Sample records for ensure efficient operation

  1. Compression Ratio Adjuster

    NASA Technical Reports Server (NTRS)

    Akkerman, J. W.

    1982-01-01

    New mechanism alters compression ratio of internal-combustion engine according to load so that engine operates at top fuel efficiency. Ordinary gasoline, diesel and gas engines with their fixed compression ratios are inefficient at partial load and at low-speed full load. Mechanism ensures engines operate as efficiently under these conditions as they do at highload and high speed.

  2. Defense Commissaries: DOD Needs to Improve Business Processes to Ensure Patron Benefits and Achieve Operational Efficiencies

    DTIC Science & Technology

    2017-03-01

    sales, leverage efficiencies, and achieve savings in commissary operations. Second, DeCA has not conducted cost - benefit analyses for costs ...conduct comprehensive cost - benefit analyses for service contracts and distribution options. DOD concurred with GAO’s first two recommendations and...partially concurred with the third recommendation. GAO continues to believe the cost - benefit analysis recommendation is valid

  3. Optimal robust control strategy of a solid oxide fuel cell system

    NASA Astrophysics Data System (ADS)

    Wu, Xiaojuan; Gao, Danhui

    2018-01-01

    Optimal control can ensure system safe operation with a high efficiency. However, only a few papers discuss optimal control strategies for solid oxide fuel cell (SOFC) systems. Moreover, the existed methods ignore the impact of parameter uncertainty on system instantaneous performance. In real SOFC systems, several parameters may vary with the variation of operation conditions and can not be identified exactly, such as load current. Therefore, a robust optimal control strategy is proposed, which involves three parts: a SOFC model with parameter uncertainty, a robust optimizer and robust controllers. During the model building process, boundaries of the uncertain parameter are extracted based on Monte Carlo algorithm. To achieve the maximum efficiency, a two-space particle swarm optimization approach is employed to obtain optimal operating points, which are used as the set points of the controllers. To ensure the SOFC safe operation, two feed-forward controllers and a higher-order robust sliding mode controller are presented to control fuel utilization ratio, air excess ratio and stack temperature afterwards. The results show the proposed optimal robust control method can maintain the SOFC system safe operation with a maximum efficiency under load and uncertainty variations.

  4. Strengthening the revenue cycle: a 4-step method for optimizing payment.

    PubMed

    Clark, Jonathan J

    2008-10-01

    Four steps for enhancing the revenue cycle to ensure optimal payment are: *Establish key performance indicator dashboards in each department that compare current with targeted performance; *Create proper organizational structures for each department; *Ensure that high-performing leaders are hired in all management and supervisory positions; *Implement efficient processes in underperforming operations.

  5. Historically Black Colleges and Universities: Improving Operations through an Enterprise Resource Planning System

    ERIC Educational Resources Information Center

    Hardee, Teresa

    2012-01-01

    There are a variety of challenges facing colleges and universities today. With shrinking public funding, many colleges and universities must rethink their operations to ensure that they are operating efficiently. Historically Black Colleges and Universities (HBCUs) have an even more daunting task in a downturned economy because they are often…

  6. Modern problems concerned with ensuring safe operation of heat-generating and mechanical equipment in extending its lifetime

    NASA Astrophysics Data System (ADS)

    Rezinskikh, V. F.; Grin', E. A.

    2013-01-01

    The problem concerned with safe and reliable operation of ageing heat-generating and mechanical equipment of thermal power stations is discussed. It is pointed out that the set of relevant regulatory documents serves as the basis for establishing an efficient equipment diagnostic system. In this connection, updating the existing regulatory documents with imparting the required status to them is one of top-priority tasks. Carrying out goal-oriented scientific research works is a necessary condition for solving this problem as well as other questions considered in the paper that are important for ensuring reliable performance of equipment operating for a long period of time. In recent years, the amount of such works has dropped dramatically, although the need for them is steadily growing. Unbiased assessment of the technical state of equipment that has been in operation for a long period of time is an important aspect in solving the problem of ensuring reliable and safe operation of thermal power stations. Here, along with the quality of diagnostic activities, monitoring of technical state performed on the basis of an analysis of statistical field data and results of operational checks plays an important role. The need to concentrate efforts taken in the mentioned problem areas is pointed out, and it is indicated that successful implementation of the outlined measures requires proper organization and efficient operation of a system for managing safety in the electric power industry.

  7. Greening EPA

    EPA Pesticide Factsheets

    EPA ensures its buildings and practices reflect our mission by implementing strategies to reduce the environmental impact of its facilities and operations by building sustainable structures and improving the energy efficiency of older buildings.

  8. 7 CFR 1717.161 - Application process.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... Consolidations of Electric Borrowers § 1717.161 Application process. (a) Borrowers are responsible for ensuring... proposed merger is likely to: (1) Contribute to greater operating efficiency and financial soundness; (2...

  9. Crash data collection and analysis system

    DOT National Transportation Integrated Search

    2006-02-01

    The Arizona Department of Transportation (ADOT) is responsible for ensuring the safety and operational : efficiency of Arizonas state highways. Fulfilling that responsibility requires extensive data collection and : analysis, which are very labor-...

  10. Data Envelopment Analysis (DEA) Model in Operation Management

    NASA Astrophysics Data System (ADS)

    Malik, Meilisa; Efendi, Syahril; Zarlis, Muhammad

    2018-01-01

    Quality management is an effective system in operation management to develops, maintains, and improves quality from groups of companies that allow marketing, production, and service at the most economycal level as well as ensuring customer satisfication. Many companies are practicing quality management to improve their bussiness performance. One of performance measurement is through measurement of efficiency. One of the tools can be used to assess efficiency of companies performance is Data Envelopment Analysis (DEA). The aim of this paper is using Data Envelopment Analysis (DEA) model to assess efficiency of quality management. In this paper will be explained CCR, BCC, and SBM models to assess efficiency of quality management.

  11. Hybrid ARQ Scheme with Autonomous Retransmission for Multicasting in Wireless Sensor Networks.

    PubMed

    Jung, Young-Ho; Choi, Jihoon

    2017-02-25

    A new hybrid automatic repeat request (HARQ) scheme for multicast service for wireless sensor networks is proposed in this study. In the proposed algorithm, the HARQ operation is combined with an autonomous retransmission method that ensure a data packet is transmitted irrespective of whether or not the packet is successfully decoded at the receivers. The optimal number of autonomous retransmissions is determined to ensure maximum spectral efficiency, and a practical method that adjusts the number of autonomous retransmissions for realistic conditions is developed. Simulation results show that the proposed method achieves higher spectral efficiency than existing HARQ techniques.

  12. Efficient, quality-assured data capture in operational research through innovative use of open-access technology

    PubMed Central

    Naik, B.; Guddemane, D. K.; Bhat, P.; Wilson, N.; Sreenivas, A. N.; Lauritsen, J. M.; Rieder, H. L.

    2013-01-01

    Ensuring quality of data during electronic data capture has been one of the most neglected components of operational research. Multicentre studies are also challenged with issues about logistics of travel, training, supervision, monitoring and troubleshooting support. Allocating resources to these issues can pose a significant bottleneck for operational research in resource-limited settings. In this article, we describe an innovative and efficient way of coordinating data capture in multicentre operational research using a combination of three open access technologies—EpiData for data capture, Dropbox for sharing files and TeamViewer for providing remote support. PMID:26392997

  13. About OBF

    Cancer.gov

    The Office of Budget and Finance (OBF) advises the NCI Office of the Director and senior NCI staff on the effective management of financial and other resources to ensure that NCI operates in an efficient and fiscally responsible manner.

  14. SNL/CA Facilities Management Design Standards Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rabb, David; Clark, Eva

    2014-12-01

    At Sandia National Laboratories in California (SNL/CA), the design, construction, operation, and maintenance of facilities is guided by industry standards, a graded approach, and the systematic analysis of life cycle benefits received for costs incurred. The design of the physical plant must ensure that the facilities are "fit for use," and provide conditions that effectively, efficiently, and safely support current and future mission needs. In addition, SNL/CA applies sustainable design principles, using an integrated whole-building design approach, from site planning to facility design, construction, and operation to ensure building resource efficiency and the health and productivity of occupants. The safetymore » and health of the workforce and the public, any possible effects on the environment, and compliance with building codes take precedence over project issues, such as performance, cost, and schedule.« less

  15. Design and Development of a Flight Route Modification, Logging, and Communication Network

    NASA Technical Reports Server (NTRS)

    Merlino, Daniel K.; Wilson, C. Logan; Carboneau, Lindsey M.; Wilder, Andrew J.; Underwood, Matthew C.

    2016-01-01

    There is an overwhelming desire to create and enhance communication mechanisms between entities that operate within the National Airspace System. Furthermore, airlines are always extremely interested in increasing the efficiency of their flights. An innovative system prototype was developed and tested that improves collaborative decision making without modifying existing infrastructure or operational procedures within the current Air Traffic Management System. This system enables collaboration between flight crew and airline dispatchers to share and assess optimized flight routes through an Internet connection. Using a sophisticated medium-fidelity flight simulation environment, a rapid-prototyping development, and a unified modeling language, the software was designed to ensure reliability and scalability for future growth and applications. Ensuring safety and security were primary design goals, therefore the software does not interact or interfere with major flight control or safety systems. The system prototype demonstrated an unprecedented use of in-flight Internet to facilitate effective communication with Airline Operations Centers, which may contribute to increased flight efficiency for airlines.

  16. 49 CFR 1180.1 - General policy statement for merger or control of at least two Class I railroads.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... shippers, environmental safeguards, and fair working conditions for employees. The Board must ensure that... continues to operate in a competitive environment, its new efficiencies would be shared with shippers and...) Reduction of competition. Although in specific markets railroads operate in a highly competitive environment...

  17. Suggested set-up and layout of instruments and equipment for advanced operative laparoscopy.

    PubMed

    Winer, W K; Lyons, T L

    1995-02-01

    Crucial elements that ensure the organization and smoothness of a laparoscopic procedure are clear communication among well-trained endoscopy team members, properly maintained equipment, and a sensible layout of the instruments. The team consists of the surgeon, surgical assistant, circulator, scrub nurse, laser nurse, and anesthesiologist. To promote continuity and interaction and to ensure a systematic, pleasant pace for laparoscopic procedures, the team should establish a specific routine, as well as set-up and layout of tables, equipment, and instruments. Key ingredients for advanced operative laparoscopy to be performed with optimum efficiency and effectiveness are the best organization and placement of the equipment, instrumentation, and team in a particular setting in the operating room.

  18. 77 FR 61421 - Committee Name: Homeland Security Academic Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-09

    ... social media and other means of communication to most effectively reach this audience; how to ensure that... findings and technologies that will make DHS operations more effective and efficient; how to create a...

  19. Freedom of Information Act: FOIA Task Force Report

    EPA Pesticide Factsheets

    FOIA Task Force review of any significant weaknesses, and recommendation for improvements of efficiency and effectiveness of the agency's FOIA operations to ensure that information is provided to the Amercian public in a timely fashion.

  20. Edge-Based Efficient Search over Encrypted Data Mobile Cloud Storage

    PubMed Central

    Liu, Fang; Cai, Zhiping; Xiao, Nong; Zhao, Ziming

    2018-01-01

    Smart sensor-equipped mobile devices sense, collect, and process data generated by the edge network to achieve intelligent control, but such mobile devices usually have limited storage and computing resources. Mobile cloud storage provides a promising solution owing to its rich storage resources, great accessibility, and low cost. But it also brings a risk of information leakage. The encryption of sensitive data is the basic step to resist the risk. However, deploying a high complexity encryption and decryption algorithm on mobile devices will greatly increase the burden of terminal operation and the difficulty to implement the necessary privacy protection algorithm. In this paper, we propose ENSURE (EfficieNt and SecURE), an efficient and secure encrypted search architecture over mobile cloud storage. ENSURE is inspired by edge computing. It allows mobile devices to offload the computation intensive task onto the edge server to achieve a high efficiency. Besides, to protect data security, it reduces the information acquisition of untrusted cloud by hiding the relevance between query keyword and search results from the cloud. Experiments on a real data set show that ENSURE reduces the computation time by 15% to 49% and saves the energy consumption by 38% to 69% per query. PMID:29652810

  1. Edge-Based Efficient Search over Encrypted Data Mobile Cloud Storage.

    PubMed

    Guo, Yeting; Liu, Fang; Cai, Zhiping; Xiao, Nong; Zhao, Ziming

    2018-04-13

    Smart sensor-equipped mobile devices sense, collect, and process data generated by the edge network to achieve intelligent control, but such mobile devices usually have limited storage and computing resources. Mobile cloud storage provides a promising solution owing to its rich storage resources, great accessibility, and low cost. But it also brings a risk of information leakage. The encryption of sensitive data is the basic step to resist the risk. However, deploying a high complexity encryption and decryption algorithm on mobile devices will greatly increase the burden of terminal operation and the difficulty to implement the necessary privacy protection algorithm. In this paper, we propose ENSURE (EfficieNt and SecURE), an efficient and secure encrypted search architecture over mobile cloud storage. ENSURE is inspired by edge computing. It allows mobile devices to offload the computation intensive task onto the edge server to achieve a high efficiency. Besides, to protect data security, it reduces the information acquisition of untrusted cloud by hiding the relevance between query keyword and search results from the cloud. Experiments on a real data set show that ENSURE reduces the computation time by 15% to 49% and saves the energy consumption by 38% to 69% per query.

  2. UAS flight test for safety and for efficiency

    DOT National Transportation Integrated Search

    2017-04-01

    Manned aircraft that operate in the National Airspace System (NAS) typically undergo certification flight test to ensure they meet a prescribed level of safetydependent on their categorybefore they are able to enter service [for example, Federa...

  3. Ventilating Air-Conditioner

    NASA Technical Reports Server (NTRS)

    Dinh, Khanh

    1994-01-01

    Air-conditioner provides ventilation designed to be used alone or incorporated into cooling or heating system operates efficiently only by recirculating stale air within building. Energy needed to operate overall ventilating cooling or heating system slightly greater than operating nonventilating cooling or heating system. Helps to preserve energy efficiency while satisfying need for increased forced ventilation to prevent accumulation of undesired gases like radon and formaldehyde. Provides fresh treated air to variety of confined spaces: hospital surgeries, laboratories, clean rooms, and printing shops and other places where solvents used. In mobile homes and portable classrooms, eliminates irritant chemicals exuded by carpets, panels, and other materials, ensuring healthy indoor environment for occupants.

  4. Implementation of the Vocera Communication System in a Quaternary Perioperative Environment.

    PubMed

    Friend, Tynan H; Jennings, Samantha J; Copenhaver, Martin S; Levine, Wilton C

    2017-01-01

    In the hospital, fast and efficient communication among clinicians and other employees is paramount to ensure optimal patient care, workflow efficiency, patient safety and patient comfort. The implementation of the wireless Vocera® Badge, a hands-free wearable device distributed to perioperative team members, has increased communication efficiency across the perioperative environment at Massachusetts General Hospital (MGH). This quality improvement project, based upon identical pre- and post-implementation surveys, used qualitative and quantitative analysis to determine if and how the Vocera system affected the timeliness of information flow, ease of communication, and operating room noise levels throughout the perioperative environment. Overall, the system increased the speed of information flow and eased communication between coworkers yet was perceived to have raised the overall noise level in and around the operating rooms (ORs). The perceived increase in noise was outweighed by the closed-loop communication between clinicians. Further education of the system's features in regard to speech recognition and privacy along with expected conversation protocol are necessary to ensure hassle-free communication for all staff.

  5. Improving Deterministic Reserve Requirements for Security Constrained Unit Commitment and Scheduling Problems in Power Systems

    NASA Astrophysics Data System (ADS)

    Wang, Fengyu

    Traditional deterministic reserve requirements rely on ad-hoc, rule of thumb methods to determine adequate reserve in order to ensure a reliable unit commitment. Since congestion and uncertainties exist in the system, both the quantity and the location of reserves are essential to ensure system reliability and market efficiency. The modeling of operating reserves in the existing deterministic reserve requirements acquire the operating reserves on a zonal basis and do not fully capture the impact of congestion. The purpose of a reserve zone is to ensure that operating reserves are spread across the network. Operating reserves are shared inside each reserve zone, but intra-zonal congestion may block the deliverability of operating reserves within a zone. Thus, improving reserve policies such as reserve zones may improve the location and deliverability of reserve. As more non-dispatchable renewable resources are integrated into the grid, it will become increasingly difficult to predict the transfer capabilities and the network congestion. At the same time, renewable resources require operators to acquire more operating reserves. With existing deterministic reserve requirements unable to ensure optimal reserve locations, the importance of reserve location and reserve deliverability will increase. While stochastic programming can be used to determine reserve by explicitly modelling uncertainties, there are still scalability as well as pricing issues. Therefore, new methods to improve existing deterministic reserve requirements are desired. One key barrier of improving existing deterministic reserve requirements is its potential market impacts. A metric, quality of service, is proposed in this thesis to evaluate the price signal and market impacts of proposed hourly reserve zones. Three main goals of this thesis are: 1) to develop a theoretical and mathematical model to better locate reserve while maintaining the deterministic unit commitment and economic dispatch structure, especially with the consideration of renewables, 2) to develop a market settlement scheme of proposed dynamic reserve policies such that the market efficiency is improved, 3) to evaluate the market impacts and price signal of the proposed dynamic reserve policies.

  6. The Human Side of Library Automation.

    ERIC Educational Resources Information Center

    Morris, Anne; Barnacle, Stephen

    1989-01-01

    Discusses the importance of recognizing the human component in library automation systems to ensure the smooth and efficient operation of the system. Human factors considerations are discussed in terms of health and safety aspects, ergonomics, workplace design, and job organization. (41 references) (CLB)

  7. Technology Development for Hydrogen Propellant Storage and Transfer at the Kennedy Space Center (KSC)

    NASA Technical Reports Server (NTRS)

    Youngquist, Robert; Starr, Stanley; Krenn, Angela; Captain, Janine; Williams, Martha

    2016-01-01

    The National Aeronautics and Space Administration (NASA) is a major user of liquid hydrogen. In particular, NASA's John F. Kennedy (KSC) Space Center has operated facilities for handling and storing very large quantities of liquid hydrogen (LH2) since the early 1960s. Safe operations pose unique challenges and as a result NASA has invested in technology development to improve operational efficiency and safety. This paper reviews recent innovations including methods of leak and fire detection and aspects of large storage tank health and integrity. We also discuss the use of liquid hydrogen in space and issues we are addressing to ensure safe and efficient operations should hydrogen be used as a propellant derived from in-situ volatiles.

  8. FY2015 Annual Report for Alternative Fuels DISI Engine Research.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjöberg, Carl-Magnus G.

    2016-01-01

    Climate change and the need to secure energy supplies are two reasons for a growing interest in engine efficiency and alternative fuels. This project contributes to the science-base needed by industry to develop highly efficient DISI engines that also beneficially exploit the different properties of alternative fuels. Our emphasis is on lean operation, which can provide higher efficiencies than traditional non-dilute stoichiometric operation. Since lean operation can lead to issues with ignition stability, slow flame propagation and low combustion efficiency, we focus on techniques that can overcome these challenges. Specifically, fuel stratification is used to ensure ignition and completeness ofmore » combustion but has soot- and NOx- emissions challenges. For ultralean well-mixed operation, turbulent deflagration can be combined with controlled end-gas auto-ignition to render mixed-mode combustion that facilitates high combustion efficiency. However, the response of both combustion and exhaust emissions to these techniques depends on the fuel properties. Therefore, to achieve optimal fuel-economy gains, the engine combustion-control strategies must be adapted to the fuel being utilized.« less

  9. 3 CFR 8810 - Proclamation 8810 of May 1, 2012. Law Day, U.S.A., 2012

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... order, and public safety, and we must do everything we can to enable their critical work. The courthouse... juries to operate efficiently. Likewise, we must ensure that access to justice is not an abstract theory...

  10. 23 CFR 627.1 - Purpose and applicability.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS VALUE ENGINEERING § 627.1 Purpose and applicability. (a) This regulation will establish a program to improve project... ensure efficient investments by requiring the application of value engineering (VE) to all Federal-aid...

  11. 23 CFR 627.1 - Purpose and applicability.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS VALUE ENGINEERING § 627.1 Purpose and applicability. (a) This regulation will establish a program to improve project... ensure efficient investments by requiring the application of value engineering (VE) to all Federal-aid...

  12. 23 CFR 627.1 - Purpose and applicability.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... FEDERAL HIGHWAY ADMINISTRATION, DEPARTMENT OF TRANSPORTATION ENGINEERING AND TRAFFIC OPERATIONS VALUE ENGINEERING § 627.1 Purpose and applicability. (a) This regulation will establish a program to improve project... ensure efficient investments by requiring the application of value engineering (VE) to all Federal-aid...

  13. Advanced Light-Duty SI Engine Fuels Research: Multiple Optical Diagnostics of Well-mixed and Stratified Operation.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sjoberg, Carl Magnus Goran; Vuilleumier, David

    Ever tighter fuel economy standards and concerns about energy security motivate efforts to improve engine efficiency and to develop alternative fuels. This project contributes to the science base needed by industry to develop highly efficient direct injection spark ignition (DISI) engines that also beneficially exploit the different properties of alternative fuels. Here, the emphasis is on lean operation, which can provide higher efficiencies than traditional non-dilute stoichiometric operation. Since lean operation can lead to issues with ignition stability, slow flame propagation and low combustion efficiency, the focus is on techniques that can overcome these challenges. Specifically, fuel stratification is usedmore » to ensure ignition and completeness of combustion but this technique has soot and NOx emissions challenges. For ultra-lean well-mixed operation, turbulent deflagration can be combined with controlled end-gas autoignition to render mixed-mode combustion for sufficiently fast heat release. However, such mixed-mode combustion requires very stable inflammation, motivating studies on the effects of near-spark flow and turbulence, and the use of small amounts of fuel stratification near the spark plug.« less

  14. Towards energy efficient operation of Heating, Ventilation and Air Conditioning systems via advanced supervisory control design

    NASA Astrophysics Data System (ADS)

    Oswiecinska, A.; Hibbs, J.; Zajic, I.; Burnham, K. J.

    2015-11-01

    This paper presents conceptual control solution for reliable and energy efficient operation of heating, ventilation and air conditioning (HVAC) systems used in large volume building applications, e.g. warehouse facilities or exhibition centres. Advanced two-level scalable control solution, designed to extend capabilities of the existing low-level control strategies via remote internet connection, is presented. The high-level, supervisory controller is based on Model Predictive Control (MPC) architecture, which is the state-of-the-art for indoor climate control systems. The innovative approach benefits from using passive heating and cooling control strategies for reducing the HVAC system operational costs, while ensuring that required environmental conditions are met.

  15. System for Hydrogen Sensing

    NASA Technical Reports Server (NTRS)

    Lin, Jenshan; Norton, David P.; Pearton, Stephen J.; Ren, Fan

    2010-01-01

    A low-power, wireless gas-sensing system is designed to safeguard the apparatus to which it is attached, as well as associated personnel. It also ensures the efficiency and operational integrity of the hydrogen-powered apparatus. This sensing system can be operated with lower power consumption (less than 30 nanowatts), but still has a fast response. The detecting signal can be wirelessly transmitted to remote locations, or can be posted on the Web. This system can also be operated by harvesting energy.

  16. Novel single stripper with side-draw to remove ammonia and sour gas simultaneously for coal-gasification wastewater treatment and the industrial implementation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Feng, D.C.; Yu, Z.J.; Chen, Y.

    2009-06-15

    A large amount of wastewater is produced in the Lurgi coal-gasification process with the complex compounds carbon dioxide, ammonia, phenol, etc., which cause a serious environmental problem. In this paper, a novel stripper operated at elevated pressure is designed to improve the pretreatment process. In this technology, two noticeable improvements were established. First, the carbon dioxide and ammonia were removed simultaneously in a single stripper where sour gas (mainly carbon dioxide) is removed from the tower top and the ammonia vapor is drawn from the side and recovered by partial condensation. Second, the ammonia is removed before the phenol recoverymore » to reduce the pH value of the subsequent extraction units, so as the phenol removal performance of the extraction is greatly improved. To ensure the operational efficiency, some key operational parameters are analyzed and optimized though simulation. It is shown that when the top temperature is kept at 40 C and the weight ratio of the side draw to the feed is above 9%, the elevated pressures can ensure the removal efficiency of NH{sub 3} and carbon dioxide and the desired purified water as the bottom product of the unit is obtained. A real industrial application demonstrates the attractiveness of the new technique: it removes 99.9% CO{sub 2} and 99.6% ammonia, compared to known techniques which remove 66.5% and 94.4%, respectively. As a result, the pH value of the wastewater is reduced from above 9 to below 7. This ensures that the phenol removal ratio is above 93% in the following extraction units. The operating cost is lower than that of known techniques, and the operation is simplified.« less

  17. The Impact Of Occupational Hazards In Workplaces - Maintenance, A Main Target For Ensuring The Safety Of Working Equipment

    NASA Astrophysics Data System (ADS)

    Antonov, Anca Elena; Buica, Georgeta; Darabont, Doru Costin; Beiu, Constantin

    2015-07-01

    For use of work equipment having the economic performance and the highest level of safety, it must be ensured that it complies with the conditions set by the manufacturer in terms of putting into service, use and maintenance operations, ensuring appropriate technical and environmental requirements, including appropriate measures and means of protection. The research aimed to identify and analyze the occupational hazards associated to maintenance operations, in terms of the history of the adjustments, maintenance, cleaning and repair, including the case that occur after the incidents, capital repairs and upgrades. The results of the research consisted in the development of recommendations on the effective management of maintenance activities of work equipment and a software model to enable an efficient management of maintenance, as a tool for occupational hazards in companies - premise for increasing the competitiveness of employers in the market economy.

  18. Pavement damage due to different tire and loading configurations on secondary roads.

    DOT National Transportation Integrated Search

    2009-10-15

    Due to the large percentage of goods moved by commercial trucks and its ever-growing freight industry, the U.S. needs innovative technologies to improve the efficiency of trucking operations and ensure continuous growth of the economy. One example of...

  19. Premium Efficiency Motor Selection and Application Guide – A Handbook for Industry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilbert A. McCoy and John G. Douglass

    2014-02-01

    This handbook informs new motor purchase decisions by identifying energy and cost savings that can come from replacing motors with premium efficiency units. The handbook provides an overview of current motor use in the industrial sector, including the development of motor efficiency standards, currently available and emerging advanced efficiency motor technologies, and guidance on how to evaluate motor efficiency opportunities. It also several tips on getting the most out of industrial motors, such as how to avoid adverse motor interactions with electronic adjustable speed drives and how to ensure efficiency gains are not lost to undervoltage operation or excessive voltagemore » unbalance.« less

  20. Boiler MACT Technical Assistance (Fact Sheet)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    2012-03-01

    Fact sheet describing the changes to Environmental Protection Act process standards. The DOE will offer technical assistance to ensure that major sources burning coal and oil have information on cost-effective, clean energy strategies for compliance, and to promote cleaner, more efficient boiler burning to cut harmful pollution and reduce operational costs. The U.S. Environmental Protection Agency (EPA) is expected to finalize the reconsideration process for its Clean Air Act pollution standards National Emissions Standards for Hazardous Air Pollutants for Major Sources: Industrial, Commercial, and Institutional Boilers and Process Heaters (known as Boiler Maximum Achievable Control Technology (MACT)), in Spring 2012.more » This rule applies to large and small boilers in a wide range of industrial facilities and institutions. The U.S. Department of Energy (DOE) will offer technical assistance to ensure that major sources burning coal or oil have information on cost-effective clean energy strategies for compliance, including combined heat and power, and to promote cleaner, more efficient boilers to cut harmful pollution and reduce operational costs.« less

  1. Organizing Equity Exchanges

    NASA Astrophysics Data System (ADS)

    Schaper, Torsten

    In the last years equity exchanges have diversified their operations into business areas such as derivatives trading, post-trading services, and software sales. Securities trading and post-trading are subject to economies of scale and scope. The integration of these functions into one institution ensures efficiency by economizing on transactions costs.

  2. Potential Operating Orbits for Fission Electric Propulsion Systems Driven by the SAFE-400

    NASA Technical Reports Server (NTRS)

    Houts, Mike; Kos, Larry; Poston, David; Rodgers, Stephen L. (Technical Monitor)

    2002-01-01

    Safety must be ensured during all phases of space fission system design, development, fabrication, launch, operation, and shutdown. One potential space fission system application is fission electric propulsion (FEP), in which fission energy is converted into electricity and used to power high efficiency (Isp greater than 3000s) electric thrusters. For these types of systems it is important to determine which operational scenarios ensure safety while allowing maximum mission performance and flexibility. Space fission systems are essentially nonradioactive at launch, prior to extended operation at high power. Once high power operation begins, system radiological inventory steadily increases as fission products build up. For a given fission product isotope, the maximum radiological inventory is typically achieved once the system has operated for a length of time equivalent to several half-lives. After that time, the isotope decays at the same rate it is produced, and no further inventory builds in. For an FEP mission beginning in Earth orbit, altitude and orbital lifetime increase as the propulsion system operates. Two simultaneous effects of fission propulsion system operation are thus (1) increasing fission product inventory and (2) increasing orbital lifetime. Phrased differently, as fission products build up, more time is required for the fission products to naturally convert back into non-radioactive isotopes. Simultaneously, as fission products build up, orbital lifetime increases, providing more time for the fission products to naturally convert back into non-radioactive isotopes. Operational constraints required to ensure safety can thus be quantified.

  3. Potential operating orbits for fission electric propulsion systems driven by the SAFE-400

    NASA Astrophysics Data System (ADS)

    Houts, Mike; Kos, Larry; Poston, David

    2002-01-01

    Safety must be ensured during all phases of space fission system design, development, fabrication, launch, operation, and shutdown. One potential space fission system application is fission electric propulsion (FEP), in which fission energy is converted into electricity and used to power high efficiency (Isp>3000s) electric thrusters. For these types of systems it is important to determine which operational scenarios ensure safety while allowing maximum mission performance and flexibility. Space fission systems are essentially non-radioactive at launch, prior to extended operation at high power. Once high power operation begins, system radiological inventory steadily increases as fission products build up. For a given fission product isotope, the maximum radiological inventory is typically achieved once the system has operated for a length of time equivalent to several half-lives. After that time, the isotope decays at the same rate it is produced, and no further inventory builds in. For an FEP mission beginning in Earth orbit, altitude and orbital lifetime increase as the propulsion system operates. Two simultaneous effects of fission propulsion system operation are thus (1) increasing fission product inventory and (2) increasing orbital lifetime. Phrased differently, as fission products build up, more time is required for the fission products to naturally convert back into non-radioactive isotopes. Simultaneously, as fission products build up, orbital lifetime increases, providing more time for the fission products to naturally convert back into non-radioactive isotopes. Operational constraints required to ensure safety can thus be quantified. .

  4. Efficient monitoring of CRAB jobs at CMS

    NASA Astrophysics Data System (ADS)

    Silva, J. M. D.; Balcas, J.; Belforte, S.; Ciangottini, D.; Mascheroni, M.; Rupeika, E. A.; Ivanov, T. T.; Hernandez, J. M.; Vaandering, E.

    2017-10-01

    CRAB is a tool used for distributed analysis of CMS data. Users can submit sets of jobs with similar requirements (tasks) with a single request. CRAB uses a client-server architecture, where a lightweight client, a server, and ancillary services work together and are maintained by CMS operators at CERN. As with most complex software, good monitoring tools are crucial for efficient use and longterm maintainability. This work gives an overview of the monitoring tools developed to ensure the CRAB server and infrastructure are functional, help operators debug user problems, and minimize overhead and operating cost. This work also illustrates the design choices and gives a report on our experience with the tools we developed and the external ones we used.

  5. Efficient Monitoring of CRAB Jobs at CMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silva, J. M.D.; Balcas, J.; Belforte, S.

    CRAB is a tool used for distributed analysis of CMS data. Users can submit sets of jobs with similar requirements (tasks) with a single request. CRAB uses a client-server architecture, where a lightweight client, a server, and ancillary services work together and are maintained by CMS operators at CERN. As with most complex software, good monitoring tools are crucial for efficient use and longterm maintainability. This work gives an overview of the monitoring tools developed to ensure the CRAB server and infrastructure are functional, help operators debug user problems, and minimize overhead and operating cost. This work also illustrates themore » design choices and gives a report on our experience with the tools we developed and the external ones we used.« less

  6. The hidden costs of accounts receivable.

    PubMed

    McCormick, E J

    1993-11-01

    To maintain and expand their missions, hospitals must make the best use of their assets. Knowing the true cost of accounts receivable is important for efficient operations. Knowing how to reduce this cost is critical for liquidity. This article offers a guide to ensuring these assets are used most productively.

  7. Investment in Success

    ERIC Educational Resources Information Center

    Weinstein, Margery

    2010-01-01

    Operating a financial investment company in an unstable economy is not easy. But the right training at Vanguard ensures satisfied customers. The company made an investment of its own in learning and development that paid off big in 2009. The learning offerings, both innovative and efficient, keep its workers updated on strategies that bring…

  8. 77 FR 26653 - Law Day, U.S.A., 2012

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-04

    ..., No Freedom,'' recalls the historic role our courts have played in protecting the fundamental rights... operate efficiently. Likewise, we must ensure that access to justice is not an abstract theory, but a... call upon all Americans to acknowledge the importance of our Nation's legal and judicial systems with...

  9. An Optimization Approach to Coexistence of Bluetooth and Wi-Fi Networks Operating in ISM Environment

    NASA Astrophysics Data System (ADS)

    Klajbor, Tomasz; Rak, Jacek; Wozniak, Jozef

    Unlicensed ISM band is used by various wireless technologies. Therefore, issues related to ensuring the required efficiency and quality of operation of coexisting networks become essential. The paper addresses the problem of mutual interferences between IEEE 802.11b transmitters (commercially named Wi-Fi) and Bluetooth (BT) devices.An optimization approach to modeling the topology of BT scatternets is introduced, resulting in more efficient utilization of ISM environment consisting of BT and Wi-Fi networks. To achieve it, the Integer Linear Programming approach has been proposed. Example results presented in the paper illustrate significant benefits of using the proposed modeling strategy.

  10. The DoD's High Performance Computing Modernization Program - Ensuing the National Earth Systems Prediction Capability Becomes Operational

    NASA Astrophysics Data System (ADS)

    Burnett, W.

    2016-12-01

    The Department of Defense's (DoD) High Performance Computing Modernization Program (HPCMP) provides high performance computing to address the most significant challenges in computational resources, software application support and nationwide research and engineering networks. Today, the HPCMP has a critical role in ensuring the National Earth System Prediction Capability (N-ESPC) achieves initial operational status in 2019. A 2015 study commissioned by the HPCMP found that N-ESPC computational requirements will exceed interconnect bandwidth capacity due to the additional load from data assimilation and passing connecting data between ensemble codes. Memory bandwidth and I/O bandwidth will continue to be significant bottlenecks for the Navy's Hybrid Coordinate Ocean Model (HYCOM) scalability - by far the major driver of computing resource requirements in the N-ESPC. The study also found that few of the N-ESPC model developers have detailed plans to ensure their respective codes scale through 2024. Three HPCMP initiatives are designed to directly address and support these issues: Productivity Enhancement, Technology, Transfer and Training (PETTT), the HPCMP Applications Software Initiative (HASI), and Frontier Projects. PETTT supports code conversion by providing assistance, expertise and training in scalable and high-end computing architectures. HASI addresses the continuing need for modern application software that executes effectively and efficiently on next-generation high-performance computers. Frontier Projects enable research and development that could not be achieved using typical HPCMP resources by providing multi-disciplinary teams access to exceptional amounts of high performance computing resources. Finally, the Navy's DoD Supercomputing Resource Center (DSRC) currently operates a 6 Petabyte system, of which Naval Oceanography receives 15% of operational computational system use, or approximately 1 Petabyte of the processing capability. The DSRC will provide the DoD with future computing assets to initially operate the N-ESPC in 2019. This talk will further describe how DoD's HPCMP will ensure N-ESPC becomes operational, efficiently and effectively, using next-generation high performance computing.

  11. Measure Guideline: Heat Pump Water Heaters in New and Existing Homes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shapiro, C.; Puttagunta, S.; Owens, D.

    2012-02-01

    This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. This document is intended to explore the issues surrounding heat pump water heaters (HPWHs) to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs. Heat pump water heaters (HPWHs) promise to significantly reduce energy consumption for domestic hot water (DHW) over standard electric resistance water heaters (ERWHs). While ERWHs perform with energy factors (EFs) around 0.9, new HPWHs boast EFs upwards of 2.0. High energy factors in HPWHs are achieved by combining a vapor compression system, which extracts heat from themore » surrounding air at high efficiencies, with electric resistance element(s), which are better suited to meet large hot water demands. Swapping ERWHs with HPWHs could result in roughly 50% reduction in water heating energy consumption for 35.6% of all U.S. households. This Building America Measure Guideline is intended for builders, contractors, homeowners, and policy-makers. While HPWHs promise to significantly reduce energy use for DHW, proper installation, selection, and maintenance of HPWHs is required to ensure high operating efficiency and reliability. This document is intended to explore the issues surrounding HPWHs to ensure that homeowners and contractors have the tools needed to appropriately and efficiently install HPWHs. Section 1 of this guideline provides a brief description of HPWHs and their operation. Section 2 highlights the cost and energy savings of HPWHs as well as the variables that affect HPWH performance, reliability, and efficiency. Section 3 gives guidelines for proper installation and maintenance of HPWHs, selection criteria for locating HPWHs, and highlights of important differences between ERWH and HPWH installations. Throughout this document, CARB has included results from the evaluation of 14 heat pump water heaters (including three recently released HPWH products) installed in existing homes in the northeast region of the United States.« less

  12. Managing and Collecting Student Accounts and Loans: A Desk Reference for Educational Receivables Stewardship

    ERIC Educational Resources Information Center

    Glezerman, David R.; DeSantis, Dennis

    2008-01-01

    This handy desk reference will help readers and their institutions develop and maintain a professional environment that will maximize efficiencies and provide the necessary skills to properly manage operations and portfolios while ensuring that students receive fair and equitable service and opportunities. Written for business officers, financial…

  13. Assessing the Relationship of Principals' Leadership Styles on Teacher Satisfaction and Teacher Turnover

    ERIC Educational Resources Information Center

    Hamilton, Ericka

    2016-01-01

    Effective and efficient leadership helps schools to achieve established targets and ensures that they are operating according to federal and state guidelines. This quantitative comparative analysis study sought to address a gap in literature in terms of examining the impact of leadership styles of principals on teacher satisfaction and teacher…

  14. Escalator design features evaluation

    NASA Technical Reports Server (NTRS)

    Zimmerman, W. F.; Deshpande, G. K.

    1982-01-01

    Escalators are available with design features such as dual speed (90 and 120 fpm), mat operation and flat steps. These design features were evaluated based on the impact of each on capital and operating costs, traffic flow, and safety. A human factors engineering model was developed to analyze the need for flat steps at various speeds. Mat operation of escalators was found to be cost effective in terms of energy savings. Dual speed operation of escalators with the higher speed used during peak hours allows for efficient operation. A minimum number of flat steps required as a function of escalator speed was developed to ensure safety for the elderly.

  15. Development of national standards related to the integrated safety and security of high-rise buildings

    NASA Astrophysics Data System (ADS)

    Voskresenskaya, Elena; Vorona-Slivinskaya, Lubov

    2018-03-01

    The article considers the issues of developing national standards for high-rise construction. The system of standards should provide industrial, operational, economic and terrorist safety of high-rise buildings and facilities. Modern standards of high-rise construction should set the rules for designing engineering systems of high-rise buildings, which will ensure the integrated security of buildings, increase their energy efficiency and reduce the consumption of resources in construction and operation.

  16. The Organization and Management of the Virtual Astronomical Observatory

    NASA Technical Reports Server (NTRS)

    Berriman, G. Bruce; Hanisch, Robert J.; Lazio, T. Joseph W.; Szalay, Alexander; Fabbiano, Giussepina

    2012-01-01

    The U.S. Virtual Astronomical Observatory (VAO; http://www.us-vao.org/) has been in operation since May 2010. Its goal is to enable new science through efficient integration of distributed multi-wavelength data. This paper describes the management and organization of the VAO, and emphasizes the techniques used to ensure efficiency in a distributed organization. Management methods include using an annual program plan as the basis for establishing contracts with member organizations, regular communication, and monitoring of processes.

  17. The organization and management of the Virtual Astronomical Observatory

    NASA Astrophysics Data System (ADS)

    Berriman, G. Bruce; Hanisch, Robert J.; Lazio, T. Joseph W.; Szalay, Alexander; Fabbiano, Giuseppina

    2012-09-01

    The U.S. Virtual Astronomical Observatory (VAO; http://www.us-vao.org/) has been in operation since May 2010. Its goal is to enable new science through efficient integration of distributed multi-wavelength data. This paper describes the management and organization of the VAO, and emphasizes the techniques used to ensure efficiency in a distributed organization. Management methods include using an annual program plan as the basis for establishing contracts with member organizations, regular communication, and monitoring of processes.

  18. Human-In-The-Loop Simulation in Support of Long-Term Sustainability of Light Water Reactors

    DOE PAGES

    Hallbert, Bruce P

    2015-01-01

    Reliable instrumentation, information, and control systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration. The NPP owners and operators realize that this analog technology represents a significant challenge to sustaining the operation of the current fleet of NPPs. Beyond control systems, new technologies are neededmore » to monitor and characterize the effects of aging and degradation in critical areas of key structures, systems, and components. The objective of the efforts sponsored by the U.S. Department of Energy is to develop, demonstrate, and deploy new digital technologies for II&C architectures and provide monitoring capabilities to ensure the continued safe, reliable, and economic operation of the nation’s NPPs.« less

  19. LANL Multiyear Strategy Performance Improvement (MYSPI), Fiscal Years 2017–2021

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leasure, Craig Scott

    2016-05-03

    Los Alamos National Laboratory (LANL) protects the nation and the world using innovative science, technology, and engineering through an integrated approach that harnesses the strength of our people, capabilities, and operations. The Laboratory’s Strategic Plan and Purpose statement provide the framework for scientific excellence and operational excellence now and in the future. Our Strategic Plan and Purpose help position Los Alamos for continuing mission success that ensures the safety, security, and effectiveness of the nation’s deterrent; protects the nation from nuclear and emerging threats through our larger global security missions; provides energy security to the nation; and ensures that themore » nation’s scientific reputation and capabilities remain robust enough to assure our allies and deter our adversaries. Moreover, we use these principles and guidance to ensure that Los Alamos is successful in attracting, recruiting, and retaining the next generation of world-class talent, while creating an efficient, environmentally responsible workplace that provides our employees with access to modern scientific tools and resources. Using this guidance and its underlying principles, we are continuing to restore credibility and operational effectiveness to the Laboratory, deliver mission success and continuing scientific excellence, and protect our employees and the nation’s secrets.« less

  20. LANL Multiyear Strategy Performance Improvement (MYSPI), Fiscal Years 2018-2022

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leasure, Craig Scott

    Los Alamos National Laboratory (LANL) protects the nation and the world using innovative science, technology, and engineering through an integrated approach that harnesses the strength of our people, capabilities, and operations. The Laboratory’s Strategic Plan and Purpose statement provide the framework for scientific excellence and operational excellence now and in the future. Our Strategic Plan and Purpose help position Los Alamos for continuing mission success that ensures the safety, security, and effectiveness of the nation’s deterrent; protects the nation from nuclear and emerging threats through our larger global security missions; provides energy security to the nation; and ensures that themore » nation’s scientific reputation and capabilities remain robust enough to assure our allies and deter our adversaries. Moreover, we use these principles and guidance to ensure that Los Alamos is successful in attracting, recruiting, and retaining the next generation of excellent talent, while creating an efficient, environmentally responsible workplace that provides our employees with access to modern scientific tools and resources. Using this guidance and its underlying principles, we are continuing to restore credibility and operational effectiveness to the Laboratory, deliver mission success and continuing scientific excellence, and protect our employees and the nation’s secrets.« less

  1. Parallel operation of NH3 screw compressors - the optimum way

    NASA Astrophysics Data System (ADS)

    Pijnenburg, B.; Ritmann, J.

    2015-08-01

    The use of more smaller industrial NH3 screw compressors operating in parallel seems to offer the optimum way when it comes to fulfilling maximum part load efficiency, increased redundancy and other highly requested features in the industrial refrigeration industry today. Parallel operation in an optimum way can be selected to secure continuous operation and can in most applications be configured to ensure lower overall operating economy. New compressors are developed to meet requirements for flexibility in operation and are controlled in an intelligent way. The intelligent control system keeps focus on all external demands, but yet striving to offer always the lowest possible absorbed power, including in future scenarios with connection to smart grid.

  2. The Effects of Operational Parameters on a Mono-wire Cutting System: Efficiency in Marble Processing

    NASA Astrophysics Data System (ADS)

    Yilmazkaya, Emre; Ozcelik, Yilmaz

    2016-02-01

    Mono-wire block cutting machines that cut with a diamond wire can be used for squaring natural stone blocks and the slab-cutting process. The efficient use of these machines reduces operating costs by ensuring less diamond wire wear and longer wire life at high speeds. The high investment costs of these machines will lead to their efficient use and reduce production costs by increasing plant efficiency. Therefore, there is a need to investigate the cutting performance parameters of mono-wire cutting machines in terms of rock properties and operating parameters. This study aims to investigate the effects of the wire rotational speed (peripheral speed) and wire descending speed (cutting speed), which are the operating parameters of a mono-wire cutting machine, on unit wear and unit energy, which are the performance parameters in mono-wire cutting. By using the obtained results, cuttability charts for each natural stone were created on the basis of unit wear and unit energy values, cutting optimizations were performed, and the relationships between some physical and mechanical properties of rocks and the optimum cutting parameters obtained as a result of the optimization were investigated.

  3. Recovery Act: Training Program Development for Commercial Building Equipment Technicians

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leah Glameyer

    The overall goal of this project has been to develop curricula, certification requirements, and accreditation standards for training on energy efficient practices and technologies for commercial building technicians. These training products will advance industry expertise towards net-zero energy commercial building goals and will result in a substantial reduction in energy use. The ultimate objective is to develop a workforce that can bring existing commercial buildings up to their energy performance potential and ensure that new commercial buildings do not fall below their expected optimal level of performance. Commercial building equipment technicians participating in this training program will learn how tomore » best operate commercial buildings to ensure they reach their expected energy performance level. The training is a combination of classroom, online and on-site lessons. The Texas Engineering Extension Service (TEEX) developed curricula using subject matter and adult learning experts to ensure the training meets certification requirements and accreditation standards for training these technicians. The training targets a specific climate zone to meets the needs, specialized expertise, and perspectives of the commercial building equipment technicians in that zone. The combination of efficient operations and advanced design will improve the internal built environment of a commercial building by increasing comfort and safety, while reducing energy use and environmental impact. Properly trained technicians will ensure equipment operates at design specifications. A second impact is a more highly trained workforce that is better equipped to obtain employment. Organizations that contributed to the development of the training program include TEEX and the Texas Engineering Experiment Station (TEES) (both members of The Texas A&M University System). TEES is also a member of the Building Commissioning Association. This report includes a description of the project accomplishments, including the course development phases, tasks associated with each phase, and detailed list of the course materials developed. A summary of each year's activities is also included.« less

  4. Hybrid Composite Coatings for Durable and Efficient Solar Hydrogen Generation under Diverse Operating Conditions

    DOE PAGES

    Walczak, Karl A.; Segev, Gideon; Larson, David M.; ...

    2017-02-17

    Safe and practical solar-driven hydrogen generators must be capable of efficient and stable operation under diurnal cycling with full separation of gaseous H 2 and O 2 products. In this paper, a novel architecture that fulfills all of these requirements is presented. The approach is inherently scalable and provides versatility for operation under diverse electrolyte and lighting conditions. The concept is validated using a 1 cm 2 triple-junction photovoltaic cell with its illuminated photocathode protected by a composite coating comprising an organic encapsulant with an embedded catalytic support. The device is compatible with operation under conditions ranging from 1 Mmore » H 2SO 4 to 1 M KOH, enabling flexibility in selection of semiconductor, electrolyte, membrane, and catalyst. Stable operation at a solar-to-hydrogen conversion efficiency of >10% is demonstrated under continuous operation, as well as under diurnal light cycling for at least 4 d, with simulated sunlight. Operational characteristics are validated by extended time outdoor testing. A membrane ensures products are separated, with nonexplosive gas streams generated for both alkaline and acidic systems. Finally, analysis of operational characteristics under different lighting conditions is enabled by comparison of a device model to experimental data.« less

  5. Simple modules for high efficiency conversion of standard ytterbium doped fiber lasers into octave spanning continuous-wave supercontinuum sources

    NASA Astrophysics Data System (ADS)

    Arun, S.; Choudhury, Vishal; Balaswamy, V.; Supradeepa, V. R.

    2018-02-01

    We have demonstrated a 34 W continuous wave supercontinuum using the standard telecom fiber (SMF 28e). The supercontinuum spans over a bandwidth of 1000 nm (>1 octave) from 880nm to 1900 nm with a substantial power spectral density of >1mW/nm from 880-1350 nm and 50-100mW/nm in 1350-1900 nm. The distributed feedback Raman laser architecture was used for pumping the supercontinuum which ensured high efficiency Raman conversions and helped in achieving a very high efficiency of 44% for supercontinuum generation. Using this architecture, Yb laser operating at any wavelength can be used for generating the supercontinuum and this was demonstrated by using two different Yb lasers operating at 1117nm and 1085 nm to pump the supercontinuum.

  6. Light Water Reactor Sustainability Program Advanced Instrumentation, Information, and Control Systems Technologies Technical Program Plan for FY 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hallbert, Bruce Perry; Thomas, Kenneth David

    2015-10-01

    Reliable instrumentation, information, and control (II&C) systems technologies are essential to ensuring safe and efficient operation of the U.S. light water reactor (LWR) fleet. These technologies affect every aspect of nuclear power plant (NPP) and balance-of-plant operations. In 1997, the National Research Council conducted a study concerning the challenges involved in modernization of digital instrumentation and control systems in NPPs. Their findings identified the need for new II&C technology integration.

  7. Microprocessor-controlled step-down maximum-power-point tracker for photovoltaic systems

    NASA Astrophysics Data System (ADS)

    Mazmuder, R. K.; Haidar, S.

    1992-12-01

    An efficient maximum power point tracker (MPPT) has been developed and can be used with a photovoltaic (PV) array and a load which requires lower voltage than the PV array voltage to be operated. The MPPT makes the PV array to operate at maximum power point (MPP) under all insolation and temperature, which ensures the maximum amount of available PV power to be delivered to the load. The performance of the MPPT has been studied under different insolation levels.

  8. U.S. Department of Education, Office of Inspector General Semiannual Report to Congress, October 1, 1997-March 31, 1998.

    ERIC Educational Resources Information Center

    Office of Inspector General (ED), Washington, DC.

    During the 6-month period ending March 31, 1998, the Office of Inspector General assisted the Department of Education in ensuring that taxpayer-funded federal education programs and operations are implemented efficiency, effectiveness, integrity and accountability. In the executive summary, under "Goal 1: Programs and Operations…

  9. Integrated Systems for Education Information: A Business Plan for Managing North Carolina's Public School System. Management Summary Report.

    ERIC Educational Resources Information Center

    1984

    This report describes the North Carolina Department of Education's 5-year plan for establishing a statewide management information system. The system is intended to improve fiscal management, personnel administration, and administrative operations, and to ensure efficient resource use. Initial sections present highlights of the plan; background…

  10. User participation in the development of the human/computer interface for control centers

    NASA Technical Reports Server (NTRS)

    Broome, Richard; Quick-Campbell, Marlene; Creegan, James; Dutilly, Robert

    1996-01-01

    Technological advances coupled with the requirements to reduce operations staffing costs led to the demand for efficient, technologically-sophisticated mission operations control centers. The control center under development for the earth observing system (EOS) is considered. The users are involved in the development of a control center in order to ensure that it is cost-efficient and flexible. A number of measures were implemented in the EOS program in order to encourage user involvement in the area of human-computer interface development. The following user participation exercises carried out in relation to the system analysis and design are described: the shadow participation of the programmers during a day of operations; the flight operations personnel interviews; and the analysis of the flight operations team tasks. The user participation in the interface prototype development, the prototype evaluation, and the system implementation are reported on. The involvement of the users early in the development process enables the requirements to be better understood and the cost to be reduced.

  11. Operations mission planner beyond the baseline

    NASA Technical Reports Server (NTRS)

    Biefeld, Eric; Cooper, Lynne

    1991-01-01

    The scheduling of Space Station Freedom must satisfy four major requirements. It must ensure efficient housekeeping operations, maximize the collection of science, respond to changes in tasking and available resources, and accommodate the above changes in a manner that minimizes disruption of the ongoing operations of the station. While meeting these requirements the scheduler must cope with the complexity, scope, and flexibility of SSF operations. This requires the scheduler to deal with an astronomical number of possible schedules. The Operations Mission Planner (OMP) is centered around minimally disruptive replanning and the use of heuristics limit search in scheduling. OMP has already shown several artificial intelligence based scheduling techniques such as Interleaved Iterative Refinement and Bottleneck Identification using Process Chronologies.

  12. Environmental Requirements Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cusack, Laura J.; Bramson, Jeffrey E.; Archuleta, Jose A.

    2015-01-08

    CH2M HILL Plateau Remediation Company (CH2M HILL) is the U.S. Department of Energy (DOE) prime contractor responsible for the environmental cleanup of the Hanford Site Central Plateau. As part of this responsibility, the CH2M HILL is faced with the task of complying with thousands of environmental requirements which originate from over 200 federal, state, and local laws and regulations, DOE Orders, waste management and effluent discharge permits, Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) response and Resource Conservation and Recovery Act (RCRA) corrective action documents, and official regulatory agency correspondence. The challenge is to manage this vast number ofmore » requirements to ensure they are appropriately and effectively integrated into CH2M HILL operations. Ensuring compliance with a large number of environmental requirements relies on an organization’s ability to identify, evaluate, communicate, and verify those requirements. To ensure that compliance is maintained, all changes need to be tracked. The CH2M HILL identified that the existing system used to manage environmental requirements was difficult to maintain and that improvements should be made to increase functionality. CH2M HILL established an environmental requirements management procedure and tools to assure that all environmental requirements are effectively and efficiently managed. Having a complete and accurate set of environmental requirements applicable to CH2M HILL operations will promote a more efficient approach to: • Communicating requirements • Planning work • Maintaining work controls • Maintaining compliance« less

  13. Francis-99: Transient CFD simulation of load changes and turbine shutdown in a model sized high-head Francis turbine

    NASA Astrophysics Data System (ADS)

    Mössinger, Peter; Jester-Zürker, Roland; Jung, Alexander

    2017-01-01

    With increasing requirements for hydropower plant operation due to intermittent renewable energy sources like wind and solar, numerical simulations of transient operations in hydraulic turbo machines become more important. As a continuation of the work performed for the first workshop which covered three steady operating conditions, in the present paper load changes and a shutdown procedure are investigated. The findings of previous studies are used to create a 360° model and compare measurements with simulation results for the operating points part load, high load and best efficiency. A mesh motion procedure is introduced, allowing to represent moving guide vanes for load changes from best efficiency to part load and high load. Additionally an automated re-mesh procedure is added for turbine shutdown to ensure reliable mesh quality during guide vane closing. All three transient operations are compared to PIV velocity measurements in the draft tube and pressure signals in the vaneless space. Simulation results of axial velocity distributions for all three steady operation points, during both load changes and for the shutdown correlated well with the measurement. An offset at vaneless space pressure is found to be a result of guide vane corrections for the simulation to ensure similar velocity fields. Short-time Fourier transformation indicating increasing amplitudes and frequencies at speed-no load conditions. Further studies will discuss the already measured start-up procedure and investigate the necessity to consider the hydraulic system dynamics upstream of the turbine by means of a 1D3D coupling between the 3D flow field and a 1D system model.

  14. Cognitive engineering models in space systems

    NASA Technical Reports Server (NTRS)

    Mitchell, Christine M.

    1992-01-01

    NASA space systems, including mission operations on the ground and in space, are complex, dynamic, predominantly automated systems in which the human operator is a supervisory controller. The human operator monitors and fine-tunes computer-based control systems and is responsible for ensuring safe and efficient system operation. In such systems, the potential consequences of human mistakes and errors may be very large, and low probability of such events is likely. Thus, models of cognitive functions in complex systems are needed to describe human performance and form the theoretical basis of operator workstation design, including displays, controls, and decision support aids. The operator function model represents normative operator behavior-expected operator activities given current system state. The extension of the theoretical structure of the operator function model and its application to NASA Johnson mission operations and space station applications is discussed.

  15. Improving the environmental and performance characteristics of vehicles by introducing the surfactant additive into gasoline.

    PubMed

    Magaril, Elena; Magaril, Romen

    2016-09-01

    The operation of modern vehicles requires the introduction of package of fuel additives to ensure the required level of operating characteristics, some of which cannot be achieved by current oil refining methods. The use of additives allows flexibility of impact on the properties of the fuel at minimal cost, increasing the efficiency and environmental safety of vehicles. Among the wide assortment of additives available on the world market, many are surfactants. It has been shown that the introduction of some surfactants into gasoline concurrently reduces losses from gasoline evaporation, improves the mixture formation during injection of gasoline into the engine and improves detergent and anticorrosive properties. The surfactant gasoline additive that provides significant improvement in the quality of gasoline used and environmental and operating characteristics of vehicles has been developed and thoroughly investigated. The results of studies confirming the efficiency of the gasoline additive application are herein presented.

  16. Swarm size and iteration number effects to the performance of PSO algorithm in RFID tag coverage optimization

    NASA Astrophysics Data System (ADS)

    Prathabrao, M.; Nawawi, Azli; Sidek, Noor Azizah

    2017-04-01

    Radio Frequency Identification (RFID) system has multiple benefits which can improve the operational efficiency of the organization. The advantages are the ability to record data systematically and quickly, reducing human errors and system errors, update the database automatically and efficiently. It is often more readers (reader) is needed for the installation purposes in RFID system. Thus, it makes the system more complex. As a result, RFID network planning process is needed to ensure the RFID system works perfectly. The planning process is also considered as an optimization process and power adjustment because the coordinates of each RFID reader to be determined. Therefore, algorithms inspired by the environment (Algorithm Inspired by Nature) is often used. In the study, PSO algorithm is used because it has few number of parameters, the simulation time is fast, easy to use and also very practical. However, PSO parameters must be adjusted correctly, for robust and efficient usage of PSO. Failure to do so may result in disruption of performance and results of PSO optimization of the system will be less good. To ensure the efficiency of PSO, this study will examine the effects of two parameters on the performance of PSO Algorithm in RFID tag coverage optimization. The parameters to be studied are the swarm size and iteration number. In addition to that, the study will also recommend the most optimal adjustment for both parameters that is, 200 for the no. iterations and 800 for the no. of swarms. Finally, the results of this study will enable PSO to operate more efficiently in order to optimize RFID network planning system.

  17. Financial advantages. Preventative measures ensure the health of your accounts receivable.

    PubMed

    Duda, Michelle

    2009-11-01

    Running a dental practice is no small task; from staying on the leading edge of new medical developments and products, to monitoring ever-changing dental insurance plans, to simply overseeing the fundamental day-to-day operations. But there is one area of your practice that can be streamlined to significantly improve your cash flow, minimize delinquencies and optimize fiscal operations. Your accounts receivable and collections can be economically and efficiently managed by a savvy combination of internal efforts and the partnership of a third party resource.

  18. Modeling the Supply Process Using the Application of Selected Methods of Operational Analysis

    NASA Astrophysics Data System (ADS)

    Chovancová, Mária; Klapita, Vladimír

    2017-03-01

    Supply process is one of the most important enterprise activities. All raw materials, intermediate products and products, which are moved within enterprise, are the subject of inventory management and by their effective management significant improvement of enterprise position on the market can be achieved. For that reason, the inventory needs to be managed, monitored, evaluated and affected. The paper deals with utilizing the methods of the operational analysis in the field of inventory management in terms of achieving the economic efficiency and ensuring the particular customer's service level as well.

  19. UTM UAS Service Supplier Specification

    NASA Technical Reports Server (NTRS)

    Rios, Joseph Lucio

    2017-01-01

    Within the Unmanned Aircraft Systems (UAS) Traffic Management (UTM) system, the UAS Service Supplier (USS) is a key component. The USS serves several functions. At a high level, those include the following: Bridging communication between UAS Operators and Flight Information Management System (FIMS) Supporting planning of UAS operations Assisting strategic deconfliction of the UTM airspace Providing information support to UAS Operators during operations Helping UAS Operators meet their formal requirements This document provides the minimum set of requirements for a USS. In order to be recognized as a USS within UTM, successful demonstration of satisfying the requirements described herein will be a prerequisite. To ensure various desired qualities (security, fairness, availability, efficiency, maintainability, etc.), this specification relies on references to existing public specifications whenever possible.

  20. A Unique BSL-3 Cryo-Electron Microscopy Laboratory at UTMB

    PubMed Central

    Sherman, Michael B.; Freiberg, Alexander N.; Razmus, Dennis; Yazuka, Shintaro; Koht, Craig; Hilser, Vincent J.; Lemon, Stanley M.; Brocard, Anne-Sophie; Zimmerman, Dee; Chiu, Wah; Watowich, Stanley J.; Weaver, Scott C.

    2010-01-01

    This article describes a unique cryo-electron microscopy (CryoEM) facility to study the three-dimensional organization of viruses at biological safety level 3 (BSL-3). This facility, the W. M. Keck Center for Virus Imaging, has successfully operated for more than a year without incident and was cleared for select agent studies by the Centers for Disease Control and Prevention (CDC). Standard operating procedures for the laboratory were developed and implemented to ensure its safe and efficient operation. This facility at the University of Texas Medical Branch (Galveston, TX) is the only such BSL-3 CryoEM facility approved for select agent research. PMID:21852942

  1. Destination directed packet switch architecture for a 30/20 GHz FDMA/TDM geostationary communication satellite network

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Shalkhauser, Mary JO

    1991-01-01

    Emphasis is on a destination directed packet switching architecture for a 30/20 GHz frequency division multiplex access/time division multiplex (FDMA/TDM) geostationary satellite communication network. Critical subsystems and problem areas are identified and addressed. Efforts have concentrated heavily on the space segment; however, the ground segment was considered concurrently to ensure cost efficiency and realistic operational constraints.

  2. Megawatt low-temperature DC plasma generator with divergent channels of gas-discharge tract

    NASA Astrophysics Data System (ADS)

    Gadzhiev, M. Kh.; Isakaev, E. Kh.; Tyuftyaev, A. S.; Yusupov, D. I.; Sargsyan, M. A.

    2017-04-01

    We have developed and studied a new effective megawatt double-unit generator of low-temperature argon plasma, which belongs to the class of dc plasmatrons and comprises the cathode and anode units with divergent gas-discharge channels. The generator has an efficiency of about 80-85% and ensures a long working life at operating currents up to 4000 A.

  3. Maritime Cyber Security University Research

    DTIC Science & Technology

    2016-05-01

    traffic so vital to the global economy . The vulnerabilities associated with reliance on digital systems in the maritime environment must be continuously...Abstract (MAXIMUM 200 WORDS) Modern maritime systems are highly complex digital systems to ensure the safety and efficient operation of the shipping...integrity of the entrances to our " digital ports" and work to develop practical cyber security solutions to protect the nation’s maritime

  4. Maritime Cyber Security University Research: Phase 1

    DTIC Science & Technology

    2016-05-01

    the global economy . The vulnerabilities associated with reliance on digital systems in the maritime environment must be continuously examined. System...Report: Modern maritime systems are highly complex digital systems to ensure the safety and efficient operation of the shipping traffic so vital to...entrances to our " digital ports" and work to develop practical cyber security solutions to protect the nation’s maritime infrastructure. 17. Key

  5. Circuit-switch architecture for a 30/20-GHz FDMA/TDM geostationary satellite communications network

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.

    1992-01-01

    A circuit switching architecture is described for a 30/20 GHz frequency division, multiple access uplink/time division multiplexed downlink (FDMA/TDM) geostationary satellite communications network. Critical subsystems and problem areas are identified and addressed. Work was concentrated primarily on the space segment; however, the ground segment was considered concurrently to ensure cost efficiency and realistic operational constraints.

  6. Destination-directed, packet-switching architecture for 30/20-GHz FDMA/TDM geostationary communications satellite network

    NASA Technical Reports Server (NTRS)

    Ivancic, William D.; Shalkhauser, Mary JO

    1992-01-01

    A destination-directed packet switching architecture for a 30/20-GHz frequency division multiple access/time division multiplexed (FDMA/TDM) geostationary satellite communications network is discussed. Critical subsystems and problem areas are identified and addressed. Efforts have concentrated heavily on the space segment; however, the ground segment has been considered concurrently to ensure cost efficiency and realistic operational constraints.

  7. Executive Guide: Information Security Management. Learning From Leading Organizations

    DTIC Science & Technology

    1998-05-01

    data. In September 1996, we reported that audit reports and agency self - assessments issued during the previous 2 years showed that weak information...company has developed an efficient and disciplined process for ensuring that information security-related risks to business operations are considered and...protection group at the utility was required to approve all new applications to indicate that risks had been adequately considered. Providing self

  8. Modified Universal Design Survey: Enhancing Operability of Launch Vehicle Ground Crew Worksites

    NASA Technical Reports Server (NTRS)

    Blume, Jennifer L.

    2010-01-01

    Operability is a driving requirement for next generation space launch vehicles. Launch site ground operations include numerous operator tasks to prepare the vehicle for launch or to perform preflight maintenance. Ensuring that components requiring operator interaction at the launch site are designed for optimal human use is a high priority for operability. To promote operability, a Design Quality Evaluation Survey based on Universal Design framework was developed to support Human Factors Engineering (HFE) evaluation for NASA s launch vehicles. Universal Design per se is not a priority for launch vehicle processing however; applying principles of Universal Design will increase the probability of an error free and efficient design which promotes operability. The Design Quality Evaluation Survey incorporates and tailors the seven Universal Design Principles and adds new measures for Safety and Efficiency. Adapting an approach proven to measure Universal Design Performance in Product, each principle is associated with multiple performance measures which are rated with the degree to which the statement is true. The Design Quality Evaluation Survey was employed for several launch vehicle ground processing worksite analyses. The tool was found to be most useful for comparative judgments as opposed to an assessment of a single design option. It provided a useful piece of additional data when assessing possible operator interfaces or worksites for operability.

  9. Efficient methods and readily customizable libraries for managing complexity of large networks.

    PubMed

    Dogrusoz, Ugur; Karacelik, Alper; Safarli, Ilkin; Balci, Hasan; Dervishi, Leonard; Siper, Metin Can

    2018-01-01

    One common problem in visualizing real-life networks, including biological pathways, is the large size of these networks. Often times, users find themselves facing slow, non-scaling operations due to network size, if not a "hairball" network, hindering effective analysis. One extremely useful method for reducing complexity of large networks is the use of hierarchical clustering and nesting, and applying expand-collapse operations on demand during analysis. Another such method is hiding currently unnecessary details, to later gradually reveal on demand. Major challenges when applying complexity reduction operations on large networks include efficiency and maintaining the user's mental map of the drawing. We developed specialized incremental layout methods for preserving a user's mental map while managing complexity of large networks through expand-collapse and hide-show operations. We also developed open-source JavaScript libraries as plug-ins to the web based graph visualization library named Cytsocape.js to implement these methods as complexity management operations. Through efficient specialized algorithms provided by these extensions, one can collapse or hide desired parts of a network, yielding potentially much smaller networks, making them more suitable for interactive visual analysis. This work fills an important gap by making efficient implementations of some already known complexity management techniques freely available to tool developers through a couple of open source, customizable software libraries, and by introducing some heuristics which can be applied upon such complexity management techniques to ensure preserving mental map of users.

  10. Mathematical model of design loading vessel

    NASA Astrophysics Data System (ADS)

    Budnik, V. Yu

    2017-10-01

    Transport by ferry is very important in our time. The paper shows the factors that affect the operation of the ferry. The constraints of the designed system were identified. The indicators of quality were articulated. It can be done by means of improving the decision-making process and the choice of the optimum loading options to ensure efficient functioning of Kerch strait ferry line. The algorithm and a mathematical model were developed.

  11. 40 CFR Appendix A to Subpart Kk of... - Data Quality Objective and Lower Confidence Limit Approaches for Alternative Capture Efficiency...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Figure 1). This ensures that 95 percent of the time, when the DQO is met, the actual CE value will be ±5... while still being assured of correctly demonstrating compliance. It is designed to reduce “false... approach follows: 4.3A source conducts an initial series of at least three runs. The owner or operator may...

  12. Air Force Research Laboratory Success Stories. A Review of 2001

    DTIC Science & Technology

    2001-01-01

    object damage (FOD) and less risk to aircraft and pilots. This technology provides a cost avoidance of over $100 million above and beyond the savings in...semiconductor devices. Consequently, this new generation of lasers results in a substantial reduction of risk in developing compact, efficient sources for...Operational Toxicology Branch in the IPSC ensures that research conducted provides risk managers (Air Force/insulation and logistics, and base

  13. The dynamic improvement methods of energy efficiency and reliability of oil production submersible electric motors

    NASA Astrophysics Data System (ADS)

    Romanov, V. S.; Goldstein, V. G.

    2018-01-01

    In the organization of production and operation of submersible electric motors (ESP), as the most essential element of electric submersible plants (ESP) in the oil industry, it is necessary to consider specific operating conditions. The submersible electric motors (SEM) as most essential element of electrosubmersible installations (EI) in oil branch accounting of operation specific conditions is necessary in the process production and operation. They are determined by the conditions under which the EPU is operated. They are defined by the EPU operation conditions. For a complete picture the current state of the SED fleet in oil production, the results of its statistical analysis are given. For a comprehensive idea of the SEM park current state the results of statistical analysis are given in oil production. Currently, assessed the performance of submersible equipment produced by major manufacturers. Currently the operational characteristics assessment of the submersible equipment released by the main producers is given. It is stated that standard equipment cannot fully ensure efficient operation with the help of serial EIs, therefore new technologies and corresponding equipment are required to be developed. It is noted that the standard equipment could not provide fully effective operation by means of serial ESP therefore new technologies development and the corresponding equipment are required.

  14. Biases encountered in long-term monitoring studies of invertebrates and microflora: Australian examples of protocols, personnel, tools and site location.

    PubMed

    Greenslade, Penelope; Florentine, Singarayer K; Hansen, Brigita D; Gell, Peter A

    2016-08-01

    Monitoring forms the basis for understanding ecological change. It relies on repeatability of methods to ensure detected changes accurately reflect the effect of environmental drivers. However, operator bias can influence the repeatability of field and laboratory work. We tested this for invertebrates and diatoms in three trials: (1) two operators swept invertebrates from heath vegetation, (2) four operators picked invertebrates from pyrethrum knockdown samples from tree trunk and (3) diatom identifications by eight operators in three laboratories. In each trial, operators were working simultaneously and their training in the field and laboratory was identical. No variation in catch efficiency was found between the two operators of differing experience using a random number of net sweeps to catch invertebrates when sequence, location and size of sweeps were random. Number of individuals and higher taxa collected by four operators from tree trunks varied significantly between operators and with their 'experience ranking'. Diatom identifications made by eight operators were clustered together according to which of three laboratories they belonged. These three tests demonstrated significant potential bias of operators in both field and laboratory. This is the first documented case demonstrating the significant influence of observer bias on results from invertebrate field-based studies. Examples of two long-term trials are also given that illustrate further operator bias. Our results suggest that long-term ecological studies using invertebrates need to be rigorously audited to ensure that operator bias is accounted for during analysis and interpretation. Further, taxonomic harmonisation remains an important step in merging field and laboratory data collected by different operators.

  15. Sensitivity analysis of cool-down strategies for a transonic cryogenic tunnel

    NASA Technical Reports Server (NTRS)

    Thibodeaux, J. J.

    1982-01-01

    Guidelines and suggestions substantiated by real-time simulation data to ensure optimum time and energy use of injected liquid nitrogen for cooling the Langley 0.3-Meter Transonic Cryogenic Tunnel (TCT) are presented. It is directed toward enabling operators and researchers to become cognizant of criteria for using the 0.3-m TCT in an energy- or time-efficient manner. Operational recommendations were developed based on information collected from a validated simulator of the 0.3-m TCT and experimental data from the tunnel. Results and trends, however, can be extrapolated to other similarly constructed cryogenic wind tunnels.

  16. Comparison and selection of off-grid PV systems

    NASA Astrophysics Data System (ADS)

    Izmailov, Andrey Yu.; Lobachevsky, Yakov P.; Shepovalova, Olga V.

    2018-05-01

    This work deals with comparison, evaluation and selection of PV systems of the same type based on their technical parameters either indicated in their technical specifications or calculated ones. Stand-alone and grid backed up photoelectric systems have been considered. General requirements for photoelectric system selection and evaluation have been presented that ensure system operability and required efficiency in operation conditions. Generic principles and definition of photoelectric systems characteristics have been considered. The described method is mainly targeted at PV engineering personnel and private customers purchasing PV systems. It can be also applied in the course of project contests, tenders, etc.

  17. Preparing the BESSY APPLE Undulators for Top-Up Operation

    NASA Astrophysics Data System (ADS)

    Bahrdt, J.; Frentrup, W.; Gaupp, A.; Scheer, M.

    2007-01-01

    BESSY plans to go to topping up operation in the near future. A high injection efficiency is essential to avoid particle losses inside the undulator magnets and to ensure a low radiation background in the beamlines. Dynamic and static multipoles of the insertion devices have to be minimized to accomplish this requirement. APPLE II devices show strong dynamic multipoles in the elliptical and vertical polarization mode. Measurements before and after shimming of these multipoles are presented. The static multipoles of the BESSY UE56-2 which are due to systematic block inhomgeneities have successfully been shimmed recovering the full dynamic aperture.

  18. Airspace Complexity and its Application in Air Traffic Management

    NASA Technical Reports Server (NTRS)

    Sridhar, Banavar; Chatterji, Gano; Sheth, Kapil; Edwards, Thomas (Technical Monitor)

    1998-01-01

    The United States Air Traffic Management (ATM) system provides services to enable safe, orderly and efficient aircraft operations within the airspace over the continental United States and over large portions of the Pacific and Atlantic Oceans, and the Gulf of Mexico. It consists of two components, Air Traffic Control (ATC) and Traffic Flow Management (TFM). The ATC function ensures that the aircraft within the airspace are separated at all times while the TFM function organizes the aircraft into a flow pattern to ensure their safe and efficient movement. In order to accomplish the ATC and TFM functions, the airspace over United States is organized into 22 Air Route Traffic Control Centers (ARTCCs). The Center airspace is stratified into low-altitude, high-altitude and super-high altitude groups of Sectors. Each vertical layer is further partitioned into several horizontal Sectors. A typical ARTCC airspace is partitioned into 20 to 80 Sectors. These Sectors are the basic control units within the ATM system.

  19. Economically viable large-scale hydrogen liquefaction

    NASA Astrophysics Data System (ADS)

    Cardella, U.; Decker, L.; Klein, H.

    2017-02-01

    The liquid hydrogen demand, particularly driven by clean energy applications, will rise in the near future. As industrial large scale liquefiers will play a major role within the hydrogen supply chain, production capacity will have to increase by a multiple of today’s typical sizes. The main goal is to reduce the total cost of ownership for these plants by increasing energy efficiency with innovative and simple process designs, optimized in capital expenditure. New concepts must ensure a manageable plant complexity and flexible operability. In the phase of process development and selection, a dimensioning of key equipment for large scale liquefiers, such as turbines and compressors as well as heat exchangers, must be performed iteratively to ensure technological feasibility and maturity. Further critical aspects related to hydrogen liquefaction, e.g. fluid properties, ortho-para hydrogen conversion, and coldbox configuration, must be analysed in detail. This paper provides an overview on the approach, challenges and preliminary results in the development of efficient as well as economically viable concepts for large-scale hydrogen liquefaction.

  20. Lightweight Exhaust Manifold and Exhaust Pipe Ducting for Internal Combustion Engines

    NASA Technical Reports Server (NTRS)

    Northam, G. Burton (Inventor); Ransone, Philip O. (Inventor); Rivers, H. Kevin (Inventor)

    1999-01-01

    An improved exhaust system for an internal combustion gasoline-and/or diesel-fueled engine includes an engine exhaust manifold which has been fabricated from carbon- carbon composite materials in operative association with an exhaust pipe ducting which has been fabricated from carbon-carbon composite materials. When compared to conventional steel. cast iron. or ceramic-lined iron paris. the use of carbon-carbon composite exhaust-gas manifolds and exhaust pipe ducting reduces the overall weight of the engine. which allows for improved acceleration and fuel efficiency: permits operation at higher temperatures without a loss of strength: reduces the "through-the wall" heat loss, which increases engine cycle and turbocharger efficiency and ensures faster "light-off" of catalytic converters: and, with an optional thermal reactor, reduces emission of major pollutants, i.e. hydrocarbons and carbon monoxide.

  1. Performance and Exhaust Emissions in a Natural-Gas Fueled Dual-Fuel Engine

    NASA Astrophysics Data System (ADS)

    Shioji, Masahiro; Ishiyama, Takuji; Ikegami, Makoto; Mitani, Shinichi; Shibata, Hiroaki

    In order to establish the optimum fueling in a natural gas fueled dual fuel engine, experiments were done for some operational parameters on the engine performances and the exhaust emissions. The results show that the pilot fuel quantity should be increased and its injection timing should be advanced to suppress unburned hydrocarbon emission in the middle and low output range, while the quantity should be reduced and the timing retarded to avoid onset of knock at high loads. Unburned hydrocarbon emission and thermal efficiency are improved by avoiding too lean natural gas mixture by restricting intake charge air. However, the improvement is limited because the ignition of pilot fuel deteriorates with excessive throttling. It is concluded that an adequate combination of throttle control and equivalence ratio ensures low hydrocarbon emission and the thermal efficiency comparable to diesel operation.

  2. Measurement and evaluation of percolation drainage systems capacity in real conditions

    NASA Astrophysics Data System (ADS)

    Markovic, G.; Zelenakova, M.

    2017-10-01

    The drainage system must ensure a safe disposal of the surface water without endangering the buildings and safety of people. Despite the common use of rainwater infiltration facilities, there is still only limited data available evaluating the long-term capacity of such systems especially for underground infiltration facilities. This study presents experimental measurements and evaluation of long-term infiltration efficiency in real conditions and emphasizes the importance of hydrogeological survey. The measurements of infiltration efficiency were applied to an existing percolation drainage system - infiltration shafts. Infiltration shafts were made in year 2007 so that its drainage operation takes more than 8 years. This study was started in 2011 and still continues and presents 5 years measurements of infiltration efficiency for this infiltration facility.

  3. Space Operation of the MOLA Laser

    NASA Technical Reports Server (NTRS)

    Afzal, Robert S.

    2000-01-01

    Interest in lasers for space applications such as active remote sensing in Earth orbit, planetary science, and inter-satellite laser communications is growing. These instruments typically use diode-pumped solid state lasers for the laser transmitter. The mission specifications and constraints of space qualification, place strict requirements on the design and operation of the laser. Although a laser can be built in the laboratory to meet performance specifications relatively routinely, tile mission constraints demand unique options and compromises in the materials used, and design to ensure the success of the mission. Presently, the best laser architecture for a light weight, rugged, high peak power and efficient transmitter is a diode laser pumped ND:YAG laser. Diode lasers can often obviate the need for water cooling, reduce the size and weight of the laser, increase the electrical to optical efficiency, system reliability, and lifetime. This paper describes the in-space operation and performance of the Mars Orbiter Laser Altimeter (MOLA) laser transmitter, representing the current state-of-the-art in space-based solid- state lasers.

  4. Economics of immunization information systems in the United States: assessing costs and efficiency.

    PubMed

    Bartlett, Diana L; Molinari, Noelle-Angelique M; Ortega-Sanchez, Ismael R; Urquhart, Gary A

    2006-08-22

    One of the United States' national health objectives for 2010 is that 95% of children aged <6 years participate in fully operational population-based immunization information systems (IIS). Despite important progress, child participation in most IIS has increased slowly, in part due to limited economic knowledge about IIS operations. Should IIS need further improvement, characterizing costs and identifying factors that affect IIS efficiency become crucial. Data were collected from a national sampling frame of the 56 states/cities that received federal immunization grants under U.S. Public Health Service Act 317b and completed the federal 1999 Immunization Registry Annual Report. The sampling frame was stratified by IIS functional status, children's enrollment in the IIS, and whether the IIS had been developed as an independent system or was integrated into a larger system. These sites self-reported IIS developmental and operational program costs for calendar years 1998-2002 using a standardized data collection tool and underwent on-site interviews to verify reported data with information from the state/city financial management system and other financial records. A parametric cost-per-patient-record (CPR) model was estimated. The model assessed the impact of labor and non-labor resources used in development and operations tasks, as well as the impact of information technology, local providers' participation and compliance with federal IIS performance standards (e.g., ensuring the confidentiality and security of information, ensure timely vaccination data at the time of patient encounter, and produce official immunization records). Given the number of records minimizing CPR, the additional amount of resources needed to meet national health goals for the year 2010 was also calculated. Estimated CPR was as high as $10.30 and as low as $0.09 in operating IIS. About 20% of IIS had between 2.9 to 3.2 million records and showed CPR estimates of $0.09. Overall, CPR was highly sensitive to local providers' participation. To achieve the 2010 goals, additional aggregated costs were estimated to be $75.6 million nationwide. Efficiently increasing the number of records in IIS would require additional resources and careful consideration of various strategies to minimize CPR, such as boosting providers' participation.

  5. [Diseases transmitted through water for human consumption].

    PubMed

    Franco, E; Dentamaro, M

    2003-01-01

    The water for human consumption maintains a biological risk and can transmit diseases. The classical waterborne and the presently frequent diseases caused by protozoi Giardia and Cryptosporidium are considered and Arcobacter butzleri, a new waterborne pathogen, is described. Many measures have been adopted by institutions to ensure the quality of the drinking water. Managers and public health operators is working in order to verify the efficiency of more suitable indicators for its monitoring.

  6. Application of Thermoelectric Devices to Fuel Cell Power Generation: Demonstration and Evaluation

    DTIC Science & Technology

    2004-09-01

    various forms of the ERDC/CERL TR-04-20 63 Rankine thermodynamic cycle (e.g., reheat, regeneration, supercritical). These central power plants can...placement of the TE Device in the condenser receiv- ing the low-quality steam exhaust or into the closed feedwater heaters used to preheat incoming...ability to more efficiently construct, operate, and maintain its installations and ensure environmental quality and safety at a reduced life- cycle -cost

  7. Capacity Adequacy and Revenue Sufficiency in Electricity Markets With Wind Power

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levin, Todd; Botterud, Audun

    2015-05-01

    We present a computationally efficient mixed-integer program (MIP) that determines optimal generator expansion decisions, as well as periodic unit commitment and dispatch. The model is applied to analyze the impact of increasing wind power capacity on the optimal generation mix and the profitability of thermal generators. In a case study, we find that increasing wind penetration reduces energy prices while the prices for operating reserves increase. Moreover, scarcity pricing for operating reserves through reserve shortfall penalties significantly impacts the prices and profitability of thermal generators. Without scarcity pricing, no thermal units are profitable, however scarcity pricing can ensure profitability formore » peaking units at high wind penetration levels. Capacity payments can also ensure profitability, but the payments required for baseload units to break even increase with the amount of wind power. The results indicate that baseload units are most likely to experience revenue sufficiency problems when wind penetration increases and new baseload units are only developed when natural gas prices are high and wind penetration is low.« less

  8. Nonuniform grid implicit spatial finite difference method for acoustic wave modeling in tilted transversely isotropic media

    NASA Astrophysics Data System (ADS)

    Chu, Chunlei; Stoffa, Paul L.

    2012-01-01

    Discrete earth models are commonly represented by uniform structured grids. In order to ensure accurate numerical description of all wave components propagating through these uniform grids, the grid size must be determined by the slowest velocity of the entire model. Consequently, high velocity areas are always oversampled, which inevitably increases the computational cost. A practical solution to this problem is to use nonuniform grids. We propose a nonuniform grid implicit spatial finite difference method which utilizes nonuniform grids to obtain high efficiency and relies on implicit operators to achieve high accuracy. We present a simple way of deriving implicit finite difference operators of arbitrary stencil widths on general nonuniform grids for the first and second derivatives and, as a demonstration example, apply these operators to the pseudo-acoustic wave equation in tilted transversely isotropic (TTI) media. We propose an efficient gridding algorithm that can be used to convert uniformly sampled models onto vertically nonuniform grids. We use a 2D TTI salt model to demonstrate its effectiveness and show that the nonuniform grid implicit spatial finite difference method can produce highly accurate seismic modeling results with enhanced efficiency, compared to uniform grid explicit finite difference implementations.

  9. Nottingham Health Science Biobank: a sustainable bioresource.

    PubMed

    Matharoo-Ball, Balwir; Thomson, Brian J

    2014-10-01

    Nottingham Health Science Biobank (NHSB) was established in 2011 by a 3-year "pump priming" grant from the United Kingdom National Institute of Health Research. Before biobanking operations began, NHSB commissioned a financial report on the full costs of biobanking and worked with key stakeholders and external consultants to develop a business plan with the aim of achieving financial and operational sustainability. The plan included: scanning published information, telephone interviews with commercial companies, Freedom of Information Requests, dialogue with prospective customers, and a market analysis of global trends in the use of human tissue samples in research. Our financial report provided a comprehensive and structured costing template for biobanking and confirmed the absolute requirement to ensure cost-efficient processes, careful staff utilization, and maximization of sample turnover. Together with our external consultants, we developed a business model responsive to global interest in healthcare founded on i) identification of key therapeutic areas that mapped to the strengths of the NHSB; ii) a systematic approach to identifying companies operating in these therapy areas; iii) engagement with noncommercial stakeholders to agree strategically aligned sample collection with the aim of ensuring the value of our tissue resource. By adopting this systematic approach to business modelling, the NHSB has achieved sustainability after less than 3 years of operation.

  10. Power system monitoring and source control of the Space Station Freedom DC power system testbed

    NASA Technical Reports Server (NTRS)

    Kimnach, Greg L.; Baez, Anastacio N.

    1992-01-01

    Unlike a terrestrial electric utility which can purchase power from a neighboring utility, the Space Station Freedom (SSF) has strictly limited energy resources; as a result, source control, system monitoring, system protection, and load management are essential to the safe and efficient operation of the SSF Electric Power System (EPS). These functions are being evaluated in the DC Power Management and Distribution (PMAD) Testbed which NASA LeRC has developed at the Power System Facility (PSF) located in Cleveland, Ohio. The testbed is an ideal platform to develop, integrate, and verify power system monitoring and control algorithms. State Estimation (SE) is a monitoring tool used extensively in terrestrial electric utilities to ensure safe power system operation. It uses redundant system information to calculate the actual state of the EPS, to isolate faulty sensors, to determine source operating points, to verify faults detected by subsidiary controllers, and to identify high impedance faults. Source control and monitoring safeguard the power generation and storage subsystems and ensure that the power system operates within safe limits while satisfying user demands with minimal interruptions. System monitoring functions, in coordination with hardware implemented schemes, provide for a complete fault protection system. The objective of this paper is to overview the development and integration of the state estimator and the source control algorithms.

  11. Power system monitoring and source control of the Space Station Freedom dc-power system testbed

    NASA Technical Reports Server (NTRS)

    Kimnach, Greg L.; Baez, Anastacio N.

    1992-01-01

    Unlike a terrestrial electric utility which can purchase power from a neighboring utility, the Space Station Freedom (SSF) has strictly limited energy resources; as a result, source control, system monitoring, system protection, and load management are essential to the safe and efficient operation of the SSF Electric Power System (EPS). These functions are being evaluated in the dc Power Management and Distribution (PMAD) Testbed which NASA LeRC has developed at the Power System Facility (PSF) located in Cleveland, Ohio. The testbed is an ideal platform to develop, integrate, and verify power system monitoring and control algorithms. State Estimation (SE) is a monitoring tool used extensively in terrestrial electric utilities to ensure safe power system operation. It uses redundant system information to calculate the actual state of the EPS, to isolate faulty sensors, to determine source operating points, to verify faults detected by subsidiary controllers, and to identify high impedance faults. Source control and monitoring safeguard the power generation and storage subsystems and ensure that the power system operates within safe limits while satisfying user demands with minimal interruptions. System monitoring functions, in coordination with hardware implemented schemes, provide for a complete fault protection system. The objective of this paper is to overview the development and integration of the state estimator and the source control algorithms.

  12. Systems Integration Challenges for a National Space Launch System

    NASA Technical Reports Server (NTRS)

    May, Todd A.

    2011-01-01

    System Integration was refined through the complexity and early failures experienced in rocket flight. System Integration encompasses many different viewpoints of the system development. System Integration must ensure consistency in development and operations activities. Human Space Flight tends toward large, complex systems. Understanding the system fs operational and use context is the guiding principle for System Integration: (1) Sizeable costs can be driven into systems by not fully understanding context (2). Adhering to the system context throughout the system fs life cycle is essential to maintaining efficient System Integration. System Integration exists within the System Architecture. Beautiful systems are simple in use and operation -- Block upgrades facilitate manageable steps in functionality evolution. Effective System Integration requires a stable system concept. Communication is essential to system simplicity

  13. Research on the performance evaluation of agricultural products supply chain integrated operation

    NASA Astrophysics Data System (ADS)

    Jiang, Jiake; Wang, Xifu; Liu, Yang

    2017-04-01

    The agricultural product supply chain integrated operation can ensure the quality and efficiency of agricultural products, and achieve the optimal goal of low cost and high service. This paper establishes a performance evaluation index system of agricultural products supply chain integration operation based on the development status of agricultural products and SCOR, BSC and KPI model. And then, we constructing rough set theory and BP neural network comprehensive evaluation model with the aid of Rosetta and MATLAB tools and the case study is about the development of agricultural products integrated supply chain in Jing-Jin-Ji region. And finally, we obtain the corresponding performance results, and give some improvement measures and management recommendations to the managers.

  14. [Modern operations management in workflow operation. Spectrum of responsibilities and challenges for the future].

    PubMed

    Riedl, S

    2002-02-01

    The operating unit is one of the cost-intensive facilities in a surgical clinic with a pacemaking function for most of the internal procedures. The power of performance of the operating unit is based on the co-operation of all disciplines and professions involved. The key to management of the operating unit is not only to co-ordinate the daily procedures, but also to interact with support personnel. To ensure successful OR management, the internal structure of the OR must fit the clinical tasks and the available quantity of personnel in each profession must be co-ordinated. Sufficient utilization of resources and equipment must be guaranteed without cost-intensive over-capacities and patient flow must be orientated to OR capacities. The development of such a business structure requires the management to clearly define the goal, to know the actual on-site data in detail with regard to the idiosyncratic workings of each speciality and to clearly assign the competence of each member of the team working in the OR. Co-ordination of the operating unit is the main task of OR management, which must ensure the following: transparent and co-ordinated schedule management in the various operative specialities, goal-directed changes of the schedule with incorporation of emergencies, as well as effective organization of staff. In order to realize these tasks, it is reasonable to implement interdisciplinary rules of procedures. In addition, the assignment of a neutral decision-making body within the OR and the creation of an information center for all OR personnel. The challenge of OR organization in the future is to implement more effective documentation systems and active controlling within the OR. One can ensure adequate utilization of resources in the OR with prospectively oriented planning. Better transparence of operations in the OR contributes to increased efficiency. Implementation of quality management is the foundation for a successfully operating surgical hospital. Not only the productivity of individual members of the staff, but also the precise documentation of the quality of results will become important parameters in a successful surgical hospital, whose nucleus is the OR.

  15. Photodarkening kinetics in a high-power YDFA versus CW or short-pulse seed conditions

    NASA Astrophysics Data System (ADS)

    Jolly, Alain; Vinçont, Cyril; Boullet, Johan

    2017-02-01

    We propose an innovating model to describe the kinetics of competing photo-darkening and photo-bleaching phenomena in high-power, Ytterbium-Doped-Fibre-Amplifiers. This model makes use of aggregated species of trivalent Ytterbium and divalent ions, which operate as primarily efficient color-centers. This ensures multi-photon excitation, partly from the pump and partly from the signal. The fit of numerical computations with dedicated experiments help to validate our theoretical assumptions, in the definition of the involved physics. Potential applications of this study include further discussions for the selection of processing options with fibre-manufacturers and the optimization of operating conditions.

  16. INDUSTRIE 4.0 - Automation in weft knitting technology

    NASA Astrophysics Data System (ADS)

    Simonis, K.; Gloy, Y.-S.; Gries, T.

    2016-07-01

    Industry 4.0 applies to the knitting industry. Regarding the knitting process retrofitting activities are executed mostly manually by an operator on the basis on the operator's experience. In doing so, the knitted fabric is not necessarily produced in the most efficient way regarding process speed and fabric quality aspects. The knitting division at ITA is concentrating on project activities regarding automation and Industry 4.0. ITA is working on analysing the correspondences of the knitting process parameters and their influence on the fabric quality. By using e.g. the augmented reality technology, the operator will be supported when setting up the knitting machine in case of product or pattern change - or in case of an intervention when production errors occur. Furthermore, the RFID-Technology offers great possibilities to ensure information flow between sub-processes of the fragmented textile process chain. ITA is using RFID-chips to save yarn production information and connect the information to the fabric producing machine control. In addition, ITA is currently working on integrating image processing systems into the large circular knitting machine in order to ensure online-quality measurement of the knitted fabrics. This will lead to a self-optimizing and selflearning knitting machine.

  17. DoDs Efforts to Consolidate Data Centers Need Improvement

    DTIC Science & Technology

    2016-03-29

    Consolidation Initiative, February 26, 2010. 3 Green IT minimizes negative environmental impact of IT operations by ensuring that computers and computer-related...objectives for consolidating data centers. DoD’s objectives were to: • reduce cost; • reduce environmental impact ; • improve efficiency and service levels...number of DoD data centers. Finding A DODIG-2016-068 │ 7 information in DCIM, the DoD CIO did not confirm whether those changes would impact DoD’s

  18. Influence of extrinsic operational parameters on salt diffusion during ultrasound assisted meat curing.

    PubMed

    Inguglia, Elena S; Zhang, Zhihang; Burgess, Catherine; Kerry, Joseph P; Tiwari, Brijesh K

    2018-02-01

    The present study investigated the effect of geometric parameters of the ultrasound instrument during meat salting in order to enhance salt diffusion and salt distribution in pork meat on a lab scale. The effects of probe size (∅2.5 and 1.3cm) and of different distances between the transducer and the meat sample (0.3, 0.5, and 0.8cm) on NaCl diffusion were investigated. Changes in the moisture content and NaCl gain were used to evaluate salt distribution and diffusion in the samples, parallel and perpendicular to ultrasound propagation direction. Results showed that 0.3cm was the most efficient distance between the probe and the sample to ensure a higher salt diffusion rate. A distance of 0.5cm was however considered as a trade-off distance to ensure salt diffusion and maintenance of meat quality parameters. The enhancement of salt diffusion by ultrasound was observed to decrease with increased horizontal distance from the probe. This study is of valuable importance for meat processing industries willing to apply new technologies on a larger scale and with defined operational standards. The data suggest that the geometric parameters of ultrasound systems can have strong influence on the efficiency of ultrasonic enhancement of NaCl uptake in meat and can be a crucial element in determining salt uptake during meat processing. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Bi-level Optimization Method of Air-conditioning System Based on Office Building Energy Storage Characteristics

    NASA Astrophysics Data System (ADS)

    Wang, Qingze; Chen, Xingying; Ji, Li; Liao, Yingchen; Yu, Kun

    2017-05-01

    The air-conditioning system of office building is a large power consumption terminal equipment, whose unreasonable operation mode leads to low energy efficiency. Realizing the optimization of the air-conditioning system has become one of the important research contents of the electric power demand response. In this paper, in order to save electricity cost and improve energy efficiency, bi-level optimization method of air-conditioning system based on TOU price is put forward by using the energy storage characteristics of the office building itself. In the upper level, the operation mode of the air-conditioning system is optimized in order to minimize the uses’ electricity cost in the premise of ensuring user’ comfort according to the information of outdoor temperature and TOU price, and the cooling load of the air-conditioning is output to the lower level; In the lower level, the distribution mode of cooling load among the multi chillers is optimized in order to maximize the energy efficiency according to the characteristics of each chiller. Finally, the experimental results under different modes demonstrate that the strategy can improve the energy efficiency of chillers and save the electricity cost for users.

  20. Considerations on the Optimal and Efficient Processing of Information-Bearing Signals

    ERIC Educational Resources Information Center

    Harms, Herbert Andrew

    2013-01-01

    Noise is a fundamental hurdle that impedes the processing of information-bearing signals, specifically the extraction of salient information. Processing that is both optimal and efficient is desired; optimality ensures the extracted information has the highest fidelity allowed by the noise, while efficiency ensures limited resource usage. Optimal…

  1. Highly efficient X-range AlGaN/GaN power amplifier

    NASA Astrophysics Data System (ADS)

    Tural'chuk, P. A.; Kirillov, V. V.; Osipov, P. E.; Vendik, I. B.; Vendik, O. G.; Parnes, M. D.

    2017-09-01

    The development of microwave power amplifiers (PAs) based on transistors with an AlGaN/GaN heterojunction are discussed in terms of the possible enhancement of their efficiency. The main focus is on the synthesis of the transforming circuits, which ensure the reactive load at the second- and third-harmonic frequencies and complex impedance at the fundamental frequency. This makes it possible to optimize the complex operation mode of a PA; i.e., to reduce the scattering power and enhance the efficiency. A microwave PA based on the Schottky-barrier-gate field-effect transistor with 80 electrodes based on the GaN pHEMT transistor with a gate length of 0.25 nm and a gate width of 125 nm is experimentally investigated. The amplifier has a pulse output power of 35 W and a power-added efficiency of at least 50% at a working frequency of 9 GHz.

  2. Highly efficient, versatile, self-Q-switched, high-repetition-rate microchip laser generating Ince-Gaussian modes for optical trapping

    NASA Astrophysics Data System (ADS)

    Dong, Jun; He, Yu; Zhou, Xiao; Bai, Shengchuang

    2016-03-01

    Lasers operating in the Ince-Gaussian (IG) mode have potential applications for optical manipulation of microparticles and formation of optical vortices, as well as for optical trapping and optical tweezers. Versatile, self-Q-switched, high-peak-power, high-repetition-rate Cr, Nd:YAG microchip lasers operating in the IG mode are implemented under tilted, tightly focused laser-diode pumping. An average output power of over 2 W is obtained at an absorbed pump power of 6.4 W. The highest optical-to-optical efficiency of 33.2% is achieved at an absorbed pump power of 3.9 W. Laser pulses with a pulse energy of 7.5 μJ, pulse width of 3.5 ns and peak power of over 2 kW are obtained. A repetition rate up to 335 kHz is reached at an absorbed pump power of 5.8 W. Highly efficient, versatile, IG-mode lasers with a high repetition rate and a high peak power ensure a better flexibility in particle manipulation and optical trapping.

  3. Highly efficient, versatile, self-Q-switched, high-repetition-rate microchip laser generating Ince–Gaussian modes for optical trapping

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jun Dong; Yu He; Xiao Zhou

    2016-03-31

    Lasers operating in the Ince-Gaussian (IG) mode have potential applications for optical manipulation of microparticles and formation of optical vortices, as well as for optical trapping and optical tweezers. Versatile, self-Q-switched, high-peak-power, high-repetition-rate Cr, Nd:YAG microchip lasers operating in the IG mode are implemented under tilted, tightly focused laser-diode pumping. An average output power of over 2 W is obtained at an absorbed pump power of 6.4 W. The highest optical-to-optical efficiency of 33.2% is achieved at an absorbed pump power of 3.9 W. Laser pulses with a pulse energy of 7.5 μJ, pulse width of 3.5 ns and peakmore » power of over 2 kW are obtained. A repetition rate up to 335 kHz is reached at an absorbed pump power of 5.8 W. Highly efficient, versatile, IG-mode lasers with a high repetition rate and a high peak power ensure a better flexibility in particle manipulation and optical trapping. (control of laser radiation parameters)« less

  4. The role of the physical environment in crossing the quality chasm.

    PubMed

    Henriksen, Kerm; Isaacson, Sandi; Sadler, Blair L; Zimring, Craig M

    2007-11-01

    Evidence-based design findings are available to help inform hospital decision makers of opportunities for ensuring that quality and safety are designed into new and refurbished facilities. The Institute of Medicine's six quality aims of patient centeredness, safety, effectiveness, efficiency, timeliness, and equity provide an organizing framework for introducing a representative portion of the evidence. Design improvements include single-bed and variable-acuity rooms; electronic access to medical records; greater accommodation for families and visitors; handrails to prevent patient falls; standardization (room layout, equipment, and supplies for improved efficiencies); improved work process flow to reduce delays and wait times; and better assessment of changing demographics, disease conditions, and community needs for appropriately targeted health care services. A recent analysis of the business case suggests that a slight, one-time incremental cost for ensuring safety and quality would be paid back in two to three years in the form of operational savings and increased revenues. Hospitals leaders anticipating new construction projects should take advantage of evidence-based design findings that have the potential of raising the quality of acute care for decades to come.

  5. SymPix: A Spherical Grid for Efficient Sampling of Rotationally Invariant Operators

    NASA Astrophysics Data System (ADS)

    Seljebotn, D. S.; Eriksen, H. K.

    2016-02-01

    We present SymPix, a special-purpose spherical grid optimized for efficiently sampling rotationally invariant linear operators. This grid is conceptually similar to the Gauss-Legendre (GL) grid, aligning sample points with iso-latitude rings located on Legendre polynomial zeros. Unlike the GL grid, however, the number of grid points per ring varies as a function of latitude, avoiding expensive oversampling near the poles and ensuring nearly equal sky area per grid point. The ratio between the number of grid points in two neighboring rings is required to be a low-order rational number (3, 2, 1, 4/3, 5/4, or 6/5) to maintain a high degree of symmetries. Our main motivation for this grid is to solve linear systems using multi-grid methods, and to construct efficient preconditioners through pixel-space sampling of the linear operator in question. As a benchmark and representative example, we compute a preconditioner for a linear system that involves the operator \\widehat{{\\boldsymbol{D}}}+{\\widehat{{\\boldsymbol{B}}}}T{{\\boldsymbol{N}}}-1\\widehat{{\\boldsymbol{B}}}, where \\widehat{{\\boldsymbol{B}}} and \\widehat{{\\boldsymbol{D}}} may be described as both local and rotationally invariant operators, and {\\boldsymbol{N}} is diagonal in the pixel domain. For a bandwidth limit of {{\\ell }}{max} = 3000, we find that our new SymPix implementation yields average speed-ups of 360 and 23 for {\\widehat{{\\boldsymbol{B}}}}T{{\\boldsymbol{N}}}-1\\widehat{{\\boldsymbol{B}}} and \\widehat{{\\boldsymbol{D}}}, respectively, compared with the previous state-of-the-art implementation.

  6. Fault tolerant vector control of induction motor drive

    NASA Astrophysics Data System (ADS)

    Odnokopylov, G.; Bragin, A.

    2014-10-01

    For electric composed of technical objects hazardous industries, such as nuclear, military, chemical, etc. an urgent task is to increase their resiliency and survivability. The construction principle of vector control system fault-tolerant asynchronous electric. Displaying recovery efficiency three-phase induction motor drive in emergency mode using two-phase vector control system. The process of formation of a simulation model of the asynchronous electric unbalance in emergency mode. When modeling used coordinate transformation, providing emergency operation electric unbalance work. The results of modeling transient phase loss motor stator. During a power failure phase induction motor cannot save circular rotating field in the air gap of the motor and ensure the restoration of its efficiency at rated torque and speed.

  7. [Quality management and strategic consequences of assessing documentation and coding under the German Diagnostic Related Groups system].

    PubMed

    Schnabel, M; Mann, D; Efe, T; Schrappe, M; V Garrel, T; Gotzen, L; Schaeg, M

    2004-10-01

    The introduction of the German Diagnostic Related Groups (D-DRG) system requires redesigning administrative patient management strategies. Wrong coding leads to inaccurate grouping and endangers the reimbursement of treatment costs. This situation emphasizes the roles of documentation and coding as factors of economical success. The aims of this study were to assess the quantity and quality of initial documentation and coding (ICD-10 and OPS-301) and find operative strategies to improve efficiency and strategic means to ensure optimal documentation and coding quality. In a prospective study, documentation and coding quality were evaluated in a standardized way by weekly assessment. Clinical data from 1385 inpatients were processed for initial correctness and quality of documentation and coding. Principal diagnoses were found to be accurate in 82.7% of cases, inexact in 7.1%, and wrong in 10.1%. Effects on financial returns occurred in 16%. Based on these findings, an optimized, interdisciplinary, and multiprofessional workflow on medical documentation, coding, and data control was developed. Workflow incorporating regular assessment of documentation and coding quality is required by the DRG system to ensure efficient accounting of hospital services. Interdisciplinary and multiprofessional cooperation is recognized to be an important factor in establishing an efficient workflow in medical documentation and coding.

  8. Creating the Future: A 2020 Vision and Plan for Library Service in New York State. Recommendations of the New York State Regents Advisory Council on Libraries to the New York State Board of Regents

    ERIC Educational Resources Information Center

    New York State Education Department, 2016

    2016-01-01

    In April 2010, the New York State Board of Regents challenged the library community to rethink the State's vast array of library services to ensure that they are aligned with modern expectations and the expanded functions needed in today's society, operate with improved efficiency, and are prepared for the future as an essential and vibrant part…

  9. Methodology to identify risk-significant components for inservice inspection and testing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anderson, M.T.; Hartley, R.S.; Jones, J.L. Jr.

    1992-08-01

    Periodic inspection and testing of vital system components should be performed to ensure the safe and reliable operation of Department of Energy (DOE) nuclear processing facilities. Probabilistic techniques may be used to help identify and rank components by their relative risk. A risk-based ranking would allow varied DOE sites to implement inspection and testing programs in an effective and cost-efficient manner. This report describes a methodology that can be used to rank components, while addressing multiple risk issues.

  10. Online Cable Tester and Rerouter

    NASA Technical Reports Server (NTRS)

    Lewis, Mark; Medelius, Pedro

    2012-01-01

    Hardware and algorithms have been developed to transfer electrical power and data connectivity safely, efficiently, and automatically from an identified damaged/defective wire in a cable to an alternate wire path. The combination of online cable testing capabilities, along with intelligent signal rerouting algorithms, allows the user to overcome the inherent difficulty of maintaining system integrity and configuration control, while autonomously rerouting signals and functions without introducing new failure modes. The incorporation of this capability will increase the reliability of systems by ensuring system availability during operations.

  11. Windvan laser study

    NASA Technical Reports Server (NTRS)

    1985-01-01

    The goal of defining a CO2 laser transmitter approach suited to Shuttle Coherent Atmospheric Lidar Experiment (SCALE) requirements is discussed. The adaptation of the existing WINDVAN system to the shuttle environment is addressed. The size, weight, reliability, and efficiency of the existing WINDVAN system are largely compatible with SCALE requirements. Repacking is needed for compatibility with vacuum and thermal environments. Changes are required to ensure survival through launch and landing, mechanical, vibration, and acoustic loads. Existing WINDVAN thermal management approaches depending on convection need to be upgraded zero gravity operations.

  12. Impact of waste heat recovery systems on energy efficiency improvement of a heavy-duty diesel engine

    NASA Astrophysics Data System (ADS)

    Ma, Zheshu; Chen, Hua; Zhang, Yong

    2017-09-01

    The increase of ship's energy utilization efficiency and the reduction of greenhouse gas emissions have been high lightened in recent years and have become an increasingly important subject for ship designers and owners. The International Maritime Organization (IMO) is seeking measures to reduce the CO2 emissions from ships, and their proposed energy efficiency design index (EEDI) and energy efficiency operational indicator (EEOI) aim at ensuring that future vessels will be more efficient. Waste heat recovery can be employed not only to improve energy utilization efficiency but also to reduce greenhouse gas emissions. In this paper, a typical conceptual large container ship employing a low speed marine diesel engine as the main propulsion machinery is introduced and three possible types of waste heat recovery systems are designed. To calculate the EEDI and EEOI of the given large container ship, two software packages are developed. From the viewpoint of operation and maintenance, lowering the ship speed and improving container load rate can greatly reduce EEOI and further reduce total fuel consumption. Although the large container ship itself can reach the IMO requirements of EEDI at the first stage with a reduction factor 10% under the reference line value, the proposed waste heat recovery systems can improve the ship EEDI reduction factor to 20% under the reference line value.

  13. Flight Test Evaluation of an Unmanned Aircraft System Traffic Management (UTM) Concept for Multiple Beyond-Visual-Line-of-Sight (BVLOS) Operations

    NASA Technical Reports Server (NTRS)

    Johnson, Marcus; Jung, Jaewoo; Rios, Joseph; Mercer, Joey; Homola, Jeffrey; Prevot, Thomas; Mulfinger, Daniel; Kopardekar, Parimal

    2017-01-01

    Many applications of small Unmanned Aircraft System (UAS) have been envisioned. These include surveillance of key assets such as pipelines, rail, or electric wires, deliveries, search and rescue, traffic monitoring, videography, and precision agriculture. These operations are likely to occur in the same airspace in the presence of many static and dynamic constraints such as airports, and high wind areas. Therefore, operations of small UAS need to be managed to ensure safety and operation efficiency is maintained. NASA has advanced a concept for UAS Traffic Management (UTM) and has initiated a research effort to refine that concept and develop operational and system requirements. A UTM research platform is in development and flight test activities to evaluate core functions and key assumptions focusing exclusively on UAS operations in different environments are underway. This seminar will present lessons learned from a recent flight test focused on enabling operations of multiple UAS in lower-risk environments within and beyond visual line of sight (BVLOS).

  14. Centralized mission planning and scheduling system for the Landsat Data Continuity Mission

    USGS Publications Warehouse

    Kavelaars, Alicia; Barnoy, Assaf M.; Gregory, Shawna; Garcia, Gonzalo; Talon, Cesar; Greer, Gregory; Williams, Jason; Dulski, Vicki

    2014-01-01

    Satellites in Low Earth Orbit provide missions with closer range for studying aspects such as geography and topography, but often require efficient utilization of space and ground assets. Optimizing schedules for these satellites amounts to a complex planning puzzle since it requires operators to face issues such as discontinuous ground contacts, limited onboard memory storage, constrained downlink margin, and shared ground antenna resources. To solve this issue for the Landsat Data Continuity Mission (LDCM, Landsat 8), all the scheduling exchanges for science data request, ground/space station contact, and spacecraft maintenance and control will be coordinated through a centralized Mission Planning and Scheduling (MPS) engine, based upon GMV’s scheduling system flexplan9 . The synchronization between all operational functions must be strictly maintained to ensure efficient mission utilization of ground and spacecraft activities while working within the bounds of the space and ground resources, such as Solid State Recorder (SSR) and available antennas. This paper outlines the functionalities that the centralized planning and scheduling system has in its operational control and management of the Landsat 8 spacecraft.

  15. Power Electronics Development for the SPT-100 Thruster

    NASA Technical Reports Server (NTRS)

    Hamley, John A.; Hill, Gerald M.; Sankovic, John M.

    1994-01-01

    Russian electric propulsion technologies have recently become available on the world market. Of significant interest is the Stationary Plasma Thruster (SPT) which has a significant flight heritage in the former Soviet space program. The SPT has performance levels of up to 1600 seconds of specific impulse at a thrust efficiency of 0.50. Studies have shown that this level of performance is well suited for stationkeeping applications, and the SPT-100, with a 1.35 kW input power level, is presently being evaluated for use on Western commercial satellites. Under a program sponsored by the Innovative Science and Technology Division of the Ballistic Missile Defense Organization, a team of U.S. electric propulsion specialists observed the operation of the SPT-100 in Russia. Under this same program, power electronics were developed to operate the SPT-100 to characterize thruster performance and operation in the U.S. The power electronics consisted of a discharge, cathode heater, and pulse igniter power supplies to operate the thruster with manual flow control. A Russian designed matching network was incorporated in the discharge supply to ensure proper operation with the thruster. The cathode heater power supply and igniter were derived from ongoing development projects. No attempts were made to augment thruster electromagnet current in this effort. The power electronics successfully started and operated the SPT-100 thruster in performance tests at NASA Lewis, with minimal oscillations in the discharge current. The efficiency of the main discharge supply was measured at 0.92, and straightforward modifications were identified which could increase the efficiency to 0.94.

  16. Efficient ecologic and economic operational rules for dammed systems by means of nondominated sorting genetic algorithm II

    NASA Astrophysics Data System (ADS)

    Niayifar, A.; Perona, P.

    2015-12-01

    River impoundment by dams is known to strongly affect the natural flow regime and in turn the river attributes and the related ecosystem biodiversity. Making hydropower sustainable implies to seek for innovative operational policies able to generate dynamic environmental flows while maintaining economic efficiency. For dammed systems, we build the ecological and economical efficiency plot for non-proportional flow redistribution operational rules compared to minimal flow operational. As for the case of small hydropower plants (e.g., see the companion paper by Gorla et al., this session), we use a four parameters Fermi-Dirac statistical distribution to mathematically formulate non-proportional redistribution rules. These rules allocate a fraction of water to the riverine environment depending on current reservoir inflows and storage. Riverine ecological benefits associated to dynamic environmental flows are computed by integrating the Weighted Usable Area (WUA) for fishes with Richter's hydrological indicators. Then, we apply nondominated sorting genetic algorithm II (NSGA-II) to an ensemble of non-proportional and minimal flow redistribution rules in order to generate the Pareto frontier showing the system performances in the ecologic and economic space. This fast and elitist multiobjective optimization method is eventually applied to a case study. It is found that non-proportional dynamic flow releases ensure maximal power production on the one hand, while conciliating ecological sustainability on the other hand. Much of the improvement in the environmental indicator is seen to arise from a better use of the reservoir storage dynamics, which allows to capture, and laminate flood events while recovering part of them for energy production. In conclusion, adopting such new operational policies would unravel a spectrum of globally-efficient performances of the dammed system when compared with those resulting from policies based on constant minimum flow releases.

  17. Arithmetic functions in torus and tree networks

    DOEpatents

    Bhanot, Gyan; Blumrich, Matthias A.; Chen, Dong; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Steinmacher-Burow, Burkhard D.; Vranas, Pavlos M.

    2007-12-25

    Methods and systems for performing arithmetic functions. In accordance with a first aspect of the invention, methods and apparatus are provided, working in conjunction of software algorithms and hardware implementation of class network routing, to achieve a very significant reduction in the time required for global arithmetic operation on the torus. Therefore, it leads to greater scalability of applications running on large parallel machines. The invention involves three steps in improving the efficiency and accuracy of global operations: (1) Ensuring, when necessary, that all the nodes do the global operation on the data in the same order and so obtain a unique answer, independent of roundoff error; (2) Using the topology of the torus to minimize the number of hops and the bidirectional capabilities of the network to reduce the number of time steps in the data transfer operation to an absolute minimum; and (3) Using class function routing to reduce latency in the data transfer. With the method of this invention, every single element is injected into the network only once and it will be stored and forwarded without any further software overhead. In accordance with a second aspect of the invention, methods and systems are provided to efficiently implement global arithmetic operations on a network that supports the global combining operations. The latency of doing such global operations are greatly reduced by using these methods.

  18. Definition study for an extended manned test of a regenerative life support system

    NASA Technical Reports Server (NTRS)

    1971-01-01

    A program was defined which consists of extended ground-based manned tests of regenerative life support systems. The tests are to evaluate prototypes of advanced life support systems under operational, integrated conditions, thus providing data for the design of efficient environmental control and life support systems for use in long-duration space missions. The requirements are defined for test operations to provide a simulation of an orbiting space laboratory. The features of Phase A and B programs are described. These tests use proven backup equipment to ensure successful evaluation of the advanced subsystems. A pre-tests all-systems checkout period is provided to minimize equipment problems during extended testing and to familiarize all crew and operating staff members with test equipment and procedures.

  19. Multi-party quantum key agreement with five-qubit brown states

    NASA Astrophysics Data System (ADS)

    Cai, Tao; Jiang, Min; Cao, Gang

    2018-05-01

    In this paper, we propose a multi-party quantum key agreement protocol with five-qubit brown states and single-qubit measurements. Our multi-party protocol ensures each participant to contribute equally to the agreement key. Each party performs three single-qubit unitary operations on three qubits of each brown state. Finally, by measuring brown states and decoding the measurement results, all participants can negotiate a shared secret key without classical bits exchange between them. With the analysis of security, our protocol demonstrates that it can resist against both outsider and participant attacks. Compared with other schemes, it also possesses a higher information efficiency. In terms of physical operation, it requires single-qubit measurements only which weakens the hardware requirements of participant and has a better operating flexibility.

  20. Development of a microcontroller-based automatic control system for the electrohydraulic total artificial heart.

    PubMed

    Kim, H C; Khanwilkar, P S; Bearnson, G B; Olsen, D B

    1997-01-01

    An automatic physiological control system for the actively filled, alternately pumped ventricles of the volumetrically coupled, electrohydraulic total artificial heart (EHTAH) was developed for long-term use. The automatic control system must ensure that the device: 1) maintains a physiological response of cardiac output, 2) compensates for an nonphysiological condition, and 3) is stable, reliable, and operates at a high power efficiency. The developed automatic control system met these requirements both in vitro, in week-long continuous mock circulation tests, and in vivo, in acute open-chested animals (calves). Satisfactory results were also obtained in a series of chronic animal experiments, including 21 days of continuous operation of the fully automatic control mode, and 138 days of operation in a manual mode, in a 159-day calf implant.

  1. V&V Plan for FPGA-based ESF-CCS Using System Engineering Approach.

    NASA Astrophysics Data System (ADS)

    Maerani, Restu; Mayaka, Joyce; El Akrat, Mohamed; Cheon, Jung Jae

    2018-02-01

    Instrumentation and Control (I&C) systems play an important role in maintaining the safety of Nuclear Power Plant (NPP) operation. However, most current I&C safety systems are based on Programmable Logic Controller (PLC) hardware, which is difficult to verify and validate, and is susceptible to software common cause failure. Therefore, a plan for the replacement of the PLC-based safety systems, such as the Engineered Safety Feature - Component Control System (ESF-CCS), with Field Programmable Gate Arrays (FPGA) is needed. By using a systems engineering approach, which ensures traceability in every phase of the life cycle, from system requirements, design implementation to verification and validation, the system development is guaranteed to be in line with the regulatory requirements. The Verification process will ensure that the customer and stakeholder’s needs are satisfied in a high quality, trustworthy, cost efficient and schedule compliant manner throughout a system’s entire life cycle. The benefit of the V&V plan is to ensure that the FPGA based ESF-CCS is correctly built, and to ensure that the measurement of performance indicators has positive feedback that “do we do the right thing” during the re-engineering process of the FPGA based ESF-CCS.

  2. User interface techniques in the counseling module of TOPS (Transportation Operational Personal Property Standard)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yow, T.G.

    The Transportation Operational Personal Property Standard System (TOPS) is an automated information management system to help administer the personal property transporation program for the Department of Defense (DOD). TOPS was fielded at four prototype sites in the late summer of 1988. Prototype testing is currently underway, with system deployment scheduled for 1989. When fully deployed, TOPS will save DOD both time and money and help ensure that all shipments made by armed services personnel are handled quickly and efficiently. The success of the TOPS system depends upon several key factors. Of course, TOPS must give transportation clerks at military personalmore » property shipping offices a tool with which they can perform their jobs with greater ease, speed, and correctness. However, before TOPS can achieve success in the field, it must first find acceptance from the transportation clerks themselves. The purpose of this document is to examine the user interface techniques used in the Counseling module of TOPS to ensure user acceptance and data base integrity, both key elements in the ultimate success of TOPS. 6 refs., 12 figs.« less

  3. Economics of immunization information systems in the United States: assessing costs and efficiency

    PubMed Central

    Bartlett, Diana L; Molinari, Noelle-Angelique M; Ortega-Sanchez, Ismael R; Urquhart, Gary A

    2006-01-01

    Background One of the United States' national health objectives for 2010 is that 95% of children aged <6 years participate in fully operational population-based immunization information systems (IIS). Despite important progress, child participation in most IIS has increased slowly, in part due to limited economic knowledge about IIS operations. Should IIS need further improvement, characterizing costs and identifying factors that affect IIS efficiency become crucial. Methods Data were collected from a national sampling frame of the 56 states/cities that received federal immunization grants under U.S. Public Health Service Act 317b and completed the federal 1999 Immunization Registry Annual Report. The sampling frame was stratified by IIS functional status, children's enrollment in the IIS, and whether the IIS had been developed as an independent system or was integrated into a larger system. These sites self-reported IIS developmental and operational program costs for calendar years 1998–2002 using a standardized data collection tool and underwent on-site interviews to verify reported data with information from the state/city financial management system and other financial records. A parametric cost-per-patient-record (CPR) model was estimated. The model assessed the impact of labor and non-labor resources used in development and operations tasks, as well as the impact of information technology, local providers' participation and compliance with federal IIS performance standards (e.g., ensuring the confidentiality and security of information, ensure timely vaccination data at the time of patient encounter, and produce official immunization records). Given the number of records minimizing CPR, the additional amount of resources needed to meet national health goals for the year 2010 was also calculated. Results Estimated CPR was as high as $10.30 and as low as $0.09 in operating IIS. About 20% of IIS had between 2.9 to 3.2 million records and showed CPR estimates of $0.09. Overall, CPR was highly sensitive to local providers' participation. To achieve the 2010 goals, additional aggregated costs were estimated to be $75.6 million nationwide. Conclusion Efficiently increasing the number of records in IIS would require additional resources and careful consideration of various strategies to minimize CPR, such as boosting providers' participation. PMID:16925823

  4. Robust 1550-nm single-frequency all-fiber ns-pulsed fiber amplifier for wind-turbine predictive control by wind lidar

    NASA Astrophysics Data System (ADS)

    Beier, F.; de Vries, O.; Schreiber, T.; Eberhardt, R.; Tünnermann, A.; Bollig, C.; Hofmeister, P. G.; Schmidt, J.; Reuter, R.

    2013-02-01

    Scaling of the power yield of offshore wind farms relies on the capacity of the individual wind turbines. This results in a trend to very large rotor diameters, which are difficult to control. It is crucial to monitor the inhomogeneous wind field in front of the wind turbines at different distances to ensure reliable operation and a long lifetime at high output levels. In this contribution, we demonstrate an all-fiber ns-pulsed fiber amplifier based on cost-efficient commercially available components. The amplifier is a suitable source for coherent Doppler lidar pulses making a predictive control of the turbine operation feasible.

  5. MAN-004 Design Standards Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Timothy L.

    2014-07-01

    At Sandia National Laboratories in New Mexico (SNL/NM), the design, construction, operation, and maintenance of facilities is guided by industry standards, a graded approach, and the systematic analysis of life cycle benefits received for costs incurred. The design of the physical plant must ensure that the facilities are "fit for use," and provide conditions that effectively, efficiently, and safely support current and future mission needs. In addition, SNL/NM applies sustainable design principles, using an integrated whole-building design approach, from site planning to facility design, construction, and operation to ensure building resource efficiency and the health and productivity of occupants. Themore » safety and health of the workforce and the public, any possible effects on the environment, and compliance with building codes take precedence over project issues, such as performance, cost, and schedule. These design standards generally apply to all disciplines on all SNL/NM projects. Architectural and engineering design must be both functional and cost-effective. Facility design must be tailored to fit its intended function, while emphasizing low-maintenance, energy-efficient, and energy-conscious design. Design facilities that can be maintained easily, with readily accessible equipment areas, low maintenance, and quality systems. To promote an orderly and efficient appearance, architectural features of new facilities must complement and enhance the existing architecture at the site. As an Architectural and Engineering (A/E) professional, you must advise the Project Manager when this approach is prohibitively expensive. You are encouraged to use professional judgment and ingenuity to produce a coordinated interdisciplinary design that is cost-effective, easily contractible or buildable, high-performing, aesthetically pleasing, and compliant with applicable building codes. Close coordination and development of civil, landscape, structural, architectural, fire protection, mechanical, electrical, telecommunications, and security features is expected to ensure compatibility with planned functional equipment and to facilitate constructability. If portions of the design are subcontracted to specialists, delivery of the finished design documents must not be considered complete until the subcontracted portions are also submitted for review. You must, along with support consultants, perform functional analyses and programming in developing design solutions. These solutions must reflect coordination of the competing functional, budgetary, and physical requirements for the project. During design phases, meetings between you and the SNL/NM Project Team to discuss and resolve design issues are required. These meetings are a normal part of the design process. For specific design-review requirements, see the project-specific Design Criteria. In addition to the design requirements described in this manual, instructive information is provided to explain the sustainable building practice goals for design, construction, operation, and maintenance of SNL/NM facilities. Please notify SNL/NM personnel of design best practices not included in this manual, so they can be incorporated in future updates.« less

  6. Generalised summation-by-parts operators and variable coefficients

    NASA Astrophysics Data System (ADS)

    Ranocha, Hendrik

    2018-06-01

    High-order methods for conservation laws can be highly efficient if their stability is ensured. A suitable means mimicking estimates of the continuous level is provided by summation-by-parts (SBP) operators and the weak enforcement of boundary conditions. Recently, there has been an increasing interest in generalised SBP operators both in the finite difference and the discontinuous Galerkin spectral element framework. However, if generalised SBP operators are used, the treatment of the boundaries becomes more difficult since some properties of the continuous level are no longer mimicked discretely - interpolating the product of two functions will in general result in a value different from the product of the interpolations. Thus, desired properties such as conservation and stability are more difficult to obtain. Here, new formulations are proposed, allowing the creation of discretisations using general SBP operators that are both conservative and stable. Thus, several shortcomings that might be attributed to generalised SBP operators are overcome (cf. Nordström and Ruggiu (2017) [38] and Manzanero et al. (2017) [39]).

  7. Energy Efficiency and Air Quality Repairs at Lyonsdale Biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brower, Michael R; Morrison, James A; Spomer, Eric

    2012-07-31

    This project enabled Lyonsdale Biomass, LLC to effect analyses, repairs and upgrades for its biomass cogeneration facility located in Lewis County, New York and close by the Adirondack Park to reduce air emissions by improving combustion technique and through the overall reduction of biomass throughput by increasing the system's thermodynamic efficiency for its steam-electrical generating cycle. Project outcomes result in significant local, New York State, Northeast U.S. and national benefits including improved renewable energy operational surety, enhanced renewable energy efficiency and more freedom from foreign fossil fuel source dependence. Specifically, the reliability of the Lyonsdale Biomass 20MWe woody biomass combined-heatmore » and power (CHP) was and is now directly enhanced. The New York State and Lewis County benefits are equally substantial since the facility sustains 26 full-time equivalency (FTE) jobs at the facility and as many as 125 FTE jobs in the biomass logistics supply chain. Additionally, the project sustains essential local and state payment in lieu of taxes revenues. This project helps meet several USDOE milestones and contributes directly to the following sustainability goals:  Climate: Reduces greenhouse gas emissions associated with bio-power production, conversion and use, in comparison to fossil fuels. Efficiency and Productivity: Enhances efficient use of renewable resources and maximizes conversion efficiency and productivity. Profitability: Lowers production costs. Rural Development: Enhances economic welfare and rural development through job creation and income generation. Standards: Develop standards and corresponding metrics for ensuring sustainable biopower production. Energy Diversification and Security: Reduces dependence on foreign oil and increases energy supply diversity. Net Energy Balance: Ensures positive net energy balance for all alternatives to fossil fuels.« less

  8. Science Operations on the Lunar Surface - Understanding the Past, Testing in the Present, Considering the Future

    NASA Technical Reports Server (NTRS)

    Eppler, Dean B.

    2013-01-01

    The scientific success of any future human lunar exploration mission will be strongly dependent on design of both the systems and operations practices that underpin crew operations on the lunar surface. Inept surface mission preparation and design will either ensure poor science return, or will make achieving quality science operation unacceptably difficult for the crew and the mission operations and science teams. In particular, ensuring a robust system for managing real-time science information flow during surface operations, and ensuring the crews receive extensive field training in geological sciences, are as critical to mission success as reliable spacecraft and a competent operations team.

  9. Irreducible Tests for Space Mission Sequencing Software

    NASA Technical Reports Server (NTRS)

    Ferguson, Lisa

    2012-01-01

    As missions extend further into space, the modeling and simulation of their every action and instruction becomes critical. The greater the distance between Earth and the spacecraft, the smaller the window for communication becomes. Therefore, through modeling and simulating the planned operations, the most efficient sequence of commands can be sent to the spacecraft. The Space Mission Sequencing Software is being developed as the next generation of sequencing software to ensure the most efficient communication to interplanetary and deep space mission spacecraft. Aside from efficiency, the software also checks to make sure that communication during a specified time is even possible, meaning that there is not a planet or moon preventing reception of a signal from Earth or that two opposing commands are being given simultaneously. In this way, the software not only models the proposed instructions to the spacecraft, but also validates the commands as well.To ensure that all spacecraft communications are sequenced properly, a timeline is used to structure the data. The created timelines are immutable and once data is as-signed to a timeline, it shall never be deleted nor renamed. This is to prevent the need for storing and filing the timelines for use by other programs. Several types of timelines can be created to accommodate different types of communications (activities, measurements, commands, states, events). Each of these timeline types requires specific parameters and all have options for additional parameters if needed. With so many combinations of parameters available, the robustness and stability of the software is a necessity. Therefore a baseline must be established to ensure the full functionality of the software and it is here where the irreducible tests come into use.

  10. Monitoring techniques and alarm procedures for CMS services and sites in WLCG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Molina-Perez, J.; Bonacorsi, D.; Gutsche, O.

    2012-01-01

    The CMS offline computing system is composed of roughly 80 sites (including most experienced T3s) and a number of central services to distribute, process and analyze data worldwide. A high level of stability and reliability is required from the underlying infrastructure and services, partially covered by local or automated monitoring and alarming systems such as Lemon and SLS, the former collects metrics from sensors installed on computing nodes and triggers alarms when values are out of range, the latter measures the quality of service and warns managers when service is affected. CMS has established computing shift procedures with personnel operatingmore » worldwide from remote Computing Centers, under the supervision of the Computing Run Coordinator at CERN. This dedicated 24/7 computing shift personnel is contributing to detect and react timely on any unexpected error and hence ensure that CMS workflows are carried out efficiently and in a sustained manner. Synergy among all the involved actors is exploited to ensure the 24/7 monitoring, alarming and troubleshooting of the CMS computing sites and services. We review the deployment of the monitoring and alarming procedures, and report on the experience gained throughout the first two years of LHC operation. We describe the efficiency of the communication tools employed, the coherent monitoring framework, the proactive alarming systems and the proficient troubleshooting procedures that helped the CMS Computing facilities and infrastructure to operate at high reliability levels.« less

  11. Dynamically protected cat-qubits: a new paradigm for universal quantum computation

    NASA Astrophysics Data System (ADS)

    Mirrahimi, Mazyar; Leghtas, Zaki; Albert, Victor V.; Touzard, Steven; Schoelkopf, Robert J.; Jiang, Liang; Devoret, Michel H.

    2014-04-01

    We present a new hardware-efficient paradigm for universal quantum computation which is based on encoding, protecting and manipulating quantum information in a quantum harmonic oscillator. This proposal exploits multi-photon driven dissipative processes to encode quantum information in logical bases composed of Schrödinger cat states. More precisely, we consider two schemes. In a first scheme, a two-photon driven dissipative process is used to stabilize a logical qubit basis of two-component Schrödinger cat states. While such a scheme ensures a protection of the logical qubit against the photon dephasing errors, the prominent error channel of single-photon loss induces bit-flip type errors that cannot be corrected. Therefore, we consider a second scheme based on a four-photon driven dissipative process which leads to the choice of four-component Schrödinger cat states as the logical qubit. Such a logical qubit can be protected against single-photon loss by continuous photon number parity measurements. Next, applying some specific Hamiltonians, we provide a set of universal quantum gates on the encoded qubits of each of the two schemes. In particular, we illustrate how these operations can be rendered fault-tolerant with respect to various decoherence channels of participating quantum systems. Finally, we also propose experimental schemes based on quantum superconducting circuits and inspired by methods used in Josephson parametric amplification, which should allow one to achieve these driven dissipative processes along with the Hamiltonians ensuring the universal operations in an efficient manner.

  12. Novel Binders and Methods for Agglomeration of Ore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. K. Kawatra; T. C. Eisele; K. A. Lewandowski

    2006-03-31

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that willmore » work satisfactorily at a reasonable cost. A primary example of this is copper heap leaching, where there are no binders currently encountered in this acidic environment process. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching. The active involvement of our industrial partners will help to ensure rapid commercialization of any agglomeration technologies developed by this project.« less

  13. Novel Binders and Methods for Agglomeration of Ore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. K. Kawatra; T. C. Eisele; J. A. Gurtler

    2005-09-30

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that willmore » work satisfactorily at a reasonable cost. A primary example of this is copper heap leaching, where there are no binders currently encountered in this acidic environment process. As a result, operators of many facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching. The active involvement of our industrial partners will help to ensure rapid commercialization of any agglomeration technologies developed by this project.« less

  14. The TMT instrumentation program

    NASA Astrophysics Data System (ADS)

    Simard, Luc; Crampton, David; Ellerbroek, Brent; Boyer, Corinne

    2010-07-01

    An overview of the current status of the Thirty Meter Telescope (TMT) instrumentation program is presented. Conceptual designs for the three first light instruments (IRIS, WFOS and IRMS) are in progress, as well as feasibility studies of MIRES. Considerable effort is underway to understand the end-to-end performance of the complete telescopeadaptive optics-instrument system under realistic conditions on Mauna Kea. Highly efficient operation is being designed into the TMT system, based on a detailed investigation of the observation workflow to ensure very fast target acquisition and set up of all subsystems. Future TMT instruments will almost certainly involve contributions from institutions in many different locations in North America and partner nations. Coordinating and optimizing the design and construction of the instruments to ensure delivery of the best possible scientific capabilities is an interesting challenge. TMT welcomes involvement from all interested instrument teams.

  15. Quality assurance: Importance of systems and standard operating procedures

    PubMed Central

    Manghani, Kishu

    2011-01-01

    It is mandatory for sponsors of clinical trials and contract research organizations alike to establish, manage and monitor their quality control and quality assurance systems and their integral standard operating procedures and other quality documents to provide high-quality products and services to fully satisfy customer needs and expectations. Quality control and quality assurance systems together constitute the key quality systems. Quality control and quality assurance are parts of quality management. Quality control is focused on fulfilling quality requirements, whereas quality assurance is focused on providing confidence that quality requirements are fulfilled. The quality systems must be commensurate with the Company business objectives and business model. Top management commitment and its active involvement are critical in order to ensure at all times the adequacy, suitability, effectiveness and efficiency of the quality systems. Effective and efficient quality systems can promote timely registration of drugs by eliminating waste and the need for rework with overall financial and social benefits to the Company. PMID:21584180

  16. Quality assurance: Importance of systems and standard operating procedures.

    PubMed

    Manghani, Kishu

    2011-01-01

    It is mandatory for sponsors of clinical trials and contract research organizations alike to establish, manage and monitor their quality control and quality assurance systems and their integral standard operating procedures and other quality documents to provide high-quality products and services to fully satisfy customer needs and expectations. Quality control and quality assurance systems together constitute the key quality systems. Quality control and quality assurance are parts of quality management. Quality control is focused on fulfilling quality requirements, whereas quality assurance is focused on providing confidence that quality requirements are fulfilled. The quality systems must be commensurate with the Company business objectives and business model. Top management commitment and its active involvement are critical in order to ensure at all times the adequacy, suitability, effectiveness and efficiency of the quality systems. Effective and efficient quality systems can promote timely registration of drugs by eliminating waste and the need for rework with overall financial and social benefits to the Company.

  17. Intelligent sensor in control systems for objects with changing thermophysical properties

    NASA Astrophysics Data System (ADS)

    Belousov, O. A.; Muromtsev, D. Yu; Belyaev, M. P.

    2018-04-01

    The control of heat devices in a wide temperature range given thermophysical properties of an object is a topical issue. Optimal control systems of electric furnaces have to meet strict requirements in terms of accuracy of production procedures and efficiency of energy consumption. The fulfillment of these requirements is possible only if the dynamics model describing adequately the processes occurring in the furnaces is used to calculate the optimal control actions. One of the types of electric furnaces is the electric chamber furnace intended for heat treatment of various materials at temperatures from thousands of degrees Celsius and above. To solve the above-mentioned problem and to determine its place in the system of energy-efficient control of dynamic modes in the electric furnace, we propose the concept of an intelligent sensor and a method of synthesizing variables on sets of functioning states. The use of synthesis algorithms for optimal control in real time ensures the required accuracy when operating under different conditions and operating modes of the electric chamber furnace.

  18. Chance-Constrained AC Optimal Power Flow: Reformulations and Efficient Algorithms

    DOE PAGES

    Roald, Line Alnaes; Andersson, Goran

    2017-08-29

    Higher levels of renewable electricity generation increase uncertainty in power system operation. To ensure secure system operation, new tools that account for this uncertainty are required. Here, in this paper, we adopt a chance-constrained AC optimal power flow formulation, which guarantees that generation, power flows and voltages remain within their bounds with a pre-defined probability. We then discuss different chance-constraint reformulations and solution approaches for the problem. Additionally, we first discuss an analytical reformulation based on partial linearization, which enables us to obtain a tractable representation of the optimization problem. We then provide an efficient algorithm based on an iterativemore » solution scheme which alternates between solving a deterministic AC OPF problem and assessing the impact of uncertainty. This more flexible computational framework enables not only scalable implementations, but also alternative chance-constraint reformulations. In particular, we suggest two sample based reformulations that do not require any approximation or relaxation of the AC power flow equations.« less

  19. New PDC bit design reduces vibrational problems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mensa-Wilmot, G.; Alexander, W.L.

    1995-05-22

    A new polycrystalline diamond compact (PDC) bit design combines cutter layout, load balancing, unsymmetrical blades and gauge pads, and spiraled blades to reduce problematic vibrations without limiting drilling efficiency. Stabilization improves drilling efficiency and also improves dull characteristics for PDC bits. Some PDC bit designs mitigate one vibrational mode (such as bit whirl) through drilling parameter manipulation yet cause or excite another vibrational mode (such as slip-stick). An alternative vibration-reducing concept which places no limitations on the operational environment of a PDC bit has been developed to ensure optimization of the bit`s available mechanical energy. The paper discusses bit stabilization,more » vibration reduction, vibration prevention, cutter arrangement, load balancing, blade layout, spiraled blades, and bit design.« less

  20. Towards Efficient Scientific Data Management Using Cloud Storage

    NASA Technical Reports Server (NTRS)

    He, Qiming

    2013-01-01

    A software prototype allows users to backup and restore data to/from both public and private cloud storage such as Amazon's S3 and NASA's Nebula. Unlike other off-the-shelf tools, this software ensures user data security in the cloud (through encryption), and minimizes users operating costs by using space- and bandwidth-efficient compression and incremental backup. Parallel data processing utilities have also been developed by using massively scalable cloud computing in conjunction with cloud storage. One of the innovations in this software is using modified open source components to work with a private cloud like NASA Nebula. Another innovation is porting the complex backup to- cloud software to embedded Linux, running on the home networking devices, in order to benefit more users.

  1. Energy-efficiency increase of reinforced concrete columns with recessed working fittings

    NASA Astrophysics Data System (ADS)

    Muradyan, Viktor; Mailyan, Dmitry; Lyapin, Alexander; Chubarov, Valery

    2017-10-01

    One of the most important ways of increasing the energy-efficiency of the construction industry is the reduction of the material capacity of structures and labour intensity of their manufacturing. Since manufacturing of reinforced concrete structures requires considerable financial and energy expenses, then reduction of technological cycle operations is sure to be the urgent task today. It is well known, that in the recessed reinforced concrete elements the transverse reinforcement is fixed for the purpose of ensuring the longitudinal rods fixity. Besides, the thickness of the protective layer, as a rule, is taken the minimum. The authors proposed to increase the protective layer, and that will reduce the amount of transverse reinforcement rods significantly and will make the technological process of structures manufacturing easier.

  2. Domestic Banks in Bangladesh Could Ensure Efficiency by Improving Human Resource Management Practices

    PubMed Central

    Muhammad Masum, Abdul Kadar; Azad, Md. Abul Kalam; Hoque, Kazi Enamul; Beh, Loo-See

    2015-01-01

    The paper aims to examine the influence of human resource management (HRM) practices on bank efficiency using Malmquist index of total factor productivity. The model comprises HRM index that represents the quality of HRM practices. The results are decomposed into three efficiency scores, namely, technical efficiency, pure efficiency, and scale efficiency. In this study, panel data for 44 banks in Bangladesh are used for the period 2008-2013. This paper reveals that foreign banks are ahead in converting the influence of HRM practices into efficiency scores (0.946>0.833). On the other hand, domestic banks performed better than foreign banks in terms of pure efficiency and scale efficiency. But, in terms of technical efficiency, the domestic banks are regressed by 6.7% annually whereas foreign banks are progressed with a yearly value of 5.8%. The results are robust, because the Mann-Whitney test and Kruskall-Wallis test (non-parametric tests) also confirm the same results. This study emphasizes HRM practices in the banking industry to ensure efficiency in the long-term scenario. Domestic banks are suggested to ensure continuous development in HRM practices in order to compete with foreign banks. PMID:26221727

  3. Domestic Banks in Bangladesh Could Ensure Efficiency by Improving Human Resource Management Practices.

    PubMed

    Masum, Abdul Kadar Muhammad; Azad, Md Abul Kalam; Hoque, Kazi Enamul; Beh, Loo-See

    2015-01-01

    The paper aims to examine the influence of human resource management (HRM) practices on bank efficiency using Malmquist index of total factor productivity. The model comprises HRM index that represents the quality of HRM practices. The results are decomposed into three efficiency scores, namely, technical efficiency, pure efficiency, and scale efficiency. In this study, panel data for 44 banks in Bangladesh are used for the period 2008-2013. This paper reveals that foreign banks are ahead in converting the influence of HRM practices into efficiency scores (0.946>0.833). On the other hand, domestic banks performed better than foreign banks in terms of pure efficiency and scale efficiency. But, in terms of technical efficiency, the domestic banks are regressed by 6.7% annually whereas foreign banks are progressed with a yearly value of 5.8%. The results are robust, because the Mann-Whitney test and Kruskall-Wallis test (non-parametric tests) also confirm the same results. This study emphasizes HRM practices in the banking industry to ensure efficiency in the long-term scenario. Domestic banks are suggested to ensure continuous development in HRM practices in order to compete with foreign banks.

  4. Conducting Research on the International Space Station Using the EXPRESS Rack Facilities

    NASA Technical Reports Server (NTRS)

    Thompson, Sean W.; Lake, Robert E.

    2014-01-01

    EXPRESS Racks provide capability for payload access to ISS resources. The successful on-orbit operations and versatility of the EXPRESS Rack has facilitated the operations of many scientific areas, with the promise of continued payload support for years to come. EXPRESS Racks are currently deployed in the US Lab, Columbus and JEM. Process improvements and enhancements continue to improve the accommodations and make the integration and operations process more efficient. Payload Integration Managers serve as the primary interface between the ISS Program and EXPRESS Payload Developers. EXPRESS Project coordinates across multiple functional areas and organizations to ensure integrated EXPRESS Rack and subrack products and hardware are complete, accurate, on time, safe, and certified for flight. NASA is planning to expand the EXPRESS payload capacity by developing new Basic Express Racks expected to be on ISS in 2018.

  5. Increase in the efficiency of a high-speed ramjet on hydrocarbon fuel at the flying vehicle acceleration up to M = 6+

    NASA Astrophysics Data System (ADS)

    Abashev, V. M.; Korabelnikov, A. V.; Kuranov, A. L.; Tretyakov, P. K.

    2017-10-01

    At the analysis of the work process in a ramjet, a complex consideration of the ensemble of problems the solution of which determines the engine efficiency appears reasonable. The main problems are ensuring a high completeness of fuel combustion and minimal hydraulic losses, the reliability of cooling of high-heat areas with the use of the fuel cooling resource, and ensuring the strength of the engine duct elements under non-uniform heat loads due to fuel combustion in complex gas-dynamic flow structures. The fundamental techniques and approaches to the solution of above-noted problems are considered in the present report, their novelty and advantages in comparison with conventional techniques are substantiated. In particular, a technique of the arrangement of an intense (pre-detonation) combustion regime for ensuring a high completeness of fuel combustion and minimal hydraulic losses at a smooth deceleration of a supersonic flow down to the sound velocity using the pulsed-periodic gas-dynamic flow control has been proposed. A technique has been proposed for cooling the high-heat areas, which employs the cooling resource of the hydrocarbon fuel, including the process of the kerosene chemical transformation (conversion) using the nano-catalysts. An analysis has shown that the highly heated structure will operate in the elastic-plastic domain of the behavior of constructional materials, which is directly connected to the engine operation resource. There arise the problems of reducing the ramjet shells depending on deformations. The deformations also lead to a significant influence on the work process in the combustor and, naturally, on the heat transfer process and the performance of catalysts (the action of plastic and elastic deformations of restrained shells). The work presents some results illustrating the presence of identified problems. A conclusion is drawn about the necessity of formulating a complex investigation both with the realization in model experiments and execution of computational and theoretical investigations.

  6. Building Operations Efficiencies into NASA's Ares I Crew Launch Vehicle Design

    NASA Technical Reports Server (NTRS)

    Dumbacher, Daniel L.; Davis, Stephan R.

    2007-01-01

    The U.S. Vision for Space Exploration guides the National Aeronautics and Space Administration's (NASA's) challenging missions that expand humanity's boundaries and open new routes to the space frontier. With the Agency's commitment to complete the International Space Station (ISS) and to retire the venerable Space Shuttle by 2010, the NASA Administrator commissioned the Exploration Systems Architecture Study (ESAS) in 2005 to analyze options for safe, simple, cost-efficient launch solutions that could deliver human-rated space transportation capabilities in a timely manner within fixed budget guidelines. The Exploration Launch Projects (ELP) Office, chartered by the Constellation Program in October 2005, has been conducting systems engineering studies and business planning to successively refine the design configurations and better align vehicle concepts with customer and stakeholder requirements, such as significantly reduced life-cycle costs. As the Agency begins the process of replacing the Shuttle with a new generation of spacecraft destined for missions beyond low-Earth orbit to the Moon and Mars, NASA is designing the follow-on crew and cargo launch systems for maximum operational efficiencies. To sustain the long-term exploration of space, it is imperative to reduce the $4 billion NASA typically spends on space transportation each year. This paper gives toplevel information about how the follow-on Ares I Crew Launch Vehicle (CLV) is being designed for improved safety and reliability, coupled with reduced operations costs. These methods include carefully developing operational requirements; conducting operability design and analysis; using the latest information technology tools to design and simulate the vehicle; and developing a learning culture across the workforce to ensure a smooth transition between Space Shuttle operations and Ares vehicle development.

  7. Twin rotor damper for the damping of stochastically forced vibrations using a power-efficient control algorithm

    NASA Astrophysics Data System (ADS)

    Bäumer, Richard; Terrill, Richard; Wollnack, Simon; Werner, Herbert; Starossek, Uwe

    2018-01-01

    The twin rotor damper (TRD), an active mass damper, uses the centrifugal forces of two eccentrically rotating control masses. In the continuous rotation mode, the preferred mode of operation, the two eccentric control masses rotate with a constant angular velocity about two parallel axes, creating, under further operational constraints, a harmonic control force in a single direction. In previous theoretical work, it was shown that this mode of operation is effective for the damping of large, harmonic vibrations of a single degree of freedom (SDOF) oscillator. In this paper, the SDOF oscillator is assumed to be affected by a stochastic excitation force and consequently responds with several frequencies. Therefore, the TRD must deviate from the continuous rotation mode to ensure the anti-phasing between the harmonic control force of the TRD and the velocity of the SDOF oscillator. It is found that the required deviation from the continuous rotation mode increases with lower vibration amplitude. Therefore, an operation of the TRD in the continuous rotation mode is no longer efficient below a specific vibration-amplitude threshold. To additionally dampen vibrations below this threshold, the TRD can switch to another, more energy-consuming mode of operation, the swinging mode in which both control masses oscillate about certain angular positions. A power-efficient control algorithm is presented which uses the continuous rotation mode for large vibrations and the swinging mode for small vibrations. To validate the control algorithm, numerical and experimental investigations are performed for a single degree of freedom oscillator under stochastic excitation. Using both modes of operation, it is shown that the control algorithm is effective for the cases of free and stochastically forced vibrations of arbitrary amplitude.

  8. Stirling Power Convertors Demonstrated in Extended Operation

    NASA Technical Reports Server (NTRS)

    Schreiber, Jeffrey G.

    2005-01-01

    A 110-W Stirling Radioisotope Generator (SRG110) is being developed by Lockheed Martin Astronautics of Valley Forge, Pennsylvania, under contract to the Department of Energy of Germantown, Maryland. The generator will be a high-efficiency electric power source for NASA space exploration missions that can operate in the vacuum of deep space or in a gaseous atmosphere, such as on the surface of Mars. The generator converts heat supplied by the decay of a plutonium heat source into electric power for the spacecraft. In support of the SRG110 project, the NASA Glenn Research Center has established a technology effort that will provide some of the key data to ensure a successful transition to flight for what will be the first dynamic power system to be used in space. High system efficiency is obtained through the use of free-piston Stirling power-conversion technology. Glenn tasks include in-house testing of Stirling convertors and controllers, materials evaluation and heater head life assessment, structural dynamics, evaluation of electromagnetic interference, assessment of organics, and reliability analysis. There is also an advanced technology effort that is complementary to the near-term technology effort, intended to reduce the mass of the Stirling convertor and increase efficiency.

  9. Inland Waterway Environmental Safety

    NASA Astrophysics Data System (ADS)

    Reshnyak, Valery; Sokolov, Sergey; Nyrkov, Anatoliy; Budnik, Vlad

    2018-05-01

    The article presents the results of development of the main components of the environmental safety when operating vessels on inland waterways, which include strategy selection ensuring the environmental safety of vessels, the selection and justification of a complex of environmental technical means, activities to ensure operation of vessels taking into account the environmental technical means. Measures to ensure environmental safety are developed on the basis of the principles aimed at ensuring environmental safety of vessels. They include the development of strategies for the use of environmental protection equipment, which are determined by the conditions for wastewater treatment of purified sewage and oily bilge water as well as technical characteristics of the vessels, the introduction of the process of the out-of-the-vessel processing of ship pollution as a technology for their movement. This must take into account the operating conditions of vessels on different sections of waterways. An algorithm of actions aimed at ensuring ecological safety of operated vessels is proposed.

  10. Operational management of offshore energy assets

    NASA Astrophysics Data System (ADS)

    Kolios, A. J.; Martinez Luengo, M.

    2016-02-01

    Energy assets and especially those deployed offshore are subject to a variety of harsh operational and environmental conditions which lead to deterioration of their performance and structural capacity over time. The aim of reduction of CAPEX in new installations shifts focus to operational management to monitor and assess performance of critical assets ensuring their fitness for service throughout their service life and also to provide appropriate and effective information towards requalification or other end of life scenarios, optimizing the OPEX. Over the last decades, the offshore oil & gas industry has developed and applied various approaches in operational management of assets through Structural Health and Condition Monitoring (SHM/CM) systems which can be, at a certain level, transferable to offshore renewable installations. This paper aims to highlight the key differences between offshore oil & gas and renewable energy assets from a structural integrity and reliability perspective, provide a comprehensive overview of different approaches that are available and applicable, and distinguish the benefits of such systems in the efficient operation of offshore energy assets.

  11. Roofbolters with compressed-air rotators

    NASA Astrophysics Data System (ADS)

    Lantsevich, MA; Repin Klishin, AA, VI; Kokoulin, DI

    2018-03-01

    The specifications of the most popular roofbolters of domestic and foreign manufacture currently in operation in coal mines are discussed. Compressed-air roofbolters SAP and SAP2 designed at the Institute of Mining are capable of drilling in hard rocks. The authors describe the compressed-air rotator of SAP2 roofbolter with alternate motion rotors. From the comparative analysis of characteristics of SAP and SAP 2 roofbolters, the combination of high-frequency axial and rotary impacts on a drilling tool in SAP2 ensure efficient drilling in rocks with the strength up to 160 MPa.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bahrdt, J.; Frentrup, W.; Gaupp, A.

    BESSY plans to go to topping up operation in the near future. A high injection efficiency is essential to avoid particle losses inside the undulator magnets and to ensure a low radiation background in the beamlines. Dynamic and static multipoles of the insertion devices have to be minimized to accomplish this requirement. APPLE II devices show strong dynamic multipoles in the elliptical and vertical polarization mode. Measurements before and after shimming of these multipoles are presented. The static multipoles of the BESSY UE56-2 which are due to systematic block inhomgeneities have successfully been shimmed recovering the full dynamic aperture.

  13. Data Management System (DMS) Evolution Analysis

    NASA Technical Reports Server (NTRS)

    Douglas, Katherine

    1990-01-01

    The all encompassing goal for the Data Management System (DMS) Evolution Analysis task is to develop an advocacy for ensuring that growth and technology insertion issues are properly and adequately addressed during DMS requirements specification, design, and development. The most efficient methods of addressing those issues are via planned and graceful evolution, technology transparency, and system growth margins. It is necessary that provisions, such as those previously mentioned, are made to accommodate advanced missions requirements (e.g., Human Space Exploration Programs) in addition to evolving Space Station Freedom operations and user requirements .

  14. Observation of enhanced thermal lensing due to near-Gaussian pump energy deposition in a laser-diode side-pumped Nd:YAG laser

    NASA Technical Reports Server (NTRS)

    Welford, David; Rines, David M.; Dinerman, Bradley J.; Martinsen, Robert

    1992-01-01

    The authors report operation of a laser-diode side-pumped Nd:YAG laser with a novel pumping geometry that ensures efficient conversion of pump energy into the TEM00 mode. Significant enhancement of thermally induced lensing due to the near-Gaussian energy deposition profile of the pump radiation was observed. An induced lens of approximately 3.2-m focal length was measured at average incident pump powers of only 3.2 W (corresponding to a 0.6 W heat load).

  15. Sunnybrook's matrix organizational model--moving ahead.

    PubMed

    Ellis, P H; Gaskin, P M

    1988-01-01

    Traditionally, hospitals have denied the true intricacy of their organization by forcing all reporting relationships into a single structure. To address this complexity, Sunnybrook has developed three independent, yet interrelated, organization dimensions. Three structures--the traditional, the clinical unit and the programmatic dimension--provide a better link of accountability by holding departments responsible for the efficiency of their operations, holding physicians accountable for the resource implication of volume and case mix, and ensuring that the activities of the hospital's departments and clinical units are in line with hospital's overall mission and programs.

  16. Ensuring the Environmental and Industrial Safety in Solid Mineral Deposit Surface Mining

    NASA Astrophysics Data System (ADS)

    Trubetskoy, Kliment; Rylnikova, Marina; Esina, Ekaterina

    2017-11-01

    The growing environmental pressure of mineral deposit surface mining and severization of industrial safety requirements dictate the necessity of refining the regulatory framework governing safe and efficient development of underground resources. The applicable regulatory documentation governing the procedure of ore open-pit wall and bench stability design for the stage of pit reaching its final boundary was issued several decades ago. Over recent decades, mining and geomechanical conditions have changed significantly in surface mining operations, numerous new software packages and computer developments have appeared, opportunities of experimental methods of source data collection and processing, grounding of the permissible parameters of open pit walls have changed dramatically, and, thus, methods of risk assessment have been perfected [10-13]. IPKON RAS, with the support of the Federal Service for Environmental Supervision, assumed the role of the initiator of the project for the development of Federal norms and regulations of industrial safety "Rules for ensuring the stability of walls and benches of open pits, open-cast mines and spoil banks", which contribute to the improvement of economic efficiency and safety of mineral deposit surface mining and enhancement of the competitiveness of Russian mines at the international level that is very important in the current situation.

  17. Contracts and management services site support program plan WBS 6.10.14

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knoll, J.M. Jr.

    1994-09-01

    Contracts and Management Services is recognized as the central focal point for programs having company or sitewide application in pursuit of the Hanford Missions`s financial and operational objectives. Contracts and Management Services actively pursues cost savings and operational efficiencies through: Management Standards by ensuring all employees have an accessible, integrated system of clear, complete, accurate, timely, and useful management control policies and procedures; Contract Reform by restructuring the contract, organization, and cost accounting systems to refocus Hanford contract activities on output products; Systems and Operations Evaluation by directing the Cost Reduction program, Great Ideas, and Span of Management activities; Programmore » Administration by enforcing conditions of Accountability (whether DEAR-based or FAR-based) for WHC, BCSR, ICF KH, and BHI; Contract Performance activities; chairing the WHC Cost Reduction Review Board; and analyzing companywide Performance Measures; Data Standards and Administration by establishing and directing the company data management program; giving direction to the major RL programs and mission areas for implementation of cost-effective and efficient data management practices; directing all operations, application, and interfaces contained within the Hanford PeopleCore System; directing accomplishment and delivery of TPA data management milestones; and directing the sitewide data management processes for Data Standards and the Data Directory.« less

  18. Analysis of Thermal Design of Heating Units with Meteorological Climate Peculiarities

    NASA Astrophysics Data System (ADS)

    Seminenko, A. S.; Elistratova, Y. V.; Pererva, M. I.; Moiseev, M. V.

    2018-03-01

    This article is devoted to the analysis of thermal design of heating units, one of the compulsory calculations of heating systems, which ensures their stable and efficient operation. The article analyses the option of a single-pipe heating system with shifted end-capping areas and the overhead supply main; the difference is shown in the calculation results between heat balance equation of the heating unit and calculation of the actual heat flux (heat transfer coefficient) taking into account deviation from the standardized (technical passport) operating conditions. The calculation of the thermal conditions of residential premises is given, the deviation of the internal air temperature is shown taking into account the discrepancy between the calculation results for thermal energy.

  19. Quality Management in Astronomical Software and Data Systems

    NASA Astrophysics Data System (ADS)

    Radziwill, N. M.

    2007-10-01

    As the demand for more sophisticated facilities increases, the complexity of the technical and organizational challenges faced by operational space- and ground-based telescopes also increases. In many organizations, funding tends not to be proportional to this trend, and steps must be taken to cultivate a lean environment in both development and operations to consistently do more with less. To facilitate this transition, an organization must be aware of how it can meet quality-related goals, such as reducing variation, improving productivity of people and systems, streamlining processes, ensuring compliance with requirements (scientific, organizational, project, or regulatory), and increasing user satisfaction. Several organizations are already on this path. Quality-based techniques for the efficient, effective development of new telescope facilities and maintenance of existing facilities are described.

  20. Deterministic Joint Remote Preparation of Arbitrary Four-Qubit Cluster-Type State Using EPR Pairs

    NASA Astrophysics Data System (ADS)

    Li, Wenqian; Chen, Hanwu; Liu, Zhihao

    2017-02-01

    Using four Einstein-Podolsky-Rosen (EPR) pairs as the pre-shared quantum channel, an economic and feasible scheme for deterministic joint remote preparation of the four-particle cluster-type state is presented. In the scheme, one of the senders performs a four-qubit projective measurement based on a set of ingeniously constructed vectors with real coefficients, while the other performs the bipartite projective measurements in terms of the imaginary coefficients. Followed with some appropriate unitary operations and controlled-NOT operations, the receiver can reconstruct the desired state. Compared with other analogous JRSP schemes, our scheme can not only reconstruct the original state (to be prepared remotely) with unit successful probability, but also ensure greater efficiency.

  1. Energy manager design for microgrids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Firestone, Ryan; Marnay, Chris

    2005-01-01

    On-site energy production, known as distributed energy resources (DER), offers consumers many benefits, such as bill savings and predictability, improved system efficiency, improved reliability, control over power quality, and in many cases, greener electricity. Additionally, DER systems can benefit electric utilities by reducing congestion on the grid, reducing the need for new generation and transmission capacity, and offering ancillary services such as voltage support and emergency demand response. Local aggregations of distributed energy resources (DER) that may include active control of on-site end-use energy devices can be called microgrids. Microgrids require control to ensure safe operation and to make dispatchmore » decisions that achieve system objectives such as cost minimization, reliability, efficiency and emissions requirements, while abiding by system constraints and regulatory rules. This control is performed by an energy manager (EM). Preferably, an EM will achieve operation reasonably close to the attainable optimum, it will do this by means robust to deviations from expected conditions, and it will not itself incur insupportable capital or operation and maintenance costs. Also, microgrids can include supervision over end-uses, such as curtailing or rescheduling certain loads. By viewing a unified microgrid as a system of supply and demand, rather than simply a system of on-site generation devices, the benefits of integrated supply and demand control can be exploited, such as economic savings and improved system energy efficiency.« less

  2. Improving HVAC operational efficiency in small-and medium-size commercial buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Woohyun; Katipamula, Srinivas; Lutes, Robert

    Small- and medium-size (<100,000 sf) commercial buildings (SMBs) represent over 95% of the U.S. commercial building stock and consume over 60% of total site energy consumption. Many of these buildings use rudimentary controls that are mostly manual, with limited scheduling capability, no monitoring, or failure management. Therefore, many of these buildings are operated inefficiently and consume excess energy. SMBs typically use packaged rooftop units (RTUs) that are controlled by an individual thermostat. There is increased urgency to improve the operating efficiency of existing commercial building stock in the United States for many reasons, chief among them being to mitigate themore » climate change impacts. Studies have shown that managing set points and schedules of the RTUs will result in up to 20% energy and cost savings. Another problem associated with RTUs is short cycling, when an RTU goes through ON and OFF cycles too frequently. Excessive cycling can lead to excessive wear and to premature failure of the compressor or its components. Also, short cycling can result in a significantly decreased average efficiency (up to 10%), even if there are no physical failures in the equipment. Ensuring correct use of the zone set points and eliminating frequent cycling of RTUs thereby leading to persistent building operations can significantly increase the operational efficiency of the SMBs. A growing trend is to use low-cost control infrastructure that can enable scalable and cost-effective intelligent building operations. The work reported in this paper describes two algorithms for detecting the zone set point temperature and RTU cycling rate that can be deployed on the low-cost infrastructure. These algorithms only require the zone temperature data for detection. The algorithms have been tested and validated using field data from a number of RTUs from six buildings in different climate locations. Overall, the algorithms were successful in detecting the set points and ON/OFF cycles accurately using the peak detection technique. The paper describes the two algorithms, results from testing the algorithms using field data, how the algorithms can be used to improve SMBs efficiency, and presents related conclusions.« less

  3. Sandia National Laboratories Facilities Management and Operations Center Design Standards Manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peterson, Timothy L.

    2014-09-01

    At Sandia National Laboratories in New Mexico (SNL/NM), the design, construction, operation, and maintenance of facilities is guided by industry standards, a graded approach, and the systematic analysis of life cycle benefits received for costs incurred. The design of the physical plant must ensure that the facilities are "fit for use," and provide conditions that effectively, efficiently, and safely support current and future mission needs. In addition, SNL/NM applies sustainable design principles, using an integrated whole-building design approach, from site planning to facility design, construction, and operation to ensure building resource efficiency and the health and productivity of occupants. Themore » safety and health of the workforce and the public, any possible effects on the environment, and compliance with building codes take precedence over project issues, such as performance, cost, and schedule. These design standards generally apply to all disciplines on all SNL/NM projects. Architectural and engineering design must be both functional and cost-effective. Facility design must be tailored to fit its intended function, while emphasizing low-maintenance, energy-efficient, and energy-conscious design. Design facilities that can be maintained easily, with readily accessible equipment areas, low maintenance, and quality systems. To promote an orderly and efficient appearance, architectural features of new facilities must complement and enhance the existing architecture at the site. As an Architectural and Engineering (A/E) professional, you must advise the Project Manager when this approach is prohibitively expensive. You are encouraged to use professional judgment and ingenuity to produce a coordinated interdisciplinary design that is cost-effective, easily contractible or buildable, high-performing, aesthetically pleasing, and compliant with applicable building codes. Close coordination and development of civil, landscape, structural, architectural, fire protection, mechanical, electrical, telecommunications, and security features is expected to ensure compatibility with planned functional equipment and to facilitate constructability. If portions of the design are subcontracted to specialists, delivery of the finished design documents must not be considered complete until the subcontracted portions are also submitted for review. You must, along with support consultants, perform functional analyses and programming in developing design solutions. These solutions must reflect coordination of the competing functional, budgetary, and physical requirements for the project. During design phases, meetings between you and the SNL/NM Project Team to discuss and resolve design issues are required. These meetings are a normal part of the design process. For specific design-review requirements, see the project-specific Design Criteria. In addition to the design requirements described in this manual, instructive information is provided to explain the sustainable building practice goals for design, construction, operation, and maintenance of SNL/NM facilities. Please notify SNL/NM personnel of design best practices not included in this manual, so they can be incorporated in future updates. You must convey all documents describing work to the SNL/NM Project Manager in both hard copy and in an electronic format compatible with the SNL/NM-prescribed CADD and other software packages, and in accordance with a SNL/NM approved standard format. Print all hard copy versions of submitted documents (excluding drawings and renderings) double-sided when practical.« less

  4. Share the Sky: Concepts and Technologies That Will Shape Future Airspace Use

    NASA Technical Reports Server (NTRS)

    Ballin, Mark G.; Cotton, William; Kopardekar, Parimal

    2011-01-01

    The airspace challenge for the United States is to protect national sovereignty and ensure the safety and security of those on the ground and in the air, while at the same time ensuring the efficiency of flight, reducing the costs involved, protecting the environment, and protecting the freedom of access to the airspace. Many visions of the future NAS hold a relatively near-term perspective, focusing on existing uses of the airspace and assuming that new uses will make up a small fraction of total use. In the longer term, the skies will be filled with diverse and amazing new air vehicles filling our societal needs. Anticipated new vehicles include autonomous air vehicles acting both independently and in coordinated groups, unpiloted cargo carriers, and large numbers of personal air vehicles and small-scale point-to-point transports. These vehicles will enable new capabilities that have the potential to increase societal mobility, transport freight at lower cost and with lower environmental impact, improve the study of the Earth s atmosphere and ecosystem, and increase societal safety and security by improving or drastically lowering the cost of critical services such as firefighting, emergency medical evacuation, search and rescue, border and neighborhood surveillance, and the inspection of our infrastructure. To ensure that uses of the airspace can continue to grow for the benefit of all, a new paradigm for operations is needed: equitably and safely sharing the airspace. This paper is an examination of such a vision, concentrating on the operations of all types of air vehicles and future uses of the National Airspace. Attributes of a long-term future airspace system are provided, emerging operations technologies are described, and initial steps in research and development are recommended.

  5. Flight Dynamics Operations Management of the Large and Heterogeneous Eutelsat Fleet of Commercial Satellites

    NASA Astrophysics Data System (ADS)

    Bellido, E.

    The EUTELSAT FDU (Flight Dynamics Unit) manages the resources to perform the typical activities of the large satellite operators and faces the usual difficulties raising from a vast and heterogeneous fleet. At present 20 satellites from 9 different platforms/sub-platforms are controlled from our Satellite Control Centre. The FDU was created in 2002 with the aim to respond to the operational needs of a growing fleet in terms of number of satellites and activities. It is at present composed of 6 engineering staff with the objective to provide operations service covering the whole lifecycle of the satellites from the procurement phase till the decommissioning. The most demanding activity is the daily operations, which must ensure maximum safety and continuity of service with the highest efficiency. Solutions have been applied from different areas: management, structure, operations organisation, processes, facilities, quality standards, etc. In addition to this, EUTELSAT is a growing communications operator and the FDU needs to contribute to the global objectives of the company. This paper covers our approach.

  6. Bantam System Technology Project

    NASA Technical Reports Server (NTRS)

    Moon, J. M.; Beveridge, J. R.

    1998-01-01

    This report focuses on determining a best value, low risk, low cost and highly reliable Data and Command System for support of the launch of low cost vehicles which are to carry small payloads into low earth orbit. The ground-based DCS is considered as a component of the overall ground and flight support system which includes the DCS, flight computer, mission planning system and simulator. Interfaces between the DCS and these other component systems are considered. Consideration is also given to the operational aspects of the mission and of the DCS selected. This project involved: defining requirements, defining an efficient operations concept, defining a DCS architecture which satisfies the requirements and concept, conducting a market survey of commercial and government off-the-shelf DCS candidate systems and rating the candidate systems against the requirements/concept. The primary conclusions are that several low cost, off-the-shelf DCS solutions exist and these can be employed to provide for very low cost operations and low recurring maintenance cost. The primary recommendation is that the DCS design/specification should be integrated within the ground and flight support system design as early as possible to ensure ease of interoperability and efficient allocation of automation functions among the component systems.

  7. Operation of International Monitoring System Network

    NASA Astrophysics Data System (ADS)

    Nikolova, Svetlana; Araujo, Fernando; Aktas, Kadircan; Malakhova, Marina; Otsuka, Riyo; Han, Dongmei; Assef, Thierry; Nava, Elisabetta; Mickevicius, Sigitas; Agrebi, Abdelouaheb

    2015-04-01

    The IMS is a globally distributed network of monitoring facilities using sensors from four technologies: seismic, hydroacoustic, infrasound and radionuclide. It is designed to detect the seismic and acoustic waves produced by nuclear test explosions and the subsequently released radioactive isotopes. Monitoring stations transmit their data to the IDC in Vienna, Austria, over a global private network known as the GCI. Since 2013, the data availability (DA) requirements for IMS stations account for quality of the data, meaning that in calculation of data availability data should be exclude if: - there is no input from sensor (SHI technology); - the signal consists of constant values (SHI technology); Even more strict are requirements for the DA of the radionuclide (particulate and noble gas) stations - received data have to be analyzed, reviewed and categorized by IDC analysts. In order to satisfy the strict data and network availability requirements of the IMS Network, the operation of the facilities and the GCI are managed by IDC Operations. Operations has following main functions: - to ensure proper operation and functioning of the stations; - to ensure proper operation and functioning of the GCI; - to ensure efficient management of the stations in IDC; - to provide network oversight and incident management. At the core of the IMS Network operations are a series of tools for: monitoring the stations' state of health and data quality, troubleshooting incidents, communicating with internal and external stakeholders, and reporting. The new requirements for data availability increased the importance of the raw data quality monitoring. This task is addressed by development of additional tools for easy and fast identifying problems in data acquisition, regular activities to check compliance of the station parameters with acquired data by scheduled calibration of the seismic network, review of the samples by certified radionuclide laboratories. The DA for the networks of different technologies in 2014 is: Primary seismic (PS) network - 95.70%, Infrasound network (IS) - 97.68%, Hydroacoustic network (HA) - 88.78%, Auxiliary Seismic - 86.07%; Radionuclide Particulate - 83.01% and Radionuclide Noble Gas -75.06%. IDC's strategy for further improving operations and management of the stations and meeting DA requirements is: - further development of tools and procedures to effectively identify and support troubleshooting of problems by the Station Operators; - effective support to the station operators to develop tailored Operation and Maintenance plans for their stations; - focus on early identification of the raw data quality problems at the station in order to support timely resolution; - extensive training programme for station operators (joined effort of IDC and IMS).

  8. System Engineering of Photonic Systems for Space Application

    NASA Technical Reports Server (NTRS)

    Watson, Michael D.; Pryor, Jonathan E.

    2014-01-01

    The application of photonics in space systems requires tight integration with the spacecraft systems to ensure accurate operation. This requires some detailed and specific system engineering to properly incorporate the photonics into the spacecraft architecture and to guide the spacecraft architecture in supporting the photonics devices. Recent research in product focused, elegant system engineering has led to a system approach which provides a robust approach to this integration. Focusing on the mission application and the integration of the spacecraft system physics incorporation of the photonics can be efficiently and effectively accomplished. This requires a clear understanding of the driving physics properties of the photonics device to ensure proper integration with no unintended consequences. The driving physics considerations in terms of optical performance will be identified for their use in system integration. Keywords: System Engineering, Optical Transfer Function, Optical Physics, Photonics, Image Jitter, Launch Vehicle, System Integration, Organizational Interaction

  9. Case Studies in Modelling, Control in Food Processes.

    PubMed

    Glassey, J; Barone, A; Montague, G A; Sabou, V

    This chapter discusses the importance of modelling and control in increasing food process efficiency and ensuring product quality. Various approaches to both modelling and control in food processing are set in the context of the specific challenges in this industrial sector and latest developments in each area are discussed. Three industrial case studies are used to demonstrate the benefits of advanced measurement, modelling and control in food processes. The first case study illustrates the use of knowledge elicitation from expert operators in the process for the manufacture of potato chips (French fries) and the consequent improvements in process control to increase the consistency of the resulting product. The second case study highlights the economic benefits of tighter control of an important process parameter, moisture content, in potato crisp (chips) manufacture. The final case study describes the use of NIR spectroscopy in ensuring effective mixing of dry multicomponent mixtures and pastes. Practical implementation tips and infrastructure requirements are also discussed.

  10. Advances in solid dosage form manufacturing technology.

    PubMed

    Andrews, Gavin P

    2007-12-15

    Currently, the pharmaceutical and healthcare industries are moving through a period of unparalleled change. Major multinational pharmaceutical companies are restructuring, consolidating, merging and more importantly critically assessing their competitiveness to ensure constant growth in an ever-more demanding market where the cost of developing novel products is continuously increasing. The pharmaceutical manufacturing processes currently in existence for the production of solid oral dosage forms are associated with significant disadvantages and in many instances provide many processing problems. Therefore, it is well accepted that there is an increasing need for alternative processes to dramatically improve powder processing, and more importantly to ensure that acceptable, reproducible solid dosage forms can be manufactured. Consequently, pharmaceutical companies are beginning to invest in innovative processes capable of producing solid dosage forms that better meet the needs of the patient while providing efficient manufacturing operations. This article discusses two emerging solid dosage form manufacturing technologies, namely hot-melt extrusion and fluidized hot-melt granulation.

  11. Protection relay of phase-shifting device with thyristor switch for high voltage power transmission lines

    NASA Astrophysics Data System (ADS)

    Lachugin, V. F.; Panfilov, D. I.; Akhmetov, I. M.; Astashev, M. G.; Shevelev, A. V.

    2014-12-01

    Problems of functioning of differential current protection systems of phase shifting devices (PSD) with mechanically changed coefficient of transformation of shunt transformer are analyzed. Requirements for devices of protection of PSD with thyristor switch are formulated. Based on use of nonlinear models of series-wound and shunt transformers of PSD modes of operation of major protection during PSD, switching to zero load operation and to operation under load and during short circuit operation were studied for testing PSD with failures. Use of the principle of duplicating by devices of differential current protection (with realization of functions of breaking) of failures of separate pares of PSD with thyristor switch was substantiated. To ensure protection sensitivity to the shunt transformer winding short circuit, in particular, to a short circuit that is not implemented in the current differential protection for PSD with mechanical switch, the differential current protection reacting to the amount of primary ampere-turns of high-voltage and low-voltage winding of this transformer was designed. Studies have shown that the use of differential current cutoff instead of overcurrent protection for the shunt transformer wndings allows one to provide the sensitivity during thyristor failure with the formation of a short circuit. The results of simulation mode for the PSD with switch thyristor designed to be installed as switching point of Voskhod-Tatarskaya-Barabinsk 220 kV transmission line point out the efficiency of the developed solutions that ensure reliable functioning of the PSD.

  12. Enabling Airspace Integration for High-Density On-Demand Mobility Operations

    NASA Technical Reports Server (NTRS)

    Mueller, Eric; Kopardekar, Parimal; Goodrich, Kenneth H.

    2017-01-01

    Aviation technologies and concepts have reached a level of maturity that may soon enable an era of on-demand mobility (ODM) fueled by quiet, efficient, and largely automated air taxis. However, successfully bringing such a system to fruition will require introducing orders of magnitude more aircraft to a given airspace volume than can be accommodated by the traditional air traffic control system, among other important technical challenges. The airspace integration problem is further compounded by requirements to set aside appropriate ground infrastructure for take-off and landing areas and ensuring these new aircraft types and their operations do not burden traditional airspace users and air traffic control. This airspace integration challenge may be significantly reduced by extending the concepts and technologies developed to manage small unmanned aircraft systems (UAS) at low altitudethe UAS traffic management (UTM) systemto higher altitudes and new aircraft types, or by equipping ODM aircraft with advanced sensors, algorithms, and interfaces. The precedent of operational freedom inherent in visual flight rules and the technologies developed for large UAS and commercial aircraft automation will contribute to the evolution of an ODM system enabled by UTM. This paper describes the set of air traffic services, normally provided by the traditional air traffic system, that an ODM system would implement to achieve the high densities needed for ODMs economic viability. Finally, the paper proposes a framework for integrating, evaluating, and deploying low-, medium-, and high-density ODM concepts that build on each other to ensure operational and economic feasibility at every step.

  13. Modeling and control of distributed energy systems during transition between grid connected and standalone modes

    NASA Astrophysics Data System (ADS)

    Arafat, Md Nayeem

    Distributed generation systems (DGs) have been penetrating into our energy networks with the advancement in the renewable energy sources and energy storage elements. These systems can operate in synchronism with the utility grid referred to as the grid connected (GC) mode of operation, or work independently, referred to as the standalone (SA) mode of operation. There is a need to ensure continuous power flow during transition between GC and SA modes, referred to as the transition mode, in operating DGs. In this dissertation, efficient and effective transition control algorithms are developed for DGs operating either independently or collectively with other units. Three techniques are proposed in this dissertation to manage the proper transition operations. In the first technique, a new control algorithm is proposed for an independent DG which can operate in SA and GC modes. The proposed transition control algorithm ensures low total harmonic distortion (THD) and less voltage fluctuation during mode transitions compared to the other techniques. In the second technique, a transition control is suggested for a collective of DGs operating in a microgrid system architecture to improve the reliability of the system, reduce the cost, and provide better performance. In this technique, one of the DGs in a microgrid system, referred to as a dispatch unit , takes the additional responsibility of mode transitioning to ensure smooth transition and supply/demand balance in the microgrid. In the third technique, an alternative transition technique is proposed through hybridizing the current and droop controllers. The proposed hybrid transition control technique has higher reliability compared to the dispatch unit concept. During the GC mode, the proposed hybrid controller uses current control. During the SA mode, the hybrid controller uses droop control. During the transition mode, both of the controllers participate in formulating the inverter output voltage but with different weights or coefficients. Voltage source inverters interfacing the DGs as well as the proposed transition control algorithms have been modeled to analyze the stability of the algorithms in different configurations. The performances of the proposed algorithms are verified through simulation and experimental studies. It has been found that the proposed control techniques can provide smooth power flow to the local loads during the GC, SA and transition modes.

  14. PREMIX: PRivacy-preserving EstiMation of Individual admiXture.

    PubMed

    Chen, Feng; Dow, Michelle; Ding, Sijie; Lu, Yao; Jiang, Xiaoqian; Tang, Hua; Wang, Shuang

    2016-01-01

    In this paper we proposed a framework: PRivacy-preserving EstiMation of Individual admiXture (PREMIX) using Intel software guard extensions (SGX). SGX is a suite of software and hardware architectures to enable efficient and secure computation over confidential data. PREMIX enables multiple sites to securely collaborate on estimating individual admixture within a secure enclave inside Intel SGX. We implemented a feature selection module to identify most discriminative Single Nucleotide Polymorphism (SNP) based on informativeness and an Expectation Maximization (EM)-based Maximum Likelihood estimator to identify the individual admixture. Experimental results based on both simulation and 1000 genome data demonstrated the efficiency and accuracy of the proposed framework. PREMIX ensures a high level of security as all operations on sensitive genomic data are conducted within a secure enclave using SGX.

  15. Improving the efficiency of optical coherence tomography by using the non-ideal behaviour of a polarising beam splitter.

    PubMed

    Lippok, Norman; Nielsen, Poul; Vanholsbeeck, Frédérique

    2011-04-11

    We present a new way of improving the efficiency of optical coherence tomography by using the polarisation crosstalk of a polarising beam splitter to direct most of the available source optical power to the sample. The use of a quarter wave plate in both the reference and the sample arms allows most of the sample power to be directed to the detector while adjusting the reference arm to ensure noise optimised operation. As a result, the sensitivity of such a system can be improved by 6 dB, or alternatively the acquisition time can be improved by a factor of 4 for shot noise limited performance,compared to a traditional OCT configuration using a 50/50 beam splitter. © 2011 Optical Society of America

  16. Automation for Accommodating Fuel-Efficient Descents in Constrained Airspace

    NASA Technical Reports Server (NTRS)

    Coopenbarger, Richard A.

    2010-01-01

    Continuous descents at low engine power are desired to reduce fuel consumption, emissions and noise during arrival operations. The challenge is to allow airplanes to fly these types of efficient descents without interruption during busy traffic conditions. During busy conditions today, airplanes are commonly forced to fly inefficient, step-down descents as airtraffic controllers work to ensure separation and maximize throughput. NASA in collaboration with government and industry partners is developing new automation to help controllers accommodate continuous descents in the presence of complex traffic and airspace constraints. This automation relies on accurate trajectory predictions to compute strategic maneuver advisories. The talk will describe the concept behind this new automation and provide an overview of the simulations and flight testing used to develop and refine its underlying technology.

  17. Hazardous material transportation safety and security field operational test beta test and baseline data report : executive summary

    DOT National Transportation Integrated Search

    2003-10-29

    The Beta Test and Baseline Data Collection efforts ensured that the test technologies would successfully operate during the field operational test (FOT) in the designed scenario configurations. These efforts also ensured that FOT systems would succes...

  18. Medicaid program; revision to Medicaid upper payment limit requirements for hospital services, nursing facility services, intermediate care facility services for the mentally retarded, and clinic services. Health Care Financing Administration (HCFA), HHS. Final rule.

    PubMed

    2001-01-12

    This final rule modifies the Medicaid upper payment limits for inpatient hospital services, outpatient hospital services, nursing facility services, intermediate care facility services for the mentally retarded, and clinic services. For each type of Medicaid inpatient service, existing regulations place an upper limit on overall aggregate payments to all facilities and a separate aggregate upper limit on payments made to State-operated facilities. This final rule establishes an aggregate upper limit that applies to payments made to government facilities that are not State government-owned or operated, and a separate aggregate upper limit on payments made to privately-owned and operated facilities. This rule also eliminates the overall aggregate upper limit that had applied to these services. With respect to outpatient hospital and clinic services, this final rule establishes an aggregate upper limit on payments made to State government-owned or operated facilities, an aggregate upper limit on payments made to government facilities that are not State government-owned or operated, and an aggregate upper limit on payments made to privately-owned and operated facilities. These separate upper limits are necessary to ensure State Medicaid payment systems promote economy and efficiency. We are allowing a higher upper limit for payment to non-State public hospitals to recognize the higher costs of inpatient and outpatient services in public hospitals. In addition, to ensure continued beneficiary access to care and the ability of States to adjust to the changes in the upper payment limits, the final rule includes a transition period for States with approved rate enhancement State plan amendments.

  19. Design of an FPGA-based electronic flow regulator (EFR) for spacecraft propulsion system

    NASA Astrophysics Data System (ADS)

    Manikandan, J.; Jayaraman, M.; Jayachandran, M.

    2011-02-01

    This paper describes a scheme for electronically regulating the flow of propellant to the thruster from a high-pressure storage tank used in spacecraft application. Precise flow delivery of propellant to thrusters ensures propulsion system operation at best efficiency by maximizing the propellant and power utilization for the mission. The proposed field programmable gate array (FPGA) based electronic flow regulator (EFR) is used to ensure precise flow of propellant to the thrusters from a high-pressure storage tank used in spacecraft application. This paper presents hardware and software design of electronic flow regulator and implementation of the regulation logic onto an FPGA.Motivation for proposed FPGA-based electronic flow regulation is on the disadvantages of conventional approach of using analog circuits. Digital flow regulation overcomes the analog equivalent as digital circuits are highly flexible, are not much affected due to noise, accurate performance is repeatable, interface is easier to computers, storing facilities are possible and finally failure rate of digital circuits is less. FPGA has certain advantages over ASIC and microprocessor/micro-controller that motivated us to opt for FPGA-based electronic flow regulator. Also the control algorithm being software, it is well modifiable without changing the hardware. This scheme is simple enough to adopt for a wide range of applications, where the flow is to be regulated for efficient operation.The proposed scheme is based on a space-qualified re-configurable field programmable gate arrays (FPGA) and hybrid micro circuit (HMC). A graphical user interface (GUI) based application software is also developed for debugging, monitoring and controlling the electronic flow regulator from PC COM port.

  20. Integrating UF6 Cylinder RF Tracking With Continuous Load Cell Monitoring for Verifying Declared UF6 Feed and Withdrawal Operations Verifying Declared UF6 Feed and Withdrawal Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Krichinsky, Alan M; Miller, Paul; Pickett, Chris A

    2009-01-01

    Oak Ridge National Laboratory is demonstrating the integration of UF6 cylinder tracking, using RF technology, with continuous load cell monitoring (CLCM) at mock UF6 feed and withdrawal (F&W) stations. CLCM and cylinder tracking are two of several continuous-monitoring technologies that show promise in providing integrated safeguards of F&W operations at enrichment plants. Integrating different monitoring technologies allows advanced, automated event processing to screen innocuous events thereby minimizing false alerts to independent inspectors. Traditionally, international inspectors rely on batch verification of material inputs and outputs derived from operator declarations and periodic on-site inspections at uranium enrichment plants or other nuclear processingmore » facilities. Continuously monitoring F&W activities between inspections while providing filtered alerts of significant operational events will substantially increase the amount of valuable information available to inspectors thereby promising to enhance the effectiveness of safeguards and to improve efficiency in conducting on-site inspections especially at large plants for ensuring that all operations are declared.« less

  1. Optimization of startup and shutdown operation of simulated moving bed chromatographic processes.

    PubMed

    Li, Suzhou; Kawajiri, Yoshiaki; Raisch, Jörg; Seidel-Morgenstern, Andreas

    2011-06-24

    This paper presents new multistage optimal startup and shutdown strategies for simulated moving bed (SMB) chromatographic processes. The proposed concept allows to adjust transient operating conditions stage-wise, and provides capability to improve transient performance and to fulfill product quality specifications simultaneously. A specially tailored decomposition algorithm is developed to ensure computational tractability of the resulting dynamic optimization problems. By examining the transient operation of a literature separation example characterized by nonlinear competitive isotherm, the feasibility of the solution approach is demonstrated, and the performance of the conventional and multistage optimal transient regimes is evaluated systematically. The quantitative results clearly show that the optimal operating policies not only allow to significantly reduce both duration of the transient phase and desorbent consumption, but also enable on-spec production even during startup and shutdown periods. With the aid of the developed transient procedures, short-term separation campaigns with small batch sizes can be performed more flexibly and efficiently by SMB chromatography. Copyright © 2011 Elsevier B.V. All rights reserved.

  2. Toward a Safety Risk-Based Classification of Unmanned Aircraft

    NASA Technical Reports Server (NTRS)

    Torres-Pomales, Wilfredo

    2016-01-01

    There is a trend of growing interest and demand for greater access of unmanned aircraft (UA) to the National Airspace System (NAS) as the ongoing development of UA technology has created the potential for significant economic benefits. However, the lack of a comprehensive and efficient UA regulatory framework has constrained the number and kinds of UA operations that can be performed. This report presents initial results of a study aimed at defining a safety-risk-based UA classification as a plausible basis for a regulatory framework for UA operating in the NAS. Much of the study up to this point has been at a conceptual high level. The report includes a survey of contextual topics, analysis of safety risk considerations, and initial recommendations for a risk-based approach to safe UA operations in the NAS. The next phase of the study will develop and leverage deeper clarity and insight into practical engineering and regulatory considerations for ensuring that UA operations have an acceptable level of safety.

  3. Secondary-electron-emission losses in multistage depressed collectors and traveling-wave-tube efficiency improvements with carbon collector electrode surfaces

    NASA Technical Reports Server (NTRS)

    Ramins, P.; Ebihara, B. T.

    1986-01-01

    Secondary-electron-emission losses in multistage depressed collectors (MDC's) and their effects on overall traveling-wave-tube (TWT) efficiency were investigated. Two representative TWT's and several computer-modeled MDC's were used. The experimental techniques provide the measurement of both the TWT overall and the collector efficiencies. The TWT-MDC performance was optimized and measured over a wide range of operating conditions, with geometrically identical collectors, which utilized different electrode surface materials. Comparisons of the performance of copper electrodes to that of various forms of carbon, including pyrolytic and iisotropic graphites, were stressed. The results indicate that: (1) a significant improvement in the TWT overall efficiency was obtained in all cases by the use of carbon, rather than copper electrodes, and (2) that the extent of this efficiency enhancement depended on the characteristics of the TWT, the TWT operating point, the MDC design, and collector voltages. Ion textured graphite was found to be particularly effective in minimizing the secondary-electron-emission losses. Experimental and analytical results, however, indicate that it is at least as important to provide a maximum amount of electrostatic suppression of secondary electrons by proper MDC design. Such suppression, which is obtained by ensuring that a substantial suppressing electric field exists over the regions of the electrodes where most of the current is incident, was found to be very effective. Experimental results indicate that, with proper MDC design and the use of electrode surfaces with low secondary-electron yield, degradation of the collector efficiency can be limited to a few percent.

  4. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Architecture Overview and Technical Performance Measures

    NASA Astrophysics Data System (ADS)

    Grant, K. D.; Johnson, B. R.; Miller, S. W.; Jamilkowski, M. L.

    2014-12-01

    The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS provides a wide range of support to a number of missions. Originally designed to support S-NPP and JPSS, the CGS has demonstrated its scalability and flexibility to incorporate all of these other important missions efficiently and with minimal cost, schedule and risk, while strengthening global partnerships in weather and environmental monitoring. The CGS architecture will be upgraded to Block 2.0 in 2015 to satisfy several key objectives, including: "operationalizing" S-NPP, which had originally been intended as a risk reduction mission; leveraging lessons learned to date in multi-mission support; taking advantage of newer, more reliable and efficient technologies; and satisfying new requirements and constraints due to the continually evolving budgetary environment. To ensure the CGS meets these needs, we have developed 48 Technical Performance Measures (TPMs) across 9 categories: Data Availability, Data Latency, Operational Availability, Margin, Scalability, Situational Awareness, Transition (between environments and sites), WAN Efficiency, and Data Recovery Processing. This paper will provide an overview of the CGS Block 2.0 architecture, with particular focus on the 9 TPM categories listed above. We will describe how we ensure the deployed architecture meets these TPMs to satisfy our multi-mission objectives with the deployment of Block 2.0 in 2015.

  5. Medicaid program; Medicaid Management Information Systems; conditions of approval and reapproval and procedures for reduction of Federal financial participation--HCFA. Final rule.

    PubMed

    1985-07-30

    This final rule provides the additional requirements to the conditions and procedures for initial approval and reapproval of Medicaid Management Information Systems (MMIS) that were added by section 1903(r) of the Social Security Act (as amended by section 901 of the Mental Health Systems Act of 1980, Pub. L. 96-398). These provisions are intended to improve States' MMIS, ensure efficient system operations, and make the procedures for detection of fraud, waste, and abuse more effective. In addition, this final rule specifies the procedures we follow in reducing the level of Federal financial participation in State administrative expenditures if a State fails to meet the conditions for initial operation, initial approval, or reapproval of an MMIS.

  6. Safety in the operating theatre--a transition to systems-based care.

    PubMed

    Weiser, Thomas G; Porter, Michael P; Maier, Ronald V

    2013-03-01

    All surgeons want the best, safest care for their patients, but providing this requires the complex coordination of multiple disciplines to ensure that all elements of care are timely, appropriate, and well organized. Quality-improvement initiatives are beginning to lead to improvements in the quality of care and coordination amongst teams in the operating room. As the population ages and patients present with more complex disease pathology, the demands for efficient systematization will increase. Although evidence suggests that postoperative mortality rates are declining, there is substantial room for improvement. Multiple quality metrics are used as surrogates for safe care, but surgical teams--including surgeons, anaesthetists, and nurses--must think beyond these simple interventions if they are to effectively communicate and coordinate in the face of increasing demands.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NREL's Sustainability Program is responsible for upholding all executive orders, federal regulations, U.S. Department of Energy (DOE) orders, and goals related to sustainable and resilient facility operations. But NREL continues to expand sustainable practices above and beyond the laboratory's regulations and requirements to ensure that the laboratory fulfills its mission into the future, leaves the smallest possible legacy footprint, and models sustainable operations and behaviors on national, regional, and local levels. The report, per the GRI reporting format, elaborates on multi-year goals relative to executive orders, achievements, and challenges; and success stories provide specific examples. A section called 'NREL's Resiliencymore » is Taking Many Forms' provides insight into how NREL is drawing on its deep knowledge of renewable energy and energy efficiency to help mitigate or avoid climate change impacts.« less

  8. Modeling the Environmental Impact of Air Traffic Operations

    NASA Technical Reports Server (NTRS)

    Chen, Neil

    2011-01-01

    There is increased interest to understand and mitigate the impacts of air traffic on the climate, since greenhouse gases, nitrogen oxides, and contrails generated by air traffic can have adverse impacts on the climate. The models described in this presentation are useful for quantifying these impacts and for studying alternative environmentally aware operational concepts. These models have been developed by leveraging and building upon existing simulation and optimization techniques developed for the design of efficient traffic flow management strategies. Specific enhancements to the existing simulation and optimization techniques include new models that simulate aircraft fuel flow, emissions and contrails. To ensure that these new models are beneficial to the larger climate research community, the outputs of these new models are compatible with existing global climate modeling tools like the FAA's Aviation Environmental Design Tool.

  9. Operations research in intensive care unit management: a literature review.

    PubMed

    Bai, Jie; Fügener, Andreas; Schoenfelder, Jan; Brunner, Jens O

    2018-03-01

    The intensive care unit (ICU) is a crucial and expensive resource largely affected by uncertainty and variability. Insufficient ICU capacity causes many negative effects not only in the ICU itself, but also in other connected departments along the patient care path. Operations research/management science (OR/MS) plays an important role in identifying ways to manage ICU capacities efficiently and in ensuring desired levels of service quality. As a consequence, numerous papers on the topic exist. The goal of this paper is to provide the first structured literature review on how OR/MS may support ICU management. We start our review by illustrating the important role the ICU plays in the hospital patient flow. Then we focus on the ICU management problem (single department management problem) and classify the literature from multiple angles, including decision horizons, problem settings, and modeling and solution techniques. Based on the classification logic, research gaps and opportunities are highlighted, e.g., combining bed capacity planning and personnel scheduling, modeling uncertainty with non-homogenous distribution functions, and exploring more efficient solution approaches.

  10. Hybrid Artificial Root Foraging Optimizer Based Multilevel Threshold for Image Segmentation

    PubMed Central

    Liu, Yang; Liu, Junfei

    2016-01-01

    This paper proposes a new plant-inspired optimization algorithm for multilevel threshold image segmentation, namely, hybrid artificial root foraging optimizer (HARFO), which essentially mimics the iterative root foraging behaviors. In this algorithm the new growth operators of branching, regrowing, and shrinkage are initially designed to optimize continuous space search by combining root-to-root communication and coevolution mechanism. With the auxin-regulated scheme, various root growth operators are guided systematically. With root-to-root communication, individuals exchange information in different efficient topologies, which essentially improve the exploration ability. With coevolution mechanism, the hierarchical spatial population driven by evolutionary pressure of multiple subpopulations is structured, which ensure that the diversity of root population is well maintained. The comparative results on a suit of benchmarks show the superiority of the proposed algorithm. Finally, the proposed HARFO algorithm is applied to handle the complex image segmentation problem based on multilevel threshold. Computational results of this approach on a set of tested images show the outperformance of the proposed algorithm in terms of optimization accuracy computation efficiency. PMID:27725826

  11. Hybrid Artificial Root Foraging Optimizer Based Multilevel Threshold for Image Segmentation.

    PubMed

    Liu, Yang; Liu, Junfei; Tian, Liwei; Ma, Lianbo

    2016-01-01

    This paper proposes a new plant-inspired optimization algorithm for multilevel threshold image segmentation, namely, hybrid artificial root foraging optimizer (HARFO), which essentially mimics the iterative root foraging behaviors. In this algorithm the new growth operators of branching, regrowing, and shrinkage are initially designed to optimize continuous space search by combining root-to-root communication and coevolution mechanism. With the auxin-regulated scheme, various root growth operators are guided systematically. With root-to-root communication, individuals exchange information in different efficient topologies, which essentially improve the exploration ability. With coevolution mechanism, the hierarchical spatial population driven by evolutionary pressure of multiple subpopulations is structured, which ensure that the diversity of root population is well maintained. The comparative results on a suit of benchmarks show the superiority of the proposed algorithm. Finally, the proposed HARFO algorithm is applied to handle the complex image segmentation problem based on multilevel threshold. Computational results of this approach on a set of tested images show the outperformance of the proposed algorithm in terms of optimization accuracy computation efficiency.

  12. Low-loss, efficient, wide-angle 1  ×  4 power splitter at ∼1.55  μm wavelengths for four play applications built with a monolithic photonic crystal slab.

    PubMed

    Zhou, Jian; Tian, Huiping; Yang, Daquan; Liu, Qi; Huang, Lijun; Ji, Yuefeng

    2014-12-01

    We exhibit a low-loss, efficient, and wide-angle 1×4 power splitter based on a silicon monolithic photonic crystal slab with triangular lattice air holes. A distinctive power-splitting ratio can be obtained depending on the hole shift in the bending region and the structure adjustment at the junction area with regard to the power splitter designed. Simulation results achieved with a rigorous finite-difference time-domain technique show that the TE-polarized light is designed to ensure single-mode operation and the transmitted power is distributed almost equally, with a total transmission of 93.4% at the 1550 nm optical operation wavelength. Furthermore, we demonstrate ultralow-loss output of the optimized power splitter, with a transmittance above 22.5% (-6.48  dB) achieved in the ranges of 1524-1594 and 1610-1620 nm, which cover the entire C-band and a large portion of the L-band of optical communication.

  13. A Coordinated Patient Transport System for ICU Patients Requiring Surgery: Impact on Operating Room Efficiency and ICU Workflow.

    PubMed

    Brown, Michael J; Kor, Daryl J; Curry, Timothy B; Marmor, Yariv; Rohleder, Thomas R

    2015-01-01

    Transfer of intensive care unit (ICU) patients to the operating room (OR) is a resource-intensive, time-consuming process that often results in patient throughput inefficiencies, deficiencies in information transfer, and suboptimal nurse to patient ratios. This study evaluates the implementation of a coordinated patient transport system (CPTS) designed to address these issues. Using data from 1,557 patient transfers covering the 2006-2010 period, interrupted time series and before and after designs were used to analyze the effect of implementing a CPTS at Mayo Clinic, Rochester. Using a segmented regression for the interrupted time series, on-time OR start time deviations were found to be significantly lower after the implementation of CPTS (p < .0001). The implementation resulted in a fourfold improvement in on-time OR starts (p < .01) while significantly reducing idle OR time (p < .01). A coordinated patient transfer process for moving patient from ICUs to ORs can significantly improve OR efficiency, reduce nonvalue added time, and ensure quality of care by preserving appropriate care provider to patient ratios.

  14. Demystifying the Search Button

    PubMed Central

    McKeever, Liam; Nguyen, Van; Peterson, Sarah J.; Gomez-Perez, Sandra

    2015-01-01

    A thorough review of the literature is the basis of all research and evidence-based practice. A gold-standard efficient and exhaustive search strategy is needed to ensure all relevant citations have been captured and that the search performed is reproducible. The PubMed database comprises both the MEDLINE and non-MEDLINE databases. MEDLINE-based search strategies are robust but capture only 89% of the total available citations in PubMed. The remaining 11% include the most recent and possibly relevant citations but are only searchable through less efficient techniques. An effective search strategy must employ both the MEDLINE and the non-MEDLINE portion of PubMed to ensure all studies have been identified. The robust MEDLINE search strategies are used for the MEDLINE portion of the search. Usage of the less robust strategies is then efficiently confined to search only the remaining 11% of PubMed citations that have not been indexed for MEDLINE. The current article offers step-by-step instructions for building such a search exploring methods for the discovery of medical subject heading (MeSH) terms to search MEDLINE, text-based methods for exploring the non-MEDLINE database, information on the limitations of convenience algorithms such as the “related citations feature,” the strengths and pitfalls associated with commonly used filters, the proper usage of Boolean operators to organize a master search strategy, and instructions for automating that search through “MyNCBI” to receive search query updates by email as new citations become available. PMID:26129895

  15. Cleaning Insertions and Collimation Challenges

    NASA Astrophysics Data System (ADS)

    Redaelli, S.; Appleby, R. B.; Bertarelli, A.; Bruce, R.; Jowett, J. M.; Lechner, A.; Losito, R.

    High-performance collimation systems are essential for operating efficiently modern hadron machine with large beam intensities. In particular, at the LHC the collimation system ensures a clean disposal of beam halos in the superconducting environment. The challenges of the HL-LHC study pose various demanding requests for beam collimation. In this paper we review the present collimation system and its performance during the LHC Run 1 in 2010-2013. Various collimation solutions under study to address the HL-LHC requirements are then reviewed, identifying the main upgrade baseline and pointing out advanced collimation concept for further enhancement of the performance.

  16. Discrete event simulation modelling of patient service management with Arena

    NASA Astrophysics Data System (ADS)

    Guseva, Elena; Varfolomeyeva, Tatyana; Efimova, Irina; Movchan, Irina

    2018-05-01

    This paper describes the simulation modeling methodology aimed to aid in solving the practical problems of the research and analysing the complex systems. The paper gives the review of a simulation platform sand example of simulation model development with Arena 15.0 (Rockwell Automation).The provided example of the simulation model for the patient service management helps to evaluate the workload of the clinic doctors, determine the number of the general practitioners, surgeons, traumatologists and other specialized doctors required for the patient service and develop recommendations to ensure timely delivery of medical care and improve the efficiency of the clinic operation.

  17. Terahertz Brewster lenses.

    PubMed

    Wichmann, Matthias; Scherger, Benedikt; Schumann, Steffen; Lippert, Sina; Scheller, Maik; Busch, Stefan F; Jansen, Christian; Koch, Martin

    2011-12-05

    Typical lenses suffer from Fresnel reflections at their surfaces, reducing the transmitted power and leading to interference phenomena. While antireflection coatings can efficiently suppress these reflections for a small frequency window, broadband antireflection coatings remain challenging. In this paper, we report on the simulation and experimental investigation of Brewster lenses in the THz-range. These lenses can be operated under the Brewster angle, ensuring reflection-free transmission of p-polarized light in an extremely broad spectral range. Experimental proof of the excellent focusing capabilities of the Brewster lenses is given by frequency and spatially resolved focus plane measurements using a fiber-coupled THz-TDS system.

  18. Lattice hydrodynamic model based traffic control: A transportation cyber-physical system approach

    NASA Astrophysics Data System (ADS)

    Liu, Hui; Sun, Dihua; Liu, Weining

    2016-11-01

    Lattice hydrodynamic model is a typical continuum traffic flow model, which describes the jamming transition of traffic flow properly. Previous studies in lattice hydrodynamic model have shown that the use of control method has the potential to improve traffic conditions. In this paper, a new control method is applied in lattice hydrodynamic model from a transportation cyber-physical system approach, in which only one lattice site needs to be controlled in this control scheme. The simulation verifies the feasibility and validity of this method, which can ensure the efficient and smooth operation of the traffic flow.

  19. Robotic nurse duties in the urology operative room: 11 years of experience.

    PubMed

    Abdel Raheem, Ali; Song, Hyun Jung; Chang, Ki Don; Choi, Young Deuk; Rha, Koon Ho

    2017-04-01

    The robotic nurse plays an essential role in a successful robotic surgery. As part of the robotic surgical team, the robotic nurse must demonstrate a high level of professional knowledge, and be an expert in robotic technology and dealing with robotic malfunctions. Each one of the robotic nursing team "nurse coordinator, scrub-nurse and circulating-nurse" has a certain job description to ensure maximum patient's safety and robotic surgical efficiency. Well-structured training programs should be offered to the robotic nurse to be well prepared, feel confident, and maintain high-quality of care.

  20. Features of electromagnetic processes in electric gas turbine installations

    NASA Astrophysics Data System (ADS)

    Kislyakov, M. A.; Chernov, V. A.; Maksimkin, V. L.; Bozhin, Yu. M.

    2017-12-01

    Electric gas turbine aggregates are considered in terms of ensuring reliable operation of gas-dynamic bearings. A complex of unfavorable factors affecting this unit of the installation is described, including rotor unbalance, eccentricity, irregularity of armature field rotation, its amplitude variation during rotor rotation, etc. The studies have shown that it is possible to increase the efficiency of EGTA by increasing the number of armature winding phases (i.e. reducing electromagnetic torque ripples), amplifying the damping circuits on the rotor, as well as by introducing pulse-width modulation of currents in the phases and flexible feedbacks.

  1. Building and Maintaining Organizational Infrastructure to Attain Clinical Excellence.

    PubMed

    Lebak, Kelly; Lane, Jason; Taus, Richard; Kim, Hansol; Stecker, Michael S; Hall, Michael; Lane-Fall, Meghan B; Weiss, Mark S

    2017-12-01

    Active maintenance of highly functional teams is critical to ensuring safe, efficient patient care in the non-operating room anesthesia (NORA) suite. In addition to developing collaborative relationships and patient care protocols, individual and team training is needed. For anesthesiologists, this training must begin during residency. The training should be supplemented with continuing education in this field for providers who find themselves working in the NORA space. As NORA continues to grow, robust NORA-specific quality assurance and improvement programs will empower anesthesiologists with the tools they need to best care for these patients. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Benchmarking the neurology practice.

    PubMed

    Henderson, William S

    2010-05-01

    A medical practice, whether operated by a solo physician or by a group, is a business. For a neurology practice to be successful, it must meet performance measures that ensure its viability. The best method of doing this is to benchmark the practice, both against itself over time and against other practices. Crucial medical practice metrics that should be measured are financial performance, staffing efficiency, physician productivity, and patient access. Such measures assist a physician or practice in achieving the goals and objectives that each determines are important to providing quality health care to patients. Copyright 2010 Elsevier Inc. All rights reserved.

  3. Sequential activities of Dynein, Mud and Asp in centrosome-spindle coupling maintain centrosome number upon mitosis.

    PubMed

    Bosveld, Floris; Ainslie, Anna; Bellaïche, Yohanns

    2017-10-15

    Centrosomes nucleate microtubules and are tightly coupled to the bipolar spindle to ensure genome integrity, cell division orientation and centrosome segregation. While the mechanisms of centrosome-dependent microtubule nucleation and bipolar spindle assembly have been the focus of numerous works, less is known about the mechanisms ensuring the centrosome-spindle coupling. The conserved NuMA protein (Mud in Drosophila ) is best known for its role in spindle orientation. Here, we analyzed the role of Mud and two of its interactors, Asp and Dynein, in the regulation of centrosome numbers in Drosophila epithelial cells. We found that Dynein and Mud mainly initiate centrosome-spindle coupling prior to nuclear envelope breakdown (NEB) by promoting correct centrosome positioning or separation, while Asp acts largely independently of Dynein and Mud to maintain centrosome-spindle coupling. Failure in the centrosome-spindle coupling leads to mis-segregation of the two centrosomes into one daughter cell, resulting in cells with supernumerary centrosomes during subsequent divisions. Altogether, we propose that Dynein, Mud and Asp operate sequentially during the cell cycle to ensure efficient centrosome-spindle coupling in mitosis, thereby preventing centrosome mis-segregation to maintain centrosome number. © 2017. Published by The Company of Biologists Ltd.

  4. Research on Taxiway Path Optimization Based on Conflict Detection

    PubMed Central

    Zhou, Hang; Jiang, Xinxin

    2015-01-01

    Taxiway path planning is one of the effective measures to make full use of the airport resources, and the optimized paths can ensure the safety of the aircraft during the sliding process. In this paper, the taxiway path planning based on conflict detection is considered. Specific steps are shown as follows: firstly, make an improvement on A * algorithm, the conflict detection strategy is added to search for the shortest and safe path in the static taxiway network. Then, according to the sliding speed of aircraft, a time table for each node is determined and the safety interval is treated as the constraint to judge whether there is a conflict or not. The intelligent initial path planning model is established based on the results. Finally, make an example in an airport simulation environment, detect and relieve the conflict to ensure the safety. The results indicate that the model established in this paper is effective and feasible. Meanwhile, make comparison with the improved A*algorithm and other intelligent algorithms, conclude that the improved A*algorithm has great advantages. It could not only optimize taxiway path, but also ensure the safety of the sliding process and improve the operational efficiency. PMID:26226485

  5. Research on Taxiway Path Optimization Based on Conflict Detection.

    PubMed

    Zhou, Hang; Jiang, Xinxin

    2015-01-01

    Taxiway path planning is one of the effective measures to make full use of the airport resources, and the optimized paths can ensure the safety of the aircraft during the sliding process. In this paper, the taxiway path planning based on conflict detection is considered. Specific steps are shown as follows: firstly, make an improvement on A * algorithm, the conflict detection strategy is added to search for the shortest and safe path in the static taxiway network. Then, according to the sliding speed of aircraft, a time table for each node is determined and the safety interval is treated as the constraint to judge whether there is a conflict or not. The intelligent initial path planning model is established based on the results. Finally, make an example in an airport simulation environment, detect and relieve the conflict to ensure the safety. The results indicate that the model established in this paper is effective and feasible. Meanwhile, make comparison with the improved A*algorithm and other intelligent algorithms, conclude that the improved A*algorithm has great advantages. It could not only optimize taxiway path, but also ensure the safety of the sliding process and improve the operational efficiency.

  6. Preparing for Operational Use of High Priority Products from the Joint Polar Satellite System (JPSS) in Numerical Weather Prediction

    NASA Astrophysics Data System (ADS)

    Nandi, S.; Layns, A. L.; Goldberg, M.; Gambacorta, A.; Ling, Y.; Collard, A.; Grumbine, R. W.; Sapper, J.; Ignatov, A.; Yoe, J. G.

    2017-12-01

    This work describes end to end operational implementation of high priority products from National Oceanic and Atmospheric Administration's (NOAA) operational polar-orbiting satellite constellation, to include Suomi National Polar-orbiting Partnership (S-NPP) and the Joint Polar Satellite System series initial satellite (JPSS-1), into numerical weather prediction and earth systems models. Development and evaluation needed for the initial implementations of VIIRS Environmental Data Records (EDR) for Sea Surface Temperature ingestion in the Real-Time Global Sea Surface Temperature Analysis (RTG) and Polar Winds assimilated in the National Weather Service (NWS) Global Forecast System (GFS) is presented. These implementations ensure continuity of data in these models in the event of loss of legacy sensor data. Also discussed is accelerated operational implementation of Advanced Technology Microwave Sounder (ATMS) Temperature Data Records (TDR) and Cross-track Infrared Sounder (CrIS) Sensor Data Records, identified as Key Performance Parameters by the National Weather Service. Operational use of SNPP after 28 October, 2011 launch took more than one year due to the learning curve and development needed for full exploitation of new remote sensing capabilities. Today, ATMS and CrIS data positively impact weather forecast accuracy. For NOAA's JPSS initial satellite (JPSS-1), scheduled for launch in late 2017, we identify scope and timelines for pre-launch and post-launch activities needed to efficiently transition these capabilities into operations. As part of these alignment efforts, operational readiness for KPPs will be possible as soon as 90 days after launch. The schedule acceleration is possible because of the experience with S-NPP. NOAA operational polar-orbiting satellite constellation provides continuity and enhancement of earth systems observations out to 2036. Program best practices and lessons learned will inform future implementation for follow-on JPSS-3 and -4 missions ensuring benefits and enhancements during the system's design life.

  7. CFD-aided modelling of activated sludge systems - A critical review.

    PubMed

    Karpinska, Anna M; Bridgeman, John

    2016-01-01

    Nowadays, one of the major challenges in the wastewater sector is the successful design and reliable operation of treatment processes, which guarantee high treatment efficiencies to comply with effluent quality criteria, while keeping the investment and operating cost as low as possible. Although conceptual design and process control of activated sludge plants are key to ensuring these goals, they are still based on general empirical guidelines and operators' experience, dominated often by rule of thumb. This review paper discusses the rationale behind the use of Computational Fluid Dynamics (CFD) to model aeration, facilitating enhancement of treatment efficiency and reduction of energy input. Several single- and multiphase approaches commonly used in CFD studies of aeration tank operation, are comprehensively described, whilst the shortcomings of the modelling assumptions imposed to evaluate mixing and mass transfer in AS tanks are identified and discussed. Examples and methods of coupling of CFD data with biokinetics, accounting for the actual flow field and its impact on the oxygen mass transfer and yield of the biological processes occurring in the aeration tanks, are also critically discussed. Finally, modelling issues, which remain unaddressed, (e.g. coupling of the AS tank with secondary clarifier and the use of population balance models to simulate bubbly flow or flocculation of the activated sludge), are also identified and discussed. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Evaluation of runner cone extension to dampen pressure pulsations in a Francis model turbine

    NASA Astrophysics Data System (ADS)

    Gogstad, Peter Joachim; Dahlhaug, Ole Gunnar

    2016-11-01

    Today's energy market has a high demand of flexibility due to introduction of other intermittent renewables as wind and solar. To ensure a steady power supply, hydro turbines are often forced to operate more at part load conditions. Originally, turbines were built for steady operation around the best efficiency point. The demand of flexibility, combined with old designs has showed an increase in turbines having problems with hydrodynamic instabilities such as pressure pulsations. Different methods have been investigated to mitigate pressure pulsations. Air injection shows a significant reduction of pressure pulsation amplitudes. However, installation of air injection requires extra piping and a compressor. Investigation of other methods such as shaft extension shows promising results for some operational points, but may significantly reduce the efficiency of the turbine at other operational points. The installation of an extension of the runner cone has been investigated at NTNU by Vekve in 2004. This has resulted in a cylindrical extension at Litjfossen Power Plant in Norway, where the bolt suffered mechanical failure. This indicates high amplitude pressure pulsations in the draft tube centre. The high pressure pulsation amplitudes are believed to be related to high tangential velocity in the draft tube. The mentioned runner cone extension has further been developed to a freely rotating extension. The objective is to reduce the tangential velocity in the draft tube and thereby the pressure pulsation amplitudes.

  9. Integration of vertical and in-seam horizontal well production analyses with stochastic geostatistical algorithms to estimate pre-mining methane drainage efficiency from coal seams: Blue Creek seam, Alabama

    PubMed Central

    Karacan, C. Özgen

    2015-01-01

    Coal seam degasification and its efficiency are directly related to the safety of coal mining. Degasification activities in the Black Warrior basin started in the early 1980s by using vertical boreholes. Although the Blue Creek seam, which is part of the Mary Lee coal group, has been the main seam of interest for coal mining, vertical wellbores have also been completed in the Pratt, Mary Lee, and Black Creek coal groups of the Upper Pottsville formation to degasify multiple seams. Currently, the Blue Creek seam is further degasified 2–3 years in advance of mining using in-seam horizontal boreholes to ensure safe mining. The studied location in this work is located between Tuscaloosa and Jefferson counties in Alabama and was degasified using 81 vertical boreholes, some of which are still active. When the current long mine expanded its operation into this area in 2009, horizontal boreholes were also drilled in advance of mining for further degasification of only the Blue Creek seam to ensure a safe and a productive operation. This paper presents an integrated study and a methodology to combine history matching results from vertical boreholes with production modeling of horizontal boreholes using geostatistical simulation to evaluate spatial effectiveness of in-seam boreholes in reducing gas-in-place (GIP). Results in this study showed that in-seam wells' boreholes had an estimated effective drainage area of 2050 acres with cumulative production of 604 MMscf methane during ~2 years of operation. With horizontal borehole production, GIP in the Blue Creek seam decreased from an average of 1.52 MMscf to 1.23 MMscf per acre. It was also shown that effective gas flow capacity, which was independently modeled using vertical borehole data, affected horizontal borehole production. GIP and effective gas flow capacity of coal seam gas were also used to predict remaining gas potential for the Blue Creek seam. PMID:26435557

  10. Integration of vertical and in-seam horizontal well production analyses with stochastic geostatistical algorithms to estimate pre-mining methane drainage efficiency from coal seams: Blue Creek seam, Alabama.

    PubMed

    Karacan, C Özgen

    2013-07-30

    Coal seam degasification and its efficiency are directly related to the safety of coal mining. Degasification activities in the Black Warrior basin started in the early 1980s by using vertical boreholes. Although the Blue Creek seam, which is part of the Mary Lee coal group, has been the main seam of interest for coal mining, vertical wellbores have also been completed in the Pratt, Mary Lee, and Black Creek coal groups of the Upper Pottsville formation to degasify multiple seams. Currently, the Blue Creek seam is further degasified 2-3 years in advance of mining using in-seam horizontal boreholes to ensure safe mining. The studied location in this work is located between Tuscaloosa and Jefferson counties in Alabama and was degasified using 81 vertical boreholes, some of which are still active. When the current long mine expanded its operation into this area in 2009, horizontal boreholes were also drilled in advance of mining for further degasification of only the Blue Creek seam to ensure a safe and a productive operation. This paper presents an integrated study and a methodology to combine history matching results from vertical boreholes with production modeling of horizontal boreholes using geostatistical simulation to evaluate spatial effectiveness of in-seam boreholes in reducing gas-in-place (GIP). Results in this study showed that in-seam wells' boreholes had an estimated effective drainage area of 2050 acres with cumulative production of 604 MMscf methane during ~2 years of operation. With horizontal borehole production, GIP in the Blue Creek seam decreased from an average of 1.52 MMscf to 1.23 MMscf per acre. It was also shown that effective gas flow capacity, which was independently modeled using vertical borehole data, affected horizontal borehole production. GIP and effective gas flow capacity of coal seam gas were also used to predict remaining gas potential for the Blue Creek seam.

  11. 28 CFR 91.3 - General eligibility requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... construct, develop, expand, operate or improve correctional facilities to ensure that secure space is..., development, expansion, modification, operation or improvement of correctional facilities designed to ensure... of the multi-state compact agreement that specifies the construction, development, expansion...

  12. 28 CFR 91.3 - General eligibility requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... construct, develop, expand, operate or improve correctional facilities to ensure that secure space is..., development, expansion, modification, operation or improvement of correctional facilities designed to ensure... of the multi-state compact agreement that specifies the construction, development, expansion...

  13. 28 CFR 91.3 - General eligibility requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... construct, develop, expand, operate or improve correctional facilities to ensure that secure space is..., development, expansion, modification, operation or improvement of correctional facilities designed to ensure... of the multi-state compact agreement that specifies the construction, development, expansion...

  14. 28 CFR 91.3 - General eligibility requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... construct, develop, expand, operate or improve correctional facilities to ensure that secure space is..., development, expansion, modification, operation or improvement of correctional facilities designed to ensure... of the multi-state compact agreement that specifies the construction, development, expansion...

  15. 28 CFR 91.3 - General eligibility requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... construct, develop, expand, operate or improve correctional facilities to ensure that secure space is..., development, expansion, modification, operation or improvement of correctional facilities designed to ensure... of the multi-state compact agreement that specifies the construction, development, expansion...

  16. Implication of Human Hair in Regaining Spilled Oil Further Creating A Production Rise in Oyster Mushrooms

    NASA Astrophysics Data System (ADS)

    Pandey, A.; Srivastava, P.; Singh, U.

    2016-12-01

    It is estimated that 4.9 million liters of petroleum are spilled into U.S. waters from vessels and pipelines in a typical year. Oil spill may be as huge as of 8 million barrels (The Persian Gulf oil spill of 1991). Oil-water separation processes using polymeric or inorganic membranes have been proposed as effective and cost competitive technologies but in present the commercial use of membrane in treatment of spilled oil is currently limited by their low efficiency as well as high capital and operating cost. Indian hair-market is a billion-dollar industry yearly exporting thousands of tones of thick and dark hairs. Hairs contain keratin, a family of fibrous structural proteins been proved to adsorb oils. Laboratory results conclude that one gram of human hair can selectively adsorb about 15.5301 grams of crude oil over water, following Frendlich's isotherm. We seek hair mats made up of hairs of size ≤5 inches, costing 37/ton from selected parts of Indian hair market. With a known adsorbing efficiency of 95% towards crude oil, an estimated desorption efficiency of 70% oil worth 0.8M per year can be regained in crude form from U.S. waters only. To ensure solid waste management of hairs, hair mats left with 30% of adsorbed oil can be utilized in the cultivation of oyster mushrooms, a 20-34/kg crop that grows best in 20-25°C ,80-90% relative humidity and oily conditions. This will reduce the growing period of crop ensuring yearly profit of $6.06M in U.S. only engaging variety of stakeholders over borders. Results thus obtained in this study present an economic, safer and sustainable technique to minimize oil loss due to oil spill in waters further ensuring a low labor-low cost technique of waste management that enhances the growth of an in-demand crop. Keywords: Oil Spill, Human Hair Mats, Adsorb, Oyster Mushrooms

  17. Geometric Distribution-Based Readers Scheduling Optimization Algorithm Using Artificial Immune System.

    PubMed

    Duan, Litian; Wang, Zizhong John; Duan, Fu

    2016-11-16

    In the multiple-reader environment (MRE) of radio frequency identification (RFID) system, multiple readers are often scheduled to interrogate the randomized tags via operating at different time slots or frequency channels to decrease the signal interferences. Based on this, a Geometric Distribution-based Multiple-reader Scheduling Optimization Algorithm using Artificial Immune System (GD-MRSOA-AIS) is proposed to fairly and optimally schedule the readers operating from the viewpoint of resource allocations. GD-MRSOA-AIS is composed of two parts, where a geometric distribution function combined with the fairness consideration is first introduced to generate the feasible scheduling schemes for reader operation. After that, artificial immune system (including immune clone, immune mutation and immune suppression) quickly optimize these feasible ones as the optimal scheduling scheme to ensure that readers are fairly operating with larger effective interrogation range and lower interferences. Compared with the state-of-the-art algorithm, the simulation results indicate that GD-MRSOA-AIS could efficiently schedules the multiple readers operating with a fairer resource allocation scheme, performing in larger effective interrogation range.

  18. Geometric Distribution-Based Readers Scheduling Optimization Algorithm Using Artificial Immune System

    PubMed Central

    Duan, Litian; Wang, Zizhong John; Duan, Fu

    2016-01-01

    In the multiple-reader environment (MRE) of radio frequency identification (RFID) system, multiple readers are often scheduled to interrogate the randomized tags via operating at different time slots or frequency channels to decrease the signal interferences. Based on this, a Geometric Distribution-based Multiple-reader Scheduling Optimization Algorithm using Artificial Immune System (GD-MRSOA-AIS) is proposed to fairly and optimally schedule the readers operating from the viewpoint of resource allocations. GD-MRSOA-AIS is composed of two parts, where a geometric distribution function combined with the fairness consideration is first introduced to generate the feasible scheduling schemes for reader operation. After that, artificial immune system (including immune clone, immune mutation and immune suppression) quickly optimize these feasible ones as the optimal scheduling scheme to ensure that readers are fairly operating with larger effective interrogation range and lower interferences. Compared with the state-of-the-art algorithm, the simulation results indicate that GD-MRSOA-AIS could efficiently schedules the multiple readers operating with a fairer resource allocation scheme, performing in larger effective interrogation range. PMID:27854342

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Poppiti, James; Nelson, Roger; MacMillan, Walter J.

    The Waste Isolation Pilot Plant (WIPP) is a 655-meter deep mine near Carlsbad, New Mexico, used to dispose the nation’s defense transuranic waste. Limited airborne radioactivity was released from a container of radioactive waste in WIPP on 14 February, 2014. As designed, a mine ventilation filtration system prevented the large scale release of contamination from the underground. However, isolation dampers leaked, which allowed the release of low levels of contaminants after the event until they were sealed. None of the exposed individuals received any recordable dose. While surface contamination was limited, contamination in the ventilation system and portions of themore » underground was substantial. High efficiency particulate air (HEPA) filters in the operating ventilation system ensure continued containment during recovery and resumption of disposal operations. However, ventilation flow is restricted since the incident, with all exhaust air directed through the filters. Decontamination and natural fixation by the hygroscopic nature of the salt host rock has reduced the likelihood of further contamination spread. Contamination control and ventilation system operability are crucial for resumption of operations. This article provides an operational assessment and evaluation of these two key areas.« less

  20. Vectorized Jiles-Atherton hysteresis model

    NASA Astrophysics Data System (ADS)

    Szymański, Grzegorz; Waszak, Michał

    2004-01-01

    This paper deals with vector hysteresis modeling. A vector model consisting of individual Jiles-Atherton components placed along principal axes is proposed. The cross-axis coupling ensures general vector model properties. Minor loops are obtained using scaling method. The model is intended for efficient finite element method computations defined in terms of magnetic vector potential. Numerical efficiency is ensured by differential susceptibility approach.

  1. A preferential design approach for energy-efficient and robust implantable neural signal processing hardware.

    PubMed

    Narasimhan, Seetharam; Chiel, Hillel J; Bhunia, Swarup

    2009-01-01

    For implantable neural interface applications, it is important to compress data and analyze spike patterns across multiple channels in real time. Such a computational task for online neural data processing requires an innovative circuit-architecture level design approach for low-power, robust and area-efficient hardware implementation. Conventional microprocessor or Digital Signal Processing (DSP) chips would dissipate too much power and are too large in size for an implantable system. In this paper, we propose a novel hardware design approach, referred to as "Preferential Design" that exploits the nature of the neural signal processing algorithm to achieve a low-voltage, robust and area-efficient implementation using nanoscale process technology. The basic idea is to isolate the critical components with respect to system performance and design them more conservatively compared to the noncritical ones. This allows aggressive voltage scaling for low power operation while ensuring robustness and area efficiency. We have applied the proposed approach to a neural signal processing algorithm using the Discrete Wavelet Transform (DWT) and observed significant improvement in power and robustness over conventional design.

  2. EMPRESS: A European Project to Enhance Process Control Through Improved Temperature Measurement

    NASA Astrophysics Data System (ADS)

    Pearce, J. V.; Edler, F.; Elliott, C. J.; Rosso, L.; Sutton, G.; Andreu, A.; Machin, G.

    2017-08-01

    A new European project called EMPRESS, funded by the EURAMET program `European Metrology Program for Innovation and Research,' is described. The 3 year project, which started in the summer of 2015, is intended to substantially augment the efficiency of high-value manufacturing processes by improving temperature measurement techniques at the point of use. The project consortium has 18 partners and 5 external collaborators, from the metrology sector, high-value manufacturing, sensor manufacturing, and academia. Accurate control of temperature is key to ensuring process efficiency and product consistency and is often not achieved to the level required for modern processes. Enhanced efficiency of processes may take several forms including reduced product rejection/waste; improved energy efficiency; increased intervals between sensor recalibration/maintenance; and increased sensor reliability, i.e., reduced amount of operator intervention. Traceability of temperature measurements to the International Temperature Scale of 1990 (ITS-90) is a critical factor in establishing low measurement uncertainty and reproducible, consistent process control. Introducing such traceability in situ (i.e., within the industrial process) is a theme running through this project.

  3. A MEMS approach to determine the biochemical oxygen demand (BOD) of wastewaters

    NASA Astrophysics Data System (ADS)

    Recoules, L.; Migaou, A.; Dollat, X.; Thouand, G.; Gue, A. M.; Boukabache, A.

    2017-07-01

    A MEMS approach to obtain an efficient tool for the evaluation of the biochemical oxygen demand (BOD) of wastewaters is introduced. Its operating principle is based on the measurement of oxygen concentration in water samples containing organic pollutants and specific bacteria. The microsystem has been designed to perform multiple and parallel measurements in a poly-wells microfluidic device. The monitoring of the bacterial activity is ensured by optical sensors incorporated in each well of the fluidic network. By using an optode sensor, it is hereby demonstrated that this approach is efficient to measure organic pollutants by testing different Luria Bertani buffer dilutions. These results also show that it is possible to reduce the duration of measurements from 5 d (BOD5) of the standard approach to few hours, typically 3 h-5 h.

  4. A High Efficiency Multiple-Anode 260-340 GHz Frequency Tripler

    NASA Technical Reports Server (NTRS)

    Maestrini, Alain; Tripon-Canseliet, Charlotte; Ward, John S.; Gill, John J.; Mehdi, Imran

    2006-01-01

    We report on the fabrication at the Jet Propulsion Laboratory of a fixed-tuned split-block waveguide balanced frequency tripler working in the 260-340 GHz band. This tripler will be the first stage of a x3x3x3 multiplier chain to 2.7 THz (the last stages of which are being fabricated at JPL) and is therefore optimized for high power operation. The multiplier features six GaAs Schottky planar diodes in a balanced configuration integrated on a GaAs membrane. Special attention was put on splitting the input power as evenly as possible among the diodes in order to ensure that no diode is overdriven. Preliminary RF tests indicate that the multiplier covers the expected bandwidth and that the efficiency is in the range 1.5-7.5 % with 100 mW of input power.

  5. Enabling Airspace Integration for High-Density On-Demand Mobility Operations

    NASA Technical Reports Server (NTRS)

    Mueller, Eric; Kopardekar, Parimal; Goodrich, Kenneth H.

    2017-01-01

    Aviation technologies and concepts have reached a level of maturity that may soon enable an era of on-demand mobility (ODM) fueled by quiet, efficient, and largely automated air taxis. However, successfully bringing such a system to fruition will require introducing orders of magnitude more aircraft to a given airspace volume than can be accommodated by the traditional air traffic control system, among other important technical challenges. The airspace integration problem is further compounded by requirements to set aside appropriate ground infrastructure for take-off and landing areas and ensuring these new aircraft types and their operations do not burden traditional airspace users and air traffic control. This airspace integration challenge may be significantly reduced by extending the concepts and technologies developed to manage small unmanned aircraft systems (UAS) at low altitude - the UAS traffic management (UTM) system - to higher altitudes and new aircraft types, or by equipping ODM aircraft with advanced sensors, algorithms, and interfaces. The precedent of operational freedom inherent in visual flight rules and the technologies developed for large UAS and commercial aircraft automation will contribute to the evolution of an ODM system enabled by UTM. This paper describes the set of air traffic services, normally provided by the traditional air traffic system, that an ODM system would implement to achieve the high densities needed for ODM's economic viability. Finally, the paper proposes a framework for integrating, evaluating, and deploying low-, medium-, and high-density ODM concepts that build on each other to ensure operational and economic feasibility at every step.

  6. Software requirements flow-down and preliminary software design for the G-CLEF spectrograph

    NASA Astrophysics Data System (ADS)

    Evans, Ian N.; Budynkiewicz, Jamie A.; DePonte Evans, Janet; Miller, Joseph B.; Onyuksel, Cem; Paxson, Charles; Plummer, David A.

    2016-08-01

    The Giant Magellan Telescope (GMT)-Consortium Large Earth Finder (G-CLEF) is a fiber-fed, precision radial velocity (PRV) optical echelle spectrograph that will be the first light instrument on the GMT. The G-CLEF instrument device control subsystem (IDCS) provides software control of the instrument hardware, including the active feedback loops that are required to meet the G-CLEF PRV stability requirements. The IDCS is also tasked with providing operational support packages that include data reduction pipelines and proposal preparation tools. A formal, but ultimately pragmatic approach is being used to establish a complete and correct set of requirements for both the G-CLEF device control and operational support packages. The device control packages must integrate tightly with the state-machine driven software and controls reference architecture designed by the GMT Organization. A model-based systems engineering methodology is being used to develop a preliminary design that meets these requirements. Through this process we have identified some lessons that have general applicability to the development of software for ground-based instrumentation. For example, tasking an individual with overall responsibility for science/software/hardware integration is a key step to ensuring effective integration between these elements. An operational concept document that includes detailed routine and non- routine operational sequences should be prepared in parallel with the hardware design process to tie together these elements and identify any gaps. Appropriate time-phasing of the hardware and software design phases is important, but revisions to driving requirements that impact software requirements and preliminary design are inevitable. Such revisions must be carefully managed to ensure efficient use of resources.

  7. A Study of the Optimal Planning Model for Reservoir Sustainable Management- A Case Study of Shihmen Reservoir

    NASA Astrophysics Data System (ADS)

    Chen, Y. Y.; Ho, C. C.; Chang, L. C.

    2017-12-01

    The reservoir management in Taiwan faces lots of challenge. Massive sediment caused by landslide were flushed into reservoir, which will decrease capacity, rise the turbidity, and increase supply risk. Sediment usually accompanies nutrition that will cause eutrophication problem. Moreover, the unevenly distribution of rainfall cause water supply instability. Hence, how to ensure sustainable use of reservoirs has become an important task in reservoir management. The purpose of the study is developing an optimal planning model for reservoir sustainable management to find out an optimal operation rules of reservoir flood control and sediment sluicing. The model applies Genetic Algorithms to combine with the artificial neural network of hydraulic analysis and reservoir sediment movement. The main objective of operation rules in this study is to prevent reservoir outflow caused downstream overflow, minimum the gap between initial and last water level of reservoir, and maximum sluicing sediment efficiency. A case of Shihmen reservoir was used to explore the different between optimal operating rule and the current operation of the reservoir. The results indicate optimal operating rules tended to open desilting tunnel early and extend open duration during flood discharge period. The results also show the sluicing sediment efficiency of optimal operating rule is 36%, 44%, 54% during Typhoon Jangmi, Typhoon Fung-Wong, and Typhoon Sinlaku respectively. The results demonstrate the optimal operation rules do play a role in extending the service life of Shihmen reservoir and protecting the safety of downstream. The study introduces a low cost strategy, alteration of operation reservoir rules, into reservoir sustainable management instead of pump dredger in order to improve the problem of elimination of reservoir sediment and high cost.

  8. Fuel-Conservation Guidance System for Powered-Lift Aircraft

    NASA Technical Reports Server (NTRS)

    Erzberger, Heinz; McLean, John D.

    1981-01-01

    A technique is described for the design of fuel-conservative guidance systems and is applied to a system that was flight tested on board NASA's sugmentor wing jet STOL research aircraft. An important operational feature of the system is its ability to rapidly synthesize fuel-efficient trajectories for a large set of initial aircraft positions, altitudes, and headings. This feature allows the aircraft to be flown efficiently under conditions of changing winds and air traffic control vectors. Rapid synthesis of fuel-efficient trajectories is accomplished in the airborne computer by fast-time trajectory integration using a simplified dynamic performance model of the aircraft. This technique also ensures optimum flap deployment and, for powered-lift STOL aircraft, optimum transition to low-speed flight. Also included in the design is accurate prediction of touchdown time for use in four-dimensional guidance applications. Flight test results have demonstrated that the automatically synthesized trajectories produce significant fuel savings relative to manually flown conventional approaches.

  9. Factors Of Environmental Safety And Environmentally Efficient Technologies Transportation Facilities Gas Transportation Industry

    NASA Astrophysics Data System (ADS)

    Vasiliev, Bogdan U.

    2017-01-01

    The stable development of the European countries depends on a reliable and efficient operation of the gas transportation system (GTS). With high reliability of GTS it is necessary to ensure its industrial and environmental safety. In this article the major factors influencing on an industrial and ecological safety of GTS are analyzed, sources of GTS safety decreasing is revealed, measures for providing safety are proposed. The article shows that use of gas-turbine engines of gas-compressor units (GCU) results in the following phenomena: emissions of harmful substances in the atmosphere; pollution by toxic waste; harmful noise and vibration; thermal impact on environment; decrease in energy efficiency. It is shown that for the radical problem resolution of an industrial and ecological safety of gas-transmission system it is reasonable to use gas-compressor units driven by electric motors. Their advantages are shown. Perspective technologies of these units and experience of their use in Europe and the USA are given in this article.

  10. Libpsht - algorithms for efficient spherical harmonic transforms

    NASA Astrophysics Data System (ADS)

    Reinecke, M.

    2011-02-01

    Libpsht (or "library for performant spherical harmonic transforms") is a collection of algorithms for efficient conversion between spatial-domain and spectral-domain representations of data defined on the sphere. The package supports both transforms of scalars and spin-1 and spin-2 quantities, and can be used for a wide range of pixelisations (including HEALPix, GLESP, and ECP). It will take advantage of hardware features such as multiple processor cores and floating-point vector operations, if available. Even without this additional acceleration, the employed algorithms are among the most efficient (in terms of CPU time, as well as memory consumption) currently being used in the astronomical community. The library is written in strictly standard-conforming C90, ensuring portability to many different hard- and software platforms, and allowing straightforward integration with codes written in various programming languages like C, C++, Fortran, Python etc. Libpsht is distributed under the terms of the GNU General Public License (GPL) version 2 and can be downloaded from .

  11. Libpsht: Algorithms for Efficient Spherical Harmonic Transforms

    NASA Astrophysics Data System (ADS)

    Reinecke, Martin

    2010-10-01

    Libpsht (or "library for Performing Spherical Harmonic Transforms") is a collection of algorithms for efficient conversion between spatial-domain and spectral-domain representations of data defined on the sphere. The package supports transforms of scalars as well as spin-1 and spin-2 quantities, and can be used for a wide range of pixelisations (including HEALPix, GLESP and ECP). It will take advantage of hardware features like multiple processor cores and floating-point vector operations, if available. Even without this additional acceleration, the employed algorithms are among the most efficient (in terms of CPU time as well as memory consumption) currently being used in the astronomical community. The library is written in strictly standard-conforming C90, ensuring portability to many different hard- and software platforms, and allowing straightforward integration with codes written in various programming languages like C, C++, Fortran, Python etc. Libpsht is distributed under the terms of the GNU General Public License (GPL) version 2. Development on this project has ended; its successor is libsharp (ascl:1402.033).

  12. Can quantum coherent solar cells break detailed balance?

    NASA Astrophysics Data System (ADS)

    Kirk, Alexander P.

    2015-07-01

    Carefully engineered coherent quantum states have been proposed as a design attribute that is hypothesized to enable solar photovoltaic cells to break the detailed balance (or radiative) limit of power conversion efficiency by possibly causing radiative recombination to be suppressed. However, in full compliance with the principles of statistical mechanics and the laws of thermodynamics, specially prepared coherent quantum states do not allow a solar photovoltaic cell—a quantum threshold energy conversion device—to exceed the detailed balance limit of power conversion efficiency. At the condition given by steady-state open circuit operation with zero nonradiative recombination, the photon absorption rate (or carrier photogeneration rate) must balance the photon emission rate (or carrier radiative recombination rate) thus ensuring that detailed balance prevails. Quantum state transitions, entropy-generating hot carrier relaxation, and photon absorption and emission rate balancing are employed holistically and self-consistently along with calculations of current density, voltage, and power conversion efficiency to explain why detailed balance may not be violated in solar photovoltaic cells.

  13. Division Artillery: Linking Strategy to Tactics

    DTIC Science & Technology

    2017-05-25

    operational artist, while within modularity , there is no advocate for ensuring that subordinate field artillery units are getting the manning...adaptability, and synchronization. The division artillery is the operational artist, while within modularity , there is no advocate for ensuring...30 Modularization

  14. Contingency Analysis Post-Processing With Advanced Computing and Visualization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Yousu; Glaesemann, Kurt; Fitzhenry, Erin

    Contingency analysis is a critical function widely used in energy management systems to assess the impact of power system component failures. Its outputs are important for power system operation for improved situational awareness, power system planning studies, and power market operations. With the increased complexity of power system modeling and simulation caused by increased energy production and demand, the penetration of renewable energy and fast deployment of smart grid devices, and the trend of operating grids closer to their capacity for better efficiency, more and more contingencies must be executed and analyzed quickly in order to ensure grid reliability andmore » accuracy for the power market. Currently, many researchers have proposed different techniques to accelerate the computational speed of contingency analysis, but not much work has been published on how to post-process the large amount of contingency outputs quickly. This paper proposes a parallel post-processing function that can analyze contingency analysis outputs faster and display them in a web-based visualization tool to help power engineers improve their work efficiency by fast information digestion. Case studies using an ESCA-60 bus system and a WECC planning system are presented to demonstrate the functionality of the parallel post-processing technique and the web-based visualization tool.« less

  15. Fuel cell system with sodium borohydride as hydrogen source for unmanned aerial vehicles

    NASA Astrophysics Data System (ADS)

    Kim, Kyunghwan; Kim, Taegyu; Lee, Kiseong; Kwon, Sejin

    In this study, we design and fabricate a fuel cell system for application as a power source in unmanned aerial vehicles (UAVs). The fuel cell system consists of a fuel cell stack, hydrogen generator, and hybrid power management system. PEMFC stack with an output power of 100 W is prepared and tested to decide the efficient operating conditions; the stack must be operated in the dead-end mode with purge in order to ensure prolonged stack performance. A hydrogen generator is fabricated to supply gaseous hydrogen to the stack. Sodium borohydride (NaBH 4) is used as the hydrogen source in the present study. Co/Al 2O 3 catalyst is prepared for the hydrolysis of the alkaline NaBH 4 solution at room temperature. The fabricated Co catalyst is comparable to the Ru catalyst. The UAV consumes more power in the takeoff mode than in the cruising mode. A hybrid power management system using an auxiliary battery is developed and evaluated for efficient energy management. Hybrid power from both the fuel cell and battery powers takeoff and turning flight operations, while the fuel cell supplies steady power during the cruising flight. The capabilities of the fuel-cell UAVs for long endurance flights are validated by successful flight tests.

  16. Development of Advanced Carbon Face Seals for Aircraft Engines

    NASA Astrophysics Data System (ADS)

    Falaleev, S. V.; Bondarchuk, P. V.; Tisarev, A. Yu

    2018-01-01

    Modern aircraft gas turbine engines require the development of seals which can operate for a long time with low leakages. The basic type of seals applied for gas turbine engine rotor supports is face seal. To meet the modern requirements of reliability, leak-tightness and weight, low-leakage gas-static and hydrodynamic seals have to be developed. Dry gas seals use both gas-static and hydrodynamic principles. In dry gas seals microgrooves are often used, which ensure the reverse injection of leakages in the sealed cavity. Authors have developed a calculation technique including the concept of coupled hydrodynamic, thermal and structural calculations. This technique allows to calculate the seal performance taking into account the forces of inertia, rupture of the lubricant layer and the real form of the gap. Authors have compared the efficiency of seals with different forms of microgrooves. Results of calculations show that seal with rectangular form of microgrooves has a little gap leading to both the contact of seal surfaces and the wear. Reversible microgrooves have a higher oil mass flow rate, whereas HST micro-grooves have good performance, but they are difficult to produce. Spiral microgrooves have both an acceptable leakages and a high stiffness of liquid layer that is important in terms of ensuring of sealing performance at vibration conditions. Therefore, the spiral grooves were chosen for the developed seal. Based on calculation results, geometric dimensions were chosen to ensure the reliability of the seal operation by creating a guaranteed liquid film, which eliminates the wear of the sealing surfaces. Seals designed were tested both at the test rig and in the engine.

  17. System-Oriented Runway Management Concept of Operations

    NASA Technical Reports Server (NTRS)

    Lohr, Gary W.; Atkins, Stephen

    2015-01-01

    This document describes a concept for runway management that maximizes the overall efficiency of arrival and departure operations at an airport or group of airports. Specifically, by planning airport runway configurations/usage, it focuses on the efficiency with which arrival flights reach their parking gates from their arrival fixes and departure flights exit the terminal airspace from their parking gates. In the future, the concept could be expanded to include the management of other limited airport resources. While most easily described in the context of a single airport, the concept applies equally well to a group of airports that comprise a metroplex (i.e., airports in close proximity that share resources such that operations at the airports are at least partially dependent) by including the coordination of runway usage decisions between the airports. In fact, the potential benefit of the concept is expected to be larger in future metroplex environments due to the increasing need to coordinate the operations at proximate airports to more efficiently share limited airspace resources. This concept, called System-Oriented Runway Management (SORM), is further broken down into a set of airport traffic management functions that share the principle that operational performance must be measured over the complete surface and airborne trajectories of the airport's arrivals and departures. The "system-oriented" term derives from the belief that the traffic management objective must consider the efficiency of operations over a wide range of aircraft movements and National Airspace System (NAS) dynamics. The SORM concept is comprised of three primary elements: strategic airport capacity planning, airport configuration management, and combined arrival/departure runway planning. Some aspects of the SORM concept, such as using airport configuration management1 as a mechanism for improving aircraft efficiency, are novel. Other elements (e.g., runway scheduling, which is a part of combined arrival/departure runway scheduling) have been well studied, but are included in the concept for completeness and to allow the concept to define the necessary relationship among the elements. The goal of this document is to describe the overall SORM concept and how it would apply both within the NAS and potential future Next Generation Air Traffic System (NextGen) environments, including research conducted to date. Note that the concept is based on the belief that runways are the primary constraint and the decision point for controlling efficiency, but the efficiency of runway management must be measured over a wide range of space and time. Implementation of the SORM concept is envisioned through a collection of complementary, necessary capabilities collectively focused on ensuring efficient arrival and departure traffic management, where that efficiency is measured not only in terms of runway efficiency but in terms of the overall trajectories between parking gates and transition fixes. For the more original elements of the concept-airport configuration management-this document proposes specific air traffic management (ATM) decision-support automation for realizing the concept.

  18. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Current Technical Performance Measures

    NASA Astrophysics Data System (ADS)

    Cochran, S.; Panas, M.; Jamilkowski, M. L.; Miller, S. W.

    2015-12-01

    ABSTRACT The National Oceanic and Atmospheric Administration (NOAA) and National Aeronautics and Space Administration (NASA) are jointly acquiring the next-generation civilian weather and environmental satellite system: the Joint Polar Satellite System (JPSS). The Joint Polar Satellite System will replace the afternoon orbit component and ground processing system of the current Polar-orbiting Operational Environmental Satellites (POES) managed by NOAA. The JPSS satellites will carry a suite of sensors designed to collect meteorological, oceanographic, climatological and geophysical observations of the Earth. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a multi-mission enterprise system serving NOAA, NASA and their national and international partners. The CGS has demonstrated its scalability and flexibility to incorporate multiple missions efficiently and with minimal cost, schedule and risk, while strengthening global partnerships in weather and environmental monitoring. The CGS architecture is being upgraded to Block 2.0 in 2015 to "operationalize" S-NPP, leverage lessons learned to date in multi-mission support, take advantage of more reliable and efficient technologies, and satisfy new requirements and constraints in the continually evolving budgetary environment. To ensure the CGS meets these needs, we have developed 49 Technical Performance Measures (TPMs) across 10 categories, such as data latency, operational availability and scalability. This paper will provide an overview of the CGS Block 2.0 architecture, with particular focus on the 10 TPM categories listed above. We will provide updates on how we ensure the deployed architecture meets these TPMs to satisfy our multi-mission objectives with the deployment of Block 2.0.

  19. Constraints and potential for efficient inter-sectoral water allocations in Tanzania

    NASA Astrophysics Data System (ADS)

    Kashaigili, Japhet J.; Kadigi, Reuben M. J.; Sokile, Charles S.; Mahoo, Henry F.

    In many sub-Saharan African countries, there are conflicts over water uses in most river basins. In Tanzania, conflicts are becoming alarming and are exacerbated by increasing water demands due to rapid population growth and expanding economic activities. This paper reviews the major constraints and potential for achieving efficient systems of allocating water resources to different uses and users in Tanzania. The following constraints are identified: (a) the lack of active community involvement in management of water resources, (b) conflicting institutions and weak institutional capacities both in terms of regulations and protection of interests of the poor, (c) the lack of data and information to inform policy and strategies for balanced water allocation, and (d) inadequate funds for operation, maintenance and expansion of water supply systems. Despite these constraints, there are also opportunities for improving water allocation and management systems in the country. These include: the available reserve of both surface and groundwater resources, which remain unexploited; high demand for water services; a high potential for investing in the water sector; and availability of basic infrastructure and elements of institutional framework that can be improved. The paper recommends the use of combined variants of water allocation devices which (a) meet different water requirements and ensure desirable multiple-use outcomes, (b) facilitate the classification of water resources in terms of desired environmental protection levels, (c) allow reforms in water utilization to achieve equity and meet changing social and economic priorities, (d) facilitate the development of effective local institutions, (e) put in place the legal system that assigns rights to water resources and describes how those rights may be transferred, (f) enforce the rights and punish infringements on those rights, and (g) use cost-effective pricing systems to ensure that payment for water uses cover development, operational and management costs.

  20. Design Guidance for Computer-Based Procedures for Field Workers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oxstrand, Johanna; Le Blanc, Katya; Bly, Aaron

    Nearly all activities that involve human interaction with nuclear power plant systems are guided by procedures, instructions, or checklists. Paper-based procedures (PBPs) currently used by most utilities have a demonstrated history of ensuring safety; however, improving procedure use could yield significant savings in increased efficiency, as well as improved safety through human performance gains. The nuclear industry is constantly trying to find ways to decrease human error rates, especially human error rates associated with procedure use. As a step toward the goal of improving field workers’ procedure use and adherence and hence improve human performance and overall system reliability, themore » U.S. Department of Energy Light Water Reactor Sustainability (LWRS) Program researchers, together with the nuclear industry, have been investigating the possibility and feasibility of replacing current paper-based procedures with computer-based procedures (CBPs). PBPs have ensured safe operation of plants for decades, but limitations in paper-based systems do not allow them to reach the full potential for procedures to prevent human errors. The environment in a nuclear power plant is constantly changing, depending on current plant status and operating mode. PBPs, which are static by nature, are being applied to a constantly changing context. This constraint often results in PBPs that are written in a manner that is intended to cover many potential operating scenarios. Hence, the procedure layout forces the operator to search through a large amount of irrelevant information to locate the pieces of information relevant for the task and situation at hand, which has potential consequences of taking up valuable time when operators must be responding to the situation, and potentially leading operators down an incorrect response path. Other challenges related to use of PBPs are management of multiple procedures, place-keeping, finding the correct procedure for a task, and relying on other sources of additional information to ensure a functional and accurate understanding of the current plant status (Converse, 1995; Fink, Killian, Hanes, and Naser, 2009; Le Blanc, Oxstrand, and Waicosky, 2012). This report provides design guidance to be used when designing the human-system interaction and the design of the graphical user interface for a CBP system. The guidance is based on human factors research related to the design and usability of CBPs conducted by Idaho National Laboratory, 2012 - 2016.« less

  1. The Earth Science Afternoon Constellation: Preparing for Autonomous but Coordinated Operations

    NASA Technical Reports Server (NTRS)

    Case, Warren; Kelly, Angelita C.; Work, Kevin; Guit, William

    2005-01-01

    This paper describes how the challenges of coordinating the autonomous operations of geographically dispersed mission control centers for several small and large satellites are being overcome. The Earth Science Afternoon Constellation, also referred to as the "A-Train", is an international grouping of five NASA satellites (two major NASA EOS missions and three NASA/Earth System Science Pathfinder missions) and one French satellite orbiting in close proximity. This grouping of satellites provides scientists with the opportunity to perform coincident observations using data from two or more instruments on various satellites with measurements taken at approximately the same time. Three of the six missions are currently on-orbit, with the two missions expected to join the constellation later this year and one mission in 2007. The operational challenges are daunting for several reasons. There are several Mission Control Centers (widely separated on two continents), operating autonomously under tight budget constraints. All of the Mission Control Centers have reasons to be concerned about safety while flying in close proximity to other satellites, but most Centers did not have the resources or the desire to address this concern alone - the interfaces are too numerous and anticipated operations too costly. Clearly, an efficient approach was needed. This paper describes the steps taken to make this Earth science constellation a reality. Agreements were forged to allow the Mission Control Centers to maintain their autonomy, while ensuring their satellite's safety. Each member mission in the constellation operates independently in accordance with its own mission requirements, but the member missions have agreed to coordinate their operations, i.e., orbital positions and control to ensure the safety of the entire constellation. A centralized system was developed at NASA Goddard Space Flight Center to collect, analyze, and distribute ephemeris data used by each of the mission teams to determine the positions of the satellites in the constellation. The system issues warnings regarding possible dangerous configurations, eliminating the need for redundant capabilities at each Mission Control Center. On-orbit contingency situations were identified and analyzed; agreements were reached in advance of contingency operations to ensure that coordination between the Mission Control Centers can be handled expeditiously and fairly. In this manner, recovery from anomalous situations can be more quickly realized, thereby increasing the science return and reducing costs. The process used to develop these contingency procedures and the systems used to facilitate the contingency resolution are described as well.

  2. Post-installation activities in the Comprehensive Nuclear Test Ban Treaty (CTBT) International Monitoring System (IMS) infrasound network

    NASA Astrophysics Data System (ADS)

    Vivas Veloso, J. A.; Christie, D. R.; Hoffmann, T. L.; Campus, P.; Bell, M.; Langlois, A.; Martysevich, P.; Demirovik, E.; Carvalho, J.; Kramer, A.; Wu, Sean F.

    2002-11-01

    The provisional operation and maintenance of IMS infrasound stations after installation and subsequent certification has the objective to prepare the infrasound network for entry into force of the Comprehensive Nuclear-Test-Ban Treaty (CTBT). The goal is to maintain and fine tune the technical capabilities of the network, to repair faulty equipment, and to ensure that stations continue to meet the minimum specifications through evaluation of data quality and station recalibration. Due to the globally dispersed nature of the network, this program constitutes a significant undertaking that requires careful consideration of possible logistic approaches and their financial implications. Currently, 11 of the 60 IMS infrasound stations are transmitting data in the post-installation Testing & Evaluation mode. Another 5 stations are under provisional operation and are maintained in post-certification mode. It is expected that 20% of the infrasound network will be certified by the end of 2002. This presentation will focus on the different phases of post-installation activities of the IMS infrasound program and the logistical challenges to be tackled to ensure a cost-efficient management of the network. Specific topics will include Testing & Evaluation and Certification of Infrasound Stations, as well as Configuration Management and Network Sustainment.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilkinson, T.P.

    A new solids control system, consisting of four new shakers and a dryer in parallel all discharging into another dryer, significantly reduced the oil on the cuttings in a nine-well offshore drilling program. Cleaned, slurrified cuttings were then discharged overboard. In November 1994, Oiltools (Europe) Ltd. received contracts to upgrade the solids control systems on Sedco Forex`s Sedco 711 and Sovereign Explorer semisubmersible drilling vessels. Sedco Forex required systems that would meet the reduced oil-on-cuttings (OOC) disposal limit of less than 80 g/kg set by the operator, while staying efficient and economical to operate and maintain. In addition, all solidsmore » were required to be slurrified for pumping overboard to ensure dispersal away from the subsea center. This article highlights the equipment used and the savings realized on the Sovereign Explorer after the first three wells of a nine-well program.« less

  4. Medicaid program; Medicaid Management Information Systems; conditions of approval and reapproval and procedures for reduction of federal financial participation--Health Care Financing Administration. Proposed rule.

    PubMed

    1983-03-03

    This proposal adds to regulations new conditions and procedures for initial approval and for reapproval of Medicaid Management Information Systems (MMIS) to update the regulations to reflect additional requirements added by section 901 of the Mental Health Systems Act of 1980 (Pub. L. 96-398). The proposal specifies procedures for reducing the level of Federal financial participation in a State's administrative expenditures when a State fails to meet the conditions for initial operation, initial approval or reapproval of an MMIS. It also proposes procedures with respect to waivers of the conditions of approval and reapproval and to appeals of adverse decisions. These provisions are intended to improve States' MMIS, and to ensure efficient system operations, and to detect cases of fraud, waste, and abuse effectively.

  5. Talking about the Automobile Braking System

    NASA Astrophysics Data System (ADS)

    Xu, Zhiqiang

    2017-12-01

    With the continuous progress of society, the continuous development of the times, people’s living standards continue to improve, people continue to improve the pursuit. With the rapid development of automobile manufacturing, the car will be all over the tens of thousands of households, the increase in car traffic, a direct result of the incidence of traffic accidents. Brake system is the guarantee of the safety of the car, its technical condition is good or bad, directly affect the operational safety and transportation efficiency, so the brake system is absolutely reliable. The requirements of the car on the braking system is to have a certain braking force to ensure reliable work in all cases, light and flexible operation. Normal braking should be good performance, in addition to a foot sensitive, the emergency brake four rounds can not be too long, not partial, not ring.

  6. A rapid parallelization of cone-beam projection and back-projection operator based on texture fetching interpolation

    NASA Astrophysics Data System (ADS)

    Xie, Lizhe; Hu, Yining; Chen, Yang; Shi, Luyao

    2015-03-01

    Projection and back-projection are the most computational consuming parts in Computed Tomography (CT) reconstruction. Parallelization strategies using GPU computing techniques have been introduced. We in this paper present a new parallelization scheme for both projection and back-projection. The proposed method is based on CUDA technology carried out by NVIDIA Corporation. Instead of build complex model, we aimed on optimizing the existing algorithm and make it suitable for CUDA implementation so as to gain fast computation speed. Besides making use of texture fetching operation which helps gain faster interpolation speed, we fixed sampling numbers in the computation of projection, to ensure the synchronization of blocks and threads, thus prevents the latency caused by inconsistent computation complexity. Experiment results have proven the computational efficiency and imaging quality of the proposed method.

  7. On mixed derivatives type high dimensional multi-term fractional partial differential equations approximate solutions

    NASA Astrophysics Data System (ADS)

    Talib, Imran; Belgacem, Fethi Bin Muhammad; Asif, Naseer Ahmad; Khalil, Hammad

    2017-01-01

    In this research article, we derive and analyze an efficient spectral method based on the operational matrices of three dimensional orthogonal Jacobi polynomials to solve numerically the mixed partial derivatives type multi-terms high dimensions generalized class of fractional order partial differential equations. We transform the considered fractional order problem to an easily solvable algebraic equations with the aid of the operational matrices. Being easily solvable, the associated algebraic system leads to finding the solution of the problem. Some test problems are considered to confirm the accuracy and validity of the proposed numerical method. The convergence of the method is ensured by comparing our Matlab software simulations based obtained results with the exact solutions in the literature, yielding negligible errors. Moreover, comparative results discussed in the literature are extended and improved in this study.

  8. Development of flashlamp-pumped Q-switched Ho:Tm:Cr:YAG lasers for mid-infrared LIDAR application

    NASA Technical Reports Server (NTRS)

    Choi, Young S.; Kim, Kyong H.; Whitney, Donald A.; Hess, Robert V.; Barnes, Norman P.; Bair, Clayton H.; Brockman, Philip

    1989-01-01

    A flashlamp-pumped 2.1 micron Ho:Tm:Cr:YAG laser was studied for both normal mode and Q-switched operations under a wide variety of experimental conditions in order to optimize performance. Laser output energy, slope efficiency, threshold and pulselength were determined as a function of operating temperature, output mirror reflectivity, input electrical energy and Q-switch opening time. The measured normal-mode laser thresholds of a Ho(3+) (0.45 atomic percent):Tm(3+) (2.5 atomic percent):Cr(3+) (0.8 atomic percent):YAG crystal ranged form 26 to 50 J between 120 and 200 K with slope efficiencies up to 0.36 percent with a 60 percent reflective output mirror. Under Q-switched operation the slope efficiency was 90 percent of the normal-mode result. Development of solid state lasers with Ho(3+), Tm(3+) and/or Er(3+) doped crystals has been pursued by NASA for eye-dafe mid-infrared LIDAR (light detection and ranging) application. As a part of the project, the authors have been working on evaluating Ho(3+):Tm(3+):Cr(3+):YAG crystals for normal-mode and Q-switched 2.1 micron laser operations in order to determine an optimum Tm(3+) concentration under flashlamp pumping conditions. Lasing properties of the Ho(3+) in the mid-infrared region have been studied by many research groups since the early 1960's. However, the technology of those lasers is still premature for lidar application. In order to overcome the inefficiency related to narrow absorption bands of the Ho(3+), Tm(3+) and Er(3+), the erbium has been replaced by chromium. The improvement in flashlamp-pumped Ho(3+) laser efficiency has been demonstrated recently by several research groups by utilizing the broad absorption spectrum of Cr(3+) which covers the flashlamp's emission spectrum. Efficient energy transfer to the Tm(3+) and then the Ho(3+) occurs subsequently. It is known that high Tm(3+) concentration and low Ho(3+) concentration are preferred to achieve a quantum efficiency approaching two and to avoid large reabsorption losses. However, determination of the optimum Tm(3+) concentration required to ensure efficient energy transfer from Cr(3+) to Tm(3+) and from Tm(3+) to Ho(3+) has not been made in the Ho:Tm:CR:YAG crystal. The results obtained so far are given.

  9. Clinical characterization of 2D pressure field in human left ventricles

    NASA Astrophysics Data System (ADS)

    Borja, Maria; Rossini, Lorenzo; Martinez-Legazpi, Pablo; Benito, Yolanda; Alhama, Marta; Yotti, Raquel; Perez Del Villar, Candelas; Gonzalez-Mansilla, Ana; Barrio, Alicia; Fernandez-Aviles, Francisco; Bermejo, Javier; Khan, Andrew; Del Alamo, Juan Carlos

    2014-11-01

    The evaluation of left ventricle (LV) function in the clinical setting remains a challenge. Pressure gradient is a reliable and reproducible indicator of the LV function. We obtain 2D relative pressure field in the LV using in-vivo measurements obtained by processing Doppler-echocardiography images of healthy and dilated hearts. Exploiting mass conservation, we solve the Poisson pressure equation (PPE) dropping the time derivatives and viscous terms. The flow acceleration appears only in the boundary conditions, making our method weakly sensible to the time resolution of in-vivo acquisitions. To ensure continuity with respect to the discrete operator and grid used, a potential flow correction is applied beforehand, which gives another Poisson equation. The new incompressible velocity field ensures that the compatibility equation for the PPE is satisfied. Both Poisson equations are efficiently solved on a Cartesian grid using a multi-grid method and immersed boundary for the LV wall. The whole process is computationally inexpensive and could play a diagnostic role in the clinical assessment of LV function.

  10. Simulation of Electrical Characteristics of a Solar Panel

    NASA Astrophysics Data System (ADS)

    Obukhov, S.; Plotnikov, I.; Kryuchkova, M.

    2016-06-01

    The fast-growing photovoltaic system market leads to the necessity of the informed choice of major energy components and optimization of operating conditions in order to improve energy efficiency. Development of mathematical models of the main components of photovoltaic systems to ensure their comprehensive study is an urgent problem of improving and practical using of the technology of electrical energy production. The paper presents a mathematical model of the solar module implemented in the popular software MATLAB/Simulink. Equivalent circuit of the solar cell with a diode parallel without derived resistance is used for modelling. The serie8s resistance of the solar module is calculated by Newton's iterative method using the data of its technical specifications. It ensures high precision of simulation. Model validity was evaluated by the well-known technical characteristics of the module Solarex MSX 60. The calculation results of the experiment showed that the obtained current-voltage and current-watt characteristics of the model are compatible with those of the manufacturer.

  11. [Challenges of Digital Medicine].

    PubMed

    Blaser, Jürg

    2018-06-01

    Challenges of Digital Medicine Abstract. Digitization is increasingly covering more and more sectors, including medicine. To ensure medical operation 365 × 24 hours, progressively more human and financial resources are necessary. The transformation of patient histories from paper into electronic patient records focused initially on documentation. Today, hospital information systems are increasingly used as a platform for the communication of all professionals involved in the patient process - in Switzerland, however, so far without providing patients direct access to their data. Digititizing processes intend to increase efficiency, but also to enhance clinical and administrative decision support and quality assurance. The introduction of the electronic patient record in Switzerland in 2020 is expected to provide cross-company, more complete documentation of patient care. Multimorbid patients, often treated in different institutions and by different specialists, should benefit from this in particular. Advances in artificial intelligence offer new opportunities in medicine. Challenges include ensuring reliable data protection, and better interoperability of the systems involved. Semantically structured, machine-readable data exchange is a necessity for both networked services and internationally competitive research.

  12. High power, compact, picosecond MOPA based on single trench fiber with single polarized diffraction-limited output.

    PubMed

    Jain, D; Alam, S; Codemard, C; Jung, Y; Zervas, M N; Sahu, J K

    2015-09-01

    We experimentally demonstrate an all-solid Yb-doped 30 μm core diameter single trench fiber. Measurements ensure a robust effective single-mode operation without the need of tight coiling as required for conventional fibers thanks to the ultralow NA (∼0.038) and resonant ring surrounding the core. All-solid and cylindrical design ensures the suitability for mass scale production with the added benefit of all-fiberized device structure. A compact master oscillator power amplifier (MOPA) has been built using this fiber delivering ∼23.5  ps pulses at 13.5 MHz repetition rate delivering up to ∼52  W of average output power corresponding to a pulse energy of ∼3.8  μJ and peak power of >160  kW, while maintaining ∼76% slope efficiency. The output beam exhibits a polarization extinction ratio of more than 15 dB and a M2 less than 1.15.

  13. A three-level support method for smooth switching of the micro-grid operation model

    NASA Astrophysics Data System (ADS)

    Zong, Yuanyang; Gong, Dongliang; Zhang, Jianzhou; Liu, Bin; Wang, Yun

    2018-01-01

    Smooth switching of micro-grid between the grid-connected operation mode and off-grid operation mode is one of the key technologies to ensure it runs flexible and efficiently. The basic control strategy and the switching principle of micro-grid are analyzed in this paper. The reasons for the fluctuations of the voltage and the frequency in the switching process are analyzed from views of power balance and control strategy, and the operation mode switching strategy has been improved targeted. From the three aspects of controller’s current inner loop reference signal, voltage outer loop control strategy optimization and micro-grid energy balance management, a three-level security strategy for smooth switching of micro-grid operation mode is proposed. From the three aspects of controller’s current inner loop reference signal tracking, voltage outer loop control strategy optimization and micro-grid energy balance management, a three-level strategy for smooth switching of micro-grid operation mode is proposed. At last, it is proved by simulation that the proposed control strategy can make the switching process smooth and stable, the fluctuation problem of the voltage and frequency has been effectively improved.

  14. Training and certification program of the operating staff for a 90-day test of a regenerative life support system

    NASA Technical Reports Server (NTRS)

    1972-01-01

    Prior to beginning a 90-day test of a regenerative life support system, a need was identified for a training and certification program to qualify an operating staff for conducting the test. The staff was responsible for operating and maintaining the test facility, monitoring and ensuring crew safety, and implementing procedures to ensure effective mission performance with good data collection and analysis. The training program was designed to ensure that each operating staff member was capable of performing his assigned function and was sufficiently cross-trained to serve at certain other positions on a contingency basis. Complicating the training program were budget and schedule limitations, and the high level of sophistication of test systems.

  15. Optimization of shared autonomy vehicle control architectures for swarm operations.

    PubMed

    Sengstacken, Aaron J; DeLaurentis, Daniel A; Akbarzadeh-T, Mohammad R

    2010-08-01

    The need for greater capacity in automotive transportation (in the midst of constrained resources) and the convergence of key technologies from multiple domains may eventually produce the emergence of a "swarm" concept of operations. The swarm, which is a collection of vehicles traveling at high speeds and in close proximity, will require technology and management techniques to ensure safe, efficient, and reliable vehicle interactions. We propose a shared autonomy control approach, in which the strengths of both human drivers and machines are employed in concert for this management. Building from a fuzzy logic control implementation, optimal architectures for shared autonomy addressing differing classes of drivers (represented by the driver's response time) are developed through a genetic-algorithm-based search for preferred fuzzy rules. Additionally, a form of "phase transition" from a safe to an unsafe swarm architecture as the amount of sensor capability is varied uncovers key insights on the required technology to enable successful shared autonomy for swarm operations.

  16. Real-time validation of receiver state information in optical space-time block code systems.

    PubMed

    Alamia, John; Kurzweg, Timothy

    2014-06-15

    Free space optical interconnect (FSOI) systems are a promising solution to interconnect bottlenecks in high-speed systems. To overcome some sources of diminished FSOI performance caused by close proximity of multiple optical channels, multiple-input multiple-output (MIMO) systems implementing encoding schemes such as space-time block coding (STBC) have been developed. These schemes utilize information pertaining to the optical channel to reconstruct transmitted data. The STBC system is dependent on accurate channel state information (CSI) for optimal system performance. As a result of dynamic changes in optical channels, a system in operation will need to have updated CSI. Therefore, validation of the CSI during operation is a necessary tool to ensure FSOI systems operate efficiently. In this Letter, we demonstrate a method of validating CSI, in real time, through the use of moving averages of the maximum likelihood decoder data, and its capacity to predict the bit error rate (BER) of the system.

  17. Wide operating window spin-torque majority gate towards large-scale integration of logic circuits

    NASA Astrophysics Data System (ADS)

    Vaysset, Adrien; Zografos, Odysseas; Manfrini, Mauricio; Mocuta, Dan; Radu, Iuliana P.

    2018-05-01

    Spin Torque Majority Gate (STMG) is a logic concept that inherits the non-volatility and the compact size of MRAM devices. In the original STMG design, the operating range was restricted to very small size and anisotropy, due to the exchange-driven character of domain expansion. Here, we propose an improved STMG concept where the domain wall is driven with current. Thus, input switching and domain wall propagation are decoupled, leading to higher energy efficiency and allowing greater technological optimization. To ensure majority operation, pinning sites are introduced. We observe through micromagnetic simulations that the new structure works for all input combinations, regardless of the initial state. Contrary to the original concept, the working condition is only given by threshold and depinning currents. Moreover, cascading is now possible over long distances and fan-out is demonstrated. Therefore, this improved STMG concept is ready to build complete Boolean circuits in absence of external magnetic fields.

  18. Modern Management Principles Come to the Dental School.

    PubMed

    Wataha, John C; Mouradian, Wendy E; Slayton, Rebecca L; Sorensen, John A; Berg, Joel H

    2016-04-01

    The University of Washington School of Dentistry may be the first dental school in the nation to apply lean process management principles as a primary tool to re-engineer its operations and curriculum to produce the dentist of the future. The efficiencies realized through re-engineering will better enable the school to remain competitive and viable as a national leader of dental education. Several task forces conducted rigorous value stream analyses in a highly collaborative environment led by the dean of the school. The four areas undergoing evaluation and re-engineering were organizational infrastructure, organizational processes, curriculum, and clinic operations. The new educational model was derived by thoroughly analyzing the current state of dental education in order to design and achieve the closest possible ideal state. As well, the school's goal was to create a lean, sustainable operational model. This model aims to ensure continued excellence in restorative dental instruction and to serve as a blueprint for other public dental schools seeking financial stability in this era of shrinking state support and rising costs.

  19. Intelligent Energy Management System for PV-Battery-based Microgrids in Future DC Homes

    NASA Astrophysics Data System (ADS)

    Chauhan, R. K.; Rajpurohit, B. S.; Gonzalez-Longatt, F. M.; Singh, S. N.

    2016-06-01

    This paper presents a novel intelligent energy management system (IEMS) for a DC microgrid connected to the public utility (PU), photovoltaic (PV) and multi-battery bank (BB). The control objectives of the proposed IEMS system are: (i) to ensure the load sharing (according to the source capacity) among sources, (ii) to reduce the power loss (high efficient) in the system, and (iii) to enhance the system reliability and power quality. The proposed IEMS is novel because it follows the ideal characteristics of the battery (with some assumptions) for the power sharing and the selection of the closest source to minimize the power losses. The IEMS allows continuous and accurate monitoring with intelligent control of distribution system operations such as battery bank energy storage (BBES) system, PV system and customer utilization of electric power. The proposed IEMS gives the better operational performance for operating conditions in terms of load sharing, loss minimization, and reliability enhancement of the DC microgrid.

  20. Structural Health Monitoring for a Z-Type Special Vehicle

    PubMed Central

    Yuan, Chaolin; Ren, Liang; Li, Hongnan

    2017-01-01

    Nowadays there exist various kinds of special vehicles designed for some purposes, which are different from regular vehicles in overall dimension and design. In that case, accidents such as overturning will lead to large economical loss and casualties. There are still no technical specifications to follow to ensure the safe operation and driving of these special vehicles. Owing to the poor efficiency of regular maintenance, it is more feasible and effective to apply real-time monitoring during the operation and driving process. In this paper, the fiber Bragg grating (FBG) sensors are used to monitor the safety of a z-type special vehicle. Based on the structural features and force distribution, a reasonable structural health monitoring (SHM) scheme is presented. Comparing the monitoring results with the finite element simulation results guarantees the accuracy and reliability of the monitoring results. Large amounts of data are collected during the operation and driving progress to evaluate the structural safety condition and provide reference for SHM systems developed for other special vehicles. PMID:28587161

  1. Evaluation of Candidate Materials for a High-Temperature Stirling Convertor Heater Head

    NASA Technical Reports Server (NTRS)

    Bowman, Randy; Ritzert, Frank; Freedman, Marc

    2003-01-01

    The Department of Energy (DOE) and NASA have identified Stirling Radioisotope Generators (SRG) as a candidate power system for use on long-duration, deep-space science missions and Mars rovers. One of the developments planned for an upgraded version of the current SRG design is to achieve higher efficiency by increasing the overall operating temperature of the system. Currently, the SRG operates with a heater head temperature of 650 C and is fabricated from the nickel base superalloy 718. This temperature is at the limit of Alloy 718's capability, and any planned increase in temperature will be contingent on identifying a more capable material from which to fabricate the heater head. To this end, an assessment of material candidates was performed assuming a range of heater head temperatures. The chosen alternative material candidates will be discussed, along with the development efforts needed to ensure that these materials can meet the demanding system requirements of long-duration operation in hostile environments.

  2. Alternative Radioisotopes for Heat and Power Sources

    NASA Astrophysics Data System (ADS)

    Tinsley, T.; Sarsfield, M.; Rice, T.

    Production of 238Pu requires considerable facilities including a nuclear reactor and reprocessing plants that are very expensive to build and operate. Thus, a more economical alternative is very attractive to the industry. There are many alternative radioisotopes that exist but few that satisfy the criteria of performance, availability and cost to produce. Any alternative to 238Pu must exist in a chemical form that is compatible with the materials required to safely encapsulate the heat source at the high temperatures of operation and potential launch failure scenarios. The chemical form must also have suitable thermal properties to ensure maximum energy conversion efficiencies when integrated into radioisotope thermoelectric generators over the required mission durations. In addition, the radiation dose must be low enough for operators during production and not so prohibitive that excessive shielding mass is required on the space craft. This paper will focus on the preferred European alternative of 241Am, and the issues that will need to be addressed.

  3. Test Rack Development for Extended Operation of Advanced Stirling Convertors at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Dugala, Gina M.

    2009-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Space Company (LMSC), Sun power Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science missions. This generator will make use of free-piston Stirling convertors to achieve higher conversion efficiency than currently available alternatives. NASA GRC's support of ASRG development includes extended operation testing of Advanced Stirling Convertors (ASCs) developed by Sunpower Inc. In the past year, NASA GRC has been building a test facility to support extended operation of a pair of engineering level ASCs. Operation of the convertors in the test facility provides convertor performance data over an extended period of time. Mechanical support hardware, data acquisition software, and an instrumentation rack were developed to prepare the pair of convertors for continuous extended operation. Short-term tests were performed to gather baseline performance data before extended operation was initiated. These tests included workmanship vibration, insulation thermal loss characterization, low-temperature checkout, and fUll-power operation. Hardware and software features are implemented to ensure reliability of support systems. This paper discusses the mechanical support hardware, instrumentation rack, data acquisition software, short-term tests, and safety features designed to support continuous unattended operation of a pair of ASCs.

  4. Graphene mode-lockers for fiber lasers functioned with evanescent field interaction

    NASA Astrophysics Data System (ADS)

    Song, Yong-Won; Jang, Sung-Yeon; Han, Won-Suk; Bae, Mi-Kyung

    2010-02-01

    Employing graphene as an intracavity passive power modulating element, we demonstrate the efficient laser pulsation in high pulse-energy regime with evanescent field interaction between the propagating light and graphene layer. Graphene is prepared by the solution based reduction of graphene oxide, and dispersed homogeneously into the water for spray onto an all-fiber substrate, side-polished fiber. With the intracavity power up to 21.41 dBm, we ensure the robust high-energy operation without any thermal damage of graphene. Resultant output pulses have center wavelength, spectral width, and repetition rate of 1561.6 nm, 1.96 nm, and 6.99 MHz, respectively.

  5. A dynamically adaptive multigrid algorithm for the incompressible Navier-Stokes equations: Validation and model problems

    NASA Technical Reports Server (NTRS)

    Thompson, C. P.; Leaf, G. K.; Vanrosendale, J.

    1991-01-01

    An algorithm is described for the solution of the laminar, incompressible Navier-Stokes equations. The basic algorithm is a multigrid based on a robust, box-based smoothing step. Its most important feature is the incorporation of automatic, dynamic mesh refinement. This algorithm supports generalized simple domains. The program is based on a standard staggered-grid formulation of the Navier-Stokes equations for robustness and efficiency. Special grid transfer operators were introduced at grid interfaces in the multigrid algorithm to ensure discrete mass conservation. Results are presented for three models: the driven-cavity, a backward-facing step, and a sudden expansion/contraction.

  6. A study of aging effects of barrel Time-Of-Flight system in the BESIII experiment

    NASA Astrophysics Data System (ADS)

    Liu, Huan-Huan; Sun, Sheng-Sen; Fang, Shuang-Shi; Wu, Zhi; Dai, Hong-Liang; Heng, Yue-Kun; Zhou, Ming; Deng, Zi-Yan; Liu, Huai-Min

    2018-02-01

    The Time-Of-Flight system consisting of plastic scintillation counters plays an important role for particle identification in the BESIII experiment at the BEPCII double ring e+e- collider. Degradation of the detection efficiency of the barrel TOF system has been observed since the start of physical data taking and this effect has triggered intensive and systematic studies about aging effects of the detector. The aging rates of the attenuation lengths and relative gains are obtained based on the data acquired in past several years. This study is essential for ensuring an extended operation of the barrel TOF system in optimal conditions.

  7. Facilities and Infrastructure FY 2017 Budget At-A-Glance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2016-03-01

    The Facilities and Infrastructure Program includes EERE’s capital investments, operations and maintenance, and site-wide support of the National Renewable Energy Laboratory (NREL). It is the nation’s only national laboratory with a primary mission dedicated to the research, development and demonstration (RD&D) of energy efficiency, renewable energy and related technologies. EERE is NREL’s steward, primary client and sponsor of NREL’s designation as a Federally Funded Research and Development Center. The Facilities and Infrastructure (F&I) budget maintains NREL’s research and support infrastructure, ensures availability for EERE’s use, and provides a safe and secure workplace for employees.

  8. Coordinating management disciplines to build operational resilience in response to a major crisis situation.

    PubMed

    Drachal, Marcin

    2017-01-01

    Using case studies of the Ebola outbreak in Western Africa in 2014, and the terrorist attacks in Paris and Brussels in 2015 and 2016 respectively, this paper demonstrates how various resilience-related corporate functions contributed to effective crisis response. This paper describes the logical order of actions taken in each of the cases, and how the organisation prioritised its assets and coordinated activities to ensure the response was adequate, efficient and timely. The article demonstrates how business continuity, physical security, threat management, security intelligence and incident management worked together to support the organisation's crisis management structures in complex crisis situations.

  9. 76 FR 66131 - Submission for OMB Review; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-25

    ... currently approved collection. Title: Report of Wine Premises Operations. Form: TTB F 5120.17. Abstract: This report is used to monitor wine operations, ensure collection of wine tax revenue, and ensure wine... monthly statistical release on wine. Respondents: Private Sector: Businesses or other for-profits...

  10. Development and Testing of a Power Trough System Using a Structurally-Efficient, High-Performance, Large-Aperture Concentrator with Thin Glass Reflector and Focal Point Rotation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    May, E. K.; Forristall, R.

    2005-11-01

    Industrial Solar Technology has assembled a team of experts to develop a large-aperture parabolic trough for the electric power market that moves beyond cost and operating limitations of 1980's designs based on sagged glass reflectors. IST's structurally efficient space frame design will require nearly 50% less material per square meter than a Solel LS-2 concentrator and the new trough will rotate around the focal point. This feature eliminates flexhoses that increase pump power, installation and maintenance costs. IST aims to deliver a concentrator module costing less than $100 per square meter that can produce temperatures up to 400 C. Themore » IST concentrator is ideally suited for application of front surface film reflectors and ensures that US corporations will manufacture major components, except for the high temperature receivers.« less

  11. Efficient image enhancement using sparse source separation in the Retinex theory

    NASA Astrophysics Data System (ADS)

    Yoon, Jongsu; Choi, Jangwon; Choe, Yoonsik

    2017-11-01

    Color constancy is the feature of the human vision system (HVS) that ensures the relative constancy of the perceived color of objects under varying illumination conditions. The Retinex theory of machine vision systems is based on the HVS. Among Retinex algorithms, the physics-based algorithms are efficient; however, they generally do not satisfy the local characteristics of the original Retinex theory because they eliminate global illumination from their optimization. We apply the sparse source separation technique to the Retinex theory to present a physics-based algorithm that satisfies the locality characteristic of the original Retinex theory. Previous Retinex algorithms have limited use in image enhancement because the total variation Retinex results in an overly enhanced image and the sparse source separation Retinex cannot completely restore the original image. In contrast, our proposed method preserves the image edge and can very nearly replicate the original image without any special operation.

  12. Preliminary Results from a Model-Driven Architecture Methodology for Development of an Event-Driven Space Communications Service Concept

    NASA Technical Reports Server (NTRS)

    Roberts, Christopher J.; Morgenstern, Robert M.; Israel, David J.; Borky, John M.; Bradley, Thomas H.

    2017-01-01

    NASA's next generation space communications network will involve dynamic and autonomous services analogous to services provided by current terrestrial wireless networks. This architecture concept, known as the Space Mobile Network (SMN), is enabled by several technologies now in development. A pillar of the SMN architecture is the establishment and utilization of a continuous bidirectional control plane space link channel and a new User Initiated Service (UIS) protocol to enable more dynamic and autonomous mission operations concepts, reduced user space communications planning burden, and more efficient and effective provider network resource utilization. This paper provides preliminary results from the application of model driven architecture methodology to develop UIS. Such an approach is necessary to ensure systematic investigation of several open questions concerning the efficiency, robustness, interoperability, scalability and security of the control plane space link and UIS protocol.

  13. Template-Directed Instrumentation Reduces Cost and Improves Efficiency for Total Knee Arthroplasty: An Economic Decision Analysis and Pilot Study.

    PubMed

    McLawhorn, Alexander S; Carroll, Kaitlin M; Blevins, Jason L; DeNegre, Scott T; Mayman, David J; Jerabek, Seth A

    2015-10-01

    Template-directed instrumentation (TDI) for total knee arthroplasty (TKA) may streamline operating room (OR) workflow and reduce costs by preselecting implants and minimizing instrument tray burden. A decision model simulated the economics of TDI. Sensitivity analyses determined thresholds for model variables to ensure TDI success. A clinical pilot was reviewed. The accuracy of preoperative templates was validated, and 20 consecutive primary TKAs were performed using TDI. The model determined that preoperative component size estimation should be accurate to ±1 implant size for 50% of TKAs to implement TDI. The pilot showed that preoperative template accuracy exceeded 97%. There were statistically significant improvements in OR turnover time and in-room time for TDI compared to an historical cohort of TKAs. TDI reduces costs and improves OR efficiency. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Quality Control of The Miniature Exoplanet Radio Velocity Array(MINERVA)

    NASA Astrophysics Data System (ADS)

    Rivera García, Kevin O.; Eastman, Jason D.

    2017-01-01

    The MINiature Exoplanet Radial Velocity Array, also known as MINERVA , is a network of four robotic 0.7 meter telescopes that is conducting a Radial Velocity survey of the nearest, brightest stars in search of small and rocky exoplanets. The robotic telescope array is located in Fred Lawrence Whipple Observatory in Arizona. MINERVA began science operations in 2015 and we are constantly improving its observing efficiency. We will describe performance statistics that we have developed in Python to proactively identify problems before they impede observations. We have written code to monitor the pointing error for each telescope to ensure it will always be able to acquire a target in the 3 arcminute field of view of its acquisition camera, but there are still some issues that need to be identified. The end goal for this research is to automatically address any common malfunction that may cause the observation to fail and ultimately improve our observing efficiency.

  15. Physics based modeling of a series parallel battery pack for asymmetry analysis, predictive control and life extension

    NASA Astrophysics Data System (ADS)

    Ganesan, Nandhini; Basu, Suman; Hariharan, Krishnan S.; Kolake, Subramanya Mayya; Song, Taewon; Yeo, Taejung; Sohn, Dong Kee; Doo, Seokgwang

    2016-08-01

    Lithium-Ion batteries used for electric vehicle applications are subject to large currents and various operation conditions, making battery pack design and life extension a challenging problem. With increase in complexity, modeling and simulation can lead to insights that ensure optimal performance and life extension. In this manuscript, an electrochemical-thermal (ECT) coupled model for a 6 series × 5 parallel pack is developed for Li ion cells with NCA/C electrodes and validated against experimental data. Contribution of the cathode to overall degradation at various operating conditions is assessed. Pack asymmetry is analyzed from a design and an operational perspective. Design based asymmetry leads to a new approach of obtaining the individual cell responses of the pack from an average ECT output. Operational asymmetry is demonstrated in terms of effects of thermal gradients on cycle life, and an efficient model predictive control technique is developed. Concept of reconfigurable battery pack is studied using detailed simulations that can be used for effective monitoring and extension of battery pack life.

  16. Performance modelling of plasma microthruster nozzles in vacuum

    NASA Astrophysics Data System (ADS)

    Ho, Teck Seng; Charles, Christine; Boswell, Rod

    2018-05-01

    Computational fluid dynamics and plasma simulations of three geometrical variations of the Pocket Rocket radiofrequency plasma electrothermal microthruster are conducted, comparing pulsed plasma to steady state cold gas operation. While numerical limitations prevent plasma modelling in a vacuum environment, results may be obtained by extrapolating from plasma simulations performed in a pressurised environment, using the performance delta from cold gas simulations performed in both environments. Slip regime boundary layer effects are significant at these operating conditions. The present investigation targets a power budget of ˜10 W for applications on CubeSats. During plasma operation, the thrust force increases by ˜30% with a power efficiency of ˜30 μNW-1. These performance metrics represent instantaneous or pulsed operation and will increase over time as the discharge chamber attains thermal equilibrium with the heated propellant. Additionally, the sculpted nozzle geometry achieves plasma confinement facilitated by the formation of a plasma sheath at the nozzle throat, and fast recombination ensures a neutral exhaust plume that avoids the contamination of solar panels and interference with externally mounted instruments.

  17. Computational analysis of aircraft pressure relief doors

    NASA Astrophysics Data System (ADS)

    Schott, Tyler

    Modern trends in commercial aircraft design have sought to improve fuel efficiency while reducing emissions by operating at higher pressures and temperatures than ever before. Consequently, greater demands are placed on the auxiliary bleed air systems used for a multitude of aircraft operations. The increased role of bleed air systems poses significant challenges for the pressure relief system to ensure the safe and reliable operation of the aircraft. The core compartment pressure relief door (PRD) is an essential component of the pressure relief system which functions to relieve internal pressure in the core casing of a high-bypass turbofan engine during a burst duct over-pressurization event. The successful modeling and analysis of a burst duct event are imperative to the design and development of PRD's to ensure that they will meet the increased demands placed on the pressure relief system. Leveraging high-performance computing coupled with advances in computational analysis, this thesis focuses on a comprehensive computational fluid dynamics (CFD) study to characterize turbulent flow dynamics and quantify the performance of a core compartment PRD across a range of operating conditions and geometric configurations. The CFD analysis was based on a compressible, steady-state, three-dimensional, Reynolds-averaged Navier-Stokes approach. Simulations were analyzed, and results show that variations in freestream conditions, plenum environment, and geometric configurations have a non-linear impact on the discharge, moment, thrust, and surface temperature characteristics. The CFD study revealed that the underlying physics for this behavior is explained by the interaction of vortices, jets, and shockwaves. This thesis research is innovative and provides a comprehensive and detailed analysis of existing and novel PRD geometries over a range of realistic operating conditions representative of a burst duct over-pressurization event. Further, the study provides aircraft manufacturers with valuable insight into the impact that operating conditions and geometric configurations have on PRD performance and how the information can be used to assist future research and development of PRD design.

  18. Promoting the management and protection of private water wells.

    PubMed

    Simpson, Hugh

    Rural families in Ontario depend almost entirely on groundwater from private wells for their potable water supply. In many cases, groundwater may be the only feasible water supply source and it requires management and protection. A significant potential source of ground water contamination is the movement of contaminated surface water through water wells that are improperly constructed, maintained, or should be decommissioned. Therefore, proper water well construction and maintenance, and eventual decommissioning, are critical for managing and protecting the quantity and quality of groundwater, as well as ensuring the integrity of rural drinking-water supplies. These actions are important for protecting private water supplies from both potential human and natural contamination. Individual well owners each have a personal interest and valuable role in ensuring the integrity of their water supplies. The following information is required to help well owners ensure the integrity of their water supply: different types of wells, why some wells are at greater risk of contamination than others, and sources of groundwater contaminants; groundwater contaminants, how they can move through soil and water, and potential risks to human health; benefits of ensuring that wells are properly maintained and operate efficiently; and importance of a regular well water quality testing program. This paper summarizes the technical information that should be provided to rural well owners concerning proper water well and groundwater management and protection, and provides an example of how this information can be promoted in an effective manner.

  19. Fire in operating theatres: DaSH-ing to the rescue.

    PubMed

    Wilson, Liam; Farooq, Omer

    2018-01-01

    Operating theatres are dynamic environments that require multi professional team interactions. Effective team working is essential for efficient delivery of safe patient care. A fire in the operating theatre is a rare but potentially life threatening event for both patients and staff. A rapid and cohesive response from theatre and allied staff including porters, fire safety officer etc is paramount. We delivered a training session that utilised in situ simulation (simulation in workplace). After conducting needs analysis, learning objectives were agreed. After thorough planning, the date and location of the training session were identified. Contingency plans were put in place to ensure that patient care was not compromised at any point. To ensure success, checklists for faculty were devised and adhered to. A medium fidelity manikin with live monitoring was used. The first part of the scenario involved management of a surgical emergency by theatre staff. The second part involved management of a fire in the operating theatre while an emergency procedure was being undertaken. To achieve maximum learning potential, debriefing was provided immediately after each part of the scenario. A fire safety officer was present as a content expert. Latent errors (hidden errors in the workplace, staff knowledge etc) were identified. Malfunctioning of theatre floor windows and staff unawareness about the location of an evacuation site were some of the identified latent errors. Thorough feedback to address these issues was provided to the participants on the day. A detailed report of the training session was given to the relevant departments. This resulted in the equipment faults being rectified. The training session was a very positive experience and helped not only in improving participants' knowledge, behaviour and confidence but also it made system and environment better equipped.

  20. Supporting the future nuclear workforce with computer-based procedures

    DOE PAGES

    Oxstrand, Johanna; Le Blanc, Katya

    2016-05-01

    Here we see that computer-based tools have dramatically increased ease and efficiency of everyday tasks. Gone are the days of paging through a paper catalog, transcribing product numbers, and calculating totals. Today, a consumer can find a product online with a simple search engine, and then purchase it in a matter of a few clicks. Paper catalogs have their place, but it is hard to imagine life without on-line shopping sites. All tasks conducted in a nuclear power plant are guided by procedures, which helps ensure safe and reliable operation of the plants. One prominent goal of the nuclear industrymore » is to minimize the risk of human errors. To achieve this goal one has to ensure tasks are correctly and consistently executed. This is partly achieved by training and by a structured approach to task execution, which is provided by procedures and work instructions. Procedures are used in the nuclear industry to direct workers' actions in a proper sequence. The governing idea is to minimize the reliance on memory and choices made in the field. However, the procedure document may not contain sufficient information to successfully complete the task. Therefore, the worker might have to carry additional documents such as turnover sheets, operation experience, drawings, and other procedures to the work site. The nuclear industry is operated with paper procedures like paper catalogs of the past. A field worker may carry a large stack of documents needed to complete a task to the field. Even though the paper process has helped keep the industry safe for decades, there are limitations to using paper. Paper procedures are static (i.e., the content does not change after the document is printed), difficult to search, and rely heavily on the field worker’s situational awareness and ability to consistently meet the high expectation of human performance excellence. With computer-based procedures (CBPs) that stack of papers may be reduced to the size of a small tablet or even a smart phone. Instead of manually matching equipment identification numbers listed in the procedure with the number on the physical equipment the field worker can simply scan a barcode to ensure the correct valve is opened while simultaneously creating a record. Instead of navigating through a maze of cross-references, CBPs enable intelligent work path navigation which accounts for past decisions and observation, thereby enabling more efficient and safe task completion.« less

  1. Supporting the future nuclear workforce with computer-based procedures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oxstrand, Johanna; Le Blanc, Katya

    Here we see that computer-based tools have dramatically increased ease and efficiency of everyday tasks. Gone are the days of paging through a paper catalog, transcribing product numbers, and calculating totals. Today, a consumer can find a product online with a simple search engine, and then purchase it in a matter of a few clicks. Paper catalogs have their place, but it is hard to imagine life without on-line shopping sites. All tasks conducted in a nuclear power plant are guided by procedures, which helps ensure safe and reliable operation of the plants. One prominent goal of the nuclear industrymore » is to minimize the risk of human errors. To achieve this goal one has to ensure tasks are correctly and consistently executed. This is partly achieved by training and by a structured approach to task execution, which is provided by procedures and work instructions. Procedures are used in the nuclear industry to direct workers' actions in a proper sequence. The governing idea is to minimize the reliance on memory and choices made in the field. However, the procedure document may not contain sufficient information to successfully complete the task. Therefore, the worker might have to carry additional documents such as turnover sheets, operation experience, drawings, and other procedures to the work site. The nuclear industry is operated with paper procedures like paper catalogs of the past. A field worker may carry a large stack of documents needed to complete a task to the field. Even though the paper process has helped keep the industry safe for decades, there are limitations to using paper. Paper procedures are static (i.e., the content does not change after the document is printed), difficult to search, and rely heavily on the field worker’s situational awareness and ability to consistently meet the high expectation of human performance excellence. With computer-based procedures (CBPs) that stack of papers may be reduced to the size of a small tablet or even a smart phone. Instead of manually matching equipment identification numbers listed in the procedure with the number on the physical equipment the field worker can simply scan a barcode to ensure the correct valve is opened while simultaneously creating a record. Instead of navigating through a maze of cross-references, CBPs enable intelligent work path navigation which accounts for past decisions and observation, thereby enabling more efficient and safe task completion.« less

  2. Microdevice for plasma separation from whole human blood using bio-physical and geometrical effects

    NASA Astrophysics Data System (ADS)

    Tripathi, Siddhartha; Kumar, Y. V. Balavarun; Agrawal, Amit; Prabhakar, Amit; Joshi, Suhas S.

    2016-06-01

    In this research work, we present a simple and efficient passive microfluidic device for plasma separation from pure blood. The microdevice has been fabricated using conventional photolithography technique on a single layer of polydimethylsiloxane, and has been extensively tested on whole blood and enhanced (upto 62%) hematocrit levels of human blood. The microdevice employs elevated dimensions of about 100 μm such elevated dimensions ensure clog-free operation of the microdevice and is relatively easy to fabricate. We show that our microdevice achieves almost 100% separation efficiency on undiluted blood in the flow rate range of 0.3 to 0.5 ml/min. Detailed biological characterization of the plasma obtained from the microdevice is carried out by testing: proteins by ultra-violet spectrophotometric method, hCG (human chorionic gonadotropin) hormone, and conducting random blood glucose test. Additionally, flow cytometry study has also been carried on the separated plasma. These tests attest to the high quality of plasma recovered. The microdevice developed in this work is an outcome of extensive experimental research on understanding the flow behavior and separation phenomenon of blood in microchannels. The microdevice is compact, economical and effective, and is particularly suited in continuous flow operations.

  3. A-VCI: A flexible method to efficiently compute vibrational spectra

    NASA Astrophysics Data System (ADS)

    Odunlami, Marc; Le Bris, Vincent; Bégué, Didier; Baraille, Isabelle; Coulaud, Olivier

    2017-06-01

    The adaptive vibrational configuration interaction algorithm has been introduced as a new method to efficiently reduce the dimension of the set of basis functions used in a vibrational configuration interaction process. It is based on the construction of nested bases for the discretization of the Hamiltonian operator according to a theoretical criterion that ensures the convergence of the method. In the present work, the Hamiltonian is written as a sum of products of operators. The purpose of this paper is to study the properties and outline the performance details of the main steps of the algorithm. New parameters have been incorporated to increase flexibility, and their influence has been thoroughly investigated. The robustness and reliability of the method are demonstrated for the computation of the vibrational spectrum up to 3000 cm-1 of a widely studied 6-atom molecule (acetonitrile). Our results are compared to the most accurate up to date computation; we also give a new reference calculation for future work on this system. The algorithm has also been applied to a more challenging 7-atom molecule (ethylene oxide). The computed spectrum up to 3200 cm-1 is the most accurate computation that exists today on such systems.

  4. A-VCI: A flexible method to efficiently compute vibrational spectra.

    PubMed

    Odunlami, Marc; Le Bris, Vincent; Bégué, Didier; Baraille, Isabelle; Coulaud, Olivier

    2017-06-07

    The adaptive vibrational configuration interaction algorithm has been introduced as a new method to efficiently reduce the dimension of the set of basis functions used in a vibrational configuration interaction process. It is based on the construction of nested bases for the discretization of the Hamiltonian operator according to a theoretical criterion that ensures the convergence of the method. In the present work, the Hamiltonian is written as a sum of products of operators. The purpose of this paper is to study the properties and outline the performance details of the main steps of the algorithm. New parameters have been incorporated to increase flexibility, and their influence has been thoroughly investigated. The robustness and reliability of the method are demonstrated for the computation of the vibrational spectrum up to 3000 cm -1 of a widely studied 6-atom molecule (acetonitrile). Our results are compared to the most accurate up to date computation; we also give a new reference calculation for future work on this system. The algorithm has also been applied to a more challenging 7-atom molecule (ethylene oxide). The computed spectrum up to 3200 cm -1 is the most accurate computation that exists today on such systems.

  5. High Voltage, Fast-Switching Module for Active Control of Magnetic Fields and Edge Plasma Currents

    NASA Astrophysics Data System (ADS)

    Ziemba, Timothy; Miller, Kenneth; Prager, James; Slobodov, Ilia

    2016-10-01

    Fast, reliable, real-time control of plasma is critical to the success of magnetic fusion science. High voltage and current supplies are needed to mitigate instabilities in all experiments as well as disruption events in large scale tokamaks for steady-state operation. Silicon carbide (SiC) MOSFETs offer many advantages over IGBTs including lower drive energy requirements, lower conduction and switching losses, and higher switching frequency capabilities; however, these devices are limited to 1.2-1.7 kV devices. As fusion enters the long-pulse and burning plasma eras, efficiency of power switching will be important. Eagle Harbor Technologies (EHT), Inc. developing a high voltage SiC MOSFET module that operates at 10 kV. This switch module utilizes EHT gate drive technology, which has demonstrated the ability to increase SiC MOSFET switching efficiency. The module will allow more rapid development of high voltage switching power supplies at lower cost necessary for the next generation of fast plasma feedback and control. EHT is partnering with the High Beta Tokamak group at Columbia to develop detailed high voltage module specifications, to ensure that the final product meets the needs of the fusion science community.

  6. Advanced Stirling Convertor Update

    NASA Astrophysics Data System (ADS)

    Wood, J. Gary; Carroll, Cliff; Matejczyk, Dan; Penswick, L. B.; Soendker, E.

    2006-01-01

    This paper reports on the 88 We Advanced Stirling Convertor (ASC) currently being developed under Phase II of a NASA NRA program for possible use in advanced high specific power radioisotope space power systems. An early developmental unit, the Frequency Test Bed (FTB) which was built and tested in Phase I demonstrated 36% efficiency. The ASC-1 currently being developed under Phase II, uses a high temperature heater head to allow for operation at 850 °C and is expected to have an efficiency approaching 40% (based on AC electrical out) at a temperature ratio of 3.1. The final lightweight ASC-2 convertor to be developed in Phase III is expected to have a mass of approximately 1 kg. The implementation of the ASC would allow for much higher specific power radioisotope power systems, requiring significantly less radioisotope fuel than current systems. The first run of the ASC-1 occurred in September 2005, and full temperature operation was achieved in early October 2005. Presented is an update on progress on the ASC program as well as the plans for future development. Also presented are efforts being performed to ensure the ASC has the required long life already demonstrated in free-piston Stirling cryocoolers.

  7. Numerical simulation of active track tensioning system for autonomous hybrid vehicle

    NASA Astrophysics Data System (ADS)

    Mȩżyk, Arkadiusz; Czapla, Tomasz; Klein, Wojciech; Mura, Gabriel

    2017-05-01

    One of the most important components of a high speed tracked vehicle is an efficient suspension system. The vehicle should be able to operate both in rough terrain for performance of engineering tasks as well as on the road with high speed. This is especially important for an autonomous platform that operates either with or without human supervision, so that the vibration level can rise compared to a manned vehicle. In this case critical electronic and electric parts must be protected to ensure the reliability of the vehicle. The paper presents a dynamic parameters determination methodology of suspension system for an autonomous high speed tracked platform with total weight of about 5 tonnes and hybrid propulsion system. Common among tracked vehicles suspension solutions and cost-efficient, the torsion-bar system was chosen. One of the most important issues was determining optimal track tensioning - in this case an active hydraulic system was applied. The selection of system parameters was performed with using numerical model based on multi-body dynamic approach. The results of numerical analysis were used to define parameters of active tensioning control system setup. LMS Virtual.Lab Motion was used for multi-body dynamics numerical calculation and Matlab/SIMULINK for control system simulation.

  8. Vapor-Compression Heat Pumps for Operation Aboard Spacecraft

    NASA Technical Reports Server (NTRS)

    Ruemmele, Warren; Ungar, Eugene; Cornwell, John

    2006-01-01

    Vapor-compression heat pumps (including both refrigerators and heat pumps) of a proposed type would be capable of operating in microgravity and would be safe to use in enclosed environments like those of spacecraft. The designs of these pumps would incorporate modifications of, and additions to, vapor-compression cycles of heat pumps now used in normal Earth gravitation, in order to ensure efficiency and reliability during all phases of operation, including startup, shutdown, nominal continuous operation, and peak operation. Features of such a design might include any or all of the following: (1) Configuring the compressor, condenser, evaporator, valves, capillary tubes (if any), and controls to function in microgravitation; (2) Selection of a working fluid that satisfies thermodynamic requirements and is safe to use in a closed crew compartment; (3) Incorporation of a solenoid valve and/or a check valve to prevent influx of liquid to the compressor upon startup (such influx could damage the compressor); (4) Use of a diode heat pipe between the cold volume and the evaporator to limit the influx of liquid to the compressor upon startup; and (5) Use of a heated block to vaporize any liquid that arrives at the compressor inlet.

  9. Design of the VLT data flow model

    NASA Astrophysics Data System (ADS)

    Peron, Michele; Grosbol, Preben

    1997-03-01

    The basic objective of modern observatories is to globally maximize their efficiency and ensure a high, constant and predictable data quality. These challenges can only be met if the scientific operation of such facilities, from the submission of observing programs to the archiving of all information, is carried out in a consistent and well controlled manner. The size, complexity and long operational lifetime of such systems make it difficult to predict and control their behavior with the necessary accuracy. Moreover they are subject to changes and are cumbersome to maintain. We present in this paper an object-oriented end-to-end operations model which describes the flow of science data associated with the operation of the VLT. The analysis model helped us to get a clear understanding of the problem domain. We were able in the design phase to partition the system into subsystems, each of them being allocated to a team for detailed design and implementation. Each of these subsystems is addressed in this paper. Prototypes will be implemented in the near future and tested on the new technology telescope (NTT). They will allow us to clarify the astronomical requirements and check the new operational concepts introduced to meet the ambitious goals of the VLT.

  10. A Secure RFID Tag Authentication Protocol with Privacy Preserving in Telecare Medicine Information System.

    PubMed

    Li, Chun-Ta; Weng, Chi-Yao; Lee, Cheng-Chi

    2015-08-01

    Radio Frequency Identification (RFID) based solutions are widely used for providing many healthcare applications include patient monitoring, object traceability, drug administration system and telecare medicine information system (TMIS) etc. In order to reduce malpractices and ensure patient privacy, in 2015, Srivastava et al. proposed a hash based RFID tag authentication protocol in TMIS. Their protocol uses lightweight hash operation and synchronized secret value shared between back-end server and tag, which is more secure and efficient than other related RFID authentication protocols. Unfortunately, in this paper, we demonstrate that Srivastava et al.'s tag authentication protocol has a serious security problem in that an adversary may use the stolen/lost reader to connect to the medical back-end server that store information associated with tagged objects and this privacy damage causing the adversary could reveal medical data obtained from stolen/lost readers in a malicious way. Therefore, we propose a secure and efficient RFID tag authentication protocol to overcome security flaws and improve the system efficiency. Compared with Srivastava et al.'s protocol, the proposed protocol not only inherits the advantages of Srivastava et al.'s authentication protocol for TMIS but also provides better security with high system efficiency.

  11. Efficient and secure outsourcing of genomic data storage.

    PubMed

    Sousa, João Sá; Lefebvre, Cédric; Huang, Zhicong; Raisaro, Jean Louis; Aguilar-Melchor, Carlos; Killijian, Marc-Olivier; Hubaux, Jean-Pierre

    2017-07-26

    Cloud computing is becoming the preferred solution for efficiently dealing with the increasing amount of genomic data. Yet, outsourcing storage and processing sensitive information, such as genomic data, comes with important concerns related to privacy and security. This calls for new sophisticated techniques that ensure data protection from untrusted cloud providers and that still enable researchers to obtain useful information. We present a novel privacy-preserving algorithm for fully outsourcing the storage of large genomic data files to a public cloud and enabling researchers to efficiently search for variants of interest. In order to protect data and query confidentiality from possible leakage, our solution exploits optimal encoding for genomic variants and combines it with homomorphic encryption and private information retrieval. Our proposed algorithm is implemented in C++ and was evaluated on real data as part of the 2016 iDash Genome Privacy-Protection Challenge. Results show that our solution outperforms the state-of-the-art solutions and enables researchers to search over millions of encrypted variants in a few seconds. As opposed to prior beliefs that sophisticated privacy-enhancing technologies (PETs) are unpractical for real operational settings, our solution demonstrates that, in the case of genomic data, PETs are very efficient enablers.

  12. Steady State Thermal Analyses of SCEPTOR X-57 Wingtip Propulsion

    NASA Technical Reports Server (NTRS)

    Schnulo, Sydney L.; Chin, Jeffrey C.; Smith, Andrew D.; Dubois, Arthur

    2017-01-01

    Electric aircraft concepts enable advanced propulsion airframe integration approaches that promise increased efficiency as well as reduced emissions and noise. NASA's fully electric Maxwell X-57, developed under the SCEPTOR program, features distributed propulsion across a high aspect ratio wing. There are 14 propulsors in all: 12 high lift motor that are only active during take off and climb, and 2 larger motors positioned on the wingtips that operate over the entire mission. The power electronics involved in the wingtip propulsion are temperature sensitive and therefore require thermal management. This work focuses on the high and low fidelity heat transfer analysis methods performed to ensure that the wingtip motor inverters do not reach their temperature limits. It also explores different geometry configurations involved in the X-57 development and any thermal concerns. All analyses presented are performed at steady state under stressful operating conditions, therefore predicting temperatures which are considered the worst-case scenario to remain conservative.

  13. Dreaming on Mars: How Curiosity Performs Actuator Warm-Up While Sleeping

    NASA Technical Reports Server (NTRS)

    Lee, Gene Y.; Donaldson, James A.

    2013-01-01

    Before the Curiosity rover can perform its science activities for the day, such as driving, moving its robotic arm, or drilling, it first has to ensure that its actuators are within their allowable flight temperatures (AFTs). When the rover is awake, flight software uses heaters to warm up and maintain thermal zones at operational temperatures. However, Curiosity spends about 70% of its time sleeping, with the flight computer off, in order to conserve energy. Dream Mode is a special behavior that allows the rover to execute warm-up activities while sleeping. Using Dream Mode, actuators can be warmed up to their AFTs before the flight computer wakes up and uses them - saving power and improving operational efficiency. This paper describes the motivation behind Dream Mode, how it was implemented and tested on Curiosity, and the challenges and lessons learned along the way.

  14. National Geospatial Program

    USGS Publications Warehouse

    Carswell, William J.

    2011-01-01

    increases the efficiency of the Nation's geospatial community by improving communications about geospatial data, products, services, projects, needs, standards, and best practices. The NGP comprises seven major components (described below), that are managed as a unified set. For example, The National Map establishes data standards and identifies geographic areas where specific types of geospatial data need to be incorporated into The National Map. Partnership Network Liaisons work with Federal, State, local, and tribal partners to help acquire the data. Geospatial technical operations ensure the quality control, integration, and availability to the public of the data acquired. The Emergency Operations Office provides the requirements to The National Map and, during emergencies and natural disasters, provides rapid dissemination of information and data targeted to the needs of emergency responders. The National Atlas uses data from The National Map and other sources to make small-scale maps and multimedia articles about the maps.

  15. Coordinated distribution network control of tap changer transformers, capacitors and PV inverters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ceylan, Oğuzhan; Liu, Guodong; Tomsovic, Kevin

    A power distribution system operates most efficiently with voltage deviations along a feeder kept to a minimum and must ensure all voltages remain within specified limits. Recently with the increased integration of photovoltaics, the variable power output has led to increased voltage fluctuations and violation of operating limits. This study proposes an optimization model based on a recently developed heuristic search method, grey wolf optimization, to coordinate the various distribution controllers. Several different case studies on IEEE 33 and 69 bus test systems modified by including tap changing transformers, capacitors and photovoltaic solar panels are performed. Simulation results are comparedmore » to two other heuristic-based optimization methods: harmony search and differential evolution. Finally, the simulation results show the effectiveness of the method and indicate the usage of reactive power outputs of PVs facilitates better voltage magnitude profile.« less

  16. Coordinated distribution network control of tap changer transformers, capacitors and PV inverters

    DOE PAGES

    Ceylan, Oğuzhan; Liu, Guodong; Tomsovic, Kevin

    2017-06-08

    A power distribution system operates most efficiently with voltage deviations along a feeder kept to a minimum and must ensure all voltages remain within specified limits. Recently with the increased integration of photovoltaics, the variable power output has led to increased voltage fluctuations and violation of operating limits. This study proposes an optimization model based on a recently developed heuristic search method, grey wolf optimization, to coordinate the various distribution controllers. Several different case studies on IEEE 33 and 69 bus test systems modified by including tap changing transformers, capacitors and photovoltaic solar panels are performed. Simulation results are comparedmore » to two other heuristic-based optimization methods: harmony search and differential evolution. Finally, the simulation results show the effectiveness of the method and indicate the usage of reactive power outputs of PVs facilitates better voltage magnitude profile.« less

  17. High-intensity power-resolved radiation imaging of an operational nuclear reactor.

    PubMed

    Beaumont, Jonathan S; Mellor, Matthew P; Villa, Mario; Joyce, Malcolm J

    2015-10-09

    Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors.

  18. Optical silicones for use in harsh operating environments

    NASA Astrophysics Data System (ADS)

    Riegler, Bill; Bruner, Stephen J.; Elgin, Randall

    2004-12-01

    The optics industry widely uses silcones for various fiber optic cable potting applications and light emitting diode protection. Optics manufacturers know traditional silicone elastomers, gels, thixotropic gels, and fluids not only perform extremely well in high temperature applications, but also offer refractive index matching so that silicones can transmit light with admirable efficiency. However, because environmental conditions may affect a material's performance over time, one must also consider the conditions the device operates in to ensure long-term reliability. External environments may include exposure to a combination of UV light and temperature, while other environments may expose devices to hydrocarbon based fuels. This paper will delve into the chemistry of silicones and functional groups that lend themselves to properties such as temperature, fuel, and radiation resistance to show shy silicone is the material of choice for optic applications under normally harmful forms of exposure. Data will be presented to examine silicone's performance in these environment.

  19. Highly Automated Arrival Management and Control System Suitable for Early NextGen

    NASA Technical Reports Server (NTRS)

    Swenson, Harry N.; Jung, Jaewoo

    2013-01-01

    This is a presentation of previously published work conducted in the development of the Terminal Area Precision Scheduling and Spacing (TAPSS) system. Included are concept and technical descriptions of the TAPSS system and results from human in the loop simulations conducted at Ames Research Center. The Terminal Area Precision Scheduling and Spacing system has demonstrated through research and extensive high-fidelity simulation studies to have benefits in airport arrival throughput, supporting efficient arrival descents, and enabling mixed aircraft navigation capability operations during periods of high congestion. NASA is currently porting the TAPSS system into the FAA TBFM and STARS system prototypes to ensure its ability to operate in the FAA automation Infrastructure. NASA ATM Demonstration Project is using the the TAPSS technologies to provide the ground-based automation tools to enable airborne Interval Management (IM) capabilities. NASA and the FAA have initiated a Research Transition Team to enable potential TAPSS and IM Technology Transfer.

  20. Update of KSC activities for the space transportation system

    NASA Technical Reports Server (NTRS)

    Gray, R. H.

    1979-01-01

    The paper is a status report on the facilities and planned operations at the Kennedy Space Center (KSC) that will support Space Shuttle launches. The conversion of KSC facilities to support efficient and economical checkout and launch operations in the era of the Space Shuttle is nearing completion. The driving force behind the KSC effort has been the necessity of providing adequate and indispensable facilities and support systems at minimum cost. This required the optimum utilization of existing buildings, equipment and systems, both at KSC and at Air Force property on Cape Canaveral, as well as the construction of two major new facilities and several minor ones. The entirely new structures discussed are the Shuttle Landing Facility and Orbiter Processing Facility. KSC stands ready to provide the rapid reliable economical landing-to-launch processing needed to ensure the success of this new space transportation system.

  1. Methodology for Automated Detection of Degradation and Faults in Packaged Air Conditioners and Heat Pumps Using Only Two Sensors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2016-02-10

    The software was created in the process of developing a system known as the Smart Monitoring and Diagnostic System (SMDS) for packaged air conditioners and heat pumps used on commercial buildings (known as RTUs). The SMDS provides automated remote monitoring and detection of performance degradation and faults in these RTUs and could increase the awareness by building owners and maintenance providers of the condition of the equipment, the cost of operating it in degraded condition, and the quality of maintenance and repair service when it is performed. The SMDS provides these capabilities and would enable conditioned-based maintenance rather than themore » reactive and schedule-based preventive maintenance commonly used today, when maintenance of RTUs is done at all. Improved maintenance would help ensure persistent peak operating efficiencies, reducing energy consumption by an estimated 10% to 30%.« less

  2. High-intensity power-resolved radiation imaging of an operational nuclear reactor

    PubMed Central

    Beaumont, Jonathan S.; Mellor, Matthew P.; Villa, Mario; Joyce, Malcolm J.

    2015-01-01

    Knowledge of the neutron distribution in a nuclear reactor is necessary to ensure the safe and efficient burnup of reactor fuel. Currently these measurements are performed by in-core systems in what are extremely hostile environments and in most reactor accident scenarios it is likely that these systems would be damaged. Here we present a compact and portable radiation imaging system with the ability to image high-intensity fast-neutron and gamma-ray fields simultaneously. This system has been deployed to image radiation fields emitted during the operation of a TRIGA test reactor allowing a spatial visualization of the internal reactor conditions to be obtained. The imaged flux in each case is found to scale linearly with reactor power indicating that this method may be used for power-resolved reactor monitoring and for the assay of ongoing nuclear criticalities in damaged nuclear reactors. PMID:26450669

  3. 40 CFR 146.88 - Injection well operating requirements.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., the owner or operator must ensure that injection pressure does not exceed 90 percent of the fracture pressure of the injection zone(s) so as to ensure that the injection does not initiate new fractures or propagate existing fractures in the injection zone(s). In no case may injection pressure initiate fractures...

  4. 40 CFR 146.88 - Injection well operating requirements.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., the owner or operator must ensure that injection pressure does not exceed 90 percent of the fracture pressure of the injection zone(s) so as to ensure that the injection does not initiate new fractures or propagate existing fractures in the injection zone(s). In no case may injection pressure initiate fractures...

  5. 40 CFR 146.88 - Injection well operating requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., the owner or operator must ensure that injection pressure does not exceed 90 percent of the fracture pressure of the injection zone(s) so as to ensure that the injection does not initiate new fractures or propagate existing fractures in the injection zone(s). In no case may injection pressure initiate fractures...

  6. 40 CFR 146.88 - Injection well operating requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., the owner or operator must ensure that injection pressure does not exceed 90 percent of the fracture pressure of the injection zone(s) so as to ensure that the injection does not initiate new fractures or propagate existing fractures in the injection zone(s). In no case may injection pressure initiate fractures...

  7. 21 CFR 212.20 - What activities must I perform to ensure drug quality?

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... operations. You must oversee production operations to ensure that each PET drug meets the requirements of the... of a PET drug. (c) Specifications and processes. You must approve or reject, before implementation..., and purity of a PET drug. You must demonstrate that any change does not adversely affect the identity...

  8. 21 CFR 212.20 - What activities must I perform to ensure drug quality?

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... operations. You must oversee production operations to ensure that each PET drug meets the requirements of the... of a PET drug. (c) Specifications and processes. You must approve or reject, before implementation..., and purity of a PET drug. You must demonstrate that any change does not adversely affect the identity...

  9. 21 CFR 212.20 - What activities must I perform to ensure drug quality?

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... operations. You must oversee production operations to ensure that each PET drug meets the requirements of the... of a PET drug. (c) Specifications and processes. You must approve or reject, before implementation..., and purity of a PET drug. You must demonstrate that any change does not adversely affect the identity...

  10. 75 FR 63609 - Oil and Gas and Sulphur Operations in the Outer Continental Shelf-Safety and Environmental...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-15

    ... safety of the offshore facility, including ensuring that all contractors and subcontractors have safety... safety analysis (task level); (3) Procedures to verify that contractors are conducting their activities in accordance with the operator's SEMS program and an evaluation to ensure that contractors have the...

  11. Optimal Technology Investment and Operation in Zero-Net-Energy Buildings with Demand Response

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stadler , Michael; Siddiqui, Afzal; Marnay, Chris

    The US Department of Energy has launched the Zero-Net-Energy (ZNE) Commercial Building Initiative (CBI) in order to develop commercial buildings that produce as much energy as they use. Its objective is to make these buildings marketable by 2025 such that they minimize their energy use through cutting-edge energy-efficient technologies and meet their remaining energy needs through on-site renewable energy generation. We examine how such buildings may be implemented within the context of a cost- or carbon-minimizing microgrid that is able to adopt and operate various technologies, such as photovoltaic (PV) on-site generation, heat exchangers, solar thermal collectors, absorption chillers, andmore » passive / demand-response technologies. We use a mixed-integer linear program (MILP) that has a multi-criteria objective function: the minimization of a weighted average of the building's annual energy costs and carbon / CO2 emissions. The MILP's constraints ensure energy balance and capacity limits. In addition, constraining the building's energy consumed to equal its energy exports enables us to explore how energy sales and demand-response measures may enable compliance with the CBI. Using a nursing home in northern California and New York with existing tariff rates and technology data, we find that a ZNE building requires ample PV capacity installed to ensure electricity sales during the day. This is complemented by investment in energy-efficient combined heat and power equipment, while occasional demand response shaves energy consumption. A large amount of storage is also adopted, which may be impractical. Nevertheless, it shows the nature of the solutions and costs necessary to achieve ZNE. For comparison, we analyze a nursing home facility in New York to examine the effects of a flatter tariff structure and different load profiles. It has trouble reaching ZNE status and its load reductions as well as efficiency measures need to be more effective than those in the CA case. Finally, we illustrate that the multi-criteria frontier that considers costs and carbon emissions in the presence of demand response dominates the one without it.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lower, Mark D; Christopher, Timothy W; Oland, C Barry

    The Facilities and Operations (F&O) Directorate is sponsoring a continuous process improvement (CPI) program. Its purpose is to stimulate, promote, and sustain a culture of improvement throughout all levels of the organization. The CPI program ensures that a scientific and repeatable process exists for improving the delivery of F&O products and services in support of Oak Ridge National Laboratory (ORNL) Management Systems. Strategic objectives of the CPI program include achieving excellence in laboratory operations in the areas of safety, health, and the environment. Identifying and promoting opportunities for achieving the following critical outcomes are important business goals of the CPImore » program: improved safety performance; process focused on consumer needs; modern and secure campus; flexibility to respond to changing laboratory needs; bench strength for the future; and elimination of legacy issues. The Steam Pressure-Reducing Station (SPRS) Safety and Energy Efficiency Improvement Project, which is under the CPI program, focuses on maintaining and upgrading SPRSs that are part of the ORNL steam distribution network. This steam pipe network transports steam produced at the ORNL steam plant to many buildings in the main campus site. The SPRS Safety and Energy Efficiency Improvement Project promotes excellence in laboratory operations by (1) improving personnel safety, (2) decreasing fuel consumption through improved steam system energy efficiency, and (3) achieving compliance with applicable worker health and safety requirements. The SPRS Safety and Energy Efficiency Improvement Project being performed by F&O is helping ORNL improve both energy efficiency and worker safety by modifying, maintaining, and repairing SPRSs. Since work began in 2006, numerous energy-wasting steam leaks have been eliminated, heat losses from uninsulated steam pipe surfaces have been reduced, and deficient pressure retaining components have been replaced. These improvements helped ORNL reduce its overall utility costs by decreasing the amount of fuel used to generate steam. Reduced fuel consumption also decreased air emissions. These improvements also helped lower the risk of burn injuries to workers and helped prevent shrapnel injuries resulting from missiles produced by pressurized component failures. In most cases, the economic benefit and cost effectiveness of the SPRS Safety and Energy Efficiency Improvement Project is reflected in payback periods of 1 year or less.« less

  13. Energy and Water Efficiency on Campus | NREL

    Science.gov Websites

    Energy and Water Efficiency on Campus Energy and Water Efficiency on Campus NREL ensures the resiliency of our future energy and water systems through energy efficiency strategies and technologies , renewable energy, and water efficiency on the NREL campus. FY17 Energy Intensity. The South Table Mountain

  14. A study of the application of permeable pavements as a sustainable technique for the mitigation of soil sealing in cities: A case study in the south of Spain.

    PubMed

    Rodríguez-Rojas, M I; Huertas-Fernández, F; Moreno, B; Martínez, G; Grindlay, A L

    2018-01-01

    The use of 'Sustainable Urban Drainage Systems' (SuDS) has become a more sustainable alternative for managing stormwater, greatly reducing the effects of soil sealing. However, the lack of monitored projects is a barrier to their implementation, as the companies which manage sewer systems cannot quantify the impact and cost-efficiency of SuDS. This paper presents a project developed in the south of Spain, in which the hydrological performance of 3 types of permeable pavements has been analyzed. The efficiencies obtained (over 70%), are higher than or similar to the efficiencies of vegetated SuDS, demonstrating the capacity of these pavements for delaying catchment area response and slow flow velocities, reducing the operating costs of sewer systems and the flood risk, while also ensuring service conditions for cities and safety for pedestrian and vehicular circulation. This pilot site has generated results which are sufficiently consistent so as to be representative, and serve as a reference for other cities with a similar climate. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Problems of standardizing and technical regulation in the electric power industry

    NASA Astrophysics Data System (ADS)

    Grabchak, E. P.

    2016-12-01

    A mandatory condition to ensure normal operation of a power system and efficiency in the sector is standardization and legal regulation of technological activities of electric power engineering entities and consumers. Compared to the times of USSR, the present-time technical guidance documents are not mandatory to follow in most cases, being of an advisory nature due to the lack of new ones. During the last five years, the industry has been showing a deterioration of the situation in terms of ensuring reliability and engineering controllability as a result of the dominant impact of short-term market stimuli and the differences in basic technological policies. In absence of clear requirements regarding the engineering aspects of such activities, production operation does not contribute to the preserving of technical integrity of the Russian power system, which leads to the loss of performance capability and controllability and causes disturbances in the power supply to consumers. The result of this problem is a high rate of accident incidence. The dynamics of accidents by the type of equipment is given, indicating a persisting trend of growth in the number of accidents, which are of a systematic nature. Several problematic aspects of engineering activities of electric power engineering entities, requiring standardization and legal regulation are pointed out: in the domestic power system, a large number of power electrotechnical and generating equipment operate along with systems of regulation, which do not comply with the principles and technical rules representing a framework where the Energy System of Russia is built and functioning

  16. Enabling Airspace Integration for High Density Urban Air Mobility

    NASA Technical Reports Server (NTRS)

    Mueller, Eric Richard

    2017-01-01

    Aviation technologies and concepts have reached a level of maturity that may soon enable an era of on-demand mobility (ODM) fueled by quiet, efficient, and largely automated air taxis. However, successfully bringing such a system to fruition will require introducing orders of magnitude more aircraft to a given airspace volume than can be accommodated by the traditional air traffic control system, among other important technical challenges. The airspace integration problem is further compounded by requirements to set aside appropriate ground infrastructure for take-off and landing areas and ensuring these new aircraft types and their operations do not burden traditional airspace users and air traffic control. These challenge for ODM may be significantly reduced by extending the concepts and technologies developed to manage small unmanned aircraft systems (UAS) at low altitude the UAS traffic management (UTM) system to higher altitudes and aircraft with humans onboard in controlled airspace, or by equipping ODM aircraft with advanced sensors, algorithms, and interfaces. The precedent of operational freedom inherent in visual flight rules and the technologies developed for large UAS and commercial aircraft automation will contribute to the evolution of an ODM system enabled by UTM. This paper describes the set of air traffic services, normally provided by the traditional air traffic system, that an ODM system would implement to achieve the high densities needed for ODMs economic viability. Finally, the paper proposes a framework for integrating, evaluating, and deploying low-, medium-, and high-density ODM concepts that build on each other to ensure operational and economic feasibility at every step.

  17. Necessity of creating digital tools to ensure efficiency of technical means

    NASA Astrophysics Data System (ADS)

    Rakov, V. I.; Zakharova, O. V.

    2018-05-01

    The authors estimated the problems of functioning of technical objects. The article notes that the increasing complexity of automation systems may lead to an increase of the redundant resource in proportion to the number of components and relationships in the system, and to the need of the redundant resource constant change that can make implementation of traditional structures with redundancy unnecessarily costly (Standby System, Fault Tolerance, High Availability). It proposes the idea of creating digital tools to ensure efficiency of technical facilities.

  18. 43 CFR 3480.0-1 - Purpose.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... Federal coal; ensure production practices that prevent wasting or loss of coal or other resources; avoid unnecessary damage to coal-bearing or mineral-bearing formations; ensure MER of Federal coal; ensure that... regulation of surface and underground coal mining operations; require an accurate record and accounting of...

  19. 43 CFR 3480.0-1 - Purpose.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... Federal coal; ensure production practices that prevent wasting or loss of coal or other resources; avoid unnecessary damage to coal-bearing or mineral-bearing formations; ensure MER of Federal coal; ensure that... regulation of surface and underground coal mining operations; require an accurate record and accounting of...

  20. 43 CFR 3480.0-1 - Purpose.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... Federal coal; ensure production practices that prevent wasting or loss of coal or other resources; avoid unnecessary damage to coal-bearing or mineral-bearing formations; ensure MER of Federal coal; ensure that... regulation of surface and underground coal mining operations; require an accurate record and accounting of...

  1. 43 CFR 3480.0-1 - Purpose.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... Federal coal; ensure production practices that prevent wasting or loss of coal or other resources; avoid unnecessary damage to coal-bearing or mineral-bearing formations; ensure MER of Federal coal; ensure that... regulation of surface and underground coal mining operations; require an accurate record and accounting of...

  2. What factors influence attending surgeon decisions about resident autonomy in the operating room?

    PubMed

    Williams, Reed G; George, Brian C; Meyerson, Shari L; Bohnen, Jordan D; Dunnington, Gary L; Schuller, Mary C; Torbeck, Laura; Mullen, John T; Auyang, Edward; Chipman, Jeffrey G; Choi, Jennifer; Choti, Michael; Endean, Eric; Foley, Eugene F; Mandell, Samuel; Meier, Andreas; Smink, Douglas S; Terhune, Kyla P; Wise, Paul; DaRosa, Debra; Soper, Nathaniel; Zwischenberger, Joseph B; Lillemoe, Keith D; Fryer, Jonathan P

    2017-12-01

    Educating residents in the operating room requires balancing patient safety, operating room efficiency demands, and resident learning needs. This study explores 4 factors that influence the amount of autonomy supervising surgeons afford to residents. We evaluated 7,297 operations performed by 487 general surgery residents and evaluated by 424 supervising surgeons from 14 training programs. The primary outcome measure was supervising surgeon autonomy granted to the resident during the operative procedure. Predictor variables included resident performance on that case, supervising surgeon history with granting autonomy, resident training level, and case difficulty. Resident performance was the strongest predictor of autonomy granted. Typical autonomy by supervising surgeon was the second most important predictor. Each additional factor led to a smaller but still significant improvement in ability to predict the supervising surgeon's autonomy decision. The 4 factors together accounted for 54% of decision variance (r = 0.74). Residents' operative performance in each case was the strongest predictor of how much autonomy was allowed in that case. Typical autonomy granted by the supervising surgeon, the second most important predictor, is unrelated to resident proficiency and warrants efforts to ensure that residents perform each procedure with many different supervisors. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. 75 FR 49365 - Airworthiness Directives; BAE Systems (Operations) Limited Model BAe 146-100A and -200A Airplanes

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-08-13

    ... lift to ensure that the wheel brakes can provide the necessary speed reduction. * * * * * The effects... brakes can provide the necessary speed reduction. A review of the changing operational profile of the... landing to provide aerodynamic braking and to dump lift to ensure that the wheel brakes can provide the...

  4. 33 CFR 150.608 - Who is responsible for ensuring that the personnel use or wear protective equipment and are...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... DEEPWATER PORTS: OPERATIONS Workplace Safety and Health Personal Protective Equipment § 150.608 Who is...) Each deepwater port operator must ensure that all personnel wear personal protective equipment when... that the personnel use or wear protective equipment and are trained in its use? 150.608 Section 150.608...

  5. 33 CFR 150.608 - Who is responsible for ensuring that the personnel use or wear protective equipment and are...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... DEEPWATER PORTS: OPERATIONS Workplace Safety and Health Personal Protective Equipment § 150.608 Who is...) Each deepwater port operator must ensure that all personnel wear personal protective equipment when... that the personnel use or wear protective equipment and are trained in its use? 150.608 Section 150.608...

  6. NHEXAS PHASE I ARIZONA STUDY--STANDARD OPERATING PROCEDURE FOR FREEZER MAINTENANCE AND TEMPERATURE VERIFICATION FOR SAMPLE INTEGRITY (BCO-L-25.0)

    EPA Science Inventory

    The purpose of this SOP is to ensure suitable temperature maintenance of freezers used for storage of samples. This procedure was followed to ensure consistent data retrieval during the Arizona NHEXAS project and the "Border" study. Keywords: freezers; operation.

    The National H...

  7. Structural Analyses of Stirling Power Convertor Heater Head for Long-Term Reliability, Durability, and Performance

    NASA Technical Reports Server (NTRS)

    Halford, Gary R.; Shah, Ashwin; Arya, Vinod K.; Krause, David L.; Bartolotta, Paul A.

    2002-01-01

    Deep-space missions require onboard electric power systems with reliable design lifetimes of up to 10 yr and beyond. A high-efficiency Stirling radioisotope power system is a likely candidate for future deep-space missions and Mars rover applications. To ensure ample durability, the structurally critical heater head of the Stirling power convertor has undergone extensive computational analyses of operating temperatures (up to 650 C), stresses, and creep resistance of the thin-walled Inconel 718 bill of material. Durability predictions are presented in terms of the probability of survival. A benchmark structural testing program has commenced to support the analyses. This report presents the current status of durability assessments.

  8. On the energy efficiency of cyclic mechanisms

    NASA Astrophysics Data System (ADS)

    Briskin, E. S.; Kalinin, Ya. V.; Maloletov, A. V.; Chernyshev, V. V.

    2014-01-01

    We consider cyclic mechanisms with one degree of freedom driven by engines of various types such as alternating and direct current motors, internal combustion engines, etc. We pose the problem of modifying the mechanism structure by joining additional links or by varying the parameters or operation mode of the original mechanism so as to minimize the thermal losses in the driving motor. The solution is based on the minimization of the functional determining the irreversible power losses. We show that, for the engines considered, all cyclic mechanisms with one degree of freedom should satisfy a fundamental condition ensuring the minimum of losses. We consider two examples, one of which corresponds to actually existing mechanisms.

  9. Business Entity Selection: Why It Matters to Healthcare Practitioners. Part III--Nonprofits, Ethics, Practice Implications, and Conclusions.

    PubMed

    Nithman, Robert W

    2015-01-01

    The Bureau of Labor statistics indicates only a 50% four-year survivability rate among businesses classified as "education and health services." Gaining knowledge of IRS business entities can result in cost savings, operational efficiency, reduced liability, and enhanced sustainability. Each entity has unique disadvantages, depending on size, diversity of ownership, desire to expand, and profitability. Business structures should be compatible with organizational mission or vision statements, services and products, and professional codes of ethics. Healthcare reform will require greater business acumen. We have an ethical duty to disseminate and acquire the knowledge to properly establish and manage healthcare practices to ensure sustainable services that protect and serve the community.

  10. Korea: balancing economic growth and social protection for older adults.

    PubMed

    Yoon, Hyun-Sook

    2013-06-01

    Population aging in Korea is projected to be the most rapid among Organisation for Economic Co-operation and Development (OECD) countries between 2000 and 2050. However, social spending in Korea remains low, reflecting Korea's relatively young population, limited health and long-term care insurance coverage, and immaturity of its pension system. As these factors evolve in coming years, social spending in Korea is likely to rise toward the OECD average. Sustaining economic growth requires policies to mitigate the impact of rapid population aging by providing social protection for the elderly population. Korea confronts difficult challenges in balancing economic growth and social protection for the elderly population, whereas also ensuring efficiency in social spending.

  11. Improving the Quality and Scope of EIA Data

    EIA Publications

    2011-01-01

    Section 805(a) of the Energy Independence and Security Act of 2007 (EISA), Public Law 110-1401 requires the U.S. Energy Information Administration (EIA) to establish a five-year plan to enhance the quality and scope of its data collection necessary to ensure that the scope, accuracy, and timeliness of the information needed for efficient functioning of energy markets and related financial operations. This report is in response to section 805(b) of EISA which calls on EIA to submit to Congress the plan established under subsection (a), including a description of any improvements needed to enhance the ability of the Administrator to collect and process energy information in a manner consistent with the needs of energy markets.

  12. Using Visualization in Cockpit Decision Support Systems

    NASA Technical Reports Server (NTRS)

    Aragon, Cecilia R.

    2005-01-01

    In order to safely operate their aircraft, pilots must make rapid decisions based on integrating and processing large amounts of heterogeneous information. Visual displays are often the most efficient method of presenting safety-critical data to pilots in real time. However, care must be taken to ensure the pilot is provided with the appropriate amount of information to make effective decisions and not become cognitively overloaded. The results of two usability studies of a prototype airflow hazard visualization cockpit decision support system are summarized. The studies demonstrate that such a system significantly improves the performance of helicopter pilots landing under turbulent conditions. Based on these results, design principles and implications for cockpit decision support systems using visualization are presented.

  13. Electric Turbo Pump

    NASA Technical Reports Server (NTRS)

    Steckler, Jessica

    2017-01-01

    NASA is working in junction with another company on the Electric Turbo Pump. Analysis of the impeller, including the blades, volute housing, and associated components, will take place in ANSYS. Contours of the deformed and stress were recorded to assess the parts. Campbell diagrams will be considered as mentioned to find the operating regions of the impeller and volute housing, more specifically what speed is ideal to ensure that the impeller does not begin to vibrate at a frequency that will break it. More than one material will be examined as per request by the designer to determine which material is more cost efficient, easy to machine, and can withstand the stress values that will be placed on it.

  14. A Worst-Case Approach for On-Line Flutter Prediction

    NASA Technical Reports Server (NTRS)

    Lind, Rick C.; Brenner, Martin J.

    1998-01-01

    Worst-case flutter margins may be computed for a linear model with respect to a set of uncertainty operators using the structured singular value. This paper considers an on-line implementation to compute these robust margins in a flight test program. Uncertainty descriptions are updated at test points to account for unmodeled time-varying dynamics of the airplane by ensuring the robust model is not invalidated by measured flight data. Robust margins computed with respect to this uncertainty remain conservative to the changing dynamics throughout the flight. A simulation clearly demonstrates this method can improve the efficiency of flight testing by accurately predicting the flutter margin to improve safety while reducing the necessary flight time.

  15. Ecological Safety of the Internal Space of the Cattle-Breeding Facility (Cowshed)

    NASA Astrophysics Data System (ADS)

    Potseluev, A. A.; Nazarov, I. V.; Tolstoukhova, T. N.; Kostenko, M. V.

    2018-01-01

    The article emphasizes the importance of observing the ecology of the internal airspace. The factors affecting the state of the air in the internal space of the cattle-breeding facility (cowshed) are revealed. Technical and technological solutions providing for a reduction in the airspace contamination of the livestock facility are proposed. The results of investigations of a technological operation for treating skin integuments of cows with activated water are disclosed, as well as the constructive solution of a heat and power unit that ensures a change in the hydrogen index of the treated water. The justification of the efficiency of the proposed technical and technological solutions is given.

  16. Business Entity Selection: Why It Matters to Healthcare Practitioners. Part II--Corporations, Limited Liability Companies, and Professional Entities.

    PubMed

    Nithman, Robert W

    2015-01-01

    The Bureau of Labor statistics indicates only a 50% four-year survivability rate among businesses classified as "education and health services." Gaining knowledge of IRS business entities can result in cost savings, operational efficiency, reduced liability, and enhanced sustainability. Each entity has unique disadvantages, depending on size, diversity of ownership, desire to expand, and profitability. Business structures should be compatible with organizational mission or vision statements, services and products, and professional codes of ethics. Healthcare reform will require greater business acumen. We have an ethical duty to disseminate and acquire the knowledge to properly establish and manage healthcare practices to ensure sustainable services that protect and serve the community.

  17. Using Knowledge Base for Event-Driven Scheduling of Web Monitoring Systems

    NASA Astrophysics Data System (ADS)

    Kim, Yang Sok; Kang, Sung Won; Kang, Byeong Ho; Compton, Paul

    Web monitoring systems report any changes to their target web pages by revisiting them frequently. As they operate under significant resource constraints, it is essential to minimize revisits while ensuring minimal delay and maximum coverage. Various statistical scheduling methods have been proposed to resolve this problem; however, they are static and cannot easily cope with events in the real world. This paper proposes a new scheduling method that manages unpredictable events. An MCRDR (Multiple Classification Ripple-Down Rules) document classification knowledge base was reused to detect events and to initiate a prompt web monitoring process independent of a static monitoring schedule. Our experiment demonstrates that the approach improves monitoring efficiency significantly.

  18. Compliance Verification Paths for Residential and Commercial Energy Codes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conover, David R.; Makela, Eric J.; Fannin, Jerica D.

    2011-10-10

    This report looks at different ways to verify energy code compliance and to ensure that the energy efficiency goals of an adopted document are achieved. Conformity assessment is the body of work that ensures compliance, including activities that can ensure residential and commercial buildings satisfy energy codes and standards. This report identifies and discusses conformity-assessment activities and provides guidance for conducting assessments.

  19. Implementation of improved underbalanced drilling in AbuDhabi onshore field

    NASA Astrophysics Data System (ADS)

    Alhammadi, Adel Mohammed

    Abu Dhabi Company for Onshore Oil Operations (ADCO) is considering Underbalanced Drilling (UBD) as a means to develop lower permeability units in its fields. In addition to productivity and recovery gains, ADCO also expects reservoir characterization benefits from UBD. Reservoir screening studies were carried out on all of ADCO's reservoirs to determine their applicability for UBD. The primary business benefits of UBD were determined to be reservoir characterization, damage Mitigation, and rate of Penetration "ROP" Improvement. Apart from the primary benefits, some of the secondary benefits of UBD that were identified beforehand included rig performance. Since it's a trial wells, the challenge was to drill these wells safely, efficiently and of course meeting well objectives. Many operators worldwide drill these well in underbalanced mode but complete it overbalanced. In our case the plan was to drill and complete these wells in underbalanced condition. But we had to challenge most operators and come up with special and unique casing hanger design to ensure well control barriers exists while fishing the control line of the Downhole Deployment Valve "DDV". After intensive studies and planning, the hanger was designed as per our recommendations and found to be effective equipment that optimized the operational time and the cost as well. This report will provide better understanding of UBD technique in general and shade on the special designed casing hanger compared to conventional or what's most used worldwide. Even thought there were some issues while running the casing hanger prior drilling but managed to capture the learning's from each well and re-modified the hanger and come up with better deign for the future wells. Finally, the new design perform a good performance of saving the operation time and assisting the project to be done in a safe and an easy way without a major impact on the well cost. This design helped to drill and complete these wells safely with requirement to kill the wells and this ensured least reservoir damage.

  20. 77 FR 47800 - Adoption of Recommendations

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-10

    ... recommendations designed to ensure that agencies satisfy the existing requirements in the most efficient and... make decisions on their implementation. The Conference based these recommendations on research reports... sweeping measures designed to ensure that agencies' regulations advance legitimate goals, such as Executive...

  1. Life Testing of Yb14MnSb11 for High Performance Thermoelectric Couples

    NASA Technical Reports Server (NTRS)

    Paik, Jong-Ah; Brandon, Erik; Caillat, Thierry; Ewell, Richard; Fleurial, Jean-Pierre

    2011-01-01

    The goal of this study is to verify the long term stability of Yb14MnSb11 for high performance thermoelectric (TE) couples. Three main requirements need to be satisfied to ensure the long term stability of thermoelectric couples: 1) stable thermoelectric properties, 2) stable bonding interfaces, and 3) adequate sublimation suppression. The efficiency of the couple is primarily based on the thermoelectric properties of the materials selected for the couple. Therefore, these TE properties should exhibit minimal degradation during the operating period of the thermoelectric couples. The stability of the bonding is quantified by low contact resistances of the couple interfaces. In order to ensure high efficiency, the contact resistances of the bonding interfaces should be negligible. Sublimation suppression is important because the majority of thermoelectric materials used for power generation have peak figures of merit at temperatures where sublimation rates are high. Controlling sublimation is also essential to preserve the efficiency of the couple. During the course of this research, three different life tests were performed with Yb14MnSb11 coupons. TE properties of Yb14MnSb11 exhibited no degradation after 6 months of aging at 1273K, and the electrical contact resistance between a thin metallization layer and the Yb14MnSb11 remained negligible after 1500hr aging at 1273K. A sublimation suppression layer for Yb14MnSb11 was developed and demonstrated for more than 18 months with coupon testing at 1273K. These life test data indicate that thermoelectric elements based on Yb14MnSb11 are a promising technology for use in future high performance thermoelectric power generating couples.

  2. Joint Polar Satellite System (JPSS) Common Ground System (CGS) Technical Performance Measures of the Block 2 Architecture

    NASA Astrophysics Data System (ADS)

    Grant, K. D.; Panas, M.

    2016-12-01

    NOAA and NASA are jointly acquiring the next-generation civilian weather satellite system: the Joint Polar Satellite System (JPSS). JPSS replaced the afternoon orbit component and ground processing of NOAA's old POES system. JPSS satellites carry sensors that collect meteorological, oceanographic, climatological, and solar-geophysical observations of the earth, atmosphere, and space. The ground processing system for JPSS is known as the JPSS Common Ground System (JPSS CGS). Developed and maintained by Raytheon Intelligence, Information and Services (IIS), the CGS is a globally distributed, multi-mission system serving NOAA, NASA and their national and international partners. The CGS has demonstrated its scalability and flexibility to incorporate multiple missions efficiently and with minimal cost, schedule and risk, while strengthening global partnerships in weather and environmental monitoring. The CGS architecture has been upgraded to Block 2.0 to satisfy several key objectives, including: "operationalizing" the first satellite, Suomi NPP, which originally was a risk reduction mission; leveraging lessons learned in multi-mission support, taking advantage of newer, more reliable and efficient technologies and satisfying constraints due of the continually evolving budgetary environment. To ensure the CGS meets these needs, we have developed 48 Technical Performance Measures (TPMs) across 9 categories: Data Availability, Data Latency, Operational Availability, Margin, Scalability, Situational Awareness, Transition (between environments and sites), WAN Efficiency, and Data Recovery Processing. This paper will provide an overview of the CGS Block 2.0 architecture, with particular focus on the 9 TPM categories listed above. We will describe how we ensure the deployed architecture meets these TPMs to satisfy our multi-mission objectives with the deployment of Block 2.0.

  3. Laboratory 2000 - The challenge of achieving efficiency and compliance

    PubMed Central

    Potter, John A.

    2001-01-01

    Significant advances within the field of laboratory automation and instrumentation have greatly benefited the pharmaceutical industry in its quest to discover, develop and monitor the quality of its products. Necessitated by the need for efficiency and greater productivity, faster and more cost-effective means of analyses exist in the form of devices made up of complex electromechanical components, all logically controlled and most with the capability to interface with sophisticated information systems. This benefit does come with a price, a greater responsibility to ensure data quality while complying with increased regulatory requirements. Commitment to this responsibility presents a substantial challenge to scientists and managers throughout the industry. Due diligence must be demonstrated. A comprehensive evaluation of every laboratory system utilized, a solid plan of action for correcting any known deficiencies including upgrades or complete replacement, and an accurate monitoring procedure with the ability to measure progress are all absolute necessities to ensure success. Crossfunctional team effott and communication must transpire with full managerial support. Vendors need to be audited, made aware of any functional or quality inadequacies they possess as well as the pharmaceutical industry's expectation for these shortcomings to be rapidly corrected. Suppliers of these systems should also be encouraged to provide complete ‘off-the-shelf solutions’ to eliminate the need for in-house customization. The requirements for regulatory compliance in today's electronic environment have been well publicized. The players involved are not only listening, but also taking the necessary steps to retain and improve efficiency without sacrificing quality. With the proper measures, planning and action, a highly automated, cost-effective and compliant laboratory operation can become a reality. PMID:18924711

  4. Real-Time Operation of the International Space Station

    NASA Astrophysics Data System (ADS)

    Suffredini, M. T.

    2002-01-01

    The International Space Station is on orbit and real-time operations are well underway. Along with the assembly challenges of building and operating the International Space Station , scientific activities are also underway. Flight control teams in three countries are working together as a team to plan, coordinate and command the systems on the International Space Station.Preparations are being made to add the additional International Partner elements including their operations teams and facilities. By October 2002, six Expedition crews will have lived on the International Space Station. Management of real-time operations has been key to these achievements. This includes the activities of ground teams in control centers around the world as well as the crew on orbit. Real-time planning is constantly challenged with balancing the requirements and setting the priorities for the assembly, maintenance, science and crew health functions on the International Space Station. It requires integrating the Shuttle, Soyuz and Progress requirements with the Station. It is also necessary to be able to respond in case of on-orbit anomalies and to set plans and commands in place to ensure the continues safe operation of the Station. Bringing together the International Partner operations teams has been challenging and intensely rewarding. Utilization of the assets of each partner has resulted in efficient solutions to problems. This paper will describe the management of the major real-time operations processes, significant achievements, and future challenges.

  5. High-power converters for space applications

    NASA Technical Reports Server (NTRS)

    Park, J. N.; Cooper, Randy

    1991-01-01

    Phase 1 was a concept definition effort to extend space-type dc/dc converter technology to the megawatt level with a weight of less than 0.1 kg/kW (220 lb./MW). Two system designs were evaluated in Phase 1. Each design operates from a 5 kV stacked fuel cell source and provides a voltage step-up to 100 kV at 10 A for charging capacitors (100 pps at a duty cycle of 17 min on, 17 min off). Both designs use an MCT-based, full-bridge inverter, gaseous hydrogen cooling, and crowbar fault protection. The GE-CRD system uses an advanced high-voltage transformer/rectifier filter is series with a resonant tank circuit, driven by an inverter operating at 20 to 50 kHz. Output voltage is controlled through frequency and phase shift control. Fast transient response and stability is ensured via optimal control. Super-resonant operation employing MCTs provides the advantages of lossless snubbing, no turn-on switching loss, use of medium-speed diodes, and intrinsic current limiting under load-fault conditions. Estimated weight of the GE-CRD system is 88 kg (1.5 cu ft.). Efficiency of 94.4 percent and total system loss is 55.711 kW operating at 1 MW load power. The Maxwell system is based on a resonance transformer approach using a cascade of five LC resonant sections at 100 kHz. The 5 kV bus is converted to a square wave, stepped-up to a 100 kV sine wave by the LC sections, rectified, and filtered. Output voltage is controlled with a special series regulator circuit. Estimated weight of the Maxwell system is 83.8 kg (4.0 cu ft.). Efficiency is 87.2 percent and total system loss is 146.411 kW operating at 1 MW load power.

  6. An Automated Road Roughness Detection from Mobile Laser Scanning Data

    NASA Astrophysics Data System (ADS)

    Kumar, P.; Angelats, E.

    2017-05-01

    Rough roads influence the safety of the road users as accident rate increases with increasing unevenness of the road surface. Road roughness regions are required to be efficiently detected and located in order to ensure their maintenance. Mobile Laser Scanning (MLS) systems provide a rapid and cost-effective alternative by providing accurate and dense point cloud data along route corridor. In this paper, an automated algorithm is presented for detecting road roughness from MLS data. The presented algorithm is based on interpolating smooth intensity raster surface from LiDAR point cloud data using point thinning process. The interpolated surface is further processed using morphological and multi-level Otsu thresholding operations to identify candidate road roughness regions. The candidate regions are finally filtered based on spatial density and standard deviation of elevation criteria to detect the roughness along the road surface. The test results of road roughness detection algorithm on two road sections are presented. The developed approach can be used to provide comprehensive information to road authorities in order to schedule maintenance and ensure maximum safety conditions for road users.

  7. Incident Management in Academic Information System using ITIL Framework

    NASA Astrophysics Data System (ADS)

    Palilingan, V. R.; Batmetan, J. R.

    2018-02-01

    Incident management is very important in order to ensure the continuity of a system. Information systems require incident management to ensure information systems can provide maximum service according to the service provided. Many of the problems that arise in academic information systems come from incidents that are not properly handled. The objective of this study aims to find the appropriate way of incident management. The incident can be managed so it will not be a big problem. This research uses the ITIL framework to solve incident problems. The technique used in this study is a technique adopted and developed from the service operations section of the ITIL framework. The results of this research found that 84.5% of incidents appearing in academic information systems can be handled quickly and appropriately. 15.5% incidents can be escalated so as to not cause any new problems. The model of incident management applied to make academic information system can run quickly in providing academic service in a good and efficient. The incident management model implemented in this research is able to manage resources appropriately so as to quickly and easily manage incidents.

  8. Demonstration of ultra-low NA rare-earth doped step index fiber for applications in high power fiber lasers.

    PubMed

    Jain, Deepak; Jung, Yongmin; Barua, Pranabesh; Alam, Shaiful; Sahu, Jayanta K

    2015-03-23

    In this paper, we report the mode area scaling of a rare-earth doped step index fiber by using low numerical aperture. Numerical simulations show the possibility of achieving an effective area of ~700 um² (including bend induced effective area reduction) at a bend diameter of 32 cm from a 35 μm core fiber with a numerical aperture of 0.038. An effective single mode operation is ensured following the criterion of the fundamental mode loss to be lower than 0.1 dB/m while ensuring the higher order modes loss to be higher than 10 dB/m at a wavelength of 1060 nm. Our optimized modified chemical vapor deposition process in conjunction with solution doping process allows fabrication of an Yb-doped step index fiber having an ultra-low numerical aperture of ~0.038. Experimental results confirm a Gaussian output beam from a 35 μm core fiber validating our simulation results. Fiber shows an excellent laser efficiency of ~81%and aM² less than 1.1.

  9. Water Wells Monitoring Using SCADA System for Water Supply Network, Case Study: Water Treatment Plant Urseni, Timis County, Romania

    NASA Astrophysics Data System (ADS)

    Adrian-Lucian, Cococeanu; Ioana-Alina, Cretan; Ivona, Cojocinescu Mihaela; Teodor Eugen, Man; Narcis, Pelea George

    2017-10-01

    The water supply system in Timisoara Municipality is insured with about 25-30 % of the water demand from wells. The underground water headed to the water treatment plant in order to ensure equal distribution and pressure to consumers. The treatment plants used are Urseni and Ronaţ, near Timisoara, in Timis County. In Timisoara groundwater represents an alternative source for water supply and complementary to the surface water source. The present paper presents a case study with proposal and solutions for rehabilitation /equipment /modernization/ automation of water drilling in order to ensure that the entire system can be monitored and controlled remotely through SCADA (Supervisory control and data acquisition) system. The data collected from the field are designed for online efficiency monitoring regarding the energy consumption and water flow intake, performance indicators such as specific energy consumption KW/m3 and also in order to create a hydraulically system of the operating area to track the behavior of aquifers in time regarding the quality and quantity aspects.

  10. FAA bulk technology overview for explosives detection

    NASA Astrophysics Data System (ADS)

    Novakoff, Alan K.

    1993-04-01

    The Federal Aviation Administration (FAA) is the leading federal agency responsible for encouraging and fostering the development of a safe, secure, and efficient national airspace system (NAS). Our goal is to establish an operating environment that ensures a threat-free system to preclude acts of terrorism and fatalities. As part of the process to meet this goal, our research and development activities continually search for technologies to ensure aviation security. Recent acts of terrorism against the aviation community have demonstrated an increasing level of sophistication in the design and deployment of explosive devices. In order to prevent the introduction of explosives onto an aircraft they must be detected prior to passenger and baggage loading. The Bulk Detection program is one method of developing a number of technologies that 'see' into and 'alarm' on suspect baggage. These detection devices must be capable of providing this serve with a confidence commensurate with the state-of-the- art available today. This program utilizes the expertise of government agencies, universities and industries working toward constructing their plans and executing their designs to produce the best available equipment.

  11. On the efficiency of treating singularities in triatomic variational vibrational computations. The vibrational states of H(+)3 up to dissociation.

    PubMed

    Szidarovszky, Tamás; Császár, Attila G; Czakó, Gábor

    2010-08-01

    Several techniques of varying efficiency are investigated, which treat all singularities present in the triatomic vibrational kinetic energy operator given in orthogonal internal coordinates of the two distances-one angle type. The strategies are based on the use of a direct-product basis built from one-dimensional discrete variable representation (DVR) bases corresponding to the two distances and orthogonal Legendre polynomials, or the corresponding Legendre-DVR basis, corresponding to the angle. The use of Legendre functions ensures the efficient treatment of the angular singularity. Matrix elements of the singular radial operators are calculated employing DVRs using the quadrature approximation as well as special DVRs satisfying the boundary conditions and thus allowing for the use of exact DVR expressions. Potential optimized (PO) radial DVRs, based on one-dimensional Hamiltonians with potentials obtained by fixing or relaxing the two non-active coordinates, are also studied. The numerical calculations employed Hermite-DVR, spherical-oscillator-DVR, and Bessel-DVR bases as the primitive radial functions. A new analytical formula is given for the determination of the matrix elements of the singular radial operator using the Bessel-DVR basis. The usually claimed failure of the quadrature approximation in certain singular integrals is revisited in one and three dimensions. It is shown that as long as no potential optimization is carried out the quadrature approximation works almost as well as the exact DVR expressions. If wave functions with finite amplitude at the boundary are to be computed, the basis sets need to meet the required boundary conditions. The present numerical results also confirm that PO-DVRs should be constructed employing relaxed potentials and PO-DVRs can be useful for optimizing quadrature points for calculations applying large coordinate intervals and describing large-amplitude motions. The utility and efficiency of the different algorithms is demonstrated by the computation of converged near-dissociation vibrational energy levels for the H molecular ion.

  12. A secure and efficient uniqueness-and-anonymity-preserving remote user authentication scheme for connected health care.

    PubMed

    Das, Ashok Kumar; Goswami, Adrijit

    2013-06-01

    Connected health care has several applications including telecare medicine information system, personally controlled health records system, and patient monitoring. In such applications, user authentication can ensure the legality of patients. In user authentication for such applications, only the legal user/patient himself/herself is allowed to access the remote server, and no one can trace him/her according to transmitted data. Chang et al. proposed a uniqueness-and-anonymity-preserving remote user authentication scheme for connected health care (Chang et al., J Med Syst 37:9902, 2013). Their scheme uses the user's personal biometrics along with his/her password with the help of the smart card. The user's biometrics is verified using BioHashing. Their scheme is efficient due to usage of one-way hash function and exclusive-or (XOR) operations. In this paper, we show that though their scheme is very efficient, their scheme has several security weaknesses such as (1) it has design flaws in login and authentication phases, (2) it has design flaws in password change phase, (3) it fails to protect privileged insider attack, (4) it fails to protect the man-in-the middle attack, and (5) it fails to provide proper authentication. In order to remedy these security weaknesses in Chang et al.'s scheme, we propose an improvement of their scheme while retaining the original merit of their scheme. We show that our scheme is efficient as compared to Chang et al.'s scheme. Through the security analysis, we show that our scheme is secure against possible attacks. Further, we simulate our scheme for the formal security verification using the widely-accepted AVISPA (Automated Validation of Internet Security Protocols and Applications) tool to ensure that our scheme is secure against passive and active attacks. In addition, after successful authentication between the user and the server, they establish a secret session key shared between them for future secure communication.

  13. Ensuring Data Storage Security in Tree cast Routing Architecture for Sensor Networks

    NASA Astrophysics Data System (ADS)

    Kumar, K. E. Naresh; Sagar, U. Vidya; Waheed, Mohd. Abdul

    2010-10-01

    In this paper presents recent advances in technology have made low-cost, low-power wireless sensors with efficient energy consumption. A network of such nodes can coordinate among themselves for distributed sensing and processing of certain data. For which, we propose an architecture to provide a stateless solution in sensor networks for efficient routing in wireless sensor networks. This type of architecture is known as Tree Cast. We propose a unique method of address allocation, building up multiple disjoint trees which are geographically inter-twined and rooted at the data sink. Using these trees, routing messages to and from the sink node without maintaining any routing state in the sensor nodes is possible. In contrast to traditional solutions, where the IT services are under proper physical, logical and personnel controls, this routing architecture moves the application software and databases to the large data centers, where the management of the data and services may not be fully trustworthy. This unique attribute, however, poses many new security challenges which have not been well understood. In this paper, we focus on data storage security, which has always been an important aspect of quality of service. To ensure the correctness of users' data in this architecture, we propose an effective and flexible distributed scheme with two salient features, opposing to its predecessors. By utilizing the homomorphic token with distributed verification of erasure-coded data, our scheme achieves the integration of storage correctness insurance and data error localization, i.e., the identification of misbehaving server(s). Unlike most prior works, the new scheme further supports secure and efficient dynamic operations on data blocks, including: data update, delete and append. Extensive security and performance analysis shows that the proposed scheme is highly efficient and resilient against Byzantine failure, malicious data modification attack, and even server colluding attacks.

  14. Optimal Force Control of Vibro-Impact Systems for Autonomous Drilling Applications

    NASA Technical Reports Server (NTRS)

    Aldrich, Jack B.; Okon, Avi B.

    2012-01-01

    The need to maintain optimal energy efficiency is critical during the drilling operations performed on future and current planetary rover missions (see figure). Specifically, this innovation seeks to solve the following problem. Given a spring-loaded percussive drill driven by a voice-coil motor, one needs to determine the optimal input voltage waveform (periodic function) and the optimal hammering period that minimizes the dissipated energy, while ensuring that the hammer-to-rock impacts are made with sufficient (user-defined) impact velocity (or impact energy). To solve this problem, it was first observed that when voice-coil-actuated percussive drills are driven at high power, it is of paramount importance to ensure that the electrical current of the device remains in phase with the velocity of the hammer. Otherwise, negative work is performed and the drill experiences a loss of performance (i.e., reduced impact energy) and an increase in Joule heating (i.e., reduction in energy efficiency). This observation has motivated many drilling products to incorporate the standard bang-bang control approach for driving their percussive drills. However, the bang-bang control approach is significantly less efficient than the optimal energy-efficient control approach solved herein. To obtain this solution, the standard tools of classical optimal control theory were applied. It is worth noting that these tools inherently require the solution of a two-point boundary value problem (TPBVP), i.e., a system of differential equations where half the equations have unknown boundary conditions. Typically, the TPBVP is impossible to solve analytically for high-dimensional dynamic systems. However, for the case of the spring-loaded vibro-impactor, this approach yields the exact optimal control solution as the sum of four analytic functions whose coefficients are determined using a simple, easy-to-implement algorithm. Once the optimal control waveform is determined, it can be used optimally in the context of both open-loop and closed-loop control modes (using standard realtime control hardware).

  15. Unmanned Aircraft Systems Traffic Management (UTM) Safely Enabling UAS Operations in Low-Altitude Airspace

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal H.

    2016-01-01

    Unmanned Aircraft System (UAS) Traffic Management (UTM) Enabling Civilian Low-Altitude Airspace and Unmanned Aircraft System Operations What is the problem? Many beneficial civilian applications of UAS have been proposed, from goods delivery and infrastructure surveillance, to search and rescue, and agricultural monitoring. Currently, there is no established infrastructure to enable and safely manage the widespread use of low-altitude airspace and UAS operations, regardless of the type of UAS. A UAS traffic management (UTM) system for low-altitude airspace may be needed, perhaps leveraging concepts from the system of roads, lanes, stop signs, rules and lights that govern vehicles on the ground today, whether the vehicles are driven by humans or are automated. What system technologies is NASA exploring? Building on its legacy of work in air traffic management for crewed aircraft, NASA is researching prototype technologies for a UAS Traffic Management (UTM) system that could develop airspace integration requirements for enabling safe, efficient low-altitude operations. While incorporating lessons learned from the today's well-established air traffic management system, which was a response that grew out of a mid-air collision over the Grand Canyon in the early days of commercial aviation, the UTM system would enable safe and efficient low-altitude airspace operations by providing services such as airspace design, corridors, dynamic geofencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning and re-routing, separation management, sequencing and spacing, and contingency management. One of the attributes of the UTM system is that it would not require human operators to monitor every vehicle continuously. The system could provide to human managers the data to make strategic decisions related to initiation, continuation, and termination of airspace operations. This approach would ensure that only authenticated UAS could operate in the airspace. In its most mature form, the UTM system could be developed using autonomicity characteristics that include self-configuration, self-optimization and self-protection. The self-configuration aspect could determine whether the operations should continue given the current andor predicted windweather conditions. NASA envisions concepts for two types of possible UTM systems. The first type would be a Portable UTM system, which would move from between geographical areas and support operations such as precision agriculture and disaster relief. The second type of system would be a Persistent UTM system, which would support low-altitude operations and provide continuous coverage for a geographical area. Either system would require persistent communication, navigation, and surveillance (CNS) coverage to track, ensure, and monitor conformance. What is NASA doing to test the technologies? NASA's near-term goal is the development and demonstration of a possible future UTM system that could safely enable low-altitude airspace and UAS operations. Working alongside many committed government, industry and academic partners, NASA is leading the research, development and testing that is taking place in a series of activities called Technology Capability Levels (TCL), each increasing in complexity. UTM TCL1 concluded field testing in August 2015 and is undergoing additional testing at an FAA site.

  16. 77 FR 31834 - Clad Steel Plate from Japan: Final Results of the Expedited Third Sunset Review of the...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-30

    ... rolling; simple hot-rolling of the cladding metal to ensure efficient welding to the basic metal; any... process to ensure welding (e.g., electrocladding), in which the cladding metal (nickel, chromium, etc.) is...

  17. 75 FR 22710 - Airworthiness Directives; BAE Systems (Operations) Limited Model BAe 146-100A and -200A Series...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-04-30

    ... aerodynamic braking and to dump lift to ensure that the wheel brakes can provide the necessary speed reduction... the wheel brakes can provide the necessary speed reduction. A review of the changing operational... on landing to provide aerodynamic braking and to dump lift to ensure that the wheel brakes can...

  18. 40 CFR 60.36e - Inspection guidelines.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... bypass stack components; (xvi) Ensure proper calibration of thermocouples, sorbent feed systems and any...) for proper operation, if applicable; (ii) Ensure proper calibration of thermocouples, sorbent feed...

  19. 40 CFR 60.36e - Inspection guidelines.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... bypass stack components; (xvi) Ensure proper calibration of thermocouples, sorbent feed systems and any...) for proper operation, if applicable; (ii) Ensure proper calibration of thermocouples, sorbent feed...

  20. 40 CFR 60.36e - Inspection guidelines.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... bypass stack components; (xvi) Ensure proper calibration of thermocouples, sorbent feed systems and any...) for proper operation, if applicable; (ii) Ensure proper calibration of thermocouples, sorbent feed...

  1. Possible safety hazards associated with the operation of the 0.3-m transonic cryogenic tunnel at the NASA Langley Research Center

    NASA Technical Reports Server (NTRS)

    Webster, T. J.

    1982-01-01

    The 0.3 m Transonic Cryogenic Tunnel (TCT) at the NASA Langley Research Center was built in 1973 as a facility intended to be used for no more than 60 hours in order to verify the validity of the cryogenic wind tunnel concept at transonic speeds. The role of the 0.3 m TCT has gradually changed until now, after over 3000 hours of operation, it is classified as a major NASA research facility and, under the administration of the Experimental Techniques Branch, it is used extensively for the testing of airfoils at high Reynolds numbers and for the development of various technologies related to the efficient operation and use of cryogenic wind tunnels. The purpose of this report is to document the results of a recent safety analysis of the 0.3 m TCT facility. This analysis was made as part of an on going program with the Experimental Techniques Branch designed to ensure that the existing equipment and current operating procedures of the 0.3 m TCT facility are acceptable in terms of today's standards of safety for cryogenic systems.

  2. On the design of flight-deck procedures

    NASA Technical Reports Server (NTRS)

    Degani, Asaf; Wiener, Earl L.

    1994-01-01

    In complex human-machine systems, operations, training, and standardization depend on a elaborate set of procedures which are specified and mandated by the operational management of the organization. The intent is to provide guidance to the pilots, to ensure a logical, efficient, safe, and predictable means of carrying out the mission objectives. In this report the authors examine the issue of procedure use and design from a broad viewpoint. The authors recommend a process which we call 'The Four P's:' philosophy, policies, procedures, and practices. We believe that if an organization commits to this process, it can create a set of procedures that are more internally consistent, less confusing, better respected by the flight crews, and that will lead to greater conformity. The 'Four-P' model, and the guidelines for procedural development in appendix 1, resulted from cockpit observations, extensive interviews with airline management and pilots, interviews and discussion at one major airframe manufacturer, and an examination of accident and incident reports. Although this report is based on airline operations, we believe that the principles may be applicable to other complex, high-risk systems, such as nuclear power production, manufacturing process control, space flight, and military operations.

  3. Analysis of a combined heating and cooling system model under different operating strategies

    NASA Astrophysics Data System (ADS)

    Dzierzgowski, Mieczysław; Zwierzchowski, Ryszard

    2017-11-01

    The paper presents an analysis of a combined heating and cooling system model under different operating strategies. Cooling demand for air conditioning purposes has grown steadily in Poland since the early 1990s. The main clients are large office buildings and shopping malls in downtown locations. Increased demand for heat in the summer would mitigate a number of problems regarding District Heating System (DHS) operation at minimum power, affecting the average annual price of heat (in summertime the share of costs related to transport losses is a strong cost factor). In the paper, computer simulations were performed for different supply network water temperature, assuming as input, real changes in the parameters of the DHS (heat demand, flow rates, etc.). On the basis of calculations and taking into account investment costs of the Absorption Refrigeration System (ARS) and the Thermal Energy Storage (TES) system, an optimal capacity of the TES system was proposed to ensure smooth and efficient operation of the District Heating Plant (DHP). Application of ARS with the TES system in the DHS in question increases net profit by 19.4%, reducing the cooling price for consumers by 40%.

  4. JWST Wavefront Sensing and Control: Operations Plans, Demonstrations, and Status

    NASA Astrophysics Data System (ADS)

    Perrin, Marshall; Acton, D. Scott; Lajoie, Charles-Philippe; Knight, J. Scott; Myers, Carey; Stark, Chris; JWST Wavefront Sensing & Control Team

    2018-01-01

    After JWST launches and unfolds in space, its telescope optics will be aligned through a complex series of wavefront sensing and control (WFSC) steps to achieve diffraction-limited performance. This iterative process will comprise about half of the observatory commissioning time (~ 3 out of 6 months). We summarize the JWST WFSC process, schedule, and expectations for achieved performance, and discuss our team’s activities to prepare for an effective & efficient telescope commissioning. During the recently-completed OTIS cryo test at NASA JSC, WFSC demonstrations showed the flight-like operation of the entire JWST active optics and WFSC system from end to end, including all hardware and software components. In parallel, the same test data were processed through the JWST Mission Operations Center at STScI to demonstrate the readiness of ground system components there (such as the flight operations system, data pipelines, archives, etc). Moreover, using the Astronomer’s Proposal Tool (APT), the entire telescope commissioning program has been implemented, reviewed, and is ready for execution. Between now and launch our teams will continue preparations for JWST commissioning, including further rehearsals and testing, to ensure a successful alignment of JWST’s telescope optics.

  5. In situ semi-quantitative analysis of polluted soils by laser-induced breakdown spectroscopy (LIBS).

    PubMed

    Ismaël, Amina; Bousquet, Bruno; Michel-Le Pierrès, Karine; Travaillé, Grégoire; Canioni, Lionel; Roy, Stéphane

    2011-05-01

    Time-saving, low-cost analyses of soil contamination are required to ensure fast and efficient pollution removal and remedial operations. In this work, laser-induced breakdown spectroscopy (LIBS) has been successfully applied to in situ analyses of polluted soils, providing direct semi-quantitative information about the extent of pollution. A field campaign has been carried out in Brittany (France) on a site presenting high levels of heavy metal concentrations. Results on iron as a major component as well as on lead and copper as minor components are reported. Soil samples were dried and prepared as pressed pellets to minimize the effects of moisture and density on the results. LIBS analyses were performed with a Nd:YAG laser operating at 1064 nm, 60 mJ per 10 ns pulse, at a repetition rate of 10 Hz with a diameter of 500 μm on the sample surface. Good correlations were obtained between the LIBS signals and the values of concentrations deduced from inductively coupled plasma atomic emission spectroscopy (ICP-AES). This result proves that LIBS is an efficient method for optimizing sampling operations. Indeed, "LIBS maps" were established directly on-site, providing valuable assistance in optimizing the selection of the most relevant samples for future expensive and time-consuming laboratory analysis and avoiding useless analyses of very similar samples. Finally, it is emphasized that in situ LIBS is not described here as an alternative quantitative analytical method to the usual laboratory measurements but simply as an efficient time-saving tool to optimize sampling operations and to drastically reduce the number of soil samples to be analyzed, thus reducing costs. The detection limits of 200 ppm for lead and 80 ppm for copper reported here are compatible with the thresholds of toxicity; thus, this in situ LIBS campaign was fully validated for these two elements. Consequently, further experiments are planned to extend this study to other chemical elements and other matrices of soils.

  6. The possibility to increase the rated output as a result of index tests performed in Iron Gates II- Romania

    NASA Astrophysics Data System (ADS)

    Novac, D.; Pantelimon, D.; Popescu, E.

    2010-08-01

    The Index Tests have been used for many years to obtain the optimized cam corellation between wicket gates and runner blades for double regulated turbines (Kaplan, bulb). The cam is based on homologous model tests and is verified by site measurements, as model tests generally do not reproduce the exact intake configuration. Index Tests have also a considerable importance for checking of the relative efficiency curve of all type of turbines and can demonstrate if the prototype efficiency curve at plant condition has the shape expected from the test of the homologues model. During the Index Tests measurements the influence of all losses at multiple points of turbine operation can be proved. This publication deals with an overview on the Index Tests made after modernization of large bulb units in Iron Gates II - Romania. These field tests, together with the comparative, fully homologous tests for the new hydraulic shape of the runner blades have confirmed the smooth operational behavior and the guaranteed performance. Over the whole "guaranteed operating range" for H = 8m, the characteristic of the Kaplan curve (enveloping curve to the proppeler curves), agreed very well to the predicted efficiency curve from the hydraulic prototype hill chart. The new cam correlation have been determined for different head and realised in the governor, normally based on model tests. The guaranteed, maximum turbine output for H = 7,8m is specified with 32, 5 MW. The maximum measured turbine output during the Index Tests on cam operation was 35,704 MW at the net head of 7,836 m. This coresponds to 35,458 MW for the specified head H= 7, 8 m. All these important improvements ensure a significant increase of annual energy production without any change of the civil construction and without increasing the runner diameter. Also the possibility to increase the turbine rated output is evident.

  7. Biogeography-based combinatorial strategy for efficient autonomous underwater vehicle motion planning and task-time management

    NASA Astrophysics Data System (ADS)

    Zadeh, S. M.; Powers, D. M. W.; Sammut, K.; Yazdani, A. M.

    2016-12-01

    Autonomous Underwater Vehicles (AUVs) are capable of spending long periods of time for carrying out various underwater missions and marine tasks. In this paper, a novel conflict-free motion planning framework is introduced to enhance underwater vehicle's mission performance by completing maximum number of highest priority tasks in a limited time through a large scale waypoint cluttered operating field, and ensuring safe deployment during the mission. The proposed combinatorial route-path planner model takes the advantages of the Biogeography-Based Optimization (BBO) algorithm toward satisfying objectives of both higher-lower level motion planners and guarantees maximization of the mission productivity for a single vehicle operation. The performance of the model is investigated under different scenarios including the particular cost constraints in time-varying operating fields. To show the reliability of the proposed model, performance of each motion planner assessed separately and then statistical analysis is undertaken to evaluate the total performance of the entire model. The simulation results indicate the stability of the contributed model and its feasible application for real experiments.

  8. Wideband fiber optic communications link

    NASA Astrophysics Data System (ADS)

    Bray, J. R.

    1984-12-01

    This thesis examined the feasibility of upgrading a nine port fiber optic bundle telecommunications system to a single strand fiber optic system. Usable pieces of equipment were identified and new Light Emitting Diodes (LED), Photodetectors and single strand SMA styled fiber optic connectors were ordered. Background research was conducted in the area of fiber optic power launching, fiber losses, connector losses and efficiencies. A new modulation/demodulation circuit was designed and constructed using parts from unused equipment. A new front panel was constructed to house the components, switches and connectors. A 2-m piece of optical fiber was terminated with the new connectors and tested for connector loss, numeric aperture and attenuation. The new LED was characterized by its emission radiation pattern and the entire system was tested for functional operation, frequency response and bandwidth of operation. An operations manual was prepared to ensure proper use in the future. The result was a two piece, single strand, fiber optic communications systems fully TTL compatible, capable of transmitting digital signals from 80 Kbit/sec to 20 Mbit/sec. The system was tested in a half duplex mode using both baseband and carrier modulated signals.

  9. Operation Windshield and the simplification of emergency management.

    PubMed

    Andrews, Michael

    2016-01-01

    Large, complex, multi-stakeholder exercises are the culmination of years of gradual progression through a comprehensive training and exercise programme. Exercises intended to validate training, refine procedures and test processes initially tested in isolation are combined to ensure seamless response and coordination during actual crises. The challenges of integrating timely and accurate situational awareness from an array of sources, including response agencies, municipal departments, partner agencies and the public, on an ever-growing range of media platforms, increase information management complexity in emergencies. Considering that many municipal emergency operations centre roles are filled by staff whose day jobs have little to do with crisis management, there is a need to simplify emergency management and make it more intuitive. North Shore Emergency Management has accepted the challenge of making emergency management less onerous to occasional practitioners through a series of initiatives aimed to build competence and confidence by making processes easier to use as well as by introducing technical tools that can simplify processes and enhance efficiencies. These efforts culminated in the full-scale earthquake exercise, Operation Windshield, which preceded the 2015 Emergency Preparedness and Business Continuity Conference in Vancouver, British Columbia.

  10. Grey Wolf based control for speed ripple reduction at low speed operation of PMSM drives.

    PubMed

    Djerioui, Ali; Houari, Azeddine; Ait-Ahmed, Mourad; Benkhoris, Mohamed-Fouad; Chouder, Aissa; Machmoum, Mohamed

    2018-03-01

    Speed ripple at low speed-high torque operation of Permanent Magnet Synchronous Machine (PMSM) drives is considered as one of the major issues to be treated. The presented work proposes an efficient PMSM speed controller based on Grey Wolf (GW) algorithm to ensure a high-performance control for speed ripple reduction at low speed operation. The main idea of the proposed control algorithm is to propose a specific objective function in order to incorporate the advantage of fast optimization process of the GW optimizer. The role of GW optimizer is to find the optimal input controls that satisfy the speed tracking requirements. The synthesis methodology of the proposed control algorithm is detailed and the feasibility and performances of the proposed speed controller is confirmed by simulation and experimental results. The GW algorithm is a model-free controller and the parameters of its objective function are easy to be tuned. The GW controller is compared to PI one on real test bench. Then, the superiority of the first algorithm is highlighted. Copyright © 2018 ISA. Published by Elsevier Ltd. All rights reserved.

  11. Procedures in complex systems: the airline cockpit.

    PubMed

    Degani, A; Wiener, E L

    1997-05-01

    In complex human-machine systems, successful operations depend on an elaborate set of procedures which are specified by the operational management of the organization. These procedures indicate to the human operator (in this case the pilot) the manner in which operational management intends to have various tasks done. The intent is to provide guidance to the pilots and to ensure a safe, logical, efficient, and predictable (standardized) means of carrying out the objectives of the job. However, procedures can become a hodge-podge. Inconsistent or illogical procedures may lead to noncompliance by operators. Based on a field study with three major airlines, the authors propose a model for procedure development called the "Four P's": philosophy, policies, procedures, and practices. Using this model as a framework, the authors discuss the intricate issue of designing flight-deck procedures, and propose a conceptual approach for designing any set of procedures. The various factors, both external and internal to the cockpit, that must be considered for procedure design are presented. In particular, the paper addresses the development of procedures for automated cockpits--a decade-long, and highly controversial issue in commercial aviation. Although this paper is based on airline operations, we assume that the principles discussed here are also applicable to other high-risk supervisory control systems, such as space flight, manufacturing process control, nuclear power production, and military operations.

  12. Processing and Preparation of Advanced Stirling Convertors for Extended Operation

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore M.; Cornell, Paggy A.

    2008-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Space Company (LMSC), Sunpower Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science missions. This generator will make use of the free-piston Stirling convertors to achieve higher conversion efficiency than currently available alternatives. NASA GRC is supporting the development of the ASRG by providing extended operation of several Sunpower Inc. Advanced Stirling Convertors (ASCs). In the past year and a half, eight ASCs have operated in continuous, unattended mode in both air and thermal vacuum environments. Hardware, software, and procedures were developed to prepare each convertor for extended operation with intended durations on the order of tens of thousands of hours. Steps taken to prepare a convertor for long-term operation included geometry measurements, thermocouple instrumentation, evaluation of working fluid purity, evacuation with bakeout, and high purity charge. Actions were also taken to ensure the reliability of support systems, such as data acquisition and automated shutdown checkouts. Once a convertor completed these steps, it underwent short-term testing to gather baseline performance data before initiating extended operation. These tests included insulation thermal loss characterization, low-temperature checkout, and full-temperature and power demonstration. This paper discusses the facilities developed to support continuous, unattended operation, and the processing results of the eight ASCs currently on test.

  13. Processing and Preparation of Advanced Stirling Convertors for Extended Operation at NASA Glenn Research Center

    NASA Technical Reports Server (NTRS)

    Oriti, Salvatore M.; Cornell, Peggy A.

    2008-01-01

    The U.S. Department of Energy (DOE), Lockheed Martin Space Company (LMSC), Sunpower Inc., and NASA Glenn Research Center (GRC) have been developing an Advanced Stirling Radioisotope Generator (ASRG) for use as a power system on space science missions. This generator will make use of the free-piston Stirling convertors to achieve higher conversion efficiency than currently available alternatives. NASA GRC is supporting the development of the ASRG by providing extended operation of several Sunpower Inc. Advanced Stirling Convertors (ASCs). In the past year and a half, eight ASCs have operated in continuous, unattended mode in both air and thermal vacuum environments. Hardware, software, and procedures were developed to prepare each convertor for extended operation with intended durations on the order of tens of thousands of hours. Steps taken to prepare a convertor for long-term operation included geometry measurements, thermocouple instrumentation, evaluation of working fluid purity, evacuation with bakeout, and high purity charge. Actions were also taken to ensure the reliability of support systems, such as data acquisition and automated shutdown checkouts. Once a convertor completed these steps, it underwent short-term testing to gather baseline performance data before initiating extended operation. These tests included insulation thermal loss characterization, low-temperature checkout, and full-temperature and power demonstration. This paper discusses the facilities developed to support continuous, unattended operation, and the processing results of the eight ASCs currently on test.

  14. Airport Traffic Conflict Detection and Resolution Algorithm Evaluation

    NASA Technical Reports Server (NTRS)

    Jones, Denise R.; Chartrand, Ryan C.; Wilson, Sara R.; Commo, Sean A.; Otero, Sharon D.; Barker, Glover D.

    2012-01-01

    A conflict detection and resolution (CD&R) concept for the terminal maneuvering area (TMA) was evaluated in a fast-time batch simulation study at the National Aeronautics and Space Administration (NASA) Langley Research Center. The CD&R concept is being designed to enhance surface situation awareness and provide cockpit alerts of potential conflicts during runway, taxi, and low altitude air-to-air operations. The purpose of the study was to evaluate the performance of aircraft-based CD&R algorithms in the TMA, as a function of surveillance accuracy. This paper gives an overview of the CD&R concept, simulation study, and results. The Next Generation Air Transportation System (NextGen) concept for the year 2025 and beyond envisions the movement of large numbers of people and goods in a safe, efficient, and reliable manner [1]. NextGen will remove many of the constraints in the current air transportation system, support a wider range of operations, and provide an overall system capacity up to three times that of current operating levels. Emerging NextGen operational concepts [2], such as four-dimensional trajectory based airborne and surface operations, equivalent visual operations, and super density arrival and departure operations, require a different approach to air traffic management and as a result, a dramatic shift in the tasks, roles, and responsibilities for the flight deck and air traffic control (ATC) to ensure a safe, sustainable air transportation system.

  15. Automatic Channel Fault Detection on a Small Animal APD-Based Digital PET Scanner

    NASA Astrophysics Data System (ADS)

    Charest, Jonathan; Beaudoin, Jean-François; Cadorette, Jules; Lecomte, Roger; Brunet, Charles-Antoine; Fontaine, Réjean

    2014-10-01

    Avalanche photodiode (APD) based positron emission tomography (PET) scanners show enhanced imaging capabilities in terms of spatial resolution and contrast due to the one to one coupling and size of individual crystal-APD detectors. However, to ensure the maximal performance, these PET scanners require proper calibration by qualified scanner operators, which can become a cumbersome task because of the huge number of channels they are made of. An intelligent system (IS) intends to alleviate this workload by enabling a diagnosis of the observational errors of the scanner. The IS can be broken down into four hierarchical blocks: parameter extraction, channel fault detection, prioritization and diagnosis. One of the main activities of the IS consists in analyzing available channel data such as: normalization coincidence counts and single count rates, crystal identification classification data, energy histograms, APD bias and noise thresholds to establish the channel health status that will be used to detect channel faults. This paper focuses on the first two blocks of the IS: parameter extraction and channel fault detection. The purpose of the parameter extraction block is to process available data on individual channels into parameters that are subsequently used by the fault detection block to generate the channel health status. To ensure extensibility, the channel fault detection block is divided into indicators representing different aspects of PET scanner performance: sensitivity, timing, crystal identification and energy. Some experiments on a 8 cm axial length LabPET scanner located at the Sherbrooke Molecular Imaging Center demonstrated an erroneous channel fault detection rate of 10% (with a 95% confidence interval (CI) of [9, 11]) which is considered tolerable. Globally, the IS achieves a channel fault detection efficiency of 96% (CI: [95, 97]), which proves that many faults can be detected automatically. Increased fault detection efficiency would be advantageous but, the achieved results would already benefit scanner operators in their maintenance task.

  16. Spatial Combining of Laser-Diode Beams for Pumping an NPRO

    NASA Technical Reports Server (NTRS)

    Gelsinger, Paul; Liu, Duncan; Mulder, Jerry; Aguayo, Francisco

    2008-01-01

    A free-space optical beam combiner now undergoing development makes it possible to use the outputs of multiple multimode laser diodes to pump a neodymium-doped yttrium aluminum garnet (Nd:YAG) non-planar ring oscillator (NPRO) laser while ensuring that the laser operates at only a single desired frequency. Heretofore, a Nd:YAG NPRO like the present one has been pumped by a single multimode laser-diode beam delivered via an optical fiber. It would be desirable to use multiple pump laser diodes to increase reliability beyond that obtainable from a single pump laser diode. However, as explained in this article, simplistically coupling multiple multimode laser-diode beams through a fiber-optic combiner would entail a significant reduction in coupling efficiency, and lasing would occur at one or more other frequencies in addition to the single desired frequency. To minimize coupling loss, one must ensure that the NA (approximately equal to 0.3) of the combined laser-diode beams is less than the NA of the fiber. The A(Omega) of the laser-diode beam in the slow-axis plane is 1/1.3 as large as that of the fiber. This A(Omega) is small enough to enable efficient coupling of light into the optical fiber, but too large for combining of beams in the slow-axis plane. Therefore, a pair of cylindrical lenses is used to cancel the slow-axis plane magnification introduced by the on-cylindrical lenses used to effect magnification in the fast-axis plane.

  17. IMPROVING THE EFFECTIVENESS AND EFFICIENCY OF EVIDENCE PRODUCTION FOR HEALTH TECHNOLOGY ASSESSMENT.

    PubMed

    Facey, Karen; Henshall, Chris; Sampietro-Colom, Laura; Thomas, Sarah

    2015-01-01

    Health Technology Assessment (HTA) needs to address the challenges posed by high cost, effective technologies, expedited regulatory approaches, and the opportunities provided by collaborative real-world evaluation of technologies. The Health Technology Assessment International (HTAi) Policy Forum met to consider these issues and the implications for evidence production to inform HTA. This paper shares their discussion to stimulate further debate. A background paper, presentations, group discussions, and stakeholder role play at the 2015 HTAi Policy Forum meeting informed this paper. HTA has an important role to play in helping improve evidence production and ensuring that the health service is ready to adopt effective technologies. It needs to move from simply informing health system decisions to also working actively to align stakeholder expectations about realistic evidence requirements. Processes to support dialogue over the health technology life cycle need to be developed that are mindful of limited resources, operate across jurisdictions and learn from past processes. Collaborations between health technology developers and health systems in different countries should be encouraged to develop evidence that will inform decision making. New analytical techniques emerging for real-world data should be harnessed to support modeling for HTA. A paradigm shift (to "Health Innovation System 2.0") is suggested where HTA adopts a more central, proactive role to support alignment within and amongst stakeholders over the whole life cycle of the technology. This could help ensure that evidence production is better aligned with patient and health system needs and so is more effective and efficient.

  18. Microdevice for plasma separation from whole human blood using bio-physical and geometrical effects

    PubMed Central

    Tripathi, Siddhartha; Kumar, Y. V. BalaVarun; Agrawal, Amit; Prabhakar, Amit; Joshi, Suhas S.

    2016-01-01

    In this research work, we present a simple and efficient passive microfluidic device for plasma separation from pure blood. The microdevice has been fabricated using conventional photolithography technique on a single layer of polydimethylsiloxane, and has been extensively tested on whole blood and enhanced (upto 62%) hematocrit levels of human blood. The microdevice employs elevated dimensions of about 100 μm; such elevated dimensions ensure clog-free operation of the microdevice and is relatively easy to fabricate. We show that our microdevice achieves almost 100% separation efficiency on undiluted blood in the flow rate range of 0.3 to 0.5 ml/min. Detailed biological characterization of the plasma obtained from the microdevice is carried out by testing: proteins by ultra-violet spectrophotometric method, hCG (human chorionic gonadotropin) hormone, and conducting random blood glucose test. Additionally, flow cytometry study has also been carried on the separated plasma. These tests attest to the high quality of plasma recovered. The microdevice developed in this work is an outcome of extensive experimental research on understanding the flow behavior and separation phenomenon of blood in microchannels. The microdevice is compact, economical and effective, and is particularly suited in continuous flow operations. PMID:27279146

  19. A High Frequency Active Voltage Doubler in Standard CMOS Using Offset-Controlled Comparators for Inductive Power Transmission

    PubMed Central

    Lee, Hyung-Min; Ghovanloo, Maysam

    2014-01-01

    In this paper, we present a fully integrated active voltage doubler in CMOS technology using offset-controlled high speed comparators for extending the range of inductive power transmission to implantable microelectronic devices (IMD) and radio-frequency identification (RFID) tags. This active voltage doubler provides considerably higher power conversion efficiency (PCE) and lower dropout voltage compared to its passive counterpart and requires lower input voltage than active rectifiers, leading to reliable and efficient operation with weakly coupled inductive links. The offset-controlled functions in the comparators compensate for turn-on and turn-off delays to not only maximize the forward charging current to the load but also minimize the back current, optimizing PCE in the high frequency (HF) band. We fabricated the active voltage doubler in a 0.5-μm 3M2P std. CMOS process, occupying 0.144 mm2 of chip area. With 1.46 V peak AC input at 13.56 MHz, the active voltage doubler provides 2.4 V DC output across a 1 kΩ load, achieving the highest PCE = 79% ever reported at this frequency. In addition, the built-in start-up circuit ensures a reliable operation at lower voltages. PMID:23853321

  20. Using Discrete-Event Simulation to Promote Quality Improvement and Efficiency in a Radiation Oncology Treatment Center.

    PubMed

    Famiglietti, Robin M; Norboge, Emily C; Boving, Valentine; Langabeer, James R; Buchholz, Thomas A; Mikhail, Osama

    To meet demand for radiation oncology services and ensure patient-centered safe care, management in an academic radiation oncology department initiated quality improvement efforts using discrete-event simulation (DES). Although the long-term goal was testing and deploying solutions, the primary aim at the outset was characterizing and validating a computer simulation model of existing operations to identify targets for improvement. The adoption and validation of a DES model of processes and procedures affecting patient flow and satisfaction, employee experience, and efficiency were undertaken in 2012-2013. Multiple sources were tapped for data, including direct observation, equipment logs, timekeeping, and electronic health records. During their treatment visits, patients averaged 50.4 minutes in the treatment center, of which 38% was spent in the treatment room. Patients with appointments between 10 AM and 2 PM experienced the longest delays before entering the treatment room, and those in the clinic in the day's first and last hours, the shortest (<5 minutes). Despite staffed for 14.5 hours daily, the clinic registered only 20% of patients after 2:30 PM. Utilization of equipment averaged 58%, and utilization of staff, 56%. The DES modeling quantified operations, identifying evidence-based targets for next-phase remediation and providing data to justify initiatives.

  1. An experimental study of heat pipe thermal management system with wet cooling method for lithium ion batteries

    NASA Astrophysics Data System (ADS)

    Zhao, Rui; Gu, Junjie; Liu, Jie

    2015-01-01

    An effective battery thermal management (BTM) system is required for lithium-ion batteries to ensure a desirable operating temperature range with minimal temperature gradient, and thus to guarantee their high efficiency, long lifetime and great safety. In this paper, a heat pipe and wet cooling combined BTM system is developed to handle the thermal surge of lithium-ion batteries during high rate operations. The proposed BTM system relies on ultra-thin heat pipes which can efficiently transfer the heat from the battery sides to the cooling ends where the water evaporation process can rapidly dissipate the heat. Two sized battery packs, 3 Ah and 8 Ah, with different lengths of cooling ends are used and tested through a series high-intensity discharges in this study to examine the cooling effects of the combined BTM system, and its performance is compared with other four types of heat pipe involved BTM systems and natural convection cooling method. A combination of natural convection, fan cooling and wet cooling methods is also introduced to the heat pipe BTM system, which is able to control the temperature of battery pack in an appropriate temperature range with the minimum cost of energy and water spray.

  2. NOVEL BINDERS AND METHODS FOR AGGLOMERATION OF ORE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S.K. Kawatra; T.C. Eisele; J.A. Gurtler

    2005-04-01

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not breakdown during processing. However, for many important metal extraction processes there are no binders known that will workmore » satisfactorily. Primary examples of this are copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process. As a result, operators of many facilities see large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of a broad range of mineral agglomeration applications, particularly heap leaching.« less

  3. Novel Binders and Methods for Agglomeration of Ore

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    S. K. Kawatra; T. C. Eisele; J. A. Gurtler

    2004-03-31

    Many metal extraction operations, such as leaching of copper, leaching of precious metals, and reduction of metal oxides to metal in high-temperature furnaces, require agglomeration of ore to ensure that reactive liquids or gases are evenly distributed throughout the ore being processed. Agglomeration of ore into coarse, porous masses achieves this even distribution of fluids by preventing fine particles from migrating and clogging the spaces and channels between the larger ore particles. Binders are critically necessary to produce agglomerates that will not break down during processing. However, for many important metal extraction processes there are no binders known that willmore » work satisfactorily. A primary example of this is copper heap leaching, where there are no binders that will work in the acidic environment encountered in this process. As a result, operators of acidic heap-leach facilities see a large loss of process efficiency due to their inability to take advantage of agglomeration. The large quantities of ore that must be handled in metal extraction processes also means that the binder must be inexpensive and useful at low dosages to be economical. The acid-resistant binders and agglomeration procedures developed in this project will also be adapted for use in improving the energy efficiency and performance of other agglomeration applications, particularly advanced primary ironmaking.« less

  4. A portable back massage robot based on Traditional Chinese Medicine.

    PubMed

    Wang, Wendong; Liang, Chaohong; Zhang, Peng; Shi, Yikai

    2018-05-30

    A portable back massage robot which can complete the massage operations such as tapping, kneading and rolling was designed to improve the level of intelligence and massage effect. An efficient full covered path planning algorithm was put forward for a portable back massage robot to improve the coverage. Currently, massage robots has become one of important research focuses with the increasing requirements for healthcare. The massage robot is difficult to be widely accepted as there are problems of massage robot in control, structure, and coverage path planning. The 3D electromagnetic simulation model was established to optimize electromagnetic force. By analyzing the Traditional Chinese Medicine massage operation and the demands, the path planning algorithm models were established. The experimental platform of the massage robot was built. The simulation results show presented path planning algorithm is suitable for back massage, which ensures that the massage robot traverse the entire back area with improved massage coverage. The tested results show that the massage effect is best when the duty cycle is in the range of 1/8 to 1/2, and the massage force increases with the increase of the input voltage. The massage robot eventually achieved the desired massage effect, and the proposed efficient algorithm can effectively improve the coverage and promote the massage effect.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Woohyun; Katipamula, Srinivas; Lutes, Robert G.

    Small- and medium-sized (<100,000 sf) commercial buildings (SMBs) represent over 95% of the U.S. commercial building stock and consume over 60% of total site energy consumption. Many of these buildings use rudimentary controls that are mostly manual, with limited scheduling capability, no monitoring or failure management. Therefore, many of these buildings are operated inefficiently and consume excess energy. SMBs typically utilize packaged rooftop units (RTUs) that are controlled by an individual thermostat. There is increased urgency to improve the operating efficiency of existing commercial building stock in the U.S. for many reasons, chief among them is to mitigate the climatemore » change impacts. Studies have shown that managing set points and schedules of the RTUs will result in up to 20% energy and cost savings. Another problem associated with RTUs is short-cycling, where an RTU goes through ON and OFF cycles too frequently. Excessive cycling can lead to excessive wear and lead to premature failure of the compressor or its components. The short cycling can result in a significantly decreased average efficiency (up to 10%), even if there are no physical failures in the equipment. Also, SMBs use a time-of-day scheduling is to start the RTUs before the building will be occupied and shut it off when unoccupied. Ensuring correct use of the zone set points and eliminating frequent cycling of RTUs thereby leading to persistent building operations can significantly increase the operational efficiency of the SMBs. A growing trend is to use low-cost control infrastructure that can enable scalable and cost-effective intelligent building operations. The work reported in this report describes three algorithms for detecting the zone set point temperature, RTU cycling rate and occupancy schedule detection that can be deployed on the low-cost infrastructure. These algorithms only require the zone temperature data for detection. The algorithms have been tested and validated using field data from a number of RTUs from six buildings in different climate locations. Overall, the algorithms were successful in detecting the set points and ON/OFF cycles accurately using the peak detection technique and occupancy schedule using symbolic aggregate approximation technique. The report describes the three algorithms, results from testing the algorithms using field data, how the algorithms can be used to improve SMBs efficiency, and presents related conclusions.« less

  6. Large-Scale Science Observatories: Building on What We Have Learned from USArray

    NASA Astrophysics Data System (ADS)

    Woodward, R.; Busby, R.; Detrick, R. S.; Frassetto, A.

    2015-12-01

    With the NSF-sponsored EarthScope USArray observatory, the Earth science community has built the operational capability and experience to tackle scientific challenges at the largest scales, such as a Subduction Zone Observatory. In the first ten years of USArray, geophysical instruments were deployed across roughly 2% of the Earth's surface. The USArray operated a rolling deployment of seismic stations that occupied ~1,700 sites across the USA, made co-located atmospheric observations, occupied hundreds of sites with magnetotelluric sensors, expanded a backbone reference network of seismic stations, and provided instruments to PI-led teams that deployed thousands of additional seismic stations. USArray included a comprehensive outreach component that directly engaged hundreds of students at over 50 colleges and universities to locate station sites and provided Earth science exposure to roughly 1,000 landowners who hosted stations. The project also included a comprehensive data management capability that received, archived and distributed data, metadata, and data products; data were acquired and distributed in real time. The USArray project was completed on time and under budget and developed a number of best practices that can inform other large-scale science initiatives that the Earth science community is contemplating. Key strategies employed by USArray included: using a survey, rather than hypothesis-driven, mode of observation to generate comprehensive, high quality data on a large-scale for exploration and discovery; making data freely and openly available to any investigator from the very onset of the project; and using proven, commercial, off-the-shelf systems to ensure a fast start and avoid delays due to over-reliance on unproven technology or concepts. Scope was set ambitiously, but managed carefully to avoid overextending. Configuration was controlled to ensure efficient operations while providing consistent, uniform observations. Finally, community governance structures were put in place to ensure a focus on science needs and goals, to provide an informed review of the project's results, and to carefully balance consistency of observations with technical evolution. We will summarize lessons learned from USArray and how these can be applied to future efforts such as SZO.

  7. OpenStudio: A Platform for Ex Ante Incentive Programs

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roth, Amir; Brackney, Larry; Parker, Andrew

    Many utilities operate programs that provide ex ante (up front) incentives for building energy conservation measures (ECMs). A typical incentive program covers two kinds of ECMs. ECMs that deliver similar savings in different contexts are associated with pre-calculated 'deemed' savings values. ECMs that deliver different savings in different contexts are evaluated on a 'custom' per-project basis. Incentive programs often operate at less than peak efficiency because both deemed ECMs and custom projects have lengthy and effort-intensive review processes--deemed ECMs to gain confidence that they are sufficiently context insensitive, custom projects to ensure that savings are claimed appropriately. DOE's OpenStudio platformmore » can be used to automate ex ante processes and help utilities operate programs more efficiently, consistently, and transparently, resulting in greater project throughput and energy savings. A key concept of the platform is the OpenStudio Measure, a script that queries and transforms building energy models. Measures can be simple or surgical, e.g., applying different transformations based on space-type, orientation, etc. Measures represent ECMs explicitly and are easier to review than ECMs that are represented implicitly as the difference between a with-ECM and without-ECM models. Measures can be automatically applied to large numbers of prototype models--and instantiated from uncertainty distributions--facilitating the large scale analysis required to develop deemed savings values. For custom projects, Measures can also be used to calibrate existing building models, to automatically create code baseline models, and to perform quality assurance screening.« less

  8. Isokinetic TWC Evaporator Probe: Calculations and Systemic Uncertainty Analysis

    NASA Technical Reports Server (NTRS)

    Davison, Craig R.; Strapp, J. Walter; Lilie, Lyle; Ratvasky, Thomas P.; Dumont, Christopher

    2016-01-01

    A new Isokinetic Total Water Content Evaporator (IKP2) was downsized from a prototype instrument, specifically to make airborne measurements of hydrometeor total water content (TWC) in deep tropical convective clouds to assess the new ice crystal Appendix D icing envelope. The probe underwent numerous laboratory and wind tunnel investigations to ensure reliable operation under the difficult high altitude/speed/TWC conditions under which other TWC instruments have been known to either fail, or have unknown performance characteristics and the results are presented in a companion paper. This paper presents the equations used to determine the total water content (TWC) of the sampled atmosphere from the values measured by the IKP2 or necessary ancillary data from other instruments. The uncertainty in the final TWC is determined by propagating the uncertainty in the measured values through the calculations to the final result. Two techniques were used and the results compared. The first is a typical analytical method of propagating uncertainty and the second performs a Monte Carlo simulation. The results are very similar with differences that are insignificant for practical purposes. The uncertainty is between 2 percent and 3 percent at most practical operating conditions. The capture efficiency of the IKP2 was also examined based on a computational fluid dynamic simulation of the original IKP and scaled down to the IKP2. Particles above 24 microns were found to have a capture efficiency greater than 99 percent at all operating conditions.

  9. Isokinetic TWC Evaporator Probe: Calculations and Systemic Uncertainty Analysis

    NASA Technical Reports Server (NTRS)

    Davison, Craig R.; Strapp, John W.; Lilie, Lyle E.; Ratvasky, Thomas P.; Dumont, Christopher

    2016-01-01

    A new Isokinetic Total Water Content Evaporator (IKP2) was downsized from a prototype instrument, specifically to make airborne measurements of hydrometeor total water content (TWC) in deep tropical convective clouds to assess the new ice crystal Appendix D icing envelope. The probe underwent numerous laboratory and wind tunnel investigations to ensure reliable operation under the difficult high altitude/speed/TWC conditions under which other TWC instruments have been known to either fail, or have unknown performance characteristics and the results are presented in a companion paper (Ref. 1). This paper presents the equations used to determine the total water content (TWC) of the sampled atmosphere from the values measured by the IKP2 or necessary ancillary data from other instruments. The uncertainty in the final TWC is determined by propagating the uncertainty in the measured values through the calculations to the final result. Two techniques were used and the results compared. The first is a typical analytical method of propagating uncertainty and the second performs a Monte Carlo simulation. The results are very similar with differences that are insignificant for practical purposes. The uncertainty is between 2 and 3 percent at most practical operating conditions. The capture efficiency of the IKP2 was also examined based on a computational fluid dynamic simulation of the original IKP and scaled down to the IKP2. Particles above 24 micrometers were found to have a capture efficiency greater than 99 percent at all operating conditions.

  10. Thermal Management and Reliability of Power Electronics and Electric Machines

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narumanchi, Sreekant

    2016-09-19

    Increasing the number of electric-drive vehicles (EDVs) on America's roads has been identified as a strategy with near-term potential for dramatically decreasing the nation's dependence on oil - by the U.S. Department of Energy, the federal cross-agency EV-Everywhere Challenge, and the automotive industry. Mass-market deployment will rely on meeting aggressive technical targets, including improved efficiency and reduced size, weight, and cost. Many of these advances will depend on optimization of thermal management. Effective thermal management is critical to improving the performance and ensuring the reliability of EDVs. Efficient heat removal makes higher power densities and lower operating temperatures possible, andmore » in turn enables cost and size reductions. The National Renewable Energy Laboratory (NREL), along with DOE and industry partners is working to develop cost-effective thermal management solutions to increase device and component power densities. In this presentation, the activities in recent years related to thermal management and reliability of automotive power electronics and electric machines are presented.« less

  11. Securing image information using double random phase encoding and parallel compressive sensing with updated sampling processes

    NASA Astrophysics Data System (ADS)

    Hu, Guiqiang; Xiao, Di; Wang, Yong; Xiang, Tao; Zhou, Qing

    2017-11-01

    Recently, a new kind of image encryption approach using compressive sensing (CS) and double random phase encoding has received much attention due to the advantages such as compressibility and robustness. However, this approach is found to be vulnerable to chosen plaintext attack (CPA) if the CS measurement matrix is re-used. Therefore, designing an efficient measurement matrix updating mechanism that ensures resistance to CPA is of practical significance. In this paper, we provide a novel solution to update the CS measurement matrix by altering the secret sparse basis with the help of counter mode operation. Particularly, the secret sparse basis is implemented by a reality-preserving fractional cosine transform matrix. Compared with the conventional CS-based cryptosystem that totally generates all the random entries of measurement matrix, our scheme owns efficiency superiority while guaranteeing resistance to CPA. Experimental and analysis results show that the proposed scheme has a good security performance and has robustness against noise and occlusion.

  12. Performance and stability of a liquid anode high-temperature metal-air battery

    NASA Astrophysics Data System (ADS)

    Otaegui, L.; Rodriguez-Martinez, L. M.; Wang, L.; Laresgoiti, A.; Tsukamoto, H.; Han, M. H.; Tsai, C.-L.; Laresgoiti, I.; López, C. M.; Rojo, T.

    2014-02-01

    A High-Temperature Metal-Air Battery (HTMAB) that operates based on a simple redox reaction between molten metal and atmospheric oxygen at 600-1000 °C is presented. This innovative HTMAB concept combines the technology of conventional metal-air batteries with that of solid oxide fuel cells to provide a high energy density system for many applications. Electrochemical reversibility is demonstrated with 95% coulomb efficiency. Cell sealing has been identified as a key issue in order to determine the end-of-charge voltage, enhance coulomb efficiency and ensure long term stability. In this work, molten Sn is selected as anode material. Low utilization of the stored material due to precipitation of the SnO2 on the electrochemically active area limits the expected capacity, which should theoretically approach 903 mAh g-1. Nevertheless, more than 1000 charge/discharge cycles are performed during more than 1000 h at 800 °C, showing highly promising results of stability, reversibility and cyclability.

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narumanchi, Sreekant

    Increasing the number of electric-drive vehicles (EDVs) on America's roads has been identified as a strategy with near-term potential for dramatically decreasing the nation's dependence on oil - by the U.S. Department of Energy, the federal cross-agency EV-Everywhere Challenge, and the automotive industry. Mass-market deployment will rely on meeting aggressive technical targets, including improved efficiency and reduced size, weight, and cost. Many of these advances will depend on optimization of thermal management. Effective thermal management is critical to improving the performance and ensuring the reliability of EDVs. Efficient heat removal makes higher power densities and lower operating temperatures possible, andmore » in turn enables cost and size reductions. The National Renewable Energy Laboratory (NREL), along with DOE and industry partners is working to develop cost-effective thermal management solutions to increase device and component power densities. In this presentation, the activities in recent years related to thermal management and reliability of automotive power electronics and electric machines are presented.« less

  14. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Narumanchi, Sreekant

    Increasing the number of electric-drive vehicles (EDVs) on America's roads has been identified as a strategy with near-term potential for dramatically decreasing the nation's dependence on oil -- by the U.S. Department of Energy, the federal cross-agency EV-Everywhere Challenge, and the automotive industry. Mass-market deployment will rely on meeting aggressive technical targets, including improved efficiency and reduced size, weight, and cost. Many of these advances will depend on optimization of thermal management. Effective thermal management is critical to improving the performance and ensuring the reliability of EDVs. Efficient heat removal makes higher power densities and lower operating temperatures possible, andmore » in turn enables cost and size reductions. The National Renewable Energy Laboratory (NREL), along with DOE and industry partners is working to develop cost-effective thermal management solutions to increase device and component power densities. In this presentation, the activities in recent years related to thermal management and reliability of automotive power electronics and electric machines will be presented.« less

  15. Warehouses information system design and development

    NASA Astrophysics Data System (ADS)

    Darajatun, R. A.; Sukanta

    2017-12-01

    Materials/goods handling industry is fundamental for companies to ensure the smooth running of their warehouses. Efficiency and organization within every aspect of the business is essential in order to gain a competitive advantage. The purpose of this research is design and development of Kanban of inventory storage and delivery system. Application aims to facilitate inventory stock checks to be more efficient and effective. Users easily input finished goods from production department, warehouse, customer, and also suppliers. Master data designed as complete as possible to be prepared applications used in a variety of process logistic warehouse variations. The author uses Java programming language to develop the application, which is used for building Java Web applications, while the database used is MySQL. System development methodology that I use is the Waterfall methodology. Waterfall methodology has several stages of the Analysis, System Design, Implementation, Integration, Operation and Maintenance. In the process of collecting data the author uses the method of observation, interviews, and literature.

  16. Data acquisition, remote control and equipment monitoring for ISOLDE RILIS

    NASA Astrophysics Data System (ADS)

    Rossel, R. E.; Fedosseev, V. N.; Marsh, B. A.; Richter, D.; Rothe, S.; Wendt, K. D. A.

    2013-12-01

    With a steadily increasing on-line operation time up to a record 3000 h in the year 2012, the Resonance Ionization Laser Ion Source (RILIS) is one of the key components of the ISOLDE on-line isotope user facility at CERN. Ion beam production using the RILIS is essential for many experiments due to the unmatched combination of ionization efficiency and selectivity. To meet the reliability requirements the RILIS is currently operated in shift duty for continuous maintenance of crucial laser parameters such as wavelength, power, beam position and timing, as well as ensuring swift intervention in case of an equipment malfunction. A recent overhaul of the RILIS included the installation of new pump lasers, commercial dye lasers and a complementary, fully solid-state titanium:sapphire laser system. The framework of the upgrade also required the setup of a network-extended, LabVIEW-based system for data acquisition, remote control and equipment monitoring, to support RILIS operators as well as ISOLDE users. The system contributes to four key aspects of RILIS operation: equipment monitoring, machine protection, automated self-reliance, and collaborative data acquisition. The overall concept, technologies used, implementation status and recent applications during the 2012 on-line operation period will be presented along with a summary of future developments.

  17. Surface-to-surface biofilm transfer: a quick and reliable startup strategy for mixed culture microbial fuel cells.

    PubMed

    Vogl, Andreas; Bischof, Franz; Wichern, Marc

    2016-01-01

    The startup of microbial fuel cells (MFCs) is known to be prone to failure or result in erratic performance impeding the research. The aim of this study was to advise a quick launch strategy for laboratory-scale MFCs that ensures steady operation performance in a short period of time. Different startup strategies were investigated and compared with membraneless single chamber MFCs. A direct surface-to-surface biofilm transfer (BFT) in an operating MFC proved to be the most efficient method. It provided steady power densities of 163 ± 13 mWm(-2) 4 days after inoculation compared to 58 ± 15 mWm(-2) after 30 days following a conventional inoculation approach. The in situ BFT eliminates the need for microbial acclimation during startup and reduces performance fluctuations caused by shifts in microbial biodiversity. Anaerobic pretreatment of the substrate and addition of suspended enzymes from an operating MFC into the new MFC proved to have a beneficial effect on startup and subsequent operation. Polarization methods were applied to characterize the startup phase and the steady state operation in terms of power densities, internal resistance and power overshoot during biofilm maturation. Applying this method a well-working MFC can be multiplied into an array of identically performing MFCs.

  18. British Policy Towards Loyalists in the Philadelphia Campaign, 1777-1778

    DTIC Science & Technology

    2017-05-25

    revolution. This lack of nuanced understanding prevented the formation of a coherent policy at the operational level to ensure the support of the...lack of nuanced understanding prevented the formation of a coherent policy at the operational level to ensure the support of the Loyalists...of using devious math to justify the lack of reinforcements by including the sick and captured in his count.9

  19. Distributed sensor coordination for advanced energy systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tumer, Kagan

    Motivation: The ability to collect key system level information is critical to the safe, efficient and reliable operation of advanced power systems. Recent advances in sensor technology have enabled some level of decision making directly at the sensor level. However, coordinating large numbers of sensors, particularly heterogeneous sensors, to achieve system level objectives such as predicting plant efficiency, reducing downtime or predicting outages requires sophisticated coordination algorithms. Indeed, a critical issue in such systems is how to ensure the interaction of a large number of heterogenous system components do not interfere with one another and lead to undesirable behavior. Objectivesmore » and Contributions: The long-term objective of this work is to provide sensor deployment, coordination and networking algorithms for large numbers of sensors to ensure the safe, reliable, and robust operation of advanced energy systems. Our two specific objectives are to: 1. Derive sensor performance metrics for heterogeneous sensor networks. 2. Demonstrate effectiveness, scalability and reconfigurability of heterogeneous sensor network in advanced power systems. The key technical contribution of this work is to push the coordination step to the design of the objective functions of the sensors, allowing networks of heterogeneous sensors to be controlled. By ensuring that the control and coordination is not specific to particular sensor hardware, this approach enables the design and operation of large heterogeneous sensor networks. In addition to the coordination coordination mechanism, this approach allows the system to be reconfigured in response to changing needs (e.g., sudden external events requiring new responses) or changing sensor network characteristics (e.g., sudden changes to plant condition). Impact: The impact of this work extends to a large class of problems relevant to the National Energy Technology Laboratory including sensor placement, heterogeneous sensor coordination, and sensor network control in advanced power systems. Each application has specific needs, but they all share the one crucial underlying problem: how to ensure that the interactions of a large number of heterogenous agents lead to coordinated system behavior. This proposal describes a new paradigm that addresses that very issue in a systematic way. Key Results and Findings: All milestones have been completed. Our results demonstrate that by properly shaping agent objective functions, we can develop large (up to 10,000 devices) heterogeneous sensor networks with key desirable properties. The first milestone shows that properly choosing agent-specific objective functions increases system performance by up to 99.9% compared to global evaluations. The second milestone shows evolutionary algorithms learn excellent sensor network coordination policies prior to network deployment, and these policies can be refined online once the network is deployed. The third milestone shows the resulting sensor networks networks are extremely robust to sensor noise, where networks with up to 25% sensor noise are capable of providing measurements with errors on the order of 10⁻³. The fourth milestone shows the resulting sensor networks are extremely robust to sensor failure, with 25% of the sensors in the system failing resulting in no significant performance losses after system reconfiguration.« less

  20. 76 FR 73022 - Agency Information Collection (Operation Enduring Freedom/Operation Iraqi Freedom Seriously...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-11-28

    ... (Operation Enduring Freedom/ Operation Iraqi Freedom Seriously Injured/Ill Service Member Veteran Worksheet... No. 2900-0720.'' SUPPLEMENTARY INFORMATION: Title: Operation Enduring Freedom/Operation Iraqi Freedom... used VA Form 21-0773 as a checklist to ensure they provided Operation Enduring Freedom or Operation...

  1. Hybrid Automotive Engine Using Ethanol-Burning Miller Cycle

    NASA Technical Reports Server (NTRS)

    Weinstein, Leonard

    2004-01-01

    A proposed hybrid (internal-combustion/ electric) automotive engine system would include as its internal-combustion subsystem, a modified Miller-cycle engine with regenerative air preheating and with autoignition like that of a Diesel engine. The fuel would be ethanol and would be burned lean to ensure complete combustion. Although the proposed engine would have a relatively low power-to-weight ratio compared to most present engines, this would not be the problem encountered if this engine were used in a non-hybrid system since hybrid systems require significantly lower power and thus smaller engines than purely internal-combustion-engine-driven vehicles. The disadvantage would be offset by the advantages of high fuel efficiency, low emission of nitrogen oxides and particulate pollutants, and the fact that ethanol is a renewable fuel. The original Miller-cycle engine, named after its inventor, was patented in the 1940s and is the basis of engines used in some modern automobiles, but is not widely known. In somewhat oversimplified terms, the main difference between a Miller-cycle engine and a common (Otto-cycle) automobile engine is that the Miller-cycle engine has a longer expansion stroke while retaining the shorter compression stroke. This is accomplished by leaving the intake valve open for part of the compression stroke, whereas in the Otto cycle engine, the intake valve is kept closed during the entire compression stroke. This greater expansion ratio makes it possible to extract more energy from the combustion process without expending more energy for compression. The net result is greater efficiency. In the proposed engine, the regenerative preheating would be effected by running the intake air through a heat exchanger connected to the engine block. The regenerative preheating would offer two advantages: It would ensure reliable autoignition during operation at low ambient temperature and would help to cool the engine, thereby reducing the remainder of the power needed for cooling and thereby further contributing to efficiency. An electrical resistance air preheater might be needed to ensure autoignition at startup and during a short warmup period. Because of the autoignition, the engine could operate without either spark plugs or glow plugs. Ethanol burns relatively cleanly and has been used as a motor fuel since the invention of internal-combustion engines. However, the energy content of ethanol per unit weight of ethanol is less than that of Diesel fuel or gasoline, and ethanol has a higher heat of vaporization. Because the Miller cycle offers an efficiency close to that of the Diesel cycle, burning ethanol in a Miller-cycle engine gives about as much usable output energy per unit volume of fuel as does burning gasoline in a conventional gasoline automotive engine. Because of the combination of preheating, running lean, and the use of ethyl alcohol, the proposed engine would generate less power per unit volume than does a conventional automotive gasoline engine. Consequently, for a given power level, the main body of the proposed engine would be bulkier. However, because little or no exhaust cleanup would be needed, the increase in bulk of the engine could be partially offset by the decrease in bulk of the exhaust system. The regenerative preheating also greatly reduces the external engine cooling requirement, and would translate to reduced engine bulk. It may even be possible to accomplish the remaining cooling of the engine by use of air only, eliminating the bulk and power consumption of a water cooling system. The combination of a Miller-cycle engine with regenerative air preheating, ethyl alcohol fuel, and hybrid operation could result in an automotive engine system that satisfies the need for a low pollution, high efficiency, and simple engine with a totally renewable fuel.

  2. Efficient Radio Frequency Inductive Discharges in Near Atmospheric Pressure Using Immittance Conversion Topology

    NASA Astrophysics Data System (ADS)

    Razzak, M. Abdur; Takamura, Shuichi; Uesugi, Yoshihiko; Ohno, Noriyasu

    A radio frequency (rf) inductive discharge in atmospheric pressure range requires high voltage in the initial startup phase and high power during the steady state sustainment phase. It is, therefore, necessary to inject high rf power into the plasma ensuring the maximum use of the power source, especially where the rf power is limited. In order to inject the maximum possible rf power into the plasma with a moderate rf power source of few kilowatts range, we employ the immittance conversion topology by converting a constant voltage source into a constant current source to generate efficient rf discharge by inductively coupled plasma (ICP) technique at a gas pressure with up to one atmosphere in argon. A novel T-LCL immittance circuit is designed for constant-current high-power operation, which is practically very important in the high-frequency range, to provide high effective rf power to the plasma. The immittance conversion system combines the static induction transistor (SIT)-based radio frequency (rf) high-power inverter circuit and the immittance conversion elements including the rf induction coil. The basic properties of the immittance circuit are studied by numerical analysis and verified the results by experimental measurements with the inductive plasma as a load at a relatively high rf power of about 4 kW. The performances of the immittance circuit are also evaluated and compared with that of the conventional series resonance circuit in high-pressure induction plasma generation. The experimental results reveal that the immittance conversion circuit confirms injecting higher effective rf power into the plasma as much as three times than that of the series resonance circuit under the same operating conditions and same dc supply voltage to the inverter, thereby enhancing the plasma heating efficiency to generate efficient rf inductive discharges.

  3. Evaluation of a protocol-based intervention to promote timely switching from intravenous to oral paracetamol for post-operative pain management: an interrupted time series analysis.

    PubMed

    Sabry, Nirmeen; Dawoud, Dalia; Alansary, Adel; Hounsome, Natalia; Baines, Darrin

    2015-12-01

    Timely switching from intravenous to oral therapy ensures optimized treatment and efficient use of health care resources. Intravenous (IV) paracetamol is widely used for post-operative pain management but not always switched to the oral form in a timely manner, leading to unnecessary increase in expenditure. This study aims to evaluate the impact of a multifaceted intervention to promote timely switching from the IV to oral form in the post-operative setting. An evidence-based prescribing protocol was designed and implemented by the clinical pharmacy team in a single district general hospital in Egypt. The protocol specified the criteria for appropriate prescribing of IV paracetamol. Doctors were provided with information and educational sessions prior to implementation. A prospective, quasi-experimental study was undertaken to evaluate its impact on IV paracetamol utilization and costs. Data on monthly utilization and costs were recorded for 12 months before and after implementation (January 2012 to December 2013). Data were analysed using interrupted time series analysis. Prior to implementation, in 2012, total spending on IV paracetamol was 674 154.00 Egyptian Pounds (L.E.) ($23,668.00). There was a non-significant (P > 0.05) downward trend in utilization (-32 ampoules per month) and costs [reduction of 632 L.E. ($222) per month]. Following implementation, immediate decrease in utilization and costs (P < 0.05) and a trend change over the follow-up period were observed. Average monthly reduction was 26% (95% CI: 24% to 28%, P < 0.001). A multifaceted, protocol-based intervention to ensure timely switching from IV-to-oral paracetamol achieved significant reduction in utilization and cost of IV paracetamol in the first 5 months of its implementation. © 2015 John Wiley & Sons, Ltd.

  4. Mini-Ckpts: Surviving OS Failures in Persistent Memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiala, David; Mueller, Frank; Ferreira, Kurt Brian

    Concern is growing in the high-performance computing (HPC) community on the reliability of future extreme-scale systems. Current efforts have focused on application fault-tolerance rather than the operating system (OS), despite the fact that recent studies have suggested that failures in OS memory are more likely. The OS is critical to a system's correct and efficient operation of the node and processes it governs -- and in HPC also for any other nodes a parallelized application runs on and communicates with: Any single node failure generally forces all processes of this application to terminate due to tight communication in HPC. Therefore,more » the OS itself must be capable of tolerating failures. In this work, we introduce mini-ckpts, a framework which enables application survival despite the occurrence of a fatal OS failure or crash. Mini-ckpts achieves this tolerance by ensuring that the critical data describing a process is preserved in persistent memory prior to the failure. Following the failure, the OS is rejuvenated via a warm reboot and the application continues execution effectively making the failure and restart transparent. The mini-ckpts rejuvenation and recovery process is measured to take between three to six seconds and has a failure-free overhead of between 3-5% for a number of key HPC workloads. In contrast to current fault-tolerance methods, this work ensures that the operating and runtime system can continue in the presence of faults. This is a much finer-grained and dynamic method of fault-tolerance than the current, coarse-grained, application-centric methods. Handling faults at this level has the potential to greatly reduce overheads and enables mitigation of additional fault scenarios.« less

  5. Sensor network design for multimodal freight transportation systems.

    DOT National Transportation Integrated Search

    2009-10-15

    The agricultural and manufacturing industries in the US Midwest region rely heavily on the efficiency of freight transportation systems. While the growth of freight movement far outpaces that of the transportation infrastructure, ensuring the efficie...

  6. An overview of safety assessment, regulation, and control of hazardous material use at NREL

    NASA Astrophysics Data System (ADS)

    Nelson, B. P.; Crandall, R. S.; Moskowitz, P. D.; Fthenakis, V. M.

    1992-12-01

    This paper summarizes the methodology we use to ensure the safe use of hazardous materials at the National Renewable Energy Laboratory (NREL). First, we analyze the processes and the materials used in those processes to identify the hazards presented. Then we study federal, state, and local regulations and apply the relevant requirements to our operations. When necessary, we generate internal safety documents to consolidate this information. We design research operations and support systems to conform to these requirements. Before we construct the systems, we perform a semiquantitative risk analysis on likely accident scenarios. All scenarios presenting an unacceptable risk require system or procedural modifications to reduce the risk. Following these modifications, we repeat the risk analysis to ensure that the respective accident scenarios present an acceptable risk. Once all risks are acceptable, we conduct an operational readiness review (ORR). A management-appointed panel performs the ORR ensuring compliance with all relevant requirements. After successful completion of the ORR, operations can begin.

  7. Efficient resource allocation scheme for visible-light communication system

    NASA Astrophysics Data System (ADS)

    Kim, Woo-Chan; Bae, Chi-Sung; Cho, Dong-Ho; Shin, Hong-Seok; Jung, D. K.; Oh, Y. J.

    2009-01-01

    A visible-light communication utilizing LED has many advantagies such as visibility of information, high SNR (Signal to Noise Ratio), low installation cost, usage of existing illuminators, and high security. Furthermore, exponentially increasing needs and quality of LED have helped the development of visible-light communication. The visibility is the most attractive property in visible-light communication system, but it is difficult to ensure visibility and transmission efficiency simultaneously during initial access because of the small amount of initial access process signals. In this paper, we propose an efficient resource allocation scheme at initial access for ensuring visibility with high resource utilization rate and low data transmission failure rate. The performance has been evaluated through the numerical analysis and simulation results.

  8. Analysis of economic and environmental benefits of a new heat pump air conditioning system with a heat recovery device

    NASA Astrophysics Data System (ADS)

    Li, lingxue

    2017-08-01

    The paper designs a new wind-water cooling and heating water conditioner system, connects cooling tower with heat recovery device, which uses cooling water to completely remove the heat that does not need heat recollection, in order to ensure that the system can work efficiently with higher performance coefficient. After the test actual engineering operation, the system’s maximum cooling coefficient of performance can reach 3.5. Its maximum comprehensive coefficient of performance can reach 6.5. After the analysis of its economic and environmental, we conclude that the new system can save 89822 kw per year. It reflects energy-saving and environmental benefits of the cold and hot water air conditioning system.

  9. Quantum image encryption based on restricted geometric and color transformations

    NASA Astrophysics Data System (ADS)

    Song, Xian-Hua; Wang, Shen; Abd El-Latif, Ahmed A.; Niu, Xia-Mu

    2014-08-01

    A novel encryption scheme for quantum images based on restricted geometric and color transformations is proposed. The new strategy comprises efficient permutation and diffusion properties for quantum image encryption. The core idea of the permutation stage is to scramble the codes of the pixel positions through restricted geometric transformations. Then, a new quantum diffusion operation is implemented on the permutated quantum image based on restricted color transformations. The encryption keys of the two stages are generated by two sensitive chaotic maps, which can ensure the security of the scheme. The final step, measurement, is built by the probabilistic model. Experiments conducted on statistical analysis demonstrate that significant improvements in the results are in favor of the proposed approach.

  10. Hospital employee job resourcefulness: an empirical study and implications for health care marketing.

    PubMed

    Harris, Eric G; Artis, Andrew B; Fogliasso, Chris; Fleming, David E

    2007-01-01

    In today's competitive hospital marketing environment, it is imperative that administrators ensure that their hospitals are operating as efficiently and as effectively as possible. "Doing more with less" has become a mandate for hospital administrators and employees. The current research replicates and extends previous work devoted to this topic by examining the job resourcefulness construct in a hospital setting. Job resourcefulness, an individual difference variable, assesses the degree to which employees are able to overcome resource constraints in the pursuit of job-related goals. The work builds upon previous work and contributes to the hospital marketing literature by examining the relationships between resourcefulness, personality influencers, role stressors, and job tenure. Research implications and suggestions for future work in the area are presented.

  11. Multiparty quantum key agreement protocol based on locally indistinguishable orthogonal product states

    NASA Astrophysics Data System (ADS)

    Jiang, Dong-Huan; Xu, Guang-Bao

    2018-07-01

    Based on locally indistinguishable orthogonal product states, we propose a novel multiparty quantum key agreement (QKA) protocol. In this protocol, the private key information of each party is encoded as some orthogonal product states that cannot be perfectly distinguished by local operations and classical communications. To ensure the security of the protocol with small amount of decoy particles, the different particles of each product state are transmitted separately. This protocol not only can make each participant fairly negotiate a shared key, but also can avoid information leakage in the maximum extent. We give a detailed security proof of this protocol. From comparison result with the existing QKA protocols, we can know that the new protocol is more efficient.

  12. Structured surface reflector design for oblique incidence beam splitter at 610 GHz.

    PubMed

    Defrance, F; Casaletti, M; Sarrazin, J; Wiedner, M C; Gibson, H; Gay, G; Lefèvre, R; Delorme, Y

    2016-09-05

    An iterative alternate projection-based algorithm is developed to design structured surface reflectors to operate as beam splitters at GHz and THz frequencies. To validate the method, a surface profile is determined to achieve a reflector at 610 GHz that generates four equal-intensity beams towards desired directions of ±12.6° with respect to the specular reflection axis. A prototype is fabricated and the beam splitter behavior is experimentally demonstrated. Measurements confirm a good agreement (within 1%) with computer simulations using Feko, validating the method. The beam splitter at 610 GHz has a measured efficiency of 78% under oblique incidence illumination that ensures a similar intensity between the four reflected beams (variation of about 1%).

  13. Command and Control Software Development

    NASA Technical Reports Server (NTRS)

    Wallace, Michael

    2018-01-01

    The future of the National Aeronautics and Space Administration (NASA) depends on its innovation and efficiency in the coming years. With ambitious goals to reach Mars and explore the vast universe, correct steps must be taken to ensure our space program reaches its destination safely. The interns in the Exploration Systems and Operations Division at the Kennedy Space Center (KSC) have been tasked with building command line tools to ease the process of managing and testing the data being produced by the ground control systems while its recording system is not in use. While working alongside full-time engineers, we were able to create multiple programs that reduce the cost and time it takes to test the subsystems that launch rockets to outer space.

  14. Tune-Up Your Fan Systems for Improved Performance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fans are used extensively in commercial buildings and represent approximately 6% of total energy consumed by commercial buildings. The U.S. Department of Energy (DOE) estimates that fans in commercial buildings consume 158 billion kWh of electricity annually. Maintaining fan systems in proper condition provides energy savings and ensures a comfortable and healthy environment. While many fan systems have significant energy savings opportunities available through improvements in fan selection, system design, and operational practices, it is not always apparent when a fan system needs maintenance or what opportunities are available for improvements. This resource is designed for facility managers and maintenancemore » staff to provide easy-to-implement actionable guidance on fan efficiency measures for existing ducted air systems.« less

  15. Business entity selection: why it matters to healthcare practitioners--part I--Conceptual framework, sole proprietorships, and partnerships.

    PubMed

    Nithman, Robert W

    2015-01-01

    The Bureau of Labor statistics indicates only a 50% four-year survivability rate among businesses classified as "education and health services." Gaining knowledge of IRS business entities can result in cost savings, operational efficiency, reduced liability, and enhanced sustainability. Each entity has unique disadvan- tages, depending on size, diversity of ownership, desire to expand, and profitability. Business structures should be compatible with the organizational mission or vision statement, services and products, and professional codes of ethics. Healthcare reform will require greater business acumen. We have an ethical duty to disseminate and acquire the knowledge to properly establish and manage healthcare practices to ensure sustainable services that protect and serve the community.

  16. An efficient and accurate 3D displacements tracking strategy for digital volume correlation

    NASA Astrophysics Data System (ADS)

    Pan, Bing; Wang, Bo; Wu, Dafang; Lubineau, Gilles

    2014-07-01

    Owing to its inherent computational complexity, practical implementation of digital volume correlation (DVC) for internal displacement and strain mapping faces important challenges in improving its computational efficiency. In this work, an efficient and accurate 3D displacement tracking strategy is proposed for fast DVC calculation. The efficiency advantage is achieved by using three improvements. First, to eliminate the need of updating Hessian matrix in each iteration, an efficient 3D inverse compositional Gauss-Newton (3D IC-GN) algorithm is introduced to replace existing forward additive algorithms for accurate sub-voxel displacement registration. Second, to ensure the 3D IC-GN algorithm that converges accurately and rapidly and avoid time-consuming integer-voxel displacement searching, a generalized reliability-guided displacement tracking strategy is designed to transfer accurate and complete initial guess of deformation for each calculation point from its computed neighbors. Third, to avoid the repeated computation of sub-voxel intensity interpolation coefficients, an interpolation coefficient lookup table is established for tricubic interpolation. The computational complexity of the proposed fast DVC and the existing typical DVC algorithms are first analyzed quantitatively according to necessary arithmetic operations. Then, numerical tests are performed to verify the performance of the fast DVC algorithm in terms of measurement accuracy and computational efficiency. The experimental results indicate that, compared with the existing DVC algorithm, the presented fast DVC algorithm produces similar precision and slightly higher accuracy at a substantially reduced computational cost.

  17. 47 CFR 25.287 - Requirements pertaining to operation of mobile stations in the NVNG, 1.5/1.6 GHz, 1.6/2.4 GHz...

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... capabilities to ensure compliance with Footnote 5.353A in 47 CFR 2.106 and the priority and real-time... capabilities to ensure compliance with Footnotes 5.353A and the priority and real-time preemption requirements... respect to FSS stations operating with other systems. (1) LES transmissions to MESs must have a priority...

  18. Naval Supply Systems Command Fleet Logistics Center

    DTIC Science & Technology

    2012-08-08

    Partial small business set - aside is a potential consideration   12-month Base plus two options   Synopsis N00604-11-R-3006 on NECO and FedBizOpps...2012 Navy Gold Coast Small Business Procurement Event 8 August 2012 #1 PRIORITY = Operating Forces Support …while ensuring Joint...while ensuring Joint Base Success FedBid.com Reverse Auction Website 8 Small Business Assistance #1 PRIORITY = Operating Forces

  19. Outsourcing your medical practice call center: how to choose a vendor to ensure regulatory compliance.

    PubMed

    Johnson, Bill

    2014-01-01

    Medical practices receive hundreds if not thousands of calls every week from patients, payers, pharmacies, and others. Outsourcing call centers can be a smart move to improve efficiency, lower costs, improve customer care, ensure proper payer management, and ensure regulatory compliance. This article discusses how to know when it's time to move to an outsourced call center, the benefits of making the move, how to choose the right call center, and how to make the transition. It also provides tips on how to manage the call center to ensure the objectives are being met.

  20. Scaling up HIV viral load - lessons from the large-scale implementation of HIV early infant diagnosis and CD4 testing.

    PubMed

    Peter, Trevor; Zeh, Clement; Katz, Zachary; Elbireer, Ali; Alemayehu, Bereket; Vojnov, Lara; Costa, Alex; Doi, Naoko; Jani, Ilesh

    2017-11-01

    The scale-up of effective HIV viral load (VL) testing is an urgent public health priority. Implementation of testing is supported by the availability of accurate, nucleic acid based laboratory and point-of-care (POC) VL technologies and strong WHO guidance recommending routine testing to identify treatment failure. However, test implementation faces challenges related to the developing health systems in many low-resource countries. The purpose of this commentary is to review the challenges and solutions from the large-scale implementation of other diagnostic tests, namely nucleic-acid based early infant HIV diagnosis (EID) and CD4 testing, and identify key lessons to inform the scale-up of VL. Experience with EID and CD4 testing provides many key lessons to inform VL implementation and may enable more effective and rapid scale-up. The primary lessons from earlier implementation efforts are to strengthen linkage to clinical care after testing, and to improve the efficiency of testing. Opportunities to improve linkage include data systems to support the follow-up of patients through the cascade of care and test delivery, rapid sample referral networks, and POC tests. Opportunities to increase testing efficiency include improvements to procurement and supply chain practices, well connected tiered laboratory networks with rational deployment of test capacity across different levels of health services, routine resource mapping and mobilization to ensure adequate resources for testing programs, and improved operational and quality management of testing services. If applied to VL testing programs, these approaches could help improve the impact of VL on ART failure management and patient outcomes, reduce overall costs and help ensure the sustainable access to reduced pricing for test commodities, as well as improve supportive health systems such as efficient, and more rigorous quality assurance. These lessons draw from traditional laboratory practices as well as fields such as logistics, operations management and business. The lessons and innovations from large-scale EID and CD4 programs described here can be adapted to inform more effective scale-up approaches for VL. They demonstrate that an integrated approach to health system strengthening focusing on key levers for test access such as data systems, supply efficiencies and network management. They also highlight the challenges with implementation and the need for more innovative approaches and effective partnerships to achieve equitable and cost-effective test access. © 2017 The Authors. Journal of the International AIDS Society published by John Wiley & sons Ltd on behalf of the International AIDS Society.

  1. Designing Flight-Deck Procedures

    NASA Technical Reports Server (NTRS)

    Degani, Asaf; Wiener, L.; Shafto, Mike (Technical Monitor)

    1995-01-01

    A complex human-machine system consists of more than merely one or more human operators and a collection of hardware components. In order to operate a complex system successfully, the human-machine system must be supported by an organizational infrastructure of operating concepts, rules, guidelines, and documents. The coherency of such operating concepts, in terms of consistency and logic, is vitally important for the efficiency and safety of any complex system. In high-risk endeavors such as aircraft operations, space flight, nuclear power production, manufacturing process control, and military operations, it is essential that such support be flawless, as the price of operational error can be high. When operating rules are not adhered to, or the rules are inadequate for the task at hand, not only will the system's goals be thwarted, but there may also be tragic human and material consequences. To ensure safe and predictable operations, support to the operators, in this case flight crews, often comes in the form of standard operating procedures. These provide the crew with step-by-step guidance for carrying out their operations. Standard procedures do indeed promote uniformity, but they do so at the risk of reducing the role of human operators to a lower level. Management, however, must recognize the danger of over-procedurization, which fails to exploit one of the most valuable assets in the system, the intelligent operator who is "on the scene." The alert system designer and operations manager recognize that there cannot be a procedure for everything, and the time will come in which the operators of a complex system will face a situation for which there is no written procedure. Procedures, whether executed by humans or machines, have their place, but so does human cognition.

  2. Re-Engineering the Mission Operations System (MOS) for the Prime and Extended Mission

    NASA Technical Reports Server (NTRS)

    Hunt, Joseph C., Jr.; Cheng, Leo Y.

    2012-01-01

    One of the most challenging tasks in a space science mission is designing the Mission Operations System (MOS). Whereas the focus of the project is getting the spacecraft built and tested for launch, the mission operations engineers must build a system to carry out the science objectives. The completed MOS design is then formally assessed in the many reviews. Once a mission has completed the reviews, the Mission Operation System (MOS) design has been validated to the Functional Requirements and is ready for operations. The design was built based on heritage processes, new technology, and lessons learned from past experience. Furthermore, our operational concepts must be properly mapped to the mission design and science objectives. However, during the course of implementing the science objective in the operations phase after launch, the MOS experiences an evolutional change to adapt for actual performance characteristics. This drives the re-engineering of the MOS, because the MOS includes the flight and ground segments. Using the Spitzer mission as an example we demonstrate how the MOS design evolved for both the prime and extended mission to enhance the overall efficiency for science return. In our re-engineering process, we ensured that no requirements were violated or mission objectives compromised. In most cases, optimized performance across the MOS, including gains in science return as well as savings in the budget profile was achieved. Finally, we suggest a need to better categorize the Operations Phase (Phase E) in the NASA Life-Cycle Phases of Formulation and Implementation

  3. The U.S. Commercial Air Tour Industry: A Review of Aviation Safety Concerns

    PubMed Central

    Ballard, Sarah-Blythe

    2016-01-01

    The U.S. Title 14 Code of Federal Regulations defines commercial air tours as “flight[s] conducted for compensation or hire in an airplane or helicopter where a purpose of the flight is sightseeing.” The incidence of air tour crashes in the United States is disproportionately high relative to similar commercial aviation operations, and air tours operating under Part 91 governance crash significantly more than those governed by Part 135. This paper reviews the government and industry response to four specific areas of air tour safety concern: surveillance of flight operations, pilot factors, regulatory standardization, and maintenance quality assurance. It concludes that the government and industry have successfully addressed many of these tenet issues, most notably by: advancing the operations surveillance infrastructure through implementation of en route, ground-based, and technological surveillance methods; developing Aeronautical Decision Making and cue-based training programs for air tour pilots; consolidating federal air tour regulations under Part 136; and developing public-private partnerships for raising maintenance operating standards and improving quality assurance programs. However, opportunities remain to improve air tour safety by: increasing the number and efficiency of flight surveillance programs; addressing pilot fatigue with more restrictive flight hour limitations for air tour pilots; ensuring widespread uptake of maintenance quality assurance programs, especially among high-risk operators not currently affiliated with private air tour safety programs; and eliminating the 25-mile exception allowing Part 91 operators to conduct commercial air tours without the safety oversight required of Part 135 operators. PMID:24597160

  4. The U.S. commercial air tour industry: a review of aviation safety concerns.

    PubMed

    Ballard, Sarah-Blythe

    2014-02-01

    The U.S. Title 14 Code of Federal Regulations defines commercial air tours as "flight[s] conducted for compensation or hire in an airplane or helicopter where a purpose of the flight is sightseeing." The incidence of air tour crashes in the United States is disproportionately high relative to similar commercial aviation operations, and air tours operating under Part 91 governance crash significantly more than those governed by Part 135. This paper reviews the government and industry response to four specific areas of air tour safety concern: surveillance of flight operations, pilot factors, regulatory standardization, and maintenance quality assurance. It concludes that the government and industry have successfully addressed many of these tenet issues, most notably by: advancing the operations surveillance infrastructure through implementation of en route, ground-based, and technological surveillance methods; developing Aeronautical Decision Making and cue-based training programs for air tour pilots; consolidating federal air tour regulations under Part 136; and developing public-private partnerships for raising maintenance operating standards and improving quality assurance programs. However, opportunities remain to improve air tour safety by: increasing the number and efficiency of flight surveillance programs; addressing pilot fatigue with more restrictive flight hour limitations for air tour pilots; ensuring widespread uptake of maintenance quality assurance programs, especially among high-risk operators not currently affiliated with private air tour safety programs; and eliminating the 25-mile exception allowing Part 91 operators to conduct commercial air tours without the safety oversight required of Part 135 operators.

  5. Integrated guidance and control for microsatellite real-time automated proximity operations

    NASA Astrophysics Data System (ADS)

    Chen, Ying; He, Zhen; Zhou, Ding; Yu, Zhenhua; Li, Shunli

    2018-07-01

    This paper investigates the trajectory planning and control of autonomous spacecraft proximity operations with impulsive dynamics. A new integrated guidance and control scheme is developed to perform automated close-range rendezvous for underactuated microsatellites. To efficiently prevent collision, a modified RRT* trajectory planning algorithm is proposed under this context. Several engineering constraints such as collision avoidance, plume impingement, field of view and control feasibility are considered simultaneously. Then, the feedback controller that employs a turn-burn-turn strategy with a combined impulsive orbital control and finite-time attitude control is designed to ensure the implementation of planned trajectory. Finally, the performance of trajectory planner and controller are evaluated through numerical tests. Simulation results indicate the real-time implementability of the proposed integrated guidance and control scheme with position control error less than 0.5 m and velocity control error less than 0.05 m/s. Consequently, the proposed scheme offers the potential for wide applications, such as on-orbit maintenance, space surveillance and debris removal.

  6. Simulation and animation of sensor-driven robots.

    PubMed

    Chen, C; Trivedi, M M; Bidlack, C R

    1994-10-01

    Most simulation and animation systems utilized in robotics are concerned with simulation of the robot and its environment without simulation of sensors. These systems have difficulty in handling robots that utilize sensory feedback in their operation. In this paper, a new design of an environment for simulation, animation, and visualization of sensor-driven robots is presented. As sensor technology advances, increasing numbers of robots are equipped with various types of sophisticated sensors. The main goal of creating the visualization environment is to aid the automatic robot programming and off-line programming capabilities of sensor-driven robots. The software system will help the users visualize the motion and reaction of the sensor-driven robot under their control program. Therefore, the efficiency of the software development is increased, the reliability of the software and the operation safety of the robot are ensured, and the cost of new software development is reduced. Conventional computer-graphics-based robot simulation and animation software packages lack of capabilities for robot sensing simulation. This paper describes a system designed to overcome this deficiency.

  7. Streamlining and Standardizing Due Diligence to Ensure Quality of PV Power Plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurtz, Sarah

    Those investing in PV power plants would like to have confidence that the plants will provide the anticipated return on investment. While due diligence is capably performed by independent engineers today, as PV systems mature, there will be benefit in standardization and streamlining of this process. The IECRE has defined technical information that is needed as a basis for each transaction step such as approving a design to begin construction, documenting readiness to operate, quantifying performance after a year of operation, and assessing the health of the plant in preparation for sale of the plant. The technical requirements have beenmore » defined by IEC Technical Committee 82 and have been designed to be both effective and efficient in completing the assessments. This workshop will describe these new tools that are now available to the community and will include a panel/audience discussion about how and when they can be most effectively used.« less

  8. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source

    PubMed Central

    Pompidor, Guillaume; Dworkowski, Florian S. N.; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R.

    2013-01-01

    The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years. PMID:23955041

  9. High-pressure anaerobic digestion up to 100 bar: influence of initial pressure on production kinetics and specific methane yields.

    PubMed

    Merkle, Wolfgang; Baer, Katharina; Haag, Nicola Leonard; Zielonka, Simon; Ortloff, Felix; Graf, Frank; Lemmer, Andreas

    2017-02-01

    To ensure an efficient use of biogas produced by anaerobic digestion, in some cases it would be advisable to upgrade the biogenic gases and inject them into the transnational gas grids. To investigate biogas production under high-pressure conditions up to 100 bar, new pressure batch methane reactors were developed for preliminary lab-scale experiments with a mixture of grass and maize silage hydrolysate. During this investigation, the effects of different initial pressures (1, 50 and 100 bar) on pressure increase, gas production and the specific methane yield using nitrogen as inert gas were determined. Based on the experimental findings increasing initial pressures alter neither significantly, further pressure increases nor pressure increase rates. All supplied organic acids were degraded and no measurable inhibition of the microorganisms was observed. The results show that methane reactors can be operated at operating pressures up to 100 bar without any negative effects on methane production.

  10. Green synthesis of isopropyl myristate in novel single phase medium Part II: Packed bed reactor (PBR) studies.

    PubMed

    Vadgama, Rajeshkumar N; Odaneth, Annamma A; Lali, Arvind M

    2015-12-01

    Isopropyl myristate is a useful functional molecule responding to the requirements of numerous fields of application in cosmetic, pharmaceutical and food industry. In the present work, lipase-catalyzed production of isopropyl myristate by esterification of myristic acid with isopropyl alcohol (molar ratio of 1:15) in the homogenous reaction medium was performed on a bench-scale packed bed reactors, in order to obtain suitable reaction performance data for upscaling. An immobilized lipase B from Candida antartica was used as the biocatalyst based on our previous study. The process intensification resulted in a clean and green synthesis process comprising a series of packed bed reactors of immobilized enzyme and water dehydrant. In addition, use of the single phase reaction system facilitates efficient recovery of the product with no effluent generated and recyclability of unreacted substrates. The single phase reaction system coupled with a continuous operating bioreactor ensures a stable operational life for the enzyme.

  11. Newborn screening healthcare information system based on service-oriented architecture.

    PubMed

    Hsieh, Sung-Huai; Hsieh, Sheau-Ling; Chien, Yin-Hsiu; Weng, Yung-Ching; Hsu, Kai-Ping; Chen, Chi-Huang; Tu, Chien-Ming; Wang, Zhenyu; Lai, Feipei

    2010-08-01

    In this paper, we established a newborn screening system under the HL7/Web Services frameworks. We rebuilt the NTUH Newborn Screening Laboratory's original standalone architecture, having various heterogeneous systems operating individually, and restructured it into a Service-Oriented Architecture (SOA), distributed platform for further integrity and enhancements of sample collections, testing, diagnoses, evaluations, treatments or follow-up services, screening database management, as well as collaboration, communication among hospitals; decision supports and improving screening accuracy over the Taiwan neonatal systems are also addressed. In addition, the new system not only integrates the newborn screening procedures among phlebotomy clinics, referral hospitals, as well as the newborn screening center in Taiwan, but also introduces new models of screening procedures for the associated, medical practitioners. Furthermore, it reduces the burden of manual operations, especially the reporting services, those were heavily dependent upon previously. The new system can accelerate the whole procedures effectively and efficiently. It improves the accuracy and the reliability of the screening by ensuring the quality control during the processing as well.

  12. Telecommunications administration standard

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gustwiller, K.D.

    1996-05-01

    The administration of telecommunications is critical to proper maintenance and operation. The intent is to be able to properly support telecommunications for the distribution of all information within a building/campus. This standard will provide a uniform administration scheme that is independent of applications, and will establish guidelines for owners, installers, designers and contractors. This standard will accommodate existing building wiring, new building wiring and outside plant wiring. Existing buildings may not readily adapt to all applications of this standard, but the requirement for telecommunications administration is applicable to all buildings. Administration of the telecommunications infrastructure includes documentation (labels, records, drawings,more » reports, and work orders) of cables, termination hardware, patching and cross-connect facilities, telecommunications rooms, and other telecommunications spaces (conduits, grounding, and cable pathways are documented by Facilities Engineering). The investment in properly documenting telecommunications is a worthwhile effort. It is necessary to adhere to these standards to ensure quality and efficiency for the operation and maintenance of the telecommunications infrastructure for Sandia National Laboratories.« less

  13. Optimization of the p-xylene oxidation process by a multi-objective differential evolution algorithm with adaptive parameters co-derived with the population-based incremental learning algorithm

    NASA Astrophysics Data System (ADS)

    Guo, Zhan; Yan, Xuefeng

    2018-04-01

    Different operating conditions of p-xylene oxidation have different influences on the product, purified terephthalic acid. It is necessary to obtain the optimal combination of reaction conditions to ensure the quality of the products, cut down on consumption and increase revenues. A multi-objective differential evolution (MODE) algorithm co-evolved with the population-based incremental learning (PBIL) algorithm, called PBMODE, is proposed. The PBMODE algorithm was designed as a co-evolutionary system. Each individual has its own parameter individual, which is co-evolved by PBIL. PBIL uses statistical analysis to build a model based on the corresponding symbiotic individuals of the superior original individuals during the main evolutionary process. The results of simulations and statistical analysis indicate that the overall performance of the PBMODE algorithm is better than that of the compared algorithms and it can be used to optimize the operating conditions of the p-xylene oxidation process effectively and efficiently.

  14. A new on-axis micro-spectrophotometer for combining Raman, fluorescence and UV/Vis absorption spectroscopy with macromolecular crystallography at the Swiss Light Source.

    PubMed

    Pompidor, Guillaume; Dworkowski, Florian S N; Thominet, Vincent; Schulze-Briese, Clemens; Fuchs, Martin R

    2013-09-01

    The combination of X-ray diffraction experiments with optical methods such as Raman, UV/Vis absorption and fluorescence spectroscopy greatly enhances and complements the specificity of the obtained information. The upgraded version of the in situ on-axis micro-spectrophotometer, MS2, at the macromolecular crystallography beamline X10SA of the Swiss Light Source is presented. The instrument newly supports Raman and resonance Raman spectroscopy, in addition to the previously available UV/Vis absorption and fluorescence modes. With the recent upgrades of the spectral bandwidth, instrument stability, detection efficiency and control software, the application range of the instrument and its ease of operation were greatly improved. Its on-axis geometry with collinear X-ray and optical axes to ensure optimal control of the overlap of sample volumes probed by each technique is still unique amongst comparable facilities worldwide and the instrument has now been in general user operation for over two years.

  15. Is the Australian hospital system adequately prepared for terrorism?

    PubMed

    Rosenfeld, Jeffrey V; Fitzgerald, Mark; Kossmann, Thomas; Pearce, Andrew; Joseph, Anthony; Joseph, Andrew; Tan, Gim; Gardner, Michele; Shapira, Shmuel

    Australian hospitals need to be prepared to deal with mass casualties from terrorist strikes, including bomb blasts and chemical, biological and radiation injury. Injuries from bomb explosions are more severe than those commonly seen in Australian hospitals. In disasters involving mass casualties in urban areas, many of the injured make their own way to hospital, often arriving before the more seriously injured casualties. Major hospitals in Australia should plan for large numbers of undifferentiated and potentially contaminated casualties arriving with minimal warning. It is critical that experienced and trained senior medical officers perform the triage of casualties in emergency departments, with frequent reassessment to detect missed injuries (especially pulmonary blast injury). Hospitals require well developed standard operating procedures for mass casualty events, reinforced by regular drills. Preparing for a major event includes training staff in major incident management, setting up an operational/control unit, nominating key personnel, ensuring there is an efficient intra-hospital communication system, and enhancing links with other emergency services and hospitals.

  16. InkTag: Secure Applications on an Untrusted Operating System

    PubMed Central

    Hofmann, Owen S.; Kim, Sangman; Dunn, Alan M.; Lee, Michael Z.; Witchel, Emmett

    2014-01-01

    InkTag is a virtualization-based architecture that gives strong safety guarantees to high-assurance processes even in the presence of a malicious operating system. InkTag advances the state of the art in untrusted operating systems in both the design of its hypervisor and in the ability to run useful applications without trusting the operating system. We introduce paraverification, a technique that simplifies the InkTag hypervisor by forcing the untrusted operating system to participate in its own verification. Attribute-based access control allows trusted applications to create decentralized access control policies. InkTag is also the first system of its kind to ensure consistency between secure data and metadata, ensuring recoverability in the face of system crashes. PMID:24429939

  17. InkTag: Secure Applications on an Untrusted Operating System.

    PubMed

    Hofmann, Owen S; Kim, Sangman; Dunn, Alan M; Lee, Michael Z; Witchel, Emmett

    2013-01-01

    InkTag is a virtualization-based architecture that gives strong safety guarantees to high-assurance processes even in the presence of a malicious operating system. InkTag advances the state of the art in untrusted operating systems in both the design of its hypervisor and in the ability to run useful applications without trusting the operating system. We introduce paraverification , a technique that simplifies the InkTag hypervisor by forcing the untrusted operating system to participate in its own verification. Attribute-based access control allows trusted applications to create decentralized access control policies. InkTag is also the first system of its kind to ensure consistency between secure data and metadata, ensuring recoverability in the face of system crashes.

  18. Automatic PID Control Loops Design for Performance Improvement of Cryogenic Turboexpander

    NASA Astrophysics Data System (ADS)

    Joshi, D. M.; Patel, H. K.; Shah, D. K.

    2015-04-01

    Cryogenics field involves temperature below 123 K which is much less than ambient temperature. In addition, many industrially important physical processes—from fulfilling the needs of National Thermonuclear Fusion programs, superconducting magnets to treatment of cutting tools and preservation of blood cells, require extreme low temperature. The low temperature required for liquefaction of common gases can be obtained by several processes. Liquefaction is the process of cooling or refrigerating a gas to a temperature below its critical temperature so that liquid can be formed at some suitable pressure which is below the critical pressure. Helium liquefier is used for the liquefaction process of helium gas. In general, the Helium Refrigerator/Liquefier (HRL) needs turboexpander as expansion machine to produce cooling effect which is further used for the production of liquid helium. Turboexpanders, a high speed device that is supported on gas bearings, are the most critical component in many helium refrigeration systems. A very minor fault in the operation and manufacturing or impurities in the helium gas can destroy the turboexpander. However, since the performance of expanders is dependent on a number of operating parameters and the relations between them are quite complex, the instrumentation and control system design for turboexpander needs special attention. The inefficiency of manual control leads to the need of designing automatic control loops for turboexpander. Proper design and implementation of the control loops plays an important role in the successful operation of the cryogenic turboexpander. The PID control loops has to be implemented with accurate interlocks and logic to enhance the performance of the cryogenic turboexpander. For different normal and off-normal operations, speeds will be different and hence a proper control method for critical rotational speed avoidance is must. This paper presents the design of PID control loops needed for the efficient performance of cryogenic turboexpander (Radial Inflow type) to ensure that the control systems meet the technical conditions and constraints more accurately and ensure the equipment safety.

  19. Structure and practices of the video relay service program; telecommunications relay services and speech-to-speech services for individuals with hearing and speech disabilities. Final rule.

    PubMed

    2013-07-05

    In this document, the Commission adopts further measures to improve the structure, efficiency, and quality of the video relay service (VRS) program, reducing the inefficiencies in the program, as well as reducing the risk of waste, fraud, and abuse, and ensuring that the program makes full use of advances in commercially-available technology. These measures involve a fundamental restructuring of the program to support innovation and competition, drive down ratepayer and provider costs, eliminate incentives for waste that have burdened the Telecommunications Relay Services (TRS) Fund in the past, and further protect consumers. The Commission adopts several measures in order to: ensure that VRS users can easily select their provider of choice by promoting the development of interoperability and portability standards; enable consumers to use off-the-shelf devices and deploying a VRS application to work with these devices; create a centralized TRS User Registration Database to ensure VRS user eligibility; encourage competition and innovation in VRS call handling services; spur research and development on VRS services by entering into a Memorandum of Understanding with the National Science Foundation; and pilot a National Outreach Program to educate the general public about relay services. In this document, the Commission also adopts new VRS compensation rates that move these rates toward actual costs over the next four years which will better approximate the actual, reasonable costs of providing VRS, and will reduce the costs of operating the program. The Commission takes these steps to ensure the integrity of the TRS Fund while providing stability and certainty to providers.

  20. Enhancing the capabilities of emigration countries to protect men and women destined for low-skilled employment: the case of the Philippines.

    PubMed

    Santo Tomas, P

    1999-01-01

    This study examined policies in receiving countries, evaluated their effectiveness in protecting low skilled Filipino migrant workers, and discusses the potential for quantifying and objectifying labor migrant gains or losses. Data were obtained from focus groups among 10 technical managers of the Philippine Overseas Employment Administration and interviews with 10 policy-makers in order to establish a hierarchy of aims in labor migration and policy indicators. The aims are identified as good jobs abroad, an orderly process, efficient and fair recruitment, and easy transfers of remittances. Findings are that Philippine policies facilitate remittance transfers. Government was least effective in ensuring orderliness. Government was fairly effective in ensuring fairness and efficiency and ensuring good jobs overseas. It succeeded the most in ensuring that nationals can easily transfer their earnings. Allocation data reveal that more resources were expended on searching for good jobs and least on fairness and efficiency. Remittances increased after mandatory remittances were ended as imposed by the Marcos regime. De-skilling often resulted from overseas employment, but rehired workers received better pay on their second and third assignments. This research was exploratory and more research is needed for developing sensitive indicators and refining the process of evaluating key government policies. The Philippine Development Policy that encourages labor migration and protection of overseas workers is a necessity during the ongoing Asian economic crisis.

  1. Energy-Efficient Homes (Done Right)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2017-07-31

    Home energy upgrade measures allow individuals to enjoy a safe, comfortable, and energy-efficient home. But how do you know if the work is done right? Learn how the U.S Department of Energy and its National Renewable Energy Laboratory are working to ensure that energy efficient measures are being installed correctly across the United States.

  2. Operating a wide-area remote observing system for the W. M. Keck Observatory

    NASA Astrophysics Data System (ADS)

    Wirth, Gregory D.; Kibrick, Robert I.; Goodrich, Robert W.; Lyke, James E.

    2008-07-01

    For over a decade, the W. M. Keck Observatory's two 10-meter telescopes have been operated remotely from its Waimea headquarters. Over the last 6 years, WMKO remote observing has expanded to allow teams at dedicated sites in California to observe either in collaboration with colleagues in Waimea or entirely from the U.S. mainland. Once an experimental effort, the Observatory's mainland observing capability is now fully operational, supported on all science instruments (except the interferometer) and regularly used by astronomers at eight mainland sites. Establishing a convenient and secure observing capability from those sites required careful planning to ensure that they are properly equipped and configured. It also entailed a significant investment in hardware and software, including both custom scripts to simplify launching the instrument interface at remote sites and automated routers employing ISDN backup lines to ensure continuation of observing during Internet outages. Observers often wait until shortly before their runs to request use of the mainland facilities. Scheduling these requests and ensuring proper system operation prior to observing requires close coordination between personnel at WMKO and the mainland sites. An established protocol for approving requests and carrying out pre-run checkout has proven useful in ensuring success. The Observatory anticipates enhancing and expanding its remote observing system. Future plans include deploying dedicated summit computers for running VNC server software, implementing a web-based tracking system for mainland-based observing requests, expanding the system to additional mainland sites, and converting to full-time VNC operation for all instruments.

  3. Technical efficiency of public district hospitals in Madhya Pradesh, India: a data envelopment analysis.

    PubMed

    Jat, Tej Ram; Sebastian, Miguel San

    2013-09-24

    Scarcity of resources for healthcare is a well-acknowledged problem. In this context, efficient utilization of existing financial and human resources becomes crucial for strengthening the healthcare delivery. The assessment of efficiency of health facilities can guide decision makers in ensuring the optimum utilization of available resources. The objective of this study was to evaluate the technical efficiency (TE) of the public district hospitals in Madhya Pradesh, India, with special emphasis on maternal healthcare services, using data envelopment analysis (DEA). Data from 40 district hospitals from January to December 2010 were collected from the health management information system and other records of the department of health and family welfare of the state. DEA was performed with input orientation and variable returns to scale assumption. TE and scale efficiency scores of the district hospitals were 0.90 (SD = 0.14) and 0.88 (SD = 0.15), respectively. Of the total district hospitals in the study, 20 (50%) were technically efficient constituting the 'best practice frontier'. The other half were technically inefficient, with an average TE score of 0.79 (SD = 0.12) meaning that these hospitals could produce the same outputs by using 21% less inputs from current input levels. Twenty-six (65%) district hospitals were found to be scale inefficient, manifesting a mean score of 0.81 (SD = 0.16). Half of the district hospitals in the study were operating inefficiently. Decision makers and administrators in the state should identify the causes of the observed inefficiencies and take appropriate measures to increase efficiency of these hospitals.

  4. Methamphetamine residue dermal transfer efficiencies from household surfaces.

    PubMed

    Van Dyke, Mike; Martyny, John W; Serrano, Kate A

    2014-01-01

    Methamphetamine contamination from illegal production operations poses a potential health concern for emergency responders, child protective services, law enforcement, and children living in contaminated structures. The objective of this study was to evaluate dermal transfer efficiencies of methamphetamine from contaminated household surfaces. These transfer efficiencies are lacking for methamphetamine, and would be beneficial for use in exposure models. Surfaces were contaminated using a simulated smoking method in a stainless steel chamber. Household surfaces were carpet, painted drywall, and linoleum. Dermal transfer efficiencies were obtained using cotton gloves for two hand conditions, dry or saliva moistened (wet). In addition, three contact scenarios were evaluated for both hand conditions: one, two, or three contacts with contaminated surfaces. Dermal transfer efficiencies were calculated for both hand conditions and used as inputs in a Stochastic Human Exposure and Dose Simulation model (SHEDS-Multimedia, Office of Research and Development, United States Environmental Protection Agency, Research Triangle Park, N.C.). Results of this study showed that average dermal transfer efficiencies of methamphetamine ranged from 11% for dry hands to 26% for wet hands. There was a significantly higher wet transfer as compared to dry transfer for all surfaces. For wet hands, dermal transfer depended on surface type with higher transfer from carpet and linoleum as compared to drywall. Based on our estimates of dermal transfer efficiency, a surface contamination clearance level of 1.5 μg/100 cm(2) may not ensure absorbed doses remain below the level associated with adverse health effects in all cases. Additional dermal transfer studies should be performed using skin surrogates that may better predict actual skin transfer.

  5. Ensuring Effective Curriculum Approval Processes: A Guide for Local Senates

    ERIC Educational Resources Information Center

    Academic Senate for California Community Colleges, 2016

    2016-01-01

    Curriculum is the heart of the mission of every college. College curriculum approval processes have been established to ensure that rigorous, high quality curriculum is offered that meets the needs of students. While some concerns may exist regarding the effectiveness and efficiency of local curriculum processes, all participants in the process…

  6. Career Profile- Subscale UAS engineer/pilot Robert "Red" Jensen- Operations Engineering Branch

    NASA Image and Video Library

    2015-08-03

    Robert “Red” Jensen is an Operations Engineer and Pilot for subscale aircraft here at NASA’s Armstrong Flight Research Center. As part fabricator, engineer and integrator, Red is responsible for testing subscale models of aircraft and ensuring they are safe, capable of flight and ready to support the center’s needs. Operations engineers are key leaders from technical concept to flight to ensure flight safety and mission success. This video highlights Red’s responsibilities and daily activities as well as some of the projects and missions he is currently working on.

  7. DefenseLink Special: Coverage of the Oct. 15, 2005 Iraqi Constitutional

    Science.gov Websites

    * Operation River Gate Set Conditions * Iraqi, American Troops Ensure Safe Election * 48th Brigade Prepared Referendum * Military Officials Note River Gate Successes 82nd Airborne Paratroopers Help Ensure Safe

  8. Improvement of Productivity in TIG Welding Plant by Equipment Design in Orbit

    NASA Astrophysics Data System (ADS)

    Gnanavel, C.; Saravanan, R.; Chandrasekaran, M.; Jayakanth, J. J.

    2017-03-01

    Measurements and improvements are very indispensable task at all levels of management. Here some samples are, at operator level: Measuring operating parameters to ensure OEE (Overall Equipment Effectiveness) and measuring Q components performance to ensure quality, at supervisory level: measuring operator’s performance to ensure labour utility at managerial level: production and productivity measurements and at top level capital and capacity utilization. An often accepted statement is “Improvement is impossible without measurement”. Measurements often referred as observation. The case study was conducted at Government Boiler factory in India. The scientific approach followed for indentifying non value added activities. Personalised new equipment designed and installed to achieve productivity improvement of 85% for a day. The new equipment can serve 360o around its axis hence it simplified loading and unloading procedures as well as reduce their times and ensured effective space and time.

  9. Simulation of an active cooling system for photovoltaic modules

    NASA Astrophysics Data System (ADS)

    Abdelhakim, Lotfi

    2016-06-01

    Photovoltaic cells are devices that convert solar radiation directly into electricity. However, solar radiation increases the photovoltaic cells temperature [1] [2]. The temperature has an influence on the degradation of the cell efficiency and the lifetime of a PV cell. This work reports on a water cooling technique for photovoltaic panel, whereby the cooling system was placed at the front surface of the cells to dissipate excess heat away and to block unwanted radiation. By using water as a cooling medium for the photovoltaic solar cells, the overheating of closed panel is greatly reduced without prejudicing luminosity. The water also acts as a filter to remove a portion of solar spectrum in the infrared band but allows transmission of the visible spectrum most useful for the PV operation. To improve the cooling system efficiency and electrical efficiency, uniform flow rate among the cooling system is required to ensure uniform distribution of the operating temperature of the PV cells. The aims of this study are to develop a 3D thermal model to simulate the cooling and heat transfer in Photovoltaic panel and to recommend a cooling technique for the PV panel. The velocity, pressure and temperature distribution of the three-dimensional flow across the cooling block were determined using the commercial package, Fluent. The second objective of this work is to study the influence of the geometrical dimensions of the panel, water mass flow rate and water inlet temperature on the flow distribution and the solar panel temperature. The results obtained by the model are compared with experimental results from testing the prototype of the cooling device.

  10. Development of an X-Band 50 MW Multiple Beam Klystron

    NASA Astrophysics Data System (ADS)

    Song, Liqun; Ferguson, Patrick; Ives, R. Lawrence; Miram, George; Marsden, David; Mizuhara, Max

    2003-12-01

    Calabazas Creek Research, Inc. is developing an X-band 50 MW multiple beam klystron (MBK) on a DOE SBIR Phase II grant. The electrical design and preliminary mechanical design were completed on the Phase I. This MBK consists of eight discrete klystron circuits driven by eight electron beams located symmetrically on a circle with a radius of 6.3 cm. Each beam operates at 190 kV and 66 A. The eight beam electron gun is in development on a DOE SBIR Phase II grant. Each circuit consists of an input cavity, two gain cavities, three penultimate cavities, and a three cavity output circuit operating in the PI/2 mode. Ring resonators were initially proposed for the complete circuit; however, low beam — wave interaction resulted in the necessity to use discrete cavities for all eight circuits. The input cavities are coupled via hybrid waveguides to ensure constant drive power amplitude and phase. The output circuits can either be combined using compact waveguide twists driving a TE01 high power window or combined into a TM04 mode converter driving the same TE01 window. The gain and efficiency for a single circuit has been optimized using KLSC, a 2 1/2D large signal klystron code. Simulations for a single circuit predict an efficiency of 53% for a single output cavity and 55% for the three cavity output resonator. The total RF output power for this MBK is 55 MW. During the Phase II emphasis will be given to cost reduction techniques resulting in a robust — high efficient — long life high power amplifier.

  11. 77 FR 55715 - Medical Area Body Network

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-11

    ... operating in accordance with the rules. 13. The 2370-2390 MHz band is used for radio astronomy operations in... to ensure protection of radio astronomy operations at the Arecibo site. 14. Lastly, the Commission...

  12. E-learning platform for automated testing of electronic circuits using signature analysis method

    NASA Astrophysics Data System (ADS)

    Gherghina, Cǎtǎlina; Bacivarov, Angelica; Bacivarov, Ioan C.; Petricǎ, Gabriel

    2016-12-01

    Dependability of electronic circuits can be ensured only through testing of circuit modules. This is done by generating test vectors and their application to the circuit. Testability should be viewed as a concerted effort to ensure maximum efficiency throughout the product life cycle, from conception and design stage, through production to repairs during products operating. In this paper, is presented the platform developed by authors for training for testability in electronics, in general and in using signature analysis method, in particular. The platform allows highlighting the two approaches in the field namely analog and digital signature of circuits. As a part of this e-learning platform, it has been developed a database for signatures of different electronic components meant to put into the spotlight different techniques implying fault detection, and from this there were also self-repairing techniques of the systems with this kind of components. An approach for realizing self-testing circuits based on MATLAB environment and using signature analysis method is proposed. This paper analyses the benefits of signature analysis method and simulates signature analyzer performance based on the use of pseudo-random sequences, too.

  13. The HACMS program: using formal methods to eliminate exploitable bugs

    PubMed Central

    Launchbury, John; Richards, Raymond

    2017-01-01

    For decades, formal methods have offered the promise of verified software that does not have exploitable bugs. Until recently, however, it has not been possible to verify software of sufficient complexity to be useful. Recently, that situation has changed. SeL4 is an open-source operating system microkernel efficient enough to be used in a wide range of practical applications. Its designers proved it to be fully functionally correct, ensuring the absence of buffer overflows, null pointer exceptions, use-after-free errors, etc., and guaranteeing integrity and confidentiality. The CompCert Verifying C Compiler maps source C programs to provably equivalent assembly language, ensuring the absence of exploitable bugs in the compiler. A number of factors have enabled this revolution, including faster processors, increased automation, more extensive infrastructure, specialized logics and the decision to co-develop code and correctness proofs rather than verify existing artefacts. In this paper, we explore the promise and limitations of current formal-methods techniques. We discuss these issues in the context of DARPA’s HACMS program, which had as its goal the creation of high-assurance software for vehicles, including quadcopters, helicopters and automobiles. This article is part of the themed issue ‘Verified trustworthy software systems’. PMID:28871050

  14. Test model designs for advanced refractory ceramic materials

    NASA Technical Reports Server (NTRS)

    Tran, Huy Kim

    1993-01-01

    The next generation of space vehicles will be subjected to severe aerothermal loads and will require an improved thermal protection system (TPS) and other advanced vehicle components. In order to ensure the satisfactory performance system (TPS) and other advanced vehicle materials and components, testing is to be performed in environments similar to space flight. The design and fabrication of the test models should be fairly simple but still accomplish test objectives. In the Advanced Refractory Ceramic Materials test series, the models and model holders will need to withstand the required heat fluxes of 340 to 817 W/sq cm or surface temperatures in the range of 2700 K to 3000 K. The model holders should provide one dimensional (1-D) heat transfer to the samples and the appropriate flow field without compromising the primary test objectives. The optical properties such as the effective emissivity, catalytic efficiency coefficients, thermal properties, and mass loss measurements are also taken into consideration in the design process. Therefore, it is the intent of this paper to demonstrate the design schemes for different models and model holders that would accommodate these test requirements and ensure the safe operation in a typical arc jet facility.

  15. Stockpile Model of Personal Protective Equipment in Taiwan.

    PubMed

    Chen, Yu-Ju; Chiang, Po-Jung; Cheng, Yu-Hsin; Huang, Chun-Wei; Kao, Hui-Yun; Chang, Chih-Kai; Huang, Hsun-Miao; Liu, Pei-Yin; Wang, Jen-Hsin; Chih, Yi-Chien; Chou, Shu-Mei; Yang, Chin-Hui; Chen, Chang-Hsun

    The Taiwan Centers for Disease Control (Taiwan CDC) has established a 3-tier personal protective equipment (PPE) stockpiling framework that could maintain a minimum stockpile for the surge demand of PPE in the early stage of a pandemic. However, PPE stockpiling efforts must contend with increasing storage fees and expiration problems. In 2011, the Taiwan CDC initiated a stockpile replacement model in order to optimize the PPE stockpiling efficiency, ensure a minimum stockpile, use the government's limited funds more effectively, and achieve the goal of sustainable management. This stockpile replacement model employs a first-in-first-out principle in which the oldest stock in the central government stockpile is regularly replaced and replenished with the same amount of new and qualified products, ensuring the availability and maintenance of the minimum stockpiles. In addition, a joint electronic procurement platform has been established for merchandising the replaced PPE to local health authorities and medical and other institutions for their routine or epidemic use. In this article, we describe the PPE stockpile model in Taiwan, including the 3-tier stockpiling framework, the operational model, the components of the replacement system, implementation outcomes, epidemic supports, and the challenges and prospects of this model.

  16. Repetitive Protein Unfolding by the trans Ring of the GroEL-GroES Chaperonin Complex Stimulates Folding*

    PubMed Central

    Lin, Zong; Puchalla, Jason; Shoup, Daniel; Rye, Hays S.

    2013-01-01

    A key constraint on the growth of most organisms is the slow and inefficient folding of many essential proteins. To deal with this problem, several diverse families of protein folding machines, known collectively as molecular chaperones, developed early in evolutionary history. The functional role and operational steps of these remarkably complex nanomachines remain subjects of active debate. Here we present evidence that, for the GroEL-GroES chaperonin system, the non-native substrate protein enters the folding cycle on the trans ring of the double-ring GroEL-ATP-GroES complex rather than the ADP-bound complex. The properties of this ATP complex are designed to ensure that non-native substrate protein binds first, followed by ATP and finally GroES. This binding order ensures efficient occupancy of the open GroEL ring and allows for disruption of misfolded structures through two phases of multiaxis unfolding. In this model, repeated cycles of partial unfolding, followed by confinement within the GroEL-GroES chamber, provide the most effective overall mechanism for facilitating the folding of the most stringently dependent GroEL substrate proteins. PMID:24022487

  17. Antiretroviral procurement and supply chain management.

    PubMed

    Ripin, David J; Jamieson, David; Meyers, Amy; Warty, Umesh; Dain, Mary; Khamsi, Cyril

    2014-01-01

    Procurement, the country-level process of ordering antiretrovirals (ARVs), and supply chain management, the mechanism by which they are delivered to health-care facilities, are critical processes required to move ARVs from manufacturers to patients. To provide a glimpse into the ARV procurement and supply chain, the following pages provide an overview of the primary stakeholders, principal operating models, and policies and regulations involved in ARV procurement. Also presented are key challenges that need to be addressed to ensure that the supply chain is not a barrier to the goal of universal coverage. This article will cover the steps necessary to order and distribute ARVs, including different models of delivery, key stakeholders involved, strategic considerations that vary depending on context and policies affecting them. The single drug examples given illustrate the complications inherent in fragmented supply and demand-driven models of procurement and supply chain management, and suggest tools for navigating these hurdles that will ultimately result in more secure and reliable ARV provision. Understanding the dynamics of ARV supply chain is important for the global health community, both to ensure full and efficient treatment of persons living with HIV as well as to inform the supply chain decisions for other public health products.

  18. Achieving excellence in veterans healthcare--a balanced scorecard approach.

    PubMed

    Biro, Lawrence A; Moreland, Michael E; Cowgill, David E

    2003-01-01

    This article provides healthcare administrators and managers with a framework and model for developing a balanced scorecard and demonstrates the remarkable success of this process, which brings focus to leadership decisions about the allocation of resources. This scorecard was developed as a top management tool designed to structure multiple priorities of a large, complex, integrated healthcare system and to establish benchmarks to measure success in achieving targets for performance in identified areas. Significant benefits and positive results were derived from the implementation of the balanced scorecard, based upon benchmarks considered to be critical success factors. The network's chief executive officer and top leadership team set and articulated the network's primary operating principles: quality and efficiency in the provision of comprehensive healthcare and support services. Under the weighted benchmarks of the balanced scorecard, the facilities in the network were mandated to adhere to one non-negotiable tenet: providing care that is second to none. The balanced scorecard approach to leadership continuously ensures that this is the primary goal and focal point for all activity within the network. To that end, systems are always in place to ensure that the network is fully successful on all performance measures relating to quality.

  19. Stockpile Model of Personal Protective Equipment in Taiwan

    PubMed Central

    Chen, Yu-Ju; Cheng, Yu-Hsin; Huang, Chun-Wei; Kao, Hui-Yun; Chang, Chih-Kai; Huang, Hsun-Miao; Liu, Pei-Yin; Wang, Jen-Hsin; Chih, Yi-Chien; Chou, Shu-Mei; Yang, Chin-Hui; Chen, Chang-Hsun

    2017-01-01

    The Taiwan Centers for Disease Control (Taiwan CDC) has established a 3-tier personal protective equipment (PPE) stockpiling framework that could maintain a minimum stockpile for the surge demand of PPE in the early stage of a pandemic. However, PPE stockpiling efforts must contend with increasing storage fees and expiration problems. In 2011, the Taiwan CDC initiated a stockpile replacement model in order to optimize the PPE stockpiling efficiency, ensure a minimum stockpile, use the government's limited funds more effectively, and achieve the goal of sustainable management. This stockpile replacement model employs a first-in-first-out principle in which the oldest stock in the central government stockpile is regularly replaced and replenished with the same amount of new and qualified products, ensuring the availability and maintenance of the minimum stockpiles. In addition, a joint electronic procurement platform has been established for merchandising the replaced PPE to local health authorities and medical and other institutions for their routine or epidemic use. In this article, we describe the PPE stockpile model in Taiwan, including the 3-tier stockpiling framework, the operational model, the components of the replacement system, implementation outcomes, epidemic supports, and the challenges and prospects of this model. PMID:28418743

  20. The HACMS program: using formal methods to eliminate exploitable bugs.

    PubMed

    Fisher, Kathleen; Launchbury, John; Richards, Raymond

    2017-10-13

    For decades, formal methods have offered the promise of verified software that does not have exploitable bugs. Until recently, however, it has not been possible to verify software of sufficient complexity to be useful. Recently, that situation has changed. SeL4 is an open-source operating system microkernel efficient enough to be used in a wide range of practical applications. Its designers proved it to be fully functionally correct, ensuring the absence of buffer overflows, null pointer exceptions, use-after-free errors, etc., and guaranteeing integrity and confidentiality. The CompCert Verifying C Compiler maps source C programs to provably equivalent assembly language, ensuring the absence of exploitable bugs in the compiler. A number of factors have enabled this revolution, including faster processors, increased automation, more extensive infrastructure, specialized logics and the decision to co-develop code and correctness proofs rather than verify existing artefacts. In this paper, we explore the promise and limitations of current formal-methods techniques. We discuss these issues in the context of DARPA's HACMS program, which had as its goal the creation of high-assurance software for vehicles, including quadcopters, helicopters and automobiles.This article is part of the themed issue 'Verified trustworthy software systems'. © 2017 The Authors.

  1. An approach to multivariable control of manipulators

    NASA Technical Reports Server (NTRS)

    Seraji, H.

    1987-01-01

    The paper presents simple schemes for multivariable control of multiple-joint robot manipulators in joint and Cartesian coordinates. The joint control scheme consists of two independent multivariable feedforward and feedback controllers. The feedforward controller is the minimal inverse of the linearized model of robot dynamics and contains only proportional-double-derivative (PD2) terms - implying feedforward from the desired position, velocity and acceleration. This controller ensures that the manipulator joint angles track any reference trajectories. The feedback controller is of proportional-integral-derivative (PID) type and is designed to achieve pole placement. This controller reduces any initial tracking error to zero as desired and also ensures that robust steady-state tracking of step-plus-exponential trajectories is achieved by the joint angles. Simple and explicit expressions of computation of the feedforward and feedback gains are obtained based on the linearized model of robot dynamics. This leads to computationally efficient schemes for either on-line gain computation or off-line gain scheduling to account for variations in the linearized robot model due to changes in the operating point. The joint control scheme is extended to direct control of the end-effector motion in Cartesian space. Simulation results are given for illustration.

  2. Consolidation and Centralization of Waste Operations Business Systems - 12319

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newton, D. Dean

    This abstract provides a comprehensive plan supporting the continued development and integration of all waste operations and waste management business systems. These include existing systems such as ATMS (Automated Transportation Management System), RadCalc, RFITS (Radio Frequency Identification Transportation System) Programs as well as incorporating key components of existing government developed waste management systems and COTS (Computer Off The Shelf) applications in order to deliver a truly integrated waste tracking and management business system. Some of these existing systems to be integrated include IWTS at Idaho National Lab, WIMS at Sandia National Lab and others. The aggregation of data and consolidationmore » into a single comprehensive business system delivers best practices in lifecycle waste management processes to be delivered across the Department of Energy facilities. This concept exists to reduce operational costs to the federal government by combining key business systems into a centralized enterprise application following the methodology that as contractors change, the tools they use to manage DOE's assets do not. IWITS is one efficient representation of a sound architecture currently supporting multiple DOE sites from a waste management solution. The integration of ATMS, RadCalc and RFITS and the concept like IWITS into a single solution for DOE contractors will result in significant savings and increased efficiencies for DOE. Building continuity and solving collective problems can only be achieved through mass collaboration, resulting in an online community that DOE contractors and subcontractors access common applications, allowing for the collection of business intelligence at an unprecedented level. This is a fundamental shift from a solely 'for profit' business model to a 'for purpose' business model. To the conventional-minded, putting values before profit is an unfamiliar and unnatural way for a contractor to operate - unless however; your objective is to build a strong, strategic alliance across the enterprise in order to execute an unprecedented change in waste management, transportation and logistical operations. The success of such an initiative can be achieved by creating a responsible framework by enabling key individuals to 'own' the sustainability of the program. This includes the strategic collaboration of responsible revolutionaries covering application developers, information owners and federal stakeholders to ensure compliance, security and risk management are 'baked' into the process and sustainability is fostered through continued innovation by both technology and application functionality. This ensures that working software can adapt to changing circumstances and is the principle measure of the success of the program. The consolidation of waste management business systems must be achieved in order to realize efficiencies in information technology portfolio management, data integrity, business intelligence and the lifecycle management of hazardous materials within the DOE enterprise architecture. By identifying best practices across the enterprise and aggregating computational and application development resources, you can provide a unified, holistic solution serviceable from a single location while being accessed from anywhere. The business impact of integrating and delivering a unified solution would reduce costs to the Department of Energy within the first year of deployment with increased savings annually. (author)« less

  3. Unmanned Aerial Systems Traffic Management (UTM): Safely Enabling UAS Operations in Low-Altitude Airspace

    NASA Technical Reports Server (NTRS)

    Rios, Joseph

    2016-01-01

    Currently, there is no established infrastructure to enable and safely manage the widespread use of low-altitude airspace and UAS flight operations. Given this, and understanding that the FAA faces a mandate to modernize the present air traffic management system through computer automation and significantly reduce the number of air traffic controllers by FY 2020, the FAA maintains that a comprehensive, yet fully automated UAS traffic management (UTM) system for low-altitude airspace is needed. The concept of UTM is to begin by leveraging concepts from the system of roads, lanes, stop signs, rules and lights that govern vehicles on the ground today. Building on its legacy of work in air traffic management (ATM), NASA is working with industry to develop prototype technologies for a UAS Traffic Management (UTM) system that would evolve airspace integration procedures for enabling safe, efficient low-altitude flight operations that autonomously manage UAS operating in an approved low-altitude airspace environment. UTM is a cloud-based system that will autonomously manage all traffic at low altitudes to include UASs being operated beyond visual line of sight of an operator. UTM would thus enable safe and efficient flight operations by providing fully integrated traffic management services such as airspace design, corridors, dynamic geofencing, severe weather and wind avoidance, congestion management, terrain avoidance, route planning re-routing, separation management, sequencing spacing, and contingency management. UTM removes the need for human operators to continuously monitor aircraft operating in approved areas. NASA envisions concepts for two types of UTM systems. The first would be a small portable system, which could be moved between geographical areas in support of operations such as precision agriculture and public safety. The second would be a Persistent system, which would support low-altitude operations in an approved area by providing continuous automated coverage. Both would require persistent communication, navigation, and surveillance (CNS) coverage to track, ensure, and monitor conformance. UTM is creating an airspace management tool that allows the ATM system to accommodate the number of UAS that will operate in the low altitude airspace. The analogy is just because we have a car, whether its autonomous or someone is driving, does not diminish the need for a road or road signs or rules of the road.

  4. Robot-assisted lobectomy for non-small cell lung cancer in china: initial experience and techniques.

    PubMed

    Zhao, Xiaojing; Qian, Liqiang; Lin, Hao; Tan, Qiang; Luo, Qingquan

    2010-03-01

    To summarize our initial experience in robot-assisted thoracoscopic lobectomy. Methods Five patients underwent lobectomy using da Vinci S HD Surgical System (Intuitive Surgical, Sunnyvale, California). During the operation, we respectively made four ports over chest wall for positioning robotic endoscope, left and right robotic arms and auxiliary instruments without retracting ribs. The procedure followed sequential anatomy as complete video-assisted thoracoscopic surgery lobectomy did, and lymph node dissection followed international standard. All patients successfully underwent complete robot-assisted thoracoscopic lobectomy. Neither additional incisions nor emergent conversion to a thoracotomy happened. Frozen dissection during lobectomy showed non-small-cell lung cancer in four patients, who afterwards underwent systemic lymph node dissection, while the case left was with tuberculoma and didn't undergo lymph node dissection. Recurrent air leak occurred in one case, so chest tube was kept for drainage, and one week later, the patient was extubated due to improvement. All other patients recovered well postoperatively without obvious postoperative complications. Robot-assisted thoracoscopic surgery is feasible with good operability, clear visual field, reliable action and its supriority of trouble free; exquisite operative skills are required to ensure a stable and safe operation; robot-assisted surgery is efficiency and patients recover well postoperatively.

  5. Using Simulation to Improve Systems-Based Practices.

    PubMed

    Gardner, Aimee K; Johnston, Maximilian; Korndorffer, James R; Haque, Imad; Paige, John T

    2017-09-01

    Ensuring the safe, effective management of patients requires efficient processes of care within a smoothly operating system in which highly reliable teams of talented, skilled health care providers are able to use the vast array of high-technology resources and intensive care techniques available. Simulation can play a unique role in exploring and improving the complex perioperative system by proactively identifying latent safety threats and mitigating their damage to ensure that all those who work in this critical health care environment can provide optimal levels of patient care. A panel of five experts from a wide range of institutions was brought together to discuss the added value of simulation-based training for improving systems-based aspects of the perioperative service line. Panelists shared the way in which simulation was demonstrated at their institutions. The themes discussed by each panel member were delineated into four avenues through which simulation-based techniques have been used. Simulation-based techniques are being used in (1) testing new clinical workspaces and facilities before they open to identify potential latent conditions; (2) practicing how to identify the deteriorating patient and escalate care in an effective manner; (3) performing prospective root cause analyses to address system weaknesses leading to sentinel events; and (4) evaluating the efficiency and effectiveness of the electronic health record in the perioperative setting. This focused review of simulation-based interventions to test and improve components of the perioperative microsystem, which includes literature that has emerged since the panel's presentation, highlights the broad-based utility of simulation-based technologies in health care. Copyright © 2017 The Joint Commission. Published by Elsevier Inc. All rights reserved.

  6. Report: EPA Needs to Fulfill Its Designated Responsibilities to Ensure Effective BioWatch Program

    EPA Pesticide Factsheets

    Report #2005-P-00012, March 23, 2005. EPA did not provide adequate oversight of the sampling operations to ensure quality assurance guidance was adhered to, potentially affecting the quality of the samples taken.

  7. Sustainable Forest Operations (SFO): A new paradigm in a changing world and climate.

    PubMed

    Marchi, Enrico; Chung, Woodam; Visser, Rien; Abbas, Dalia; Nordfjell, Tomas; Mederski, Piotr S; McEwan, Andrew; Brink, Michal; Laschi, Andrea

    2018-09-01

    The effective implementation of sustainable forest management depends largely on carrying out forest operations in a sustainable manner. Climate change, as well as the increasing demand for forest products, requires a re-thinking of forest operations in terms of sustainability. In this context, it is important to understand the major driving factors for the future development of forest operations that promote economic, environmental and social well-being. The main objective of this paper is to identify important issues concerning forest operations and to propose a new paradigm towards sustainability in a changing climate, work and environmental conditions. Previously developed concepts of forest operations are reviewed, and a newly developed concept - Sustainable Forest Operations (SFO), is presented. Five key performance areas to ensure the sustainability of forest operations include: (i) environment; (ii) ergonomics; (iii) economics; (iv) quality optimization of products and production; and (v) people and society. Practical field examples are presented to demonstrate how these five interconnected principles are relevant to achieving sustainability, namely profit and wood quality maximization, ecological benefits, climate change mitigation, carbon sequestration, and forest workers' health and safety. The new concept of SFO provides integrated perspectives and approaches to effectively address ongoing and foreseeable challenges the global forest communities face, while balancing forest operations performance across economic, environmental and social sustainability. In this new concept, we emphasize the role of wood as a renewable and environmentally friendly material, and forest workers' safety and utilization efficiency and waste management as additional key elements of sustainability. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. 33 CFR 150.620 - What are the requirements for protecting personnel from machinery?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... deepwater port operator must ensure that all personnel are protected from the risks created by operating..., DEPARTMENT OF HOMELAND SECURITY (CONTINUED) DEEPWATER PORTS DEEPWATER PORTS: OPERATIONS Workplace Safety and...

  9. Advanced uncertainty modelling for container port risk analysis.

    PubMed

    Alyami, Hani; Yang, Zaili; Riahi, Ramin; Bonsall, Stephen; Wang, Jin

    2016-08-13

    Globalization has led to a rapid increase of container movements in seaports. Risks in seaports need to be appropriately addressed to ensure economic wealth, operational efficiency, and personnel safety. As a result, the safety performance of a Container Terminal Operational System (CTOS) plays a growing role in improving the efficiency of international trade. This paper proposes a novel method to facilitate the application of Failure Mode and Effects Analysis (FMEA) in assessing the safety performance of CTOS. The new approach is developed through incorporating a Fuzzy Rule-Based Bayesian Network (FRBN) with Evidential Reasoning (ER) in a complementary manner. The former provides a realistic and flexible method to describe input failure information for risk estimates of individual hazardous events (HEs) at the bottom level of a risk analysis hierarchy. The latter is used to aggregate HEs safety estimates collectively, allowing dynamic risk-based decision support in CTOS from a systematic perspective. The novel feature of the proposed method, compared to those in traditional port risk analysis lies in a dynamic model capable of dealing with continually changing operational conditions in ports. More importantly, a new sensitivity analysis method is developed and carried out to rank the HEs by taking into account their specific risk estimations (locally) and their Risk Influence (RI) to a port's safety system (globally). Due to its generality, the new approach can be tailored for a wide range of applications in different safety and reliability engineering and management systems, particularly when real time risk ranking is required to measure, predict, and improve the associated system safety performance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Supply chain management in the clinical laboratory.

    PubMed

    McHugh, Thomas M

    2006-01-31

    Between 15 and 45 percent of a clinical laboratory's operating budget is spent on supplies. Given the size of this expenditure, laboratory managers must pay close attention to the supply chain and develop effective strategies to manage their inventory. Areas that need analysis include the carrying cost of supplies, the cost to generate a purchase order, methods to efficiently count supplies on hand, processes to ensure that lot number items are used before their expiration, and detailed analysis of the inventory. At the University of California-San Francisco Medical Center, we investigated options to manage our inventory and implemented a computerized system. The system required modifications to existing practices, which initially seemed unwieldy. However, after a relatively short learning curve, the improvement to operations has been significant, with a reduction in wasted reagents, fewer staff hours used to count supplies, and the ability to provide prompt analysis of the inventory for audits and discussions with administration. Focusing on the supply chain has allowed us to reduce inventory expenses by approximately 8 percent, reduce waste, given us a more focused understanding of our operations, and provided us with the ability to analyze our inventory easily.

  11. Instantaneous power control of a high speed permanent magnet synchronous generator based on a sliding mode observer and a phase locked loop

    NASA Astrophysics Data System (ADS)

    Duan, Jiandong; Fan, Shaogui; Wu, Fengjiang; Sun, Li; Wang, Guanglin

    2018-06-01

    This paper proposes an instantaneous power control method for high speed permanent magnet synchronous generators (PMSG), to realize the decoupled control of active power and reactive power, through vector control based on a sliding mode observer (SMO), and a phase locked loop (PLL). Consequently, the high speed PMSG has a high internal power factor, to ensure efficient operation. Vector control and accurate estimation of the instantaneous power require an accurate estimate of the rotor position. The SMO is able to estimate the back electromotive force (EMF). The rotor position and speed can be obtained using a combination of the PLL technique and the phase compensation method. This method has the advantages of robust operation, and being resistant to noise when estimating the position of the rotor. Using instantaneous power theory, the relationship between the output active power, reactive power, and stator current of the PMSG is deduced, and the power constraint condition is analysed for operation at the unit internal power factor. Finally, the accuracy of the rotor position detection, the instantaneous power detection, and the control methods are verified using simulations and experiments.

  12. Surgeon Training in Telerobotic Surgery via a Hardware-in-the-Loop Simulator

    PubMed Central

    Alemzadeh, Homa; Chen, Daniel; Kalbarczyk, Zbigniew; Iyer, Ravishankar K.; Kesavadas, Thenkurussi

    2017-01-01

    This work presents a software and hardware framework for a telerobotic surgery safety and motor skill training simulator. The aims are at providing trainees a comprehensive simulator for acquiring essential skills to perform telerobotic surgery. Existing commercial robotic surgery simulators lack features for safety training and optimal motion planning, which are critical factors in ensuring patient safety and efficiency in operation. In this work, we propose a hardware-in-the-loop simulator directly introducing these two features. The proposed simulator is built upon the Raven-II™ open source surgical robot, integrated with a physics engine and a safety hazard injection engine. Also, a Fast Marching Tree-based motion planning algorithm is used to help trainee learn the optimal instrument motion patterns. The main contributions of this work are (1) reproducing safety hazards events, related to da Vinci™ system, reported to the FDA MAUDE database, with a novel haptic feedback strategy to provide feedback to the operator when the underlying dynamics differ from the real robot's states so that the operator will be aware and can mitigate the negative impact of the safety-critical events, and (2) using motion planner to generate semioptimal path in an interactive robotic surgery training environment. PMID:29065635

  13. The research of automatic speed control algorithm based on Green CBTC

    NASA Astrophysics Data System (ADS)

    Lin, Ying; Xiong, Hui; Wang, Xiaoliang; Wu, Youyou; Zhang, Chuanqi

    2017-06-01

    Automatic speed control algorithm is one of the core technologies of train operation control system. It’s a typical multi-objective optimization control algorithm, which achieve the train speed control for timing, comfort, energy-saving and precise parking. At present, the train speed automatic control technology is widely used in metro and inter-city railways. It has been found that the automatic speed control technology can effectively reduce the driver’s intensity, and improve the operation quality. However, the current used algorithm is poor at energy-saving, even not as good as manual driving. In order to solve the problem of energy-saving, this paper proposes an automatic speed control algorithm based on Green CBTC system. Based on the Green CBTC system, the algorithm can adjust the operation status of the train to improve the efficient using rate of regenerative braking feedback energy while ensuring the timing, comfort and precise parking targets. Due to the reason, the energy-using of Green CBTC system is lower than traditional CBTC system. The simulation results show that the algorithm based on Green CBTC system can effectively reduce the energy-using due to the improvement of the using rate of regenerative braking feedback energy.

  14. SIMPLE TRANSIENT CALCULATIONS OF CELL FLAMMABLE GAS CONCENTRATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NOEMAIL), J; David Allison; John Mccord, J

    2009-05-06

    The Saltstone Facility at Savannah River Site (SRS) mixes low-level radiological liquid waste with grout for permanent disposal as cement in vault cells. The grout mixture is poured into each cell in approximately 17 batches (8 to 10 hours duration). The grout mixture contains ten flammable gases of concern that are released from the mixture into the cell. Prior to operations, simple parametric transient calculations were performed to develop batch parameters (including schedule of batch pours) to support operational efficiency while ensuring that a flammable gas mixture does not develop in the cell vapor space. The analysis demonstrated that amore » nonflammable vapor space environment can be achieved, with workable operational constraints, without crediting the ventilation flow as a safety system control. Isopar L was identified as the primary flammable gas of concern. The transient calculations balanced inflows of the flammable gases into the vapor space with credited outflows of diurnal breathing through vent holes and displacement from new grout pours and gases generated. Other important features of the analyses included identifying conditions that inhibited a well-mixed vapor space, the expected frequency and duration of such conditions, and the estimated level of stratification that could develop.« less

  15. Automatic Measuring System for Oil Stream Paraffin Deposits Parameters

    NASA Astrophysics Data System (ADS)

    Kopteva, A. V.; Koptev, V. Yu

    2018-03-01

    This paper describes a new method for monitoring oil pipelines, as well as a highly efficient and automated paraffin deposit monitoring method. When operating oil pipelines, there is an issue of paraffin, resin and salt deposits on the pipeline walls that come with the oil stream. It ultimately results in frequent transportation suspension to clean or even replace pipes and other equipment, thus shortening operation periods between repairs, creating emergency situations and increasing production expenses, badly affecting environment, damaging ecology and spoil underground water, killing animals, birds etc. Oil spills contaminate rivers, lakes, and ground waters. Oil transportation monitoring issues are still subject for further studying. Thus, there is the need to invent a radically new automated process control and management system, together with measurement means intellectualization. The measurement principle is based on the Lambert-Beer law that describes the dependence between the gamma-radiation frequency and the density together with the linear attenuation coefficient for a substance. Using the measuring system with high accuracy (± 0,2%), one can measure the thickness of paraffin deposits with an absolute accuracy of ± 5 mm, which is sufficient to ensure reliable operation of the pipeline system. Safety is a key advantage, when using the proposed control system.

  16. Quantum anonymous voting with unweighted continuous-variable graph states

    NASA Astrophysics Data System (ADS)

    Guo, Ying; Feng, Yanyan; Zeng, Guihua

    2016-08-01

    Motivated by the revealing topological structures of continuous-variable graph state (CVGS), we investigate the design of quantum voting scheme, which has serious advantages over the conventional ones in terms of efficiency and graphicness. Three phases are included, i.e., the preparing phase, the voting phase and the counting phase, together with three parties, i.e., the voters, the tallyman and the ballot agency. Two major voting operations are performed on the yielded CVGS in the voting process, namely the local rotation transformation and the displacement operation. The voting information is carried by the CVGS established before hand, whose persistent entanglement is deployed to keep the privacy of votes and the anonymity of legal voters. For practical applications, two CVGS-based quantum ballots, i.e., comparative ballot and anonymous survey, are specially designed, followed by the extended ballot schemes for the binary-valued and multi-valued ballots under some constraints for the voting design. Security is ensured by entanglement of the CVGS, the voting operations and the laws of quantum mechanics. The proposed schemes can be implemented using the standard off-the-shelf components when compared to discrete-variable quantum voting schemes attributing to the characteristics of the CV-based quantum cryptography.

  17. Investigation of criticality safety control infraction data at a nuclear facility

    DOE PAGES

    Cournoyer, Michael E.; Merhege, James F.; Costa, David A.; ...

    2014-10-27

    Chemical and metallurgical operations involving plutonium and other nuclear materials account for most activities performed at the LANL's Plutonium Facility (PF-4). The presence of large quantities of fissile materials in numerous forms at PF-4 makes it necessary to maintain an active criticality safety program. The LANL Nuclear Criticality Safety (NCS) Program provides guidance to enable efficient operations while ensuring prevention of criticality accidents in the handling, storing, processing and transportation of fissionable material at PF-4. In order to achieve and sustain lower criticality safety control infraction (CSCI) rates, PF-4 operations are continuously improved, through the use of Lean Manufacturing andmore » Six Sigma (LSS) business practices. Employing LSS, statistically significant variations (trends) can be identified in PF-4 CSCI reports. In this study, trends have been identified in the NCS Program using the NCS Database. An output metric has been developed that measures ADPSM Management progress toward meeting its NCS objectives and goals. Using a Pareto Chart, the primary CSCI attributes have been determined in order of those requiring the most management support. Data generated from analysis of CSCI data help identify and reduce number of corresponding attributes. In-field monitoring of CSCI's contribute to an organization's scientific and technological excellence by providing information that can be used to improve criticality safety operation safety. This increases technical knowledge and augments operational safety.« less

  18. A case study of packaging waste collection systems in Portugal - Part I: Performance and operation analysis.

    PubMed

    Martinho, Graça; Gomes, Ana; Santos, Pedro; Ramos, Mário; Cardoso, João; Silveira, Ana; Pires, Ana

    2017-03-01

    The need to increase packaging recycling rates has led to the study and analysis of recycling schemes from various perspectives, including technical, economic, social, and environmental. This paper is part one of a three-part study devoted to comparing two recyclable packaging waste collection systems operating in western Portugal: a mixed collection system, where curbside and drop-off collections are operated simultaneously (but where the curbside system was introduced after the drop-off system), and an exclusive drop-off system. This part of the study focuses on analyzing the operation and performance of the two waste collection systems. The mixed collection system is shown to yield higher material separation rates, higher recycling rates, and lower contamination rates compared with the exclusive drop-off system, a result of the curbside component in the former system. However, the operational efficiency of the curbside collection in the mixed system is lower than the drop-off collection in the mixed system and the exclusive drop-off system, mainly because of inefficiency of collection. A key recommendation is to ensure that the systems should be optimized in an attempt to improve performance. Optimization should be applied not only to logistical aspects but also to citizens' participation, which could be improved by conducting curbside collection awareness campaigns in the neighborhoods that have a mixed system. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The X-33 range Operations Control Center

    NASA Technical Reports Server (NTRS)

    Shy, Karla S.; Norman, Cynthia L.

    1998-01-01

    This paper describes the capabilities and features of the X-33 Range Operations Center at NASA Dryden Flight Research Center. All the unprocessed data will be collected and transmitted over fiber optic lines to the Lockheed Operations Control Center for real-time flight monitoring of the X-33 vehicle. By using the existing capabilities of the Western Aeronautical Test Range, the Range Operations Center will provide the ability to monitor all down-range tracking sites for the Extended Test Range systems. In addition to radar tracking and aircraft telemetry data, the Telemetry and Radar Acquisition and Processing System is being enhanced to acquire vehicle command data, differential Global Positioning System corrections and telemetry receiver signal level status. The Telemetry and Radar Acquisition Processing System provides the flexibility to satisfy all X-33 data processing requirements quickly and efficiently. Additionally, the Telemetry and Radar Acquisition Processing System will run a real-time link margin analysis program. The results of this model will be compared in real-time with actual flight data. The hardware and software concepts presented in this paper describe a method of merging all types of data into a common database for real-time display in the Range Operations Center in support of the X-33 program. All types of data will be processed for real-time analysis and display of the range system status to ensure public safety.

  20. Overview of medical operations for a manned stratospheric balloon flight.

    PubMed

    Blue, Rebecca S; Law, Jennifer; Norton, Sean C; Garbino, Alejandro; Pattarini, James M; Turney, Matthew W; Clark, Jonathan B

    2013-03-01

    Red Bull Stratos was a commercial program designed to bring a test parachutist protected by a full-pressure suit via a stratospheric balloon with a pressurized capsule to 120,000 ft (36,576 m), from which he would freefall and subsequently parachute to the ground. On March 15, 2012, the Red Bull Stratos program successfully conducted a preliminary manned balloon test flight and parachute jump, reaching a final altitude of 71,581 ft (21,818 m). In light of the uniqueness of the operation and medical threats faced, a comprehensive medical plan was needed to ensure prompt and efficient response to any medical contingencies. This report will serve to discuss the medical plans put into place before the first manned balloon flight and the actions of the medical team during that flight. The medical operations developed for this program will be systematically evaluated, particularly, specific recommendations for improvement in future high-altitude and commercial space activities. A multipronged approach to medical support was developed, consisting of event planning, medical personnel, equipment, contingency-specific considerations, and communications. Medical operations were found to be highly successful when field-tested during this stratospheric flight, and the experience allowed for refinement of medical operations for future flights. The lessons learned and practices established for this program can easily be used to tailor a plan specific to other aviation or spaceflight events.

Top