and detect hydrolysis of an insecticide, paraoxon, in a coupled assay involving phosphotriesterase (PTE) enzyme expressed from a separate promoter. We show that the fluorescence of the cells correlated with the catalytic efficiency of PTE variants, each cell expressed. High selectivity for similar molecules (4HB vs pNP), high sensitivity for pNP detection (~2 μM) and agreement of apo- and holo- structures of PobR scaffold with computational models are notable successes presented in this work.« less

  8. Revealing the favorable dissociation pathway of type II kinase inhibitors via enhanced sampling simulations and two-end-state calculations.

    PubMed

    Sun, Huiyong; Tian, Sheng; Zhou, Shunye; Li, Youyong; Li, Dan; Xu, Lei; Shen, Mingyun; Pan, Peichen; Hou, Tingjun

    2015-02-13

    How does a type II inhibitor bind to/unbind from a kinase target is still a confusing question because the small molecule occupies both the ATP pocket and the allosteric pocket of the kinase binding site. Here, by using enhanced sampling simulations (umbrella sampling, US) and two-end-state free energy calculations (MM/GSBA), we systemically studied the dissociation processes of two distinct small molecules escaping from the binding pocket of p38 MAP kinase through the allosteric channel and the ATP channel. The results show that the unbinding pathways along the allosteric channel have much lower PMF depths than those along the ATP channel, suggesting that the allosteric channel is more favorable for the dissociations of the two inhibitors and thereby supporting the general understanding that the largest channel of a target is usually the entry/exit pathway for the binding/dissociation of small molecules. Interestingly, the MM/GBSA approach yielded similar PMF profiles compared with those based on US, a much time consuming approach, indicating that for a general study, such as detecting the important transition state of a ligand binding/unbinding process, MM/GBSA may be a feasible choice.

  9. An Amino Acid Code to Define a Protein’s Tertiary Packing Surface

    PubMed Central

    Fraga, Keith J.; Joo, Hyun; Tsai, Jerry

    2015-01-01

    One difficult aspect of the protein-folding problem is characterizing the non-specific interactions that define packing in protein tertiary structure. To better understand tertiary structure, this work extends the knob-socket model by classifying the interactions of a single knob residue packed into a set of contiguous sockets, or a pocket made up of 4 or more residues. The knob-socket construct allows for a symbolic two-dimensional mapping of pockets. The two-dimensional mapping of pockets provides a simple method to investigate the variety of pocket shapes in order to understand the geometry of protein tertiary surfaces. The diversity of pocket geometries can be organized into groups of pockets that share a common core, which suggests that some interactions in pockets are ancillary to packing. Further analysis of pocket geometries displays a preferred configuration that is right-handed in α-helices and left-handed in β-sheets. The amino acid composition of pockets illustrates the importance of non-polar amino acids in packing as well as position specificity. As expected, all pocket shapes prefer to pack with hydrophobic knobs; however, knobs are not selective for the pockets they pack. Investigating side-chain rotamer preferences for certain pocket shapes uncovers no strong correlations. These findings allow a simple vocabulary based on knobs and sockets to describe protein tertiary packing that supports improved analysis, design and prediction of protein structure. PMID:26575337

  10. Evaluating statistical consistency in the ocean model component of the Community Earth System Model (pyCECT v2.0)

    NASA Astrophysics Data System (ADS)

    Baker, Allison H.; Hu, Yong; Hammerling, Dorit M.; Tseng, Yu-heng; Xu, Haiying; Huang, Xiaomeng; Bryan, Frank O.; Yang, Guangwen

    2016-07-01

    The Parallel Ocean Program (POP), the ocean model component of the Community Earth System Model (CESM), is widely used in climate research. Most current work in CESM-POP focuses on improving the model's efficiency or accuracy, such as improving numerical methods, advancing parameterization, porting to new architectures, or increasing parallelism. Since ocean dynamics are chaotic in nature, achieving bit-for-bit (BFB) identical results in ocean solutions cannot be guaranteed for even tiny code modifications, and determining whether modifications are admissible (i.e., statistically consistent with the original results) is non-trivial. In recent work, an ensemble-based statistical approach was shown to work well for software verification (i.e., quality assurance) on atmospheric model data. The general idea of the ensemble-based statistical consistency testing is to use a qualitative measurement of the variability of the ensemble of simulations as a metric with which to compare future simulations and make a determination of statistical distinguishability. The capability to determine consistency without BFB results boosts model confidence and provides the flexibility needed, for example, for more aggressive code optimizations and the use of heterogeneous execution environments. Since ocean and atmosphere models have differing characteristics in term of dynamics, spatial variability, and timescales, we present a new statistical method to evaluate ocean model simulation data that requires the evaluation of ensemble means and deviations in a spatial manner. In particular, the statistical distribution from an ensemble of CESM-POP simulations is used to determine the standard score of any new model solution at each grid point. Then the percentage of points that have scores greater than a specified threshold indicates whether the new model simulation is statistically distinguishable from the ensemble simulations. Both ensemble size and composition are important. Our experiments indicate that the new POP ensemble consistency test (POP-ECT) tool is capable of distinguishing cases that should be statistically consistent with the ensemble and those that should not, as well as providing a simple, subjective and systematic way to detect errors in CESM-POP due to the hardware or software stack, positively contributing to quality assurance for the CESM-POP code.

  11. Real time detection of farm-level swine mycobacteriosis outbreak using time series modeling of the number of condemned intestines in abattoirs.

    PubMed

    Adachi, Yasumoto; Makita, Kohei

    2015-09-01

    Mycobacteriosis in swine is a common zoonosis found in abattoirs during meat inspections, and the veterinary authority is expected to inform the producer for corrective actions when an outbreak is detected. The expected value of the number of condemned carcasses due to mycobacteriosis therefore would be a useful threshold to detect an outbreak, and the present study aims to develop such an expected value through time series modeling. The model was developed using eight years of inspection data (2003 to 2010) obtained at 2 abattoirs of the Higashi-Mokoto Meat Inspection Center, Japan. The resulting model was validated by comparing the predicted time-dependent values for the subsequent 2 years with the actual data for 2 years between 2011 and 2012. For the modeling, at first, periodicities were checked using Fast Fourier Transformation, and the ensemble average profiles for weekly periodicities were calculated. An Auto-Regressive Integrated Moving Average (ARIMA) model was fitted to the residual of the ensemble average on the basis of minimum Akaike's information criterion (AIC). The sum of the ARIMA model and the weekly ensemble average was regarded as the time-dependent expected value. During 2011 and 2012, the number of whole or partial condemned carcasses exceeded the 95% confidence interval of the predicted values 20 times. All of these events were associated with the slaughtering of pigs from three producers with the highest rate of condemnation due to mycobacteriosis.

  12. Cavity Versus Ligand Shape Descriptors: Application to Urokinase Binding Pockets

    PubMed Central

    Cerisier, Natacha; Regad, Leslie; Triki, Dhoha; Camproux, Anne-Claude

    2017-01-01

    Abstract We analyzed 78 binding pockets of the human urokinase plasminogen activator (uPA) catalytic domain extracted from a data set of crystallized uPA–ligand complexes. These binding pockets were computed with an original geometric method that does NOT involve any arbitrary parameter, such as cutoff distances, angles, and so on. We measured the deviation from convexity of each pocket shape with the pocket convexity index (PCI). We defined a new pocket descriptor called distributional sphericity coefficient (DISC), which indicates to which extent the protein atoms of a given pocket lie on the surface of a sphere. The DISC values were computed with the freeware PCI. The pocket descriptors and their high correspondences with ligand descriptors are crucial for polypharmacology prediction. We found that the protein heavy atoms lining the urokinases binding pockets are either located on the surface of their convex hull or lie close to this surface. We also found that the radii of the urokinases binding pockets and the radii of their ligands are highly correlated (r = 0.9). PMID:28570103

  13. Insights into an original pocket-ligand pair classification: a promising tool for ligand profile prediction.

    PubMed

    Pérot, Stéphanie; Regad, Leslie; Reynès, Christelle; Spérandio, Olivier; Miteva, Maria A; Villoutreix, Bruno O; Camproux, Anne-Claude

    2013-01-01

    Pockets are today at the cornerstones of modern drug discovery projects and at the crossroad of several research fields, from structural biology to mathematical modeling. Being able to predict if a small molecule could bind to one or more protein targets or if a protein could bind to some given ligands is very useful for drug discovery endeavors, anticipation of binding to off- and anti-targets. To date, several studies explore such questions from chemogenomic approach to reverse docking methods. Most of these studies have been performed either from the viewpoint of ligands or targets. However it seems valuable to use information from both ligands and target binding pockets. Hence, we present a multivariate approach relating ligand properties with protein pocket properties from the analysis of known ligand-protein interactions. We explored and optimized the pocket-ligand pair space by combining pocket and ligand descriptors using Principal Component Analysis and developed a classification engine on this paired space, revealing five main clusters of pocket-ligand pairs sharing specific and similar structural or physico-chemical properties. These pocket-ligand pair clusters highlight correspondences between pocket and ligand topological and physico-chemical properties and capture relevant information with respect to protein-ligand interactions. Based on these pocket-ligand correspondences, a protocol of prediction of clusters sharing similarity in terms of recognition characteristics is developed for a given pocket-ligand complex and gives high performances. It is then extended to cluster prediction for a given pocket in order to acquire knowledge about its expected ligand profile or to cluster prediction for a given ligand in order to acquire knowledge about its expected pocket profile. This prediction approach shows promising results and could contribute to predict some ligand properties critical for binding to a given pocket, and conversely, some key pocket properties for ligand binding.

  14. Insights into an Original Pocket-Ligand Pair Classification: A Promising Tool for Ligand Profile Prediction

    PubMed Central

    Reynès, Christelle; Spérandio, Olivier; Miteva, Maria A.; Villoutreix, Bruno O.; Camproux, Anne-Claude

    2013-01-01

    Pockets are today at the cornerstones of modern drug discovery projects and at the crossroad of several research fields, from structural biology to mathematical modeling. Being able to predict if a small molecule could bind to one or more protein targets or if a protein could bind to some given ligands is very useful for drug discovery endeavors, anticipation of binding to off- and anti-targets. To date, several studies explore such questions from chemogenomic approach to reverse docking methods. Most of these studies have been performed either from the viewpoint of ligands or targets. However it seems valuable to use information from both ligands and target binding pockets. Hence, we present a multivariate approach relating ligand properties with protein pocket properties from the analysis of known ligand-protein interactions. We explored and optimized the pocket-ligand pair space by combining pocket and ligand descriptors using Principal Component Analysis and developed a classification engine on this paired space, revealing five main clusters of pocket-ligand pairs sharing specific and similar structural or physico-chemical properties. These pocket-ligand pair clusters highlight correspondences between pocket and ligand topological and physico-chemical properties and capture relevant information with respect to protein-ligand interactions. Based on these pocket-ligand correspondences, a protocol of prediction of clusters sharing similarity in terms of recognition characteristics is developed for a given pocket-ligand complex and gives high performances. It is then extended to cluster prediction for a given pocket in order to acquire knowledge about its expected ligand profile or to cluster prediction for a given ligand in order to acquire knowledge about its expected pocket profile. This prediction approach shows promising results and could contribute to predict some ligand properties critical for binding to a given pocket, and conversely, some key pocket properties for ligand binding. PMID:23840299

  15. Dosimetric Effects of Air Pockets Around High-Dose Rate Brachytherapy Vaginal Cylinders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Richardson, Susan, E-mail: srichardson@radonc.wustl.ed; Palaniswaamy, Geethpriya; Grigsby, Perry W.

    2010-09-01

    Purpose: Most physicians use a single-channel vaginal cylinder for postoperative endometrial cancer brachytherapy. Recent published data have identified air pockets between the vaginal cylinders and the vaginal mucosa. The purpose of this research was to evaluate the incidence, size, and dosimetric effects of these air pockets. Methods and Materials: 25 patients receiving postoperative vaginal cuff brachytherapy with a high-dose rate vaginal cylinders were enrolled in this prospective data collection study. Patients were treated with 6 fractions of 200 to 400 cGy per fraction prescribed at 5 mm depth. Computed tomography simulation for brachytherapy treatment planning was performed for each fraction.more » The quantity, volume, and dosimetric impact of the air pockets surrounding the cylinder were quantified. Results: In 25 patients, a total of 90 air pockets were present in 150 procedures (60%). Five patients had no air pockets present during any of their treatments. The average number of air pockets per patient was 3.6, with the average total air pocket volume being 0.34 cm{sup 3} (range, 0.01-1.32 cm{sup 3}). The average dose reduction to the vaginal mucosa at the air pocket was 27% (range, 9-58%). Ten patients had no air pockets on their first fraction but air pockets occurred in subsequent fractions. Conclusion: Air pockets between high-dose rate vaginal cylinder applicators and the vaginal mucosa are present in the majority of fractions of therapy, and their presence varies from patient to patient and fraction to fraction. The existence of air pockets results in reduced radiation dose to the vaginal mucosa.« less

  16. Using Three-color Single-molecule FRET to Study the Correlation of Protein Interactions.

    PubMed

    Götz, Markus; Wortmann, Philipp; Schmid, Sonja; Hugel, Thorsten

    2018-01-30

    Single-molecule Förster resonance energy transfer (smFRET) has become a widely used biophysical technique to study the dynamics of biomolecules. For many molecular machines in a cell proteins have to act together with interaction partners in a functional cycle to fulfill their task. The extension of two-color to multi-color smFRET makes it possible to simultaneously probe more than one interaction or conformational change. This not only adds a new dimension to smFRET experiments but it also offers the unique possibility to directly study the sequence of events and to detect correlated interactions when using an immobilized sample and a total internal reflection fluorescence microscope (TIRFM). Therefore, multi-color smFRET is a versatile tool for studying biomolecular complexes in a quantitative manner and in a previously unachievable detail. Here, we demonstrate how to overcome the special challenges of multi-color smFRET experiments on proteins. We present detailed protocols for obtaining the data and for extracting kinetic information. This includes trace selection criteria, state separation, and the recovery of state trajectories from the noisy data using a 3D ensemble Hidden Markov Model (HMM). Compared to other methods, the kinetic information is not recovered from dwell time histograms but directly from the HMM. The maximum likelihood framework allows us to critically evaluate the kinetic model and to provide meaningful uncertainties for the rates. By applying our method to the heat shock protein 90 (Hsp90), we are able to disentangle the nucleotide binding and the global conformational changes of the protein. This allows us to directly observe the cooperativity between the two nucleotide binding pockets of the Hsp90 dimer.

  17. Apolar Distal Pocket Mutants of Yeast Cytochrome c Peroxidase: Hydrogen Peroxide Reactivity and Cyanide Binding of the TriAla, TriVal, and TriLeu Variants

    PubMed Central

    Bidwai, Anil K.; Meyen, Cassandra; Kilheeney, Heather; Wroblewski, Damian; Vitello, Lidia B.; Erman, James E.

    2012-01-01

    Three yeast cytochrome c peroxidase (CcP) variants with apolar distal heme pockets have been constructed. The CcP variants have Arg48, Trp51, and His52 mutated to either all alanines, CcP(triAla), all valines, CcP(triVal), or all leucines, CcP(triLeu). The triple mutants have detectable enzymatic activity at pH 6 but the activity is less than 0.02% that of wild-type CcP. The activity loss is primarily due to the decreased rate of reaction between the triple mutants and H2O2 compared to wild-type CcP. Spectroscopic properties and cyanide binding characteristics of the triple mutants have been investigated over the pH stability region of CcP, pH 4 to 8. The absorption spectra indicate that the CcP triple mutants have hemes that are predominantly five-coordinate, high-spin at pH 5 and six-coordinate, low-spin at pH 8. Cyanide binding to the triple mutants is biphasic indicating that the triple mutants have two slowly-exchanging conformational states with different cyanide affinities. The binding affinity for cyanide is reduced at least two orders of magnitude in the triple mutants compared to wild-type CcP and the rate of cyanide binding is reduced by four to five orders of magnitude. Correlation of the reaction rates of CcP and 12 distal pocket mutants with H2O2 and HCN suggests that both reactions require ionization of the reactants within the distal heme pocket allowing the anion to bind the heme iron. Distal pocket features that promote substrate ionization (basic residues involved in base-catalyzed substrate ionization or polar residues that can stabilize substrate anions) increase the overall rate of reaction with H2O2 and HCN while features that inhibit substrate ionization slow the reactions. PMID:23022490

  18. Enhancing Predictive Accuracy of Cardiac Autonomic Neuropathy Using Blood Biochemistry Features and Iterative Multitier Ensembles.

    PubMed

    Abawajy, Jemal; Kelarev, Andrei; Chowdhury, Morshed U; Jelinek, Herbert F

    2016-01-01

    Blood biochemistry attributes form an important class of tests, routinely collected several times per year for many patients with diabetes. The objective of this study is to investigate the role of blood biochemistry for improving the predictive accuracy of the diagnosis of cardiac autonomic neuropathy (CAN) progression. Blood biochemistry contributes to CAN, and so it is a causative factor that can provide additional power for the diagnosis of CAN especially in the absence of a complete set of Ewing tests. We introduce automated iterative multitier ensembles (AIME) and investigate their performance in comparison to base classifiers and standard ensemble classifiers for blood biochemistry attributes. AIME incorporate diverse ensembles into several tiers simultaneously and combine them into one automatically generated integrated system so that one ensemble acts as an integral part of another ensemble. We carried out extensive experimental analysis using large datasets from the diabetes screening research initiative (DiScRi) project. The results of our experiments show that several blood biochemistry attributes can be used to supplement the Ewing battery for the detection of CAN in situations where one or more of the Ewing tests cannot be completed because of the individual difficulties faced by each patient in performing the tests. The results show that AIME provide higher accuracy as a multitier CAN classification paradigm. The best predictive accuracy of 99.57% has been obtained by the AIME combining decorate on top tier with bagging on middle tier based on random forest. Practitioners can use these findings to increase the accuracy of CAN diagnosis.

  19. Quantifying selective alignment of ensemble nitrogen-vacancy centers in (111) diamond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tahara, Kosuke; Ozawa, Hayato; Iwasaki, Takayuki

    2015-11-09

    Selective alignment of nitrogen-vacancy (NV) centers in diamond is an important technique towards its applications. Quantification of the alignment ratio is necessary to design the optimized diamond samples. However, this is not a straightforward problem for dense ensemble of the NV centers. We estimate the alignment ratio of ensemble NV centers along the [111] direction in (111) diamond by optically detected magnetic resonance measurements. Diamond films deposited by N{sub 2} doped chemical vapor deposition have NV center densities over 1 × 10{sup 15 }cm{sup −3} and alignment ratios over 75%. Although spin coherence time (T{sub 2}) is limited to a few μs bymore » electron spins of nitrogen impurities, the combination of the selective alignment and the high density can be a possible way to optimize NV-containing diamond samples for the sensing applications.« less

  20. Detection of eardrum abnormalities using ensemble deep learning approaches

    NASA Astrophysics Data System (ADS)

    Senaras, Caglar; Moberly, Aaron C.; Teknos, Theodoros; Essig, Garth; Elmaraghy, Charles; Taj-Schaal, Nazhat; Yua, Lianbo; Gurcan, Metin N.

    2018-02-01

    In this study, we proposed an approach to report the condition of the eardrum as "normal" or "abnormal" by ensembling two different deep learning architectures. In the first network (Network 1), we applied transfer learning to the Inception V3 network by using 409 labeled samples. As a second network (Network 2), we designed a convolutional neural network to take advantage of auto-encoders by using additional 673 unlabeled eardrum samples. The individual classification accuracies of the Network 1 and Network 2 were calculated as 84.4%(+/- 12.1%) and 82.6% (+/- 11.3%), respectively. Only 32% of the errors of the two networks were the same, making it possible to combine two approaches to achieve better classification accuracy. The proposed ensemble method allows us to achieve robust classification because it has high accuracy (84.4%) with the lowest standard deviation (+/- 10.3%).

  1. Optical and structural properties of ensembles of colloidal Ag{sub 2}S quantum dots in gelatin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ovchinnikov, O. V., E-mail: Ovchinnikov-O-V@rambler.ru; Smirnov, M. S.; Shapiro, B. I.

    2015-03-15

    The size dependences of the absorption and luminescence spectra of ensembles of hydrophilic colloidal Ag{sub 2}S quantum dots produced by the sol-gel method and dispersed in gelatin are analyzed. By X-ray diffraction analysis and transmission electron microscopy, the formation of core/shell nanoparticles is detected. The characteristic feature of the nanoparticles is the formation of crystalline cores, 1.5–2.0 nm in dimensions, and shells of gelatin and its complexes with the components of synthesis. The observed slight size dependence of the position of infrared photoluminescence bands (in the range 1000–1400 nm) in the ensembles of hydrophilic colloidal Ag{sub 2}S quantum dots ismore » explained within the context of the model of the radiative recombination of electrons localized at structural and impurity defects with free holes.« less

  2. Gestalt Effects in Visual Working Memory.

    PubMed

    Kałamała, Patrycja; Sadowska, Aleksandra; Ordziniak, Wawrzyniec; Chuderski, Adam

    2017-01-01

    Four experiments investigated whether conforming to Gestalt principles, well known to drive visual perception, also facilitates the active maintenance of information in visual working memory (VWM). We used the change detection task, which required the memorization of visual patterns composed of several shapes. We observed no effects of symmetry of visual patterns on VWM performance. However, there was a moderate positive effect when a particular shape that was probed matched the shape of the whole pattern (the whole-part similarity effect). Data support the models assuming that VWM encodes not only particular objects of the perceptual scene but also the spatial relations between them (the ensemble representation). The ensemble representation may prime objects similar to its shape and thereby boost access to them. In contrast, the null effect of symmetry relates the fact that this very feature of an ensemble does not yield any useful additional information for VWM.

  3. Form and deformity: the trouble with Victorian pockets.

    PubMed

    Matthews, Christopher Todd

    2010-01-01

    This essay explores the Victorian debate about the place of pockets in men's and women's clothing. By studying the representation of men as naturally pocketed creatures and the general denial of useful pockets to middle-class women, the essay demonstrates the tenacious cultural logic by which men's and women's pockets were imagined to correspond to sexual differences and to index access, or lack thereof, to public mobility and financial agency. Interconnected readings of visual art, essays, and novels show how the common sense about gendered pockets was utilized and promulgated in Victorian narratives. The question of who gets pockets is thus positioned as part of the history of gendered bodies in public space.

  4. Unsupervised Ensemble Anomaly Detection Using Time-Periodic Packet Sampling

    NASA Astrophysics Data System (ADS)

    Uchida, Masato; Nawata, Shuichi; Gu, Yu; Tsuru, Masato; Oie, Yuji

    We propose an anomaly detection method for finding patterns in network traffic that do not conform to legitimate (i.e., normal) behavior. The proposed method trains a baseline model describing the normal behavior of network traffic without using manually labeled traffic data. The trained baseline model is used as the basis for comparison with the audit network traffic. This anomaly detection works in an unsupervised manner through the use of time-periodic packet sampling, which is used in a manner that differs from its intended purpose — the lossy nature of packet sampling is used to extract normal packets from the unlabeled original traffic data. Evaluation using actual traffic traces showed that the proposed method has false positive and false negative rates in the detection of anomalies regarding TCP SYN packets comparable to those of a conventional method that uses manually labeled traffic data to train the baseline model. Performance variation due to the probabilistic nature of sampled traffic data is mitigated by using ensemble anomaly detection that collectively exploits multiple baseline models in parallel. Alarm sensitivity is adjusted for the intended use by using maximum- and minimum-based anomaly detection that effectively take advantage of the performance variations among the multiple baseline models. Testing using actual traffic traces showed that the proposed anomaly detection method performs as well as one using manually labeled traffic data and better than one using randomly sampled (unlabeled) traffic data.

  5. Pocket money, eating behaviors, and weight status among Chinese children: The Childhood Obesity Study in China mega-cities.

    PubMed

    Li, Miao; Xue, Hong; Jia, Peng; Zhao, Yaling; Wang, Zhiyong; Xu, Fei; Wang, Youfa

    2017-07-01

    Both the obesity rate and pocket money are rising among children in China. This study examined family correlates of children's pocket money, associations of pocket money with eating behaviors and weight status, and how the associations may be modified by schools' unhealthy food restrictions in urban China. Data were collected in 2015 from 1648 students in 16 primary and middle schools in four mega-cities in China (4 schools/city): Beijing, Shanghai, Nanjing, and Xi'an. Cluster robust negative binomial regression models were fit to assess family correlates of pocket money, associations of pocket money with child eating behaviors and weight outcomes, and possible modifying effects of schools' unhealthy food restrictions. Sixty-nine percent of students received pocket money weekly. Students received more pocket money if mothers frequently ate out of home (IRR=2.28 [1.76, 2.94]) and/or family rarely had dinner together (IRR=1.42, 95%=[1.01, 1.99]). Students got less pocket money if parents were concerned about child's future health due to unhealthy eating (IRR=0.56 [0.32,0.98]). Students with more pocket money more frequently consumed (by 25-89%) sugary beverages, snacks, fast food, or at street food stalls, and were 45-90% more likely to be overweight/obese. Associations of pocket money with unhealthy eating and overweight/obesity were weaker in schools with unhealthy food restrictions. Pocket money is a risk factor for unhealthy eating and obesity in urban China. School policies may buffer pocket money's negative influence on students' eating and weight status. Copyright © 2017. Published by Elsevier Inc.

  6. Cyanide binding to hexacoordinate cyanobacterial hemoglobins: hydrogen-bonding network and heme pocket rearrangement in ferric H117A Synechocystis hemoglobin.

    PubMed

    Vu, B Christie; Nothnagel, Henry J; Vuletich, David A; Falzone, Christopher J; Lecomte, Juliette T J

    2004-10-05

    The truncated hemoglobin (Hb) from the cyanobacterium Synechocystis sp. PCC 6803 is a bis-histidyl hexacoordinate complex in the absence of exogenous ligands. This protein can form a covalent cross-link between His117 in the H-helix and the heme 2-vinyl group. Cross-linking, the physiological importance of which has not been established, is avoided with the His117Ala substitution. In the present work, H117A Hb was used to explore exogenous ligand binding to the heme group. NMR and thermal denaturation data showed that the replacement was of little consequence to the structural and thermodynamic properties of ferric Synechocystis Hb. It did, however, decelerate the association of cyanide ions with the heme iron. Full complexation required hours, instead of minutes, of incubation at optical and NMR concentrations. At neutral pH and in the presence of excess cyanide, binding occurred with a first-order dependence on cyanide concentration, eliminating distal histidine decoordination as the rate-limiting step. The cyanide complex of the H117A variant was characterized for the conformational changes occurring as the histidine on the distal side, His46 (E10), was displaced. Extensive rearrangement allowed Tyr22 (B10) to insert in the heme pocket and Gln43 (E7) and Gln47 (E11) to come in contact with it. H-bond formation to the bound cyanide was identified in solution with the use of (1)H(2)O/(2)H(2)O mixtures. Cyanide binding also resulted in a change in the ratio of heme orientational isomers, in a likely manifestation of heme environment reshaping. Similar observations were made with the related Synechococcus sp. PCC 7002 H117A Hb, except that cyanide binding was rapid in this protein. In both cases, the (15)N chemical shift of bound cyanide was reminiscent of that in peroxidases and the orientation of the proximal histidine was as in other truncated Hbs. The ensemble of the data provided insight into the structural cooperativity of the heme pocket scaffold and pointed to the reactive 117 site of Synechocystis Hb as a potential determinant of biophysical and, perhaps, functional properties.

  7. Pocket Guide to Red Pine Diseases and their Management

    Treesearch

    Thomas H. Nicholls; Darroll D. Skillings

    1990-01-01

    Red pine (Pinus resinosa Ait.) is one of our most valuable tree species. Therefore, it is imperative for land managers to be familiar with red pine diseases that have the potential to cause major economic losses. This knowledge combined with adequate dollars, teamwork, early detection, positive pest identification, and proper timing, selection, and applications of...

  8. Ultrasound pallet part evaluator/grader and cant scanner

    Treesearch

    Mohammed F. Kabir; Philip A. Araman; Daniel L. Schmoldt; Mark E. Schafer

    2002-01-01

    Sorting and grading of wooden pallet parts are key factors for manufacturing quality and durable pallets. The feasibility of ultrasonic scanning for defect detection and classification has been examined in this report. Defects, such as sound and unsound knots, decay, bark pockets, wane, and holes were scanned on both red oak (Quercus rubra, L.) and yellow-poplar (...

  9. Effects of a direct refill program for automated dispensing cabinets on medication-refill errors.

    PubMed

    Helmons, Pieter J; Dalton, Ashley J; Daniels, Charles E

    2012-10-01

    The effects of a direct refill program for automated dispensing cabinets (ADCs) on medication-refill errors were studied. This study was conducted in designated acute care areas of a 386-bed academic medical center. A wholesaler-to-ADC direct refill program, consisting of prepackaged delivery of medications and bar-code-assisted ADC refilling, was implemented in the inpatient pharmacy of the medical center in September 2009. Medication-refill errors in 26 ADCs from the general medicine units, the infant special care unit, the surgical and burn intensive care units, and intermediate units were assessed before and after the implementation of this program. Medication-refill errors were defined as an ADC pocket containing the wrong drug, wrong strength, or wrong dosage form. ADC refill errors decreased by 77%, from 62 errors per 6829 refilled pockets (0.91%) to 8 errors per 3855 refilled pockets (0.21%) (p < 0.0001). The predominant error type detected before the intervention was the incorrect medication (wrong drug, wrong strength, or wrong dosage form) in the ADC pocket. Of the 54 incorrect medications found before the intervention, 38 (70%) were loaded in a multiple-drug drawer. After the implementation of the new refill process, 3 of the 5 incorrect medications were loaded in a multiple-drug drawer. There were 3 instances of expired medications before and only 1 expired medication after implementation of the program. A redesign of the ADC refill process using a wholesaler-to-ADC direct refill program that included delivery of prepackaged medication and bar-code-assisted refill significantly decreased the occurrence of ADC refill errors.

  10. Free Energy Perturbation Hamiltonian Replica-Exchange Molecular Dynamics (FEP/H-REMD) for Absolute Ligand Binding Free Energy Calculations.

    PubMed

    Jiang, Wei; Roux, Benoît

    2010-07-01

    Free Energy Perturbation with Replica Exchange Molecular Dynamics (FEP/REMD) offers a powerful strategy to improve the convergence of free energy computations. In particular, it has been shown previously that a FEP/REMD scheme allowing random moves within an extended replica ensemble of thermodynamic coupling parameters "lambda" can improve the statistical convergence in calculations of absolute binding free energy of ligands to proteins [J. Chem. Theory Comput. 2009, 5, 2583]. In the present study, FEP/REMD is extended and combined with an accelerated MD simulations method based on Hamiltonian replica-exchange MD (H-REMD) to overcome the additional problems arising from the existence of kinetically trapped conformations within the protein receptor. In the combined strategy, each system with a given thermodynamic coupling factor lambda in the extended ensemble is further coupled with a set of replicas evolving on a biased energy surface with boosting potentials used to accelerate the inter-conversion among different rotameric states of the side chains in the neighborhood of the binding site. Exchanges are allowed to occur alternatively along the axes corresponding to the thermodynamic coupling parameter lambda and the boosting potential, in an extended dual array of coupled lambda- and H-REMD simulations. The method is implemented on the basis of new extensions to the REPDSTR module of the biomolecular simulation program CHARMM. As an illustrative example, the absolute binding free energy of p-xylene to the nonpolar cavity of the L99A mutant of T4 lysozyme was calculated. The tests demonstrate that the dual lambda-REMD and H-REMD simulation scheme greatly accelerates the configurational sampling of the rotameric states of the side chains around the binding pocket, thereby improving the convergence of the FEP computations.

  11. CATCh, an Ensemble Classifier for Chimera Detection in 16S rRNA Sequencing Studies

    PubMed Central

    Mysara, Mohamed; Saeys, Yvan; Leys, Natalie; Raes, Jeroen

    2014-01-01

    In ecological studies, microbial diversity is nowadays mostly assessed via the detection of phylogenetic marker genes, such as 16S rRNA. However, PCR amplification of these marker genes produces a significant amount of artificial sequences, often referred to as chimeras. Different algorithms have been developed to remove these chimeras, but efforts to combine different methodologies are limited. Therefore, two machine learning classifiers (reference-based and de novo CATCh) were developed by integrating the output of existing chimera detection tools into a new, more powerful method. When comparing our classifiers with existing tools in either the reference-based or de novo mode, a higher performance of our ensemble method was observed on a wide range of sequencing data, including simulated, 454 pyrosequencing, and Illumina MiSeq data sets. Since our algorithm combines the advantages of different individual chimera detection tools, our approach produces more robust results when challenged with chimeric sequences having a low parent divergence, short length of the chimeric range, and various numbers of parents. Additionally, it could be shown that integrating CATCh in the preprocessing pipeline has a beneficial effect on the quality of the clustering in operational taxonomic units. PMID:25527546

  12. Multi-dimensional coherent optical spectroscopy of semiconductor nanostructures: Collinear and non-collinear approaches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nardin, Gaël; Li, Hebin; Autry, Travis M.

    2015-03-21

    We review our recent work on multi-dimensional coherent optical spectroscopy (MDCS) of semiconductor nanostructures. Two approaches, appropriate for the study of semiconductor materials, are presented and compared. A first method is based on a non-collinear geometry, where the Four-Wave-Mixing (FWM) signal is detected in the form of a radiated optical field. This approach works for samples with translational symmetry, such as Quantum Wells (QWs) or large and dense ensembles of Quantum Dots (QDs). A second method detects the FWM in the form of a photocurrent in a collinear geometry. This second approach extends the horizon of MDCS to sub-diffraction nanostructures,more » such as single QDs, nanowires, or nanotubes, and small ensembles thereof. Examples of experimental results obtained on semiconductor QW structures are given for each method. In particular, it is shown how MDCS can assess coupling between excitons confined in separated QWs.« less

  13. Ensemble of ground subsidence hazard maps using fuzzy logic

    NASA Astrophysics Data System (ADS)

    Park, Inhye; Lee, Jiyeong; Saro, Lee

    2014-06-01

    Hazard maps of ground subsidence around abandoned underground coal mines (AUCMs) in Samcheok, Korea, were constructed using fuzzy ensemble techniques and a geographical information system (GIS). To evaluate the factors related to ground subsidence, a spatial database was constructed from topographic, geologic, mine tunnel, land use, groundwater, and ground subsidence maps. Spatial data, topography, geology, and various ground-engineering data for the subsidence area were collected and compiled in a database for mapping ground-subsidence hazard (GSH). The subsidence area was randomly split 70/30 for training and validation of the models. The relationships between the detected ground-subsidence area and the factors were identified and quantified by frequency ratio (FR), logistic regression (LR) and artificial neural network (ANN) models. The relationships were used as factor ratings in the overlay analysis to create ground-subsidence hazard indexes and maps. The three GSH maps were then used as new input factors and integrated using fuzzy-ensemble methods to make better hazard maps. All of the hazard maps were validated by comparison with known subsidence areas that were not used directly in the analysis. As the result, the ensemble model was found to be more effective in terms of prediction accuracy than the individual model.

  14. Statistical mechanics of few-particle systems: exact results for two useful models

    NASA Astrophysics Data System (ADS)

    Miranda, Enrique N.

    2017-11-01

    The statistical mechanics of small clusters (n ˜ 10-50 elements) of harmonic oscillators and two-level systems is studied exactly, following the microcanonical, canonical and grand canonical formalisms. For clusters with several hundred particles, the results from the three formalisms coincide with those found in the thermodynamic limit. However, for clusters formed by a few tens of elements, the three ensembles yield different results. For a cluster with a few tens of harmonic oscillators, when the heat capacity per oscillator is evaluated within the canonical formalism, it reaches a limit value equal to k B , as in the thermodynamic case, while within the microcanonical formalism the limit value is k B (1-1/n). This difference could be measured experimentally. For a cluster with a few tens of two-level systems, the heat capacity evaluated within the canonical and microcanonical ensembles also presents differences that could be detected experimentally. Both the microcanonical and grand canonical formalism show that the entropy is non-additive for systems this small, while the canonical ensemble reaches the opposite conclusion. These results suggest that the microcanonical ensemble is the most appropriate for dealing with systems with tens of particles.

  15. Quantum teleportation between remote atomic-ensemble quantum memories.

    PubMed

    Bao, Xiao-Hui; Xu, Xiao-Fan; Li, Che-Ming; Yuan, Zhen-Sheng; Lu, Chao-Yang; Pan, Jian-Wei

    2012-12-11

    Quantum teleportation and quantum memory are two crucial elements for large-scale quantum networks. With the help of prior distributed entanglement as a "quantum channel," quantum teleportation provides an intriguing means to faithfully transfer quantum states among distant locations without actual transmission of the physical carriers [Bennett CH, et al. (1993) Phys Rev Lett 70(13):1895-1899]. Quantum memory enables controlled storage and retrieval of fast-flying photonic quantum bits with stationary matter systems, which is essential to achieve the scalability required for large-scale quantum networks. Combining these two capabilities, here we realize quantum teleportation between two remote atomic-ensemble quantum memory nodes, each composed of ∼10(8) rubidium atoms and connected by a 150-m optical fiber. The spin wave state of one atomic ensemble is mapped to a propagating photon and subjected to Bell state measurements with another single photon that is entangled with the spin wave state of the other ensemble. Two-photon detection events herald the success of teleportation with an average fidelity of 88(7)%. Besides its fundamental interest as a teleportation between two remote macroscopic objects, our technique may be useful for quantum information transfer between different nodes in quantum networks and distributed quantum computing.

  16. Ensemble stacking mitigates biases in inference of synaptic connectivity.

    PubMed

    Chambers, Brendan; Levy, Maayan; Dechery, Joseph B; MacLean, Jason N

    2018-01-01

    A promising alternative to directly measuring the anatomical connections in a neuronal population is inferring the connections from the activity. We employ simulated spiking neuronal networks to compare and contrast commonly used inference methods that identify likely excitatory synaptic connections using statistical regularities in spike timing. We find that simple adjustments to standard algorithms improve inference accuracy: A signing procedure improves the power of unsigned mutual-information-based approaches and a correction that accounts for differences in mean and variance of background timing relationships, such as those expected to be induced by heterogeneous firing rates, increases the sensitivity of frequency-based methods. We also find that different inference methods reveal distinct subsets of the synaptic network and each method exhibits different biases in the accurate detection of reciprocity and local clustering. To correct for errors and biases specific to single inference algorithms, we combine methods into an ensemble. Ensemble predictions, generated as a linear combination of multiple inference algorithms, are more sensitive than the best individual measures alone, and are more faithful to ground-truth statistics of connectivity, mitigating biases specific to single inference methods. These weightings generalize across simulated datasets, emphasizing the potential for the broad utility of ensemble-based approaches.

  17. Experimental Infection of Pig-Tailed Macaques (Macaca nemestrina) with Mycoplasma genitalium.

    PubMed

    Wood, Gwendolyn E; Patton, Dorothy L; Cummings, Peter K; Iverson-Cabral, Stefanie L; Totten, Patricia A

    2017-02-01

    Mycoplasma genitalium is an underappreciated cause of human reproductive tract disease, characterized by persistent, often asymptomatic, infection. Building on our previous experiments using a single female pig-tailed macaque as a model for M. genitalium infection (G. E. Wood, S. L. Iverson-Cabral, D. L. Patton, P. K. Cummings, Y. T. Cosgrove Sweeney, and P. A. Totten, Infect Immun 81:2938-2951, 2013, https://doi.org/10.1128/IAI.01322-12), we cervically inoculated eight additional animals, two of which were simultaneously inoculated in salpingeal tissue autotransplanted into abdominal pockets. Viable M. genitalium persisted in the lower genital tract for 8 weeks in three animals, 4 weeks in two, and 1 week in one; two primates resisted infection. In both animals inoculated in salpingeal pockets, viable M. genitalium was recovered for 2 weeks. Recovery of viable M. genitalium from lower genital tract specimens was improved by diluting the specimen in broth and by Vero cell coculture. Ascension to upper reproductive tract tissues was not detected, even among three persistently infected animals. M. genitalium-specific serum antibodies targeting the immunodominant MgpB and MgpC proteins appeared within 1 week in three animals inoculated both cervically and in salpingeal pockets and in one of three persistently infected animals inoculated only in the cervix. M. genitalium-specific IgG, but not IgA, was detected in cervical secretions of serum antibody-positive animals, predominantly against MgpB and MgpC, but was insufficient to clear M. genitalium lower tract infection. Our findings further support female pig-tailed macaques as a model of M. genitalium infection, persistence, and immune evasion. Copyright © 2017 American Society for Microbiology.

  18. Thorough statistical comparison of machine learning regression models and their ensembles for sub-pixel imperviousness and imperviousness change mapping

    NASA Astrophysics Data System (ADS)

    Drzewiecki, Wojciech

    2017-12-01

    We evaluated the performance of nine machine learning regression algorithms and their ensembles for sub-pixel estimation of impervious areas coverages from Landsat imagery. The accuracy of imperviousness mapping in individual time points was assessed based on RMSE, MAE and R2. These measures were also used for the assessment of imperviousness change intensity estimations. The applicability for detection of relevant changes in impervious areas coverages at sub-pixel level was evaluated using overall accuracy, F-measure and ROC Area Under Curve. The results proved that Cubist algorithm may be advised for Landsat-based mapping of imperviousness for single dates. Stochastic gradient boosting of regression trees (GBM) may be also considered for this purpose. However, Random Forest algorithm is endorsed for both imperviousness change detection and mapping of its intensity. In all applications the heterogeneous model ensembles performed at least as well as the best individual models or better. They may be recommended for improving the quality of sub-pixel imperviousness and imperviousness change mapping. The study revealed also limitations of the investigated methodology for detection of subtle changes of imperviousness inside the pixel. None of the tested approaches was able to reliably classify changed and non-changed pixels if the relevant change threshold was set as one or three percent. Also for fi ve percent change threshold most of algorithms did not ensure that the accuracy of change map is higher than the accuracy of random classifi er. For the threshold of relevant change set as ten percent all approaches performed satisfactory.

  19. Electrochemical immunosensor based on ensemble of nanoelectrodes for immunoglobulin IgY detection: application to identify hen's egg yolk in tempera paintings.

    PubMed

    Bottari, Fabio; Oliveri, Paolo; Ugo, Paolo

    2014-02-15

    A nanostructured electrochemical biosensor for detecting proteins of interest in work of art, in particular in tempera paintings, is presented. To determine egg yolk we focus here on the determination of immunoglobulin IgY. The transducers are nanoelectrode ensembles (NEEs), prepared via membrane templated electroless deposition of gold. Because of their geometrical and diffusion characteristics, NEEs are characterized by significantly low detection limits, moreover they display the capability of capturing proteins by interaction with the polycarbonate membrane of the NEE. At first, the proteic component of the paint is extracted by ultrasonication in an aqueous buffer, then IgY is captured by incubation on the NEE. The immunoglobulin is detected by treatment with anti-IgY labeled with horse radish peroxidase (Anti-IgY-HRP). The binding of the Anti-IgY-HRP is detected by recording the electrocatalytic signal caused by addition of H2O2 and methylene blue. The sensor detection capabilities are tested by analyzing both paint models, prepared in the lab, and real samples, from paintings of the XVIII-XX century. Multivariate exploratory analysis is applied to classify the voltammetric patterns, confirming the capability to differentiate egg-yolk tempera from other kind of tempera binders as well as from acrylic or oil paints. © 2013 Elsevier B.V. All rights reserved.

  20. Cluster ensemble based on Random Forests for genetic data.

    PubMed

    Alhusain, Luluah; Hafez, Alaaeldin M

    2017-01-01

    Clustering plays a crucial role in several application domains, such as bioinformatics. In bioinformatics, clustering has been extensively used as an approach for detecting interesting patterns in genetic data. One application is population structure analysis, which aims to group individuals into subpopulations based on shared genetic variations, such as single nucleotide polymorphisms. Advances in DNA sequencing technology have facilitated the obtainment of genetic datasets with exceptional sizes. Genetic data usually contain hundreds of thousands of genetic markers genotyped for thousands of individuals, making an efficient means for handling such data desirable. Random Forests (RFs) has emerged as an efficient algorithm capable of handling high-dimensional data. RFs provides a proximity measure that can capture different levels of co-occurring relationships between variables. RFs has been widely considered a supervised learning method, although it can be converted into an unsupervised learning method. Therefore, RF-derived proximity measure combined with a clustering technique may be well suited for determining the underlying structure of unlabeled data. This paper proposes, RFcluE, a cluster ensemble approach for determining the underlying structure of genetic data based on RFs. The approach comprises a cluster ensemble framework to combine multiple runs of RF clustering. Experiments were conducted on high-dimensional, real genetic dataset to evaluate the proposed approach. The experiments included an examination of the impact of parameter changes, comparing RFcluE performance against other clustering methods, and an assessment of the relationship between the diversity and quality of the ensemble and its effect on RFcluE performance. This paper proposes, RFcluE, a cluster ensemble approach based on RF clustering to address the problem of population structure analysis and demonstrate the effectiveness of the approach. The paper also illustrates that applying a cluster ensemble approach, combining multiple RF clusterings, produces more robust and higher-quality results as a consequence of feeding the ensemble with diverse views of high-dimensional genetic data obtained through bagging and random subspace, the two key features of the RF algorithm.

  1. Climate Model Ensemble Methodology: Rationale and Challenges

    NASA Astrophysics Data System (ADS)

    Vezer, M. A.; Myrvold, W.

    2012-12-01

    A tractable model of the Earth's atmosphere, or, indeed, any large, complex system, is inevitably unrealistic in a variety of ways. This will have an effect on the model's output. Nonetheless, we want to be able to rely on certain features of the model's output in studies aiming to detect, attribute, and project climate change. For this, we need assurance that these features reflect the target system, and are not artifacts of the unrealistic assumptions that go into the model. One technique for overcoming these limitations is to study ensembles of models which employ different simplifying assumptions and different methods of modelling. One then either takes as reliable certain outputs on which models in the ensemble agree, or takes the average of these outputs as the best estimate. Since the Intergovernmental Panel on Climate Change's Fourth Assessment Report (IPCC AR4) modellers have aimed to improve ensemble analysis by developing techniques to account for dependencies among models, and to ascribe unequal weights to models according to their performance. The goal of this paper is to present as clearly and cogently as possible the rationale for climate model ensemble methodology, the motivation of modellers to account for model dependencies, and their efforts to ascribe unequal weights to models. The method of our analysis is as follows. We will consider a simpler, well-understood case of taking the mean of a number of measurements of some quantity. Contrary to what is sometimes said, it is not a requirement of this practice that the errors of the component measurements be independent; one must, however, compensate for any lack of independence. We will also extend the usual accounts to include cases of unknown systematic error. We draw parallels between this simpler illustration and the more complex example of climate model ensembles, detailing how ensembles can provide more useful information than any of their constituent models. This account emphasizes the epistemic importance of considering degrees of model dependence, and the practice of ascribing unequal weights to models of unequal skill.

  2. Crack detection in oak flooring lamellae using ultrasound-excited thermography

    NASA Astrophysics Data System (ADS)

    Pahlberg, Tobias; Thurley, Matthew; Popovic, Djordje; Hagman, Olle

    2018-01-01

    Today, a large number of people are manually grading and detecting defects in wooden lamellae in the parquet flooring industry. This paper investigates the possibility of using the ensemble methods random forests and boosting to automatically detect cracks using ultrasound-excited thermography and a variety of predictor variables. When friction occurs in thin cracks, they become warm and thus visible to a thermographic camera. Several image processing techniques have been used to suppress the noise and enhance probable cracks in the images. The most successful predictor variables captured the upper part of the heat distribution, such as the maximum temperature, kurtosis and percentile values 92-100 of the edge pixels. The texture in the images was captured by Completed Local Binary Pattern histograms and cracks were also segmented by background suppression and thresholding. The classification accuracy was significantly improved from previous research through added image processing, introduction of more predictors, and by using automated machine learning. The best ensemble methods reach an average classification accuracy of 0.8, which is very close to the authors' own manual attempt at separating the images (0.83).

  3. Distinguishing high and low flow domains in urban drainage systems 2 days ahead using numerical weather prediction ensembles

    NASA Astrophysics Data System (ADS)

    Courdent, Vianney; Grum, Morten; Mikkelsen, Peter Steen

    2018-01-01

    Precipitation constitutes a major contribution to the flow in urban storm- and wastewater systems. Forecasts of the anticipated runoff flows, created from radar extrapolation and/or numerical weather predictions, can potentially be used to optimize operation in both wet and dry weather periods. However, flow forecasts are inevitably uncertain and their use will ultimately require a trade-off between the value of knowing what will happen in the future and the probability and consequence of being wrong. In this study we examine how ensemble forecasts from the HIRLAM-DMI-S05 numerical weather prediction (NWP) model subject to three different ensemble post-processing approaches can be used to forecast flow exceedance in a combined sewer for a wide range of ratios between the probability of detection (POD) and the probability of false detection (POFD). We use a hydrological rainfall-runoff model to transform the forecasted rainfall into forecasted flow series and evaluate three different approaches to establishing the relative operating characteristics (ROC) diagram of the forecast, which is a plot of POD against POFD for each fraction of concordant ensemble members and can be used to select the weight of evidence that matches the desired trade-off between POD and POFD. In the first approach, the rainfall input to the model is calculated for each of 25 ensemble members as a weighted average of rainfall from the NWP cells over the catchment where the weights are proportional to the areal intersection between the catchment and the NWP cells. In the second approach, a total of 2825 flow ensembles are generated using rainfall input from the neighbouring NWP cells up to approximately 6 cells in all directions from the catchment. In the third approach, the first approach is extended spatially by successively increasing the area covered and for each spatial increase and each time step selecting only the cell with the highest intensity resulting in a total of 175 ensemble members. While the first and second approaches have the disadvantage of not covering the full range of the ROC diagram and being computationally heavy, respectively, the third approach leads to both a broad coverage of the ROC diagram range at a relatively low computational cost. A broad coverage of the ROC diagram offers a larger selection of prediction skill to choose from to best match to the prediction purpose. The study distinguishes itself from earlier research in being the first application to urban hydrology, with fast runoff and small catchments that are highly sensitive to local extremes. Furthermore, no earlier reference has been found on the highly efficient third approach using only neighbouring cells with the highest threat to expand the range of the ROC diagram. This study provides an efficient and robust approach to using ensemble rainfall forecasts affected by bias and misplacement errors for predicting flow threshold exceedance in urban drainage systems.

  4. Steric sea level variability (1993-2010) in an ensemble of ocean reanalyses and objective analyses

    NASA Astrophysics Data System (ADS)

    Storto, Andrea; Masina, Simona; Balmaseda, Magdalena; Guinehut, Stéphanie; Xue, Yan; Szekely, Tanguy; Fukumori, Ichiro; Forget, Gael; Chang, You-Soon; Good, Simon A.; Köhl, Armin; Vernieres, Guillaume; Ferry, Nicolas; Peterson, K. Andrew; Behringer, David; Ishii, Masayoshi; Masuda, Shuhei; Fujii, Yosuke; Toyoda, Takahiro; Yin, Yonghong; Valdivieso, Maria; Barnier, Bernard; Boyer, Tim; Lee, Tony; Gourrion, Jérome; Wang, Ou; Heimback, Patrick; Rosati, Anthony; Kovach, Robin; Hernandez, Fabrice; Martin, Matthew J.; Kamachi, Masafumi; Kuragano, Tsurane; Mogensen, Kristian; Alves, Oscar; Haines, Keith; Wang, Xiaochun

    2017-08-01

    Quantifying the effect of the seawater density changes on sea level variability is of crucial importance for climate change studies, as the sea level cumulative rise can be regarded as both an important climate change indicator and a possible danger for human activities in coastal areas. In this work, as part of the Ocean Reanalysis Intercomparison Project, the global and regional steric sea level changes are estimated and compared from an ensemble of 16 ocean reanalyses and 4 objective analyses. These estimates are initially compared with a satellite-derived (altimetry minus gravimetry) dataset for a short period (2003-2010). The ensemble mean exhibits a significant high correlation at both global and regional scale, and the ensemble of ocean reanalyses outperforms that of objective analyses, in particular in the Southern Ocean. The reanalysis ensemble mean thus represents a valuable tool for further analyses, although large uncertainties remain for the inter-annual trends. Within the extended intercomparison period that spans the altimetry era (1993-2010), we find that the ensemble of reanalyses and objective analyses are in good agreement, and both detect a trend of the global steric sea level of 1.0 and 1.1 ± 0.05 mm/year, respectively. However, the spread among the products of the halosteric component trend exceeds the mean trend itself, questioning the reliability of its estimate. This is related to the scarcity of salinity observations before the Argo era. Furthermore, the impact of deep ocean layers is non-negligible on the steric sea level variability (22 and 12 % for the layers below 700 and 1500 m of depth, respectively), although the small deep ocean trends are not significant with respect to the products spread.

  5. Detecting bladder fullness through the ensemble activity patterns of the spinal cord unit population in a somatovisceral convergence environment.

    PubMed

    Park, Jae Hong; Kim, Chang-Eop; Shin, Jaewoo; Im, Changkyun; Koh, Chin Su; Seo, In Seok; Kim, Sang Jeong; Shin, Hyung-Cheul

    2013-10-01

    Chronic monitoring of the state of the bladder can be used to notify patients with urinary dysfunction when the bladder should be voided. Given that many spinal neurons respond both to somatic and visceral inputs, it is necessary to extract bladder information selectively from the spinal cord. Here, we hypothesize that sensory information with distinct modalities should be represented by the distinct ensemble activity patterns within the neuronal population and, therefore, analyzing the activity patterns of the neuronal population could distinguish bladder fullness from somatic stimuli. We simultaneously recorded 26-27 single unit activities in response to bladder distension or tactile stimuli in the dorsal spinal cord of each Sprague-Dawley rat. In order to discriminate between bladder fullness and tactile stimulus inputs, we analyzed the ensemble activity patterns of the entire neuronal population. A support vector machine (SVM) was employed as a classifier, and discrimination performance was measured by k-fold cross-validation tests. Most of the units responding to bladder fullness also responded to the tactile stimuli (88.9-100%). The SVM classifier precisely distinguished the bladder fullness from the somatic input (100%), indicating that the ensemble activity patterns of the unit population in the spinal cord are distinct enough to identify the current input modality. Moreover, our ensemble activity pattern-based classifier showed high robustness against random losses of signals. This study is the first to demonstrate that the two main issues of electroneurographic monitoring of bladder fullness, low signals and selectiveness, can be solved by an ensemble activity pattern-based approach, improving the feasibility of chronic monitoring of bladder fullness by neural recording.

  6. NWP model forecast skill optimization via closure parameter variations

    NASA Astrophysics Data System (ADS)

    Järvinen, H.; Ollinaho, P.; Laine, M.; Solonen, A.; Haario, H.

    2012-04-01

    We present results of a novel approach to tune predictive skill of numerical weather prediction (NWP) models. These models contain tunable parameters which appear in parameterizations schemes of sub-grid scale physical processes. The current practice is to specify manually the numerical parameter values, based on expert knowledge. We developed recently a concept and method (QJRMS 2011) for on-line estimation of the NWP model parameters via closure parameter variations. The method called EPPES ("Ensemble prediction and parameter estimation system") utilizes ensemble prediction infra-structure for parameter estimation in a very cost-effective way: practically no new computations are introduced. The approach provides an algorithmic decision making tool for model parameter optimization in operational NWP. In EPPES, statistical inference about the NWP model tunable parameters is made by (i) generating an ensemble of predictions so that each member uses different model parameter values, drawn from a proposal distribution, and (ii) feeding-back the relative merits of the parameter values to the proposal distribution, based on evaluation of a suitable likelihood function against verifying observations. In this presentation, the method is first illustrated in low-order numerical tests using a stochastic version of the Lorenz-95 model which effectively emulates the principal features of ensemble prediction systems. The EPPES method correctly detects the unknown and wrongly specified parameters values, and leads to an improved forecast skill. Second, results with an ensemble prediction system emulator, based on the ECHAM5 atmospheric GCM show that the model tuning capability of EPPES scales up to realistic models and ensemble prediction systems. Finally, preliminary results of EPPES in the context of ECMWF forecasting system are presented.

  7. Detecting of transient vibration signatures using an improved fast spatial-spectral ensemble kurtosis kurtogram and its applications to mechanical signature analysis of short duration data from rotating machinery

    NASA Astrophysics Data System (ADS)

    Chen, BinQiang; Zhang, ZhouSuo; Zi, YanYang; He, ZhengJia; Sun, Chuang

    2013-10-01

    Detecting transient vibration signatures is of vital importance for vibration-based condition monitoring and fault detection of the rotating machinery. However, raw mechanical signals collected by vibration sensors are generally mixtures of physical vibrations of the multiple mechanical components installed in the examined machinery. Fault-generated incipient vibration signatures masked by interfering contents are difficult to be identified. The fast kurtogram (FK) is a concise and smart gadget for characterizing these vibration features. The multi-rate filter-bank (MRFB) and the spectral kurtosis (SK) indicator of the FK are less powerful when strong interfering vibration contents exist, especially when the FK are applied to vibration signals of short duration. It is encountered that the impulsive interfering contents not authentically induced by mechanical faults complicate the optimal analyzing process and lead to incorrect choosing of the optimal analysis subband, therefore the original FK may leave out the essential fault signatures. To enhance the analyzing performance of FK for industrial applications, an improved version of fast kurtogram, named as "fast spatial-spectral ensemble kurtosis kurtogram", is presented. In the proposed technique, discrete quasi-analytic wavelet tight frame (QAWTF) expansion methods are incorporated as the detection filters. The QAWTF, constructed based on dual tree complex wavelet transform, possesses better vibration transient signature extracting ability and enhanced time-frequency localizability compared with conventional wavelet packet transforms (WPTs). Moreover, in the constructed QAWTF, a non-dyadic ensemble wavelet subband generating strategy is put forward to produce extra wavelet subbands that are capable of identifying fault features located in transition-band of WPT. On the other hand, an enhanced signal impulsiveness evaluating indicator, named "spatial-spectral ensemble kurtosis" (SSEK), is put forward and utilized as the quantitative measure to select optimal analyzing parameters. The SSEK indicator is robuster in evaluating the impulsiveness intensity of vibration signals due to its better suppressing ability of Gaussian noise, harmonics and sporadic impulsive shocks. Numerical validations, an experimental test and two engineering applications were used to verify the effectiveness of the proposed technique. The analyzing results of the numerical validations, experimental tests and engineering applications demonstrate that the proposed technique possesses robuster transient vibration content detecting performance in comparison with the original FK and the WPT-based FK method, especially when they are applied to the processing of vibration signals of relative limited duration.

  8. A microbial sensor for organophosphate hydrolysis exploiting an engineered specificity switch in a transcription factor

    DOE PAGES

    Jha, Ramesh K.; Kern, Theresa L.; Kim, Youngchang; ...

    2016-08-30

    A whole-cell biosensor utilizing a transcription factor (TF) is an effective tool for sensitive and selective detection of specialty chemicals or anthropogenic molecules, but requires an access to an expanded repertoire of TFs. Using ligand docked homology models for binding pocket identification, assisted by conservative mutations in the pocket, we engineered a novel specificity in an Acinetobacter TF, PobR, to ‘sense’ a chemical p-nitrophenol (pNP) and measured the response via a fluorescent protein reporter expressed from a PobR promoter. Out of 10 7 variants of PobR, four were active when pNP was added as an inducer, with two mutants showingmore » a specificity switch from the native effector 4-hydroxybenzoate (4HB). One of the mutants, pNPmut1 was then used to create a smart microbial cell responding to pNP production and detect hydrolysis of an insecticide, paraoxon, in a coupled assay involving phosphotriesterase (PTE) enzyme expressed from a separate promoter. We show that the fluorescence of the cells correlated with the catalytic efficiency of PTE variants, each cell expressed. High selectivity for similar molecules (4HB vs pNP), high sensitivity for pNP detection (~2 μM) and agreement of apo- and holo- structures of PobR scaffold with computational models are notable successes presented in this work.« less

  9. Operation ARGUS 1958.

    DTIC Science & Technology

    1982-04-30

    Nuclear Test Operations South Atlantic ARGUS Christofilos Theory FLORAL ARGUS Effect JASON Van Allen Belts Nuclear Test Personnel Review (MTPR) MIDAS ...precluded radiological exposure. Project 7.3 -- Surface Measurements (Project MIDAS ) Agencies: This project, code-named MIDAS for security reasons, was...weapon casings, but these personnel were badged and equipped with ten self-reading pocket dosimeters as well as alpha-detection equipment provided by the

  10. Missing Fragments: Detecting Cooperative Binding in Fragment-Based Drug Design

    PubMed Central

    2012-01-01

    The aim of fragment-based drug design (FBDD) is to identify molecular fragments that bind to alternate subsites within a given binding pocket leading to cooperative binding when linked. In this study, the binding of fragments to human phenylethanolamine N-methyltransferase is used to illustrate how (a) current protocols may fail to detect fragments that bind cooperatively, (b) theoretical approaches can be used to validate potential hits, and (c) apparent false positives obtained when screening against cocktails of fragments may in fact indicate promising leads. PMID:24900472

  11. The experiment of magnesium ECAP miniplate as alternative biodegradable material (on male white New Zealand rabbits)

    NASA Astrophysics Data System (ADS)

    Wiwanto, Siska; Sulistyani, Lilies Dwi; Latief, Fourier Dzar Eljabbar; Supriadi, Sugeng; Priosoeryanto, Bambang Pontjo; Latief, Benny Syariefsyah

    2018-02-01

    Study of biodegradations of Magnesium ECAP (Equal Channel Angular Pressing) miniplate in the osteosynthesis system has been used as a new material for plate and screw in oral and maxillofacial surgery. This miniplate and screw that were made of Magnesium ECAP were implanted in the femurs of New Zealand rabbits. The degradation process was detected through pocket gas that appeared in hard and soft tissues surrounding in the implanted miniplates and screws. From the changes on the tissues, we can assess the biodegradation process by measuring the gas pocket through micro-CT Scan. Upon the first month of study we euthanized the rabbits and made a micro-CT Scan to see how far the effect of the gas pocket was. Histological analyses were performed to investigate the local tissue response adjacent to the Magnesium ECAP miniplates. We analyzed the femur of a rabbit a month, three months, and five months after implantation. The result showed a degradation rate in the implanted Magnesium ECAP miniplate of 0.61±0.39 mm/year. Unlike the screws, miniplates have higher water content and blood flow than bone, therefore they degrade faster. This study shows promising results for further development of Magnesium ECAP and in the production of osteosynthesis material for rigid fixation in Oral and Maxillofacial skeleton.

  12. Droplet-based immunoassay on a 'sticky' nanofibrous surface for multiplexed and dual detection of bacteria using smartphones.

    PubMed

    Nicolini, Ariana M; Fronczek, Christopher F; Yoon, Jeong-Yeol

    2015-05-15

    We have developed a rapid, sensitive, and specific droplet-based immunoassay for the detection of Escherichia coli and Salmonella within a single-pipetted sample. Polycaprolactone (PCL) electrospun fibers on indium-tin-oxide (ITO) glass provide a sufficient surface to render a non-slip droplet condition, and while the PCL fibers lend a local hydrophilicity (contact angle θ=74°) for sufficient sub-micron particle adhesion, air pockets within the fibers lend an apparent hydrophobicity. Overall, the contact angle of water on this electrospun surface is 119°, and the air pockets cause the droplet to be completely immobile and resistant to movement, protecting it from external vibration. By using both anti-E. coli conjugated, 510 nm diameter green fluorescent particles (480 nm excitation and 520 nm emission) and anti-Salmonella conjugated, 400 nm diameter red fluorescent particles (640 nm excitation and 690 nm emission), we can detect multiple targets in a single droplet. Using appropriate light sources guided by fiber optics, we determined a detection limit of 10(2) CFU mL(-1). Immunoagglutination can be observed under a fluorescence microscope. Fluorescence detection (at the emission wavelength) of immunoagglutination was maximum at 90° from the incident light, while light scattering (at the excitation wavelength) was still present and behaved similarly, indicating the ability of double detection, greatly improving credibility and reproducibility of the assay. A power function (light intensity) simulation of elastic Mie scatter confirmed that both fluorescence and light scattering were present. Due to the size of the fluorescent particles relative to their incident excitation wavelengths, Mie scatter conditions were observed, and fluorescence signals show a similar trend to light scattering signals. Smartphone detection was included for true portable detection, in which the high contact angle pinning of the droplet makes this format re-usable and re-configurable. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. 24 CFR 570.466 - Additional application submission requirements for Pockets of Poverty-employment opportunities.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... requirements for Pockets of Poverty-employment opportunities. 570.466 Section 570.466 Housing and Urban... application submission requirements for Pockets of Poverty—employment opportunities. Applicants for Action Grants under the Pockets of Poverty provision must describe the number and, to the extent possible, the...

  14. 24 CFR 570.466 - Additional application submission requirements for Pockets of Poverty-employment opportunities.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... requirements for Pockets of Poverty-employment opportunities. 570.466 Section 570.466 Housing and Urban... application submission requirements for Pockets of Poverty—employment opportunities. Applicants for Action Grants under the Pockets of Poverty provision must describe the number and, to the extent possible, the...

  15. 24 CFR 570.466 - Additional application submission requirements for Pockets of Poverty-employment opportunities.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... requirements for Pockets of Poverty-employment opportunities. 570.466 Section 570.466 Housing and Urban... application submission requirements for Pockets of Poverty—employment opportunities. Applicants for Action Grants under the Pockets of Poverty provision must describe the number and, to the extent possible, the...

  16. 24 CFR 570.466 - Additional application submission requirements for Pockets of Poverty-employment opportunities.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... requirements for Pockets of Poverty-employment opportunities. 570.466 Section 570.466 Housing and Urban... application submission requirements for Pockets of Poverty—employment opportunities. Applicants for Action Grants under the Pockets of Poverty provision must describe the number and, to the extent possible, the...

  17. 24 CFR 570.466 - Additional application submission requirements for Pockets of Poverty-employment opportunities.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... requirements for Pockets of Poverty-employment opportunities. 570.466 Section 570.466 Housing and Urban... application submission requirements for Pockets of Poverty—employment opportunities. Applicants for Action Grants under the Pockets of Poverty provision must describe the number and, to the extent possible, the...

  18. Single-photon superradiant beating from a Doppler-broadened ladder-type atomic ensemble

    NASA Astrophysics Data System (ADS)

    Lee, Yoon-Seok; Lee, Sang Min; Kim, Heonoh; Moon, Han Seb

    2017-12-01

    We report on heralded-single-photon superradiant beating in the spontaneous four-wave mixing process of Doppler-broadened ladder-type 87Rb atoms. When Doppler-broadened atoms contribute to two-photon coherence, the detection probability amplitudes of the heralded single photons are coherently superposed despite inhomogeneous broadened atomic media. Single-photon superradiant beating is observed, which constitutes evidence for the coherent superposition of two-photon amplitudes from different velocity classes in the Doppler-broadened atomic ensemble. We present a theoretical model in which the single-photon superradiant beating originates from the interference between wavelength-separated two-photon amplitudes via the reabsorption filtering effect.

  19. Entanglement with negative Wigner function of almost 3,000 atoms heralded by one photon.

    PubMed

    McConnell, Robert; Zhang, Hao; Hu, Jiazhong; Ćuk, Senka; Vuletić, Vladan

    2015-03-26

    Quantum-mechanically correlated (entangled) states of many particles are of interest in quantum information, quantum computing and quantum metrology. Metrologically useful entangled states of large atomic ensembles have been experimentally realized, but these states display Gaussian spin distribution functions with a non-negative Wigner quasiprobability distribution function. Non-Gaussian entangled states have been produced in small ensembles of ions, and very recently in large atomic ensembles. Here we generate entanglement in a large atomic ensemble via an interaction with a very weak laser pulse; remarkably, the detection of a single photon prepares several thousand atoms in an entangled state. We reconstruct a negative-valued Wigner function--an important hallmark of non-classicality--and verify an entanglement depth (the minimum number of mutually entangled atoms) of 2,910 ± 190 out of 3,100 atoms. Attaining such a negative Wigner function and the mutual entanglement of virtually all atoms is unprecedented for an ensemble containing more than a few particles. Although the achieved purity of the state is slightly below the threshold for entanglement-induced metrological gain, further technical improvement should allow the generation of states that surpass this threshold, and of more complex Schrödinger cat states for quantum metrology and information processing. More generally, our results demonstrate the power of heralded methods for entanglement generation, and illustrate how the information contained in a single photon can drastically alter the quantum state of a large system.

  20. POVME 2.0: An Enhanced Tool for Determining Pocket Shape and Volume Characteristics

    PubMed Central

    2015-01-01

    Analysis of macromolecular/small-molecule binding pockets can provide important insights into molecular recognition and receptor dynamics. Since its release in 2011, the POVME (POcket Volume MEasurer) algorithm has been widely adopted as a simple-to-use tool for measuring and characterizing pocket volumes and shapes. We here present POVME 2.0, which is an order of magnitude faster, has improved accuracy, includes a graphical user interface, and can produce volumetric density maps for improved pocket analysis. To demonstrate the utility of the algorithm, we use it to analyze the binding pocket of RNA editing ligase 1 from the unicellular parasite Trypanosoma brucei, the etiological agent of African sleeping sickness. The POVME analysis characterizes the full dynamics of a potentially druggable transient binding pocket and so may guide future antitrypanosomal drug-discovery efforts. We are hopeful that this new version will be a useful tool for the computational- and medicinal-chemist community. PMID:25400521

  1. Current switching ratio optimization using dual pocket doping engineering

    NASA Astrophysics Data System (ADS)

    Dash, Sidhartha; Sahoo, Girija Shankar; Mishra, Guru Prasad

    2018-01-01

    This paper presents a smart idea to maximize current switching ratio of cylindrical gate tunnel FET (CGT) by growing pocket layers in both source and channel region. The pocket layers positioned in the source and channel of the device provides significant improvement in ON-state and OFF-state current respectively. The dual pocket doped cylindrical gate TFET (DP-CGT) exhibits much superior performance in term of drain current, transconductance and current ratio as compared to conventional CGT, channel pocket doped CGT (CP-CGT) and source pocket doped CGT (SP-CGT). Further, the current ratio has been optimized w.r.t. width and instantaneous position both the pocket layers. The much improved current ratio and low power consumption makes the proposed device suitable for low-power and high speed application. The simulation work of DP-CGT is done using 3D Sentaurus TCAD device simulator from Synopsys.

  2. Translational Symmetry Breaking and Gapping of Heavy-Quasiparticle Pocket in URu2Si2

    PubMed Central

    Yoshida, Rikiya; Tsubota, Koji; Ishiga, Toshihiko; Sunagawa, Masanori; Sonoyama, Jyunki; Aoki, Dai; Flouquet, Jacques; Wakita, Takanori; Muraoka, Yuji; Yokoya, Takayoshi

    2013-01-01

    URu2Si2 is a uranium compound that exhibits a so-called ‘hidden-order’ transition at ~17.5 K. However, the order parameter of this second-order transition as well as many of its microscopic properties remain unclarified despite considerable research. One of the key questions in this regard concerns the type of spontaneous symmetry breaking occurring at the transition; although rotational symmetry breaking has been detected, it is not clear whether another type of symmetry breaking also occurs. Another key question concerns the property of Fermi-surface gapping in the momentum space. Here we address these key questions by a momentum-dependent observation of electronic states at the transition employing ultrahigh-resolution three-dimensional angle-resolved photoemission spectroscopy. Our results provide compelling evidence of the spontaneous breaking of the lattice's translational symmetry and particle-hole asymmetric gapping of a heavy quasiparticle pocket at the transition. PMID:24084937

  3. CALUTRON STRUCTURE

    DOEpatents

    Price, D.

    1958-09-01

    An improved means is described for removably installing and supporting a collector pocket in a calutron. The salient feature of the invention is the support of the collector pocket by means of suspension bolts engaging the pocket at a point intermediate the top and bottom of the pocket, and having nuts so arranged that by turing the desired predetermined position.

  4. Exploitation of pocket gophers and their food caches by grizzly bears

    USGS Publications Warehouse

    Mattson, D.J.

    2004-01-01

    I investigated the exploitation of pocket gophers (Thomomys talpoides) by grizzly bears (Ursus arctos horribilis) in the Yellowstone region of the United States with the use of data collected during a study of radiomarked bears in 1977-1992. My analysis focused on the importance of pocket gophers as a source of energy and nutrients, effects of weather and site features, and importance of pocket gophers to grizzly bears in the western contiguous United States prior to historical extirpations. Pocket gophers and their food caches were infrequent in grizzly bear feces, although foraging for pocket gophers accounted for about 20-25% of all grizzly bear feeding activity during April and May. Compared with roots individually excavated by bears, pocket gopher food caches were less digestible but more easily dug out. Exploitation of gopher food caches by grizzly bears was highly sensitive to site and weather conditions and peaked during and shortly after snowmelt. This peak coincided with maximum success by bears in finding pocket gopher food caches. Exploitation was most frequent and extensive on gently sloping nonforested sites with abundant spring beauty (Claytonia lanceolata) and yampah (Perdieridia gairdneri). Pocket gophers are rare in forests, and spring beauty and yampah roots are known to be important foods of both grizzly bears and burrowing rodents. Although grizzly bears commonly exploit pocket gophers only in the Yellowstone region, this behavior was probably widespread in mountainous areas of the western contiguous United States prior to extirpations of grizzly bears within the last 150 years.

  5. Proton pump inhibitors reduce the size and acidity of the acid pocket in the stomach.

    PubMed

    Rohof, Wout O; Bennink, Roelof J; Boeckxstaens, Guy E

    2014-07-01

    The gastric acid pocket is believed to be the reservoir from which acid reflux events originate. Little is known about how changes in position, size, and acidity of the acid pocket contribute to the therapeutic effect of proton pump inhibitors (PPIs) in patients with gastroesophageal reflux disease (GERD). Thirty-six patients with GERD (18 not taking PPIs, 18 taking PPIs; 19 men; age, 55 ± 2.1 y) were analyzed by concurrent high-resolution manometry and pH-impedance monitoring after a standardized meal. The acid pocket was visualized using scintigraphy after intravenous administration of (99m)technetium-pertechnetate. The size of the acid pocket was measured and its position was determined, relative to the diaphragm, using radionuclide markers on a high-resolution manometry catheter. At the end of the study, the acid pocket was aspirated, and its pH level was measured. The number of reflux episodes was comparable between patients on and off PPIs, but the number of acid reflux episodes was reduced significantly in patients on PPIs. In patients on PPIs, the acid pocket was smaller and more frequently located below the diaphragm. The mean pH of the acid pocket was significantly lower in patients not taking PPIs (n = 6) than in those who were (n = 16) (0.9; range, 0.7-1.2 vs 4.0; range, 1.6-5.9; P < .001). The pH of acid pockets correlated significantly with the lowest pH values measured for refluxate (r = 0.72; P < .01). Based on analyses of acid pockets in patients with GERD, the acid pocket appears to be a reservoir from which reflux occurs when patients are receiving PPIs. PPIs might affect the size, acidity, or position of the acid pocket, which contributes to the efficacy in patients with GERD. Copyright © 2014 AGA Institute. Published by Elsevier Inc. All rights reserved.

  6. Finding Snowmageddon: Detecting and quantifying northeastern U.S. snowstorms in a multi-decadal global climate ensemble

    NASA Astrophysics Data System (ADS)

    Zarzycki, C. M.

    2017-12-01

    The northeastern coast of the United States is particularly vulnerable to impacts from extratropical cyclones during winter months, which produce heavy precipitation, high winds, and coastal flooding. These impacts are amplified by the proximity of major population centers to common storm tracks and include risks to health and welfare, massive transportation disruption, lost spending productivity, power outages, and structural damage. Historically, understanding regional snowfall in climate models has generally centered around seasonal mean climatologies even though major impacts typically occur at the scales of hours to days. To quantify discrete snowstorms at the event level, we describe a new objective detection algorithm for gridded data based on the Regional Snowfall Index (RSI) produced by NOAA's National Centers for Environmental Information. The algorithm uses 6-hourly precipitation to collocate storm-integrated snowfall with population density to produce a distribution of snowstorms with societally relevant impacts. The algorithm is tested on the Community Earth System Model (CESM) Large Ensemble Project (LENS) data. Present day distributions of snowfall events is well-replicated within the ensemble. We discuss classification sensitivities to assumptions made in determining precipitation phase and snow water equivalent. We also explore projected reductions in mid-century and end-of-century snowstorms due to changes in snowfall rates and precipitation phase, as well as highlight potential improvements in storm representation from refined horizontal resolution in model simulations.

  7. An integrated logic system for time-resolved fluorescent "turn-on" detection of cysteine and histidine base on terbium (III) coordination polymer-copper (II) ensemble.

    PubMed

    Xue, Shi-Fan; Lu, Ling-Fei; Wang, Qi-Xian; Zhang, Shengqiang; Zhang, Min; Shi, Guoyue

    2016-09-01

    Cysteine (Cys) and histidine (His) both play indispensable roles in many important biological activities. An enhanced Cys level can result in Alzheimer's and cardiovascular diseases. Likewise, His plays a significant role in the growth and repair of tissues as well as in controlling the transmission of metal elements in biological bases. Therefore, it is meaningful to detect Cys and His simultaneously. In this work, a novel terbium (III) coordination polymer-Cu (II) ensemble (Tb(3+)/GMP-Cu(2+)) was proposed. Guanosine monophosphate (GMP) can self-assemble with Tb(3+) to form a supramolecular Tb(3+) coordination polymer (Tb(3+)/GMP), which can be suited as a time-resolved probe. The fluorescence of Tb(3+)/GMP would be quenched upon the addition of Cu(2+), and then the fluorescence of the as-prepared Tb(3+)/GMP-Cu(2+) ensemble would be restored again in the presence of Cys or His. By incorporating N-Ethylmaleimide and Ni(2+) as masking agents, Tb(3+)/GMP-Cu(2+) was further exploited as an integrated logic system and a specific time-resolved fluorescent "turn-on" assay for simultaneously sensing His and Cys was designed. Meanwhile it can also be used in plasma samples, showing great potential to meet the need of practical application. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. A Fuzzy Integral Ensemble Method in Visual P300 Brain-Computer Interface.

    PubMed

    Cavrini, Francesco; Bianchi, Luigi; Quitadamo, Lucia Rita; Saggio, Giovanni

    2016-01-01

    We evaluate the possibility of application of combination of classifiers using fuzzy measures and integrals to Brain-Computer Interface (BCI) based on electroencephalography. In particular, we present an ensemble method that can be applied to a variety of systems and evaluate it in the context of a visual P300-based BCI. Offline analysis of data relative to 5 subjects lets us argue that the proposed classification strategy is suitable for BCI. Indeed, the achieved performance is significantly greater than the average of the base classifiers and, broadly speaking, similar to that of the best one. Thus the proposed methodology allows realizing systems that can be used by different subjects without the need for a preliminary configuration phase in which the best classifier for each user has to be identified. Moreover, the ensemble is often capable of detecting uncertain situations and turning them from misclassifications into abstentions, thereby improving the level of safety in BCI for environmental or device control.

  9. Conformational ensembles of RNA oligonucleotides from integrating NMR and molecular simulations.

    PubMed

    Bottaro, Sandro; Bussi, Giovanni; Kennedy, Scott D; Turner, Douglas H; Lindorff-Larsen, Kresten

    2018-05-01

    RNA molecules are key players in numerous cellular processes and are characterized by a complex relationship between structure, dynamics, and function. Despite their apparent simplicity, RNA oligonucleotides are very flexible molecules, and understanding their internal dynamics is particularly challenging using experimental data alone. We show how to reconstruct the conformational ensemble of four RNA tetranucleotides by combining atomistic molecular dynamics simulations with nuclear magnetic resonance spectroscopy data. The goal is achieved by reweighting simulations using a maximum entropy/Bayesian approach. In this way, we overcome problems of current simulation methods, as well as in interpreting ensemble- and time-averaged experimental data. We determine the populations of different conformational states by considering several nuclear magnetic resonance parameters and point toward properties that are not captured by state-of-the-art molecular force fields. Although our approach is applied on a set of model systems, it is fully general and may be used to study the conformational dynamics of flexible biomolecules and to detect inaccuracies in molecular dynamics force fields.

  10. A hybrid method for classifying cognitive states from fMRI data.

    PubMed

    Parida, S; Dehuri, S; Cho, S-B; Cacha, L A; Poznanski, R R

    2015-09-01

    Functional magnetic resonance imaging (fMRI) makes it possible to detect brain activities in order to elucidate cognitive-states. The complex nature of fMRI data requires under-standing of the analyses applied to produce possible avenues for developing models of cognitive state classification and improving brain activity prediction. While many models of classification task of fMRI data analysis have been developed, in this paper, we present a novel hybrid technique through combining the best attributes of genetic algorithms (GAs) and ensemble decision tree technique that consistently outperforms all other methods which are being used for cognitive-state classification. Specifically, this paper illustrates the combined effort of decision-trees ensemble and GAs for feature selection through an extensive simulation study and discusses the classification performance with respect to fMRI data. We have shown that our proposed method exhibits significant reduction of the number of features with clear edge classification accuracy over ensemble of decision-trees.

  11. A pocket of variability in Pinus rigida

    Treesearch

    F. Thomas Ledig; John H. Fryer

    1971-01-01

    Steady state gene frequencies around a pocket of differential fitness have been formulated by Hanson (1966) in a generalization of the work of Haldane (1948). A pocket of differential fitness would result in a pocket-of-variability, assuming that the radius of the area of contrasting fitness was large in relation to the vagility of the organism. Conversely, the absence...

  12. Generating highly accurate prediction hypotheses through collaborative ensemble learning

    NASA Astrophysics Data System (ADS)

    Arsov, Nino; Pavlovski, Martin; Basnarkov, Lasko; Kocarev, Ljupco

    2017-03-01

    Ensemble generation is a natural and convenient way of achieving better generalization performance of learning algorithms by gathering their predictive capabilities. Here, we nurture the idea of ensemble-based learning by combining bagging and boosting for the purpose of binary classification. Since the former improves stability through variance reduction, while the latter ameliorates overfitting, the outcome of a multi-model that combines both strives toward a comprehensive net-balancing of the bias-variance trade-off. To further improve this, we alter the bagged-boosting scheme by introducing collaboration between the multi-model’s constituent learners at various levels. This novel stability-guided classification scheme is delivered in two flavours: during or after the boosting process. Applied among a crowd of Gentle Boost ensembles, the ability of the two suggested algorithms to generalize is inspected by comparing them against Subbagging and Gentle Boost on various real-world datasets. In both cases, our models obtained a 40% generalization error decrease. But their true ability to capture details in data was revealed through their application for protein detection in texture analysis of gel electrophoresis images. They achieve improved performance of approximately 0.9773 AUROC when compared to the AUROC of 0.9574 obtained by an SVM based on recursive feature elimination.

  13. Resonant optical spectroscopy and coherent control of C r4 + spin ensembles in SiC and GaN

    NASA Astrophysics Data System (ADS)

    Koehl, William F.; Diler, Berk; Whiteley, Samuel J.; Bourassa, Alexandre; Son, N. T.; Janzén, Erik; Awschalom, David D.

    2017-01-01

    Spins bound to point defects are increasingly viewed as an important resource for solid-state implementations of quantum information and spintronic technologies. In particular, there is a growing interest in the identification of new classes of defect spin that can be controlled optically. Here, we demonstrate ensemble optical spin polarization and optically detected magnetic resonance (ODMR) of the S = 1 electronic ground state of chromium (C r4 + ) impurities in silicon carbide (SiC) and gallium nitride (GaN). Spin polarization is made possible by the narrow optical linewidths of these ensembles (<8.5 GHz), which are similar in magnitude to the ground state zero-field spin splitting energies of the ions at liquid helium temperatures. This allows us to optically resolve individual spin sublevels within the ensembles at low magnetic fields using resonant excitation from a cavity-stabilized, narrow-linewidth laser. Additionally, these near-infrared emitters possess exceptionally weak phonon sidebands, ensuring that >73% of the overall optical emission is contained with the defects' zero-phonon lines. These characteristics make this semiconductor-based, transition metal impurity system a promising target for further study in the ongoing effort to integrate optically active quantum states within common optoelectronic materials.

  14. Quantum teleportation between remote atomic-ensemble quantum memories

    PubMed Central

    Bao, Xiao-Hui; Xu, Xiao-Fan; Li, Che-Ming; Yuan, Zhen-Sheng; Lu, Chao-Yang; Pan, Jian-Wei

    2012-01-01

    Quantum teleportation and quantum memory are two crucial elements for large-scale quantum networks. With the help of prior distributed entanglement as a “quantum channel,” quantum teleportation provides an intriguing means to faithfully transfer quantum states among distant locations without actual transmission of the physical carriers [Bennett CH, et al. (1993) Phys Rev Lett 70(13):1895–1899]. Quantum memory enables controlled storage and retrieval of fast-flying photonic quantum bits with stationary matter systems, which is essential to achieve the scalability required for large-scale quantum networks. Combining these two capabilities, here we realize quantum teleportation between two remote atomic-ensemble quantum memory nodes, each composed of ∼108 rubidium atoms and connected by a 150-m optical fiber. The spin wave state of one atomic ensemble is mapped to a propagating photon and subjected to Bell state measurements with another single photon that is entangled with the spin wave state of the other ensemble. Two-photon detection events herald the success of teleportation with an average fidelity of 88(7)%. Besides its fundamental interest as a teleportation between two remote macroscopic objects, our technique may be useful for quantum information transfer between different nodes in quantum networks and distributed quantum computing. PMID:23144222

  15. Benchmarking Commercial Conformer Ensemble Generators.

    PubMed

    Friedrich, Nils-Ole; de Bruyn Kops, Christina; Flachsenberg, Florian; Sommer, Kai; Rarey, Matthias; Kirchmair, Johannes

    2017-11-27

    We assess and compare the performance of eight commercial conformer ensemble generators (ConfGen, ConfGenX, cxcalc, iCon, MOE LowModeMD, MOE Stochastic, MOE Conformation Import, and OMEGA) and one leading free algorithm, the distance geometry algorithm implemented in RDKit. The comparative study is based on a new version of the Platinum Diverse Dataset, a high-quality benchmarking dataset of 2859 protein-bound ligand conformations extracted from the PDB. Differences in the performance of commercial algorithms are much smaller than those observed for free algorithms in our previous study (J. Chem. Inf. 2017, 57, 529-539). For commercial algorithms, the median minimum root-mean-square deviations measured between protein-bound ligand conformations and ensembles of a maximum of 250 conformers are between 0.46 and 0.61 Å. Commercial conformer ensemble generators are characterized by their high robustness, with at least 99% of all input molecules successfully processed and few or even no substantial geometrical errors detectable in their output conformations. The RDKit distance geometry algorithm (with minimization enabled) appears to be a good free alternative since its performance is comparable to that of the midranked commercial algorithms. Based on a statistical analysis, we elaborate on which algorithms to use and how to parametrize them for best performance in different application scenarios.

  16. Resonant optical spectroscopy and coherent control of C r 4 + spin ensembles in SiC and GaN

    DOE PAGES

    Koehl, William F.; Diler, Berk; Whiteley, Samuel J.; ...

    2017-01-15

    Spins bound to point defects are increasingly viewed as an important resource for solid-state implementations of quantum information technologies. In particular, there is a growing interest in the identification of new classes of defect spin that can be controlled optically. Here we demonstrate ensemble optical spin polarization and optically detected magnetic resonance (ODMR) of the S = 1 electronic ground state of chromium (Cr 4+) impurities in silicon carbide (SiC) and gallium nitride (GaN). Polarization is made possible by the narrow optical linewidths of these ensembles (< 8.5 GHz), which are similar in magnitude to the ground state zero-field spinmore » splitting energies of the ions at liquid helium temperatures. We therefore are able to optically resolve individual spin sublevels within the ensembles at low magnetic fields using resonant excitation from a cavity-stabilized, narrow-linewidth laser. Additionally, these near-infrared emitters possess exceptionally weak phonon sidebands, ensuring that > 73% of the overall optical emission is contained with the defects’ zero-phonon lines. Lastly, these characteristics make this semiconductor-based, transition metal impurity system a promising target for further study in the ongoing effort to integrate optically active quantum states within common optoelectronic materials.« less

  17. Applications of Graph-Theoretic Tests to Online Change Detection

    DTIC Science & Technology

    2014-05-09

    NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION REPORT ...assessment, crime investigation, and environmental field analysis. Our work offers a new tool for change detection that can be employed in real- time in very...this paper such MSTs and bipartite matchings. Ruth (2009) reports run times for MNBM ensembles created using Derigs’ (1998) algorithm on the order of

  18. Highly selective and sensitive macrocycle-based dinuclear foldamer for fluorometric and colorimetric sensing of citrate in water.

    PubMed

    Rhaman, Md Mhahabubur; Hasan, Mohammad H; Alamgir, Azmain; Xu, Lihua; Powell, Douglas R; Wong, Bryan M; Tandon, Ritesh; Hossain, Md Alamgir

    2018-01-10

    The selective detection of citrate anions is essential for various biological functions in living systems. A quantitative assessment of citrate is required for the diagnosis of various diseases in the human body; however, it is extremely challenging to develop efficient fluorescence and color-detecting molecular probes for sensing citrate in water. Herein, we report a macrocycle-based dinuclear foldamer (1) assembled with eosin Y (EY) that has been studied for anion binding by fluorescence and colorimetric techniques in water at neutral pH. Results from the fluorescence titrations reveal that the 1·EY ensemble strongly binds citrate anions, showing remarkable selectivity over a wide range of inorganic and carboxylate anions. The addition of citrate anions to the 1·EY adduct led to a large fluorescence enhancement, displaying a detectable color change under both visible and UV light in water up to 2 μmol. The biocompatibility of 1·EY as an intracellular carrier in a biological system was evaluated on primary human foreskin fibroblast (HF) cells, showing an excellent cell viability. The strong binding properties of the ensemble allow it to be used as a highly sensitive, detective probe for biologically relevant citrate anions in various applications.

  19. Kepler Mission: End-to-End System Demonstration

    NASA Technical Reports Server (NTRS)

    Borucki, William; Koch, D.; Dunham, E.; Jenkins, J.; Witteborn, F.; Updike, T.; DeVincenzi, Donald L. (Technical Monitor)

    2000-01-01

    A test facility has been constructed to demonstrate the capability of differential ensemble photometry to detect transits of Earth-size planets orbiting solar-like stars. The main objective is to determine the effects of various noise sources on the capability of a CCD photometer to maintain a system relative precision of 1 x $10^(-5)$ for mv = 12 stars in the presence of system-induced noise sources. The facility includes a simulated star field, fast optics to simulate the telescope, a thinned back-illuminated CCD similar to those to be used on the spacecraft and computers to perform the onboard control, data processing and extraction. The test structure is thermally and mechanically isolated so that each source of noise can be introduced in a controlled fashion and evaluated for its contribution to the total noise budget. The effects of pointing errors or a changing thermal environment are imposed by piezo-electric devices. Transits are injected by heating small wires crossing apertures in the star plate. Signals as small as those from terrestrial-size transits of solar-like stars are introduced to demonstrate that such planets can be detected under realistic noise conditions. Examples of imposing several noise sources and the resulting detectabilities are presented. These show that a differential ensemble photometric approach CCD photometer can readily detect signals associated with Earth-size transits.

  20. Extracting foreground ensemble features to detect abnormal crowd behavior in intelligent video-surveillance systems

    NASA Astrophysics Data System (ADS)

    Chan, Yi-Tung; Wang, Shuenn-Jyi; Tsai, Chung-Hsien

    2017-09-01

    Public safety is a matter of national security and people's livelihoods. In recent years, intelligent video-surveillance systems have become important active-protection systems. A surveillance system that provides early detection and threat assessment could protect people from crowd-related disasters and ensure public safety. Image processing is commonly used to extract features, e.g., people, from a surveillance video. However, little research has been conducted on the relationship between foreground detection and feature extraction. Most current video-surveillance research has been developed for restricted environments, in which the extracted features are limited by having information from a single foreground; they do not effectively represent the diversity of crowd behavior. This paper presents a general framework based on extracting ensemble features from the foreground of a surveillance video to analyze a crowd. The proposed method can flexibly integrate different foreground-detection technologies to adapt to various monitored environments. Furthermore, the extractable representative features depend on the heterogeneous foreground data. Finally, a classification algorithm is applied to these features to automatically model crowd behavior and distinguish an abnormal event from normal patterns. The experimental results demonstrate that the proposed method's performance is both comparable to that of state-of-the-art methods and satisfies the requirements of real-time applications.

  1. Multi-categorical deep learning neural network to classify retinal images: A pilot study employing small database.

    PubMed

    Choi, Joon Yul; Yoo, Tae Keun; Seo, Jeong Gi; Kwak, Jiyong; Um, Terry Taewoong; Rim, Tyler Hyungtaek

    2017-01-01

    Deep learning emerges as a powerful tool for analyzing medical images. Retinal disease detection by using computer-aided diagnosis from fundus image has emerged as a new method. We applied deep learning convolutional neural network by using MatConvNet for an automated detection of multiple retinal diseases with fundus photographs involved in STructured Analysis of the REtina (STARE) database. Dataset was built by expanding data on 10 categories, including normal retina and nine retinal diseases. The optimal outcomes were acquired by using a random forest transfer learning based on VGG-19 architecture. The classification results depended greatly on the number of categories. As the number of categories increased, the performance of deep learning models was diminished. When all 10 categories were included, we obtained results with an accuracy of 30.5%, relative classifier information (RCI) of 0.052, and Cohen's kappa of 0.224. Considering three integrated normal, background diabetic retinopathy, and dry age-related macular degeneration, the multi-categorical classifier showed accuracy of 72.8%, 0.283 RCI, and 0.577 kappa. In addition, several ensemble classifiers enhanced the multi-categorical classification performance. The transfer learning incorporated with ensemble classifier of clustering and voting approach presented the best performance with accuracy of 36.7%, 0.053 RCI, and 0.225 kappa in the 10 retinal diseases classification problem. First, due to the small size of datasets, the deep learning techniques in this study were ineffective to be applied in clinics where numerous patients suffering from various types of retinal disorders visit for diagnosis and treatment. Second, we found that the transfer learning incorporated with ensemble classifiers can improve the classification performance in order to detect multi-categorical retinal diseases. Further studies should confirm the effectiveness of algorithms with large datasets obtained from hospitals.

  2. A GPU-Parallelized Eigen-Based Clutter Filter Framework for Ultrasound Color Flow Imaging.

    PubMed

    Chee, Adrian J Y; Yiu, Billy Y S; Yu, Alfred C H

    2017-01-01

    Eigen-filters with attenuation response adapted to clutter statistics in color flow imaging (CFI) have shown improved flow detection sensitivity in the presence of tissue motion. Nevertheless, its practical adoption in clinical use is not straightforward due to the high computational cost for solving eigendecompositions. Here, we provide a pedagogical description of how a real-time computing framework for eigen-based clutter filtering can be developed through a single-instruction, multiple data (SIMD) computing approach that can be implemented on a graphical processing unit (GPU). Emphasis is placed on the single-ensemble-based eigen-filtering approach (Hankel singular value decomposition), since it is algorithmically compatible with GPU-based SIMD computing. The key algebraic principles and the corresponding SIMD algorithm are explained, and annotations on how such algorithm can be rationally implemented on the GPU are presented. Real-time efficacy of our framework was experimentally investigated on a single GPU device (GTX Titan X), and the computing throughput for varying scan depths and slow-time ensemble lengths was studied. Using our eigen-processing framework, real-time video-range throughput (24 frames/s) can be attained for CFI frames with full view in azimuth direction (128 scanlines), up to a scan depth of 5 cm ( λ pixel axial spacing) for slow-time ensemble length of 16 samples. The corresponding CFI image frames, with respect to the ones derived from non-adaptive polynomial regression clutter filtering, yielded enhanced flow detection sensitivity in vivo, as demonstrated in a carotid imaging case example. These findings indicate that the GPU-enabled eigen-based clutter filtering can improve CFI flow detection performance in real time.

  3. Integrated ensemble noise-reconstructed empirical mode decomposition for mechanical fault detection

    NASA Astrophysics Data System (ADS)

    Yuan, Jing; Ji, Feng; Gao, Yuan; Zhu, Jun; Wei, Chenjun; Zhou, Yu

    2018-05-01

    A new branch of fault detection is utilizing the noise such as enhancing, adding or estimating the noise so as to improve the signal-to-noise ratio (SNR) and extract the fault signatures. Hereinto, ensemble noise-reconstructed empirical mode decomposition (ENEMD) is a novel noise utilization method to ameliorate the mode mixing and denoised the intrinsic mode functions (IMFs). Despite the possibility of superior performance in detecting weak and multiple faults, the method still suffers from the major problems of the user-defined parameter and the powerless capability for a high SNR case. Hence, integrated ensemble noise-reconstructed empirical mode decomposition is proposed to overcome the drawbacks, improved by two noise estimation techniques for different SNRs as well as the noise estimation strategy. Independent from the artificial setup, the noise estimation by the minimax thresholding is improved for a low SNR case, which especially shows an outstanding interpretation for signature enhancement. For approximating the weak noise precisely, the noise estimation by the local reconfiguration using singular value decomposition (SVD) is proposed for a high SNR case, which is particularly powerful for reducing the mode mixing. Thereinto, the sliding window for projecting the phase space is optimally designed by the correlation minimization. Meanwhile, the reasonable singular order for the local reconfiguration to estimate the noise is determined by the inflection point of the increment trend of normalized singular entropy. Furthermore, the noise estimation strategy, i.e. the selection approaches of the two estimation techniques along with the critical case, is developed and discussed for different SNRs by means of the possible noise-only IMF family. The method is validated by the repeatable simulations to demonstrate the synthetical performance and especially confirm the capability of noise estimation. Finally, the method is applied to detect the local wear fault from a dual-axis stabilized platform and the gear crack from an operating electric locomotive to verify its effectiveness and feasibility.

  4. The 2.1Å Crystal Structure of an Acyl-CoA Synthetase from Methanosarcina acetivorans reveals an alternate acyl binding pocket for small branched acyl substrates†,‡

    PubMed Central

    Shah, Manish B.; Ingram-Smith, Cheryl; Cooper, Leroy L.; Qu, Jun; Meng, Yu; Smith, Kerry S.; Gulick, Andrew M.

    2009-01-01

    The acyl-AMP forming family of adenylating enzymes catalyze two-step reactions to activate a carboxylate with the chemical energy derived from ATP hydrolysis. X-ray crystal structures have been determined for multiple members of this family and, together with biochemical studies, provide insights into the active site and catalytic mechanisms used by these enzymes. These studies have shown that the enzymes use a domain rotation of 140° to reconfigure a single active site to catalyze the two partial reactions. We present here the crystal structure of a new medium chain acyl-CoA synthetase from Methanosarcina acetivorans. The binding pocket for the three substrates is analyzed, with many conserved residues present in the AMP binding pocket. The CoA binding pocket is compared to the pockets of both acetyl-CoA synthetase and 4-chlorobenzoate:CoA ligase. Most interestingly, the acyl binding pocket of the new structure is compared with other acyl- and aryl-CoA synthetases. A comparison of the acyl-binding pocket of the acyl-CoA synthetase from M. acetivorans with other structures identifies a shallow pocket that is used to bind the medium chain carboxylates. These insights emphasize the high sequence and structural diversity among this family in the area of the acyl binding pocket. PMID:19544569

  5. The impact of health insurance programs on out-of-pocket expenditures in Indonesia: an increase or a decrease?

    PubMed

    Aji, Budi; De Allegri, Manuela; Souares, Aurelia; Sauerborn, Rainer

    2013-07-18

    We used panel data from the Indonesian Family Life Survey to investigate the impact of health insurance programs on reducing out-of-pocket expenditures. We employed three linear panel data models, two of which accounted for endogeneity: pooled ordinary least squares (OLS), pooled two-stage least squares (2SLS) for instrumental variable (IV), and fixed effects (FE). The study revealed that two health insurance programs had a significantly negative impact on out-of-pocket expenditures by using IV estimates. In the IV model, Askeskin decreased out-of-pocket expenditures by 34% and Askes by 55% compared with non-Askeskin and non-Askes, respectively, while Jamsostek was found to bear a nonsignificant effect on out-of-pocket expenditures. In the FE model, only Askeskin had a significant negative effect with an 11% reduction on out-of-pocket expenditures. This study showed that two large existing health insurance programs in Indonesia, Askeskin and Askes, effectively reduced household out-of-pocket expenditures. The ability of programs to offer financial protection by reducing out-of-pocket expenditures is likely to be a direct function of their benefits package and co-payment policies.

  6. The acid pocket: a target for treatment in reflux disease?

    PubMed

    Kahrilas, Peter J; McColl, Kenneth; Fox, Mark; O'Rourke, Lisa; Sifrim, Daniel; Smout, Andre J P M; Boeckxstaens, Guy

    2013-07-01

    The nadir esophageal pH of reflux observed during pH monitoring in the postprandial period is often more acidic than the concomitant intragastric pH. This paradox prompted the discovery of the "acid pocket", an area of unbuffered gastric acid that accumulates in the proximal stomach after meals and serves as the reservoir for acid reflux in healthy individuals and gastroesophageal reflux disease (GERD) patients. However, there are differentiating features between these populations in the size and position of the acid pocket, with GERD patients predisposed to upward migration of the proximal margin onto the esophageal mucosa, particularly when supine. This upward migration of acid, sometimes referred to as an "acid film", likely contributes to mucosal pathology in the region of the squamocolumnar junction. Furthermore, movement of the acid pocket itself to a supradiaphragmatic location with hiatus hernia increases the propensity for acid reflux by all conventional mechanisms. Consequently, the acid pocket is an attractive target for GERD therapy. It may be targeted in a global way with proton pump inhibitors that attenuate acid pocket development, or with alginate/antacid combinations that colocalize with the acid pocket and displace it distally, thereby demonstrating the potential for selective targeting of the acid pocket in GERD.

  7. The Impact of Health Insurance Programs on Out-of-Pocket Expenditures in Indonesia: An Increase or a Decrease?

    PubMed Central

    Aji, Budi; De Allegri, Manuela; Souares, Aurelia; Sauerborn, Rainer

    2013-01-01

    We used panel data from the Indonesian Family Life Survey to investigate the impact of health insurance programs on reducing out-of-pocket expenditures. We employed three linear panel data models, two of which accounted for endogeneity: pooled ordinary least squares (OLS), pooled two-stage least squares (2SLS) for instrumental variable (IV), and fixed effects (FE). The study revealed that two health insurance programs had a significantly negative impact on out-of-pocket expenditures by using IV estimates. In the IV model, Askeskin decreased out-of-pocket expenditures by 34% and Askes by 55% compared with non-Askeskin and non-Askes, respectively, while Jamsostek was found to bear a nonsignificant effect on out-of-pocket expenditures. In the FE model, only Askeskin had a significant negative effect with an 11% reduction on out-of-pocket expenditures. This study showed that two large existing health insurance programs in Indonesia, Askeskin and Askes, effectively reduced household out-of-pocket expenditures. The ability of programs to offer financial protection by reducing out-of-pocket expenditures is likely to be a direct function of their benefits package and co-payment policies. PMID:23873263

  8. Identification of Small Molecules against Botulinum Neurotoxin B Binding to Neuronal Cells at Ganglioside GT1b Binding Site with Low to Moderate Affinity

    DTIC Science & Technology

    2014-10-01

    BoNT serotype B (BoNT/B) for the trisaccharide GT1b were identified from the x-ray crystal structure of the BoNT/B/trisaccharide (GT1b) complex ( PDB ...trisaccharide and all the water from the structure and identified four potential binding pockets (Pocket-1, Pocket-2, and Pocket-4) as shown in...four potential binding sites or pockets on BoNT serotype B (BoNT/B) for the trisaccharide GT1b were identified from the x-ray crystal structure of the

  9. An integrated strategy for improving contrast, durability, and portability of a Pocket Colposcope for cervical cancer screening and diagnosis

    PubMed Central

    Mueller, Jenna; Asma, Betsy; Asiedu, Mercy; Krieger, Marlee S.; Chitalia, Rhea; Dahl, Denali; Taylor, Peyton; Schmitt, John W.; Ramanujam, Nimmi

    2018-01-01

    Introduction We have previously developed a portable Pocket Colposcope for cervical cancer screening in resource-limited settings. In this manuscript we report two different strategies (cross-polarization and an integrated reflector) to improve image contrast levels achieved with the Pocket Colposcope and evaluate the merits of each strategy compared to a standard-of-care digital colposcope. The desired outcomes included reduced specular reflection (glare), increased illumination beam pattern uniformity, and reduced electrical power budget. In addition, anti-fogging and waterproofing features were incorporated to prevent the Pocket Colposcope from fogging in the vaginal canal and to enable rapid disinfection by submersion in chemical agents. Methods Cross-polarization (Generation 3 Pocket Colposcope) and a new reflector design (Generation 4 Pocket Colposcope) were used to reduce glare and improve contrast. The reflector design (including the angle and height of the reflector sidewalls) was optimized through ray-tracing simulations. Both systems were characterized with a series of bench tests to assess specular reflection, beam pattern uniformity, and image contrast. A pilot clinical study was conducted to compare the Generation 3 and 4 Pocket Colposcopes to a standard-of-care colposcope (Leisegang Optik 2). Specifically, paired images of cervices were collected from the standard-of-care colposcope and either the Generation 3 (n = 24 patients) or the Generation 4 (n = 32 patients) Pocket Colposcopes. The paired images were blinded by device, randomized, and sent to an expert physician who provided a diagnosis for each image. Corresponding pathology was obtained for all image pairs. The primary outcome measures were the level of agreement (%) and κ (kappa) statistic between the standard-of-care colposcope and each Pocket Colposcope (Generation 3 and Generation 4). Results Both generations of Pocket Colposcope had significantly higher image contrast when compared to the standard-of-care colposcope. The addition of anti-fog and waterproofing features to the Generation 3 and 4 Pocket Colposcope did not impact image quality based on qualitative and quantitative metrics. The level of agreement between the Generation 3 Pocket Colposcope and the standard-of-care colposcope was 75.0% (kappa = 0.4000, p = 0.0028, n = 24). This closely matched the level of agreement between the Generation 4 Pocket Colposcope and the standard-of-care colposcope which was also 75.0% (kappa = 0.4941, p = 0.0024, n = 32). Conclusion Our results indicate that the Generation 3 and 4 Pocket Colposcopes perform comparably to the standard-of-care colposcope, with the added benefit of being low-cost and waterproof, which is ideal for use in resource-limited settings. Additionally, the reflector significantly reduces the electrical requirements of the Generation 4 Pocket Colposcope enhancing portability without altering performance compared to the Generation 3 system. PMID:29425225

  10. Differential sensing using proteins: exploiting the cross-reactivity of serum albumin to pattern individual terpenes and terpenes in perfume.

    PubMed

    Adams, Michelle M; Anslyn, Eric V

    2009-12-02

    There has been a growing interest in the use of differential sensing for analyte classification. In an effort to mimic the mammalian senses of taste and smell, which utilize protein-based receptors, we have introduced serum albumins as nonselective receptors for recognition of small hydrophobic molecules. Herein, we employ a sensing ensemble consisting of serum albumins, a hydrophobic fluorescent indicator (PRODAN), and a hydrophobic additive (deoxycholate) to detect terpenes. With the aid of linear discriminant analysis, we successfully applied our system to differentiate five terpenes. We then extended our terpene analysis and utilized our sensing ensemble for terpene discrimination within the complex mixtures found in perfume.

  11. Comparison of different deep learning approaches for parotid gland segmentation from CT images

    NASA Astrophysics Data System (ADS)

    Hänsch, Annika; Schwier, Michael; Gass, Tobias; Morgas, Tomasz; Haas, Benjamin; Klein, Jan; Hahn, Horst K.

    2018-02-01

    The segmentation of target structures and organs at risk is a crucial and very time-consuming step in radiotherapy planning. Good automatic methods can significantly reduce the time clinicians have to spend on this task. Due to its variability in shape and often low contrast to surrounding structures, segmentation of the parotid gland is especially challenging. Motivated by the recent success of deep learning, we study different deep learning approaches for parotid gland segmentation. Particularly, we compare 2D, 2D ensemble and 3D U-Net approaches and find that the 2D U-Net ensemble yields the best results with a mean Dice score of 0.817 on our test data. The ensemble approach reduces false positives without the need for an automatic region of interest detection. We also apply our trained 2D U-Net ensemble to segment the test data of the 2015 MICCAI head and neck auto-segmentation challenge. With a mean Dice score of 0.861, our classifier exceeds the highest mean score in the challenge. This shows that the method generalizes well onto data from independent sites. Since appropriate reference annotations are essential for training but often difficult and expensive to obtain, it is important to know how many samples are needed to properly train a neural network. We evaluate the classifier performance after training with differently sized training sets (50-450) and find that 250 cases (without using extensive data augmentation) are sufficient to obtain good results with the 2D ensemble. Adding more samples does not significantly improve the Dice score of the segmentations.

  12. E-mail on the Move

    NASA Technical Reports Server (NTRS)

    1999-01-01

    PocketScience, Inc. was a member of the NASA Ames Technology Commercialization Center. Their PocketMail product is an email service that brings email capabilities to new hand-held devices. The PocketMail service uses technology originally developed at JPL. Through its involvement with the ATCC, PocketScience, Inc. was able to use this space probe communications technology and adapt it for advanced signal processing on Earth.

  13. Work of Breathing into Snow in the Presence versus Absence of an Artificial Air Pocket Affects Hypoxia and Hypercapnia of a Victim Covered with Avalanche Snow: A Randomized Double Blind Crossover Study.

    PubMed

    Roubík, Karel; Sieger, Ladislav; Sykora, Karel

    2015-01-01

    Presence of an air pocket and its size play an important role in survival of victims buried in the avalanche snow. Even small air pockets facilitate breathing. We hypothesize that the size of the air pocket significantly affects the airflow resistance and work of breathing. The aims of the study are (1) to investigate the effect of the presence of an air pocket on gas exchange and work of breathing in subjects breathing into the simulated avalanche snow and (2) to test whether it is possible to breathe with no air pocket. The prospective interventional double-blinded study involved 12 male volunteers, from which 10 completed the whole protocol. Each volunteer underwent two phases of the experiment in a random order: phase "AP"--breathing into the snow with a one-liter air pocket, and phase "NP"--breathing into the snow with no air pocket. Physiological parameters, fractions of oxygen and carbon dioxide in the airways and work of breathing expressed as pressure-time product were recorded continuously. The main finding of the study is that it is possible to breath in the avalanche snow even with no air pocket (0 L volume), but breathing under this condition is associated with significantly increased work of breathing. The significant differences were initially observed for end-tidal values of the respiratory gases (EtO2 and EtCO2) and peripheral oxygen saturation (SpO2) between AP and NP phases, whereas significant differences in inspiratory fractions occurred much later (for FIO2) or never (for FICO2). The limiting factor in no air pocket conditions is excessive increase in work of breathing that induces increase in metabolism accompanied by higher oxygen consumption and carbon dioxide production. The presence of even a small air pocket reduces significantly the work of breathing.

  14. Improved cardiovascular diagnostic accuracy by pocket size imaging device in non-cardiologic outpatients: the NaUSiCa (Naples Ultrasound Stethoscope in Cardiology) study

    PubMed Central

    2010-01-01

    Miniaturization has evolved in the creation of a pocket-size imaging device which can be utilized as an ultrasound stethoscope. This study assessed the additional diagnostic power of pocket size device by both experts operators and trainees in comparison with physical examination and its appropriateness of use in comparison with standard echo machine in a non-cardiologic population. Three hundred four consecutive non cardiologic outpatients underwent a sequential assessment including physical examination, pocket size imaging device and standard Doppler-echo exam. Pocket size device was used by both expert operators and trainees (who received specific training before the beginning of the study). All the operators were requested to give only visual, qualitative insights on specific issues. All standard Doppler-echo exams were performed by expert operators. One hundred two pocket size device exams were performed by experts and two hundred two by trainees. The time duration of the pocket size device exam was 304 ± 117 sec. Diagnosis of cardiac abnormalities was made in 38.2% of cases by physical examination and in 69.7% of cases by physical examination + pocket size device (additional diagnostic power = 31.5%, p < 0.0001). The overall K between pocket size device and standard Doppler-echo was 0.67 in the pooled population (0.84 by experts and 0.58 by trainees). K was suboptimal for trainees in the eyeball evaluation of ejection fraction, left atrial dilation and right ventricular dilation. Overall sensitivity was 91% and specificity 76%. Sensitivity and specificity were lower in trainees than in experts. In conclusion, pocket size device showed a relevant additional diagnostic value in comparison with physical examination. Sensitivity and specificity were good in experts and suboptimal in trainees. Specificity was particularly influenced by the level of experience. Training programs are needed for pocket size device users. PMID:21110840

  15. Analysis of the regional MiKlip decadal prediction system over Europe: skill, added value of regionalization, and ensemble size dependeny

    NASA Astrophysics Data System (ADS)

    Reyers, Mark; Moemken, Julia; Pinto, Joaquim; Feldmann, Hendrik; Kottmeier, Christoph; MiKlip Module-C Team

    2017-04-01

    Decadal climate predictions can provide a useful basis for decision making support systems for the public and private sectors. Several generations of decadal hindcasts and predictions have been generated throughout the German research program MiKlip. Together with the global climate predictions computed with MPI-ESM, the regional climate model (RCM) COSMO-CLM is used for regional downscaling by MiKlip Module-C. The RCMs provide climate information on spatial and temporal scales closer to the needs of potential users. In this study, two downscaled hindcast generations are analysed (named b0 and b1). The respective global generations are both initialized by nudging them towards different reanalysis anomaly fields. An ensemble of five starting years (1961, 1971, 1981, 1991, and 2001), each comprising ten ensemble members, is used for both generations in order to quantify the regional decadal prediction skill for precipitation and near-surface temperature and wind speed over Europe. All datasets (including hindcasts, observations, reanalysis, and historical MPI-ESM runs) are pre-processed in an analogue manner by (i) removing the long-term trend and (ii) re-gridding to a common grid. Our analysis shows that there is potential for skillful decadal predictions over Europe in the regional MiKlip ensemble, but the skill is not systematic and depends on the PRUDENCE region and the variable. Further, the differences between the two hindcast generations are mostly small. As we used detrended time series, the predictive skill found in our study can probably attributed to reasonable predictions of anomalies which are associated with the natural climate variability. In a sensitivity study, it is shown that the results may strongly change when the long-term trend is kept in the datasets, as here the skill of predicting the long-term trend (e.g. for temperature) also plays a major role. The regionalization of the global ensemble provides an added value for decadal predictions for some complex regions like the Mediterranean and Iberian Peninsula, while for other regions no systematic improvement is found. A clear dependence of the performance of the regional MiKlip system on the ensemble size is detected. For all variables in both hindcast generations, the skill increases when the ensemble is enlarged. The results indicate that a number of ten members is an appropriate ensemble size for decadal predictions over Europe.

  16. Fault detection of the connection of lithium-ion power batteries based on entropy for electric vehicles

    NASA Astrophysics Data System (ADS)

    Yao, Lei; Wang, Zhenpo; Ma, Jun

    2015-10-01

    This paper proposes a method of fault detection of the connection of Lithium-Ion batteries based on entropy for electric vehicle. In electric vehicle operation process, some factors, such as road conditions, driving habits, vehicle performance, always affect batteries by vibration, which easily cause loosing or virtual connection between batteries. Through the simulation of the battery charging and discharging experiment under vibration environment, the data of voltage fluctuation can be obtained. Meanwhile, an optimal filtering method is adopted using discrete cosine filter method to analyze the characteristics of system noise, based on the voltage set when batteries are working under different vibration frequency. Experimental data processed by filtering is analyzed based on local Shannon entropy, ensemble Shannon entropy and sample entropy. And the best way to find a method of fault detection of the connection of lithium-ion batteries based on entropy is presented for electric vehicle. The experimental data shows that ensemble Shannon entropy can predict the accurate time and the location of battery connection failure in real time. Besides electric-vehicle industry, this method can also be used in other areas in complex vibration environment.

  17. Epitympanum volume and tympanic isthmus area in temporal bones with retraction pockets.

    PubMed

    Monsanto, Rafael da Costa; Pauna, Henrique Furlan; Kaya, Serdar; Hızlı, Ömer; Kwon, Geeyoun; Paparella, Michael M; Cureoglu, Sebahattin

    2016-11-01

    To compare the volume of the epitympanic space, as well as the area of the tympanic isthmus, in human temporal bones with retraction pockets to those with chronic otitis media without retraction pockets and to those with neither condition. Comparative human temporal bone study. We generated a three-dimensional model of the bony epitympanum and measured the epitympanic space. We also compared the area of the tympanic isthmus. The mean total volume of the epitympanum was 40.55 ± 7.14 mm 3 in the retraction pocket group, 50.03 ± 8.49 mm 3 in the chronic otitis media group, and 48.03 ± 9.16 mm 3 in the neither condition group. The mean volume of the anterior, lateral, and medial compartments in temporal bones in the retraction pocket group was significantly smaller than in the two control groups (P < 0.05). Total epitympanic volume was also significantly smaller in the retraction pocket group than in both control groups (P < 0.05). The mean area of the tympanic isthmus was significantly smaller in the retraction pocket group (8.11 ± 2.44 mm 2 ) than in the chronic otitis media group (9.82 ± 2.06 mm 2 ) or the neither condition group (10.66 ± 1.78 mm 2 ) (P < 0.05). Our data indicate that temporal bones with retraction pockets have a smaller volume bony epitympanum and a smaller tympanic isthmus area as compared with temporal bones from both control groups. The smaller volume tympanic isthmus in the retraction pocket group may suggest that a blockage in the aeration pathways to the epitympanum could create dysventilation, resulting in negative pressure and ultimately in retraction pockets and cholesteatomas. NA Laryngoscope, 126:E369-E374, 2016. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.

  18. Histological analysis of retraction pocket pars tensa of tympanic membrane in children.

    PubMed

    Urík, M; Hurník, P; Žiak, D; Machač, J; Šlapák, I; Motyka, O; Vaculová, J; Dvořáčková, J

    2016-07-01

    Histological and histochemical analysis of retraction pocket of pars tensa of tympanic membrane in children. Identification of morphological abnormalities in comparison with a healthy tympanic membrane as it is described in standard textbook. Identification of signs typical for cholesteatoma and support for a retraction theory of cholesteatoma formation. A prospective study analysing 31 samples of retraction pockets taken during surgery. University Hospital, Children's Medical Centre Samples of retraction pockets were processed by a standard process for light microscopy, stained by haematoxylin-eosin. Van Gieson's stain was used for differential staining of collagen, Verhoeff's stain for elastic fibre tissues, Alcian blue for acidic polysaccharides and PAS (Periodic Acid Schiff) method for basement membrane polysaccharides. The following findings were observed in the samples of retraction pockets: hyperkeratosis (100%), hypervascularisations (100%), subepithelial fragmented elastic fibres (96%), myxoid changes (87%), subepithelial inflammatory infiltration (84%), rete pegs (71%), papilomatosis (71%), intraepithelial inflammatory cellularizations, (48%), intraepithelial spongiosis (16%) and parakeratosis (3%). No basement membrane continuity interruptions were observed. Thickness of retraction pocket, thickness of epidermis, occurrence of rete pegs and frequency of fragmented elastic fibres was higher in a Grade III stage RP than Grade II stage RP (according to Charachon). Morphological abnormalities in the structure of retraction pockets in comparison with a healthy tympanic membrane were described. The changes are typical for a structure of cholesteatoma (these changes are common in matrix and perimatrix), supporting retraction theory of its origin. Our observations show that it is inflammation that probably plays a key role in the pathogenesis of retraction pocket. The frequency of some of the changes increases with the stage of retraction pocket (II-III according to Charachon). Basement membrane continuity interruptions are not typical for retraction pockets. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Alzheimer Disease and Related Disorders and Out-of-Pocket Health Care Spending and Burden Among Elderly Medicare Beneficiaries.

    PubMed

    Dwibedi, Nilanjana; Findley, Patricia A; Wiener R, Constance; Shen, Chan; Sambamoorthi, Usha

    2018-03-01

    To estimate the excess burden of out-of-pocket health care spending associated with Alzheimer disease and related disorders (ADRD) among older individuals (age 65 y and older). We adopted a retrospective, cross-sectional study design with data from 2012 Medicare Current Beneficiary Survey. The study sample comprised of elderly community-dwelling individuals who had positive total health care expenditures, and enrolled in Medicare throughout the calendar year (462 with ADRD, and 7160 without ADRD). We estimated the per-capita total annual out-of-pocket spending on health care and out-of-pocket spending by service type: inpatient, outpatient, home health, prescription drugs, and other services. We measured out-of-pocket spending burden by calculating the percentage of income spent on health care and defined high out-of-pocket spending burden as having this percentage above 10%. Multivariable analyses included ordinary least squares regressions and logistic regressions and these analyses adjusted for predisposing, enabling, need, personal health care practices and external environment characteristics. The average annual per-capita out-of-pocket health care spending was greater among individuals with ADRD compared with those without ADRD ($3285 vs. $1895); home health and prescription drugs accounted for 52% of total out-of-pocket spending among individuals with ADRD and 34% among individuals without ADRD. Elderly individuals with ADRD were more likely to have high out-of-pocket spending burden (adjusted odds ratio, 1.49; 95% confidence interval, 1.13-1.97) compared with those without ADRD. ADRD is associated with excess out-of-pocket health care spending, primarily driven by prescription drugs and home health care use.

  20. The first Latin-American risk stratification system for cardiac surgery: can be used as a graphic pocket-card score.

    PubMed

    Carosella, Victorio C; Navia, Jose L; Al-Ruzzeh, Sharif; Grancelli, Hugo; Rodriguez, Walter; Cardenas, Cesar; Bilbao, Jorge; Nojek, Carlos

    2009-08-01

    This study aims to develop the first Latin-American risk model that can be used as a simple, pocket-card graphic score at bedside. The risk model was developed on 2903 patients who underwent cardiac surgery at the Spanish Hospital of Buenos Aires, Argentina, between June 1994 and December 1999. Internal validation was performed on 708 patients between January 2000 and June 2001 at the same center. External validation was performed on 1087 patients between February 2000 and January 2007 at three other centers in Argentina. In the development dataset the area under receiver operating characteristics (ROC) curve was 0.73 and the Hosmer-Lemeshow (HL) test was P=0.88. In the internal validation ROC curve was 0.77. In the external validation ROC curve was 0.81, but imperfect calibration was detected because the observed in-hospital mortality (3.96%) was significantly lower than the development dataset (8.20%) (P<0.0001). Recalibration was done in 2007, showing excellent level of agreement between the observed and predicted mortality rates on all patients (P=0.92). This is the first risk model for cardiac surgery developed in a population of Latin-America with both internal and external validation. A simple graphic pocket-card score allows an easy bedside application with acceptable statistic precision.

  1. 3. DOWNHILL SIDE AND END ELEVATION OF COAL POCKETS, WITH ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. DOWNHILL SIDE AND END ELEVATION OF COAL POCKETS, WITH RETAINING WALL IN BACKGROUND. VIEW LOOKING NORTHEAST. - Honesdale Coal Pockets, Main & Commercial Streets, between 700 & 800 blocks, Honesdale, Wayne County, PA

  2. Circadian periodicity of resistance to ionizing radiation in the pocket mouse.

    NASA Technical Reports Server (NTRS)

    Lindberg, R. G.; Hayden, P.; Gambino, J. J.

    1971-01-01

    Investigation of the response of pocket mice to Co 60 irradiation delivered at two times of day - namely, the predicted high and low points of the metabolic rate. The validity of torpor as an assay of the circadian period of body temperature in pocket mice and as a basis for selecting irradiation times is examined. A study is made of the mitotic activity in the pocket mouse intestinal epithelium as an example of a physiological rhythm which might influence radiation sensitivity. The results of tests in which pocket mice were exposed to ionizing radiation at two different times of day are cited. It is found that under the investigated conditions pocket mice irradiated during their metabolically active period (2330 hr) live significantly longer than those irradiated while their metabolic rate is low (0900 hr).

  3. Planview Geometry and morphological characteristics of pocket beaches on the Catalan coast (Spain)

    NASA Astrophysics Data System (ADS)

    Bowman, D.; Guillén, J.; López, L.; Pellegrino, V.

    2009-07-01

    Coastal planform studies are a relevant initial stage before launching detailed dynamic field experiments. The aim of this study is to define the planform characteristics of 72 Catalan pocket beaches, natural and man-made, and to determine their sheltering effect, embaymentization and their status of equilibrium. Planform measurements were performed on SIGPAC, 1:5000 orthophoto sets and wave climate was provided by Puertos del Estado (Wana model). Planform parameters were applied and coastal planview indexes were determined. The study shows that the Catalan pocket beaches display a wide range of indentation, suggesting that no single structural, tectonic or morphological control dominates their planform. The man-made pocket beaches typically display indentations which are smaller than those shown by natural pocket beaches. Headland spacing and beach area are positively correlated. The more indented bays are, the shorter their beaches become. Low-indented pocket beaches are the widest and the longest ones. Deep indentation contributes towards beach protection and energy dissipation which counteracts rip efficiency and inhibits the formation of mega-rips. Pocket beaches often show gradual and moderate alongshore changes in texture and beach morphology. One third of the Catalan pocket beaches are "sediment starved", i.e., 60% and more of their embayed shorelines are deprived of beach sediments. Examination of the status of equilibrium demonstrates that most of the Catalan pocket beaches are in an unstable mode, with indentation ratios that are unrelated to the wave obliquity.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jha, Ramesh K.; Kern, Teresa L.; Kim, Youngchang

    A whole-cell biosensor utilizing a transcription factor (TF) is an effective tool for sensitive and selective detection of specialty chemicals or anthropogenic molecules, but requires access to an expanded repertoire of TFs. Using homology modeling and ligand docking for binding pocket identification, assisted by conservative mutations in the pocket, we engineered a novel specificity in an Acinetobacter TF, PobR, to ‘sense’ a chemical p-nitrophenol (pNP) and measured the response via a fluorescent protein reporter expressed from a PobR promoter. Out of 107 variants of PobR, four were active when dosed with pNP, with two mutants showing a specificity switch frommore » the native effector 4-hydroxybenzoate (4HB). One of the mutants, pNPmut1 was then used to create a smart microbial cell responding to pNP production from hydrolysis of an insecticide, paraoxon, in a coupled assay involving phosphotriesterase (PTE) enzyme expressed from a separate promoter. We show the fluorescence of the cells correlated with the catalytic efficiency of the PTE variant expressed in each cell. High selectivity between similar molecules (4HB versus pNP), high sensitivity for pNP detection (~2 μM) and agreement of apo- and holo-structures of PobR scaffold with predetermined computational models are other significant results presented in this work.« less

  5. CONTROL SYSTEM FOR ISOTOPE SEPARATING APPARATUS

    DOEpatents

    Barnes, S.W.

    1960-01-26

    A method is described for controlling the position of the ion beams in a calutron used for isotope separation. The U/sup 238/ beams is centered over the U/sup 235/ receiving pocket, the operator monitoring the beam until a maximum reading is achieved on the meter connected to that pocket. Then both beams are simultaneously shifted by a preselected amount to move the U/sup 235/ beam over the U/sup 235/ pocket. A slotted door is placed over the entrance to that pocket during the U/sup 238/ beam centering to reduce the contamination to the pocket, while allowing enough beam to pass for monitoring purposes.

  6. Communication: The origin of many-particle signals in nonlinear optical spectroscopy of non-interacting particles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mukamel, Shaul

    Nonlinear spectroscopy signals detected by fluorescence from dilute samples of N non-interacting molecules are usually adequately described by simply multiplying the single molecule response by N. We show that signals that scale with higher powers of N are generated by the joint detection of several particles. This can be accomplished by phase sensitive detection such as phase cycling, photo-acoustic modulation, or by Hanbury-Brown Twiss photon coincidence. Such measurements can dissect the ensemble according to the number of excited particles.

  7. Monte Carlo modeling of the MammoSite(Reg) treatments: Dose effects of air pockets

    NASA Astrophysics Data System (ADS)

    Huang, Yu-Huei Jessica

    In the treatment of early-stage breast cancer, MammoSiteRTM has been used as one of the partial breast irradiation techniques after breast-conserving surgery. The MammoSiteRTM applicator is a single catheter with an inflatable balloon at its distal end that can be placed in the resected cavity (tumor bed). The treatment is performed by delivering the Ir-192 high-dose-rate source through the center lumen of the catheter by a remote afterloader while the balloon is inflated in the tumor bed cavity. In the MammoSiteRTM treatment, it has been found that air pockets occasionally exist and can be seen and measured in CT images. Experiences have shown that about 90% of the patients have air pockets when imaged two days after the balloon placement. The criterion for the air pocket volume is less than or equal to 10% of the planning target volume in volume. The purpose of this study is to quantify dose errors occurring at the interface of the air pocket in MammoSiteRTM treatments with Monte Carlo calculations, so that the dosimetric effects from the air pocket can be fully understood. Modern brachytherapy treatment planning systems typically consider patient anatomy as a homogeneous water medium, and incorrectly model lateral and backscatter radiation during treatment delivery. Heterogeneities complicate the problem and may result in overdosage to the tissue located near the medium interface. This becomes a problem in MammoSiteRTM brachytherapy when air pocket appears during the treatment. The resulting percentage dose difference near the air-tissue interface is hypothesized to be greater than 10% when comparing Monte Carlo N-Particle (version 5) with current treatment planning systems. The specific aims for this study are: (1) Validate Monte Carlo N-Particle (Version 5) source modeling. (2) Develop phantom. (3) Calculate phantom doses with Monte Carlo N-Particle (Version 5) and investigate doses difference between thermoluminescent dosimeter measurement, treatment planning system, and Monte Carlo results. (4) Calculate dose differences for various treatment parameters. The results from thermoliminescent dosimeter phantom measurements proves that with correct geometric and source models, Monte Carlo method can be used to estimate homogeneity and heterogeneity doses in MammoSiteRTM treatment. The resulting dose differences at various points of interests in Monte Carlo calculations were presented and compared between different calculation methods. The air pocket doses were found to be underestimated by the treatment planning system. It was concluded that after correcting for inverse square law, the underestimation error from the treatment planning system will be less than +/- 2.0%, and +/- 3.5%, at the air pocket surface and air pocket planning target volume, respectively, when comparing Monte Carlo N-Particle (version 5) results. If the skin surface is located close to the air pocket, the underestimation effect at the air pocket surface and air pocket planning target volume doses becomes less because the air outside of the skin surface reduces the air pocket inhomogeneity effect. In order to maintain appropriate skin dose within tolerance, the skin surface criterion should be considered as the smallest thickness of the breast tissue located between the air pocket and the skin surface. The thickness should be at least 5 mm. In conclusion, the air pocket outside the balloon had less than 10% inhomogeneity effect based on the situations studied. It is recommended that at least an inverse square correction should be taken into consideration in order to relate clinical outcomes to actual delivered doses to the air pocket and surrounding tissues.

  8. A new transform for the analysis of complex fractionated atrial electrograms

    PubMed Central

    2011-01-01

    Background Representation of independent biophysical sources using Fourier analysis can be inefficient because the basis is sinusoidal and general. When complex fractionated atrial electrograms (CFAE) are acquired during atrial fibrillation (AF), the electrogram morphology depends on the mix of distinct nonsinusoidal generators. Identification of these generators using efficient methods of representation and comparison would be useful for targeting catheter ablation sites to prevent arrhythmia reinduction. Method A data-driven basis and transform is described which utilizes the ensemble average of signal segments to identify and distinguish CFAE morphologic components and frequencies. Calculation of the dominant frequency (DF) of actual CFAE, and identification of simulated independent generator frequencies and morphologies embedded in CFAE, is done using a total of 216 recordings from 10 paroxysmal and 10 persistent AF patients. The transform is tested versus Fourier analysis to detect spectral components in the presence of phase noise and interference. Correspondence is shown between ensemble basis vectors of highest power and corresponding synthetic drivers embedded in CFAE. Results The ensemble basis is orthogonal, and efficient for representation of CFAE components as compared with Fourier analysis (p ≤ 0.002). When three synthetic drivers with additive phase noise and interference were decomposed, the top three peaks in the ensemble power spectrum corresponded to the driver frequencies more closely as compared with top Fourier power spectrum peaks (p ≤ 0.005). The synthesized drivers with phase noise and interference were extractable from their corresponding ensemble basis with a mean error of less than 10%. Conclusions The new transform is able to efficiently identify CFAE features using DF calculation and by discerning morphologic differences. Unlike the Fourier transform method, it does not distort CFAE signals prior to analysis, and is relatively robust to jitter in periodic events. Thus the ensemble method can provide a useful alternative for quantitative characterization of CFAE during clinical study. PMID:21569421

  9. Microbial community pattern detection in human body habitats via ensemble clustering framework.

    PubMed

    Yang, Peng; Su, Xiaoquan; Ou-Yang, Le; Chua, Hon-Nian; Li, Xiao-Li; Ning, Kang

    2014-01-01

    The human habitat is a host where microbial species evolve, function, and continue to evolve. Elucidating how microbial communities respond to human habitats is a fundamental and critical task, as establishing baselines of human microbiome is essential in understanding its role in human disease and health. Recent studies on healthy human microbiome focus on particular body habitats, assuming that microbiome develop similar structural patterns to perform similar ecosystem function under same environmental conditions. However, current studies usually overlook a complex and interconnected landscape of human microbiome and limit the ability in particular body habitats with learning models of specific criterion. Therefore, these methods could not capture the real-world underlying microbial patterns effectively. To obtain a comprehensive view, we propose a novel ensemble clustering framework to mine the structure of microbial community pattern on large-scale metagenomic data. Particularly, we first build a microbial similarity network via integrating 1920 metagenomic samples from three body habitats of healthy adults. Then a novel symmetric Nonnegative Matrix Factorization (NMF) based ensemble model is proposed and applied onto the network to detect clustering pattern. Extensive experiments are conducted to evaluate the effectiveness of our model on deriving microbial community with respect to body habitat and host gender. From clustering results, we observed that body habitat exhibits a strong bound but non-unique microbial structural pattern. Meanwhile, human microbiome reveals different degree of structural variations over body habitat and host gender. In summary, our ensemble clustering framework could efficiently explore integrated clustering results to accurately identify microbial communities, and provide a comprehensive view for a set of microbial communities. The clustering results indicate that structure of human microbiome is varied systematically across body habitats and host genders. Such trends depict an integrated biography of microbial communities, which offer a new insight towards uncovering pathogenic model of human microbiome.

  10. Microbial community pattern detection in human body habitats via ensemble clustering framework

    PubMed Central

    2014-01-01

    Background The human habitat is a host where microbial species evolve, function, and continue to evolve. Elucidating how microbial communities respond to human habitats is a fundamental and critical task, as establishing baselines of human microbiome is essential in understanding its role in human disease and health. Recent studies on healthy human microbiome focus on particular body habitats, assuming that microbiome develop similar structural patterns to perform similar ecosystem function under same environmental conditions. However, current studies usually overlook a complex and interconnected landscape of human microbiome and limit the ability in particular body habitats with learning models of specific criterion. Therefore, these methods could not capture the real-world underlying microbial patterns effectively. Results To obtain a comprehensive view, we propose a novel ensemble clustering framework to mine the structure of microbial community pattern on large-scale metagenomic data. Particularly, we first build a microbial similarity network via integrating 1920 metagenomic samples from three body habitats of healthy adults. Then a novel symmetric Nonnegative Matrix Factorization (NMF) based ensemble model is proposed and applied onto the network to detect clustering pattern. Extensive experiments are conducted to evaluate the effectiveness of our model on deriving microbial community with respect to body habitat and host gender. From clustering results, we observed that body habitat exhibits a strong bound but non-unique microbial structural pattern. Meanwhile, human microbiome reveals different degree of structural variations over body habitat and host gender. Conclusions In summary, our ensemble clustering framework could efficiently explore integrated clustering results to accurately identify microbial communities, and provide a comprehensive view for a set of microbial communities. The clustering results indicate that structure of human microbiome is varied systematically across body habitats and host genders. Such trends depict an integrated biography of microbial communities, which offer a new insight towards uncovering pathogenic model of human microbiome. PMID:25521415

  11. 1. Photocopy of photograph. ORIGINAL CANAL COAL POCKETS Source: Delaware ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    1. Photocopy of photograph. ORIGINAL CANAL COAL POCKETS Source: Delaware and Hudson Railroad and Canal, by Wayne County Historical Society. - Honesdale Coal Pockets, Main & Commercial Streets, between 700 & 800 blocks, Honesdale, Wayne County, PA

  12. Pocket Guide to Transportation 2017

    DOT National Transportation Integrated Search

    2017-05-01

    The BTS Pocket Guide to Transportation is a quick reference guide to significant transportation statistics. All the previous seven sections plus a new Major Trends section are included. This year marks the 20th anniversary of the Pocket Guide, which ...

  13. Detectability of change in winter precipitation within mountain landscapes: Spatial patterns and uncertainty

    NASA Astrophysics Data System (ADS)

    Silverman, N. L.; Maneta, M. P.

    2016-06-01

    Detecting long-term change in seasonal precipitation using ground observations is dependent on the representativity of the point measurement to the surrounding landscape. In mountainous regions, representativity can be poor and lead to large uncertainties in precipitation estimates at high elevations or in areas where observations are sparse. If the uncertainty in the estimate is large compared to the long-term shifts in precipitation, then the change will likely go undetected. In this analysis, we examine the minimum detectable change across mountainous terrain in western Montana, USA. We ask the question: What is the minimum amount of change that is necessary to be detected using our best estimates of precipitation in complex terrain? We evaluate the spatial uncertainty in the precipitation estimates by conditioning historic regional climate model simulations to ground observations using Bayesian inference. By using this uncertainty as a null hypothesis, we test for detectability across the study region. To provide context for the detectability calculations, we look at a range of future scenarios from the Coupled Model Intercomparison Project 5 (CMIP5) multimodel ensemble downscaled to 4 km resolution using the MACAv2-METDATA data set. When using the ensemble averages we find that approximately 65% of the significant increases in winter precipitation go undetected at midelevations. At high elevation, approximately 75% of significant increases in winter precipitation are undetectable. Areas where change can be detected are largely controlled by topographic features. Elevation and aspect are key characteristics that determine whether or not changes in winter precipitation can be detected. Furthermore, we find that undetected increases in winter precipitation at high elevation will likely remain as snow under climate change scenarios. Therefore, there is potential for these areas to offset snowpack loss at lower elevations and confound the effects of climate change on water resources.

  14. Deep ensemble learning of virtual endoluminal views for polyp detection in CT colonography

    NASA Astrophysics Data System (ADS)

    Umehara, Kensuke; Näppi, Janne J.; Hironaka, Toru; Regge, Daniele; Ishida, Takayuki; Yoshida, Hiroyuki

    2017-03-01

    Robust training of a deep convolutional neural network (DCNN) requires a very large number of annotated datasets that are currently not available in CT colonography (CTC). We previously demonstrated that deep transfer learning provides an effective approach for robust application of a DCNN in CTC. However, at high detection accuracy, the differentiation of small polyps from non-polyps was still challenging. In this study, we developed and evaluated a deep ensemble learning (DEL) scheme for reviewing of virtual endoluminal images to improve the performance of computer-aided detection (CADe) of polyps in CTC. Nine different types of image renderings were generated from virtual endoluminal images of polyp candidates detected by a conventional CADe system. Eleven DCNNs that represented three types of publically available pre-trained DCNN models were re-trained by transfer learning to identify polyps from the virtual endoluminal images. A DEL scheme that determines the final detected polyps by a review of the nine types of VE images was developed by combining the DCNNs using a random forest classifier as a meta-classifier. For evaluation, we sampled 154 CTC cases from a large CTC screening trial and divided the cases randomly into a training dataset and a test dataset. At 3.9 falsepositive (FP) detections per patient on average, the detection sensitivities of the conventional CADe system, the highestperforming single DCNN, and the DEL scheme were 81.3%, 90.7%, and 93.5%, respectively, for polyps ≥6 mm in size. For small polyps, the DEL scheme reduced the number of false positives by up to 83% over that of using a single DCNN alone. These preliminary results indicate that the DEL scheme provides an effective approach for improving the polyp detection performance of CADe in CTC, especially for small polyps.

  15. Cosmic-Ray Extremely Distributed Observatory: a global cosmic ray detection framework

    NASA Astrophysics Data System (ADS)

    Sushchov, O.; Homola, P.; Dhital, N.; Bratek, Ł.; Poznański, P.; Wibig, T.; Zamora-Saa, J.; Almeida Cheminant, K.; Alvarez Castillo, D.; Góra, D.; Jagoda, P.; Jałocha, J.; Jarvis, J. F.; Kasztelan, M.; Kopański, K.; Krupiński, M.; Michałek, M.; Nazari, V.; Smelcerz, K.; Smolek, K.; Stasielak, J.; Sułek, M.

    2017-12-01

    The main objective of the Cosmic-Ray Extremely Distributed Observatory (CREDO) is the detection and analysis of extended cosmic ray phenomena, so-called super-preshowers (SPS), using existing as well as new infrastructure (cosmic-ray observatories, educational detectors, single detectors etc.). The search for ensembles of cosmic ray events initiated by SPS is yet an untouched ground, in contrast to the current state-of-the-art analysis, which is focused on the detection of single cosmic ray events. Theoretical explanation of SPS could be given either within classical (e.g., photon-photon interaction) or exotic (e.g., Super Heavy Dark Matter decay or annihilation) scenarios, thus detection of SPS would provide a better understanding of particle physics, high energy astrophysics and cosmology. The ensembles of cosmic rays can be classified based on the spatial and temporal extent of particles constituting the ensemble. Some classes of SPS are predicted to have huge spatial distribution, a unique signature detectable only with a facility of the global size. Since development and commissioning of a completely new facility with such requirements is economically unwarranted and time-consuming, the global analysis goals are achievable when all types of existing detectors are merged into a worldwide network. The idea to use the instruments in operation is based on a novel trigger algorithm: in parallel to looking for neighbour surface detectors receiving the signal simultaneously, one should also look for spatially isolated stations clustered in a small time window. On the other hand, CREDO strategy is also aimed at an active engagement of a large number of participants, who will contribute to the project by using common electronic devices (e.g., smartphones), capable of detecting cosmic rays. It will help not only in expanding the geographical spread of CREDO, but also in managing a large manpower necessary for a more efficient crowd-sourced pattern recognition scheme to identify and classify SPS. A worldwide network of cosmic-ray detectors could not only become a unique tool to study fundamental physics, it will also provide a number of other opportunities, including space-weather or geophysics studies. Among the latter one has to list the potential to predict earthquakes by monitoring the rate of low energy cosmic-ray events. The diversity of goals motivates us to advertise this concept across the astroparticle physics community.

  16. Improved Point-source Detection in Crowded Fields Using Probabilistic Cataloging

    NASA Astrophysics Data System (ADS)

    Portillo, Stephen K. N.; Lee, Benjamin C. G.; Daylan, Tansu; Finkbeiner, Douglas P.

    2017-10-01

    Cataloging is challenging in crowded fields because sources are extremely covariant with their neighbors and blending makes even the number of sources ambiguous. We present the first optical probabilistic catalog, cataloging a crowded (˜0.1 sources per pixel brighter than 22nd mag in F606W) Sloan Digital Sky Survey r-band image from M2. Probabilistic cataloging returns an ensemble of catalogs inferred from the image and thus can capture source-source covariance and deblending ambiguities. By comparing to a traditional catalog of the same image and a Hubble Space Telescope catalog of the same region, we show that our catalog ensemble better recovers sources from the image. It goes more than a magnitude deeper than the traditional catalog while having a lower false-discovery rate brighter than 20th mag. We also present an algorithm for reducing this catalog ensemble to a condensed catalog that is similar to a traditional catalog, except that it explicitly marginalizes over source-source covariances and nuisance parameters. We show that this condensed catalog has a similar completeness and false-discovery rate to the catalog ensemble. Future telescopes will be more sensitive, and thus more of their images will be crowded. Probabilistic cataloging performs better than existing software in crowded fields and so should be considered when creating photometric pipelines in the Large Synoptic Survey Telescope era.

  17. Dispersion Modeling Using Ensemble Forecasts Compared to ETEX Measurements.

    NASA Astrophysics Data System (ADS)

    Straume, Anne Grete; N'dri Koffi, Ernest; Nodop, Katrin

    1998-11-01

    Numerous numerical models are developed to predict long-range transport of hazardous air pollution in connection with accidental releases. When evaluating and improving such a model, it is important to detect uncertainties connected to the meteorological input data. A Lagrangian dispersion model, the Severe Nuclear Accident Program, is used here to investigate the effect of errors in the meteorological input data due to analysis error. An ensemble forecast, produced at the European Centre for Medium-Range Weather Forecasts, is then used as model input. The ensemble forecast members are generated by perturbing the initial meteorological fields of the weather forecast. The perturbations are calculated from singular vectors meant to represent possible forecast developments generated by instabilities in the atmospheric flow during the early part of the forecast. The instabilities are generated by errors in the analyzed fields. Puff predictions from the dispersion model, using ensemble forecast input, are compared, and a large spread in the predicted puff evolutions is found. This shows that the quality of the meteorological input data is important for the success of the dispersion model. In order to evaluate the dispersion model, the calculations are compared with measurements from the European Tracer Experiment. The model manages to predict the measured puff evolution concerning shape and time of arrival to a fairly high extent, up to 60 h after the start of the release. The modeled puff is still too narrow in the advection direction.

  18. Ensemble urban flood simulation in comparison with laboratory-scale experiments: Impact of interaction models for manhole, sewer pipe, and surface flow

    NASA Astrophysics Data System (ADS)

    Noh, Seong Jin; Lee, Seungsoo; An, Hyunuk; Kawaike, Kenji; Nakagawa, Hajime

    2016-11-01

    An urban flood is an integrated phenomenon that is affected by various uncertainty sources such as input forcing, model parameters, complex geometry, and exchanges of flow among different domains in surfaces and subsurfaces. Despite considerable advances in urban flood modeling techniques, limited knowledge is currently available with regard to the impact of dynamic interaction among different flow domains on urban floods. In this paper, an ensemble method for urban flood modeling is presented to consider the parameter uncertainty of interaction models among a manhole, a sewer pipe, and surface flow. Laboratory-scale experiments on urban flood and inundation are performed under various flow conditions to investigate the parameter uncertainty of interaction models. The results show that ensemble simulation using interaction models based on weir and orifice formulas reproduces experimental data with high accuracy and detects the identifiability of model parameters. Among interaction-related parameters, the parameters of the sewer-manhole interaction show lower uncertainty than those of the sewer-surface interaction. Experimental data obtained under unsteady-state conditions are more informative than those obtained under steady-state conditions to assess the parameter uncertainty of interaction models. Although the optimal parameters vary according to the flow conditions, the difference is marginal. Simulation results also confirm the capability of the interaction models and the potential of the ensemble-based approaches to facilitate urban flood simulation.

  19. Artificial neural networks for efficient clustering of conformational ensembles and their potential for medicinal chemistry.

    PubMed

    Pandini, Alessandro; Fraccalvieri, Domenico; Bonati, Laura

    2013-01-01

    The biological function of proteins is strictly related to their molecular flexibility and dynamics: enzymatic activity, protein-protein interactions, ligand binding and allosteric regulation are important mechanisms involving protein motions. Computational approaches, such as Molecular Dynamics (MD) simulations, are now routinely used to study the intrinsic dynamics of target proteins as well as to complement molecular docking approaches. These methods have also successfully supported the process of rational design and discovery of new drugs. Identification of functionally relevant conformations is a key step in these studies. This is generally done by cluster analysis of the ensemble of structures in the MD trajectory. Recently Artificial Neural Network (ANN) approaches, in particular methods based on Self-Organising Maps (SOMs), have been reported performing more accurately and providing more consistent results than traditional clustering algorithms in various data-mining problems. In the specific case of conformational analysis, SOMs have been successfully used to compare multiple ensembles of protein conformations demonstrating a potential in efficiently detecting the dynamic signatures central to biological function. Moreover, examples of the use of SOMs to address problems relevant to other stages of the drug-design process, including clustering of docking poses, have been reported. In this contribution we review recent applications of ANN algorithms in analysing conformational and structural ensembles and we discuss their potential in computer-based approaches for medicinal chemistry.

  20. Rupture of DNA aptamer: New insights from simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mishra, Rakesh Kumar; Nath, Shesh; Kumar, Sanjay

    2015-10-28

    Base-pockets (non-complementary base-pairs) in a double-stranded DNA play a crucial role in biological processes. Because of thermal fluctuations, it can lower the stability of DNA, whereas, in case of DNA aptamer, small molecules, e.g., adenosinemonophosphate and adenosinetriphosphate, form additional hydrogen bonds with base-pockets termed as “binding-pockets,” which enhance the stability. Using the Langevin dynamics simulations of coarse grained model of DNA followed by atomistic simulations, we investigated the influence of base-pocket and binding-pocket on the stability of DNA aptamer. Striking differences have been reported here for the separation induced by temperature and force, which require further investigation by single moleculemore » experiments.« less

  1. A salt bridge turns off the foot-pocket in class-II HDACs.

    PubMed

    Zhou, Jingwei; Yang, Zuolong; Zhang, Fan; Luo, Hai-Bin; Li, Min; Wu, Ruibo

    2016-08-21

    Histone Deacetylases (HDACs) are promising anticancer targets and several selective inhibitors have been created based on the architectural differences of foot-pockets among HDACs. However, the "gate-keeper" of foot-pockets is still controversial. Herein, it is for the first time revealed that a conserved R-E salt bridge plays a critical role in keeping foot-pockets closed in class-II HDACs by computational simulations. This finding is further substantiated by our mutagenesis experiments.

  2. A randomised crossover comparison of mouth-to-face-shield ventilation and mouth-to-pocket-mask ventilation by surf lifeguards in a manikin.

    PubMed

    Adelborg, K; Bjørnshave, K; Mortensen, M B; Espeseth, E; Wolff, A; Løfgren, B

    2014-07-01

    Thirty surf lifeguards (mean (SD) age: 25.1 (4.8) years; 21 male, 9 female) were randomly assigned to perform 2 × 3 min of cardiopulmonary resuscitation on a manikin using mouth-to-face-shield ventilation (AMBU LifeKey) and mouth-to-pocket-mask ventilation (Laerdal Pocket Mask). Interruptions in chest compressions, effective ventilation (visible chest rise) ratio, tidal volume and inspiratory time were recorded. Interruptions in chest compressions per cycle were increased with mouth-to-face-shield ventilation (mean (SD) 8.6 (1.7) s) compared with mouth-to-pocket-mask ventilation (6.9 (1.2) s, p < 0.0001). The proportion of effective ventilations was less using mouth-to-face-shield ventilation (199/242 (82%)) compared with mouth-to-pocket-mask ventilation (239/240 (100%), p = 0.0002). Tidal volume was lower using mouth-to-face-shield ventilation (mean (SD) 0.36 (0.20) l) compared with mouth-to-pocket-mask ventilation (0.45 (0.20) l, p = 0.006). No differences in inspiratory times were observed between mouth-to-face-shield ventilation and mouth-to-pocket-mask ventilation. In conclusion, mouth-to-face-shield ventilation increases interruptions in chest compressions, reduces the proportion of effective ventilations and decreases delivered tidal volumes compared with mouth-to-pocket-mask ventilation. © 2014 The Association of Anaesthetists of Great Britain and Ireland.

  3. Cigarette smoking in Chinese adolescents: importance of controlling the amount of pocket money.

    PubMed

    Ma, J; Zhu, J; Li, N; He, Y; Cai, Y; Qiao, Y; Redmon, P; Wang, Z

    2013-07-01

    To estimate the proportion of smokers that could potentially have been prevented from smoking by limiting the amount of pocket money received by Chinese adolescents. Cross-sectional study. Current smoking, ever smoking and the amount of pocket money were determined through self-administered questionnaires among 12,708 adolescents (aged 12-18 years) from 21 schools in Shanghai, China. Adjusted odds ratios for current smoking ranged from 2.0 [95% confidence interval (CI) 1.5-2.7] for adolescents receiving 200-399 Reminbin (RMB)/month as pocket money to 6.5 (95% CI 3.3-12.7) for those receiving ≥1000 RMB/month, compared with those receiving <200 RMB/month. The crude population-attributable risk percentage (PAR%) due to higher pocket money (≥200 RMB/month) for current smoking was 50.4% (95% CI 42.2-57.4), and adjusted PAR% was 43.3% (95% CI 30.7-53.1). Approximately half of current smokers may have been prevented from smoking if pocket money was limited to <200 RMB/month among Chinese adolescents. An even larger proportion could have been prevented from smoking if pocket money was reduced further. It is recommended that future intervention programmes should target parents to reduce the amount of pocket money in China. Copyright © 2013 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  4. Raf Kinase Inhibitory Protein Function Is Regulated via a Flexible Pocket and Novel Phosphorylation-Dependent Mechanism▿ †

    PubMed Central

    Granovsky, Alexey E.; Clark, Matthew C.; McElheny, Dan; Heil, Gary; Hong, Jia; Liu, Xuedong; Kim, Youngchang; Joachimiak, Grazyna; Joachimiak, Andrzej; Koide, Shohei; Rosner, Marsha Rich

    2009-01-01

    Raf kinase inhibitory protein (RKIP/PEBP1), a member of the phosphatidylethanolamine binding protein family that possesses a conserved ligand-binding pocket, negatively regulates the mammalian mitogen-activated protein kinase (MAPK) signaling cascade. Mutation of a conserved site (P74L) within the pocket leads to a loss or switch in the function of yeast or plant RKIP homologues. However, the mechanism by which the pocket influences RKIP function is unknown. Here we show that the pocket integrates two regulatory signals, phosphorylation and ligand binding, to control RKIP inhibition of Raf-1. RKIP association with Raf-1 is prevented by RKIP phosphorylation at S153. The P74L mutation increases kinase interaction and RKIP phosphorylation, enhancing Raf-1/MAPK signaling. Conversely, ligand binding to the RKIP pocket inhibits kinase interaction and RKIP phosphorylation by a noncompetitive mechanism. Additionally, ligand binding blocks RKIP association with Raf-1. Nuclear magnetic resonance studies reveal that the pocket is highly dynamic, rationalizing its capacity to interact with distinct partners and be involved in allosteric regulation. Our results show that RKIP uses a flexible pocket to integrate ligand binding- and phosphorylation-dependent interactions and to modulate the MAPK signaling pathway. This mechanism is an example of an emerging theme involving the regulation of signaling proteins and their interaction with effectors at the level of protein dynamics. PMID:19103740

  5. Raf kinase inhibitory protein function is regulated via a flexible pocket and novel phosphorylation-dependent mechanism.

    PubMed

    Granovsky, Alexey E; Clark, Matthew C; McElheny, Dan; Heil, Gary; Hong, Jia; Liu, Xuedong; Kim, Youngchang; Joachimiak, Grazyna; Joachimiak, Andrzej; Koide, Shohei; Rosner, Marsha Rich

    2009-03-01

    Raf kinase inhibitory protein (RKIP/PEBP1), a member of the phosphatidylethanolamine binding protein family that possesses a conserved ligand-binding pocket, negatively regulates the mammalian mitogen-activated protein kinase (MAPK) signaling cascade. Mutation of a conserved site (P74L) within the pocket leads to a loss or switch in the function of yeast or plant RKIP homologues. However, the mechanism by which the pocket influences RKIP function is unknown. Here we show that the pocket integrates two regulatory signals, phosphorylation and ligand binding, to control RKIP inhibition of Raf-1. RKIP association with Raf-1 is prevented by RKIP phosphorylation at S153. The P74L mutation increases kinase interaction and RKIP phosphorylation, enhancing Raf-1/MAPK signaling. Conversely, ligand binding to the RKIP pocket inhibits kinase interaction and RKIP phosphorylation by a noncompetitive mechanism. Additionally, ligand binding blocks RKIP association with Raf-1. Nuclear magnetic resonance studies reveal that the pocket is highly dynamic, rationalizing its capacity to interact with distinct partners and be involved in allosteric regulation. Our results show that RKIP uses a flexible pocket to integrate ligand binding- and phosphorylation-dependent interactions and to modulate the MAPK signaling pathway. This mechanism is an example of an emerging theme involving the regulation of signaling proteins and their interaction with effectors at the level of protein dynamics.

  6. Exploration of the effect of sequence variations located inside the binding pocket of HIV-1 and HIV-2 proteases.

    PubMed

    Triki, Dhoha; Billot, Telli; Visseaux, Benoit; Descamps, Diane; Flatters, Delphine; Camproux, Anne-Claude; Regad, Leslie

    2018-04-10

    HIV-2 protease (PR2) is naturally resistant to most FDA (Food and Drug Administration)-approved HIV-1 protease inhibitors (PIs), a major antiretroviral class. In this study, we compared the PR1 and PR2 binding pockets extracted from structures complexed with 12 ligands. The comparison of PR1 and PR2 pocket properties showed that bound PR2 pockets were more hydrophobic with more oxygen atoms and fewer nitrogen atoms than PR1 pockets. The structural comparison of PR1 and PR2 pockets highlighted structural changes induced by their sequence variations and that were consistent with these property changes. Specifically, substitutions at residues 31, 46, and 82 induced structural changes in their main-chain atoms that could affect PI binding in PR2. In addition, the modelling of PR1 mutant structures containing V32I and L76M substitutions revealed a cooperative mechanism leading to structural deformation of flap-residue 45 that could modify PR2 flexibility. Our results suggest that substitutions in the PR1 and PR2 pockets can modify PI binding and flap flexibility, which could underlie PR2 resistance against PIs. These results provide new insights concerning the structural changes induced by PR1 and PR2 pocket variation changes, improving the understanding of the atomic mechanism of PR2 resistance to PIs.

  7. Dynamic water behaviour due to one trapped air pocket in a laboratory pipeline apparatus

    NASA Astrophysics Data System (ADS)

    Bergant, A.; Karadžić, U.; Tijsseling, A.

    2016-11-01

    Trapped air pockets may cause severe operational problems in hydropower and water supply systems. A locally isolated air pocket creates distinct amplitude, shape and timing of pressure pulses. This paper investigates dynamic behaviour of a single trapped air pocket. The air pocket is incorporated as a boundary condition into the discrete gas cavity model (DGCM). DGCM allows small gas cavities to form at computational sections in the method of characteristics (MOC). The growth of the pocket and gas cavities is described by the water hammer compatibility equation(s), the continuity equation for the cavity volume, and the equation of state of an ideal gas. Isentropic behaviour is assumed for the trapped gas pocket and an isothermal bath for small gas cavities. Experimental investigations have been performed in a laboratory pipeline apparatus. The apparatus consists of an upstream end high-pressure tank, a horizontal steel pipeline (total length 55.37 m, inner diameter 18 mm), four valve units positioned along the pipeline including the end points, and a downstream end tank. A trapped air pocket is captured between two ball valves at the downstream end of the pipeline. The transient event is initiated by rapid opening of the upstream end valve; the downstream end valve stays closed during the event. Predicted and measured results for a few typical cases are compared and discussed.

  8. The Effect of Pharmacy Benefit Design on Patient-Physician Communication About Costs

    PubMed Central

    Shrank, William H; Fox, Sarah A; Kirk, Adele; Ettner, Susan L; Cantrell, Clairessa H; Glassman, Peter; Asch, Steven M

    2006-01-01

    BACKGROUND Incentive-based formularies have been widely instituted to control the rising costs of prescription drugs. To work properly, such formularies depend on patients to be aware of financial incentives and communicate their cost preferences with prescribing physicians. The impact of financial incentives on patient awareness of and communication about those costs is unknown. OBJECTIVE To evaluate the relationship between enrollment in incentive-based pharmacy benefit plans and awareness of out-of-pocket costs and rates of communication about out-of-pocket costs. DESIGN A matched telephone survey of patients and their primary care physicians. SETTING Los Angeles County. PARTICIPANTS One thousand nine hundred and seventeen patients aged 53 to 82 (73% response rate). MEASUREMENTS Patient-reported pharmacy benefit design, knowledge of out-of-pocket costs, and discussion of out-of-pocket costs with physicians. RESULTS Sixty-two percent of patients who had prescription drug coverage and were aware of their pharmacy benefit design reported being enrolled in incentive-based plans. The majority of these (54%) were “never” or only “sometimes” aware of their out-of-pocket cost requirements at the time of the physician visit. After controlling for numerous physician and patient level variables, we found that patients enrolled in pharmacy benefit designs requiring no copayments were more likely to report they “never” discuss out-of-pocket costs with physicians compared with patients enrolled in incentive-based pharmacy benefit designs (81% vs 67%, P =.001) and patients with no prescription druginsurance (57%, P <.001). CONCLUSIONS Incentive-based pharmacy benefit plans and lack of insurance are associated with increased rates of discussions about out-of-pocket costs. Nonetheless, most incentive-based enrollees are unaware of out-of-pocket costswhen prescriptions are written and never discuss out-of-pocket costs with their physicians, likely mitigating the effectiveness of financial incentives to guide decision making. Considering that out-of-pocket costs are associated with adherence to medical therapy, interventions to improve patient access to out-of-pocket cost information and the frequency of patient-physician discussions about costs are needed. PMID:16686808

  9. Epstein-Barr virus is associated with periodontal diseases: A meta-analysis based on 21 case-control studies.

    PubMed

    Gao, Zilong; Lv, Juan; Wang, Min

    2017-02-01

    Some controversies still exist between the detection of Epstein-Barr virus (EBV)'s DNA and risks of periodontal diseases. Hence, a comprehensive meta-analysis on all available literatures was performed to clarify the relationship between EBV and preidontitis.A comprehensive search was conducted within the PUBMED, EMBASE, and WANFANG databases up to October 10th, 2016 according to inclusion and exclusion criteria and finally 21 case-control literatures were obtained. The outcomes including odds ratios (ORs) with 95% confidence intervals (CIs) were used to assess the strength of associations. Publication bias was determined by Begg or Egger test. Sensitivity analysis was used to investigate reliability and stability of the results.According to the data from included trials, the association between overall increased risks of periodontitis and the detection of EBV was significant (OR = 6.199, 95% CI = 3.119-12.319, P < 0.001). In the disease-type analysis, the pooled ORs for chronic periodontitis and aggressive periodontitis were 6.586 (95% CI = 3.042-14.262, P < 0.001) and 8.361 (95% CI = 2.109-33.143, P = 0.003), respectively. In the subgroup analysis of ethnicity, our results suggested that high EBV-detecting frequencies were correlated with increased risks of periodontitis in Asians, Europeans, and Americans (P < 0.001). Subgroup analysis by the sample type showed that subgingival plaque (SgP) samples and tissue samples were available for EBV detecting (P < 0.001). Detecting EBV of samples in ≥5 (6) mm sites of periodontal pockets were easier than in ≤3-mm sites (P = 0.023).This meta-analysis indicates that high frequent detection of EBV correlates with increased risk of periodontal diseases. SgP and tissue are available for detecting EBV in patients of periodontitis. At last, our results suggest that detecting EBV of samples in =5 (6) mm sites of periodontal pockets are more sensitive than in ≤3-mm sites.

  10. Accurate FRET Measurements within Single Diffusing Biomolecules Using Alternating-Laser Excitation

    PubMed Central

    Lee, Nam Ki; Kapanidis, Achillefs N.; Wang, You; Michalet, Xavier; Mukhopadhyay, Jayanta; Ebright, Richard H.; Weiss, Shimon

    2005-01-01

    Fluorescence resonance energy transfer (FRET) between a donor (D) and an acceptor (A) at the single-molecule level currently provides qualitative information about distance, and quantitative information about kinetics of distance changes. Here, we used the sorting ability of confocal microscopy equipped with alternating-laser excitation (ALEX) to measure accurate FRET efficiencies and distances from single molecules, using corrections that account for cross-talk terms that contaminate the FRET-induced signal, and for differences in the detection efficiency and quantum yield of the probes. ALEX yields accurate FRET independent of instrumental factors, such as excitation intensity or detector alignment. Using DNA fragments, we showed that ALEX-based distances agree well with predictions from a cylindrical model of DNA; ALEX-based distances fit better to theory than distances obtained at the ensemble level. Distance measurements within transcription complexes agreed well with ensemble-FRET measurements, and with structural models based on ensemble-FRET and x-ray crystallography. ALEX can benefit structural analysis of biomolecules, especially when such molecules are inaccessible to conventional structural methods due to heterogeneity or transient nature. PMID:15653725

  11. Accessing protein conformational ensembles using room-temperature X-ray crystallography

    PubMed Central

    Fraser, James S.; van den Bedem, Henry; Samelson, Avi J.; Lang, P. Therese; Holton, James M.; Echols, Nathaniel; Alber, Tom

    2011-01-01

    Modern protein crystal structures are based nearly exclusively on X-ray data collected at cryogenic temperatures (generally 100 K). The cooling process is thought to introduce little bias in the functional interpretation of structural results, because cryogenic temperatures minimally perturb the overall protein backbone fold. In contrast, here we show that flash cooling biases previously hidden structural ensembles in protein crystals. By analyzing available data for 30 different proteins using new computational tools for electron-density sampling, model refinement, and molecular packing analysis, we found that crystal cryocooling remodels the conformational distributions of more than 35% of side chains and eliminates packing defects necessary for functional motions. In the signaling switch protein, H-Ras, an allosteric network consistent with fluctuations detected in solution by NMR was uncovered in the room-temperature, but not the cryogenic, electron-density maps. These results expose a bias in structural databases toward smaller, overpacked, and unrealistically unique models. Monitoring room-temperature conformational ensembles by X-ray crystallography can reveal motions crucial for catalysis, ligand binding, and allosteric regulation. PMID:21918110

  12. Capturing Three-Dimensional Genome Organization in Individual Cells by Single-Cell Hi-C.

    PubMed

    Nagano, Takashi; Wingett, Steven W; Fraser, Peter

    2017-01-01

    Hi-C is a powerful method to investigate genome-wide, higher-order chromatin and chromosome conformations averaged from a population of cells. To expand the potential of Hi-C for single-cell analysis, we developed single-cell Hi-C. Similar to the existing "ensemble" Hi-C method, single-cell Hi-C detects proximity-dependent ligation events between cross-linked and restriction-digested chromatin fragments in cells. A major difference between the single-cell Hi-C and ensemble Hi-C protocol is that the proximity-dependent ligation is carried out in the nucleus. This allows the isolation of individual cells in which nearly the entire Hi-C procedure has been carried out, enabling the production of a Hi-C library and data from individual cells. With this new method, we studied genome conformations and found evidence for conserved topological domain organization from cell to cell, but highly variable interdomain contacts and chromosome folding genome wide. In addition, we found that the single-cell Hi-C protocol provided cleaner results with less technical noise suggesting it could be used to improve the ensemble Hi-C technique.

  13. Ultrasonic Abrasive Removal Of EDM Recast

    NASA Technical Reports Server (NTRS)

    Mandel, Johnny L.; Jacobson, Marlowe S.

    1990-01-01

    Ultrasonic abrasive process removes layer of recast material generated during electrical-discharge machining (EDM) of damper pocket on turbine blade. Form-fitted tool vibrated ultrasonically in damper pocket from which material removed. Vibrations activate abrasive in pocket. Amount of material removed controlled precisely.

  14. Multi-model attribution of upper-ocean temperature changes using an isothermal approach.

    PubMed

    Weller, Evan; Min, Seung-Ki; Palmer, Matthew D; Lee, Donghyun; Yim, Bo Young; Yeh, Sang-Wook

    2016-06-01

    Both air-sea heat exchanges and changes in ocean advection have contributed to observed upper-ocean warming most evident in the late-twentieth century. However, it is predominantly via changes in air-sea heat fluxes that human-induced climate forcings, such as increasing greenhouse gases, and other natural factors such as volcanic aerosols, have influenced global ocean heat content. The present study builds on previous work using two different indicators of upper-ocean temperature changes for the detection of both anthropogenic and natural external climate forcings. Using simulations from phase 5 of the Coupled Model Intercomparison Project, we compare mean temperatures above a fixed isotherm with the more widely adopted approach of using a fixed depth. We present the first multi-model ensemble detection and attribution analysis using the fixed isotherm approach to robustly detect both anthropogenic and natural external influences on upper-ocean temperatures. Although contributions from multidecadal natural variability cannot be fully removed, both the large multi-model ensemble size and properties of the isotherm analysis reduce internal variability of the ocean, resulting in better observation-model comparison of temperature changes since the 1950s. We further show that the high temporal resolution afforded by the isotherm analysis is required to detect natural external influences such as volcanic cooling events in the upper-ocean because the radiative effect of volcanic forcings is short-lived.

  15. Multi-model attribution of upper-ocean temperature changes using an isothermal approach

    NASA Astrophysics Data System (ADS)

    Weller, Evan; Min, Seung-Ki; Palmer, Matthew D.; Lee, Donghyun; Yim, Bo Young; Yeh, Sang-Wook

    2016-06-01

    Both air-sea heat exchanges and changes in ocean advection have contributed to observed upper-ocean warming most evident in the late-twentieth century. However, it is predominantly via changes in air-sea heat fluxes that human-induced climate forcings, such as increasing greenhouse gases, and other natural factors such as volcanic aerosols, have influenced global ocean heat content. The present study builds on previous work using two different indicators of upper-ocean temperature changes for the detection of both anthropogenic and natural external climate forcings. Using simulations from phase 5 of the Coupled Model Intercomparison Project, we compare mean temperatures above a fixed isotherm with the more widely adopted approach of using a fixed depth. We present the first multi-model ensemble detection and attribution analysis using the fixed isotherm approach to robustly detect both anthropogenic and natural external influences on upper-ocean temperatures. Although contributions from multidecadal natural variability cannot be fully removed, both the large multi-model ensemble size and properties of the isotherm analysis reduce internal variability of the ocean, resulting in better observation-model comparison of temperature changes since the 1950s. We further show that the high temporal resolution afforded by the isotherm analysis is required to detect natural external influences such as volcanic cooling events in the upper-ocean because the radiative effect of volcanic forcings is short-lived.

  16. Evidence for Dynamic Chemical Kinetics at Individual Molecular Ruthenium Catalysts.

    PubMed

    Easter, Quinn T; Blum, Suzanne A

    2018-02-05

    Catalytic cycles are typically depicted as possessing time-invariant steps with fixed rates. Yet the true behavior of individual catalysts with respect to time is unknown, hidden by the ensemble averaging inherent to bulk measurements. Evidence is presented for variable chemical kinetics at individual catalysts, with a focus on ring-opening metathesis polymerization catalyzed by the second-generation Grubbs' ruthenium catalyst. Fluorescence microscopy is used to probe the chemical kinetics of the reaction because the technique possesses sufficient sensitivity for the detection of single chemical reactions. Insertion reactions in submicron regions likely occur at groups of many (not single) catalysts, yet not so many that their unique kinetic behavior is ensemble averaged. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Facial Expression Recognition using Multiclass Ensemble Least-Square Support Vector Machine

    NASA Astrophysics Data System (ADS)

    Lawi, Armin; Sya'Rani Machrizzandi, M.

    2018-03-01

    Facial expression is one of behavior characteristics of human-being. The use of biometrics technology system with facial expression characteristics makes it possible to recognize a person’s mood or emotion. The basic components of facial expression analysis system are face detection, face image extraction, facial classification and facial expressions recognition. This paper uses Principal Component Analysis (PCA) algorithm to extract facial features with expression parameters, i.e., happy, sad, neutral, angry, fear, and disgusted. Then Multiclass Ensemble Least-Squares Support Vector Machine (MELS-SVM) is used for the classification process of facial expression. The result of MELS-SVM model obtained from our 185 different expression images of 10 persons showed high accuracy level of 99.998% using RBF kernel.

  18. One-step generation of multipartite entanglement among nitrogen-vacancy center ensembles

    PubMed Central

    Song, Wan-lu; Yin, Zhang-qi; Yang, Wan-li; Zhu, Xiao-bo; Zhou, Fei; Feng, Mang

    2015-01-01

    We describe a one-step, deterministic and scalable scheme for creating macroscopic arbitrary entangled coherent states (ECSs) of separate nitrogen-vacancy center ensembles (NVEs) that couple to a superconducting flux qubit. We discuss how to generate the entangled states between the flux qubit and two NVEs by the resonant driving. Then the ECSs of the NVEs can be obtained by projecting the flux qubit, and the entanglement detection can be realized by transferring the quantum state from the NVEs to the flux qubit. Our numerical simulation shows that even under current experimental parameters the concurrence of the ECSs can approach unity. We emphasize that this method is straightforwardly extendable to the case of many NVEs. PMID:25583623

  19. Periodontal Pocket Depth, Hyperglycemia, and Progression of Chronic Kidney Disease: A Population-Based Longitudinal Study.

    PubMed

    Chang, Jia-Feng; Yeh, Jih-Chen; Chiu, Ya-Lin; Liou, Jian-Chiun; Hsiung, Jing-Ru; Tung, Tao-Hsin

    2017-01-01

    No large epidemiological study has been conducted to investigate the interaction and joint effects of periodontal pocket depth and hyperglycemia on progression of chronic kidney disease in patients with periodontal diseases. Periodontal pocket depth was utilized for the grading severity of periodontal disease in 2831 patients from January 2002 to June 2013. Progression of chronic kidney disease was defined as progression of color intensity in glomerular filtration rate and albuminuria grid of updated Kidney Disease-Improving Global Outcomes guidelines. Multivariable-adjusted hazard ratios (aHR) in various models were presented across different levels of periodontal pocket depth and hemoglobin A1c (HbA1c) in forest plots and 3-dimensional histograms. During 7621 person-years of follow-up, periodontal pocket depth and HbA1C levels were robustly associated with incremental risks for progression of chronic kidney disease (aHR 3.1; 95% confidence interval [CI], 2.0-4.6 for periodontal pocket depth >4.5 mm, and 2.5; 95% CI, 1.1-5.4 for HbA1C >6.5%, respectively). The interaction between periodontal pocket depth and HbA1C on progression of chronic kidney disease was strong (P <.01). Patients with higher periodontal pocket depth (>4.5 mm) and higher HbA1C (>6.5%) had the greatest risk (aHR 4.2; 95% CI, 1.7-6.8) compared with the lowest aHR group (periodontal pocket depth ≤3.8 mm and HbA1C ≤6%). Our study identified combined periodontal pocket depth and HbA1C as a valuable predictor of progression of chronic kidney disease in patients with periodontal diseases. While considering the interaction between periodontal diseases and hyperglycemia, periodontal survey and optimizing glycemic control are warranted to minimize the risk of worsening renal function. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Frequency of "Pocket" Hematoma in Patients Receiving Vitamin K Antagonist and Antiplatelet Therapy at the Time of Pacemaker or Cardioverter Defibrillator Implantation (from the POCKET Study).

    PubMed

    Malagù, Michele; Trevisan, Filippo; Scalone, Antonella; Marcantoni, Lina; Sammarco, Giuseppe; Bertini, Matteo

    2017-04-01

    In patients undergoing cardiac device implantation, anticoagulant and antiplatelet therapy are associated with an increased risk of pocket hematoma. In case of vitamin K antagonist therapy, a strategy of continued warfarin with no heparin bridge showed a reduction of pocket hematoma. Evidence regarding antiplatelet therapy management is limited. This is a single-center observational study which reflects our systematic approach to the problem. In 2012, we proposed an improved management protocol for anticoagulant and antiplatelet therapy (no-bridge protocol) based on individual thromboembolic risk stratification, noninterruption of oral anticoagulation, no bridge with heparin and elastic adherence compression bandage. The primary end point was the incidence of clinically significant pocket hematoma in the first 30 days after implantation. A total of 1,035 patients were enrolled, of whom 522 received the standard management and 513 the new protocol. The primary end point occurred in 34 patients of the standard management group and 8 patients of the no-bridge protocol group (6.5% vs 1.6%, p <0.001). Patients in the standard management group had a higher incidence of pocket infections (2.3% vs 0.6%, p = 0.02), lead dislodgements (4.8% vs 2.1%, p = 0.02), and thromboembolic events (1.3% vs 0.0%, p <0.01). On a multivariate analysis, heparin and coronary artery disease were independent predictors of pocket hematoma (relative risk [RR] 3.48, 95% confidence interval [CI] 1.55 to 7.83 and RR 2.43, 95% CI 1.25 to 4.76, respectively), whereas the no-bridge protocol was associated with a reduction of pocket hematoma (RR 0.33, 95% CI 0.14 to 0.76). New anticoagulant and antiplatelet therapy management protocol was associated with a reduced incidence of clinically significant pocket hematomas, thromboembolic events, pocket infections, and lead dislodgements. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Single-electron random-number generator (RNG) for highly secure ubiquitous computing applications

    NASA Astrophysics Data System (ADS)

    Uchida, Ken; Tanamoto, Tetsufumi; Fujita, Shinobu

    2007-11-01

    Since the security of all modern cryptographic techniques relies on unpredictable and irreproducible digital keys generated by random-number generators (RNGs), the realization of high-quality RNG is essential for secure communications. In this report, a new RNG, which utilizes single-electron phenomena, is proposed. A room-temperature operating silicon single-electron transistor (SET) having nearby an electron pocket is used as a high-quality, ultra-small RNG. In the proposed RNG, stochastic single-electron capture/emission processes to/from the electron pocket are detected with high sensitivity by the SET, and result in giant random telegraphic signals (GRTS) on the SET current. It is experimentally demonstrated that the single-electron RNG generates extremely high-quality random digital sequences at room temperature, in spite of its simple configuration. Because of its small-size and low-power properties, the single-electron RNG is promising as a key nanoelectronic device for future ubiquitous computing systems with highly secure mobile communication capabilities.

  2. Observation of Fermi arcs in the type-II Weyl semimetal candidate WTe 2

    DOE PAGES

    Wu, Yun; Mou, Daixiang; Jo, Na Hyun; ...

    2016-09-14

    We use ultrahigh resolution, tunable, vacuum ultraviolet laser angle-resolved photoemission spectroscopy (ARPES) to study the electronic properties of WTe 2, a material that was predicted to be a type-II Weyl semimetal. The Weyl fermion states in WTe 2 were proposed to emerge at the crossing points of electron and hole pockets, and Fermi arcs connecting electron and hole pockets would be visible in the spectral function on (001) surface. Here we report the observation of such Fermi arcs in WTe 2 confirming the theoretical predictions. This provides strong evidence for type-II Weyl semimetallic states in WTe 2. Here, we alsomore » find that trivial and topological domains coexist on the same surface of the sample due to the presence of inhomogeneous strain detected by scanning electron microscopy data. This is in agreement with the theoretical prediction that strain can drive this system from topological Weyl to trivial semimetal. WTe 2 therefore provides a tunable playground for studying exotic topological quantum effects.« less

  3. Observation of Fermi arcs in the type-II Weyl semimetal candidate WTe 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Yun; Mou, Daixiang; Jo, Na Hyun

    We use ultrahigh resolution, tunable, vacuum ultraviolet laser angle-resolved photoemission spectroscopy (ARPES) to study the electronic properties of WTe 2, a material that was predicted to be a type-II Weyl semimetal. The Weyl fermion states in WTe 2 were proposed to emerge at the crossing points of electron and hole pockets, and Fermi arcs connecting electron and hole pockets would be visible in the spectral function on (001) surface. Here we report the observation of such Fermi arcs in WTe 2 confirming the theoretical predictions. This provides strong evidence for type-II Weyl semimetallic states in WTe 2. Here, we alsomore » find that trivial and topological domains coexist on the same surface of the sample due to the presence of inhomogeneous strain detected by scanning electron microscopy data. This is in agreement with the theoretical prediction that strain can drive this system from topological Weyl to trivial semimetal. WTe 2 therefore provides a tunable playground for studying exotic topological quantum effects.« less

  4. Detecting sign-changing superconducting gap in LiFeAs using quasiparticle interference

    NASA Astrophysics Data System (ADS)

    Altenfeld, D.; Hirschfeld, P. J.; Mazin, I. I.; Eremin, I.

    2018-02-01

    Using a realistic ten-orbital tight-binding model Hamiltonian fitted to the angle-resolved photoemission spectroscopy data on LiFeAs, we analyze the temperature, frequency, and momentum dependencies of quasiparticle interference to identify gap sign changes in a qualitative way, following our original proposal [Phys. Rev. B 92, 184513 (2015), 10.1103/PhysRevB.92.184513]. We show that all features present for the simple two-band model for the sign-changing s+--wave superconducting gap employed previously are still present in the realistic tight-binding approximation and gap values observed experimentally. We discuss various superconducting gap structures proposed for LiFeAs and identify various features of these superconducting gap functions in the quasiparticle interference patterns. On the other hand, we show that it will be difficult to identify the more complicated possible sign structures of the hole pocket gaps in LiFeAs due to the smallness of the pockets and the near proximity of two of the gap energies.

  5. [Novel hybrid inhibitors of the phage T7 RNA polymerase: synthesis, docking and screening in vitro].

    PubMed

    Kostina, V H; Pal'chykovs'ka, L H; Platonov, M O; Vasyl'chenko, O V; Lysenko, N A; Alekseeva, I V

    2012-01-01

    A number of new hybrid heteroaromatic compounds, consisting of tricyclic fragments (acridone, thioxanthone and phenazine) and bicyclic fragments (benzimidazole, benzothiazole and benzoxazole) were synthesized using the method, developed by the authors. As a result of screening against the transcription model system of the phage T7 DNA-dependent RNA polymerase three effective inhibitors of the RNA syntheses with the IC50 value of 8.9, 5.7 and 19.8 microM were detected. To cast light on the mode of interaction between the synthesized compounds and the target, the molecular docking was applied to the model pocket of the phage T7 RNA polymerase transcription complex. It was established that these ligands form networks of H-bonds with residues of the pocket conservative amino acids and pi-interaction with the Mg2+ ion. A planar geometry of the hybrid molecules, realized due to the intramolecular H-bonds, proved to be an important structural feature, which correlates with an efficacious inhibitory activity.

  6. Computational Assessment of Potassium and Magnesium Ion Binding to a Buried Pocket in GTPase-Associating Center RNA

    PubMed Central

    2016-01-01

    An experimentally well-studied model of RNA tertiary structures is a 58mer rRNA fragment, known as GTPase-associating center (GAC) RNA, in which a highly negative pocket walled by phosphate oxygen atoms is stabilized by a chelated cation. Although such deep pockets with more than one direct phosphate to ion chelation site normally include magnesium, as shown in one GAC crystal structure, another GAC crystal structure and solution experiments suggest potassium at this site. Both crystal structures also depict two magnesium ions directly bound to the phosphate groups comprising this controversial pocket. Here, we used classical molecular dynamics simulations as well as umbrella sampling to investigate the possibility of binding of potassium versus magnesium inside the pocket and to better characterize the chelation of one of the binding magnesium ions outside the pocket. The results support the preference of the pocket to accommodate potassium rather than magnesium and suggest that one of the closely binding magnesium ions can only bind at high magnesium concentrations, such as might be present during crystallization. This work illustrates the complementary utility of molecular modeling approaches with atomic-level detail in resolving discrepancies between conflicting experimental results. PMID:27983843

  7. Computational Assessment of Potassium and Magnesium Ion Binding to a Buried Pocket in GTPase-Associating Center RNA.

    PubMed

    Hayatshahi, Hamed S; Roe, Daniel R; Galindo-Murillo, Rodrigo; Hall, Kathleen B; Cheatham, Thomas E

    2017-01-26

    An experimentally well-studied model of RNA tertiary structures is a 58mer rRNA fragment, known as GTPase-associating center (GAC) RNA, in which a highly negative pocket walled by phosphate oxygen atoms is stabilized by a chelated cation. Although such deep pockets with more than one direct phosphate to ion chelation site normally include magnesium, as shown in one GAC crystal structure, another GAC crystal structure and solution experiments suggest potassium at this site. Both crystal structures also depict two magnesium ions directly bound to the phosphate groups comprising this controversial pocket. Here, we used classical molecular dynamics simulations as well as umbrella sampling to investigate the possibility of binding of potassium versus magnesium inside the pocket and to better characterize the chelation of one of the binding magnesium ions outside the pocket. The results support the preference of the pocket to accommodate potassium rather than magnesium and suggest that one of the closely binding magnesium ions can only bind at high magnesium concentrations, such as might be present during crystallization. This work illustrates the complementary utility of molecular modeling approaches with atomic-level detail in resolving discrepancies between conflicting experimental results.

  8. Probabilistic flood warning using grand ensemble weather forecasts

    NASA Astrophysics Data System (ADS)

    He, Y.; Wetterhall, F.; Cloke, H.; Pappenberger, F.; Wilson, M.; Freer, J.; McGregor, G.

    2009-04-01

    As the severity of floods increases, possibly due to climate and landuse change, there is urgent need for more effective and reliable warning systems. The incorporation of numerical weather predictions (NWP) into a flood warning system can increase forecast lead times from a few hours to a few days. A single NWP forecast from a single forecast centre, however, is insufficient as it involves considerable non-predictable uncertainties and can lead to a high number of false or missed warnings. An ensemble of weather forecasts from one Ensemble Prediction System (EPS), when used on catchment hydrology, can provide improved early flood warning as some of the uncertainties can be quantified. EPS forecasts from a single weather centre only account for part of the uncertainties originating from initial conditions and stochastic physics. Other sources of uncertainties, including numerical implementations and/or data assimilation, can only be assessed if a grand ensemble of EPSs from different weather centres is used. When various models that produce EPS from different weather centres are aggregated, the probabilistic nature of the ensemble precipitation forecasts can be better retained and accounted for. The availability of twelve global EPSs through the 'THORPEX Interactive Grand Global Ensemble' (TIGGE) offers a new opportunity for the design of an improved probabilistic flood forecasting framework. This work presents a case study using the TIGGE database for flood warning on a meso-scale catchment. The upper reach of the River Severn catchment located in the Midlands Region of England is selected due to its abundant data for investigation and its relatively small size (4062 km2) (compared to the resolution of the NWPs). This choice was deliberate as we hypothesize that the uncertainty in the forcing of smaller catchments cannot be represented by a single EPS with a very limited number of ensemble members, but only through the variance given by a large number ensembles and ensemble system. A coupled atmospheric-hydrologic-hydraulic cascade system driven by the TIGGE ensemble forecasts is set up to study the potential benefits of using the TIGGE database in early flood warning. Physically based and fully distributed LISFLOOD suite of models is selected to simulate discharge and flood inundation consecutively. The results show the TIGGE database is a promising tool to produce forecasts of discharge and flood inundation comparable with the observed discharge and simulated inundation driven by the observed discharge. The spread of discharge forecasts varies from centre to centre, but it is generally large, implying a significant level of uncertainties. Precipitation input uncertainties dominate and propagate through the cascade chain. The current NWPs fall short of representing the spatial variability of precipitation on a comparatively small catchment. This perhaps indicates the need to improve NWPs resolution and/or disaggregation techniques to narrow down the spatial gap between meteorology and hydrology. It is not necessarily true that early flood warning becomes more reliable when more ensemble forecasts are employed. It is difficult to identify the best forecast centre(s), but in general the chance of detecting floods is increased by using the TIGGE database. Only one flood event was studied because most of the TIGGE data became available after October 2007. It is necessary to test the TIGGE ensemble forecasts with other flood events in other catchments with different hydrological and climatic regimes before general conclusions can be made on its robustness and applicability.

  9. Differential recognition of syk-binding sites by each of the two phosphotyrosine-binding pockets of the Vav SH2 domain.

    PubMed

    Chen, Chih-Hong; Piraner, Dan; Gorenstein, Nina M; Geahlen, Robert L; Beth Post, Carol

    2013-11-01

    The association of spleen tyrosine kinase (Syk), a central tyrosine kinase in B cell signaling, with Vav SH2 domain is controlled by phosphorylation of two closely spaced tyrosines in Syk linker B: Y342 and Y346. Previous studies established both singly phosphorylated and doubly phosphorylated forms play a role in signaling. The structure of the doubly phosphorylated form identified a new recognition of phosphotyrosine whereby two phosphotyrosines bind simultaneously to the Vav SH2 domain, one in the canonical pTyr pocket and one in the specificity pocket on the opposite side of the central β-sheet. It is unknown if the specificity pocket can bind phosphotyrosine independent of phosphotyrosine binding the pTyr pocket. To address this gap in knowledge, we determined the structure of the complex between Vav1 SH2 and a peptide (SykLB-YpY) modeling the singly phosphorylated-Y346 form of Syk with unphosphorylated Y342. The nuclear magnetic resonance (NMR) data conclusively establish that recognition of phosphotyrosine is swapped between the two pockets; phosphorylated pY346 binds the specificity pocket of Vav1 SH2, and unphosphorylated Y342 occupies what is normally the pTyr binding pocket. Nearly identical changes in chemical shifts occurred upon binding all three forms of singly and doubly phosphorylated peptides; however, somewhat smaller shift perturbations for SykLB-YpY from residues in regions of high internal mobility suggest that internal motions are coupled to binding affinity. The differential recognition that includes this swapped binding of phosphotyrosine to the specificity pocket of Vav SH2 increases the repertoire of possible phosphotyrosine binding by SH2 domains in regulating protein-protein interactions in cellular signaling. Copyright © 2013 Wiley Periodicals, Inc.

  10. Heterogeneity and dynamics of the ligand recognition mode in purine-sensing riboswitches.

    PubMed

    Jain, Niyati; Zhao, Liang; Liu, John D; Xia, Tianbing

    2010-05-04

    High-resolution crystal structures and biophysical analyses of purine-sensing riboswitches have revealed that a network of hydrogen bonding interactions appear to be largey responsible for discrimination of cognate ligands against structurally related compounds. Here we report that by using femtosecond time-resolved fluorescence spectroscopy to capture the ultrafast decay dynamics of the 2-aminopurine base as the ligand, we have detected the presence of multiple conformations of the ligand within the binding pockets of one guanine-sensing and two adenine-sensing riboswitches. All three riboswitches have similar conformational distributions of the ligand-bound state. The known crystal structures represent the global minimum that accounts for 50-60% of the population, where there is no significant stacking interaction between the ligand and bases of the binding pocket, but the hydrogen-bonding cage collectively provides an electronic environment that promotes an ultrafast ( approximately 1 ps) charge transfer pathway. The ligand also samples multiple conformations in which it significantly stacks with either the adenine or the uracil bases of the A21-U75 and A52-U22 base pairs that form the ceiling and floor of the binding pocket, respectively, but favors the larger adenine bases. These alternative conformations with well-defined base stacking interactions are approximately 1-1.5 kcal/mol higher in DeltaG degrees than the global minimum and have distinct charge transfer dynamics within the picosecond to nanosecond time regime. Inside the pocket, the purine ligand undergoes dynamic motion on the low nanosecond time scale, sampling the multiple conformations based on time-resolved anisotropy decay dynamics. These results allowed a description of the energy landscape of the bound ligand with intricate details and demonstrated the elastic nature of the ligand recognition mode by the purine-sensing riboswitches, where there is a dynamic balance between hydrogen bonding and base stacking interactions, yielding the high affinity and specificity by the aptamer domain.

  11. Flow visualization of cavitating flows through a rectangular slot micro-orifice ingrained in a microchannel

    NASA Astrophysics Data System (ADS)

    Mishra, Chandan; Peles, Yoav

    2005-11-01

    Multifarious hydrodynamic cavitating flow patterns have been detected in the flow of de-ionized water through a 40.5μm wide and 100.8μm deep rectangular slot micro-orifice established inside a 202.6μm wide and 20 000μm long microchannel. This article presents and discusses the flow patterns observed at various stages of cavitation in the aforementioned micrometer-sized silicon device. Cavitation inception occurs with the appearance of inchoate bubbles that emerge from two thin vapor cavities that emanate from the boundaries of the constriction element. A reduction in the cavitation number beyond inception results in the development of twin coherent unsteady large vapor cavities, which appear just downstream of the micro-orifice and engulf the liquid jet. The shedding of both spherical and nonspherical vapor bubbles and their subsequent collapse into vapor plumes downstream of the orifice occurs intermittently. A further reduction in the exit pressure only aids in the elongation of the two coherent cavities and produces two stable vapor pockets. Additionally, interference fringes are clearly observed, showing that the vapor pocket has a curved interface with liquid. At low cavitation numbers, the flow undergoes a flip downstream and the two vapor pockets coalesce and form a single vapor pocket that is encircled by the liquid and extends until the exit of the microchannel. The cavitating flow patterns are unique and are markedly different from those reported for their macroworld counterparts. Evidence of pitting due to cavitation has been observed on the silicon just downstream of the micro-orifice. It is therefore apparent that cavitation will continue to influence/impact the design of high-speed MEMS hydraulic machines, and the pernicious effects of cavitation in terms of erosion, choking, and a reduction in performance will persist in microfluidic systems if apposite hydrodynamic conditions develop.

  12. Dosimeter design, construction, and implantation. [for recording HZE cosmic particle tracks

    NASA Technical Reports Server (NTRS)

    Winter, D. L.; Suri, K.; Durso, J. A.; Cota, F. L.; Ashley, W. W.; Binnard, R. M.; Haymaker, W.; Benton, E. V.; Cruty, M. R.; Zeman, W.

    1975-01-01

    To detect the passage of cosmic ray particles through the heads of the pocket mice during the Apollo XVII flight, a 'monitor' (dosimeter) composed of plastics was prepared and implanted under the scalp. The monitor was mounted on a platform, the undersurface of which fitted the contour of the skull. Numerous tests were run to assure that the presence of the monitor assembly beneath the scalp would be compatible with the well-being of the mice and that the capacity of the monitor to detect the traversal of cosmic ray particles would be preserved over the several weeks during which it would remain under the scalp.

  13. 16 CFR 1210.5 - Findings.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... percent of all lighters sold are pocket-sized disposable butane models; of the remaining 5 percent, most are pocket refillable butane models. A small proportion of refillables is comprised of pocket liquid-fuel models; still smaller proportions are represented by table lighters and by “novelty” lighters...

  14. Enzyme specificity under dynamic control

    NASA Astrophysics Data System (ADS)

    Ota, Nobuyuki; Agard, David A.

    2002-03-01

    The contributions of conformational dynamics to substrate specificity have been examined by the application of principal component analysis to molecular dynamics trajectories of alpha-lytic protease. The wild-type alpha-lytic protease is highly specific for substrates with small hydrophobic side chains at the specificity pocket, while the Met190Ala binding pocket mutant has a much broader specificity, actively hydrolyzing substrates ranging from Ala to Phe. We performed a principal component analysis using 1-nanosecond molecular dynamics simulations using solvent boundary condition. We found that the walls of the wild-type substrate binding pocket move in tandem with one another, causing the pocket size to remain fixed so that only small substrates are recognized. In contrast, the M190A mutant shows uncoupled movement of the binding pocket walls, allowing the pocket to sample both smaller and larger sizes, which appears to be the cause of the observed broad specificity. The results suggest that the protein dynamics of alpha-lytic protease may play a significant role in defining the patterns of substrate specificity.

  15. Study Of Physician And Patient Communication Identifies Missed Opportunities To Help Reduce Patients’ Out-Of-Pocket Spending

    PubMed Central

    Ubel, Peter A.; Zhang, Cecilia J.; Hesson, Ashley; Davis, J. Kelly; Kirby, Christine; Barnett, Jamison; Hunter, Wynn G.

    2018-01-01

    Some experts contend that requiring patients to pay out of pocket for a portion of their care will bring consumer discipline to health care markets. But are physicians prepared to help patients factor out-of-pocket expenses into medical decisions? In this qualitative study of audiorecorded clinical encounters, we identified physician behaviors that stand in the way of helping patients navigate out-of-pocket spending. Some behaviors reflected a failure to fully engage with patients’ financial concerns, from never acknowledging such concerns to dismissing them too quickly. Other behaviors reflected a failure to resolve uncertainty about out-of-pocket expenses or reliance on temporary solutions without making long-term plans to reduce spending. Many of these failures resulted from systemic barriers to health care spending conversations, such as a lack of price transparency. For consumer health care markets to work as intended, physicians need to be prepared to help patients navigate out-of-pocket expenses when financial concerns arise during clinical encounters. PMID:27044966

  16. Molecular Docking Studies to Explore Potential Binding Pockets and Inhibitors for Chikungunya Virus Envelope Glycoproteins.

    PubMed

    Nguyen, Phuong T V; Yu, Haibo; Keller, Paul A

    2017-03-11

    The chikungunya virus (CHIKV) envelope glycoproteins are considered important potential targets for anti-CHIKV drug discovery due to their crucial roles in virus attachment and virus entry. In this study, using two available crystal structures of the immature and mature forms of envelope glycoproteins, virtual screenings based on blind dockings and focused dockings were carried out to identify potential binding pockets and hit compounds for the virus. The chemical library database of compounds, NCI Diversity Set II, was used in these docking studies. In addition to reproducing previously reported examples, new binding pockets were identified, e.g., Pocket 2 in the 3N40, and Pocket 2 and Pocket 3 in the 3N42. Convergences in conformational sampling in docking using AutoDock Vina were evaluated. An analysis of docking results was carried out to understand interactions of the envelope glycoproteins complexes. Some key residues for interactions, for example Gly91 and His230, are identified as possessing important roles in the fusion process.

  17. Growth, the Mediterranean diet and the buying power of adolescents in Greece.

    PubMed

    Grammatikopoulou, Maria G; Gkiouras, Konstantinos; Daskalou, Efstratia; Apostolidou, Eirini; Theodoridis, Xenophon; Stylianou, Charilaos; Galli-Tsinopoulou, Assimina; Tsigga, Maria; Dardavessis, Theodore; Chourdakis, Michael

    2018-06-01

    The aim of the present cross-sectional study was to evaluate associations between pocket money, Mediterranean diet (MD) adherence and growth among Greek adolescents. A total of 319 (157 boys and 162 girls) Greek adolescents, aged 10-18 years participated in the study. Pocket money was recorded, MD adherence was assessed with the KIDMED score and growth was evaluated using the World Health Organization (WHO) growth charts. Participants receiving pocket money exceeding 6.0€ daily demonstrated increased fast-food consumption and breakfast skipping. Overall, a negative relationship was revealed between pocket money and obesity. However, lower allowance receivers were less likely to be obese, consume fruit per day and more likely to consume breakfast and sweets, compared to average pocket money receivers. Increased MD adherence was associated with a lower risk of overweight and as expected, unhealthy eating habits were observed among obese adolescents. Interrelationships tend to exist between MD adherence, pocket money and growth among adolescents.

  18. Molecular simulations and Markov state modeling reveal the structural diversity and dynamics of a theophylline-binding RNA aptamer in its unbound state

    PubMed Central

    Warfield, Becka M.

    2017-01-01

    RNA aptamers are oligonucleotides that bind with high specificity and affinity to target ligands. In the absence of bound ligand, secondary structures of RNA aptamers are generally stable, but single-stranded and loop regions, including ligand binding sites, lack defined structures and exist as ensembles of conformations. For example, the well-characterized theophylline-binding aptamer forms a highly stable binding site when bound to theophylline, but the binding site is unstable and disordered when theophylline is absent. Experimental methods have not revealed at atomic resolution the conformations that the theophylline aptamer explores in its unbound state. Consequently, in the present study we applied 21 microseconds of molecular dynamics simulations to structurally characterize the ensemble of conformations that the aptamer adopts in the absence of theophylline. Moreover, we apply Markov state modeling to predict the kinetics of transitions between unbound conformational states. Our simulation results agree with experimental observations that the theophylline binding site is found in many distinct binding-incompetent states and show that these states lack a binding pocket that can accommodate theophylline. The binding-incompetent states interconvert with binding-competent states through structural rearrangement of the binding site on the nanosecond to microsecond timescale. Moreover, we have simulated the complete theophylline binding pathway. Our binding simulations supplement prior experimental observations of slow theophylline binding kinetics by showing that the binding site must undergo a large conformational rearrangement after the aptamer and theophylline form an initial complex, most notably, a major rearrangement of the C27 base from a buried to solvent-exposed orientation. Theophylline appears to bind by a combination of conformational selection and induced fit mechanisms. Finally, our modeling indicates that when Mg2+ ions are present the population of binding-competent aptamer states increases more than twofold. This population change, rather than direct interactions between Mg2+ and theophylline, accounts for altered theophylline binding kinetics. PMID:28437473

  19. Does the financial protection of health insurance vary across providers? Vietnam's experience.

    PubMed

    Sepehri, Ardeshir; Sarma, Sisira; Oguzoglu, Umut

    2011-08-01

    Using household panel data from Vietnam, this paper compares out-of-pocket health expenditures on outpatient care at a health facility between insured and uninsured patients as well as across various providers. In the random effects model, the estimated coefficient of the insurance status variable suggests that insurance reduces out-of-pocket spending by 24% for those with the compulsory and voluntary coverage and by about 15% for those with the health insurance for the poor coverage. However, the modest financial protection of the compulsory and voluntary schemes disappears once we control for time-invariant unobserved individual effects using the fixed effects model. Additional analysis of the interaction terms involving the type of insurance and health facility suggests that the overall insignificant reduction in out-of-pocket expenditures as a result of the insurance schemes masks wide variations in the reduction in out-of-pocket sending across various providers. Insurance reduces out-of-pocket expenditures more for those enrollees using district and higher level public health facilities than those using commune health centers. Compared to the uninsured patients using district hospitals, compulsory and voluntary insurance schemes reduce out-of-pocket expenditures by 40 and 32%, respectively. However, for contacts at the commune health centers, both the compulsory health scheme and the voluntary health insurance scheme schemes have little influence on out-of-pocket spending while the health insurance scheme for the poor reduces out-of-pocket spending by about 15%. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. A comparison of breeding and ensemble transform vectors for global ensemble generation

    NASA Astrophysics Data System (ADS)

    Deng, Guo; Tian, Hua; Li, Xiaoli; Chen, Jing; Gong, Jiandong; Jiao, Meiyan

    2012-02-01

    To compare the initial perturbation techniques using breeding vectors and ensemble transform vectors, three ensemble prediction systems using both initial perturbation methods but with different ensemble member sizes based on the spectral model T213/L31 are constructed at the National Meteorological Center, China Meteorological Administration (NMC/CMA). A series of ensemble verification scores such as forecast skill of the ensemble mean, ensemble resolution, and ensemble reliability are introduced to identify the most important attributes of ensemble forecast systems. The results indicate that the ensemble transform technique is superior to the breeding vector method in light of the evaluation of anomaly correlation coefficient (ACC), which is a deterministic character of the ensemble mean, the root-mean-square error (RMSE) and spread, which are of probabilistic attributes, and the continuous ranked probability score (CRPS) and its decomposition. The advantage of the ensemble transform approach is attributed to its orthogonality among ensemble perturbations as well as its consistence with the data assimilation system. Therefore, this study may serve as a reference for configuration of the best ensemble prediction system to be used in operation.

  1. Compensated electron and hole pockets in an underdoped high- Tc superconductor

    NASA Astrophysics Data System (ADS)

    Sebastian, Suchitra E.; Harrison, N.; Goddard, P. A.; Altarawneh, M. M.; Mielke, C. H.; Liang, Ruixing; Bonn, D. A.; Hardy, W. N.; Andersen, O. K.; Lonzarich, G. G.

    2010-06-01

    We report quantum oscillations in the underdoped high-temperature superconductor YBa2Cu3O6+x over a wide range in magnetic field 28≤μ0H≤85T corresponding to ≈12 oscillations, enabling the Fermi surface topology to be mapped to high resolution. As earlier reported by Sebastian [Nature (London) 454, 200 (2008)10.1038/nature07095], we find a Fermi surface comprising multiple pockets, as revealed by the additional distinct quantum oscillation frequencies and harmonics reported in this work. We find the originally reported broad low-frequency Fourier peak at ≈535T to be clearly resolved into three separate peaks at ≈460 , ≈532 , and ≈602T , in reasonable agreement with the reported frequencies of Audouard [Phys. Rev. Lett. 103, 157003 (2009)10.1103/PhysRevLett.103.157003]. However, our increased resolution and angle-resolved measurements identify these frequencies to originate from two similarly sized pockets with greatly contrasting degrees of interlayer corrugation. The spectrally dominant frequency originates from a pocket (denoted α ) that is almost ideally two-dimensional in form (exhibiting negligible interlayer corrugation). In contrast, the newly resolved weaker adjacent spectral features originate from a deeply corrugated pocket (denoted γ ). On comparison with band structure, the d -wave symmetry of the interlayer dispersion locates the minimally corrugated α pocket at the “nodal” point knodal=(π/2,π/2) , and the significantly corrugated γ pocket at the “antinodal” point kantinodal=(π,0) within the Brillouin zone. The differently corrugated pockets at different locations indicate creation by translational symmetry breaking—a spin-density wave has been suggested from the suppression of Zeeman splitting for the spectrally dominant pocket. In a broken-translational symmetry scenario, symmetry points to the nodal (α) pocket corresponding to holes, with the weaker antinodal (γ) pocket corresponding to electrons—likely responsible for the negative Hall coefficient reported by LeBoeuf [Nature (London) 450, 533 (2007)10.1038/nature06332]. Given the similarity in α and γ pocket volumes, their opposite carrier type and the previous report of a diverging effective mass in Sebastian [Proc. Nat. Am. Soc. 107, 6175 (2010)10.1073/pnas.0913711107], we discuss the possibility of a secondary Fermi surface instability at low dopings of the excitonic insulator type, associated with the metal-insulator quantum critical point. Its potential involvement in the enhancement of superconducting transition temperatures is also discussed.

  2. Large-Scale Validation of Mixed-Solvent Simulations to Assess Hotspots at Protein-Protein Interaction Interfaces.

    PubMed

    Ghanakota, Phani; van Vlijmen, Herman; Sherman, Woody; Beuming, Thijs

    2018-04-23

    The ability to target protein-protein interactions (PPIs) with small molecule inhibitors offers great promise in expanding the druggable target space and addressing a broad range of untreated diseases. However, due to their nature and function of interacting with protein partners, PPI interfaces tend to extend over large surfaces without the typical pockets of enzymes and receptors. These features present unique challenges for small molecule inhibitor design. As such, determining whether a particular PPI of interest could be pursued with a small molecule discovery strategy requires an understanding of the characteristics of the PPI interface and whether it has hotspots that can be leveraged by small molecules to achieve desired potency. Here, we assess the ability of mixed-solvent molecular dynamic (MSMD) simulations to detect hotspots at PPI interfaces. MSMD simulations using three cosolvents (acetonitrile, isopropanol, and pyrimidine) were performed on a large test set of 21 PPI targets that have been experimentally validated by small molecule inhibitors. We compare MSMD, which includes explicit solvent and full protein flexibility, to a simpler approach that does not include dynamics or explicit solvent (SiteMap) and find that MSMD simulations reveal additional information about the characteristics of these targets and the ability for small molecules to inhibit the PPI interface. In the few cases were MSMD simulations did not detect hotspots, we explore the shortcomings of this technique and propose future improvements. Finally, using Interleukin-2 as an example, we highlight the advantage of the MSMD approach for detecting transient cryptic druggable pockets that exists at PPI interfaces.

  3. Pocket ultrasound device as a complement to physical examination for ascites evaluation and guided paracentesis.

    PubMed

    Keil-Ríos, Daniel; Terrazas-Solís, Hiram; González-Garay, Alejandro; Sánchez-Ávila, Juan Francisco; García-Juárez, Ignacio

    2016-04-01

    The pocket ultrasound device (PUD) is a new tool that may be of use in the early detection of ascites. Abdominal ultrasound-guided paracentesis has been reported to decrease the rate of complications due to the procedure, but must be performed in a healthcare setting; this new tool may be a useful on an ambulatory basis. The aim of this study was to determine the diagnostic usefulness of the PUD in the diagnosis of ascites and the safety of guided paracentesis. We conducted a retrospective study that included adult patients suspected of having ascites and in whom an evaluation was performed with the PUD to identify it. Concordance with abdominal ultrasound (AUS) was determined with the Kappa coefficient. Sensitivity (Se), specificity (Sp) and likelihood ratios (LR) were determined and compared with physical examination, AUS, computed tomography and procurement of fluid by paracentesis. Complications resulting from the guided paracentesis were analyzed. 89 participants were included and 40 underwent a paracentesis. The PUD for ascites detection had 95.8 % Se, 81.8 % Sp, 5.27 +LR and 0.05 -LR. It had a concordance with AUS of 0.781 (p < 0.001). Technical problems during the guided paracentesis were present in only two participants (5 %) and three patients (7.5 %) developed minor complications that required no further intervention. There were no severe complications or deaths. This study suggests that the PUD is a reliable tool for ascites detection as a complement to physical examination and appears to be a safe method to perform guided paracentesis.

  4. Detection and clonal analysis of anaerobic bacteria associated to endodontic-periodontal lesions.

    PubMed

    Pereira, Cássio V; Stipp, Rafael N; Fonseca, Douglas C; Pereira, Luciano J; Höfling, José F

    2011-12-01

    Microbial agents in root canal systems can induce periodontal inflammation. The aims of this study are to detect anaerobic microorganisms in endodontic-periodontal lesions, determine the genetic diversity among them, and assess the simultaneous colonization of the pulp and periodontal microenvironments by a single clone. Twenty-seven teeth of patients with endodontic-periodontal lesions were selected. Samples were spread on an agar-blood medium, the detection of each species was performed using a polymerase chain reaction, and the determination of the simultaneous presence of the same species in the microenvironments by one or more clones was determined using arbitrarily primed PCR. Prevotella intermedia (Pi) was the most prevalent species of the colonies in periodontal pockets, whereas Porphyromonas gingivalis (Pg) and Pi were the more prevalent in root canals. Isolates of Pi and Pg were simultaneously identified in root canals and periodontal pockets. Eighteen percent of teeth exhibited the simultaneous colonization by Pg, Tannerella forsythia (previously T. forsythensis), and Porphyromonas endodontalis in the pulp and periodontal microenvironments. The presence of these species was noted even in niches from which no colonies were isolated. Seventeen different genotypes were found in periodontal and pulp sites, with the majority of sites colonized by one or two different genotypes. A high degree of genotype similarity was found for samples of Pg isolated from only one site as well as for those isolated from both microenvironments. Different clones of Pi and Pg with a high intraspecific genotype similarity were found to colonize the same anatomic sites in endodontic-periodontal infections.

  5. Clinical parameters and aMMP-8-concentrations in gingival crevicular fluid in pregnancy gingivitis.

    PubMed

    Ehlers, Vicky; Callaway, Angelika; Hortig, Wajiha; Kasaj, Adrian; Willershausen, Brita

    2013-01-01

    During pregnancy hormonal changes may increase the risk for developing gingivitis. The aim of this study was to evaluate the signs of gingival inflammation and the enzyme activity of matrix metalloproteinase-8 (aMMP-8) in the gingival crevicular fluid of pregnant women. After approval by the ethics commission, a total of 40 volunteers participated in the study; group 1 (n = 20, age: 32 +/- 4 years) with pregnant women, and group 2 (n = 20, age: 30 +/- 10 years) with age-matched non-pregnant women as controls. After obtaining anamnestic data, the dental examination included assessment of oral hygiene, gingival inflammation, probing pocket depth, and recession. Gingival crevicular fluid was collected from both groups. A quantitative determination of aMMP-8 concentrations in the gingival crevicular fluid samples was performed. The aMMP-8 values of group 1 were higher (median 6.25 ng/mL aMMP-8 eluate) compared with group 2 (median 3.88 ng/mL aMMP-8 eluate), but the difference was not statistically significant (p = 0.265). Group 1 showed significantly increased probing pocket depths (p = 0.001). Gingival inflammation was present in 80% of the pregnant women, but only in 40% of the control subjects. It was shown that during pregnancy changes related to periodontal health could be observed. Higher aMMP-8 values, elevated probing pocket depths, and an increase of gingival inflammation could be detected in comparison with non-pregnant women.

  6. Finding the Root Causes of Statistical Inconsistency in Community Earth System Model Output

    NASA Astrophysics Data System (ADS)

    Milroy, D.; Hammerling, D.; Baker, A. H.

    2017-12-01

    Baker et al (2015) developed the Community Earth System Model Ensemble Consistency Test (CESM-ECT) to provide a metric for software quality assurance by determining statistical consistency between an ensemble of CESM outputs and new test runs. The test has proved useful for detecting statistical difference caused by compiler bugs and errors in physical modules. However, detection is only the necessary first step in finding the causes of statistical difference. The CESM is a vastly complex model comprised of millions of lines of code which is developed and maintained by a large community of software engineers and scientists. Any root cause analysis is correspondingly challenging. We propose a new capability for CESM-ECT: identifying the sections of code that cause statistical distinguishability. The first step is to discover CESM variables that cause CESM-ECT to classify new runs as statistically distinct, which we achieve via Randomized Logistic Regression. Next we use a tool developed to identify CESM components that define or compute the variables found in the first step. Finally, we employ the application Kernel GENerator (KGEN) created in Kim et al (2016) to detect fine-grained floating point differences. We demonstrate an example of the procedure and advance a plan to automate this process in our future work.

  7. Proceedings of a Symposium - Consequences of Wearing the Chemical Protective Ensemble: Illustrative Assessment Approaches (33rd) Held in San Antonio, Texas on October 31, 1991

    DTIC Science & Technology

    1992-03-01

    marksmanship. Proceedings of the 1989 Medical Defense Bioscience Review (pp. 823-826). Aberdeen Proving Ground , MD: US Army Medical Research Institute of...MILITARY PERSONNEL PERFORM THEIR MOS IN MOPP4 William K. Blewett Chemical Research, Development and Engineering Center Aberdeen Proving Ground , MD 21010...approximately the same evaporation rate, surface tension, solubility, and detectability as the agent mustard . The MS is detectable by use of the Chemical

  8. TECA: A Parallel Toolkit for Extreme Climate Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prabhat, Mr; Ruebel, Oliver; Byna, Surendra

    2012-03-12

    We present TECA, a parallel toolkit for detecting extreme events in large climate datasets. Modern climate datasets expose parallelism across a number of dimensions: spatial locations, timesteps and ensemble members. We design TECA to exploit these modes of parallelism and demonstrate a prototype implementation for detecting and tracking three classes of extreme events: tropical cyclones, extra-tropical cyclones and atmospheric rivers. We process a modern TB-sized CAM5 simulation dataset with TECA, and demonstrate good runtime performance for the three case studies.

  9. Differences in Error Detection Skills by Band and Choral Preservice Teachers

    ERIC Educational Resources Information Center

    Stambaugh, Laura A.

    2016-01-01

    Band and choral preservice teachers (N = 44) studied band and choral scores, listened to recordings of school ensembles, and identified errors in the recordings. Results indicated that preservice teachers identified significantly more errors when listening to recordings of their primary area (band majors listening to band, p = 0.045; choral majors…

  10. Fault Diagnosis of Demountable Disk-Drum Aero-Engine Rotor Using Customized Multiwavelet Method.

    PubMed

    Chen, Jinglong; Wang, Yu; He, Zhengjia; Wang, Xiaodong

    2015-10-23

    The demountable disk-drum aero-engine rotor is an important piece of equipment that greatly impacts the safe operation of aircraft. However, assembly looseness or crack fault has led to several unscheduled breakdowns and serious accidents. Thus, condition monitoring and fault diagnosis technique are required for identifying abnormal conditions. Customized ensemble multiwavelet method for aero-engine rotor condition identification, using measured vibration data, is developed in this paper. First, customized multiwavelet basis function with strong adaptivity is constructed via symmetric multiwavelet lifting scheme. Then vibration signal is processed by customized ensemble multiwavelet transform. Next, normalized information entropy of multiwavelet decomposition coefficients is computed to directly reflect and evaluate the condition. The proposed approach is first applied to fault detection of an experimental aero-engine rotor. Finally, the proposed approach is used in an engineering application, where it successfully identified the crack fault of a demountable disk-drum aero-engine rotor. The results show that the proposed method possesses excellent performance in fault detection of aero-engine rotor. Moreover, the robustness of the multiwavelet method against noise is also tested and verified by simulation and field experiments.

  11. Deconnable self-reading pocket dosimeter containment with self-contained light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, R.L.; Arnold, G.N.; McBride, R.G.

    1996-10-22

    A container for a self-reading pocket dosimeter includes a transparent tube for receiving the self-reading pocket dosimeter, a light source mounted at one end of the transparent tube, and an eyepiece mounted on an opposite end of the transparent tube for viewing a read-out of the self-reading pocket dosimeter. The container may further include an activation device for selectively supplying power to the light source. The container both protects the dosimeter from being contaminated and provides a light source for viewing the dosimeter. 4 figs.

  12. Deconnable self-reading pocket dosimeter containment with self-contained light

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stevens, R.L.; Arnold, G.N.; McBride, R.G.

    1995-12-31

    A container for a self-reading pocket dosimeter includes a transparent tube for receiving the self-reading pocket dosimeter, a light source mounted at one end of the transparent tube, and an eyepiece mounted on an opposite end of the transparent tube for viewing a read-out of the self-reading pocket dosimeter. The container may further include an activation device for selectively supplying power to the light source. The container both protects the dosimeter from being contaminated and provides a light source for viewing the dosimeter.

  13. Deconnable self-reading pocket dosimeter containment with self-contained light

    DOEpatents

    Stevens, Robyn L.; Arnold, Greg N.; McBride, Ryan G.

    1996-01-01

    A container for a self-reading pocket dosimeter includes a transparent tube for receiving the self-reading pocket dosimeter, a light source mounted at one end of the transparent tube, and an eyepiece mounted on an opposite end of the transparent tube for viewing a read-out of the self-reading pocket dosimeter. The container may further include an activation device for selectively supplying power to the light source. The container both protects the dosimeter from being contaminated and provides a light source for viewing the dosimeter.

  14. Out-of-pocket health care expenditures, by insurance status, 2007-10.

    PubMed

    Catlin, Mary K; Poisal, John A; Cowan, Cathy A

    2015-01-01

    Out-of-pocket health care spending in the United States totaled $306.2 billion in 2010 and represented 11.8 percent of total national health expenditures, according to the Centers for Medicare and Medicaid Services' National Health Expenditure Accounts. Spending by people with employer-sponsored health insurance and those covered by Medicare accounted for over 80 percent of total out-of-pocket spending. People without comprehensive medical coverage accounted for less than 8 percent of all out-of-pocket expenditures in 2010. Between 2007 and 2010 per person out-of-pocket spending grew most rapidly for people primarily covered by employer-sponsored insurance and declined for people primarily covered by Medicare and those without coverage. Project HOPE—The People-to-People Health Foundation, Inc.

  15. The Ensembl REST API: Ensembl Data for Any Language.

    PubMed

    Yates, Andrew; Beal, Kathryn; Keenan, Stephen; McLaren, William; Pignatelli, Miguel; Ritchie, Graham R S; Ruffier, Magali; Taylor, Kieron; Vullo, Alessandro; Flicek, Paul

    2015-01-01

    We present a Web service to access Ensembl data using Representational State Transfer (REST). The Ensembl REST server enables the easy retrieval of a wide range of Ensembl data by most programming languages, using standard formats such as JSON and FASTA while minimizing client work. We also introduce bindings to the popular Ensembl Variant Effect Predictor tool permitting large-scale programmatic variant analysis independent of any specific programming language. The Ensembl REST API can be accessed at http://rest.ensembl.org and source code is freely available under an Apache 2.0 license from http://github.com/Ensembl/ensembl-rest. © The Author 2014. Published by Oxford University Press.

  16. Ensembl BioMarts: a hub for data retrieval across taxonomic space.

    PubMed

    Kinsella, Rhoda J; Kähäri, Andreas; Haider, Syed; Zamora, Jorge; Proctor, Glenn; Spudich, Giulietta; Almeida-King, Jeff; Staines, Daniel; Derwent, Paul; Kerhornou, Arnaud; Kersey, Paul; Flicek, Paul

    2011-01-01

    For a number of years the BioMart data warehousing system has proven to be a valuable resource for scientists seeking a fast and versatile means of accessing the growing volume of genomic data provided by the Ensembl project. The launch of the Ensembl Genomes project in 2009 complemented the Ensembl project by utilizing the same visualization, interactive and programming tools to provide users with a means for accessing genome data from a further five domains: protists, bacteria, metazoa, plants and fungi. The Ensembl and Ensembl Genomes BioMarts provide a point of access to the high-quality gene annotation, variation data, functional and regulatory annotation and evolutionary relationships from genomes spanning the taxonomic space. This article aims to give a comprehensive overview of the Ensembl and Ensembl Genomes BioMarts as well as some useful examples and a description of current data content and future objectives. Database URLs: http://www.ensembl.org/biomart/martview/; http://metazoa.ensembl.org/biomart/martview/; http://plants.ensembl.org/biomart/martview/; http://protists.ensembl.org/biomart/martview/; http://fungi.ensembl.org/biomart/martview/; http://bacteria.ensembl.org/biomart/martview/.

  17. Solution structural ensembles of substrate-free cytochrome P450(cam).

    PubMed

    Asciutto, Eliana K; Young, Matthew J; Madura, Jeffry; Pochapsky, Susan Sondej; Pochapsky, Thomas C

    2012-04-24

    Removal of substrate (+)-camphor from the active site of cytochrome P450(cam) (CYP101A1) results in nuclear magnetic resonance-detected perturbations in multiple regions of the enzyme. The (1)H-(15)N correlation map of substrate-free diamagnetic Fe(II) CO-bound CYP101A permits these perturbations to be mapped onto the solution structure of the enzyme. Residual dipolar couplings (RDCs) were measured for (15)N-(1)H amide pairs in two independent alignment media for the substrate-free enzyme and used as restraints in solvated molecular dynamics (MD) simulations to generate an ensemble of best-fit structures of the substrate-free enzyme in solution. Nuclear magnetic resonance-detected chemical shift perturbations reflect changes in the electronic environment of the NH pairs, such as hydrogen bonding and ring current shifts, and are observed for residues in the active site as well as in hinge regions between secondary structural features. RDCs provide information about relative orientations of secondary structures, and RDC-restrained MD simulations indicate that portions of a β-rich region adjacent to the active site shift so as to partially occupy the vacancy left by removal of the substrate. The accessible volume of the active site is reduced in the substrate-free enzyme relative to the substrate-bound structure calculated using the same methods. Both symmetric and asymmetric broadening of multiple resonances observed upon substrate removal as well as localized increased errors in RDC fits suggest that an ensemble of enzyme conformations are present in the substrate-free form.

  18. Improving Global Forecast System of extreme precipitation events with regional statistical model: Application of quantile-based probabilistic forecasts

    NASA Astrophysics Data System (ADS)

    Shastri, Hiteshri; Ghosh, Subimal; Karmakar, Subhankar

    2017-02-01

    Forecasting of extreme precipitation events at a regional scale is of high importance due to their severe impacts on society. The impacts are stronger in urban regions due to high flood potential as well high population density leading to high vulnerability. Although significant scientific improvements took place in the global models for weather forecasting, they are still not adequate at a regional scale (e.g., for an urban region) with high false alarms and low detection. There has been a need to improve the weather forecast skill at a local scale with probabilistic outcome. Here we develop a methodology with quantile regression, where the reliably simulated variables from Global Forecast System are used as predictors and different quantiles of rainfall are generated corresponding to that set of predictors. We apply this method to a flood-prone coastal city of India, Mumbai, which has experienced severe floods in recent years. We find significant improvements in the forecast with high detection and skill scores. We apply the methodology to 10 ensemble members of Global Ensemble Forecast System and find a reduction in ensemble uncertainty of precipitation across realizations with respect to that of original precipitation forecasts. We validate our model for the monsoon season of 2006 and 2007, which are independent of the training/calibration data set used in the study. We find promising results and emphasize to implement such data-driven methods for a better probabilistic forecast at an urban scale primarily for an early flood warning.

  19. Multi-categorical deep learning neural network to classify retinal images: A pilot study employing small database

    PubMed Central

    Seo, Jeong Gi; Kwak, Jiyong; Um, Terry Taewoong; Rim, Tyler Hyungtaek

    2017-01-01

    Deep learning emerges as a powerful tool for analyzing medical images. Retinal disease detection by using computer-aided diagnosis from fundus image has emerged as a new method. We applied deep learning convolutional neural network by using MatConvNet for an automated detection of multiple retinal diseases with fundus photographs involved in STructured Analysis of the REtina (STARE) database. Dataset was built by expanding data on 10 categories, including normal retina and nine retinal diseases. The optimal outcomes were acquired by using a random forest transfer learning based on VGG-19 architecture. The classification results depended greatly on the number of categories. As the number of categories increased, the performance of deep learning models was diminished. When all 10 categories were included, we obtained results with an accuracy of 30.5%, relative classifier information (RCI) of 0.052, and Cohen’s kappa of 0.224. Considering three integrated normal, background diabetic retinopathy, and dry age-related macular degeneration, the multi-categorical classifier showed accuracy of 72.8%, 0.283 RCI, and 0.577 kappa. In addition, several ensemble classifiers enhanced the multi-categorical classification performance. The transfer learning incorporated with ensemble classifier of clustering and voting approach presented the best performance with accuracy of 36.7%, 0.053 RCI, and 0.225 kappa in the 10 retinal diseases classification problem. First, due to the small size of datasets, the deep learning techniques in this study were ineffective to be applied in clinics where numerous patients suffering from various types of retinal disorders visit for diagnosis and treatment. Second, we found that the transfer learning incorporated with ensemble classifiers can improve the classification performance in order to detect multi-categorical retinal diseases. Further studies should confirm the effectiveness of algorithms with large datasets obtained from hospitals. PMID:29095872

  20. Cysteine peptidases from Phytomonas serpens: biochemical and immunological approaches.

    PubMed

    Elias, Camila G R; Aor, Ana Carolina; Valle, Roberta S; d'Avila-Levy, Claudia M; Branquinha, Marta H; Santos, André L S

    2009-12-01

    Phytomonas serpens, a phytoflagellate trypanosomatid, shares common antigens with Trypanosoma cruzi. In the present work, we compared the hydrolytic capability of cysteine peptidases in both trypanosomatids. Trypanosoma cruzi epimastigotes presented a 10-fold higher efficiency in hydrolyzing the cysteine peptidase substrate Z-Phe-Arg-AMC than P. serpens promastigotes. Moreover, two weak cysteine-type gelatinolytic activities were detected in P. serpens, while a strong 50-kDa cysteine peptidase was observed in T. cruzi. Cysteine peptidase activities were detected at twofold higher levels in the cytoplasmic fraction when compared with the membrane-rich or the content released from P. serpens. The cysteine peptidase secreted by P. serpens cleaved several proteinaceous substrates. Corroborating these findings, the cellular distribution of the cruzipain-like molecules in P. serpens was attested through immunocytochemistry analysis. Gold particles were observed in all cellular compartments, including the cytoplasm, plasma membrane, flagellum, flagellar membrane and flagellar pocket. Interestingly, some gold particles were visualized free in the flagellar pocket, suggesting the release of the cruzipain-like molecule. The antigenic properties of the cruzipain-like molecules of P. serpens were also analyzed. Interestingly, sera from chagasic patients recognized both cellular and extracellular antigens of P. serpens, including the cruzipain-like molecule. These results point to the use of P. serpens antigens, especially the cruzipain-like cysteine-peptidases, as an alternative vaccination approach to T. cruzi infection.

  1. Doubling the Size of the Glucocorticoid Receptor Ligand Binding Pocket by Deacylcortivazol

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Suino-Powell, Kelly; Xu, Yong; Zhang, Chenghai

    A common feature of nuclear receptor ligand binding domains (LBD) is a helical sandwich fold that nests a ligand binding pocket within the bottom half of the domain. Here we report that the ligand pocket of glucocorticoid receptor (GR) can be continuously extended into the top half of the LBD by binding to deacylcortivazol (DAC), an extremely potent glucocorticoid. It has been puzzling for decades why DAC, which contains a phenylpyrazole replacement at the conserved 3-ketone of steroid hormones that are normally required for activation of their cognate receptors, is a potent GR activator. The crystal structure of the GRmore » LBD bound to DAC and the fourth LXXLL motif of steroid receptor coactivator 1 reveals that the GR ligand binding pocket is expanded to a size of 1,070 {angstrom}{sup 3}, effectively doubling the size of the GR dexamethasone-binding pocket of 540 {angstrom}{sup 3} and yet leaving the structure of the coactivator binding site intact. DAC occupies only {approx}50% of the space of the pocket but makes intricate interactions with the receptor around the phenylpyrazole group that accounts for the high-affinity binding of DAC. The dramatic expansion of the DAC-binding pocket thus highlights the conformational adaptability of GR to ligand binding. The new structure also allows docking of various nonsteroidal ligands that cannot be fitted into the previous structures, thus providing a new rational template for drug discovery of steroidal and nonsteroidal glucocorticoids that can be specifically designed to reach the unoccupied space of the expanded pocket.« less

  2. HIPPI: highly accurate protein family classification with ensembles of HMMs.

    PubMed

    Nguyen, Nam-Phuong; Nute, Michael; Mirarab, Siavash; Warnow, Tandy

    2016-11-11

    Given a new biological sequence, detecting membership in a known family is a basic step in many bioinformatics analyses, with applications to protein structure and function prediction and metagenomic taxon identification and abundance profiling, among others. Yet family identification of sequences that are distantly related to sequences in public databases or that are fragmentary remains one of the more difficult analytical problems in bioinformatics. We present a new technique for family identification called HIPPI (Hierarchical Profile Hidden Markov Models for Protein family Identification). HIPPI uses a novel technique to represent a multiple sequence alignment for a given protein family or superfamily by an ensemble of profile hidden Markov models computed using HMMER. An evaluation of HIPPI on the Pfam database shows that HIPPI has better overall precision and recall than blastp, HMMER, and pipelines based on HHsearch, and maintains good accuracy even for fragmentary query sequences and for protein families with low average pairwise sequence identity, both conditions where other methods degrade in accuracy. HIPPI provides accurate protein family identification and is robust to difficult model conditions. Our results, combined with observations from previous studies, show that ensembles of profile Hidden Markov models can better represent multiple sequence alignments than a single profile Hidden Markov model, and thus can improve downstream analyses for various bioinformatic tasks. Further research is needed to determine the best practices for building the ensemble of profile Hidden Markov models. HIPPI is available on GitHub at https://github.com/smirarab/sepp .

  3. Ensemble Learning of QTL Models Improves Prediction of Complex Traits

    PubMed Central

    Bian, Yang; Holland, James B.

    2015-01-01

    Quantitative trait locus (QTL) models can provide useful insights into trait genetic architecture because of their straightforward interpretability but are less useful for genetic prediction because of the difficulty in including the effects of numerous small effect loci without overfitting. Tight linkage between markers introduces near collinearity among marker genotypes, complicating the detection of QTL and estimation of QTL effects in linkage mapping, and this problem is exacerbated by very high density linkage maps. Here we developed a thinning and aggregating (TAGGING) method as a new ensemble learning approach to QTL mapping. TAGGING reduces collinearity problems by thinning dense linkage maps, maintains aspects of marker selection that characterize standard QTL mapping, and by ensembling, incorporates information from many more markers-trait associations than traditional QTL mapping. The objective of TAGGING was to improve prediction power compared with QTL mapping while also providing more specific insights into genetic architecture than genome-wide prediction models. TAGGING was compared with standard QTL mapping using cross validation of empirical data from the maize (Zea mays L.) nested association mapping population. TAGGING-assisted QTL mapping substantially improved prediction ability for both biparental and multifamily populations by reducing both the variance and bias in prediction. Furthermore, an ensemble model combining predictions from TAGGING-assisted QTL and infinitesimal models improved prediction abilities over the component models, indicating some complementarity between model assumptions and suggesting that some trait genetic architectures involve a mixture of a few major QTL and polygenic effects. PMID:26276383

  4. Langevin equation with fluctuating diffusivity: A two-state model

    NASA Astrophysics Data System (ADS)

    Miyaguchi, Tomoshige; Akimoto, Takuma; Yamamoto, Eiji

    2016-07-01

    Recently, anomalous subdiffusion, aging, and scatter of the diffusion coefficient have been reported in many single-particle-tracking experiments, though the origins of these behaviors are still elusive. Here, as a model to describe such phenomena, we investigate a Langevin equation with diffusivity fluctuating between a fast and a slow state. Namely, the diffusivity follows a dichotomous stochastic process. We assume that the sojourn time distributions of these two states are given by power laws. It is shown that, for a nonequilibrium ensemble, the ensemble-averaged mean-square displacement (MSD) shows transient subdiffusion. In contrast, the time-averaged MSD shows normal diffusion, but an effective diffusion coefficient transiently shows aging behavior. The propagator is non-Gaussian for short time and converges to a Gaussian distribution in a long-time limit; this convergence to Gaussian is extremely slow for some parameter values. For equilibrium ensembles, both ensemble-averaged and time-averaged MSDs show only normal diffusion and thus we cannot detect any traces of the fluctuating diffusivity with these MSDs. Therefore, as an alternative approach to characterizing the fluctuating diffusivity, the relative standard deviation (RSD) of the time-averaged MSD is utilized and it is shown that the RSD exhibits slow relaxation as a signature of the long-time correlation in the fluctuating diffusivity. Furthermore, it is shown that the RSD is related to a non-Gaussian parameter of the propagator. To obtain these theoretical results, we develop a two-state renewal theory as an analytical tool.

  5. Dual-axis high-data-rate atom interferometer via cold ensemble exchange

    DOE PAGES

    Rakholia, Akash V.; McGuinness, Hayden J.; Biedermann, Grant W.

    2014-11-24

    We demonstrate a dual-axis accelerometer and gyroscope atom interferometer, which can form the building blocks of a six-axis inertial measurement unit. By recapturing the atoms after the interferometer sequence, we maintain a large atom number at high data rates of 50 to 100 measurements per second. Two cold ensembles are formed in trap zones located a few centimeters apart and are launched toward one another. During their ballistic trajectory, they are interrogated with a stimulated Raman sequence, detected, and recaptured in the opposing trap zone. As a result, we achieve sensitivities at μg/ √Hz and μrad/s/ √Hz levels, making thismore » a compelling prospect for expanding the use of atom interferometer inertial sensors beyond benign laboratory environments.« less

  6. Effects of fine sediment on fish populations

    Treesearch

    Russ Thurow; Jack King

    1991-01-01

    To describe conditions in natural redds of steelhead trout (Oncorhynchus mykiss), we evaluated the particle size distribution of egg pockets, redd pits and tailspills, artificially constructed redds, and undisturbed substrate outside redds. Egg pockets were located in upper strata an average of 14.9 cm below the substrate surface. Egg pockets contained fewer fines (...

  7. Patients' annual income adequacy, insurance premiums and out-of-pocket expenses related to heart failure care.

    PubMed

    Piamjariyakul, Ubolrat; Yadrich, Donna Macan; Russell, Christy; Myer, Jane; Prinyarux, Chanawee; Vacek, James L; Ellerbeck, Edward F; Smith, Carol E

    2014-01-01

    To (1) identify the amount patients spend for insurance premiums, co-payments, deductibles, and other out-of-pocket costs related to HF and chronic health care services and estimate their annual non-reimbursed and out-of-pocket costs; and (2) identify patients' concerns about nonreimbursed and out-of-pocket expenses. HF is one of the most expensive illnesses for our society with multiple health services and financial burdens for families. Mixed methods with quantitative questionnaires and qualitative interviews. Patients (N = 149) reported annual averages for non-reimbursed health services co-payments and out-of-pocket costs ranging from $3913 to $5829 depending on insurance coverage. Thirty one patients (21%) reported inadequate health coverage related to their non-reimbursed costs. Non-reimbursed costs related to HF care are substantial and vary depending on their insurance, health services use, and out-of-pocket costs. Patient referral to social services to assist with expenses could provide some relief from the burden of high HF-related costs. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. [Disposable nursing applicator-pocket of indwelling central venous catheter].

    PubMed

    Wei, Congli; Ma, Chunyuan

    2017-11-01

    Catheter related infection is the most common complication of central venous catheter, which pathogen mainly originate from the pipe joint and the skin around puncture site. How to prevent catheter infection is an important issue in clinical nursing. The utility model disclosed a "disposable nursing applicator-pocket of indwelling central venous catheter", which is mainly used for the fixation and the protection. The main structure consists of two parts, one is medical applicator to protect the skin around puncture site, and the other is gauze pocket to protect the catheter external connector. When in use, the catheter connector is fitted into the pocket, and then the applicator is applied to cover the puncture point of the skin. Integrated design of medical applicator and gauze pocket was designed to realize double functions of fixation and protection. The disposable nursing applicator-pocket is made of medical absorbent gauze (outer layer) and non-woven fabric (inner layer), which has the characteristics of comfortable, breathable, dust filtered, bacteria filtered, waterproof, antiperspirant and anti-pollution. The utility model has the advantages of simple structure, low cost, simple operation, effective protection, easy realization and popularization.

  9. Method of underground mining by pillar extraction

    DOEpatents

    Bowen, Ray J.; Bowen, William R.

    1980-08-12

    A method of sublevel caving and pillar and top coal extraction for mining thick coal seams includes the advance mining of rooms and crosscuts along the bottom of a seam to a height of about eight feet, and the retreat mining of the top coal from the rooms, crosscuts and portions of the pillars remaining from formation of the rooms and cross-cuts. In the retreat mining, a pocket is formed in a pillar, the top coal above the pocket is drilled, charged and shot, and then the fallen coal is loaded by a continuous miner so that the operator remains under a roof which has not been shot. The top coal from that portion of the room adjacent the pocket is then mined, and another pocket is formed in the pillar. The top coal above the second pocket is mined followed by the mining of the top coal of that portion of the room adjacent the second pocket, all by use of a continuous miner which allows the operator to remain under a roof portion which has not been shot.

  10. Molecular beacon anchored onto a graphene oxide substrate

    NASA Astrophysics Data System (ADS)

    Darbandi, Arash; Datta, Debopam; Patel, Krunal; Lin, Gary; Stroscio, Michael A.; Dutta, Mitra

    2017-09-01

    In this article, we report a graphene oxide-based nanosensor incorporating semiconductor quantum dots linked to DNA-aptamers that functions as a ‘turn-off’ fluorescent nanosensor for detection of low concentrations of analytes. A specific demonstration of this turn-off aptasensor is presented for the case of the detection of mercury (II) ions. In this system, ensembles of aptamer-based quantum-dot sensors are anchored onto graphene oxide (GO) flakes which provide a platform for analyte detection in the vicinity of GO. Herein, the operation of this ensemble-based nanosensor is demonstrated for mercury ions, which upon addition of mercury, quenching of the emission intensity from the quantum dots is observed due to resonance energy transfer between quantum dots and the gold nanoparticle connected via a mercury target aptamer. A key result is that the usually dominant effect of quenching of the quantum dot due to close proximity to the GO can be reduced to negligible levels by using a linker molecule in conjunctions with the aptamer-based nanosensor. The effect of ionic concentration of the background matrix on the emission intensity was also investigated. The sensor system is found to be highly selective towards mercury and exhibits a linear behavior (r 2 > 0.99) in the nanomolar concentration range. The detection limit of the sensor towards mercury with no GO present was found to be 16.5 nM. With GO attached to molecular beacon via 14 base, 35 base, and 51 base long linker DNA, the detection limit was found to be 38.4 nM, 9.45 nM, and 11.38 nM; respectively.

  11. Unveiling Inherent Degeneracies in Determining Population-weighted Ensembles of Inter-domain Orientational Distributions Using NMR Residual Dipolar Couplings: Application to RNA Helix Junction Helix Motifs

    PubMed Central

    Yang, Shan; Al-Hashimi, Hashim M.

    2016-01-01

    A growing number of studies employ time-averaged experimental data to determine dynamic ensembles of biomolecules. While it is well known that different ensembles can satisfy experimental data to within error, the extent and nature of these degeneracies, and their impact on the accuracy of the ensemble determination remains poorly understood. Here, we use simulations and a recently introduced metric for assessing ensemble similarity to explore degeneracies in determining ensembles using NMR residual dipolar couplings (RDCs) with specific application to A-form helices in RNA. Various target ensembles were constructed representing different domain-domain orientational distributions that are confined to a topologically restricted (<10%) conformational space. Five independent sets of ensemble averaged RDCs were then computed for each target ensemble and a ‘sample and select’ scheme used to identify degenerate ensembles that satisfy RDCs to within experimental uncertainty. We find that ensembles with different ensemble sizes and that can differ significantly from the target ensemble (by as much as ΣΩ ~ 0.4 where ΣΩ varies between 0 and 1 for maximum and minimum ensemble similarity, respectively) can satisfy the ensemble averaged RDCs. These deviations increase with the number of unique conformers and breadth of the target distribution, and result in significant uncertainty in determining conformational entropy (as large as 5 kcal/mol at T = 298 K). Nevertheless, the RDC-degenerate ensembles are biased towards populated regions of the target ensemble, and capture other essential features of the distribution, including the shape. Our results identify ensemble size as a major source of uncertainty in determining ensembles and suggest that NMR interactions such as RDCs and spin relaxation, on their own, do not carry the necessary information needed to determine conformational entropy at a useful level of precision. The framework introduced here provides a general approach for exploring degeneracies in ensemble determination for different types of experimental data. PMID:26131693

  12. Comparison of stromal hydration techniques for clear corneal cataract incisions: conventional hydration versus anterior stromal pocket hydration.

    PubMed

    Mifflin, Mark D; Kinard, Krista; Neuffer, Marcus C

    2012-06-01

    Anterior stromal pocket hydration was compared with conventional hydration for preventing wound leak after 2.8 mm uniplanar clear corneal incisions (CCIs) in patients having routine cataract surgery. Conventional hydration involves hydration of the lateral walls of the main incision with visible whitening of the stroma. The anterior stromal pocket hydration technique involves creation of an additional supraincisional stromal pocket overlying the main incision, which is then hydrated instead of the main incision. Sixty-six eyes of 48 patients were included in the data analysis with 33 assigned to each study group. The anterior stromal pocket hydration technique was significantly better than conventional hydration in preventing wound leak due to direct pressure on the posterior lip of the incision. Copyright © 2012 ASCRS and ESCRS. Published by Elsevier Inc. All rights reserved.

  13. Patterns and determinants of communal latrine usage in urban poverty pockets in Bhopal, India.

    PubMed

    Biran, A; Jenkins, M W; Dabrase, P; Bhagwat, I

    2011-07-01

    To explore and explain patterns of use of communal latrine facilities in urban poverty pockets. Six poverty pockets with communal latrine facilities representing two management models (Sulabh and municipal) were selected. Sampling was random and stratified by poverty pocket population size. A seventh, community-managed facility was also included. Data were collected by exit interviews with facility users and by interviews with residents from a randomly selected representative sample of poverty pocket households, on social, economic and demographic characteristics of households, latrine ownership, defecation practices, costs of using the facility and distance from the house to the facility. A tally of facility users was kept for 1 day at each facility. Data were analysed using logistic regression modelling to identify determinants of communal latrine usage. Communal latrines differed in their facilities, conditions, management and operating characteristics, and rates of usage. Reported usage rates among non-latrine-owning households ranged from 15% to 100%. There was significant variation in wealth, occupation and household structure across the poverty pockets as well as in household latrine ownership. Households in pockets with municipal communal latrine facilities appeared poorer. Households in pockets with Sulabh-managed communal facilities were significantly more likely to own a household latrine. Determinants of communal facility usage among households without a latrine were access and convenience (distance and opening hours), facility age, cleanliness/upkeep and cost. The ratio of male to female users was 2:1 across all facilities for both adults and children. Provision of communal facilities reduces but does not end the problem of open defecation in poverty pockets. Women appear to be relatively poorly served by communal facilities and, cost is a barrier to use by poorer households. Results suggest improving facility convenience and access and modifying fee structures could lead to increased rates of usage. Attention to possible barriers to usage at household level associated particularly with having school-age children and with pre-school childcare needs may also be warranted. © 2011 Blackwell Publishing Ltd.

  14. Residue-level global and local ensemble-ensemble comparisons of protein domains.

    PubMed

    Clark, Sarah A; Tronrud, Dale E; Karplus, P Andrew

    2015-09-01

    Many methods of protein structure generation such as NMR-based solution structure determination and template-based modeling do not produce a single model, but an ensemble of models consistent with the available information. Current strategies for comparing ensembles lose information because they use only a single representative structure. Here, we describe the ENSEMBLATOR and its novel strategy to directly compare two ensembles containing the same atoms to identify significant global and local backbone differences between them on per-atom and per-residue levels, respectively. The ENSEMBLATOR has four components: eePREP (ee for ensemble-ensemble), which selects atoms common to all models; eeCORE, which identifies atoms belonging to a cutoff-distance dependent common core; eeGLOBAL, which globally superimposes all models using the defined core atoms and calculates for each atom the two intraensemble variations, the interensemble variation, and the closest approach of members of the two ensembles; and eeLOCAL, which performs a local overlay of each dipeptide and, using a novel measure of local backbone similarity, reports the same four variations as eeGLOBAL. The combination of eeGLOBAL and eeLOCAL analyses identifies the most significant differences between ensembles. We illustrate the ENSEMBLATOR's capabilities by showing how using it to analyze NMR ensembles and to compare NMR ensembles with crystal structures provides novel insights compared to published studies. One of these studies leads us to suggest that a "consistency check" of NMR-derived ensembles may be a useful analysis step for NMR-based structure determinations in general. The ENSEMBLATOR 1.0 is available as a first generation tool to carry out ensemble-ensemble comparisons. © 2015 The Protein Society.

  15. Residue-level global and local ensemble-ensemble comparisons of protein domains

    PubMed Central

    Clark, Sarah A; Tronrud, Dale E; Andrew Karplus, P

    2015-01-01

    Many methods of protein structure generation such as NMR-based solution structure determination and template-based modeling do not produce a single model, but an ensemble of models consistent with the available information. Current strategies for comparing ensembles lose information because they use only a single representative structure. Here, we describe the ENSEMBLATOR and its novel strategy to directly compare two ensembles containing the same atoms to identify significant global and local backbone differences between them on per-atom and per-residue levels, respectively. The ENSEMBLATOR has four components: eePREP (ee for ensemble-ensemble), which selects atoms common to all models; eeCORE, which identifies atoms belonging to a cutoff-distance dependent common core; eeGLOBAL, which globally superimposes all models using the defined core atoms and calculates for each atom the two intraensemble variations, the interensemble variation, and the closest approach of members of the two ensembles; and eeLOCAL, which performs a local overlay of each dipeptide and, using a novel measure of local backbone similarity, reports the same four variations as eeGLOBAL. The combination of eeGLOBAL and eeLOCAL analyses identifies the most significant differences between ensembles. We illustrate the ENSEMBLATOR's capabilities by showing how using it to analyze NMR ensembles and to compare NMR ensembles with crystal structures provides novel insights compared to published studies. One of these studies leads us to suggest that a “consistency check” of NMR-derived ensembles may be a useful analysis step for NMR-based structure determinations in general. The ENSEMBLATOR 1.0 is available as a first generation tool to carry out ensemble-ensemble comparisons. PMID:26032515

  16. The Ensembl REST API: Ensembl Data for Any Language

    PubMed Central

    Yates, Andrew; Beal, Kathryn; Keenan, Stephen; McLaren, William; Pignatelli, Miguel; Ritchie, Graham R. S.; Ruffier, Magali; Taylor, Kieron; Vullo, Alessandro; Flicek, Paul

    2015-01-01

    Motivation: We present a Web service to access Ensembl data using Representational State Transfer (REST). The Ensembl REST server enables the easy retrieval of a wide range of Ensembl data by most programming languages, using standard formats such as JSON and FASTA while minimizing client work. We also introduce bindings to the popular Ensembl Variant Effect Predictor tool permitting large-scale programmatic variant analysis independent of any specific programming language. Availability and implementation: The Ensembl REST API can be accessed at http://rest.ensembl.org and source code is freely available under an Apache 2.0 license from http://github.com/Ensembl/ensembl-rest. Contact: ayates@ebi.ac.uk or flicek@ebi.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:25236461

  17. Generation, storage, and retrieval of nonclassical states of light using atomic ensembles

    NASA Astrophysics Data System (ADS)

    Eisaman, Matthew D.

    This thesis presents the experimental demonstration of several novel methods for generating, storing, and retrieving nonclassical states of light using atomic ensembles, and describes applications of these methods to frequency-tunable single-photon generation, single-photon memory, quantum networks, and long-distance quantum communication. We first demonstrate emission of quantum-mechanically correlated pulses of light with a time delay between the pulses that is coherently controlled by utilizing 87Rb atoms. The experiment is based on Raman scattering, which produces correlated pairs of excited atoms and photons, followed by coherent conversion of the atomic states into a different photon field after a controllable delay. We then describe experiments demonstrating a novel approach for conditionally generating nonclassical pulses of light with controllable photon numbers, propagation direction, timing, and pulse shapes. We observe nonclassical correlations in relative photon number between correlated pairs of photons, and create few-photon light pulses with sub-Poissonian photon-number statistics via conditional detection on one field of the pair. Spatio-temporal control over the pulses is obtained by exploiting long-lived coherent memory for photon states and electromagnetically induced transparency (EIT) in an optically dense atomic medium. Finally, we demonstrate the use of EIT for the controllable generation, transmission, and storage of single photons with tunable frequency, timing, and bandwidth. To this end, we study the interaction of single photons produced in a "source" ensemble of 87Rb atoms at room temperature with another "target" ensemble. This allows us to simultaneously probe the spectral and quantum statistical properties of narrow-bandwidth single-photon pulses, revealing that their quantum nature is preserved under EIT propagation and storage. We measure the time delay associated with the reduced group velocity of the single-photon pulses and report observations of their storage and retrieval. Together these experiments utilize atomic ensembles to realize a narrow-bandwidth single-photon source, single-photon memory that preserves the quantum nature of the single photons, and a primitive quantum network comprised of two atomic-ensemble quantum memories connected by a single photon in an optical fiber. Each of these experimental demonstrations represents an essential element for the realization of long-distance quantum communication.

  18. A J-modulated protonless NMR experiment characterizes the conformational ensemble of the intrinsically disordered protein WIP.

    PubMed

    Rozentur-Shkop, Eva; Goobes, Gil; Chill, Jordan H

    2016-12-01

    Intrinsically disordered proteins (IDPs) are multi-conformational polypeptides that lack a single stable three-dimensional structure. It has become increasingly clear that the versatile IDPs play key roles in a multitude of biological processes, and, given their flexible nature, NMR is a leading method to investigate IDP behavior on the molecular level. Here we present an IDP-tailored J-modulated experiment designed to monitor changes in the conformational ensemble characteristic of IDPs by accurately measuring backbone one- and two-bond J( 15 N, 13 Cα) couplings. This concept was realized using a unidirectional (H)NCO 13 C-detected experiment suitable for poor spectral dispersion and optimized for maximum coverage of amino acid types. To demonstrate the utility of this approach we applied it to the disordered actin-binding N-terminal domain of WASp interacting protein (WIP), a ubiquitous key modulator of cytoskeletal changes in a range of biological systems. One- and two-bond J( 15 N, 13 Cα) couplings were acquired for WIP residues 2-65 at various temperatures, and in denaturing and crowding environments. Under native conditions fitted J-couplings identified in the WIP conformational ensemble a propensity for extended conformation at residues 16-23 and 45-60, and a helical tendency at residues 28-42. These findings are consistent with a previous study of the based upon chemical shift and RDC data and confirm that the WIP 2-65 conformational ensemble is biased towards the structure assumed by this fragment in its actin-bound form. The effects of environmental changes upon this ensemble were readily apparent in the J-coupling data, which reflected a significant decrease in structural propensity at higher temperatures, in the presence of 8 M urea, and under the influence of a bacterial cell lysate. The latter suggests that crowding can cause protein unfolding through protein-protein interactions that stabilize the unfolded state. We conclude that J-couplings are a useful measureable in characterizing structural ensembles in IDPs, and that the proposed experiment provides a practical method for accurately performing such measurements, once again emphasizing the power of NMR in studying IDP behavior.

  19. Deep 3D convolution neural network for CT brain hemorrhage classification

    NASA Astrophysics Data System (ADS)

    Jnawali, Kamal; Arbabshirani, Mohammad R.; Rao, Navalgund; Patel, Alpen A.

    2018-02-01

    Intracranial hemorrhage is a critical conditional with the high mortality rate that is typically diagnosed based on head computer tomography (CT) images. Deep learning algorithms, in particular, convolution neural networks (CNN), are becoming the methodology of choice in medical image analysis for a variety of applications such as computer-aided diagnosis, and segmentation. In this study, we propose a fully automated deep learning framework which learns to detect brain hemorrhage based on cross sectional CT images. The dataset for this work consists of 40,367 3D head CT studies (over 1.5 million 2D images) acquired retrospectively over a decade from multiple radiology facilities at Geisinger Health System. The proposed algorithm first extracts features using 3D CNN and then detects brain hemorrhage using the logistic function as the last layer of the network. Finally, we created an ensemble of three different 3D CNN architectures to improve the classification accuracy. The area under the curve (AUC) of the receiver operator characteristic (ROC) curve of the ensemble of three architectures was 0.87. Their results are very promising considering the fact that the head CT studies were not controlled for slice thickness, scanner type, study protocol or any other settings. Moreover, the proposed algorithm reliably detected various types of hemorrhage within the skull. This work is one of the first applications of 3D CNN trained on a large dataset of cross sectional medical images for detection of a critical radiological condition

  20. Judging the judges' performance in rhythmic gymnastics.

    PubMed

    Flessas, Konstantinos; Mylonas, Dimitris; Panagiotaropoulou, Georgia; Tsopani, Despina; Korda, Alexandrea; Siettos, Constantinos; Di Cagno, Alessandra; Evdokimidis, Ioannis; Smyrnis, Nikolaos

    2015-03-01

    Rhythmic gymnastics (RG) is an aesthetic event balancing between art and sport that also has a performance rating system (Code of Points) given by the International Gymnastics Federation. It is one of the sports in which competition results greatly depend on the judges' evaluation. In the current study, we explored the judges' performance in a five-gymnast ensemble routine. An expert-novice paradigm (10 international-level, 10 national-level, and 10 novice-level judges) was implemented under a fully simulated procedure of judgment in a five-gymnast ensemble routine of RG using two videos of routines performed by the Greek national team of RG. Simultaneous recordings of two-dimensional eye movements were taken during the judgment procedure to assess the percentage of time spent by each judge viewing the videos and fixation performance of each judge when an error in gymnast performance had occurred. All judge level groups had very modest performance of error recognition on gymnasts' routines, and the best international judges reported approximately 40% of true errors. Novice judges spent significantly more time viewing the videos compared with national and international judges and spent significantly more time fixating detected errors than the other two groups. National judges were the only group that made efficient use of fixation to detect errors. The fact that international-level judges outperformed both other groups, while not relying on visual fixation to detect errors, suggests that these experienced judges probably make use of other cognitive strategies, increasing their overall error detection efficiency, which was, however, still far below optimum.

  1. HLPI-Ensemble: Prediction of human lncRNA-protein interactions based on ensemble strategy.

    PubMed

    Hu, Huan; Zhang, Li; Ai, Haixin; Zhang, Hui; Fan, Yetian; Zhao, Qi; Liu, Hongsheng

    2018-03-27

    LncRNA plays an important role in many biological and disease progression by binding to related proteins. However, the experimental methods for studying lncRNA-protein interactions are time-consuming and expensive. Although there are a few models designed to predict the interactions of ncRNA-protein, they all have some common drawbacks that limit their predictive performance. In this study, we present a model called HLPI-Ensemble designed specifically for human lncRNA-protein interactions. HLPI-Ensemble adopts the ensemble strategy based on three mainstream machine learning algorithms of Support Vector Machines (SVM), Random Forests (RF) and Extreme Gradient Boosting (XGB) to generate HLPI-SVM Ensemble, HLPI-RF Ensemble and HLPI-XGB Ensemble, respectively. The results of 10-fold cross-validation show that HLPI-SVM Ensemble, HLPI-RF Ensemble and HLPI-XGB Ensemble achieved AUCs of 0.95, 0.96 and 0.96, respectively, in the test dataset. Furthermore, we compared the performance of the HLPI-Ensemble models with the previous models through external validation dataset. The results show that the false positives (FPs) of HLPI-Ensemble models are much lower than that of the previous models, and other evaluation indicators of HLPI-Ensemble models are also higher than those of the previous models. It is further showed that HLPI-Ensemble models are superior in predicting human lncRNA-protein interaction compared with previous models. The HLPI-Ensemble is publicly available at: http://ccsipb.lnu.edu.cn/hlpiensemble/ .

  2. Displacement of disordered water molecules from hydrophobic pocket creates enthalpic signature: binding of phosphonamidate to the S₁'-pocket of thermolysin.

    PubMed

    Englert, L; Biela, A; Zayed, M; Heine, A; Hangauer, D; Klebe, G

    2010-11-01

    Prerequisite for the design of tight binding protein inhibitors and prediction of their properties is an in-depth understanding of the structural and thermodynamic details of the binding process. A series of closely related phosphonamidates was studied to elucidate the forces underlying their binding affinity to thermolysin. The investigated inhibitors are identical except for the parts penetrating into the hydrophobic S₁'-pocket. A correlation of structural, kinetic and thermodynamic data was carried out by X-ray crystallography, kinetic inhibition assay and isothermal titration calorimetry. Binding affinity increases with larger ligand hydrophobic P₁'-moieties accommodating the S₁'-pocket. Surprisingly, larger P₁'-side chain modifications are accompanied by an increase in the enthalpic contribution to binding. In agreement with other studies, it is suggested that the release of largely disordered waters from an imperfectly hydrated pocket results in an enthalpically favourable integration of these water molecules into bulk water upon inhibitor binding. This enthalpically favourable process contributes more strongly to the binding energetics than the entropy increase resulting from the release of water molecules from the S₁'-pocket or the formation of apolar interactions between protein and inhibitor. Displacement of highly disordered water molecules from a rather imperfectly hydrated and hydrophobic specificity pocket can reveal an enthalpic signature of inhibitor binding. Copyright © 2010 Elsevier B.V. All rights reserved.

  3. An Exploratory Examination of "Pockets of Success" in Creating Urban High Schools of Opportunity for LSES Students

    ERIC Educational Resources Information Center

    Gaines, Frank

    2013-01-01

    The purpose of this exploratory study was to examine "pockets of success" through the voices of participant stakeholders in low socio-economic status urban high schools and communities to identify opportunities and structures that can improve post-secondary outcomes for students. Examining those pockets of success to rise above the…

  4. 75 FR 19592 - Endangered and Threatened Wildlife and Plants; 12-Month Finding on a Petition to List the Wyoming...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-15

    ... size of individual pocket gophers and density of pocket gopher populations (Patton and Brylski 1987, p...-100). Pocket gopher population density is likely to be primarily regulated through intraspecific... the density of wells within that range (Keinath 2009, pp. 12-13). This potential risk is based on...

  5. The Role of Electronic Pocket Dictionaries as an English Learning Tool among Chinese Students

    ERIC Educational Resources Information Center

    Jian, Hua-Li; Sandnes, Frode Eika; Law, Kris M. Y.; Huang, Yo-Ping; Huang, Yueh-Min

    2009-01-01

    This study addressed the role of electronic pocket dictionaries as a language learning tool among university students in Hong Kong and Taiwan. The target groups included engineering and humanities students at both undergraduate and graduate level. Speed of reference was found to be the main motivator for using an electronic pocket dictionary.…

  6. Inertial electrostatic confinement and nuclear fusion in the interelectrode plasma of a nanosecond vacuum discharge. I: Experiment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurilenkov, Yu. K.; Skowronek, M.

    2010-12-15

    Properties of an aerosol substance with a high power density in the interelectrode space of a nano- second vacuum discharge are studied. The possibilities of emission and/or trapping of fast ions and hard X-rays by ensembles of clusters and microparticles are analyzed. The possibility of simultaneous partial trapping (diffusion) of X-rays and complete trapping of fast ions by a cluster ensemble is demonstrated experimentally. Due to such trapping, the aerosol ensemble transforms into a 'dusty' microreactor that can be used to investigate a certain class of nuclear processes, including collisional DD microfusion. Operating regimes of such a microreactor and theirmore » reproducibility were studied. On the whole, the generation efficiency of hard X-rays and neutrons in the proposed vacuum discharge with a hollow cathode can be higher by two orders of magnitude than that in a system 'high-power laser pulse-cluster cloud.' Multiply repeated nuclear fusion accompanied by pulsating DD neutron emission was reproducibly detected in experiment. Ion acceleration mechanisms in the interelectrode space and the fundamental role of the virtual cathode in observed nuclear fusion processes are discussed.« less

  7. Dynamical dark matter: A new framework for dark-matter physics

    NASA Astrophysics Data System (ADS)

    Dienes, Keith R.; Thomas, Brooks

    2013-05-01

    Although much remains unknown about the dark matter of the universe, one property is normally considered sacrosanct: dark matter must be stable well beyond cosmological time scales. However, a new framework for dark-matter physics has recently been proposed which challenges this assumption. In the "dynamical dark matter" (DDM) framework, the dark sector consists of a vast ensemble of individual dark-matter components with differing masses, lifetimes, and cosmological abundances. Moreover, the usual requirement of stability is replaced by a delicate balancing between lifetimes and cosmological abundances across the ensemble as a whole. As a result, it is possible for the DDM ensemble to remain consistent with all experimental and observational bounds on dark matter while nevertheless giving rise to collective behaviors which transcend those normally associated with traditional dark-matter candidates. These include a new, non-trivial darkmatter equation of state as well as potentially distinctive signatures in collider and direct-detection experiments. In this review article, we provide a self-contained introduction to the DDM framework and summarize some of the work which has recently been done in this area. We also present an explicit model within the DDM framework, and outline a number of ideas for future investigation.

  8. Graph-Theoretic Statistical Methods for Detecting and Localizing Distributional Change in Multivariate Data

    DTIC Science & Technology

    2015-06-01

    The weekly Navigators Bible study group, a rotating cast totaling about 120 men led by Bob Reehm, was a crucial ensemble in this effort. Their...grace, that we may receive mercy and find grace to help in time of need. Hebrews 4:15-16 For the Lord gives wisdom; from his mouth come knowledge

  9. Observation of ground-state quantum beats in atomic spontaneous emission.

    PubMed

    Norris, D G; Orozco, L A; Barberis-Blostein, P; Carmichael, H J

    2010-09-17

    We report ground-state quantum beats in spontaneous emission from a continuously driven atomic ensemble. Beats are visible only in an intensity autocorrelation and evidence spontaneously generated coherence in radiative decay. Our measurement realizes a quantum eraser where a first photon detection prepares a superposition and a second erases the "which path" information in the intermediate state.

  10. Analysis of drug binding pockets and repurposing opportunities for twelve essential enzymes of ESKAPE pathogens

    PubMed Central

    Naz, Sadia; Ngo, Tony; Farooq, Umar

    2017-01-01

    Background The rapid increase in antibiotic resistance by various bacterial pathogens underlies the significance of developing new therapies and exploring different drug targets. A fraction of bacterial pathogens abbreviated as ESKAPE by the European Center for Disease Prevention and Control have been considered a major threat due to the rise in nosocomial infections. Here, we compared putative drug binding pockets of twelve essential and mostly conserved metabolic enzymes in numerous bacterial pathogens including those of the ESKAPE group and Mycobacterium tuberculosis. The comparative analysis will provide guidelines for the likelihood of transferability of the inhibitors from one species to another. Methods Nine bacterial species including six ESKAPE pathogens, Mycobacterium tuberculosis along with Mycobacterium smegmatis and Eschershia coli, two non-pathogenic bacteria, have been selected for drug binding pocket analysis of twelve essential enzymes. The amino acid sequences were obtained from Uniprot, aligned using ICM v3.8-4a and matched against the Pocketome encyclopedia. We used known co-crystal structures of selected target enzyme orthologs to evaluate the location of their active sites and binding pockets and to calculate a matrix of pairwise sequence identities across each target enzyme across the different species. This was used to generate sequence maps. Results High sequence identity of enzyme binding pockets, derived from experimentally determined co-crystallized structures, was observed among various species. Comparison at both full sequence level and for drug binding pockets of key metabolic enzymes showed that binding pockets are highly conserved (sequence similarity up to 100%) among various ESKAPE pathogens as well as Mycobacterium tuberculosis. Enzymes orthologs having conserved binding sites may have potential to interact with inhibitors in similar way and might be helpful for design of similar class of inhibitors for a particular species. The derived pocket alignments and distance-based maps provide guidelines for drug discovery and repurposing. In addition they also provide recommendations for the relevant model bacteria that may be used for initial drug testing. Discussion Comparing ligand binding sites through sequence identity calculation could be an effective approach to identify conserved orthologs as drug binding pockets have shown higher level of conservation among various species. By using this approach we could avoid the problems associated with full sequence comparison. We identified essential metabolic enzymes among ESKAPE pathogens that share high sequence identity in their putative drug binding pockets (up to 100%), of which known inhibitors can potentially antagonize these identical pockets in the various species in a similar manner. PMID:28948099

  11. Analysis of drug binding pockets and repurposing opportunities for twelve essential enzymes of ESKAPE pathogens.

    PubMed

    Naz, Sadia; Ngo, Tony; Farooq, Umar; Abagyan, Ruben

    2017-01-01

    The rapid increase in antibiotic resistance by various bacterial pathogens underlies the significance of developing new therapies and exploring different drug targets. A fraction of bacterial pathogens abbreviated as ESKAPE by the European Center for Disease Prevention and Control have been considered a major threat due to the rise in nosocomial infections. Here, we compared putative drug binding pockets of twelve essential and mostly conserved metabolic enzymes in numerous bacterial pathogens including those of the ESKAPE group and Mycobacterium tuberculosis . The comparative analysis will provide guidelines for the likelihood of transferability of the inhibitors from one species to another. Nine bacterial species including six ESKAPE pathogens, Mycobacterium tuberculosis along with Mycobacterium smegmatis and Eschershia coli , two non-pathogenic bacteria, have been selected for drug binding pocket analysis of twelve essential enzymes. The amino acid sequences were obtained from Uniprot, aligned using ICM v3.8-4a and matched against the Pocketome encyclopedia. We used known co-crystal structures of selected target enzyme orthologs to evaluate the location of their active sites and binding pockets and to calculate a matrix of pairwise sequence identities across each target enzyme across the different species. This was used to generate sequence maps. High sequence identity of enzyme binding pockets, derived from experimentally determined co-crystallized structures, was observed among various species. Comparison at both full sequence level and for drug binding pockets of key metabolic enzymes showed that binding pockets are highly conserved (sequence similarity up to 100%) among various ESKAPE pathogens as well as Mycobacterium tuberculosis . Enzymes orthologs having conserved binding sites may have potential to interact with inhibitors in similar way and might be helpful for design of similar class of inhibitors for a particular species. The derived pocket alignments and distance-based maps provide guidelines for drug discovery and repurposing. In addition they also provide recommendations for the relevant model bacteria that may be used for initial drug testing. Comparing ligand binding sites through sequence identity calculation could be an effective approach to identify conserved orthologs as drug binding pockets have shown higher level of conservation among various species. By using this approach we could avoid the problems associated with full sequence comparison. We identified essential metabolic enzymes among ESKAPE pathogens that share high sequence identity in their putative drug binding pockets (up to 100%), of which known inhibitors can potentially antagonize these identical pockets in the various species in a similar manner.

  12. Out-of-pocket medical costs and third-party healthcare costs for children with Down syndrome.

    PubMed

    Kageleiry, Andrew; Samuelson, David; Duh, Mei Sheng; Lefebvre, Patrick; Campbell, John; Skotko, Brian G

    2017-03-01

    Prior analyses have estimated the lifetime total societal costs of a person with Down syndrome (DS); however, no studies capture the expected medical costs that patients with DS can expect to incur during childhood. The study utilized the OptumHealth Reporting and Insights administrative claims database from 1999 to 2013. Children with a diagnosis of DS were identified, and their time was divided into clinically relevant age categories. Patients with DS in each age category were matched to controls without chromosomal conditions. Out-of-pocket medical costs and third-party expenditures were compared between the patient-age cohorts with DS and matched controls. Patients with DS had significantly higher mean annual out-of-pocket costs than their matched controls within each age and cost category. Total annual incremental out-of-pocket costs associated with DS were highest among individuals from birth to age 1 ($1,907, P < 0.001). The main drivers of the incremental out-of-pocket costs associated with DS were inpatient costs in the 1st year of life ($925, P < 0.001) and outpatient costs in later years (ranging $183-$623, all P < 0.001). Overall, patients with DS incurred incremental out-of-pocket medical costs of $18,248 between birth and age 18 years; third-party payers incurred incremental costs of $230,043 during the same period. Across all age categories, mean total out-of-pocket annual costs were greater for individuals with DS than those of matched controls. On average, parents of children with DS pay an additional $84 per month for out-of-pocket medical expenses when costs are amortized over 18 years. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  13. Detailed conformation dynamics and activation process of wild type c-Abl and T315I mutant

    NASA Astrophysics Data System (ADS)

    Yang, Li-Jun; Zhao, Wen-Hua; Liu, Qian

    2014-10-01

    Bcr-Abl is an important target for therapy against chronic myelogenous leukemia (CML) and acute lymphocytic leukemia (ALL). The synergistic effect between myristyl pocket and the ATP pocket has been found. But its detailed information based on molecular level still has not been achieved. In this study, conventional molecular dynamics (CMD) and target molecular dynamics (TMD) simulations were performed to explore the effect of T315I mutation on dynamics and activation process of Abl containing the N-terminal cap (Ncap). The CMD simulation results reveal the increasing flexibility of ATP pocket in kinase domain (KD) after T315I mutation which confirms the disability of ATP-pocket inhibitors to the Abl-T315I mutant. On the contrary, the T315I mutation decreased the flexibility of remote helix αI which suggests the synergistic effect between them. The mobility of farther regions containing Ncap, SH3, SH2 and SH2-KD linker were not affected by T315I mutation. The TMD simulation results show that the activation process of wild type Abl and Abl-T315I mutant experienced global conformation change. Their differences were elucidated by the activation motion of subsegments including A-loop, P-loop and Ncap. Besides, the T315I mutation caused decreasing energy barrier and increasing intermediate number in activation process, which results easier activation process. The TMD and CMD results indicate that a drug targeting only the ATP pocket is not enough to inhibit the Abl-T315I mutant. An effective way to inhibit the abnormal activity of Abl-T315I mutant is to combine the ATP-pocket inhibitors with inhibitors binding at non-ATP pockets mainly related to Ncap, SH2-KD linker and myristyl pocket.

  14. The position of the acid pocket as a major risk factor for acidic reflux in healthy subjects and patients with GORD.

    PubMed

    Beaumont, Hanneke; Bennink, Roelof J; de Jong, Jan; Boeckxstaens, Guy E

    2010-04-01

    Gastro-oesophageal reflux occurs twice as much during transient lower oesophageal sphincter relaxations (TLOSRs) in patients with gastro-oesophageal reflux disease (GORD) compared to healthy volunteers (HVs). Our aim was to assess whether the localisation of the postprandial acid pocket and its interaction with a hiatal hernia (HH) play a role in the occurrence of acidic reflux during TLOSRs. Ten HVs and 22 patients with GORD (12 with HH<3 cm (s-HH), 10 with HH > or =3 cm (l-HH)) were studied. The squamocolumnar junction and diaphragmatic impression were marked with a radioactively labelled clip. To visualise the acid pocket, (99m)Tc-pertechnetate was injected intravenously and images were acquired up to 2 h postprandial. Concurrently, combined manometry/impedance and four-channel pH-metry were performed, with pH pull-through at multiple time-points. The rate of TLOSRs and the per cent associated with reflux was comparable between all groups. However, acidic reflux was significantly increased in patients, especially in patients with l-HH. Acid pocket length was significantly enlarged in patients. Moreover, immediately before a TLOSR, the acid pocket was more frequently located within the hiatus or above the diaphragm in patients with GORD (s-HH, 54%; l-HH, 77%) compared to HVs (22% of TLOSRs). Acidic reflux was significantly increased when the acid pocket was located above the diaphragm in all groups compared to a sub-diaphragmatic localisation. The position of the acid pocket is largely determined by the presence of a HH. Entrapment of the pocket above the diaphragm, especially in patients with l-HH, is a major risk factor underlying the increased occurrence of acidic reflux during a TLOSR in patients with GORD.

  15. Fast-track extreme event attribution: General methods and techniques to determine the dynamic contribution to an event.

    NASA Astrophysics Data System (ADS)

    Otto, F. E. L.; Haustein, K.; Uhe, P.; Massey, N.; Rimi, R.; Allen, M. R.; Cullen, H. M.

    2016-12-01

    Extreme weather event attribution has become an accepted part of the atmospheric sciences with numerous methods having been put forward over the last decade. We have recently established a new framework which allows for event attribution in quasi-real-time. Here we present the methodology with which we can assess the fraction of attributable risk (FAR) of a severe weather event due to an external driver (Haustein et al. 2016). The method builds on a large ensemble of atmosphere-only GCM simulations forced by seasonal forecast SSTs (actual conditions) that are contrasted with ensembles forced by counterfactual SSTs (natural conditions). Having an associated 30 year actual and natural climatology in place, we are able to put the current event into a climatological context and determine the dynamic contribution that lead to the event as opposed to the thermodynamic contribution which would have made such an event more likely regardless of the synoptic situation. As a second independent method (also applicable in near-real-time), we apply pattern correlation to separate thermodynamic and dynamic contributions. Finally, using reanalysis data, we test whether our attributed dynamic contribution is also detectable in the observations. Despite the high monthly variability, ENSO related teleconnection patterns can be detected fairly robustly as we will demonstrate with a recent example during El Nino. The more consistent the 3 methods are, the more robust our results will be. We note that the choice of time scale matters a lot when determining the dynamic contribution as well as estimating the FAR (Uhe et al. 2016). The weather@home ensemble prediction approach is accompanied by two more methods based on observational data and the CMIP5 ensemble. If the FAR across 3 methods is consistent, we have reason to trust our central attribution statement. Two recent examples will be shown in order to demonstrate the feasibility (van Oldenborgh et al. 2016a/2016b), complemented by new results from South Asia where we also investigate the effects of anthropogenic aerosols.

  16. A novel single-step surgical technique for vestibular deepening using laser in conjunction with periodontal flap surgery

    PubMed Central

    Bhardwaj, Ashu; Sultan, Nishat; Sawai, Madhuri; Jafri, Zeba

    2016-01-01

    Moderate-to-severe chronic periodontitis results in clinical loss of attachment, reduced width of attached gingiva (AG), periodontal pockets beyond mucogingival junction (MGJ), gingival recession, loss of alveolar bone, and decreased vestibular depth (VD). The encroachment of frenal and muscle attachments on marginal gingiva increases the rate of progression of periodontal pockets, prevents healing, and causes their recurrence after therapy. Loss of VD and AG associated with continuous progression of pocket formation and bone loss requires two-stage surgical procedures. In this article, one-stage surgical procedure is being described for the first time, to treat the periodontal pockets extending beyond the MGJ by periodontal flap surgery along with vestibular deepening with diode laser to increase the AG. One-step surgical technique is illustrated whereby pocket therapy with reconstruction of lost periodontal tissues can be done along with gingival augmentation by vestibular deepening. PMID:29238149

  17. Electronic anisotropies revealed by detwinned angle-resolved photo-emission spectroscopy measurements of FeSe

    NASA Astrophysics Data System (ADS)

    Watson, Matthew D.; Haghighirad, Amir A.; Rhodes, Luke C.; Hoesch, Moritz; Kim, Timur K.

    2017-10-01

    We report high resolution angle-resolved photo-emission spectroscopy (ARPES) measurements of detwinned FeSe single crystals. The application of a mechanical strain is used to promote the volume fraction of one of the orthorhombic domains in the sample, which we estimate to be 80 % detwinned. While the full structure of the electron pockets consisting of two crossed ellipses may be observed in the tetragonal phase at temperatures above 90 K, we find that remarkably, only one peanut-shaped electron pocket oriented along the longer a axis contributes to the ARPES measurement at low temperatures in the nematic phase, with the expected pocket along b being not observed. Thus the low temperature Fermi surface of FeSe as experimentally determined by ARPES consists of one elliptical hole pocket and one orthogonally-oriented peanut-shaped electron pocket. Our measurements clarify the long-standing controversies over the interpretation of ARPES measurements of FeSe.

  18. Complex home care: Part 2- family annual income, insurance premium, and out-of-pocket expenses.

    PubMed

    Piamjariyakul, Ubolrat; Yadrich, Donna Macan; Ross, Vicki M; Smith, Carol E; Clements, Faye; Williams, Arthur R

    2010-01-01

    Annual costs paid by families for intravenous infusion of home parenteral nutrition (HPN) health insurance premiums, deductibles, co-payments for health services, and the wide range of out-of-pocket home health care expenses are significant. The costs of managing complex chronic care at home cannot be completely understood until all out-of-pocket costs have been defined, described, and tabulated. Non-reimbursed and out-of-pocket costs paid by families over years for complex chronic care negatively impact the financial stability of families. National health care reform must take into account the long-term financial burdens of families caring for those with complex home care. Any changes that may increase the out-of-pocket costs or health insurance costs to these families can also have a negative long-term impact on society when greater numbers of patients declare bankruptcy or qualify for medical disability.

  19. Surgical management of retraction pockets of the pars tensa with cartilage and perichondrial grafts.

    PubMed

    Spielmann, P; Mills, R

    2006-09-01

    Stable, self-cleansing retraction pockets of the pars tensa are common incidental findings and require no treatment. In other cases, recurrent discharge occurs and there may also be associated conductive hearing loss. In a minority of cases, cholesteatoma may develop. This paper presents the results of surgery using a graft composed of cartilage and perichondrium for retraction pockets involving the posterior half of the tympanic membrane, as well as early results using a larger graft designed to manage retraction of the entire tympanic membrane. Data on 51 patients with posterior retraction pockets are presented. Forty-two (82 per cent) patients had no aural discharge one year following surgery and the tympanic membrane was not retracted in 43 (84 per cent). The larger 'Mercedes-Benz' graft was used in four patients and the results obtained suggested that it may prove a successful technique for extensive retraction pockets.

  20. Exploring the calibration of a wind forecast ensemble for energy applications

    NASA Astrophysics Data System (ADS)

    Heppelmann, Tobias; Ben Bouallegue, Zied; Theis, Susanne

    2015-04-01

    In the German research project EWeLiNE, Deutscher Wetterdienst (DWD) and Fraunhofer Institute for Wind Energy and Energy System Technology (IWES) are collaborating with three German Transmission System Operators (TSO) in order to provide the TSOs with improved probabilistic power forecasts. Probabilistic power forecasts are derived from probabilistic weather forecasts, themselves derived from ensemble prediction systems (EPS). Since the considered raw ensemble wind forecasts suffer from underdispersiveness and bias, calibration methods are developed for the correction of the model bias and the ensemble spread bias. The overall aim is to improve the ensemble forecasts such that the uncertainty of the possible weather deployment is depicted by the ensemble spread from the first forecast hours. Additionally, the ensemble members after calibration should remain physically consistent scenarios. We focus on probabilistic hourly wind forecasts with horizon of 21 h delivered by the convection permitting high-resolution ensemble system COSMO-DE-EPS which has become operational in 2012 at DWD. The ensemble consists of 20 ensemble members driven by four different global models. The model area includes whole Germany and parts of Central Europe with a horizontal resolution of 2.8 km and a vertical resolution of 50 model levels. For verification we use wind mast measurements around 100 m height that corresponds to the hub height of wind energy plants that belong to wind farms within the model area. Calibration of the ensemble forecasts can be performed by different statistical methods applied to the raw ensemble output. Here, we explore local bivariate Ensemble Model Output Statistics at individual sites and quantile regression with different predictors. Applying different methods, we already show an improvement of ensemble wind forecasts from COSMO-DE-EPS for energy applications. In addition, an ensemble copula coupling approach transfers the time-dependencies of the raw ensemble to the calibrated ensemble. The calibrated wind forecasts are evaluated first with univariate probabilistic scores and additionally with diagnostics of wind ramps in order to assess the time-consistency of the calibrated ensemble members.

  1. Do Out-of-Pocket Health Expenditures Rise with Age Among Older Americans?

    ERIC Educational Resources Information Center

    Stewart, Susan T.

    2004-01-01

    Purpose: Relationships are examined between age and out-of-pocket costs for different health goods and services among the older population. Design and Methods: Age patterns in health service use and out-of-pocket costs are examined by use of the 1990 Elderly Health Supplement to the Panel Study of Income Dynamics (N = 1,031, age 66+). Multivariate…

  2. 78 FR 54214 - Endangered and Threatened Wildlife and Plants; Removing Five Subspecies of Mazama Pocket Gopher...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-03

    ... section 3 of the Act, an endangered species is any species which is in danger of extinction throughout all... populations, do not occur elsewhere. Our Response: The presumption of extinction for the Tacoma pocket gopher... contrast to our presumption of extinction for the Tacoma pocket gopher, which is based on evidence from...

  3. Iranian Households’ Payments on Food and Health Out-of-Pocket Expenditures: Evidence of Inequality

    PubMed Central

    GHIASVAND, Hesam; NAGHDI, Seyran; ABOLHASSANI, Nazanin; SHAARBAFCHIZADEH, Nasrin; MOGHRI, Javad

    2015-01-01

    Background: Inequality in households’ payments on food and health expenditures presents the accessibility and utilization patterns between them. This study investigated the Iranian rural and urban households’ inequality in payments on food and Out-of-Pocket health expenditures from 1998 to 2012. Methods: This descriptive study was conducted through the analysis of Iranian Statistics Centre data on Iranian households’ income and expenditures. The Gini Coefficients, Concentration and Kakwani indices have been calculated for Iranian rural and urban households’ Out-of-Pocket health and food expenditures. Results: The means of Iranian rural and urban total consumption expenditures inequality were 0.48 and 0.48, respectively. The means of concentration index of food expenditures for rural and urban regions were 0.35 and 0.34, respectively. The means of Out-of-Pocket payments for health services for rural and urban regions were 0.51 and 0.5, respectively. Finally the means of Kakwani index of Out-of-Pocket health payments in rural and urban households were −0.005 and −0.018, respectively. Conclusion: There are relative high levels of inequality in Iranian households’ payments on food and Out-of-Pocket health expenditures. PMID:26587474

  4. Women Saw Large Decrease In Out-Of-Pocket Spending For Contraceptives After ACA Mandate Removed Cost Sharing.

    PubMed

    Becker, Nora V; Polsky, Daniel

    2015-07-01

    The Affordable Care Act mandates that private health insurance plans cover prescription contraceptives with no consumer cost sharing. The positive financial impact of this new provision on consumers who purchase contraceptives could be substantial, but it has not yet been estimated. Using a large administrative claims data set from a national insurer, we estimated out-of-pocket spending before and after the mandate. We found that mean and median per prescription out-of-pocket expenses have decreased for almost all reversible contraceptive methods on the market. The average percentages of out-of-pocket spending for oral contraceptive pill prescriptions and intrauterine device insertions by women using those methods both dropped by 20 percentage points after implementation of the ACA mandate. We estimated average out-of-pocket savings per contraceptive user to be $248 for the intrauterine device and $255 annually for the oral contraceptive pill. Our results suggest that the mandate has led to large reductions in total out-of-pocket spending on contraceptives and that these price changes are likely to be salient for women with private health insurance. Project HOPE—The People-to-People Health Foundation, Inc.

  5. Medicare Advantage Members' Expected Out-Of-Pocket Spending For Inpatient And Skilled Nursing Facility Services.

    PubMed

    Keohane, Laura M; Grebla, Regina C; Mor, Vincent; Trivedi, Amal N

    2015-06-01

    Inpatient and skilled nursing facility (SNF) cost sharing in Medicare Advantage (MA) plans may reduce unnecessary use of these services. However, large out-of-pocket expenses potentially limit access to care and encourage beneficiaries at high risk of needing inpatient and postacute care to avoid or leave MA plans. In 2011 new federal regulations restricted inpatient and skilled nursing facility cost sharing and mandated limits on out-of-pocket spending in MA plans. After these regulations, MA members in plans with low premiums averaged $1,758 in expected out-of-pocket spending for an episode of seven hospital days and twenty skilled nursing facility days. Among members with the same low-premium plan in 2010 and 2011, 36 percent of members belonged to plans that added an out-of-pocket spending limit in 2011. However, these members also had a $293 increase in average cost sharing for an inpatient and skilled nursing facility episode, possibly to offset plans' expenses in financing out-of-pocket limits. Some MA beneficiaries may still have difficulty affording acute and postacute care despite greater regulation of cost sharing. Project HOPE—The People-to-People Health Foundation, Inc.

  6. Medicare Advantage Members’ Expected Out-Of-Pocket Spending For Inpatient And Skilled Nursing Facility Services

    PubMed Central

    Keohane, Laura M.; Grebla, Regina C.; Mor, Vincent; Trivedi, Amal N.

    2015-01-01

    Inpatient and skilled nursing facility (SNF) cost sharing in Medicare Advantage (MA) plans may reduce unnecessary use of these services. However, large out-of-pocket expenses potentially limit access to care and encourage beneficiaries at high risk of needing inpatient and postacute care to avoid or leave MA plans. In 2011 new federal regulations restricted inpatient and skilled nursing facility cost sharing and mandated limits on out-of-pocket spending in MA plans. After these regulations, MA members in plans with low premiums averaged $1,758 in expected out-of-pocket spending for an episode of seven hospital days and twenty skilled nursing facility days. Among members with the same low-premium plan in 2010 and 2011, 36 percent of members belonged to plans that added an out-of-pocket spending limit in 2011. However, these members also had a $293 increase in average cost sharing for an inpatient and skilled nursing facility episode, possibly to offset plans’ expenses in financing out-of-pocket limits. Some MA beneficiaries may still have difficulty affording acute and postacute care despite greater regulation of cost sharing. PMID:26056208

  7. AlloPred: prediction of allosteric pockets on proteins using normal mode perturbation analysis.

    PubMed

    Greener, Joe G; Sternberg, Michael J E

    2015-10-23

    Despite being hugely important in biological processes, allostery is poorly understood and no universal mechanism has been discovered. Allosteric drugs are a largely unexplored prospect with many potential advantages over orthosteric drugs. Computational methods to predict allosteric sites on proteins are needed to aid the discovery of allosteric drugs, as well as to advance our fundamental understanding of allostery. AlloPred, a novel method to predict allosteric pockets on proteins, was developed. AlloPred uses perturbation of normal modes alongside pocket descriptors in a machine learning approach that ranks the pockets on a protein. AlloPred ranked an allosteric pocket top for 23 out of 40 known allosteric proteins, showing comparable and complementary performance to two existing methods. In 28 of 40 cases an allosteric pocket was ranked first or second. The AlloPred web server, freely available at http://www.sbg.bio.ic.ac.uk/allopred/home, allows visualisation and analysis of predictions. The source code and dataset information are also available from this site. Perturbation of normal modes can enhance our ability to predict allosteric sites on proteins. Computational methods such as AlloPred assist drug discovery efforts by suggesting sites on proteins for further experimental study.

  8. Enceladus' near-surface CO2 gas pockets and surface frost deposits

    NASA Astrophysics Data System (ADS)

    Matson, Dennis L.; Davies, Ashley Gerard; Johnson, Torrence V.; Combe, Jean-Philippe; McCord, Thomas B.; Radebaugh, Jani; Singh, Sandeep

    2018-03-01

    Solid CO2 surface deposits were reported in Enceladus' South Polar Region by Brown et al. (2006). They noted that such volatile deposits are temporary and posited ongoing replenishment. We present a model for this replenishment by expanding on the Matson et al. (2012) model of subsurface heat and chemical transport in Enceladus. Our model explains the distributions of both CO2 frost and complexed CO2 clathrate hydrate as seen in the Cassini Visual and Infrared Mapping Spectrometer (VIMS) data. We trace the journey of CO2 from a subsurface ocean. The ocean-water circulation model of Matson et al. (2012) brings water up to near the surface where gas exsolves to form bubbles. Some of the CO2 bubbles are trapped and form pockets of gas in recesses at the bottom of the uppermost ice layer. When fissures break open these pockets, the CO2 gas is vented. Gas pocket venting is episodic compared to the more or less continuous eruptive plumes, emanating from the "tiger stripes", that are supported by plume chambers. Two styles of gas pocket venting are considered: (1) seeps, and (2) blowouts. The presence of CO2 frost patches suggests that the pocket gas slowly seeped through fractured, cold ice and when some of the gas reached the surface it was cold enough to condense (i.e., T ∼70 to ∼119 K). If the fissure opening is large, a blowout occurs. The rapid escape of gas and drop in pocket pressure causes water in the pocket to boil and create many small aerosol droplets of seawater. These may be carried along by the erupting gas. Electrically charged droplets can couple to the magnetosphere, and be dragged away from Enceladus. Most of the CO2 blowout gas escapes from Enceladus and the remainder is distributed globally. However, CO2 trapped in a clathrate structure does not escape. It is much heavier and slower moving than the CO2 gas. Its motion is ballistic and has an average range of about 17 km. Thus, it contributes to deposits in the vicinity of the vent. Local heat flow indicates that gas pockets can be located as deep as several tens of meters below the surface. Gas pockets can be reused, and we explore their life cycle.

  9. Microbiomes of Endodontic-Periodontal Lesions before and after Chemomechanical Preparation.

    PubMed

    Gomes, Brenda P F A; Berber, Vanessa B; Kokaras, Alexis S; Chen, Tsute; Paster, Bruce J

    2015-12-01

    This study was conducted to evaluate the microbiomes of endodontic-periodontal lesions before and after chemomechanical preparation (CMP). Clinical samples were taken from 15 root canals (RCs) with necrotic pulp tissues and from their associated periodontal pockets (PPs) (n = 15) of teeth with endodontic-periodontal lesions before and after CMP. The Human Oral Microbe Identification using Next Generation Sequencing (NGS) protocol and viable culture were used to analyze samples from RCs and PPs. The Mann-Whitney U test and Benjamini-Hochberg corrections were performed to correlate the clinical and radiographic findings with microbial findings (P < .05). Bacteria were detected in 100% of the samples in both sites (15/15) using NGS. Firmicutes was the most predominant phylum in both sites using both methods. The most frequently detected species in the RCs before and after CMP using NGS were Enterococcus faecalis, Parvimonas micra, Mogibacterium timidum, Filifactor alocis, and Fretibacterium fastidiosum. The species most frequently detected in the PPs before and after CMP using NGS were P. micra, E. faecalis, Streptococcus constellatus, Eubacterium brachy, Tannerella forsythia, and F. alocis. Associations were found between periapical lesions ≤ 2 mm and Desulfobulbus sp oral taxon 041 and with periodontal pockets ≥ 6 mm and Dialister invisius and Peptostreptococcus stomatis (all P < .05, found in the RCs before CMP). It is concluded that the microbial community present in combined endodontic-periodontal lesions is complex and more diverse than previously reported. It is important to note that bacteria do survive in some root canals after CMP. Finally, the similarity between the microbiota of both sites, before and after CMP, suggests there may be a pathway of infection between the pulp and periodontium. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.

  10. Histopathological observations of human periimplantitis lesions.

    PubMed

    Berglundh, Tord; Gislason, Orn; Lekholm, Ulf; Sennerby, Lars; Lindhe, Jan

    2004-05-01

    The aim of the present study was to analyze some characteristics of advanced and progressive periimplantitis lesions in man. Soft tissue biopsies were obtained from 12 implants in six patients. The implants had been in function between 4 and 21 years and were, with one exception, located in the maxilla. The radiographic examination performed prior to biopsy revealed that all sites exhibited advanced bone loss. Further, clinical signs of severe inflammation, such as suppuration, swelling and/or fistula formation were detected in the majority of sites and seven of the 12 implants were found to be mobile at biopsy. Each biopsy was following fixation embedded in epoxy resin and sections were prepared for histometric and morphometric analysis. It was demonstrated (i). that all soft tissue units harbored large inflammatory cell infiltrates (ICT) that extended to a position apical of a pocket epithelium and (ii). that about 60% of the lesions were occupied by inflammatory cells, among which plasma cells dominated. Numerous amounts of PMN cells occurred not only in the pocket epithelium and adjacent connective tissue areas, but were also present in peri-vascular compartments in more central areas of the ICT.

  11. Residues in the Distal Heme Pocket of Arabidopsis Non-Symbiotic Hemoglobins: Implication for Nitrite Reductase Activity

    PubMed Central

    Kumar, Nitin; Astegno, Alessandra; Chen, Jian; Giorgetti, Alejandro; Dominici, Paola

    2016-01-01

    It is well-established that plant hemoglobins (Hbs) are involved in nitric oxide (NO) metabolism via NO dioxygenase and/or nitrite reductase activity. The ferrous-deoxy Arabidopsis Hb1 and Hb2 (AHb1 and AHb2) have been shown to reduce nitrite to NO under hypoxia. Here, to test the hypothesis that a six- to five-coordinate heme iron transition might mediate the control of the nitrite reduction rate, we examined distal pocket mutants of AHb1 and AHb2 for nitrite reductase activity, NO production and spectroscopic features. Absorption spectra of AHbs distal histidine mutants showed that AHb1 mutant (H69L) is a stable pentacoordinate high-spin species in both ferrous and ferric states, whereas heme iron in AHb2 mutant (H66L) is hexacoordinated low-spin with Lys69 as the sixth ligand. The bimolecular rate constants for nitrite reduction to NO were 13.3 ± 0.40, 7.3 ± 0.5, 10.6 ± 0.8 and 171.90 ± 9.00 M−1·s−1 for AHb1, AHb2, AHb1 H69L and AHb2 H66L, respectively, at pH 7.4 and 25 °C. Consistent with the reductase activity, the amount of NO detected by chemiluminescence was significantly higher in the AHb2 H66L mutant. Our data indicate that nitrite reductase activity is determined not only by heme coordination, but also by a unique distal heme pocket in each AHb. PMID:27136534

  12. Estimation of high sensitivity C-reactive protein in patients with periodontal disease and without coronary artery disease.

    PubMed

    Anitha, V; Nair, Sushma; Shivakumar, V; Shanmugam, M; Priya, B Meena; Rajesh, P

    2015-01-01

    HsCRP (Highly sensitive C reactive protein) is a global indicator for future vascular events in adults detected in blood stream 48 hours before the cardiovascular event. Periodontal disease may increase blood levels of inflammatory markers like IL-6, CRP and HsCRP. Hence the aim of the present study is to evaluate the presence of elevated HsCRP levels in chronic periodontitis patients. 100 patients who reported for cardiac master health check up were enrolled in the study. The periodontal status was assessed using periodontal probing pocket depth and clinical attachment level. The decayed, missing and filled tooth was recorded using DMFT index. The venous samples of these patients were obtained for recording HsCRP levels. Pearson correlation was used to analyze the relationship between HsCRP level and probing pocket depth, clinical attachment loss and DMFT. The correlation value was 0.051, 0.025 and 0.101 respectively, the correlation is statistically significant for probing pocket depth and clinical attachment level (P>0.05). Chi-square test was performed to study the association between gender and HsCRP, Diabetes Mellitus and HsCRP and Hypertension and HsCRP; the results showed that there is no significant association between any of the above mentioned factors and HsCRP level in blood. We found an increased level of HsCRP in patients with chronic periodontitis which revealed the susceptibility of these patients to cardiac diseases like myocardial infarction and stroke. Hence present day focus in the line of management of cardiac patient has changed from the periodontal perspective.

  13. Pilot Study of Patient and Caregiver Out-of-Pocket Costs of Allogeneic Hematopoietic Cell Transplantation

    PubMed Central

    Majhail, Navneet S; Rizzo, J Douglas; Hahn, Theresa; Lee, Stephanie J; McCarthy, Philip L; Ammi, Monique; Denzen, Ellen; Drexler, Rebecca; Flesch, Susan; James, Heather; Omondi, Nancy; Pedersen, Tanya L; Murphy, Elizabeth; Pederson, Kate

    2012-01-01

    Patient/caregiver out-of pocket costs associated with hematopoietic-cell transplantation (HCT) are not well known. We conducted a pilot study to evaluate patient/caregiver out-of-pocket costs in the first 3 months after allogeneic HCT. Thirty patients were enrolled at three sites. Prior to HCT, participants completed a baseline survey regarding household income and insurance coverage. Subsequently, they maintained a paper-based diary to track daily out-of-pocket expenses for the first 3 months after HCT. Telephone interviews were conducted to followup on missing/incomplete diaries and on study completion. Twenty-five patients/caregivers completed the baseline survey. Among these, the median pre-tax household income was $66,500 (range, $30-$375,000) and 48% had to temporarily relocate close to the transplant center. Insurance coverage was managed care plan (56%), Medicaid (20%), Medicare (17%) and other (8%). Twenty-two patients/caregivers completed ≥4 diaries; the median out-of-pocket expenses were $2,440 (range, $199-$13,769). Patients/caregivers who required temporary lodging had higher out-of-pocket expenses compared to those who did not (median, $5,247 vs. $716). Patients/caregivers can incur substantial out-of-pocket costs over the first 3 months, especially if they need to temporarily relocate close to the transplant center. Our study lays the foundation for future research on early and long-term financial impact of allogeneic HCT on patients/caregivers. PMID:23222378

  14. Skin lesions over the pocket area that may mimic cardiac implantable electronic device infection: A case series.

    PubMed

    Korantzopoulos, Panagiotis; Plakoutsi, Sofia; Florou, Elizabeth; Bechlioulis, Aris

    2018-05-21

    The early and correct diagnosis of cardiac implantable electronic device (CIED) infections is critical given that early aggressive treatment with complete removal of the system along with antimicrobial therapy dramatically improves outcomes. Pocket infection manifested by local signs of inflammation is the most common form of CIED infections. Conditions mimicking pocket infection have been described in the literature. These include various types of malignancy and rarely allergic reactions/contact dermatitis to pacemaker compounds. We aimed to describe skin lesions and disorders over the pocket area that mimic CIED infection. We present a series of 5 cases with skin lesions that mimic pocket infection. We document these cases with corresponding photographs. Most of them have not been described in this setting. We report the following cases of conditions that proved not to be CIED infection: One case of superficial cellulitis, one case of herpes zoster over the pocket area, one case of spontaneous bruising over the pocket a long time after implantation in a patient taking oral anticoagulation, and 2 cases of contact dermatitis due to prolonged postoperative application of povidone iodine. All cases had favorable outcome after conservative treatment and no CIED infection was developed during follow-up. Clinicians should be aware of rare conditions that mimic CIED infection. Incorrect diagnosis of these disorders may falsely lead to CIED extraction. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  15. Retiree out-of-pocket healthcare spending: a study of consumer expectations and policy implications.

    PubMed

    Hoffman, Allison K; Jackson, Howell E

    2013-01-01

    Even though most American retirees benefit from Medicare coverage, a mounting body of research predicts that many will face large and increasing out-of-pocket expenditures for healthcare costs in retirement and that many already struggle to finance these costs. It is unclear, however, whether the general population understands the likely magnitude of these out-of-pocket expenditures well enough to plan for them effectively. This study is the first comprehensive examination of Americans' expectations regarding their out-of-pocket spending on healthcare in retirement. We surveyed over 1700 near retirees and retirees to assess their expectations regarding their own spending and then compared their responses to experts' estimates. Our main findings are twofold. First, overall expectations of out-of-pocket spending are mixed. While a significant proportion of respondents estimated out-of-pocket costs in retirement at or above expert estimates of what the typical retiree will spend, a disproportionate number estimated their future spending substantially below what experts view as likely. Estimates by members of some demographic subgroups, including women and younger respondents, deviated relatively further from the experts' estimates. Second, respondents consistently misjudged spending uncertainty. In particular, respondents significantly underestimated how much individual health experience and changes in government policy can affect individual out-of-pocket spending. We discuss possible policy responses, including efforts to improve financial planning and ways to reduce unanticipated financial risk through reform of health insurance regulation.

  16. Automatic bad channel detection in intracranial electroencephalographic recordings using ensemble machine learning.

    PubMed

    Tuyisenge, Viateur; Trebaul, Lena; Bhattacharjee, Manik; Chanteloup-Forêt, Blandine; Saubat-Guigui, Carole; Mîndruţă, Ioana; Rheims, Sylvain; Maillard, Louis; Kahane, Philippe; Taussig, Delphine; David, Olivier

    2018-03-01

    Intracranial electroencephalographic (iEEG) recordings contain "bad channels", which show non-neuronal signals. Here, we developed a new method that automatically detects iEEG bad channels using machine learning of seven signal features. The features quantified signals' variance, spatial-temporal correlation and nonlinear properties. Because the number of bad channels is usually much lower than the number of good channels, we implemented an ensemble bagging classifier known to be optimal in terms of stability and predictive accuracy for datasets with imbalanced class distributions. This method was applied on stereo-electroencephalographic (SEEG) signals recording during low frequency stimulations performed in 206 patients from 5 clinical centers. We found that the classification accuracy was extremely good: It increased with the number of subjects used to train the classifier and reached a plateau at 99.77% for 110 subjects. The classification performance was thus not impacted by the multicentric nature of data. The proposed method to automatically detect bad channels demonstrated convincing results and can be envisaged to be used on larger datasets for automatic quality control of iEEG data. This is the first method proposed to classify bad channels in iEEG and should allow to improve the data selection when reviewing iEEG signals. Copyright © 2017 International Federation of Clinical Neurophysiology. Published by Elsevier B.V. All rights reserved.

  17. Large scale analysis of protein-binding cavities using self-organizing maps and wavelet-based surface patches to describe functional properties, selectivity discrimination, and putative cross-reactivity.

    PubMed

    Kupas, Katrin; Ultsch, Alfred; Klebe, Gerhard

    2008-05-15

    A new method to discover similar substructures in protein binding pockets, independently of sequence and folding patterns or secondary structure elements, is introduced. The solvent-accessible surface of a binding pocket, automatically detected as a depression on the protein surface, is divided into a set of surface patches. Each surface patch is characterized by its shape as well as by its physicochemical characteristics. Wavelets defined on surfaces are used for the description of the shape, as they have the great advantage of allowing a comparison at different resolutions. The number of coefficients to describe the wavelets can be chosen with respect to the size of the considered data set. The physicochemical characteristics of the patches are described by the assignment of the exposed amino acid residues to one or more of five different properties determinant for molecular recognition. A self-organizing neural network is used to project the high-dimensional feature vectors onto a two-dimensional layer of neurons, called a map. To find similarities between the binding pockets, in both geometrical and physicochemical features, a clustering of the projected feature vector is performed using an automatic distance- and density-based clustering algorithm. The method was validated with a small training data set of 109 binding cavities originating from a set of enzymes covering 12 different EC numbers. A second test data set of 1378 binding cavities, extracted from enzymes of 13 different EC numbers, was then used to prove the discriminating power of the algorithm and to demonstrate its applicability to large scale analyses. In all cases, members of the data set with the same EC number were placed into coherent regions on the map, with small distances between them. Different EC numbers are separated by large distances between the feature vectors. A third data set comprising three subfamilies of endopeptidases is used to demonstrate the ability of the algorithm to detect similar substructures between functionally related active sites. The algorithm can also be used to predict the function of novel proteins not considered in training data set. 2007 Wiley-Liss, Inc.

  18. A hybrid cost-sensitive ensemble for imbalanced breast thermogram classification.

    PubMed

    Krawczyk, Bartosz; Schaefer, Gerald; Woźniak, Michał

    2015-11-01

    Early recognition of breast cancer, the most commonly diagnosed form of cancer in women, is of crucial importance, given that it leads to significantly improved chances of survival. Medical thermography, which uses an infrared camera for thermal imaging, has been demonstrated as a particularly useful technique for early diagnosis, because it detects smaller tumors than the standard modality of mammography. In this paper, we analyse breast thermograms by extracting features describing bilateral symmetries between the two breast areas, and present a classification system for decision making. Clearly, the costs associated with missing a cancer case are much higher than those for mislabelling a benign case. At the same time, datasets contain significantly fewer malignant cases than benign ones. Standard classification approaches fail to consider either of these aspects. In this paper, we introduce a hybrid cost-sensitive classifier ensemble to address this challenging problem. Our approach entails a pool of cost-sensitive decision trees which assign a higher misclassification cost to the malignant class, thereby boosting its recognition rate. A genetic algorithm is employed for simultaneous feature selection and classifier fusion. As an optimisation criterion, we use a combination of misclassification cost and diversity to achieve both a high sensitivity and a heterogeneous ensemble. Furthermore, we prune our ensemble by discarding classifiers that contribute minimally to the decision making. For a challenging dataset of about 150 thermograms, our approach achieves an excellent sensitivity of 83.10%, while maintaining a high specificity of 89.44%. This not only signifies improved recognition of malignant cases, it also statistically outperforms other state-of-the-art algorithms designed for imbalanced classification, and hence provides an effective approach for analysing breast thermograms. Our proposed hybrid cost-sensitive ensemble can facilitate a highly accurate early diagnostic of breast cancer based on thermogram features. It overcomes the difficulties posed by the imbalanced distribution of patients in the two analysed groups. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Manipulating mesoscopic multipartite entanglement with atom-light interfaces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stasinska, J.; Rodo, C.; Paganelli, S.

    2009-12-15

    Entanglement between two macroscopic atomic ensembles induced by measurement on an ancillary light system has proven to be a powerful method for engineering quantum memories and quantum state transfer. Here we investigate the feasibility of such methods for generation, manipulation, and detection of genuine multipartite entanglement (Greenberger-Horne-Zeilinger and clusterlike states) between mesoscopic atomic ensembles without the need of individual addressing of the samples. Our results extend in a nontrivial way the Einstein-Podolsky-Rosen entanglement between two macroscopic gas samples reported experimentally in [B. Julsgaard, A. Kozhekin, and E. Polzik, Nature (London) 413, 400 (2001)]. We find that under realistic conditions, amore » second orthogonal light pulse interacting with the atomic samples, can modify and even reverse the entangling action of the first one leaving the samples in a separable state.« less

  20. Rolling bearing fault detection and diagnosis based on composite multiscale fuzzy entropy and ensemble support vector machines

    NASA Astrophysics Data System (ADS)

    Zheng, Jinde; Pan, Haiyang; Cheng, Junsheng

    2017-02-01

    To timely detect the incipient failure of rolling bearing and find out the accurate fault location, a novel rolling bearing fault diagnosis method is proposed based on the composite multiscale fuzzy entropy (CMFE) and ensemble support vector machines (ESVMs). Fuzzy entropy (FuzzyEn), as an improvement of sample entropy (SampEn), is a new nonlinear method for measuring the complexity of time series. Since FuzzyEn (or SampEn) in single scale can not reflect the complexity effectively, multiscale fuzzy entropy (MFE) is developed by defining the FuzzyEns of coarse-grained time series, which represents the system dynamics in different scales. However, the MFE values will be affected by the data length, especially when the data are not long enough. By combining information of multiple coarse-grained time series in the same scale, the CMFE algorithm is proposed in this paper to enhance MFE, as well as FuzzyEn. Compared with MFE, with the increasing of scale factor, CMFE obtains much more stable and consistent values for a short-term time series. In this paper CMFE is employed to measure the complexity of vibration signals of rolling bearings and is applied to extract the nonlinear features hidden in the vibration signals. Also the physically meanings of CMFE being suitable for rolling bearing fault diagnosis are explored. Based on these, to fulfill an automatic fault diagnosis, the ensemble SVMs based multi-classifier is constructed for the intelligent classification of fault features. Finally, the proposed fault diagnosis method of rolling bearing is applied to experimental data analysis and the results indicate that the proposed method could effectively distinguish different fault categories and severities of rolling bearings.

  1. From cheminformatics to structure-based design: Web services and desktop applications based on the NAOMI library.

    PubMed

    Bietz, Stefan; Inhester, Therese; Lauck, Florian; Sommer, Kai; von Behren, Mathias M; Fährrolfes, Rainer; Flachsenberg, Florian; Meyder, Agnes; Nittinger, Eva; Otto, Thomas; Hilbig, Matthias; Schomburg, Karen T; Volkamer, Andrea; Rarey, Matthias

    2017-11-10

    Nowadays, computational approaches are an integral part of life science research. Problems related to interpretation of experimental results, data analysis, or visualization tasks highly benefit from the achievements of the digital era. Simulation methods facilitate predictions of physicochemical properties and can assist in understanding macromolecular phenomena. Here, we will give an overview of the methods developed in our group that aim at supporting researchers from all life science areas. Based on state-of-the-art approaches from structural bioinformatics and cheminformatics, we provide software covering a wide range of research questions. Our all-in-one web service platform ProteinsPlus (http://proteins.plus) offers solutions for pocket and druggability prediction, hydrogen placement, structure quality assessment, ensemble generation, protein-protein interaction classification, and 2D-interaction visualization. Additionally, we provide a software package that contains tools targeting cheminformatics problems like file format conversion, molecule data set processing, SMARTS editing, fragment space enumeration, and ligand-based virtual screening. Furthermore, it also includes structural bioinformatics solutions for inverse screening, binding site alignment, and searching interaction patterns across structure libraries. The software package is available at http://software.zbh.uni-hamburg.de. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Computational fragment-based screening using RosettaLigand: the SAMPL3 challenge

    NASA Astrophysics Data System (ADS)

    Kumar, Ashutosh; Zhang, Kam Y. J.

    2012-05-01

    SAMPL3 fragment based virtual screening challenge provides a valuable opportunity for researchers to test their programs, methods and screening protocols in a blind testing environment. We participated in SAMPL3 challenge and evaluated our virtual fragment screening protocol, which involves RosettaLigand as the core component by screening a 500 fragments Maybridge library against bovine pancreatic trypsin. Our study reaffirmed that the real test for any virtual screening approach would be in a blind testing environment. The analyses presented in this paper also showed that virtual screening performance can be improved, if a set of known active compounds is available and parameters and methods that yield better enrichment are selected. Our study also highlighted that to achieve accurate orientation and conformation of ligands within a binding site, selecting an appropriate method to calculate partial charges is important. Another finding is that using multiple receptor ensembles in docking does not always yield better enrichment than individual receptors. On the basis of our results and retrospective analyses from SAMPL3 fragment screening challenge we anticipate that chances of success in a fragment screening process could be increased significantly with careful selection of receptor structures, protein flexibility, sufficient conformational sampling within binding pocket and accurate assignment of ligand and protein partial charges.

  3. MSEBAG: a dynamic classifier ensemble generation based on `minimum-sufficient ensemble' and bagging

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Kamel, Mohamed S.

    2016-01-01

    In this paper, we propose a dynamic classifier system, MSEBAG, which is characterised by searching for the 'minimum-sufficient ensemble' and bagging at the ensemble level. It adopts an 'over-generation and selection' strategy and aims to achieve a good bias-variance trade-off. In the training phase, MSEBAG first searches for the 'minimum-sufficient ensemble', which maximises the in-sample fitness with the minimal number of base classifiers. Then, starting from the 'minimum-sufficient ensemble', a backward stepwise algorithm is employed to generate a collection of ensembles. The objective is to create a collection of ensembles with a descending fitness on the data, as well as a descending complexity in the structure. MSEBAG dynamically selects the ensembles from the collection for the decision aggregation. The extended adaptive aggregation (EAA) approach, a bagging-style algorithm performed at the ensemble level, is employed for this task. EAA searches for the competent ensembles using a score function, which takes into consideration both the in-sample fitness and the confidence of the statistical inference, and averages the decisions of the selected ensembles to label the test pattern. The experimental results show that the proposed MSEBAG outperforms the benchmarks on average.

  4. Simulation studies of the fidelity of biomolecular structure ensemble recreation

    NASA Astrophysics Data System (ADS)

    Lätzer, Joachim; Eastwood, Michael P.; Wolynes, Peter G.

    2006-12-01

    We examine the ability of Bayesian methods to recreate structural ensembles for partially folded molecules from averaged data. Specifically we test the ability of various algorithms to recreate different transition state ensembles for folding proteins using a multiple replica simulation algorithm using input from "gold standard" reference ensembles that were first generated with a Gō-like Hamiltonian having nonpairwise additive terms. A set of low resolution data, which function as the "experimental" ϕ values, were first constructed from this reference ensemble. The resulting ϕ values were then treated as one would treat laboratory experimental data and were used as input in the replica reconstruction algorithm. The resulting ensembles of structures obtained by the replica algorithm were compared to the gold standard reference ensemble, from which those "data" were, in fact, obtained. It is found that for a unimodal transition state ensemble with a low barrier, the multiple replica algorithm does recreate the reference ensemble fairly successfully when no experimental error is assumed. The Kolmogorov-Smirnov test as well as principal component analysis show that the overlap of the recovered and reference ensembles is significantly enhanced when multiple replicas are used. Reduction of the multiple replica ensembles by clustering successfully yields subensembles with close similarity to the reference ensembles. On the other hand, for a high barrier transition state with two distinct transition state ensembles, the single replica algorithm only samples a few structures of one of the reference ensemble basins. This is due to the fact that the ϕ values are intrinsically ensemble averaged quantities. The replica algorithm with multiple copies does sample both reference ensemble basins. In contrast to the single replica case, the multiple replicas are constrained to reproduce the average ϕ values, but allow fluctuations in ϕ for each individual copy. These fluctuations facilitate a more faithful sampling of the reference ensemble basins. Finally, we test how robustly the reconstruction algorithm can function by introducing errors in ϕ comparable in magnitude to those suggested by some authors. In this circumstance we observe that the chances of ensemble recovery with the replica algorithm are poor using a single replica, but are improved when multiple copies are used. A multimodal transition state ensemble, however, turns out to be more sensitive to large errors in ϕ (if appropriately gauged) and attempts at successful recreation of the reference ensemble with simple replica algorithms can fall short.

  5. EEMD-based wind turbine bearing failure detection using the generator stator current homopolar component

    NASA Astrophysics Data System (ADS)

    Amirat, Yassine; Choqueuse, Vincent; Benbouzid, Mohamed

    2013-12-01

    Failure detection has always been a demanding task in the electrical machines community; it has become more challenging in wind energy conversion systems because sustainability and viability of wind farms are highly dependent on the reduction of the operational and maintenance costs. Indeed the most efficient way of reducing these costs would be to continuously monitor the condition of these systems. This allows for early detection of the generator health degeneration, facilitating a proactive response, minimizing downtime, and maximizing productivity. This paper provides then an assessment of a failure detection techniques based on the homopolar component of the generator stator current and attempts to highlight the use of the ensemble empirical mode decomposition as a tool for failure detection in wind turbine generators for stationary and non-stationary cases.

  6. A three-dimensional model for analyzing the effects of salmon redds on hyporheic exchange and egg pocket habitat

    Treesearch

    Daniele Tonina; John M. Buffington

    2009-01-01

    A three-dimensional fluid dynamics model is developed to capture the spatial complexity of the effects of salmon redds on channel hydraulics, hyporheic exchange, and egg pocket habitat. We use the model to partition the relative influences of redd topography versus altered hydraulic conductivity (winnowing of fines during spawning) on egg pocket conditions for a...

  7. Out-of-pocket medical expenses for inpatient care among beneficiaries of the National Health Insurance Program in the Philippines.

    PubMed

    Tobe, Makoto; Stickley, Andrew; del Rosario, Rodolfo B; Shibuya, Kenji

    2013-08-01

    OBJECTIVE The National Health Insurance Program (NHIP) in the Philippines is a social health insurance system partially subsidized by tax-based financing which offers benefits on a fee-for-service basis up to a fixed ceiling. This paper quantifies the extent to which beneficiaries of the NHIP incur out-of-pocket expenses for inpatient care, and examines the characteristics of beneficiaries making these payments and the hospitals in which these payments are typically made. METHODS Probit and ordinary least squares regression analyses were carried out on 94 531 insurance claims from Benguet province and Baguio city during the period 2007 to 2009. RESULTS Eighty-six per cent of claims involved an out-of-pocket payment. The median figure for out-of-pocket payments was Philippine Pesos (PHP) 3016 (US$67), with this figure varying widely [inter-quartile range (IQR): PHP 9393 (US$209)]. Thirteen per cent of claims involved very large out-of-pocket payments exceeding PHP 19 213 (US$428)-the equivalent of 10% of the average annual household income in the region. Membership type, disease severity, age and residential location of the patient, length of hospitalization, and ownership and level of the hospital were all significantly associated with making out-of-pocket payments and/or the size of these payments. CONCLUSION Although the current NHIP reduces the size of out-of-pocket payments, NHIP beneficiaries are not completely free from the risk of large out-of-pocket payments (as the size of these payments varies widely and can be extremely large), despite NHIP's attempts to mitigate this by setting different benefit ceilings based on the level of the hospital and the severity of the disease. To reduce these large out-of-pocket payments and to increase financial risk protection further, it is essential to ensure more investment for health from social health insurance and/or tax-based government funding as well as shifting the provider payment mechanism from a fee-for-service to a case-based payment method (which up until now has only been partially implemented).

  8. Trivalent ions modification for high-silica mordenite: A first principles study

    NASA Astrophysics Data System (ADS)

    Chen, Fayun; Zhang, Laijun; Feng, Gang; Wang, Xuewen; Zhang, Rongbin; Liu, Jianwen

    2018-03-01

    Using periodic DFT-D3-U methods, the present work give a mechanistic insight into the high silica B-, Al-, Ga- and Fe-MOR with H, Li, Na, and K as charge balance ions. The acid properties of the zeolite were probed via NH3 and pyridine adsorption. It is found that the charge balance ions influence the location of the trivalent ions, the cell volumes, as well as the synthesis difficulty of the zeolites. The energy differences for B, Al, Ga and Fe in different T sites are small for the H-form zeolites, while large for the Na- and K-form zeolites. For H-form MOR, the proton of the sbnd OH group prefers to bond to O(7) and O(3) and pointing to the 12MR for trivalent ions in T1 sites. The proton bonds to O(3), O(2), O(2) and O(5), respectively, for B, Al, Ga and Fe in T2 site of MOR, with the sbnd OH group pointing to intersection of 12MR and the side-pocket, except for the B-MOR that sbnd OH group pointing to the 12MR. For trivalent ions located in T3 and T4 sites, the protons prefers to bond to O(1) and O(2), respectively, with the sbnd OH group pointing to the intersection of 8MR and side-pocket as well as the intersection of 12MR and side-pocket. All incorporated B, Al, Ga, and Fe framework ions are tetra-coordinated, except the B atoms are tri-coordinated. The NH4-form MOR has smaller cell volume than the other form MOR. Na and K are energetically more favored charge balance ions than Li and NH3 for MOR zeolites synthesis, and the H-form zeolite is the most difficult to be synthesized directly. The strength of the Brønsted acidity follows the order: HBMOR < HFeMOR ≈ HGaMOR < HAlMOR, vs. the Lewis acidity order: HBMOR < HAlMOR < HFeMOR ≈ HGaMOR. NH3 could be adsorbed inside all kinds of channels, and especially favors in the small 8MR vs. pyridine could only be adsorbed in the main channel of MOR due to the steric effect. It indicates that the acid sites in the side pocket and the small 8-membered ring and the side pocket could not be effectively determined just by the pyridine adsorption experiments. In comparison, the NH3 adsorption experiments could detect all kinds of Brønsted sites of the MOR zeolites.

  9. Using personal glucose meters and functional DNA sensors to quantify a variety of analytical targets

    PubMed Central

    Xiang, Yu; Lu, Yi

    2012-01-01

    Portable, low-cost and quantitative detection of a broad range of targets at home and in the field has the potential to revolutionize medical diagnostics and environmental monitoring. Despite many years of research, very few such devices are commercially available. Taking advantage of the wide availability and low cost of the pocket-sized personal glucose meter—used worldwide by diabetes sufferers—we demonstrate a method to use such meters to quantify non-glucose targets, ranging from a recreational drug (cocaine, 3.4 μM detection limit) to an important biological cofactor (adenosine, 18 μM detection limit), to a disease marker (interferon-gamma of tuberculosis, 2.6 nM detection limit) and a toxic metal ion (uranium, 9.1 nM detection limit). The method is based on the target-induced release of invertase from a functional-DNA–invertase conjugate. The released invertase converts sucrose into glucose, which is detectable using the meter. The approach should be easily applicable to the detection of many other targets through the use of suitable functional-DNA partners (aptamers DNAzymes or aptazymes). PMID:21860458

  10. Using personal glucose meters and functional DNA sensors to quantify a variety of analytical targets

    NASA Astrophysics Data System (ADS)

    Xiang, Yu; Lu, Yi

    2011-09-01

    Portable, low-cost and quantitative detection of a broad range of targets at home and in the field has the potential to revolutionize medical diagnostics and environmental monitoring. Despite many years of research, very few such devices are commercially available. Taking advantage of the wide availability and low cost of the pocket-sized personal glucose meter—used worldwide by diabetes sufferers—we demonstrate a method to use such meters to quantify non-glucose targets, ranging from a recreational drug (cocaine, 3.4 µM detection limit) to an important biological cofactor (adenosine, 18 µM detection limit), to a disease marker (interferon-gamma of tuberculosis, 2.6 nM detection limit) and a toxic metal ion (uranium, 9.1 nM detection limit). The method is based on the target-induced release of invertase from a functional-DNA-invertase conjugate. The released invertase converts sucrose into glucose, which is detectable using the meter. The approach should be easily applicable to the detection of many other targets through the use of suitable functional-DNA partners (aptamers, DNAzymes or aptazymes).

  11. Tunable allosteric library of caspase-3 identifies coupling between conserved water molecules and conformational selection

    PubMed Central

    Maciag, Joseph J.; Mackenzie, Sarah H.; Tucker, Matthew B.; Schipper, Joshua L.; Swartz, Paul; Clark, A. Clay

    2016-01-01

    The native ensemble of caspases is described globally by a complex energy landscape where the binding of substrate selects for the active conformation, whereas targeting an allosteric site in the dimer interface selects an inactive conformation that contains disordered active-site loops. Mutations and posttranslational modifications stabilize high-energy inactive conformations, with mostly formed, but distorted, active sites. To examine the interconversion of active and inactive states in the ensemble, we used detection of related solvent positions to analyze 4,995 waters in 15 high-resolution (<2.0 Å) structures of wild-type caspase-3, resulting in 450 clusters with the most highly conserved set containing 145 water molecules. The data show that regions of the protein that contact the conserved waters also correspond to sites of posttranslational modifications, suggesting that the conserved waters are an integral part of allosteric mechanisms. To test this hypothesis, we created a library of 19 caspase-3 variants through saturation mutagenesis in a single position of the allosteric site of the dimer interface, and we show that the enzyme activity varies by more than four orders of magnitude. Altogether, our database consists of 37 high-resolution structures of caspase-3 variants, and we demonstrate that the decrease in activity correlates with a loss of conserved water molecules. The data show that the activity of caspase-3 can be fine-tuned through globally desolvating the active conformation within the native ensemble, providing a mechanism for cells to repartition the ensemble and thus fine-tune activity through conformational selection. PMID:27681633

  12. Computation of the ensemble channelized Hotelling observer signal-to-noise ratio for ordered-subset image reconstruction using noisy data

    NASA Astrophysics Data System (ADS)

    Soares, Edward J.; Gifford, Howard C.; Glick, Stephen J.

    2003-05-01

    We investigated the estimation of the ensemble channelized Hotelling observer (CHO) signal-to-noise ratio (SNR) for ordered-subset (OS) image reconstruction using noisy projection data. Previously, we computed the ensemble CHO SNR using a method for approximating the channelized covariance of OS reconstruction, which requires knowledge of the noise-free projection data. Here, we use a "plug-in" approach, in which noisy data is used in place of the noise-free data in the aforementioned channelized covariance approximation. Additionally, we evaluated the use of smoothing of the noisy projections before use in the covariance approximation. Additionally, we evaluated the use of smoothing of the noisy projections before use in the covariance calculation. The task was detection of a 10% contrast Gaussian signal within a slice of the MCAT phantom. Simulated projections of the MCAT phantom were scaled and Poisson noise was added to create 100 noisy signal-absent data sets. Simulated projections of the scaled signal were then added to the noisy background projections to create 100 noisy signal-present data set. These noisy data sets were then used to generate 100 estimates of the ensemble CHO SNR for reconstructions at various iterates. For comparison purposes, the same calculation was repeated with the noise-free data. The results, reported as plots of the average CHO SNR generated in this fashion, along with 95% confidence intervals, demonstrate that this approach works very well, and would allow optimization of imaging systems and reconstruction methods using a more accurate object model (i.e., real patient data).

  13. A comparison of large-scale climate signals and the North American Multi-Model Ensemble (NMME) for drought prediction in China

    NASA Astrophysics Data System (ADS)

    Xu, Lei; Chen, Nengcheng; Zhang, Xiang

    2018-02-01

    Drought is an extreme natural disaster that can lead to huge socioeconomic losses. Drought prediction ahead of months is helpful for early drought warning and preparations. In this study, we developed a statistical model, two weighted dynamic models and a statistical-dynamic (hybrid) model for 1-6 month lead drought prediction in China. Specifically, statistical component refers to climate signals weighting by support vector regression (SVR), dynamic components consist of the ensemble mean (EM) and Bayesian model averaging (BMA) of the North American Multi-Model Ensemble (NMME) climatic models, and the hybrid part denotes a combination of statistical and dynamic components by assigning weights based on their historical performances. The results indicate that the statistical and hybrid models show better rainfall predictions than NMME-EM and NMME-BMA models, which have good predictability only in southern China. In the 2011 China winter-spring drought event, the statistical model well predicted the spatial extent and severity of drought nationwide, although the severity was underestimated in the mid-lower reaches of Yangtze River (MLRYR) region. The NMME-EM and NMME-BMA models largely overestimated rainfall in northern and western China in 2011 drought. In the 2013 China summer drought, the NMME-EM model forecasted the drought extent and severity in eastern China well, while the statistical and hybrid models falsely detected negative precipitation anomaly (NPA) in some areas. Model ensembles such as multiple statistical approaches, multiple dynamic models or multiple hybrid models for drought predictions were highlighted. These conclusions may be helpful for drought prediction and early drought warnings in China.

  14. Motion compensation using origin ensembles in awake small animal positron emission tomography

    NASA Astrophysics Data System (ADS)

    Gillam, John E.; Angelis, Georgios I.; Kyme, Andre Z.; Meikle, Steven R.

    2017-02-01

    In emission tomographic imaging, the stochastic origin ensembles algorithm provides unique information regarding the detected counts given the measured data. Precision in both voxel and region-wise parameters may be determined for a single data set based on the posterior distribution of the count density allowing uncertainty estimates to be allocated to quantitative measures. Uncertainty estimates are of particular importance in awake animal neurological and behavioral studies for which head motion, unique for each acquired data set, perturbs the measured data. Motion compensation can be conducted when rigid head pose is measured during the scan. However, errors in pose measurements used for compensation can degrade the data and hence quantitative outcomes. In this investigation motion compensation and detector resolution models were incorporated into the basic origin ensembles algorithm and an efficient approach to computation was developed. The approach was validated against maximum liklihood—expectation maximisation and tested using simulated data. The resultant algorithm was then used to analyse quantitative uncertainty in regional activity estimates arising from changes in pose measurement precision. Finally, the posterior covariance acquired from a single data set was used to describe correlations between regions of interest providing information about pose measurement precision that may be useful in system analysis and design. The investigation demonstrates the use of origin ensembles as a powerful framework for evaluating statistical uncertainty of voxel and regional estimates. While in this investigation rigid motion was considered in the context of awake animal PET, the extension to arbitrary motion may provide clinical utility where respiratory or cardiac motion perturb the measured data.

  15. Tunable allosteric library of caspase-3 identifies coupling between conserved water molecules and conformational selection.

    PubMed

    Maciag, Joseph J; Mackenzie, Sarah H; Tucker, Matthew B; Schipper, Joshua L; Swartz, Paul; Clark, A Clay

    2016-10-11

    The native ensemble of caspases is described globally by a complex energy landscape where the binding of substrate selects for the active conformation, whereas targeting an allosteric site in the dimer interface selects an inactive conformation that contains disordered active-site loops. Mutations and posttranslational modifications stabilize high-energy inactive conformations, with mostly formed, but distorted, active sites. To examine the interconversion of active and inactive states in the ensemble, we used detection of related solvent positions to analyze 4,995 waters in 15 high-resolution (<2.0 Å) structures of wild-type caspase-3, resulting in 450 clusters with the most highly conserved set containing 145 water molecules. The data show that regions of the protein that contact the conserved waters also correspond to sites of posttranslational modifications, suggesting that the conserved waters are an integral part of allosteric mechanisms. To test this hypothesis, we created a library of 19 caspase-3 variants through saturation mutagenesis in a single position of the allosteric site of the dimer interface, and we show that the enzyme activity varies by more than four orders of magnitude. Altogether, our database consists of 37 high-resolution structures of caspase-3 variants, and we demonstrate that the decrease in activity correlates with a loss of conserved water molecules. The data show that the activity of caspase-3 can be fine-tuned through globally desolvating the active conformation within the native ensemble, providing a mechanism for cells to repartition the ensemble and thus fine-tune activity through conformational selection.

  16. Monthly ENSO Forecast Skill and Lagged Ensemble Size

    PubMed Central

    DelSole, T.; Tippett, M.K.; Pegion, K.

    2018-01-01

    Abstract The mean square error (MSE) of a lagged ensemble of monthly forecasts of the Niño 3.4 index from the Climate Forecast System (CFSv2) is examined with respect to ensemble size and configuration. Although the real‐time forecast is initialized 4 times per day, it is possible to infer the MSE for arbitrary initialization frequency and for burst ensembles by fitting error covariances to a parametric model and then extrapolating to arbitrary ensemble size and initialization frequency. Applying this method to real‐time forecasts, we find that the MSE consistently reaches a minimum for a lagged ensemble size between one and eight days, when four initializations per day are included. This ensemble size is consistent with the 8–10 day lagged ensemble configuration used operationally. Interestingly, the skill of both ensemble configurations is close to the estimated skill of the infinite ensemble. The skill of the weighted, lagged, and burst ensembles are found to be comparable. Certain unphysical features of the estimated error growth were tracked down to problems with the climatology and data discontinuities. PMID:29937973

  17. Monthly ENSO Forecast Skill and Lagged Ensemble Size

    NASA Astrophysics Data System (ADS)

    Trenary, L.; DelSole, T.; Tippett, M. K.; Pegion, K.

    2018-04-01

    The mean square error (MSE) of a lagged ensemble of monthly forecasts of the Niño 3.4 index from the Climate Forecast System (CFSv2) is examined with respect to ensemble size and configuration. Although the real-time forecast is initialized 4 times per day, it is possible to infer the MSE for arbitrary initialization frequency and for burst ensembles by fitting error covariances to a parametric model and then extrapolating to arbitrary ensemble size and initialization frequency. Applying this method to real-time forecasts, we find that the MSE consistently reaches a minimum for a lagged ensemble size between one and eight days, when four initializations per day are included. This ensemble size is consistent with the 8-10 day lagged ensemble configuration used operationally. Interestingly, the skill of both ensemble configurations is close to the estimated skill of the infinite ensemble. The skill of the weighted, lagged, and burst ensembles are found to be comparable. Certain unphysical features of the estimated error growth were tracked down to problems with the climatology and data discontinuities.

  18. Generalized canonical ensembles and ensemble equivalence

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Costeniuc, M.; Ellis, R.S.; Turkington, B.

    2006-02-15

    This paper is a companion piece to our previous work [J. Stat. Phys. 119, 1283 (2005)], which introduced a generalized canonical ensemble obtained by multiplying the usual Boltzmann weight factor e{sup -{beta}}{sup H} of the canonical ensemble with an exponential factor involving a continuous function g of the Hamiltonian H. We provide here a simplified introduction to our previous work, focusing now on a number of physical rather than mathematical aspects of the generalized canonical ensemble. The main result discussed is that, for suitable choices of g, the generalized canonical ensemble reproduces, in the thermodynamic limit, all the microcanonical equilibriummore » properties of the many-body system represented by H even if this system has a nonconcave microcanonical entropy function. This is something that in general the standard (g=0) canonical ensemble cannot achieve. Thus a virtue of the generalized canonical ensemble is that it can often be made equivalent to the microcanonical ensemble in cases in which the canonical ensemble cannot. The case of quadratic g functions is discussed in detail; it leads to the so-called Gaussian ensemble.« less

  19. Identification of antipsychotic drug fluspirilene as a potential p53-MDM2 inhibitor: a combined computational and experimental study

    NASA Astrophysics Data System (ADS)

    Patil, Sachin P.; Pacitti, Michael F.; Gilroy, Kevin S.; Ruggiero, John C.; Griffin, Jonathan D.; Butera, Joseph J.; Notarfrancesco, Joseph M.; Tran, Shawn; Stoddart, John W.

    2015-02-01

    The inhibition of tumor suppressor p53 protein due to its direct interaction with oncogenic murine double minute 2 (MDM2) protein, plays a central role in almost 50 % of all human tumor cells. Therefore, pharmacological inhibition of the p53-binding pocket on MDM2, leading to p53 activation, presents an important therapeutic target against these cancers expressing wild-type p53. In this context, the present study utilized an integrated virtual and experimental screening approach to screen a database of approved drugs for potential p53-MDM2 interaction inhibitors. Specifically, using an ensemble rigid-receptor docking approach with four MDM2 protein crystal structures, six drug molecules were identified as possible p53-MDM2 inhibitors. These drug molecules were then subjected to further molecular modeling investigation through flexible-receptor docking followed by Prime/MM-GBSA binding energy analysis. These studies identified fluspirilene, an approved antipsychotic drug, as a top hit with MDM2 binding mode and energy similar to that of a native MDM2 crystal ligand. The molecular dynamics simulations suggested stable binding of fluspirilene to the p53-binding pocket on MDM2 protein. The experimental testing of fluspirilene showed significant growth inhibition of human colon tumor cells in a p53-dependent manner. Fluspirilene also inhibited growth of several other human tumor cell lines in the NCI60 cell line panel. Taken together, these computational and experimental data suggest a potentially novel role of fluspirilene in inhibiting the p53-MDM2 interaction. It is noteworthy here that fluspirilene has a long history of safe human use, thus presenting immediate clinical potential as a cancer therapeutic. Furthermore, fluspirilene could also serve as a structurally-novel lead molecule for the development of more potent, small-molecule p53-MDM2 inhibitors against several types of cancer. Importantly, the combined computational and experimental screening protocol presented in this study may also prove useful for screening other commercially-available compound databases for identification of novel, small molecule p53-MDM2 inhibitors.

  20. Texture Descriptors Ensembles Enable Image-Based Classification of Maturation of Human Stem Cell-Derived Retinal Pigmented Epithelium

    PubMed Central

    Caetano dos Santos, Florentino Luciano; Skottman, Heli; Juuti-Uusitalo, Kati; Hyttinen, Jari

    2016-01-01

    Aims A fast, non-invasive and observer-independent method to analyze the homogeneity and maturity of human pluripotent stem cell (hPSC) derived retinal pigment epithelial (RPE) cells is warranted to assess the suitability of hPSC-RPE cells for implantation or in vitro use. The aim of this work was to develop and validate methods to create ensembles of state-of-the-art texture descriptors and to provide a robust classification tool to separate three different maturation stages of RPE cells by using phase contrast microscopy images. The same methods were also validated on a wide variety of biological image classification problems, such as histological or virus image classification. Methods For image classification we used different texture descriptors, descriptor ensembles and preprocessing techniques. Also, three new methods were tested. The first approach was an ensemble of preprocessing methods, to create an additional set of images. The second was the region-based approach, where saliency detection and wavelet decomposition divide each image in two different regions, from which features were extracted through different descriptors. The third method was an ensemble of Binarized Statistical Image Features, based on different sizes and thresholds. A Support Vector Machine (SVM) was trained for each descriptor histogram and the set of SVMs combined by sum rule. The accuracy of the computer vision tool was verified in classifying the hPSC-RPE cell maturation level. Dataset and Results The RPE dataset contains 1862 subwindows from 195 phase contrast images. The final descriptor ensemble outperformed the most recent stand-alone texture descriptors, obtaining, for the RPE dataset, an area under ROC curve (AUC) of 86.49% with the 10-fold cross validation and 91.98% with the leave-one-image-out protocol. The generality of the three proposed approaches was ascertained with 10 more biological image datasets, obtaining an average AUC greater than 97%. Conclusions Here we showed that the developed ensembles of texture descriptors are able to classify the RPE cell maturation stage. Moreover, we proved that preprocessing and region-based decomposition improves many descriptors’ accuracy in biological dataset classification. Finally, we built the first public dataset of stem cell-derived RPE cells, which is publicly available to the scientific community for classification studies. The proposed tool is available at https://www.dei.unipd.it/node/2357 and the RPE dataset at http://www.biomeditech.fi/data/RPE_dataset/. Both are available at https://figshare.com/s/d6fb591f1beb4f8efa6f. PMID:26895509

  1. Determination of knock characteristics in spark ignition engines: an approach based on ensemble empirical mode decomposition

    NASA Astrophysics Data System (ADS)

    Li, Ning; Yang, Jianguo; Zhou, Rui; Liang, Caiping

    2016-04-01

    Knock is one of the major constraints to improve the performance and thermal efficiency of spark ignition (SI) engines. It can also result in severe permanent engine damage under certain operating conditions. Based on the ensemble empirical mode decomposition (EEMD), this paper proposes a new approach to determine the knock characteristics in SI engines. By adding a uniformly distributed and finite white Gaussian noise, the EEMD can preserve signal continuity in different scales and therefore alleviates the mode-mixing problem occurring in the classic empirical mode decomposition (EMD). The feasibilities of applying the EEMD to detect the knock signatures of a test SI engine via the pressure signal measured from combustion chamber and the vibration signal measured from cylinder head are investigated. Experimental results show that the EEMD-based method is able to detect the knock signatures from both the pressure signal and vibration signal, even in initial stage of knock. Finally, by comparing the application results with those obtained by short-time Fourier transform (STFT), Wigner-Ville distribution (WVD) and discrete wavelet transform (DWT), the superiority of the EEMD method in determining knock characteristics is demonstrated.

  2. Fault Diagnosis of Demountable Disk-Drum Aero-Engine Rotor Using Customized Multiwavelet Method

    PubMed Central

    Chen, Jinglong; Wang, Yu; He, Zhengjia; Wang, Xiaodong

    2015-01-01

    The demountable disk-drum aero-engine rotor is an important piece of equipment that greatly impacts the safe operation of aircraft. However, assembly looseness or crack fault has led to several unscheduled breakdowns and serious accidents. Thus, condition monitoring and fault diagnosis technique are required for identifying abnormal conditions. Customized ensemble multiwavelet method for aero-engine rotor condition identification, using measured vibration data, is developed in this paper. First, customized multiwavelet basis function with strong adaptivity is constructed via symmetric multiwavelet lifting scheme. Then vibration signal is processed by customized ensemble multiwavelet transform. Next, normalized information entropy of multiwavelet decomposition coefficients is computed to directly reflect and evaluate the condition. The proposed approach is first applied to fault detection of an experimental aero-engine rotor. Finally, the proposed approach is used in an engineering application, where it successfully identified the crack fault of a demountable disk-drum aero-engine rotor. The results show that the proposed method possesses excellent performance in fault detection of aero-engine rotor. Moreover, the robustness of the multiwavelet method against noise is also tested and verified by simulation and field experiments. PMID:26512668

  3. Mental health care and out-of-pocket expenditures in Europe: results from the ESEMeD project.

    PubMed

    Sevilla-Dedieu, Christine; Kovess-Masfety, Viviane; Gilbert, Fabien; Vilagut, Gemma; Koenig, Hans-Helmut; Bruffaerts, Ronny; Haro, Josep Maria; Alonso, Jordi

    2011-06-01

    Most published data on out-of-pocket spending on mental health originate from the United States, where insurance payments for mental health have traditionally been much less generous than benefits for other health care services. Given the difference in the structure of health care funding in Europe, it is clearly important to obtain similar information on out-of-pocket expenditure in different European countries. To estimate out-of-pocket costs paid by people who receive mental health care in six European countries (Belgium, France, Germany, Italy, the Netherlands, and Spain). Of the 8,796 participants in a cross-sectional survey conducted in these six European countries, 1,128 reported having consulted a professional for a mental health problem in the year preceding the interview and provided information on how many times in the past year they consulted each type of provider, and the money they and their family members had paid out-of-pocket for their mental health care. In addition to sociodemographic characteristics, information on mental health status was collected using the CIDI 3.0. Descriptive statistics on out-of-pocket expenditure and share of income across countries were generated. Two-part models were employed to identify the relationship between the different covariates, notably the types of providers consulted, and out-of-pocket expenditure. Overall, 41.0% of those who used services for a mental health problem paid something for the care they received. This represented a minority of respondents in all countries except Belgium (87.9%) and Italy (61.7%). The financial burden of these costs relative to income was found to be low (1.2%), ranging from 0.4% in Germany to 2.3% in France. Out-of-pocket expenditure differed according to the type of providers consulted, with non-physician health professionals and medical specialists being more often associated with significant expenditure. Although the study is limited principally by data collection from self-report, it is the first of its kind, to our knowledge, and suggests that out-of-pocket costs for mental health care in Europe are relatively low compared to the United States. However, differences between countries exist, which may be partially due to differences in coverage for specialized care. Consultations with non-physician mental health professionals such as psychologists are expensive for patients, since they are reimbursed to a lesser extent than consultations with physicians, or not reimbursed at all. This limits their role and increases the burden on psychiatrists. Monitoring out-of-pocket spending on mental health, preferably on the basis of administrative data when available, is essential in the current context of cost containment policy, where out-of-pocket spending may be expected to increase.

  4. Post-processing ECMWF precipitation and temperature ensemble reforecasts for operational hydrologic forecasting at various spatial scales

    NASA Astrophysics Data System (ADS)

    Verkade, J. S.; Brown, J. D.; Reggiani, P.; Weerts, A. H.

    2013-09-01

    The ECMWF temperature and precipitation ensemble reforecasts are evaluated for biases in the mean, spread and forecast probabilities, and how these biases propagate to streamflow ensemble forecasts. The forcing ensembles are subsequently post-processed to reduce bias and increase skill, and to investigate whether this leads to improved streamflow ensemble forecasts. Multiple post-processing techniques are used: quantile-to-quantile transform, linear regression with an assumption of bivariate normality and logistic regression. Both the raw and post-processed ensembles are run through a hydrologic model of the river Rhine to create streamflow ensembles. The results are compared using multiple verification metrics and skill scores: relative mean error, Brier skill score and its decompositions, mean continuous ranked probability skill score and its decomposition, and the ROC score. Verification of the streamflow ensembles is performed at multiple spatial scales: relatively small headwater basins, large tributaries and the Rhine outlet at Lobith. The streamflow ensembles are verified against simulated streamflow, in order to isolate the effects of biases in the forcing ensembles and any improvements therein. The results indicate that the forcing ensembles contain significant biases, and that these cascade to the streamflow ensembles. Some of the bias in the forcing ensembles is unconditional in nature; this was resolved by a simple quantile-to-quantile transform. Improvements in conditional bias and skill of the forcing ensembles vary with forecast lead time, amount, and spatial scale, but are generally moderate. The translation to streamflow forecast skill is further muted, and several explanations are considered, including limitations in the modelling of the space-time covariability of the forcing ensembles and the presence of storages.

  5. A Theoretical Analysis of Why Hybrid Ensembles Work.

    PubMed

    Hsu, Kuo-Wei

    2017-01-01

    Inspired by the group decision making process, ensembles or combinations of classifiers have been found favorable in a wide variety of application domains. Some researchers propose to use the mixture of two different types of classification algorithms to create a hybrid ensemble. Why does such an ensemble work? The question remains. Following the concept of diversity, which is one of the fundamental elements of the success of ensembles, we conduct a theoretical analysis of why hybrid ensembles work, connecting using different algorithms to accuracy gain. We also conduct experiments on classification performance of hybrid ensembles of classifiers created by decision tree and naïve Bayes classification algorithms, each of which is a top data mining algorithm and often used to create non-hybrid ensembles. Therefore, through this paper, we provide a complement to the theoretical foundation of creating and using hybrid ensembles.

  6. Individual differences in ensemble perception reveal multiple, independent levels of ensemble representation.

    PubMed

    Haberman, Jason; Brady, Timothy F; Alvarez, George A

    2015-04-01

    Ensemble perception, including the ability to "see the average" from a group of items, operates in numerous feature domains (size, orientation, speed, facial expression, etc.). Although the ubiquity of ensemble representations is well established, the large-scale cognitive architecture of this process remains poorly defined. We address this using an individual differences approach. In a series of experiments, observers saw groups of objects and reported either a single item from the group or the average of the entire group. High-level ensemble representations (e.g., average facial expression) showed complete independence from low-level ensemble representations (e.g., average orientation). In contrast, low-level ensemble representations (e.g., orientation and color) were correlated with each other, but not with high-level ensemble representations (e.g., facial expression and person identity). These results suggest that there is not a single domain-general ensemble mechanism, and that the relationship among various ensemble representations depends on how proximal they are in representational space. (c) 2015 APA, all rights reserved).

  7. MUSIC algorithms for rebar detection

    NASA Astrophysics Data System (ADS)

    Solimene, Raffaele; Leone, Giovanni; Dell'Aversano, Angela

    2013-12-01

    The MUSIC (MUltiple SIgnal Classification) algorithm is employed to detect and localize an unknown number of scattering objects which are small in size as compared to the wavelength. The ensemble of objects to be detected consists of both strong and weak scatterers. This represents a scattering environment challenging for detection purposes as strong scatterers tend to mask the weak ones. Consequently, the detection of more weakly scattering objects is not always guaranteed and can be completely impaired when the noise corrupting data is of a relatively high level. To overcome this drawback, here a new technique is proposed, starting from the idea of applying a two-stage MUSIC algorithm. In the first stage strong scatterers are detected. Then, information concerning their number and location is employed in the second stage focusing only on the weak scatterers. The role of an adequate scattering model is emphasized to improve drastically detection performance in realistic scenarios.

  8. Radiographic bone fill following debridement of a periodontal abscess. A case report.

    PubMed

    Khocht, A; Faldu, M G

    1998-01-01

    A periodontal abscess often develops in association with deepened periodontal pockets. Traditional management is by establishing drainage and prescribing antibiotics. This is usually followed by surgical pocket reduction. This case report discusses the remarkable healing of a periodontal abscess by establishing drainage alone without resorting to surgical pocket reduction. A 42-year-old white male presented with swollen gingivae associated with the mesiolingual of tooth #23. Increased probing depth and suppuration were evident. Radiographic bone loss on mesial #23 was present. A diagnosis of periodontal abscess was established. The abscess was drained through the orifice of the pocket. The patient failed to return for follow-up as instructed. A year later, the patient came back. Clinical evaluation showed healthy gingival tissues with probing depth of 3 mm on the mesiolingual of tooth #23. Radiographic evaluation showed bone fill of the osseous defect on the mesial of #23. The results of this case suggest that sufficient time should be allowed for healing prior to surgical pocket reduction.

  9. Families at financial risk due to high ratio of out-of-pocket health care expenditures to total income.

    PubMed

    Bennett, Kevin J; Dismuke, Clara E

    2010-05-01

    High out-of-pocket expenditures for health care can put individuals and families at financial risk. Several groups, including racial/ethnic minority groups, the uninsured, rural residents, and those in poorer health are at risk for this increased burden. The analysis utilized 2004-2005 MEPS data. The dependent variables were the out-of-pocket health care spending to total income ratios for total spending, office-based visits, and prescription drugs. Multivariate analyses with instrumental variables controlled for respondent characteristics. Gender, age, rurality, insurance coverage, health status, and health care utilization were all associated with higher out-of-pocket to income ratios. Certain groups, such as women, the elderly, those in poor health, and rural residents, are at a greater financial risk due to their higher out-of-pocket to total income spending ratios. Policymakers must be aware of these increased risks in order to provide adequate resources and targeted interventions to alleviate some of this burden.

  10. Do medical out-of-pocket expenses thrust families into poverty?

    PubMed

    O'Hara, Brett

    2004-02-01

    This paper estimates the impact of medical out-of-pocket expenses on families' well-being using the Survey of Income and Program Participation. Medical out-of-pocket expenses include the out-of-pocket costs from medical services and the family's share of health insurance premiums. Demographic characteristics, insurance status, and medical usage of the family are analyzed to determine which characteristics are most likely to impoverish a family. Families impoverished because of medical out-of-pocket expenses are far more likely to have older heads of the family, at least one family member in poor health, or some adults without health insurance. Families without at least one person who worked full time for the entire year were also likely to be impoverished. However, children in the family had little effect on the probability that the family became impoverished. This odd result is probably due to the high correlation between parental health insurance coverage and the health insurance coverage of their children.

  11. Slab edge insulating form system and methods

    DOEpatents

    Lee, Brain E [Corral de Tierra, CA; Barsun, Stephan K [Davis, CA; Bourne, Richard C [Davis, CA; Hoeschele, Marc A [Davis, CA; Springer, David A [Winters, CA

    2009-10-06

    A method of forming an insulated concrete foundation is provided comprising constructing a foundation frame, the frame comprising an insulating form having an opening, inserting a pocket former into the opening; placing concrete inside the foundation frame; and removing the pocket former after the placed concrete has set, wherein the concrete forms a pocket in the placed concrete that is accessible through the opening. The method may further comprise sealing the opening by placing a sealing plug or sealing material in the opening. A system for forming an insulated concrete foundation is provided comprising a plurality of interconnected insulating forms, the insulating forms having a rigid outer member protecting and encasing an insulating material, and at least one gripping lip extending outwardly from the outer member to provide a pest barrier. At least one insulating form has an opening into which a removable pocket former is inserted. The system may also provide a tension anchor positioned in the pocket former and a tendon connected to the tension anchor.

  12. An allosteric conduit facilitates dynamic multisite substrate recognition by the SCFCdc4 ubiquitin ligase

    NASA Astrophysics Data System (ADS)

    Csizmok, Veronika; Orlicky, Stephen; Cheng, Jing; Song, Jianhui; Bah, Alaji; Delgoshaie, Neda; Lin, Hong; Mittag, Tanja; Sicheri, Frank; Chan, Hue Sun; Tyers, Mike; Forman-Kay, Julie D.

    2017-01-01

    The ubiquitin ligase SCFCdc4 mediates phosphorylation-dependent elimination of numerous substrates by binding one or more Cdc4 phosphodegrons (CPDs). Methyl-based NMR analysis of the Cdc4 WD40 domain demonstrates that Cyclin E, Sic1 and Ash1 degrons have variable effects on the primary Cdc4WD40 binding pocket. Unexpectedly, a Sic1-derived multi-CPD substrate (pSic1) perturbs methyls around a previously documented allosteric binding site for the chemical inhibitor SCF-I2. NMR cross-saturation experiments confirm direct contact between pSic1 and the allosteric pocket. Phosphopeptide affinity measurements reveal negative allosteric communication between the primary CPD and allosteric pockets. Mathematical modelling indicates that the allosteric pocket may enhance ultrasensitivity by tethering pSic1 to Cdc4. These results suggest negative allosteric interaction between two distinct binding pockets on the Cdc4WD40 domain may facilitate dynamic exchange of multiple CPD sites to confer ultrasensitive dependence on substrate phosphorylation.

  13. Research on the properties of circadian systems amenable to study in space. [using pocket mice in Skylab experiment S-071 for the study of the effects of prolonged weightlessness

    NASA Technical Reports Server (NTRS)

    Lindberg, R. G.; Hayden, P.

    1974-01-01

    Three areas of inquiry are reported for the Skylab Experiment S-071 whose objective was to study the circadian system of a mammal during space flight. The thermoregulatory behavior of the Perognathus longimembris, or little pocket mouse, was studied under conditions of constant dark and constant temperature in the prolonged weightless environment of Skylab. The following specific questions were studied: (1) the effects of weightlessness on circadian periodicity in the little pocket mouse; (2) stability of the free-running circadian period of body temperature of the little pocket mouse exposed to simulated launch stress; and (3) characteristics of the circadian rhythm of body temperature in the little pocket mouse. Diagrams of the electronic circuitry and hardware used in the experiment are shown and results are given in both graphical and tabular form. The methods used in the experiment are fully documented, along with conclusions and recommendations for future research.

  14. An ensemble deep learning based approach for red lesion detection in fundus images.

    PubMed

    Orlando, José Ignacio; Prokofyeva, Elena; Del Fresno, Mariana; Blaschko, Matthew B

    2018-01-01

    Diabetic retinopathy (DR) is one of the leading causes of preventable blindness in the world. Its earliest sign are red lesions, a general term that groups both microaneurysms (MAs) and hemorrhages (HEs). In daily clinical practice, these lesions are manually detected by physicians using fundus photographs. However, this task is tedious and time consuming, and requires an intensive effort due to the small size of the lesions and their lack of contrast. Computer-assisted diagnosis of DR based on red lesion detection is being actively explored due to its improvement effects both in clinicians consistency and accuracy. Moreover, it provides comprehensive feedback that is easy to assess by the physicians. Several methods for detecting red lesions have been proposed in the literature, most of them based on characterizing lesion candidates using hand crafted features, and classifying them into true or false positive detections. Deep learning based approaches, by contrast, are scarce in this domain due to the high expense of annotating the lesions manually. In this paper we propose a novel method for red lesion detection based on combining both deep learned and domain knowledge. Features learned by a convolutional neural network (CNN) are augmented by incorporating hand crafted features. Such ensemble vector of descriptors is used afterwards to identify true lesion candidates using a Random Forest classifier. We empirically observed that combining both sources of information significantly improve results with respect to using each approach separately. Furthermore, our method reported the highest performance on a per-lesion basis on DIARETDB1 and e-ophtha, and for screening and need for referral on MESSIDOR compared to a second human expert. Results highlight the fact that integrating manually engineered approaches with deep learned features is relevant to improve results when the networks are trained from lesion-level annotated data. An open source implementation of our system is publicly available at https://github.com/ignaciorlando/red-lesion-detection. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Implanted near-infrared spectroscopy for cardiac monitoring

    NASA Astrophysics Data System (ADS)

    Bhunia, Sourav K.; Cinbis, Can

    2011-02-01

    Implanted Cardioverter Defibrillator (ICD) provides one of the most effective therapies for the prevention of sudden cardiac death, but also delivers some high voltage shocks inappropriately, causing morbidity and mortality. Implanted near-infrared spectroscopy (NIRS) may augment ICD arrhythmia detection by monitoring skeletal muscle perfusion. A two-wavelength, single-distance, continuous-wave implanted NIRS has been evaluated in-vivo. A weighted difference of the changes in attenuation at two wavelengths, across the isobestic point of the hemoglobin spectra, was taken to be the microvascular oxygenation trend indicator (O2 Index). Although the exact weight depends on the local vascular distribution and their oxygen levels, the hypothesis that a constant weight may be adequate for hemodynamic trending during short arrhythmic episodes, was tested. The sensor was implanted subcutaneously both on fresh tissue and inside scar tissue that formed around a pre-existing implant, in 3 animals each. Attenuations were recorded at 660 and 890 nm during normal sinus rhythm (NSR) and induced ventricular fibrillation (VF). The slope of the O2 Index over 10 seconds was computed for 7 NSR and 8 VF episodes in fresh and 13 NSR and 15 VF episodes in scar tissue pockets. The mean O2 Index slope was significantly different (p<0.0001) between NSR and VF rhythms for both the fresh and scar tissue pockets. Therefore implanted NIRS may be useful for preventing inappropriate detection of VF during electromagnetic interference, double counting of ECG T-wave as an R-wave, ICD lead failure, electrocardiographic aberrancy etc.

  16. Autoxidation and Oxygen Binding Properties of Recombinant Hemoglobins with Substitutions at the αVal-62 or βVal-67 Position of the Distal Heme Pocket*

    PubMed Central

    Tam, Ming F.; Rice, Natalie W.; Maillett, David H.; Simplaceanu, Virgil; Ho, Nancy T.; Tam, Tsuey Chyi S.; Shen, Tong-Jian; Ho, Chien

    2013-01-01

    The E11 valine in the distal heme pocket of either the α- or β-subunit of human adult hemoglobin (Hb A) was replaced by leucine, isoleucine, or phenylalanine. Recombinant proteins were expressed in Escherichia coli and purified for structural and functional studies. 1H NMR spectra were obtained for the CO and deoxy forms of Hb A and the mutants. The mutations did not disturb the α1β2 interface in either form, whereas the H-bond between αHis-103 and βGln-131 in the α1β1 interfaces of the deoxy α-subunit mutants was weakened. Localized structural changes in the mutated heme pocket were detected for the CO form of recombinant Hb (rHb) (αV62F), rHb (βV67I), and rHb (βV67F) compared with Hb A. In the deoxy form the proximal histidyl residue in the β-subunit of rHb (βV67F) has been altered. Furthermore, the interactions between the porphyrin ring and heme pocket residues have been perturbed in rHb (αV62I), rHb (αV62F), and rHb (βV67F). Functionally, the oxygen binding affinity (P50), cooperativity (n50), and the alkaline Bohr Effect of the three α-subunit mutants and rHb (βV67L) are similar to those of Hb A. rHb (βV67I) and rHb (βV67F) exhibit low and high oxygen affinity, respectively. rHb (βV67F) has P50 values lower that those reported for rHb (αL29F), a B10 mutant studied previously in our laboratory (Wiltrout, M. E., Giovannelli, J. L., Simplaceanu, V., Lukin, J. A., Ho, N. T., and Ho, C. (2005) Biochemistry 44, 7207–7217). These E11 mutations do not slow down the autoxidation and azide-induced oxidation rates of the recombinant proteins. Results from this study provide new insights into the roles of E11 mutants in the structure-function relationship in hemoglobin. PMID:23867463

  17. National Centers for Environmental Prediction

    Science.gov Websites

    Ensemble Users Meetings 7th NCEP/NWS Ensemble User Workshop 13-15 June 2016 6th NCEP/NWS Ensemble User Workshop 25 - 27 March 2014 5th NCEP/NWS Ensemble User Workshop 10 - 12 May, 2011 4th NCEP/NWS Ensemble User Workshop 13 - 15 May, 2008 3rd NCEP/NWS Ensemble User Workshop 31 Oct - 2 Nov, 2006 2nd NCEP/NWS

  18. On the generation of climate model ensembles

    NASA Astrophysics Data System (ADS)

    Haughton, Ned; Abramowitz, Gab; Pitman, Andy; Phipps, Steven J.

    2014-10-01

    Climate model ensembles are used to estimate uncertainty in future projections, typically by interpreting the ensemble distribution for a particular variable probabilistically. There are, however, different ways to produce climate model ensembles that yield different results, and therefore different probabilities for a future change in a variable. Perhaps equally importantly, there are different approaches to interpreting the ensemble distribution that lead to different conclusions. Here we use a reduced-resolution climate system model to compare three common ways to generate ensembles: initial conditions perturbation, physical parameter perturbation, and structural changes. Despite these three approaches conceptually representing very different categories of uncertainty within a modelling system, when comparing simulations to observations of surface air temperature they can be very difficult to separate. Using the twentieth century CMIP5 ensemble for comparison, we show that initial conditions ensembles, in theory representing internal variability, significantly underestimate observed variance. Structural ensembles, perhaps less surprisingly, exhibit over-dispersion in simulated variance. We argue that future climate model ensembles may need to include parameter or structural perturbation members in addition to perturbed initial conditions members to ensure that they sample uncertainty due to internal variability more completely. We note that where ensembles are over- or under-dispersive, such as for the CMIP5 ensemble, estimates of uncertainty need to be treated with care.

  19. Characteristics and tolerances of the pocket mouse and incidence of disease. [CNS lesions during space flights

    NASA Technical Reports Server (NTRS)

    Lindberg, R. G.; Kraft, L. M.; Simmonds, R. C.; Bailey, O. T.; Dunlap, W. A.; Haymaker, W.

    1975-01-01

    Studies carried out on the pocket mouse colony on Apollo XVII are reported. They revealed no serological evidence of viral disease, no pathogenic enterobacteria or respiratory Mycoplasma on culture, a 25% incidence of sarcosporidiosis, and a 2% incidence of chronic meningitis or meningoencephalitis. It is concluded that the pocket mouse is a highly adaptive animal and very well-suited to space flight.

  20. Pocket-depths-related effectiveness of an intrapocket anaesthesia gel in periodontal maintenance patients.

    PubMed

    Derman, S H M; Lowden, C E; Kaus, P; Noack, M J

    2014-05-01

    The aim of this study was to determine the impact of the pocket depth on the effectiveness of an intrapocket anaesthesia gel during SRP in periodontal maintenance patients. Effectiveness was measured by pain levels during SRP via visual analogue scale (VAS) and verbal rating scale (VRS). Secondary endpoint was the evaluation of patients' preferred choice of anaesthesia for SRP. A total of 638 patients undergoing the periodontal maintenance programme and with the need for SRP participated in this observational study. After SRP, patients filled in questionnaires to record pain levels experienced and anaesthesia preference for future use. Mann-Whitney U-test was used to analyse intergroup difference in pain perception and anaesthesia choice. Overall, increasing pocket depths were accompanied by higher pain levels, irrespective of maximum or commonest pocket depths (P < 0.05). For SRP procedures, patients definitely prefer the anaesthesia gel (72.4%). In this study, an effectiveness of local anaesthesia gel (lidocaine/prilocaine) related to pocket depths was found in periodontal maintenance patients during SRP. Increasing pocket depths were accompanied by increasing procedural pain levels. Nevertheless, the anaesthesia gel is well accepted and in the majority of cases was found to be the preferred option for future SRP treatments. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  1. How the ACA's Health Insurance Expansions Have Affected Out-of-Pocket Cost-Sharing and Spending on Premiums.

    PubMed

    Glied, Sherry; Solís-Román, Claudia; Parikh, Shivani

    2016-09-01

    One important benefit gained by the millions of Americans with health insurance through the Affordable Care Act (ACA) is protection from high out-of-pocket health spending. While Medicaid unambiguously reduces out-of-pocket premium and medical costs for low-income people, it is less certain that marketplace coverage and other types of insurance purchased to comply with the law's individual mandate also protect from high health spending. Goal: To compare out-of-pocket spending in 2014 to spending in 2013; assess how this spending changed in states where many people enrolled in the marketplaces relative to states where few people enrolled; and project the decline in the percentage of people paying high amounts out-of-pocket. Methods: Linear regression models were used to estimate whether people under age 65 spent above certain thresholds. Key findings and conclusions: The probability of incurring high out-of-pocket costs and premium expenses declined as marketplace enrollment increased. The percentage reductions were greatest among those with incomes between 250 percent and 399 percent of poverty, those who were eligible for premium subsidies, and those who previously were uninsured or had very limited nongroup coverage. These effects appear largely attributable to marketplace enrollment rather than to other ACA provisions or to economic trends.

  2. Dynamic control of droplets and pockets formation in homogeneous porous media immiscible displacements

    NASA Astrophysics Data System (ADS)

    Lins, T. F.; Azaiez, J.

    2018-03-01

    Interfacial instabilities of immiscible two-phase radial flow displacements in homogeneous porous media are analyzed for constant and time-dependent sinusoidal cyclic injection schemes. The analysis is carried out through numerical simulations based on the immersed interface and level set methods. The effects of the fluid properties and the injection flow parameters, namely, the period and the amplitude, on the formation of droplets and pockets are analyzed. It was found that larger capillary numbers or smaller viscosity ratios lead to more droplets/pockets that tend to appear earlier in time. Furthermore, the period and amplitude of the cyclic schemes were found to have a strong effect on droplets/pockets formations, and depending on their values, these can be enhanced or attenuated. In particular, the results revealed that there is a critical amplitude above which droplets and pockets formation is suppressed up to a specified time. This critical amplitude depends on the fluid properties, namely, the viscosity ratio and surface tension as well as on the period of the time-dependent scheme. The results of this study indicate that it is possible to use time-dependent cyclic schemes to control the formation and development of droplets/pockets in the flow and in particular to delay their appearance through an appropriate combination of the displacement scheme's amplitude and period.

  3. Analysis of the distributional impact of out-of-pocket health payments: evidence from a public health insurance program for the poor in Mexico.

    PubMed

    Garcia-Diaz, Rocio; Sosa-Rubi, Sandra G; Sosa-Rub, Sandra G

    2011-07-01

    Many governments have health programs focused on improving health among the poor and these have an impact on out-of-pocket health payments made by individuals. Therefore, one of the objectives of these programs is to reach the poorest and reduce their out-of-pocket expenditure. In this paper we propose the distributional poverty impact approach to measure the poverty impact of out-of-pocket health payments of different health financing policies. This approach is comparable to the impoverishment methodology proposed by Wagstaff and van Doorslaer (2003) that compares poverty indices before and after out-of-pocket health payments. In order to escape the specification of a particular poverty index, we use the marginal dominance approach that uses non-intersecting curves and can rank poverty reducing health financing policies. We present an empirical application of the out-of-pocket health payments for an innovative social financing policy implemented in Mexico named Seguro Popular. The paper finds evidence that Seguro Popular program has a better distributional poverty impact when families face illness when compared to other poverty reducing policies. The empirical dominance approach uses data from Mexico in 2006 and considers international poverty standards of $2 per person per day. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. Accelerometer's position independent physical activity recognition system for long-term activity monitoring in the elderly.

    PubMed

    Khan, Adil Mehmood; Lee, Young-Koo; Lee, Sungyoung; Kim, Tae-Seong

    2010-12-01

    Mobility is a good indicator of health status and thus objective mobility data could be used to assess the health status of elderly patients. Accelerometry has emerged as an effective means for long-term physical activity monitoring in the elderly. However, the output of an accelerometer varies at different positions on a subject's body, even for the same activity, resulting in high within-class variance. Existing accelerometer-based activity recognition systems thus require firm attachment of the sensor to a subject's body. This requirement makes them impractical for long-term activity monitoring during unsupervised free-living as it forces subjects into a fixed life pattern and impede their daily activities. Therefore, we introduce a novel single-triaxial-accelerometer-based activity recognition system that reduces the high within-class variance significantly and allows subjects to carry the sensor freely in any pocket without its firm attachment. We validated our system using seven activities: resting (lying/sitting/standing), walking, walking-upstairs, walking-downstairs, running, cycling, and vacuuming, recorded from five positions: chest pocket, front left trousers pocket, front right trousers pocket, rear trousers pocket, and inner jacket pocket. Its simplicity, ability to perform activities unimpeded, and an average recognition accuracy of 94% make our system a practical solution for continuous long-term activity monitoring in the elderly.

  5. OHD/HL - XEFS

    Science.gov Websites

    Assimilator Ensemble Post-processor (EnsPost) Hydrologic Model Output Statistics (HMOS) Ensemble Verification capabilities (see diagram below): the Ensemble Pre-processor, the Ensemble Post-processor, the Hydrologic Model (OpenDA, http://www.openda.org/joomla/index.php) to be used within the CHPS environment. Ensemble Post

  6. Comparative evaluation of effectiveness of intra-pocket anesthetic gel and injected local anesthesia during scaling and root planing - A split-mouth clinical trial.

    PubMed

    Chintala, Kalyan; Kumar, Sandhya Pavan; Murthy, K Raja V

    2017-01-01

    Pain control is an important outcome measure for successful periodontal therapy. Injected local anesthesia has been used to secure anesthesia for scaling and root planing (SRP) and continues to be the anesthetic of choice for pain control. Alternatively, intra-pocket anesthetic gel has been used as an anesthetic during SRP. Hence, this clinical trial was done to compare the effectiveness of intra-pocket anesthetic gel and injected local anesthesia during SRP and also to assess the influence of intra-pocket anesthetic gel on treatment outcomes in chronic periodontitis patients. Fifteen systemically healthy chronic periodontitis patients were recruited. The dental quadrants on right side received either intra-pocket 20% benzocaine gel (Gel group) or infiltration/block by 2% lidocaine with 1:80,000 adrenaline (injection group). Quadrants on the left side received the alternative. Pain perception and patients preference for the type of anesthesia was recorded. Clinical parameters: plaque index, modified gingival index, modified sulcular bleeding index, probing pocket depth, and clinical attachment level were recorded at baseline and 1 month after treatment. No difference was observed in visual analog scale (P > 0.05) and verbal rating scale (P > 0.05) pain perception between gel group and injection group. A slightly increased preference to gel as anesthesia (53% vs. 47%) was observed. The treatment outcome after SRP did not show a significant difference between gel and injection group (P > 0.05). Intra-pocket administration of 20% benzocaine gel may be effective for pain control during SRP and may offer an alternative to conventional injection anesthesia.

  7. Retention of pediatric bag-mask ventilation efficacy skill by inexperienced medical student resuscitators using standard bag-mask ventilation masks, pocket masks, and blob masks.

    PubMed

    Kitagawa, Kory H; Nakamura, Nina M; Yamamoto, Loren

    2006-03-01

    To measure the ventilation efficacy with three single-sized mask types on infant and child manikin models. Medical students were recruited as study subjects inasmuch as they are inexperienced resuscitators. They were taught proper bag-mask ventilation (BMV) according to the American Heart Association guidelines on an infant and a child manikin. Subjects completed a BMV attempt successfully using the adult standard mask (to simulate the uncertainty of mask selection), pocket mask, and blob mask. Each attempt consisted of 5 ventilations assessed by chest rise of the manikin. Study subjects were asked which mask was easiest to use. Four to six weeks later, subjects repeated the procedure with no instructions (to simulate an emergency BMV encounter without immediate pre-encounter teaching). Forty-six volunteer subjects were studied. During the first attempt, subjects preferred the standard and blob masks over the pocket mask. For the second attempt, the blob mask was preferred over the standard mask, and few liked the pocket mask. Using the standard, blob, and pocket masks on the child manikin, 39, 42, and 20 subjects, respectively, were able to achieve adequate ventilation. Using the standard, blob, and pocket masks on the infant manikin, 45, 45, and 11 subjects, respectively, were able to achieve adequate ventilation. Both the standard and blob masks are more effective than the pocket mask at achieving adequate ventilation on infant and child manikins in this group of inexperienced medical student resuscitators, who most often preferred the blob mask.

  8. The ACA's Zero Cost-Sharing Mandate and Trends in Out-of-Pocket Expenditures on Well-Child and Screening Mammography Visits.

    PubMed

    Kirby, James B; Davidoff, Amy J; Basu, Jayasree

    2016-12-01

    Starting in September of 2010, the Patient Protection and Affordable Care Act required most health insurance policies to cover evidence-based preventive care with no cost-sharing (no copays, coinsurance, or deductibles). It is unknown, however, whether declines in out-of-pocket costs for preventive services are large enough to prompt increases in utilization, the ultimate goal of the policy. In this study, we use a nationally representative sample of ambulatory care visits to estimate the impact of the zero cost-sharing mandate on out-of-pocket expenditures on well-child and screening mammography visits. Estimates are made using 2-part interrupted time-series models, with well-woman visits serving as the control group because they were not covered under the zero cost-sharing mandate until after our study period. Results indicate a substantial reduction in out-of-pocket costs attributable to the Affordable Care Act. Between January 2011 and September 2012, the zero cost-sharing mandate reduced per-visit out-of-pocket costs for well-child visits from $18.46 to $8.08 (56%) and out-of-pocket costs for screening mammography visits from $25.43 to $6.50 (74%). No reduction was apparent for well-woman visits. The Affordable Care Act's zero cost-sharing mandate for preventive care has had a large impact on out-of-pocket expenditures for well-child and mammography visits. To increase preventive service use, research is needed to better understand barriers to obtaining preventive care that are not directly related to cost.

  9. Use of a pocket compression device for the prevention and treatment of pocket hematoma after pacemaker and defibrillator implantation (STOP-HEMATOMA-I).

    PubMed

    Turagam, Mohit K; Nagarajan, Darbhamulla V; Bartus, Krzysztof; Makkar, Akash; Swarup, Vijay

    2017-08-01

    Pocket hematoma is a recognized complication after placement of cardiac implantable electronic devices and is associated with increased device infection, length of hospitalization, and morbidity especially with uninterrupted antiplatelet agents and anticoagulants. We assessed the use of a post-surgical vest to decrease the incidence of pocket hematoma in patients undergoing device implantation with uninterrupted antiplatelet and anticoagulants. In this observational study, a vest was used by 20 consecutive patients who were compared to 20 age-, gender-, procedure-matched patients who received standard care. All patients were continued on antiplatelet and anticoagulants in the perioperative period. The pocket was assessed at post procedure day 0, 2, and 7, respectively. There were no significant differences in the baseline characteristics between both groups. Baseline mean international normalized ratio (INR) was significantly higher in the vest group when compared with the control group (2.7 ± 0.4 vs. 2.2 ± 0.3 = <0.001). The incidence of pocket hematoma was significantly lower in the vest group than the control group (0 vs 30%, p = 0.02) at the end of 7 days. Control group had a total of six hematomas with one patient requiring evacuation and blood transfusion. The vest group had three hematomas on day 2 that resolved by day 7. The risk of moderate or large pocket hematoma is significantly reduced with the use of this vest in high-risk patients undergoing implantable devices on uninterrupted antiplatelet and anticoagulants.

  10. Rational Design of Novel Allosteric Dihydrofolate Reductase Inhibitors Showing Antibacterial Effects on Drug-Resistant Escherichia coli Escape Variants.

    PubMed

    Srinivasan, Bharath; Rodrigues, João V; Tonddast-Navaei, Sam; Shakhnovich, Eugene; Skolnick, Jeffrey

    2017-07-21

    In drug discovery, systematic variations of substituents on a common scaffold and bioisosteric replacements are often used to generate diversity and obtain molecules with better biological effects. However, this could saturate the small-molecule diversity pool resulting in drug resistance. On the other hand, conventional drug discovery relies on targeting known pockets on protein surfaces leading to drug resistance by mutations of critical pocket residues. Here, we present a two-pronged strategy of designing novel drugs that target unique pockets on a protein's surface to overcome the above problems. Dihydrofolate reductase, DHFR, is a critical enzyme involved in thymidine and purine nucleotide biosynthesis. Several classes of compounds that are structural analogues of the substrate dihydrofolate have been explored for their antifolate activity. Here, we describe 10 novel small-molecule inhibitors of Escherichia coli DHFR, EcDHFR, belonging to the stilbenoid, deoxybenzoin, and chalcone family of compounds discovered by a combination of pocket-based virtual ligand screening and systematic scaffold hopping. These inhibitors show a unique uncompetitive or noncompetitive inhibition mechanism, distinct from those reported for all known inhibitors of DHFR, indicative of binding to a unique pocket distinct from either substrate or cofactor-binding pockets. Furthermore, we demonstrate that rescue mutants of EcDHFR, with reduced affinity to all known classes of DHFR inhibitors, are inhibited at the same concentration as the wild-type. These compounds also exhibit antibacterial activity against E. coli harboring the drug-resistant variant of DHFR. This discovery is the first report on a novel class of inhibitors targeting a unique pocket on EcDHFR.

  11. Impact of the application of the Value Added Tax to imaging tests on out-of-pocket health expenses of households in Chile.

    PubMed

    Cuadrado, Cristóbal; Silva-Illanes, Nicolás

    2015-12-09

    Out-of-pocket healthcare expense represents a challenge for health systems for it constitutes a barrier to health care, impacting the equality of access to healthcare systems, something particularly important in the Chilean health system. In this context, the Government recently raised the possibility of incorporating a tax on imaging tests, creating debate over its potential consequences. To explore the impact on household out-of-pocket healthcare expense by the implementation of a value added tax to imaging tests in Chile. Cross-sectional study using data of household expenditures from the VII Household Budget Survey. Out-of-pocket healthcare expense and catastrophic household expenses are calculated comparing two scenarios, with and without the inclusion of the proposed tax. Analyses are presented by income deciles to explore the differential equality impact. 42.8% of diagnostic test expense on household corresponds to imaging studies. Under a scenario of tax implementation, a relative increase of 1.1% of out-of-pocket expenses and 2.2% of catastrophic household expenses is observed. The groups that suffer the greatest impact are those with lower income levels, concentrating in the first fifth deciles. We conclude that, although the increase in the average out-of- pocket spending is moderate, this policy may involve a significant increase in the catastrophic expense of the population with the lowest incomes, thereby increasing health inequalities. Considering the challenges of health system financing in Chile, it appears that such fiscal policy would only worsen the possibility of moving towards lower levels of out-of-pocket of household expenses.

  12. Pocket Money: Influence on Body Mass Index and Dental Caries among Urban Adolescents.

    PubMed

    Punitha, V C; Amudhan, A; Sivaprakasam, P; Rathnaprabhu, V

    2014-12-01

    To explore the influence of pocket money on Dental Caries and Body Mass Index. A cross-sectional study was conducted wherein urban adolescent schoolchildren of age 13-18(n=916) were selected by two stage random sampling technique. Dental caries was measured using the DMFT Index. The children's nutritional status was assessed by means of anthropometric measurements. Body Mass Index using weight and height of children was evaluated using the reference standard of the WHO 2007. RESULTS showed that 50% of children receive pocket money from parents. The average amount received was Rs. 360/month. There was a significant correlation between age and amount of money received (r=0.160, p=.001). The average amount received by male children was significantly higher (Rs. 400) when compared to female children (Rs. 303). It was observed that income of the family (>30,000 Rs./month) and socioeconomic status (Upper class) was significantly dependent on the amount of money received by children (p<0.05). There was no significant difference in the occurrence of caries among children receiving pocket money or not. When BMI categories and pocket money were considered, statistically significant difference was seen among overweight and obese and normal weight children (p<.05). Higher proportion (40.1%) of overweight and obese adolescent children frequented the fast food restaurants every week when compared to the underweight (31.7%) and normal weight children (29.9%). Adolescent children receiving pocket money from parents could influence their eating habits in turn affect general health. Parents and teachers should motivate children on healthy spending of their pocket money.

  13. Posttuberculosis tracheobronchial stenosis: use of CT to optimize the time of silicone stent removal.

    PubMed

    Verma, Akash; Park, Hye Yun; Lim, So Yeon; Um, Sang-Won; Koh, Won-Jung; Suh, Gee Young; Chung, Man Pyo; Kwon, O Jung; Kim, Hojoong

    2012-05-01

    To evaluate whether air pockets (tracheobronchial air columns in the space between the outer surface of the stent and the adjacent airway wall) discernible at computed tomography (CT) can help optimize the time of stent removal in patients with posttuberculosis tracheobronchial stenosis (PTTS). The study was approved by the institutional review board, and informed consent was obtained from all patients. Data from 41 patients (five men, 36 women) with a median age of 39 years (range, 21-64 years) who underwent silicone stent placement owing to PTTS, followed by CT and stent removal 6-12 months after clinical stabilization, were investigated retrospectively. Two radiologists determined whether the extent of air pockets on CT scans was associated with clinical success, which was defined as maintenance of a prosthesis-free airway for more than 2 years after stent removal. Radiologic features were compared for outcome by using a Wilcoxon two-sample test or Fisher exact test. Stents were removed successfully in 31 patients (76%). Air pockets longer than 1 cm or longer than 2 cm were associated with successful stent removal (P = .04 and P = .006, respectively). The sensitivity and specificity of air pocket length in the prediction of successful stent removal were 84% and 50%, respectively, for air pockets longer than 1 cm and 68% and 70% for air pockets longer than 2 cm. The extent of air pockets at chest CT shows correlation with the success of stent removal, indicates regression of stenosis, and may help guide the optimal time for stent removal.

  14. Correlates of out-of-pocket and catastrophic health expenditures in Tanzania: results from a national household survey.

    PubMed

    Brinda, Ethel Mary; Andrés, Antonio Rodríguez; Andrés, Rodriguez Antonio; Enemark, Ulrika

    2014-03-05

    Inequality in health services access and utilization are influenced by out-of-pocket health expenditures in many low and middle-income countries (LMICs). Various antecedents such as social factors, poor health and economic factors are proposed to direct the choice of health care service use and incurring out-of-pocket payments. We investigated the association of these factors with out-of-pocket health expenditures among the adult and older population in the United Republic of Tanzania. We also investigated the prevalence and associated determinants contributing to household catastrophic health expenditures. We accessed the data of a multistage stratified random sample of 7279 adult participants, aged between 18 and 59 years, as well as 1018 participants aged above 60 years, from the first round of the Tanzania National Panel survey. We employed multiple generalized linear and logistic regression models to evaluate the correlates of out-of-pocket as well as catastrophic health expenditures, accounting for the complex sample design effects. Increasing age, female gender, obesity and functional disability increased the adults' out-of-pocket health expenditures significantly, while functional disability and visits to traditional healers increased the out-of-pocket health expenditures in older participants. Adult participants, who lacked formal education or worked as manual laborers earned significantly less (p < 0.001) and spent less on health (p < 0.001), despite having higher levels of disability. Large household size, household head's occupation as a manual laborer, household member with chronic illness, domestic violence against women and traditional healer's visits were significantly associated with high catastrophic health expenditures. We observed that the prevalence of inequalities in socioeconomic factors played a significant role in determining the nature of both out-of-pocket and catastrophic health expenditures. We propose that investment in social welfare programs and strengthening the social security mechanisms could reduce the financial burden in United Republic of Tanzania.

  15. Correlates of out-of-pocket and catastrophic health expenditures in Tanzania: results from a national household survey

    PubMed Central

    2014-01-01

    Background Inequality in health services access and utilization are influenced by out-of-pocket health expenditures in many low and middle-income countries (LMICs). Various antecedents such as social factors, poor health and economic factors are proposed to direct the choice of health care service use and incurring out-of-pocket payments. We investigated the association of these factors with out-of-pocket health expenditures among the adult and older population in the United Republic of Tanzania. We also investigated the prevalence and associated determinants contributing to household catastrophic health expenditures. Methods We accessed the data of a multistage stratified random sample of 7279 adult participants, aged between 18 and 59 years, as well as 1018 participants aged above 60 years, from the first round of the Tanzania National Panel survey. We employed multiple generalized linear and logistic regression models to evaluate the correlates of out-of-pocket as well as catastrophic health expenditures, accounting for the complex sample design effects. Results Increasing age, female gender, obesity and functional disability increased the adults’ out-of-pocket health expenditures significantly, while functional disability and visits to traditional healers increased the out-of-pocket health expenditures in older participants. Adult participants, who lacked formal education or worked as manual laborers earned significantly less (p < 0.001) and spent less on health (p < 0.001), despite having higher levels of disability. Large household size, household head’s occupation as a manual laborer, household member with chronic illness, domestic violence against women and traditional healer’s visits were significantly associated with high catastrophic health expenditures. Conclusion We observed that the prevalence of inequalities in socioeconomic factors played a significant role in determining the nature of both out-of-pocket and catastrophic health expenditures. We propose that investment in social welfare programs and strengthening the social security mechanisms could reduce the financial burden in United Republic of Tanzania. PMID:24597486

  16. Health service use, out-of-pocket payments and catastrophic health expenditure among older people in India: the WHO Study on global AGEing and adult health (SAGE).

    PubMed

    Brinda, Ethel Mary; Kowal, Paul; Attermann, Jørn; Enemark, Ulrika

    2015-05-01

    Healthcare financing through out-of-pocket payments and inequities in healthcare utilisation are common in low and middle income countries (LMICs). Given the dearth of pertinent studies on these issues among older people in LMICs, we investigated the determinants of health service use, out-of-pocket and catastrophic health expenditures among older people in one LMIC, India. We accessed data from a nationally representative, multistage sample of 2414 people aged 65 years and older from the WHO's Study on global AGEing and adult health in India. Sociodemographic characteristics, health profiles, health service utilisation and out-of-pocket health expenditure were assessed using standard instruments. Multivariate zero-inflated negative binomial regression models were used to evaluate the determinants of health service visits. Multivariate Heckman sample selection regression models were used to assess the determinants of out-of-pocket and catastrophic health expenditures. Out-of-pocket health expenditures were higher among participants with disability and lower income. Diabetes, hypertension, chronic pulmonary disease, heart disease and tuberculosis increased the number of health visits and out-of-pocket health expenditures. The prevalence of catastrophic health expenditure among older people in India was 7% (95% CI 6% to 8%). Older men and individuals with chronic diseases were at higher risk of catastrophic health expenditure, while access to health insurance lowered the risk. Reducing out-of-pocket health expenditure among older people is an important public health issue, in which social as well as medical determinants should be prioritised. Enhanced public health sector performance and provision of publicly funded insurance may protect against catastrophic health expenses and healthcare inequities in India. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  17. Effect of baclofen on the acid pocket at the gastroesophageal junction.

    PubMed

    Scarpellini, E; Boecxstaens, V; Farré, R; Bisschops, R; Dewulf, D; Gasbarrini, A; Pauwels, A; Blondeau, K; Tack, J

    2015-07-01

    Previous studies established that a pocket of highly acidic gastric juice is present postprandially at the gastroesophageal junction in man. The GABA-B agonist baclofen inhibits postprandial reflux events through its effects on the lower esophageal sphincter (LES). The aim of the current study was to investigate whether baclofen would affect the location and the extent of the postprandial acid pocket in healthy volunteers. Twelve healthy volunteers underwent acid pocket studies on two different occasions, at least 1 week apart. LES position was determined preprandially with pull-through manometry. Dual pH electrode and manometry probe stepwise pull-through (1 cm/minute, LES-10 to +5 cm) was performed at 30-minute intervals for 150 minutes, with administration of placebo or baclofen 40 mg after the first and ingestion of a liquid meal after the second pull-through. After placebo, a significant drop in intragastric gastric pH was present at the gastroesophageal junction after the meal, reflecting the acid pocket, and this was associated with a drop in LES pressure. Baclofen did not affect the presence of the acid pocket, but prevented the postprandial drop in LES pressure, and the extent of the acid pocket above the upper margin of the manometrically located LES was significantly decreased by baclofen (1.6 ± 0.7 vs. 0.3 ± 0.4 cm at 60 minutes, 2.2 ± 0.6 vs. 0.2 ± 0.6 at 90 minutes, and 1.5 ± 0.5 vs. 0.7 ± 0.7 cm at 120 minutes, all P < 0.05). Baclofen does not alter the intragastric acid pocket, but limits its extension into the distal esophagus, probably through an increase in postprandial LES pressure. © 2014 International Society for Diseases of the Esophagus.

  18. Tertiary structure prediction and identification of druggable pocket in the cancer biomarker – Osteopontin-c

    PubMed Central

    2014-01-01

    Background Osteopontin (Eta, secreted sialoprotein 1, opn) is secreted from different cell types including cancer cells. Three splice variant forms namely osteopontin-a, osteopontin-b and osteopontin-c have been identified. The main astonishing feature is that osteopontin-c is found to be elevated in almost all types of cancer cells. This was the vital point to consider it for sequence analysis and structure predictions which provide ample chances for prognostic, therapeutic and preventive cancer research. Methods Osteopontin-c gene sequence was determined from Breast Cancer sample and was translated to protein sequence. It was then analyzed using various software and web tools for binding pockets, docking and druggability analysis. Due to the lack of homological templates, tertiary structure was predicted using ab-initio method server – I-TASSER and was evaluated after refinement using web tools. Refined structure was compared with known bone sialoprotein electron microscopic structure and docked with CD44 for binding analysis and binding pockets were identified for drug designing. Results Signal sequence of about sixteen amino acid residues was identified using signal sequence prediction servers. Due to the absence of known structures of similar proteins, three dimensional structure of osteopontin-c was predicted using I-TASSER server. The predicted structure was refined with the help of SUMMA server and was validated using SAVES server. Molecular dynamic analysis was carried out using GROMACS software. The final model was built and was used for docking with CD44. Druggable pockets were identified using pocket energies. Conclusions The tertiary structure of osteopontin-c was predicted successfully using the ab-initio method and the predictions showed that osteopontin-c is of fibrous nature comparable to firbronectin. Docking studies showed the significant similarities of QSAET motif in the interaction of CD44 and osteopontins between the normal and splice variant forms of osteopontins and binding pockets analyses revealed several pockets which paved the way to the identification of a druggable pocket. PMID:24401206

  19. Are women benefiting from the Affordable Care Act? A real-world evaluation of the impact of the Affordable Care Act on out-of-pocket costs for contraceptives.

    PubMed

    Law, A; Wen, L; Lin, J; Tangirala, M; Schwartz, J S; Zampaglione, E

    2016-05-01

    The Affordable Care Act (ACA) mandated that, starting between August 1, 2012 and July 31, 2013, health plans cover most Food and Drug Administration (FDA)-approved contraceptive methods for women without cost sharing. This study examined the impact of the ACA on out-of-pocket expenses for contraceptives. Women (ages 15-44years) with claims for any contraceptives in years 2011, 2012 and 2013 were identified from the MarketScan Commercial database. The proportions of women using contraceptives [including permanent contraceptives (PCs) and non-PCs: oral contraceptives (OCs), injectables, patches, rings, implants and intrauterine devices (IUDs)] in study years were determined, as well as changes in out-of-pocket expenses for contraceptives during 2011-2013. Demographics, including age, U.S. geographic region of residence and health plan type, were also evaluated. The number of women identified with any contraceptive usage in 2011 was 2,447,316 (mean age: 27.6years), in 2012 was 2,515,296 (mean age: 27.4years) and in 2013 was 2,243,253 (mean age: 27.4years). In 2011, 2012 and 2013, the proportions of women with any contraceptive usage were 26.3%, 26.2% and 26.9%, respectively. Over the three study years, mean total out-of-pocket expenses for PCs and non-PCs decreased from $298 to $82 and from $94 to $30, respectively. For non-PCs, mean total out-of-pocket expenses for OCs and IUDs decreased from $86 to $26 and from $83 to $20. Implementation of the ACA has saved women a substantial amount in out-of-pocket expenses for contraceptives. Mean total out-of-pocket expenses for FDA-approved contraceptives decreased approximately 70% from 2011 to 2013. Implementation of the ACA has saved women a substantial amount in out-of-pocket expenses for contraceptives. Longer-term studies, including clinical outcomes, are warranted. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Impact of out-of-pocket spending caps on financial burden of those with group health insurance.

    PubMed

    Riggs, Kevin R; Buttorff, Christine; Alexander, G Caleb

    2015-05-01

    The Affordable Care Act (ACA) mandates that all private health insurance include out-of-pocket spending caps. Insurance purchased through the ACA's Health Insurance Marketplace may qualify for income-based caps, whereas group insurance will not have income-based caps. Little is known about how out-of-pocket caps impact individuals' health care financial burden. We aimed to estimate what proportion of non-elderly individuals with group insurance will benefit from out-of-pocket caps, and the effect that various cap levels would have on their financial burden. We applied the expected uniform spending caps, hypothetical reduced uniform spending caps (reduced by one-third), and hypothetical income-based spending caps (similar to the caps on Health Insurance Marketplace plans) to nationally representative data from the Medical Expenditure Panel Survey (MEPS). Participants were non-elderly individuals (aged < 65 years) with private group health insurance in the 2011 and 2012 MEPS surveys (n =26,666). (1) The percentage of individuals with reduced family out-of-pocket spending as a result of the various caps; and (2) the percentage of individuals experiencing health care services financial burden (family out-of-pocket spending on health care, not including premiums, greater than 10% of total family income) under each scenario. With the uniform caps, 1.2% of individuals had lower out-of-pocket spending, compared with 3.8% with reduced uniform caps and 2.1% with income-based caps. Uniform caps led to a small reduction in percentage of individuals experiencing financial burden (from 3.3% to 3.1%), with a modestly larger reduction as a result of reduced uniform caps (2.9%) and income-based caps (2.8%). Mandated uniform out-of-pocket caps for those with group insurance will benefit very few individuals, and will not result in substantial reductions in financial burden.

  1. Out-of-pocket fertility patient expense: data from a multicenter prospective infertility cohort.

    PubMed

    Wu, Alex K; Odisho, Anobel Y; Washington, Samuel L; Katz, Patricia P; Smith, James F

    2014-02-01

    The high costs of fertility care may deter couples from seeking care. Urologists often are asked about the costs of these treatments. To our knowledge previous studies have not addressed the direct out-of-pocket costs to couples. We characterized these expenses in patients seeking fertility care. Couples were prospectively recruited from 8 community and academic reproductive endocrinology clinics. Each participating couple completed face-to-face or telephone interviews and cost diaries at study enrollment, and 4, 10 and 18 months of care. We determined overall out-of-pocket costs, in addition to relationships between out-of-pocket costs and treatment type, clinical outcomes and socioeconomic characteristics on multivariate linear regression analysis. A total of 332 couples completed cost diaries and had data available on treatment and outcomes. Average age was 36.8 and 35.6 years in men and women, respectively. Of this cohort 19% received noncycle based therapy, 4% used ovulation induction medication only, 22% underwent intrauterine insemination and 55% underwent in vitro fertilization. The median overall out-of-pocket expense was $5,338 (IQR 1,197-19,840). Couples using medication only had the lowest median out-of-pocket expenses at $912 while those using in vitro fertilization had the highest at $19,234. After multivariate adjustment the out-of-pocket expense was not significantly associated with successful pregnancy. On multivariate analysis couples treated with in vitro fertilization spent an average of $15,435 more than those treated with intrauterine insemination. Couples spent about $6,955 for each additional in vitro fertilization cycle. These data provide real-world estimates of out-of-pocket costs, which can be used to help couples plan for expenses that they may incur with treatment. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  2. Project fires. Volume 2: Protective ensemble performance standards, phase 1B

    NASA Astrophysics Data System (ADS)

    Abeles, F. J.

    1980-05-01

    The design of the prototype protective ensemble was finalized. Prototype ensembles were fabricated and then subjected to a series of qualification tests which were based upon the protective ensemble performance standards PEPS requirements. Engineering drawings and purchase specifications were prepared for the new protective ensemble.

  3. Ensemble training to improve recognition using 2D ear

    NASA Astrophysics Data System (ADS)

    Middendorff, Christopher; Bowyer, Kevin W.

    2009-05-01

    The ear has gained popularity as a biometric feature due to the robustness of the shape over time and across emotional expression. Popular methods of ear biometrics analyze the ear as a whole, leaving these methods vulnerable to error due to occlusion. Many researchers explore ear recognition using an ensemble, but none present a method for designing the individual parts that comprise the ensemble. In this work, we introduce a method of modifying the ensemble shapes to improve performance. We determine how different properties of an ensemble training system can affect overall performance. We show that ensembles built from small parts will outperform ensembles built with larger parts, and that incorporating a large number of parts improves the performance of the ensemble.

  4. A Theoretical Analysis of Why Hybrid Ensembles Work

    PubMed Central

    2017-01-01

    Inspired by the group decision making process, ensembles or combinations of classifiers have been found favorable in a wide variety of application domains. Some researchers propose to use the mixture of two different types of classification algorithms to create a hybrid ensemble. Why does such an ensemble work? The question remains. Following the concept of diversity, which is one of the fundamental elements of the success of ensembles, we conduct a theoretical analysis of why hybrid ensembles work, connecting using different algorithms to accuracy gain. We also conduct experiments on classification performance of hybrid ensembles of classifiers created by decision tree and naïve Bayes classification algorithms, each of which is a top data mining algorithm and often used to create non-hybrid ensembles. Therefore, through this paper, we provide a complement to the theoretical foundation of creating and using hybrid ensembles. PMID:28255296

  5. On the predictability of outliers in ensemble forecasts

    NASA Astrophysics Data System (ADS)

    Siegert, S.; Bröcker, J.; Kantz, H.

    2012-03-01

    In numerical weather prediction, ensembles are used to retrieve probabilistic forecasts of future weather conditions. We consider events where the verification is smaller than the smallest, or larger than the largest ensemble member of a scalar ensemble forecast. These events are called outliers. In a statistically consistent K-member ensemble, outliers should occur with a base rate of 2/(K+1). In operational ensembles this base rate tends to be higher. We study the predictability of outlier events in terms of the Brier Skill Score and find that forecast probabilities can be calculated which are more skillful than the unconditional base rate. This is shown analytically for statistically consistent ensembles. Using logistic regression, forecast probabilities for outlier events in an operational ensemble are calculated. These probabilities exhibit positive skill which is quantitatively similar to the analytical results. Possible causes of these results as well as their consequences for ensemble interpretation are discussed.

  6. Niemann-Pick type C disease: a QM/MM study of conformational changes in cholesterol in the NPC1(NTD) and NPC2 binding pockets.

    PubMed

    Elghobashi-Meinhardt, Nadia

    2014-10-21

    Niemann-Pick Type C disease is characterized by disrupted lipid trafficking within the late endosomal (LE)/lysosomal (Lys) cellular compartments. Cholesterol transport within the LE/Lys is believed to take place via a concerted hand-off mechanism in which a small (131aa) soluble cholesterol binding protein, NPC2, transfers cholesterol to the N-terminal domain (NTD) of a larger (1278aa) membrane-bound protein, NPC1(NTD). The transfer is thought to occur through the formation of a stable intermediate complex NPC1(NTD)-NPC2, in which the sterol apertures of the two proteins align to allow passage of the cholesterol molecule. In the working model of the NPC1(NTD)-NPC2 complex, the sterol apertures are aligned, but the binding pockets are bent with respect to one another. In order for cholesterol to slide from one binding pocket to the other, a conformational change must occur in the proteins, in the ligand, or in both. Here, we investigate the possibility that the ligand undergoes a conformational change, or isomerization, to accommodate the bent transfer pathway. To understand what structural factors influence the isomerization rate, we calculate the energy barrier to cholesterol isomerization in both the NPC1(NTD) and NPC2 binding pockets. Here, we use a combined quantum mechanical/molecular mechanical (QM/MM) energy function to calculate the isomerization barrier within the native NPC1(NTD) and NPC2 binding pockets before protein-protein docking as well as in the binding pockets of the NPC1(NTD)-NPC2 complex after docking has occurred. The results indicate that cholesterol isomerization in the NPC2 binding pocket is energetically favorable, both before and after formation of the NPC1(NTD)-NPC2 complex. The NPC1(NTD) binding pocket is energetically unfavorable to conformational rearrangement of the hydrophobic ligand because it contains more water molecules near the ligand tail and amino acids with polar side chains. For three NPC1(NTD) mutants investigated, L175Q/L176Q, L175A/L176A, and E191A/Y192A, the isomerization barriers were all found to be higher than the barrier calculated in the NPC2 binding pocket. Our results indicate that cholesterol isomerization in the NPC2 binding pocket, either before or after docking, may ensure an efficient transfer of cholesterol to NPC1(NTD).

  7. The Contribution of Object Shape and Surface Properties to Object Ensemble Representation in Anterior-medial Ventral Visual Cortex.

    PubMed

    Cant, Jonathan S; Xu, Yaoda

    2017-02-01

    Our visual system can extract summary statistics from large collections of objects without forming detailed representations of the individual objects in the ensemble. In a region in ventral visual cortex encompassing the collateral sulcus and the parahippocampal gyrus and overlapping extensively with the scene-selective parahippocampal place area (PPA), we have previously reported fMRI adaptation to object ensembles when ensemble statistics repeated, even when local image features differed across images (e.g., two different images of the same strawberry pile). We additionally showed that this ensemble representation is similar to (but still distinct from) how visual texture patterns are processed in this region and is not explained by appealing to differences in the color of the elements that make up the ensemble. To further explore the nature of ensemble representation in this brain region, here we used PPA as our ROI and investigated in detail how the shape and surface properties (i.e., both texture and color) of the individual objects constituting an ensemble affect the ensemble representation in anterior-medial ventral visual cortex. We photographed object ensembles of stone beads that varied in shape and surface properties. A given ensemble always contained beads of the same shape and surface properties (e.g., an ensemble of star-shaped rose quartz beads). A change to the shape and/or surface properties of all the beads in an ensemble resulted in a significant release from adaptation in PPA compared with conditions in which no ensemble feature changed. In contrast, in the object-sensitive lateral occipital area (LO), we only observed a significant release from adaptation when the shape of the ensemble elements varied, and found no significant results in additional scene-sensitive regions, namely, the retrosplenial complex and occipital place area. Together, these results demonstrate that the shape and surface properties of the individual objects comprising an ensemble both contribute significantly to object ensemble representation in anterior-medial ventral visual cortex and further demonstrate a functional dissociation between object- (LO) and scene-selective (PPA) visual cortical regions and within the broader scene-processing network itself.

  8. The Anatahan volcano-monitoring system

    NASA Astrophysics Data System (ADS)

    Marso, J. N.; Lockhart, A. B.; White, R. A.; Koyanagi, S. K.; Trusdell, F. A.; Camacho, J. T.; Chong, R.

    2003-12-01

    A real-time 24/7 Anatahan volcano-monitoring and eruption detection system is now operational. There had been no real-time seismic monitoring on Anatahan during the May 10, 2003 eruption because the single telemetered seismic station on Anatahan Island had failed. On May 25, staff from the Emergency Management Office (EMO) of the Commonwealth of the Northern Mariana Islands and the U. S. Geological Survey (USGS) established a replacement telemetered seismic station on Anatahan whose data were recorded on a drum recorder at the EMO on Saipan, 130 km to the south by June 5. In late June EMO and USGS staff installed a Glowworm seismic data acquisition system (Marso et al, 2003) at EMO and hardened the Anatahan telemetry links. The Glowworm system collects the telemetered seismic data from Anatahan and Saipan, places graphical display products on a webpage, and exports the seismic waveform data in real time to Glowworm systems at Hawaii Volcano Observatory and Cascades Volcano Observatory (CVO). In early July, a back-up telemetered seismic station was placed on Sarigan Island 40 km north of Anatahan, transmitting directly to the EMO on Saipan. Because there is currently no population on the island, at this time the principal hazard presented by Anatahan volcano would be air traffic disruption caused by possible erupted ash. The aircraft/ash hazard requires a monitoring program that focuses on eruption detection. The USGS currently provides 24/7 monitoring of Anatahan with a rotational seismic duty officer who carries a Pocket PC-cell phone combination that receives SMS text messages from the CVO Glowworm system when it detects large seismic signals. Upon receiving an SMS text message notification from the CVO Glowworm, the seismic duty officer can use the Pocket PC - cell phone to view a graphic of the seismic traces on the EMO Glowworm's webpage to determine if the seismic signal is eruption related. There have been no further eruptions since the monitoring system was installed, but regional tectonic earthquakes have provided frequent tests of the system. Reliance on a Pocket PC - cell phone requires that the seismic duty officer remain in an area with cell phone coverage. With this monitoring method, the USGS is able to provide rapid notice of an Anatahan eruption to the EMO and the Washington Volcano Ash Advisory Center. Reference Marso, J.N., Murray, T.L., Lockhart, A.B., Bryan, C.J., Glowworm: An extended PC-based Earthworm system for volcano monitoring. Abstracts, Cities On Volcanoes III, Hilo Hawaii, July 2003.

  9. Automatic coronary artery calcium scoring in cardiac CT angiography using paired convolutional neural networks.

    PubMed

    Wolterink, Jelmer M; Leiner, Tim; de Vos, Bob D; van Hamersvelt, Robbert W; Viergever, Max A; Išgum, Ivana

    2016-12-01

    The amount of coronary artery calcification (CAC) is a strong and independent predictor of cardiovascular events. CAC is clinically quantified in cardiac calcium scoring CT (CSCT), but it has been shown that cardiac CT angiography (CCTA) may also be used for this purpose. We present a method for automatic CAC quantification in CCTA. This method uses supervised learning to directly identify and quantify CAC without a need for coronary artery extraction commonly used in existing methods. The study included cardiac CT exams of 250 patients for whom both a CCTA and a CSCT scan were available. To restrict the volume-of-interest for analysis, a bounding box around the heart is automatically determined. The bounding box detection algorithm employs a combination of three ConvNets, where each detects the heart in a different orthogonal plane (axial, sagittal, coronal). These ConvNets were trained using 50 cardiac CT exams. In the remaining 200 exams, a reference standard for CAC was defined in CSCT and CCTA. Out of these, 100 CCTA scans were used for training, and the remaining 100 for evaluation of a voxel classification method for CAC identification. The method uses ConvPairs, pairs of convolutional neural networks (ConvNets). The first ConvNet in a pair identifies voxels likely to be CAC, thereby discarding the majority of non-CAC-like voxels such as lung and fatty tissue. The identified CAC-like voxels are further classified by the second ConvNet in the pair, which distinguishes between CAC and CAC-like negatives. Given the different task of each ConvNet, they share their architecture, but not their weights. Input patches are either 2.5D or 3D. The ConvNets are purely convolutional, i.e. no pooling layers are present and fully connected layers are implemented as convolutions, thereby allowing efficient voxel classification. The performance of individual 2.5D and 3D ConvPairs with input sizes of 15 and 25 voxels, as well as the performance of ensembles of these ConvPairs, were evaluated by a comparison with reference annotations in CCTA and CSCT. In all cases, ensembles of ConvPairs outperformed their individual members. The best performing individual ConvPair detected 72% of lesions in the test set, with on average 0.85 false positive (FP) errors per scan. The best performing ensemble combined all ConvPairs and obtained a sensitivity of 71% at 0.48 FP errors per scan. For this ensemble, agreement with the reference mass score in CSCT was excellent (ICC 0.944 [0.918-0.962]). Aditionally, based on the Agatston score in CCTA, this ensemble assigned 83% of patients to the same cardiovascular risk category as reference CSCT. In conclusion, CAC can be accurately automatically identified and quantified in CCTA using the proposed pattern recognition method. This might obviate the need to acquire a dedicated CSCT scan for CAC scoring, which is regularly acquired prior to a CCTA, and thus reduce the CT radiation dose received by patients. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Rethinking the Default Construction of Multimodel Climate Ensembles

    DOE PAGES

    Rauser, Florian; Gleckler, Peter; Marotzke, Jochem

    2015-07-21

    Here, we discuss the current code of practice in the climate sciences to routinely create climate model ensembles as ensembles of opportunity from the newest phase of the Coupled Model Intercomparison Project (CMIP). We give a two-step argument to rethink this process. First, the differences between generations of ensembles corresponding to different CMIP phases in key climate quantities are not large enough to warrant an automatic separation into generational ensembles for CMIP3 and CMIP5. Second, we suggest that climate model ensembles cannot continue to be mere ensembles of opportunity but should always be based on a transparent scientific decision process.more » If ensembles can be constrained by observation, then they should be constructed as target ensembles that are specifically tailored to a physical question. If model ensembles cannot be constrained by observation, then they should be constructed as cross-generational ensembles, including all available model data to enhance structural model diversity and to better sample the underlying uncertainties. To facilitate this, CMIP should guide the necessarily ongoing process of updating experimental protocols for the evaluation and documentation of coupled models. Finally, with an emphasis on easy access to model data and facilitating the filtering of climate model data across all CMIP generations and experiments, our community could return to the underlying idea of using model data ensembles to improve uncertainty quantification, evaluation, and cross-institutional exchange.« less

  11. Fiber alignment apparatus and method

    DOEpatents

    Kravitz, Stanley H.; Warren, Mial Evans; Snipes, Jr., Morris Burton; Armendariz, Marcelino Guadalupe; Word, V., James Cole

    1997-01-01

    A fiber alignment apparatus includes a micro-machined nickel spring that captures and locks arrays of single mode fibers into position. The design consists of a movable nickel leaf shaped spring and a fixed pocket where fibers are held. The fiber is slid between the spring and a fixed block, which tensions the spring. When the fiber reaches the pocket, it automatically falls into the pocket and is held by the pressure of the leaf spring.

  12. Fiber alignment apparatus and method

    DOEpatents

    Kravitz, S.H.; Warren, M.E.; Snipes, M.B. Jr.; Armendariz, M.G.; Word, J.C. V

    1997-08-19

    A fiber alignment apparatus includes a micro-machined nickel spring that captures and locks arrays of single mode fibers into position. The design consists of a movable nickel leaf shaped spring and a fixed pocket where fibers are held. The fiber is slid between the spring and a fixed block, which tensions the spring. When the fiber reaches the pocket, it automatically falls into the pocket and is held by the pressure of the leaf spring. 8 figs.

  13. Changes in out-of-pocket charges associated with obstetric care provided under Medicare in Australia.

    PubMed

    Callander, Emily; Fox, Haylee

    2018-06-01

    Recent health reforms alongside unregulated provider fees have led to increased attention being given to out-of-pocket healthcare costs. This study utilised annual statistics published by the Department of Health for services provided under the Medicare Benefits Schedule (MBS) from 1992/3 to 2016/17 to identify changes in out-of-pocket charges for obstetric items over time, and estimate the change in demand for obstetric items in response to price increases. Since 1992/3 out-of-pocket charges increased by 1035% for out-of-hospital items and 77% for in-hospital items. Demand for obstetric items has reduced with increasing charges. © 2018 The Royal Australian and New Zealand College of Obstetricians and Gynaecologists.

  14. Generating "fragment-based virtual library" using pocket similarity search of ligand-receptor complexes.

    PubMed

    Khashan, Raed S

    2015-01-01

    As the number of available ligand-receptor complexes is increasing, researchers are becoming more dedicated to mine these complexes to aid in the drug design and development process. We present free software which is developed as a tool for performing similarity search across ligand-receptor complexes for identifying binding pockets which are similar to that of a target receptor. The search is based on 3D-geometric and chemical similarity of the atoms forming the binding pocket. For each match identified, the ligand's fragment(s) corresponding to that binding pocket are extracted, thus forming a virtual library of fragments (FragVLib) that is useful for structure-based drug design. The program provides a very useful tool to explore available databases.

  15. Project FIRES [Firefighters' Integrated Response Equipment System]. Volume 2: Protective Ensemble Performance Standards, Phase 1B

    NASA Technical Reports Server (NTRS)

    Abeles, F. J.

    1980-01-01

    The design of the prototype protective ensemble was finalized. Prototype ensembles were fabricated and then subjected to a series of qualification tests which were based upon the protective ensemble performance standards PEPS requirements. Engineering drawings and purchase specifications were prepared for the new protective ensemble.

  16. Class-specific Error Bounds for Ensemble Classifiers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Prenger, R; Lemmond, T; Varshney, K

    2009-10-06

    The generalization error, or probability of misclassification, of ensemble classifiers has been shown to be bounded above by a function of the mean correlation between the constituent (i.e., base) classifiers and their average strength. This bound suggests that increasing the strength and/or decreasing the correlation of an ensemble's base classifiers may yield improved performance under the assumption of equal error costs. However, this and other existing bounds do not directly address application spaces in which error costs are inherently unequal. For applications involving binary classification, Receiver Operating Characteristic (ROC) curves, performance curves that explicitly trade off false alarms and missedmore » detections, are often utilized to support decision making. To address performance optimization in this context, we have developed a lower bound for the entire ROC curve that can be expressed in terms of the class-specific strength and correlation of the base classifiers. We present empirical analyses demonstrating the efficacy of these bounds in predicting relative classifier performance. In addition, we specify performance regions of the ROC curve that are naturally delineated by the class-specific strengths of the base classifiers and show that each of these regions can be associated with a unique set of guidelines for performance optimization of binary classifiers within unequal error cost regimes.« less

  17. Verifying and Postprocesing the Ensemble Spread-Error Relationship

    NASA Astrophysics Data System (ADS)

    Hopson, Tom; Knievel, Jason; Liu, Yubao; Roux, Gregory; Wu, Wanli

    2013-04-01

    With the increased utilization of ensemble forecasts in weather and hydrologic applications, there is a need to verify their benefit over less expensive deterministic forecasts. One such potential benefit of ensemble systems is their capacity to forecast their own forecast error through the ensemble spread-error relationship. The paper begins by revisiting the limitations of the Pearson correlation alone in assessing this relationship. Next, we introduce two new metrics to consider in assessing the utility an ensemble's varying dispersion. We argue there are two aspects of an ensemble's dispersion that should be assessed. First, and perhaps more fundamentally: is there enough variability in the ensembles dispersion to justify the maintenance of an expensive ensemble prediction system (EPS), irrespective of whether the EPS is well-calibrated or not? To diagnose this, the factor that controls the theoretical upper limit of the spread-error correlation can be useful. Secondly, does the variable dispersion of an ensemble relate to variable expectation of forecast error? Representing the spread-error correlation in relation to its theoretical limit can provide a simple diagnostic of this attribute. A context for these concepts is provided by assessing two operational ensembles: 30-member Western US temperature forecasts for the U.S. Army Test and Evaluation Command and 51-member Brahmaputra River flow forecasts of the Climate Forecast and Applications Project for Bangladesh. Both of these systems utilize a postprocessing technique based on quantile regression (QR) under a step-wise forward selection framework leading to ensemble forecasts with both good reliability and sharpness. In addition, the methodology utilizes the ensemble's ability to self-diagnose forecast instability to produce calibrated forecasts with informative skill-spread relationships. We will describe both ensemble systems briefly, review the steps used to calibrate the ensemble forecast, and present verification statistics using error-spread metrics, along with figures from operational ensemble forecasts before and after calibration.

  18. Imprinting and recalling cortical ensembles.

    PubMed

    Carrillo-Reid, Luis; Yang, Weijian; Bando, Yuki; Peterka, Darcy S; Yuste, Rafael

    2016-08-12

    Neuronal ensembles are coactive groups of neurons that may represent building blocks of cortical circuits. These ensembles could be formed by Hebbian plasticity, whereby synapses between coactive neurons are strengthened. Here we report that repetitive activation with two-photon optogenetics of neuronal populations from ensembles in the visual cortex of awake mice builds neuronal ensembles that recur spontaneously after being imprinted and do not disrupt preexisting ones. Moreover, imprinted ensembles can be recalled by single- cell stimulation and remain coactive on consecutive days. Our results demonstrate the persistent reconfiguration of cortical circuits by two-photon optogenetics into neuronal ensembles that can perform pattern completion. Copyright © 2016, American Association for the Advancement of Science.

  19. Optical vector network analysis of ultranarrow transitions in 166Er3+ : 7LiYF4 crystal.

    PubMed

    Kukharchyk, N; Sholokhov, D; Morozov, O; Korableva, S L; Cole, J H; Kalachev, A A; Bushev, P A

    2018-02-15

    We present optical vector network analysis (OVNA) of an isotopically purified Er166 3+ :LiYF 4 7 crystal. The OVNA method is based on generation and detection of a modulated optical sideband by using a radio-frequency vector network analyzer. This technique is widely used in the field of microwave photonics for the characterization of optical responses of optical devices such as filters and high-Q resonators. However, dense solid-state atomic ensembles induce a large phase shift on one of the optical sidebands that results in the appearance of extra features on the measured transmission response. We present a simple theoretical model that accurately describes the observed spectra and helps to reconstruct the absorption profile of a solid-state atomic ensemble as well as corresponding change of the refractive index in the vicinity of atomic resonances.

  20. Conservation of Mass and Preservation of Positivity with Ensemble-Type Kalman Filter Algorithms

    NASA Technical Reports Server (NTRS)

    Janjic, Tijana; Mclaughlin, Dennis; Cohn, Stephen E.; Verlaan, Martin

    2014-01-01

    This paper considers the incorporation of constraints to enforce physically based conservation laws in the ensemble Kalman filter. In particular, constraints are used to ensure that the ensemble members and the ensemble mean conserve mass and remain nonnegative through measurement updates. In certain situations filtering algorithms such as the ensemble Kalman filter (EnKF) and ensemble transform Kalman filter (ETKF) yield updated ensembles that conserve mass but are negative, even though the actual states must be nonnegative. In such situations if negative values are set to zero, or a log transform is introduced, the total mass will not be conserved. In this study, mass and positivity are both preserved by formulating the filter update as a set of quadratic programming problems that incorporate non-negativity constraints. Simple numerical experiments indicate that this approach can have a significant positive impact on the posterior ensemble distribution, giving results that are more physically plausible both for individual ensemble members and for the ensemble mean. In two examples, an update that includes a non-negativity constraint is able to properly describe the transport of a sharp feature (e.g., a triangle or cone). A number of implementation questions still need to be addressed, particularly the need to develop a computationally efficient quadratic programming update for large ensemble.

Top