Science.gov

Sample records for enstatite-rich warm debris

  1. 2D condensation model for the inner Solar Nebula: an enstatite-rich environment

    NASA Astrophysics Data System (ADS)

    Pignatale, F. C.; Liffman, Kurt; Maddison, Sarah T.; Brooks, Geoffrey

    2016-04-01

    Infrared observations provide the dust composition in the protoplanetary discs surface layers, but cannot probe the dust chemistry in the mid-plane, where planet formation occurs. Meteorites show that dynamics was important in determining the dust distribution in the Solar Nebula and needs to be considered if we are to understand the global chemistry in discs. 1D radial condensation sequences can only simulate one disc layer at a time and cannot describe the global chemistry or the complexity of meteorites. To address these limitations, we compute for the first time the 2D distribution of condensates in the inner Solar Nebula using a thermodynamic equilibrium model, and derive time-scales for vertical settling and radial migration of dust. We find two enstatite-rich zones within 1 AU from the young Sun: a band ˜0.1 AU thick in the upper optically-thin layer of the disc interior to 0.8 AU, and in the optically-thick disc mid-plane out to ˜0.4 AU. The two enstatite-rich zones support recent evidence that Mercury and enstatite chondrites (ECs) shared a bulk material with similar composition. Our results are also consistent with infrared observation of protoplanetary disc which show emission of enstatite-rich dust in the inner surface of discs. The resulting chemistry and dynamics suggests that the formation of the bulk material of ECs occurred in the inner surface layer of the disc, within 0.4 AU. We also propose a simple alternative scenario in which gas fractionation and vertical settling of the condensates lead to an enstatite-chondritic bulk material.

  2. Warm Circumstellar Debris Disks: Dynamical Excitation by Massive External Perturbers?

    NASA Astrophysics Data System (ADS)

    Nesvold, Erika; Naoz, Smadar; Vican, Laura; Vican, Laura; Zuckerman, Ben M.; Holmbeck, Erika

    2016-01-01

    Observations of circumstellar debris disks have revealed that a subset of this population are warm disks (~300 K). A dynamically excited disk may indicate the presence of an exoplanet orbiting within and stirring the disk. However, observations suggest another possible mechanism for heating a debris disk: an external stellar-mass perturber exciting the eccentricities and inclinations of the particles in a disk.We explore the consequences of an external perturber on the evolution of a debris disk using secular analysis and collisional N-body simulations. The perturber excites the eccentricities of the particles in the disk via the Kozai-Lidov mechanism, triggering a collisional cascade among the planetesimals. These collisions produce smaller dust grains and damp the particles' larger eccentricities.We present the results of our study and discuss the connections to observations of warm disks and the implications for planet formation.

  3. Initiation of Recent Debris Flows on Mount Rainier, Washington: A Climate Warming Signal?

    NASA Astrophysics Data System (ADS)

    Copeland, E. A.; Kennard, P.; Nolin, A. W.; Lancaster, S. T.; Grant, G. E.

    2008-12-01

    The first week of November 2006 an intense rainstorm inundated the Pacific Northwest and triggered debris flows on many large volcanoes in the Cascade Range of Washington and Oregon. At Mount Rainier, Washington, 45.7 cm of rain was recorded in 36 hours; the storm was preceded by a week of light precipitation and moderate temperatures, so that rain fell on nearly-saturated ground with minimal snow cover. The November 2006 storm was exceptional in that it resulted in a 100-year flood and caused an unprecedented six-month closure of Mount Rainier National Park. It also focused inquiry as to whether debris flows from Cascade volcanoes are likely to occur more frequently in the future as glaciers recede due to climate warming, leaving unstable moraines and sediment that can act as initiation sites. We examined the recent history of debris flows from Mount Rainier using aerial photographs and field surveyed debris flow tracks. Prior to 2001, debris flows were recorded in association with rainfall or glacial outburst floods in 4 drainages, but 3 additional drainages were first impacted by debris flows in 2001, 2005, and 2006, respectively. We discovered that most of the recent debris flows initiated as small gullies in unconsolidated material at the edge of fragmented glaciers or areas of permanent snow and ice. Other initiation sites occur on steep-sided un-vegetated moraines. Of the 28 named glaciers on Mount Rainier, debris flows initiated near five glaciers in the exceptional storm of 2006 (Winthrop, Inter, Kautz-Success, Van Trump, Pyramid, and South Tahoma). Less exceptional storms, however, have also produced wide-spread debris flows: in September 2005, 15.3 cm of rain fell in 48 hours on minimal snow cover and caused debris flows in all except 2 of the glacier drainages that initiated in 2006. Debris flows from both storms initiated at elevations of 1980 to 2400 m, traveled 5 to 10 kilometers, and caused significant streambed aggradation. These results suggest a

  4. Probing the terrestrial regions of planetary systems: warm debris disks with emission features

    SciTech Connect

    Ballering, Nicholas P.; Rieke, George H.; Gáspár, András

    2014-09-20

    Observations of debris disks allow for the study of planetary systems, even where planets have not been detected. However, debris disks are often only characterized by unresolved infrared excesses that resemble featureless blackbodies, and the location of the emitting dust is uncertain due to a degeneracy with the dust grain properties. Here, we characterize the Spitzer Infrared Spectrograph spectra of 22 debris disks exhibiting 10 μm silicate emission features. Such features arise from small warm dust grains, and their presence can significantly constrain the orbital location of the emitting debris. We find that these features can be explained by the presence of an additional dust component in the terrestrial zones of the planetary systems, i.e., an exozodiacal belt. Aside from possessing exozodiacal dust, these debris disks are not particularly unique; their minimum grain sizes are consistent with the blowout sizes of their systems, and their brightnesses are comparable to those of featureless warm debris disks. These disks are in systems of a range of ages, though the older systems with features are found only around A-type stars. The features in young systems may be signatures of terrestrial planet formation. Analyzing the spectra of unresolved debris disks with emission features may be one of the simplest and most accessible ways to study the terrestrial regions of planetary systems.

  5. THE ABSENCE OF COLD DUST AROUND WARM DEBRIS DISK STAR HD 15407A

    SciTech Connect

    Fujiwara, Hideaki; Onaka, Takashi; Takita, Satoshi; Kataza, Hirokazu; Murakami, Hiroshi; Yamashita, Takuya; Fukagawa, Misato; Ishihara, Daisuke

    2012-11-01

    We report Herschel and AKARI photometric observations at far-infrared (FIR) wavelengths of the debris disk around the F3V star HD 15407A, in which the presence of an extremely large amount of warm dust ({approx}500-600 K) has been suggested by mid-infrared (MIR) photometry and spectroscopy. The observed flux densities of the debris disk at 60-160 {mu}m are clearly above the photospheric level of the star, suggesting excess emission at FIR as well as at MIR wavelengths previously reported. The observed FIR excess emission is consistent with the continuum level extrapolated from the MIR excess, suggesting that it originates in the inner warm debris dust and cold dust ({approx}50-130 K) is absent in the outer region of the disk. The absence of cold dust does not support a late-heavy-bombardment-like event as the origin of the large amount of warm debris dust around HD 15047A.

  6. WARM DEBRIS DISKS PRODUCED BY GIANT IMPACTS DURING TERRESTRIAL PLANET FORMATION

    SciTech Connect

    Genda, H.; Kobayashi, H.; Kokubo, E.

    2015-09-10

    In our solar system, Mars-sized protoplanets frequently collided with each other during the last stage of terrestrial planet formation, called the giant impact stage. Giant impacts eject a large amount of material from the colliding protoplanets into the terrestrial planet region, which may form debris disks with observable infrared excesses. Indeed, tens of warm debris disks around young solar-type stars have been observed. Here we quantitatively estimate the total mass of ejected materials during the giant impact stages. We found that ∼0.4 times the Earth’s mass is ejected in total throughout the giant impact stage. Ejected materials are ground down by collisional cascade until micron-sized grains are blown out by radiation pressure. The depletion timescale of these ejected materials is determined primarily by the mass of the largest body among them. We conducted high-resolution simulations of giant impacts to accurately obtain the mass of the largest ejected body. We then calculated the evolution of the debris disks produced by a series of giant impacts and depleted by collisional cascades to obtain the infrared excess evolution of the debris disks. We found that the infrared excess is almost always higher than the stellar infrared flux throughout the giant impact stage (∼100 Myr) and is sometimes ∼10 times higher immediately after a giant impact. Therefore, giant impact stages would explain the infrared excess from most observed warm debris disks. The observed fraction of stars with warm debris disks indicates that the formation probability of our solar-system-like terrestrial planets is approximately 10%.

  7. OT2_dpadgett_2: Warm A Star Debris Disks from WISE

    NASA Astrophysics Data System (ADS)

    Padgett, D.

    2011-09-01

    Debris disks trace the collisional breakdown of asteroid and comet parent bodies orbiting nearby main sequence stars. Debris disks are typically cold analogs of our Kuiper belt with emission peaking near 70 microns wavelength. However, a relatively small number of warm disks are known with emission at 22 - 24 microns. These systems are especially interesting because they trace dust in the region likely to host terrestrial planets, where the dust has a short dynamical lifetimes. They also tend to be young systems aged < 1 Gyr. This knowledge of warm debris disks - extrasolar analogs to our solar system's Zodiacal cloud - is based on the 25 year old IRAS survey and observations of selected targets with ISO and Spitzer. The Wide-Field Infrared Survey Explorer (WISE) has recently completed new, sensitive all-sky mapping in the 3.3, 4.6, 12, and 22 micron bands. Association of the WISE sources to Hipparcos and Tycho stars has led to the identification of 61 nearby main sequence A stars with robustly detected warm 22 micron excesses not previously known. To determine whether these systems represent outbursts of asteroidal dust production (such as in the HD 69830 system), or simply the Wien side of emission from a cold outer dust belt, photometry at longer wavelengths is needed. We propose Herschel/PACS 70 and 160 micron photometry of this unbiased sample of new A star debris disks. These data will allow us to fully characterize the dust temperature and infrared luminosity of these systems, allowing them to be understood in the context of other debris disks and disk evolution theory. Herschel OT1 observations of FGKM stars from this survey show a 90% detection rate for 70 micron excess emission. The results from these combined samples will strongly constrain our picture of the collisional history of inner planetary systems.

  8. OT2_dardila_2: PACS Photometry of Transiting-Planet Systems with Warm Debris Disks

    NASA Astrophysics Data System (ADS)

    Ardila, D.

    2011-09-01

    Dust in debris disks is produced by colliding or evaporating planetesimals, the remnant of the planet formation process. Warm dust disks, known by their emission at =<24 mic, are rare (4% of FGK main-sequence stars), and specially interesting because they trace material in the region likely to host terrestrial planets, where the dust has very short dynamical lifetimes. Dust in this region comes from very recent asteroidal collisions, migrating Kuiper Belt planetesimals, or migrating dust. NASA's Kepler mission has just released a list of 1235 candidate transiting planets, and in parallel, the Wide-Field Infrared Survey Explorer (WISE) has just completed a sensitive all-sky mapping in the 3.4, 4.6, 12, and 22 micron bands. By cross-identifying the WISE sources with Kepler candidates as well as with other transiting planetary systems we have identified 21 transiting planet hosts with previously unknown warm debris disks. We propose Herschel/PACS 100 and 160 micron photometry of this sample, to determine whether the warm dust in these systems represents stochastic outbursts of local dust production, or simply the Wien side of emission from a cold outer dust belt. These data will allow us to put constraints in the dust temperature and infrared luminosity of these systems, allowing them to be understood in the context of other debris disks and disk evolution theory. This program represents a unique opportunity to exploit the synergy between three great space facilities: Herschel, Kepler, and WISE. The transiting planet sample hosts will remain among the most studied group of stars for the years to come, and our knowledge of their planetary architecture will remain incomplete if we do not understand the characteristics of their debris disks.

  9. OT1_dpadgett_1: PACS Photometry of Nearby Warm Debris Disk Systems from the WISE All-Sky Survey

    NASA Astrophysics Data System (ADS)

    Padgett, D.

    2010-07-01

    Debris disks trace the collisional breakdown of asteroid and comet parent bodies orbiting nearby main sequence stars. They are detectable in ~16% of FGK stars, nearly twice as often in A stars, and are almost unknown around M stars. The debris disks of sunlike stars are typically cold analogs of our Kuiper belt with emission peaking near 70 microns wavelength. However, a relatively small number of warm disks are known with emission at 24 microns. These systems are especially interesting because they trace dust in the region likely to host terrestrial planets, where the dust has a short dynamical lifetimes. They also tend to be young systems aged < 1 Gyr. This knowledge of warm debris disks - extrasolar analogs to our solar system's Zodiacal cloud - is based on the 25 year old IRAS survey and observations of selected targets with ISO and Spitzer. The Wide-Field Infrared Survey Explorer (WISE) has just completed new, sensitive all-sky mapping in the 3.3, 4.6, 12, and 22 micron bands. Association of the WISE sources to Hipparcos and Tycho stars has led to the identification of 99 nearby main sequence stars with robustly detected warm 22 micron excesses not previously known. To determine whether these systems represent outbursts of asteroidal dust production (such as in the HD 69830 system), or simply the Wien side of emission from a cold outer dust belt, photometry at longer wavelengths is needed. We propose Herschel/PACS 70 and 160 micron photometry of this unbiased sample. These data will allow us to fully characterize the dust temperature and infrared luminosity of these systems, allowing them to be understood in the context of other debris disks and disk evolution theory. The sample includes field M stars as close as 12 pc, the first objects of this class seen to have warm dust emission. The results will strongly constrain our picture of the collisional history of inner planetary systems.

  10. Identification of debris-flow hazards in warm deserts through analyzing past occurrences: Case study in South Mountain, Sonoran Desert, USA

    NASA Astrophysics Data System (ADS)

    Dorn, Ronald I.

    2016-11-01

    After recognition that debris flows co-occur with human activities, the next step in a hazards analysis involves estimating debris-flow probability. Prior research published in this journal in 2010 used varnish microlamination (VML) dating to determine a minimum occurrence of 5 flows per century over the last 8100 years in a small mountain range of South Mountain adjacent to neighborhoods of Phoenix, Arizona. This analysis led to the conclusion that debris flows originating in small mountain ranges in arid regions like the Sonoran Desert could pose a hazard. Two major precipitation events in the summer of 2014 generated 35 debris flows in the same study area of South Mountain-providing support for the importance of probability analysis as a key step in a hazards analysis in warm desert settings. Two distinct mechanisms generated the 2014 debris flows: intense precipitation on steep slopes in the first storm; and a firehose effect whereby runoff from the second storm was funneled rapidly by cleaned-out debris-flow chutes to remobilize Pleistocene debris-flow deposits. When compared to a global database on debris flows, the 2014 storms were among the most intense to generate desert debris flows - indicating that storms of lesser intensity are capable of generating debris flows in warm desert settings. The 87Sr/86Sr analyses of fines and clasts in South Mountain debris flows of different ages reveal that desert dust supplies the fines. Thus, wetter climatic periods of intense rock decay are not needed to resupply desert slopes with fines; instead, a combination of dust deposition supplying fines and dirt cracking generating coarse clasts can re-arm chutes in a warm desert setting with abundant dust.

  11. Extended warm gas in the ULIRG Mrk273: Galactic outflows and tidal debris

    NASA Astrophysics Data System (ADS)

    Rodríguez Zaurín, J.; Tadhunter, C. N.; Rupke, D. S. N.; Veilleux, S.; Spoon, H. W. W.; Chiaberge, M.; Ramos Almeida, C.; Batcheldor, D.; Sparks, W. B.

    2014-11-01

    We present new HST/ACS medium- and narrow-band images and optical Isaac Newton Telescope long-slit spectra of the merging system Mrk273. The HST observations sample the [OIII]λλ4959,5007 emission from the galaxy and the nearby continuum. These data were taken as a part of a larger study of ultraluminous infrared galaxies (ULIRGs) with the aim of investigating the importance of the warm, AGN induced outflows in such objects. The HST images show that the morphologies of the extended continuum and the ionised gas emission from the galaxy are decoupled, extending almost perpendicular to each other. In particular, we detect for the first time a spectacular structure of ionised gas in the form of filaments and clumps that extend ~23 kpc to the east of the nuclear region. The quiescent ionised gas kinematics at these locations suggests that these filaments are tidal debris left over from a secondary merger event that are illuminated by an AGN in the nuclear regions. The images also reveal a complex morphology in the nuclear region of the galaxy for both the continuum and the [OIII] emission. Consistent with this complexity, we find a wide diversity of emission line profiles in these regions. Kinematic disturbance in the form of broad (FWHM> 500 km s-1) and/or strongly shifted (| ΔV | > 150 km s-1 ) emission line components is found at almost all locations in the nuclear regions, but confined to a radius of ~4 kpc to the east and west of the northern nucleus. In most cases, we are able to fit the profiles of all the emission lines of different ionisation with a kinematic model using two or three Gaussian components. From these fits, we derive diagnostic line ratios that are used to investigate the ionisation mechanisms at the different locations in the galaxy. We show that these line ratios are generally consistent with photoionisation by an AGN as the main ionisation mechanism. Finally, the highest surface brightness [OIII] emission is found in a compact region that is

  12. A Sensitive Identification of Warm Debris Disks in the Solar Neighborhood through Precise Calibration of Saturated WISE Photometry

    NASA Astrophysics Data System (ADS)

    Patel, Rahul I.; Metchev, Stanimir A.; Heinze, Aren

    2014-05-01

    We present a sensitive search for WISE W3 (12 μm) and W4 (22 μm) excesses from warm optically thin dust around Hipparcos main sequence stars within 75 pc from the Sun. We use contemporaneously measured photometry from WISE, remove sources of contamination, and derive and apply corrections to saturated fluxes to attain optimal sensitivity to >10 μm excesses. We use data from the WISE All-Sky Survey Catalog rather than the AllWISE release because we find that its saturated photometry is better behaved, allowing us to detect small excesses even around saturated stars in WISE. Our new discoveries increase by 45% the number of stars with warm dusty excesses and expand the number of known debris disks (with excess at any wavelength) within 75 pc by 29%. We identify 220 Hipparcos debris disk host stars, 108 of which are new detections at any wavelength. We present the first measurement of a 12 μm and/or 22 μm excess for 10 stars with previously known cold (50-100 K) disks. We also find five new stars with small but significant W3 excesses, adding to the small population of known exozodi, and we detect evidence for a W2 excess around HIP 96562 (F2V), indicative of tenuous hot (780 K) dust. As a result of our WISE study, the number of debris disks with known 10-30 μm excesses within 75 pc (379) has now surpassed the number of disks with known >30 μm excesses (289, with 171 in common), even if the latter have been found to have a higher occurrence rate in unbiased samples.

  13. Coupled prediction of flood response and debris flow initiation during warm and cold season events in the Southern Appalachians, USA

    NASA Astrophysics Data System (ADS)

    Tao, J.; Barros, A. P.

    2013-07-01

    Debris flows associated with rainstorms are a frequent and devastating hazard in the Southern Appalachians in the United States. Whereas warm season events are clearly associated with heavy rainfall intensity, the same cannot be said for the cold season events. Instead, there is a relationship between large (cumulative) rainfall events independently of season, and thus hydrometeorological regime, and debris flows. This suggests that the dynamics of subsurface hydrologic processes play an important role as a trigger mechanism, specifically through soil moisture redistribution by interflow. The first objective of this study is to investigate this hypothesis. The second objective is to assess the physical basis for a regional coupled flood prediction and debris flow warning system. For this purpose, uncalibrated model simulations of well-documented debris flows in headwater catchments of the Southern Appalachians using a 3-D surface-groundwater hydrologic model coupled with slope stability models are examined in detail. Specifically, we focus on two vulnerable headwater catchments that experience frequent debris flows, the Big Creek and the Jonathan Creek in the Upper Pigeon River Basin, North Carolina, and three distinct weather systems: an extremely heavy summertime convective storm in 2011; a persistent winter storm lasting several days; and a severe winter storm in 2009. These events were selected due to the optimal availability of rainfall observations, availability of detailed field surveys of the landslides shortly after they occurred, which can be used to evaluate model predictions, and because they are representative of events that cause major economic losses in the region. The model results substantiate that interflow is a useful prognostic of conditions necessary for the initiation of slope instability, and should therefore be considered explicitly in landslide hazard assessments. Moreover, the relationships between slope stability and interflow are

  14. Newly Discovered Silicate Features in the Spectra of Young Warm Debris Disks: Probing Terrestrial Regions of Planetary Systems

    NASA Astrophysics Data System (ADS)

    Ballering, N.; Rieke, G.

    2014-03-01

    Terrestrial planets form by the collisional accretion of planetesimals during the first 100 Myr of a system’s lifetime. For most systems, the terrestrial regions are too near their host star to be directly seen with high-contrast imaging (e.g. with HST, MagAO, or LBTI) and too warm to be imaged with submillimeter interferometers (e.g. ALMA). Mid-infrared excess spectra—originating from the thermal emission of the circumstellar dust leftover from these collisions—remain the best data to constrain the properties of the debris in these regions. The spectra of most debris disks are featureless, taking the shape of (modified) blackbodies. Determining the properties of debris disks with featureless spectra is complicated by a degeneracy between the grain size and location (large grains near the star and small grains farther from the star may be indistinguishable). Debris disk spectra that exhibit solid state emission features allow for a more accurate determination of the dust size and location (e.g. Chen et al. 2006; Olofsson et al. 2012). Such features probe small, warm dust grains in the inner regions of these systems where terrestrial planet formation may be proceeding (Lisse et al. 2009). We report here a successful search for such features. We identified our targets with a preliminary search for signs of emission features in the Spitzer IRS spectra of a number of young early type stars known to harbor warm debris disks. We fit to each target a physically-motivated model spectrum consisting of the sum of the stellar photosphere (modeled as a blackbody) and thermal emission from two dust belts. Each belt was defined by 6 parameters: the inner and outer orbital radii (rin and rout), the index of the radial surface density power law (rexp), the minimum and maximum grain sizes (amin and amax), and the index of the grain size distribution power law (aexp). aexp was fixed to -3.65 and amax was fixed to 1000 μm for all models; all other parameters were allowed to

  15. WARM DUSTY DEBRIS DISKS AND DISTANT COMPANION STARS: V488 PER AND 2M1337

    SciTech Connect

    Zuckerman, B.

    2015-01-10

    A possible connection between the presence of large quantities of warm (T ≥ 200 K) circumstellar dust at youthful stars and the existence of wide-separation companion stars has been noted in the literature. Here we point out the existence of a distant companion star to V488 Per, a K-type member of the α Persei cluster with the largest known fractional excess infrared luminosity (∼16%) of any main sequence star. We also report the presence of a distant companion to the previously recognized warm dust star 2M1337. With these discoveries the existence of a cause and effect relationship between a distant companion and large quantities of warm dust in orbit around youthful stars now seems compelling.

  16. Coupled prediction of flood response and debris flow initiation during warm- and cold-season events in the Southern Appalachians, USA

    NASA Astrophysics Data System (ADS)

    Tao, J.; Barros, A. P.

    2014-01-01

    Debris flows associated with rainstorms are a frequent and devastating hazard in the Southern Appalachians in the United States. Whereas warm-season events are clearly associated with heavy rainfall intensity, the same cannot be said for the cold-season events. Instead, there is a relationship between large (cumulative) rainfall events independently of season, and thus hydrometeorological regime, and debris flows. This suggests that the dynamics of subsurface hydrologic processes play an important role as a trigger mechanism, specifically through soil moisture redistribution by interflow. We further hypothesize that the transient mass fluxes associated with the temporal-spatial dynamics of interflow govern the timing of shallow landslide initiation, and subsequent debris flow mobilization. The first objective of this study is to investigate this relationship. The second objective is to assess the physical basis for a regional coupled flood prediction and debris flow warning system. For this purpose, uncalibrated model simulations of well-documented debris flows in headwater catchments of the Southern Appalachians using a 3-D surface-groundwater hydrologic model coupled with slope stability models are examined in detail. Specifically, we focus on two vulnerable headwater catchments that experience frequent debris flows, the Big Creek and the Jonathan Creek in the Upper Pigeon River Basin, North Carolina, and three distinct weather systems: an extremely heavy summertime convective storm in 2011; a persistent winter storm lasting several days; and a severe winter storm in 2009. These events were selected due to the optimal availability of rainfall observations; availability of detailed field surveys of the landslides shortly after they occurred, which can be used to evaluate model predictions; and because they are representative of events that cause major economic losses in the region. The model results substantiate that interflow is a useful prognostic of conditions

  17. The twofold debris disk around HD 113766 A. Warm and cold dust as seen with VLTI/MIDI and Herschel/PACS

    NASA Astrophysics Data System (ADS)

    Olofsson, J.; Henning, Th.; Nielbock, M.; Augereau, J.-C.; Juhàsz, A.; Oliveira, I.; Absil, O.; Tamanai, A.

    2013-03-01

    Context. Warm debris disks are a sub-sample of the large population of debris disks, and display excess emission in the mid-infrared. Around solar-type stars, very few objects (~2% of all debris disks) show emission features in mid-IR spectroscopic observations that are attributed to small, warm silicate dust grains. The origin of this warm dust could be explained either by a recent catastrophic collision between several bodies or by transport from an outer belt similar to the Kuiper belt in the solar system. Aims: We present and analyze new far-IR Herschel/PACS photometric observations, supplemented by new and archival ground-based data in the mid-IR (VLTI/MIDI and VLT/VISIR), for one of these rare systems: the 10-16 Myr old debris disk around HD 113766 A. We improve an existing model to account for these new observations. Methods: We implemented the contribution of an outer planetesimal belt in the Debra code, and successfully used it to model the spectral energy distribution (SED) as well as complementary observations, notably MIDI data. We better constrain the spatial distribution of the dust and its composition. Results: We underline the limitations of SED modeling and the need for spatially resolved observations. We improve existing models and increase our understanding of the disk around HD 113766 A. We find that the system is best described by an inner disk located within the first AU, well constrained by the MIDI data, and an outer disk located between 9-13 AU. In the inner dust belt, our previous finding of Fe-rich crystalline olivine grains still holds. We do not observe time variability of the emission features over at least an eight-year time span in an environment subjected to strong radiation pressure. Conclusions: The time stability of the emission features indicates that μm-sized dust grains are constantly replenished from the same reservoir, with a possible depletion of sub- μm-sized grains. We suggest that the emission features may arise from

  18. Flash Floods and Storm-Triggered Debris Avalanches in the Appalachians and Possible Trends in a Future Warming Climate

    NASA Astrophysics Data System (ADS)

    Ren, D.; Hong, Y.; Lynch, M. J.; Shen, X.; Leslie, L. M.; Mahmood, R.; Duan, Q.; Rappin, E.; Li, Y.; Luo, J.

    2014-12-01

    This study analyzes storm-triggered landslides in the US Appalachians, in the current geological setting. Concave valleys that favor the convergence of surface runoff are the primary locales for landslides. If the slopes are weathered to the same degree and have the same vegetation coverage, slope orientation (azimuthal) is not critical for slope stability. However, it is found that for the region south of the Black Mountains (North Carolina), north-facing slopes are more prone to slide, because the northern slopes usually are grass slopes for the regions not limited by annual precipitation (water availability). For the slopes of the Blue Ridge Mountains, south facing slopes are more prone to slide. Deforestation and topsoil erosion are critical contributors to the massive sizes of the debris flows. Gravity measurements over the past decade reveal that geological conditions, the chute system and underground cracks over the region are stable, and sliding material is plentiful. Future changes in storm-triggered landslide frequency are primarily controlled by changes in extreme precipitation. Thus, a series of ensemble climate model experiments is carried out of possible changes in future extreme precipitation events, using the WRF model forced by temperature perturbations. The focus is the impact on storm-triggered landslides, and over 50 locations are identified as prone to future landslides. In a future warmer climate, more severe extreme precipitation events are projected because of increased vapor content and more frequent passage of tropical cyclone remnants. There also is a likely shift of tropical cyclone tracks and associated extreme precipitation, and the Appalachians scarps cluster center is expected to move westward. The remote sensing way of detecting unstable regions are applicable to other regions of interest. We further examine the following regions (except the Fuji Mount) recently (since 1900) experienced volcanic eruption: Pelee, Agung, Elchichon

  19. Antarctic Ice Sheet response to a long warm interval across Marine Isotope Stage 31: A cross-latitudinal study of iceberg-rafted debris

    NASA Astrophysics Data System (ADS)

    Teitler, Lora; Florindo, Fabio; Warnke, Detlef A.; Filippelli, Gabriel M.; Kupp, Gary; Taylor, Brian

    2015-01-01

    Constraining the nature of Antarctic Ice Sheet (AIS) response to major past climate changes may provide a window onto future ice response and rates of sea level rise. One approach to tracking AIS dynamics, and differentiating whole system versus potentially heterogeneous ice sheet sector changes, is to integrate multiple climate proxies for a specific time slice across widely distributed locations. This study presents new iceberg-rafted debris (IRD) data across the interval that includes Marine Isotope Stage 31 (MIS 31: 1.081-1.062 Ma, a span of ∼19 kyr; Lisiecki and Raymo, 2005), which lies on the cusp of the mid-Brunhes climate transition (as glacial cycles shifted from ∼41,000 yr to ∼100,000 yr duration). Two sites are studied-distal Ocean Drilling Program (ODP) Leg 177 Site 1090 (Site 1090) in the eastern subantarctic sector of the South Atlantic Ocean, and proximal ODP Leg 188 Site 1165 (Site 1165), near Prydz Bay, in the Indian Ocean sector of the Antarctic margin. At each of these sites, MIS 31 is marked by the presence of the Jaramillo Subchron (0.988-1.072 Ma; Lourens et al., 2004) which provides a time-marker to correlate these two sites with relative precision. At both sites, records of multiple climate proxies are available to aid in interpretation. The presence of IRD in sediments from our study areas, which include garnets indicating a likely East Antarctic Ice Sheet (EAIS) origin, supports the conclusion that although the EAIS apparently withdrew significantly over MIS 31 in the Prydz Bay region and other sectors, some sectors of the EAIS must still have maintained marine margins capable of launching icebergs even through the warmest intervals. Thus, the EAIS did not respond in complete synchrony even to major climate changes such as MIS 31. Further, the record at Site 1090 (supported by records from other subantarctic locations) indicates that the glacial MIS 32 should be reduced to no more than a stadial, and the warm interval of Antarctic

  20. Orbital Debris

    NASA Technical Reports Server (NTRS)

    Kessler, D. J. (Compiler); Su, S. Y. (Compiler)

    1985-01-01

    Earth orbital debris issues and recommended future activities are discussed. The workshop addressed the areas of environment definition, hazards to spacecraft, and space object management. It concluded that orbital debris is a potential problem for future space operations. However, before recommending any major efforts to control the environment, more data are required. The most significant required data are on the population of debris smaller than 4 cm in diameter. New damage criteria are also required. When these data are obtained, they can be combined with hypervelocity data to evaluate the hazards to future spacecraft. After these hazards are understood, then techniques to control the environment can be evaluated.

  1. Cometary grains in the HD 32297 debris disk

    NASA Astrophysics Data System (ADS)

    Yang, Y.-G.; Li, Aigen

    2016-07-01

    HD 32297 is a young A-type star with a bright edge-on debris disk. The dust thermal emission spectral energy distribution and scattered starlight spectrum are simultaneously modeled in terms of porous cometary grains. Our modeling suggests that, similar to the solar system, the debris disk around HD 32297 may have an inner warm ring and an outer cold disk which are seen in other young debris disks as well.

  2. Space Shuttle Debris Transport

    NASA Technical Reports Server (NTRS)

    Gomez, Reynaldo J., III

    2010-01-01

    This slide presentation reviews the assessment of debris damage to the Space Shuttle, and the use of computation to assist in the space shuttle applications. The presentation reviews the sources of debris, a mechanism for determining the probability of damaging debris impacting the shuttle, tools used, eliminating potential damaging debris sources, the use of computation to assess while inflight damage, and a chart showing the applications that have been used on increasingly powerful computers simulate the shuttle and the debris transport.

  3. Orbital Debris: A Chronology

    NASA Technical Reports Server (NTRS)

    Portree, Davis S. F. (Editor); Loftus, Joseph P., Jr. (Editor)

    1999-01-01

    This chronology covers the 37-year history of orbital debris concerns. It tracks orbital debris hazard creation, research, observation, experimentation, management, mitigation, protection, and policy. Included are debris-producing, events; U.N. orbital debris treaties, Space Shuttle and space station orbital debris issues; ASAT tests; milestones in theory and modeling; uncontrolled reentries; detection system development; shielding development; geosynchronous debris issues, including reboost policies: returned surfaces studies, seminar papers reports, conferences, and studies; the increasing effect of space activities on astronomy; and growing international awareness of the near-Earth environment.

  4. Report on orbital debris

    NASA Technical Reports Server (NTRS)

    1989-01-01

    The success of space endeavors depends upon a space environment sufficiently free of debris to enable the safe and dependable operation of spacecraft. An environment overly cluttered with debris would threaten the ability to utilize space for a wide variety of scientific, technological, military, and commercial purposes. Man made space debris (orbital debris) differs from natural meteoroids because it remains in earth orbit during its lifetime and is not transient through the space around the Earth. The orbital debris environment is considered. The space environment is described along with sources of orbital debris. The current national space policy is examined, along with ways to minimize debris generation and ways to survive the debris environment. International efforts, legal issues and commercial regulations are also examined.

  5. Turbomachinery debris remover

    DOEpatents

    Krawiec, Donald F.; Kraf, Robert J.; Houser, Robert J.

    1988-01-01

    An apparatus for removing debris from a turbomachine. The apparatus includes housing and remotely operable viewing and grappling mechanisms for the purpose of locating and removing debris lodged between adjacent blades in a turbomachine.

  6. Debris exhaust system

    DOEpatents

    McBride, D.D.; Bua, D.; Domankevitz, Y.; Nishioka, N.

    1998-06-23

    A debris removal system removes debris from a work site by flowing fluid away from the work site toward the periphery of a structure. The fluid flow can be kept constant around the periphery so that debris is removed evenly. The structure can have a reduced cross section between the fluid inlet and the work site so that the resulting increased fluid velocity works to prevent debris from escaping. 9 figs.

  7. Debris exhaust system

    DOEpatents

    McBride, Donald D.; Bua, Dominic; Domankevitz, Yacov; Nishioka, Norman

    1998-01-01

    A debris removal system removes debris from a work site by flowing fluid away from the work site toward the periphery of a structure. The fluid flow can be kept constant around the periphery so that debris is removed evenly. The structure can have a reduced cross section between the fluid inlet and the work site so that the resulting increased fluid velocity works to prevent debris from escaping.

  8. Collisional Cascade in a Debris Disk from an External Perturber

    NASA Astrophysics Data System (ADS)

    Nesvold, Erika; Naoz, Smadar; Vican, Laura; Zuckerman, Benjamin; Holmbeck, Erika

    2015-11-01

    The study of circumstellar debris disks has often been coupled with the study of planet formation. A thermally warm debris disk (~300 K) may indicate the presence of an exoplanet orbiting within and stirring the disk. However, there is another possible mechanism for heating a debris disk: an external stellar-mass perturber exciting the eccentricities and inclinations of the particles in a disk.We explore the consequences of an external perturber on the evolution of a debris disk. The perturber excites the eccentricities of the particles in the disk via the Kozai-Lidov mechanism, triggering a collisional cascade among the planetesimals. These collisions produce smaller dust grains and damp the particles’ larger eccentricities.We present the results of our study of a such a disk using secular analysis and collisional N-body simulations. We will discuss the connections to observations of warm disks and the implications for planet formation.

  9. Signposts of Multiple Planets in Debris Disks

    NASA Astrophysics Data System (ADS)

    Su, Kate Y. L.; Rieke, G. H.

    2014-01-01

    We review the nearby debris disk structures revealed by multi-wavelength images from Spitzer and Herschel, and complemented with detailed spectral energy distribution modeling. Similar to the definition of habitable zones around stars, debris disk structures should be identified and characterized in terms of dust temperatures rather than physical distances so that the heating power of different spectral type of stars is taken into account and common features in disks can be discussed and compared directly. Common features, such as warm (~150 K) dust belts near the water-ice line and cold (~50 K) Kuiper-belt analogs, give rise to our emerging understanding of the levels of order in debris disk structures and illuminate various processes about the formation and evolution of exoplanetary systems. In light of the disk structures in the debris disk twins (Vega and Fomalhaut), and the current limits on the masses of planetary objects, we suggest that the large gap between the warm and cold dust belts is the best signpost for multiple (low-mass) planets beyond the water-ice line.

  10. The response of debris-covered glaciers to climate change: A numerical modeling approach

    NASA Astrophysics Data System (ADS)

    Anderson, Leif S.; Anderson, Robert S.

    2016-04-01

    Debris-covered glaciers are common in rapidly-eroding alpine landscapes. When thicker than a few centimeters, surface debris suppresses melt rates. Continuous debris cover can therefore reduce the mass balance gradient in the ablation zone, leading to increases in glacier length. In order to quantify feedbacks in the debris-glacier-climate system, we developed a 2D long-valley numerical glacier model that includes deposition of debris on the glacier surface, and both englacial and supraglacial debris advection. We ran 120 simulations in which a steady state debris-free glacier responds to a step increase of surface debris deposition. Simulated glaciers advance to new steady states in which ice accumulation equals ice ablation, and debris input equals debris loss from the glacier. The debris flux onto the glacier surface, and the details of the relationship between debris thickness and melt rate strongly control glacier length. Debris deposited near the equilibrium-line altitude, where ice discharge is high, results in the greatest glacier extension when other debris-related variables are held constant. Continuous debris cover reduces ice discharge gradients, ice thickness gradients, and velocity gradients relative to debris-free glaciers forced by the same climate. Debris-forced glacier extension decreases the ratio of accumulation zone to total glacier area (AAR). The model reproduces first-order relationships between debris cover, AARs, and glacier surface velocities reported from glaciers in High Asia. We also explore the response of debris-covered glaciers to increases in the equilibrium-line altitude (climate warming). We highlight the conditions required to generate a low surface velocity 'dead' ice terminal reach during a warming climate, and the associated increase of fractional glacier surface debris. We also compare our debris-covered glacier climate response results with data from glaciers in High Asia. Our model provides a quantitative, theoretical

  11. Global Warming.

    ERIC Educational Resources Information Center

    Hileman, Bette

    1989-01-01

    States the foundations of the theory of global warming. Describes methodologies used to measure the changes in the atmosphere. Discusses steps currently being taken in the United States and the world to slow the warming trend. Recognizes many sources for the warming and the possible effects on the earth. (MVL)

  12. Modeling debris-covered glaciers: response to steady debris deposition

    NASA Astrophysics Data System (ADS)

    Anderson, Leif S.; Anderson, Robert S.

    2016-05-01

    Debris-covered glaciers are common in rapidly eroding alpine landscapes. When thicker than a few centimeters, surface debris suppresses melt rates. If continuous debris cover is present, ablation rates can be significantly reduced leading to increases in glacier length. In order to quantify feedbacks in the debris-glacier-climate system, we developed a 2-D long-valley numerical glacier model that includes englacial and supraglacial debris advection. We ran 120 simulations on a linear bed profile in which a hypothetical steady state debris-free glacier responds to a step increase of surface debris deposition. Simulated glaciers advance to steady states in which ice accumulation equals ice ablation, and debris input equals debris loss from the glacier terminus. Our model and parameter selections can produce 2-fold increases in glacier length. Debris flux onto the glacier and the relationship between debris thickness and melt rate strongly control glacier length. Debris deposited near the equilibrium-line altitude, where ice discharge is high, results in the greatest glacier extension when other debris-related variables are held constant. Debris deposited near the equilibrium-line altitude re-emerges high in the ablation zone and therefore impacts melt rate over a greater fraction of the glacier surface. Continuous debris cover reduces ice discharge gradients, ice thickness gradients, and velocity gradients relative to initial debris-free glaciers. Debris-forced glacier extension decreases the ratio of accumulation zone to total glacier area (AAR). Our simulations reproduce the "general trends" between debris cover, AARs, and glacier surface velocity patterns from modern debris-covered glaciers. We provide a quantitative, theoretical foundation to interpret the effect of debris cover on the moraine record, and to assess the effects of climate change on debris-covered glaciers.

  13. SPECS: Orbital debris removal

    NASA Technical Reports Server (NTRS)

    1991-01-01

    The debris problem has reached a stage at which the risk to satellites and spacecraft has become substantial in low Earth orbit (LEO). This research discovered that small particles posed little threat to spacecraft because shielding can effectively prevent these particles from damaging the spacecraft. The research also showed that, even though collision with a large piece of debris could destroy the spacecraft, the large pieces of debris pose little danger because they can be tracked and the spacecraft can be maneuvered away from these pieces. Additionally, there are many current designs to capture and remove large debris particles from the space environment. From this analysis, it was decided to concentrate on the removal of medium-sized orbital debris, that is, those pieces ranging from 1 cm to 50 cm in size. The current design incorporates a transfer vehicle and a netting vehicle to capture the medium-sized debris. The system is based near an operational space station located at 28.5 deg inclination and 400 km altitude. The system uses ground-based tracking to determine the location of a satellite breakup or debris cloud. These data are uploaded to the transfer vehicle, which proceeds to rendezvous with the debris at a lower altitude parking orbit. Next, the netting vehicle is deployed, tracks the targeted debris, and captures it. After expending the available nets, the netting vehicle returns to the transfer vehicle for a new netting module and continues to capture more debris in the target area. Once all the netting modules are expended, the transfer vehicle returns to the space station's orbit where it is resupplied with new netting modules from a space shuttle load. The new modules are launched by the shuttle from the ground and the expended modules are taken back to Earth for removal of the captured debris, refueling, and repacking of the nets. Once the netting modules are refurbished, they are taken back into orbit for reuse. In a typical mission, the

  14. SPECS: Orbital debris removal

    NASA Astrophysics Data System (ADS)

    The debris problem has reached a stage at which the risk to satellites and spacecraft has become substantial in low Earth orbit (LEO). This research discovered that small particles posed little threat to spacecraft because shielding can effectively prevent these particles from damaging the spacecraft. The research also showed that, even though collision with a large piece of debris could destroy the spacecraft, the large pieces of debris pose little danger because they can be tracked and the spacecraft can be maneuvered away from these pieces. Additionally, there are many current designs to capture and remove large debris particles from the space environment. From this analysis, it was decided to concentrate on the removal of medium-sized orbital debris, that is, those pieces ranging from 1 cm to 50 cm in size. The current design incorporates a transfer vehicle and a netting vehicle to capture the medium-sized debris. The system is based near an operational space station located at 28.5 deg inclination and 400 km altitude. The system uses ground-based tracking to determine the location of a satellite breakup or debris cloud. These data are uploaded to the transfer vehicle, which proceeds to rendezvous with the debris at a lower altitude parking orbit. Next, the netting vehicle is deployed, tracks the targeted debris, and captures it. After expending the available nets, the netting vehicle returns to the transfer vehicle for a new netting module and continues to capture more debris in the target area. Once all the netting modules are expended, the transfer vehicle returns to the space station's orbit where it is resupplied with new netting modules from a space shuttle load. The new modules are launched by the shuttle from the ground and the expended modules are taken back to Earth for removal of the captured debris, refueling, and repacking of the nets. Once the netting modules are refurbished, they are taken back into orbit for reuse. In a typical mission, the

  15. Orbital debris: A technical assessment

    NASA Technical Reports Server (NTRS)

    Gleghorn, George; Asay, James; Atkinson, Dale; Flury, Walter; Johnson, Nicholas; Kessler, Donald; Knowles, Stephen; Rex, Dietrich; Toda, Susumu; Veniaminov, Stanislav

    1995-01-01

    To acquire an unbiased technical assessment of (1) the research needed to better understand the debris environment, (2) the necessity and means of protecting spacecraft against the debris environment, and (3) potential methods of reducing the future debris hazard, NASA asked the National Research Council to form an international committee to examine the orbital debris issue. The committee was asked to draw upon available data and analyses to: characterize the current debris environment, project how this environment might change in the absence of new measures to alleviate debris proliferation, examine ongoing alleviation activities, explore measures to address the problem, and develop recommendations on technical methods to address the problems of debris proliferation.

  16. Characterization of Debris from the DebriSat Hypervelocity Test

    NASA Technical Reports Server (NTRS)

    Rivero, M.; Kleespies, J.; Patankar, K.; Fitz-Coy, N.; Liou, J.-C.; Sorge, M.; Huynh, T.; Opiela, J.; Krisko, P.; Cowardin, H.

    2015-01-01

    The DebriSat project is an effort by NASA and the DoD to update the standard break-up model for objects in orbit. The DebriSat object, a 56 kg representative LEO satellite, was subjected to a hypervelocity impact in April 2014. For the hypervelocity test, the representative satellite was suspended within a "soft-catch" arena formed by polyurethane foam panels to minimize the interactions between the debris generated from the hypervelocity impact and the metallic walls of the test chamber. After the impact, the foam panels and debris not caught by the panels were collected and shipped to the University of Florida where the project has now advanced to the debris characterization stage. The characterization effort has been divided into debris collection, measurement, and cataloguing. Debris collection and cataloguing involves the retrieval of debris from the foam panels and cataloguing the debris in a database. Debris collection is a three-step process: removal of loose debris fragments from the surface of the foam panels; X-ray imaging to identify/locate debris fragments embedded within the foam panel; extraction of the embedded debris fragments identified during the X-ray imaging process. As debris fragments are collected, they are catalogued into a database specifically designed for this project. Measurement involves determination of size, mass, shape, material, and other physical properties and well as images of the fragment. Cataloguing involves a assigning a unique identifier for each fragment along with the characterization information.

  17. Space Debris & its Mitigation

    NASA Astrophysics Data System (ADS)

    Kaushal, Sourabh; Arora, Nishant

    2012-07-01

    Space debris has become a growing concern in recent years, since collisions at orbital velocities can be highly damaging to functioning satellites and can also produce even more space debris in the process. Some spacecraft, like the International Space Station, are now armored to deal with this hazard but armor and mitigation measures can be prohibitively costly when trying to protect satellites or human spaceflight vehicles like the shuttle. This paper describes the current orbital debris environment, outline its main sources, and identify mitigation measures to reduce orbital debris growth by controlling these sources. We studied the literature on the topic Space Debris. We have proposed some methods to solve this problem of space debris. We have also highlighted the shortcomings of already proposed methods by space experts and we have proposed some modification in those methods. Some of them can be very effective in the process of mitigation of space debris, but some of them need some modification. Recently proposed methods by space experts are maneuver, shielding of space elevator with the foil, vaporizing or redirecting of space debris back to earth with the help of laser, use of aerogel as a protective layer, construction of large junkyards around international space station, use of electrodynamics tether & the latest method proposed is the use of nano satellites in the clearing of the space debris. Limitations of the already proposed methods are as follows: - Maneuvering can't be the final solution to our problem as it is the act of self-defence. - Shielding can't be done on the parts like solar panels and optical devices. - Vaporizing or redirecting of space debris can affect the human life on earth if it is not done in proper manner. - Aerogel has a threshold limit up to which it can bear (resist) the impact of collision. - Large junkyards can be effective only for large sized debris. In this paper we propose: A. The Use of Nano Tubes by creating a mesh

  18. Benefits of Active Debris Removal on the LEO Debris Population

    NASA Astrophysics Data System (ADS)

    Maniwa, Kazuaki; Hanada, Toshiya; Kawamoto, Satomi

    Since the launch of Sputnik, orbital debris population continues to increase due to ongoing space activities, on-orbit explosions, and accidental collisions. In the future, a great deal of fragments can be expected to be created by explosions and collisions. In spite of prevention of satellite and rocket upper stage explosions and other mitigation measures, debris population in low Earth orbit may not be stabilized. To better limit the growth of the future debris population, it is necessary to remove the existing debris actively. This paper studies about the effectiveness of active debris removal in low Earth orbit where the collision rate with and between space debris is high. This study does not consider economic problems, but investigates removing debris which may stabilize well the current debris population based on the concept of Japan Aerospace Exploration Agency.

  19. Meteoroid/Debris Shielding

    NASA Technical Reports Server (NTRS)

    Christiansen, Eric L.

    2003-01-01

    This report provides innovative, low-weight shielding solutions for spacecraft and the ballistic limit equations that define the shield's performance in the meteoroid/debris environment. Analyses and hypervelocity impact testing results are described that have been used in developing the shields and equations. Spacecraft shielding design and operational practices described in this report are used to provide effective spacecraft protection from meteoroid and debris impacts. Specific shield applications for the International Space Station (ISS), Space Shuttle Orbiter and the CONTOUR (Comet Nucleus Tour) space probe are provided. Whipple, Multi-Shock and Stuffed Whipple shield applications are described.

  20. On the influence of debris in glacier melt modelling: a new temperature-index model accounting for the debris thickness feedback

    NASA Astrophysics Data System (ADS)

    Carenzo, Marco; Mabillard, Johan; Pellicciotti, Francesca; Reid, Tim; Brock, Ben; Burlando, Paolo

    2013-04-01

    is comparable to the one of the physically based approach. The definition of model parameters as a function of debris thickness allows the simulation of the warming/insulating effect suggested by the Ostrem curve. We show that it is important indeed to take into account the effect of debris thickness also in empirical approaches, especially for thin debris mantles. The new DETI model is an innovative approach that can be included in continuous mass balance models of debris-covered glaciers, because of its limited data requirements. As such, we expect its application to lead to an improvement in simulations of the debris covered glacier response to climate.

  1. Response of debris-covered glaciers to climate change

    NASA Astrophysics Data System (ADS)

    Benn, D. I.; Lindsey, N.; Kathryn, H.

    2004-12-01

    The presence of supraglacial debris strongly influences glacier ablation, and the mass balance of debris-covered glaciers differs significantly from that of clean glaciers in similar climatic settings. Predicting the response of debris-covered glaciers to climate change is important for hazard mitigation strategies in many high mountain environments, especially where temporary lakes are likely to form on stagnating glacier tongues. Accurate prediction of glacier evolution requires a robust mass balance function which incorporates the effect of debris cover. We present a new model for calculating ablation beneath supraglacial debris layer from meteorological data, based on coupling the surface energy balance and conductive heat flux through the debris layer. The model performs well in a wide range of climatic settings, and results correlate well with measured melt rates in the European Alps and Svalbard. The ablation model is used to construct theoretical mass balance curves for debris covered glaciers, providing surface boundary conditions for glacier flow models. Modelled mass balance curves display reverse gradients on glacier termini where the effect of thickening debris cover with decreasing altitude outweighs that of higher air temperatures. This explains the widely-noted tendency for debris-covered glaciers to stagnate under warming climates. When the mass balance of the glacier as a whole is negative, increasing ablation with altitude causes the lower tongue to decrease in gradient. As gradients and ice thicknesses decline, the process is reinforced by a positive feedback with velocity, so less ice is delivered to the terminal zone. Low surface gradients encourage the formation of supraglacial ponds which can grow rapidly, significantly increasing mass loss from the glacier and potentially posing flood hazards.

  2. Constitutive Models for Debris-bearing Ice Layers

    NASA Astrophysics Data System (ADS)

    Moore, P. L.

    2013-12-01

    Rock debris is incorporated within many glaciers and ice sheets, particularly in basal ice layers and englacial debris bands. Field observations and laboratory experiments have shown that debris inclusions can both strengthen and weaken ice by as much as two orders of magnitude compared to debris-free ice under the same conditions. Nevertheless, models of glacier flow usually neglect any effect of debris-bearing layers. Where debris-bearing ice is present, proper treatment of its deformation could profoundly impact model results. A three-phase mechanical model is presented that reproduces many of the key observations of debris-bearing ice rheology. First order variables in the model are limited to debris concentration, particle size, solute concentration and temperature. At low debris concentrations (less than about 40% by volume), the mixture is treated under the framework of a dispersion-strengthened metal alloy but with a fluidity that is enhanced by premelted water at ice-debris interfaces. While debris strengthens the ice by interfering with the motion of dislocations, thermally-activated detachment can reduce the effect at temperatures close to melting. At these warm temperatures, recovery aided by unfrozen interfacial water acts to weaken the mixture, an effect that is further ehnanced by the presence of solutes at particle surfaces. Whether the debris-bearing ice is stronger or weaker than debris-free ice in the model depends strongly on the specific surface area of the debris and on a parameter that describes the thermal detachment of dislocations. As debris concentrations exceed about 40%, dispersion-strengthened ice flow still governs bulk deformation but the effective viscosity is further increased by enhanced strain rates in the ice "matrix" as the average inter-particle distance declines. At still higher concentrations (greater than about 52% by volume for sand), deformation is primarily frictional. The mixture is thus treated as a dilatant Coulomb

  3. Orbital Debris: A Policy Perspective

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2007-01-01

    A viewgraph presentation describing orbital debris from a policy perspective is shown. The contents include: 1) Voyage through near-Earth Space-animation; 2) What is Orbital Debris?; 3) Orbital Debris Detectors and Damage Potential; 4) Hubble Space Telescope; 5) Mir Space Station Solar Array; 6) International Space Station; 7) Space Shuttle; 8) Satellite Explosions; 9) Satellite Collisions; 10) NASA Orbital Debris Mitigation Guidelines; 11) International Space Station Jettison Policy; 12) Controlled/Uncontrolled Satellite Reentries; 13) Return of Space Objects; 14) Orbital Debris and U.S. National Space Policy; 15) U.S Government Policy Strategy; 16) Bankruptcy of the Iridium Satellite System; 17) Inter-Agency Space Debris Coordination Committee (IADC); 18) Orbital Debris at the United Nations; 19) Chinese Anti-satellite System; 20) Future Evolution of Satellite Population; and 21) Challenge of Orbital Debris

  4. The Correlation between Metallicity and Debris Disk Mass

    NASA Astrophysics Data System (ADS)

    Gáspár, András; Rieke, George H.; Ballering, Nicholas

    2016-08-01

    We find that the initial dust masses in planetary debris disks are correlated with the metallicities of their central stars. We compiled a large sample of systems, including Spitzer, the Herschel DUNES and DEBRIS surveys, and WISE debris disk candidates. We also merged 33 metallicity catalogs to provide homogeneous [Fe/H] and {σ }[{Fe/{{H}}]} values. We analyzed this merged sample, including 222 detected disks (74 warm and 148 cold) around a total of 187 systems (some with multiple components) and 440 disks with only upper limits (125 warm and 315 cold) around a total of 360 systems. The disk dust masses at a common early evolutionary point in time were determined using our numerical disk evolutionary code, evolving a unique model for each of the 662 disks backward to an age of 1 Myr. We find that disk-bearing stars seldom have metallicities less than {{[Fe/H]}}=-0.2 and that the distribution of warm component masses lacks examples with large mass around stars of low metallicity ({{[Fe/H]}}\\lt -0.085). Previous efforts to find a correlation have been largely unsuccessful; the primary improvements supporting our result are (1) basing the study on dust masses, not just infrared excess detections; (2) including upper limits on dust mass in a quantitative way; (3) accounting for the evolution of debris disk excesses as systems age; (4) accounting fully for the range of uncertainties in metallicity measurements; and (5) having a statistically large enough sample.

  5. Modelling the feedbacks between mass balance, ice flow and debris transport to predict the response to climate change of debris-covered glaciers in the Himalaya

    NASA Astrophysics Data System (ADS)

    Rowan, Ann V.; Egholm, David L.; Quincey, Duncan J.; Glasser, Neil F.

    2015-11-01

    Many Himalayan glaciers are characterised in their lower reaches by a rock debris layer. This debris insulates the glacier surface from atmospheric warming and complicates the response to climate change compared to glaciers with clean-ice surfaces. Debris-covered glaciers can persist well below the altitude that would be sustainable for clean-ice glaciers, resulting in much longer timescales of mass loss and meltwater production. The properties and evolution of supraglacial debris present a considerable challenge to understanding future glacier change. Existing approaches to predicting variations in glacier volume and meltwater production rely on numerical models that represent the processes governing glaciers with clean-ice surfaces, and yield conflicting results. We developed a numerical model that couples the flow of ice and debris and includes important feedbacks between debris accumulation and glacier mass balance. To investigate the impact of debris transport on the response of a glacier to recent and future climate change, we applied this model to a large debris-covered Himalayan glacier-Khumbu Glacier in Nepal. Our results demonstrate that supraglacial debris prolongs the response of the glacier to warming and causes lowering of the glacier surface in situ, concealing the magnitude of mass loss when compared with estimates based on glacierised area. Since the Little Ice Age, Khumbu Glacier has lost 34% of its volume while its area has reduced by only 6%. We predict a decrease in glacier volume of 8-10% by AD2100, accompanied by dynamic and physical detachment of the debris-covered tongue from the active glacier within the next 150 yr. This detachment will accelerate rates of glacier decay, and similar changes are likely for other debris-covered glaciers in the Himalaya.

  6. In Brief: Marine debris plan

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2008-09-01

    A new U.S. federal interagency report on preventing and reducing marine debris focuses on responses to debris already in the environment, prevention of debris, research and development, and coordination among agencies. The report, released on 22 September, was prepared by 11 federal agencies and is intended to guide the strategies of federal agencies and the Interagency Marine Debris Coordinating Committee. The report is available at http://ocean.ceq.gov/about/docs/SIMOR_IMDCC_Report.pdf.

  7. On the connection of permafrost and debris flow activity in Austria

    NASA Astrophysics Data System (ADS)

    Huber, Thomas; Kaitna, Roland

    2016-04-01

    Debris flows represent a severe hazard in alpine regions and typically result from a critical combination of relief energy, water, and sediment. Hence, besides water-related trigger conditions, the availability of abundant sediment is a major control on debris flows activity in alpine regions. Increasing temperatures due to global warming are expected to affect periglacial regions and by that the distribution of alpine permafrost and the depth of the active layer, which in turn might lead to increased debris flow activity and increased interference with human interests. In this contribution we assess the importance of permafrost on documented debris flows in the past by connecting the modeled permafrost distribution with a large database of historic debris flows in Austria. The permafrost distribution is estimated based on a published model approach and mainly depends of altitude, relief, and exposition. The database of debris flows includes more than 4000 debris flow events in around 1900 watersheds. We find that 27 % of watersheds experiencing debris flow activity have a modeled permafrost area smaller than 5 % of total area. Around 7 % of the debris flow prone watersheds have an area larger than 5 %. Interestingly, our first results indicate that watersheds without permafrost experience significantly less, but more intense debris flow events than watersheds with modeled permafrost occurrence. Our study aims to contribute to a better understanding of geomorphic activity and the impact of climate change in alpine environments.

  8. Global Warming?

    ERIC Educational Resources Information Center

    Eichman, Julia Christensen; Brown, Jeff A.

    1994-01-01

    Presents information and data on an experiment designed to test whether different atmosphere compositions are affected by light and temperature during both cooling and heating. Although flawed, the experiment should help students appreciate the difficulties that researchers face when trying to find evidence of global warming. (PR)

  9. Asteroid Belts in Debris Disk Twins: Vega and Fomalhaut

    NASA Astrophysics Data System (ADS)

    Su, Kate Y.; Rieke, G.

    2013-01-01

    Nearby debris disks have been playing an important role in our understanding the complexity of the underlying planetary architectures (planets, minor bodies and debris) since their first discovery by IRAS through infrared excesses. Among them, the two early-type stars, Vega and Fomalhaut, are similar in terms of mass, age, distance and global disk properties; therefore, they are often referred as “Debris Disk Twins”. Much attention has been focused on their large, cold Kuiper-belt-analog rings because they contain the majority of the left-over planetesimals and fine debris that covers a large surface area, making them readily detectable through infrared and submillimeter observations. We present Spitzer 10-35 μm spectroscopic data centered at both stars, and identify warm, unresolved excess emission in the close vicinity of Vega for the first time. The properties of the warm excess in Vega are further characterized with ancillary photometry in the mid-infrared using data probed area within ~5" diameter from the star and resolved images in the far-infrared and submillimeter wavelengths. The Vega warm excess shares many similar properties with the one found around Fomalhaut. The emission shortward of ~30 μm from both warm components is well described as a blackbody emission of ~170 K, just above the temperature at which water ice sublimates. Interestingly, two other systems, eps Eri and HR 8799, also show such an unresolved warm component using the same approach of combining imaging and mid-infrared spectroscopy. These warm components may be analogous to our asteroid belt, but of far greater mass (fractional luminosity of ~1e-5 - 1e-6). The dust characteristic temperature and tentative detections at submillimeter suggest the warm excess arises from a planetesimal ring placed near the ice line and presumably created by processes occurring near the equivalent location in other debris systems as well. In light of the current detection limits on the planetary

  10. Space debris- ECSL Study

    NASA Astrophysics Data System (ADS)

    Lafferranderie, G.

    2002-01-01

    Despite several attempts and despite the worldwide recognition of the need of attacking it, the space debris legal issues has not been put in the agenda as a separate issue on the agenda of the COPUOS Legal Subcommittee. However for the first time, mention will appear in 2002 but only under item 5 of the Legal Subcommittee: report of activities of international organisations, here the European Centre for Space Law (ECSL). ECSL report will describe the method followed, a questionnaire widely distributed to interested persons and on a personal basis. The questionnaire tries to identify the basic concerns. From the responses received and from also analysis of positions expressed in various colloquia, articles, etc. some directions could be drawn up: do we need a "legal definition" of space debris? For which purposes? Are we in a situation fro presenting now such a legal definition able to cope with the technical evolution of the space object? Which type of legal or technical description "instrument" will be the most appropriate? Etc. One particular question is emerging: the basis of the liability for damages caused in outer space. The author wish is simply to draw the attention on concrete, immediate concerns while identifying also simple ways able to offer a framework to deal with the legal impacts coming from space debris issue. I have envisioned two other subjects that I have abandoned: .

  11. Debris Disks around White Dwarfs: The DAZ Connection

    NASA Astrophysics Data System (ADS)

    Kilic, Mukremin; von Hippel, Ted; Leggett, S. K.; Winget, D. E.

    2006-07-01

    We present near-infrared spectroscopic observations of 20 previously known DAZ white dwarfs obtained at the NASA Infrared Telescope Facility. Two of these white dwarfs (G29-38 and GD 362) are known to display significant K-band excesses due to circumstellar debris disks. Here we report the discovery of excess K-band radiation from another DAZ white dwarf, WD 0408-041 (GD 56). Using spectroscopic observations, we show that the excess radiation cannot be explained by a stellar or substellar companion, and is likely to be caused by a warm debris disk. Our observations strengthen the connection between the debris disk phenomena and the observed metal abundances in cool DAZ white dwarfs. However, we do not find any excess infrared emission from the most metal rich DAZs with Teff=16,000-20,000 K. This suggests that the metal abundances in warmer DAZ white dwarfs may require another explanation.

  12. Global warming

    NASA Astrophysics Data System (ADS)

    Houghton, John

    2005-06-01

    'Global warming' is a phrase that refers to the effect on the climate of human activities, in particular the burning of fossil fuels (coal, oil and gas) and large-scale deforestation, which cause emissions to the atmosphere of large amounts of 'greenhouse gases', of which the most important is carbon dioxide. Such gases absorb infrared radiation emitted by the Earth's surface and act as blankets over the surface keeping it warmer than it would otherwise be. Associated with this warming are changes of climate. The basic science of the 'greenhouse effect' that leads to the warming is well understood. More detailed understanding relies on numerical models of the climate that integrate the basic dynamical and physical equations describing the complete climate system. Many of the likely characteristics of the resulting changes in climate (such as more frequent heat waves, increases in rainfall, increase in frequency and intensity of many extreme climate events) can be identified. Substantial uncertainties remain in knowledge of some of the feedbacks within the climate system (that affect the overall magnitude of change) and in much of the detail of likely regional change. Because of its negative impacts on human communities (including for instance substantial sea-level rise) and on ecosystems, global warming is the most important environmental problem the world faces. Adaptation to the inevitable impacts and mitigation to reduce their magnitude are both necessary. International action is being taken by the world's scientific and political communities. Because of the need for urgent action, the greatest challenge is to move rapidly to much increased energy efficiency and to non-fossil-fuel energy sources.

  13. Eddy covariance and lysimeter measurements of moisture fluxes over supraglacial debris

    NASA Astrophysics Data System (ADS)

    Brock, Benjamin

    2015-04-01

    Supraglacial debris covers have the potential to evaporate large quantities of water derived from either sub-debris ice melt or precipitation. Currently, knowledge of evaporation and condensation rates in supraglacial debris is limited due to the difficulty of making direct measurements. This paper presents eddy covariance and lysimeter measurements of moisture fluxes made over a 0.2 m debris layer at Miage debris covered glacier, Italian Alps, during the 2013 ablation season. The meteorological data are complimented by reflectometer measurements of volumetric water fraction in the saturated and vadose zones of the debris layer. The lysimeters were designed specifically to mimic the debris cover and were embedded within the debris matrix, level with the surface. Over the ablation season, the latent heat flux is dominated by evaporation, and the flux magnitude closely follows the daily cycle of daytime solar heating and night time radiative cooling of debris. Mean flux values are of the order of 1 kg m-2 day-1, but often higher for short periods following rainfall. Condensation rates are relatively small and restricted to night time and humid conditions when the debris-atmosphere vapour pressure gradient reverses due to relatively warm air overlying cold debris. The reflectometer measurements provide evidence of vertical water movement through capillary rise in the upper part of the fine-grained debris layer, just above the saturated horizon, and demonstrate how debris bulk water content increases after rainfall. The latent heat flux responds directly to changes in wind speed, indicating that atmospheric turbulence can penetrate porous upper debris layers to the saturated horizon. Hence, vertical sorting of debris sediments and antecedent rainfall are important in determining evaporation rates, in addition to current meteorological conditions. Comparison of lysimeter measurements with rainfall data provides an estimate that between 45% and 89% of rainfall is

  14. Current Issues in Orbital Debris

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2011-01-01

    During the past two decades, great strides have been made in the international community regarding orbital debris mitigation. The majority of space-faring nations have reached a consensus on an initial set of orbital debris mitigation measures. Implementation of and compliance with the IADC and UN space debris mitigation guidelines should remain a high priority. Improvements of the IADC and UN space debris mitigation guidelines should continue as technical consensus permits. The remediation of the near-Earth space environment will require a significant and long-term undertaking.

  15. Microplastic debris in sandhoppers

    NASA Astrophysics Data System (ADS)

    Ugolini, A.; Ungherese, G.; Ciofini, M.; Lapucci, A.; Camaiti, M.

    2013-09-01

    Adults of the sandhopper Talitrus saltator were fed with dry fish food mixed with polyethylene microspheres (diameter 10-45 μm). Observations of homogenized guts revealed the presence of microspheres independently of their dimensions. The gut resident time (GRT) was recorded and most of the microspheres are expelled in 24 h. Microspheres are totally expelled in one week. Preliminary investigations did not show any consequence of microsphere ingestion on the survival capacity in the laboratory. FT-IR analyses carried out on faeces of freshly collected individuals revealed the presence of polyethylene and polypropylene. This confirms that microplastic debris could be swallowed by T. saltator in natural conditions.

  16. Space Debris Hazard Evaluation

    NASA Technical Reports Server (NTRS)

    Davison, Elmer H.; Winslow, Paul C., Jr.

    1961-01-01

    The hazard to space vehicles from natural space debris has been explored. A survey of the available information pertinent to this problem is presented. The hope is that this presentation gives a coherent picture of the knowledge to date in terms of the topic covered. The conclusion reached is that a definite hazard exists but that it can only be poorly assessed on the basis of present information. The need for direct measurement of this hazard is obvious, and some of the problems involved in making these direct measurements have been explored.

  17. Debris-covered Himalayan glaciers under a changing climate: observations and modelling of Khumbu Glacier, Nepal

    NASA Astrophysics Data System (ADS)

    Rowan, Ann; Quincey, Duncan; Egholm, David; Gibson, Morgan; Irvine-Fynn, Tristram; Porter, Philip; Glasser, Neil

    2016-04-01

    Many mountain glaciers are characterised in their lower reaches by thick layers of rock debris that insulate the glacier surface from solar radiation and atmospheric warming. Supraglacial debris modifies the response of these glaciers to climate change compared to glaciers with clean-ice surfaces. However, existing modelling approaches to predicting variations in the extent and mass balance of debris-covered glaciers have relied on numerical models that represent the processes governing glaciers with clean-ice surfaces, and yield conflicting results. Moreover, few data exist describing the mass balance of debris-covered glaciers and many observations are only made over short periods of time, but these data are needed to constrain and validate numerical modelling experiments. To investigate the impact of supraglacial debris on the response of a glacier to climate change, we developed a numerical model that couples the flow of ice and debris to include important feedbacks between mass balance, ice flow and debris accumulation. We applied this model to a large debris-covered Himalayan glacier - Khumbu Glacier in the Everest region of Nepal. Our results demonstrate that supraglacial debris prolongs the response of the glacier to warming air temperatures and causes lowering of the glacier surface in situ, concealing the magnitude of mass loss when compared with estimates based on glacierised area. Since the Little Ice Age, the volume of Khumbu Glacier has reduced by 34%, while glacier area has reduced by only 6%. We predict a further decrease in glacier volume of 8-10% by AD2100 accompanied by dynamic and physical detachment of the debris-covered tongue from the active glacier within the next 150 years. For five months during the 2014 summer monsoon, we measured temperature profiles through supraglacial debris and proglacial discharge on Khumbu Glacier. We found that temperatures at the ice surface beneath 0.4-0.7 m of debris were sufficient to promote considerable

  18. Debris flow grain size scales with sea surface temperature over glacial-interglacial timescales

    NASA Astrophysics Data System (ADS)

    D'Arcy, Mitch; Roda Boluda, Duna C.; Whittaker, Alexander C.; Araújo, João Paulo C.

    2015-04-01

    Debris flows are common erosional processes responsible for a large volume of sediment transfer across a range of landscapes from arid settings to the tropics. They are also significant natural hazards in populated areas. However, we lack a clear set of debris flow transport laws, meaning that: (i) debris flows remain largely neglected by landscape evolution models; (ii) we do not understand the sensitivity of debris flow systems to past or future climate changes; and (iii) it remains unclear how to interpret debris flow stratigraphy and sedimentology, for example whether their deposits record information about past tectonics or palaeoclimate. Here, we take a grain size approach to characterising debris flow deposits from 35 well-dated alluvial fan surfaces in Owens Valley, California. We show that the average grain sizes of these granitic debris flow sediments precisely scales with sea surface temperature throughout the entire last glacial-interglacial cycle, increasing by ~ 7 % per 1 ° C of climate warming. We compare these data with similar debris flow systems in the Mediterranean (southern Italy) and the tropics (Rio de Janeiro, Brazil), and find equivalent signals over a total temperature range of ~ 14 ° C. In each area, debris flows are largely governed by rainfall intensity during triggering storms, which is known to increase exponentially with temperature. Therefore, we suggest that these debris flow systems are transporting predictably coarser-grained sediment in warmer, stormier conditions. This implies that debris flow sedimentology is governed by discharge thresholds and may be a sensitive proxy for past changes in rainfall intensity. Our findings show that debris flows are sensitive to climate changes over short timescales (≤ 104 years) and therefore highlight the importance of integrating hillslope processes into landscape evolution models, as well as providing new observational constraints to guide this. Finally, we comment on what grain size

  19. An enhanced temperature index model for debris-covered glaciers accounting for thickness effect

    NASA Astrophysics Data System (ADS)

    Carenzo, M.; Pellicciotti, F.; Mabillard, J.; Reid, T.; Brock, B. W.

    2016-08-01

    Debris-covered glaciers are increasingly studied because it is assumed that debris cover extent and thickness could increase in a warming climate, with more regular rockfalls from the surrounding slopes and more englacial melt-out material. Debris energy-balance models have been developed to account for the melt rate enhancement/reduction due to a thin/thick debris layer, respectively. However, such models require a large amount of input data that are not often available, especially in remote mountain areas such as the Himalaya, and can be difficult to extrapolate. Due to their lower data requirements, empirical models have been used extensively in clean glacier melt modelling. For debris-covered glaciers, however, they generally simplify the debris effect by using a single melt-reduction factor which does not account for the influence of varying debris thickness on melt and prescribe a constant reduction for the entire melt across a glacier. In this paper, we present a new temperature-index model that accounts for debris thickness in the computation of melt rates at the debris-ice interface. The model empirical parameters are optimized at the point scale for varying debris thicknesses against melt rates simulated by a physically-based debris energy balance model. The latter is validated against ablation stake readings and surface temperature measurements. Each parameter is then related to a plausible set of debris thickness values to provide a general and transferable parameterization. We develop the model on Miage Glacier, Italy, and then test its transferability on Haut Glacier d'Arolla, Switzerland. The performance of the new debris temperature-index (DETI) model in simulating the glacier melt rate at the point scale is comparable to the one of the physically based approach, and the definition of model parameters as a function of debris thickness allows the simulation of the nonlinear relationship of melt rate to debris thickness, summarised by the

  20. Asteroid Belts in Debris Disk Twins: Vega and Fomalhaut

    NASA Technical Reports Server (NTRS)

    Su, Kate Y. L.; Rieke, George H.; Malhortra, Renu; Stapelfeldt, Karl R.; Hughes, A. Meredith; Bonsor, Amy; Wilner, David J.; Balog, Zoltan; Watson, Dan M.; Werner, Michael W.; Misselt, Karl A.

    2013-01-01

    Vega and Fomalhaut are similar in terms of mass, ages, and global debris disk properties; therefore, they are often referred to as debris disk twins. We present Spitzer 10-35 micrometers spectroscopic data centered at both stars and identify warm, unresolved excess emission in the close vicinity of Vega for the first time. The properties of the warm excess in Vega are further characterized with ancillary photometry in the mid-infrared and resolved images in the far-infrared and submillimeter wavelengths. The Vega warm excess shares many similar properties with the one found around Fomalhaut. The emission shortward of approximately 30 micrometers from both warm components is well described as a blackbody emission of approximately 170 K. Interestingly, two other systems, Eri and HR 8799, also show such an unresolved warm dust using the same approach. These warm components may be analogous to the solar system s zodiacal dust cloud, but of far greater mass (fractional luminosity of approximately 10(exp-5) to 10(exp-6) compared to 10(exp-8) to 10(exp-7). The dust temperature and tentative detections in the submillimeter suggest that the warm excess arises from dust associated with a planetesimal ring located near the water-frost line and presumably created by processes occurring at similar locations in other debris systems as well. We also review the properties of the 2 micrometers hot excess around Vega and Fomalhaut, showing that the dust responsible for the hot excess is not spatially associated with the dust we detected in the warm belt.We suggest it may arise from hot nano grains trapped in the magnetic field of the star. Finally, the separation between the warm and cold belt is rather large with an orbital ratio greater than or approximately 10 in all four systems. In light of the current upper limits on the masses of planetary objects and the large gap, we discuss the possible implications for their underlying planetary architecture and suggest that multiple, low

  1. ASTEROID BELTS IN DEBRIS DISK TWINS: VEGA AND FOMALHAUT

    SciTech Connect

    Su, Kate Y. L.; Rieke, George H.; Misselt, Karl A.; Malhotra, Renu; Stapelfeldt, Karl R.; Hughes, A. Meredith; Bonsor, Amy; Balog, Zoltan; Watson, Dan M.; Werner, Michael W.

    2013-02-15

    Vega and Fomalhaut are similar in terms of mass, ages, and global debris disk properties; therefore, they are often referred to as 'debris disk twins'. We present Spitzer 10-35 {mu}m spectroscopic data centered at both stars and identify warm, unresolved excess emission in the close vicinity of Vega for the first time. The properties of the warm excess in Vega are further characterized with ancillary photometry in the mid-infrared and resolved images in the far-infrared and submillimeter wavelengths. The Vega warm excess shares many similar properties with the one found around Fomalhaut. The emission shortward of {approx}30 {mu}m from both warm components is well described as a blackbody emission of {approx}170 K. Interestingly, two other systems, {epsilon} Eri and HR 8799, also show such an unresolved warm dust using the same approach. These warm components may be analogous to the solar system's zodiacal dust cloud, but of far greater mass (fractional luminosity of {approx}10{sup -5} to 10{sup -6} compared to 10{sup -8} to 10{sup -7}). The dust temperature and tentative detections in the submillimeter suggest that the warm excess arises from dust associated with a planetesimal ring located near the water-frost line and presumably created by processes occurring at similar locations in other debris systems as well. We also review the properties of the 2 {mu}m hot excess around Vega and Fomalhaut, showing that the dust responsible for the hot excess is not spatially associated with the dust we detected in the warm belt. We suggest it may arise from hot nano grains trapped in the magnetic field of the star. Finally, the separation between the warm and cold belt is rather large with an orbital ratio {approx}>10 in all four systems. In light of the current upper limits on the masses of planetary objects and the large gap, we discuss the possible implications for their underlying planetary architecture and suggest that multiple, low-mass planets likely reside between the

  2. Orbital Debris Studies at NASA

    NASA Technical Reports Server (NTRS)

    Stansbery, Gene; Krisko, Paula; Whitlock, Dave

    2007-01-01

    Any discussion of expanding the capabilities of Space Surveillance Networks to include tracking and cataloging smaller objects will require a good understanding of orbital debris. In the current U.S. catalog of over 11,000 objects, more than 50% are classified as "debris" to include fragmentation debris, operational debris, liquid metal coolant, and Westford needles. If the catalog is increased to 100,000 objects by lowering the tracked object size threshold, almost all of the additional objects will be orbital debris. The Orbital Debris Program Office has been characterizing the small orbital debris environment through measurements and modeling for many years. This presentation will specifically discuss two different studies conducted at NASA. The first study was done in 1992 and examined the requirements and produced a conceptual design for a Collision Avoidance Network to protect the Space Station Freedom from centimeter sized orbital debris while minimizing maneuvers. The second study was conducted last year and produced NASA s estimate of the orbital population for the years 2015 and 2030 for objects 2 cm and larger.

  3. Seabirds and floating plastic debris.

    PubMed

    Cadée, Gerhard C

    2002-11-01

    80% of floating plastic debris freshly washed ashore on a Dutch coast showed peckmarks made by birds at sea. They either mistake these debris for cuttlebones or simply test all floating objects. Ingestion of plastic is deleterious for marine organisms. It is urgent to set measures to plastic litter production.

  4. Space debris modeling at NASA

    NASA Astrophysics Data System (ADS)

    Johnson, Nicholas L.

    2001-10-01

    Since the Second European Conference on Space Debris in 1997, the Orbital Debris Program Office at the NASA Johnson Space Center has undertaken a major effort to update and improve the principal software tools employed to model the space debris environment and to evaluate mission risks. NASA's orbital debris engineering model, ORDEM, represents the current and near-term Earth orbital debris population from the largest spacecraft to the smallest debris in a manner which permits spacecraft engineers and experimenters to estimate the frequency and velocity with which a satellite may be struck by debris of different sizes. Using expanded databases and a new program design, ORDEM2000 provides a more accurate environment definition combined with a much broader array of output products in comparison with its predecessor, ORDEM96. Studies of the potential long-term space debris environment are now conducted with EVOVLE 4.0, which incorporates significant advances in debris characterization and breakup modeling. An adjunct to EVOLVE 4.0, GEO EVOLVE has been created to examine debris issues near the geosynchronous orbital regime. In support of NASA Safety Standard (NSS) 1740.14, which establishes debris mitigation guidelines for all NASA space programs, a set of evaluation tools called the Debris Assessment Software (DAS) is specifically designed for program offices to determine whether they are in compliance with NASA debris mitigation guidelines. DAS 1.5 has recently been completed with improved WINDOWS compatibility and graphics functions. DAS 2.0 will incorporate guideline changes in a forthcoming revision to NSS 1740.14. Whereas DAS contains a simplified model to calculate possible risks associated with satellite reentries, NASA's higher fidelity Object Reentry Survival Analysis Tool (ORSAT) has been upgraded to Version 5.0. With the growing awareness of the potential risks posed by uncontrolled satellite reentries to people and property on Earth, the application of

  5. An Introduction to Space Debris

    NASA Astrophysics Data System (ADS)

    Wright, David

    2008-04-01

    Space debris is any human-made object in orbit that no longer serves a useful purpose, including defunct satellites, discarded equipment and rocket stages, and fragments from the breakup of satellites and rocket stages. It is a concern because--due to its very high speed in orbit--even relatively small pieces can damage or destroy satellites in a collision. Since debris at high altitudes can stay in orbit for decades or longer, it accumulates as more is produced and the risk of collisions with satellites grows. Since there is currently no effective way to remove large amounts of debris from orbit, controlling the production of debris is essential for preserving the long-term use of space. Today there are 860 active satellites in orbit, supporting a wide range of civil and military uses. The 50 years of space activity since the launch of Sputnik 1 has also resulted in well over half a million pieces of orbiting debris larger than 1 cm in size. There are two main sources of space debris: (1) routine space activity and the accidental breakup of satellites and stages placed in orbit by such activity, and (2) the testing or use of destructive anti-satellite (ASAT) weapons that physically collide with satellites at high speed. The international community is attempting to reduce the first category by developing strict guidelines to limit the debris created as a result of routine space activities. However, the destruction of a single large spy satellite by an ASAT weapon could double the total amount of large debris in low earth orbit, and there are currently no international restrictions on these systems. This talk will give an introduction to what's in space, the origins of space debris, efforts to stem its growth, the threat it poses to satellites in orbit, and the long-term evolution of the debris population.

  6. DEBRIS DISKS IN KEPLER EXOPLANET SYSTEMS

    SciTech Connect

    Lawler, S. M.; Gladman, B.

    2012-06-10

    The Kepler mission recently identified 997 systems hosting candidate extrasolar planets, many of which are super-Earths. Realizing these planetary systems are candidates to host extrasolar asteroid belts, we use mid-infrared data from the Wide-field Infrared Survey Explorer (WISE) to search for emission from dust in these systems. We find excesses around eight stars, indicating the presence of warm to hot dust ({approx}100-500 K), corresponding to orbital distances of 0.1-10 AU for these solar-type stars. The strongest detection, KOI 1099, demands {approx}500 K dust interior to the orbit of its exoplanet candidate. One star, KOI 904, may host very hot dust ({approx}1200 K, corresponding to 0.02 AU). Although the fraction of these exoplanet-bearing stars with detectable warm excesses ({approx}3%) is similar to that found by Spitzer surveys of solar-type field stars, the excesses detectable in the WISE data have much higher fractional luminosities (L{sub dust}/L{sub *}) than most known debris disks, implying that the fraction with debris disks of comparable luminosity may actually be significantly higher. It is difficult to explain the presence of dust so close to the host stars, generally corresponding to dust rings at radii <0.3 AU; both the collisional and Poynting-Robertson drag timescales to remove dust from the system are hundreds of years or less at these distances. Assuming a steady state for these systems implies large mass consumption rates with these short removal timescales, meaning that the dust production mechanism in these systems must almost certainly be episodic in nature.

  7. Small-Scale Variations in Melt of the Debris-Covered Emmons Glacier, Mount Rainier, USA

    NASA Astrophysics Data System (ADS)

    Dits, T. M.; Nelson, L. I.; Moore, P. L.; Pasternak, J. H.

    2014-12-01

    In a warming climate the vitality of mid-latitude glaciers is an important measure of local response to global climate change. However, debris-covered glaciers can respond to climate change in a nonlinear manner. Supraglacial debris alters the energy balance at the atmosphere-glacier interface compared with debris-free glaciers, and can result in both accelerated and reduced ablation through complex processes that occur on a variety of scales. Emmons Glacier, on the northeast slope of Mount Rainier (Washington, USA), offers an opportunity to study these processes in supraglacial debris that are otherwise difficult to study in situ (e.g. Himalayan glaciers). Emmons Glacier underwent a steady advance in the late 20th century despite a warming climate, in part due to increased surface debris cover. Key energy balance variables were measured in August of 2013 and 2014 using a temporary weather station installed directly on the debris-covered terminus of Emmons Glacier. Ablation of debris-covered ice was monitored in situ with ablation stakes drilled into the debris-covered ice in a 3600 m2 grid, a size comparable to a single pixel in leading thermal remote-sensing platforms. Debris thickness at the study site ranged from 3-50 cm at the ablation stakes, and textures varied from sand and gravel to large boulders with open pore space. Daily ablation rates varied by a factor of 5 in this small area and were affected by debris thickness, texture, and moisture as well as local surface slope and aspect. On this scale, ablation rates correlated better with debris surface temperature than air temperature. Spatial gradients in ablation rate may strongly influence long-term melt rates through evolving surface topography and consequent redistribution of supraglacial debris, but cannot be resolved using thermal imagery from most current satellite platforms. A preliminary field experiment with a ground-based thermal infrared camera yielded temperature measurements with fine spatial

  8. Implementation of the hazardous debris rule

    SciTech Connect

    Sailer, J.E.

    1993-01-05

    Hazardous debris includes objects contaminated with hazardous waste. Examples of debris include tree stumps, timbers, boulders, tanks, piping, crushed drums, personal protective clothing, etc. Most of the hazardous debris encountered comes from Superfund sites and other facility remediation, although generators and treaters of hazardous waste also generate hazardous debris. Major problems associated with disposal of debris includes: Inappropriateness of many waste treatments to debris; Difficulties in obtaining representative samples; Costs associated with applying waste specific treatments to debris; Subtitle C landfill space was being used for many low hazard debris types. These factors brought about the need for debris treatment technologies and regulations that addressed these issues. The goal of such regulation was to provide treatment to destroy or remove the contamination if possible and, if this is achieved, to dispose of the cleaned debris as a nonhazardous waste. EPA has accomplished this goal through promulgation of the Hazardous Debris Rule, August 18, 1992.

  9. JSC Orbital Debris Website Description

    NASA Astrophysics Data System (ADS)

    Johnson, Nicholas L.

    2006-01-01

    Purpose: The website provides information about the NASA Orbital Debris Program Office at JSC, which is the lead NASA center for orbital debris research. It is recognized world-wide for its leadership in addressing orbital debris issues. The NASA Orbital Debris Program Office has taken the international lead in conducting measurements of the environment and in developing the technical consensus for adopting mitigation measures to protect users of the orbital environment. Work at the center continues with developing an improved understanding of the orbital debris environment and measures that can be taken to control its growth. Major Contents: Orbital Debris research is divided into the following five broad efforts. Each area of research contains specific information as follows: 1) Modeling - NASA scientists continue to develop and upgrade orbital debris models to describe and characterize the current and future debris environment. Evolutionary and engineering models are described in detail. Downloadable items include a document in PDF format and executable software. 2) Measurements - Measurements of near-Earth orbital debris are accomplished by conducting ground-based and space-based observations of the orbital debris environment. The data from these sources provide validation of the environment models and identify the presence of new sources. Radar, optical and surface examinations are described. External links to related topics are provided. 3) Protection - Orbital debris protection involves conducting hypervelocity impact measurements to assess the risk presented by orbital debris to operating spacecraft and developing new materials and new designs to provide better protection from the environment with less weight penalty. The data from this work provides the link between the environment defined by the models and the risk presented by that environment to operating spacecraft and provides recommendations on design and operations procedures to reduce the risk as

  10. Reduction of CO2 and orbital debris: can CO2 emission trading principles be applied to debris reduction?

    NASA Astrophysics Data System (ADS)

    Orlando, Giovanni; Kinnersley, Mark; Starke, Juergen; Hugel, Sebastian; Hartner, Gloria; Singh, Sanjay; Loubiere, Vincent; Staebler, Dominik-Markus; O'Brien-Organ, Christopher; Schwindt, Stefan; Serreau, Francois; Sharma, Mohit

    In the past years global pollution and the specific situation of global warming changes have been strongly influencing public opinion and thus obliged politicians to initiate/ negotiate in-ternational agreements to control, avoid or at least reduce the impact of CO2 emissions e.g. The Kyoto Protocol (1997) and the International Copenhagen conference on Climate Change (2009). In the orbital debris area the collision between the Iridium33 and Cosmos 2251 satel-lites in 2009 has again pushed to the forefront the discussion of the space pollution by space debris and the increasing risk of critical and catastrophic events during the nominal life time of space objects. It is shown by simulations that for Low Earth Orbits the critical debris situation is already achieved and the existing space objects will probably produce sufficient space debris elements -big enough -to support the cascade effect (Kessler Syndrome). In anal-ogy with CO2 emissions, potential recommendations / regulations to reduce the production of Space Debris or its permanence in orbit, are likely to open new markets involving Miti-gation and Removal of Space Debris. The principle approach for the CO2 emission trading model will be investigated and the applicability for the global space debris handling will be analysed. The major differences of the two markets will be derived and the consequences in-dicated. Potential alternative solutions will be proposed and discussed. For the example of the CO2 emission trading principles within EU and worldwide legal conditions for space debris (national / international laws and recommendations) will be considered as well as the commer-cial approach from the controlled situation of dedicated orders to a free / competitive market in steps. It is of interest to consider forms of potential industrial organisations and interna-tional co-operations to react on a similar architecture for the debris removal trading including incentives and penalties for the different

  11. 14 CFR 417.211 - Debris analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Debris analysis. 417.211 Section 417.211... TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.211 Debris analysis. (a) General. A flight safety analysis must include a debris analysis. For an orbital or suborbital launch, a debris...

  12. 14 CFR 417.211 - Debris analysis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Debris analysis. 417.211 Section 417.211... TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.211 Debris analysis. (a) General. A flight safety analysis must include a debris analysis. For an orbital or suborbital launch, a debris...

  13. 14 CFR 417.211 - Debris analysis.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 14 Aeronautics and Space 4 2013-01-01 2013-01-01 false Debris analysis. 417.211 Section 417.211... TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.211 Debris analysis. (a) General. A flight safety analysis must include a debris analysis. For an orbital or suborbital launch, a debris...

  14. 14 CFR 417.211 - Debris analysis.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 14 Aeronautics and Space 4 2012-01-01 2012-01-01 false Debris analysis. 417.211 Section 417.211... TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.211 Debris analysis. (a) General. A flight safety analysis must include a debris analysis. For an orbital or suborbital launch, a debris...

  15. 14 CFR 417.211 - Debris analysis.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Debris analysis. 417.211 Section 417.211... TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.211 Debris analysis. (a) General. A flight safety analysis must include a debris analysis. For an orbital or suborbital launch, a debris...

  16. DIAGNOSING CIRCUMSTELLAR DEBRIS DISKS

    SciTech Connect

    Hahn, Joseph M.

    2010-08-20

    A numerical model of a circumstellar debris disk is developed and applied to observations of the circumstellar dust orbiting {beta} Pictoris. The model accounts for the rates at which dust is produced by collisions among unseen planetesimals, and the rate at which dust grains are destroyed due to collisions. The model also accounts for the effects of radiation pressure, which is the dominant perturbation on the disk's smaller but abundant dust grains. Solving the resulting system of rate equations then provides the dust abundances versus grain size and dust abundances over time. Those solutions also provide the dust grains' collisional lifetime versus grain size, and the debris disk's optical depth and surface brightness versus distance from the star. Comparison to observations then yields estimates of the unseen planetesimal disk's radius, and the rate at which the disk sheds mass due to planetesimal grinding. The model can also be used to measure or else constrain the dust grain's physical and optical properties, such as the dust grains' strength, their light-scattering asymmetry parameter, and the grains' efficiency of light scattering Q{sub s}. The model is then applied to optical observations of the edge-on dust disk orbiting {beta} Pictoris, and good agreement is achieved when the unseen planetesimal disk is broad, with 75 {approx}< r {approx}< 150 AU. If it is assumed that the dust grains are bright like Saturn's icy rings (Q{sub s} = 0.7), then the cross section of dust in the disk is A{sub d} {approx_equal} 2 x 10{sup 20} km{sup 2} and its mass is M{sub d} {approx_equal} 11 lunar masses. In this case, the planetesimal disk's dust-production rate is quite heavy, M-dot {sub d{approx}}9 M {sub +} Myr{sup -1}, implying that there is or was a substantial amount of planetesimal mass there, at least 110 Earth masses. If the dust grains are darker than assumed, then the planetesimal disk's mass-loss rate and its total mass are heavier. In fact, the apparent dearth

  17. NASA Orbital Debris Baseline Populations

    NASA Technical Reports Server (NTRS)

    Krisko, Paula H.; Vavrin, A. B.

    2013-01-01

    The NASA Orbital Debris Program Office has created high fidelity populations of the debris environment. The populations include objects of 1 cm and larger in Low Earth Orbit through Geosynchronous Transfer Orbit. They were designed for the purpose of assisting debris researchers and sensor developers in planning and testing. This environment is derived directly from the newest ORDEM model populations which include a background derived from LEGEND, as well as specific events such as the Chinese ASAT test, the Iridium 33/Cosmos 2251 accidental collision, the RORSAT sodium-potassium droplet releases, and other miscellaneous events. It is the most realistic ODPO debris population to date. In this paper we present the populations in chart form. We describe derivations of the background population and the specific populations added on. We validate our 1 cm and larger Low Earth Orbit population against SSN, Haystack, and HAX radar measurements.

  18. The Dynamical Structure of HR 8799's Inner Debris Disk.

    PubMed

    Contro, B; Wittenmyer, Robert A; Horner, J; Marshall, Jonathan P

    2015-06-01

    The HR 8799 system, with its four giant planets and two debris belts, has an architecture closely mirroring that of our Solar system where the inner, warm asteroid belt and outer, cool Edgeworth-Kuiper belt bracket the giant planets. As such, it is a valuable laboratory for examining exoplanetary dynamics and debris disk-exoplanet interactions. Whilst the outer debris belt of HR 8799 has been well resolved by previous observations, the spatial extent of the inner disk remains unknown. This leaves a significant question mark over both the location of the planetesimals responsible for producing the belt's visible dust and the physical properties of those grains. We have performed the most extensive simulations to date of the inner, unresolved debris belt around HR 8799, using UNSW Australia's Katana supercomputing facility to follow the dynamical evolution of a model inner disk comprising 300,298 particles for a period of 60 Ma. These simulations have enabled the characterisation of the extent and structure of the inner disk in detail, and will in future allow us to provide a first estimate of the small-body impact rate and water delivery prospects for possible (as-yet undetected) terrestrial planet (s) in the inner system. PMID:25862330

  19. The Dynamical Structure of HR 8799's Inner Debris Disk.

    PubMed

    Contro, B; Wittenmyer, Robert A; Horner, J; Marshall, Jonathan P

    2015-06-01

    The HR 8799 system, with its four giant planets and two debris belts, has an architecture closely mirroring that of our Solar system where the inner, warm asteroid belt and outer, cool Edgeworth-Kuiper belt bracket the giant planets. As such, it is a valuable laboratory for examining exoplanetary dynamics and debris disk-exoplanet interactions. Whilst the outer debris belt of HR 8799 has been well resolved by previous observations, the spatial extent of the inner disk remains unknown. This leaves a significant question mark over both the location of the planetesimals responsible for producing the belt's visible dust and the physical properties of those grains. We have performed the most extensive simulations to date of the inner, unresolved debris belt around HR 8799, using UNSW Australia's Katana supercomputing facility to follow the dynamical evolution of a model inner disk comprising 300,298 particles for a period of 60 Ma. These simulations have enabled the characterisation of the extent and structure of the inner disk in detail, and will in future allow us to provide a first estimate of the small-body impact rate and water delivery prospects for possible (as-yet undetected) terrestrial planet (s) in the inner system.

  20. The dynamical structure of the HR8799 inner debris disk

    NASA Astrophysics Data System (ADS)

    Wittenmyer, Robert A.; Contro de Godoy, Bruna; Horner, Jonathan; Marshall, Jonathan P.

    2014-11-01

    The HR 8799 system, with its four giant planets and two debris belts, has an architecture closely mirroring that of our Solar System where the inner, warm asteroid belt and outer, cool Edgeworth-Kuiper belt bracket the giant planets. As such, it is a valuable laboratory for examining exoplanet dynamics and debris disc-exoplanet interactions. Whilst the outer debris belt of HR 8799 has been well resolved by previous observations, the spatial extent of the inner disc remains unknown, leaving a question mark over both the location of the planetesimals responsible for producing the belt's visible dust and the physical properties of those grains. We have performed the most extensive simulations to date of the inner, unresolved debris belt around HR 8799, using University of New South Wales's Katana supercomputing facility to follow the dynamical evolution of a model inner disc comprising 250,000 particles for a period of 100 million years. These simulations will (1) characterise the extent and structure of the inner disk in detail and (2) provide the first estimate of the small-body impact rate and water delivery prospects for possible (as-yet undetected) terrestrial planet(s) in the inner system.

  1. The Dynamical Structure of HR 8799's Inner Debris Disk

    NASA Astrophysics Data System (ADS)

    Contro, B.; Wittenmyer, Robert A.; Horner, J.; Marshall, Jonathan P.

    2015-06-01

    The HR 8799 system, with its four giant planets and two debris belts, has an architecture closely mirroring that of our Solar system where the inner, warm asteroid belt and outer, cool Edgeworth-Kuiper belt bracket the giant planets. As such, it is a valuable laboratory for examining exoplanetary dynamics and debris disk-exoplanet interactions. Whilst the outer debris belt of HR 8799 has been well resolved by previous observations, the spatial extent of the inner disk remains unknown. This leaves a significant question mark over both the location of the planetesimals responsible for producing the belt's visible dust and the physical properties of those grains. We have performed the most extensive simulations to date of the inner, unresolved debris belt around HR 8799, using UNSW Australia's Katana supercomputing facility to follow the dynamical evolution of a model inner disk comprising 300,298 particles for a period of 60 Ma. These simulations have enabled the characterisation of the extent and structure of the inner disk in detail, and will in future allow us to provide a first estimate of the small-body impact rate and water delivery prospects for possible (as-yet undetected) terrestrial planet (s) in the inner system.

  2. Removing orbital debris with lasers

    NASA Astrophysics Data System (ADS)

    Phipps, Claude R.; Baker, Kevin L.; Libby, Stephen B.; Liedahl, Duane A.; Olivier, Scot S.; Pleasance, Lyn D.; Rubenchik, Alexander; Trebes, James E.; Victor George, E.; Marcovici, Bogdan; Reilly, James P.; Valley, Michael T.

    2012-05-01

    Orbital debris in low Earth orbit (LEO) are now sufficiently dense that the use of LEO space is threatened by runaway collision cascading. A problem predicted more than thirty years ago, the threat from debris larger than about 1 cm demands serious attention. A promising proposed solution uses a high power pulsed laser system on the Earth to make plasma jets on the objects, slowing them slightly, and causing them to re-enter and burn up in the atmosphere. In this paper, we reassess this approach in light of recent advances in low-cost, light-weight modular design for large mirrors, calculations of laser-induced orbit changes and in design of repetitive, multi-kilojoules lasers, that build on inertial fusion research. These advances now suggest that laser orbital debris removal (LODR) is the most cost-effective way to mitigate the debris problem. No other solutions have been proposed that address the whole problem of large and small debris. A LODR system will have multiple uses beyond debris removal. International cooperation will be essential for building and operating such a system.

  3. Remote sensing of debris-covered glaciers: Change detection and analysis using multiple sensors

    NASA Astrophysics Data System (ADS)

    Ahn, Y.; Huh, K.; Mark, B. G.; La Frenierre, J.; Gulley, J. D.; Park, K.

    2013-12-01

    Debris-cover can insulate glaciers and hinder surface melting, but also challenges accurate assessment of change detection and subsequent risk evaluation of outburst floods from moraine-dammed supra-glacial lakes that endanger downstream inhabitants. These events have been predicted to increase frequency along with the coverage of debris as warming accelerates. Enhanced monitoring capability from optical air and space-borne sensors has improved the detection of changes in surface-derived characteristics such as areal and volumetric fluctuations as well as glacier velocity over debris-covered glaciers, improving the accuracy of geometric and temporal resolutions in hydrological analysis. In this study we present case studies from Nepal, Peru and Ecuador focusing on: 1) time series of debris-coverage and moraine-dammed lakes; and 2) the relationship of remotely sensed observable quantities from different sensors such as aerial photographs, ASTER, Landsat imagery and Airborne/Terrestrial Laser Scanner.

  4. The physics of debris flows

    USGS Publications Warehouse

    Iverson, R.M.

    1997-01-01

    Recent advances in theory and experimentation motivate a thorough reassessment of the physics of debris flows. Analyses of flows of dry, granular solids and solid-fluid mixtures provide a foundation for a comprehensive debris flow theory, and experiments provide data that reveal the strengths and limitations of theoretical models. Both debris flow materials and dry granular materials can sustain shear stresses while remaining static; both can deform in a slow, tranquil mode characterized by enduring, frictional grain contacts; and both can flow in a more rapid, agitated mode characterized by brief, inelastic grain collisions. In debris flows, however, pore fluid that is highly viscous and nearly incompressible, composed of water with suspended silt and clay, can strongly mediate intergranular friction and collisions. Grain friction, grain collisions, and viscous fluid flow may transfer significant momentum simultaneously. Both the vibrational kinetic energy of solid grains (measured by a quantity termed the granular temperature) and the pressure of the intervening pore fluid facilitate motion of grains past one another, thereby enhancing debris flow mobility. Granular temperature arises from conversion of flow translational energy to grain vibrational energy, a process that depends on shear rates, grain properties, boundary conditions, and the ambient fluid viscosity and pressure. Pore fluid pressures that exceed static equilibrium pressures result from local or global debris contraction. Like larger, natural debris flows, experimental debris flows of ???10 m3 of poorly sorted, water-saturated sediment invariably move as an unsteady surge or series of surges. Measurements at the base of experimental flows show that coarse-grained surge fronts have little or no pore fluid pressure. In contrast, finer-grained, thoroughly saturated debris behind surge fronts is nearly liquefied by high pore pressure, which persists owing to the great compressibility and moderate

  5. The physics of debris flows

    NASA Astrophysics Data System (ADS)

    Iverson, Richard M.

    1997-08-01

    Recent advances in theory and experimentation motivate a thorough reassessment of the physics of debris flows. Analyses of flows of dry, granular solids and solid-fluid mixtures provide a foundation for a comprehensive debris flow theory, and experiments provide data that reveal the strengths and limitations of theoretical models. Both debris flow materials and dry granular materials can sustain shear stresses while remaining static; both can deform in a slow, tranquil mode characterized by enduring, frictional grain contacts; and both can flow in a more rapid, agitated mode characterized by brief, inelastic grain collisions. In debris flows, however, pore fluid that is highly viscous and nearly incompressible, composed of water with suspended silt and clay, can strongly mediate intergranular friction and collisions. Grain friction, grain collisions, and viscous fluid flow may transfer significant momentum simultaneously. Both the vibrational kinetic energy of solid grains (measured by a quantity termed the granular temperature) and the pressure of the intervening pore fluid facilitate motion of grains past one another, thereby enhancing debris flow mobility. Granular temperature arises from conversion of flow translational energy to grain vibrational energy, a process that depends on shear rates, grain properties, boundary conditions, and the ambient fluid viscosity and pressure. Pore fluid pressures that exceed static equilibrium pressures result from local or global debris contraction. Like larger, natural debris flows, experimental debris flows of ˜10 m³ of poorly sorted, water-saturated sediment invariably move as an unsteady surge or series of surges. Measurements at the base of experimental flows show that coarse-grained surge fronts have little or no pore fluid pressure. In contrast, finer-grained, thoroughly saturated debris behind surge fronts is nearly liquefied by high pore pressure, which persists owing to the great compressibility and moderate

  6. Optical Observations of Space Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Abercromby, Kira; Rodriquez, Heather; Barker, Edwin S.; Kelecy, Thomas

    2008-01-01

    This viewgraph presentation reviews the use of optical telescopes to observe space debris. .It will present a brief review of how the survey is conducted, and what some of the significant results encompass. The goal is to characterize the population of debris objects at GEO, with emphasis on the faint object population. Because the survey observations extend over a very short arc (5 minutes), a full six parameter orbit can not be determined. Recently we have begun to use a second telescope, the 0.9-m at CTIO, as a chase telescope to do follow-up observations of potential GEO debris candidates found by MODEST. With a long enough sequence of observations, a full six-parameter orbit including eccentricity can be determined. The project has used STK since inception for planning observing sessions based on the distribution of bright cataloged objects and the anti-solar point (to avoid eclipse). Recently, AGI's Orbit Determination Tool Kit (ODTK) has been used to determine orbits, including the effects of solar radiation pressure. Since an unknown fraction of the faint debris at GEO has a high area-to-mass ratio (A/M), the orbits are perturbed significantly by solar radiation. The ODTK analysis results indicate that temporal variations in the solar perturbations, possibly due to debris orientation dynamics, can be estimated in the OD process. Additionally, the best results appear to be achieved when solar forces orthogonal to the object-Sun line are considered. Determining the A/M of individual objects and the distribution of A/M values of a large sample of debris is important to understanding the total population of debris at GEO

  7. Space Debris Environment Remediation Concepts

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.; Klinkrad, Heiner

    2009-01-01

    Long-term projections of the space debris environment indicate that even drastic measures, such as an immediate, complete halt of launch and release activities, will not result in a stable environment of man-made space objects. Collision events between already existing space hardware will within a few decades start to dominate the debris population, and result in a net increase of the space debris population, also in size regimes which may cause further catastrophic collisions. Such a collisional cascading will ultimately lead to a run-away situation ("Kessler syndrome"), with no further possibility of human intervention. The International Academy of Astronautics (IAA) has been investigating the status and the stability of the space debris environment in several studies by first looking into space traffic management possibilities and then investigating means of mitigating the creation of space debris. In an ongoing activity, an IAA study group looks at ways of active space debris environment remediation. In contrast to the former mitigation study, the current activity concentrates on the active removal of small and large objects, such as defunct spacecraft, orbital stages, and mission-related objects, which serve as a latent mass reservoir that fuels initial catastrophic collisions and later collisional cascading. The paper will outline different mass removal concepts, e.g. based on directed energy, tethers (momentum exchange or electrodynamic), aerodynamic drag augmentation, solar sails, auxiliary propulsion units, retarding surfaces, or on-orbit capture. Apart from physical principles of the proposed concepts, their applicability to different orbital regimes, and their effectiveness concerning mass removal efficiency will be analyzed. The IAA activity on space debris environment remediation is a truly international project which involves more than 23 contributing authors from 9 different nations.

  8. Hydroplaning and submarine debris flows

    NASA Astrophysics Data System (ADS)

    de Blasio, Fabio V.; Engvik, Lars; Harbitz, Carl B.; ElverhøI, Anders

    2004-01-01

    Examination of submarine clastic deposits along the continental margins reveals the remnants of holocenic or older debris flows with run-out distances up to hundreds of kilometers. Laboratory experiments on subaqueous debris flows, where typically one tenth of a cubic meter of material is dropped down a flume, also show high velocities and long run-out distances compared to subaerial debris flows. Moreover, they show the tendency of the head of the flow to run out ahead of the rest of the body. The experiments reveal the possible clue to the mechanism of long run-out. This mechanism, called hydroplaning, begins as the dynamic pressure at the front of the debris flow becomes of the order of the pressure exerted by the weight of the sediment. In such conditions a layer of water can intrude under the sediment with a lubrication effect and a decrease in the resistance forces between the sediment and the seabed. A physical-mathematical model of hydroplaning is presented and investigated numerically. The model is applied to both laboratory- and field-scale debris flows. Agreement with laboratory experiments makes us confident in the extrapolation of our model to natural flows and shows that long run-out distances can be naturally attained.

  9. Biological response to prosthetic debris

    PubMed Central

    Bitar, Diana; Parvizi, Javad

    2015-01-01

    Joint arthroplasty had revolutionized the outcome of orthopaedic surgery. Extensive and collaborative work of many innovator surgeons had led to the development of durable bearing surfaces, yet no single material is considered absolutely perfect. Generation of wear debris from any part of the prosthesis is unavoidable. Implant loosening secondary to osteolysis is the most common mode of failure of arthroplasty. Osteolysis is the resultant of complex contribution of the generated wear debris and the mechanical instability of the prosthetic components. Roughly speaking, all orthopedic biomaterials may induce a universal biologic host response to generated wear débris with little specific characteristics for each material; but some debris has been shown to be more cytotoxic than others. Prosthetic wear debris induces an extensive biological cascade of adverse cellular responses, where macrophages are the main cellular type involved in this hostile inflammatory process. Macrophages cause osteolysis indirectly by releasing numerous chemotactic inflammatory mediators, and directly by resorbing bone with their membrane microstructures. The bio-reactivity of wear particles depends on two major elements: particle characteristics (size, concentration and composition) and host characteristics. While any particle type may enhance hostile cellular reaction, cytological examination demonstrated that more than 70% of the debris burden is constituted of polyethylene particles. Comprehensive understanding of the intricate process of osteolysis is of utmost importance for future development of therapeutic modalities that may delay or prevent the disease progression. PMID:25793158

  10. Warm Disks from Giant Impacts

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2015-10-01

    In the process of searching for exoplanetary systems, weve discovered tens of debris disks close around distant stars that are especially bright in infrared wavelengths. New research suggests that we might be looking at the late stages of terrestrial planet formation in these systems.Forming Terrestrial PlanetsAccording to the widely-accepted formation model for our solar-system, protoplanets the size of Mars formed within a protoplanetary disk around our Sun. Eventually, the depletion of the gas in the disk led the orbits of these protoplanets to become chaotically unstable. Finally, in the giant impact stage, many of the protoplanets collided with each other ultimately leading to the formation of the terrestrial planets and their moons as we know them today.If giant impact stages occur in exoplanetary systems, too leading to the formation of terrestrial exoplanets how would we detect this process? According to a study led by Hidenori Genda of the Tokyo Institute of Technology, we might be already be witnessing this stage in observations of warm debris disks around other stars. To test this, Genda and collaborators model giant impact stages and determine what we would expect to see from a system undergoing this violent evolution.Modeling CollisionsSnapshots of a giant impact in one of the authors simulations. The collision causes roughly 0.05 Earth masses of protoplanetary material to be ejected from the system. Click for a closer look! [Genda et al. 2015]The collaborators run a series of simulations evolving protoplanetary bodies in a solar system. The simulations begin 10 Myr into the lifetime of the solar system, i.e., after the gas from the protoplanetary disk has had time to be cleared and the protoplanetary orbits begin to destabilize. The simulations end when the protoplanets are done smashing into each other and have again settled into stable orbits, typically after ~100 Myr.The authors find that, over an average giant impact stage, the total amount of

  11. Biodiversity: invasions by marine life on plastic debris.

    PubMed

    Barnes, David K A

    2002-04-25

    Colonization by alien species poses one of the greatest threats to global biodiversity. Here I investigate the colonization by marine organisms of drift debris deposited on the shores of 30 remote islands from the Arctic to the Antarctic (across all oceans) and find that human litter more than doubles the rafting opportunities for biota, particularly at high latitudes. Although the poles may be protected from invasion by freezing sea surface temperatures, these may be under threat as the fastest-warming areas anywhere are at these latitudes. PMID:11976671

  12. Debris Flows and Related Phenomena

    NASA Astrophysics Data System (ADS)

    Ancey, C.

    Torrential floods are a major natural hazard, claiming thousands of lives and millions of dollars in lost property each year in almost all mountain areas on the Earth. After a catastrophic eruption of Mount St. Helen in the USA in May 1980, water from melting snow, torrential rains from the eruption cloud, and water displaced from Spirit Lake mixed with deposited ash and debris to produce very large debris flows and cause extensive damage and loss of life [1]. During the 1985 eruption of Nevado del Ruiz in Colombia, more than 20,000 people perished when a large debris flow triggered by the rapid melting of snow and ice at the volcano summit, swept through the town of Armero [2]. In 1991, the eruption of Pinatubo volcano in the Philippines disperses more than 5 cubic kilometres of volcanic ash into surrounding valleys. Much of that sediment has subsequently been mobilised as debris flows by typhoon rains and has devastated more than 300 square kilometres of agricultural land. Even, in Eur opean countries, recent events that torrential floods may have very destructive effects (Sarno and Quindici in southern Italy in May 1998, where approximately 200 people were killed). The catastrophic character of these floods in mountainous watersheds is a consequence of significant transport of materials associated with water flows. Two limiting flow regimes can be distinguished. Bed load and suspension refer to dilute transport of sediments within water. This means that water is the main agent in the flow dynamics and that the particle concentration does not exceed a few percent. Such flows are typically two-phase flows. In contrast, debris flows are mas s movements of concentrated slurries of water, fine solids, rocks and boulders. As a first approximation, debris flows can be treated as one-phase flows and their flow properties can be studied using classical rheological methods. The study of debris flows is a very exciting albeit immature science, made up of disparate elements

  13. DebriSat Project Update and Planning

    NASA Technical Reports Server (NTRS)

    Sorge, M.; Krisko, P. H.

    2016-01-01

    DebriSat Reporting Topics: DebriSat Fragment Analysis Calendar; Near-term Fragment Extraction Strategy; Fragment Characterization and Database; HVI (High-Velocity Impact) Considerations; Requirements Document.

  14. NASA Orbital Debris Requirements and Best Practices

    NASA Technical Reports Server (NTRS)

    Hull, Scott

    2014-01-01

    Limitation of orbital debris accumulation is an international and national concern, reflectedin NASA debris limitation requirements. These requirements will be reviewed, along with some practices that can be employed to achieve the requirements.

  15. Physical Properties of Supraglacial Debris on Mars

    NASA Astrophysics Data System (ADS)

    Baker, D. M. H.; Carter, L. M.

    2016-09-01

    The thickness and physical properties of surface debris preserving glacial ice in the mid-latitudes of Mars is assessed using crater morphology and radar sounding data. We suggest that this debris layer is much thicker than has been hypothesized.

  16. Debris Flows Within The Greater Caucasus Northern Slope

    NASA Astrophysics Data System (ADS)

    Panova, S.

    Debris flows are recorded everywhere within the Greater Caucasus northern slope. In last decades studies of debris flows appeared to be very important due to an intensive anthropogenic activity in the mountainous areas. Debris flow spatial distribution, as well as their genesis and means of protection are critical, too. The studied terri- tory has significant absolute altitudes, especially in the central and eastern parts. Also large amount of atmospheric precipitation with maximum in a warm period is typical for the region. Modern glaciation with soil-covered moraine deposits of modern and Holocene age is developed in the region. Geological and geomorphological conditions lead to debris flows formation within the entire territory. However, the amount of atmospheric precipitation drastically decreases from west to east and in the eastern part (Dagestan) debris flow is less active than in the central even under the presence of enormous amounts of loose detrital material of different genesis. In the western part debris flows are less developed due to insignificant altitudes and considerable forest coverage and soil-cover. Powerful modern glaciation with vast development of purely moraine and fluvial-glacial deposits results in intensive debris flow activity in the central part of the northern slope (the Terek river basin). In the upper reaches of all the Terek tributaries moraine deposits reach up to several dozen meters. They are widespread at altitudes higher than 2000 m (above the forest boundary) and almost everywhere uncovered by soils. They are a key source of sediments under debris flow formation. Within the Greater Caucasus northern slope there are 1700 debris flow basins with the total area about 7000 km2. Their average area is 4.0 km2 with minimum 0.20 km2 and maximum 173.8 km2. Moreover, there are many riverbeds in the area where form mountain mud floods more than 3000 km long. Debris flows occur between January and October with clear altitudinal zoning

  17. UN COPUOS Space Debris Guidelines

    NASA Astrophysics Data System (ADS)

    Portelli, Claudio

    The Space systems today provide growing benefits to enhance the quality of humankind. However as a by product, the orbiting objects inevitably leaves some debris which after 50 years of space activities represent a concern for all space agencies and manufacturers and operators. Since last year no international agreement was in place to mitigate the growing population of space debris objects. The successful result obtained at UN COPUOS in 2007 and available in the OOSA web site, now gives to the public, a set of voluntary international guidelines that could, if adopted by each space fairing Country, help in maintaining the present space environment. More further steps are necessary in the future to define a legal and normative framework. The paper will present the seven established UN Space Debris guidelines as well as examples of the minimum steps to be carried out at national level to enable the UN COPUOS to start the discussion of the legal aspect associated with the space debris issue.

  18. A Passive Nuclear Debris Collector.

    ERIC Educational Resources Information Center

    Griffin, John J.; And Others

    1979-01-01

    Describes a nuclear debris collector which removes trace substances from the lower atmosphere during rainfall. Suggests that the collector could be implemented into courses at various educational levels and could result in developing a network for monitoring the geographical extent of nuclear contamination. (Author/SA)

  19. Simulations of SSLV Ascent and Debris Transport

    NASA Technical Reports Server (NTRS)

    Rogers, Stuart; Aftosmis, Michael; Murman, Scott; Chan, William; Gomez, Ray; Gomez, Ray; Vicker, Darby; Stuart, Phil

    2006-01-01

    A viewgraph presentation on Computational Fluid Dynamic (CFD) Simulation of Space Shuttle Launch Vehicle (SSLV) ascent and debris transport analysis is shown. The topics include: 1) CFD simulations of the Space Shuttle Launch Vehicle ascent; 2) Debris transport analysis; 3) Debris aerodynamic modeling; and 4) Other applications.

  20. Orbital Debris and Future Environment Remediation

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi

    2011-01-01

    This slide presentation is an overview of the historical and current orbital debris environment. Included is information about: Projected growth of the future debris population, The need for active debris removal (ADR), A grand challenge for the 21st century and The forward path

  1. Applying Knowledge from Terrestrial Debris-Covered Glaciers to Constrain the Evolution of Martian Debris-Covered Ice

    NASA Astrophysics Data System (ADS)

    Koutnik, M. R.; Pathare, A. V.; Todd, C.; Waddington, E.; Christian, J. E.

    2016-09-01

    We will discuss the application of terrestrial knowledge on debris emplacement, the effects of debris on glacier-surface topography, debris transport by ice flow, deformation of debris-laden ice, and atmosphere-glacier feedbacks to Mars ice.

  2. Photometric Studies of GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Cowardin, Heather M.; Barker, Edwin; Abercromby, Kira J.; Foreman, Gary; Horstman, Matt

    2009-01-01

    The photometric signature of a debris object can be useful in determining what the physical characteristics of a piece of debris are. We report on optical observations in multiple filters of debris at geosynchronous Earth orbit (GEO). Our sample is taken from GEO objects discovered in a survey with the University of Michigan's 0.6-m aperture Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the SMARTS (Small and Medium Aperture Research Telescope System) 0.9-m at CTIO for orbits and photometry. Our goal is to determine 6 parameter orbits and measure colors for all objects fainter than R = 15 th magnitude that are discovered in the MODEST survey. At this magnitude the distribution of observed angular rates changes significantly from that of brighter objects. There are two objectives: 1. Estimate the orbital distribution of objects selected on the basis of two observational criteria: brightness (magnitude) and angular rates. 2. Obtain magnitudes and colors in standard astronomical filters (BVRI) for comparison with reflectance spectra of likely spacecraft materials. What is the faint debris likely to be? In this paper we report on the photometric results. For a sample of 50 objects, more than 90 calibrated sequences of R-B-V-I-R magnitudes have been obtained with the CTIO 0.9-m. For objects that do not show large brightness variations, the colors are largely redder than solar in both B-R and R-I. The width of the color distribution may be intrinsic to the nature of the surfaces, but also could be that we are seeing irregularly shaped objects and measuring the colors at different times with just one telescope. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO 0.9-m observes in B, and MODEST in R. The CCD cameras are electronically linked together so that the start time and duration of observations are the same to better than 50 milliseconds. Thus

  3. Debris flow sensitivity to glacial-interglacial climate change - supply vs transport

    NASA Astrophysics Data System (ADS)

    D'Arcy, Mitch; Roda Boluda, Duna C.; Whittaker, Alexander C.

    2016-04-01

    Numerical models suggest that small mountain catchment-alluvial fan systems might be sensitive to climate changes over glacial-interglacial cycles, and record these palaeoclimate signals in the sedimentology of their deposits. However, these models are still largely untested, and the propagation of climate signals through simple sediment routing systems remains contentious. Here, we present detailed sedimentological records from 8 debris flow fan systems in Owens Valley, California, that capture the past ~ 120 ka of deposition. We identify a strong and sustained relationship between deposit grain size and palaeoclimate records over a full glacial-interglacial cycle, with significantly coarser-grained deposits found in warm and dry periods. Our data show that these systems are highly sensitive to climate with a rapid response timescale of < 10ka, which we attribute to rapid transfer from source to sink. This sensitive record might be explained by changes in sediment supply and/or changes in sediment mobilisation, and we evaluate these mechanisms quantitatively. We find little evidence that changes in catchment hypsometry, weathering patterns, past glaciation or sediment production can explain the grain size changes we observe on the fans. However we do find that grain size has increased exponentially with rising temperatures, at a rate that matches the intensification of storms with warming. As these debris flows are triggered by surface runoff during intense storms, we interpret that enhanced runoff rates in warm and stormy conditions are responsible for entraining larger clasts during debris flow initiation. This implies that debris flow fans might record signals of past storm intensity. Our study utilises field sedimentology and focuses on short transport distances (~ 10 km) and climate changes over ~ 1-100 ka timespans, but could additionally have important implications for how eroding landscapes might respond to future warming scenarios. We address the

  4. Segregation dynamics in debris flows

    NASA Astrophysics Data System (ADS)

    Hill, K. M.; Fei, M.

    2014-12-01

    Debris flows are massive flows consisting of mixtures of particles of different sizes and interstitial fluids such as water and mud. In sheared mixtures of different-sized (same density) particles, it is well known that larger particles tend to go up (toward the free surface), and the smaller particles, down, commonly referred to as the "Brazil-nut problem" or "kinetic sieving". When kinetic sieving fluxes are combined with advection in flows, they can give rise to a spectacular range of segregation patterns. These segregation / advection dynamics are recognized as playing a role in the coarsening of a debris flow front (its "snout") and the coarsening of the self-formed channel sides or levees. Since particle size distribution influences the flow dynamics including entrainment of bed materials, modeling segregation dynamics in debris flows is important for modeling the debris flows themselves. In sparser systems, the Brazil-nut segregation is well-modeled using kinetic theory applied to dissipative systems, where an underlying assumption involves random, uncorrelated collisions. In denser systems, where kinetic theory breaks down we have recently developed a new mixture model that demonstrates the segregation fluxes are driven by two effects associated with the kinetic stress or granular temperature (the kinetic energy associated with velocity fluctuations): (1) the difference between the partitioning of kinetic and contact stresses among the species in the mixture and (2) a kinetic stress gradient. Both model frameworks involve the temperature gradient as a driving force for segregation, but kinetic theory sends larger particles toward lower temperatures, and our mixture model sends larger particles away from lower temperatures. Which framework works under what conditions appears to depend on correlations in the flow such as those manifested in clusters and force chains. We discuss the application of each theoretical framework to representing segregation dynamics

  5. Spaceborne Sensors Track Marine Debris Circulation in the Gulf of Mexico

    NASA Technical Reports Server (NTRS)

    Reahard, Ross; Mitchell, Brandie; Lee, Lucas; Pezold, Blaise; Brook, Chris; Mallett, Candis; Barrett, Shelby; Albin, Aaron

    2011-01-01

    Marine debris is a problem for coastal areas throughout the world, including the Gulf of Mexico. To aid the NOAA Marine Debris Program in monitoring marine debris dispersal and regulating marine debris practices, sea surface height and height anomaly data provided by the Colorado Center for Astrodynamics Research at the University of Colorado, Boulder, were utilized to help assess trash and other discarded items that routinely wash ashore in southeastern Texas, at Padre Island National Seashore. These data were generated from the NASA radar altimeter satellites TOPEX/Poseidon, Jason 1, and Jason 2, as well as the European altimeter satellites ERS-1, ERS-2 (European Remote Sensing Satellite), and ENVISAT (Environmental Satellite). Sea surface temperature data from MODIS were used to study of the dynamics of the Loop Current. Sea surface height and MODIS data analysis were used to show that warm water in the core of eddies, which periodically separate from the Loop Current, can be as high as 30 cm above the surrounding water. These eddies are known to directly transfer marine debris to the western continental shelf and the elevated area of water can be tracked using satellite radar altimeter data. Additionally, using sea surface height, geostrophic velocity, and particle path data, foretracking and backtracking simulations were created. These simulation runs demonstrated that marine debris on Padre Island National Seashore may arise from a variety of sources, such as commercial fishing/shrimping, the oil and gas industry, recreational boaters, and from rivers that empty into the Gulf of Mexico.

  6. An optimal trajectory design for debris deorbiting

    NASA Astrophysics Data System (ADS)

    Ouyang, Gaoxiang; Dong, Xin; Li, Xin; Zhang, Yang

    2016-01-01

    The problem of deorbiting debris is studied in this paper. As a feasible measure, a disposable satellite would be launched, attach to debris, and deorbit the space debris using a technology named electrodynamic tether (EDT). In order to deorbit multiple debris as many as possible, a suboptimal but feasible and efficient trajectory set has been designed to allow a deorbiter satellite tour the LEO small bodies per one mission. Finally a simulation given by this paper showed that a 600 kg satellite is capable of deorbiting 6 debris objects in about 230 days.

  7. Detecting debris flows using ground vibrations

    USGS Publications Warehouse

    LaHusen, Richard G.

    1998-01-01

    Debris flows are rapidly flowing mixtures of rock debris, mud, and water that originate on steep slopes. During and following volcanic eruptions, debris flows are among the most destructive and persistent hazards. Debris flows threaten lives and property not only on volcanoes but far downstream in valleys that drain volcanoes where they arrive suddenly and inundate entire valley bottoms. Debris flows can destroy vegetation and structures in their path, including bridges and buildings. Their deposits can cover roads and railways, smother crops, and fill stream channels, thereby reducing their flood-carrying capacity and navigability.

  8. Orbital Debris Research in the United States

    NASA Technical Reports Server (NTRS)

    Stansbery, Gene

    2009-01-01

    The presentation includes information about growth of the satellite population, the U.S. Space Surveillance Network, tracking and catalog maintenance, Haystack and HAX radar observation, Goldstone radar, the Michigan Orbital Debris Survey Telescope (MODEST), spacecraft surface examinations and sample of space shuttle impacts. GEO/LEO observations from Kwajalein Atoll, NASA s Orbital Debris Engineering Model (ORDEM2008), a LEO-to-GEO Environment Debris Model (LEGEND), Debris Assessment Software (DAS) 2.0, the NASA/JSC BUMPER-II meteoroid/debris threat assessment code, satellite reentry risk assessment, optical size and shape determination, work on more complicated fragments, and spectral studies.

  9. THE DEBRIS DISK AROUND {gamma} DORADUS RESOLVED WITH HERSCHEL

    SciTech Connect

    Broekhoven-Fiene, Hannah; Matthews, Brenda C.; Booth, Mark; Kavelaars, J. J.; Koning, Alice; Kennedy, Grant M.; Wyatt, Mark C.; Sibthorpe, Bruce; Lawler, Samantha M.; Qi, Chenruo; Su, Kate Y. L.; Rieke, George H.; Wilner, David J.; Greaves, Jane S.

    2013-01-01

    We present observations of the debris disk around {gamma} Doradus, an F1V star, from the Herschel Key Programme DEBRIS (Disc Emission via Bias-free Reconnaissance in the Infrared/Submillimetre). The disk is well resolved at 70, 100, and 160 {mu}m, resolved along its major axis at 250 {mu}m, detected but not resolved at 350 {mu}m, and confused with a background source at 500 {mu}m. It is one of our best resolved targets and we find it to have a radially broad dust distribution. The modeling of the resolved images cannot distinguish between two configurations: an arrangement of a warm inner ring at several AU (best fit 4 AU) and a cool outer belt extending from {approx}55 to 400 AU or an arrangement of two cool, narrow rings at {approx}70 AU and {approx}190 AU. This suggests that any configuration between these two is also possible. Both models have a total fractional luminosity of {approx}10{sup -5} and are consistent with the disk being aligned with the stellar equator. The inner edge of either possible configuration suggests that the most likely region to find planets in this system would be within {approx}55 AU of the star. A transient event is not needed to explain the warm dust's fractional luminosity.

  10. The Debris Disk around γ Doradus Resolved with Herschel

    NASA Astrophysics Data System (ADS)

    Broekhoven-Fiene, Hannah; Matthews, Brenda C.; Kennedy, Grant M.; Booth, Mark; Sibthorpe, Bruce; Lawler, Samantha M.; Kavelaars, J. J.; Wyatt, Mark C.; Qi, Chenruo; Koning, Alice; Su, Kate Y. L.; Rieke, George H.; Wilner, David J.; Greaves, Jane S.

    2013-01-01

    We present observations of the debris disk around γ Doradus, an F1V star, from the Herschel Key Programme DEBRIS (Disc Emission via Bias-free Reconnaissance in the Infrared/Submillimetre). The disk is well resolved at 70, 100, and 160 μm, resolved along its major axis at 250 μm, detected but not resolved at 350 μm, and confused with a background source at 500 μm. It is one of our best resolved targets and we find it to have a radially broad dust distribution. The modeling of the resolved images cannot distinguish between two configurations: an arrangement of a warm inner ring at several AU (best fit 4 AU) and a cool outer belt extending from ~55 to 400 AU or an arrangement of two cool, narrow rings at ~70 AU and ~190 AU. This suggests that any configuration between these two is also possible. Both models have a total fractional luminosity of ~10-5 and are consistent with the disk being aligned with the stellar equator. The inner edge of either possible configuration suggests that the most likely region to find planets in this system would be within ~55 AU of the star. A transient event is not needed to explain the warm dust's fractional luminosity.

  11. Warm Up with Skill.

    ERIC Educational Resources Information Center

    Hoyle, R. J.; Smith, Robert F.

    1989-01-01

    Too little time is often spent on warm-up activities in the school or recreation class. Warm-ups are often perfunctory and unimaginative. Several suggestions are made for warm-up activities that incorporate both previously learned and new skills, while preparing the body for more vigorous activity. (IAH)

  12. Orbiting space debris: Dangers, measurement and mitigation

    NASA Astrophysics Data System (ADS)

    McNutt, Ross T.

    1992-06-01

    Space debris is a growing environmental problem. Accumulation of objects in earth orbit threatens space systems through the possibility of collisions and runaway debris multiplication. The amount of debris in orbit is uncertain due to the lack of information on the population of debris between 1 and 10 centimeters diameter. Collisions with debris even smaller than 1 cm can be catastrophic due to the high orbital velocities involved. Research efforts are under way at NASA, United States Space Command and the Air Force Phillips Laboratory to detect and catalog the debris population in near-earth space. Current international and national laws are inadequate to control the proliferation of space debris. Space debris is a serious problem with large economic, military, technical and diplomatic components. Actions need to be taken now to: determine the full extent of the orbital debris problem; accurately predict the future evolution of the debris population; decide the extent of the debris mitigation procedures required; implement these policies on a global basis via an international treaty. Action must be initiated now, before the loss of critical space systems such as the space shuttle or the space station.

  13. The fast debris evolution model

    NASA Astrophysics Data System (ADS)

    Lewis, H. G.; Swinerd, G. G.; Newland, R. J.; Saunders, A.

    2009-09-01

    The 'particles-in-a-box' (PIB) model introduced by Talent [Talent, D.L. Analytic model for orbital debris environmental management. J. Spacecraft Rocket, 29 (4), 508-513, 1992.] removed the need for computer-intensive Monte Carlo simulation to predict the gross characteristics of an evolving debris environment. The PIB model was described using a differential equation that allows the stability of the low Earth orbit (LEO) environment to be tested by a straightforward analysis of the equation's coefficients. As part of an ongoing research effort to investigate more efficient approaches to evolutionary modelling and to develop a suite of educational tools, a new PIB model has been developed. The model, entitled Fast Debris Evolution (FADE), employs a first-order differential equation to describe the rate at which new objects ⩾10 cm are added and removed from the environment. Whilst Talent [Talent, D.L. Analytic model for orbital debris environmental management. J. Spacecraft Rocket, 29 (4), 508-513, 1992.] based the collision theory for the PIB approach on collisions between gas particles and adopted specific values for the parameters of the model from a number of references, the form and coefficients of the FADE model equations can be inferred from the outputs of future projections produced by high-fidelity models, such as the DAMAGE model. The FADE model has been implemented as a client-side, web-based service using JavaScript embedded within a HTML document. Due to the simple nature of the algorithm, FADE can deliver the results of future projections immediately in a graphical format, with complete user-control over key simulation parameters. Historical and future projections for the ⩾10 cm LEO debris environment under a variety of different scenarios are possible, including business as usual, no future launches, post-mission disposal and remediation. A selection of results is presented with comparisons with predictions made using the DAMAGE environment model

  14. Space Tourism: Orbital Debris Considerations

    NASA Astrophysics Data System (ADS)

    Mahmoudian, N.; Shajiee, S.; Moghani, T.; Bahrami, M.

    2002-01-01

    Space activities after a phase of research and development, political competition and national prestige have entered an era of real commercialization. Remote sensing, earth observation, and communication are among the areas in which this growing industry is facing competition and declining government money. A project like International Space Station, which draws from public money, has not only opened a window of real multinational cooperation, but also changed space travel from a mere fantasy into a real world activity. Besides research activities for sending man to moon and Mars and other outer planets, space travel has attracted a considerable attention in recent years in the form of space tourism. Four countries from space fairing nations are actively involved in the development of space tourism. Even, nations which are either in early stages of space technology development or just beginning their space activities, have high ambitions in this area. This is worth noting considering their limited resources. At present, trips to space are available, but limited and expensive. To move beyond this point to generally available trips to orbit and week long stays in LEO, in orbital hotels, some of the required basic transportations, living requirements, and technological developments required for long stay in orbit are already underway. For tourism to develop to a real everyday business, not only the price has to come down to meaningful levels, but also safety considerations should be fully developed to attract travelers' trust. A serious hazard to space activities in general and space tourism in particular is space debris in earth orbit. Orbiting debris are man-made objects left over by space operations, hazardous to space missions. Since the higher density of debris population occurs in low earth orbit, which is also the same orbit of interest to space tourism, a careful attention should be paid to the effect of debris on tourism activities. In this study, after a

  15. Comparison of debris flux models

    NASA Astrophysics Data System (ADS)

    Sdunnus, H.; Beltrami, P.; Klinkrad, H.; Matney, M.; Nazarenko, A.; Wegener, P.

    The availability of models to estimate the impact risk from the man-made space debris and the natural meteoroid environment is essential for both, manned and unmanned satellite missions. Various independent tools based on different approaches have been developed in the past years. Due to an increased knowledge of the debris environment and its sources e.g. from improved measurement capabilities, these models could be updated regularly, providing more detailed and more reliable simulations. This paper addresses an in-depth, quantitative comparison of widely distributed debris flux models which were recently updated, namely ESA's MASTER 2001 model, NASA's ORDEM 2000 and the Russian SDPA 2000 model. The comparison was performed in the frame of the work of the 20t h Interagency Debris Coordination (IADC) meeting held in Surrey, UK. ORDEM 2000ORDEM 2000 uses careful empirical estimates of the orbit populations based onthree primary data sources - the US Space Command Catalog, the H ystackaRadar, and the Long Duration Exposure Facility spacecraft returned surfaces.Further data (e.g. HAX and Goldstone radars, impacts on Shuttle windows andradiators, and others) were used to adjust these populations for regions in time,size, and space not covered by the primary data sets. Some interpolation andextrapolation to regions with no data (such as projections into the future) wasprovided by the EVOLVE model. MASTER 2001The ESA MASTER model offers a full three dimensional description of theterrestrial debris distribution reaching from LEO up to the GEO region. Fluxresults relative to an orbiting target or to an inertial volume can be resolved intosource terms, impactor characteristics and orbit, as well as impact velocity anddirection. All relevant debris source terms are considered by the MASTERmodel. For each simulated source, a corresponding debris generation model interms of mass/diameter distribution, additional velocities, and directionalspreading has been developed. A

  16. Supraglacial lakes on Himalayan debris-covered glacier (Invited)

    NASA Astrophysics Data System (ADS)

    Sakai, A.; Fujita, K.

    2013-12-01

    Debris-covered glaciers are common in many of the world's mountain ranges, including in the Himalayas. Himalayan debris-covered glacier also contain abundant glacial lakes, including both proglacial and supraglacial types. We have revealed that heat absorption through supraglacial lakes was about 7 times greater than that averaged over the whole debris-covered zone. The heat budget analysis elucidated that at least half of the heat absorbed through the water surface was released with water outflow from the lakes, indicating that the warm water enlarge englacial conduits and produce internal ablation. We observed some portions at debris-covered area has caved at the end of melting season, and ice cliff has exposed at the side of depression. Those depression has suggested that roof of expanded water channels has collapsed, leading to the formation of ice cliffs and new lakes, which would accelerate the ablation of debris-covered glaciers. Almost glacial lakes on the debris-covered glacier are partially surrounded by ice cliffs. We observed that relatively small lakes had non-calving, whereas, calving has occurred at supraglacial lakes with fetch larger than 80 m, and those lakes expand rapidly. In the Himalayas, thick sediments at the lake bottom insulates glacier ice and lake water, then the lake water tends to have higher temperature (2-4 degrees C). Therefore, thermal undercutting at ice cliff is important for calving processes in the glacial lake expansion. We estimated and subaqueous ice melt rates during the melt and freeze seasons under simple geomorphologic conditions. In particular, we focused on valley wind-driven water currents in various fetches during the melt season. Our results demonstrate that the subaqueous ice melt rate exceeds the ice-cliff melt rate above the water surface when the fetch is larger than 20 m with the water temperature of 2-4 degrees C. Calculations suggest that onset of calving due to thermal undercutting is controlled by water

  17. Analysis of Geomorphic and Hydrologic Characteristics of Mount Jefferson Debris Flow, Oregon, November 6, 2006

    USGS Publications Warehouse

    Sobieszczyk, Steven; Uhrich, Mark A.; Piatt, David R.; Bragg, Heather M.

    2008-01-01

    On November 6, 2006, a rocky debris flow surged off the western slopes of Mount Jefferson into the drainage basins of Milk and Pamelia Creeks in Oregon. This debris flow was not a singular event, but rather a series of surges of both debris and flooding throughout the day. The event began during a severe storm that brought warm temperatures and heavy rainfall to the Pacific Northwest. Precipitation measurements near Mount Jefferson at Marion Forks and Santiam Junction showed that more than 16.1 centimeters of precipitation fell the week leading up to the event, including an additional 20.1 centimeters falling during the 2 days afterward. The flooding associated with the debris flow sent an estimated 15,500 to 21,000 metric tons, or 9,800 to 13,000 cubic meters, of suspended sediment downstream, increasing turbidity in the North Santiam River above Detroit Lake to an estimated 35,000 to 55,000 Formazin Nephelometric Units. The debris flow started small as rock and ice calved off an upper valley snowfield, but added volume as it eroded weakly consolidated deposits from previous debris flows, pyroclastic flows, and glacial moraines. Mud run-up markings on trees indicated that the flood stage of this event reached depths of at least 2.4 meters. Velocity calculations indicate that different surges of debris flow and flooding reached 3.9 meters per second. The debris flow reworked and deposited material ranging in size from sand to coarse boulders over a 0.1 square kilometer area, while flooding and scouring as much as 0.45 square kilometer. Based on cross-sectional transect measurements recreating pre-event topography and other field measurements, the total volume of the deposit ranged from 100,000 to 240,000 cubic meters.

  18. Comparison of space debris estimates

    SciTech Connect

    Canavan, G.H.; Judd, O.P.; Naka, R.F.

    1996-10-01

    Debris is thought to be a hazard to space systems through impact and cascading. The current environment is assessed as not threatening to defense systems. Projected reductions in launch rates to LEO should delay concerns for centuries. There is agreement between AFSPC and NASA analyses on catalogs and collision rates, but not on fragmentation rates. Experiments in the laboratory, field, and space are consistent with AFSPC estimates of the number of fragments per collision. A more careful treatment of growth rates greatly reduces long-term stability issues. Space debris has not been shown to be an issue in coming centuries; thus, it does not appear necessary for the Air Force to take additional steps to mitigate it.

  19. Debris flow study in Malaysia

    NASA Astrophysics Data System (ADS)

    Bahrin Jaafar, Kamal

    2016-04-01

    The phenomenon of debris flow occurs in Malaysia occasionally. The topography of Peningsular Malysia is characterized by the central mountain ranges running from south to north. Several parts of hilly areas with steep slopes, combined with high saturation of soil strata that deliberately increase the pore water pressure underneath the hill slope. As a tropical country Malaysia has very high intensity rainfall which is triggered the landslide. In the study area where the debris flow are bound to occur, there are a few factors that contribute to this phenomenon such as high rainfall intensity, very steep slope which an inclination more than 35 degree and sandy clay soil type which is easily change to liquidity soil. This paper will discuss the study of rainfall, mechanism, modeling and design of mitigation measure to avoid repeated failure in future in same area.

  20. Circumstellar Debris Disks and SIRTF

    NASA Astrophysics Data System (ADS)

    Backman, D. E.

    2000-05-01

    At least 15% of nearby main sequence stars are found to have far-IR excesses representing thermal emission from optically thin dust clouds. Famous prototypes of this class of objects include the Vega and beta Pictoris systems. Because destruction times for observed grains are much shorter than the system ages, the dust is known to be ``2nd generation" material released recently from hypothetical asteroid or comet parent bodies and not primordial grains persisting since system formation. The best local analogs to the main sequence debris disk systems are the inner solar system's zodiacal dust cloud and a presumed dust component of the Kuiper Belt. Planetary masses are probably required to drive planetesimals into shattering collisions and star-grazing orbits that produce dust, thus debris disks may allow inference of presence and location of planets. SIRTF will give us much-improved understanding of the frequency of debris disks around field main sequence stars, as well as the amount, size and composition of dust grains versus stellar age. This will help place our solar system into context of evolution of planetary material around normal stars.

  1. Lightcurves of Extreme Debris Disks

    NASA Astrophysics Data System (ADS)

    Rieke, George; Meng, Huan; Su, Kate

    2012-12-01

    We have recently discovered that some planetary debris disks with extreme fractional luminosities are variable on the timescale of a few years. This behavior opens a new possibility to understand planet building. Two of the known variable disks are around solar-like stars in the age range of 30 to 100+ Myr, which is the expected era of the final stages of terrestrial planet building. Such variability can be attributed to violent collisions (up to ones on the scale of the Moon-forming event between the proto-Earth and another proto-planet). The collisional cascades that are the aftermaths of these events can produce large clouds of tiny dust grains, possibly even condensed from silica vapor. A Spitzer pilot program has obtained the lightcurve of such a debris disk and caught two minor outbursts. Here we propose to continue the lightcurve monitoring with higher sampling rates and to expand it to more disks. The proposed time domain observations are a new dimension of debris disk studies that can bring unique insight to their evolution, providing important constraints on the collisional and dynamical models of terrestrial planet formation.

  2. Orbital Debris Observations with WFCAM

    NASA Astrophysics Data System (ADS)

    Kendrick, R.; Mann, B.; Read, M.; Kerr, T.; Irwin, M.; Cross, N.; Bold, M.,; Varricatt, W.; Madsen, G.

    2014-09-01

    The United Kingdom Infrared Telescope has been operating for 35 years on the summit of Mauna Kea as a premier Infrared astronomical facility. In its 35th year the telescope has been turned over to a new operating group consisting of University of Arizona, University of Hawaii and the LM Advanced Technology Center. UKIRT will continue its astronomical mission with a portion of observing time dedicated to orbital debris and Near Earth Object detection and characterization. During the past 10 years the UKIRT Wide Field CAMera (WFCAM) has been performing large area astronomical surveys in the J, H and K bands. The data for these surveys have been reduced by the Cambridge Astronomical Survey Unit in Cambridge, England and archived by the Wide Field Astronomy Unit in Edinburgh, Scotland. During January and February of 2014 the Wide Field CAMera (WFCAM) was used to scan through the geostationary satellite belt detecting operational satellites as well as nearby debris. Accurate photometric and astrometric parameters have been developed by CASU for each of the detections and all data has been archived by WFAU. This paper will present the January and February results of the orbital debris surveys with WFCAM.

  3. Space Shuttle Solid Rocket Booster Debris Assessment

    NASA Technical Reports Server (NTRS)

    Kendall, Kristin; Kanner, Howard; Yu, Weiping

    2006-01-01

    The Space Shuttle Columbia Accident revealed a fundamental problem of the Space Shuttle Program regarding debris. Prior to the tragedy, the Space Shuttle requirement stated that no debris should be liberated that would jeopardize the flight crew and/or mission success. When the accident investigation determined that a large piece of foam debris was the primary cause of the loss of the shuttle and crew, it became apparent that the risk and scope of - damage that could be caused by certain types of debris, especially - ice and foam, were not fully understood. There was no clear understanding of the materials that could become debris, the path the debris might take during flight, the structures the debris might impact or the damage the impact might cause. In addition to supporting the primary NASA and USA goal of returning the Space Shuttle to flight by understanding the SRB debris environment and capability to withstand that environment, the SRB debris assessment project was divided into four primary tasks that were required to be completed to support the RTF goal. These tasks were (1) debris environment definition, (2) impact testing, (3) model correlation and (4) hardware evaluation. Additionally, the project aligned with USA's corporate goals of safety, customer satisfaction, professional development and fiscal accountability.

  4. Discovery of Buseckite, (Fe,Zn,Mn)S, a New Mineral in Zakłodzie, an Ungrouped Enstatite-Rich Achondrite

    NASA Astrophysics Data System (ADS)

    Ma, C.; Beckett, J. R.; Rossman, G. R.

    2012-03-01

    We report here new mineral buseckite (Fe,Zn,Mn)S with a wurtzite-type hexagonal structure, and consider the origin of this phase and implications through its formation and survival for the evolution of the Zakłodzie meteorite.

  5. Glacier Debris Cover Variation in the Hindu Kush and Karakoram Himalaya

    NASA Astrophysics Data System (ADS)

    Shroder, J.; Bishop, M.; Haritashya, U.; Olsenholler, J.; Bulley, H.; Sartan, J.

    2006-12-01

    Alpine glaciers in the Hindu Kush of Afghanistan and the Western Himalaya of Pakistan are heavily debris- covered and exhibit high spatial distribution and depth variability. This property of a glacier surface plays a major role in the energy balance and partially controls the ablation rate. Consequently as the GLIMS Regional Center for Southwest Asia, we wanted to determine if climate forcing and thinning glaciers would generate more debris cover that would have an influence on the mass- balance gradient. Therefore, we conducted a multi-temporal study of debris cover variation on selected glaciers using satellite imagery. Specifically, co-registered, multi-decadal satellite imagery (Landsat ETM, TM, MSS and ASTER) were orthorectified and overlaid, from which cloud-free, snow-free subareas of the glaciers were identified. Visual and quantitative comparisons were performed on 20 small glaciers and ice- cored rock glaciers in Afghanistan, and the Batura, Biafo, and Baltoro glaciers of the Karakoram, and Raikot and Buldar glaciers in the Nanga Parbat Himalaya in Pakistan. All subareas were classified using the ISODATA clustering algorithm. Comparison complexities caused by temporally irregular variations in satellite coverage through the ablation season make interpretation difficult. Nonetheless, our results indicate a general debris-cover increase through time, as would be expected in a climatic-warming scenario. For example, the small glaciers of the Hindu Kush are down-wasting and back-wasting where they are mostly clean ice, but where they are mostly debris covered the change is less visible. In the Karakoram multiple white-ice streams from ice falls flow down-glacier, interspersed with multiple high standing or ribbed medial moraines between. These medial moraines progressively converge down-glacier to form a continuous debris cover that itself looses its ribbed character and down-wastes into a chaotic terrain of hummocks, hollows, and supraglacial lakes. The

  6. Effects of Debris Flows on Stream Ecosystems of the Klamath Mountains, Northern California

    NASA Astrophysics Data System (ADS)

    Cover, M. R.; Delafuente, J. A.; Resh, V. H.

    2006-12-01

    We examined the long-term effects of debris flows on channel characteristics and aquatic food webs in steep (0.04-0.06 slope), small (4-6 m wide) streams. A large rain-on-snow storm event in January 1997 resulted in numerous landslides and debris flows throughout many basins in the Klamath Mountains of northern California. Debris floods resulted in extensive impacts throughout entire drainage networks, including mobilization of valley floor deposits and removal of vegetation. Comparing 5 streams scoured by debris flows in 1997 and 5 streams that had not been scoured as recently, we determined that debris-flows decreased channel complexity by reducing alluvial step frequency and large woody debris volumes. Unscoured streams had more diverse riparian vegetation, whereas scoured streams were dominated by dense, even-aged stands of white alder (Alnus rhombiflia). Benthic invertebrate shredders, especially nemourid and peltoperlid stoneflies, were more abundant and diverse in unscoured streams, reflecting the more diverse allochthonous resources. Debris flows resulted in increased variability in canopy cover, depending on degree of alder recolonization. Periphyton biomass was higher in unscoured streams, but primary production was greater in the recently scoured streams, suggesting that invertebrate grazers kept algal assemblages in an early successional state. Glossosomatid caddisflies were predominant scrapers in scoured streams; heptageniid mayflies were abundant in unscoured streams. Rainbow trout (Oncorhynchus mykiss) were of similar abundance in scoured and unscoured streams, but scoured streams were dominated by young-of-the-year fish while older juveniles were more abundant in unscoured streams. Differences in the presence of cold-water (Doroneuria) versus warm-water (Calineuria) perlid stoneflies suggest that debris flows have altered stream temperatures. Debris flows have long-lasting impacts on stream communities, primarily through the cascading effects of

  7. Debris Disk Variability: Observational Test Bed for Probing Terrestrial Planet Formation

    NASA Astrophysics Data System (ADS)

    Su, Kate; Rieke, George; Jackson, Alan; Gaspar, Andras; Meng, Huan

    2014-12-01

    The newly discovered variable emission by extreme debris disks provides a unique opportunity to learn about asteroid-sized bodies in young exoplanetary systems and to explore planetesimal collisions and their aftermaths during the era of terrestrial planet building. However, the baseline of existing observations is too short to characterize this behavior well. We propose to monitor variations in seven systems where they have already been identified, and to look for them in seven more systems that are likely to behave similarly, selected because their high levels of warm dust point to elevated rates of planetesimal collisions. This program requires 130 hours of observing time and will establish the time-domain study of debris disks as an important heritage of the Spitzer warm mission.

  8. Evaluating tsunami hazards from debris flows

    USGS Publications Warehouse

    Watts, P.; Walder, J.S.; ,

    2003-01-01

    Debris flows that enter water bodies may have significant kinetic energy, some of which is transferred to water motion or waves that can impact shorelines and structures. The associated hazards depend on the location of the affected area relative to the point at which the debris flow enters the water. Three distinct regions (splash zone, near field, and far field) may be identified. Experiments demonstrate that characteristics of the near field water wave, which is the only coherent wave to emerge from the splash zone, depend primarily on debris flow volume, debris flow submerged time of motion, and water depth at the point where debris flow motion stops. Near field wave characteristics commonly may be used as & proxy source for computational tsunami propagation. This result is used to assess hazards associated with potential debris flows entering a reservoir in the northwestern USA. ?? 2003 Millpress,.

  9. Orbital debris: Technical issues and future directions

    NASA Technical Reports Server (NTRS)

    Potter, Andrew (Editor)

    1992-01-01

    An international conference on orbital debris sponsored jointly by the American Institute of Aeronautics and Astronautics, NASA, and the Department of Defense, was held in Baltimore, Maryland, 16-19 Apr. 1990. Thirty-three papers were presented. The papers were grouped into the areas of measurements, modeling, and implications of orbital debris for space flight. New radar and optical measurements of orbital debris were presented that showed the existence of a large population of small debris. Modeling of potential future environments showed that runaway growth of the debris population from random collisions was a real possibility. New techniques for shielding against orbital debris and methods for removal of satellites from orbit were discussed.

  10. The impact of debris on marine life.

    PubMed

    Gall, S C; Thompson, R C

    2015-03-15

    Marine debris is listed among the major perceived threats to biodiversity, and is cause for particular concern due to its abundance, durability and persistence in the marine environment. An extensive literature search reviewed the current state of knowledge on the effects of marine debris on marine organisms. 340 original publications reported encounters between organisms and marine debris and 693 species. Plastic debris accounted for 92% of encounters between debris and individuals. Numerous direct and indirect consequences were recorded, with the potential for sublethal effects of ingestion an area of considerable uncertainty and concern. Comparison to the IUCN Red List highlighted that at least 17% of species affected by entanglement and ingestion were listed as threatened or near threatened. Hence where marine debris combines with other anthropogenic stressors it may affect populations, trophic interactions and assemblages. PMID:25680883

  11. Variations in debris distribution and thickness on Himalayan debris-covered glaciers

    NASA Astrophysics Data System (ADS)

    Gibson, Morgan; Rowan, Ann; Irvine-Fynn, Tristram; Quincey, Duncan; Glasser, Neil

    2016-04-01

    Many Himalayan glaciers are characterised by extensive supraglacial debris coverage; in Nepal 33% of glaciers exhibit a continuous layer of debris covering their ablation areas. The presence of such a debris layer modulates a glacier's response to climatic change. However, the impact of this modulation is poorly constrained due to inadequate quantification of the impact of supraglacial debris on glacier surface energy balance. Few data exist to describe spatial and temporal variations in parameters such as debris thickness, albedo and surface roughness in energy balance calculations. Consequently, improved understanding of how debris affects Himalayan glacier ablation requires the assessment of surface energy balance model sensitivity to spatial and temporal variability in these parameters. Measurements of debris thickness, surface temperature, reflectance and roughness were collected across Khumbu Glacier during the pre- and post-monsoon seasons of 2014 and 2015. The extent of the spatial variation in each of these parameters are currently being incorporated into a point-based glacier surface energy balance model (CMB-RES, Collier et al., 2014, The Cryosphere), applied on a pixel-by-pixel basis to the glacier surface, to ascertain the sensitivity of glacier surface energy balance and ablation values to these debris parameters. A time series of debris thickness maps have been produced for Khumbu Glacier over a 15-year period (2000-2015) using Mihalcea et al.'s (2008, Cold Reg. Sci. Technol.) method, which utilised multi-temporal ASTER thermal imagery and our in situ debris surface temperature and thickness measurements. Change detection between these maps allowed the identification of variations in debris thickness that could be compared to discrete measurements, glacier surface velocity and morphology of the debris-covered area. Debris thickness was found to vary spatially between 0.1 and 4 metres within each debris thickness map, and temporally on the order of 1

  12. Best Mitigation Paths To Effectively Reduce Earth's Orbital Debris

    NASA Technical Reports Server (NTRS)

    Wiegman, Bruce M.

    2009-01-01

    This slide presentation reviews some ways to reduce the problem posed by debris in orbit around the Earth. It reviews the orbital debris environment, the near-term needs to minimize the Kessler syndrome, also known as collisional cascading, a survey of active orbital debris mitigation strategies, the best paths to actively remove orbital debris, and technologies that are required for active debris mitigation.

  13. Primary dispersal of supraglacial debris and debris cover formation on alpine glaciers

    NASA Astrophysics Data System (ADS)

    Kirkbride, M. P.; Deline, P.

    2009-04-01

    Debris-covered glaciers are receiving increased attention due to the modulation of runoff by supraglacial covers, and to the lake outburst flood hazard at many covered glacier termini. Observed increases in debris cover extents cannot presently be explained in terms of glaciological influences. The supply of englacial debris to the supraglacial zone has previously been understood only in terms of local dispersal due to differential ablation between covered and uncovered ice, for example on medial moraines. Here, we introduce the term primary dispersal to describe the process of migration of the outcrops of angled debris septa across melting, thinning ablation zones. Understanding primary debris dispersal is an essential step to understanding how supraglacial debris cover is controlled by glaciological variables, and hence is sensitive to climatically-induced fluctuation. Three measures of a glacier's ability to evacuate supraglacial debris are outlined: (1) a concentration factor describing the focussing of englacial debris into specific supraglacial mass loads; (2) the rate of migration of a septum outcrop relative to the local ice surface; and (3) a downstream velocity differential between a septum outcrop and the ice surface. (1) and (2) are inversely related, while (3) increases downglacier to explain why slow-moving, thinning ice rapidly becomes debris covered. Data from Glacier d'Estelette (Italian Alps) illustrate primary dispersal processes at a site where debris cover is increasing in common with many other shrinking alpine glaciers. We develop a model of the potential for debris cover formation and growth in different glaciological environments. This explains why glaciers whose termini are obstructed often have steep debris septa feeding debris covers which vary slowly in response to mass balance change. In contrast, at glaciers with gently-dipping debris-bearing foliation, the debris cover extent is sensitive to glaciological change. These findings

  14. The increasing wildfire and post-fire debris-flow threat in western USA, and implications for consequences of climate change

    USGS Publications Warehouse

    Cannon, Susan H.; DeGraff, Jerry

    2009-01-01

    In southern California and the intermountain west of the USA, debris flows generated from recently-burned basins pose significant hazards. Increases in the frequency and size of wildfires throughout the western USA can be attributed to increases in the number of fire ignitions, fire suppression practices, and climatic influences. Increased urbanization throughout the western USA, combined with the increased wildfire magnitude and frequency, carries with it the increased threat of subsequent debris-flow occurrence. Differences between rainfall thresholds and empirical debris-flow susceptibility models for southern California and the intermountain west indicate a strong influence of climatic and geologic settings on post-fire debris-flow potential. The linkages between wildfires, debris-flow occurrence, and global warming suggests that the experiences in the western United States are highly likely to be duplicated in many other parts of the world, and necessitate hazard assessment tools that are specific to local climates and physiographies.

  15. Small Orbital Debris Mitigation Mission Architecture

    NASA Technical Reports Server (NTRS)

    Wiegmann, Bruce M.

    2011-01-01

    Small orbital debris in LEO (1-10 cm in size) presents a clear and present danger to operational LEO spacecraft. This debris field has dramatically increased (nearly doubled) in recent years following the Chinese ASAT Test in 2007 and the Iridium/Cosmos collision in 2009. Estimates of the number of small debris have grown to 500,000 objects after these two events; previously the population was 300,000 objects. These small, untracked debris objects (appproximately 500,000) outnumber the larger and tracked objects (appproximately 20,000) by a factor 25 to 1. Therefore, the risk of the small untracked debris objects to operational spacecraft is much greater than the risk posed by the larger and tracked LEO debris objects. A recent study by The Aerospace Corporation found that the debris environment will increase the costs of maintaining a constellation of government satellites by 5%, a constellation of large commercial satellites by 11%, and a constellation of factory built satellites by 26% from $7.6 billion to $9.57 billion. Based upon these facts, the NASA Marshall Space Flight Center (MSFC) Advanced Concepts Office (ACO) performed an architecture study on Small Orbital Debris Active Removal (SODAR) using a space-based nonweapons- class laser satellite for LEO debris removal. The goal of the SODAR study was to determine the ability of a space-based laser system to remove the most pieces of debris (1 cm to 10 cm, locations unknown), in the shortest amount of time, with the fewest number of spacecraft. The ESA developed MASTER2005 orbital debris model was used to probabilistically classify the future debris environment including impact velocity, magnitude, and directionality. The study ground rules and assumptions placed the spacecraft into a high inclination Low Earth Orbit at 800 km as an initial reference point. The architecture study results found that a spacecraft with an integrated forward-firing laser is capable of reducing the small orbital debris flux within

  16. Riding a Trail of Debris

    NASA Technical Reports Server (NTRS)

    2005-01-01

    [figure removed for brevity, see original site] Figure 1

    This image taken by NASA's Spitzer Space Telescope shows the comet Encke riding along its pebbly trail of debris (long diagonal line) between the orbits of Mars and Jupiter. This material actually encircles the solar system, following the path of Encke's orbit. Twin jets of material can also be seen shooting away from the comet in the short, fan-shaped emission, spreading horizontally from the comet.

    Encke, which orbits the Sun every 3.3 years, is well traveled. Having exhausted its supply of fine particles, it now leaves a long trail of larger more gravel-like debris, about one millimeter in size or greater. Every October, Earth passes through Encke's wake, resulting in the well-known Taurid meteor shower.

    This image was captured by Spitzer's multiband imaging photometer when Encke was 2.6 times farther away than Earth is from the Sun. It is the best yet mid-infrared view of the comet at this great distance. The data are helping astronomers understand how rotating comets eject particles as they circle the Sun.

  17. Orbital Debris Observations with WFCAM

    NASA Technical Reports Server (NTRS)

    Bold, Matthew; Cross, Nick; Irwin, Mike; Kendrick, Richard; Kerr, Thomas; Lederer, Susan; Mann, Robert; Sutorius, Eckhard

    2014-01-01

    The United Kingdom Infrared Telescope has been operating for 35 years on the summit of Mauna Kea as a premier Infrared astronomical facility. In its 35th year the telescope has been turned over to a new operating group consisting of University of Arizona, University of Hawaii and the LM Advanced Technology Center. UKIRT will continue its astronomical mission with a portion of observing time dedicated to orbital debris and Near Earth Object detection and characterization. During the past 10 years the UKIRT Wide Field CAMera (WFCAM) has been performing large area astronomical surveys in the J, H and K bands. The data for these surveys have been reduced by the Cambridge Astronomical Survey Unit in Cambridge, England and archived by the Wide Field Astronomy Unit in Edinburgh, Scotland. During January and February of 2014 the Wide Field CAMera (WFCAM) was used to scan through the geostationary satellite belt detecting operational satellites as well as nearby debris. Accurate photometric and astrometric parameters have been developed by CASU for each of the detections and all data has been archived by WFAU.

  18. Processes of mass loss on a debris covered glacier determined by high resolution DEM differencing

    NASA Astrophysics Data System (ADS)

    Thompson, Sarah; Benn, Doug I.; Mertes, Jordan

    2015-04-01

    In recent years the response of debris-covered glaciers to climatic warming has seen significant disscussion. The insulating properties of a debris layer (> 5-6 cm) are well established however, in the Himalayas regionally averaged thinning rates, based on satellite laser altimetry, were found to be very similar on both debris-covered, and clean ice glaciers in the Himalayas. Overall mass loss rates on large debris covered glaciers have been discussed in conjunction with supraglacial lake development and growth but the processes involved in downwasting are often numerous and complex. Here we report on mass loss measurements, from a combination of in situ lake surveys and remote sensing, on large debris covered glacier in the Khumbu Himal Nepal. Lake bathymetry sonar surveys were conducted in the winter of 2009 and 2012, and GeoEye-1 stereo imagery was acquired in 2010 and 2012. The temporal data sets were combined and differencd to allow detailed investigation of glacial surface change over the 2 year period. Ngozumpa Glacier has a stagnant ice tongue extending down to ~4650 m asl, the lower 15 km of which is debris covered. This debris covered region is highly irregular with many hollows occupied by studded with numerous supraglacial ponds and lakes. In the early 1990s a base level lake was identified ~1 km from the glacier terminus. Our results show a highly complex pattern of glacial downwasting and lake change. Numerous examples of rapid supra glacial growth and drainage are evident, including the formation and enlargement of lakes along preexisting structures such as relic englacial drainage conduits. However, also in evidence are areas of significant lake shrinkage due to sedimentation and lake shore debris collapse. In addition to lake induced mass loss a background downwasting rate of ~ 0.5 m a-1 is evident in the lower ablation area where debris thicknesses are known to be between 1-3 m thick. The results illustrate the highly complex nature of debris

  19. Impact of permafrost degradation on debris flow initiation - a case study from the north Italian Alps

    NASA Astrophysics Data System (ADS)

    Damm, Bodo; Felderer, Astrid

    2014-05-01

    Atmospheric warming in high mountain environments causes a range of impacts, including glacier recession, reduction of permafrost extent and distribution as well as changes in thermal permafrost properties. Furthermore, it is likely that climate change affects the occurrence of natural hazards, like shallow landslides and debris flows, as their initiation is related to the degradation of the cryosphere. The present study demonstrates the importance of recent atmospheric warming for the spatial distribution of debris flow initiation in a central alpine area of the Italian Alps (Europe). It is primarily based on the modelling of the spatial distribution of permafrost using a database of geomorphologic, hydrologic, and physical permafrost indicators and the CRYOSNOW-approach. There is first evidence that it is possible to quantify the regional debris flow hazard potential based on field survey, in-situ measurements, climate data analyses, and GIS-based simulations for different climate scenarios and variable geomorphic stability. In particular, permafrost degradation due to increasing mean annual air temperature (MAAT) since the end of the Little Ice Age (LIA) caused mechanical instabilities of sediments and slopes. In the study area it can be shown that almost half of the debris flow initiation zones originate in areas with loose rock that were still stabilized by glacier ice and/or permafrost about 150 years ago. Compared to present conditions the permafrost area would decrease by approximately 72% by the middle of the 21st century with regard to an increased air temperature of +1 to +2 K. Moreover, glaciers widely disappear in this scenario. This may presumed to be a moderate increase of temperature in relation to the predicted climate development of the IPCC. Ongoing glacier recession and permafrost degradation increase the amount of instable debris as well as the potential of debris flow detachment zones in the future. References Damm, B., Felderer, A. (2013

  20. Assessment and prediction of debris-flow hazards

    USGS Publications Warehouse

    Wieczorek, Gerald F.

    1993-01-01

    Study of debris-flow geomorphology and initiation mechanism has led to better understanding of debris-flow processes. This paper reviews how this understanding is used in current techniques for assessment and prediction of debris-flow hazards.

  1. TMI-2 leadscrew debris pyrophoricity study

    SciTech Connect

    Clark, R L; Allen, R P; McCoy, M W

    1984-04-01

    Debris removed from the surface of a leadscrew from the TMI-2 Reactor Building was examined to assess the potential for the debris to become pyrophoric. Elemental analyses were performed to identify candidate phases that could be pyrophoric, and x-ray diffraction was used to determine if any of these phases was actually present. However, none of the candidate phases were found. Based on differential scanning calorimetry, no exothermic reactions were observed upon heating the debris to 500/sup 0/C in air. Particle size distributions for the debris were obtained from analyses of micrographs of the debris. A light blockage instrument was also used to determine the particle size distribution. These analyses indicated that particles larger than 10 ..mu..m accounted for most of the debris volume, although the majority of the particles were actually smaller than 10 ..mu..m. Gamma spectroscopy indicated that most of the radioactivity in the debris, and on the leadscrew after debris removal, was due to mixed fission products such as /sup 137/Cs and /sup 134/Cs.

  2. Interagency Report on Orbital Debris, 1995

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This 1995 report updates the findings and recommendations of the 1989 report and reflects the authors' progress in understanding and managing the orbital debris environment. It provides an up-to-date portrait of their measurement, modeling, and mitigation efforts; and a set of recommendations outlining specific steps they should pursue, both domestically and internationally, to minimize the potential hazard posed by orbital debris.

  3. Debris-flow susceptibility map of Slovenia

    NASA Astrophysics Data System (ADS)

    Komac, M.; Kumelj, Š.; Ribičič, M.

    2009-04-01

    Until now debris-flow susceptibility was relatively poorly investigated in Slovenia. Regarding lack of such studies »Map of debris-flow susceptibility in Slovenia in scale 1.250.000« was elaborated using GIS and the latest spatial data was used; among them the latest lithological map of Slovenia in scale 1:250.000. For the creation of debris-flow susceptibility map of Slovenia in scale 1:250.000 seven considered most important factors were used that were divided into two groups: 1) initial factors that precondition debris-flows: lithology, slope angle, slope potential, 48-hours precipitation and 2) transport factors that contribute to higher probability of the transport of debris-flow material: terrain convexity, energy potential of streams, distance to surface water. Using linear weighted sum the precondition information layer was derived, and the same principal was used to derive transport information layer. Both layers were joined into final susceptibility assessment, again with consideration of their importance to contribute to debris-flow occurrence. Different weights were applied to chosen parameters, which resulted in several different models that were evaluated according to historical or recent debris-flow phenomena. Expert estimation was used to define the torrential areas with high probability of the debris-flow occurrence. The emphasis was on location rather than on the time of the debris-flow occurrence. There were unfortunately no adequate representative data about debris-flow in Slovenia (debris flow cadastre does not exist and not many historical studies have been done so far) for the quantitative statistical analysis. Hence only expert estimation approach was possible, based on the experience and historical events gathered from chronicles and eyewitness. Such an approach is mainly limited by subjectivity and has difficulties with sound argumentation, but at the given state it was the only possible approach. Based upon spatial analyses of four

  4. Ocean Surface Circulation with Implication for Marine Debris Distribution

    NASA Astrophysics Data System (ADS)

    Hafner, Jan; Maximenko, Nikolai; Niiler, Peter

    2010-05-01

    Modern, multi-instrumental Global Ocean Observing System (GOOS) includes satellites and in situ observations, monitoring the ocean state at the highest accuracy and resolution ever. By combining data of satellite altimetry, surface drifters, wind and gravity, ocean currents can be assessed globally and at research quality. The map of the mean surface currents shows a complex pattern of oceanic fronts and gyres. Distinct are the convergences of Ekman currents in subtropical gyres that, through the Sverdrup mechanism, are feeding anticyclonic circulation in the gyres. Drifter trajectories can also be utilized to simulate the evolution of the marine debris. Main problem is the inhomogeneous drifter data density, both due to convergence/divergence of the ocean currents and due to the drifter deployment scheme. A model constructed from statistics of the drifters exchange between small bins corrects this bias and was run from the uniform initial condition to study the fate of debris in the ocean. In addition to such actively studied debris accumulation areas as the Great Garbage Patch in the North Pacific, a new so far unrecognized, the world-strongest convergence is discovered in the South Pacific from the model solution. The same model reveals a complex pattern of convergence/divergence on the cold/warm flanks of major oceanic fronts. This pattern is studied in the framework of nonlinear interaction between Ekman drift and geostrophic baroclinic fronts outcropping at the sea surface. Results are generalized to assess the dynamics of internal Ekman layer distributed along the thermocline and controlling the secondary circulation at the fronts.

  5. Debris hazard for the Earth Observing System

    NASA Technical Reports Server (NTRS)

    Madler, Ronald A.; Maclay, Timothy D.; Mcnamara, Roger; Culp, Robert D.

    1992-01-01

    The scientific mission of the Earth Observing System (EOS) is modeled to analyze the potential hazard of space debris and its impact on the effectiveness of the program. Specific attention is given to the hazard posed by untrackable debris and the velocities and impact rates of such debris. The NASA Debris Flux Model (DFM) is utilized, and the results are compared to those of the Frag model which predicts the background environment from known parameters and the Screen model for estimating collision probabilities. The probability of damaging impacts is shown to be significant and to increase over time; an EOS spacecraft has a 10 percent chance of being struck by a 1-cm object traveling at 14 km/s. The present analyses demonstrate the need to design the EOS spacecraft for a LEO environment in which collisions with debris are very likely.

  6. Debris flows: behavior and hazard assessment

    USGS Publications Warehouse

    Iverson, Richard M.

    2014-01-01

    Debris flows are water-laden masses of soil and fragmented rock that rush down mountainsides, funnel into stream channels, entrain objects in their paths, and form lobate deposits when they spill onto valley floors. Because they have volumetric sediment concentrations that exceed 40 percent, maximum speeds that surpass 10 m/s, and sizes that can range up to ~109 m3, debris flows can denude slopes, bury floodplains, and devastate people and property. Computational models can accurately represent the physics of debris-flow initiation, motion and deposition by simulating evolution of flow mass and momentum while accounting for interactions of debris' solid and fluid constituents. The use of physically based models for hazard forecasting can be limited by imprecise knowledge of initial and boundary conditions and material properties, however. Therefore, empirical methods continue to play an important role in debris-flow hazard assessment.

  7. Aquatic Debris Detection Using Embedded Camera Sensors

    PubMed Central

    Wang, Yong; Wang, Dianhong; Lu, Qian; Luo, Dapeng; Fang, Wu

    2015-01-01

    Aquatic debris monitoring is of great importance to human health, aquatic habitats and water transport. In this paper, we first introduce the prototype of an aquatic sensor node equipped with an embedded camera sensor. Based on this sensing platform, we propose a fast and accurate debris detection algorithm. Our method is specifically designed based on compressive sensing theory to give full consideration to the unique challenges in aquatic environments, such as waves, swaying reflections, and tight energy budget. To upload debris images, we use an efficient sparse recovery algorithm in which only a few linear measurements need to be transmitted for image reconstruction. Besides, we implement the host software and test the debris detection algorithm on realistically deployed aquatic sensor nodes. The experimental results demonstrate that our approach is reliable and feasible for debris detection using camera sensors in aquatic environments. PMID:25647741

  8. The debris-flow rheology myth

    USGS Publications Warehouse

    Iverson, R.M.; ,

    2003-01-01

    Models that employ a fixed rheology cannot yield accurate interpretations or predictions of debris-flow motion, because the evolving behavior of debris flows is too complex to be represented by any rheological equation that uniquely relates stress and strain rate. Field observations and experimental data indicate that debris behavior can vary from nearly rigid to highly fluid as a consequence of temporal and spatial variations in pore-fluid pressure and mixture agitation. Moreover, behavior can vary if debris composition changes as a result of grain-size segregation and gain or loss of solid and fluid constituents in transit. An alternative to fixed-rheology models is provided by a Coulomb mixture theory model, which can represent variable interactions of solid and fluid constituents in heterogeneous debris-flow surges with high-friction, coarse-grained heads and low-friction, liquefied tails. ?? 2003 Millpress.

  9. Rapids configuration and flow dynamics at Warm Springs Rapid on the Yampa River, Colorado

    SciTech Connect

    Hammack, L.A.; Wohl, E.E. )

    1993-04-01

    Debris flows from the mouths of tributaries form the majority of the rapids in the Green and Colorado River systems. On June 10, 1965, a large debris flow dammed the Yampa River at Warm Springs Draw in Dinosaur National Monument, depositing nearly 10,000 metric tons of gravel and boulders in the river channel and forming Warm Springs Rapid. The Yampa River is the only river in the Colorado River system that is unregulated, and thus provides one of the few opportunities to study a canyon system under natural flow conditions. Kieffer (1985) has proposed that the configuration of a debris fan-rapid represents the interactions between the sediment characteristics (grain size, cementation) of the debris flow, the hydraulic conditions within the construction (roughness, velocities, channel dimensions), and the discharge history of the river since its modification. Warm Springs Rapid currently exhibits a constriction width to upstream channel width ratio of 0.59. Discharges on the Yampa River for June of 1965 averaged 420 m[sup 3]/sec. Estimates of the mean flow velocities (10--20 m/sec) through the initial channel constriction show that critical threshold velocities for sediment transport were reached for the range of boulder sizes contained in the debris fan (intermediate axis = 20--200 cm). However, the width and configuration of the present channel constriction could not have been formed by these flows. A discharge of 940 m[sup 3]/sec was recorded on the Yampa River on May 18, 1984. Mean flow velocities (10--20 m/sec) associated with a discharge of this magnitude may have been competent to erode the channel into its present configuration. Step-backwater modeling will be used to simulate the modification of Warm Springs Rapid through time and to quantify the exact relationship between the morphologic and hydraulic conditions in the evolution of a debris fan-rapid.

  10. DEBRIS DISTRIBUTION IN HD 95086—A YOUNG ANALOG OF HR 8799

    SciTech Connect

    Su, Kate Y. L.; Smith, Paul S.; Rieke, George H.; Morrison, Sarah; Malhotra, Renu; Balog, Zoltan

    2015-02-01

    HD 95086 is a young early-type star that hosts (1) a 5 M{sub J} planet at the projected distance of 56 AU revealed by direct imaging, and (2) a prominent debris disk. Here we report the detection of 69 μm crystalline olivine feature from the disk using the Spitzer/MIPS-SED data covering 55-95 μm. Due to the low resolution of the MIPS-SED mode, this feature is not spectrally resolved, but is consistent with the emission from crystalline forsterite contributing ∼5% of the total dust mass. We also present detailed analysis of the disk spectral energy distribution and re-analysis of resolved images obtained by Herschel. Our results suggest that the debris structure around HD 95086 consists of a warm (∼175 K) belt, a cold (∼55 K) disk, and an extended disk halo (up to ∼800 AU), and is very similar to that of HR 8799. We compare the properties of the three debris components, and suggest that HD 95086 is a young analog of HR 8799. We further investigate and constrain single-planet, two-planet, three-planet, and four-planet architectures that can account for the observed debris structure and are compatible with dynamical stability constraints. We find that equal-mass four-planet configurations of geometrically spaced orbits, with each planet of mass ∼ 5 M{sub J} , could maintain the gap between the warm and cold debris belts, and also be just marginally stable for timescales comparable to the age of the system.

  11. Characterizing Secondary Debris Impact Ejecta

    NASA Technical Reports Server (NTRS)

    Schonberg, W. P.

    1999-01-01

    All spacecraft in low-Earth orbit are subject to high-speed impacts by meteoroids and orbital debris particles. These impacts can damage flight-critical systems which can in turn lead to catastrophic failure of the spacecraft. Therefore, the design of a spacecraft for an Earth-orbiting mission must take into account the possibility of such impacts and their effects on the spacecraft structure and on all of its exposed subsystem components. In addition to threatening the operation of the spacecraft itself, on-orbit impacts also generate a significant amount of ricochet particles. These high-speed particles can destroy critical external spacecraft subsystem and also increase the contamination of the orbital environment. This report presents a summary of the work performed towards the development of an empirical model that characterizes the secondary ejecta created by a high-speed impacta on a typical aerospace structural surface.

  12. LDEF meteoroid and debris database

    NASA Technical Reports Server (NTRS)

    Dardano, C. B.; See, Thomas H.; Zolensky, Michael E.

    1994-01-01

    The Long Duration Exposure Facility (LDEF) Meteoroid and Debris Special Investigation Group (M&D SIG) database is maintained at the Johnson Space Center (JSC), Houston, Texas, and consists of five data tables containing information about individual features, digitized images of selected features, and LDEF hardware (i.e., approximately 950 samples) archived at JSC. About 4000 penetrations (greater than 300 micron in diameter) and craters (greater than 500 micron in diameter) were identified and photodocumented during the disassembly of LDEF at the Kennedy Space Center (KSC), while an additional 4500 or so have subsequently been characterized at JSC. The database also contains some data that have been submitted by various PI's, yet the amount of such data is extremely limited in its extent, and investigators are encouraged to submit any and all M&D-type data to JSC for inclusion within the M&D database. Digitized stereo-image pairs are available for approximately 4500 features through the database.

  13. Warm autoimmune hemolytic anemia.

    PubMed

    Naik, Rakhi

    2015-06-01

    Warm autoimmune hemolytic anemia (AIHA) is defined as the destruction of circulating red blood cells (RBCs) in the setting of anti-RBC autoantibodies that optimally react at 37°C. The pathophysiology of disease involves phagocytosis of autoantibody-coated RBCs in the spleen and complement-mediated hemolysis. Thus far, treatment is aimed at decreasing autoantibody production with immunosuppression or reducing phagocytosis of affected cells in the spleen. The role of complement inhibitors in warm AIHA has not been explored. This article addresses the diagnosis, etiology, and treatment of warm AIHA and highlights the role of complement in disease pathology.

  14. Erosion of steepland valleys by debris flows

    USGS Publications Warehouse

    Stock, J.D.; Dietrich, W.E.

    2006-01-01

    Episodic debris flows scour the rock beds of many steepland valleys. Along recent debris-flow runout paths in the western United States, we have observed evidence for bedrock lowering, primarily by the impact of large particles entrained in debris flows. This evidence may persist to the point at which debris-flow deposition occurs, commonly at slopes of less than ???0.03-0.10. We find that debris-flow-scoured valleys have a topographic signature that is fundamentally different from that predicted by bedrock river-incision models. Much of this difference results from the fact that local valley slope shows a tendency to decrease abruptly downstream of tributaries that contribute throughgoing debris flows. The degree of weathering of valley floor bedrock may also decrease abruptly downstream of such junctions. On the basis of these observations, we hypothesize that valley slope is adjusted to the long-term frequency of debris flows, and that valleys scoured by debris flows should not be modeled using conventional bedrock river-incision laws. We use field observations to justify one possible debris-flow incision model, whose lowering rate is proportional to the integral of solid inertial normal stresses from particle impacts along the flow and the number of upvalley debris-flow sources. The model predicts that increases in incision rate caused by increases in flow event frequency and length (as flows gain material) downvalley are balanced by rate reductions from reduced inertial normal stress at lower slopes, and stronger, less weathered bedrock. These adjustments lead to a spatially uniform lowering rate. Although the proposed expression leads to equilibrium long-profiles with the correct topographic signature, the crudeness with which the debris-flow dynamics are parameterized reveals that we are far from a validated debris-flow incision law. However, the vast extent of steepland valley networks above slopes of ???0.03-0.10 illustrates the need to understand debris

  15. Final Design for a Comprehensive Orbital Debris Management Program

    NASA Technical Reports Server (NTRS)

    1990-01-01

    The rationale and specifics for the design of a comprehensive program for the control of orbital debris, as well as details of the various components of the overall plan, are described. The problem of orbital debris has been steadily worsening since the first successful launch in 1957. The hazards posed by orbital debris suggest the need for a progressive plan for the prevention of future debris, as well as the reduction of the current debris level. The proposed debris management plan includes debris removal systems and preventative techniques and policies. The debris removal is directed at improving the current debris environment. Because of the variance in sizes of debris, a single system cannot reasonably remove all kinds of debris. An active removal system, which deliberately retrieves targeted debris from known orbits, was determined to be effective in the disposal of debris tracked directly from earth. However, no effective system is currently available to remove the untrackable debris. The debris program is intended to protect the orbital environment from future abuses. This portion of the plan involves various environment from future abuses. This portion of the plan involves various methods and rules for future prevention of debris. The preventative techniques are protective methods that can be used in future design of payloads. The prevention policies are rules which should be employed to force the prevention of orbital debris.

  16. Debris transport around high-speed snowplows

    NASA Astrophysics Data System (ADS)

    Nakhla, Hany Kamel

    2001-08-01

    The distribution of airborne debris around high-speed snowplows affects visibility and thus road safety. A combination of calculations, windtunnel experiments, and road trials are presented to provide knowledge of debris distributions and to obtain understanding of the mechanisms that can reduce suspended debris. Measurements obtained around windtunnel models show the influence of a variety of plow geometries on the location of debris around plowing trucks. Debris trajectories were calculated around plows with and without overplow deflectors by solution of Reynolds-averaged Navier-Stokes equations with cutting-edge and particle-tracking models. Calculations extrapolated windtunnel results over the wide range of snow conditions from light powder to slushy ice. Road trials compared visibility of conventional and modified snowplows with image analysis that quantified visible area, contrast and color intensity. In full scale tests, snow did not blow overtop of plow configurations that had trap angles less than 50 degrees, as predicted in windtunnel and computational results. Packing and junction flaps deflected discharge snow back into the consolidated discharge stream and decreased the amount of loose debris. Side-mounted hopper vanes kept rearward- facing surfaces clearer and made rear lighting and signage more effective. The visible area of high-speed snowplows outfitted with overplow deflector, packing flap, junction flap and hopper vanes was measured to be more than 50% larger than conventional plows for following motorists in all wind conditions and this was linked to reductions in the quantity of debris in the downstream snow cloud.

  17. Warm and Cool Dinosaurs.

    ERIC Educational Resources Information Center

    Mannlein, Sally

    2001-01-01

    Presents an art activity in which first grade students draw dinosaurs in order to learn about the concept of warm and cool colors. Explains how the activity also helped the students learn about the concept of distance when drawing. (CMK)

  18. Draft global warming study

    SciTech Connect

    Not Available

    1990-01-01

    The 1990 Resource Program Global Warming Study examines potential Bonneville Power Administration (BPA) resource alternatives related to the risk of global warming. The study evaluates strategies for reducing net carbon emissions, and identifies the net carbon contribution of certain resource strategies designed to reduce those emissions. Carbon dioxide (CO{sub 2}) is the greenhouse gas'' most associated with electricity production. The main purpose of the global warming study is to identify possible courses of action that BPA might take to reduce its contributions to the risk of global warming and to estimate the efficacy and costs of each approach. The principal measure of effectiveness is the reduction in total atmospheric carbon emissions compared to a base case. 13 refs., 2 tabs.

  19. Reconciling Warming Trends

    NASA Technical Reports Server (NTRS)

    Schmidt, Gavin A.; Shindell, Drew T.; Tsigaridis, Konstantinos

    2014-01-01

    Climate models projected stronger warming over the past 15 years than has been seen in observations. Conspiring factors of errors in volcanic and solar inputs, representations of aerosols, and El NiNo evolution, may explain most of the discrepancy.

  20. Warm Hands and Feet

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Comfort Products, Inc. was responsible for the cold weather glove and thermal boots, adapted from a spacesuit design that kept astronauts warm or cool in the temperature extremes of the Apollo Moon Mission. Gloves and boots are thermally heated. Batteries are worn inside wrist of glove or sealed in sole of skiboot and are rechargeable hundreds of times. They operate flexible resistance circuit which is turned on periodically when wearer wants to be warm.

  1. POST Earthquake Debris Management - AN Overview

    NASA Astrophysics Data System (ADS)

    Sarkar, Raju

    Every year natural disasters, such as fires, floods, earthquakes, hurricanes, landslides, tsunami, and tornadoes, challenge various communities of the world. Earthquakes strike with varying degrees of severity and pose both short- and long-term challenges to public service providers. Earthquakes generate shock waves and displace the ground along fault lines. These seismic forces can bring down buildings and bridges in a localized area and damage buildings and other structures in a far wider area. Secondary damage from fires, explosions, and localized flooding from broken water pipes can increase the amount of debris. Earthquake debris includes building materials, personal property, and sediment from landslides. The management of this debris, as well as the waste generated during the reconstruction works, can place significant challenges on the national and local capacities. Debris removal is a major component of every post earthquake recovery operation. Much of the debris generated from earthquake is not hazardous. Soil, building material, and green waste, such as trees and shrubs, make up most of the volume of earthquake debris. These wastes not only create significant health problems and a very unpleasant living environment if not disposed of safely and appropriately, but also can subsequently impose economical burdens on the reconstruction phase. In practice, most of the debris may be either disposed of at landfill sites, reused as materials for construction or recycled into useful commodities Therefore, the debris clearance operation should focus on the geotechnical engineering approach as an important post earthquake issue to control the quality of the incoming flow of potential soil materials. In this paper, the importance of an emergency management perspective in this geotechnical approach that takes into account the different criteria related to the operation execution is proposed by highlighting the key issues concerning the handling of the construction

  2. Polar Warming Drivers

    NASA Astrophysics Data System (ADS)

    McDunn, T. L.; Bougher, S. W.; Mischna, M. A.; Murphy, J. R.

    2012-12-01

    Polar warming is a dynamically induced temperature enhancement over mid-to-high latitudes that results in a reversed (poleward) meridional temperature gradient. This phenomenon was recently characterized over the 40-90 km altitude region [1] based on nearly three martian years of Mars Climate Sounder observations [2, 3]. Here we investigate which forcing mechanisms affect the magnitude and distribution of the observed polar warming by conducting simulations with the Mars Weather Research and Forecasting General Circulation Model [4, 5]. We present simulations confirming the influence topography [6] and dust loading [e.g., 7] have upon polar warming. We then present simulations illustrating the modulating influence gravity wave momentum deposition exerts upon polar warming, consistent with previous modeling studies [e.g., 8]. The results of this investigation suggest the magnitude and distribution of polar warming in the martian middle atmosphere is modified by gravity wave activity and that the characteristics of the gravity waves that most significantly affect polar warming vary with season. References: [1] McDunn, et al., 2012 (JGR), [2]Kleinböhl, et al., 2009 (JGR), [3] Kleinböhl, et al., 2011 (JQSRT), [4] Richardson, et al., 2007 (JGR), [5] Mischna, et al., 2011 (Planet. Space Sci.), [6] Richardson and Wilson, 2002 (Nature), [7] Haberle, et al., 1982 (Icarus), [8] Barnes, 1990 (JGR).

  3. Collector/Compactor for Waste or Debris

    NASA Technical Reports Server (NTRS)

    Mangialiardi, John K.

    1987-01-01

    Device collects and compacts debris by sweeping through volume with net. Consists of movable vane, fixed vane, and elastic net connected to both vanes. Movable vane is metal strip curved to follow general contour of container with clearance to prevent interference with other parts on inside wall of container. One end of movable vane mounted in bearing and other end connected to driveshaft equipped with handle. User rotates movable vane, net stretched and swept through container. Captures most of debris coarser than mesh as it moves, compressing debris as it arrives at fixed vane. Applications include cleaning swimming pools and tanks.

  4. Apparatus for controlling nuclear core debris

    DOEpatents

    Jones, Robert D.

    1978-01-01

    Nuclear reactor apparatus for containing, cooling, and dispersing reactor debris assumed to flow from the core area in the unlikely event of an accident causing core meltdown. The apparatus includes a plurality of horizontally disposed vertically spaced plates, having depressions to contain debris in controlled amounts, and a plurality of holes therein which provide natural circulation cooling and a path for debris to continue flowing downward to the plate beneath. The uppermost plates may also include generally vertical sections which form annular-like flow areas which assist the natural circulation cooling.

  5. THE SPITZER INFRARED SPECTROGRAPH DEBRIS DISK CATALOG. I. CONTINUUM ANALYSIS OF UNRESOLVED TARGETS

    SciTech Connect

    Chen, Christine H.; Mittal, Tushar; Kuchner, Marc; Forrest, William J.; Watson, Dan M.; Lisse, Carey M.; Manoj, P.; Sargent, Benjamin A.

    2014-04-01

    During the Spitzer Space Telescope cryogenic mission, Guaranteed Time Observers, Legacy Teams, and General Observers obtained Infrared Spectrograph (IRS) observations of hundreds of debris disk candidates. We calibrated the spectra of 571 candidates, including 64 new IRAS and Multiband Imaging Photometer for Spitzer (MIPS) debris disks candidates, modeled their stellar photospheres, and produced a catalog of excess spectra for unresolved debris disks. For 499 targets with IRS excess but without strong spectral features (and a subset of 420 targets with additional MIPS 70 μm observations), we modeled the IRS (and MIPS data) assuming that the dust thermal emission was well-described using either a one- or two-temperature blackbody model. We calculated the probability for each model and computed the average probability to select among models. We found that the spectral energy distributions for the majority of objects (∼66%) were better described using a two-temperature model with warm (T {sub gr} ∼ 100-500 K) and cold (T {sub gr} ∼ 50-150 K) dust populations analogous to zodiacal and Kuiper Belt dust, suggesting that planetary systems are common in debris disks and zodiacal dust is common around host stars with ages up to ∼1 Gyr. We found that younger stars generally have disks with larger fractional infrared luminosities and higher grain temperatures and that higher-mass stars have disks with higher grain temperatures. We show that the increasing distance of dust around debris disks is inconsistent with self-stirred disk models, expected if these systems possess planets at 30-150 AU. Finally, we illustrate how observations of debris disks may be used to constrain the radial dependence of material in the minimum mass solar nebula.

  6. Protoplanetary and Debris Disk Morphologies

    NASA Astrophysics Data System (ADS)

    Lomax, Jamie R.; Wisniewski, John P.; Grady, Carol A.; McElwain, Michael W.; Hashimoto, Jun; Donaldson, Jessica; Debes, John H.; Malumuth, Eliot; Roberge, Aki; Weinberger, Alycia J.; SEEDS Team

    2016-01-01

    The types of planets that form around other stars are highly dependent on their natal disk conditions. Therefore, the composition, morphology, and distribution of material in protoplanetary and debris disks are important for planet formation. Here we present the results of studies of two disk systems: AB Aur and AU Mic.The circumstellar disk around the Herbig Ae star AB Aur has many interesting features, including spirals, asymmetries, and non-uniformities. However, comparatively little is known about the envelope surrounding the system. Recent work by Tang et al (2012) has suggested that the observed spiral armss may not in fact be in the disk, but instead are due to areas of increased density in the envelope and projection effects. Using Monte Carlo modeling, we find that it is unlikely that the envelope holds enough material to be responsible for such features and that it is more plausible that they form from disk material. Given the likelihood that gravitational perturbations from planets cause the observed spiral morphology, we use archival H band observations of AB Aur with a baseline of 5.5 years to determine the locations of possible planets.The AU Mic debris disk also has many interesting morphological features. Because its disk is edge on, the system is an ideal candidate for color studies using coronagraphic spectroscopy. Spectra of the system were taken by placing a HST/STIS long slit parallel to and overlapping the disk while blocking out the central star with an occulting fiducial bar. Color gradients may reveal the chemical processing that is occuring within the disk. In addition, it may trace the potential composition and architecture of any planetary bodies in the system because collisional break up of planetesimals produces the observed dust in the system. We present the resulting optical reflected spectra (5200 to 10,200 angstroms) from this procedure at several disk locations. We find that the disk is bluest at the innermost locations of the

  7. Climatic regions as an indicator of forest coarse and fine woody debris carbon stocks in the United States

    PubMed Central

    Woodall, Christopher W; Liknes, Greg C

    2008-01-01

    Background Coarse and fine woody debris are substantial forest ecosystem carbon stocks; however, there is a lack of understanding how these detrital carbon stocks vary across forested landscapes. Because forest woody detritus production and decay rates may partially depend on climatic conditions, the accumulation of coarse and fine woody debris carbon stocks in forests may be correlated with climate. This study used a nationwide inventory of coarse and fine woody debris in the United States to examine how these carbon stocks vary by climatic regions and variables. Results Mean coarse and fine woody debris forest carbon stocks vary by Köppen's climatic regions across the United States. The highest carbon stocks were found in regions with cool summers while the lowest carbon stocks were found in arid desert/steppes or temperate humid regions. Coarse and fine woody debris carbon stocks were found to be positively correlated with available moisture and negatively correlated with maximum temperature. Conclusion It was concluded with only medium confidence that coarse and fine woody debris carbon stocks may be at risk of becoming net emitter of carbon under a global climate warming scenario as increases in coarse or fine woody debris production (sinks) may be more than offset by increases in forest woody detritus decay rates (emission). Given the preliminary results of this study and the rather tenuous status of coarse and fine woody debris carbon stocks as either a source or sink of CO2, further research is suggested in the areas of forest detritus decay and production. PMID:18541029

  8. Warm up to the idea: Global warming is here

    SciTech Connect

    Lynch, C.F.

    1996-07-01

    This article summarizes recent information about global warming as well as the history of greenhouse gas emissions which have lead to more and more evidence of global warming. The primary source detailed is the second major study report on global warming by the Intergovernmental Panel on climate change. Along with comments about the environmental effects of global warming such as coastline submersion, the economic, social and political aspects of alleviating greenhouse emissions and the threat of global warming are discussed.

  9. Long range global warming

    SciTech Connect

    Rolle, K.C.; Pulkrabek, W.W.; Fiedler, R.A.

    1995-12-31

    This paper explores one of the causes of global warming that is often overlooked, the direct heating of the environment by engineering systems. Most research and studies of global warming concentrate on the modification that is occurring to atmospheric air as a result of pollution gases being added by various systems; i.e., refrigerants, nitrogen oxides, ozone, hydrocarbons, halon, and others. This modification affects the thermal radiation balance between earth, sun and space, resulting in a decrease of radiation outflow and a slow rise in the earth`s steady state temperature. For this reason the solution to the problem is perceived as one of cleaning up the processes and effluents that are discharged into the environment. In this paper arguments are presented that suggest, that there is a far more serious cause for global warming that will manifest itself in the next two or three centuries; direct heating from the exponential growth of energy usage by humankind. Because this is a minor contributor to the global warming problem at present, it is overlooked or ignored. Energy use from the combustion of fuels and from the output of nuclear reactions eventually is manifest as warming of the surroundings. Thus, as energy is used at an ever increasing rate the consequent global warming also increases at an ever increasing rate. Eventually this rate will become equal to a few percent of solar radiation. When this happens the earth`s temperature will have risen by several degrees with catastrophic results. The trends in world energy use are reviewed and some mathematical models are presented to suggest future scenarios. These models can be used to predict when the global warming problem will become undeniably apparent, when it will become critical, and when it will become catastrophic.

  10. Debris Examination Using Ballistic and Radar Integrated Software

    NASA Technical Reports Server (NTRS)

    Griffith, Anthony; Schottel, Matthew; Lee, David; Scully, Robert; Hamilton, Joseph; Kent, Brian; Thomas, Christopher; Benson, Jonathan; Branch, Eric; Hardman, Paul; Stuble, Martin

    2012-01-01

    The Debris Examination Using Ballistic and Radar Integrated Software (DEBRIS) program was developed to provide rapid and accurate analysis of debris observed by the NASA Debris Radar (NDR). This software provides a greatly improved analysis capacity over earlier manual processes, allowing for up to four times as much data to be analyzed by one-quarter of the personnel required by earlier methods. There are two applications that comprise the DEBRIS system: the Automated Radar Debris Examination Tool (ARDENT) and the primary DEBRIS tool.

  11. 44 CFR 206.224 - Debris removal.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... property acquired through a FEMA hazard mitigation program to uses compatible with open space, recreation... to remove debris from private property in urban, suburban and rural areas, including large...

  12. Spacelab J air filter debris analysis

    NASA Technical Reports Server (NTRS)

    Obenhuber, Donald C.

    1993-01-01

    Filter debris from the Spacelab module SLJ of STS-49 was analyzed for microbial contamination. Debris for cabin and avionics filters was collected by Kennedy Space Center personnel on 1 Oct. 1992, approximately 5 days postflight. The concentration of microorganisms found was similar to previous Spacelab missions averaging 7.4E+4 CFU/mL for avionics filter debris and 4.5E+6 CFU/mL for the cabin filter debris. A similar diversity of bacterial types was found in the two filters. Of the 13 different bacterial types identified from the cabin and avionics samples, 6 were common to both filters. The overall analysis of these samples as compared to those of previous missions shows no significant differences.

  13. Canadian Activities in Space Debris Mitigation Technologies

    NASA Astrophysics Data System (ADS)

    Nikanpour, Darius; Jiang, Xin Xiang; Goroshin, Samuel; Haddad, Emile; Kruzelecky, Roman; Hoa, Suong; Merle, Philippe; Kleiman, Jacob; Gendron, Stephane; Higgins, Andrew; Jamroz, Wes

    The space environment, and in particular the Low Earth Orbit (LEO), is becoming increasingly populated with space debris which include fragments of dysfunctional spacecraft parts and materials traveling at speeds up to 15 km per second. These pose an escalating potential threat to LEO spacecraft, the international space station, and manned missions. This paper presents the Canadian activities to address the concerns over space debris in terms of debris mitigation measures and technologies; these include novel spacecraft demise technologies to safely decommission the spacecraft at the end of the mission, integrated self-healing material technologies for spacecraft structures to facilitate self-repair and help maintain the spacecraft structural and thermal performance, hypervelocity ground test capability to predict the impact of space debris on spacecraft performance, and ways of raising awareness within the space community through participation in targeted Science and Technology conferences and international forums.

  14. Remote sensing and characterization of anomalous debris

    NASA Technical Reports Server (NTRS)

    Sridharan, R.; Beavers, W.; Lambour, R.; Gaposchkin, E. M.; Kansky, J.; Stansbery, E.

    1997-01-01

    The analysis of orbital debris data shows a band of anomalously high debris concentration in the altitude range between 800 and 1000 km. Analysis indicates that the origin is the leaking coolant fluid from nuclear power sources that powered a now defunct Soviet space-based series of ocean surveillance satellites. A project carried out to detect, track and characterize a sample of the anomalous debris is reported. The nature of the size and shape of the sample set, and the possibility of inferring the composition of the droplets were assessed. The technique used to detect, track and characterize the sample set is described and the results of the characterization analysis are presented. It is concluded that the nature of the debris is consistent with leaked Na-K fluid, although this cannot be proved with the remote sensing techniques used.

  15. TMI defueling project fuel debris removal system

    SciTech Connect

    Burdge, B.

    1992-08-01

    The three mile Island Unit 2 (TMI-2) pressurized water reactor loss-of-coolant accident on March 28, 1979, presented the nuclear community with many challenging remediation problems; most importantly, the removal of the fission products within the reactor containment vessel. To meet this removal problem, an air-lift system (ALS) can be used to employ compressed air to produce the motive force for transporting debris. Debris is separated from the transport stream by gravity separation. The entire method does not rely on any moving parts. Full-scale testing of the ALS at the Idaho National Engineering Laboratory (INEL) has demonstrated the capability of transporting fuel debris from beneath the LCSA into a standard fuel debris bucket at a minimum rate of 230 kg/min.

  16. TMI defueling project fuel debris removal system

    SciTech Connect

    Burdge, B.

    1992-01-01

    The three mile Island Unit 2 (TMI-2) pressurized water reactor loss-of-coolant accident on March 28, 1979, presented the nuclear community with many challenging remediation problems; most importantly, the removal of the fission products within the reactor containment vessel. To meet this removal problem, an air-lift system (ALS) can be used to employ compressed air to produce the motive force for transporting debris. Debris is separated from the transport stream by gravity separation. The entire method does not rely on any moving parts. Full-scale testing of the ALS at the Idaho National Engineering Laboratory (INEL) has demonstrated the capability of transporting fuel debris from beneath the LCSA into a standard fuel debris bucket at a minimum rate of 230 kg/min.

  17. Orbital Debris Shape Characterization Project Abstract

    NASA Technical Reports Server (NTRS)

    Pease, Jessie

    2016-01-01

    I have been working on a project to further our understanding of orbital debris by helping create a new dataset previously too complex to be implemented in past orbital debris propagation models. I am doing this by creating documentation and 3D examples and illustrations of the shape categories. Earlier models assumed all orbital debris to be spherical aluminum fragments. My project will help expand our knowledge of shape populations to 6 categories: Straight Needle/Rod/Cylinder, Bent Needle/Rod/Cylinder, Flat Plate, Bent Plate, Nugget/Parallelepiped/Spheroid, and Flexible. The last category, Flexible, is still up for discussion and may be modified. These categories will be used to characterize fragments in the DebriSat experiment.

  18. Comparison of an Inductance In-Line Oil Debris Sensor and Magnetic Plug Oil Debris Sensor

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.; Tuck, Roger; Showalter, Stephen

    2012-01-01

    The objective of this research was to compare the performance of an inductance in-line oil debris sensor and magnetic plug oil debris sensor when detecting transmission component health in the same system under the same operating conditions. Both sensors were installed in series in the NASA Glenn Spiral Bevel Gear Fatigue Rig during tests performed on 5 gear sets (pinion/gear) when different levels of damage occurred on the gear teeth. Results of this analysis found both the inductance in-line oil debris sensor and magnetic plug oil debris sensor have benefits and limitations when detecting gearbox component damage.

  19. An Assessment of the Current LEO Debris Environment and the Need for Active Debris Removal

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi

    2010-01-01

    The anti-satellite test on the Fengun-1 C weather satellite in early 2007 and the collision between Iridium 33 and Cosmos 2251 in 2009 dramatically altered the landscape of the human-made orbital debris environment in the low Earth orbit (LEO). The two events generated approximately 5500 fragments large enough to be tracked by the U.S. Space Surveillance Network. Those fragments account for more than 60% increase to the debris population in LEO. However, even before the ASAT test, model analyses already indicated that the debris population (for those larger than 10 cm) in LEO had reached a point where the population would continue to increase, due to collisions among existing objects, even without any future launches. The conclusion implies that as satellites continue to be launched and unexpected breakup events continue to occur, commonly-adopted mitigation measures will not be able to stop the collision-driven population growth. To remediate the debris environment in LEO, active debris removal must be considered. This presentation will provide an updated assessment of the debris environment after the Iridium 33/Cosmos 2251 collision, an analysis of several future environment projections based on different scenarios, and a projection of collision activities in LEO in the near future. The need to use active debris removal to stabilize future debris environment will be demonstrated and the effectiveness of various active debris removal strategies will be quantified.

  20. Synergy of debris mitigation and removal

    NASA Astrophysics Data System (ADS)

    Lewis, Hugh G.; White, Adam E.; Crowther, Richard; Stokes, Hedley

    2012-12-01

    Since the end of the 20th Century there has been considerable effort made to devise mitigation measures to limit the growth of the debris population. This activity has led to the implementation of a "25-year rule" by a number of space-faring nations for the post-mission disposal of spacecraft and orbital stages intersecting the Low Earth Orbit (LEO) region. Through the use of projections made by computer models, it was anticipated that this 25-year rule, together with passivation and suppression of mission-related debris, would be sufficient to prevent the unconstrained growth of the LEO debris population. In the last decade both the LEO debris environment and the debris modelling capability have seen significant changes. In particular, recent population growth has been driven by a number of major break-ups, including the intentional destruction of the Fengyun-1C spacecraft and the collision between Iridium 33 and Cosmos 2251. State-of-the-art evolutionary models indicate that the LEO debris population will continue to grow in spite of good compliance with the commonly adopted mitigation measures and even in the absence of new launches. Consequently, this has led to considerable interest in the development of remediation measures and, especially, in debris removal. In this paper, we present a new and large study of debris mitigation and removal using the University of Southampton's evolutionary model, DAMAGE, together with the latest MASTER model population of objects ≥10 cm in LEO. Here, we have employed a concurrent approach to mitigation and remediation, whereby changes to the PMD rule and the inclusion of other mitigation measures have been considered together with multiple removal strategies. In this way, we have been able to demonstrate the synergy of these mitigation and remediation measures and to identify potential, aggregate solutions to the space debris problem. The results suggest that reducing the PMD rule offers benefits that include an increase in

  1. An adaptive strategy for active debris removal

    NASA Astrophysics Data System (ADS)

    White, Adam E.; Lewis, Hugh G.

    2014-04-01

    Many parameters influence the evolution of the near-Earth debris population, including launch, solar, explosion and mitigation activities, as well as other future uncertainties such as advances in space technology or changes in social and economic drivers that effect the utilisation of space activities. These factors lead to uncertainty in the long-term debris population. This uncertainty makes it difficult to identify potential remediation strategies, involving active debris removal (ADR), that will perform effectively in all possible future cases. Strategies that cannot perform effectively, because of this uncertainty, risk either not achieving their intended purpose, or becoming a hindrance to the efforts of spacecraft manufactures and operators to address the challenges posed by space debris. One method to tackle this uncertainty is to create a strategy that can adapt and respond to the space debris population. This work explores the concept of an adaptive strategy, in terms of the number of objects required to be removed by ADR, to prevent the low Earth orbit (LEO) debris population from growing in size. This was demonstrated by utilising the University of Southampton’s Debris Analysis and Monitoring Architecture to the Geosynchronous Environment (DAMAGE) tool to investigate ADR rates (number of removals per year) that change over time in response to the current space environment, with the requirement of achieving zero growth of the LEO population. DAMAGE was used to generate multiple Monte Carlo projections of the future LEO debris environment. Within each future projection, the debris removal rate was derived at five-year intervals, by a new statistical debris evolutionary model called the Computational Adaptive Strategy to Control Accurately the Debris Environment (CASCADE) model. CASCADE predicted the long-term evolution of the current DAMAGE population with a variety of different ADR rates in order to identify a removal rate that produced a zero net

  2. Search for the Data of Space Debris Initial Distribution

    NASA Astrophysics Data System (ADS)

    Ping-Ping, Zhang; Bao-Jun, Pang

    Space debris environment model is one of the kernels of the research on space debris Space debris environment model is based on the data of space debris that is if we have the data of space debris orbit parameter we can determine the state of space debris distribution and then the spacecraft risk assessment can be executed Because numbers of small size space debris cannot be detected or observed we have not small size space debris data The short of small size space debris data leads to the engineering model inaccurate model needs to be updated while in the status of seriously short of data the model can not be updated in time In allusion to the problem of scarcity of data on the basis of modern computer arithmetic this paper is trying to search new data with old data and the results of the model is close to other engineering models Key words space debris data

  3. Debris ingestion by juvenile marine turtles: an underestimated problem.

    PubMed

    Santos, Robson Guimarães; Andrades, Ryan; Boldrini, Marcillo Altoé; Martins, Agnaldo Silva

    2015-04-15

    Marine turtles are an iconic group of endangered animals threatened by debris ingestion. However, key aspects related to debris ingestion are still poorly known, including its effects on mortality and the original use of the ingested debris. Therefore, we analysed the impact of debris ingestion in 265 green turtles (Chelonia mydas) over a large geographical area and different habitats along the Brazilian coast. We determined the death rate due to debris ingestion and quantified the amount of debris that is sufficient to cause the death of juvenile green turtles. Additionally, we investigated the original use of the ingested debris. We found that a surprisingly small amount of debris was sufficient to block the digestive tract and cause death. We suggested that debris ingestion has a high death potential that may be masked by other causes of death. An expressive part of the ingested debris come from disposable and short-lived products.

  4. Debris ingestion by juvenile marine turtles: an underestimated problem.

    PubMed

    Santos, Robson Guimarães; Andrades, Ryan; Boldrini, Marcillo Altoé; Martins, Agnaldo Silva

    2015-04-15

    Marine turtles are an iconic group of endangered animals threatened by debris ingestion. However, key aspects related to debris ingestion are still poorly known, including its effects on mortality and the original use of the ingested debris. Therefore, we analysed the impact of debris ingestion in 265 green turtles (Chelonia mydas) over a large geographical area and different habitats along the Brazilian coast. We determined the death rate due to debris ingestion and quantified the amount of debris that is sufficient to cause the death of juvenile green turtles. Additionally, we investigated the original use of the ingested debris. We found that a surprisingly small amount of debris was sufficient to block the digestive tract and cause death. We suggested that debris ingestion has a high death potential that may be masked by other causes of death. An expressive part of the ingested debris come from disposable and short-lived products. PMID:25749316

  5. Debris-Covered Glaciers in the Sierra Nevada, California, and Their Implications for Snowline Reconstructions

    USGS Publications Warehouse

    Clark, D.H.; Clark, M.M.; Gillespie, A.R.

    1994-01-01

    Ice-walled melt ponds on the surfaces of active valley-floor rock glaciers and Matthes (Little Ice Age) moraines in the southern Sierra Nevada indicate that most of these landforms consist of glacier ice under thin (ca. 1 - 10 m) but continuous covers of rock-fall-generated debris. These debris blankets effectively insulate the underlying ice and greatly reduce rates of ablation relative to that of uncovered ice. Such insulation explains the observations that ice-cored rock glaciers in the Sierra, actually debris-covered glaciers, are apparently less sensitive to climatic warming and commonly advance to lower altitudes than do adjacent bare-ice glaciers. Accumulation-area ratios and toe-to-headwall-altitude ratios used to estimate equilibrium-line altitudes (ELAs) of former glaciers may therefore yield incorrect results for cirque glaciers subject to abundant rockfall. Inadvertent lumping of deposits from former debris-covered and bare-ice glaciers partially explains an apparently anomalous regional ELA gradient reported for the pre-Matthes Recess Peak Neoglacial advance. Distinguishing such deposits may be important to studies that rely on paleo-ELA estimates. Moreover, Matthes and Recess Peak ELA gradients along the crest evidently depend strongly on local orographic effects rather than latitudinal climatic trends, indicating that simple linear projections and regional climatic interpretations of ELA gradients of small glaciers may be unreliable.

  6. X-ray transmissive debris shield

    DOEpatents

    Spielman, Rick B.

    1994-01-01

    A composite window structure is described for transmitting x-ray radiation and for shielding radiation generated debris. In particular, separate layers of different x-ray transmissive materials are laminated together to form a high strength, x-ray transmissive debris shield which is particularly suited for use in high energy fluences. In one embodiment, the composite window comprises alternating layers of beryllium and a thermoset polymer.

  7. Expanding capabilities of the debris analysis workstation

    NASA Astrophysics Data System (ADS)

    Spencer, David B.; Sorge, Marlon E.; Mains, Deanna L.; Shubert, Ann J.; Gerhart, Charlotte M.; Yates, Ken W.; Leake, Michael

    1996-10-01

    Determining the hazards from debris-generating events is a design and safety consideration for a number of space systems, both currently operating and planned. To meet these and other requirements, the United States Air Force (USAF) Phillips Laboratory (PL) Space Debris Research Program has developed a simulation software package called the Debris Analysis Workstation (DAW). This software provides an analysis capability for assessing a wide variety of debris hazards. DAW integrates several component debris analysis models and data visualization tools into a single analysis platform that meets the needs for Department of Defense space debris analysis, and is both user friendly and modular. This allows for studies to be performed expeditiously by analysts who are not debris experts. The current version of DAW includes models for spacecraft breakup, debris orbital lifetime, collision hazard risk assessment, and collision dispersion, as well as a satellite catalog database manager, a drag inclusive propagator, a graphical user interface, and data visualization routines. Together they provide capabilities to conduct several types of analyses, ranging from range safety assessments to satellite constellation risk assessment. Work is progressing to add new capabilities with the incorporation of additional models and improved designs. The existing tools are in their initial integrated form, but the 'glue' that will ultimately bring them together into an integrated system is an object oriented language layer scheduled to be added soon. Other candidate component models under consideration for incorporation include additional orbital propagators, error estimation routines, other dispersion models, and other breakup models. At present, DAW resides on a SUNR workstation, although future versions could be tailored for other platforms, depending on the need.

  8. Hot Wax Sweeps Debris From Narrow Passages

    NASA Technical Reports Server (NTRS)

    Ricklefs, Steven K.

    1990-01-01

    Safe and effective technique for removal of debris and contaminants from narrow passages involves entrainment of undesired material in thermoplastic casting material. Semisolid wax slightly below melting temperature pushed along passage by pressurized nitrogen to remove debris. Devised to clean out fuel passages in main combustion chamber of Space Shuttle main engine. Also applied to narrow, intricate passages in internal-combustion-engine blocks, carburetors, injection molds, and other complicated parts.

  9. LDEF meteoroid and debris database

    NASA Astrophysics Data System (ADS)

    Dardano, C. B.; See, Thomas H.; Zolensky, Michael E.

    The Long Duration Exposure Facility (LDEF) Meteoroid and Debris Special Investigation Group (M&D SIG) database is maintained at the Johnson Space Center (JSC), Houston, Texas, and consists of five data tables containing information about individual features, digitized images of selected features, and LDEF hardware (i.e., approximately 950 samples) archived at JSC. About 4000 penetrations (greater than 300 micron in diameter) and craters (greater than 500 micron in diameter) were identified and photo-documented during the disassembly of LDEF at the Kennedy Space Center (KSC), while an additional 4500 or so have subsequently been characterized at JSC. The database also contains some data that have been submitted by various PI's, yet the amount of such data is extremely limited in its extent, and investigators are encouraged to submit any and all M&D-type data to JSC for inclusion within the M&D database. Digitized stereo-image pairs are available for approximately 4500 features through the database.

  10. Postdetonation nuclear debris for attribution.

    PubMed

    Fahey, A J; Zeissler, C J; Newbury, D E; Davis, J; Lindstrom, R M

    2010-11-23

    On the morning of July 16, 1945, the first atomic bomb was exploded in New Mexico on the White Sands Proving Ground. The device was a plutonium implosion device similar to the device that destroyed Nagasaki, Japan, on August 9 of that same year. Recently, with the enactment of US public law 111-140, the "Nuclear Forensics and Attribution Act," scientists in the government and academia have been able, in earnest, to consider what type of forensic-style information may be obtained after a nuclear detonation. To conduct a robust attribution process for an exploded device placed by a nonstate actor, forensic analysis must yield information about not only the nuclear material in the device but about other materials that went into its construction. We have performed an investigation of glassed ground debris from the first nuclear test showing correlations among multiple analytical techniques. Surprisingly, there is strong evidence, obtainable only through microanalysis, that secondary materials used in the device can be identified and positively associated with the nuclear material.

  11. Postdetonation nuclear debris for attribution

    PubMed Central

    Fahey, A. J.; Zeissler, C. J.; Newbury, D. E.; Davis, J.; Lindstrom, R. M.

    2010-01-01

    On the morning of July 16, 1945, the first atomic bomb was exploded in New Mexico on the White Sands Proving Ground. The device was a plutonium implosion device similar to the device that destroyed Nagasaki, Japan, on August 9 of that same year. Recently, with the enactment of US public law 111-140, the “Nuclear Forensics and Attribution Act,” scientists in the government and academia have been able, in earnest, to consider what type of forensic-style information may be obtained after a nuclear detonation. To conduct a robust attribution process for an exploded device placed by a nonstate actor, forensic analysis must yield information about not only the nuclear material in the device but about other materials that went into its construction. We have performed an investigation of glassed ground debris from the first nuclear test showing correlations among multiple analytical techniques. Surprisingly, there is strong evidence, obtainable only through microanalysis, that secondary materials used in the device can be identified and positively associated with the nuclear material. PMID:21059943

  12. Postdetonation nuclear debris for attribution.

    PubMed

    Fahey, A J; Zeissler, C J; Newbury, D E; Davis, J; Lindstrom, R M

    2010-11-23

    On the morning of July 16, 1945, the first atomic bomb was exploded in New Mexico on the White Sands Proving Ground. The device was a plutonium implosion device similar to the device that destroyed Nagasaki, Japan, on August 9 of that same year. Recently, with the enactment of US public law 111-140, the "Nuclear Forensics and Attribution Act," scientists in the government and academia have been able, in earnest, to consider what type of forensic-style information may be obtained after a nuclear detonation. To conduct a robust attribution process for an exploded device placed by a nonstate actor, forensic analysis must yield information about not only the nuclear material in the device but about other materials that went into its construction. We have performed an investigation of glassed ground debris from the first nuclear test showing correlations among multiple analytical techniques. Surprisingly, there is strong evidence, obtainable only through microanalysis, that secondary materials used in the device can be identified and positively associated with the nuclear material. PMID:21059943

  13. Morphodynamics of debris flow-dominated channels

    NASA Astrophysics Data System (ADS)

    Huebl, Johannes

    2013-04-01

    The mountain environment is mainly shaped by mass movements and glacial, debris flow and fluvial erosion. Therefore the landform ensemble of torrential catchments includes features of several thousand years. Many of them contribute as debris sources to the development of debris flow activity. But the torrential channel is not formed by different types of slope failures only, channel erosion itself plays a dominant role in the development of debris flows. Today LIDAR data allow us to identify different types of debris sources and subsequent channel features. In combination with the lithological setting this information helps us to understand the general morphodynamics of mountain channels. A deeper insight into the development of mountain channels lacks of consistent data sets. Different approaches try to estimate erosional rates of torrents during design events. These methods are mainly based on field survey and on the experience of the person doing this job. To decrease the uncertainty of these data, the collected data have to be checked against already existing data of documented former events. The development of the erosional processes in torrents is directly linked with the dominating morphodynamic process, leading to essential estimates of debris flow hydrographes.

  14. Detection of Optically Faint GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, P.; Lederer, S.; Barker, E.; Cowardin, H.; Abercromby, K.; Silha, J.; Burkhardt, A.

    2014-01-01

    There have been extensive optical surveys for debris at geosynchronous orbit (GEO) conducted with meter-class telescopes, such as those conducted with MODEST (the Michigan Orbital DEbris Survey Telescope, a 0.6-m telescope located at Cerro Tololo in Chile), and the European Space Agency's 1.0-m space debris telescope (SDT) in the Canary Islands. These surveys have detection limits in the range of 18th or 19th magnitude, which corresponds to sizes larger than 10 cm assuming an albedo of 0.175. All of these surveys reveal a substantial population of objects fainter than R = 15th magnitude that are not in the public U.S. Satellite Catalog. To detect objects fainter than 20th magnitude (and presumably smaller than 10 cm) in the visible requires a larger telescope and excellent imaging conditions. This combination is available in Chile. NASA's Orbital Debris Program Office has begun collecting orbital debris observations with the 6.5-m (21.3-ft diameter) "Walter Baade" Magellan telescope at Las Campanas Observatory. The goal is to detect objects as faint as possible from a ground-based observatory and begin to understand the brightness distribution of GEO debris fainter than R = 20th magnitude.

  15. Conceptual design of an orbital debris collector

    NASA Technical Reports Server (NTRS)

    Odonoghue, Peter (Editor); Brenton, Brian; Chambers, Ernest; Schwind, Thomas; Swanhart, Christopher; Williams, Thomas

    1991-01-01

    The current Lower Earth Orbit (LEO) environment has become overly crowded with space debris. An evaluation of types of debris is presented in order to determine which debris poses the greatest threat to operation in space, and would therefore provide a feasible target for removal. A target meeting these functional requirements was found in the Cosmos C-1B Rocket Body. These launchers are spent space transporters which constitute a very grave risk of collision and fragmentation in LEO. The motion and physical characteristics of these rocket bodies have determined the most feasible method of removal. The proposed Orbital Debris Collector (ODC) device is designed to attach to the Orbital Maneuvering Vehicle (OMV), which provides all propulsion, tracking, and power systems. The OMV/ODC combination, the Rocket Body Retrieval Vehicle (RBRV), will match orbits with the rocket body, use a spin table to match the rotational motion of the debris, capture it, despin it, and remove it from orbit by allowing it to fall into the Earth's atmosphere. A disposal analysis is presented to show how the debris will be deorbited into the Earth's atmosphere. The conceptual means of operation of a sample mission is described.

  16. Gear Damage Detection Using Oil Debris Analysis

    NASA Technical Reports Server (NTRS)

    Dempsey, Paula J.

    2001-01-01

    The purpose of this paper was to verify, when using an oil debris sensor, that accumulated mass predicts gear pitting damage and to identify a method to set threshold limits for damaged gears. Oil debris data was collected from 8 experiments with no damage and 8 with pitting damage in the NASA Glenn Spur Gear Fatigue Rig. Oil debris feature analysis was performed on this data. Video images of damage progression were also collected from 6 of the experiments with pitting damage. During each test, data from an oil debris sensor was monitored and recorded for the occurrence of pitting damage. The data measured from the oil debris sensor during experiments with damage and with no damage was used to identify membership functions to build a simple fuzzy logic model. Using fuzzy logic techniques and the oil debris data, threshold limits were defined that discriminate between stages of pitting wear. Results indicate accumulated mass combined with fuzzy logic analysis techniques is a good predictor of pitting damage on spur gears.

  17. Removing orbital debris with pulsed lasers

    NASA Astrophysics Data System (ADS)

    Phipps, Claude R.; Baker, Kevin L.; Libby, Stephen B.; Liedahl, Duane A.; Olivier, Scot S.; Pleasance, Lyn D.; Rubenchik, Alexander; Trebes, James E.; George, E. Victor; Marcovici, Bogdan; Reilly, James P.; Valley, Michael T.

    2012-07-01

    Orbital debris in low Earth orbit (LEO) are now sufficiently dense that the use of LEO space is threatened by runaway collisional cascading. A problem predicted more than thirty years ago, the threat from debris larger than about 1cm demands serious attention. A promising proposed solution uses a high power pulsed laser system on the Earth to make plasma jets on the objects, slowing them slightly, and causing them to re-enter and burn up in the atmosphere. In this paper, we reassess this approach in light of recent advances in low-cost, light-weight segmented design for large mirrors, calculations of laser-induced orbit changes and in design of repetitive, multi-kilojoule lasers, that build on inertial fusion research. These advances now suggest that laser orbital debris removal (LODR) is the most costeffective way to mitigate the debris problem. No other solutions have been proposed that address the whole problem of large and small debris. A LODR system will have multiple uses beyond debris removal. International cooperation will be essential for building and operating such a system.

  18. Model predicts global warming

    NASA Astrophysics Data System (ADS)

    Wainger, Lisa A.

    Global greenhouse warming will be clearly identifiable by the 1990s, according to eight scientists who have been studying climate changes using computer models. Researchers at NASA's Goddard Space Flight Center, Goddard Institute for Space Studies, New York, and the Massachusetts Institute of Technology, Cambridge, say that by the 2010s, most of the globe will be experiencing “substantial” warming. The level of warming will depend on amounts of trace gases, or greenhouse gases, in the atmosphere.Predictions for the next 70 years are based on computer simulations of Earth's climate. In three runs of the model, James Hansen and his colleagues looked at the effects of changing amounts of atmospheric gases with time.

  19. Global analysis of anthropogenic debris ingestion by sea turtles.

    PubMed

    Schuyler, Qamar; Hardesty, Britta Denise; Wilcox, Chris; Townsend, Kathy

    2014-02-01

    Ingestion of marine debris can have lethal and sublethal effects on sea turtles and other wildlife. Although researchers have reported on ingestion of anthropogenic debris by marine turtles and implied incidences of debris ingestion have increased over time, there has not been a global synthesis of the phenomenon since 1985. Thus, we analyzed 37 studies published from 1985 to 2012 that report on data collected from before 1900 through 2011. Specifically, we investigated whether ingestion prevalence has changed over time, what types of debris are most commonly ingested, the geographic distribution of debris ingestion by marine turtles relative to global debris distribution, and which species and life-history stages are most likely to ingest debris. The probability of green (Chelonia mydas) and leatherback turtles (Dermochelys coriacea) ingesting debris increased significantly over time, and plastic was the most commonly ingested debris. Turtles in nearly all regions studied ingest debris, but the probability of ingestion was not related to modeled debris densities. Furthermore, smaller, oceanic-stage turtles were more likely to ingest debris than coastal foragers, whereas carnivorous species were less likely to ingest debris than herbivores or gelatinovores. Our results indicate oceanic leatherback turtles and green turtles are at the greatest risk of both lethal and sublethal effects from ingested marine debris. To reduce this risk, anthropogenic debris must be managed at a global level.

  20. Global analysis of anthropogenic debris ingestion by sea turtles.

    PubMed

    Schuyler, Qamar; Hardesty, Britta Denise; Wilcox, Chris; Townsend, Kathy

    2014-02-01

    Ingestion of marine debris can have lethal and sublethal effects on sea turtles and other wildlife. Although researchers have reported on ingestion of anthropogenic debris by marine turtles and implied incidences of debris ingestion have increased over time, there has not been a global synthesis of the phenomenon since 1985. Thus, we analyzed 37 studies published from 1985 to 2012 that report on data collected from before 1900 through 2011. Specifically, we investigated whether ingestion prevalence has changed over time, what types of debris are most commonly ingested, the geographic distribution of debris ingestion by marine turtles relative to global debris distribution, and which species and life-history stages are most likely to ingest debris. The probability of green (Chelonia mydas) and leatherback turtles (Dermochelys coriacea) ingesting debris increased significantly over time, and plastic was the most commonly ingested debris. Turtles in nearly all regions studied ingest debris, but the probability of ingestion was not related to modeled debris densities. Furthermore, smaller, oceanic-stage turtles were more likely to ingest debris than coastal foragers, whereas carnivorous species were less likely to ingest debris than herbivores or gelatinovores. Our results indicate oceanic leatherback turtles and green turtles are at the greatest risk of both lethal and sublethal effects from ingested marine debris. To reduce this risk, anthropogenic debris must be managed at a global level. PMID:23914794

  1. Rapid movement of frozen debris-lobes: implications for permafrost degradation and slope instability in the south-central Brooks Range, Alaska

    USGS Publications Warehouse

    Daanen, R.P.; Grosse, G.; Darrow, M.M.; Hamilton, T.D.; Jones, Benjamin M.

    2012-01-01

    We present the results of a reconnaissance investigation of unusual debris mass-movement features on permafrost slopes that pose a potential infrastructure hazard in the south-central Brooks Range, Alaska. For the purpose of this paper, we describe these features as frozen debris-lobes. We focus on the characterisation of frozen debris-lobes as indicators of various movement processes using ground-based surveys, remote sensing, field and laboratory measurements, and time-lapse observations of frozen debris-lobe systems along the Dalton Highway. Currently, some frozen debris-lobes exceed 100 m in width, 20 m in height and 1000 m in length. Our results indicate that frozen debris-lobes have responded to climate change by becoming increasingly active during the last decades, resulting in rapid downslope movement. Movement indicators observed in the field include toppling trees, slumps and scarps, detachment slides, striation marks on frozen sediment slabs, recently buried trees and other vegetation, mudflows, and large cracks in the lobe surface. The type and diversity of observed indicators suggest that the lobes likely consist of a frozen debris core, are subject to creep, and seasonally unfrozen surface sediment is transported in warm seasons by creep, slumping, viscous flow, blockfall and leaching of fines, and in cold seasons by creep and sliding of frozen sediment slabs. Ground-based measurements on one frozen debris-lobe over three years (2008–2010) revealed average movement rates of approximately 1 cm day−1, which is substantially larger than rates measured in historic aerial photography from the 1950s to 1980s. We discuss how climate change may further influence frozen debris-lobe dynamics, potentially accelerating their movement. We highlight the potential direct hazard that one of the studied frozen debris-lobes may pose in the coming years and decades to the nearby Trans Alaska Pipeline System and the Dalton Highway, the main artery for transportation

  2. Rapid movement of frozen debris-lobes: implications for permafrost degradation and slope instability in the south-central Brooks Range, Alaska

    NASA Astrophysics Data System (ADS)

    Daanen, R. P.; Grosse, G.; Darrow, M. M.; Hamilton, T. D.; Jones, B. M.

    2012-05-01

    We present the results of a reconnaissance investigation of unusual debris mass-movement features on permafrost slopes that pose a potential infrastructure hazard in the south-central Brooks Range, Alaska. For the purpose of this paper, we describe these features as frozen debris-lobes. We focus on the characterisation of frozen debris-lobes as indicators of various movement processes using ground-based surveys, remote sensing, field and laboratory measurements, and time-lapse observations of frozen debris-lobe systems along the Dalton Highway. Currently, some frozen debris-lobes exceed 100 m in width, 20 m in height and 1000 m in length. Our results indicate that frozen debris-lobes have responded to climate change by becoming increasingly active during the last decades, resulting in rapid downslope movement. Movement indicators observed in the field include toppling trees, slumps and scarps, detachment slides, striation marks on frozen sediment slabs, recently buried trees and other vegetation, mudflows, and large cracks in the lobe surface. The type and diversity of observed indicators suggest that the lobes likely consist of a frozen debris core, are subject to creep, and seasonally unfrozen surface sediment is transported in warm seasons by creep, slumping, viscous flow, blockfall and leaching of fines, and in cold seasons by creep and sliding of frozen sediment slabs. Ground-based measurements on one frozen debris-lobe over three years (2008-2010) revealed average movement rates of approximately 1 cm day-1, which is substantially larger than rates measured in historic aerial photography from the 1950s to 1980s. We discuss how climate change may further influence frozen debris-lobe dynamics, potentially accelerating their movement. We highlight the potential direct hazard that one of the studied frozen debris-lobes may pose in the coming years and decades to the nearby Trans Alaska Pipeline System and the Dalton Highway, the main artery for transportation

  3. Electrostatic Tractor Analysis for GEO Debris Remediation

    NASA Astrophysics Data System (ADS)

    Hogan, Erik A.

    The high value of operating in the geostationary ring, coupled with increasing numbers of orbital debris, highlights the need for GEO debris remediation techniques. One recent proposed technique for GEO debris mitigation is the electrostatic tractor. Here, a tug vehicle approaches a target debris object and emits a focused electron beam onto it. This results in a negative charge on the debris, and a positive charge on the tug vehicle. Due to the near proximity of the highly charged objects (20 meters or less) an attractive electrostatic force on the order of milliNewtons results. This electrostatic force is used in conjunction with low thrusting by the tug vehicle to tow the debris object into a disposal orbit 200-300 kilometers above the GEO belt. During the tugging period, the charged relative motion between tug and deputy is stabilized through a feedback control law. This is accomplished using a novel relative motion description that isolates separation distance from the relative orientation. The equations of motion for the relative motion description are derived from the Clohessy-Wiltshire equations, assuming the debris object is in a nearly circular orbit. Lyapunov stability theory is used to derive an asymptotically stable control law for the tug thrusters during the towing period. The control law requires an estimate of the electrostatic force magnitude, and the impacts of improperly modeled charging on control response are determined. If the electrostatic force is under-predicted too severely, a collision may result. A bound on the control gains is determined to prevent such a collision. Expected reorbiting performance levels achievable with the electrostatic tractor are computed. An open-loop analytical performance study is performed where variational equations are used to predict how much general orbital elements may be changed using the electrostatic tractor over one orbital period for a towed object at geosynchronous altitude. In contrast to earlier

  4. Searching for Optically Faint GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Lederer, Susan M.; Abercromby, Kira J.; Barker, Edwin S.; Burkhardt, Andrew; Cowardin, Heather; Krisko, Paula; Silha, Jiri

    2012-01-01

    We report on results from a search for optically faint debris (defined as R > 20th magnitude, or smaller than 10 cm assuming an albedo of 0.175)) at geosynchronous orbit (GEO) using the 6.5-m Magellan telescope "Walter Baade" at Las Campanas Observatory in Chile. Our goal is to characterize the brightness distribution of debris to the faintest limiting magnitude possible. Our data was obtained during 6 hours of observing time during the photometric nights of 26 and 27 March 2011 with the IMACS f/2 instrument, which has a field of view (fov) of 0.5 degrees in diameter. All observations were obtained through a Sloan r filter, and calibrated by observations of Landolt standard stars. Our primary objective was to search for optically faint objects from one of the few known fragmentations at GEO: the Titan 3C Transtage (1968-081) fragmentation in 1992. Eight debris pieces and the parent rocket body are in the Space Surveillance Network public catalog. We successfully tracked two cataloged pieces of Titan debris with the 6.5-m telescope, followed by a survey for unknown objects on similar orbits but with different mean anomalies. To establish the bright end of the debris population, calibrated observations were acquired on the same field centers, telescope rates, and time period with a similar filter on the 0.6-m MODEST (Michigan Orbital DEbris Survey Telescope), located 100 km to the south of Magellan at Cerro Tololo Inter-American Observatory, Chile. We will show the calibrated brightness distributions from both telescopes, and compare the observed brightness distributions with that predicted for various population models of debris of different sizes.

  5. Debris analysis workstation: from concept to reality

    NASA Astrophysics Data System (ADS)

    Spencer, David B.; Maethner, Scott R.; Shubert, Ann J.; Yates, Ken W.

    1995-06-01

    Determining the hazards from debris generating events is a design and safety consideration for a number of space systems, both currently operating and planned. To meet these and other requirements, the US Air Force Phillips Laboratory Space Debris Research Program is developing a simulation platform called the Debris Analysis Workstation (DAW) which provides an analysis capability for assessing a wide variety of debris studies. DAW integrates several component debris analysis models and data visualization tools into a single analysis platform that meets the needs for DoD space debris analysis, and is both user friendly and modular. This allows for studies to be performed expeditiously by analysts that are not debris experts. DAW has gone from concept to reality with the recent deliveries of Versions 0.1 to 0.4 to a number of customers. The current version of DAW incorporates a spacecraft break-up model, drag inclusive propagator, a collision dispersion model, a graphical user interface, and data visualization routines, which together provide capabilities to conduct missile intercept range safety analyses. Work is progressing to add new capabilities with the incorporation of additional models and improved designs. The existing tools are in their initial integrated form, but the 'glue' that will ultimately bring them together into an integrated, user-friendly system, is an object oriented language layer that is scheduled to be added in 1995. Other candidate component models that are under consideration for incorporation include additional orbital propagators, error estimation routines, dispersion models, and other breakup models. At present, DAW resides on a SUN workstation, although future versions could be tailored for other platforms, depending on the need.

  6. Orbital Debris Engineering Model (ORDEM) v.3

    NASA Technical Reports Server (NTRS)

    Matney, Mark; Krisko, Paula; Xu, Yu-Lin; Horstman, Matthew

    2013-01-01

    A model of the manmade orbital debris environment is required by spacecraft designers, mission planners, and others in order to understand and mitigate the effects of the environment on their spacecraft or systems. A manmade environment is dynamic, and can be altered significantly by intent (e.g., the Chinese anti-satellite weapon test of January 2007) or accident (e.g., the collision of Iridium 33 and Cosmos 2251 spacecraft in February 2009). Engineering models are used to portray the manmade debris environment in Earth orbit. The availability of new sensor and in situ data, the re-analysis of older data, and the development of new analytical and statistical techniques has enabled the construction of this more comprehensive and sophisticated model. The primary output of this model is the flux [#debris/area/time] as a function of debris size and year. ORDEM may be operated in spacecraft mode or telescope mode. In the former case, an analyst defines an orbit for a spacecraft and "flies" the spacecraft through the orbital debris environment. In the latter case, an analyst defines a ground-based sensor (telescope or radar) in terms of latitude, azimuth, and elevation, and the model provides the number of orbital debris traversing the sensor's field of view. An upgraded graphical user interface (GUI) is integrated with the software. This upgraded GUI uses project-oriented organization and provides the user with graphical representations of numerous output data products. These range from the conventional flux as a function of debris size for chosen analysis orbits (or views), for example, to the more complex color-contoured two-dimensional (2D) directional flux diagrams in local spacecraft elevation and azimuth.

  7. Linking social drivers of marine debris with actual marine debris on beaches.

    PubMed

    Slavin, Chris; Grage, Anna; Campbell, Marnie L

    2012-08-01

    The drivers (social) and pressures (physical) of marine debris have typically been examined separately. We redress this by using social and beach surveys at nine Tasmanian beaches, across three coastlines and within three categories of urbanisation, to examine whether people acknowledge that their actions contribute to the issue of marine debris, and whether these social drivers are reflected in the amount of marine debris detected on beaches. A large proportion (75%) of survey participants do not litter at beaches; with age, gender, income and residency influencing littering behaviour. Thus, participants recognise that littering at beaches is a problem. This social trend was reflected in the small amounts of debris that were detected. Furthermore, the amount of debris was not statistically influenced by the degree of beach urbanisation, the coastline sampled, or the proximity to beach access points. By linking social and physical aspects of this issue, management outcomes can be improved.

  8. Linking social drivers of marine debris with actual marine debris on beaches.

    PubMed

    Slavin, Chris; Grage, Anna; Campbell, Marnie L

    2012-08-01

    The drivers (social) and pressures (physical) of marine debris have typically been examined separately. We redress this by using social and beach surveys at nine Tasmanian beaches, across three coastlines and within three categories of urbanisation, to examine whether people acknowledge that their actions contribute to the issue of marine debris, and whether these social drivers are reflected in the amount of marine debris detected on beaches. A large proportion (75%) of survey participants do not litter at beaches; with age, gender, income and residency influencing littering behaviour. Thus, participants recognise that littering at beaches is a problem. This social trend was reflected in the small amounts of debris that were detected. Furthermore, the amount of debris was not statistically influenced by the degree of beach urbanisation, the coastline sampled, or the proximity to beach access points. By linking social and physical aspects of this issue, management outcomes can be improved. PMID:22704152

  9. Warm and Cool Cityscapes

    ERIC Educational Resources Information Center

    Jubelirer, Shelly

    2012-01-01

    Painting cityscapes is a great way to teach first-grade students about warm and cool colors. Before the painting begins, the author and her class have an in-depth discussion about big cities and what types of buildings or structures that might be seen in them. They talk about large apartment and condo buildings, skyscrapers, art museums,…

  10. Mixed debris treatment at the Idaho National Engineering Laboratory (INEL)

    SciTech Connect

    Garcia, E.C.; Porter, C.L.; Wallace, M.T.

    1993-10-01

    August 18, 1992 the Environmental Protection Agency (EPA) published the final revised treatment standards for hazardous debris, including mixed debris. (1) Whereas previous standards had been concentration based, the revised standards are performance based. Debris must be treated prior to land disposal, using specific technologies from one or more of the following families of debris treatment technologies: Extraction, destruction, or immobilization. Seventeen specific technologies with generic application are discussed in the final rule. The existing capabilities and types of debris at the INEL were scrubbed against the debris rule to determine an overall treatment strategy. Seven types of debris were identified: combustible, porous, non-porous, inherently hazardous, HEPA filters, asbestos contaminated, and reactive metals contaminated debris. With the exception of debris contaminated with reactive metals treatment can be achieved utilizing existing facilities coupled with minor modifications.

  11. Characterization of marine debris in North Carolina salt marshes.

    PubMed

    Viehman, Shay; Vander Pluym, Jenny L; Schellinger, Jennifer

    2011-12-01

    Marine debris composition, density, abundance, and accumulation were evaluated in salt marshes in Carteret County, North Carolina seasonally between 2007 and 2009. We assessed relationships between human use patterns and debris type. Wave effects on marine debris density were examined using a GIS-based forecasting tool. We assessed the influence of site wave exposure, period, and height on debris quantity. Presence and abundance of debris were related to wave exposure, vegetation type and proximity of the strata to human population and human use patterns. Plastic pieces accounted for the majority of all debris. Small debris (0-5 cm) was primarily composed of foam pieces and was frequently affiliated with natural wrack. Large debris (>100 cm) was encountered in all marsh habitat types surveyed and was primarily composed of anthropogenic wood and derelict fishing gear. Marsh cleanup efforts should be targeted to specific habitat types or debris types to minimize further damage to sensitive habitats.

  12. -induced continental warming

    NASA Astrophysics Data System (ADS)

    Kamae, Youichi; Watanabe, Masahiro; Kimoto, Masahide; Shiogama, Hideo

    2014-11-01

    In this the second of a two-part study, we examine the physical mechanisms responsible for the increasing contrast of the land-sea surface air temperature (SAT) in summertime over the Far East, as observed in recent decades and revealed in future climate projections obtained from a series of transient warming and sensitivity experiments conducted under the umbrella of the Coupled Model Intercomparison Project phase 5. On a global perspective, a strengthening of land-sea SAT contrast in the transient warming simulations of coupled atmosphere-ocean general circulation models is attributed to an increase in sea surface temperature (SST). However, in boreal summer, the strengthened contrast over the Far East is reproduced only by increasing atmospheric CO2 concentration. In response to SST increase alone, the tropospheric warming over the interior of the mid- to high-latitude continents including Eurasia are weaker than those over the surrounding oceans, leading to a weakening of the land-sea SAT contrast over the Far East. Thus, the increasing contrast and associated change in atmospheric circulation over East Asia is explained by CO2-induced continental warming. The degree of strengthening of the land-sea SAT contrast varies in different transient warming scenarios, but is reproduced through a combination of the CO2-induced positive and SST-induced negative contributions to the land-sea contrast. These results imply that changes of climate patterns over the land-ocean boundary regions are sensitive to future scenarios of CO2 concentration pathways including extreme cases.

  13. A Search for Optically Faint GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Lederer, Susan M.; Barker, Edwin S.; Cowardin, Heather; Abercromby, Kira J.; ilha, Jiri

    2011-01-01

    Existing optical surveys for debris at geosynchronous orbit (GEO) have been conducted with meter class telescopes, which have detection limits in the range of 18th-19th magnitude. We report on a new search for optically faint debris at GEO using the 6.5-m Magellan 1 telescope Walter Baade at Las Campanas Observatory in Chile. Our goal is to go as faint as possible and characterize the brightness distribution of debris fainter than R = 20th magnitude, corresponding to a size smaller than 10 cm assuming an albedo of 0.175. We wish to compare the inferred size distribution for GEO debris with that for LEO debris. We describe results obtained during 9.4 hours of observing time during 25-27 March 2011. We used the IMACS f/2 instrument, which has a mosaic of 8 CCDs, and a field of view of 30 arc-minutes in diameter. This is the widest field of view of any instrument on either Magellan telescope. All observations were obtained through a Sloan r filter. The limiting magnitude for 5 second exposures is estimated to be fainter than 22. With this small field of view and the limited observing time, our objective was to search for optically faint objects from the Titan 3C Transtage (1968-081) fragmentation in 1992. Eight debris pieces and the parent rocket body are in the Space Surveillance Network public catalog. We successfully tracked two cataloged pieces of Titan debris (SSN # 25001 and 33519) with the 6.5-m telescope, followed by a survey for objects on similar orbits but with a spread in mean anomaly. To detect bright objects over a wider field of view (1.6x1.6 degrees), we observed the same field centers at the same time through a similar filter with the 0.6-m MODEST (Michigan Orbital DEbris Survey Telescope), located 100 km to the south of Magellan at Cerro Tololo Inter-American Observatory, Chile. We will describe our experiences using Magellan, a telescope never used previously for orbital debris research, and our initial results.

  14. Resolved imaging of the HR 8799 Debris disk with Herschel

    SciTech Connect

    Matthews, Brenda; Booth, Mark; Broekhoven-Fiene, Hannah; Marois, Christian; Kennedy, Grant; Wyatt, Mark; Sibthorpe, Bruce; Macintosh, Bruce

    2014-01-01

    We present Herschel far-infrared and submillimeter maps of the debris disk associated with the HR 8799 planetary system. We resolve the outer disk emission at 70, 100, 160, and 250 μm and detect the disk at 350 and 500 μm. A smooth model explains the observed disk emission well. We observe no obvious clumps or asymmetries associated with the trapping of planetesimals that is a potential consequence of planetary migration in the system. We estimate that the disk eccentricity must be <0.1. As in previous work by Su et al., we find a disk with three components: a warm inner component and two outer components, a planetesimal belt extending from 100 to 310 AU, with some flexibility (±10 AU) on the inner edge, and the external halo that extends to ∼2000 AU. We measure the disk inclination to be 26° ± 3° from face-on at a position angle of 64° E of N, establishing that the disk is coplanar with the star and planets. The spectral energy distribution of the disk is well fit by blackbody grains whose semi-major axes lie within the planetesimal belt, suggesting an absence of small grains. The wavelength at which the spectrum steepens from blackbody, 47 ± 30 μm, however, is short compared with other A star debris disks, suggesting that there are atypically small grains likely populating the halo. The PACS longer wavelength data yield a lower disk color temperature than do MIPS data (24 and 70 μm), implying two distinct halo dust-grain populations.

  15. Silica Debris Disk Evidence for Giant Planet Forming Impacts

    NASA Astrophysics Data System (ADS)

    Lisse, C.

    2014-04-01

    Giant impacts are major formation events in the history of our solar system. The final assembly of the planets, as we understand it, had to include massive fast collision events as the planets grew to objects with large escape velocities or in regions of high Keplerian velocities (Chambers 2004; Kenyon & Bromley 2004a,b, 2006; Fegley & Schaefer 2005). These massive impact events should create large amounts of glassy silica material derived from the rapid melting, vaporization, and refreezing of normal silicate rich primitive rocky material. We report here the detection of 4 bright silica-rich debris disks in the Spitzer IRS spectral archive, and the possible identification of 7 others. The stellar types of the system primaries span from A5V to G0V, their ages are 10 - 100 Myr, and the dust is warm, 280 - 480 K, and is located between 1.5 and 6 AU, well inside the systems' terrestrial planet regions. The minimum amount of detected 0.1 - 20 dust mass ranges from 10^21 - 10^23 kg; assuming < 10% dust formation efficiency (Benz 2009, 2011) this implies collisions involving impactors massing at least 10^22 - 10^24 kg, i.e. from Moon to Earth mass. We find possible trends in the mineralogy of the silica, with predominantly amorphous silica found in the 2 younger systems, and crystalline silica in the older systems. We speculate this is due higher velocity impacts found in younger, hotter systems, coupled with the effects of energetic photon annealing of small amorphous silica grains. All of these measures are consistent with the creation of silica rich rubble, or construction debris, during the terrestrial planet formation era of giant impacts.

  16. Modelling the inner debris disc of HR 8799

    NASA Astrophysics Data System (ADS)

    Contro, B.; Horner, J.; Wittenmyer, R. A.; Marshall, J. P.; Hinse, T. C.

    2016-11-01

    In many ways, the HR 8799 planetary system strongly resembles our own. It features four giant planets and two debris belts, analogues to the Asteroid and Edgeworth-Kuiper belts. Here, we present the results of dynamical simulations of HR8799's inner debris belt, to study its structure and collisional environment. Our results suggest that HR 8799's inner belt is highly structured, with gaps between regions of dynamical stability. The belt is likely constrained between sharp inner and outer edges, located at ˜6 and ˜8 au, respectively. Its inner edge coincides with a broad gap cleared by the 4:1 mean-motion resonance with HR 8799e. Within the belt, planetesimals are undergoing a process of collisional attrition like that observed in the Asteroid belt. However, whilst the mean collision velocity in the Asteroid belt exceeds 5 km s-1, the majority of collisions within HR 8799's inner belt occur with velocities of order 1.2 km s-1, or less. Despite this, they remain sufficiently energetic to be destructive - giving a source for the warm dust detected in the system. Interior to the inner belt, test particles remain dynamically unstirred, aside from narrow bands excited by distant high-order resonances with HR 8799e. This lack of stirring is consistent with earlier thermal modelling of HR 8799's infrared excess, which predicted little dust inside 6 au. The inner system is sufficiently stable and unstirred that the formation of telluric planets is feasible, although such planets would doubtless be subject to a punitive impact regime, given the intense collisional grinding required in the inner belt to generate the observed infrared excess.

  17. Modelling the Inner Debris Disc of HR 8799

    NASA Astrophysics Data System (ADS)

    Contro, Bruna; Horner, Jonti; Wittenmyer, Rob; Marshall, Jonathan P.; Hinse, T. C.

    2016-08-01

    In many ways, the HR 8799 planetary system strongly resembles our own. It features four giant planets and two debris belts, analogues to the Asteroid and Edgeworth-Kuiper belts. Here, we present the results of dynamical simulations of HR8799's inner debris belt, to study its structure and collisional environment. Our results suggest that HR 8799's inner belt is highly structured, with gaps between regions of dynamical stability. The belt is likely constrained between sharp inner and outer edges, located at ˜6 and ˜8 au, respectively. Its inner edge coincides with a broad gap cleared by the 4:1 mean-motion resonance with HR 8799e. Within the belt, planetesimals are undergoing a process of collisional attrition like that observed in the Asteroid belt. However, whilst the mean collision velocity in the Asteroid belt exceeds 5 kms-1, the majority of collisions within HR 8799's inner belt occur with velocities of order 1.2 kms-1, or less. Despite this, they remain sufficiently energetic to be destructive - giving a source for the warm dust detected in the system. Interior to the inner belt, test particles remain dynamically unstirred, aside from narrow bands excited by distant high-order resonances with HR 8799e. This lack of stirring is consistent with earlier thermal modelling of HR 8799's infrared excess, which predicted little dust inside 6 au. The inner system is sufficiently stable and unstirred that the formation of telluric planets is feasible, although such planets would doubtless be subject to a punitive impact regime, given the intense collisional grinding required in the inner belt to generate the observed infrared excess.

  18. Collisional modelling of the debris disc around HIP 17439

    NASA Astrophysics Data System (ADS)

    Schüppler, Ch.; Löhne, T.; Krivov, A. V.; Ertel, S.; Marshall, J. P.; Eiroa, C.

    2014-07-01

    We present an analysis of the debris disc around the nearby K2 V star HIP 17439. In the context of the Herschel DUNES key programme, the disc was observed and spatially resolved in the far-IR with the Herschel PACS and SPIRE instruments. In a previous study, we assumed that the size and radial distribution of the circumstellar dust are independent power laws. There, several scenarios capable of explaining the observations were suggested after exploring a very broad range of possible model parameters. In this paper, we perform a follow-up in-depth collisional modelling of these scenarios to further distinguish between them. In our models we consider collisions, direct radiation pressure, and drag forces, which are the actual physical processes operating in debris discs. We find that all scenarios discussed in the first paper are physically reasonable and can reproduce the observed spectral energy distribution along with the PACS surface brightness profiles reasonably well. In one model, the dust is produced beyond 120 au in a narrow planetesimal belt and is transported inwards by Poynting-Robertson and stellar wind drag. Good agreement with the observed radial profiles would require stellar winds by about an order of magnitude stronger than the solar value, which is not confirmed - although not ruled out - by observations. Another model consists of two spatially separated planetesimal belts, a warm inner and a cold outer one. This scenario would probably imply the presence of planets clearing the gap between the two components. Finally, we show qualitatively that the observations can be explained by assuming the dust is produced in a single, but broad planetesimal disc with a surface density of solids rising outwards, as expected for an extended disc that experiences a natural inside-out collisional depletion. Prospects of distinguishing between the competing scenarios by future observations are discussed.

  19. Debris Disks Around Nearby Young M Dwarfs

    NASA Astrophysics Data System (ADS)

    Liu, Michael

    2006-07-01

    We propose to obtain HST/ACS F606W coronagraphic imaging of two young {10-50 Myr}, nearby {25-55 pc} M dwarfs to resolve their debris disks in scattered light. Little is known about debris disks around M dwarfs, as very few examples are known and only one, the AU Mic debris disk, has been spatially resolved thus far. IR/sub-mm photometry of our targets indicate large quantities of exceptionally cold dust, comparable to the prototype AU Mic system, and make them excellent candidates for resolved studies with physical resolutions of 1-2 AU. HST/ACS provides an excellent capability for detection of disks in scattered light. Modeling the disk images will allow us to quantify the radial and vertical structure and to search for disk sub-structure, a potential probe of the planet formation process in these young systems. Our program can expand the census of young resolved debris disks, of which very few are currently known. M dwarfs have been largely over-looked in myriad imaging searches: our program will complement the many current programs focusing on the higher-mass AFGK stars. Because our targets belong to nearby young moving groups with known resolved disks around higher mass stars, a key potential outcome of our program is comparative study of coeval debris disks over a range of stellar masses.

  20. Laser Systems for Orbital Debris Removal

    SciTech Connect

    Rubenchik, A. M.; Barty, C. P. J.; Beach, R. J.; Erlandson, A. C.; Caird, J. A.

    2010-10-08

    The use of a ground based laser for space debris cleaning was investigated by the ORION project in 1996. Since that study the greatest technological advance in the development of high energy pulsed laser systems has taken place within the NIF project at LLNL. The proposed next laser system to follow the NIF at LLNL will be a high rep rate version of the NIF based on diode-pumping rather than flashlamp excitation; the so called 'LIFE' laser system. Because a single 'LIFE' beamline could be built up in a few year time frame, and has performance characteristics relevant to the space debris clearing problem, such a beamline could enable a near term demonstration of space debris cleaning. Moreover, the specifics of debris cleaning make it possible to simplify the LIFE laser beyond what is required for a fusion drive laser, and so substantially reduce its cost. Starting with the requirements for laser intensity on the target, and then considering beam delivery, we will flow back the laser requirements needed for space debris cleaning. Using these derived requirements we will then optimize the pulse duration, the operational regime, and the output pulse energy of the laser with a focus of simplifying its overall design. Anticipated simplifications include operation in the heat capacity regime, eliminating cooling requirements on the laser gain slabs, and relaxing B-integral and birefrigence requirements.

  1. Debris-flow mobilization from landslides

    USGS Publications Warehouse

    Iverson, R.M.; Reid, M.E.; LaHusen, R.G.

    1997-01-01

    Field observations, laboratory experiments, and theoretical analyses indicate that landslides mobilize to form debris flows by three processes: (a) widespread Coulomb failure within a sloping soil, rock, or sediment mass, (b) partial or complete liquefaction of the mass by high pore-fluid pressures, and (c) conversion of landslide translational energy to internal vibrational energy (i.e. granular temperature). These processes can operate independently, but in many circumstances they appear to operate simultaneously and synergistically. Early work on debris-flow mobilization described a similar interplay of processes but relied on mechanical models in which debris behavior was assumed to be fixed and governed by a Bingham or Bagnold rheology. In contrast, this review emphasizes models in which debris behavior evolves in response to changing pore pressures and granular temperatures. One-dimensional infinite-slope models provide insight by quantifying how pore pressures and granular temperatures can influence the transition from Coulomb failure to liquefaction. Analyses of multidimensional experiments reveal complications ignored in one-dimensional models and demonstrate that debris-flow mobilization may occur by at least two distinct modes in the field.

  2. Comparison of national space debris mitigation standards

    NASA Astrophysics Data System (ADS)

    Kato, A.

    2001-01-01

    Several national organizations of the space faring nations have established Space Debris Mitigation Standards or Handbooks to promote efforts to deal with the space debris issue. This paper introduces the characteristics of each document and compares the structure, items and level of requirements. The contents of these standards may be slightly different from each other but the fundamental principles are almost the same; they are (1) prevention of on-orbit breakups, (2) removal of mission terminated spacecraft from the useful orbit regions, and (3) limiting the objects released during normal operations. The Inter-Agency Space Debris Coordination Committee has contributed considerably to this trend. The Committee also found out by its recent survey that some commercial companies have begun to adopt the debris mitigation measures for their projects. However, the number of organizations that have initiated this kind of self-control is still limited, so the next challenge of the Committee is to promote the Space Debris Mitigation Guidelines world-wide. IADC initiated this project in October 1999 and a draft is being circulated among the member agencies.

  3. Laser Systems for Orbital Debris Removal

    SciTech Connect

    Rubenchik, A M; Barty, C P; Beach, R J; Erlandson, A C; Caird, J A

    2010-02-05

    The use of a ground based laser for space debris cleaning was investigated by the ORION project in 1996. Since that study the greatest technological advance in the development of high energy pulsed laser systems has taken place within the NIF project at LLNL. The proposed next laser system to follow the NIF at LLNL will be a high rep rate version of the NIF based on diode-pumping rather than flashlamp excitation; the so called 'LIFE' laser system. Because a single 'LIFE' beamline could be built up in a few year time frame, and has performance characteristics relevant to the space debris clearing problem, such a beamline could enable a near term demonstration of space debris cleaning. Moreover, the specifics of debris cleaning make it possible to simplify the LIFE laser beyond what is required for a fusion drive laser, and so substantially reduce its cost. Starting with the requirements for laser intensity on the target, and then considering beam delivery, we will flow back the laser requirements needed for space debris cleaning. Using these derived requirements we will then optimize the pulse duration, the operational regime, and the output pulse energy of the laser with a focus of simplifying its overall design. Anticipated simplifications include operation in the heat capacity regime, eliminating cooling requirements on the laser gain slabs, and relaxing B-integral and birefrigence requirements.

  4. Laser Systems for Orbital Debris Removal

    NASA Astrophysics Data System (ADS)

    Rubenchik, A. M.; Barty, C. P. J.; Beach, R. J.; Erlandson, A. C.; Caird, J. A.

    2010-10-01

    The use of a ground based laser for space debris cleaning was investigated by the ORION project in 1996. Since that study the greatest technological advance in the development of high energy pulsed laser systems has taken place within the NIF project at LLNL. The proposed next laser system to follow the NIF at LLNL will be a high rep rate version of the NIF based on diode-pumping rather than flashlamp excitation; the so called "LIFE" laser system. Because a single "LIFE" beamline could be built up in a few year time frame, and has performance characteristics relevant to the space debris clearing problem, such a beamline could enable a near term demonstration of space debris cleaning. Moreover, the specifics of debris cleaning make it possible to simplify the LIFE laser beyond what is required for a fusion drive laser, and so substantially reduce its cost. Starting with the requirements for laser intensity on the target, and then considering beam delivery, we will flow back the laser requirements needed for space debris cleaning. Using these derived requirements we will then optimize the pulse duration, the operational regime, and the output pulse energy of the laser with a focus of simplifying its overall design. Anticipated simplifications include operation in the heat capacity regime, eliminating cooling requirements on the laser gain slabs, and relaxing B-integral and birefrigence requirements.

  5. ESA Technologies for Space Debris Remediation

    NASA Astrophysics Data System (ADS)

    Wormnes, K.; Le Letty, R.; Summerer, L.; Schonenborg, R.; Dubois-Matra, O.; Luraschi, E.; Cropp, A.; Krag, H.; Delaval, J.

    2013-08-01

    Space debris is an existing and growing problem for space operations. Studies show that for a continued use of LEO, 5 - 10 large and strategically chosen debris need to be removed every year. The European Space Agency (ESA) is actively pursuing technologies and systems for space debris removal under its Clean Space initiative. This overview paper describes the activities that are currently ongoing at ESA and that have already been completed. Additionally it outlines the plan for the near future. The technologies under study fall in two main categories corresponding to whether a pushing or a pulling manoeuvre is required for the de-orbitation. ESA is studying the option of using a tethered capture system for controlled de-orbitation through pulling where the capture is performed using throw-nets or alternatively a harpoon. The Agency is also studying rigid capture systems with a particular emphasis on tentacles (potentially combined with a robotic arm). Here the de-orbitation is achieved through a push-manoeuvre. Additionally, a number of activities will be discussed that are ongoing to develop supporting technologies for these scenarios, or to develop systems for de-orbiting debris that can be allowed to re-enter in an uncontrolled manner. The short term goal and main driver for the current technology developments is to achieve sufficient TRL on required technologies to support a potential de-orbitation mission to remove a large and strategically chosen piece of debris.

  6. Multi-Decadal Comparison between Clean-Ice and Debris-Covered Glaciers in the Eastern Himalaya

    NASA Astrophysics Data System (ADS)

    Maurer, J. M.; Rupper, S.

    2014-12-01

    Himalayan glaciers are important natural resources and climatic indicators. Many of these glaciers have debris-covered ablation zones, while others are mostly clean ice. Regarding glacier dynamics, it is expected that debris-covered glaciers will respond differently to atmospheric warming compared to clean ice glaciers. In the Bhutanese Himalaya, there are (1) north flowing clean-ice glaciers with high velocities, likely with large amounts of basal sliding, and (2) south flowing debris-covered glaciers with slow velocities, thermokarst features, and influenced more by the Indian Summer Monsoon. This region, therefore, is ideal for comparing the dynamical response of clean-ice versus debris-covered glaciers to climatic change. In particular, previous studies have suggested the north flowing glaciers are likely adjusting more dynamically (i.e. retreating) in response to climate variations, while the south flowing glaciers are likely experiencing downwasting, with stagnant termini locations. We test this hypothesis by assessing glacier changes over three decades in the Bhutan region using a newly-developed workflow to extract DEMs and orthorectified imagery from both 1976 historical spy satellite images and 2006 ASTER images. DEM differencing for both debris-covered and clean glaciers allows for quantification of glacier surface elevation changes, while orthorectified imagery allows for measuring changes in glacier termini. The same stereo-matching, denoising, and georeferencing methodology is used on both datasets to ensure consistency, while the three decade timespan allows for a better signal to noise ratio compared to studies performed on shorter timescales. The results of these analyses highlight the similarities and differences in the decadal response of clean-ice and debris-covered glaciers to climatic change, and provide insights into the complex dynamics of debris-covered glaciers in the monsoonal Himalayas.

  7. Orbiting meteoroid and debris counting experiment

    NASA Technical Reports Server (NTRS)

    Kinard, William H.; Armstrong, Dwayne; Crockett, Sharon K.; Jones, James L., Jr.; Kassel, Philip C., Jr.; Wortman, J. J.

    1995-01-01

    The Orbiting Meteoroid and Debris Counting Experiment (OMDC) flew for approximately 90 days in a highly elliptical earth orbit onboard the Clementine Interstage Adapter (ISA) Spacecraft. This experiment obtained data on the impact flux of natural micrometeoroids and it provided limited information on the population of small mass man-made debris as a function of altitude in near earth space. The flight of the OMDC experiment on the ISA spacecraft also demonstrated that the ultra-lightweight, low-power, particle impact detector system that was used is a viable system for flights on future spacecraft to monitor the population of small mass man-made debris particles and to map the cosmic dust environment encountered on interplanetary missions. An overview of the ISA spacecraft mission, the approach to the OMDC experiment, and the data obtained by the experiment are presented.

  8. Autonomous space processor for orbital debris

    NASA Technical Reports Server (NTRS)

    1990-01-01

    This work continues to develop advanced designs toward the ultimate goal of a Get Away Special to demonstrate economical removal of orbital debris using local resources in orbit. The fundamental technical feasibility was demonstrated in 1988 through theoretical calculations, quantitative computer animation, a solar focal point cutter, a robotic arm design, and a subscale model. Last year improvements were made to the solar cutter and the robotic arm. Also performed last year was a mission analysis that showed the feasibility of retrieving at least four large (greater than 1500-kg) pieces of debris. Advances made during this reporting period are the incorporation of digital control with the existing placement arm, the development of a new robotic manipulator arm, and the study of debris spin attenuation. These advances are discussed here.

  9. Autonomous space processor for orbital debris

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar; Campbell, David; Marine, Micky; Saad, Mohamad; Bertles, Daniel; Nichols, Dave

    1990-01-01

    Advanced designs are being continued to develop the ultimate goal of a GETAWAY special to demonstrate economical removal of orbital debris utilizing local resources in orbit. The fundamental technical feasibility was demonstrated in 1988 through theoretical calculations, quantitative computer animation, a solar focal point cutter, a robotic arm design and a subcase model. Last year improvements were made to the solar cutter and the robotic arm. Also performed last year was a mission analysis which showed the feasibility of retrieve at least four large (greater than 1500 kg) pieces of debris. Advances made during this reporting period are the incorporation of digital control with the existing placement arm, the development of a new robotic manipulator arm, and the study of debris spin attenuation. These advances are discussed.

  10. VISCOPLASTIC FLUID MODEL FOR DEBRIS FLOW ROUTING.

    USGS Publications Warehouse

    Chen, Cheng-lung

    1986-01-01

    This paper describes how a generalized viscoplastic fluid model, which was developed based on non-Newtonian fluid mechanics, can be successfully applied to routing a debris flow down a channel. The one-dimensional dynamic equations developed for unsteady clear-water flow can be used for debris flow routing if the flow parameters, such as the momentum (or energy) correction factor and the resistance coefficient, can be accurately evaluated. The writer's generalized viscoplastic fluid model can be used to express such flow parameters in terms of the rheological parameters for debris flow in wide channels. A preliminary analysis of the theoretical solutions reveals the importance of the flow behavior index and the so-called modified Froude number for uniformly progressive flow in snout profile modeling.

  11. Amplification of postwildfire peak flow by debris

    NASA Astrophysics Data System (ADS)

    Kean, J. W.; McGuire, L. A.; Rengers, F. K.; Smith, J. B.; Staley, D. M.

    2016-08-01

    In burned steeplands, the peak depth and discharge of postwildfire runoff can substantially increase from the addition of debris. Yet methods to estimate the increase over water flow are lacking. We quantified the potential amplification of peak stage and discharge using video observations of postwildfire runoff, compiled data on postwildfire peak flow (Qp), and a physically based model. Comparison of flood and debris flow data with similar distributions in drainage area (A) and rainfall intensity (I) showed that the median runoff coefficient (C = Qp/AI) of debris flows is 50 times greater than that of floods. The striking increase in Qp can be explained using a fully predictive model that describes the additional flow resistance caused by the emergence of coarse-grained surge fronts. The model provides estimates of the amplification of peak depth, discharge, and shear stress needed for assessing postwildfire hazards and constraining models of bedrock incision.

  12. Debris flow, debris avalanche and flood hazards at and downstream from Mount Rainier, Washington

    USGS Publications Warehouse

    Scott, Kevin M.; Vallance, J.W.

    1995-01-01

    Mount Rainier volcano has produced many large debris flows and debris avalanches during the last 10,000 years. These flows have periodically traveled more than 100 kilometers from the volcano to inundate parts of the now-populated Puget Sound Lowland. Meteorological floods also have caused damage, but future effects will be partly mitigated by reservoirs. Mount Rainier presents the most severe flow risks of any volcano in the United States. Volcanic debris flows (lahars) are of two types: (1) cohesive, relatively high clay flows originating as debris avalanches, and (2) noncohesive flows with less clay that begin most commonly as meltwater surges. Three case histories represent important subpopulations of flows with known magnitudes and frequencies. The risks of each subpopulation may be considered for general planning and design. A regional map illustrates the extent of inundation by the case-history flows, the largest of which originated as debris avalanches and moved from Mount Rainier to Puget Sound. The paleohydrologic record of these past flows indicates the potential for inundation by future flows from the volcano. A map of the volcano and its immediate vicinity shows examples of smaller debris avalanches and debris flows in the 20th century.

  13. Debris flow hazards mitigation--Mechanics, prediction, and assessment

    USGS Publications Warehouse

    Chen, C.-L.; Major, J.J.

    2007-01-01

    These proceedings contain papers presented at the Fourth International Conference on Debris-Flow Hazards Mitigation: Mechanics, Prediction, and Assessment held in Chengdu, China, September 10-13, 2007. The papers cover a wide range of topics on debris-flow science and engineering, including the factors triggering debris flows, geomorphic effects, mechanics of debris flows (e.g., rheology, fluvial mechanisms, erosion and deposition processes), numerical modeling, various debris-flow experiments, landslide-induced debris flows, assessment of debris-flow hazards and risk, field observations and measurements, monitoring and alert systems, structural and non-structural countermeasures against debris-flow hazards and case studies. The papers reflect the latest devel-opments and advances in debris-flow research. Several studies discuss the development and appli-cation of Geographic Information System (GIS) and Remote Sensing (RS) technologies in debris-flow hazard/risk assessment. Timely topics presented in a few papers also include the development of new or innovative techniques for debris-flow monitoring and alert systems, especially an infra-sound acoustic sensor for detecting debris flows. Many case studies illustrate a wide variety of debris-flow hazards and related phenomena as well as their hazardous effects on human activities and settlements.

  14. Teaching Global Warming

    NASA Astrophysics Data System (ADS)

    Hobson, Art

    2004-05-01

    Every citizen's education should include socially relevant science courses because, as the American Association for the Advancement of Science puts it, "Without a scientifically literate population, the outlook for a better world is not promising." I have developed a conceptual liberal-arts physics course that covers the major principles of classical physics, emphasizes modern/contemporary physics, and includes societal topics such as global warming, ozone depletion, transportation, exponential growth, scientific methodology, risk assessment, nuclear weapons, nuclear power, and the energy future. The societal topics, occupying only about 15% of the class time, appear to be the main cause of the surprising popularity of this course among non-scientists. I will outline some ideas for incorporating global warming into such a course or into any other introductory physics course. For further details, see my textbook Physics: Concepts and Connections (Prentice Hall, 3rd edition 2003).

  15. Warm Little Inflaton

    NASA Astrophysics Data System (ADS)

    Bastero-Gil, Mar; Berera, Arjun; Ramos, Rudnei O.; Rosa, João G.

    2016-10-01

    We show that inflation can naturally occur at a finite temperature T >H that is sustained by dissipative effects, when the inflaton field corresponds to a pseudo Nambu-Goldstone boson of a broken gauge symmetry. Similar to the Little Higgs scenarios for electroweak symmetry breaking, the flatness of the inflaton potential is protected against both quadratic divergences and the leading thermal corrections. We show that, nevertheless, nonlocal dissipative effects are naturally present and are able to sustain a nearly thermal bath of light particles despite the accelerated expansion of the Universe. As an example, we discuss the dynamics of chaotic warm inflation with a quartic potential and show that the associated observational predictions are in very good agreement with the latest Planck results. This model constitutes the first realization of warm inflation requiring only a small number of fields; in particular, the inflaton is directly coupled to just two light fields.

  16. X-ray transmissive debris shield

    DOEpatents

    Spielman, R.B.

    1996-05-21

    An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

  17. X-ray transmissive debris shield

    DOEpatents

    Spielman, Rick B.

    1996-01-01

    An X-ray debris shield for use in X-ray lithography that is comprised of an X-ray window having a layer of low density foam exhibits increased longevity without a substantial increase in exposure time. The low density foam layer serves to absorb the debris emitted from the X-ray source and attenuate the shock to the window so as to reduce the chance of breakage. Because the foam is low density, the X-rays are hardly attenuated by the foam and thus the exposure time is not substantially increased.

  18. Density Estimations in Laboratory Debris Flow Experiments

    NASA Astrophysics Data System (ADS)

    Queiroz de Oliveira, Gustavo; Kulisch, Helmut; Malcherek, Andreas; Fischer, Jan-Thomas; Pudasaini, Shiva P.

    2016-04-01

    Bulk density and its variation is an important physical quantity to estimate the solid-liquid fractions in two-phase debris flows. Here we present mass and flow depth measurements for experiments performed in a large-scale laboratory set up. Once the mixture is released and it moves down the inclined channel, measurements allow us to determine the bulk density evolution throughout the debris flow. Flow depths are determined by ultrasonic pulse reflection, and the mass is measured with a total normal force sensor. The data were obtained at 50 Hz. The initial two phase material was composed of 350 kg debris with water content of 40%. A very fine pebble with mean particle diameter of 3 mm, particle density of 2760 kg/m³ and bulk density of 1400 kg/m³ in dry condition was chosen as the solid material. Measurements reveal that the debris bulk density remains high from the head to the middle of the debris body whereas it drops substantially at the tail. This indicates lower water content at the tail, compared to the head and the middle portion of the debris body. This means that the solid and fluid fractions are varying strongly in a non-linear manner along the flow path, and from the head to the tail of the debris mass. Importantly, this spatial-temporal density variation plays a crucial role in determining the impact forces associated with the dynamics of the flow. Our setup allows for investigating different two phase material compositions, including large fluid fractions, with high resolutions. The considered experimental set up may enable us to transfer the observed phenomena to natural large-scale events. Furthermore, the measurement data allows evaluating results of numerical two-phase mass flow simulations. These experiments are parts of the project avaflow.org that intends to develop a GIS-based open source computational tool to describe wide spectrum of rapid geophysical mass flows, including avalanches and real two-phase debris flows down complex natural

  19. Apparatus for controlling molten core debris

    DOEpatents

    Golden, Martin P. [Trafford, PA; Tilbrook, Roger W. [Monroeville, PA; Heylmun, Neal F. [Pittsburgh, PA

    1977-07-19

    Apparatus for containing, cooling, diluting, dispersing and maintaining subcritical the molten core debris assumed to melt through the bottom of a nuclear reactor pressure vessel in the unlikely event of a core meltdown. The apparatus is basically a sacrificial bed system which includes an inverted conical funnel, a core debris receptacle including a spherical dome, a spherically layered bed of primarily magnesia bricks, a cooling system of zig-zag piping in graphite blocks about and below the bed and a cylindrical liner surrounding the graphite blocks including a steel shell surrounded by firebrick. Tantalum absorber rods are used in the receptacle and bed.

  20. Discrete Element Modelling of Floating Debris

    NASA Astrophysics Data System (ADS)

    Mahaffey, Samantha; Liang, Qiuhua; Parkin, Geoff; Large, Andy; Rouainia, Mohamed

    2016-04-01

    Flash flooding is characterised by high velocity flows which impact vulnerable catchments with little warning time and as such, result in complex flow dynamics which are difficult to replicate through modelling. The impacts of flash flooding can be made yet more severe by the transport of both natural and anthropogenic debris, ranging from tree trunks to vehicles, wheelie bins and even storage containers, the effects of which have been clearly evident during recent UK flooding. This cargo of debris can have wide reaching effects and result in actual flood impacts which diverge from those predicted. A build-up of debris may lead to partial channel blockage and potential flow rerouting through urban centres. Build-up at bridges and river structures also leads to increased hydraulic loading which may result in damage and possible structural failure. Predicting the impacts of debris transport; however, is difficult as conventional hydrodynamic modelling schemes do not intrinsically include floating debris within their calculations. Subsequently a new tool has been developed using an emerging approach, which incorporates debris transport through the coupling of two existing modelling techniques. A 1D hydrodynamic modelling scheme has here been coupled with a 2D discrete element scheme to form a new modelling tool which predicts the motion and flow-interaction of floating debris. Hydraulic forces arising from flow around the object are applied to instigate its motion. Likewise, an equivalent opposing force is applied to fluid cells, enabling backwater effects to be simulated. Shock capturing capabilities make the tool applicable to predicting the complex flow dynamics associated with flash flooding. The modelling scheme has been applied to experimental case studies where cylindrical wooden dowels are transported by a dam-break wave. These case studies enable validation of the tool's shock capturing capabilities and the coupling technique applied between the two numerical

  1. Apparatus for controlling molten core debris. [LMFBR

    DOEpatents

    Golden, M.P.; Tilbrook, R.W.; Heylmun, N.F.

    1977-07-19

    Disclosed is an apparatus for containing, cooling, diluting, dispersing and maintaining subcritical the molten core debris assumed to melt through the bottom of a nuclear reactor pressure vessel in the unlikely event of a core meltdown. The apparatus is basically a sacrificial bed system which includes an inverted conical funnel, a core debris receptacle including a spherical dome, a spherically layered bed of primarily magnesia bricks, a cooling system of zig-zag piping in graphite blocks about and below the bed and a cylindrical liner surrounding the graphite blocks including a steel shell surrounded by firebrick. Tantalum absorber rods are used in the receptacle and bed. 9 claims, 22 figures.

  2. Patterns In Debris Disks: No Planets Required?

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc

    2012-01-01

    Debris disks like those around Fomalhaut and Beta Pictoris show striking dust patterns often attributed to hidden exoplanets. These patterns have been crucial for constraining the masses and orbits of these planets. But adding a bit of gas to our models of debris disks--too little gas to detect--seems to alter this interpretation. Small amounts of gas lead to new dynamical instabilities that may mimic the narrow eccentric rings and other structures planets would create in a gas-free disk. Can we still use dust patterns to find hidden exoplanets?

  3. An Assessment of Potential Detectors to Monitor the Man-made Orbital Debris Environment. [space debris

    NASA Technical Reports Server (NTRS)

    Reynolds, R. C.; Ruck, G. T.

    1983-01-01

    Observations using NORAD radar showed that man made debris exceeds the natural environment for large objects. For short times (a few days to a few weeks) after solid rocket motor (SRM) firings in LEO, man made debris in the microparticle size range also appears to exceed the meteoroid environment. The properties of the debris population between these size regimes is currently unknown as there has been no detector system able to perform the required observations. The alternatives for obtaining data on this currently unobserved segment of the population are assessed.

  4. The Impact of Initial Conditions in N-Body Simulations of Debris Discs

    NASA Astrophysics Data System (ADS)

    Thilliez, E.; Maddison, S. T.

    2015-10-01

    or dynamically warm parent belt, while in contrast eccentric narrow debris rings are reproduced using a secularly forced parent body belt.

  5. The Debris Flow of September 20, 2014, in Mud Creek, Mount Shasta Volcano, Northern California

    NASA Astrophysics Data System (ADS)

    De La Fuente, J. A.; Bachmann, S.; Courtney, A.; Meyers, N.; Mikulovsky, R.; Rust, B.; Coots, F.; Veich, D.

    2015-12-01

    The debris flow in Mud Creek on September 20, 2014 occurred during a warm spell at the end of an unusually long and hot summer. No precipitation was recorded during or immediately before the event, and it appears to have resulted from rapid glacial melt. It initiated on the toe of the Konwakiton Glacier, and immediately below it. The flow track was small in the upper parts (40 feet wide), but between 8,000 and 10,000 feet in elevation, it entrained a large volume of debris from the walls and bed of the deeply incised gorge and transported it down to the apex of the Mud Creek alluvial fan (4,800'). At that point, it overflowed the channel and deposited debris on top of older (1924) debris flow deposits, and the debris plugged a road culvert 24 feet wide and 12 feet high. A small fraction of the flow was diverted to a pre-existing overflow channel which parallels Mud Creek, about 1,000 feet to the west. The main debris flow traveled down Mud Creek, confined to the pre-existing channel, but locally got to within a foot or so of overflowing the banks. At elevation 3920', video was taken during the event by a private citizen and placed on YouTube. The video revealed that the flow matrix consisted of a slurry of water/clay/silt/sand/gravel, transporting boulders 1-6 feet in diameter along with the flow. Cobble-sized rock appears to be absent. Sieve analysis of the debris flow matrix material revealed a fining of particles in a downstream direction, as expected. The thickness of deposits on the fan generally decreased in a downstream direction. Deposits were 5-6 feet deep above the Mud Creek dam, which is at 4,800' elevation, and 4-5 feet deep at the dam itself. Further downstream, thicknesses decreased as follows: 3920'aqueduct crossing, 3-4 feet; 3620' Pilgrim Creek Road crossing, 2-3 feet; 3,520', 1-2 feet; 3,440' abandoned railroad grade, 1 foot. This event damaged roads, and future events could threaten life and property. There is a need to better understand local

  6. Frozen debris lobes, permafrost slope instability, and a potential infrastructure hazard in the south-central Brooks Range of Alaska

    NASA Astrophysics Data System (ADS)

    Daanen, R. P.; Darrow, M.; Grosse, G.; Jones, B. M.

    2012-12-01

    Here we report on investigations carried out at unusual debris mass-movement features (frozen debris lobes) on permafrost slopes in the south central portion of the Brooks Range of northern Alaska. The features under investigation are located in mountainous terrain near the southern border of continuous permafrost. The frozen debris lobes consist mainly of boulders, cobles, platy gravel sand and silt frozen debris derived from weathering mountain tops. The general dimensions of these lobes are either lobate or tongue shaped with widths up to 500 m and lengths up to 1200 m. In accumulation zones where slopes converge, the debris slowly moves as solifluction lobes, mud flows and potentially sliding toward the valley. These features were previously referred to as stable rock glaciers in the past, as evidenced by a dense cover of vegetation, and exhibiting no known downslope movement. Our investigations however, have shown that these features are indeed moving downslope as a result of creep, slumping, viscous flow, blockfall and leaching of fines in the summer; and in cold seasons by creep and sliding of frozen sediment slabs. Movement indicators observed in the field include toppling trees, slumps and scarps, detachment slides, striation marks on frozen sediment slabs, recently buried trees and other vegetation, mudflows, and large cracks in the lobe surface. Ground-based measurements on one frozen debris-lobe over three years (2008-2010) revealed average movement rates of approximately 1 cm day-1, which is substantially larger than rates measured in historic aerial photography from the 1950s to 1980s. Current observations , through lidar, ifsar, insar and ground based measurements using boreholes, geophysics and repeat photography of these features show an increase in movement activity that could be the result of rising summer temperatures in the region. Warming of ice rich permafrost slopes and frozen debris lobes in the Brooks Range pose a direct threat to the

  7. Orbital Debris Quarterly News, Vol. 13, No. 2

    NASA Technical Reports Server (NTRS)

    Liou, J.-C. (Editor); Shoots, Debi (Editor)

    2009-01-01

    Topics include: debris clouds left by satellite collision; debris flyby near the International Space Station; and break-up of an ullage motor from a Russian Proton launch vehicle. Findings from the analysis of the STS-126 Shuttle Endeavour window impact damage are provided. Abstracts from the NASA Orbital Debris program office are presented and address a variety of topics including: Reflectance Spectra Comparison of Orbital Debris, Intact Spacecraft, and Intact Rocket Bodies in the GEO Regime; Shape Distribution of Fragments From Microsatellite Impact Tests; Micrometeoroid and Orbital Debris Threat Mitigation Techniques for the Space Shuttle Orbiter; Space Debris Environment Remediation Concepts; and, In Situ Measurement Activities at the NASA Orbital Debris Program Office. Additionally, a Meeting Report is provided for the 12 meeting of the NASA/DoD Orbital Debris Working Group.

  8. Blast deflector traps smoke and debris from explosive trains

    NASA Technical Reports Server (NTRS)

    Wilkowski, J. C.

    1968-01-01

    Blast deflector protects interior areas and personnel from the smoke and debris of explosive trains. It contains open-cell foam to absorb the pressure loads generated by explosive charges and control the smoke and debris.

  9. Global Warming And Meltwater

    NASA Astrophysics Data System (ADS)

    Bratu, S.

    2012-04-01

    In order to find new approaches and new ideas for my students to appreciate the importance of science in their daily life, I proposed a theme for them to debate. They had to search for global warming information and illustrations in the media, and discuss the articles they found in the classroom. This task inspired them to search for new information about this important and timely theme in science. I informed my students that all the best information about global warming and meltwater they found would be used in a poster that would help us to update the knowledge base of the Physics laboratory. I guided them to choose the most eloquent images and significant information. Searching and working to create this poster, the students arrived to better appreciate the importance of science in their daily life and to critically evaluate scientific information transmitted via the media. In the poster we created, one can find images, photos and diagrams and some interesting information: Global warming refers to the rising average temperature of the Earth's atmosphere and oceans and its projected evolution. In the last 100 years, the Earth's average surface temperature increased by about 0.8 °C with about two thirds of the increase occurring over just the last three decades. Warming of the climate system is unequivocal, and scientists are more than 90% certain most of it is caused by increasing concentrations of greenhouse gases produced by human activities such as deforestation and burning fossil fuel. They indicate that during the 21st century the global surface temperature is likely to rise a further 1.1 to 2.9 °C for the lowest emissions scenario and 2.4 to 6.4 °C for the highest predictions. An increase in global temperature will cause sea levels to rise and will change the amount and pattern of precipitation, and potentially result in expansion of subtropical deserts. Warming is expected to be strongest in the Arctic and would be associated with continuing decrease of

  10. An Overview of NASA's Oribital Debris Environment Model

    NASA Technical Reports Server (NTRS)

    Matney, Mark

    2010-01-01

    Using updated measurement data, analysis tools, and modeling techniques; the NASA Orbital Debris Program Office has created a new Orbital Debris Environment Model. This model extends the coverage of orbital debris flux throughout the Earth orbit environment, and includes information on the mass density of the debris as well as the uncertainties in the model environment. This paper will give an overview of this model and its implications for spacecraft risk analysis.

  11. Orbiting Debris: a Space Environmental Problem. Background Paper

    NASA Technical Reports Server (NTRS)

    1990-01-01

    Artificial debris, deposited in a multitude of orbits about the Earth as the result of the exploration and use of the space environment, poses a growing hazard to future space operations. Unless nations sharply reduce the amount of orbital debris they produce, future space activites could suffer loss of capability, loss of income, and even loss of life as a result of collisions between spacecraft and debris. This background paper discusses the sources of debris and how they can be greatly reduced.

  12. Activity of the Russian Federation on the Space Debris Problems

    NASA Astrophysics Data System (ADS)

    Loginov, S.; Yakovlev, M.; Mikhailov, M.; Garlov, A.; Feldstein, V.; Oleynikov, I.; Makarov, Y.; Bulynin, Y.; Trushlyakov, V.

    2013-08-01

    Research of space debris problems in the Russian Federation is carried out in following aspects 1) observation, 2) modelling, 3) protection and 4) mitigation. The Russian Federation is devoted to the international efforts on space debris problem resolution and is already implementing practical steps on space debris mitigation on a voluntary basis within its own national mechanisms taking into account the COPUOS UN and IADC Space Debris Mitigation Guidelines.

  13. The Orbital Debris Problem and the Challenges for Environment Remediation

    NASA Technical Reports Server (NTRS)

    Liou, J.-C.

    2013-01-01

    Orbital debris scientists from major international space agencies, including JAXA and NASA, have worked together to predict the trend of the future environment. A summary presentation was given to the United Nations in February 2013. The orbital debris population in LEO will continue to increase. Catastrophic collisions will continue to occur every 5 to 9 years center dot To limit the growth of the future debris population and to better protect future spacecraft, active debris removal, should be considered.

  14. Autonomous space processor for orbital debris

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar; Marine, Micky; Colvin, James; Crockett, Richard; Sword, Lee; Putz, Jennifer; Woelfle, Sheri

    1991-01-01

    The development of an Autonomous Space Processor for Orbital Debris (ASPOD) was the goal. The nature of this craft, which will process, in situ, orbital debris using resources available in low Earth orbit (LEO) is explained. The serious problem of orbital debris is briefly described and the nature of the large debris population is outlined. The focus was on the development of a versatile robotic manipulator to augment an existing robotic arm, the incorporation of remote operation of the robotic arms, and the formulation of optimal (time and energy) trajectory planning algorithms for coordinated robotic arms. The mechanical design of the new arm is described in detail. The work envelope is explained showing the flexibility of the new design. Several telemetry communication systems are described which will enable the remote operation of the robotic arms. The trajectory planning algorithms are fully developed for both the time optimal and energy optimal problems. The time optimal problem is solved using phase plane techniques while the energy optimal problem is solved using dynamic programming.

  15. Procedure for estimating orbital debris risks

    NASA Technical Reports Server (NTRS)

    Crafts, J. L.; Lindberg, J. P.

    1985-01-01

    A procedure for estimating the potential orbital debris risk to the world's populace from payloads or spent stages left in orbit on future missions is presented. This approach provides a consistent, but simple, procedure to assess the risk due to random reentry with an adequate accuracy level for making programmatic decisions on planned low Earth orbit missions.

  16. Searching For Planets in "Holey Debris Disks"

    NASA Astrophysics Data System (ADS)

    Meshkat, Tiffany; Bailey, Vanessa P.; Su, Kate Y. L.; Kenworthy, Matthew A.; Mamajek, Eric E.; Hinz, Philip; Smith, Paul S.

    2015-01-01

    Directly imaging planets provides a unique opportunity to study young planets in the context of their formation and evolution. It examines the underlying semi-major axis exoplanet distribution and enables the characterization of the planet itself with spectroscopic examination of its emergent flux. However, only a handful of planets have been directly imaged, and thus the stars best suited for planet imaging are still a subject of debate. The "Holey Debris Disk" project was created in order to help determine if debris disks with gaps are signposts for planets. These gaps may be dynamically caused by planets accreting the debris material as they form. We present the results from our survey with VLT/NACO and the apodized phase plate coronagraph. We demonstrate that these disks with holes are good targets for directly detecting planets with the discovery of a planet around two of our targets, HD 95086 and HD 106906, at L'-band. Our non-detection of HD 95086 b in H-band demonstrates the importance of thermal infrared observations. The detected planets shepherd the outer cool debris belt. The relatively dust-free gap in these disks implies the presence of one or more closer-in planets. We discuss our new constraints on planets around other targets in our survey as well as disk properties of these targets and describe how future instruments will find the inner planets.

  17. Space Debris and Space Safety - Looking Forward

    NASA Astrophysics Data System (ADS)

    Ailor, W.; Krag, H.

    Man's activities in space are creating a shell of space debris around planet Earth which provides a growing risk of collision with operating satellites and manned systems. Including both the larger tracked objects and the small, untracked debris, more than 98% of the estimated 600,000 objects larger than 1 cm currently in orbit are “space junk”--dead satellites, expended rocket stages, debris from normal operations, fragments from explosions and collisions, and other material. Recognizing the problem, space faring nations have joined together to develop three basic principles for minimizing the growth of the debris population: prevent on-orbit breakups, remove spacecraft and orbital stages that have reached the end of their mission operations from the useful densely populated orbit regions, and limit the objects released during normal operations. This paper provides an overview of what is being done to support these three principles and describes proposals that an active space traffic control service to warn satellite operators of pending collisions with large objects combined with a program to actively remove large objects may reduce the rate of future collisions. The paper notes that cost and cost effectiveness are important considerations that will affect the evolution of such systems.

  18. Assessment of Debris Flow Hazards, North Mountain, Phoenix, AZ

    NASA Astrophysics Data System (ADS)

    Reavis, K. J.; Wasklewicz, T. A.

    2014-12-01

    Urban sprawl in many western U.S. cities has expanded development onto alluvial fans. In the case of metropolitan Phoenix, AZ (MPA), urban sprawl has led to an exponential outward growth into surrounding mountainous areas and onto alluvial fans. Building on alluvial fans places humans at greater risk to flooding and debris flow hazards. Recent research has shown debris flows often supply large quantities of material to many alluvial fans in MPA. However, the risk of debris flows to built environments is relatively unknown. We use a 2D debris flow modeling approach, aided by high-resolution airborne LiDAR and terrestrial laser scanning (TLS) topographic data, to examine debris flow behavior in a densely populated portion of the MPA to assess the risk and vulnerability of debris flow damage to the built infrastructure. A calibrated 2D debris flow model is developed for a "known" recent debris flow at an undeveloped site in MPA. The calibrated model and two other model scenarios are applied to a populated area with historical evidence of debris flow activity. Results from the modeled scenarios show evidence of debris flow damage to houses built on the alluvial fan. Debris flow inundation is also evident on streets on the fan. We use housing values and building damage to estimate the costs assocaited with various modeled debris flow scenarios.

  19. 40 CFR 268.45 - Treatment standards for hazardous debris.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    .... Hazardous debris that is also a waste PCB under 40 CFR part 761 is subject to the requirements of either 40 CFR part 761 or the requirements of this section, whichever are more stringent. (b) Contaminants...: Ignitable Liquids. (5) Residue from spalling. Layers of debris removed by spalling are hazardous debris...

  20. Space Shuttle Systems Engineering Processes for Liftoff Debris Risk Mitigation

    NASA Technical Reports Server (NTRS)

    Mitchell, Michael; Riley, Christopher

    2011-01-01

    This slide presentation reviews the systems engineering process designed to reduce the risk from debris during Space Shuttle Launching. This process begins the day of launch from the tanking to the vehicle tower clearance. Other debris risks (i.e., Ascent, and micrometeoroid orbital debit) are mentioned) but are not the subject of this presentation. The Liftoff debris systems engineering process and an example of how it works are reviewed (i.e.,STS-119 revealed a bolt liberation trend on the Fixed Service Structure (FSS) 275 level elevator room). The process includes preparation of a Certification of Flight Readiness (CoFR) that includes (1) Lift-off debris from previous mission dispositioned, (2) Flight acceptance rationale has been provided for Lift-off debris sources/causes (3) Lift-off debris mission support documentation, processes and tools are in place for the up-coming mission. The process includes a liftoff debris data collection that occurs after each launch. This includes a post launch walkdown, that records each liftoff debris, and the entry of the debris into a database, it also includes a review of the imagery from the launch, and a review of the instrumentation data. There is also a review of the debris transport analysis process, that includes temporal and spatial framework and a computational fluid dynamics (CFD) analysis. which incorporates a debris transport analyses (DTA), debris materials and impact tests, and impact analyses.

  1. 40 CFR 268.45 - Treatment standards for hazardous debris.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    .... Hazardous debris that is also a waste PCB under 40 CFR part 761 is subject to the requirements of either 40 CFR part 761 or the requirements of this section, whichever are more stringent. (b) Contaminants...: Ignitable Liquids. (5) Residue from spalling. Layers of debris removed by spalling are hazardous debris...

  2. 40 CFR 268.45 - Treatment standards for hazardous debris.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    .... Hazardous debris that is also a waste PCB under 40 CFR part 761 is subject to the requirements of either 40 CFR part 761 or the requirements of this section, whichever are more stringent. (b) Contaminants...: Ignitable Liquids. (5) Residue from spalling. Layers of debris removed by spalling are hazardous debris...

  3. An Overview of NASA's Orbital Debris Engineering Model

    NASA Technical Reports Server (NTRS)

    Matney, Mark

    2010-01-01

    This slide presentation reviews the importance of Orbital debris engineering models. They are mathematical tools to assess orbital debris flux. It briefly reviews the history of the orbital debris engineering models, and reviews the new features in the current model (i.e., ORDEM2010).

  4. A new debris sensor based on dual excitation sources for online debris monitoring

    NASA Astrophysics Data System (ADS)

    Hong, Wei; Wang, Shaoping; Tomovic, Mileta M.; Liu, Haokuo; Wang, Xingjian

    2015-09-01

    Mechanical systems could be severely damaged by loose debris generated through wear processes between contact surfaces. Hence, debris detection is necessary for effective fault diagnosis, life prediction, and prevention of catastrophic failures. This paper presents a new in-line debris sensor for hydraulic systems based on dual excitation sources. The proposed sensor makes magnetic lines more concentrated while at the same time improving magnetic field uniformity. As a result the sensor has higher sensitivity and improved precision. This paper develops the sensor model, discusses sensor structural features, and introduces a measurement method for debris size identification. Finally, experimental verification is presented indicating that that the sensor can effectively detect 81 μm (cube) or larger particles in 12 mm outside diameter (OD) organic glass pipe.

  5. Photometric Studies of GEO Orbital Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Rodriquez-Cowardin, Heather M.; Barker, Ed; Abercromby, Kira J.; Foreman, Gary; Horstman, Matt

    2009-01-01

    The photometric signature of a debris object can be useful in determining what the physical characteristics of a piece of debris are. We report on optical observations in multiple filters of debris at geosynchronous Earth orbit (GEO). Our sample is taken from GEO objects discovered in a survey with the University of Michigan's 0.6-m aperture Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the Cerro Tololo Inter- American Observatory (CTIO) 0.9-m for orbits and photometry. Our goal is to determine 6 parameter orbits and measure colors for all objects fainter than R=15th magnitude that are discovered in the MODEST survey. At this magnitude the distribution of observed angular rates changes significantly from that of brighter objects. There are two objectives: 1. Estimate the orbital distribution of objects selected on the basis of two observational criteria: brightness (magnitude) and angular rates. 2. Obtain magnitudes and colors in standard astronomical filters (BVRI) for comparison with reflectance spectra of likely spacecraft materials. What is the faint debris likely to be? More than 90 calibrated sequences of R-B-V-I-R magnitudes for a sample of 50 objects have been obtained with the CTIO 0.9-m. For objects that do not show large brightness variations, the colors are largely redder than solar in both B-R and R-I. The width of the color distribution may be intrinsic to the nature of the surfaces, but also could be that we are seeing irregularly shaped objects and measuring the colors at different times with just one telescope. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO 0.9-m observes in B, and MODEST in R. The CCD cameras are electronically linked together so that the start time and duration of observations are the same to better than 50 milliseconds. Thus the B-R color is a true measure of the surface of the debris piece facing the

  6. Optical Photometric Observations of GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Rodriquez-Cowardin, Heather M.; Barker, Edwin S.; Abercromby, Kira J.; Kelecy, Thomas M.; Horstman, Matt

    2010-01-01

    We report on a continuing program of optical photometric measurements of faint orbital debris at geosynchronous Earth orbit (GEO). These observations can be compared with laboratory studies of actual spacecraft materials in an effort to determine what the faint debris at GEO may be. We have optical observations from Cerro Tololo Inter-American Observatory (CTIO) in Chile of two samples of debris: 1. GEO objects discovered in a survey with the University of Michigan's 0.6-m aperture Curtis-Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the CTIO/SMARTS 0.9-m for orbits and photometry. Our goal is to determine 6 parameter orbits and measure colors for all objects fainter than R = 15 t11 magnitude that are discovered in the MODEST survey. 2. A smaller sample of high area to mass ratio (AMR) objects discovered independently, and acquired using predictions from orbits derived from independent tracking data collected days prior to the observations. Our optical observations in standard astronomical BVRI filters are done with either telescope, and with the telescope tracking the debris object at the object's angular rate. Observations in different filters are obtained sequentially. We have obtained 71 calibrated sequences of R-B-V-I-R magnitudes. A total of 66 of these sequences have 3 or more good measurements in all filters (not contaminated by star streaks or in Earth's shadow). Most of these sequences show brightness variations, but a small subset has observed brightness variations consistent with that expected from observational errors alone. The majority of these stable objects are redder than a solar color in both B-R and R-I. There is no dependence on color with brightness. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO 0.9-m observes in B, and MODEST in R. The CCD cameras are electronically linked together so that the start time and

  7. Adaptive optics for space debris tracking

    NASA Astrophysics Data System (ADS)

    Bennet, Francis; D'Orgeville, Celine; Gao, Yue; Gardhouse, William; Paulin, Nicolas; Price, Ian; Rigaut, Francois; Ritchie, Ian T.; Smith, Craig H.; Uhlendorf, Kristina; Wang, Yanjie

    2014-07-01

    Space debris in Low Earth Orbit (LEO) is becoming an increasing threat to satellite and spacecraft. A reliable and cost effective method for detecting possible collisions between orbiting objects is required to prevent an exponential growth in the number of debris. Current RADAR survey technologies used to monitor the orbits of thousands of space debris objects are relied upon to manoeuvre operational satellites to prevent possible collisions. A complimentary technique, ground-based laser LIDAR (Light Detection and Ranging) have been used to track much smaller objects with higher accuracy than RADAR, giving greater prediction of possible collisions and avoiding unnecessary manoeuvring. Adaptive optics will play a key role in any ground based LIDAR tracking system as a cost effective way of utilising smaller ground stations or less powerful lasers. The use of high power and high energy lasers for the orbital modification of debris objects will also require an adaptive optic system to achieve the high photon intensity on the target required for photon momentum transfer and laser ablation. EOS Space Systems have pioneered the development of automated laser space debris tracking for objects in low Earth orbit. The Australian National University have been developing an adaptive optics system to improve this space debris tracking capability at the EOS Space Systems Mount Stromlo facility in Canberra, Australia. The system is integrated with the telescope and commissioned as an NGS AO system before moving on to LGS AO and tracking operations. A pulsed laser propagated through the telescope is used to range the target using time of flight data. Adaptive optics is used to increase the maximum range and number or targets available to the LIDAR system, by correcting the uplink laser beam. Such a system presents some unique challenges for adaptive optics: high power lasers reflecting off deformable mirrors, high slew rate tracking, and variable off-axis tracking correction. A

  8. Laser space debris removal: now, not later

    NASA Astrophysics Data System (ADS)

    Phipps, Claude R.

    2015-02-01

    Small (1-10cm) debris in low Earth orbit (LEO) are extremely dangerous, because they spread the breakup cascade depicted in the movie "Gravity." Laser-Debris-Removal (LDR) is the only solution that can address both large and small debris. In this paper, we briefly review ground-based LDR, and discuss how a polar location can dramatically increase its effectiveness for the important class of sun-synchronous orbit (SSO) objects. No other solutions address the whole problem of large ( 1000cm, 1 ton) as well as small debris. Physical removal of small debris (by nets, tethers and so on) is impractical because of the energy cost of matching orbits. We also discuss a new proposal which uses a space-based station in low Earth orbit (LEO), and rapid, head-on interaction in 10- 40s rather than 4 minutes, with high-power bursts of 100ps, 355nm pulses from a 1.5m diameter aperture. The orbiting station employs "heat-capacity" laser mode with low duty cycle to create an adaptable, robust, dualmode system which can lower or raise large derelict objects into less dangerous orbits, as well as clear out the small debris in a 400-km thick LEO band. Time-average laser optical power is less than 15kW. The combination of short pulses and UV wavelength gives lower required energy density (fluence) on target as well as higher momentum coupling coefficient. This combination leads to much smaller mirrors and lower average power than the ground-based systems we have considered previously. Our system also permits strong defense of specific assets. Analysis gives an estimated cost of about 1k each to re-enter most small debris in a few months, and about 280k each to raise or lower 1-ton objects by 40km. We believe it can do this for 2,000 such large objects in about four years. Laser ablation is one of the few interactions in nature that propel a distant object without any significant reaction on the source.

  9. Photometric Studies of Orbital Debris at GEO

    NASA Astrophysics Data System (ADS)

    Seitzer, Patrick; Cowardin, H. M.; Barker, E.; Abercromby, K. J.; Foreman, G.; Horstman, M.

    2010-01-01

    Orbital debris represents a significant risk to operational spacecraft. We report on BVRI observations from the Cerro Tololo Inter-American Observatory (CTIO) to determine the characteristics of optically faint debris at geosynchronous Earth orbit (GEO). Our sample is taken from GEO objects discovered in a survey with the University of Michigan's 0.6-m Curtis-Schmidt telescope (known as MODEST, for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the CTIO/SMARTS 0.9-m for orbits and photometry. Calibrated sequences in R-B-V-I-R filters for 50 objects have been obtained with the 0.9-m. The colors are largely redder than solar in both B-R and R-I for objects with small brightness variations. The width of the color distribution may be intrinsic to the nature of the surfaces, but also could imply that we are seeing irregularly shaped objects and measuring the colors at different times with just one telescope. For irregularly shaped objects tumbling at unknown orientations and rates, such sequential filter measurements using one telescope are subject to large errors for interpretation. If all observations in all filters in a particular sequence are of the same surface at the same solar and viewing angles, then the colors are meaningful. Where this is not the case, interpretation of the observed colors is impossible. We have observed a subset of objects with synchronized CCD cameras on the two telescopes. The 0.9-m observes in B, and the Schmidt in R. The cameras are linked together so that the start time and exposure duration are both the same to better than 50 milliseconds. Now the observed B-R color is a true measure of the scattered illuminated area of the debris piece. We will compare our observations with laboratory measurements of selected pieces of actual spacecraft materials. This work is supported by NASA's Orbital Debris Program Office.

  10. Evaluating tsunami hazards from debris flows

    NASA Astrophysics Data System (ADS)

    Walder, J.; Watts, P.

    2003-04-01

    Water-wave hazards associated with debris flows entering water depend on the location of the affected area relative to the debris-flow entry point. Three distinct regions (splash zone, near field, and far field) may be identified may be identified on hydrodynamic grounds. The splash zone is nearly always small compared to the overall domain of interest. In the case of debris-flow generated tsunamis in lakes and reservoirs, commonly the entire water body lies within the near field, that is, beyond the zone of complex splashing but close enough to the source that wave-propagation effects do not predominate, in contrast to the case of tsunamis in the ocean. Scaling analysis of the equations governing water-wave propagation shows that near-field wave amplitude and wavelength should depend on specific measures of debris-flow dynamics and volume. The scaling analysis motivates a successful collapse (in dimensionless space) of data from two sets of flume experiments with solid-block "wavemakers." To first order, measured near-field wave amplitude/water depth depends simply on a dimensionless measure of the quantity (submerged travel time/wavemaker volume per unit width). This functional relationship also does a good job of describing wave-amplitude data from previous laboratory investigations with both rigid and deformable wavemakers. The characteristic wavelength/water depth for all our experiments is simply proportional to dimensionless wavemaker travel time, which is itself given approximately by a simple function of wavemaker length/water depth. Wavemaker shape and rigidity do not otherwise influence wave features. These scaling relations for near-field amplitude, wavelength, and submerged travel time, when combined with a correction for near-field wavefront speading in actual water bodies (which are rarely flume-like), allow us to construct a proxy source for computational tsunami propagation. We apply our results to assess hazards associated with potential debris

  11. Nature of the Warm Excess in eps Eri: Asteroid belt or Dragged-in Grains

    NASA Astrophysics Data System (ADS)

    Su, Kate Y. L.; Rieke, George; Marengo, Massimo; Stapelfeldt, Karl R.

    2016-01-01

    Eps Eri and its debris disk provide a unique opportunity to probe the outer zones of a planetary system due to its young age (roughly 1 Gyr) and proximity (3.22 pc, the closest prominent debris disk by more than a factor of two). It is the Rosetta Stone for more distant exoplanetary debris systems and thus critical to understanding the mid-term evolution of our Solar System. From resolved images in the far-infrared and submillimeter along with spectra from 10-35 and 55-95 microns, the eps Eri disk was suggested to have a complex structure, with multiple zones in both warm (asteroid-like) and cold (KBO-like) components. Alternatively, the warm excess can also originate from small grains in the cold disk, which are transported inward by the combination of Poynting-Robertson and stellar wind drags. Here we present a SOFIA/FORCAST 35 micron image of the system, and provide additional constraints on the nature of the warm excess inferred fromprevious Spitzer and Herschel observations.

  12. Warm hilltop inflation

    SciTech Connect

    Sanchez, Juan Carlos Bueno; Dimopoulos, Konstantinos; Bastero-Gil, Mar; Berera, Arjun

    2008-06-15

    We study the low-temperature limit of warm inflation in a hilltop model. This limit remains valid up to the end of inflation, allowing an analytic description of the entire inflationary stage. In the weak dissipative regime, if the kinetic density of the inflaton dominates after inflation, low-scale inflation is attained with Hubble scale as low as 1 GeV. In the strong dissipative regime, the model satisfies the observational requirements for the spectral index with a mild tuning of the model parameters, while also overcoming the {eta}-problem of inflation. However, there is some danger of gravitino overproduction unless the particle content of the theory is large.

  13. FLATs: Warming Up - continuation

    NASA Astrophysics Data System (ADS)

    Calzetti, Daniela

    1997-07-01

    The purpose of this proposal is to monitor the flat fields during the interval between the end of science observations and the exhaustion of cryogen and subsequent warming of the dewar to > 100K. These flats will provide a monitor for particulate comtamination {GROT} and detector lateral position {from the coronagraphic spot and FDA vignetting}. They will provide some measure of relative {flat field} and absolute QE variation as a function of temperature. When stars are visible they might provide a limited degree of focus determination.

  14. FLATs: Warming Up

    NASA Astrophysics Data System (ADS)

    Calzetti, Daniela

    1997-07-01

    The purpose of this proposal is to monitor the flat fields during the interval between the end of science observations and the exhaustion of cryogen and subsequent warming of the dewar to > 100K. These flats will provide a monitor for particulate comtamination {GROT} and detector lateral position {from the coronagraphic spot and FDA vignetting}. They will provide some measure of relative {flat field} and absolute QE variation as a function of temperature. When stars are visible they might provide a limited degree of focus determination.

  15. Anthropogenic Debris Ingestion by Avifauna in Eastern Australia.

    PubMed

    Roman, Lauren; Schuyler, Qamar A; Hardesty, Britta Denise; Townsend, Kathy A

    2016-01-01

    Anthropogenic debris in the world's oceans and coastal environments is a pervasive global issue that has both direct and indirect impacts on avifauna. The number of bird species affected, the feeding ecologies associated with an increased risk of debris ingestion, and selectivity of ingested debris have yet to be investigated in most of Australia's coastal and marine birds. With this study we aim to address the paucity of data regarding marine debris ingestion in Australian coastal and marine bird species. We investigated which Australian bird groups ingest marine debris, and whether debris-ingesting groups exhibit selectivity associated with their taxonomy, habitat or foraging methods. Here we present the largest multispecies study of anthropogenic debris ingestion in Australasian avifauna to date. We necropsied and investigated the gastrointestinal contents of 378 birds across 61 species, collected dead across eastern Australia. These species represented nine taxonomic orders, five habitat groups and six feeding strategies. Among investigated species, thirty percent had ingested debris, though ingestion did not occur uniformly within the orders of birds surveyed. Debris ingestion was found to occur in orders Procellariiformes, Suliformes, Charadriiformes and Pelecaniformes, across all surveyed habitats, and among birds that foraged by surface feeding, pursuit diving and search-by-sight. Procellariiformes, birds in pelagic habitats, and surface feeding marine birds ingested debris with the greatest frequency. Among birds which were found to ingest marine debris, we investigated debris selectivity and found that marine birds were selective with respect to both type and colour of debris. Selectivity for type and colour of debris significantly correlated with taxonomic order, habitat and foraging strategy. This study highlights the significant impact of feeding ecology on debris ingestion among Australia's avifauna. PMID:27574986

  16. Anthropogenic Debris Ingestion by Avifauna in Eastern Australia

    PubMed Central

    Schuyler, Qamar A.; Hardesty, Britta Denise; Townsend, Kathy A.

    2016-01-01

    Anthropogenic debris in the world’s oceans and coastal environments is a pervasive global issue that has both direct and indirect impacts on avifauna. The number of bird species affected, the feeding ecologies associated with an increased risk of debris ingestion, and selectivity of ingested debris have yet to be investigated in most of Australia’s coastal and marine birds. With this study we aim to address the paucity of data regarding marine debris ingestion in Australian coastal and marine bird species. We investigated which Australian bird groups ingest marine debris, and whether debris-ingesting groups exhibit selectivity associated with their taxonomy, habitat or foraging methods. Here we present the largest multispecies study of anthropogenic debris ingestion in Australasian avifauna to date. We necropsied and investigated the gastrointestinal contents of 378 birds across 61 species, collected dead across eastern Australia. These species represented nine taxonomic orders, five habitat groups and six feeding strategies. Among investigated species, thirty percent had ingested debris, though ingestion did not occur uniformly within the orders of birds surveyed. Debris ingestion was found to occur in orders Procellariiformes, Suliformes, Charadriiformes and Pelecaniformes, across all surveyed habitats, and among birds that foraged by surface feeding, pursuit diving and search-by-sight. Procellariiformes, birds in pelagic habitats, and surface feeding marine birds ingested debris with the greatest frequency. Among birds which were found to ingest marine debris, we investigated debris selectivity and found that marine birds were selective with respect to both type and colour of debris. Selectivity for type and colour of debris significantly correlated with taxonomic order, habitat and foraging strategy. This study highlights the significant impact of feeding ecology on debris ingestion among Australia’s avifauna. PMID:27574986

  17. NASA's New Orbital Debris Engineering Model, ORDEM2010

    NASA Technical Reports Server (NTRS)

    Krisko, Paula H.

    2010-01-01

    This paper describes the functionality and use of ORDEM2010, which replaces ORDEM2000, as the NASA Orbital Debris Program Office (ODPO) debris engineering model. Like its predecessor, ORDEM2010 serves the ODPO mission of providing spacecraft designers/operators and debris observers with a publicly available model to calculate orbital debris flux by current-state-of-knowledge methods. The key advance in ORDEM2010 is the input file structure of the yearly debris populations from 1995-2035 of sizes 10 micron - 1 m. These files include debris from low-Earth orbits (LEO) through geosynchronous orbits (GEO). Stable orbital elements (i.e., those that do not randomize on a sub-year timescale) are included in the files as are debris size, debris number, material density, random error and population error. Material density is implemented from ground-test data into the NASA breakup model and assigned to debris fragments accordingly. The random and population errors are due to machine error and uncertainties in debris sizes. These high-fidelity population files call for a much higher-level model analysis than what was possible with the populations of ORDEM2000. Population analysis in the ORDEM2010 model consists of mapping matrices that convert the debris population elements to debris fluxes. One output mode results in a spacecraft encompassing 3-D igloo of debris flux, compartmentalized by debris size, velocity, pitch, and yaw with respect to spacecraft ram direction. The second output mode provides debris flux through an Earth-based telescope/radar beam from LEO through GEO. This paper compares the new ORDEM2010 with ORDEM2000 in terms of processes and results with examples of specific orbits.

  18. Reading the Signatures of Extrasolar Planets in Debris Disks

    NASA Technical Reports Server (NTRS)

    Kuchner, Marc J.

    2009-01-01

    An extrasolar planet sculpts the famous debris dish around Fomalhaut; probably ma ny other debris disks contain planets that we could locate if only we could better recognize their signatures in the dust that surrounds them. But the interaction between planets and debris disks involves both orbital resonances and collisions among grains and rocks in the disks --- difficult processes to model simultanemus]y. I will describe new 3-D models of debris disk dynamics that incorporate both collisions and resonant trapping of dust for the first time, allowing us to decode debris disk images and read the signatures of the planets they contain.

  19. Orbital Debris: Quarterly News, Volume 14, Issue 2

    NASA Technical Reports Server (NTRS)

    Liou, J. C. (Editor); Shoots, Debi (Editor)

    2010-01-01

    This bulletin contains articles from the Orbital Debris Program office. This issue's articles are: "Orbital Debris Success Story --A Decade in the Making", "Old and New Satellite Breakups Identified," "Update on Three Major Debris Clouds," and "MMOD Inspection of the HST Bay 5 Multi-Layer Insulation Panel" about micrometeoroid and orbital debris (MMOD) inspection of the Hubble Space Telescope (HST) insulation panel. A project review is also included (i.e., "Small Debris Observations from the Iridium 33/Cosmos 2251 Collision.") There are also abstra cts of conference papers from the staff of the program office.

  20. Coarse woody debris dynamics in two old-growth ecosystems

    SciTech Connect

    Harmon, M.E. ); Chen Hua )

    1991-10-01

    In this article, the dynamics of coarse woody debris are compound deciduous old-growth forest system Changbai Mountain Biosphere Reserve in China, and a coniferous old-growth forest system, H. J. Andrews Experimental Forest in Oregon. The objective is to compare in these two ecosystems the amount of coarse woody debris; the processes that affect coarse woody debris, such as tree mortality and decay rates; and the role of coarse woody debris in nutrient cycling. To assess importance in the global carbon budget, these two old-growth ecosystems are used to estimate the upper and lower limits of coarse woody debris mass for undisturbed temperate forests.

  1. Is Global Warming Accelerating?

    NASA Astrophysics Data System (ADS)

    Shukla, J.; Delsole, T. M.; Tippett, M. K.

    2009-12-01

    A global pattern that fluctuates naturally on decadal time scales is identified in climate simulations and observations. This newly discovered component, called the Global Multidecadal Oscillation (GMO), is related to the Atlantic Meridional Oscillation and shown to account for a substantial fraction of decadal fluctuations in the observed global average sea surface temperature. IPCC-class climate models generally underestimate the variance of the GMO, and hence underestimate the decadal fluctuations due to this component of natural variability. Decomposing observed sea surface temperature into a component due to anthropogenic and natural radiative forcing plus the GMO, reveals that most multidecadal fluctuations in the observed global average sea surface temperature can be accounted for by these two components alone. The fact that the GMO varies naturally on multidecadal time scales implies that it can be predicted with some skill on decadal time scales, which provides a scientific rationale for decadal predictions. Furthermore, the GMO is shown to account for about half of the warming in the last 25 years and hence a substantial fraction of the recent acceleration in the rate of increase in global average sea surface temperature. Nevertheless, in terms of the global average “well-observed” sea surface temperature, the GMO can account for only about 0.1° C in transient, decadal-scale fluctuations, not the century-long 1° C warming that has been observed during the twentieth century.

  2. Warm Inflation Model Building

    NASA Astrophysics Data System (ADS)

    Bastero-Gil, Mar; Berera, Arjun

    We review the main aspects of the warm inflation scenario, focusing on the inflationary dynamics and the predictions related to the primordial spectrum of perturbations, to be compared with the recent cosmological observations. We study in detail three different classes of inflationary models, chaotic, hybrid models and hilltop models, and discuss their embedding into supersymmetric models and the consequences for model building of the warm inflationary dynamics based on first principles calculations. Due to the extra friction term introduced in the inflaton background evolution generated by the dissipative dynamics, inflation can take place generically for smaller values of the field, and larger values of couplings and masses. When the dissipative dynamics dominates over the expansion, in the so-called strong dissipative regime, inflation proceeds with sub-Planckian inflaton values. Models can be naturally embedded into a supergravity framework, with SUGRA corrections suppressed by the Planck mass now under control, for a larger class of Kähler potentials. In particular, this provides a simpler solution to the "eta" problem in supersymmetric hybrid inflation, without restricting the Kähler potentials compatible with inflation. For chaotic models dissipation leads to a smaller prediction for the tensor-to-scalar ratio and a less tilted spectrum when compared to the cold inflation scenario. We find in particular that a small component of dissipation renders the quartic model now consistent with the current CMB data.

  3. Conceptual design of an Orbital Debris Defense System

    NASA Technical Reports Server (NTRS)

    Bedillion, Erik; Blevins, Gary; Bohs, Brian; Bragg, David; Brown, Christopher; Casanova, Jose; Cribbs, David; Demko, Richard; Henry, Brian; James, Kelly

    1994-01-01

    Man made orbital debris has become a serious problem. Currently NORAD tracks over 7000 objects in orbit and less than 10 percent of these are active payloads. Common estimates are that the amount of debris will increase at a rate of 10 percent per year. Impacts of space debris with operational payloads or vehicles is a serious risk to human safety and mission success. For example, the impact of a 0.2 mm diameter paint fleck with the Space Shuttle Challenger window created a 2 mm wide by 0.6 mm deep pit. The cost to replace the window was over $50,000. A conceptual design for a Orbital Debris Defense System (ODDS) is presented which considers a wide range of debris sizes, orbits and velocities. Two vehicles were designed to collect and remove space debris. The first would attach a re-entry package to de-orbit very large debris, e.g. inactive satellites and spent upper stages that tend to break up and form small debris. This vehicle was designed to contain several re-entry packages, and be refueled and resupplied with more re-entry packages as needed. The second vehicle was designed to rendezvous with and capture debris ranging from 10 cm to 2 m. Due to tracking limitations, no technically feasible method for collecting debris below 10 cm in size could be devised; it must be accomplished through international regulations which reduce the accumulation of space debris.

  4. Space Transportation System Liftoff Debris Mitigation Process Overview

    NASA Technical Reports Server (NTRS)

    Mitchell, Michael; Riley, Christopher

    2011-01-01

    Liftoff debris is a top risk to the Space Shuttle Vehicle. To manage the Liftoff debris risk, the Space Shuttle Program created a team with in the Propulsion Systems Engineering & Integration Office. The Shutt le Liftoff Debris Team harnesses the Systems Engineering process to i dentify, assess, mitigate, and communicate the Liftoff debris risk. T he Liftoff Debris Team leverages off the technical knowledge and expe rtise of engineering groups across multiple NASA centers to integrate total system solutions. These solutions connect the hardware and ana lyses to identify and characterize debris sources and zones contribut ing to the Liftoff debris risk. The solutions incorporate analyses sp anning: the definition and modeling of natural and induced environmen ts; material characterizations; statistical trending analyses, imager y based trajectory analyses; debris transport analyses, and risk asse ssments. The verification and validation of these analyses are bound by conservative assumptions and anchored by testing and flight data. The Liftoff debris risk mitigation is managed through vigilant collab orative work between the Liftoff Debris Team and Launch Pad Operation s personnel and through the management of requirements, interfaces, r isk documentation, configurations, and technical data. Furthermore, o n day of launch, decision analysis is used to apply the wealth of ana lyses to case specific identified risks. This presentation describes how the Liftoff Debris Team applies Systems Engineering in their proce sses to mitigate risk and improve the safety of the Space Shuttle Veh icle.

  5. Conceptual design of an Orbital Debris Defense System

    NASA Astrophysics Data System (ADS)

    Bedillion, Erik; Blevins, Gary; Bohs, Brian; Bragg, David; Brown, Christopher; Casanova, Jose; Cribbs, David; Demko, Richard; Henry, Brian; James, Kelly

    1994-08-01

    Man made orbital debris has become a serious problem. Currently NORAD tracks over 7000 objects in orbit and less than 10 percent of these are active payloads. Common estimates are that the amount of debris will increase at a rate of 10 percent per year. Impacts of space debris with operational payloads or vehicles is a serious risk to human safety and mission success. For example, the impact of a 0.2 mm diameter paint fleck with the Space Shuttle Challenger window created a 2 mm wide by 0.6 mm deep pit. The cost to replace the window was over $50,000. A conceptual design for a Orbital Debris Defense System (ODDS) is presented which considers a wide range of debris sizes, orbits and velocities. Two vehicles were designed to collect and remove space debris. The first would attach a re-entry package to de-orbit very large debris, e.g. inactive satellites and spent upper stages that tend to break up and form small debris. This vehicle was designed to contain several re-entry packages, and be refueled and resupplied with more re-entry packages as needed. The second vehicle was designed to rendezvous with and capture debris ranging from 10 cm to 2 m. Due to tracking limitations, no technically feasible method for collecting debris below 10 cm in size could be devised; it must be accomplished through international regulations which reduce the accumulation of space debris.

  6. Orbital Debris Quarterly News, Volume 13, Issue 4

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi (Editor); Shoots, Debi (Editor)

    2009-01-01

    Although NASA has conducted research on orbital debris since the 1960s, the NASA Orbital Debris Program Office is now considered to have been established in October 1979, following the recognition by senior NASA officials of orbital debris as a space environmental issue and the allocation by NASA Headquarters Advanced Programs Office to the Lyndon B. Johnson Space Center (JSC) of funds specifically dedicated for orbital debris investigations. In the 30 years since, the NASA Orbital Debris Program Office has pioneered the characterization of the orbital debris environment and its potential effects on current and future space systems, has developed comprehensive orbital debris mitigation measures, and has led efforts by the international aerospace community in addressing the challenges posed by orbital debris. In 1967 the Flight Analysis Branch at the Manned Spacecraft Center (renamed the Lyndon B. Johnson Space Center in 1973) evaluated the risks of collisions between an Apollo spacecraft and orbital debris. Three years later the same group calculated collision risks for the forthcoming Skylab space station, which was launched in 1973. By 1976, the nucleus of NASA s yet-to-be-formed orbital debris research efforts, including Andrew Potter, Burton Cour-Palais, and Donald Kessler, was found in JSC s Environmental Effects Office, examining the potential threat of orbital debris to large space platforms, in particular the proposed Solar Power Satellites (SPS).

  7. Assessing marine debris in deep seafloor habitats off California.

    PubMed

    Watters, Diana L; Yoklavich, Mary M; Love, Milton S; Schroeder, Donna M

    2010-01-01

    Marine debris is a global concern that pollutes the world's oceans, including deep benthic habitats where little is known about the extent of the problem. We provide the first quantitative assessment of debris on the seafloor (20-365 m depth) in submarine canyons and the continental shelf off California, using the Delta submersible. Fishing activities were the most common contributors of debris. Highest densities occurred close to ports off central California and increased significantly over the 15-year study period. Recreational monofilament fishing line dominated this debris. Debris was less dense and more diverse off southern than central California. Plastic was the most abundant material and will likely persist for centuries. Disturbance to habitat and organisms was low, and debris was used as habitat by some fishes and macroinvertebrates. Future trends in human activities on land and at sea will determine the type and magnitude of debris that accumulates in deep water.

  8. Assessing marine debris in deep seafloor habitats off California.

    PubMed

    Watters, Diana L; Yoklavich, Mary M; Love, Milton S; Schroeder, Donna M

    2010-01-01

    Marine debris is a global concern that pollutes the world's oceans, including deep benthic habitats where little is known about the extent of the problem. We provide the first quantitative assessment of debris on the seafloor (20-365 m depth) in submarine canyons and the continental shelf off California, using the Delta submersible. Fishing activities were the most common contributors of debris. Highest densities occurred close to ports off central California and increased significantly over the 15-year study period. Recreational monofilament fishing line dominated this debris. Debris was less dense and more diverse off southern than central California. Plastic was the most abundant material and will likely persist for centuries. Disturbance to habitat and organisms was low, and debris was used as habitat by some fishes and macroinvertebrates. Future trends in human activities on land and at sea will determine the type and magnitude of debris that accumulates in deep water. PMID:19751942

  9. Evaluating the impacts of marine debris on cetaceans.

    PubMed

    Baulch, Sarah; Perry, Clare

    2014-03-15

    Global in its distribution and pervading all levels of the water column, marine debris poses a serious threat to marine habitats and wildlife. For cetaceans, ingestion or entanglement in debris can cause chronic and acute injuries and increase pollutant loads, resulting in morbidity and mortality. However, knowledge of the severity of effects lags behind that for other species groups. This literature review examines the impacts of marine debris on cetaceans reported to date. It finds that ingestion of debris has been documented in 48 (56% of) cetacean species, with rates of ingestion as high as 31% in some populations. Debris-induced mortality rates of 0-22% of stranded animals were documented, suggesting that debris could be a significant conservation threat to some populations. We identify key data that need to be collected and published to improve understanding of the threat that marine debris poses to cetaceans. PMID:24525134

  10. Evolution of gas in debris discs

    NASA Astrophysics Data System (ADS)

    Kral, Quentin; Wyatt, Mark; Pringle, Jim

    2015-12-01

    A non negligible quantity of gas has been discovered in an increasing number of debris disc systems. ALMA high sensitivity and high resolution is changing our perception of the gaseous component of debris discs as CO is discovered in systems where it should be rapidly photodissociated. It implies that there is a replenishment mechanism and that the observed gas is secondary. Past missions such as Herschel probed the atomic part of the gas through O I and C II emission lines. Gas science in debris discs is still in its infancy, and these new observations raise a handful of questions concerning the mechanisms to create the gas and about its evolution in the planetary system when it is released. The latter question will be addressed in this talk as a self-consistent gas evolution scenario is proposed and is compared to observations for the peculiar case of β Pictoris.Our model proposes that carbon and oxygen within debris discs are created due to photodissociation of CO which is itself created from the debris disc dust (due to grain-grain collisions or photodesorption). The evolution of the carbon atoms is modelled as viscous spreading, with viscosity parameterised using an α model. The temperature, ionisation fraction and population levels of carbon are followed with a PDR model called Cloudy, which is coupled to the dynamical viscous α model. Only carbon gets ionised due to its lower ionisation potential than oxygen. The carbon gas disc can end up with a high ionisation fraction due to strong FUV radiation field. A high ionisation fraction means that the magnetorotational instability (MRI) is very active, so that α is very high. Gas density profiles can be worked out for different input parameters such as the α value, the CO input rate, the location of the input and the incoming radiation field. Observability predictions can be made for future observations, and our model is tested on β Pictoris observations. This new gas evolution model fits the carbon and CO

  11. Impact Forces from Tsunami-Driven Debris

    NASA Astrophysics Data System (ADS)

    Ko, H.; Cox, D. T.; Riggs, H.; Naito, C. J.; Kobayashi, M. H.; Piran Aghl, P.

    2012-12-01

    Debris driven by tsunami inundation flow has been known to be a significant threat to structures, yet we lack the constitutive equations necessary to predict debris impact force. The objective of this research project is to improve our understanding of, and predictive capabilities for, tsunami-driven debris impact forces on structures. Of special interest are shipping containers, which are virtually everywhere and which will float even when fully loaded. The forces from such debris hitting structures, for example evacuation shelters and critical port facilities such as fuel storage tanks, are currently not known. This research project focuses on the impact by flexible shipping containers on rigid columns and investigated using large-scale laboratory testing. Full-scale in-air collision experiments were conducted at Lehigh University with 20 ft shipping containers to experimentally quantify the nonlinear behavior of full scale shipping containers as they collide into structural elements. The results from the full scale experiments were used to calibrate computer models and used to design a series of simpler, 1:5 scale wave flume experiments at Oregon State University. Scaled in-air collision tests were conducted using 1:5 scale idealized containers to mimic the container behavior observed in the full scale tests and to provide a direct comparison to the hydraulic model tests. Two specimens were constructed using different materials (aluminum, acrylic) to vary the stiffness. The collision tests showed that at higher speeds, the collision became inelastic as the slope of maximum impact force/velocity decreased with increasing velocity. Hydraulic model tests were conducted using the 1:5 scaled shipping containers to measure the impact load by the containers on a rigid column. The column was instrumented with a load cell to measure impact forces, strain gages to measure the column deflection, and a video camera was used to provide the debris orientation and speed. The

  12. RemoveDEBRIS: An in-orbit active debris removal demonstration mission

    NASA Astrophysics Data System (ADS)

    Forshaw, Jason L.; Aglietti, Guglielmo S.; Navarathinam, Nimal; Kadhem, Haval; Salmon, Thierry; Pisseloup, Aurélien; Joffre, Eric; Chabot, Thomas; Retat, Ingo; Axthelm, Robert; Barraclough, Simon; Ratcliffe, Andrew; Bernal, Cesar; Chaumette, François; Pollini, Alexandre; Steyn, Willem H.

    2016-10-01

    Since the beginning of the space era, a significant amount of debris has progressively been generated. Most of the objects launched into space are still orbiting the Earth and today these objects represent a threat as the presence of space debris incurs risk of collision and damage to operational satellites. A credible solution has emerged over the recent years: actively removing debris objects by capturing them and disposing of them. This paper provides an update to the mission baseline and concept of operations of the EC FP7 RemoveDEBRIS mission drawing on the expertise of some of Europe's most prominent space institutions in order to demonstrate key active debris remove (ADR) technologies in a low-cost ambitious manner. The mission will consist of a microsatellite platform (chaser) that ejects 2 CubeSats (targets). These targets will assist with a range of strategically important ADR technology demonstrations including net capture, harpoon capture and vision-based navigation using a standard camera and LiDAR. The chaser will also host a drag sail for orbital lifetime reduction. The mission baseline has been revised to take into account feedback from international and national space policy providers in terms of risk and compliance and a suitable launch option is selected. A launch in 2017 is targeted. The RemoveDEBRIS mission aims to be one of the world's first in-orbit demonstrations of key technologies for active debris removal and is a vital prerequisite to achieving the ultimate goal of a cleaner Earth orbital environment.

  13. NASA's New Orbital Debris Engineering Model, ORDEM 2010

    NASA Astrophysics Data System (ADS)

    Krisko, P. H.

    2010-09-01

    This paper describes the functionality and use of ORDEM2010, which replaces ORDEM2000, as the NASA Orbital Debris Program Office(ODPO) debris-engineering model. Like its predecessor, ORDEM2010 serves the ODPO mission of providing spacecraft designers/operators and debris observers with a publicly available model to calculate orbital debris flux by current-state-of-knowledge methods. One key advance in ORDEM2010 is the file structure of the yearly debris populations from 1995 - 2035 of sizes from 10 μm - 1 m. These files include debris from low-Earth orbits(LEO) through geosynchronous orbits(GEO). Stable orbital elements(i.e., those that do not randomize on a sub-year timescale) are included in the files as are debris size, debris number, and material density. The material density is implemented from ground-test data into the NASA breakup model and assigned to debris fragments accordingly. These high-fidelity population files call for a much higher-level model analysis than what was possible with the populations of ORDEM2000. Population analysis in the ORDEM2010 model consists of mapping matrices that convert the debris population elements to debris fluxes. The spacecraft mode results in a spacecraft-encompassing three-dimensional igloo of debris flux, compartmentalized by debris size, velocity, local elevation, and local azimuth with respect to spacecraft ram direction. The telescope/radar mode provides debris flux through an Earth-based detector beam from LEO through GEO. This paper compares the new ORDEM2010 with ORDEM2000 in terms of processes and results with general output examples for LEO. The utility of ORDEM2010 is illustrated by sample results from the model and graphical user interface for two cases in 2010: the International Space Station and the EOS-AURA robotic spacecraft.

  14. Glacial-Interglacial Climate Changes Recorded by Debris Flow Grain Size, Eastern Sierra Nevada, California

    NASA Astrophysics Data System (ADS)

    D'Arcy, M. K.; Whittaker, A. C.; Roda Boluda, D. C.

    2015-12-01

    Uncertainties remain about the sensitivity of eroding landscapes to climate changes over a range of frequencies and amplitudes. Numerical models suggest that simple catchment-fan systems should be responsive to glacial-interglacial climate cycles, recording them in both sediment flux and the grain size distribution of their deposits. However these models are largely untested and the propagation of climatic signals through simple sediment routing systems remains contentious. Here, we present detailed sedimentological data from 8 debris flow fans in Owens Valley, eastern California. These fans have an exceptionally well-constrained depositional record spanning the last 120 ka, which we use to examine how sediment export has varied as a function of high-amplitude climate changes. We find a strong and sustained relationship between debris flow grain size and paleoclimate proxies over an entire glacial-interglacial cycle, with significantly coarser-grained deposits correlated with warm and dry conditions. Our data suggest these systems are highly reactive to climate forcing, with a short response timescale of <10 ka and no evidence of signal buffering, which we interpret to be driven by rapid sediment transfer from source to sink. We demonstrate that debris flow grain size follows an exponential relationship with temperature, coarsening at a rate of ~10 % per °C. Using this observation, and a known relationship between temperature and storm intensity, we propose that the climate signal recorded in these fan deposits captures changing storm intensity during the last glacial-interglacial cycle. This study offers a direct test of existing models of catchment-fan systems, confirming that glacial-interglacial climate changes can be clearly expressed in their grain size records. Our results also suggest that these debris flow deposits contain a high-resolution, testable record of past storm intensity, and that storminess is the primary control on their sedimentological

  15. RHIC warm-bore systems

    SciTech Connect

    Welch, K.M.

    1994-07-01

    Pressure profiles, in time, are calculated as a consequence of anticipated outgassing of various beam components (e.g., rf cavities, etc.) and warm-bore beam pipes. Gold beam lifetimes and transverse beam emittance growth are given for calculated average pressures. Examples of undesirable warm-bore conditions are presented such as contaminated experimental beam pipes and warm-bore magnets (i.e., DX). These examples may prove instructive. The methods used in making these calculations are presented in Section 2. They are applicable to all linear systems. The calculations given apply to the RHIC accelerator and more specifically to warm-bore regions of the machine.

  16. Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption.

    PubMed

    Rochman, Chelsea M; Tahir, Akbar; Williams, Susan L; Baxa, Dolores V; Lam, Rosalyn; Miller, Jeffrey T; Teh, Foo-Ching; Werorilangi, Shinta; Teh, Swee J

    2015-01-01

    The ubiquity of anthropogenic debris in hundreds of species of wildlife and the toxicity of chemicals associated with it has begun to raise concerns regarding the presence of anthropogenic debris in seafood. We assessed the presence of anthropogenic debris in fishes and shellfish on sale for human consumption. We sampled from markets in Makassar, Indonesia, and from California, USA. All fish and shellfish were identified to species where possible. Anthropogenic debris was extracted from the digestive tracts of fish and whole shellfish using a 10% KOH solution and quantified under a dissecting microscope. In Indonesia, anthropogenic debris was found in 28% of individual fish and in 55% of all species. Similarly, in the USA, anthropogenic debris was found in 25% of individual fish and in 67% of all species. Anthropogenic debris was also found in 33% of individual shellfish sampled. All of the anthropogenic debris recovered from fish in Indonesia was plastic, whereas anthropogenic debris recovered from fish in the USA was primarily fibers. Variations in debris types likely reflect different sources and waste management strategies between countries. We report some of the first findings of plastic debris in fishes directly sold for human consumption raising concerns regarding human health. PMID:26399762

  17. Anthropogenic debris in seafood: Plastic debris and fibers from textiles in fish and bivalves sold for human consumption

    PubMed Central

    Rochman, Chelsea M.; Tahir, Akbar; Williams, Susan L.; Baxa, Dolores V.; Lam, Rosalyn; Miller, Jeffrey T.; Teh, Foo-Ching; Werorilangi, Shinta; Teh, Swee J.

    2015-01-01

    The ubiquity of anthropogenic debris in hundreds of species of wildlife and the toxicity of chemicals associated with it has begun to raise concerns regarding the presence of anthropogenic debris in seafood. We assessed the presence of anthropogenic debris in fishes and shellfish on sale for human consumption. We sampled from markets in Makassar, Indonesia, and from California, USA. All fish and shellfish were identified to species where possible. Anthropogenic debris was extracted from the digestive tracts of fish and whole shellfish using a 10% KOH solution and quantified under a dissecting microscope. In Indonesia, anthropogenic debris was found in 28% of individual fish and in 55% of all species. Similarly, in the USA, anthropogenic debris was found in 25% of individual fish and in 67% of all species. Anthropogenic debris was also found in 33% of individual shellfish sampled. All of the anthropogenic debris recovered from fish in Indonesia was plastic, whereas anthropogenic debris recovered from fish in the USA was primarily fibers. Variations in debris types likely reflect different sources and waste management strategies between countries. We report some of the first findings of plastic debris in fishes directly sold for human consumption raising concerns regarding human health. PMID:26399762

  18. Evaluation of Reentry Breakup and Debris Generation

    NASA Astrophysics Data System (ADS)

    Nyman, R. L.

    2012-01-01

    Orbital missions launching from Cape Canaveral typically overfly Europe or African before achieving orbital insertion and pose a risk that must be evaluated as part of the overall mission casualty expectation. During the downrange overflight phase, the vehicle is well above the atmosphere and has achieved near orbital velocity, consequently a loss of thrust, loss of control or high altitude breakup will bring either the intact upper stage or smaller secondary debris fragments into the atmosphere and subject them to intense aerodynamic heating. In order to make reasonable risk estimates, it is necessary to first predict the reentry breakup characteristics and the survival of debris fragments. ACTA has developed the Coupled Aeroheating and Thermal Network Solver (CATNS) code to help range safety analysts evaluate reentry breakup and demise.

  19. Zodiac II: Debris Disk Imaging Potential

    NASA Technical Reports Server (NTRS)

    Traub Wesley; Bryden, Geoff; Stapelfeldt, Karl; Chen, Pin; Trauger, John

    2011-01-01

    Zodiac II is a proposed coronagraph on a balloon-borne platform, for the purpose of observing debris disks around nearby stars. Zodiac II will have a 1.2-m diameter telescope mounted in a balloon-borne gondola capable of arcsecond quality pointing, and with the capability to make long-duration (several week) flights. Zodiac II will have a coronagraph able to make images of debris disks, meaning that its scattered light speckles will be at or below an average contrast level of about 10(exp -7) in three narrow (7 percent) bands centered on the V band, and one broad (20%) one at I band. We will discuss the potential science to be done with Zodiac II.

  20. Meteoroids and Orbital Debris: Effects on Spacecraft

    NASA Technical Reports Server (NTRS)

    Belk, Cynthia A.; Robinson, Jennifer H.; Alexander, Margaret B.; Cooke, William J.; Pavelitz, Steven D.

    1997-01-01

    The natural space environment is characterized by many complex and subtle phenomena hostile to spacecraft. The effects of these phenomena impact spacecraft design, development, and operations. Space systems become increasingly susceptible to the space environment as use of composite materials and smaller, faster electronics increases. This trend makes an understanding of the natural space environment essential to accomplish overall mission objectives, especially in the current climate of better/cheaper/faster. Meteoroids are naturally occurring phenomena in the natural space environment. Orbital debris is manmade space litter accumulated in Earth orbit from the exploration of space. Descriptions are presented of orbital debris source, distribution, size, lifetime, and mitigation measures. This primer is one in a series of NASA Reference Publications currently being developed by the Electromagnetics and Aerospace Environments Branch, Systems Analysis and Integration Laboratory, Marshall Space Flight Center, National Aeronautics and Space Administration.

  1. GENERAL SOLUTIONS FOR VISCOPLASTIC DEBRIS FLOW.

    USGS Publications Warehouse

    Chen, Cheng-lung

    1988-01-01

    Theoretical velocity profile and theoretical pressure and concentration distributions for (steady) uniform debris flow in wide channels are derived from a generalized viscoplastic fluid (GVF) model without imposing R. A. Bagnold's assumption of constant grain concentration. Good agreement between the theoretical velocity profile and the experimental data of Japanese scientists strongly supports the validity of both the GVF model and the proposed method of solution from the model. It is shown that both E. C. Bingham and Bagnold versions (or submodels) of the GVF model can be used to simulate debris flow at the dynamic state. Although Bagnold's dilatant submodel appears to fit the Japanese data better than the Bingham submodel for flow of noncohesive grains, the choice between them is by no means clear-cut.

  2. GENERALIZED VISCOPLASTIC MODELING OF DEBRIS FLOW.

    USGS Publications Warehouse

    Chen, Cheng-lung

    1988-01-01

    The earliest model developed by R. A. Bagnold was based on the concept of the 'dispersive' pressure generated by grain collisions. Some efforts have recently been made by theoreticians in non-Newtonian fluid mechanics to modify or improve Bagnold's concept or model. A viable rheological model should consist both of a rate-independent part and a rate-dependent part. A generalized viscoplastic fluid (GVF) model that has both parts as well as two major rheological properties (i. e. , the normal stress effect and soil yield criterion) is shown to be sufficiently accurate, yet practical for general use in debris-flow modeling. In fact, Bagnold's model is found to be only a particular case of the GVF model. analytical solutions for (steady) uniform debris flows in wide channels are obtained from the GVF model based on Bagnold's simplified assumption of constant grain concentration.

  3. Debris trap in a turbine cooling system

    DOEpatents

    Wilson, Ian David

    2002-01-01

    In a turbine having a rotor and a plurality of stages, each stage comprising a row of buckets mounted on the rotor for rotation therewith; and wherein the buckets of at least one of the stages are cooled by steam, the improvement comprising at least one axially extending cooling steam supply conduit communicating with an at least partially annular steam supply manifold; one or more axially extending cooling steam feed tubes connected to the manifold at a location radially outwardly of the cooling steam supply conduit, the feed tubes arranged to supply cooling steam to the buckets of at least one of the plurality of stages; the manifold extending radially beyond the feed tubes to thereby create a debris trap region for collecting debris under centrifugal loading caused by rotation of the rotor.

  4. Debris Dispersion Model Using Java 3D

    NASA Technical Reports Server (NTRS)

    Thirumalainambi, Rajkumar; Bardina, Jorge

    2004-01-01

    This paper describes web based simulation of Shuttle launch operations and debris dispersion. Java 3D graphics provides geometric and visual content with suitable mathematical model and behaviors of Shuttle launch. Because the model is so heterogeneous and interrelated with various factors, 3D graphics combined with physical models provides mechanisms to understand the complexity of launch and range operations. The main focus in the modeling and simulation covers orbital dynamics and range safety. Range safety areas include destruct limit lines, telemetry and tracking and population risk near range. If there is an explosion of Shuttle during launch, debris dispersion is explained. The shuttle launch and range operations in this paper are discussed based on the operations from Kennedy Space Center, Florida, USA.

  5. Leo micrometeorite/debris impact damage

    NASA Technical Reports Server (NTRS)

    Stella, Paul M.

    1991-01-01

    The school bus sized Long Duration Exposure Facility (LDEF) was retrieved in 1990, after nearly six years of 250 nautical mile altitude low earth orbit environmental exposure. The recovery of LDEF experiments has provided extensive information on space interactions, including micrometeorite, debris, atomic oxygen, ultraviolet, and particulate radiation. The Jet Propulsion Laboratory provided a test plate as part of Solar-Array-Materials Passive LDEF (SAMPLE) Experiment. The test plate contained thirty thin silicon solar cell/cover assemblies. The cover samples included a variety of materials such as Teflon and RTV silicones, in addition to conventional microsheet. The nature of the approximately 150 micrometeorite/debris impacts on the cell/cover samples, cell interconnects, and aluminum test plate is discussed.

  6. Warm waters, bleached corals

    SciTech Connect

    Roberts, L.

    1990-10-12

    Two researchers, Tom Goreau of the Discovery Laboratory in Jamaica and Raymond Hayes of Howard University, claim that they have evidence that nearly clinches the temperature connection to the bleached corals in the Caribbean and that the coral bleaching is an indication of Greenhouse warming. The incidents of scattered bleaching of corals, which have been reported for decades, are increasing in both intensity and frequency. The researchers based their theory on increased temperature of the seas measured by satellites. However, some other scientists feel that the satellites measure the temperature of only the top few millimeters of the water and that since corals lie on reefs perhaps 60 to 100 feet below the ocean surface, the elevated temperatures are not significant.

  7. Global warming challenge

    SciTech Connect

    Hengeveld, H. )

    1994-11-01

    Global warming will necessitate significant adjustments in Canadian society and its economy. In 1979, the Canadian federal government created its Canadian Climate Program (CCP) in collaboration with other agencies, institutions, and individuals. It sought to coordinate national efforts to understand global and regional climate, and to promote better use of the emerging knowledge. Much of the CCP-coordinated research into sources and sinks of greenhouse gases interfaces with other national and international programs. Other researchers have become involved in the Northern Wetlands Study, a cooperative United States-Canada initiative to understand the role of huge northern bogs and muskegs in the carbon cycle. Because of the need to understand how the whole, linked climate system works, climate modeling emerged as a key focus of current research. 35 refs., 4 figs.

  8. Global Warming on Triton

    NASA Technical Reports Server (NTRS)

    Elliot, J. L.; Hammel, H. B.; Wasserman, L. H.; Franz, O. G.; McDonald, S. W.; Person, M. J.; Olkin, C. B.; Dunham, E. J.; Spencer, J. R.; Stansberry, J. A.; Buie, M. W.; Pasachoff, J. M.; Babcock, B. A.; McConnochie, T. H.

    1998-01-01

    Triton, Neptune's largest moon, has been predicted to undergo significant seasonal changes that would reveal themselves as changes in its mean frost temperature. But whether this temperature should at the present time be increasing, decreasing or constant depends on a number of parameters (such as the thermal properties of the surface, and frost migration patterns) that are unknown. Here we report observations of a recent stellar occultation by Triton which, when combined with earlier results, show that Triton has undergone a period of global warming since 1989. Our most conservative estimates of the rate of temperature and surface-pressure increase during this period imply that the atmosphere is doubling in bulk every 10 years, significantly faster than predicted by any published frost model for Triton. Our result suggests that permanent polar caps on Triton play a c dominant role in regulating seasonal atmospheric changes. Similar processes should also be active on Pluto.

  9. Diffuse, Warm Ionized Gas

    NASA Astrophysics Data System (ADS)

    Haffner, L. M.

    2002-05-01

    Over the past decade, new high-sensitivity observations have significantly advanced our knowledge of the diffuse, ionized gas in spiral galaxies. This component of the interstellar medium, often referred to as Warm Ionized Medium (WIM) or Diffuse Ionized Gas (DIG), plays an important role in the complex stellar-interstellar matter and energy cycle. In examining the distribution and physical properties of this gas, we learn not only about the conditions of the medium but also about processes providing heating and ionization in the halos of spiral galaxies. For the Milky Way, three new Hα surveys are available providing large sky coverage, arc-minute spatial resolution, and the ability to kinematically resolve this prominent optical emission line. These new, global views show that the Warm Ionized Medium of the Galaxy is ubiquitous as previously suspected, is rich with filamentary structure down to current resolution limits, and can be traced into the halo at large distances from the Galactic plane. Observations of additional optical emission lines are beginning to probe the physical conditions of the WIM. Early results suggest variations in the temperature and ionization state of the gas which are not adequately explained by Lyman continuum stellar photoionization alone. In parallel with this intensive work in the Milky Way have been numerous studies about the diffuse, ionized gas in other spiral galaxies. Here, deep, face-on spiral investigations provide some of the best maps of the global DIG distribution in a galaxy and begin to allow a probe of the local link between star formation and the powering of ionized gas. In addition, ionized gas has been traced out to impressive distances (z > 3 kpc) in edge-on spirals, revealing out large-scale changes in the physical conditions and kinematics of galactic halos.

  10. Interacting warm dark matter

    SciTech Connect

    Cruz, Norman; Palma, Guillermo; Zambrano, David; Avelino, Arturo E-mail: guillermo.palma@usach.cl E-mail: avelino@fisica.ugto.mx

    2013-05-01

    We explore a cosmological model composed by a dark matter fluid interacting with a dark energy fluid. The interaction term has the non-linear λρ{sub m}{sup α}ρ{sub e}{sup β} form, where ρ{sub m} and ρ{sub e} are the energy densities of the dark matter and dark energy, respectively. The parameters α and β are in principle not constrained to take any particular values, and were estimated from observations. We perform an analytical study of the evolution equations, finding the fixed points and their stability properties in order to characterize suitable physical regions in the phase space of the dark matter and dark energy densities. The constants (λ,α,β) as well as w{sub m} and w{sub e} of the EoS of dark matter and dark energy respectively, were estimated using the cosmological observations of the type Ia supernovae and the Hubble expansion rate H(z) data sets. We find that the best estimated values for the free parameters of the model correspond to a warm dark matter interacting with a phantom dark energy component, with a well goodness-of-fit to data. However, using the Bayesian Information Criterion (BIC) we find that this model is overcame by a warm dark matter – phantom dark energy model without interaction, as well as by the ΛCDM model. We find also a large dispersion on the best estimated values of the (λ,α,β) parameters, so even if we are not able to set strong constraints on their values, given the goodness-of-fit to data of the model, we find that a large variety of theirs values are well compatible with the observational data used.

  11. Interplanetary meteoroid debris in LDEF metal craters

    NASA Technical Reports Server (NTRS)

    Brownlee, D. E.; Joswiak, D.; Bradley, J.; Hoerz, Friedrich

    1993-01-01

    We have examined craters in Al and Au LDEF surfaces to determine the nature of meteoroid residue in the rare cases where projectile material is abundantly preserved in the crater floor. Typical craters contain only small amounts of residue and we find that less than 10 percent of the craters in Al have retained abundant residue consistent with survival of a significant fraction (greater than 20 percent) of the projectile mass. The residue-rich craters can usually be distinguished optically because their interiors are darker than ones with little or no apparent projectile debris. The character of the meteoroid debris in these craters ranges from thin glass liners, to thick vesicular glass containing unmelted mineral fragments, to debris dominated by unmelted mineral fragments. In the best cases of meteoroid survival, unmelted mineral fragments preserve both information on projectile mineralogy as well as other properties such as nuclear tracks caused by solar flare irradiation. The wide range of the observed abundance and alteration state of projectile residue is most probably due to differences in impact velocity. The crater liners are being studied to determine the composition of meteoroids reaching the Earth. The compositional types most commonly seen in the craters are: (1) chondritic (Mg, Si, S, Fe in approximately solar proportions), (2) Mg silicate. amd (3) iron sulfide. These are also the most common compositional types of extraterrestrial particle types collected in the stratosphere. The correlation between these compositions indicates that vapor fractionation was not a major process influencing residue composition in these craters. Although the biases involved with finding analyzable meteoroid debris in metal craters differ from those for extraterrestrial particles collected in and below the atmosphere, there is a common bias favoring particles with low entry velocity. For craters this is very strong and probably all of the metal craters with abundant

  12. Visible Light Spectroscopy of GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Lederer, Susan M.; Cowardin, Heather; Barker, Edwin S.; Abercromby, Kira J.

    2012-01-01

    Our goal is to understand the physical characteristics of debris at geosynchronous orbit (GEO). Our approach is to compare the observed reflectance as a function of wavelength with laboratory measurements of typical spacecraft surfaces to understand what the materials are likely to be. Because debris could be irregular in shape and tumbling at an unknown rate, rapid simultaneous measurements over a range of wavelengths are required. Acquiring spectra of optically faint objects with short exposure times to minimize these effects requires a large telescope. We describe optical spectroscopy obtained during 12-14 March 2012 with the IMACS imaging spectrograph on the 6.5-m 'Walter Baade' Magellan telescope at Las Campanas Observatory in Chile. When used in f/2 imaging mode for acquisition, this instrument has a field of view of 30 arc-minutes in diameter. After acquisition and centering of a GEO object, a 2.5 arc-second wide slit and a grism are moved into the beam for spectroscopy. We used a 200 l/mm grism blazed at 660 nm for wavelength coverage in the 500-900 nm region. Typical exposure times for spectra were 15-30 seconds. Spectra were obtained for five objects in the GEO regime listed as debris in the US Space Command public catalog, and one high area to mass ratio GEO object. In addition spectra were obtained of three cataloged IDCSP (Initial Defense Communications Satellite Program) satellites with known initial properties just below the GEO regime. All spectra were calibrated using white dwarf flux standards and solar analog stars. We will describe our experiences using Magellan, a telescope never used previously for orbital debris spectroscopy, and our initial results.

  13. Orbital Debris: Past, Present, and Future

    NASA Technical Reports Server (NTRS)

    Stansbery, Gene; Johnson, Nicholas

    2013-01-01

    In the early days of spaceflight, the gBig Sky h theory was the near universally accepted paradigm for dealing with collisions of orbiting objects. This theory was also used during the early years of the aviation industry. Just as it did in aviation, the gBig Sky h theory breaks down as more and more objects accumulate in the environment. Fortunately, by the late 1970 fs some visionaries in NASA and the US Department of Defense (DoD) realized that trends in the orbital environment would inevitably lead to increased risks to operational spacecraft from collisions with other orbiting objects. The NASA Orbital Debris Program was established at and has been conducted at Johnson Space Center since 1979. At the start of 1979, fewer than 5000 objects were being tracked by the US Space Surveillance Network and very few attempts had been made to sample the environment for smaller sizes. Today, the number of tracked objects has quadrupled. Ground ]based and in situ measurements have statistically sampled the LEO environment over most sizes and mitigation guidelines and requirements are common among most space faring nations. NASA has been a leader, not only in defining the debris environment, but in promoting awareness of the issues in the US and internationally, and in providing leadership in developing policies to address the issue. This paper will discuss in broad terms the evolution of the NASA debris program from its beginnings to its present broad range of debris related research. The paper will discuss in some detail current research topics and will attempt to predict future research trends.

  14. MOLECULAR GAS IN YOUNG DEBRIS DISKS

    SciTech Connect

    Moor, A.; Abraham, P.; Kiss, Cs.; Juhasz, A.; Kospal, A.; Pascucci, I.; Apai, D.; Henning, Th.; Csengeri, T.; Grady, C.

    2011-10-10

    Gas-rich primordial disks and tenuous gas-poor debris disks are usually considered as two distinct evolutionary phases of the circumstellar matter. Interestingly, the debris disk around the young main-sequence star 49 Ceti possesses a substantial amount of molecular gas and possibly represents the missing link between the two phases. Motivated to understand the evolution of the gas component in circumstellar disks via finding more 49 Ceti-like systems, we carried out a CO J = 3-2 survey with the Atacama Pathfinder EXperiment, targeting 20 infrared-luminous debris disks. These systems fill the gap between primordial and old tenuous debris disks in terms of fractional luminosity. Here we report on the discovery of a second 49 Ceti-like disk around the 30 Myr old A3-type star HD21997, a member of the Columba Association. This system was also detected in the CO(2-1) transition, and the reliable age determination makes it an even clearer example of an old gas-bearing disk than 49 Ceti. While the fractional luminosities of HD21997 and 49 Ceti are not particularly high, these objects seem to harbor the most extended disks within our sample. The double-peaked profiles of HD21997 were reproduced by a Keplerian disk model combined with the LIME radiative transfer code. Based on their similarities, 49 Ceti and HD21997 may be the first representatives of a so far undefined new class of relatively old ({approx}>8 Myr), gaseous dust disks. From our results, neither primordial origin nor steady secondary production from icy planetesimals can unequivocally explain the presence of CO gas in the disk of HD21997.

  15. Molecular Gas in Young Debris Disks

    NASA Technical Reports Server (NTRS)

    Moor, A.; Abraham, P.; Juhasz, A.; Kiss, Cs.; Pascucci, I.; Kospal, A.; Apai, D.; Henning, T.; Csengeri, T.; Grady, C.

    2011-01-01

    Gas-rich primordial disks and tenuous gas-poor debris disks are usually considered as two distinct evolutionary phases of the circumstellar matter. Interestingly, the debris disk around the young main-sequence star 49 Ceti possesses a substantial amount of molecular gas and possibly represents the missing link between the two phases. Motivated to understand the evolution of the gas component in circumstellar disks via finding more 49 Ceti-like systems, we carried out a CO J = 3-2 survey with the Atacama Pathfinder EXperiment, targeting 20 infrared-luminous debris disks. These systems fill the gap between primordial and old tenuous debris disks in terms of fractional luminosity. Here we report on the discovery of a second 49 Ceti-like disk around the 30 Myr old A3-type star HD21997, a member of the Columba Association. This system was also detected in the CO(2-1) transition, and the reliable age determination makes it an even clearer example of an old gas-bearing disk than 49 Ceti. While the fractional luminosities of HD21997 and 49 Ceti are not particularly high, these objects seem to harbor the most extended disks within our sample. The double-peaked profiles of HD21997 were reproduced by a Keplerian disk model combined with the LIME radiative transfer code. Based on their similarities, 49 Ceti and HD21997 may be the first representatives of a so far undefined new class of relatively old > or approx.8 Myr), gaseous dust disks. From our results, neither primordia1 origin nor steady secondary production from icy planetesima1s can unequivocally explain the presence of CO gas in the disk ofHD21997.

  16. Detailed scour measurements around a debris accumulation

    USGS Publications Warehouse

    Mueller, David S.; Parola, Arthur C.

    1998-01-01

    Detailed scour measurements were made at Farm-Market 2004 over the Brazos River near Lake Jackson, Tex. during flooding in October 1994. Woody debris accumulations on bents 6, 7, and 8 obstructed flow through the bridge, causing scour of the streambed. Measurements at the site included three-dimensional velocities, channel bathymetry, water-surface elevations, water-surface slope, and discharge. Channel geometry upstream from the bridge caused approach conditions to be nonuniform.

  17. Space Debris Laser Ranging at Graz

    NASA Astrophysics Data System (ADS)

    Kirchner, Georg; Koidl, Franz; Kucharski, Daniel; Ploner, Martin; Riede, Wolfgang; Voelker, Uwe; Buske, Ivo; Friedrich, Fabian; Baur, Oliver; Krauss, Sandro; Wirnsberger, Harald

    2013-08-01

    The Graz Satellite Laser Ranging (SLR) station usually measures distances to retro-reflector equipped satellites with an accuracy of few millimetres, using short laser pulses with 10 ps pulse width, a low energy of 400 μJ, and a repetition rate of 2 kHz. To test laser ranging possibilities to space debris, we installed two stronger lasers (a diode-pumped 25 mJ / 1 kHz / 10 ns / 532 nm laser, exchanged later to a flash lamp pumped 150 mJ / 100 Hz / 3 ns / 532 nm laser) - both on loan from DLR / German Aerospace Centre Stuttgart -, and built lownoise single-photon detection units. With this configuration, we successfully tracked ≈ 100 passes of almost 50 different space debris targets, in distances between 600 km and up to more than 2500 km, with radar cross sections from > 15 m2 down to < 0.3 m2 , and measured their distances with an average accuracy of 0.7 m (10 ns laser) resp. ≈ 0.5 m (3 ns laser) RMS. The resulting data will be used to calculate improved orbits of the tracked debris objects, and to compare them with radar-based TLE (two-line element) orbits. As demonstration experiment, here we provide findings for ENVISAT normal point analysis. As a next step, we plan to additionally taking pointing information into account. Potentially, the joint analysis of both ranges and orientation angles further improves space debris orbit accuracy. Orbit determination and prediction was done with the GEODYN software package. In addition, we successfully tested a 'bi-static' mode: Graz fired laser pulses to ENVISAT; while Graz detected photons reflected from the retro-reflector, the Swiss SLR station Zimmerwald detected the photons diffusely reflected from the satellite body.

  18. Mitigation of Debris Flow Damage--­ A Case Study of Debris Flow Damage

    NASA Astrophysics Data System (ADS)

    Lin, J. C.; Jen, C. H.

    Typhoon Toraji caused more than 30 casualties in Central Taiwan on the 31st July 2001. It was the biggest Typhoon since the Chi-Chi earthquake of 1999 with huge amounts of rainfall. Because of the influence of the earthquake, loose debris falls and flows became major hazards in Central Taiwan. Analysis of rainfall data and sites of slope failure show that damage from these natural hazards were enhanced as a result of the Chi-Chi earthquake. Three main types of hazard occurred in Central Taiwan: land- slides, debris flows and gully erosion. Landslides occurred mainly along hill slopes and banks of channels. Many dams and houses were destroyed by flooding. Debris flows occurred during typhoon periods and re-activated ancient debris depositions. Many new gullies were therefore developed from deposits loosened and shaken by the earthquake. This paper demonstrates the geological/geomorphological background of the hazard area, and reviews methods of damage mitigation in central Taiwan. A good example is Hsi-Tou, which had experienced no gully erosion for more than 40 years. The area experienced much gully erosion as a result of the combined effects of earth- quake and typhoon. Although Typhoon Toraji produced only 30% of the rainfall of Typhoon Herb of 1996, it caused more damage in the Hsi-Tou area. The mitigation of debris flow hazards in Hsi-tou area is discussed in this paper.

  19. Controlling the Growth of Future LEO Debris Populations with Active Debris Removal

    NASA Technical Reports Server (NTRS)

    Liou, J.-C.; Johnson, N. L.; Hill, N. M.

    2008-01-01

    Active debris removal (ADR) was suggested as a potential means to remediate the low Earth orbit (LEO) debris environment as early as the 1980s. The reasons ADR has not become practical are due to its technical difficulties and the high cost associated with the approach. However, as the LEO debris populations continue to increase, ADR may be the only option to preserve the near-Earth environment for future generations. An initial study was completed in 2007 to demonstrate that a simple ADR target selection criterion could be developed to reduce the future debris population growth. The present paper summarizes a comprehensive study based on more realistic simulation scenarios, including fragments generated from the 2007 Fengyun-1C event, mitigation measures, and other target selection options. The simulations were based on the NASA long-term orbital debris projection model, LEGEND. A scenario, where at the end of mission lifetimes, spacecraft and upper stages were moved to 25-year decay orbits, was adopted as the baseline environment for comparison. Different annual removal rates and different ADR target selection criteria were tested, and the resulting 200-year future environment projections were compared with the baseline scenario. Results of this parametric study indicate that (1) an effective removal strategy can be developed based on the mass and collision probability of each object as the selection criterion, and (2) the LEO environment can be stabilized in the next 200 years with an ADR removal rate of five objects per year.

  20. Environment Characterisation by Using Innovative Debris Detector

    NASA Astrophysics Data System (ADS)

    Bauer, W.; Barschke, M.; Romberg, O.

    The knowledge about small (> 100 µm) but abundant objects in space is low. To analyze the quantity of space debris and micrometeoroids in space, an innovative in-situ impact detection method has been developed at the German Aerospace Center (DLR) in Bremen, Germany. The Solar generator based Impact Detector, SOLID, uses solar panels for impact detection. Since solar panels provide large detection areas, this method allows the collection of large amounts of data. Such data enhances space debris and micrometeoroid population datasets and permits for related model validation. A ground verification of the detection method has been performed by Hypervelocity Impact (HVI) tests at Fraunhofeŕs Ernst-Mach-Institut (EMI), Freiburg, Germany. The objective of this investigation was to test the applicability of the developed method concerning in-situ detection of space debris and micrometeoroids. The achieved test results are in agreement with ESA developed damage equations and the functionality of the detector has clearly been demonstrated. This paper presents the already manufactured hardware planned for on orbit test on the Technische Universität Berlin's TechnoSat mission in early 2016. The expected impact frequencies at corresponding probabilities and uncertainties regarding object size estimation are also outlined.

  1. Circumstellar Debris Disks: Diagnosing the Unseen Perturber

    NASA Astrophysics Data System (ADS)

    Nesvold, Erika R.; Naoz, Smadar; Vican, Laura; Farr, Will M.

    2016-07-01

    The first indication of the presence of a circumstellar debris disk is usually the detection of excess infrared emission from the population of small dust grains orbiting the star. This dust is short-lived, requiring continual replenishment, and indicating that the disk must be excited by an unseen perturber. Previous theoretical studies have demonstrated that an eccentric planet orbiting interior to the disk will stir the larger bodies in the belt and produce dust via interparticle collisions. However, motivated by recent observations, we explore another possible mechanism for heating a debris disk: a stellar-mass perturber orbiting exterior to and inclined to the disk and exciting the disk particles’ eccentricities and inclinations via the Kozai–Lidov mechanism. We explore the consequences of an exterior perturber on the evolution of a debris disk using secular analysis and collisional N-body simulations. We demonstrate that a Kozai–Lidov excited disk can generate a dust disk via collisions and we compare the results of the Kozai–Lidov excited disk with a simulated disk perturbed by an interior eccentric planet. Finally, we propose two observational tests of a dust disk that can distinguish whether the dust was produced by an exterior brown dwarf or stellar companion or an interior eccentric planet.

  2. Experimental verification of an innovative debris detector

    NASA Astrophysics Data System (ADS)

    Bauer, Waldemar; Romberg, Oliver; Putzar, Robin

    2015-12-01

    To analyse the quantity of space debris and micrometeoroids in space, an innovative in-situ impact detection method has been developed at DLR (German Aerospace Center) in Bremen, Germany. The method Solar generator based Impact Detector "SOLID" uses solar panels for impact detection. Since solar panels provide large detection areas, this method allows for the collection of large amounts of data, to be used also for model validation. Furthermore, impact damage can be verified once more to confirm or to refute an impact. Both aspects can significantly improve the quality of model validation by using large amounts of highly reliable data. A verification of the detection method was performed by Hypervelocity Impact (HVI) tests at Fraunhofer EMI, Freiburg, Germany. The HVI tests were conducted using projectiles with a diameter between 500 μm and 2 mm. The impact velocity of those objects ranged from 3.9 km/s to 6.2 km/s. The objective of this investigation was to test the applicability of the developed method concerning in-situ detection of space debris and micrometeoroids. The achieved test results are in agreement with ESA developed damage equations. The ability of the detection method SOLID for impact detection of space debris and micrometeoroids was clearly demonstrated.

  3. Characterization of WISE Debris Disk Stars

    NASA Astrophysics Data System (ADS)

    Padgett, Deborah; Liu, Wilson; Morales, Farisa

    2013-02-01

    We propose to acquire low dispersion spectra with the SOAR Goodman Spectrograph of new debris disk stars identified from the Wide-field Infrared Survey Explorer (WISE survey of the entire sky. Despite many targeted surveys for stellar disks in the solar neighborhood by Spitzer Space Telescope, the census of disks remains incomplete at mid-IR sensitivity levels better than the IRAS limits. The improved sensitivity and spatial resolution of the all-sky WISE survey for debris disks (Padgett et al., submitted) has recently improved this situation, identifying Hipparcos and Tycho stars with mid-infrared excess out to distances of 120 pc. With the SOAR spectrograph we will characterize the new candidate debris disk stars in the southern sky, providing a uniform set of stellar classifications and information on a range of spectroscopic activity indicators related to stellar age. These data will help to constrain the stellar properties of an important new set of solar neighbors with evidence of planetary systems.

  4. Circumstellar Debris Disks: Diagnosing the Unseen Perturber

    NASA Astrophysics Data System (ADS)

    Nesvold, Erika R.; Naoz, Smadar; Vican, Laura; Farr, Will M.

    2016-07-01

    The first indication of the presence of a circumstellar debris disk is usually the detection of excess infrared emission from the population of small dust grains orbiting the star. This dust is short-lived, requiring continual replenishment, and indicating that the disk must be excited by an unseen perturber. Previous theoretical studies have demonstrated that an eccentric planet orbiting interior to the disk will stir the larger bodies in the belt and produce dust via interparticle collisions. However, motivated by recent observations, we explore another possible mechanism for heating a debris disk: a stellar-mass perturber orbiting exterior to and inclined to the disk and exciting the disk particles’ eccentricities and inclinations via the Kozai-Lidov mechanism. We explore the consequences of an exterior perturber on the evolution of a debris disk using secular analysis and collisional N-body simulations. We demonstrate that a Kozai-Lidov excited disk can generate a dust disk via collisions and we compare the results of the Kozai-Lidov excited disk with a simulated disk perturbed by an interior eccentric planet. Finally, we propose two observational tests of a dust disk that can distinguish whether the dust was produced by an exterior brown dwarf or stellar companion or an interior eccentric planet.

  5. Planets, debris and their host metallicity correlations

    NASA Astrophysics Data System (ADS)

    Fletcher, Mark; Nayakshin, Sergei

    2016-09-01

    Recent observations of debris discs (DDs), believed to be made up of remnant planetesimals, brought a number of surprises. DD presence does not correlate with the host star's metallicity, and may anticorrelate with the presence of gas giant planets. These observations contradict both assumptions and predictions of the highly successful Core Accretion model of planet formation. Here, we explore predictions of the alternative tidal downsizing (TD) scenario of planet formation. In TD, small planets and planetesimal debris is made only when gas fragments, predecessors of giant planets, are tidally disrupted. We show that these disruptions are rare in discs around high-metallicity stars but release more debris per disruption than their low [M/H] analogues. This predicts no simple relation between DD presence and host star's [M/H], as observed. A detected gas giant planet implies in TD that its predecessor fragment was not disputed, potentially explaining why DDs are less likely to be found around stars with gas giants. Less massive planets should correlate with DD presence, and sub-Saturn planets (Mp ˜ 50 M⊕) should correlate with DD presence stronger than sub-Neptunes (Mp ≲ 15 M⊕). These predicted planet-DD correlations will be diluted and weakened in observations by planetary systems' long-term evolution and multifragment effects neglected here. Finally, although presently difficult to observe, DDs around M dwarf stars should be more prevalent than around Solar type stars.

  6. Plastic debris in the open ocean.

    PubMed

    Cózar, Andrés; Echevarría, Fidel; González-Gordillo, J Ignacio; Irigoien, Xabier; Ubeda, Bárbara; Hernández-León, Santiago; Palma, Alvaro T; Navarro, Sandra; García-de-Lomas, Juan; Ruiz, Andrea; Fernández-de-Puelles, María L; Duarte, Carlos M

    2014-07-15

    There is a rising concern regarding the accumulation of floating plastic debris in the open ocean. However, the magnitude and the fate of this pollution are still open questions. Using data from the Malaspina 2010 circumnavigation, regional surveys, and previously published reports, we show a worldwide distribution of plastic on the surface of the open ocean, mostly accumulating in the convergence zones of each of the five subtropical gyres with comparable density. However, the global load of plastic on the open ocean surface was estimated to be on the order of tens of thousands of tons, far less than expected. Our observations of the size distribution of floating plastic debris point at important size-selective sinks removing millimeter-sized fragments of floating plastic on a large scale. This sink may involve a combination of fast nano-fragmentation of the microplastic into particles of microns or smaller, their transference to the ocean interior by food webs and ballasting processes, and processes yet to be discovered. Resolving the fate of the missing plastic debris is of fundamental importance to determine the nature and significance of the impacts of plastic pollution in the ocean.

  7. Plastic debris in the open ocean

    PubMed Central

    Cózar, Andrés; Echevarría, Fidel; González-Gordillo, J. Ignacio; Irigoien, Xabier; Úbeda, Bárbara; Hernández-León, Santiago; Palma, Álvaro T.; Navarro, Sandra; García-de-Lomas, Juan; Ruiz, Andrea; Fernández-de-Puelles, María L.; Duarte, Carlos M.

    2014-01-01

    There is a rising concern regarding the accumulation of floating plastic debris in the open ocean. However, the magnitude and the fate of this pollution are still open questions. Using data from the Malaspina 2010 circumnavigation, regional surveys, and previously published reports, we show a worldwide distribution of plastic on the surface of the open ocean, mostly accumulating in the convergence zones of each of the five subtropical gyres with comparable density. However, the global load of plastic on the open ocean surface was estimated to be on the order of tens of thousands of tons, far less than expected. Our observations of the size distribution of floating plastic debris point at important size-selective sinks removing millimeter-sized fragments of floating plastic on a large scale. This sink may involve a combination of fast nano-fragmentation of the microplastic into particles of microns or smaller, their transference to the ocean interior by food webs and ballasting processes, and processes yet to be discovered. Resolving the fate of the missing plastic debris is of fundamental importance to determine the nature and significance of the impacts of plastic pollution in the ocean. PMID:24982135

  8. Bremsstrahlung converter debris shields: test and analysis

    SciTech Connect

    Reedy, E.D. Jr.; Perry, F.C.

    1983-10-01

    Electron beam accelerators are commonly used to create bremsstrahlung x-rays for effects testing. Typically, the incident electron beam strikes a sandwich of three materials: (1) a conversion foil, (2) an electron scavenger, and (3) a debris shield. Several laboratories, including Sandia National Laboratories, are developing bremsstrahlung x-ray sources with much larger test areas (approx. 200 to 500 cm/sup 2/) than ever used before. Accordingly, the debris shield will be much larger than before and subject to loads which could cause shield failure. To prepare for this eventuality, a series of tests were run on the Naval Surface Weapons Center's Casino electron beam accelerator (approx. 1 MeV electrons, 100 ns FWHM pulse, 45 kJ beam energy). The primary goal of these tests was to measure the stress pulse which loads a debris shield. These measurements were made with carbon gages mounted on the back of the converter sandwich. At an electron beam fluence of about 1 kJ/cm/sup 2/, the measured peak compressive stress was typically in the 1 to 2 kbar range. Measured peak compressive stress scaled in a roughly linear manner with fluence level as the fluence level was increased to 10 kJ/cm/sup 2/. The duration of the compressive pulse was on the order of microseconds. In addition to the stress wave measurements, a limited number of tests were made to investigate the type of damage generated in several potential shield materials.

  9. Local warming: daily temperature change influences belief in global warming.

    PubMed

    Li, Ye; Johnson, Eric J; Zaval, Lisa

    2011-04-01

    Although people are quite aware of global warming, their beliefs about it may be malleable; specifically, their beliefs may be constructed in response to questions about global warming. Beliefs may reflect irrelevant but salient information, such as the current day's temperature. This replacement of a more complex, less easily accessed judgment with a simple, more accessible one is known as attribute substitution. In three studies, we asked residents of the United States and Australia to report their opinions about global warming and whether the temperature on the day of the study was warmer or cooler than usual. Respondents who thought that day was warmer than usual believed more in and had greater concern about global warming than did respondents who thought that day was colder than usual. They also donated more money to a global-warming charity if they thought that day seemed warmer than usual. We used instrumental variable regression to rule out some alternative explanations.

  10. Searching for Outer Planet Debris Disks/Rings with WISE

    NASA Astrophysics Data System (ADS)

    Skrutskie, M. F.; Masci, F.; Fowler, J.; Cutri, R. M.; Verbiscer, A.; Wright, E. L.

    2011-10-01

    The NASA Wide-Field Infrared Survey Explorer (WISE) imaged the entire celestial sphere at 3.4, 4.6, 12, and 22μm during its 9 month cryogenic survey mission with typical 5-sigma sensitivity for point source detection near the ecliptic of 0.08, 0.11, 1, and 6 mJy (Wright et al. 2010). In addition to the detection of hundreds of millions of stars and galaxies as well as a vast number of known and new asteroids (Mainzer et al. 2011), WISE was sensitive to extended emission from warm dust in the Solar System, for example from zodiacal dust bands and comet debris trails. WISE also scanned all of the superior planets during its mission, encountering them serendipitously during normal Survey operations. This paper presents the result of searches for dust emission originating from irregular satellite impact debris or activity around Jupiter, Saturn, Uranus and Neptune, primarily in the longest wavelength band at 22μm. WISE delivered angular resolution of 6 arcseconds in the three shorterwavelength bands and 12 arcseconds in the band most suited for outer Solar System dust detection at 22μm. Jupiter and Saturn heavily saturate the detectors and scattered light limits the inner radius for analysis. Since WISE acquired its observations over many days, and in some cases weeks, we have constructed deep coadds in the frame of the moving planet rather than using standard WISE Atlas Image Coadds. WISE typically dedicated about 70 sec of observation to each point on the sky near the ecliptic plane, so WISE observations are not nearly as sensitive as those possible with the Spitzer Space Telescope during its cryogenic mission. All of the giant planets were located in a region of the sky scanned in the second half of WISE's all-sky coverage. As a result none of these fields was included in the 57% of the sky covered in the April 2011 WISE Preliminary Data Release. At the time of the WISE Final Data Release, planned for Spring 2012, the individual calibrated "Level 1" frames

  11. Treatment technology analysis for mixed waste containers and debris

    SciTech Connect

    Gehrke, R.J.; Brown, C.H.; Langton, C.A.; Askew, N.M.; Kan, T.; Schwinkendorf, W.E.

    1994-03-01

    A team was assembled to develop technology needs and strategies for treatment of mixed waste debris and empty containers in the Department of Energy (DOE) complex, and to determine the advantages and disadvantages of applying the Debris and Empty Container Rules to these wastes. These rules issued by the Environmental Protection Agency (EPA) apply only to the hazardous component of mixed debris. Hazardous debris that is subjected to regulations under the Atomic Energy Act because of its radioactivity (i.e., mixed debris) is also subject to the debris treatment standards. The issue of treating debris per the Resource Conservation and Recovery Act (RCRA) at the same time or in conjunction with decontamination of the radioactive contamination was also addressed. Resolution of this issue requires policy development by DOE Headquarters of de minimis concentrations for radioactivity and release of material to Subtitle D landfills or into the commercial sector. The task team recommends that, since alternate treatment technologies (for the hazardous component) are Best Demonstrated Available Technology (BDAT): (1) funding should focus on demonstration, testing, and evaluation of BDAT on mixed debris, (2) funding should also consider verification of alternative treatments for the decontamination of radioactive debris, and (3) DOE should establish criteria for the recycle/reuse or disposal of treated and decontaminated mixed debris as municipal waste.

  12. Debris and Shrapnel Mitigation Procedure for NIF Experiments

    SciTech Connect

    Eder, D; Koniges, A; Landen, O; Masters, N; Fisher, A; Jones, O; Suratwala, T; Suter, L

    2007-09-04

    All experiments at the National Ignition Facility (NIF) will produce debris and shrapnel from vaporized, melted, or fragmented target/diagnostics components. For some experiments mitigation is needed to reduce the impact of debris and shrapnel on optics and diagnostics. The final optics, e.g., wedge focus lens, are protected by two layers of debris shields. There are 192 relatively thin (1-3 mm) disposable debris shields (DDS's) located in front of an equal number of thicker (10 mm) main debris shields (MDS's). The rate of deposition of debris on DDS's affects their replacement rate and hence has an impact on operations. Shrapnel (molten and solid) can have an impact on both types of debris shields. There is a benefit to better understanding these impacts and appropriate mitigation. Our experiments on the Omega laser showed that shrapnel from Ta pinhole foils could be redirected by tilting the foils. Other mitigation steps include changing location or material of the component identified as the shrapnel source. Decisions on the best method to reduce the impact of debris and shrapnel are based on results from a number of advanced simulation codes. These codes are validated by a series of dedicated experiments. One of the 3D codes, NIF's ALE-AMR, is being developed with the primary focus being a predictive capability for debris/shrapnel generation. Target experiments are planned next year on NIF using 96 beams. Evaluations of debris and shrapnel for hohlraum and capsule campaigns are presented.

  13. Debris-flow generation from recently burned watersheds

    USGS Publications Warehouse

    Cannon, S.H.

    2001-01-01

    Evaluation of the erosional response of 95 recently burned drainage basins in Colorado, New Mexico and southern California to storm rainfall provides information on the conditions that result in fire-related debris flows. Debris flows were produced from only 37 of 95 (~40 percent) basins examined; the remaining basins produced either sediment-laden streamflow or no discernable response. Debris flows were thus not the prevalent response of the burned basins. The debris flows that did occur were most frequently the initial response to significant rainfall events. Although some hillslopes continued to erode and supply material to channels in response to subsequent rainfall events, debris flows were produced from only one burned basin following the initial erosive event. Within individual basins, debris flows initiated through both runoff and infiltration-triggered processes. The fact that not all burned basins produced debris flows suggests that specific geologic and geomorphic conditions may control the generation of fire-related debris flows. The factors that best distinguish between debris-flow producing drainages and those that produced sediment-laden streamflow are drainage-basin morphology and lithology, and the presence or absence of water-repellent soils. Basins underlain by sedimentary rocks were most likely to produce debris flows that contain large material, and sand- and gravel-dominated flows were generated primarily from terrain underlain by decomposed granite. Basin-area and relief thresholds define the morphologic conditions under which both types of debris flows occur. Debris flows containing large material are more likely to be produced from basins without water-repellent soils than from basins with water repellency. The occurrence of sand-and gravel-dominated debris flows depends on the presence of water-repellent soils.

  14. The Effect of Debris-Flow Composition on Runout Distance

    NASA Astrophysics Data System (ADS)

    Haas, T. D.; Braat, L.; Leuven, J.; Lokhorst, I.; Kleinhans, M. G.

    2014-12-01

    Estimating runout distance is of major importance for the assessment and mitigation of debris-flow hazards. Debris-flow runout distance depends on debris-flow composition and topography, but state-of-the-art runout prediction methods are mainly based on topographical parameters and debris-flow volume, while composition is generally neglected or incorporated in empirical constants. Here we experimentally investigated the effect of debris-flow composition and topography on runout distance. We created the first small-scale experimental debris flows with self-formed levees, distinct lobes and morphology and texture accurately resembling natural debris flows. In general, debris-flow composition had a larger effect on runout distance than topography. Enhancing channel slope and width, outflow plain slope, debris-flow size and water fraction leads to an increase in runout distance. However, runout distance shows an optimum relation with coarse-material and clay fraction. An increase in coarse-material fraction leads to larger runout distances by increased grain collisional forces and more effective levee formation, but too much coarse debris causes a large accumulation of coarse debris at the flow front, enhancing friction and decreasing runout. An increase in clay fraction initially enlarges the volume and viscosity of the interstitial fluid, liquefying the flow and enhancing runout, while a further increase leads to very viscous flows with high yield strength, reducing runout. These results highlight the importance and further need of research on the relation between debris-flow composition and runout distance. Our experiments further provide valuable insight on the effects of debris-flow composition on depositional mechanisms and deposit morphology.

  15. The effect of debris-flow composition on runout distance

    NASA Astrophysics Data System (ADS)

    de Haas, Tjalling; Braat, Lisanne; Leuven, Jasper; Lokhorst, Ivar; Kleinhans, Maarten

    2015-04-01

    Estimating runout distance is of major importance for the assessment and mitigation of debris-flow hazards. Debris-flow runout distance depends on debris-flow composition and topography, but state-of-the-art runout prediction methods are mainly based on topographical parameters and debris-flow volume, while composition is generally neglected or incorporated in empirical constants. Here we experimentally investigated the effect of debris-flow composition and topography on runout distance. We created the first small-scale experimental debris flows with self-formed levees, distinct lobes and morphology and texture accurately resembling natural debris flows. In general, the effect of debris-flow composition on runout distance was larger than the effect of topography. Enhancing channel slope and width, outflow plain slope, debris-flow size and water fraction leads to an increase in runout distance. However, runout distance shows an optimum relation with coarse-material and clay fraction. An increase in coarse-material fraction leads to larger runout distances by increased grain collisional forces and more effective levee formation, but too much coarse debris causes a large accumulation of coarse debris at the flow front, enhancing friction and decreasing runout. An increase in clay fraction initially enlarges the volume and viscosity of the interstitial fluid, liquefying the flow and enhancing runout, while a further increase leads to very viscous flows with high yield strength, reducing runout. These results highlight the importance and further need of research on the relation between debris-flow composition and runout distance. Our experiments further provide valuable insight on the effects of debris-flow composition on depositional mechanisms and deposit morphology.

  16. Characterizing Debris in the Infrared with UKIRT

    NASA Technical Reports Server (NTRS)

    Lederer, S. M.; Jah, M.; Kendrick, R.; Buckalew, B.; Frith, J. M.; Cowardin, H. M.; Bold, M.

    2015-01-01

    The United Kingdom Infrared Telescope (UKIRT) has been a major asset for the NASA Orbital Debris Program Office (OPDO) since March, 2014. With the UKIRT current contract coming to an end at the finish of FY15, there is a golden opportunity for this community to fund and gain access to UKIRT as an SSA asset through HCAR (Hawaii Center for Astronautics Research). UKIRT is the only telescope on Mauna Kea dedicated to infrared bands. Spectral coverage ranges from the near- (0.8-5µm) to the mid- to far-infrared (8-25 micrometer) regime. To date, debris observations have been collected with three instruments. Near-Infrared photometry with ZYJHK filters has been obtained with the Wide Field Camera (WFCam). Near-Infrared (1-2.5 micrometer) spectra are the focus of observations taken with the UKIRT Imager SpecTrometer (UIST). And Michelle (Mid Infrared escCHELLE) is a thermal imager-spectrometer designed for the 8-25 micrometer regime. With 35% of the telescope time allocated to ODPO, a very steady stream of data has been collected on a variety of debris targets using all the above instrumentation. Initial results from WFCam were discussed at AMOS and NISOI including analyses on IDCSPs, the MSG cooler and baffle covers. The cylindrical HS-376 buses were the focus of recent WFCam runs. Summary analyses of these works will be presented. Focus will be given to initial results of the data collected with the Cassegrain instruments, UIST and Michelle. UIST spectra were collected in September 2014, March and April 2015. Targets included a suite of HS-376 buses, well suited to investigate the signatures of blue solar panels; several dead satellites with solar array wings; Titan 3C transtage debris; the CTA Array cover, and others. In addition, Michelle mid-IR photometry was collected on a select few objects during the April 2015 run. Using WFCam, UIST and Michelle the Lockheed Martin has been observing operational satellites in the near- mid and far-infrared regime in an attempt

  17. Debris flow hazard mapping, Hobart, Tasmania, Australia

    NASA Astrophysics Data System (ADS)

    Mazengarb, Colin; Rigby, Ted; Stevenson, Michael

    2015-04-01

    Our mapping on the many dolerite capped mountains in Tasmania indicates that debris flows are a significant geomorphic process operating there. Hobart, the largest city in the State, lies at the foot of one of these mountains and our work is focussed on identifying areas that are susceptible to these events and estimating hazard in the valley systems where residential developments have been established. Geomorphic mapping with the benefit of recent LiDAR and GIS enabled stereo-imagery has allowed us to add to and refine a landslide inventory in our study area. In addition, a dominant geomorphic model has been recognised involving headward gully retreat in colluvial materials associated with rainstorms explains why many past events have occurred and where they may occur in future. In this paper we will review the landslide inventory including a large event (~200 000m3) in 1872 that affected a lightly populated area but since heavily urbanised. From this inventory we have attempted volume-mobility relationships, magnitude-frequency curves and likelihood estimates. The estimation of volume has been challenging to determine given that the area of depletion for each debris flow feature is typically difficult to distinguish from the total affected area. However, where LiDAR data exists, this uncertainty is substantially reduced and we develop width-length relationships (area of depletion) and area-volume relationships to estimate volume for the whole dataset exceeding 300 features. The volume-mobility relationship determined is comparable to international studies and in the absence of reliable eye-witness accounts, suggests that most of the features can be explained as single event debris flows, without requiring more complex mechanisms (such as those that form temporary debris dams that subsequently fail) as proposed by others previously. Likelihood estimates have also been challenging to derive given that almost all of the events have not been witnessed, some are

  18. Summary of Disposable Debris Shields (DDS) Analysis for Development of Solid Debris Collection at NIF

    SciTech Connect

    Shaughnessy, D A; Moody, K J; Grant, P M; Lewis, L A; Hutcheon, I D; Lindvall, R; Gostic, J M

    2011-11-20

    Collection of solid debris from the National Ignition Facility (NIF) is being developed both as a diagnostic tool and as a means for measuring nuclear reaction cross sections relevant to the Stockpile Stewardship Program and nuclear astrophysics. The concept is straightforward; following a NIF shot, the debris that is produced as a result of the capsule and hohlraum explosion would be collected and subsequently extracted from the chamber. The number of nuclear activations that occurred in the capsule would then be measured through a combination of radiation detection and radiochemical processing followed by mass spectrometry. Development of the catcher is challenging due to the complex environment of the NIF target chamber. The collector surface is first exposed to a large photon flux, followed by the debris wind that is produced. The material used in the catcher must be mechanically strong in order to withstand the large amount of energy it is exposed to, as well as be chemically compatible with the form and composition of the debris. In addition, the location of the catcher is equally important. If it is positioned too close to the center of the target chamber, it will be significantly ablated, which could interfere with the ability of the debris to reach the surface and stick. If it is too far away, the fraction of the debris cloud collected will be too small to result in a statistically significant measurement. Material, geometric configuration, and location must all be tested in order to design the optimal debris collection system for NIF. One of the first ideas regarding solid debris collection at NIF was to use the disposable debris shields (DDS), which are fielded over the final optics assemblies (FOA) 7 m away from the center of the target chamber. The DDS are meant to be replaced after a certain number of shots, and if the shields could be subsequently analyzed after removal, it would serve as a mechanism for fielding a relatively large collection area

  19. Herschel-resolved Outer Belts of Two-belt Debris Disks—Evidence of Icy Grains

    NASA Astrophysics Data System (ADS)

    Morales, F. Y.; Bryden, G.; Werner, M. W.; Stapelfeldt, K. R.

    2016-11-01

    We present dual-band Herschel/PACS imaging for 59 main-sequence stars with known warm dust (T warm ∼ 200 K), characterized by Spitzer. Of 57 debris disks detected at Herschel wavelengths (70 and/or 100 and 160 μm), about half have spectral energy distributions (SEDs) that suggest two-ring disk architectures mirroring that of the asteroid–Kuiper Belt geometry; the rest are consistent with single belts of warm, asteroidal material. Herschel observations spatially resolve the outer/cold dust component around 14 A-type and 4 solar-type stars with two-belt systems, 15 of which for the first time. Resolved disks are typically observed with radii >100 AU, larger than expected from a simple blackbody fit. Despite the absence of narrow spectral features for ice, we find that the shape of the continuum, combined with resolved outer/cold dust locations, can help constrain the grain size distribution and hint at the dust’s composition for each resolved system. Based on the combined Spitzer/IRS+Multiband Imaging Photometer (5-to-70 μm) and Herschel/PACS (70-to-160 μm) data set, and under the assumption of idealized spherical grains, we find that over half of resolved outer/cold belts are best fit with a mixed ice/rock composition. Minimum grain sizes are most often equal to the expected radiative blowout limit, regardless of composition. Three of four resolved systems around the solar-type stars, however, tend to have larger minimum grains compared to expectation from blowout (f MB = a min/a BOS ∼ 5). We also probe the disk architecture of 39 Herschel-unresolved systems by modeling their SEDs uniformly, and find them to be consistent with 31 single- and 8 two-belt debris systems. Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia, with important participation from NASA.

  20. Modeling collisions in circumstellar debris disks

    NASA Astrophysics Data System (ADS)

    Nesvold, Erika

    2015-10-01

    Observations of resolved debris disks show a spectacular variety of features and asymmetries, including inner cavities and gaps, inclined secondary disks or warps, and eccentric, sharp-edged rings. Embedded exoplanets could create many of these features via gravitational perturbations, which sculpt the disk directly and by generating planetesimal collisions. In this thesis, I present the Superparticle Model/Algorithm for Collisions in Kuiper belts and debris disks (SMACK), a new method for simultaneously modeling, in 3-D, the collisional and dynamical evolution of planetesimals in a debris disk with planets. SMACK can simulate azimuthal asymmetries and how these asymmetries evolve over time. I show that SMACK is stable to numerical viscosity and numerical heating over 107 yr, and that it can reproduce analytic models of disk evolution. As an example of the algorithm's capabilities, I use SMACK to model the evolution of a debris ring containing a planet on an eccentric orbit and demonstrate that differential precession creates a spiral structure as the ring evolves, but collisions subsequently break up the spiral, leaving a narrower eccentric ring. To demonstrate SMACK's utility in studying debris disk physics, I apply SMACK to simulate a planet on a circular orbit near a ring of planetesimals that are experiencing destructive collisions. Previous simulations of a planet opening a gap in a collisionless debris disk have found that the width of the gap scales as the planet mass to the 2/7th power (alpha = 2/7). I find that gap sizes in a collisional disk still obey a power law scaling with planet mass, but that the index alpha of the power law depends on the age of the system t relative to the collisional timescale t coll of the disk by alpha = 0.32(t/ tcoll)-0.04, with inferred planet masses up to five times smaller than those predicted by the classical gap law. The increased gap sizes likely stem from the interaction between collisions and the mean motion

  1. Comprehensive Shuttle Foam Debris Reduction Strategies

    NASA Technical Reports Server (NTRS)

    Semmes, Edmund B.

    2007-01-01

    The Columbia Accident Investigation Board (CAIB) was clear in its assessment of the loss of the Space Shuttle Columbia on February 3, 2003. Foam liberated from the External Tank (ET) impacting the brittle wing leading edge (WLE) of the orbiter causing the vehicle to disintegrate upon re-entry. Naturally, the CAB pointed out numerous issues affecting this exact outcome in hopes of correcting systems of systems failures any one of which might have altered the outcome. However, Discovery s recent return to flight (RTF) illustrates the primacy of erosion of foam and the risk of future undesirable outcomes. It is obvious that the original RTF focused approach to this problem was not equal to a comprehensive foam debris reduction activity consistent with the high national value of the Space Shuttle assets. The root cause is really very simple when looking at the spray-on foam insulation for the entire ET as part of the structure (e.g., actual stresses > materials allowable) rather than as some sort of sizehime limited ablator. This step is paramount to accepting the CAB recommendation of eliminating debris or in meeting any level of requirements due to the fundamental processes ensuring structural materials maintain their integrity. Significant effort has been expended to identify root cause of the foam debris In-Flight Anomaly (FA) of STS-114. Absent verifiable location specific data pre-launch (T-0) and in-flight, only a most probable cause can be identified. Indeed, the literature researched corroborates NASNTM-2004-2 13238 disturbing description of ill defined materials characterization, variable supplier constituents and foam processing irregularities. Also, foam is sensitive to age and the exposed environment making baseline comparisons difficult without event driven data. Conventional engineering processes account for such naturally occurring variability by always maintaining positive margins. Success in a negative margin range is not consistently achieved

  2. Sources of debris flow material in burned areas

    USGS Publications Warehouse

    Santi, P.M.; deWolfe, V.G.; Higgins, J.D.; Cannon, S.H.; Gartner, J.E.

    2008-01-01

    The vulnerability of recently burned areas to debris flows has been well established. Likewise, it has been shown that many, if not most, post-fire debris flows are initiated by runoff and erosion and grow in size through erosion and scour by the moving debris flow, as opposed to landslide-initiated flows with little growth. To better understand the development and character of these flows, a study has been completed encompassing 46 debris flows in California, Utah, and Colorado, in nine different recently burned areas. For each debris flow, progressive debris production was measured at intervals along the length of the channel, and from these measurements graphs were developed showing cumulative volume of debris as a function of channel length. All 46 debris flows showed significant bulking by scour and erosion, with average yield rates for each channel ranging from 0.3 to 9.9??m3 of debris produced for every meter of channel length, with an overall average value of 2.5??m3/m. Significant increases in yield rate partway down the channel were identified in 87% of the channels, with an average of a three-fold increase in yield rate. Yield rates for short reaches of channels (up to several hundred meters) ranged as high as 22.3??m3/m. Debris was contributed from side channels into the main channels for 54% of the flows, with an average of 23% of the total debris coming from those side channels. Rill erosion was identified for 30% of the flows, with rills contributing between 0.1 and 10.5% of the total debris, with an average of 3%. Debris was deposited as levees in 87% of the flows, with most of the deposition occurring in the lower part of the basin. A median value of 10% of the total debris flow was deposited as levees for these cases, with a range from near zero to nearly 100%. These results show that channel erosion and scour are the dominant sources of debris in burned areas, with yield rates increasing significantly partway down the channel. Side channels are

  3. LEGEND, a LEO-to-GEO Environment Debris Model

    NASA Technical Reports Server (NTRS)

    Liou, Jer Chyi; Hall, Doyle T.

    2013-01-01

    LEGEND (LEO-to-GEO Environment Debris model) is a three-dimensional orbital debris evolutionary model that is capable of simulating the historical and future debris populations in the near-Earth environment. The historical component in LEGEND adopts a deterministic approach to mimic the known historical populations. Launched rocket bodies, spacecraft, and mission-related debris (rings, bolts, etc.) are added to the simulated environment. Known historical breakup events are reproduced, and fragments down to 1 mm in size are created. The LEGEND future projection component adopts a Monte Carlo approach and uses an innovative pair-wise collision probability evaluation algorithm to simulate the future breakups and the growth of the debris populations. This algorithm is based on a new "random sampling in time" approach that preserves characteristics of the traditional approach and captures the rapidly changing nature of the orbital debris environment. LEGEND is a Fortran 90-based numerical simulation program. It operates in a UNIX/Linux environment.

  4. Experiments for the Validation of Debris and Shrapnel Calculations

    SciTech Connect

    Koniges, A E; Andrew, J; Eder, D; Kalantar, D; Masters, N; Fisher, A; Anderson, R; Gunney, B; Brown, B; Sain, K; Tobin, A M; Debonnel, C; Gielle, A; Combis, P; Jadaud, J P; Meyers, M; Jarmakani, H

    2007-08-29

    The debris and shrapnel generated by laser targets are important factors in the operation of a large laser facility such as NIF, LMJ, and Orion. Past experience has shown that it is possible for such target debris to render diagnostics inoperable and also to penetrate or damage optical protection (debris) shields. We are developing the tools to allow evaluation of target configurations in order to better mitigate the generation and impact of debris, including development of dedicated modeling codes. In order to validate these predictive simulations, we briefly describe a series of experiments aimed at determining the amount of debris and/or shrapnel produced in controlled situations. We use glass and aerogel to capture generated debris/shrapnel. The experimental targets include hohlraums (halfraums) and thin foils in a variety of geometries. Post-shot analysis includes scanning electron microscopy and x-ray tomography. We show the results of some of these experiments and discuss modeling efforts.

  5. Orbital Debris: the Growing Threat to Space Operations

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2010-01-01

    For nearly 50 years the amount of man-made debris in Earth orbit steadily grew, accounting for about 95% of all cataloged space objects over the past few decades. The Chinese anti-satellite test in January 2007 and the accidental collision of two spacecraft in February 2009 created more than 4000 new cataloged debris, representing an increase of 40% of the official U.S. Satellite Catalog. The frequency of collision avoidance maneuvers for both human space flight and robotic operations is increasing along with the orbital debris population. However, the principal threat to space operations is driven by the smaller and much more numerous uncataloged debris. Although the U.S. and the international aerospace communities have made significant progress in recognizing the hazards of orbital debris and in reducing or eliminating the potential for the creation of new debris, the future environment is expected to worsen without additional corrective measures.

  6. Debris-flow susceptibility of watersheds recently burned by wildfire

    USGS Publications Warehouse

    Cannon, S.H.

    2004-01-01

    Evaluation of the erosional response of 95 recently burned watersheds in Colorado, New Mexico, and southern California to storm rainfall established the factors that best differentiate between debris-flow producing basins and those that produced other flow responses. These factors are drainage-basin morphology and lithology, and the presence or absence of water-repellent soils. Basins underlain by sedimentary rocks were most likely to produce debris flows that contain large material, and sand- and gravel-dominated debris flows were generated primarily from terrain underlain by decomposed granite. Basin-area and relief thresholds define the morphologic conditions under which both types of debris flows occurred. Debris flows containing large material were more likely to be produced from basins without water-repellent soils than from basins with water repellency. The occurrence of sand and gravel-dominated debris flows depended on the presence of water repellent soils. Copyright 2004 ASCE.

  7. Post-intercept debris environment modeling and visualization

    NASA Astrophysics Data System (ADS)

    Kinley, Todd W.; Homsley, Tom; Gebhart, Welman

    1997-07-01

    The user-friendly platform for ground-based radar analysis of debris environments (UPGRADE) workstation consists of a simulation architecture that has been developed to provide a flexible framework for modeling post-intercept debris and the resultant return signal produced by a radar situated in the vicinity of the debris impact point and illuminating the cloud of debris fragments. Characterization of the debris and radar signal is a complex process requiring models which can be brought together in an integrated visualization package. The UPGRADE architecture consists of a graphical user interface (GUI) which controls a group of MATLAB components used to generate inputs and graphical output products and C language modules which perform the analytic and algorithmic procedures required to generate and process the debris data.

  8. Characterizing Shrapnel and Debris Produced in High Power Laser Experiments

    SciTech Connect

    Tobin, M; Andrew, J; Eder, D; Haupt, D; Johannes, A; Brown, B

    2003-09-01

    As large laser facilities increase in beam energy and target size, the propensity to produce shrapnel and debris that may impact target-facing optics lifetimes also increases. We present techniques and results using silica aerogel and thin glass plates to characterize the number, velocity, size, and spatial distribution of shrapnel and mass distribution of debris. We have conducted experiments on the HELEN laser to develop these techniques and provide data to support computer modeling of shrapnel and debris generation. We have begun to measure shrapnel and debris generation on Omega and are evolving plans to make similar measurements on NIF. These techniques appear viable for measuring shrapnel and debris with sufficient resolution to quantify their asymmetric deposition within the target chamber. These passive measurements can confirm improved target designs that reduce target shrapnel and debris effects and therefore aid in extending optics lifetime. Ultimately, these data support the most efficient use of optics in executing experimental campaigns on large laser facilities.

  9. Characterization of Space Shuttle Ascent Debris Aerodynamics Using CFD Methods

    NASA Technical Reports Server (NTRS)

    Murman, Scott M.; Aftosmis, Michael J.; Rogers, Stuart E.

    2005-01-01

    An automated Computational Fluid Dynamics process for determining the aerodynamic Characteristics of debris shedding from the Space Shuttle Launch Vehicle during ascent is presented. This process uses Cartesian fully-coupled, six-degree-of-freedom simulations of isolated debris pieces in a Monte Carlo fashion to produce models for the drag and crossrange behavior over a range of debris shapes and shedding scenarios. A validation of the Cartesian methods against ballistic range data for insulating foam debris shapes at flight conditions, as well as validation of the resulting models, are both contained. These models are integrated with the existing shuttle debris transport analysis software to provide an accurate and efficient engineering tool for analyzing debris sources and their potential for damage.

  10. Unraveling the patterns of late Holocene debris-flow activity on a cone in the Swiss Alps: Chronology, environment and implications for the future

    NASA Astrophysics Data System (ADS)

    Stoffel, Markus; Conus, Delphine; Grichting, Michael A.; Lièvre, Igor; Maître, Gilles

    2008-02-01

    Debris-flow activity on the forested cone of the Ritigraben torrent (Valais, Swiss Alps) was assessed from growth disturbances in century-old trees, providing an unusually complete record of past events and deposition of material. The study of 2246 tree-ring sequences sampled from 1102 Larix decidua Mill., Picea abies (L.) Karst. and Pinus cembra ssp. sibirica trees allowed reconstruction of 123 events since AD 1566. Geomorphic mapping permitted identification of 769 features related to past debris-flow activity on the intermediate cone. The features inventoried in the study area covering 32 ha included 291 lobes, 465 levées and 13 well-developed debris-flow channels. Based on tree-ring records of disturbed trees growing in or next to the deposits, almost 86% of the lobes identified on the present-day surface could be dated. A majority of the dated material was deposited over the last century. Signs of pre-20th century events are often recognizable in the tree-ring record of survivor trees, but the material that caused the growth anomaly in trees has been completely overridden or eroded by more recent debris-flow activity. Tree-ring records suggest that cool summers with frequent snowfalls at higher elevations regularly prevented the release of debris flows between the 1570s and 1860s; the warming trend combined with greater precipitation totals in summer and autumn between 1864 and 1895 provided conditions that were increasingly favorable for releasing events from the source zone. Enhanced debris-flow activity continued well into the 20th century and reconstructions show a clustering of events in the period 1916-1935 when warm-wet conditions prevailed during summer in the Swiss Alps. In contrast, very low activity is observed for the last 10-yr period (1996-2005) with only one debris-flow event recorded on August 27, 2002. Since sediment availability is not a limiting factor, this temporal absence of debris-flow activity is due to an absence of triggering events

  11. Defining Sudden Stratospheric Warmings

    NASA Astrophysics Data System (ADS)

    Butler, Amy; Seidel, Dian; Hardiman, Steven; Butchart, Neal; Birner, Thomas; Match, Aaron

    2015-04-01

    The general form of the definition for Sudden Stratospheric Warmings (SSWs) is largely agreed to be a reversal of the temperature gradient and of the zonal circulation polewards of 60° latitude at the 10 hPa level, as developed by the World Meteorological Organization (WMO) in the 1960s and 1970s. However, the details of the definition and its calculation are ambiguous, resulting in inconsistent classifications of SSW events. These discrepancies are problematic for understanding the observed frequency and statistical relationships with SSWs, and for maintaining a robust metric with which to assess wintertime stratospheric variability in observations and climate models. To provide a basis for community-wide discussion, we examine how the SSW definition has changed over time and how sensitive the detection of SSWs is to the definition used. We argue that the general form of the SSW definition should be clarified to ensure that it serves current research and forecasting purposes, and propose possible ways to update the definition.

  12. Warm dense crystallography

    NASA Astrophysics Data System (ADS)

    Valenza, Ryan A.; Seidler, Gerald T.

    2016-03-01

    The intense femtosecond-scale pulses from x-ray free electron lasers (XFELs) are able to create and interrogate interesting states of matter characterized by long-lived nonequilibrium semicore or core electron occupancies or by the heating of dense phases via the relaxation cascade initiated by the photoelectric effect. We address here the latter case of "warm dense matter" (WDM) and investigate the observable consequences of x-ray heating of the electronic degrees of freedom in crystalline systems. We report temperature-dependent density functional theory calculations for the x-ray diffraction from crystalline LiF, graphite, diamond, and Be. We find testable, strong signatures of condensed-phase effects that emphasize the importance of wide-angle scattering to study nonequilibrium states. These results also suggest that the reorganization of the valence electron density at eV-scale temperatures presents a confounding factor to achieving atomic resolution in macromolecular serial femtosecond crystallography (SFX) studies at XFELs, as performed under the "diffract before destroy" paradigm.

  13. Warming up for Planck

    SciTech Connect

    Bartrum, Sam; Berera, Arjun; Rosa, João G. E-mail: ab@ph.ed.ac.uk

    2013-06-01

    The recent Planck results and future releases on the horizon present a key opportunity to address a fundamental question in inflationary cosmology of whether primordial density perturbations have a quantum or thermal origin, i.e. whether particle production may have significant effects during inflation. Warm inflation provides a natural arena to address this issue, with interactions between the scalar inflaton and other degrees of freedom leading to dissipative entropy production and associated thermal fluctuations. In this context, we present relations between CMB observables that can be directly tested against observational data. In particular, we show that the presence of a thermal bath warmer than the Hubble scale during inflation decreases the tensor-to-scalar ratio with respect to the conventional prediction in supercooled inflation, yielding r < 8|n{sub t}|, where n{sub t} is the tensor spectral index. Focusing on supersymmetric models at low temperatures, we determine consistency relations between the observables characterizing the spectrum of adiabatic scalar and tensor modes, both for generic potentials and particular canonical examples, and which we compare with the WMAP and Planck results. Finally, we include the possibility of producing the observed baryon asymmetry during inflation through dissipative effects, thereby generating baryon isocurvature modes that can be easily accommodated by the Planck data.

  14. Woody Debris in the mangrove forests of South Florida

    USGS Publications Warehouse

    Krauss, K.W.; Doyle, T.W.; Twilley, R.R.; Smith, T. J.; Whelan, K.R.T.; Sullivan, J.K.

    2005-01-01

    Woody debris is abundant in hurricane-impacted forests. With a major hurricane affecting South Florida mangroves approximately every 20 yr, carbon storage and nutrient retention may be influenced greatly by woody debris dynamics. In addition, woody debris can influence seedling regeneration in mangrove swamps by trapping propagules and enhancing seedling growth potential. Here, we report on line-intercept woody debris surveys conducted in mangrove wetlands of South Florida 9-10 yr after the passage of Hurricane Andrew. The total volume of woody debris for all sites combined was estimated at 67 m 3/ha and varied from 13 to 181 m3/ha depending upon differences in forest height, proximity to the storm, and maximum estimated wind velocities. Large volumes of woody debris were found in the eyewall region of the hurricane, with a volume of 132 m3/ha and a projected woody debris biomass of approximately 36 t/ha. Approximately half of the woody debris biomass averaged across all sites was associated as small twigs and branches (fine woody debris), since coarse woody debris >7.5 cm felled during Hurricane Andrew was fairly well decomposed. Much of the small debris is likely to be associated with post-hurricane forest dynamics. Hurricanes are responsible for large amounts of damage to mangrove ecosystems, and components of associated downed wood may provide a relative index of disturbance for mangrove forests. Here, we suggest that a fine:coarse woody debris ratio ???0.5 is suggestive of a recent disturbance in mangrove wetlands, although additional research is needed to corroborate such findings.

  15. Mapping debris-flow hazard in Honolulu using a DEM

    USGS Publications Warehouse

    Ellen, Stephen D.; Mark, Robert K.

    1993-01-01

    A method for mapping hazard posed by debris flows has been developed and applied to an area near Honolulu, Hawaii. The method uses studies of past debris flows to characterize sites of initiation, volume at initiation, and volume-change behavior during flow. Digital simulations of debris flows based on these characteristics are then routed through a digital elevation model (DEM) to estimate degree of hazard over the area.

  16. Hypervelocity impact simulation for micrometeorite and debris shield design

    NASA Technical Reports Server (NTRS)

    Fahrenthold, Eric P.

    1992-01-01

    A new capability has been developed for direct computer simulation of hypervelocity impacts on multi-plate orbital debris shields, for combinations of low shield thickness and wide shield spacing which place extreme demands on conventional Eulerian analysis techniques. The modeling methodology represents a novel approach to debris cloud dynamics simulation, a problem of long term interest in the design of space structures. Software implementation of the modeling methodology provides a new design tool for engineering analysis of proposed orbital debris protection systems.

  17. Modeling the η Corvi debris disk from the sub-AU scale to its outermost regions

    NASA Astrophysics Data System (ADS)

    Lebreton, J.; Beichman, C. A.; Bryden, G.; Defrère, D.; Mennesson, Bertr; Millan-Gabet, R.

    2014-03-01

    Dusty debris disks surrounding main sequence stars are thought to be analogues to thepopulations of small bodies of the Solar System (asteroids, comets/icy bodies and dust grains), however with often much higher masses and associated dust production rates. Mecanisms such as massive collisions or LHB-like events must therefore be invoked to justify their existence. This is especially striking for the nearby F2V star η Corvi that shows a very strong mid- and far-infrared excess despite an estimated age of ~1.4 Gyr (Lisse et al. 2012, Wyatt et al. 2005). We present new observations of the η Crv debris disk obtained in the far-infrared with Herschel/PACS and SPIRE and in the mid-infrared with the Keck Interferometer Nuller (Millan-Gabet et al. 2011). The Herschel/PACS images at 70, 100 and 160 μm reveal a well resolved belt of cold material at ~130 AU, as well as an unresolved component in the innermost parts of the system. This warmer counterpart is resolved in the mid-infrared as a strong null excess originating from within the ~2x4 AU field-of-view of the interferometer, which is reminiscent of the architecture of the Fomalhaut debris disk (Mennesson et al. 2012, Lebreton et al. 2013). The signature of warm silicate dust is also very clear in Spitzer/IRS high-resolution spectra (Chen et al. 2006) at intermediate wavelengths (10-35 μm). We undertake to establish a consistent model of the debris disk from the sub-AU scale to its outermost regions using the GRaTer radiative transfer code (Augereau et al. 1999a, Lebreton et al. 2013) by adjusting simultaneously the interferometric nulls, the resolved Herschel images and the spectro-photometric data against a large parameter space. Our analysis providesaccurate estimates of the fundamental parameters of the disk: its surface density profile, grain size distribution and mass, making it possible to unveil the origin of the dust and the relation between the cold (~50 K) Kuiper-like belt and the warm (~500 K) exo

  18. Disk Radii and Grain Sizes in Herschel-resolved Debris Disks

    NASA Astrophysics Data System (ADS)

    Pawellek, Nicole; Krivov, Alexander V.; Marshall, Jonathan P.; Montesinos, Benjamin; Ábrahám, Péter; Moór, Attila; Bryden, Geoffrey; Eiroa, Carlos

    2014-09-01

    The radii of debris disks and the sizes of their dust grains are important tracers of the planetesimal formation mechanisms and physical processes operating in these systems. Here we use a representative sample of 34 debris disks resolved in various Herschel Space Observatory (Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA) programs to constrain the disk radii and the size distribution of their dust. While we modeled disks with both warm and cold components, and identified warm inner disks around about two-thirds of the stars, we focus our analysis only on the cold outer disks, i.e., Kuiper-belt analogs. We derive the disk radii from the resolved images and find a large dispersion for host stars of any spectral class, but no significant trend with the stellar luminosity. This argues against ice lines as a dominant player in setting the debris disk sizes, since the ice line location varies with the luminosity of the central star. Fixing the disk radii to those inferred from the resolved images, we model the spectral energy distribution to determine the dust temperature and the grain size distribution for each target. While the dust temperature systematically increases toward earlier spectral types, the ratio of the dust temperature to the blackbody temperature at the disk radius decreases with the stellar luminosity. This is explained by a clear trend of typical sizes increasing toward more luminous stars. The typical grain sizes are compared to the radiation pressure blowout limit s blow that is proportional to the stellar luminosity-to-mass ratio and thus also increases toward earlier spectral classes. The grain sizes in the disks of G- to A-stars are inferred to be several times s blow at all stellar luminosities, in agreement with collisional models of debris disks. The sizes, measured in the units of s blow, appear to decrease with the luminosity

  19. Disk radii and grain sizes in Herschel-resolved debris disks

    SciTech Connect

    Pawellek, Nicole; Krivov, Alexander V.; Marshall, Jonathan P.; Montesinos, Benjamin; Ábrahám, Péter; Moór, Attila; Bryden, Geoffrey; Eiroa, Carlos

    2014-09-01

    The radii of debris disks and the sizes of their dust grains are important tracers of the planetesimal formation mechanisms and physical processes operating in these systems. Here we use a representative sample of 34 debris disks resolved in various Herschel Space Observatory (Herschel is an ESA space observatory with science instruments provided by European-led Principal Investigator consortia and with important participation from NASA) programs to constrain the disk radii and the size distribution of their dust. While we modeled disks with both warm and cold components, and identified warm inner disks around about two-thirds of the stars, we focus our analysis only on the cold outer disks, i.e., Kuiper-belt analogs. We derive the disk radii from the resolved images and find a large dispersion for host stars of any spectral class, but no significant trend with the stellar luminosity. This argues against ice lines as a dominant player in setting the debris disk sizes, since the ice line location varies with the luminosity of the central star. Fixing the disk radii to those inferred from the resolved images, we model the spectral energy distribution to determine the dust temperature and the grain size distribution for each target. While the dust temperature systematically increases toward earlier spectral types, the ratio of the dust temperature to the blackbody temperature at the disk radius decreases with the stellar luminosity. This is explained by a clear trend of typical sizes increasing toward more luminous stars. The typical grain sizes are compared to the radiation pressure blowout limit s {sub blow} that is proportional to the stellar luminosity-to-mass ratio and thus also increases toward earlier spectral classes. The grain sizes in the disks of G- to A-stars are inferred to be several times s {sub blow} at all stellar luminosities, in agreement with collisional models of debris disks. The sizes, measured in the units of s {sub blow}, appear to decrease

  20. Recent warming of lake Kivu.

    PubMed

    Katsev, Sergei; Aaberg, Arthur A; Crowe, Sean A; Hecky, Robert E

    2014-01-01

    Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient.

  1. Recent Warming of Lake Kivu

    PubMed Central

    Katsev, Sergei; Aaberg, Arthur A.; Crowe, Sean A.; Hecky, Robert E.

    2014-01-01

    Lake Kivu in East Africa has gained notoriety for its prodigious amounts of dissolved methane and dangers of limnic eruption. Being meromictic, it is also expected to accumulate heat due to rising regional air temperatures. To investigate the warming trend and distinguish between atmospheric and geothermal heating sources, we compiled historical temperature data, performed measurements with logging instruments, and simulated heat propagation. We also performed isotopic analyses of water from the lake's main basin and isolated Kabuno Bay. The results reveal that the lake surface is warming at the rate of 0.12°C per decade, which matches the warming rates in other East African lakes. Temperatures increase throughout the entire water column. Though warming is strongest near the surface, warming rates in the deep waters cannot be accounted for solely by propagation of atmospheric heat at presently assumed rates of vertical mixing. Unless the transport rates are significantly higher than presently believed, this indicates significant contributions from subterranean heat sources. Temperature time series in the deep monimolimnion suggest evidence of convection. The progressive deepening of the depth of temperature minimum in the water column is expected to accelerate the warming in deeper waters. The warming trend, however, is unlikely to strongly affect the physical stability of the lake, which depends primarily on salinity gradient. PMID:25295730

  2. Delayed flowering and global warming

    NASA Astrophysics Data System (ADS)

    Cook, B. I.; Wolkovich, E. M.; Parmesan, C.

    2011-12-01

    Within general trends toward earlier spring, observed cases of species and ecosystems that have not advanced their phenology, or have even delayed it, appear paradoxical, especially when made in temperate regions experiencing significant warming. The typical interpretation of this pattern has been that non-responders are insensitive to relatively small levels of warming over the past 40 years, while species showing delays are often viewed as statistical noise or evidence for unknown confounding factors at play. However, plant physiology studies suggest that when winter chilling (vernalization) is required to initiate spring development, winter warming may retard spring events, masking expected advances caused by spring warming. Here, we analyzed long-term data on phenology and seasonal temperatures from 490 species on two continents and demonstrate that 1) apparent non-responders are indeed responding to warming, but their responses to winter and spring warming are opposite in sign, 2) observed trends in first flowering date depend strongly on the magnitude of a given species' response to autumn/winter versus spring warming, and 3) inclusion of these effects strongly improves hindcast predictions of long-term flowering trends. With a few notable exceptions, climate change research has focused on the overall mean trend towards phenological advance, minimizing discussion of apparently non-responding species. Our results illuminate an under-studied source of complexity in wild species responses and support the need for models incorporating diverse environmental cues in order to improve predictability of species responses to anthropogenic climate change.

  3. Orbital Debris Quarterly News. Volume 13; No. 1

    NASA Technical Reports Server (NTRS)

    Liou, J.-C. (Editor); Shoots, Debi (Editor)

    2009-01-01

    Topics discussed include: new debris from a decommissioned satellite with a nuclear power source; debris from the destruction of the Fengyun-1C meteorological satellite; quantitative analysis of the European Space Agency's Automated Transfer Vehicle 'Jules Verne' reentry event; microsatellite impact tests; solar cycle 24 predictions and other long-term projections and geosynchronus (GEO) environment for the Orbital Debris Engineering Model (ORDEM2008). Abstracts from the NASA Orbital Debris Program Office, examining satellite reentry risk assessments and statistical issues for uncontrolled reentry hazards, are also included.

  4. Orbital Debris Quarterly News, Volume 13, No. 3

    NASA Technical Reports Server (NTRS)

    Liou, J.-C. (Editor); Shoots, Debi (Editor)

    2009-01-01

    This issue of the Orbital Debris Quarterly contains articles on the congressional hearing that was held on orbital debris and space traffic; the update received by the United Nations Committee on the Peaceful Uses of Outer Space (COPUOS) on the collision of the Iridium 33 and Cosmos 2251 satellites; the micrometeoroid and orbital debris (MMOD) inspection of the Hubble Space Telescope Wide Field Planetary Camera; an analysis of the reentry survivability of the Global Precipitation Measurement (GPM) spacecraft; an update on recent major breakup fragments; and a graph showing the current debris environment in low Earth orbit.

  5. Understanding sources, sinks, and transport of marine debris

    NASA Astrophysics Data System (ADS)

    Law, Kara Lavender; Maximenko, Nikolai

    2011-07-01

    Fifth International Marine Debris Conference: Hydrodynamics of Marine Debris; Honolulu, Hawaii, 20 March 2011; Ocean pollution in the form of marine debris, especially plastic debris, has received increasing public and media attention in recent years through striking but frequently inaccurate descriptions of “garbage patches.” Marine debris is composed of all manufactured materials, including glass, metal, paper, fibers, and plastic, that have been deliberately dumped or that accidentally entered the marine environment. Marine debris is most visible on beaches, but it has been observed in all oceans and in such remote locations as on the deep seabed and floating in the middle of subtropical ocean gyres. While many initiatives have been developed to solve this pollution problem through prevention and cleanup efforts, there is relatively little scientific information available to assess the current status of the problem or to provide metrics to gauge the success of remediation measures. With this in mind, a full-day workshop entitled “Hydrodynamics of Marine Debris” was convened at the Fifth International Marine Debris Conference in Hawaii, bringing together observational scientists and oceanographic modelers to outline the steps necessary to quantify the major sources and sinks of marine debris and the pathways between them. The ultimate goal in integrating the two approaches of study is to quantify the basinscale and global inventory of marine debris by closing the associated mass budgets.

  6. Observations of Human-Made Debris in Earth Orbit

    NASA Technical Reports Server (NTRS)

    Cowardia, Heather

    2011-01-01

    Orbital debris is defined as any human-made object in orbit about the Earth that no longer serves a useful purpose. Beginning in 1957 with the launch of Sputnik 1, there have been more than 4,700 launches, with each launch increasing the potential for impacts from orbital debris. Almost 55 years later there are over 16,000 catalogued objects in orbit over 10 cm in size. Agencies world-wide have realized this is a growing issue for all users of the space environment. To address the orbital debris issue, the Inter-Agency Space Debris Coordination Committee (IADC) was established to collaborate on monitoring, characterizing, and modeling orbital debris, as well as formulating policies and procedures to help control the risk of collisions and population growth. One area of fundamental interest is measurements of the space debris environment. NASA has been utilizing radar and optical measurements to survey the different orbital regimes of space debris for over 25 years, as well as using returned surfaces to aid in determining the flux and size of debris that are too small to detect with ground-based sensors. This paper will concentrate on the optical techniques used by NASA to observe the space debris environment, specifically in the Geosynchronous earth Orbit (GEO) region where radar capability is severely limited.

  7. Procedures for analysis of debris relative to Space Shuttle systems

    NASA Technical Reports Server (NTRS)

    Kim, Hae Soo; Cummings, Virginia J.

    1993-01-01

    Debris samples collected from various Space Shuttle systems have been submitted to the Microchemical Analysis Branch. This investigation was initiated to develop optimal techniques for the analysis of debris. Optical microscopy provides information about the morphology and size of crystallites, particle sizes, amorphous phases, glass phases, and poorly crystallized materials. Scanning electron microscopy with energy dispersive spectrometry is utilized for information on surface morphology and qualitative elemental content of debris. Analytical electron microscopy with wavelength dispersive spectrometry provides information on the quantitative elemental content of debris.

  8. Research on Optical Observation for Space Debris

    NASA Astrophysics Data System (ADS)

    Sun, R. Y.

    2015-01-01

    Space debris has been recognized as a serious danger for operational spacecraft and manned spaceflights. Discussions are made in the methods of high order position precision and high detecting efficiency for space debris, including the design of surveying strategy, the extraction of object centroid, the precise measurement of object positions, the correlation and catalogue technique. To meet the needs of detecting space objects in the GEO (Geosynchronous Orbit), and prevent the saturation of CCD pixels with a long exposure time, a method of stacking a series of short exposure time images is presented. The results demonstrate that the saturation of pixels is eliminated effectively, and the SNR (Signal Noise Ratio) is increased by about 3.2 times, the detection ability is improved by about 2.5 magnitude when 10 seriate images are stacked, and the accuracy is reliable to satisfy the requirement by using the mean plate parameters for the astronomical orientation. A method combined with the geometrical morphology identification and linear correlation is adopted for the data calibration of IADC (Inter-Agency Space Debris Coordination Committee) AI23.4. After calibration, 139 tracklets are acquired, in which 116 tracklets are correlated with the catalogue. The distributions of magnitude, semi-major axis, inclination, and longitude of ascending node are obtained as well. A new method for detecting space debris in images is presented. The algorithm sets the gate around the image of objects, then several criterions are introduced for the object detection, at last the object position in the frame is obtained by the barycenter method and a simple linear transformation. The tests demonstrate that this technique is convenient for application, and the objects in image can be detected with a high centroid precision. In the observations of space objects, the shutter of camera is often removed, and the smear noise is ineluctable. Based on the differences of the geometry between the

  9. Geologic and hydrologic hazards in glacierized basins in North America resulting from 19th and 20th century global warming

    USGS Publications Warehouse

    O'Connor, J. E.; Costa, J.E.

    1993-01-01

    Alpine glacier retreat resulting from global warming since the close of the Little Ice Age in the 19th and 20th centuries has increased the risk and incidence of some geologic and hydrologic hazards in mountainous alpine regions of North America. Abundant loose debris in recently deglaciated areas at the toe of alpine glaciers provides a ready source of sediment during rainstorms or outburst floods. This sediment can cause debris flows and sedimentation problems in downstream areas. Moraines built during the Little Ice Age can trap and store large volumes of water. These natural dams have no controlled outlets and can fail without warning. Many glacier-dammed lakes have grown in size, while ice dams have shrunk, resulting in greater risks of ice-dam failure. The retreat and thinning of glacier ice has left oversteepened, unstable valley walls and has led to increased incidence of rock and debris avalanches. ?? 1993 Kluwer Academic Publishers.

  10. Marine debris removal: one year of effort by the Georgia Sea Turtle-Center-Marine Debris Initiative.

    PubMed

    Martin, Jeannie Miller

    2013-09-15

    Once in the marine environment, debris poses a significant threat to marine life that can be prevented through the help of citizen science. Marine debris is any manufactured item that enters the ocean regardless of source, commonly plastics, metal, wood, glass, foam, cloth, or rubber. Citizen science is an effective way to engage volunteers in conservation initiatives and provide education and skill development. The Georgia Sea Turtle Center Marine Debris Initiative (GSTC-MDI) is a grant funded program developed to engage citizens in the removal of marine debris from the beaches of Jekyll Island, GA, USA and the surrounding areas. During the first year of effort, more than 200 volunteers donated over 460 h of service to the removal of marine debris. Of the debris removed, approximately 89% were plastics, with a significant portion being cigarette materials. Given the successful first year, the GSTC-MDI was funded again for a second year.

  11. Strategy for mitigation of marine debris: analysis of sources and composition of marine debris in northern Taiwan.

    PubMed

    Kuo, Fan-Jun; Huang, Hsiang-Wen

    2014-06-15

    Six sites (two sites for each of rocky shores, sandy beaches, and fishing ports) in northern Taiwan were selected to investigate the amount and density of marine debris in each of the four seasons and after spring and neap tides from 2012 to 2013. The results indicate that marine debris was higher on rocky shores than sandy beaches and fishing ports. There is no significant difference between season and tide. The dominant debris was plastic-type, followed by polystyrene. The majority of debris originated from recreational activities, followed from ocean/waterway activities. The results suggest that the following actions are needed: (1) continue and reinforce the plastic-limit policy; (2) increase the cleaning frequency at rocky shores; (3) promote marine environmental education, with a goal of debris-free coasts; (4) recycle fishing gear and to turn that gear into energy; and (5) coordinate between agencies to establish a mechanism to monitor debris.

  12. Strategy for mitigation of marine debris: analysis of sources and composition of marine debris in northern Taiwan.

    PubMed

    Kuo, Fan-Jun; Huang, Hsiang-Wen

    2014-06-15

    Six sites (two sites for each of rocky shores, sandy beaches, and fishing ports) in northern Taiwan were selected to investigate the amount and density of marine debris in each of the four seasons and after spring and neap tides from 2012 to 2013. The results indicate that marine debris was higher on rocky shores than sandy beaches and fishing ports. There is no significant difference between season and tide. The dominant debris was plastic-type, followed by polystyrene. The majority of debris originated from recreational activities, followed from ocean/waterway activities. The results suggest that the following actions are needed: (1) continue and reinforce the plastic-limit policy; (2) increase the cleaning frequency at rocky shores; (3) promote marine environmental education, with a goal of debris-free coasts; (4) recycle fishing gear and to turn that gear into energy; and (5) coordinate between agencies to establish a mechanism to monitor debris. PMID:24775064

  13. Observations of Titan IIIC Transtage Fragmentation Debris

    NASA Astrophysics Data System (ADS)

    Cowardin, H.; Buckalew, B.; Barker, E.; Abercromby, K.; Seitzer, P.; Cardona, T.; Krisko, P.; Lederer, S.

    2013-09-01

    The fragmentation of a Titan IIIC Transtage (1968-081) on 21 February 1992 is one of only two known break-ups in or near geosynchronous orbit. The original rocket body and 24 pieces of debris are currently being tracked by the U. S. Space Surveillance Network (SSN). The rocket body (SSN# 3432) and several of the original fragments (SSN# 25000, 25001, 30000, and 33511) were observed in survey mode during 2004-2010 using the 0.6 m Michigan Orbital DEbris Survey Telescope (MODEST) in Chile using a broad R filter. This paper presents a size distribution for all calibrated magnitude data acquired on MODEST. Size distribution plots are also shown using historical models for small fragmentation debris (down to 10 cm) thought to be associated with the Titan Transtage break-up. In November 2010, visible broadband photometry (Johnson/Kron-Cousins BVRI) was acquired with the 0.9 m Small and Moderate Aperture Research Telescope System (SMARTS) at the Cerro Tololo Inter-American Observatory (CTIO) in Chile on several Titan fragments (SSN 25001, 33509, and 33510) and the parent rocket body (SSN 3432). Color index data are used to determine the fragment brightness distribution and how the data compares to spacecraft materials measured in the laboratory using similar photometric measurement techniques. In order to better characterize the break-up fragments, spectral measurements were acquired on three Titan fragments (one fragment observed over two different time periods) using the 6.5-m Magellan telescopes at Las Campanas Observatory in Chile. The telescopic spectra of SSN 25000 (May 2012 and January 2013), SSN 38690, and SSN 38699 are compared with laboratory acquired spectra of materials (e.g., aluminum and various paints) to determine the surface material.

  14. Observations of Titan IIIC Transtage Fragmentation Debris

    NASA Technical Reports Server (NTRS)

    Cowardin, Heather; Seitzer, P.; Abercromby, K.; Barker, E.; Buckalew, B.; Cardona, T.; Krisko, P.; Lederer, S.

    2013-01-01

    The fragmentation of a Titan IIIC Transtage (1968-081) on 21 February 1992 is one of only two known break-ups in or near geosynchronous orbit. The original rocket body and 24 pieces of debris are currently being tracked by the U. S. Space Surveillance Network (SSN). The rocket body (SSN# 3432) and several of the original fragments (SSN# 25000, 25001, 30000, and 33511) were observed in survey mode during 2004-2010 using the 0.6-m Michigan Orbital DEbris Survey Telescope (MODEST) in Chile using a broad R filter. This paper presents a size distribution for all calibrated magnitude data acquired on MODEST. Size distribution plots are also shown using historical models for small fragmentation debris (down to 10 cm) thought to be associated with the Titan Transtage break-up. In November 2010, visible broadband photometry (Johnson/Kron-Cousins BVRI) was acquired with the 0.9-m Small and Moderate Aperture Research Telescope System (SMARTS) at the Cerro Tololo Inter-American Observatory (CTIO) in Chile on several Titan fragments (SSN 25001, 33509, and 33510) and the parent rocket body (SSN 3432). Color index data are used to determine the fragment brightness distribution and how the data compares to spacecraft materials measured in the laboratory using similar photometric measurement techniques. In order to better characterize the break-up fragments, spectral measurements were acquired on three Titan fragments (one fragment observed over two different time periods) using the 6.5-m Magellan telescopes at Las Campanas Observatory in Chile. The telescopic spectra of SSN 25000 (May 2012 and January 2013), SSN 38690, and SSN 38699 are compared with laboratory acquired spectra of materials (e.g., aluminum and various paints) to determine the surface material.

  15. Secular Planetary Perturbations in Circumstellar Debris Disks

    NASA Astrophysics Data System (ADS)

    Hahn, Joseph M.; Capobianco, C.

    2006-12-01

    Circumstellar debris disks are likely the by-product of collisions among unseen planetesimals. Planetesimals are also the seeds of planets, so it is reasonable to expect that some debris disks might also harbor planets. In fact several such disks, like those orbiting beta Pictoris, Fomalhaut, etc., do appear to be perturbed by unseen planets orbiting within. The signatures of planetary perturbations include: central gaps, warps, and radial offsets in the disk's surface brightness. By modeling the disturbances observed in a circumstellar dust disk, one can then measure or constrain the masses and orbits of the planets that may be lurking within. Of particular interest here are the warps and radial offsets seen in such disks, since these features can be due to secular planetary perturbations (Mouillet et al 1997, Wyatt et al 1999). Secular perturbations are the slowly varying gravitational perturbations that can excite orbital eccentricities and inclinations in a disk, and can also drive a slow orbital precession. Note that a dust grain's motion is completely analytic when suffering secular perturbations (Murray & Dermott 1999), which allows us to rapidly generate a synthetic image of a simulated disk as would be seen in scattered starlight or via thermal emission. And because this model is quite fast, our model can rapidly scan a rather large parameter space in order to determine the planetary configuration that may be responsible for the disk's perturbed appearance. We have applied this dust-disk model to Hubble observations of the β Pictoris dust-disk (from Heap et al 2000), and will report on the planets that may be responsible for the warp seen in this edge-on disk. We will also apply the model to optical and IR observations of debris disks at Fomalhaut, AU Microscopii, and others, with additional results to be reported at conference time.

  16. The Population of Optically Faint GEO Debris

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Barker, Ed; Buckalew, Brent; Burkhardt, Andrew; Cowardin, Heather; Frith, James; Gomez, Juan; Kaleida, Catherine; Lederer, Susan M.; Lee, Chris H.

    2016-01-01

    The 6.5-m Magellan telescope 'Walter Baade' at the Las Campanas Observatory in Chile has been used for spot surveys of the GEO orbital regime to study the population of optically faint GEO debris. The goal is to estimate the size of the population of GEO debris at sizes much smaller than can be studied with 1-meter class telescopes. Despite the small size of the field of view of the Magellan instrument (diameter 0.5-degree), a significant population of objects fainter than R = 19th magnitude have been found with angular rates consistent with circular orbits at GEO. We compare the size of this population with the numbers of GEO objects found at brighter magnitudes by smaller telescopes. The observed detections have a wide range in characteristics starting with those appearing as short uniform streaks. But there are a substantial number of detections with variations in brightness, flashers, during the 5-second exposure. The duration of each of these flashes can be extremely brief: sometimes less than half a second. This is characteristic of a rapidly tumbling object with a quite variable projected size times albedo. If the albedo is of the order of 0.2, then the largest projected size of these objects is around 10-cm. The data in this paper was collected over the last several years using Magellan's IMACS camera in f/2 mode. The analysis shows the brightness bins for the observed GEO population as well as the periodicity of the flashers. All objects presented are correlated with the catalog: the focus of the paper will be on the uncorrelated, optically faint, objects. The goal of this project is to better characterize the faint debris population in GEO that access to a 6.5-m optical telescope in a superb site can provide.

  17. Live Worms Found Amid STS-107 Debris

    NASA Technical Reports Server (NTRS)

    2003-01-01

    NASA Project Manager Fred Ahmay holds a Biological Research in Canisters (BRIC) container in which C. elegans nemotodes (round worms) were found. The container was part of a middeck experiment that was among Columbia's debris recovered in East Texas. The worms were found alive after flying on Columbia's last mission, STS-107. The experiment was designed to verify a new synthetic nutrient solution for an International Space Station 'model' specimen planned to be used extensively for ISS gene expression studies and was sponsored by the NASA Ames Research Center. For more information on STS-107, please see GRIN Columbia General Explanation

  18. Engagement of Metal Debris into Gear Mesh

    NASA Technical Reports Server (NTRS)

    handschuh, Robert F.; Krantz, Timothy L.

    2010-01-01

    A series of bench-top experiments was conducted to determine the effects of metallic debris being dragged through meshing gear teeth. A test rig that is typically used to conduct contact fatigue experiments was used for these tests. Several sizes of drill material, shim stock and pieces of gear teeth were introduced and then driven through the meshing region. The level of torque required to drive the "chip" through the gear mesh was measured. From the data gathered, chip size sufficient to jam the mechanism can be determined.

  19. Uncovering debris in the Milky Way

    NASA Astrophysics Data System (ADS)

    Ruchti, Gregory R.; Read, Justin; Gaia-ESO Consortium

    2016-01-01

    In our current cosmological model, typical Milky Way mass galaxies should experience many mergers over their lifetimes. We have developed new chemo-dynamical techniques to hunt for accreted stars - the stellar debris from satellite galaxies - in the Milky Way and its disk. We have applied our template to data from the Gaia-ESO Survey - an extraordinary new resource. I will discuss our latest results, including, for the first time, a new signature with which we can directly detect the Milky Way's last major merger some 8-10 billion years ago.

  20. Photometric Studies of Orbital Debris at GEO

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Cowardin, Heather M.; Barker, Ed; Abercromby, Kira J.; Foreman, Gary; Hortsman, Matt

    2009-01-01

    Orbital debris represents a significant and increasing risk to operational spacecraft. Here we report on photometric observations made in standard BVRI filters at the Cerro Tololo Inter-American Observatory (CTIO) in an effort to determine the physical characteristics of optically faint debris at geosynchronous Earth orbit (GEO). Our sample is taken from GEO objects discovered in a survey with the University of Michigan s 0.6-m Curtis-Schmidt telescope (known as MODEST, for Michigan Orbital DEbris Survey Telescope), and then followed up in real-time with the CTIO/SMARTS 0.9-m for orbits and photometry. For a sample of 50 objects, calibrated sequences in RB- V-I-R filters have been obtained with the CTIO/SMARTS 0.9-m. For objects that do not show large brightness variations, the colors are largely redder than solar in both B-R and R-I. The width of the color distribution may be intrinsic to the nature of the surfaces, but also could imply that we are seeing irregularly shaped objects and measuring the colors at different times with just one telescope. For irregularly shaped objects tumbling at unknown orientations and rates, such sequential filter measurements using one telescope are subject to large errors for interpretation. If all observations in all filters in a particular sequence are of the same surface at the same solar and viewing angles, then the colors are meaningful. Where this is not the case, interpretation of the observed colors is impossible. For a smaller sample of objects we have observed with synchronized CCD cameras on the two telescopes. The CTIO/SMARTS 0.9-m observes in B, and the Schmidt in R. The CCD cameras are electronically linked together so that the start time and duration of observations are both the same to better than 50 milliseconds. Now the observed B-R color is a true measure of the scattered illuminated area of the debris piece for that observation.

  1. From IRAS Excesses to Debris Disks

    NASA Astrophysics Data System (ADS)

    Backman, D.; Lagrange, A.-M.

    2014-09-01

    Noted only as a shell star prior to 1984, beta Pictoris was originally observed in the first months of the IRAS mission as a comparison object for Vega. When Fred Gillett presented spectral energy distributions of Vega, Fomalhaut, beta Pictoris, and epsilon Eridani at the Protostars and Planets II conference, the news was relayed quickly to Brad Smith and Rich Terrile who were observing at Las Campanas with a coronagraph. Our understanding that beta Pictoris and other debris disks are clear evidence of maturing planetary systems solidified over the following 15 years with analyses of IRAS & ISO data coupled with spectroscopic observations of Falling Evaporating Bodies.

  2. A Parametric Study on Using Active Debris Removal to Stabilize the Future LEO Debris Environment

    NASA Technical Reports Server (NTRS)

    Liou, J.C.

    2010-01-01

    Recent analyses of the instability of the orbital debris population in the low Earth orbit (LEO) region and the collision between Iridium 33 and Cosmos 2251 have reignited the interest in using active debris removal (ADR) to remediate the environment. There are; however, monumental technical, resources, operational, legal, and political challenges in making economically viable ADR a reality. Before a consensus on the need for ADR can be reached, a careful analysis of the effectiveness of ADR must be conducted. The goal is to demonstrate the feasibility of using ADR to preserve the future environment and to guide its implementation to maximize the benefit-cost ratio. This paper describes a comprehensive sensitivity study on using ADR to stabilize the future LEO debris environment. The NASA long-term, orbital debris evolutionary model, LEGEND, is used to quantify the effects of many key parameters. These parameters include (1) the starting epoch of ADR implementation, (2) various target selection criteria, (3) the benefits of collision avoidance maneuvers, (4) the consequence of targeting specific inclination or altitude regimes, (5) the consequence of targeting specific classes of vehicles, and (6) the timescale of removal. Additional analyses on the importance of postmission disposal and how future launches might affect the requirements to stabilize the environment are also included.

  3. Amplified Arctic warming by phytoplankton under greenhouse warming

    PubMed Central

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-01-01

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical–ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean−atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes. PMID:25902494

  4. Amplified Arctic warming by phytoplankton under greenhouse warming.

    PubMed

    Park, Jong-Yeon; Kug, Jong-Seong; Bader, Jürgen; Rolph, Rebecca; Kwon, Minho

    2015-05-12

    Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical-ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean-atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes.

  5. Does bone debris in anterior cruciate ligament reconstruction really matter? A cohort study of a protocol for bone debris debridement

    PubMed Central

    Imam, Mohamed A.; Abdelkafy, Ashraf; Dinah, Feroz; Adhikari, Ajeya

    2015-01-01

    Background: The purpose of the current study was to determine whether a systematic five-step protocol for debridement and evacuation of bone debris during anterior cruciate ligament reconstruction (ACLR) reduces the presence of such debris on post-operative radiographs. Methods: A five-step protocol for removal of bone debris during arthroscopic assisted ACLR was designed. It was applied to 60 patients undergoing ACLR (Group 1), and high-quality digital radiographs were taken post-operatively in each case to assess for the presence of intra-articular bone debris. A control group of 60 consecutive patients in whom no specific bone debris protocol was applied (Group 2) and their post-operative radiographs were also checked for the presence of intra-articular bone debris. Results: In Group 1, only 15% of post-operative radiographs showed residual bone debris, compared to 69% in Group 2 (p < 0.001). Conclusion: A five-step systematic protocol for bone debris removal during arthroscopic assisted ACLR resulted in a significant decrease in residual bone debris seen on high-quality post-operative radiographs. PMID:27163060

  6. Investigation of Orbital Debris: Mitigation, Removal, and Modeling the Debris Population

    NASA Astrophysics Data System (ADS)

    Slotten, Joel

    The population of objects in orbit around Earth has grown since the late 1950s. Today there are over 21,000 objects over 10 cm in length in orbit, and an estimated 500,000 more between 1 and 10 cm. Only a small fraction of these objects are operational satellites. The rest are debris: old derelict spacecraft or rocket bodies, fragments created as the result of explosions or collisions, discarded objects, slag from solid rockets, or even flaked off paint. Traveling at up to 7 km/s, a collision with even a 1 cm piece of debris could severely damage or destroy a satellite. This dissertation examines three aspects of orbital debris. First, the concept of a self-consuming satellite is explored. This nanosatellite would use its own external structure as propellant to execute a deorbit maneuver at the end of its operational life, thus allowing it to meet current debris mitigation standards. Results from lab experiments examining potential materials for this concept have shown favorable results. Second, Particle in Cell techniques are modified and used to model the plasma plume from a micro-cathode arc thruster. This model is then applied to the concept of an ion beam shepherd satellite. This satellite would use its plasma plume to deorbit another derelict satellite. Results from these simulations indicate the micro-cathode arc thruster could potentially deorbit a derelict CubeSat in a matter of a few weeks. Finally, the orbital debris population at geosynchronous orbit is examined, focusing on variations in the density of the population as a function of longitude. New insights are revealed demonstrating that the variation in population density is slightly less than previously reported.

  7. Design of Spacecraft Missions to Remove Multiple Orbital Debris Objects

    NASA Technical Reports Server (NTRS)

    Barbee, Brent W.; Alfano, Salvatore; Pinon, Elfego; Gold, Kenn; Gaylor, David

    2012-01-01

    The amount of hazardous debris in Earth orbit has been increasing, posing an evergreater danger to space assets and human missions. In January of 2007, a Chinese ASAT test produced approximately 2600 pieces of orbital debris. In February of 2009, Iridium 33 collided with an inactive Russian satellite, yielding approximately 1300 pieces of debris. These recent disastrous events and the sheer size of the Earth orbiting population make clear the necessity of removing orbital debris. In fact, experts from both NASA and ESA have stated that 10 to 20 pieces of orbital debris need to be removed per year to stabilize the orbital debris environment. However, no spacecraft trajectories have yet been designed for removing multiple debris objects and the size of the debris population makes the design of such trajectories a daunting task. Designing an efficient spacecraft trajectory to rendezvous with each of a large number of orbital debris pieces is akin to the famous Traveling Salesman problem, an NP-complete combinatorial optimization problem in which a number of cities are to be visited in turn. The goal is to choose the order in which the cities are visited so as to minimize the total path distance traveled. In the case of orbital debris, the pieces of debris to be visited must be selected and ordered such that spacecraft propellant consumption is minimized or at least kept low enough to be feasible. Emergent Space Technologies, Inc. has developed specialized algorithms for designing efficient tour missions for near-Earth asteroids that may be applied to the design of efficient spacecraft missions capable of visiting large numbers of orbital debris pieces. The first step is to identify a list of high priority debris targets using the Analytical Graphics, Inc. SOCRATES website and then obtain their state information from Celestrak. The tour trajectory design algorithms will then be used to determine the itinerary of objects and v requirements. These results will shed light

  8. Zodiac II: Debris Disk Science from a Balloon

    NASA Technical Reports Server (NTRS)

    Bryden, Geoffrey; Traub, Wesley; Roberts, Lewis C., Jr.; Bruno, Robin; Unwin, Stephen; Backovsky, Stan; Brugarolas, Paul; Chakrabarti, Supriya; Chen, Pin; Hillenbrand, Lynne; Krist, John; Lillie, Charles; Macintosh, Bruce; Mawet, Dimitri; Mennesson, Bertrand; Moody, Dwight; Rey, Justin; Stapelfeldt, Karl; Stuchlik, David; Trauger, John; Vasisht, Gautam

    2011-01-01

    Zodiac II is a proposed balloon-borne science investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. Zodiac II will measure the size, shape, brightness, and color of a statistically significant sample of disks. These measurements will enable us to probe these fundamental questions: what do debris disks tell us about the evolution of planetary systems; how are debris disks produced; how are debris disks shaped by planets; what materials are debris disks made of; how much dust do debris disks make as they grind down; and how long do debris disks live? In addition, Zodiac II will observe hot, young exoplanets as targets of opportunity. The Zodiac II instrument is a 1.1-m diameter SiC (Silicone carbide) telescope and an imaging coronagraph on a gondola carried by a stratospheric balloon. Its data product is a set of images of each targeted debris disk in four broad visible-wavelength bands. Zodiac II will address its science questions by taking high-resolution, multi-wavelength images of the debris disks around tens of nearby stars. Mid-latitude flights are considered: overnight test flights in the US followed by half-global flights in the Southern Hemisphere. These longer flights are required to fully explore the set of known debris disks accessible only to Zodiac II. On these targets, it will be 100 times more sensitive than the Hubble Space Telescope's Advanced Camera for Surveys (HST/ACS); no existing telescope can match the Zodiac II contrast and resolution performance. A second objective of Zodiac II is to use the near-space environment to raise the Technology Readiness Level (TRL) of SiC mirrors, internal coronagraphs, deformable mirrors, and wavefront sensing and control, all potentially needed for a future space-based telescope for high-contrast exoplanet imaging.

  9. Zodiac II: Debris Disk Science from a Balloon

    NASA Technical Reports Server (NTRS)

    Bryden, Geoffrey; Traub, Wesley; Roberts, Lewis C., Jr.; Bruno, Robin; Unwin, Stephen; Backovsky, Stan; Brugarolas, Paul; Chakrabarti, Supriya; Chen, Pin; Hillenbrand, Lynne; Krist, John; Lillie, Charles; Macintosh, Bruce; Mawet, Dimitri; Mennesson, Bertrand; Moody, Dwight; Rahman, Zahidul; Rey, Justin; Stapelfeldt, Karl; Stuchlik, David; Trauger, John; Vasisht, Gautam

    2011-01-01

    Zodiac II is a proposed balloon-borne science investigation of debris disks around nearby stars. Debris disks are analogs of the Asteroid Belt (mainly rocky) and Kuiper Belt (mainly icy) in our Solar System. Zodiac II will measure the size, shape, brightness, and color of a statistically significant sample of disks. These measurements will enable us to probe these fundamental questions: what do debris disks tell us about the evolution of planetary systems; how are debris disks produced; how are debris disks shaped by planets; what materials are debris disks made of; how much dust do debris disks make sa they grind down; and how long do debris disks live? In addition, Zodiac II will observe hot, young exoplanets as targets of opportunity. The Zodiac II instrument is a 1.1-m diameter SiC telescope and an imaging coronagraph on a gondola carried by a stratospheric balloon. Its data product is a set of images of each targeted debris disk in four broad visible wavelength bands. Zodiac II will address its science questions by taking high-resolution, multi-wavelength images of the debris disks around tens of nearby stars. Mid-latitude flights are considered: overnight test flights within the United States followed by half-global flights in the Southern Hemisphere. These longer flights are required to fully explore the set of known debris disks accessible only to Zodiac II. On these targets, it will be 100 times more sensitive than the Hubble Space Telescope's Advanced Camera for Surveys (HST/ACS); no existing telescope can match the Zodiac II contrast and resolution performance. A second objective of Zodiac II is to use the near-space environment to raise the Technology Readiness Level (TRL) of SiC mirrors, internal coronagraphs, deformable mirrors, and wavefront sensing and control, all potentially needed for a future space-based telescope for high-contrast exoplanet imaging.

  10. The New NASA Orbital Debris Engineering Model ORDEM2000

    NASA Technical Reports Server (NTRS)

    Liou, Jer-Chyi; Matney, Mark J.; Anz-Meador, Phillip D.; Kessler, Donald; Jansen, Mark; Theall, Jeffery R.

    2002-01-01

    The NASA Orbital Debris Program Office at Johnson Space Center has developed a new computer-based orbital debris engineering model, ORDEM2000, which describes the orbital debris environment in the low Earth orbit region between 200 and 2000 km altitude. The model is appropriate for those engineering solutions requiring knowledge and estimates of the orbital debris environment (debris spatial density, flux, etc.). ORDEM2000 can also be used as a benchmark for ground-based debris measurements and observations. We incorporated a large set of observational data, covering the object size range from 10 mm to 10 m, into the ORDEM2000 debris database, utilizing a maximum likelihood estimator to convert observations into debris population probability distribution functions. These functions then form the basis of debris populations. We developed a finite element model to process the debris populations to form the debris environment. A more capable input and output structure and a user-friendly graphical user interface are also implemented in the model. ORDEM2000 has been subjected to a significant verification and validation effort. This document describes ORDEM2000, which supersedes the previous model, ORDEM96. The availability of new sensor and in situ data, as well as new analytical techniques, has enabled the construction of this new model. Section 1 describes the general requirements and scope of an engineering model. Data analyses and the theoretical formulation of the model are described in Sections 2 and 3. Section 4 describes the verification and validation effort and the sensitivity and uncertainty analyses. Finally, Section 5 describes the graphical user interface, software installation, and test cases for the user.

  11. Development of in-situ micro-debris measurement system

    NASA Astrophysics Data System (ADS)

    Nakamura, Maki; Kitazawa, Yukihito; Matsumoto, Haruhisa; Okudaira, Osamu; Hanada, Toshiya; Sakurai, Akira; Funakoshi, Kunihiro; Yasaka, Tetsuo; Hasegawa, Sunao; Kobayashi, Masanori

    2015-08-01

    The in-situ debris environment awareness system has been developed. The objective of the system is to measure small debris (between 100 μm and several cm) in orbit. The orbital distribution and the size distribution of the debris are not well understood. The size distribution is difficult to measure from the ground, although the size distribution is very important for the risk evaluation of the impact of debris on spacecraft. The in-situ measurement of the size distribution is useful for: (1) verification of meteoroid and debris environment models, (2) verification of meteoroid and debris environment evolution models, (3) real time detection of unexpected events, such as explosions and/or collisions on an orbit. This paper reports the development study of the in-situ debris measurement system and shows demonstration experiments and their results to describe the performance of the micro-debris sensor system. The sensor system for monitoring micro-debris with sizes ranging from 100 μm to a few mm must have a large detection area, while the constraints of space deployment require that these systems be low in mass, low in power, robust and have low telemetry requirements. For this reason, we have been developing a simple trans-film sensor. Thin and conductive stripes (copper) are formed with fine pitch (100 μm) on a thin film of nonconductive material (12.5-μm thick polyimide). A hypervelocity micro-particle impact is detected when one or more stripes are severed by perforation of the film. We designed a debris detector specialized for measuring the micro-debris size and collision rate. We then manufactured and calibrated the detector.

  12. Weird Warm Spot on Exoplanet

    NASA Video Gallery

    This animation illustrates an unexpected warm spot on the surface of a gaseous exoplanet. NASA's Spitzer Space Telescope discovered that the hottest part of the planet, shown here as bright, orange...

  13. Early deterioration of coarse woody debris.

    SciTech Connect

    Tainter, Frank, H.; McMinn, James, W.

    1999-02-16

    Tainter, F.H., and J.W. McMinn. 1999. Early deterioration of coarse woody debris. In: Proc. Tenth Bien. South. Silv. Res. Conf. Shreveport, LA, February 16-18, 1999. Pp. 232-237 Abstract - Coarse woody debris (CWD) is an important structural component of southern forest ecosystems. CWD loading may be affected by different decomposition rates on sites of varying quality. Bolts of red oak and loblolly pine were placed on plots at each of three (hydric, mesic. and xerlc) sites at the Savannah River Site and sampled over a I6-week period. Major changes were in moisture content and nonstructural carbohydrate content (total carbohydrates, reducing sugars, and starch) of sapwood. Early changes in nonstructural carbohydrate levels following placement of the bolts were likely due to reallocation of these materials by sapwood parenchyma cells. These carbohydrates later formed pools increasingly metabolized by bacteria and invading fungi. Most prevalent fungi in sapwood were Ceratocysfis spp. in pine and Hypoxy/on spp. in oak. Although pine sapwood became blue stained and oak sapwood exhibited yellow soft decay with black zone lines, estimators of decay (specific gravity, sodium hydroxide solubility, and holocellulose content) were unchanged during the 16-week study period. A small effect of site was detected for starch content of sapwood of both species. Fungal biomass in sapwood of both species, as measured by ergosterol content, was detectable at week zero, increased somewhat by week three and increased significantly by week 16.

  14. Deciphering the Encoded Debris of Supernovae

    NASA Astrophysics Data System (ADS)

    Milisavljevic, Dan

    2016-06-01

    Theory and observation strongly favor the notion that asymmetric explosions drive core-collapse supernovae. Where and how this asymmetry is introduced is uncertain, in part because of limited constraints on various dynamical processes that may take place deep inside the star prior to and during core collapse. Fortunately, the debris fields of supernovae encode valuable information about these processes in their three-dimensional kinematics and chemical abundances. Accessing that information accurately, however, is not straightforward since observed properties may have multiple origins; e.g., asymmetries in both the explosion mechanism and/or turbulent stellar interior, and nonuniform circumstellar environments. I argue that the key to deciphering supernova debris fields is via end-toend investigations that connect extragalactic events with young, nearby supernova remnants. This approach has the unique ability to trace the sources of mixing and clumping at large and small scales back to the time of explosion. I will emphasize how a holistic SN-SNR methodology is necessary for the next generation of three-dimensional core-collapse simulations seeking to robustly model and interpret the gravitational wave, neutrino, and EM signatures of supernovae.

  15. Autonomous space processor for orbital debris

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar; Campbell, David; Brockman, Jeff P.; Carter, Bruce; Donelson, Leslie; John, Lawrence E.; Marine, Micky C.; Rodina, Dan D.

    1989-01-01

    This work continues to develop advanced designs toward the ultimate goal of a GETAWAY SPECIAL to demonstrate economical removal of orbital debris utilizing local resources in orbit. The fundamental technical feasibility was demonstrated last year through theoretical calculations, quantitative computer animation, a solar focal point cutter, a robotic arm design and a subscale model. During this reporting period, several improvements are made in the solar cutter, such as auto track capabilities, better quality reflectors and a more versatile framework. The major advance has been in the design, fabrication and working demonstration of a ROBOTIC ARM that has several degrees of freedom. The functions were specifically tailored for the orbital debris handling. These advances are discussed here. Also a small fraction of the resources were allocated towards research in flame augmentation in SCRAMJETS for the NASP. Here, the fundamental advance was the attainment of Mach numbers up to 0.6 in the flame zone and a vastly improved injection system; the current work is expected to achieve supersonic combustion in the laboratory and an advanced monitoring system.

  16. Autonomous Space Processor for Orbital Debris (ASPOD)

    NASA Technical Reports Server (NTRS)

    Ramohalli, Kumar; Mitchell, Dominique; Taft, Brett

    1992-01-01

    A project in the Advanced Design Program at the University of Arizona is described. The project is named the Autonomous Space Processor for Orbital Debris (ASPOD) and is a Universities Space Research Association (USRA) sponsored design project. The development of ASPOD and the students' abilities in designing and building a prototype spacecraft are the ultimate goals of this project. This year's focus entailed the development of a secondary robotic arm and end-effector to work in tandem with an existent arm in the removal of orbital debris. The new arm features the introduction of composite materials and a linear drive system, thus producing a light-weight and more accurate prototype. The main characteristic of the end-effector design is that it incorporates all of the motors and gearing internally, thus not subjecting them to the harsh space environment. Furthermore, the arm and the end-effector are automated by a control system with positional feedback. This system is composed of magnetic and optical encoders connected to a 486 PC via two servo-motor controller cards. Programming a series of basic routines and sub-routines allowed the ASPOD prototype to become more autonomous. The new system is expected to perform specified tasks with a positional accuracy of 0.5 cm.

  17. A Primer on Unifying Debris Disk Morphologies

    NASA Astrophysics Data System (ADS)

    Lee, Eve J.; Chiang, Eugene

    2016-08-01

    A “minimum model” for debris disks consists of a narrow ring of parent bodies, secularly forced by a single planet on a possibly eccentric orbit, colliding to produce dust grains that are perturbed by stellar radiation pressure. We demonstrate how this minimum model can reproduce a wide variety of disk morphologies imaged in scattered starlight. Five broad categories of disk shape can be captured: “rings,” “needles,” “ships-and-wakes,” “bars,” and “moths (a.k.a. fans),” depending on the viewing geometry. Moths can also sport “double wings.” We explain the origin of morphological features from first principles, exploring the dependence on planet eccentricity, disk inclination dispersion, and the parent body orbital phases at which dust grains are born. A key determinant in disk appearance is the degree to which dust grain orbits are apsidally aligned. Our study of a simple steady-state (secularly relaxed) disk should serve as a reference for more detailed models tailored to individual systems. We use the intuition gained from our guidebook of disk morphologies to interpret, informally, the images of a number of real-world debris disks. These interpretations suggest that the farthest reaches of planetary systems are perturbed by eccentric planets, possibly just a few Earth masses each.

  18. Space debris tracking needs improvements, report states

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    2012-09-01

    With more and more space debris littering the skies above Earth, the U.S. Air Force Space Command (AFSPC) needs to keep up with demands to track the debris and prevent collisions with satellites by improving the U.S. Strategic Command's Joint Space Operations Center (JSpOC) infrastructure, modernizing software, and increasing the ability to more easily incorporate new algorithms and sensor data into its system, according to a 6 September report by a U.S. National Research Council committee. “If there is a single message of this study, it is that the Air Force needs to encourage a change in culture to emphasize openness—in transparency of its algorithms, in the interaction of its people with the user community and the scientific community, and in its providing of a reasonable amount of sensor tracking data to the scientific community for testing algorithms,” according to the report, entitled Continuing Kepler's Quest: Assessing Air Force Command's Astrodynamics Standards. “The Air Force needs to position the JSpOC—and its overall space situational awareness system—to rapidly evaluate, adapt, and adopt evolving technologies to meet community needs proactively.”

  19. Floating debris in the Mediterranean Sea.

    PubMed

    Suaria, Giuseppe; Aliani, Stefano

    2014-09-15

    Results from the first large-scale survey of floating natural (NMD) and anthropogenic (AMD) debris (>2 cm) in the central and western part of the Mediterranean Sea are reported. Floating debris was found throughout the entire study area with densities ranging from 0 to 194.6 items/km(2) and mean abundances of 24.9 AMD items/km(2) and 6.9 NMD items/km(2) across all surveyed locations. On the whole, 78% of all sighted objects were of anthropogenic origin, 95.6% of which were petrochemical derivatives (i.e. plastic and styrofoam). Maximum AMD densities (>52 items/km(2)) were found in the Adriatic Sea and in the Algerian basin, while the lowest densities (<6.3 items/km(2)) were observed in the Central Tyrrhenian and in the Sicilian Sea. All the other areas had mean densities ranging from 10.9 to 30.7 items/km(2). According to our calculations, more than 62 million macro-litter items are currently floating on the surface of the whole Mediterranean basin.

  20. The Transportation of Debris by Running Water

    USGS Publications Warehouse

    Gilbert, Grove Karl; Murphy, Edward Charles

    1914-01-01

    Scope.-The finer debris transported by a stream is borne in suspension. The coarser is swept along the channel bed. The suspended load is readily sampled and estimated, and much is known as to its quantity. The bed load is inaccessible and we are without definite information as to its amount. The primary purpose of the investigation was to learn the laws which control the movement of bed load, and especially to determine how the quantity of load is related to the stream's slope and discharge and to the degree of comminution of the debris. Method.-To this end a laboratory was equipped at Berkeley, Cal., and experiments were performed in which each of the three conditions mentioned was separately varied and the resulting variations of load were observed and measured. Sand and gravel were sorted by sieves into grades of uniform size. Determinate discharges were used. In each experiment a specific load was fed to a stream of specific width and discharge, and measurement was made of the slope to which the stream automatically adjusted its bed so as to enable the current to transport the load. The slope factor.-For each combination of discharge, width, and grade of debris there is a slope, called competent slope, which limits transportation. With lower slopes there is no load, or the stream has no capacity for load. With higher slopes capacity exists; and increase of slope gives increase of capacity. The value of capacity is approximately proportional to a power of the excess of slope above competent slope. If S equal the stream's slope and sigma equal competent slope, then the stream's capacity varies as (S - sigma)n. This is not a deductive, but an empiric law. The exponent n has not a fixed value, but an indefinite series of values depending on conditions. Its range of values in the experience of the laboratory is from 0.93 to 2.37, the values being greater as the discharges are smaller or the debris is coarser. The discharge factor.-For each combination of width

  1. Floating debris in the Mediterranean Sea.

    PubMed

    Suaria, Giuseppe; Aliani, Stefano

    2014-09-15

    Results from the first large-scale survey of floating natural (NMD) and anthropogenic (AMD) debris (>2 cm) in the central and western part of the Mediterranean Sea are reported. Floating debris was found throughout the entire study area with densities ranging from 0 to 194.6 items/km(2) and mean abundances of 24.9 AMD items/km(2) and 6.9 NMD items/km(2) across all surveyed locations. On the whole, 78% of all sighted objects were of anthropogenic origin, 95.6% of which were petrochemical derivatives (i.e. plastic and styrofoam). Maximum AMD densities (>52 items/km(2)) were found in the Adriatic Sea and in the Algerian basin, while the lowest densities (<6.3 items/km(2)) were observed in the Central Tyrrhenian and in the Sicilian Sea. All the other areas had mean densities ranging from 10.9 to 30.7 items/km(2). According to our calculations, more than 62 million macro-litter items are currently floating on the surface of the whole Mediterranean basin. PMID:25127501

  2. Location of space debris by infrasound

    NASA Astrophysics Data System (ADS)

    Asming, Vladimir; Vinogradov, Yuri

    2013-04-01

    After an exhausted stage has separated from a rocket it comes back to the dense atmosphere. It burns and divides into many pieces moving separately. Ballisticians can calculate an approximate trace of a falling stage and outline a supposed area where the debris can fall (target ellipse). Such ellipses are usually rather big in sizes (something like 60 x 100 km). For safety reasons all local inhabitants should be evacuated from a target area during rocket's launch. One of problems is that the ballistician can not compute the traces and areas exactly. There were many cases when debris had fallen outside the areas. Rescue teams must check such cases to make changes in rockets. The largest pieces can contain remains of toxic rocket fuel and therefore must be found and deactivated. That is why the problem of debris location is of significant importance for overland fall areas. It is more or less solved in Kazakhstan where large fragments of 1st stages can be seen in the Steppe but it is very difficult to find fragments of 2nd stages in Altai, Tomsk region and Komi republic (taiga, mountains, swamps). The rocket debris produces strong infrasonic shock waves during their reentry. Since 2009 the Kola Branch of Geophysical Survey of RAS participates in joint project with Khrunichev Space Center concerning with infrasound debris location. We have developed mobile infrasound arrays consisting of 3 microphones, analog-to-digit converter, GPS and notebook. The aperture is about 200 m, deployment time is less than 1 hour. Currently we have 4 such arrays, one of them is wireless and consists of 3 units comprising a microphone, GPS and radio-transmitter. We have made several field measurements by 3 or 4 such arrays placed around target ellipses of falling rocket stages in Kazakhstan ("Soyuz" rocket 1st stage), Altai and Tomsk region ("Proton" rocket 2nd stages). If was found that a typical 2nd stage divides into hundreds of pieces and each one generates a shock wave. This is a

  3. An Imaging System for Satellite Hypervelocity Impact Debris Characterization

    NASA Technical Reports Server (NTRS)

    Moraguez, Matthew; Patankar, Kunal; Fitz-Coy, Norman; Liou, J.-C.; Cowardin, Heather

    2015-01-01

    This paper discusses the design of an automated imaging system for size characterization of debris produced by the DebriSat hypervelocity impact test. The goal of the DebriSat project is to update satellite breakup models. A representative LEO satellite, DebriSat, was constructed and subjected to a hypervelocity impact test. The impact produced an estimated 85,000 debris fragments. The size distribution of these fragments is required to update the current satellite breakup models. An automated imaging system was developed for the size characterization of the debris fragments. The system uses images taken from various azimuth and elevation angles around the object to produce a 3D representation of the fragment via a space carving algorithm. The system consists of N point-and-shoot cameras attached to a rigid support structure that defines the elevation angle for each camera. The debris fragment is placed on a turntable that is incrementally rotated to desired azimuth angles. The number of images acquired can be varied based on the desired resolution. Appropriate background and lighting is used for ease of object detection. The system calibration and image acquisition process are automated to result in push-button operations. However, for quality assurance reasons, the system is semi-autonomous by design to ensure operator involvement. This paper describes the imaging system setup, calibration procedure, repeatability analysis, and the results of the debris characterization.

  4. 14 CFR 417.225 - Debris risk analysis.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 14 Aeronautics and Space 4 2011-01-01 2011-01-01 false Debris risk analysis. 417.225 Section 417... OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.225 Debris risk analysis. A flight safety analysis must demonstrate that the risk to the public potentially exposed to inert...

  5. Database Driven 6-DOF Trajectory Simulation for Debris Transport Analysis

    NASA Technical Reports Server (NTRS)

    West, Jeff

    2008-01-01

    Debris mitigation and risk assessment have been carried out by NASA and its contractors supporting Space Shuttle Return-To-Flight (RTF). As a part of this assessment, analysis of transport potential for debris that may be liberated from the vehicle or from pad facilities prior to tower clear (Lift-Off Debris) is being performed by MSFC. This class of debris includes plume driven and wind driven sources for which lift as well as drag are critical for the determination of the debris trajectory. As a result, NASA MSFC has a need for a debris transport or trajectory simulation that supports the computation of lift effect in addition to drag without the computational expense of fully coupled CFD with 6-DOF. A database driven 6-DOF simulation that uses aerodynamic force and moment coefficients for the debris shape that are interpolated from a database has been developed to meet this need. The design, implementation, and verification of the database driven six degree of freedom (6-DOF) simulation addition to the Lift-Off Debris Transport Analysis (LODTA) software are discussed in this paper.

  6. Linking effects of anthropogenic debris to ecological impacts

    PubMed Central

    Browne, Mark Anthony; Underwood, A. J.; Chapman, M. G.; Williams, Rob; Thompson, Richard C.; van Franeker, Jan A.

    2015-01-01

    Accelerated contamination of habitats with debris has caused increased effort to determine ecological impacts. Strikingly, most work on organisms focuses on sublethal responses to plastic debris. This is controversial because (i) researchers have ignored medical insights about the mechanisms that link effects of debris across lower levels of biological organization to disease and mortality, and (ii) debris is considered non-hazardous by policy-makers, possibly because individuals can be injured or removed from populations and assemblages without ecological impacts. We reviewed the mechanisms that link effects of debris across lower levels of biological organization to assemblages and populations. Using plastic, we show microplastics reduce the ‘health’, feeding, growth and survival of ecosystem engineers. Larger debris alters assemblages because fishing-gear and tyres kill animals and damage habitat-forming plants, and because floating bottles facilitate recruitment and survival of novel taxa. Where ecological linkages are not known, we show how to establish hypothetical links by synthesizing studies to assess the likelihood of impacts. We also consider how population models examine ecological linkages and guide management of ecological impacts. We show that by focusing on linkages to ecological impacts rather than the presence of debris and its sublethal impacts, we could reduce threats posed by debris. PMID:25904661

  7. 14 CFR 417.225 - Debris risk analysis.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 14 Aeronautics and Space 4 2014-01-01 2014-01-01 false Debris risk analysis. 417.225 Section 417... OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.225 Debris risk analysis. A flight safety analysis must demonstrate that the risk to the public potentially exposed to inert...

  8. 14 CFR 417.225 - Debris risk analysis.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Debris risk analysis. 417.225 Section 417... OF TRANSPORTATION LICENSING LAUNCH SAFETY Flight Safety Analysis § 417.225 Debris risk analysis. A flight safety analysis must demonstrate that the risk to the public potentially exposed to inert...

  9. Semi-automatic recognition of marine debris on beaches.

    PubMed

    Ge, Zhenpeng; Shi, Huahong; Mei, Xuefei; Dai, Zhijun; Li, Daoji

    2016-01-01

    An increasing amount of anthropogenic marine debris is pervading the earth's environmental systems, resulting in an enormous threat to living organisms. Additionally, the large amount of marine debris around the world has been investigated mostly through tedious manual methods. Therefore, we propose the use of a new technique, light detection and ranging (LIDAR), for the semi-automatic recognition of marine debris on a beach because of its substantially more efficient role in comparison with other more laborious methods. Our results revealed that LIDAR should be used for the classification of marine debris into plastic, paper, cloth and metal. Additionally, we reconstructed a 3-dimensional model of different types of debris on a beach with a high validity of debris revivification using LIDAR-based individual separation. These findings demonstrate that the availability of this new technique enables detailed observations to be made of debris on a large beach that was previously not possible. It is strongly suggested that LIDAR could be implemented as an appropriate monitoring tool for marine debris by global researchers and governments.

  10. Constraints on Exoplanet System Architectures from Debris Disks

    NASA Astrophysics Data System (ADS)

    Jang-Condell, Hannah; Chen, Christine H.; Mittal, Tushar; Nesvold, Erika; Kuchner, Marc J.; Manoj, P.; Watson, Dan; Lisse, Carey M.

    2015-12-01

    Debris disks are dusty disks around main sequence stars. Terrestrial planets may be forming in young debris disks with ages <100 Myr. Planets in debris disks dynamically sculpt the dust in these systems. Thus, the spatial structure of debris disks could be an indicator of where planets have formed. We present an analysis of several members of the Scorpius-Centaurus OB Association (Sco Cen) that host both debris disks and planets, including HD 95086, HD 106906, and HD 133803. These objects are about 15-17 Myr old. The thermal emission from the debris disks constrains the locations of the dust. The dust is typically interior to the directly imaged planets in the systems. If additional planets reside in these systems, their locations are constrained by the positions of the dust belts. Many debris disk systems in Sco Cen appear to be two-belt systems. The gap between the belts in each system is a likely location for additional planets. The detection of planets in debris disk systems provide clues about the planet formation process, giving insights into where, when and how planets form.

  11. Orbital debris and near-Earth environmental management: A chronology

    NASA Technical Reports Server (NTRS)

    Portree, David S. F.; Loftus, Joseph P., Jr.

    1993-01-01

    This chronology covers the 32-year history of orbital debris and near-Earth environmental concerns. It tracks near-Earth environmental hazard creation, research, observation, experimentation, management, mitigation, protection, and policy-making, with emphasis on the orbital debris problem. Included are the Project West Ford experiments; Soviet ASAT tests and U.S. Delta upper stage explosions; the Ariane V16 explosion, U.N. treaties pertinent to near-Earth environmental problems, the PARCS tests; space nuclear power issues, the SPS/orbital debris link; Space Shuttle and space station orbital debris issues; the Solwind ASAT test; milestones in theory and modeling the Cosmos 954, Salyut 7, and Skylab reentries; the orbital debris/meteoroid research link; detection system development; orbital debris shielding development; popular culture and orbital debris; Solar Max results; LDEF results; orbital debris issues peculiar to geosynchronous orbit, including reboost policies and the stable plane; seminal papers, reports, and studies; the increasing effects of space activities on astronomy; and growing international awareness of the near-Earth environment.

  12. Active Debris Removal and the Challenges for Environment Remediation

    NASA Technical Reports Server (NTRS)

    Liou, J. C.

    2012-01-01

    Recent modeling studies on the instability of the debris population in the low Earth orbit (LEO) region and the collision between Iridium 33 and Cosmos 2251 have underlined the need for active debris removal. A 2009 analysis by the NASA Orbital Debris Program Office shows that, in order to maintain the LEO debris population at a constant level for the next 200 years, an active debris removal of about five objects per year is needed. The targets identified for removal are those with the highest mass and collision probability products in the environment. Many of these objects are spent upper stages with masses ranging from 1 to more than 8 metric tons, residing in several altitude regions and concentrated in about 7 inclination bands. To remove five of those objects on a yearly basis, in a cost-effective manner, represents many challenges in technology development, engineering, and operations. This paper outlines the fundamental rationale for considering active debris removal and addresses the two possible objectives of the operations -- removing large debris to stabilize the environment and removing small debris to reduce the threat to operational spacecraft. Technological and engineering challenges associated with the two different objectives are also discussed.

  13. Semi-automatic recognition of marine debris on beaches

    PubMed Central

    Ge, Zhenpeng; Shi, Huahong; Mei, Xuefei; Dai, Zhijun; Li, Daoji

    2016-01-01

    An increasing amount of anthropogenic marine debris is pervading the earth’s environmental systems, resulting in an enormous threat to living organisms. Additionally, the large amount of marine debris around the world has been investigated mostly through tedious manual methods. Therefore, we propose the use of a new technique, light detection and ranging (LIDAR), for the semi-automatic recognition of marine debris on a beach because of its substantially more efficient role in comparison with other more laborious methods. Our results revealed that LIDAR should be used for the classification of marine debris into plastic, paper, cloth and metal. Additionally, we reconstructed a 3-dimensional model of different types of debris on a beach with a high validity of debris revivification using LIDAR-based individual separation. These findings demonstrate that the availability of this new technique enables detailed observations to be made of debris on a large beach that was previously not possible. It is strongly suggested that LIDAR could be implemented as an appropriate monitoring tool for marine debris by global researchers and governments. PMID:27156433

  14. Semi-automatic recognition of marine debris on beaches

    NASA Astrophysics Data System (ADS)

    Ge, Zhenpeng; Shi, Huahong; Mei, Xuefei; Dai, Zhijun; Li, Daoji

    2016-05-01

    An increasing amount of anthropogenic marine debris is pervading the earth’s environmental systems, resulting in an enormous threat to living organisms. Additionally, the large amount of marine debris around the world has been investigated mostly through tedious manual methods. Therefore, we propose the use of a new technique, light detection and ranging (LIDAR), for the semi-automatic recognition of marine debris on a beach because of its substantially more efficient role in comparison with other more laborious methods. Our results revealed that LIDAR should be used for the classification of marine debris into plastic, paper, cloth and metal. Additionally, we reconstructed a 3-dimensional model of different types of debris on a beach with a high validity of debris revivification using LIDAR-based individual separation. These findings demonstrate that the availability of this new technique enables detailed observations to be made of debris on a large beach that was previously not possible. It is strongly suggested that LIDAR could be implemented as an appropriate monitoring tool for marine debris by global researchers and governments.

  15. Persistent Marine Debris, challenge and response: the Federal perspective

    SciTech Connect

    Not Available

    1988-01-01

    Information in the publication is drawn from the 1988 Report of the Interagency Task Force on persistent Marine Debris. The subject areas included in the report are: scope of the problem; sources of marine debris; effects on wildlife and humans and what measures are being done to prevent the problem.

  16. Launch Vehicle Debris Models and Crew Vehicle Ascent Abort Risk

    NASA Technical Reports Server (NTRS)

    Gee, Ken; Lawrence, Scott

    2013-01-01

    For manned space launch systems, a reliable abort system is required to reduce the risks associated with a launch vehicle failure during ascent. Understanding the risks associated with failure environments can be achieved through the use of physics-based models of these environments. Debris fields due to destruction of the launch vehicle is one such environment. To better analyze the risk posed by debris, a physics-based model for generating launch vehicle debris catalogs has been developed. The model predicts the mass distribution of the debris field based on formulae developed from analysis of explosions. Imparted velocity distributions are computed using a shock-physics code to model the explosions within the launch vehicle. A comparison of the debris catalog with an existing catalog for the Shuttle external tank show good comparison in the debris characteristics and the predicted debris strike probability. The model is used to analyze the effects of number of debris pieces and velocity distributions on the strike probability and risk.

  17. Marine Debris Clean-Ups as Meaningful Science Learning

    ERIC Educational Resources Information Center

    Stepath, Carl M.; Bacon, Joseph Scott

    2010-01-01

    This seven to eight week hands-on Marine Debris Clean-up Project used a service project to provide an introduction of marine science ecology, watershed interrelationships, the scientific method, and environmental stewardship to 8th grade middle school students. It utilized inquiry based learning to introduce marine debris sources and impacts to…

  18. Final design of a space debris removal system

    NASA Technical Reports Server (NTRS)

    Carlson, Erika; Casali, Steve; Chambers, Don; Geissler, Garner; Lalich, Andrew; Leipold, Manfred; Mach, Richard; Parry, John; Weems, Foley

    1990-01-01

    The objective is the removal of medium sized orbital debris in low Earth orbits. The design incorporates a transfer vehicle and a netting vehicle to capture the medium size debris. The system is based near an operational space station located at 28.5 degrees inclination and 400 km altitude. The system uses ground based tracking to determine the location of a satellite breakup or debris cloud. This data is unloaded to the transfer vehicle, and the transfer vehicle proceeds to rendezvous with the debris at a lower altitude parking orbit. Next, the netting vehicle is deployed, tracks the targeted debris, and captures it. After expending the available nets, the netting vehicle returns to the transfer vehicle for a new netting module and continues to capture more debris in the target area. Once all the netting modules are expended, the transfer vehicle returns to the space station's orbit, where it is resupplied with new netting modules from a space shuttle load. The new modules are launched by the shuttle from the ground, and the expended modules are taken back to Earth for removal of the captured debris, refueling, and repacking of the nets. Once the netting modules are refurbished, they are taken back into orbit for reuse. In a typical mission, the system has the ability to capture 50 pieces of orbital debris. One mission will take about six months. The system is designed to allow for a 30 degree inclination change on the outgoing and incoming trips of the transfer vehicle.

  19. Semi-automatic recognition of marine debris on beaches.

    PubMed

    Ge, Zhenpeng; Shi, Huahong; Mei, Xuefei; Dai, Zhijun; Li, Daoji

    2016-01-01

    An increasing amount of anthropogenic marine debris is pervading the earth's environmental systems, resulting in an enormous threat to living organisms. Additionally, the large amount of marine debris around the world has been investigated mostly through tedious manual methods. Therefore, we propose the use of a new technique, light detection and ranging (LIDAR), for the semi-automatic recognition of marine debris on a beach because of its substantially more efficient role in comparison with other more laborious methods. Our results revealed that LIDAR should be used for the classification of marine debris into plastic, paper, cloth and metal. Additionally, we reconstructed a 3-dimensional model of different types of debris on a beach with a high validity of debris revivification using LIDAR-based individual separation. These findings demonstrate that the availability of this new technique enables detailed observations to be made of debris on a large beach that was previously not possible. It is strongly suggested that LIDAR could be implemented as an appropriate monitoring tool for marine debris by global researchers and governments. PMID:27156433

  20. Orbital evolution of space debris due to aerodynamic forces

    NASA Astrophysics Data System (ADS)

    Crowther, R.

    1993-08-01

    The concepts used in the AUDIT (Assessment Using Debris Impact Theory) debris modelling suite are introduced. A sensitivity analysis is carried out to determine the dominant parameters in the modelling process. A test case simulating the explosion of a satellite suggest that at the parent altitude there is a greater probability of collision with more massive fragments.

  1. Laser Remediation of Threats Posed by Small Orbital Debris

    NASA Technical Reports Server (NTRS)

    Fork, Richard L.; Rogers, Jan R.; Hovater, Mary A.

    2012-01-01

    The continually increasing amount of orbital debris in near Earth space poses an increasing challenge to space situational awareness. Recent collisions of spacecraft caused abrupt increases in the density of both large and small debris in near Earth space. An especially challenging class of threats is that due to the increasing density of small (1 mm to 10 cm dimension) orbital debris. This small debris poses a serious threat since: (1) The high velocity enables even millimeter dimension debris to cause serious damage to vulnerable areas of space assets, e.g., detector windows; (2) The small size and large number of debris elements prevent adequate detection and cataloguing. We have identified solutions to this threat in the form of novel laser systems and novel ways of using these laser systems. While implementation of the solutions we identify is challenging we find approaches offering threat mitigation within time frames and at costs of practical interest. We base our analysis on the unique combination of coherent light specifically structured in both space and time and applied in novel ways entirely within the vacuum of space to deorbiting small debris. We compare and contrast laser based small debris removal strategies using ground based laser systems with strategies using space based laser systems. We find laser systems located and used entirely within space offer essential and decisive advantages over groundbased laser systems.

  2. Tracking Debris Shed by a Space-Shuttle Launch Vehicle

    NASA Technical Reports Server (NTRS)

    Stuart, Phillip C.; Rogers, Stuart E.

    2009-01-01

    The DEBRIS software predicts the trajectories of debris particles shed by a space-shuttle launch vehicle during ascent, to aid in assessing potential harm to the space-shuttle orbiter and crew. The user specifies the location of release and other initial conditions for a debris particle. DEBRIS tracks the particle within an overset grid system by means of a computational fluid dynamics (CFD) simulation of the local flow field and a ballistic simulation that takes account of the mass of the particle and its aerodynamic properties in the flow field. The computed particle trajectory is stored in a file to be post-processed by other software for viewing and analyzing the trajectory. DEBRIS supplants a prior debris tracking code that took .15 minutes to calculate a single particle trajectory: DEBRIS can calculate 1,000 trajectories in .20 seconds on a desktop computer. Other improvements over the prior code include adaptive time-stepping to ensure accuracy, forcing at least one step per grid cell to ensure resolution of all CFD-resolved flow features, ability to simulate rebound of debris from surfaces, extensive error checking, a builtin suite of test cases, and dynamic allocation of memory.

  3. Final design of a space debris removal system

    NASA Astrophysics Data System (ADS)

    Carlson, Erika; Casali, Steve; Chambers, Don; Geissler, Garner; Lalich, Andrew; Leipold, Manfred; Mach, Richard; Parry, John; Weems, Foley

    1990-12-01

    The objective is the removal of medium sized orbital debris in low Earth orbits. The design incorporates a transfer vehicle and a netting vehicle to capture the medium size debris. The system is based near an operational space station located at 28.5 degrees inclination and 400 km altitude. The system uses ground based tracking to determine the location of a satellite breakup or debris cloud. This data is unloaded to the transfer vehicle, and the transfer vehicle proceeds to rendezvous with the debris at a lower altitude parking orbit. Next, the netting vehicle is deployed, tracks the targeted debris, and captures it. After expending the available nets, the netting vehicle returns to the transfer vehicle for a new netting module and continues to capture more debris in the target area. Once all the netting modules are expended, the transfer vehicle returns to the space station's orbit, where it is resupplied with new netting modules from a space shuttle load. The new modules are launched by the shuttle from the ground, and the expended modules are taken back to Earth for removal of the captured debris, refueling, and repacking of the nets. Once the netting modules are refurbished, they are taken back into orbit for reuse. In a typical mission, the system has the ability to capture 50 pieces of orbital debris. One mission will take about six months. The system is designed to allow for a 30 degree inclination change on the outgoing and incoming trips of the transfer vehicle.

  4. TRANSPORT CHARACTERISTICS OF SELECTED PWR LOCA GENERATED DEBRIS.

    SciTech Connect

    A. K. MAJI; B. MARSHALL; ET AL

    2000-10-01

    In the unlikely event of a Loss of Coolant Accident (LOCA) in a pressurized water reactor (PWR), break jet impingement would dislodge thermal insulation from nearby piping, as well as other materials within the containment, such as paint chips, concrete dust, and fire barrier materials. Steam/water flows induced by the break and by the containment sprays would transport debris to the containment floor. Subsequently, debris would likely transport to and accumulate on the suction sump screens of the emergency core cooling system (ECCS) pumps, thereby potentially degrading ECCS performance and possibly even failing the ECCS. In 1998, the U. S. Nuclear Regulatory Commission (NRC) initiated a generic study (Generic Safety Issue-191) to evaluate the potential for the accumulation of LOCA related debris on the PWR sump screen and the consequent loss of ECCS pump net positive suction head (NPSH). Los Alamos National Laboratory (LANL), supporting the resolution of GSI-191, was tasked with developing a method for estimating debris transport in PWR containments to estimate the quantity of debris that would accumulate on the sump screen for use in plant specific evaluations. The analytical method proposed by LANL, to predict debris transport within the water that would accumulate on the containment floor, is to use computational fluid dynamics (CFD) combined with experimental debris transport data to predict debris transport and accumulation on the screen. CFD simulations of actual plant containment designs would provide flow data for a postulated accident in that plant, e.g., three-dimensional patterns of flow velocities and flow turbulence. Small-scale experiments would determine parameters defining the debris transport characteristics for each type of debris. The containment floor transport methodology will merge debris transport characteristics with CFD results to provide a reasonable and conservative estimate of debris transport within the containment floor pool and

  5. HD 172555: Detection of 63 micrometers [OI] Emission in a Debris Disc

    NASA Technical Reports Server (NTRS)

    Riviere-Marichalar, P.; Barrado, D.; Augereau, J. -C.; Thi, W. F.; Roberge, A.; Eiroa, C.; Montesinos, B.; Meeus, G.; Howard, C.; Sandell, G.; Duchene, G.; Dent, W. R. F.; Lebreton, J.; Mendigutia, I.; Huelamo, N.; Menard, F.; Pinte, C.

    2012-01-01

    Context. HD 172555 is a young A7 star belonging to the Beta Pictoris Moving Group that harbours a debris disc. The Spitzer IRS spectrum of the source showed mid-IR features such as silicates and glassy silica species, indicating the presence of a warm dust component with small grains, which places HD 172555 among the small group of debris discs with such properties. The IRS spectrum also shows a possible emission of SiO gas. Aims. We aim to study the dust distribution in the circumstellar disc of HD 172555 and to asses the presence of gas in the debris disc. Methods. As part of the GASPS Open Time Key Programme, we obtained Herschel-PACS photometric and spectroscopic observations of the source. We analysed PACS observations of HD 172555 and modelled the Spectral Energy Distribution (SED) with a modified blackbody and the gas emission with a two-level population model with no collisional de-excitation. Results. We report for the first time the detection of [OI] atomic gas emission at 63.18 micrometers in the HD 172555 circumstellar disc.We detect excesses due to circumstellar dust toward HD 172555 in the three photometric bands of PACS (70, 100, and 160 m). We derive a large dust particle mass of (4.8 plus-minus 0.6)x10(exp -4) Mass compared to Earth and an atomic oxygen mass of 2.5x10(exp -2)R(exp 2) Mass compared to Earth, where R in AU is the separation between the star and the inner disc. Thus, most of the detected mass of the disc is in the gaseous phase.

  6. ICE AND DEBRIS IN THE FRETTED TERRAIN, MARS.

    USGS Publications Warehouse

    Lucchitta, Baerbel K.

    1984-01-01

    Viking moderate- and high-resolution images along the northern highland margin were studied monoscopically and stereoscopically to contribute to an understanding of the development of fretted terrain. Results support the hypothesis that the fretting process involved flow facilitated by interstitial ice. The process apparently continued for a long period of time, and debris-apron formation shaped the fretted terrain in the past as well as the present. Interstitial ice in debris aprons is most likely derived from ground ice obtained by sapping or scarp collapse. Debris aprons could have been removed by sublimation if they consisted mostly of ice, or by deflation if they consisted mostly of debris. To remove the debris, wind erosion was either very intense early in martian history, or was intermittent, perhaps owing to climatic cycles.

  7. Radioactive satellites - Intact reentry and breakup by debris impact

    NASA Technical Reports Server (NTRS)

    Anz-Meador, P. D.; Potter, A. E., Jr.

    1991-01-01

    There is a substantial mass of radioactive material in nuclear reactors or radioisotope thermal generators (RTGs) in orbit about the earth. This paper examines the reentry of intact nuclear fuel cores and RTGs and the fragmentation and subsequent radioactive debris cloud deposition and evolution resulting from the impact of orbital debris upon an orbiting reactor, fuel core, or RTG. To assess the intact reentry, decay rates and a predicted decay date using historical and projected orbital decay data, are estimated. The current NASA debris environment model is utilized to estimate impact rates and debris cloud evolution of a fragmentation event. Results of these analyses are compared and concepts are tendered which would tend to minimize the radiological debris hazard to personnel and structures both on the earth's surface and in low earth orbit.

  8. Applied Astronomy: An Optical Survey for Space Debris at GEO

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Barker, Edwin S.; Abercromby, K.; Rodriquez, H.

    2007-01-01

    A viewgraph is presented to discuss space debris at Geosynchronous Earth Orbit (GEO). The topics include: 1) Syncom1 launched February 14, 1963 Failed on orbit insertion 1st piece of GEO debris!; 2) Example of recent GEO payload: XM-2 Rock satellite for direct broadcast radio; 3) MODEST Michigan Orbital DEbrisSurvey Telescope the telescope formerly known as the Curtis-Schmidt; 4) GEO Debris Survey; 5) Examples of Detections; 6) Brightness Variations Common; 7) Observed Angular Rates; 8) Two Populations at GEO; 9) High Area-to-Mass Ratio Material (A/M); 10) Examples of MLI; 11) Examples of MLI Release in LEO; 12) Liou & Weaver (2005) models; 13) ESA 1-m Telescope Survey; 14) Two Telescopes March 2007 Survey and Follow-up; 15) Final Eccentricity; and 16) How control Space Debris?

  9. Benthic plastic debris in marine and fresh water environments.

    PubMed

    Corcoran, Patricia L

    2015-08-01

    This review provides a discussion of the published literature concerning benthic plastic debris in ocean, sea, lake, estuary and river bottoms throughout the world. Although numerous investigations of shoreline, surface and near-surface plastic debris provide important information on plastic types, distribution, accumulation, and degradation, studies of submerged plastic debris have been sporadic in the past and have become more prominent only recently. The distribution of benthic debris is controlled mainly by combinations of urban proximity and its association with fishing-related activities, geomorphology, hydrological conditions, and river input. High density plastics, biofouled products, polymers with mineral fillers or adsorbed minerals, and plastic-metal composites all have the potential to sink. Once deposited on the bottoms of water basins and channels, plastics are shielded from UV light, thus slowing the degradation process significantly. Investigations of the interactions between benthic plastic debris and bottom-dwelling organisms will help shed light on the potential dangers of submerged plastic litter.

  10. Modeling the atmospheric perturbations in the debris problem

    NASA Astrophysics Data System (ADS)

    Ashenberg, J.; Broucke, R. A.

    1994-05-01

    Typical space debris are irregular in shape, therefore in addition to the atmospheric drag, the perturbations due to the aerodynamic lift and the orthogonal forces are playing role as well. The equations for the averaged orbital elements, including these general atmospheric perturbations, were derived and solved as an expansion in small eccentricity. This solution is useful as a fast prediction of the debris propagation boundaries. The mechanism of the debris spread due to the distribution of the aerodynamic coefficients, was examined as well. A statistical model for the uncertainties in the debris location was developed, and an approximated solution for the Ricatti equation was obtained. The debris aerodynamic coefficients were evaluated by applying the free molecular flow theory.

  11. The impact of debris on the Florida manatee

    USGS Publications Warehouse

    Beck, C.A.; Barros, N.B.

    1991-01-01

    The endangered Florida manatee ingests debris while feeding. From 1978 through 1986, 439 salvaged manatees were examined. Debris was in the gastrointestinal tract of 63 (14.4%) and four died as a direct result of debris ingestion. Monofilament fishing line was the most common debris found (N=49). Plastic bags, string, twine, rope, fish hooks, wire, paper, cellophane, synthetic sponges, rubber bands, and stockings also were recovered. Entanglement in lines and nets killed 11 manatees from 1974 through 1985. Numerous free-ranging manatees have missing or scarred flippers from entanglements, or debris still encircling one or both flippers. We recommend local cleanups, education of the public, and fishing restrictions in high use areas to significantly reduce harm to manatees.

  12. Plastics and other anthropogenic debris in freshwater birds from Canada.

    PubMed

    Holland, Erika R; Mallory, Mark L; Shutler, Dave

    2016-11-15

    Plastics in marine environments are a global environmental issue. Plastic ingestion is associated with a variety of deleterious health effects in marine wildlife, and is a focus of much international research and monitoring. However, little research has focused on ramifications of plastic debris for freshwater organisms, despite marine and freshwater environments often having comparable plastic concentrations. We quantified plastic and other anthropogenic debris in 350 individuals of 17 freshwater and one marine bird species collected across Canada. We determined freshwater birds' anthropogenic debris ingestion rates to be 11.1% across all species studied. This work establishes that plastics and other anthropogenic debris are a genuine concern for management of the health of freshwater ecosystems, and provides a baseline for the prevalence of plastic and other anthropogenic debris ingestion in freshwater birds in Canada, with relevance for many other locations.

  13. Plastics and other anthropogenic debris in freshwater birds from Canada.

    PubMed

    Holland, Erika R; Mallory, Mark L; Shutler, Dave

    2016-11-15

    Plastics in marine environments are a global environmental issue. Plastic ingestion is associated with a variety of deleterious health effects in marine wildlife, and is a focus of much international research and monitoring. However, little research has focused on ramifications of plastic debris for freshwater organisms, despite marine and freshwater environments often having comparable plastic concentrations. We quantified plastic and other anthropogenic debris in 350 individuals of 17 freshwater and one marine bird species collected across Canada. We determined freshwater birds' anthropogenic debris ingestion rates to be 11.1% across all species studied. This work establishes that plastics and other anthropogenic debris are a genuine concern for management of the health of freshwater ecosystems, and provides a baseline for the prevalence of plastic and other anthropogenic debris ingestion in freshwater birds in Canada, with relevance for many other locations. PMID:27476006

  14. Input shaped large thrust maneuver with a tethered debris object

    NASA Astrophysics Data System (ADS)

    Jasper, Lee; Schaub, Hanspeter

    2014-03-01

    In order to reduce the debris population in LEO, remediation is necessary. An active debris removal method is explored that utilizes fuel reserves on a recently launched upper stage to rendezvous with, and tether to, debris. The system's tethered dynamics are explored using a discretized tether model attached to six degree of freedom end bodies. The thrust output is shaped to remove the spectral energy at the natural frequencies of the tether, significantly reducing the post-burn relative motion between the vehicles. The sensitivity of the input shaping performance due to imperfect knowledge of the debris mass demonstrates that a double notch spanning multiple frequencies around the first mode is necessary to be robust to unknown debris mass. On-orbit simulations show that input shaping helps the tethered system achieve smooth oscillations about a gravity gradient alignment, reducing collision likelihood.

  15. Input Shaped Large Thrust Maneuver with a Tethered Debris Object

    NASA Astrophysics Data System (ADS)

    Jasper, L.; Schaub, H.

    2013-08-01

    In order to reduce the debris population in LEO, remediation is necessary. An active debris removal method is explored that utilizes fuel reserves on a recently launched upper stage to rendezvous with, and tether to, debris. The system's tethered dynamics are explored using a discretized tether model attached to six degree of freedom end bodies. The thrust output is shaped to remove the spectral energy at the natural frequencies of the tether, significantly reducing the post-burn relative motion between the vehicles. The sensitivity of the input shaping performance due to imperfect knowledge of the debris mass demonstrates that a double notch spanning multiple frequencies around the first mode is necessary to be robust to unknown debris mass. On-orbit simulations show that input shaping helps the tethered system achieve smooth oscillations about a gravity gradient alignment, reducing collision likelihood.

  16. Methods applied in studies of benthic marine debris.

    PubMed

    Spengler, Angela; Costa, Monica F

    2008-02-01

    The ocean floor is one of the main accumulation sites of marine debris. The study of this kind of debris still lags behind that of shorelines. It is necessary to identify the methods used to evaluate this debris and how the results are presented and interpreted. From the available literature on benthic marine debris (26 studies), six sampling methods were registered: bottom trawl net, sonar, submersible, snorkeling, scuba diving and manta tow. The most frequent method used was bottom trawl net, followed by the three methods of diving. The majority of the debris was classified according to their former use and the results usually expressed as items per unity of area. To facilitate comparisons of the contamination levels among sites and regions some standardization requirements are suggested.

  17. Benthic plastic debris in marine and fresh water environments.

    PubMed

    Corcoran, Patricia L

    2015-08-01

    This review provides a discussion of the published literature concerning benthic plastic debris in ocean, sea, lake, estuary and river bottoms throughout the world. Although numerous investigations of shoreline, surface and near-surface plastic debris provide important information on plastic types, distribution, accumulation, and degradation, studies of submerged plastic debris have been sporadic in the past and have become more prominent only recently. The distribution of benthic debris is controlled mainly by combinations of urban proximity and its association with fishing-related activities, geomorphology, hydrological conditions, and river input. High density plastics, biofouled products, polymers with mineral fillers or adsorbed minerals, and plastic-metal composites all have the potential to sink. Once deposited on the bottoms of water basins and channels, plastics are shielded from UV light, thus slowing the degradation process significantly. Investigations of the interactions between benthic plastic debris and bottom-dwelling organisms will help shed light on the potential dangers of submerged plastic litter. PMID:26129903

  18. Near-infrared imaging of white dwarfs with candidate debris disks

    SciTech Connect

    Wang, Zhongxiang; Tziamtzis, Anestis; Wang, Xuebing

    2014-02-10

    We have carried out JHK{sub s} imaging of 12 white dwarf debris disk candidates from the WIRED Sloan Digital Sky Survey Data Release 7 catalog, aiming to confirm or rule out disks among these sources. On the basis of positional identification and the flux density spectra, we find that seven white dwarfs have excess infrared emission, but mostly at Wide-field Infrared Survey Explorer W1 and W2 bands. Four are due to nearby red objects consistent with background galaxies or very low mass dwarfs, and one exhibits excess emission at JHK{sub s} consistent with an unresolved L0 companion at the correct distance. While our photometry is not inconsistent with all seven excesses arising from disks, the stellar properties are distinct from the known population of debris disk white dwarfs, making the possibility questionable. In order to further investigate the nature of these infrared sources, warm Spitzer imaging is needed, which may help resolve galaxies from the white dwarfs and provide more accurate flux measurements.

  19. Spitzer IRS Spectra of Debris Disks in the Scorpius-Centaurus OB Association

    NASA Astrophysics Data System (ADS)

    Jang-Condell, Hannah; Chen, Christine H.; Mittal, Tushar; Manoj, P.; Watson, Dan; Lisse, Carey M.; Nesvold, Erika; Kuchner, Marc

    2015-08-01

    We analyze spectra obtained with the Spitzer Infrared Spectrograph (IRS) of 110 B-, A-, F-, and G-type stars with optically thin infrared excess in the Scorpius-Centaurus OB association. The ages of these stars range from 11 to 17 Myr. We fit the infrared excesses observed in these sources by Spitzer IRS and the Multiband Imaging Photometer for Spitzer (MIPS) to simple dust models according to Mie theory. We find that nearly all of the objects in our study can be fit by one or two belts of dust. Dust around lower mass stars appears to be closer in than around higher mass stars, particularly for the warm dust component in the two-belt systems, suggesting a mass-dependent evolution of debris disks around young stars. For those objects with stellar companions, all dust distances are consistent with truncation of the debris disk by the binary companion. The gaps between several of the two-belt systems can place limits on the planets that might lie between the belts, potentially constraining the mass and locations of planets that may be forming around these stars.

  20. SPITZER IRS SPECTRA OF DEBRIS DISKS IN THE SCORPIUS–CENTAURUS OB ASSOCIATION

    SciTech Connect

    Jang-Condell, Hannah; Chen, Christine H.; Mittal, Tushar; Lisse, Carey M.; Manoj, P.; Watson, Dan; Nesvold, Erika; Kuchner, Marc

    2015-08-01

    We analyze spectra obtained with the Spitzer Infrared Spectrograph (IRS) of 110 B-, A-, F-, and G-type stars with optically thin infrared excess in the Scorpius–Centaurus OB association. The ages of these stars range from 11 to 17 Myr. We fit the infrared excesses observed in these sources by Spitzer IRS and the Multiband Imaging Photometer for Spitzer (MIPS) to simple dust models according to Mie theory. We find that nearly all of the objects in our study can be fit by one or two belts of dust. Dust around lower mass stars appears to be closer in than around higher mass stars, particularly for the warm dust component in the two-belt systems, suggesting a mass-dependent evolution of debris disks around young stars. For those objects with stellar companions, all dust distances are consistent with truncation of the debris disk by the binary companion. The gaps between several of the two-belt systems can place limits on the planets that might lie between the belts, potentially constraining the mass and locations of planets that may be forming around these stars.

  1. The Great Warming Brian Fagan

    NASA Astrophysics Data System (ADS)

    Fagan, B. M.

    2010-12-01

    The Great Warming is a journey back to the world of a thousand years ago, to the Medieval Warm Period. Five centuries of irregular warming from 800 to 1250 had beneficial effects in Europe and the North Atlantic, but brought prolonged droughts to much of the Americas and lands affected by the South Asian monsoon. The book describes these impacts of warming on medieval European societies, as well as the Norse and the Inuit of the far north, then analyzes the impact of harsh, lengthy droughts on hunting societies in western North America and the Ancestral Pueblo farmers of Chaco Canyon, New Mexico. These peoples reacted to drought by relocating entire communities. The Maya civilization was much more vulnerable that small-scale hunter-gatherer societies and subsistence farmers in North America. Maya rulers created huge water storage facilities, but their civilization partially collapsed under the stress of repeated multiyear droughts, while the Chimu lords of coastal Peru adapted with sophisticated irrigation works. The climatic villain was prolonged, cool La Niñalike conditions in the Pacific, which caused droughts from Venezuela to East Asia, and as far west as East Africa. The Great Warming argues that the warm centuries brought savage drought to much of humanity, from China to Peru. It also argues that drought is one of the most dangerous elements in today’s humanly created global warming, often ignored by preoccupied commentators, but with the potential to cause over a billion people to starve. Finally, I use the book to discuss the issues and problems of communicating multidisciplinary science to the general public.

  2. Activities on Space Debris in U.S.

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2001-01-01

    In the U.S. space debris activities are addressed at all government levels, from the Executive Office of the President to the individual federal agencies to specialized centers, laboratories, organizations, and research groups. U.S. Space Policy specifically challenges government agencies to seek to minimize the creation of space debris and to promote debris minimization practices both domestically and internationally. A set of space debris mitigation standard practices has been developed and adopted by relevant US government agencies, and their application by the commercial aerospace community is highly encouraged. A growing number of US government agencies have issued their own space debris mitigation policies, directives, regulations, and standards. Space debris research, including the definition and modeling of the current and future near-Earth space environment and the development of debris protection technologies, is principally conducted by NASA and the Department of Defense. The U.S. Space Surveillance Network continues to provide the most complete and timely characterization of the population of space debris larger than 10 cm. During the past several years major advancements have been achieved in extending this environment definition in LEO to include particles as small as only a few millimeters. The inspection of returned spacecraft surfaces continues to shed light on the even smaller debris population. With improvements in computer technology, new and more capable programs have been and are being developed to solve a number of operational and research problems. Finally, the academic and industrial sectors of the U.S. are also increasing their participation in and contributions to space debris operations and research. The cooperation of satellite and launch vehicle developers and operators is essential to the U.S. objective of promoting the preservation of the space environment for future generations.

  3. Risk assessment of debris flow hazards in natural slope

    NASA Astrophysics Data System (ADS)

    Choi, Junghae; Chae, Byung-gon; Liu, Kofei; Wu, Yinghsin

    2016-04-01

    The study area is located at north-east part of South Korea. Referring to the map of landslide sus-ceptibility (KIGAM, 2009) from Korea Institute of Geoscience and Mineral Resources (KIGAM for short), there are large areas of potential landslide in high probability on slope land of mountain near the study area. Besides, recently some severe landslide-induced debris flow hazards occurred in this area. So this site is convinced to be prone to debris flow haz-ards. In order to mitigate the influence of hazards, the assessment of potential debris flow hazards is very important and essential. In this assessment, we use Debris-2D, debris flow numerical program, to assess the potential debris flow hazards. The worst scenario is considered for simulation. The input mass sources are determined using landslide susceptibility map. The water input is referred to the daily accumulative rainfall in the past debris flow event in study area. The only one input material property, i.e. yield stress, is obtained using calibration test. The simulation results show that the study area has po-tential to be impacted by debris flow. Therefore, based on simulation results, to mitigate debris flow hazards, we can propose countermeasures, including building check dams, constructing a protection wall in study area, and installing instruments for active monitoring of debris flow hazards. Acknowledgements:This research was supported by the Public Welfare & Safety Research Program through the National Research Foundation of Korea(NRF) funded by the Ministry of Science, ICT & Future Planning (NRF-2012M3A2A1050983)

  4. NOAA-USGS Debris-Flow Warning System - Final Report

    USGS Publications Warehouse

    ,

    2005-01-01

    Landslides and debris flows cause loss of life and millions of dollars in property damage annually in the United States (National Research Council, 2004). In an effort to reduce loss of life by debris flows, the National Oceanic and Atmospheric Administration's (NOAA) National Weather Service (NWS) and the U.S. Geological Survey (USGS) operated an experimental debris-flow prediction and warning system in the San Francisco Bay area from 1986 to 1995 that relied on forecasts and measurements of precipitation linked to empirical precipitation thresholds to predict the onset of rainfall-triggered debris flows. Since 1995, there have been substantial improvements in quantifying precipitation estimates and forecasts, development of better models for delineating landslide hazards, and advancements in geographic information technology that allow stronger spatial and temporal linkage between precipitation forecasts and hazard models. Unfortunately, there have also been several debris flows that have caused loss of life and property across the United States. Establishment of debris-flow warning systems in areas where linkages between rainfall amounts and debris-flow occurrence have been identified can help mitigate the hazards posed by these types of landslides. Development of a national warning system can help support the NOAA-USGS goal of issuing timely Warnings of potential debris flows to the affected populace and civil authorities on a broader scale. This document presents the findings and recommendations of a joint NOAA-USGS Task Force that assessed the current state-of-the-art in precipitation forecasting and debris-flow hazard-assessment techniques. This report includes an assessment of the science and resources needed to establish a demonstration debris-flow warning project in recently burned areas of southern California and the necessary scientific advancements and resources associated with expanding such a warning system to unburned areas and, possibly, to a

  5. Physics of debris clouds from hypervelocity impacts

    NASA Technical Reports Server (NTRS)

    Zee, Ralph

    1993-01-01

    The protection scheme developed for long duration space platforms relies primarily upon placing thin metal plates or 'bumpers' around flight critical components. The effectiveness of this system is highly dependent upon its ability to break up and redistribute the momentum of any particle which might otherwise strike the outer surface of the spacecraft. Therefore it is of critical importance to design the bumpers such that maximum dispersion of momentum is achieved. This report is devoted to an in-depth study into the design and development of a laboratory instrument which would permit the in-situ monitoring of the momentum distribution as the impact event occurs. A series of four designs were developed, constructed and tested culminating with the working instrument which is currently in use. Each design was individually tested using the Space Environmental Effects Facility (SEEF) at the Marshall Space Flight Center in Huntsville, Alabama. Along with the development of the device, an experimental procedure was developed to assist in the investigation of various bumper materials and designs at the SEEF. Preliminary results were used to compute data which otherwise were not experimentally obtainable. These results were shown to be in relative agreement with previously obtained values derived through other methods. The results of this investigation indicated that momentum distribution could in fact be measured in-situ as the impact event occurred thus giving a more accurate determination of the effects of experimental parameters on the momentum spread. Data produced by the instrument indicated a Gaussian-type momentum distribution. A second apparatus was developed and it was placed before the shield in the line of travel utilized a plate to collect impact debris scattered backwards. This plate had a passage hole in the center to allow the particle to travel through it and impact the proposed shield material. Applying the law of conservation of angular momentum a

  6. How warm days increase belief in global warming

    NASA Astrophysics Data System (ADS)

    Zaval, Lisa; Keenan, Elizabeth A.; Johnson, Eric J.; Weber, Elke U.

    2014-02-01

    Climate change judgements can depend on whether today seems warmer or colder than usual, termed the local warming effect. Although previous research has demonstrated that this effect occurs, studies have yet to explain why or how temperature abnormalities influence global warming attitudes. A better understanding of the underlying psychology of this effect can help explain the public's reaction to climate change and inform approaches used to communicate the phenomenon. Across five studies, we find evidence of attribute substitution, whereby individuals use less relevant but available information (for example, today's temperature) in place of more diagnostic but less accessible information (for example, global climate change patterns) when making judgements. Moreover, we rule out alternative hypotheses involving climate change labelling and lay mental models. Ultimately, we show that present temperature abnormalities are given undue weight and lead to an overestimation of the frequency of similar past events, thereby increasing belief in and concern for global warming.

  7. Distinguishing warming-induced drought from drought-induced warming

    NASA Astrophysics Data System (ADS)

    Roderick, M. L.; Yin, D.

    2015-12-01

    It is usually observed that temperatures, especially maximum temperatures are higher during drought. A very widely held public perception is that the increase in temperature is a cause of drought. This represents the warming-induced drought scenario. However, the agricultural and hydrologic scientific communities have a very different interpretation with drought being the cause of increasing temperature. In essence, those communities assume the warming is a surface feedback and their interpretation is for drought-induced warming. This is a classic cause-effect problem that has resisted definitive explanation due to the lack of radiative observations at suitable spatial and temporal scales. In this presentation we first summarise the observations and then use theory to untangle the cause-effect relationships that underlie the competing interpretations. We then show how satellite data (CERES, NASA) can be used to disentangle the cause-effect relations.

  8. Analysis of data from spacecraft (stratospheric warmings)

    NASA Technical Reports Server (NTRS)

    Anderson, A. D.

    1974-01-01

    Links between the upper atmosphere and the stratosphere were studied to explain stratospheric warmings, and to correlate the warmings with other terrestrial and solar phenomena. Physical mechanisms for warming, or which may act as a trigger are discussed along with solar and geophysical indices. Two stratospheric warming cases are analyzed.

  9. Active Movement Warm-Up Routines

    ERIC Educational Resources Information Center

    Walter, Teri; Quint, Ashleigh; Fischer, Kim; Kiger, Joy

    2011-01-01

    This article presents warm-ups that are designed to physiologically and psychologically prepare students for vigorous physical activity. An active movement warm-up routine is made up of three parts: (1) active warm-up movement exercises, (2) general preparation, and (3) the energy system. These warm-up routines can be used with all grade levels…

  10. Charged Coupled Device Debris Telescope Observations of the Geosynchronous Orbital Debris Environment - Observing Year: 1998

    NASA Technical Reports Server (NTRS)

    Jarvis, K. S.; Thumm, T. L.; Matney, M. J.; Jorgensen, K.; Stansbery, E. G.; Africano, J. L.; Sydney, P. F.; Mulrooney, M. K.

    2002-01-01

    NASA has been using the charged coupled device (CCD) debris telescope (CDT)--a transportable 32-cm Schmidt telescope located near Cloudcroft, New Mexico-to help characterize the debris environment in geosynchronous Earth orbit (GEO). The CDT is equipped with a SITe 512 x 512 CCD camera whose 24 m2 (12.5 arc sec) pixels produce a 1.7 x 1.7-deg field of view. The CDT system can therefore detect l7th-magnitude objects in a 20-sec integration corresponding to an approx. 0.6-m diameter, 0.20 albedo object at 36,000 km. The telescope pointing and CCD operation are computer controlled to collect data automatically for an entire night. The CDT has collected more than 1500 hrs of data since November 1997. This report describes the collection and analysis of 58 nights (approx. 420 hrs) of data acquired in 1998.

  11. SPITZER INFRARED SPECTROGRAPH SPECTROSCOPY OF THE 10 Myr OLD EF Cha DEBRIS DISK: EVIDENCE FOR PHYLLOSILICATE-RICH DUST IN THE TERRESTRIAL ZONE

    SciTech Connect

    Currie, Thayne; Lisse, Carey M.; Sicilia-Aguilar, Aurora; Rieke, George H.; Su, Kate Y. L.

    2011-06-20

    We describe Spitzer Infrared Spectrograph spectroscopic observations of the {approx}10 Myr old star, EF Cha. Compositional modeling of the spectra from 5 {mu}m to 35 {mu}m confirms that it is surrounded by a luminous debris disk with L{sub D} /L{sub *} {approx} 10{sup -3}, containing dust with temperatures between 225 K and 430 K, characteristic of the terrestrial zone. The EF Cha spectrum shows evidence for many solid-state features, unlike most cold, low-luminosity debris disks but like some other 10-20 Myr old luminous, warm debris disks (e.g., HD 113766A). The EF Cha debris disk is unusually rich in a species or combination of species whose emissivities resemble that of finely powdered, laboratory-measured phyllosilicate species (talc, saponite, and smectite), which are likely produced by aqueous alteration of primordial anhydrous rocky materials. The dust and, by inference, the parent bodies of the debris also contain abundant amorphous silicates and metal sulfides, and possibly water ice. The dust's total olivine to the pyroxene ratio of {approx}2 also provides evidence of aqueous alteration. The large mass volume of grains with sizes comparable to or below the radiation blow-out limit implies that planetesimals may be colliding at a rate high enough to yield the emitting dust but not so high as to devolatize the planetesimals via impact processing. Because phyllosilicates are produced by the interactions between anhydrous rock and warm, reactive water, EF Cha's disk is a likely signpost for water delivery to the terrestrial zone of a young planetary system.

  12. Drag sails for space debris mitigation

    NASA Astrophysics Data System (ADS)

    Visagie, Lourens; Lappas, Vaios; Erb, Sven

    2015-04-01

    The prudence for satellites to have a mitigation or deorbiting strategy has been brought about by the ever increasing amount of debris in Earth orbit. Drag augmentation is a potentially passive method for de-orbiting in LEO but its collision risk mitigation efficiency is sometimes underestimated by not taking all the relevant factors into account. This paper shows that using drag augmentation from a deployable drag-sail to de-orbit a satellite in LEO will lead to a reduction in collision risk. In order to support this finding, the models that are needed in order to evaluate the collision risk of a decaying object under drag conditions are presented. A comparison is performed between the simpler Area-Time-Product (ATP) and more precise collision risk analysis, and the effects that are overlooked in the simple ATP calculation are explained.

  13. High Energy Laser for Space Debris Removal

    SciTech Connect

    Barty, C; Caird, J; Erlandson, A; Beach, R; Rubenchik, A

    2009-10-30

    The National Ignition Facility (NIF) and Photon Science Directorate at Lawrence Livermore National Laboratory (LLNL) has substantial relevant experience in the construction of high energy lasers, and more recently in the development of advanced high average power solid state lasers. We are currently developing new concepts for advanced solid state laser drivers for the Laser Inertial Fusion Energy (LIFE) application, and other high average power laser applications that could become central technologies for use in space debris removal. The debris population most readily addressed by our laser technology is that of 0.1-10 cm sized debris in low earth orbit (LEO). In this application, a ground based laser system would engage an orbiting target and slow it down by ablating material from its surface which leads to reentry into the atmosphere, as proposed by NASA's ORION Project. The ORION concept of operations (CONOPS) is also described in general terms by Phipps. Key aspects of this approach include the need for high irradiance on target, 10{sup 8} to 10{sup 9} W/cm{sup 2}, which favors short (i.e., picoseconds to nanoseconds) laser pulse durations and high energy per pulse ({approx} > 10 kJ). Due to the target's orbital velocity, the potential duration of engagement is only of order 100 seconds, so a high pulse repetition rate is also essential. The laser technology needed for this application did not exist when ORION was first proposed, but today, a unique combination of emerging technologies could create a path to enable deployment in the near future. Our concepts for the laser system architecture are an extension of what was developed for the National Ignition Facility (NIF), combined with high repetition rate laser technology developed for Inertial Fusion Energy (IFE), and heat capacity laser technology developed for military applications. The 'front-end' seed pulse generator would be fiber-optics based, and would generate a temporally, and spectrally tailored

  14. Orbital Debris Characterization via Laboratory Optical Measurements

    NASA Technical Reports Server (NTRS)

    Cowardin, Healther

    2011-01-01

    Optical observations of orbital debris offer insights that differ from radar measurements (specifically the size parameter,wavelength regime,and altitude range). For example, time-dependent photometric data yield lightcurves in multiple bandpasses that aid in material identification and possible periodic orientations. These data can also be used to help identify shapes and optical properties at multiple phase angles. Capitalizing on optical data products and applying them to generate a more complete understanding of orbital objects is a key objective of NASA's Optical Measurement Program, and the primary reason for the creation of the Optical Measurements Center(OMC). The OMC attempts to emulate space-based illumination conditions using equipment and techniques that parallel telescopic observations and source-target-sensor orientations.

  15. The debris disc around HIP 17439

    NASA Astrophysics Data System (ADS)

    Schüppler, Christian; Löhne, Torsten; Krivov, Alexander

    2013-07-01

    In the framework of the Herschel Open Time Key Programme DUNES the debris disc around the K2 V star HIP 17439 was observed. In PACS images the disc emission is spatially clearly extended. A simultaneous analysis of photometric observations and radial brightness profiles from the resolved images provides valuable hints for the disc structure. In an analytical model we adopted power laws for the size and radial distribution of the circumstellar dust and tested two different scenarios: (1) a broad dust ring with a radial extent of about 200AU, (2) two independent dust rings separated by a gap of several tens of AU. Both models fit the spectral energy distribution and the radial profiles quite well. In case (1) the parameters found are consistent with dust stemming from an outer planetesimal belt at ~140AU and strong transport mechanisms that drag the particles inward. Model (2) would imply two planetesimal belts, producing a narrow inner and wider outer distribution of dust.

  16. Global warming and infectious disease.

    PubMed

    Khasnis, Atul A; Nettleman, Mary D

    2005-01-01

    Global warming has serious implications for all aspects of human life, including infectious diseases. The effect of global warming depends on the complex interaction between the human host population and the causative infectious agent. From the human standpoint, changes in the environment may trigger human migration, causing disease patterns to shift. Crop failures and famine may reduce host resistance to infections. Disease transmission may be enhanced through the scarcity and contamination of potable water sources. Importantly, significant economic and political stresses may damage the existing public health infrastructure, leaving mankind poorly prepared for unexpected epidemics. Global warming will certainly affect the abundance and distribution of disease vectors. Altitudes that are currently too cool to sustain vectors will become more conducive to them. Some vector populations may expand into new geographic areas, whereas others may disappear. Malaria, dengue, plague, and viruses causing encephalitic syndromes are among the many vector-borne diseases likely to be affected. Some models suggest that vector-borne diseases will become more common as the earth warms, although caution is needed in interpreting these predictions. Clearly, global warming will cause changes in the epidemiology of infectious diseases. The ability of mankind to react or adapt is dependent upon the magnitude and speed of the change. The outcome will also depend on our ability to recognize epidemics early, to contain them effectively, to provide appropriate treatment, and to commit resources to prevention and research.

  17. Warming early Earth and Mars

    SciTech Connect

    Kasting, J.F.

    1997-05-23

    Sagan and Chyba, in their article on page 1217 of this issue, have revived an old debate about how liquid water was maintained on early Earth and Mars despite a solar luminosity 25 to 30% lower than that at present. A theory that has been popular for some time is that greatly elevated concentrations of atmospheric COD produced by the action of the carbonate-silicate cycle, provided enough of a greenhouse effect to warm early Earth. However, Rye et al. have placed geochemical constraints on early atmospheric CO{sub 2} abundances that fall well below the levels needed to warm the surface. These constraints are based on the absence of siderite (FeCO{sub 3}) in ancient soil profiles-a negative and, hence, rather weak form of evidence- and apply to the time period 2.2 to 2.8 billion years ago, when Earth was already middle aged. Nonetheless, the soil data provide some indication that atmospheric CO{sub 2} levels may have been lower than previously thought. An even more serious problem arises if one tries to keep early Mars warm with CO{sub 2}. Model calculations predict that CO{sub 2} clouds would form on Mars in the upper troposphere, reducing the lapse rate and severely limiting the amount of surface warming. A suggestion that CO{sub 2} clouds may have warmed the planet radiatively has yet to be borne out by detailed calculations. 26 refs.

  18. Material Density Distribution of Small Debris in Earth Orbit

    NASA Technical Reports Server (NTRS)

    Krisko, P. H.; Xu, Y.-l.; Opiela, J. N.; Hill, N. M.; Matney, M. J.

    2008-01-01

    Over 200 spacecraft and rocket body breakups in Earth orbit have populated that regime with debris fragments in the sub-micron through meter size range. Though the largest debris fragments can cause significant collisional damage to active (operational) spacecraft, these are few and trackable by radar. Fragments on the order of a millimeter to a centimeter in size are as yet untrackable. But this smaller debris can result in damage to critical spacecraft systems and, under the worst conditions, fragmenting collision events. Ongoing research at the NASA Orbital Debris Program Office on the sources of these small fragments has focused on the material components of spacecraft and rocket bodies and on breakup event morphology. This has led to fragment material density estimates, and also the beginnings of shape categorizations. To date the NASA Standard Breakup Model has not considered specific material density distinctions of small debris. The basis of small debris in that model is the fourth hypervelocity impact event of the Satellite Orbital Debris Characterization Impact Test (SOCIT) series. This test targeted a flight-ready, U.S. Transit navigation satellite with a solid aluminum sphere impactor. Results in this event yield characteristic length (size) and area-to-mass distributions of fragments smaller than 10 cm in the NASA model. Recent re-analysis of the SOCIT4 small fragment dataset highlighted the material-specific characteristics of metals and non-metals. Concurrent analysis of Space Shuttle in-situ impact data showed a high percentage of aluminum debris in shuttle orbit regions. Both analyses led to the definition of three main on-orbit debris material density categories -low density (< 2 g/cc), medium density (2 to 6 g/cc), and high density (> 6 g/cc). This report considers the above studies in an explicit extension of the NASA Standard Breakup Model where separate material densities for debris are generated and these debris fragments are propagated in

  19. A real two-phase submarine debris flow and tsunami

    SciTech Connect

    Pudasaini, Shiva P.; Miller, Stephen A.

    2012-09-26

    The general two-phase debris flow model proposed by Pudasaini is employed to study subaerial and submarine debris flows, and the tsunami generated by the debris impact at lakes and oceans. The model, which includes three fundamentally new and dominant physical aspects such as enhanced viscous stress, virtual mass, and generalized drag (in addition to buoyancy), constitutes the most generalized two-phase flow model to date. The advantage of this two-phase debris flow model over classical single-phase, or quasi-two-phase models, is that the initial mass can be divided into several parts by appropriately considering the solid volume fraction. These parts include a dry (landslide or rock slide), a fluid (water or muddy water; e.g., dams, rivers), and a general debris mixture material as needed in real flow simulations. This innovative formulation provides an opportunity, within a single framework, to simultaneously simulate the sliding debris (or landslide), the water lake or ocean, the debris impact at the lake or ocean, the tsunami generation and propagation, the mixing and separation between the solid and fluid phases, and the sediment transport and deposition process in the bathymetric surface. Applications of this model include (a) sediment transport on hill slopes, river streams, hydraulic channels (e.g., hydropower dams and plants); lakes, fjords, coastal lines, and aquatic ecology; and (b) submarine debris impact and the rupture of fiber optic, submarine cables and pipelines along the ocean floor, and damage to offshore drilling platforms. Numerical simulations reveal that the dynamics of debris impact induced tsunamis in mountain lakes or oceans are fundamentally different than the tsunami generated by pure rock avalanches and landslides. The analysis includes the generation, amplification and propagation of super tsunami waves and run-ups along coastlines, debris slide and deposition at the bottom floor, and debris shock waves. It is observed that the

  20. Systems and Sensors for Debris-flow Monitoring and Warning

    PubMed Central

    Arattano, Massimo; Marchi, Lorenzo

    2008-01-01

    Debris flows are a type of mass movement that occurs in mountain torrents. They consist of a high concentration of solid material in water that flows as a wave with a steep front. Debris flows can be considered a phenomenon intermediate between landslides and water floods. They are amongst the most hazardous natural processes in mountainous regions and may occur under different climatic conditions. Their destructiveness is due to different factors: their capability of transporting and depositing huge amounts of solid materials, which may also reach large sizes (boulders of several cubic meters are commonly transported by debris flows), their steep fronts, which may reach several meters of height and also their high velocities. The implementation of both structural and non-structural control measures is often required when debris flows endanger routes, urban areas and other infrastructures. Sensor networks for debris-flow monitoring and warning play an important role amongst non-structural measures intended to reduce debris-flow risk. In particular, debris flow warning systems can be subdivided into two main classes: advance warning and event warning systems. These two classes employ different types of sensors. Advance warning systems are based on monitoring causative hydrometeorological processes (typically rainfall) and aim to issue a warning before a possible debris flow is triggered. Event warning systems are based on detecting debris flows when these processes are in progress. They have a much smaller lead time than advance warning ones but are also less prone to false alarms. Advance warning for debris flows employs sensors and techniques typical of meteorology and hydrology, including measuring rainfall by means of rain gauges and weather radar and monitoring water discharge in headwater streams. Event warning systems use different types of sensors, encompassing ultrasonic or radar gauges, ground vibration sensors, videocameras, avalanche pendulums

  1. Photometric Studies of Orbital Debris at GEO

    NASA Technical Reports Server (NTRS)

    Seitzer, Patrick; Abercromby, Kira J.; Rodriguez-Cowardin, Heather M.; Barker, Ed; Foreman, Gary; Horstman, Matt

    2009-01-01

    We report on optical observations of debris at geosynchronous Earth orbit (GEO) using two telescopes simultaneously at the Cerro Tololo Inter-American Observatory (CTIO) in Chile. The University of Michigan s 0.6/0.9-m Schmidt telescope MODEST (for Michigan Orbital DEbris Survey Telescope) was used in survey mode to find objects that potentially could be at GEO. Because GEO objects only appear in this telescope s field of view for an average of 5 minutes, a full six-parameter orbit can not be determined. Interrupting the survey for follow-up observations leads to incompleteness in the survey results. Instead, as objects are detected with MODEST, initial predictions assuming a circular orbit are done for where the object will be for the next hour, and the objects are reacquired as quickly as possible on the CTIO 0.9-m telescope. This second telescope follows-up during the first night and, if possible, over several more nights to obtain the maximum time arc possible, and the best six parameter orbit. Our goal is to obtain an initial orbit and calibrated colors for all detected objects fainter than R = 15th in order to estimate the orbital distribution of objects selected on the basis of two observational criteria: magnitude and angular rate. One objective is to estimate what fraction of objects selected on the basis of angular rate are not at GEO. A second objective is to obtain magnitudes and colors in standard astronomical filters (BVRI) for comparison with reflectance spectra of likely spacecraft materials.

  2. Simulation of long-term debris flow sediment transport based on a slope stability and a debris flow routing model

    NASA Astrophysics Data System (ADS)

    Müller, T.; Hoffmann, T.

    2012-04-01

    Debris flows play a crucial role in the coupling of hillslope-sediment sources and channels in mountain environments. In most landscape evolution models (LEMs), the sediment transport by debris flows is (if at all) often represented by simple empirical rules. This generally results from the mismatch of the coarse resolution of the LEMs and the small scale impacts of debris flow processes. To extend the accuracy and predictive power of LEMs, either a higher resolution of LEMs in combination with process-based debris flow models or a better parametrisation of subpixel scale debris flow processes is necessary. Furthermore, the simulation of sediment transport by debris flows is complicated by their episodic nature and unknown factors controlling the frequency and magnitude of events. Here, we present first results using a slope stability model (SINMAP) and an event-based debris flow routing model (SCIDDICA-S4c) to simulate the effects of debris flows in LEMs. The model was implemented in the XULU modelling platform developed by the Department of Computer Science at the University of Bonn. The combination of the slope stability model and the event-based routing and mass balance model enables us to simulate the triggering and routing of debris flow material through the iteration of single events over several thousand years. Although a detailed calibration and validation remains to be done, the resulting debris flow-affected areas in a test elevation model correspond well with data gained from a geomorphological mapping of the corresponding area, justifying our approach. The increased computation speed allows to run high resolution LEM in convenient short time at relatively low cost. This should encourage the development of more detailed LEMs, in which process-based models should be incorporated.

  3. Variations on Debris Disks III. Collisional Cascades and Giant Impacts in the Terrestrial Zones of Solar-type Stars

    NASA Astrophysics Data System (ADS)

    Kenyon, Scott J.; Bromley, Benjamin C.

    2016-01-01

    We analyze two new sets of coagulation calculations for solid particles orbiting within the terrestrial zone of a solar-type star. In models of collisional cascades, numerical simulations demonstrate that the total mass, the mass in 1 mm and smaller particles, and the dust luminosity decline with time more rapidly than predicted by analytic models, \\propto {t}-n with n ≈ 1.1-1.2 instead of 1. Size distributions derived from the numerical calculations follow analytic predictions at r ≲ 0.1 km but are shallower than predicted at larger sizes. In simulations of planet formation, the dust luminosity declines more slowly than in pure collisional cascades, with n ≈ 0.5-0.8 instead of 1.1-1.2. Throughout this decline, giant impacts produce large, observable spikes in dust luminosity that last ˜0.01-0.1 Myr and recur every 1-10 Myr. If most solar-type stars have Earth mass planets with a ≲1-2 AU, observations of debris around 1-100 Myr stars allow interesting tests of theory. Current data preclude theories where terrestrial planets form out of 1000 km or larger planetesimals. Although the observed frequency of debris disks among ≳30 Myr old stars agrees with our calculations, the observed frequency of warm debris among 5-20 Myr old stars is smaller than predicted.

  4. Global warming: trends and effects.

    PubMed

    Tickell, C

    1993-01-01

    As animals we have been a remarkably successful species; but also as animals we are vulnerable to environmental, in particular climate change. Such change is accelerating as a result of human activity, and global warming may already be taking place. Although we can foresee the trends, we cannot yet be specific about the results. Change usually proceeds by steps rather than gradients. But warming would probably include new risks to human health and contribute to an increase in human displacement. Of course climate change is only one among other complex problems facing human society, but it is closely related to them all, including population increase, environmental degradation and loss of biodiversity. We cannot prevent global warming but we can anticipate and mitigate some of its worst effects. Peoples and governments still need persuading of the need for action and of the magnitude of the issue at stake.

  5. Cosmic Rays and Global Warming

    SciTech Connect

    Sloan, T.; Wolfendale, A. W.

    2008-01-24

    Some workers have claimed that the observed temporal correlations of (low level) terrestrial cloud cover with the cosmic ray intensity changes, due to solar modulation, are causal. The possibility arises, therefore, of a connection between cosmic rays and Global Warming. If true, the implications would be very great. We have examined this claim in some detail. So far, we have not found any evidence in support and so our conclusions are to doubt it. From the absence of corroborative evidence we estimate that less than 15% at the 95% confidence level, of the 11-year cycle warming variations are due to cosmic rays and less than 2% of the warming over the last 43 years is due to this cause. The origin of the correlation itself is probably the cycle of solar irradiance although there is, as yet, no certainty.

  6. Acoustic module of the Acquabona (Italy) debris flow monitoring system

    NASA Astrophysics Data System (ADS)

    Galgaro, A.; Tecca, P. R.; Genevois, R.; Deganutti, A. M.

    2005-02-01

    Monitoring of debris flows aimed to the assessment of their physical parameters is very important both for theoretical and practical purposes. Peak discharge and total volume of debris flows are crucial for designing effective countermeasures in many populated mountain areas where losses of lives and property damage could be avoided. This study quantifies the relationship between flow depth, acoustic amplitude of debris flow induced ground vibrations and front velocity in the experimental catchment of Acquabona, Eastern Dolomites, Italy. The analysis of data brought about the results described in the following. Debris flow depth and amplitude of the flow-induced ground vibrations show a good positive correlation. Estimation of both mean front velocity and peak discharge can be simply obtained monitoring the ground vibrations, through geophones installed close to the flow channel; the total volume of debris flow can be so directly estimated from the integral of the ground vibrations using a regression line. The application of acoustic technique to debris flow monitoring seems to be of the outmost relevance in risk reduction policies and in the correct management of the territory. Moreover this estimation is possible in other catchments producing debris flows of similar characteristics by means of their acoustic characterisation through quick and simple field tests (Standard Penetration Tests and seismic refraction surveys).

  7. The effects of large beach debris on nesting sea turtles

    USGS Publications Warehouse

    Fujisaki, Ikuko; Lamont, Margaret M.

    2016-01-01

    A field experiment was conducted to understand the effects of large beach debris on sea turtle nesting behavior as well as the effectiveness of large debris removal for habitat restoration. Large natural and anthropogenic debris were removed from one of three sections of a sea turtle nesting beach and distributions of nests and false crawls (non-nesting crawls) in pre- (2011–2012) and post- (2013–2014) removal years in the three sections were compared. The number of nests increased 200% and the number of false crawls increased 55% in the experimental section, whereas a corresponding increase in number of nests and false crawls was not observed in the other two sections where debris removal was not conducted. The proportion of nest and false crawl abundance in all three beach sections was significantly different between pre- and post-removal years. The nesting success, the percent of successful nests in total nesting attempts (number of nests + false crawls), also increased from 24% to 38%; however the magnitude of the increase was comparably small because both the number of nests and false crawls increased, and thus the proportion of the nesting success in the experimental beach in pre- and post-removal years was not significantly different. The substantial increase in sea turtle nesting activities after the removal of large debris indicates that large debris may have an adverse impact on sea turtle nesting behavior. Removal of large debris could be an effective restoration strategy to improve sea turtle nesting.

  8. Orbital debris hazard insights from spacecraft anomalies studies

    NASA Astrophysics Data System (ADS)

    McKnight, Darren S.

    2016-09-01

    Since the dawning of the space age space operators have been tallying spacecraft anomalies and failures then using these insights to improve the space systems and operations. As space systems improved and their lifetimes increased, the anomaly and failure modes have multiplied. Primary triggers for space anomalies and failures include design issues, space environmental effects, and satellite operations. Attempts to correlate anomalies to the orbital debris environment have started as early as the mid-1990's. Early attempts showed tens of anomalies correlated well to altitudes where the cataloged debris population was the highest. However, due to the complexity of tracing debris impacts to mission anomalies, these analyses were found to be insufficient to prove causation. After the fragmentation of the Chinese Feng-Yun satellite in 2007, it was hypothesized that the nontrackable fragments causing anomalies in LEO would have increased significantly from this event. As a result, debris-induced anomalies should have gone up measurably in the vicinity of this breakup. Again, the analysis provided some subtle evidence of debris-induced anomalies but it was not convincing. The continued difficulty in linking debris flux to satellite anomalies and failures prompted the creation of a series of spacecraft anomalies and failure workshops to investigate the identified shortfalls. These gatherings have produced insights into why this process is not straightforward. Summaries of these studies and workshops are presented and observations made about how to create solutions for anomaly attribution, especially as it relates to debris-induced spacecraft anomalies and failures.

  9. Debris Characterization Diagnostic for the National Ignition Facility

    SciTech Connect

    Miller, M.C.; Celeste, J.R. Stoyer, M.A.; Suter, L.J.; Tobin, M.T.; Grun, J.; Davis, J.F.; Barnes, C.W.; Wilson, D.C.

    2000-06-07

    Generation of debris from targets and by x-ray ablation of surrounding materials will be a matter of concern for experimenters and the operations staff at the National Ignition Facility (NIF). Target chamber and final optics protection, for example debris shield damage, and efficient facility operation drive the interest for the NIF staff. Experimenters are primarily concerned with diagnostic survivability, separation of mechanical versus radiation induced test object response in the case of effects tests, and radiation transport through the debris field when the net radiation output is used to benchmark computer codes. In addition, radiochemical analysis of activated capsule debris during ignition shots can provide a measure of the ablator. Conceptual design of the Debris Monitor and Rad-Chem Station, one of the NIF core diagnostics, is presented. Methods of debris collection, particle size and mass analysis, impulse measurement, and radiochemical analysis are given. A description of recent experiments involving debris collection and impulse measurement on the OMEGA and Pharos lasers is also provided.

  10. Search for cold debris disks around M-dwarfs

    NASA Astrophysics Data System (ADS)

    Lestrade, J.-F.; Wyatt, M. C.; Bertoldi, F.; Dent, W. R. F.; Menten, K. M.

    2006-12-01

    Debris disks are believed to be related to planetesimals left over around stars after planet formation has ceased. The frequency of debris disks around M-dwarfs which account for 70% of the stars in the Galaxy is unknown while constrains have already been found for A- to K-type stars. We have searched for cold debris disks around 32 field M-dwarfs by conducting observations at λ = 850~μm with the SCUBA bolometer array camera at the JCMT and at λ = 1.2 mm with the MAMBO array at the IRAM 30-m telescopes. This is the first survey of a large sample of M-dwarfs conducted to provide statistical constraints on debris disks around this type of stars. We have detected a new debris disk around the M0.5 dwarf GJ 842.2 at λ = 850~μm, providing evidence for cold dust at large distance from this star (~300 AU). By combining the results of our survey with the ones of Liu et al. (2004), we estimate for the first time the detection rate of cold debris disks around field M-dwarfs with ages between 20 and 200 Myr. This detection rate is 13+6-8% and is consistent with the detection rate of cold debris disks (9-23%) around A- to K-type main sequence stars of the same age. This is an indication that cold disks may be equally prevalent across stellar spectral types.

  11. Recent Developments in Space Debris Mitigation Policy and Practices

    NASA Technical Reports Server (NTRS)

    Johnson, Nicholas L.

    2006-01-01

    In recent years, emphasis has shifted from national efforts to control the space debris population to international ones. Here, too, great progress has been made, most notably by the Inter-Agency Space Debris Coordination Committee (IADC) and the Committee on the Peaceful Uses of Outer Space (COPUOS) of the United Nations. Today, a firm international consensus is rapidly building on the principal space debris mitigation measures. The IADC is an association of the space agencies of ten countries (China, France, Germany, India, Italy, Japan, Russia, Ukraine, the United Kingdom, and the United States) and the European Space Agency, representing 17 countries of which four (France, Germany, Italy, and the United Kingdom) are also full IADC members. At the 17th meeting of the IADC in October 1999, a new Action Item (AI 17.2) was adopted to develop a set of consensus space debris mitigation guidelines. The purpose of the activity was to identify the most valuable space debris mitigation measures and to reach an international agreement on common directives. The IADC Space Debris Mitigation Guidelines (www.iadc-online.org/index.cgi?item=docs_pub) were formally adopted in October 2002 during the Second World Space Congress in Houston, Texas. Two years later a companion document, entitled Support to the IADC Space Debris Mitigation Guidelines, was completed to provide background and clarification for the guidelines.

  12. Styrofoam debris as a potential carrier of mercury within ecosystems.

    PubMed

    Graca, Bożena; Bełdowska, Magdalena; Wrzesień, Patrycja; Zgrundo, Aleksandra

    2014-02-01

    The present paper falls within the trend of research into interactions between various pollutants emitted anthropogenically into the environment and focuses on mercury and styrofoam debris. The study covers part of the Southern Baltic's drainage area. Apart from styrofoam and beach sand, the research involved mosses, which are bioindicators of atmospheric metal pollution. The research has shown that mercury present in the environment becomes associated with styrofoam debris. The median for mercury concentrations in virgin styrofoam samples (0.23 ng g(-1) dry weight (d.w.)) and in beach sand samples (0.69 ng g(-1) d.w.) was an order of magnitude lower than in the styrofoam debris (5.20 ng g(-1) d.w.). The highest mercury content observed in styrofoam debris (3,863 ng g(-1) d.w.) exceeded the standards for bottom sediment and soil. The binding of mercury to styrofoam debris takes place in water, and presumably also through contact with the ground. A significant role in this process was played by biotic factors, such as the presence of biofilm and abiotic ones, such as solar radiation and the transformations of mercury forms related to it. As a result, mercury content in styrofoam debris underwent seasonal changes, peaking in summertime. Furthermore, the regional changes of mercury content in the studied debris seem to reflect the pollution levels of the environment.

  13. ORDEM2010 and MASTER-2009 Modeled Small Debris Population Comparison

    NASA Technical Reports Server (NTRS)

    Krisko, Paula H.; Flegel, S.

    2010-01-01

    The latest versions of the two premier orbital debris engineering models, NASA s ORDEM2010 and ESA s MASTER-2009, have been publicly released. Both models have gone through significant advancements since inception, and now represent the state-of-the-art in orbital debris knowledge of their respective agencies. The purpose of these models is to provide satellite designers/operators and debris researchers with reliable estimates of the artificial debris environment in near-Earth orbit. The small debris environment within the size range of 1 mm to 1 cm is of particular interest to both human and robotic spacecraft programs. These objects are much more numerous than larger trackable debris but are still large enough to cause significant, if not catastrophic, damage to spacecraft upon impact. They are also small enough to elude routine detection by existing observation systems (radar and telescope). Without reliable detection the modeling of these populations has always coupled theoretical origins with supporting observational data in different degrees. This paper details the 1 mm to 1 cm orbital debris populations of both ORDEM2010 and MASTER-2009; their sources (both known and presumed), current supporting data and theory, and methods of population analysis. Fluxes on spacecraft for chosen orbits are also presented and discussed within the context of each model.

  14. Surrogate Nuclear Explosion Debris for Measurement Validation and Research

    SciTech Connect

    Eiden, Gregory C.; Liezers, Martin; Harvey, Scott D.; Zemanian, Thomas S.; Szechenyi, Scott C.; Gerlach, David C.; Eckberg, Alison D.; Garcia, Ben J.; Sweet, Lucas E.; Goodwin, Shannon M.; Farmer, Orville T.; Bachelor, Paula P.

    2010-08-11

    ABSTRACT There is intense interest in characterizing nuclear explosion debris following the terrorist use of a nuclear weapon or improvised nuclear device. The quality of the laboratory analyses of such samples is critical if action is to be taken based on those analyses. Thus, validating methods against well characterized nuclear debris is of interest, however, actual nuclear explosion debris is difficult to obtain. PNNL has embarked on a program to develop laboratory methods to synthesize materials which mimic nuclear explosion debris with respect to selected characteristics. Which characteristics are mimicked depends on the application. For tests of laboratory radioanalytical capabilities, materials with relatively few characteristics in common with actual debris are useful. For other applications, material properties may need to match real debris to a greater extent, e.g., for fate and transport studies the chemical behavior should match real debris in detail. We will describe methods by which these materials can be produced and highlight some of the issues associated with such operations.

  15. Styrofoam debris as a potential carrier of mercury within ecosystems.

    PubMed

    Graca, Bożena; Bełdowska, Magdalena; Wrzesień, Patrycja; Zgrundo, Aleksandra

    2014-02-01

    The present paper falls within the trend of research into interactions between various pollutants emitted anthropogenically into the environment and focuses on mercury and styrofoam debris. The study covers part of the Southern Baltic's drainage area. Apart from styrofoam and beach sand, the research involved mosses, which are bioindicators of atmospheric metal pollution. The research has shown that mercury present in the environment becomes associated with styrofoam debris. The median for mercury concentrations in virgin styrofoam samples (0.23 ng g(-1) dry weight (d.w.)) and in beach sand samples (0.69 ng g(-1) d.w.) was an order of magnitude lower than in the styrofoam debris (5.20 ng g(-1) d.w.). The highest mercury content observed in styrofoam debris (3,863 ng g(-1) d.w.) exceeded the standards for bottom sediment and soil. The binding of mercury to styrofoam debris takes place in water, and presumably also through contact with the ground. A significant role in this process was played by biotic factors, such as the presence of biofilm and abiotic ones, such as solar radiation and the transformations of mercury forms related to it. As a result, mercury content in styrofoam debris underwent seasonal changes, peaking in summertime. Furthermore, the regional changes of mercury content in the studied debris seem to reflect the pollution levels of the environment. PMID:24057963

  16. Sharp Eccentric Rings in Planetless Hydrodynamical Models of Debris Disks

    NASA Technical Reports Server (NTRS)

    Lyra, W.; Kuchner, M. J.

    2013-01-01

    Exoplanets are often associated with disks of dust and debris, analogs of the Kuiper Belt in our solar system. These "debris disks" show a variety of non-trivial structures attributed to planetary perturbations and utilized to constrain the properties of the planets. However, analyses of these systems have largely ignored the fact that, increasingly, debris disks are found to contain small quantities of gas, a component all debris disks should contain at some level. Several debris disks have been measured with a dust-to-gas ratio around unity where the effect of hydrodynamics on the structure of the disk cannot be ignored. Here we report that dust-gas interactions can produce some of the key patterns seen in debris disks that were previously attributed to planets. Through linear and nonlinear modeling of the hydrodynamical problem, we find that a robust clumping instability exists in this configuration, organizing the dust into narrow, eccentric rings, similar to the Fomalhaut debris disk. The hypothesis that these disks might contain planets, though thrilling, is not necessarily required to explain these systems.

  17. Need for an international legislation on space debris

    NASA Astrophysics Data System (ADS)

    Smith, Catherine E.

    1995-06-01

    Since the launch of the first Sputnik in 1957, the number of space debris in orbit is progressively increasing, up to a point that is today considered serious. Scientists quickly became aware of this phenomena and started studying the evolution, mitigation, and characterization of space debris. But jurists are today confronted with a situation that the United Nations Outer Space Treaties did not foresee. The purpose of the presentation is to look at the existing international public law and examine how it may help to characterize and/or mitigate the space debris population. After having briefly described the problem caused by space debris, the first part will study the United Nations Space Treaties and in particular the principles of responsibility and liability as laid down in the 1967 Outer Space Treaty and the 1972 Liability Convention, which should allow us to conclude that there is an urgent need for a new international convention of space debris. The second part will then focus on the several proposals made concerning space debris and will lay down a set of general principles of the legislation on space debris.

  18. Global Warming: Physics and Facts

    SciTech Connect

    Levi, B.G.; Hafemeister, D.; Scribner, R.

    1992-05-01

    This report contains papers on: A tutorial on global atmospheric energetics and the greenhouse effect; global climate models: what and how; comparison of general circulation models; climate and the earth`s radiation budget; temperature and sea level change; short-term climate variability and predictions; the great ocean conveyor; trace gases in the atmosphere: temporal and spatial trends; the geochemical carbon cycle and the uptake of fossil fuel CO{sub 2}; forestry and global warming; the physical and policy linkages; policy implications of greenhouse warming; options for lowering US carbon dioxide emissions; options for reducing carbon dioxide emissions; and science and diplomacy: a new partnership to protect the environment.

  19. Global Warming: Physics and Facts

    SciTech Connect

    Levi, B.G. ); Hafemeister, D. , Washington, DC ); Scribner, R. )

    1992-01-01

    This report contains papers on: A tutorial on global atmospheric energetics and the greenhouse effect; global climate models: what and how; comparison of general circulation models; climate and the earth's radiation budget; temperature and sea level change; short-term climate variability and predictions; the great ocean conveyor; trace gases in the atmosphere: temporal and spatial trends; the geochemical carbon cycle and the uptake of fossil fuel CO{sub 2}; forestry and global warming; the physical and policy linkages; policy implications of greenhouse warming; options for lowering US carbon dioxide emissions; options for reducing carbon dioxide emissions; and science and diplomacy: a new partnership to protect the environment.

  20. Global warming at the summit

    NASA Astrophysics Data System (ADS)

    Showstack, Randy

    During the recent summit meeting between Russian President Vladimir Putin and U.S. President Bill Clinton, the two leaders reaffirmed their concerns about global warming and the need to continue to take actions to try to reduce the threat.In a June 4 joint statement, they stressed the need to develop flexibility mechanisms, including international emissions trading, under the Kyoto Protocol to the United Nations Framework Convention on Climate Change. They also noted that initiatives to reduce the risk of greenhouse warming, including specific mechanisms of the Kyoto Protocol, could potentially promote economic growth.

  1. Characterization of the Space Shuttle Ascent Debris using CFD Methods

    NASA Technical Reports Server (NTRS)

    Murman, Scott M.; Aftosmis, Michael J.; Rogers, Stuart E.

    2005-01-01

    After video analysis of space shuttle flight STS-107's ascent showed that an object shed from the bipod-ramp region impacted the left wing, a transport analysis was initiated to determine a credible flight path and impact velocity for the piece of debris. This debris transport analysis was performed both during orbit, and after the subsequent re-entry accident. The analysis provided an accurate prediction of the velocity a large piece of foam bipod ramp would have as it impacted the wing leading edge. This prediction was corroborated by video analysis and fully-coupled CFD/six degree of freedom (DOF) simulations. While the prediction of impact velocity was accurate enough to predict critical damage in this case, one of the recommendations of the Columbia Accident Investigation Board (CAIB) for return-to-flight (RTF) was to analyze the complete debris environment experienced by the shuttle stack on ascent. This includes categorizing all possible debris sources, their probable geometric and aerodynamic characteristics, and their potential for damage. This paper is chiefly concerned with predicting the aerodynamic characteristics of a variety of potential debris sources (insulating foam and cork, nose-cone ablator, ice, ...) for the shuttle ascent configuration using CFD methods. These aerodynamic characteristics are used in the debris transport analysis to predict flight path, impact velocity and angle, and provide statistical variation to perform risk analyses where appropriate. The debris aerodynamic characteristics are difficult to determine using traditional methods, such as static or dynamic test data, due to the scaling requirements of simulating a typical debris event. The use of CFD methods has been a critical element for building confidence in the accuracy of the debris transport code by bridging the gap between existing aerodynamic data and the dynamics of full-scale, in-flight events.

  2. Experiments With Small-scale Debris Flow Breakers

    NASA Astrophysics Data System (ADS)

    Hübl, J.; Steinwendtner, H.

    In Austria debris flow breakers are a common countermeasure against debris flows since several decades. Although a lot of practical experience exists, there is a gap on general design criteria for this kind of measure. To close this gap some flume experi- ments were carried out. The model tests are designed to analyse interactions of debris flows with structures under controlled conditions. The tests were performed to inves- tigate maximal possible dynamic loads by the impact of viscous and granular debris flows as well as to optimise the design of debris flow breakers. The experimental de- sign consists of a 4,0 m long and 0,3 m wide channel with variable slope and different check dam models. Ultrasonic sensors are used for the measurement of flow velocity and flow depth. Impact forces are recorded using strain gauges. Debris flow matrix consists of Xanthan, a thickener in food technology, and loam and water, respectively. As rigid phase PVC granulars and natural debris with different grain size distribution is used. To check the different interactions the mixtures (matrix and rigid phase) are varied in sediment concentration and grain size distribution. To determine flow be- haviour and rheological parameters a conveyor channel was used. This special exper- imental design enables to study the behaviour of debris flow material with maximum grain diameter up to 20mm. The results show that the main criteria for the deposition of debris flows is the width of the opening between the panels. The structural design of the waterfront plays a minor role in the stopping process.

  3. Measurement of Satellite Impact Test Fragments for Modeling Orbital Debris

    NASA Technical Reports Server (NTRS)

    Hill, Nicole M.

    2009-01-01

    There are over 13,000 pieces of catalogued objects 10cm and larger in orbit around Earth [ODQN, January 2009, p12]. More than 6000 of these objects are fragments from explosions and collisions. As the earth-orbiting object count increases, debris-generating collisions in the future become a statistical inevitability. To aid in understanding this collision risk, the NASA Orbital Debris Program Office has developed computer models that calculate quantity and orbits of debris both currently in orbit and in future epochs. In order to create a reasonable computer model of the orbital debris environment, it is important to understand the mechanics of creation of debris as a result of a collision. The measurement of the physical characteristics of debris resulting from ground-based, hypervelocity impact testing aids in understanding the sizes and shapes of debris produced from potential impacts in orbit. To advance the accuracy of fragment shape/size determination, the NASA Orbital Debris Program Office recently implemented a computerized measurement system. The goal of this system is to improve knowledge and understanding of the relation between commonly used dimensions and overall shape. The technique developed involves scanning a single fragment with a hand-held laser device, measuring its size properties using a sophisticated software tool, and creating a three-dimensional computer model to demonstrate how the object might appear in orbit. This information is used to aid optical techniques in shape determination. This more automated and repeatable method provides higher accuracy in the size and shape determination of debris.

  4. Surface characteristics and evolution of debris covered glaciers

    NASA Astrophysics Data System (ADS)

    Mölg, Nico; Vieli, Andreas; Bolch, Tobias; Bauder, Andreas; Bhattacharya, Atanu

    2016-04-01

    Global climate change has led to increasing glacier retreat in most parts of the world. However, many heavily debris-covered glaciers have shown much smaller recession rates than their clean-ice neighbours. This can be attributed to the insulation effect of the supraglacial debris. Remote-sensing based investigations revealed that recent mass balances of debris-covered glaciers are equally negative. This fact is partly due to enhanced melting at supra-glacial lakes and ice cliffs but can also be caused by reduced mass flux. In this context, insufficient process understanding constitutes a major challenge for large scale glacier change assessment and modelling. In this project, we aim at better understanding the evolution of glaciers in connection with changes in supra-glacial debris coverage. It is performed on Zmutt Glacier in Matter valley in Switzerland and on Gangotri Glacier in Garwhal Himalaya in India. Changes in glacier length, area, debris coverage, and surface elevation were compiled based on topographic maps, oblique photos, aerial and satellite orthoimages, digital terrain models (DTMs), and glacier monitoring data for a 50 (Gangotri) and 120 (Zmutt) year period, respectively. The subsequent analysis revealed that Zmutt Glacier has been in a slow but almost continuous retreating state since the end of the 19th century and showed a clear reduction in glacier area and volume. Similarly, Gangotri Glacier has retreated and, to a smaller degree, lost volume. However, the change in glacier length and area is clearly smaller than for other nearby, less debris-covered or debris-free glaciers. This fact is attributed to the larger debris-covered area that has steadily increased. Further in the project, this data will serve as an important input and validation for the envisaged 3D flow modelling and, hence, will contribute to the understanding of the development of glaciers and debris-covered ice in a period of fast climatic changes.

  5. Monitoring the abundance of plastic debris in the marine environment

    PubMed Central

    Ryan, Peter G.; Moore, Charles J.; van Franeker, Jan A.; Moloney, Coleen L.

    2009-01-01

    Plastic debris has significant environmental and economic impacts in marine systems. Monitoring is crucial to assess the efficacy of measures implemented to reduce the abundance of plastic debris, but it is complicated by large spatial and temporal heterogeneity in the amounts of plastic debris and by our limited understanding of the pathways followed by plastic debris and its long-term fate. To date, most monitoring has focused on beach surveys of stranded plastics and other litter. Infrequent surveys of the standing stock of litter on beaches provide crude estimates of debris types and abundance, but are biased by differential removal of litter items by beachcombing, cleanups and beach dynamics. Monitoring the accumulation of stranded debris provides an index of debris trends in adjacent waters, but is costly to undertake. At-sea sampling requires large sample sizes for statistical power to detect changes in abundance, given the high spatial and temporal heterogeneity. Another approach is to monitor the impacts of plastics. Seabirds and other marine organisms that accumulate plastics in their stomachs offer a cost-effective way to monitor the abundance and composition of small plastic litter. Changes in entanglement rates are harder to interpret, as they are sensitive to changes in population sizes of affected species. Monitoring waste disposal on ships and plastic debris levels in rivers and storm-water runoff is useful because it identifies the main sources of plastic debris entering the sea and can direct mitigation efforts. Different monitoring approaches are required to answer different questions, but attempts should be made to standardize approaches internationally. PMID:19528052

  6. Origin and evolution of two-component debris discs and an application to the q1 Eridani system

    NASA Astrophysics Data System (ADS)

    Schüppler, Christian; Krivov, Alexander V.; Löhne, Torsten; Booth, Mark; Kirchschlager, Florian; Wolf, Sebastian

    2016-09-01

    Many debris discs reveal a two-component structure, with an outer Kuiper-belt analogue and a warm inner component whose origin is still a matter of debate. One possibility is that warm emission stems from an `asteroid belt' closer in to the star. We consider a scenario in which a set of giant planets is formed in an initially extended planetesimal disc. These planets carve a broad gap around their orbits, splitting up the disc into the outer and the inner belts. After the gas dispersal, both belts undergo collisional evolution in a steady-state regime. This scenario is explored with detailed collisional simulations involving realistic physics to describe a long-term collisional depletion of the two-component disc. We find that the inner disc may be able to retain larger amounts of material at older ages than thought before on the basis of simplified analytic models. We show that the proposed scenario is consistent with a suite of thermal emission and scattered light observational data for a bright two-temperature debris disc around a nearby solar-type star q1 Eridani. This implies a Solar system-like architecture of the system, with an outer massive `Kuiper belt', an inner `asteroid belt', and a few Neptune- to Jupiter-mass planets in between.

  7. DEBIE - first standard in-situ debris monitoring instrument

    NASA Astrophysics Data System (ADS)

    Kuitunen, J.; Drolshagen, G.; McDonnell, J. A. M.; Svedhem, H.; Leese, M.; Mannermaa, H.; Kaipiainen, M.; Sipinen, V.

    2001-10-01

    Objects larger than a few centimetres can be tracked with radar or with optical telescopes. The population of smaller particles can only be investigated by the analysis of retrieved spacecraft and passive detectors or by in-situ monitors in orbit. Patria Finavitec together with UniSpace Kent have developed the DEBIE (DEBris In-orbit Evaluator) instrument to determine the parameters of sub-millimetre sized space debris and micrometeoroids in-situ by their impact with a detecting surface. The main goal has been to develop an economical and low-resource instrument, easy to integrate into any spacecraft, while providing reliable real-time data for space debris modelling.

  8. Functions & Requirements for Debris Removal System Project A-2

    SciTech Connect

    PRECECHTEL, D.R.

    1999-12-29

    This revision of the Functions and Requirements Document updates the approved Functions and Requirements for Debris Removal Subproject WHC-SD-SNF-FRD-009, Rev. 0. It has been revised in its entirety to reflect the current scope of work for Debris Removal as canisters and lids under the K Basin Projects work breakdown structure (WBS). In this revision the canisters and lids will be consider debris and a new set of Functions and Requirements have been developed to remove the canisters and lids from the basin.

  9. Debris control design achievements of the booster separation motors

    NASA Technical Reports Server (NTRS)

    Smith, G. W.; Chase, C. A.

    1985-01-01

    The stringent debris control requirements imposed on the design of the Space Shuttle booster separation motor are described along with the verification program implemented to ensure compliance with debris control objectives. The principal areas emphasized in the design and development of the Booster Separation Motor (BSM) relative to debris control were the propellant formulation and nozzle closures which protect the motors from aerodynamic heating and moisture. A description of the motor design requirements, the propellant formulation and verification program, and the nozzle closures design and verification are presented.

  10. Collision risk against space debris in Earth orbits

    NASA Astrophysics Data System (ADS)

    Rossi, A.; Valsecchi, G. B.

    2006-05-01

    Öpik’s formulae for the probability of collision are applied to the analysis of the collision risk against space debris in Low-Earth Orbit (LEO) and Medium Earth Orbit. The simple analytical formulation of Öpik’s theory makes it applicable to complex dynamical systems, such as the interaction of the ISS with the whole debris population in LEO The effect of a fragmentation within a multiplane constellation can also be addressed. The analysis of the evolution of the collision risk in Earth orbit shows the need of effective mitigation measures to limit the growth of the collision risk and of the fragmentation debris in the next century.

  11. Canada s activities on space debris mitigation technologies

    NASA Astrophysics Data System (ADS)

    Nikanpour, D.

    The threat of space debris to space activities is exponentially rising. Canada, as a space-faring nation having significant investment in space and astronauts participating in space missions, has recognized the risks arising from it and has been active as a participant in understanding and mitigate the problem. Since 1992, Canada has been involved with the creation of a sub-committee on space debris under the government's Interdepartmental Committee on Space (ICS) to deal with the policy and international cooperation on space debris. On the research front, Canadian Space Agency (CSA) has been coordinating the related researches within Canada. This paper outlines the major Canadian research activities on space debris and mitigation technologies along with CSA's future plan on the subject. Canadian research activities on space debris are in 3 major areas: (1) Measurement and modeling of space debris: The work has been led by the CSA (Space Technologies) with participations from research institutes and universities. The experiments cover the analysis and computational modeling of the space debris flux at orbital altitudes of interest for space activities. (2) Space debris mitigation: The technology for mitigating space debris is of key research interest and measures have been taken in the design and launch of LEO earth observation spacecraft, such as RADARSAT. RADARSAT-1, launched in 1995 and still operating, was one of the first commercial spacecraft to consider the effect of orbital debris in its design. Not only was the spacecraft designed to withstand a possible impact on orbit, and not be a source of debris from latches and tie-down mechanisms, but the launch of RADARSAT-1 was also delayed by 25 seconds in a very tight launch window, to avoid a possible impact on orbit. The design for the follow-on RADARSAT-2 spacecraft includes features to protect its Synthetic Aperture Radar (SAR) antenna against possible impact damage due to space debris as well as include

  12. Transformation of dilative and contractive landslide debris into debris flows-An example from marin County, California

    USGS Publications Warehouse

    Fleming, R.W.; Ellen, S.D.; Algus, M.A.

    1989-01-01

    The severe rainstorm of January 3, 4 and 5, 1982, in the San Francisco Bay area, California, produced numerous landslides, many of which transformed into damaging debris flows. The process of transformation was studied in detail at one site where only part of a landslide mobilized into several episodes of debris flow. The focus of our investigation was to learn whether the landslide debris dilated or contracted during the transformation from slide to flow. The landslide debris consisted of sandy colluvium that was separable into three soil horizons that occupied the axis of a small topographic swale. Failure involved the entire thickness of colluvium; however, over parts of the landslide, the soil A-horizon failed separately from the remainder of the colluvium. Undisturbed samples were taken for density measurements from outside the landslide, from the failure zone and overlying material from the part of the landslide that did not mobilize into debris flows, and from the debris-flow deposits. The soil A-horizon was contractive and mobilized to flows in a process analogous to liquefaction of loose, granular soils during earthquakes. The soil B- and C-horizons were dilative and underwent 2 to 5% volumetric expansion during landslide movement that permitted mobilization of debris-flow episodes. Several criteria can be used in the field to differentiate between contractive and dilative behavior including lag time between landsliding and mobilization of flow, episodic mobilization of flows, and partial or complete transformation of the landslide. ?? 1989.

  13. Volcanic debris flows in developing countries - The extreme need for public education and awareness of debris-flow hazards

    USGS Publications Warehouse

    Major, J.J.; Schilling, S.P.; Pullinger, C.R.; ,

    2003-01-01

    In many developing countries, volcanic debris flows pose a significant societal risk owing to the distribution of dense populations that commonly live on or near a volcano. At many volcanoes, modest volume (up to 500,000 m 3) debris flows are relatively common (multiple times per century) and typically flow at least 5 km along established drainages. Owing to typical debris-flow velocities there is little time for authorities to provide effective warning of the occurrence of a debris flow to populations within 10 km of a source area. Therefore, people living, working, or recreating along channels that drain volcanoes must learn to recognize potentially hazardous conditions, be aware of the extent of debris-flow hazard zones, and be prepared to evacuate to safer ground when hazardous conditions develop rather than await official warnings or intervention. Debris-flow-modeling and hazard-assessment studies must be augmented with public education programs that emphasize recognizing conditions favorable for triggering landslides and debris flows if effective hazard mitigation is to succeed. ?? 2003 Millpress,.

  14. Star Surface Polluted by Planetary Debris

    NASA Astrophysics Data System (ADS)

    2007-07-01

    Looking at the chemical composition of stars that host planets, astronomers have found that while dwarf stars often show iron enrichment on their surface, giant stars do not. The astronomers think that the planetary debris falling onto the outer layer of the star produces a detectable effect in a dwarf star, but this pollution is diluted by the giant star and mixed into its interior. "It is a little bit like a Tiramisu or a Capuccino," says Luca Pasquini from ESO, lead-author of the paper reporting the results. "There is cocoa powder only on the top!' ESO PR Photo 29/07 ESO PR Photo 29/07 The Structure of Stars Just a few years after the discovery of the first exoplanet it became evident that planets are preferentially found around stars that are enriched in iron. Planet-hosting stars are on average almost twice as rich in metals than their counterparts with no planetary system. The immediate question is whether this richness in metals enhances planet formation, or whether it is caused by the presence of planets. The classic chicken and egg problem. In the first case, the stars would be metal-rich down to their centre. In the second case, debris from the planetary system would have polluted the star and only the external layers would be affected by this pollution. When observing stars and taking spectra, astronomers indeed only see the outer layers and can't make sure the whole star has the same composition. When planetary debris fall onto a star, the material will stay in the outer parts, polluting it and leaving traces in the spectra taken. A team of astronomers has decided to tackle this question by looking at a different kind of stars: red giants. These are stars that, as will the Sun in several billion years, have exhausted the hydrogen in their core. As a result, they have puffed up, becoming much larger and cooler. Looking at the distribution of metals in fourteen planet-hosting giants, the astronomers found that their distribution was rather different from

  15. Warming up to solar energy

    SciTech Connect

    Biondo, B.

    1996-07-01

    Increasingly alarmed by threats to their financial security posed by an escalating number of weather-related catastrophes, major insurance companaies, particularly those in Europe and Asia, are starting to support a variety of measures that would slowe the production of grenhouse gases worlwide. As the insurance and banking industries turn their attention to global warming, investments in solar energy take on growing appeal.

  16. THE COLLISIONAL EVOLUTION OF DEBRIS DISKS

    SciTech Connect

    Gaspar, Andras; Rieke, George H.; Balog, Zoltan E-mail: grieke@as.arizona.edu

    2013-05-01

    We explore the collisional decay of disk mass and infrared emission in debris disks. With models, we show that the rate of the decay varies throughout the evolution of the disks, increasing its rate up to a certain point, which is followed by a leveling off to a slower value. The total disk mass falls off {proportional_to}t {sup -0.35} at its fastest point (where t is time) for our reference model, while the dust mass and its proxy-the infrared excess emission-fades significantly faster ({proportional_to}t {sup -0.8}). These later level off to a decay rate of M{sub tot}(t){proportional_to}t {sup -0.08} and M{sub dust}(t) or L{sub ir}(t){proportional_to}t {sup -0.6}. This is slower than the {proportional_to}t {sup -1} decay given for all three system parameters by traditional analytic models. We also compile an extensive catalog of Spitzer and Herschel 24, 70, and 100 {mu}m observations. Assuming a log-normal distribution of initial disk masses, we generate model population decay curves for the fraction of stars harboring debris disks detected at 24 {mu}m. We also model the distribution of measured excesses at the far-IR wavelengths (70-100 {mu}m) at certain age regimes. We show general agreement at 24 {mu}m between the decay of our numerical collisional population synthesis model and observations up to a Gyr. We associate offsets above a Gyr to stochastic events in a few select systems. We cannot fit the decay in the far-infrared convincingly with grain strength properties appropriate for silicates, but those of water ice give fits more consistent with the observations (other relatively weak grain materials would presumably also be successful). The oldest disks have a higher incidence of large excesses than predicted by the model; again, a plausible explanation is very late phases of high dynamical activity around a small number of stars. Finally, we constrain the variables of our numerical model by comparing the evolutionary trends generated from the exploration

  17. Equatorial refuge amid tropical warming

    NASA Astrophysics Data System (ADS)

    Karnauskas, Kristopher B.; Cohen, Anne L.

    2012-07-01

    Upwelling across the tropical Pacific Ocean is projected to weaken in accordance with a reduction of the atmospheric overturning circulation, enhancing the increase in sea surface temperature relative to other regions in response to greenhouse-gas forcing. In the central Pacific, home to one of the largest marine protected areas and fishery regions in the global tropics, sea surface temperatures are projected to increase by 2.8°C by the end of this century. Of critical concern is that marine protected areas may not provide refuge from the anticipated rate of large-scale warming, which could exceed the evolutionary capacity of coral and their symbionts to adapt. Combining high-resolution satellite measurements, an ensemble of global climate models and an eddy-resolving regional ocean circulation model, we show that warming and productivity decline around select Pacific islands will be mitigated by enhanced upwelling associated with a strengthening of the equatorial undercurrent. Enhanced topographic upwelling will act as a negative feedback, locally mitigating the surface warming. At the Gilbert Islands, the rate of warming will be reduced by 0.7+/-0.3°C or 25+/-9% per century, or an overall cooling effect comparable to the local anomaly for a typical El Niño, by the end of this century. As the equatorial undercurrent is dynamically constrained to the Equator, only a handful of coral reefs stand to benefit from this equatorial island effect. Nevertheless, those that do face a lower rate of warming, conferring a significant advantage over neighbouring reef systems. If realized, these predictions help to identify potential refuges for coral reef communities from anticipated climate changes of the twenty-first century.

  18. Isolating Stratospheric Warmings -- Mesosphere to Troposphere

    NASA Astrophysics Data System (ADS)

    Coughlin, K.

    Stratospheric Warming events exhibit the most drastic changes seen in the stratosphere and yet the categorization of these events continues to be adhoc Understandably the definitions of major warming minor warmings and or Canadian warmings often depend on the scientific problem at hand And yet we show here that these events are statistically separated from the rest of the days in the winter stratosphere We show how warmings can be isolated and defined in a objective manner Furthermore we are then able to show the effect of these warmings from the mesosphere down to the troposphere

  19. Studies on in-vessel debris coolability in ALPHA program

    SciTech Connect

    Maruyama, Yu; Yamano, Norihiro; Moriyama, Kiyofumi

    1997-02-01

    In-vessel debris coolability experiments have been performed in ALPHA Program at JAERI. Aluminum oxide (Al{sub 2}O{sub 3}) produced by a thermite reaction was applied as a debris simulant. Two scoping experiments using approximately 30 kg or 50 kg of Al{sub 2}O{sub 3} were conducted. In addition to post-test observations, temperature histories of the debris simulant and the lower head experimental vessel were evaluated. Rapid temperature reduction observed on the outer surface of the experimental vessel may imply that water penetration into a gap between the solidified debris and the experimental vessel occurred resulting in an effective cooling of once heated vessel wall. Preliminary measurement of a gap width was made with an ultrasonic device. Signals to show the existence of gaps, ranging from 0.7 mm to 1.4 mm, were detected at several locations.

  20. 3. INTAKE CHANNEL LOOKING WEST; DEBRIS FILTER SCREEN IN GATE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    3. INTAKE CHANNEL LOOKING WEST; DEBRIS FILTER SCREEN IN GATE 2. - Hondius Water Line, 1.6 miles Northwest of Park headquarters building & 1 mile Northwest of Beaver Meadows entrance station, Estes Park, Larimer County, CO