Sample records for entangled monodisperse polymer

  1. Nanorheology of Entangled Polymer Melts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, Ting; Grest, Gary S.; Rubinstein, Michael

    In this study, we use molecular simulations to probe the local viscoelasticity of an entangled polymer melt by tracking the motion of embedded nonsticky nanoparticles (NPs). As in conventional microrheology, the generalized Stokes-Einstein relation is employed to extract an effective stress relaxation function G GSE(t) from the mean square displacement of NPs. G GSE(t) for different NP diameters d are compared with the stress relaxation function G(t) of a pure polymer melt. The deviation of G GSE(t) from G(t) reflects the incomplete coupling between NPs and the dynamic modes of the melt. For linear polymers, a plateau in G GSE(t)more » emerges as d exceeds the entanglement mesh size a and approaches the entanglement plateau in G(t) for a pure melt with increasing d. For ring polymers, as d increases towards the spanning size R of ring polymers, G GSE(t) approaches G(t) of the ring melt with no entanglement plateau.« less

  2. Nanorheology of Entangled Polymer Melts

    DOE PAGES

    Ge, Ting; Grest, Gary S.; Rubinstein, Michael

    2018-02-01

    In this study, we use molecular simulations to probe the local viscoelasticity of an entangled polymer melt by tracking the motion of embedded nonsticky nanoparticles (NPs). As in conventional microrheology, the generalized Stokes-Einstein relation is employed to extract an effective stress relaxation function G GSE(t) from the mean square displacement of NPs. G GSE(t) for different NP diameters d are compared with the stress relaxation function G(t) of a pure polymer melt. The deviation of G GSE(t) from G(t) reflects the incomplete coupling between NPs and the dynamic modes of the melt. For linear polymers, a plateau in G GSE(t)more » emerges as d exceeds the entanglement mesh size a and approaches the entanglement plateau in G(t) for a pure melt with increasing d. For ring polymers, as d increases towards the spanning size R of ring polymers, G GSE(t) approaches G(t) of the ring melt with no entanglement plateau.« less

  3. Nanoparticle Motion in Entangled Melts of Linear and Nonconcatenated Ring Polymers [Nanoparticle Motion in Entangled Melts of Non-Concatenated Ring Polymers].

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ge, Ting; Kalathi, Jagannathan T.; Halverson, Jonathan D.

    The motion of nanoparticles (NPs) in entangled melts of linear polymers and non-concatenated ring polymers are compared by large-scale molecular dynamics simulations. The comparison provides a paradigm for the effects of polymer architecture on the dynamical coupling between NPs and polymers in nanocomposites. Strongly suppressed motion of NPs with diameter d larger than the entanglement spacing a is observed in a melt of linear polymers before the onset of Fickian NP diffusion. This strong suppression of NP motion occurs progressively as d exceeds a, and is related to the hopping diffusion of NPs in the entanglement network. In contrast tomore » the NP motion in linear polymers, the motion of NPs with d > a in ring polymers is not as strongly suppressed prior to Fickian diffusion. The diffusion coefficient D decreases with increasing d much slower in entangled rings than in entangled linear chains. NP motion in entangled non-concatenated ring polymers is understood through a scaling analysis of the coupling between NP motion and the self-similar entangled dynamics of ring polymers.« less

  4. Nanoparticle Motion in Entangled Melts of Linear and Nonconcatenated Ring Polymers [Nanoparticle Motion in Entangled Melts of Non-Concatenated Ring Polymers].

    DOE PAGES

    Ge, Ting; Kalathi, Jagannathan T.; Halverson, Jonathan D.; ...

    2017-02-13

    The motion of nanoparticles (NPs) in entangled melts of linear polymers and non-concatenated ring polymers are compared by large-scale molecular dynamics simulations. The comparison provides a paradigm for the effects of polymer architecture on the dynamical coupling between NPs and polymers in nanocomposites. Strongly suppressed motion of NPs with diameter d larger than the entanglement spacing a is observed in a melt of linear polymers before the onset of Fickian NP diffusion. This strong suppression of NP motion occurs progressively as d exceeds a, and is related to the hopping diffusion of NPs in the entanglement network. In contrast tomore » the NP motion in linear polymers, the motion of NPs with d > a in ring polymers is not as strongly suppressed prior to Fickian diffusion. The diffusion coefficient D decreases with increasing d much slower in entangled rings than in entangled linear chains. NP motion in entangled non-concatenated ring polymers is understood through a scaling analysis of the coupling between NP motion and the self-similar entangled dynamics of ring polymers.« less

  5. Size-Dependent Particle Dynamics in Entangled Polymer Nanocomposites.

    PubMed

    Mangal, Rahul; Srivastava, Samanvaya; Narayanan, Suresh; Archer, Lynden A

    2016-01-19

    Polymer-grafted nanoparticles with diameter d homogeneously dispersed in entangled polymer melts with varying random coil radius R0, but fixed entanglement mesh size a(e), are used to study particle motions in entangled polymers. We focus on materials in the transition region between the continuum regime (d > R0), where the classical Stokes-Einstein (S-E) equation is known to describe polymer drag on particles, and the noncontinuum regime (d < a(e)), in which several recent studies report faster diffusion of particles than expected from continuum S-E analysis, based on the bulk polymer viscosity. Specifically, we consider dynamics of particles with sizes d ≥ a(e) in entangled polymers with varying molecular weight M(w) in order to investigate how the transition from noncontinuum to continuum dynamics occur. We take advantage of favorable enthalpic interactions between SiO2 nanoparticles tethered with PEO molecules and entangled PMMA host polymers to create model nanoparticle-polymer composites, in which spherical nanoparticles are uniformly dispersed in entangled polymers. Investigation of the particle dynamics via X-ray photon correlation spectroscopy measurements reveals a transition from fast to slow particle motion as the PMMA molecular weight is increased beyond the entanglement threshold, with a much weaker M(w) dependence for M(w) > M(e) than expected from S-E analysis based on bulk viscosity of entangled PMMA melts. We rationalize these observations using a simple force balance analysis around particles and find that nanoparticle motion in entangled melts can be described using a variant of the S-E analysis in which motion of particles is assumed to only disturb subchain entangled host segments with sizes comparable to the particle diameter.

  6. Size-Dependent Particle Dynamics in Entangled Polymer Nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangal, Rahul; Srivastava, Samanvaya; Narayanan, Suresh

    Polymer-grafted nanoparticles with diameter d homogeneously dispersed in entangled polymer melts with varying random coil radius R0, but fixed entanglement mesh size ae, are used to study particle motions in entangled polymers. We focus on materials in the transition region between the continuum regime (d > R0), where the classical Stokes-Einstein (S-E) equation is known to describe polymer drag on particles, and the non-continuum regime (d < ae), in which several recent studies report faster diffusion of particles than expected from continuum S-E analysis, based on the bulk polymer viscosity. Specifically, we consider dynamics of particles with sizes d ≥more » ae in entangled polymers with varying molecular weight Mw in order to investigate how the transition from non-continuum to continuum dynamics occur. We take advantage of favorable enthalpic interactions between SiO2 nanoparticles tethered with PEO molecules and entangled PMMA host polymers to create model nanoparticle-polymer composites, in which spherical nanoparticles are uniformly dispersed in entangled polymers. Investigation of the particle dynamics via X-ray photon correlation spectroscopy measurements reveal a transition from fast to slow particle motion as the PMMA molecular weight is increased beyond the entanglement threshold, with a much weaker Mw dependence for Mw>Me than expected from S-E analysis based on bulk viscosity of entangled PMMA melts. We rationalize these observations using a simple force balance analysis around particles and find that nanoparticle motion in entangled melts can be described using a variant of the S-E analysis in which motion of particles is assumed to only disturb sub-chain entangled host segments with sizes comparable to the particle diameter.« less

  7. Entanglement in miscible blends

    NASA Astrophysics Data System (ADS)

    Watanabe, Hiroshi

    2010-03-01

    The entanglement length Le of polymer chains (corresponding to the entanglement molecular weight Me) is not an intrinsic material parameter but changes with the interaction with surrounding chains. For miscible blends of cis-polyisoprene (PI) and poly(tert-butyl styrene) (PtBS), changes of Le on blending was examined. It turned out that the Le averaged over the number fractions of the Kuhn segments of the components (PI and PtBS) satisfactorily describes the viscoelastic behavior of pseudo-monodisperse blends in which the terminal relaxation time is the same for PI and PtBS.

  8. Simulating the flow of entangled polymers.

    PubMed

    Masubuchi, Yuichi

    2014-01-01

    To optimize automation for polymer processing, attempts have been made to simulate the flow of entangled polymers. In industry, fluid dynamics simulations with phenomenological constitutive equations have been practically established. However, to account for molecular characteristics, a method to obtain the constitutive relationship from the molecular structure is required. Molecular dynamics simulations with atomic description are not practical for this purpose; accordingly, coarse-grained models with reduced degrees of freedom have been developed. Although the modeling of entanglement is still a challenge, mesoscopic models with a priori settings to reproduce entangled polymer dynamics, such as tube models, have achieved remarkable success. To use the mesoscopic models as staging posts between atomistic and fluid dynamics simulations, studies have been undertaken to establish links from the coarse-grained model to the atomistic and macroscopic simulations. Consequently, integrated simulations from materials chemistry to predict the macroscopic flow in polymer processing are forthcoming.

  9. Unexpected power-law stress relaxation of entangled ring polymers

    PubMed Central

    KAPNISTOS, M.; LANG, M.; PYCKHOUT-HINTZEN, W.; RICHTER, D.; CHO, D.; CHANG, T.

    2016-01-01

    After many years of intense research, most aspects of the motion of entangled polymers have been understood. Long linear and branched polymers have a characteristic entanglement plateau and their stress relaxes by chain reptation or branch retraction, respectively. In both mechanisms, the presence of chain ends is essential. But how do entangled polymers without ends relax their stress? Using properly purified high-molar-mass ring polymers, we demonstrate that these materials exhibit self-similar dynamics, yielding a power-law stress relaxation. However, trace amounts of linear chains at a concentration almost two decades below their overlap cause an enhanced mechanical response. An entanglement plateau is recovered at higher concentrations of linear chains. These results constitute an important step towards solving an outstanding problem of polymer science and are useful for manipulating properties of materials ranging from DNA to polycarbonate. They also provide possible directions for tuning the rheology of entangled polymers. PMID:18953345

  10. Progress in Preparation of Monodisperse Polymer Microspheres

    NASA Astrophysics Data System (ADS)

    Zhang, Hongyan

    2017-12-01

    The monodisperse crosslinked polymer microspheres have attracted much attention because of their superior thermal and solvent resistance, mechanical strength, surface activity and adsorption properties. They are of wide prospects for using in many fields such as biomedicine, electronic science, information technology, analytical chemistry, standard measurement and environment protection etc. Functional polymer microspheres prepared by different methods have the outstanding surface property, quantum size effect and good potential future in applications with its designable structure, controlled size and large ratio of surface to volume. Scholars of all over the world have focused on this hot topic. The preparation method and research progress in functional polymer microspheres are addressed in the paper.

  11. Nanoparticle Motion in Entangled Melts of Linear and Nonconcatenated Ring Polymers

    PubMed Central

    2017-01-01

    The motion of nanoparticles (NPs) in entangled melts of linear polymers and nonconcatenated ring polymers are compared by large-scale molecular dynamics simulations. The comparison provides a paradigm for the effects of polymer architecture on the dynamical coupling between NPs and polymers in nanocomposites. Strongly suppressed motion of NPs with diameter d larger than the entanglement spacing a is observed in a melt of linear polymers before the onset of Fickian NP diffusion. This strong suppression of NP motion occurs progressively as d exceeds a and is related to the hopping diffusion of NPs in the entanglement network. In contrast to the NP motion in linear polymers, the motion of NPs with d > a in ring polymers is not as strongly suppressed prior to Fickian diffusion. The diffusion coefficient D decreases with increasing d much slower in entangled rings than in entangled linear chains. NP motion in entangled nonconcatenated ring polymers is understood through a scaling analysis of the coupling between NP motion and the self-similar entangled dynamics of ring polymers. PMID:28392603

  12. Stochastic entangled chain dynamics of dense polymer solutions.

    PubMed

    Kivotides, Demosthenes; Wilkin, S Louise; Theofanous, Theo G

    2010-10-14

    We propose an adjustable-parameter-free, entangled chain dynamics model of dense polymer solutions. The model includes the self-consistent dynamics of molecular chains and solvent by describing the former via coarse-grained polymer dynamics that incorporate hydrodynamic interaction effects, and the latter via the forced Stokes equation. Real chain elasticity is modeled via the inclusion of a Pincus regime in the polymer's force-extension curve. Excluded volume effects are taken into account via the combined action of coarse-grained intermolecular potentials and explicit geometric tracking of chain entanglements. We demonstrate that entanglements are responsible for a new (compared to phantom chain dynamics), slow relaxation mode whose characteristic time scale agrees very well with experiment. Similarly good agreement between theory and experiment is also obtained for the equilibrium chain size. We develop methods for the solution of the model in periodic flow domains and apply them to the computation of entangled polymer solutions in equilibrium. We show that the number of entanglements Π agrees well with the number of entanglements expected on the basis of tube theory, satisfactorily reproducing the latter's scaling of Π with the polymer volume fraction φ. Our model predicts diminishing chain size with concentration, thus vindicating Flory's suggestion of excluded volume effects screening in dense solutions. The predicted scaling of chain size with φ is consistent with the heuristic, Flory theory based value.

  13. Phase stability and dynamics of entangled polymer-nanoparticle composites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mangal, Rahul; Srivastava, Samanvaya; Archer, Lynden A.

    Nanoparticle–polymer composites, or polymer–nanoparticle composites (PNCs), exhibit unusual mechanical and dynamical features when the particle size approaches the random coil dimensions of the host polymer. Here, we harness favourable enthalpic interactions between particle-tethered and free, host polymer chains to create model PNCs, in which spherical nanoparticles are uniformly dispersed in high molecular weight entangled polymers. Investigation of the mechanical properties of these model PNCs reveals that the nanoparticles have profound effects on the host polymer motions on all timescales. On short timescales, nanoparticles slow-down local dynamics of the host polymer segments and lower the glass transition temperature. On intermediate timescales,more » where polymer chain motion is typically constrained by entanglements with surrounding molecules, nanoparticles provide additional constraints, which lead to an early onset of entangled polymer dynamics. Finally, on long timescales, nanoparticles produce an apparent speeding up of relaxation of their polymer host.« less

  14. A highly coarse-grained model to simulate entangled polymer melts.

    PubMed

    Zhu, You-Liang; Liu, Hong; Lu, Zhong-Yuan

    2012-04-14

    We introduce a highly coarse-grained model to simulate the entangled polymer melts. In this model, a polymer chain is taken as a single coarse-grained particle, and the creation and annihilation of entanglements are regarded as stochastic events in proper time intervals according to certain rules and possibilities. We build the relationship between the probability of appearance of an entanglement between any pair of neighboring chains at a given time interval and the rate of variation of entanglements which describes the concurrence of birth and death of entanglements. The probability of disappearance of entanglements is tuned to keep the total entanglement number around the target value. This useful model can reflect many characteristics of entanglements and macroscopic properties of polymer melts. As an illustration, we apply this model to simulate the polyethylene melt of C(1000)H(2002) at 450 K and further validate this model by comparing to experimental data and other simulation results.

  15. Healing of polymer interfaces: Interfacial dynamics, entanglements, and strength

    DOE PAGES

    Ge, Ting; Robbins, Mark O.; Perahia, Dvora; ...

    2014-07-25

    Self-healing of polymer films often takes place as the molecules diffuse across a damaged region, above their melting temperature. Using molecular dynamics simulations we probe the healing of polymer films and compare the results with those obtained for thermal welding of homopolymer slabs. These two processes differ from each other in their interfacial structure since damage leads to increased polydispersity and more short chains. A polymer sample was cut into two separate films that were then held together in the melt state. The recovery of the damaged film was followed as time elapsed and polymer molecules diffused across the interface.more » The mass uptake and formation of entanglements, as obtained from primitive path analysis, are extracted and correlated with the interfacial strength obtained from shear simulations. We find that the diffusion across the interface is signifcantly faster in the damaged film compared to welding because of the presence of short chains. Though interfacial entanglements increase more rapidly for the damaged films, a large fraction of these entanglements are near chain ends. As a result, the interfacial strength of the healing film increases more slowly than for welding. For both healing and welding, the interfacial strength saturates as the bulk entanglement density is recovered across the interface. However, the saturation strength of the damaged film is below the bulk strength for the polymer sample. At saturation, cut chains remain near the healing interface. They are less entangled and as a result they mechanically weaken the interface. When the strength of the interface saturates, the number of interfacial entanglements scales with the corresponding bulk entanglement density. Chain stiffness increases the density of entanglements, which increases the strength of the interface. Our results show that a few entanglements across the interface are sufficient to resist interfacial chain pullout and enhance the mechanical

  16. Healing of polymer interfaces: Interfacial dynamics, entanglements, and strength

    NASA Astrophysics Data System (ADS)

    Ge, Ting; Robbins, Mark O.; Perahia, Dvora; Grest, Gary S.

    2014-07-01

    Self-healing of polymer films often takes place as the molecules diffuse across a damaged region, above their melting temperature. Using molecular dynamics simulations we probe the healing of polymer films and compare the results with those obtained for thermal welding of homopolymer slabs. These two processes differ from each other in their interfacial structure since damage leads to increased polydispersity and more short chains. A polymer sample was cut into two separate films that were then held together in the melt state. The recovery of the damaged film was followed as time elapsed and polymer molecules diffused across the interface. The mass uptake and formation of entanglements, as obtained from primitive path analysis, are extracted and correlated with the interfacial strength obtained from shear simulations. We find that the diffusion across the interface is significantly faster in the damaged film compared to welding because of the presence of short chains. Though interfacial entanglements increase more rapidly for the damaged films, a large fraction of these entanglements are near chain ends. As a result, the interfacial strength of the healing film increases more slowly than for welding. For both healing and welding, the interfacial strength saturates as the bulk entanglement density is recovered across the interface. However, the saturation strength of the damaged film is below the bulk strength for the polymer sample. At saturation, cut chains remain near the healing interface. They are less entangled and as a result they mechanically weaken the interface. Chain stiffness increases the density of entanglements, which increases the strength of the interface. Our results show that a few entanglements across the interface are sufficient to resist interfacial chain pullout and enhance the mechanical strength.

  17. Dynamics of Nanoparticles in Entangled Polymer Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nath, Pooja; Mangal, Rahul; Kohle, Ferdinand

    The mean square displacement < r 2 > of nanoparticle probes dispersed in simple isotropic liquids and in polymer solutions is interrogated using fluorescence correlation spectroscopy and single-particle tracking (SPT) experiments. Probe dynamics in different regimes of particle diameter (d), relative to characteristic polymer length scales, including the correlation length (ξ), the entanglement mesh size (a), and the radius of gyration (R g), are investigated. In simple fluids and for polymer solutions in which d >> R g, long-time particle dynamics obey random-walk statistics < r 2 >:t, with the bulk zero-shear viscosity of the polymer solution determining the frictionalmore » resistance to particle motion. In contrast, in polymer solutions with d < R g, polymer molecules in solution exert noncontinuum resistances to particle motion and nanoparticle probes appear to interact hydrodynamically only with a local fluid medium with effective drag comparable to that of a solution of polymer chain segments with sizes similar to those of the nanoparticle probes. Under these conditions, the nanoparticles exhibit orders of magnitude faster dynamics than those expected from continuum predictions based on the Stokes–Einstein relation. SPT measurements further show that when d > a, nanoparticle dynamics transition from diffusive to subdiffusive on long timescales, reminiscent of particle transport in a field with obstructions. This last finding is in stark contrast to the nanoparticle dynamics observed in entangled polymer melts, where X-ray photon correlation spectroscopy measurements reveal faster but hyperdiffusive dynamics. As a result, we analyze these results with the help of the hopping model for particle dynamics in polymers proposed by Cai et al. and, on that basis, discuss the physical origins of the local drag experienced by the nanoparticles in entangled polymer solutions.« less

  18. Dynamics of Nanoparticles in Entangled Polymer Solutions

    DOE PAGES

    Nath, Pooja; Mangal, Rahul; Kohle, Ferdinand; ...

    2017-12-01

    The mean square displacement < r 2 > of nanoparticle probes dispersed in simple isotropic liquids and in polymer solutions is interrogated using fluorescence correlation spectroscopy and single-particle tracking (SPT) experiments. Probe dynamics in different regimes of particle diameter (d), relative to characteristic polymer length scales, including the correlation length (ξ), the entanglement mesh size (a), and the radius of gyration (R g), are investigated. In simple fluids and for polymer solutions in which d >> R g, long-time particle dynamics obey random-walk statistics < r 2 >:t, with the bulk zero-shear viscosity of the polymer solution determining the frictionalmore » resistance to particle motion. In contrast, in polymer solutions with d < R g, polymer molecules in solution exert noncontinuum resistances to particle motion and nanoparticle probes appear to interact hydrodynamically only with a local fluid medium with effective drag comparable to that of a solution of polymer chain segments with sizes similar to those of the nanoparticle probes. Under these conditions, the nanoparticles exhibit orders of magnitude faster dynamics than those expected from continuum predictions based on the Stokes–Einstein relation. SPT measurements further show that when d > a, nanoparticle dynamics transition from diffusive to subdiffusive on long timescales, reminiscent of particle transport in a field with obstructions. This last finding is in stark contrast to the nanoparticle dynamics observed in entangled polymer melts, where X-ray photon correlation spectroscopy measurements reveal faster but hyperdiffusive dynamics. As a result, we analyze these results with the help of the hopping model for particle dynamics in polymers proposed by Cai et al. and, on that basis, discuss the physical origins of the local drag experienced by the nanoparticles in entangled polymer solutions.« less

  19. Entanglements in Conjugated Polymers

    NASA Astrophysics Data System (ADS)

    Xie, Renxuan; Lee, Youngmin; Aplan, Melissa; Caggiano, Nick; Gomez, Enrique; Colby, Ralph

    Conjugated polymers, such as poly(3-hexylthiophene-2,5-diyl) (P3HT) and poly-((9,9-dioctylfluorene)-2,7-diyl-alt-[4,7-bis(thiophen-5-yl)-2,1,3-benzothiadiazole]-2',2''-diyl) (PFTBT), are widely used as hole and electron transport materials in a variety of electronic devices. However, fundamental knowledge regarding chain entanglements and nematic-to-isotropic transition is still lacking and are crucial to maximize charge transport properties. A systematic melt rheology study on P3HT with various molecular weights and regio regularities was performed. We find that the entanglement molecular weight Me is 5.0 kg/mol for regiorandom P3HT, but the apparent Me for regioregular P3HT is significantly higher. The difference is postulated to arise from the presence of a nematic phase only in regioregular P3HT. Analogously, PFTBT shows a clear rheological signature of the nematic-to-isotropic transition as a reversible sharp transition at 278 C. Shearing of this nematic phase leads to anisotropic crystalline order in PFTBT. We postulate that aligning the microstructure will impact charge transport and thereby advance the field of conducting polymers. National Science Foundation.

  20. Communication: Polymer entanglement dynamics: Role of attractive interactions

    DOE PAGES

    Grest, Gary S.

    2016-10-10

    The coupled dynamics of entangled polymers, which span broad time and length scales, govern their unique viscoelastic properties. To follow chain mobility by numerical simulations from the intermediate Rouse and reptation regimes to the late time diffusive regime, highly coarse grained models with purely repulsive interactions between monomers are widely used since they are computationally the most efficient. In this paper, using large scale molecular dynamics simulations, the effect of including the attractive interaction between monomers on the dynamics of entangled polymer melts is explored for the first time over a wide temperature range. Attractive interactions have little effect onmore » the local packing for all temperatures T and on the chain mobility for T higher than about twice the glass transition T g. Finally, these results, across a broad range of molecular weight, show that to study the dynamics of entangled polymer melts, the interactions can be treated as pure repulsive, confirming a posteriori the validity of previous studies and opening the way to new large scale numerical simulations.« less

  1. Measurement of Diffusion in Entangled Rod-Coil Triblock Copolymers

    NASA Astrophysics Data System (ADS)

    Olsen, B. D.; Wang, M.

    2012-02-01

    Although rod-coil block copolymers have attracted increasing attention for functional nanomaterials, their dynamics relevant to self-assembly and processing have not been widely investigated. Because the rod and coil blocks have different reptation behavior and persistence lengths, the mechanism by which block copolymers will diffuse is unclear. In order to understand the effect of the rigid block on reptation, tracer diffusion of a coil-rod-coil block copolymer through an entangled coil polymer matrix was experimentally measured. A monodisperse, high molecular weight coil-rod-coil triblock was synthesized using artificial protein engineering to prepare the helical rod and bioconjugaiton of poly(ethylene glycol) coils to produce the final triblock. Diffusion measurements were performed using Forced Rayleigh scattering (FRS), at varying ratios of the rod length to entanglement length, where genetic engineering is used to control the protein rod length and the polymer matrix concentration controls the entanglement length. As compared to PEO homopolymer tracers, the coil-rod-coil triblocks show markedly slower diffusion, suggesting that the mismatch between rod and coil reptation mechanisms results in hindered diffusion of these molecules in the entangled state.

  2. Arm retraction dynamics of entangled star polymers: A forward flux sampling method study

    NASA Astrophysics Data System (ADS)

    Zhu, Jian; Likhtman, Alexei E.; Wang, Zuowei

    2017-07-01

    The study of dynamics and rheology of well-entangled branched polymers remains a challenge for computer simulations due to the exponentially growing terminal relaxation times of these polymers with increasing molecular weights. We present an efficient simulation algorithm for studying the arm retraction dynamics of entangled star polymers by combining the coarse-grained slip-spring (SS) model with the forward flux sampling (FFS) method. This algorithm is first applied to simulate symmetric star polymers in the absence of constraint release (CR). The reaction coordinate for the FFS method is determined by finding good agreement of the simulation results on the terminal relaxation times of mildly entangled stars with those obtained from direct shooting SS model simulations with the relative difference between them less than 5%. The FFS simulations are then carried out for strongly entangled stars with arm lengths up to 16 entanglements that are far beyond the accessibility of brute force simulations in the non-CR condition. Apart from the terminal relaxation times, the same method can also be applied to generate the relaxation spectra of all entanglements along the arms which are desired for the development of quantitative theories of entangled branched polymers. Furthermore, we propose a numerical route to construct the experimentally measurable relaxation correlation functions by effectively linking the data stored at each interface during the FFS runs. The obtained star arm end-to-end vector relaxation functions Φ (t ) and the stress relaxation function G(t) are found to be in reasonably good agreement with standard SS simulation results in the terminal regime. Finally, we demonstrate that this simulation method can be conveniently extended to study the arm-retraction problem in entangled star polymer melts with CR by modifying the definition of the reaction coordinate, while the computational efficiency will depend on the particular slip-spring or slip

  3. Microscopic theory for dynamics in entangled polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Yamamoto, Umi

    New microscopic theories for describing dynamics in polymer nanocomposites are developed and applied. The problem is addressed from two distinct perspectives and using two different theoretical approaches. The first half of this dissertation studies the long-time and intermediate-time dynamics of nanoparticles in entangled and unentangled polymer melts for dilute particle concentrations. Using a combination of mode-coupling, Brownian motion, and polymer physics ideas, the nanoparticle long-time diffusion coefficients is formulated in terms of multiple length-scales, packing microstructures, and spatially-resolved polymer density fluctuation dynamics. The key motional mechanism is described via the parallel relaxation of the force exerted on the particle controlled by collective polymer constraint-release and the particle self-motion. A sharp but smooth crossover from the hydrodynamic to the non-hydrodynamic regime is predicted based on the Stokes-Einstein violation ratio as a function of all the system variables. Quantitative predictions are made for the recovery of the Stokes-Einstein law, and the diffusivity in the crossover regime agrees surprisingly well with large-scale molecular dynamics simulations for all particle sizes and chain lengths studied. The approach is also extended to address intermediate-time anomalous transport of a single nanoparticle and two-particle relative diffusion. The second half of this dissertation focuses on developing a novel dynamical theory for a liquid of infinitely-thin rods in the presence of hard spherical obstacles, aiming at a technical and conceptual extension of the existing paradigm for entangled polymer dynamics. As a fundamental theoretical development, the two-component generalization of a first-principles dynamic meanfield approach is presented. The theory enforces inter-needle topological uncrossability and needlesphere impenetrability in a unified manner, leading to a generalized theory of entanglements that

  4. Synthesis and characterization of monodispersed polymer/polydiacetylene nanocrystal composite particles.

    PubMed

    Wei, Zhong; Ujiiye-Ishii, Kento; Masuhara, Akito; Kasai, Hitoshi; Okada, Shuji; Matsune, Hideki; Asahi, Tsuyoshi; Masuhara, Hiroshi; Nakanishi, Hachiro

    2005-06-01

    Monodispersed polymer/polydiacetylenecomposite particles were synthesized by soap-free seeded emulsion polymerization of styrene andmethyl methacrylate; the products were characterized by XRD, SEM, TEM, UV-visible spectroscopy, and single particle scattering spectroscopy. In the synthesis process, polydiacetylene nanocrystals were found to act as inhibitor, and consequently a relatively low concentration was necessary. Different monomers lead to the differences in reaction condition and particle morphology; the PMMA composite particles were simpler in preparation than polystyrene particles, but the latter havebetter spherical morphology. The composite particles were composed of polymer shells and polydiacetylene cores, which kept their crystal structure and optical properties. A high percentage of cored particles could be achieved with optimized reaction conditions where the amount of seed was sufficient and the oily oligomer by-product was suppressed.

  5. Tensile Fracture of Welded Polymer Interfaces: Miscibility, Entanglements, and Crazing

    DOE PAGES

    Ge, Ting; Grest, Gary S.; Robbins, Mark O.

    2014-09-26

    Large-scale molecular simulations are performed to investigate tensile failure of polymer interfaces as a function of welding time t. Changes in the tensile stress, mode of failure and interfacial fracture energy G I are correlated to changes in the interfacial entanglements as determined from Primitive Path Analysis. Bulk polymers fail through craze formation, followed by craze breakdown through chain scission. At small t welded interfaces are not strong enough to support craze formation and fail at small strains through chain pullout at the interface. Once chains have formed an average of about one entanglement across the interface, a stable crazemore » is formed throughout the sample. The failure stress of the craze rises with welding time and the mode of craze breakdown changes from chain pullout to chain scission as the interface approaches bulk strength. The interfacial fracture energy G I is calculated by coupling the simulation results to a continuum fracture mechanics model. As in experiment, G I increases as t 1/2 before saturating at the average bulk fracture energy G b. As in previous studies of shear strength, saturation coincides with the recovery of the bulk entanglement density. Before saturation, G I is proportional to the areal density of interfacial entanglements. Immiscibiltiy limits interdiffusion and thus suppresses entanglements at the interface. Even small degrees of immisciblity reduce interfacial entanglements enough that failure occurs by chain pullout and G I << G b.« less

  6. Local Chain Segregation and Entanglements in a Confined Polymer Melt

    NASA Astrophysics Data System (ADS)

    Lee, Nam-Kyung; Diddens, Diddo; Meyer, Hendrik; Johner, Albert

    2017-02-01

    The reptation mechanism, introduced by de Gennes and Edwards, where a polymer diffuses along a fluffy tube, defined by the constraints imposed by its surroundings, convincingly describes the relaxation of long polymers in concentrated solutions and melts. We propose that the scale for the tube diameter is set by local chain segregation, which we study analytically. We show that the concept of local segregation is especially operational for confined geometries, where segregation extends over mesoscopic domains, drastically reducing binary contacts, and provide an estimate of the entanglement length. Our predictions are quantitatively supported by extensive molecular dynamics simulations on systems consisting of long, entangled chains.

  7. Adhesion at Entangled Polymer Interfaces: A Unified Approach..

    NASA Astrophysics Data System (ADS)

    Wool, Richard

    2006-03-01

    A unified theory of fracture of polymer interfaces was developed which was based on the Rigidity Percolation model of fracture [R.P. Wool, J.Polym.Sci. Part A: Polym Phys., 43,168(2005)]. The polymer fractured critically when the normalized entanglement density p, approached the percolation threshold pc. The fracture energy was found to be G1c ˜ [p-pc]. When applied to interfaces of width X, containing an areal density σ of chains, each contributing L chain entanglements, the percolation term p ˜ σL/X and the percolation threshold was related to σc, Lc, or Xc. For welding of A/A symmetric interfaces, p = σL/X, and pc Lc/M 0, such that when σ/X ˜1/M for randomly distributed chain ends, p˜L ˜ (t/M)^1/2, G/G* = (t/τ*)^1/2, where the weld time τ* ˜ M. When the chain ends are segregated to the surface, σ is constant with time and G/G* = [t/τ*]^1/4. For sub-Tg welding, there exists a surface mobile layer (due to the critical Lindemann Atom fraction) of depth X ˜ 1/δT^ν such that G ˜ δT-2ν, where the critical exponent v = 0.8. For incompatible A/B interfaces of Helfand width d, normalized width w = d/Rge, and entanglement density Nent ˜ d/Le, p ˜ d such that, G1c ˜ [d-dc], G1c ˜ [w-1], and G ˜ [Nent-Nc]. For incompatible A/B interfaces reinforced by an areal density σ of compatibilizer chains, L and X are constant, p ˜ σ, pc ˜σc, such that G1c ˜ [σ-σc], which is in excellent agreement with experimental data.

  8. Preparation of monodisperse curcumin-imprinted polymer by precipitation polymerization and its application for the extraction of curcuminoids from Curcuma longa L.

    PubMed

    Kitabatake, Tomoko; Tabo, Hiromi; Matsunaga, Hisami; Haginaka, Jun

    2013-08-01

    A monodisperse molecularly imprinted polymer (MIP) for curcumin was first prepared by precipitation polymerization using methacrylamide (MAM) and 4-vinylpyridine as functional co-monomers, divinylbenzene as a crosslinker, and a mixture of acetonitrile and toluene as a porogen. The use of MAM as the co-monomer resulted in the formation of a monodisperse MIP and non-imprinted polymer (NIP). MIP and NIP, respectively, were monodispersed with a narrow particle size distribution (3.3 ± 0.09 and 3.5 ± 0.10 μm). In addition to shape recognition, hydrophobic and hydrogen-bonding interactions affected the retention and molecular-recognition of curcumin on the MIP. The MIP for curcumin could extract curcuminoids (curcumin, demethoxycurcumin, and bisdemethoxycurcumin) in Curcuma longa L.

  9. Monodispersed molecularly imprinted polymer for creatinine by modified precipitation polymerization.

    PubMed

    Haginaka, Jun; Miura, Chitose; Funaya, Noriko; Matsunaga, Hisami

    2012-01-01

    A monodispersed molecularly imprinted polymer (MIP) for creatinine was prepared by modified precipitation polymerization. The retention and molecular-recognition properties of the prepared MIP were evaluated by the hydrophilic interaction chromatography mode using a mixture of ammonium acetate buffer and acetonitrile as a mobile phase in liquid chromatography. The MIP had a specific recognition ability for creatinine, while other structurally related compounds, such as hydantoin, 1-methylhydantoin, 2-pyrrolidone, N-hydroxysuccinimide and creatine, could not be recognized on the MIP. In addition to shape recognition, hydrophilic interactions could work for the recognition of creatinine on the MIP.

  10. DNA-imprinted polymer nanoparticles with monodispersity and prescribed DNA-strand patterns

    NASA Astrophysics Data System (ADS)

    Trinh, Tuan; Liao, Chenyi; Toader, Violeta; Barłóg, Maciej; Bazzi, Hassan S.; Li, Jianing; Sleiman, Hanadi F.

    2018-02-01

    As colloidal self-assembly increasingly approaches the complexity of natural systems, an ongoing challenge is to generate non-centrosymmetric structures. For example, patchy, Janus or living crystallization particles have significantly advanced the area of polymer assembly. It has remained difficult, however, to devise polymer particles that associate in a directional manner, with controlled valency and recognition motifs. Here, we present a method to transfer DNA patterns from a DNA cage to a polymeric nanoparticle encapsulated inside the cage in three dimensions. The resulting DNA-imprinted particles (DIPs), which are 'moulded' on the inside of the DNA cage, consist of a monodisperse crosslinked polymer core with a predetermined pattern of different DNA strands covalently 'printed' on their exterior, and further assemble with programmability and directionality. The number, orientation and sequence of DNA strands grafted onto the polymeric core can be controlled during the process, and the strands are addressable independently of each other.

  11. Nanoprobe diffusion in entangled polymer solutions: Linear vs. unconcatenated ring chains

    NASA Astrophysics Data System (ADS)

    Nahali, Negar; Rosa, Angelo

    2018-05-01

    We employ large-scale molecular dynamics computer simulations to study the problem of nanoprobe diffusion in entangled solutions of linear polymers and unknotted and unconcatenated circular (ring) polymers. By tuning both the diameter of the nanoprobe and the density of the solution, we show that nanoprobes of diameter smaller than the entanglement distance (tube diameter) of the solution display the same (Rouse-like) behavior in solutions of both polymer architectures. Instead, nanoprobes with larger diameters appear to diffuse markedly faster in solutions of rings than in solutions of linear chains. Finally, by analysing the distribution functions of spatial displacements, we find that nanoprobe motion in rings' solutions shows both Gaussian and ergodic behaviors, in all regimes considered, while, in solutions of linear chains, nanoprobes exceeding the size of the tube diameter show a transition to non-Gaussian and non-ergodic motion. Our results emphasize the role of chain architecture in the motion of nanoprobes dispersed in polymer solutions.

  12. Dynamics of Entangled Polymers: Role of Attractive Interactions

    NASA Astrophysics Data System (ADS)

    Grest, Gary S.; Koski, Jason

    The coupled dynamics of entangled polymers, which span broad time and length scales, govern their unique viscoelastic properties. Numerical simulations of highly coarse grained models are often used to follow chain mobility from the intermediate Rouse and reptation regimes to the late time diffusive regime. In these models, purely repulsive interactions between monomers are typically used because it is less computationally expensive than including attractive interactions. The effect of including the attractive interaction on the local and macroscopic properties of entangled polymer melts is explored over a wide temperature range using large scale molecular dynamics simulations. Attractive interactions are shown to have little effect on the local packing for all temperatures T and chain mobility for T higher than about twice the glass transition Tg. For lower T, the attractive interactions play a significant role, reducing the chain mobility compared to the repulsive case. As T approaches Tg breakdown of time-temperature superposition for the stress autocorrelation function is observed. Sandia National Labs is a multiprogram laboratory managed and operated by Sandia Corporation, a Lockheed-Martin Company, for the U.S. Dept of Energy under Contract No. DEAC04-94AL85000.

  13. Active microrheology of entangled biopolymer composites link polymer flexibility and length to molecular force response

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, Robert; Hauer, Cole; Kyrillos, Carl; McGorty, Ryan; Robertson-Anderson, Rae

    Entangled polymers have complex viscoelastic properties that are tuned by polymer lengths and flexibilities. Entangled composites of distinct polymers offer added versatility and display nonlinear mechanics, serving as a platform for multifunctional materials. To determine the role of flexibility and length in polymer composites we use optical tweezers and confocal microscopy to measure mechanical and structural properties of co-entangled actin and DNA. Actin filaments have lengths of 5-20 μm, comparable to their persistence length, while DNA of similar lengths have hundreds of persistence lengths per chain. To characterize the nonlinear mechanics of actin-DNA composites, we optically drive a microsphere through the composite and measure the induced force during and following strain. We characterize viscoelasticity and relaxation timescales; and determine the dependence of these quantities on the actin:DNA ratio (0:1-1:0) and DNA length (4-100 μm). We use confocal microscopy to image distinctly labeled co-entangled actin and DNA and characterize network homogeneity and fluctuations. Initial results show actin and DNA are well-integrated and form structurally homogenous networks that exhibit stiffness and relaxation times that increase nonlinearly with increased actin. NSF Career Award (DMR-1254340), AFOSR Young Investigator Program Award (FA95550-12-1-0315), Scialog Collaborative Innovation Award funed by Research Corp. for Scientific Advancement (24192).

  14. Finite cohesion due to chain entanglement in polymer melts.

    PubMed

    Cheng, Shiwang; Lu, Yuyuan; Liu, Gengxin; Wang, Shi-Qing

    2016-04-14

    Three different types of experiments, quiescent stress relaxation, delayed rate-switching during stress relaxation, and elastic recovery after step strain, are carried out in this work to elucidate the existence of a finite cohesion barrier against free chain retraction in entangled polymers. Our experiments show that there is little hastened stress relaxation from step-wise shear up to γ = 0.7 and step-wise extension up to the stretching ratio λ = 1.5 at any time before or after the Rouse time. In contrast, a noticeable stress drop stemming from the built-in barrier-free chain retraction is predicted using the GLaMM model. In other words, the experiment reveals a threshold magnitude of step-wise deformation below which the stress relaxation follows identical dynamics whereas the GLaMM or Doi-Edwards model indicates a monotonic acceleration of the stress relaxation dynamics as a function of the magnitude of the step-wise deformation. Furthermore, a sudden application of startup extension during different stages of stress relaxation after a step-wise extension, i.e. the delayed rate-switching experiment, shows that the geometric condensation of entanglement strands in the cross-sectional area survives beyond the reptation time τd that is over 100 times the Rouse time τR. Our results point to the existence of a cohesion barrier that can prevent free chain retraction upon moderate deformation in well-entangled polymer melts.

  15. Localization and elasticity in entangled polymer liquids as a mesoscopic glass transition

    NASA Astrophysics Data System (ADS)

    Schweizer, Kenneth

    2010-03-01

    The reptation-tube model is widely viewed as the correct zeroth order model for entangled linear polymer dynamics under quiescent conditions. Its key ansatz is the existence of a mesoscopic dynamical length scale that prohibits transverse chain motion beyond a tube diameter of order 3-10 nm. However, the theory is phenomenological and lacks a microscopic foundation, and many fundamental questions remain unanswered. These include: (i) where does the confining tube field come from and can it be derived from statistical mechanics? (ii) what is the microscopic origin of the magnitude, and power law scaling with concentration and packing length, of the plateau shear modulus? (iii) is the tube diameter time-dependent? (iv) does the confinement field contribute to elasticity ? (v) do entanglement constraints have a finite strength? Building on our new force-level theories for the dynamical crossover and activated barrier hopping in glassy colloidal suspensions and polymer melts, a first principles self-consistent theory has been developed for entangled polymers. Its basic physical elements, and initial results that address the questions posed above, will be presented. The key idea is that beyond a critical degree of polymerization, the chain connectivity and excluded volume induced intermolecular correlation hole drives temporary localization on an intermediate length scale resulting in a mesoscopic ``ideal kinetic glass transition.'' Large scale isotropic motion is effectively quenched due to the emergence of chain length dependent entropic barriers. However, the barrier height is not infinite, resulting in softening of harmonic localization at large displacements, temporal increase of the confining length scale, and a finite strength of entanglement constraints which can be destroyed by applied stress.

  16. Compressible or incompressible blend of interacting monodisperse star and linear polymers near a surface.

    PubMed

    Batman, Richard; Gujrati, P D

    2008-03-28

    We consider a lattice model of a mixture of repulsive, attractive, or neutral monodisperse star (species A) and linear (species B) polymers with a third monomeric species C, which may represent free volume. The mixture is next to a hard, infinite plate whose interactions with A and C can be attractive, repulsive, or neutral. These two interactions are the only parameters necessary to specify the effect of the surface on all three components. We numerically study monomer density profiles using the method of Gujrati and Chhajer that has already been previously applied to study polydisperse and monodisperse linear-linear blends next to surfaces. The resulting density profiles always show an enrichment of linear polymers in the immediate vicinity of the surface due to entropic repulsion of the star core. However, the integrated surface excess of star monomers is sometimes positive, indicating an overall enrichment of stars. This excess increases with the number of star arms only up to a certain critical number and decreases thereafter. The critical arm number increases with compressibility (bulk concentration of C). The method of Gujrati and Chhajer is computationally ultrafast and can be carried out on a personal computer (PC), even in the incompressible case, when simulations are unfeasible. Calculations of density profiles usually take less than 20 min on PCs.

  17. Completely monodisperse, highly repetitive proteins for bioconjugate capillary electrophoresis: Development and characterization

    PubMed Central

    Lin, Jennifer S.; Albrecht, Jennifer Coyne; Meagher, Robert J.; Wang, Xiaoxiao; Barron, Annelise E.

    2011-01-01

    Protein-based polymers are increasingly being used in biomaterial applications due to their ease of customization and potential monodispersity. These advantages make protein polymers excellent candidates for bioanalytical applications. Here we describe improved methods for producing drag-tags for Free-Solution Conjugate Electrophoresis (FSCE). FSCE utilizes a pure, monodisperse recombinant protein, tethered end-on to a ssDNA molecule, to enable DNA size separation in aqueous buffer. FSCE also provides a highly sensitive method to evaluate the polydispersity of a protein drag-tag and thus its suitability for bioanalytical uses. This method is able to detect slight differences in drag-tag charge or mass. We have devised an improved cloning, expression, and purification strategy that enables us to generate, for the first time, a truly monodisperse 20 kDa protein polymer and a nearly monodisperse 38 kDa protein. These newly produced proteins can be used as drag-tags to enable longer read DNA sequencing by free-solution microchannel electrophoresis. PMID:21553840

  18. Formation mechanism of monodispersed spherical core-shell ceria/polymer hybrid nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Izu, Noriya, E-mail: n-izu@aist.go.jp; Uchida, Toshio; Matsubara, Ichiro

    2011-08-15

    Graphical abstract: The formation mechanism for core-shell nanoparticles is considered to be as follows: nucleation and particle growth occur simultaneously (left square); very slow particle growth occurs (middle square). Highlights: {yields} The size of the resultant nanoparticles was strongly and complicatedly dependent on the set temperature used during reflux heating and the PVP molecular weight. {yields} The size of the nanoparticles increased by a 2-step process as the reflux heating time increased. {yields} The IR spectral changes with increasing reflux time indicated the increase in the number of cross-linked polymers in the shell. -- Abstract: Very unique core-shell ceria (ceriummore » oxide)/polymer hybrid nanoparticles that have monodispersed spherical structures and are easily dispersed in water or alcohol without the need for a dispersant were reported recently. The formation mechanism of the unique nanoparticles, however, was not clear. In order to clarify the formation mechanism, these nanoparticles were prepared using a polyol method (reflux heating) under varied conditions of temperature, time, and concentration and molecular weight of added polymer (poly(vinylpyrrolidone)). The size of the resultant nanoparticles was strongly and complicatedly dependent on the set temperature used during reflux heating and the poly(vinylpyrrolidone) molecular weight. Furthermore, the size of the nanoparticles increased by a 2-step process as the reflux heating time increased. The IR spectral changes with increasing reflux time indicated the increase in the number of cross-linked polymers in the shell. From these results, the formation mechanism was discussed and proposed.« less

  19. Preparation of Monodisperse Biodegradable Polymer Microparticles Using a Microfluidic Flow-focusing Device for Controlled Drug Delivery

    PubMed Central

    Xu, Qiaobing; Hashimoto, Michinao; Dang, Tram T.; Hoare, Todd; Kohane, Daniel S.; Whitesides, George M.; Langer, Robert; Anderson, Daniel G.

    2009-01-01

    Degradable microparticles have broad utility as vehicles for drug delivery and form the basis of several FDA-approved therapies. Conventional emulsion-based methods of manufacturing produce particles with a wide range of diameters (and thus kinetics of release) in each batch. This paper describes the fabrication of monodisperse, drug-loaded microparticles from biodegradable polymers using the microfluidic flow-focusing (FF) devices and the drug delivery properties of those particles. Particles were engineered with defined sizes, ranging from 10 μm to 50 μm. These particles were nearly monodisperse (polydispersity index = 3.9 %). We incorporated a model amphiphilic drug (bupivacaine) within the biodegradable matrix of the particles. Kinetic analysis showed that the release of drug from these monodisperse particles was slower than that from conventional methods of the same average size but a broader distribution of sizes and, most importantly, exhibited a significantly lower initial burst than that observed with conventional particles. The difference in the initial kinetics of drug release was attributed to the uniform distribution of drug inside the particles generated using the microfluidic methods. These results demonstrated the utility of microfluidic FF for the generation of homogenous systems of particles for the delivery of drugs. PMID:19296563

  20. Structure and Entanglement Factors on Dynamics of Polymer-Grafted Nanoparticles

    DOE PAGES

    Liu, Siqi; Senses, Erkan; Jiao, Yang; ...

    2016-04-15

    Nanoparticles functionalized with long polymer chains at low graft density are interesting systems to study structure–dynamic relationships in polymer nanocomposites since they are shown to aggregate into strings in both solution and melts and also into spheres and branched aggregates in the presence of free polymer chains. Our work investigates structure and entanglement effects in composites of polystyrene-grafted iron oxide nanoparticles by measuring particle relaxations using X-ray photon correlation spectroscopy. And for particles within highly ordered strings and aggregated systems, they experience a dynamically heterogeneous environment displaying hyperdiffusive relaxation commonly observed in jammed soft glassy systems. Furthermore, particle dynamics ismore » diffusive for branched aggregated structures which could be caused by less penetration of long matrix chains into brushes. These results suggest that particle motion is dictated by the strong interactions of chains grafted at low density with the host matrix polymer.« less

  1. A single particle model to simulate the dynamics of entangled polymer melts.

    PubMed

    Kindt, P; Briels, W J

    2007-10-07

    We present a computer simulation model of polymer melts representing each chain as one single particle. Besides the position coordinate of each particle, we introduce a parameter n(ij) for each pair of particles i and j within a specified distance from each other. These numbers, called entanglement numbers, describe the deviation of the system of ignored coordinates from its equilibrium state for the given configuration of the centers of mass of the polymers. The deviations of the entanglement numbers from their equilibrium values give rise to transient forces, which, together with the conservative forces derived from the potential of mean force, govern the displacements of the particles. We have applied our model to a melt of C(800)H(1602) chains at 450 K and have found good agreement with experiments and more detailed simulations. Properties addressed in this paper are radial distribution functions, dynamic structure factors, and linear as well as nonlinear rheological properties.

  2. Disentangling the Role of Entanglement Density and Molecular Alignment in the Mechanical Response of Glassy Polymers

    NASA Astrophysics Data System (ADS)

    O'Connor, Thomas; Robbins, Mark

    Glassy polymers are a ubiquitous part of modern life, but much about their mechanical properties remains poorly understood. Since chains in glassy states are hindered from exploring their conformational entropy, they can't be understood with common entropic network models. Additionally, glassy states are highly sensitive to material history and nonequilibrium distributions of chain alignment and entanglement can be produced during material processing. Understanding how these far-from equilibrium states impact mechanical properties is analytically challenging but essential to optimizing processing methods. We use molecular dynamics simulations to study the yield and strain hardening of glassy polymers as separate functions of the degree of molecular alignment and inter-chain entanglement. We vary chain alignment and entanglement with three different preparation protocols that mimic common processing conditions in and out of solution. We compare our results to common mechanical models of amorphous polymers and assess their applicability to different experimental processing conditions. This research was performed within the Center for Materials in Extreme Dynamic Environments (CMEDE) under the Hopkins Extreme Materials Institute at Johns Hopkins University. Financial support was provided by Grant W911NF-12-2-0022.

  3. Synthetic Polymers at Interfaces: Monodisperse Emulsions Multiple Emulsions and Liquid Marbles

    NASA Astrophysics Data System (ADS)

    Sun, Guanqing

    The adsorption of polymeric materials at interfaces is an energetically favorable process which is investigated in much diversified fields, such as emulsions, bubbles, foams, liquid marbles. Pickering emulsion, which is emulsion stabilized by solid particles has been investigated for over one century and preparation of Pickering emulsion with narrow size distribution is crucial for both the theoretical study of the stabilization mechanism and practical application, such as templated fabrication of colloidosomes. The precise control over the size and functionality of polymer latices allows the preparation of monodisperse Pickering emulsions with desired sizes through SPG membrane emulsification at rather rapid rate compared to microfludic production. Double or multiple emulsions have long been investigated but its rapid destabilization has always been a major obstacle in applying them into practical applications. The modern living polymerization techniques allow us to prepare polymers with designed structure of block copolymers which makes it possible to prepare ultra-stable multiple emulsions. The precise tuning of the ratio of hydrophobic part over the hydrophilic can unveil the stabilization mechanism. Liquid marble is a new type of materials of which liquid droplets are coated by dry particles. The coating of an outer layer of dry particles renders the liquid droplets non-sticky at solid surface which is useful in transportation of small amount of liquid without leakage at extreme low friction force. The property of liquid marbles relies largely on the stabilizers and the drying condition of polymeric latices is shown to have great influence on the property of liquid marbles. Firstly, an introduction to the interfacial and colloidal science with special attention to topics on emulsions, multiple emulsion and liquid marbles is given in Chapter 1. The unique features of an interface and a discussion on the definition of colloids are introduced prior to the

  4. Single polymer dynamics in semi-dilute unentangled and entangled solutions: from molecular conformation to normal stress

    NASA Astrophysics Data System (ADS)

    Schroeder, Charles

    Semi-dilute polymer solutions are encountered in a wide array of applications such as advanced 3D printing technologies. Semi-dilute solutions are characterized by large fluctuations in concentration, such that hydrodynamic interactions, excluded volume interactions, and transient chain entanglements may be important, which greatly complicates analytical modeling and theoretical treatment. Despite recent progress, we still lack a complete molecular-level understanding of polymer dynamics in these systems. In this talk, I will discuss three recent projects in my group to study semi-dilute solutions that focus on single molecule studies of linear and ring polymers and a new method to measure normal stresses in microfluidic devices based on the Stokes trap. In the first effort, we use single polymer techniques to investigate the dynamics of semi-dilute unentangled and semi-dilute entangled DNA solutions in extensional flow, including polymer relaxation from high stretch, transient stretching dynamics in step-strain experiments, and steady-state stretching in flow. In the semi-dilute unentangled regime, our results show a power-law scaling of the longest polymer relaxation time that is consistent with scaling arguments based on the double cross-over regime. Upon increasing concentration, we observe a transition region in dynamics to the entangled regime. We also studied the transient and steady-state stretching dynamics in extensional flow using the Stokes trap, and our results show a decrease in transient polymer stretch and a milder coil-to-stretch transition for semi-dilute polymer solutions compared to dilute solutions, which is interpreted in the context of a critical Weissenberg number Wi at the coil-to-stretch transition. Interestingly, we observe a unique set of polymer conformations in semi-dilute unentangled solutions that are highly suggestive of transient topological entanglements in solutions that are nominally unentangled at equilibrium. Taken together

  5. A multichain polymer slip-spring model with fluctuating number of entanglements for linear and nonlinear rheology

    DOE PAGES

    Ramírez-Hernández, Abelardo; Peters, Brandon L.; Andreev, Marat; ...

    2015-12-15

    A theoretically informed entangled polymer simulation approach is presented for description of the linear and non-linear rheology of entangled polymer melts. The approach relies on a many-chain representation and introduces the topological effects that arise from the non-crossability of molecules through effective fluctuating interactions, mediated by slip-springs, between neighboring pairs of macromolecules. The total number of slip-springs is not preserved but, instead, it is controlled through a chemical potential that determines the average molecular weight between entanglements. The behavior of the model is discussed in the context of a recent theory for description of homogeneous materials, and its relevance ismore » established by comparing its predictions to experimental linear and non-linear rheology data for a series of well-characterized linear polyisoprene melts. Furthermore, the results are shown to be in quantitative agreement with experiment and suggest that the proposed formalism may also be used to describe the dynamics of inhomogeneous systems, such as composites and copolymers. Importantly, the fundamental connection made here between our many-chain model and the well-established, thermodynamically consistent single-chain mean-field models provides a path to systematic coarse-graining for prediction of polymer rheology in structurally homogeneous and heterogeneous materials.« less

  6. Tunable stability of monodisperse secondary O/W nano-emulsions

    NASA Astrophysics Data System (ADS)

    Vecchione, R.; Ciotola, U.; Sagliano, A.; Bianchini, P.; Diaspro, A.; Netti, P. A.

    2014-07-01

    Stable and biodegradable oil in water (O/W) nano-emulsions can have a huge impact on a wide range of bio-applications, from food to cosmetics and pharmaceuticals. Emulsions, however, are immiscible systems unstable over time; polymer coatings are known to be helpful, but an effective procedure to stabilize monodisperse and biodegradable O/W nano-emulsions is yet to be designed. Here, we coat biodegradable O/W nano-emulsions with a molecular layer of biodegradable polyelectrolytes such as polysaccharides - like chitosan - and polypeptides - like polylysine - and effectively re-disperse and densify the polymer coating at high pressure, thus obtaining monodisperse and stable systems. In particular, focusing on chitosan, our tests show that it is possible to obtain unprecedented ultra-stable O/W secondary nano-emulsions (diameter sizes tunable from ~80 to 160 nm and polydispersion indices below 0.1) by combining this process with high concentrations of polymers. Depending on the polymer concentration, it is possible to control the level of coating that results in a tunable stability ranging from a few weeks to several months. The above range of concentrations has been investigated using a fluorescence-based approach with new insights into the coating evolution.Stable and biodegradable oil in water (O/W) nano-emulsions can have a huge impact on a wide range of bio-applications, from food to cosmetics and pharmaceuticals. Emulsions, however, are immiscible systems unstable over time; polymer coatings are known to be helpful, but an effective procedure to stabilize monodisperse and biodegradable O/W nano-emulsions is yet to be designed. Here, we coat biodegradable O/W nano-emulsions with a molecular layer of biodegradable polyelectrolytes such as polysaccharides - like chitosan - and polypeptides - like polylysine - and effectively re-disperse and densify the polymer coating at high pressure, thus obtaining monodisperse and stable systems. In particular, focusing on

  7. Matrine- and oxymatrine-imprinted monodisperse polymers prepared by precipitation polymerization and their applications for the selective extraction of matrine-type alkaloids from Sophora flavescens Aiton.

    PubMed

    Funaya, Noriko; Haginaka, Jun

    2012-07-27

    Matrine (MT)- and oxymatrine (OMT)-imprinted monodisperse polymers have been prepared by precipitation polymerization. The prepared molecularly imprinted polymers (MIPs) for MT and OMT, MIP(MT) and MIP(OMT), were monodispersed microspheres of 3.3 and 3.9 μm in diameter, respectively. Binding experiments and Scatchard analyses revealed that two classes of binding sites were formed on MIP(MT) and MIP(OMT). In addition to shape recognition, ionic and hydrophobic interactions seemed to affect the retention and recognition of MT and OMT on MIP(MT) and MIP(OMT), respectively, in low acetonitrile content, and ionic and hydrophilic interactions affected these properties in high acetonitrile content. MIP(MT) was used to selectively extract MT and sophocarpine (13,14-dehydromatrine) from Sophora flavescens root, while MIP(OMT) was used to extract OMT and oxysophocarpine (13,14-dehydrooxymatrine). Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Determination of linear viscoelastic properties of an entangled polymer melt by probe rheology simulations.

    PubMed

    Karim, Mir; Indei, Tsutomu; Schieber, Jay D; Khare, Rajesh

    2016-01-01

    Particle rheology is used to extract the linear viscoelastic properties of an entangled polymer melt from molecular dynamics simulations. The motion of a stiff, approximately spherical particle is tracked in both passive and active modes. We demonstrate that the dynamic modulus of the melt can be extracted under certain limitations using this technique. As shown before for unentangled chains [Karim et al., Phys. Rev. E 86, 051501 (2012)PLEEE81539-375510.1103/PhysRevE.86.051501], the frequency range of applicability is substantially expanded when both particle and medium inertia are properly accounted for by using our inertial version of the generalized Stokes-Einstein relation (IGSER). The system used here introduces an entanglement length d_{T}, in addition to those length scales already relevant: monomer bead size d, probe size R, polymer radius of gyration R_{g}, simulation box size L, shear wave penetration length Δ, and wave period Λ. Previously, we demonstrated a number of restrictions necessary to obtain the relevant fluid properties: continuum approximation breaks down when d≳Λ; medium inertia is important and IGSER is required when R≳Λ; and the probe should not experience hydrodynamic interaction with its periodic images, L≳Δ. These restrictions are also observed here. A simple scaling argument for entangled polymers shows that the simulation box size must scale with polymer molecular weight as M_{w}^{3}. Continuum analysis requires the existence of an added mass to the probe particle from the entrained medium but was not observed in the earlier work for unentangled chains. We confirm here that this added mass is necessary only when the thickness L_{S} of the shell around the particle that contains the added mass, L_{S}>d. We also demonstrate that the IGSER can be used to predict particle displacement over a given timescale from knowledge of medium viscoelasticity; such ability will be of interest for designing nanoparticle-based drug delivery.

  9. Determination of linear viscoelastic properties of an entangled polymer melt by probe rheology simulations

    NASA Astrophysics Data System (ADS)

    Karim, Mir; Indei, Tsutomu; Schieber, Jay D.; Khare, Rajesh

    2016-01-01

    Particle rheology is used to extract the linear viscoelastic properties of an entangled polymer melt from molecular dynamics simulations. The motion of a stiff, approximately spherical particle is tracked in both passive and active modes. We demonstrate that the dynamic modulus of the melt can be extracted under certain limitations using this technique. As shown before for unentangled chains [Karim et al., Phys. Rev. E 86, 051501 (2012), 10.1103/PhysRevE.86.051501], the frequency range of applicability is substantially expanded when both particle and medium inertia are properly accounted for by using our inertial version of the generalized Stokes-Einstein relation (IGSER). The system used here introduces an entanglement length dT, in addition to those length scales already relevant: monomer bead size d , probe size R , polymer radius of gyration Rg, simulation box size L , shear wave penetration length Δ , and wave period Λ . Previously, we demonstrated a number of restrictions necessary to obtain the relevant fluid properties: continuum approximation breaks down when d ≳Λ ; medium inertia is important and IGSER is required when R ≳Λ ; and the probe should not experience hydrodynamic interaction with its periodic images, L ≳Δ . These restrictions are also observed here. A simple scaling argument for entangled polymers shows that the simulation box size must scale with polymer molecular weight as Mw3. Continuum analysis requires the existence of an added mass to the probe particle from the entrained medium but was not observed in the earlier work for unentangled chains. We confirm here that this added mass is necessary only when the thickness LS of the shell around the particle that contains the added mass, LS>d . We also demonstrate that the IGSER can be used to predict particle displacement over a given timescale from knowledge of medium viscoelasticity; such ability will be of interest for designing nanoparticle-based drug delivery.

  10. Nonlinear Stress Relaxation of ``Quasi-monodisperse'' Miscible Blends of cis-Polyisoprene and Poly(ptert-butylstyrene)

    NASA Astrophysics Data System (ADS)

    Watanabe, Hiroshi; Matsumiya, Yumi

    Viscoelastic relaxation was examined for entangled miscible blends of cis-polyisoprene (PI) and poly(ptert-butylstyrene) (PtBS). The terminal relaxation times of PI and PtBS therein, τPI and τPtBS, changed with the composition wPI and the molecular weights MPI and MPtBS. This ratio became unity when the wPI, MPI, and MPtBS values were chosen adequately. For example, in a blend with wPI = 0.75, MPI = 321k, and MPtBS = 91k at T = 40ûC, τPI/τPtBS = 1 and M/Me = 55 and 8.3 for PI and PtBS. Under small strains, this blend exhibited sharp, single-step terminal relaxation as similar to monodisperse homopolymers, thereby behaving as a ``quasi-monodisperse'' material. Under large step strains, the blend exhibited moderate nonlinear damping known as the type-A damping for entangled monodisperse homopolymers. Nevertheless, PI had M/Me = 55 in that blend, and homopolymers having such a large M/Me ratio exhibit very strong type-C damping. Thus, as compared to homopolymers, the nonlinearity was suppressed in the PI/PtBS blend having the large M/Me ratio. This suppression is discussed in relation to the slow Rouse retraction of the coexisting PtBS chains (having M/Me = 8.3 in the blend).

  11. Synthesis of highly monodisperse particles composed of a magnetic core and fluorescent shell.

    PubMed

    Nagao, Daisuke; Yokoyama, Mikio; Yamauchi, Noriko; Matsumoto, Hideki; Kobayashi, Yoshio; Konno, Mikio

    2008-09-02

    Highly monodisperse particles composed of a magnetic silica core and fluorescent polymer shell were synthesized with a combined technique of heterocoagulation and soap-free emulsion polymerization. Prior to heterocoagulation, monodisperse, submicrometer-sized silica particles were prepared with the Stober method, and magnetic nanoparticles were prepared with a modified Massart method in which a cationic silane coupling agent of N-trimethoxysilylpropyl- N, N, N-trimethylammonium chloride was added just after coprecipitation of Fe (2+) and Fe (3+). The silica particles with negative surface potential were heterocoagulated with the magnetic nanoparticles with positive surface potential. The magnetic silica particles obtained with the heterocoagulation were treated with sodium silicate to modify their surfaces with silica. In the formation of a fluorescent polymer shell onto the silica-coated magnetic silica cores, an amphoteric initiator of 2,2'-azobis[ N-(2-carboxyethyl)-2-2-methylpropionamidine] (VA-057) was used to control the colloidal stability of the magnetic cores during the polymer coating. The polymerization of St in the presence of a hydrophobic fluorophore of pyrene could coat the cores with fluorescent polymer shells, resulting in monodisperse particles with a magnetic silica core and fluorescent polymer shell. Measurements of zeta potential for the composite particles in different pH values indicated that the composite particles had an amphoteric property originating from VA-057 initiator.

  12. Use DNA solutions to model polymer entanglement in flow: simultaneous rheometric and particle-tracking velocimetric measurements

    NASA Astrophysics Data System (ADS)

    Boukany, Pouyan; Wang, Shi-Qing

    2008-03-01

    Entangled aqueous DNA solutions are ideal as a model system to examine nonlinear flow features including stress overshoot in startup shear and shear thinning phenomenon. These soft systems can be strongly entangled with 60 entanglement points per chain and a terminal relaxation time as long as 1000 s at 1 % concentration [1-2]. They allow a comparison between the steady state attained with a startup shear and that attained through an ``infinitely'' slow ramping up of the applied shear rate. Indeed, startup shear in the nonlinear (stress plateau) region causes the DNA solutions to yield inhomogeneously, resulting in permanent shear banding. However, the slowly ramped-up shear into the same final rate as applied in startup shear allowed the solutions to avoid shear inhomogeneity. Thus, we demonstrated that it is possible for the final steady states to be different depending on how an entangled system is brought into the same final experimental condition. This result implies that it is ill-defined to pursue conventional constitutive relationship in flow of entangled polymers. [1] Boukany, P. E.; Hu, T. H.; Wang, S. Q. textitMacromolecules 2007, under review. [2] Boukany, P. E.; Wang, S. Q. J. Rheol. 2007, under review.

  13. The Lowe-Andersen thermostat as an alternative to the dissipative particle dynamics in the mesoscopic simulation of entangled polymers.

    PubMed

    Khani, Shaghayegh; Yamanoi, Mikio; Maia, Joao

    2013-05-07

    Dissipative Particle Dynamics (DPD) has shown a great potential in studying the dynamics and rheological properties of soft matter; however, it is associated with deficiencies in describing the characteristics of entangled polymer melts. DPD deficiencies are usually correlated to the time integrating method and the unphysical bond crossings due to utilization of soft potentials. One shortcoming of DPD thermostat is the inability to produce real values of Schmidt number for fluids. In order to overcome this, an alternative Lowe-Anderson (LA) method, which successfully stabilizes the temperature, is used in the present work. Additionally, a segmental repulsive potential was introduced to avoid unphysical bond crossings. The performance of the method in simulating polymer systems is discussed by monitoring the static and dynamic characteristics of polymer chains and the results from the LA method are compared to standard DPD simulations. The performance of the model is evaluated on capturing the main shear flow properties of entangled polymer systems. Finally the linear and nonlinear viscoelastic properties of such systems are discussed.

  14. Theory of DNA electrophoresis in physical gels and entangled polymer solutions

    NASA Astrophysics Data System (ADS)

    Duke, Thomas; Viovy, Jean Louis

    1994-03-01

    A scaling theory is presented for the electrophoretic mobility of DNA in sieving media that form dynamically evolving meshworks, such as physical gels and solutions of entangled polymers. In such media, the topological constraints on the DNA's motion are perpetually changing as cross links break and rejoin or as the polymers diffuse. It is shown that if the rate of constraint release falls within a certain range (which depends on the field strength), fractionation can be extended to higher molecular weights than would be feasible using a permanent gel of equivalent pore size. This improvement is a consequence of the disruptive effect that constraint release has on the mechanism of molecular orientation. Numerical simulations support the predictions of the theory. The possibility of realizing such a system in practice, with the aim of improving on current electrophoresis methods, is commented upon. It is suggested that semidilute polymer solutions may be a versatile medium for the rapid separation of long single-stranded DNA molecules, and the particular quality of solution required is identified.

  15. Evaporative purification to produce highly monodisperse polymers: Application to polystyrene for n =3 -13 and quantification of Tg from oligomer to polymer

    NASA Astrophysics Data System (ADS)

    Zhu, S.; Chai, Y.; Forrest, J. A.

    2017-07-01

    We demonstrate the use of selective thermal evaporation to separate and purify small molecular weight polymers into highly monodisperse polymers over an extended range of polymerization index. By exploiting the calculated dependence of polymer vapor pressure on polymerization index N and temperature T , we can isolate individual components (N -mers) of an initially polydisperse mixture. To demonstrate this ability, we consider polystyrene samples of Mw=600 g/mol and Mw=890 g/mol with narrow molecular weight distributions, as well as a Mw=1200 g/mol sample with a broader distribution. In each case we are able to separate the sample into milligram quantities of many different components. Using this technique, we have been able to isolate N -mers from 3 to 13. We use differential scanning calorimetry to measure the Tg values of these components, and find that the components have the same Tg values independent of the Mw or polydispersity of the sample they originate from. We find that even initially narrow molecular weight distributions have many different components whose Tg values can differ by more than 50 K. Calculations suggest the isolated components have Mw/Mn values less than 1.001 and through a second iteration of the process could become as low as 1.000 003. The measured Tg values for the N -mers as well as large N polymers are well described by a simple relation derived from the Fox equation for the Tg of mixtures.

  16. Diffusion behavior of lipid vesicles in entangled polymer solutions.

    PubMed Central

    Cao, X; Bansil, R; Gantz, D; Moore, E W; Niu, N; Afdhal, N H

    1997-01-01

    Dynamic light scattering was used to follow the tracer diffusion of phospholipid/cholesterol vesicles in aqueous polyacrylamide solutions and compared with the diffusive behavior of polystyrene (PS) latex spheres of comparable diameters. Over the range of the matrix concentration examined (Cp = 0.1-10 mg/ml), the diffusivities of the PS spheres and the large multilamellar vesicles exhibited the Stokes-Einstein (SE) relation, while the diffusivity of the unilamellar vesicles did not follow the increase of the solution's viscosity caused by the presence of the matrix molecules. The difference between the diffusion behaviors of unilamellar vesicles and hard PS spheres of similar size is possibly due to the flexibility of the lipid bilayer of the vesicles. The unilamellar vesicles are capable of changing their shape to move through the entangled polymer solution so that the hindrance to their diffusion due to the presence of the polymer chains is reduced, while the rigid PS spheres have little flexibility and they encounter greater resistance. The multilamellar vesicles are less flexible, thus their diffusion is similar to the hard PS spheres of similar diameter. Images FIGURE 2 PMID:9336189

  17. Fast equilibration protocol for million atom systems of highly entangled linear polyethylene chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sliozberg, Yelena R.; TKC Global, Inc., Aberdeen Proving Ground, Maryland 21005; Kröger, Martin

    Equilibrated systems of entangled polymer melts cannot be produced using direct brute force equilibration due to the slow reptation dynamics exhibited by high molecular weight chains. Instead, these dense systems are produced using computational techniques such as Monte Carlo-Molecular Dynamics hybrid algorithms, though the use of soft potentials has also shown promise mainly for coarse-grained polymeric systems. Through the use of soft-potentials, the melt can be equilibrated via molecular dynamics at intermediate and long length scales prior to switching to a Lennard-Jones potential. We will outline two different equilibration protocols, which use various degrees of information to produce the startingmore » configurations. In one protocol, we use only the equilibrium bond angle, bond length, and target density during the construction of the simulation cell, where the information is obtained from available experimental data and extracted from the force field without performing any prior simulation. In the second protocol, we moreover utilize the equilibrium radial distribution function and dihedral angle distribution. This information can be obtained from experimental data or from a simulation of short unentangled chains. Both methods can be used to prepare equilibrated and highly entangled systems, but the second protocol is much more computationally efficient. These systems can be strictly monodisperse or optionally polydisperse depending on the starting chain distribution. Our protocols, which utilize a soft-core harmonic potential, will be applied for the first time to equilibrate a million particle system of polyethylene chains consisting of 1000 united atoms at various temperatures. Calculations of structural and entanglement properties demonstrate that this method can be used as an alternative towards the generation of entangled equilibrium structures.« less

  18. Compressible or incompressible blend of interacting monodisperse linear polymers near a surface.

    PubMed

    Batman, Richard; Gujrati, P D

    2007-08-28

    We consider a lattice model of a mixture of repulsive, attractive, or neutral monodisperse linear polymers of two species, A and B, with a third monomeric species C, which may be taken to represent free volume. The mixture is confined between two hard, parallel plates of variable separation whose interactions with A and C may be attractive, repulsive, or neutral, and may be different from each other. The interactions with A and C are all that are required to completely specify the effect of each surface on all three components. We numerically study various density profiles as we move away from the surface, by using the recursive method of Gujrati and Chhajer [J. Chem. Phys. 106, 5599 (1997)] that has already been previously applied to study polydisperse solutions and blends next to surfaces. The resulting density profiles show the oscillations that are seen in Monte Carlo simulations and the enrichment of the smaller species at a neutral surface. The method is computationally ultrafast and can be carried out on a personal computer (PC), even in the incompressible case, when Monte Carlo simulations are not feasible. The calculations of density profiles usually take less than 20 min on a PC.

  19. Hopping Diffusion of Nanoparticles in Polymer Matrices

    PubMed Central

    2016-01-01

    We propose a hopping mechanism for diffusion of large nonsticky nanoparticles subjected to topological constraints in both unentangled and entangled polymer solids (networks and gels) and entangled polymer liquids (melts and solutions). Probe particles with size larger than the mesh size ax of unentangled polymer networks or tube diameter ae of entangled polymer liquids are trapped by the network or entanglement cells. At long time scales, however, these particles can diffuse by overcoming free energy barrier between neighboring confinement cells. The terminal particle diffusion coefficient dominated by this hopping diffusion is appreciable for particles with size moderately larger than the network mesh size ax or tube diameter ae. Much larger particles in polymer solids will be permanently trapped by local network cells, whereas they can still move in polymer liquids by waiting for entanglement cells to rearrange on the relaxation time scales of these liquids. Hopping diffusion in entangled polymer liquids and networks has a weaker dependence on particle size than that in unentangled networks as entanglements can slide along chains under polymer deformation. The proposed novel hopping model enables understanding the motion of large nanoparticles in polymeric nanocomposites and the transport of nano drug carriers in complex biological gels such as mucus. PMID:25691803

  20. Quantifying chain reptation in entangled polymer melts: Topological and dynamical mapping of atomistic simulation results onto the tube model

    NASA Astrophysics Data System (ADS)

    Stephanou, Pavlos S.; Baig, Chunggi; Tsolou, Georgia; Mavrantzas, Vlasis G.; Kröger, Martin

    2010-03-01

    The topological state of entangled polymers has been analyzed recently in terms of primitive paths which allowed obtaining reliable predictions of the static (statistical) properties of the underlying entanglement network for a number of polymer melts. Through a systematic methodology that first maps atomistic molecular dynamics (MD) trajectories onto time trajectories of primitive chains and then documents primitive chain motion in terms of a curvilinear diffusion in a tubelike region around the coarse-grained chain contour, we are extending these static approaches here even further by computing the most fundamental function of the reptation theory, namely, the probability ψ(s,t) that a segment s of the primitive chain remains inside the initial tube after time t, accounting directly for contour length fluctuations and constraint release. The effective diameter of the tube is independently evaluated by observing tube constraints either on atomistic displacements or on the displacement of primitive chain segments orthogonal to the initial primitive path. Having computed the tube diameter, the tube itself around each primitive path is constructed by visiting each entanglement strand along the primitive path one after the other and approximating it by the space of a small cylinder having the same axis as the entanglement strand itself and a diameter equal to the estimated effective tube diameter. Reptation of the primitive chain longitudinally inside the effective constraining tube as well as local transverse fluctuations of the chain driven mainly from constraint release and regeneration mechanisms are evident in the simulation results; the latter causes parts of the chains to venture outside their average tube surface for certain periods of time. The computed ψ(s,t) curves account directly for both of these phenomena, as well as for contour length fluctuations, since all of them are automatically captured in the atomistic simulations. Linear viscoelastic

  1. Primitive-path statistics of entangled polymers: mapping multi-chain simulations onto single-chain mean-field models

    NASA Astrophysics Data System (ADS)

    Steenbakkers, Rudi J. A.; Tzoumanekas, Christos; Li, Ying; Liu, Wing Kam; Kröger, Martin; Schieber, Jay D.

    2014-01-01

    We present a method to map the full equilibrium distribution of the primitive-path (PP) length, obtained from multi-chain simulations of polymer melts, onto a single-chain mean-field ‘target’ model. Most previous works used the Doi-Edwards tube model as a target. However, the average number of monomers per PP segment, obtained from multi-chain PP networks, has consistently shown a discrepancy of a factor of two with respect to tube-model estimates. Part of the problem is that the tube model neglects fluctuations in the lengths of PP segments, the number of entanglements per chain and the distribution of monomers among PP segments, while all these fluctuations are observed in multi-chain simulations. Here we use a recently proposed slip-link model, which includes fluctuations in all these variables as well as in the spatial positions of the entanglements. This turns out to be essential to obtain qualitative and quantitative agreement with the equilibrium PP-length distribution obtained from multi-chain simulations. By fitting this distribution, we are able to determine two of the three parameters of the model, which govern its equilibrium properties. This mapping is executed for four different linear polymers and for different molecular weights. The two parameters are found to depend on chemistry, but not on molecular weight. The model predicts a constant plateau modulus minus a correction inversely proportional to molecular weight. The value for well-entangled chains, with the parameters determined ab initio, lies in the range of experimental data for the materials investigated.

  2. Self-Templated Stepwise Synthesis of Monodispersed Nanoscale Metalated Covalent Organic Polymers for In Vivo Bioimaging and Photothermal Therapy.

    PubMed

    Shi, Yanshu; Deng, Xiaoran; Bao, Shouxin; Liu, Bei; Liu, Bin; Ma, Ping'an; Cheng, Ziyong; Pang, Maolin; Lin, Jun

    2017-09-05

    Size- and shape-controlled growth of nanoscale microporous organic polymers (MOPs) is a big challenge scientists are confronted with; meanwhile, rendering these materials for in vivo biomedical applications is still scarce. In this study, a monodispersed nanometalated covalent organic polymer (MCOP, M=Fe, Gd) with sizes around 120 nm was prepared by a self-templated two-step solution-phase synthesis method. The metal ions (Fe 3+ , Gd 3+ ) played important roles in generating a small particle size and in the functionalization of the products during the reaction with p-phenylenediamine (Pa). The resultant Fe-Pa complex was used as a template for the subsequent formation of MCOP following the Schiff base reaction with 1,3,5-triformylphloroglucinol (Tp). A high tumor suppression efficiency for this Pa-based COP is reported for the first time. This study demonstrates the potential use of MCOP as a photothermal agent for photothermal therapy (PTT) and also provides an alternative route to fabricate nano-sized MCOPs. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. High Ionic Conductivity of Composite Solid Polymer Electrolyte via In Situ Synthesis of Monodispersed SiO2 Nanospheres in Poly(ethylene oxide).

    PubMed

    Lin, Dingchang; Liu, Wei; Liu, Yayuan; Lee, Hye Ryoung; Hsu, Po-Chun; Liu, Kai; Cui, Yi

    2016-01-13

    High ionic conductivity solid polymer electrolyte (SPE) has long been desired for the next generation high energy and safe rechargeable lithium batteries. Among all of the SPEs, composite polymer electrolyte (CPE) with ceramic fillers has garnered great interest due to the enhancement of ionic conductivity. However, the high degree of polymer crystallinity, agglomeration of ceramic fillers, and weak polymer-ceramic interaction limit the further improvement of ionic conductivity. Different from the existing methods of blending preformed ceramic particles with polymers, here we introduce an in situ synthesis of ceramic filler particles in polymer electrolyte. Much stronger chemical/mechanical interactions between monodispersed 12 nm diameter SiO2 nanospheres and poly(ethylene oxide) (PEO) chains were produced by in situ hydrolysis, which significantly suppresses the crystallization of PEO and thus facilitates polymer segmental motion for ionic conduction. In addition, an improved degree of LiClO4 dissociation can also be achieved. All of these lead to good ionic conductivity (1.2 × 10(-3) S cm(-1) at 60 °C, 4.4 × 10(-5) S cm(-1) at 30 °C). At the same time, largely extended electrochemical stability window up to 5.5 V can be observed. We further demonstrated all-solid-state lithium batteries showing excellent rate capability as well as good cycling performance.

  4. A Theoretically Informed Model for the Rheology of Entangled Block Copolymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Su, Yongrui; Ramirez-Hernandez, Abelardo; Peters, Brandon; de Pablo, Juan J.

    2014-03-01

    The addition of nanoparticles to block copolymer systems has been shown to have important effects on their equilibrium structure and properties. Less is known about the non-equilibrium behavior of block polymer nanocomposites. A new particle-based, theoretically informed coarse-grained model for multicomponent nanocomposites is proposed to examine the effects of nanoparticles on the rheology of entangled block copolymer melts. Entanglements are treated at the two-molecule level, through slip-springs that couple the dynamics of neighboring pairs of chains. The inclusion of slip-springs changes the polymer dynamics from unentangled to entangled. The nanoparticles are functionalized with short polymer chains that can entangle with the copolymers. We study the nonlinear rheology of the resulting nanocomposites under shear flow with a dissipative particle dynamics (DPD) thermostat.

  5. Microfluidic assembly of monodisperse multistage pH-responsive polymer/porous silicon composites for precisely controlled multi-drug delivery.

    PubMed

    Liu, Dongfei; Zhang, Hongbo; Herranz-Blanco, Bárbara; Mäkilä, Ermei; Lehto, Vesa-Pekka; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2014-05-28

    We report an advanced drug delivery platform for combination chemotherapy by concurrently incorporating two different drugs into microcompoistes with ratiometric control over the loading degree. Atorvastatin and celecoxib were selected as model drugs due to their different physicochemical properties and synergetic effect on colorectal cancer prevention and inhibition. To be effective in colorectal cancer prevention and inhibition, the produced microcomposite contained hypromellose acetate succinate, which is insoluble in acidic conditions but highly dissolving at neutral or alkaline pH conditions. Taking advantage of the large pore volume of porous silicon (PSi), atorvastatin was firstly loaded into the PSi matrix, and then encapsulated into the pH-responsive polymer microparticles containing celecoxib by microfluidics in order to obtain multi-drug loaded polymer/PSi microcomposites. The prepared microcomposites showed monodisperse size distribution, multistage pH-response, precise ratiometric controlled loading degree towards the simultaneously loaded drug molecules, and tailored release kinetics of the loaded cargos. This attractive microcomposite platform protects the payloads from being released at low pH-values, and enhances their release at higher pH-values, which can be further used for colon cancer prevention and treatment. Overall, the pH-responsive polymer/PSi-based microcomposite can be used as a universal platform for the delivery of different drug molecules for combination therapy. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Accessible, almost ab initio multi-scale modeling of entangled polymers via slip-links

    NASA Astrophysics Data System (ADS)

    Andreev, Marat

    It is widely accepted that dynamics of entangled polymers can be described by the tube model. Here we advocate for an alternative approach to entanglement modeling known as slip-links. Recently, slip-links were shown to possess important advantages over tube models, namely they have strong connections to atomistic, multichain levels of description, agree with non-equilibrium thermodynamics, are applicable to any chain architecture and can be used in linear or non-linear rheology. We present a hierarchy of slip-link models that are connected to each other through successive coarse graining. Models in the hierarchy are consistent in their overlapping domains of applicability in order to allow a straightforward mapping of parameters. In particular, the most--detailed level of description has four parameters, three of which can be determined directly from atomistic simulations. On the other hand, the least--detailed member of the hierarchy is numerically accessible, and allows for non-equilibrium flow predictions of complex chain architectures. Using GPU implementation these predictions can be obtained in minutes of computational time on a single desktop equipped with a mainstream gaming GPU. The GPU code is available online for free download.

  7. ``Coffee-ring'' patterns of polymer droplets

    NASA Astrophysics Data System (ADS)

    Biswas, Nupur; Datta, Alokmay

    2013-02-01

    Dried droplets of polymer solutions carries the self-assembly behavior of polymer molecules by forming various patterns. Pattern formation is a consequence of deposition of molecules depending on motion of the contact line during the drying process. The contact line motion depends on initial polymer concentrations and hence entanglement. Thus depending on entanglement the patterns represent the `particle' like or `collective' behavior of polymer molecules.

  8. Entanglement entropy of electronic excitations.

    PubMed

    Plasser, Felix

    2016-05-21

    A new perspective into correlation effects in electronically excited states is provided through quantum information theory. The entanglement between the electron and hole quasiparticles is examined, and it is shown that the related entanglement entropy can be computed from the eigenvalue spectrum of the well-known natural transition orbital (NTO) decomposition. Non-vanishing entanglement is obtained whenever more than one NTO pair is involved, i.e., in the case of a multiconfigurational or collective excitation. An important implication is that in the case of entanglement it is not possible to gain a complete description of the state character from the orbitals alone, but more specific analysis methods are required to decode the mutual information between the electron and hole. Moreover, the newly introduced number of entangled states is an important property by itself giving information about excitonic structure. The utility of the formalism is illustrated in the cases of the excited states of two interacting ethylene molecules, the conjugated polymer para-phenylene vinylene, and the naphthalene molecule.

  9. Development of droplet microfluidic platforms for the synthesis of monodisperse lipid vesicles and polymer particles

    NASA Astrophysics Data System (ADS)

    Teh, Shia-Yen

    This body of work presents my approaches to the design and development of microfluidic platforms for synthesizing monodisperse polymer particles and phospholipid vesicles. There is interest in both of these particles for use in a variety of biomedical applications. Poly(D,L-lactide-co-glycolic acid) (PLGA) particles in particular have been sought out as vehicles for drug delivery due to their biocompatibility and because the rate of degradation -- hence cargo release - can be controlled. On the other hand, liposomes possess membrane structures resembling that of cells, an ability to adopt both hydrophilic and hydrophobic molecules, and are easily functionalized, which make lipid vesicles the ideal candidate for applications ranging from targeted therapeutic delivery to formation of artificial cells. However, current methods of production for both of these particles result in a wide range of sizes and poor cargo uptake efficiency. We address these challenges by utilizing a flow focusing droplet generation design, which allows for fine control over droplet size and improves encapsulation efficiencies. The size of these droplets can be determined by channel geometry and the ratio of fluid flow rates. I will discuss the work I have done to improve upon current technologies to form nano- to micrometer sized PLGA particles and cell-sized lipid vesicles. Solvent evaporation and solvent extraction methods were implemented and tested in several device designs to optimize the formation process. The particles produced were characterized for their stability, size variation, and ability to encapsulate a model drug. The release profiles of PLGA particles were also measured to determine the length of delivery. In addition, I worked on the generation of monodisperse lipid vesicles to investigate the application of liposomes as an artificial cell. As a proof of principle, expression of green fluorescent protein (GFP) was successfully carried out in the lipid vesicles. This

  10. Nanorod Mobility within Entangled Wormlike Micelle Solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Jonghun; Grein-Iankovski, Aline; Narayanan, Suresh

    In the semi-dilute regime, wormlike micelles form an isotropic entangled microstructure that is similar to that of an entangled polymer solution with a characteristic, nanometer-scale entanglement mesh size. We report a combined x-ray photon correlation spectroscopy (XPCS) and rheology study to investigate the translational dynamics of gold nanorods in semi-dilute solutions of entangled wormlike micelles formed by the surfactant cetylpyridinium chloride (CPyCl) and the counter-ion sodium salicylate (NaSal). The CPyCl concentration is varied to tune the entanglement mesh size over a range that spans from approximately equal to the nanorod diameter to larger than the nanorod length. The NaSal concentrationmore » is varied along with the CPyCl concentration so that the solutions have the maximum viscosity for given CPyCl concentration. On short time scales the nanorods are localized on a length scale matching that expected from the high-frequency elastic modulus of the solutions as long as the mesh size is smaller than the rod length. On longer time scales, the nanorods undergo free diffusion. At the highest CPyCl concentrations, the nanorod diffusivity approaches the value expected based on the macroscopic viscosity of the solutions, but it increases with decreasing CPyCl concentration more rapidly than expected from the macroscopic viscosity. A recent model by Cai et al. [Cai, L.-H.; Panyukov, S.; Rubinstein, M. Macromolecules 2015, 48, 847-862.] for nanoparticle “hopping” diffusion in entangled polymer solutions accounts quantitatively for this enhanced diffusivity.« less

  11. Nanorod Mobility within Entangled Wormlike Micelle Solutions

    DOE PAGES

    Lee, Jonghun; Grein-Iankovski, Aline; Narayanan, Suresh; ...

    2016-12-20

    In the semi-dilute regime, wormlike micelles form an isotropic entangled microstructure that is similar to that of an entangled polymer solution with a characteristic, nanometer-scale entanglement mesh size. We report a combined x-ray photon correlation spectroscopy (XPCS) and rheology study to investigate the translational dynamics of gold nanorods in semi-dilute solutions of entangled wormlike micelles formed by the surfactant cetylpyridinium chloride (CPyCl) and the counter-ion sodium salicylate (NaSal). The CPyCl concentration is varied to tune the entanglement mesh size over a range that spans from approximately equal to the nanorod diameter to larger than the nanorod length. The NaSal concentrationmore » is varied along with the CPyCl concentration so that the solutions have the maximum viscosity for given CPyCl concentration. On short time scales the nanorods are localized on a length scale matching that expected from the high-frequency elastic modulus of the solutions as long as the mesh size is smaller than the rod length. On longer time scales, the nanorods undergo free diffusion. At the highest CPyCl concentrations, the nanorod diffusivity approaches the value expected based on the macroscopic viscosity of the solutions, but it increases with decreasing CPyCl concentration more rapidly than expected from the macroscopic viscosity. A recent model by Cai et al. [Cai, L.-H.; Panyukov, S.; Rubinstein, M. Macromolecules 2015, 48, 847-862.] for nanoparticle “hopping” diffusion in entangled polymer solutions accounts quantitatively for this enhanced diffusivity.« less

  12. Molecular simulation investigation of the nanorheology of an entangled polymer melt

    NASA Astrophysics Data System (ADS)

    Karim, Mir; Khare, Rajesh; Indei, Tsutomu; Schieber, Jay

    2014-03-01

    Knowledge of the ``local rheology'' is important for viscoelastic systems that contain significant structural and dynamic heterogeneities, such as cellular and extra-cellular crowded environments. For homogeneous viscoelastic media, a study of probe particle motion provides information on the microstructural evolution of the medium in response to the probe particle motion. Over the last two decades, probe particle rheology has emerged as a leading experimental technique for capturing local rheology of complex fluids. In recent work [M. Karim, S. C. Kohale, T. Indei, J. D. Schieber, and R. Khare, Phys. Rev. E86, 051501 (2012)], we showed that this approach can be used in molecular dynamics (MD) simulations to study the nanoscale viscoelastic properties of an unentangled polymer melt; an important conclusion of that work was that medium and particle inertia play a crucial role in analysis of the particle rheology simulation data. MD simulations have a natural advantage that they enable study of deformation and dynamics over a small length scale around the moving probe particle. In this work, the approach is extended to compare the motion of a nanoscale probe in melts of entangled and unentangled chains. The simulations will be used to elucidate the differences between the local responses of these media to the probe particle motion. In particular, results will be presented for the differences in the resultant velocity and stress fields as well as any possible structural asymmetry developed around the moving probe particle in the entangled and unentangled cases.

  13. Monodisperse microbeads of hypercrosslinked polystyrene for liquid and supercritical fluid chromatography

    NASA Astrophysics Data System (ADS)

    Tsyurupa, M. P.; Blinnikova, Z. K.; Il'in, M. M.; Davankov, V. A.; Parenago, O. O.; Pokrovskii, O. I.; Usovich, O. I.

    2015-11-01

    Monodisperse styrene-divinylbenzene (1 wt %) copolymer microbeads are obtained via the elaborate method of high-productivity precipitation polymerization. The crosslinking of this copolymer with chloromethyl methyl ether in the presence of Friedel-Crafts catalyst yields porous hypercrosslinked polymers with degrees of crosslinking that range from 200 to 500%. Microbead sorbents are shown to be suited for selective stationary phases for high-performance liquid chromatography and supercritical fluid chromatography.

  14. Primitive chain network simulations for entangled DNA solutions

    NASA Astrophysics Data System (ADS)

    Masubuchi, Yuichi; Furuichi, Kenji; Horio, Kazushi; Uneyama, Takashi; Watanabe, Hiroshi; Ianniruberto, Giovanni; Greco, Francesco; Marrucci, Giuseppe

    2009-09-01

    Molecular theories for polymer rheology are based on conformational dynamics of the polymeric chain. Hence, measurements directly related to molecular conformations appear more appealing than indirect ones obtained from rheology. In this study, primitive chain network simulations are compared to experimental data of entangled DNA solutions [Teixeira et al., Macromolecules 40, 2461 (2007)]. In addition to rheological comparisons of both linear and nonlinear viscoelasticities, a molecular extension measure obtained by Teixeira et al. through fluorescent microscopy is compared to simulations, in terms of both averages and distributions. The influence of flow on conformational distributions has never been simulated for the case of entangled polymers, and how DNA molecular individualism extends to the entangled regime is not known. The linear viscoelastic response and the viscosity growth curve in the nonlinear regime are found in good agreement with data for various DNA concentrations. Conversely, the molecular extension measure shows significant departures, even under equilibrium conditions. The reason for such discrepancies remains unknown.

  15. Combined Molecular Algorithms for the Generation, Equilibration and Topological Analysis of Entangled Polymers: Methodology and Performance

    PubMed Central

    Karayiannis, Nikos Ch.; Kröger, Martin

    2009-01-01

    We review the methodology, algorithmic implementation and performance characteristics of a hierarchical modeling scheme for the generation, equilibration and topological analysis of polymer systems at various levels of molecular description: from atomistic polyethylene samples to random packings of freely-jointed chains of tangent hard spheres of uniform size. Our analysis focuses on hitherto less discussed algorithmic details of the implementation of both, the Monte Carlo (MC) procedure for the system generation and equilibration, and a postprocessing step, where we identify the underlying topological structure of the simulated systems in the form of primitive paths. In order to demonstrate our arguments, we study how molecular length and packing density (volume fraction) affect the performance of the MC scheme built around chain-connectivity altering moves. In parallel, we quantify the effect of finite system size, of polydispersity, and of the definition of the number of entanglements (and related entanglement molecular weight) on the results about the primitive path network. Along these lines we approve main concepts which had been previously proposed in the literature. PMID:20087477

  16. The Dynamics of Entangled DNA Networks using Single-Molecule Methods

    NASA Astrophysics Data System (ADS)

    Chapman, Cole David

    Single molecule experiments were performed on DNA, a model polymer, and entangled DNA networks to explore diffusion within complex polymeric fluids and their linear and non-linear viscoelasticity. DNA molecules of varying length and topology were prepared using biological methods. An ensemble of individual molecules were then fluorescently labeled and tracked in blends of entangled linear and circular DNA to examine the dependence of diffusion on polymer length, topology, and blend ratio. Diffusion was revealed to possess a non-monotonic dependence on the blend ratio, which we believe to be due to a second-order effect where the threading of circular polymers by their linear counterparts greatly slows the mobility of the system. Similar methods were used to examine the diffusive and conformational behavior of DNA within highly crowded environments, comparable to that experienced within the cell. A previously unseen gamma distributed elongation of the DNA in the presence of crowders, proposed to be due to entropic effects and crowder mobility, was observed. Additionally, linear viscoelastic properties of entangled DNA networks were explored using active microrheology. Plateau moduli values verified for the first time the predicted independence from polymer length. However, a clear bead-size dependence was observed for bead radii less than ~3x the tube radius, a newly discovered limit, above which microrheology results are within the continuum limit and may access the bulk properties of the fluid. Furthermore, the viscoelastic properties of entangled DNA in the non-linear regime, where the driven beads actively deform the network, were also examined. By rapidly driving a bead through the network utilizing optical tweezers, then removing the trap and tracking the bead's subsequent motion we are able to model the system as an over-damped harmonic oscillator and find the elasticity to be dominated by stress-dependent entanglements.

  17. Entanglement Theories: Packing vs. Percolation

    NASA Astrophysics Data System (ADS)

    Wool, Richard

    2007-03-01

    There are two emergent theories of polymer entanglements, the Packing Model (Fetters, Lohse, Graessley, Milner, Whitten, ˜'98) and the Percolation Model (Wool ˜'93). The Packing model suggests that the entanglement molecular weight Me is determined by Me = K p^3, where the packing length parameter p = V/R^2 in which V is the volume of the chain (V=M/ρNa), R is the end-to end vector of the chain, and K 357 ρNa, is an empirical constant. The Percolation model states that an entanglement network develops when the number of chains per unit area σ, intersecting any load bearing plane, is equal to 3 times the number of chain segments (1/a cross-section), such that when 3aσ =1 at the percolation threshold, Me 31 MjC∞, in which Mj is the step molecular weight and C∞ is the characteristic ratio. There are no fitting parameters in the Percolation model. The Packing model predicts that Me decreases rapidly with chain stiffness, as Me˜1/C∞^3, while the Percolation model predicts that Me increases with C∞, as Me˜C∞. The Percolation model was found to be the correct model based on computer simulations (M. Bulacu et al) and a re-analysis of the Packing model experimental data. The Packing model can be derived from the Percolation model, but not visa versa, and reveals a surprising accidental relation between C∞ and Mj in the front factor K. This result significantly impacts the interpretation of the dynamics of rheology and fracture of entangled polymers.

  18. Effect of molecular weight on polymer processability

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karg, R.F.

    1983-01-01

    Differences in rheological behavior due to the polymer molecular weight and molecular weight distribution have been shown with the MPT. SBR polymers having high molecular weight fractions develop higher stress relaxation time values due to the higher degree of polymer entanglements. Tests conducted at increasing temperatures show the diminishing influence of the polymer entanglements upon stress relaxation time. EPDM polymers show stress relaxation time and head pressure behavior which correlates with mill processability. As anticipated, compounded stock of EPDM have broad molecular weight distribution has higher stress relaxation time values than EPDM compounds with narrow molecular weight distribution.

  19. Topological analysis of polymeric melts: chain-length effects and fast-converging estimators for entanglement length.

    PubMed

    Hoy, Robert S; Foteinopoulou, Katerina; Kröger, Martin

    2009-09-01

    Primitive path analyses of entanglements are performed over a wide range of chain lengths for both bead spring and atomistic polyethylene polymer melts. Estimators for the entanglement length N_{e} which operate on results for a single chain length N are shown to produce systematic O(1/N) errors. The mathematical roots of these errors are identified as (a) treating chain ends as entanglements and (b) neglecting non-Gaussian corrections to chain and primitive path dimensions. The prefactors for the O(1/N) errors may be large; in general their magnitude depends both on the polymer model and the method used to obtain primitive paths. We propose, derive, and test new estimators which eliminate these systematic errors using information obtainable from the variation in entanglement characteristics with chain length. The new estimators produce accurate results for N_{e} from marginally entangled systems. Formulas based on direct enumeration of entanglements appear to converge faster and are simpler to apply.

  20. Influence of entanglements on glass transition temperature of polystyrene

    NASA Astrophysics Data System (ADS)

    Ougizawa, Toshiaki; Kinugasa, Yoshinori

    2013-03-01

    Chain entanglement is essential behavior of polymeric molecules and it seems to affect many physical properties such as not only viscosity of melt state but also glass transition temperature (Tg). But we have not attained the quantitative estimation because the entanglement density is considered as an intrinsic value of the polymer at melt state depending on the chemical structure. Freeze-drying method is known as one of the few ways to make different entanglement density sample from dilute solution. In this study, the influence of entanglements on Tg of polystyrene obtained by the freeze-dried method was estimated quantitatively. The freeze-dried samples showed Tg depression with decreasing the concentration of precursor solution due to the lower entanglement density and their depressed Tg would be saturated when the almost no intermolecular entanglement was formed. The molecular weight dependence of the maximum value of Tg depression was discussed.

  1. Monodisperse Mesoporous Carbon Nanoparticles from Polymer/Silica Self-Aggregates and Their Electrocatalytic Activities.

    PubMed

    Huang, Xiaoxi; Zhou, Li-Jing; Voiry, Damien; Chhowalla, Manish; Zou, Xiaoxin; Asefa, Tewodros

    2016-07-27

    In our quest to make various chemical processes sustainable, the development of facile synthetic routes and inexpensive catalysts can play a central role. Herein we report the synthesis of monodisperse, polyaniline (PANI)-derived mesoporous carbon nanoparticles (PAMCs) that can serve as efficient metal-free electrocatalysts for the hydrogen peroxide reduction reaction (HPRR) as well as the oxygen reduction reaction (ORR) in fuel cells. The materials are synthesized by polymerization of aniline with the aid of (NH4)2S2O8 as oxidant and colloidal silica nanoparticles as templates, then carbonization of the resulting PANI/silica composite material at different high temperatures, and finally removal of the silica templates from the carbonized products. The PAMC materials that are synthesized under optimized synthetic conditions possess monodisperse mesoporous carbon nanoparticles with an average size of 128 ± 12 nm and an average pore size of ca. 12 nm. Compared with Co3O4, a commonly used electrocatalyst for HPRR, these materials show much better catalytic activity for this reaction. In addition, unlike Co3O4, the PAMCs remain relatively stable during the reaction, under both basic and acidic conditions. The nanoparticles also show good electrocatalytic activity toward ORR. Based on the experimental results, PAMCs' excellent electrocatalytic activity is attributed partly to their heteroatom dopants and/or intrinsic defect sites created by vacancies in their structures and partly to their high porosity and surface area. The reported synthetic method is equally applicable to other polymeric precursors (e.g., polypyrrole (PPY)), which also produces monodisperse, mesoporous carbon nanoparticles in the same way. The resulting materials are potentially useful not only for electrocatalysis of HPRR and ORR in fuel cells but also for other applications where high surface area, small sized, nanostructured carbon materials are generally useful for (e.g., adsorption

  2. Snap-through instability analysis of dielectric elastomers with consideration of chain entanglements

    NASA Astrophysics Data System (ADS)

    Zhu, Jiakun; Luo, Jun; Xiao, Zhongmin

    2018-06-01

    It is widely recognized that the extension limit of polymer chains has a significant effect on the snap-through instability of dielectric elastomers (DEs). The snap-through instability performance of DEs has been extensively studied by two limited-stretch models, i.e., the eight-chain model and Gent model. However, the real polymer networks usually have many entanglements due to the impenetrability of the network chains as well as a finite extensibility resulting from the full stretching of the polymer chains. The effects of entanglements on the snap-through instability of DEs cannot be captured by the previous two limited-stretch models. In this paper, the nonaffine model proposed by Davidson and Goulbourne is adopted to characterize the influence of entanglements and extension limit of the polymer chains. It is demonstrated that the nonaffine model is almost identical to the eight-chain model and is close to the Gent model if we ignore the effects of chain entanglements and adopt the affine assumption. The suitability of the nonaffine model to characterize the mechanical behavior of elastomers is validated by fitting the experimental results reported in the open literature. After that, the snap-through stability performance of an ideal DE membrane under equal-biaxial prestretches is studied with the nonaffine model. It is revealed that besides the prestretch and chain extension limit, the chain entanglements can markedly influence the snap-through instability and the path to failure of DEs. These results provide a more comprehensive understanding on the snap-through instability of a DE and may be helpful to guide the design of DE devices.

  3. Effect of equilibration on primitive path analyses of entangled polymers.

    PubMed

    Hoy, Robert S; Robbins, Mark O

    2005-12-01

    We use recently developed primitive path analysis (PPA) methods to study the effect of equilibration on entanglement density in model polymeric systems. Values of Ne for two commonly used equilibration methods differ by a factor of 2-4 even though the methods produce similar large-scale chain statistics. We find that local chain stretching in poorly equilibrated samples increases entanglement density. The evolution of Ne with time shows that many entanglements are lost through fast processes such as chain retraction as the local stretching relaxes. Quenching a melt state into a glass has little effect on Ne. Equilibration-dependent differences in short-scale structure affect the craze extension ratio much less than expected from the differences in PPA values of Ne.

  4. Surfactant-assisted synthesis of mono-dispersed cubic BaTiO{sub 3} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hai, Chunxi; Inukai, Koji; Takahashi, Yosuke

    2014-09-15

    Mono-dispersed BaTiO{sub 3} nanoparticles have been prepared via the assistance of capping agent poly(vinylpyrrolidone) (PVP). - Highlights: • BaTiO{sub 3} nanoparticles with single cubic crystal structure. • Poor dispersibility of nanoparticles has been overcome by in situ modification way. • Growth competition between BaTiO3 core and polymer shell. - Abstract: In this study, poly(vinylpyrrolidone)-assisted synthesis of mono-dispersed BaTiO{sub 3} nanoparticles have been reported. The various processing parameters, namely, refluxing temperature, KOH concentration, and poly(vinylpyrrolidone) concentration, have been varied, and the effects on the growth of BaTiO{sub 3} particles have been analyzed systematically. X-ray diffraction studies indicated that poly(vinylpyrrolidone) did notmore » affect the crystal structure, but rather influenced the crystal lattice structure. In addition, the use of surfactant poly(vinylpyrrolidone) hindered the agglomeration of the nanoparticles, and facilitated the formation of mono-dispersed core–shell organic/inorganic hybrid nanocomposite. Furthermore, the mineralizer KOH promoted the dissolution of reactants and promoted the crystallization of BaTiO{sub 3} particles. Accordingly, the dissolution-precipitation scheme was believed to be the mechanism underlying the formation of BaTiO{sub 3} particles. This was further substantiated by the experimental observations, which indicated that the nucleation and crystallization of the particles was affected by the KOH concentration in the reaction system. Finally, the formation of mono-dispersed core–shell nanocomposites proceeded via reaction limited cluster aggregation. We believe that the method proposed in this study could be extended for the synthesis of mono-dispersed nanoparticles for industrial applications.« less

  5. Aerosol fabrication methods for monodisperse nanoparticles

    DOEpatents

    Jiang, Xingmao; Brinker, C Jeffrey

    2014-10-21

    Exemplary embodiments provide materials and methods for forming monodisperse particles. In one embodiment, the monodisperse particles can be formed by first spraying a nanoparticle-containing dispersion into aerosol droplets and then heating the aerosol droplets in the presence of a shell precursor to form core-shell particles. By removing either the shell layer or the nanoparticle core of the core-shell particles, monodisperse nanoparticles can be formed.

  6. Network approach towards understanding the crazing in glassy amorphous polymers

    NASA Astrophysics Data System (ADS)

    Venkatesan, Sudarkodi; Vivek-Ananth, R. P.; Sreejith, R. P.; Mangalapandi, Pattulingam; Hassanali, Ali A.; Samal, Areejit

    2018-04-01

    We have used molecular dynamics to simulate an amorphous glassy polymer with long chains to study the deformation mechanism of crazing and associated void statistics. The Van der Waals interactions and the entanglements between chains constituting the polymer play a crucial role in crazing. Thus, we have reconstructed two underlying weighted networks, namely, the Van der Waals network and the entanglement network from polymer configurations extracted from the molecular dynamics simulation. Subsequently, we have performed graph-theoretic analysis of the two reconstructed networks to reveal the role played by them in the crazing of polymers. Our analysis captured various stages of crazing through specific trends in the network measures for Van der Waals networks and entanglement networks. To further corroborate the effectiveness of network analysis in unraveling the underlying physics of crazing in polymers, we have contrasted the trends in network measures for Van der Waals networks and entanglement networks in the light of stress-strain behaviour and voids statistics during deformation. We find that the Van der Waals network plays a crucial role in craze initiation and growth. Although, the entanglement network was found to maintain its structure during craze initiation stage, it was found to progressively weaken and undergo dynamic changes during the hardening and failure stages of crazing phenomena. Our work demonstrates the utility of network theory in quantifying the underlying physics of polymer crazing and widens the scope of applications of network science to characterization of deformation mechanisms in diverse polymers.

  7. Structure and Dynamics of Polymer/Polymer grafted nanoparticle composite

    NASA Astrophysics Data System (ADS)

    Archer, Lynden

    Addition of nanoparticles to polymers is a well-practiced methodology for augmenting various properties of the polymer host, including mechanical strength, thermal stability, barrier properties, dimensional stability and wear resistance. Many of these property changes are known to arise from nanoparticle-induced modification of polymer structure and chain dynamics, which are strong functions of the dispersion state of the nanoparticles' and on their relative size (D) to polymer chain dimensions (e.g. Random coil radius Rg or entanglement mesh size a) . This talk will discuss polymer nanocomposites (PNCs) comprised of Polyethylene Glycol (PEG) tethered silica nanoparticles (SiO2-PEG) dispersed in polymers as model systems for investigating phase stability and dynamics of PNCs. On the basis of small-angle X-ray Scattering, it will be shown that favorable enthalpic interactions between particle-tethered chains and a polymer host provides an important mechanism for creating PNCs in which particle aggregation is avoided. The talk will report on polymer and particle scale dynamics in these materials and will show that grafted nanoparticles well dispersed in a polymer host strongly influence the host polymer relaxation dynamics on all timescales and the polymers in turn produce dramatic changes in the nature (from diffusive to hyperdiffusive) and speed of nano particle decorrelation dynamics at the polymer entanglement threshold. A local viscosity model capable of explaining these observations is discussed and the results compared with scaling theories for NP motions in polymers This material is based on work supported by the National Science Foundation Award Nos. DMR-1609125 and CBET-1512297.

  8. Rouse mode analysis of chain relaxation in polymer nanocomposites

    DOE PAGES

    Kalathi, Jagannathan T.; Kumar, Sanat K.; Rubinstein, Michael; ...

    2015-04-20

    Large-scale molecular dynamics simulations are used to study the internal relaxations of chains in nanoparticle (NP)/polymer composites. We examine the Rouse modes of the chains, a quantity that is closest in spirit to the self-intermediate scattering function, typically determined in an (incoherent) inelastic neutron scattering experiment. Our simulations show that for weakly interacting mixtures of NPs and polymers, the effective monomeric relaxation rates are faster than in a neat melt when the NPs are smaller than the entanglement mesh size. In this case, the NPs serve to reduce both the monomeric friction and the entanglements in the polymer melt, asmore » in the case of a polymer–solvent system. However, for NPs larger than half the entanglement mesh size, the effective monomer relaxation is essentially unaffected for low NP concentrations. Even in this case, we observe a strong reduction in chain entanglements for larger NP loadings. Furthermore, the role of NPs is to always reduce the number of entanglements, with this effect only becoming pronounced for small NPs or for high concentrations of large NPs. Our studies of the relaxation of single chains resonate with recent neutron spin echo (NSE) experiments, which deduce a similar entanglement dilution effect.« less

  9. Note: A simple picture of subdiffusive polymer motion from stochastic simulations

    NASA Astrophysics Data System (ADS)

    Gniewek, Pawel; Kolinski, Andrzej

    2011-02-01

    Entangled polymer solutions and melts exhibit unusual frictional properties. In the entanglement limit self-diffusion coefficient of long flexible polymers decays with the second power of chain length and viscosity increases with 3-3.5 power of chain length.1 It is very difficult to provide detailed molecular-level explanation of the entanglement effect.2 Perhaps, the problem of many entangled polymer chains is the most complex multibody issue of classical physics. There are different approaches to polymer melt dynamics. Some of these recognize hydrodynamic interactions as a dominant term, while topological constraints for polymer chains are assumed as a secondary factor. Other theories consider the topological constraints as the most important factors controlling polymer dynamics. Herman and co-workers describe polymer dynamics in melts, as a lateral sliding of a chain along other chains until complete mutual disentanglement. Despite the success in explaining the power-laws for viscosity, the model has some limitations. First of all, memory effects are ignored, that is, polymer segments are treated independently. Also, each entanglement/obstacle is treated as a separate entity, which is certainly a simplification of the memory effect problem. In addition to that, correlated motions of segments are addressed within the framework of renormalized Rouse-chain theory,7 without calling any topological entanglements in advance. This approach leads to the generalized Langevin equation characterized by distinct memory kernels describing local and nonlocal segment correlations or to the Smoluchowski equation in which the segments' mobility is treated as a stochastic variable.11 Both models describe the polymer segments motion at a microscopic level. An interesting alternative is to solve the integrodifferential equation for the chain relaxation with a sophisticated kernel function.12 The design of the kernel function is based on a mesoscopic description of the polymer melt

  10. Shear-banding and superdiffusivity in entangled polymer solutions

    NASA Astrophysics Data System (ADS)

    Shin, Seunghwan; Dorfman, Kevin D.; Cheng, Xiang

    2017-12-01

    Using high-resolution confocal rheometry, we study the shear profiles of well-entangled DNA solutions under large-amplitude oscillatory shear in a rectilinear planar shear cell. With increasing Weissenberg number (Wi), we observe successive transitions from normal Newtonian linear shear profiles to wall-slip dominant shear profiles and, finally, to shear-banding profiles at high Wi. To investigate the microscopic origin of the observed shear banding, we study the dynamics of micron-sized tracers embedded in DNA solutions. Surprisingly, tracer particles in the shear frame exhibit transient superdiffusivity and strong dynamic heterogeneity. The probability distribution functions of particle displacements follow a power-law scaling at large displacements, indicating a Lévy-walk-type motion, reminiscent of tracer dynamics in entangled wormlike micelle solutions and sheared colloidal glasses. We further characterize the length and time scales associated with the abnormal dynamics of tracer particles. We hypothesize that the unusual particle dynamics arise from localized shear-induced chain disentanglement.

  11. Polymer dynamics: Floored by the rings

    NASA Astrophysics Data System (ADS)

    McLeish, Tom

    2008-12-01

    The tube model can explain how mutually entangled polymer chains move and interact, but it relies on the loose ends of chains to generate relaxation. Ring polymers have no ends - so how do they relax?

  12. Multiple-copy entanglement transformation and entanglement catalysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duan Runyao; Feng Yuan; Li Xin

    2005-04-01

    We prove that any multiple-copy entanglement transformation [S. Bandyopadhyay, V. Roychowdhury, and U. Sen, Phys. Rev. A 65, 052315 (2002)] can be implemented by a suitable entanglement-assisted local transformation [D. Jonathan and M. B. Plenio, Phys. Rev. Lett. 83, 3566 (1999)]. Furthermore, we show that the combination of multiple-copy entanglement transformation and the entanglement-assisted one is still equivalent to the pure entanglement-assisted one. The mathematical structure of multiple-copy entanglement transformations then is carefully investigated. Many interesting properties of multiple-copy entanglement transformations are presented, which exactly coincide with those satisfied by the entanglement-assisted ones. Most interestingly, we show that an arbitrarilymore » large number of copies of state should be considered in multiple-copy entanglement transformations.« less

  13. Effect of bidispersity in grafted chain length on grafted chain conformations and potential of mean force between polymer grafted nanoparticles in a homopolymer matrix.

    PubMed

    Nair, Nitish; Wentzel, Nathaniel; Jayaraman, Arthi

    2011-05-21

    In efforts to produce polymeric materials with tailored physical properties, significant interest has grown around the ability to control the spatial organization of nanoparticles in polymer nanocomposites. One way to achieve controlled particle arrangement is by grafting the nanoparticle surface with polymers that are compatible with the matrix, thus manipulating the interfacial interactions between the nanoparticles and the polymer matrix. Previous work has shown that the molecular weight of the grafted polymer, both at high grafting density and low grafting density, plays a key role in dictating the effective inter-particle interactions in a polymer matrix. At high grafting density nanoparticles disperse (aggregate) if the graft molecular weight is higher (lower) than the matrix molecular weight. At low grafting density the longer grafts can better shield the nanoparticle surface from direct particle-particle contacts than the shorter grafts and lead to the dispersion of the grafted particles in the matrix. Despite the importance of graft molecular weight, and evidence of non-trivial effects of polydispersity of chains grafted on flat surfaces, most theoretical work on polymer grafted nanoparticles has only focused on monodisperse grafted chains. In this paper, we focus on how bidispersity in grafted chain lengths affects the grafted chain conformations and inter-particle interactions in an implicit solvent and in a dense homopolymer polymer matrix. We first present the effects of bidispersity on grafted chain conformations in a single polymer grafted particle using purely Monte Carlo (MC) simulations. This is followed by calculations of the potential of mean force (PMF) between two grafted particles in a polymer matrix using a self-consistent Polymer Reference Interaction Site Model theory-Monte Carlo simulation approach. Monte Carlo simulations of a single polymer grafted particle in an implicit solvent show that in the bidisperse polymer grafted particles

  14. Quantum Entanglement Swapping between Two Multipartite Entangled States

    NASA Astrophysics Data System (ADS)

    Su, Xiaolong; Tian, Caixing; Deng, Xiaowei; Li, Qiang; Xie, Changde; Peng, Kunchi

    2016-12-01

    Quantum entanglement swapping is one of the most promising ways to realize the quantum connection among local quantum nodes. In this Letter, we present an experimental demonstration of the entanglement swapping between two independent multipartite entangled states, each of which involves a tripartite Greenberger-Horne-Zeilinger (GHZ) entangled state of an optical field. The entanglement swapping is implemented deterministically by means of a joint measurement on two optical modes coming from the two multipartite entangled states respectively and the classical feedforward of the measurement results. After entanglement swapping the two independent multipartite entangled states are merged into a large entangled state in which all unmeasured quantum modes are entangled. The entanglement swapping between a tripartite GHZ state and an Einstein-Podolsky-Rosen entangled state is also demonstrated and the dependence of the resultant entanglement on transmission loss is investigated. The presented experiment provides a feasible technical reference for constructing more complicated quantum networks.

  15. Quantum Entanglement Swapping between Two Multipartite Entangled States.

    PubMed

    Su, Xiaolong; Tian, Caixing; Deng, Xiaowei; Li, Qiang; Xie, Changde; Peng, Kunchi

    2016-12-09

    Quantum entanglement swapping is one of the most promising ways to realize the quantum connection among local quantum nodes. In this Letter, we present an experimental demonstration of the entanglement swapping between two independent multipartite entangled states, each of which involves a tripartite Greenberger-Horne-Zeilinger (GHZ) entangled state of an optical field. The entanglement swapping is implemented deterministically by means of a joint measurement on two optical modes coming from the two multipartite entangled states respectively and the classical feedforward of the measurement results. After entanglement swapping the two independent multipartite entangled states are merged into a large entangled state in which all unmeasured quantum modes are entangled. The entanglement swapping between a tripartite GHZ state and an Einstein-Podolsky-Rosen entangled state is also demonstrated and the dependence of the resultant entanglement on transmission loss is investigated. The presented experiment provides a feasible technical reference for constructing more complicated quantum networks.

  16. Self-assembly of crystalline nanotubes from monodisperse amphiphilic diblock copolypeptoid tiles

    DOE PAGES

    Sun, Jing; Jiang, Xi; Lund, Reidar; ...

    2016-03-28

    The folding and assembly of sequence-defined polymers into precisely ordered nanostructures promises a class of well-defined biomimetic architectures with specific function. Amphiphilic diblock copolymers are known to self-assemble in water to form a variety of nanostructured morphologies including spheres, disks, cylinders, and vesicles. In all of these cases, the predominant driving force for assembly is the formation of a hydrophobic core that excludes water, whereas the hydrophilic blocks are solvated and extend into the aqueous phase. However, such polymer systems typically have broad molar mass distributions and lack the purity and sequence-defined structure often associated with biologically derived polymers. Here,more » we demonstrate that purified, monodisperse amphiphilic diblock copolypeptoids, with chemically distinct domains that are congruent in size and shape, can behave like molecular tile units that spontaneously assemble into hollow, crystalline nanotubes in water. The nanotubes consist of stacked, porous crystalline rings, and are held together primarily by side-chain van der Waals interactions. The peptoid nanotubes form without a central hydrophobic core, chirality, a hydrogen bond network, and electrostatic or π-π interactions. These results demonstrate the remarkable structure-directing influence of n-alkane and ethyleneoxy side chains in polymer self-assembly. More broadly, this work suggests that flexible, low-molecular-weight sequence-defined polymers can serve as molecular tile units that can assemble into precision supramolecular architectures.« less

  17. Self-assembly of crystalline nanotubes from monodisperse amphiphilic diblock copolypeptoid tiles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Jing; Jiang, Xi; Lund, Reidar

    The folding and assembly of sequence-defined polymers into precisely ordered nanostructures promises a class of well-defined biomimetic architectures with specific function. Amphiphilic diblock copolymers are known to self-assemble in water to form a variety of nanostructured morphologies including spheres, disks, cylinders, and vesicles. In all of these cases, the predominant driving force for assembly is the formation of a hydrophobic core that excludes water, whereas the hydrophilic blocks are solvated and extend into the aqueous phase. However, such polymer systems typically have broad molar mass distributions and lack the purity and sequence-defined structure often associated with biologically derived polymers. Here,more » we demonstrate that purified, monodisperse amphiphilic diblock copolypeptoids, with chemically distinct domains that are congruent in size and shape, can behave like molecular tile units that spontaneously assemble into hollow, crystalline nanotubes in water. The nanotubes consist of stacked, porous crystalline rings, and are held together primarily by side-chain van der Waals interactions. The peptoid nanotubes form without a central hydrophobic core, chirality, a hydrogen bond network, and electrostatic or π-π interactions. These results demonstrate the remarkable structure-directing influence of n-alkane and ethyleneoxy side chains in polymer self-assembly. More broadly, this work suggests that flexible, low-molecular-weight sequence-defined polymers can serve as molecular tile units that can assemble into precision supramolecular architectures.« less

  18. Watching entangled circular DNA in real time with super-resolution

    NASA Astrophysics Data System (ADS)

    Jee, Ah-Young; Kim, Hyeongju; Granick, Steve

    In this talk, we will show how we unraveled the conformational dynamics of entangled ring-shaped polymers in network, which is one of the most well-known problems in polymer physics, using deep imaging based on super-resolution fluorescence imaging, stimulated emission depletion (STED) microscopy. By using home-written software, we obtained the statistics of each of the hundreds of molecules, mapping out a large statistical distribution. Through inspection we not only found some aspects of the classic understanding of polymers, but some surprising aspects as well.

  19. Nonlinear microrheology and molecular imaging to map microscale deformations of entangled DNA networks

    NASA Astrophysics Data System (ADS)

    Wu, Tsai-Chin; Anderson, Rae

    We use active microrheology coupled to single-molecule fluorescence imaging to elucidate the microscale dynamics of entangled DNA. DNA naturally exists in a wide range of lengths and topologies, and is often confined in cell nucleui, forming highly concentrated and entangled biopolymer networks. Thus, DNA is the model polymer for understanding entangled polymer dynamics as well as the crowded environment of cells. These networks display complex viscoelastic properties that are not well understood, especially at the molecular-level and in response to nonlinear perturbations. Specifically, how microscopic stresses and strains propagate through entangled networks, and what molecular deformations lead to the network stress responses are unknown. To answer these important questions, we optically drive a microsphere through entangled DNA, perturbing the system far from equilibrium, while measuring the resistive force the DNA exerts on the bead during and after bead motion. We simultaneously image single fluorescent-labeled DNA molecules throughout the network to directly link the microscale stress response to molecular deformations. We characterize the deformation of the network from the molecular-level to the mesoscale, and map the stress propagation throughout the network. We further study the impact of DNA length (11 - 115 kbp) and topology (linear vs ring DNA) on deformation and propagation dynamics, exploring key nonlinear features such as tube dilation and power-law relaxation.

  20. Preparation and unique electrical behaviors of monodispersed hybrid nanorattles of metal nanocores with hairy electroactive polymer shells.

    PubMed

    Cai, Tao; Zhang, Bin; Chen, Yu; Wang, Cheng; Zhu, Chun Xiang; Neoh, Koon-Gee; Kang, En-Tang

    2014-03-03

    A versatile template-assisted strategy for the preparation of monodispersed rattle-type hybrid nanospheres, encapsulating a movable Au nanocore in the hollow cavity of a hairy electroactive polymer shell (Au@air@PTEMA-g-P3HT hybrid nanorattles; PTEMA: poly(2-(thiophen-3-yl)ethyl methacrylate; P3HT: poly(3-hexylthiophene), was reported. The Au@silica core-shell nanoparticles, prepared by the modified Stöber sol-gel process on Au nanoparticle seeds, were used as templates for the synthesis of Au@silica@PTEMA core-double shell nanospheres. Subsequent oxidative graft polymerization of 3-hexylthiophene from the exterior surface of the Au@silica@PTEMA core-double shell nanospheres allowed the tailoring of surface functionality with electroactive P3HT brushes (Au@silica@PTEMA-g-P3HT nanospheres). The Au@air@ PTEMA-g-P3HT hybrid nanorattles were obtained after etching of the silica interlayer by HF. The as-prepared nanorattles were dispersed into an electrically insulating polystyrene matrix and for the first time used to fabricate nonvolatile memory devices. As a result, unique electrical behaviors, including insulator behavior, write-once-read-many-times and rewritable memory effects, and conductor behavior as well, were observed in the Al/Au@air@PTEMA-g-P3HT+PS/ITO (ITO: indium-tin oxide) sandwich thin-film devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Monodisperse, molecularly imprinted polymers for creatinine by modified precipitation polymerization and their applications to creatinine assays for human serum and urine.

    PubMed

    Miura, Chitose; Funaya, Noriko; Matsunaga, Hisami; Haginaka, Jun

    2013-11-01

    Molecularly imprinted polymers (MIPs) for creatinine were prepared by modified precipitation polymerization using methacrylic acid as a functional monomer and divinylbenzene as a crosslinker. The prepared MIPs were monodispersed with a narrow particle size distribution. Binding experiments and Scatchard analyses revealed that two classes of binding sites, high- and low-affinity sites, were formed on the MIPs. The retention and molecular-recognition properties of the MIPs were evaluated by hydrophilic interaction chromatography using a mixture of ammonium acetate buffer and acetonitrile as a mobile phase. With an increase of acetonitrile content, the retention factor of creatinine was increased on the MIP. In addition to shape recognition, hydrophilic interactions seemed to enhance the recognition of creatinine on the MIP. The MIPs' molecular-recognition ability was specific for creatinine; the structurally related compounds such as hydantoin, 1-methylhydantoin, 2-pyrrolidone, N-hydroxysuccinimide and creatine were not recognized. Furthermore, the creatinine concentrations in human serum and urine were successfully determined by direct injection of the deproteinized serum and diluted urine samples onto the MIP. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Brush-Like Polymers: New Design Platforms for Soft, Dry Materials with Unique Property Relations

    NASA Astrophysics Data System (ADS)

    Daniel, William Francis McKemie, Jr.

    chemistry specific parameters (repeat unit volume and Kuhn segment size) in the polymer liquid (melt) prior to crosslinking. Previous solvent free replacements for gels include elastomers end-linked in semidilute conditions. These materials are generated through crosslinking telechelic polymer chains in semidilute solutions at the onset of chain overlap. At such low polymer concentrations entanglements are greatly diluted and once the resulting gel is dried it creates a supersoft and super-elastic network. Although such methods have successfully generated materials with moduli below the 105 Pa limit and high extensibilities ( 1000%) they present their own limitations. Firstly, the semidilute crosslinking methods uses an impractically large volume of solvent which is unattractive in industry. Second, producing and crosslinking large monodisperse telechelic chains is a nontrivial process leading to large uncertainties in the final network architecture and properties. Specifically, telechelics have a distribution of end-to-end distances and in semidilute solutions with extremely low fraction of chain ends the crosslink reaction is diffusion limited, very slow, and imprecise. In order to achieve a superior solvent-free platform, we propose alteration of mechanical properties through the architectural disentanglement of brush-like polymer structures. In recent year there has been an increase in the synthetic conditions and crosslinking schemes available for producing brush-like structures. This makes brush-like materials an attractive alternative to more restrictive methods such as end-linking. Standard networks have one major control factor outside of chemistry, the network stand length. Brush-like architectures are created from long strands with regularly grafted side chains creating three characteristic length scales which may be independently manipulated. In collaboration with M. Rubinstein, we have utilized bottlebrush polymer architectures (a densely grafted brush

  3. Dynamics in Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Clarke, Nigel

    2015-03-01

    Since nanoparticles are increasingly being added to polymers to impart mechanical and functional properties, we are exploring how nanoparticles impact polymer dynamics with a focus on the diffusion coefficients. In high molecular weight polymer melts, chain diffusion is well described by the reptation model. Motion proceeds as a snake-like diffusion of the chain as a whole, along the contour of a tube that mimics the role of physical entanglements, or topological constraints, with other chains. In polymer nanocomposites there are additional constraints due to the dispersed nanoparticles in the polymer matrix. Chain motion can be altered by nanoparticle size, shape , aspect ratio, surface area, loading and the nature of the interactions between the nanoparticles and the polymer matrix. We have observed a minimum in the diffusion coefficient as a function of nanoparticle concentration when the nanoparticles are rod-like and a collapse of the diffusion coefficient onto a master curve when the nanoparticles are spherical. We are simulating the dynamics using molecular and dissipative particle simulations in order to provide physical insight into the local structure and dynamics, and have also carried out highly coarse grained Monte Carlo simulations of entangled polymers to explore how reptation is affected by the presence of larger scale obstacles. We acknowledge support from the NSF/EPSRC Materials World Network Program.

  4. Triclosan antimicrobial polymers

    PubMed Central

    Petersen, Richard C.

    2016-01-01

    Triclosan antimicrobial molecular fluctuating energies of nonbonding electron pairs for the oxygen atom by ether bond rotations are reviewed with conformational computational chemistry analyses. Subsequent understanding of triclosan alternating ether bond rotations is able to help explain several material properties in Polymer Science. Unique bond rotation entanglements between triclosan and the polymer chains increase both the mechanical properties of polymer toughness and strength that are enhanced even better through secondary bonding relationships. Further, polymer blend compatibilization is considered due to similar molecular relationships and polarities. With compatibilization of triclosan in polymers a more uniform stability for nonpolar triclosan in the polymer solid state is retained by the antimicrobial for extremely low release with minimum solubility into aqueous solution. As a result, triclosan is projected for long extended lifetimes as an antimicrobial polymer additive. Further, triclosan rapid alternating ether bond rotations disrupt secondary bonding between chain monomers in the resin state to reduce viscosity and enhance polymer blending. Thus, triclosan is considered for a polymer additive with multiple properties to be an antimicrobial with additional benefits as a nonpolar toughening agent and a hydrophobic wetting agent. The triclosan material relationships with alternating ether bond rotations are described through a complete different form of medium by comparisons with known antimicrobial properties that upset bacterial cell membranes through rapid fluctuating mechanomolecular energies. Also, triclosan bond entanglements with secondary bonding can produce structural defects in weak bacterial lipid membranes requiring pliability that can then interfere with cell division. Regarding applications with polymers, triclosan can be incorporated by mixing into a resin system before cure, melt mixed with thermoplastic polymers that set on cooling

  5. Monodisperse atomizers for agricultural aviation applications

    NASA Technical Reports Server (NTRS)

    Christensen, L. S.; Steely, S. L.

    1980-01-01

    Conceptual designs of two monodisperse spray nozzles are described and the rationale used in each design is discussed. The nozzles were designed to eliminate present problems in agricultural aviation applications, such as ineffective plant coverage, drift due to small droplets present in the spray being dispersed, and nonuniform swath coverages. Monodisperse atomization techniques are reviewed and a synopsis of the information obtained concerning agricultural aviation spray applications is presented.

  6. Nanoscale Motion of Soft Nanoparticles in Unentangled and Entangled Polymer Matrices

    NASA Astrophysics Data System (ADS)

    Lungova, M.; Krutyeva, M.; Pyckhout-Hintzen, W.; Wischnewski, A.; Monkenbusch, M.; Allgaier, J.; Ohl, M.; Sharp, M.; Richter, D.

    2016-09-01

    We have studied the motion of polyhedral oligomeric silsesquioxane (POSS) nanoparticles modified with poly(ethylene glycol) (PEG) arms immersed in PEG matrices of different molecular weight. Employing neutron spin echo spectroscopy in combination with pulsed field gradient (PFG) NMR we found the following. (i) For entangled matrices the center of mass mean square displacement (MSD) of the PEG-POSS particles is subdiffusive following a t0.56 power law. (ii) The diffusion coefficient as well as the crossover to Fickian diffusion is independent of the matrix molecular weight and takes place as soon as the center of mass has moved a distance corresponding to the particle radius—this holds also for unentangled hosts. (iii) For the entangled matrices Rubinstein's scaling theory is validated; however, the numbers indicate that beyond Rouse friction the entanglement constraints appear to strongly increase the effective friction even on the nanoparticle length scale imposing a caveat on the interpretation of microrheological experiments. (iv) The oligomer decorated PEG-POSS particles exhibit the dynamics of a Gaussian star with an internal viscosity that rises with an increase of the host molecular weight.

  7. Theory and Simulation of Attractive Nanoparticle Transport in Polymer Melts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, Umi; Carrillo, Jan-Michael Y.; Bocharova, Vera

    We theoretically study the diffusion of a single attractive nanoparticle (NP) in unentangled and entangled polymer melts based on combining microscopic “core–shell” and “vehicle” mechanisms in a dynamic bond percolation theory framework. A physical picture is constructed which addresses the role of chain length (N), degree of entanglement, nanoparticle size, and NP–polymer attraction strength. The nanoparticle diffusion constant is predicted to initially decrease with N due to the dominance of the core–shell mechanism, then to cross over to the vehicle diffusion regime with a weaker N dependence, and eventually plateau at large enough N. This behavior corresponds to decoupling ofmore » NP diffusivity from the macroscopic melt viscosity, which is reminiscent of repulsive NPs in entangled melts, but here it occurs for a distinct physical reason. Specifically, it reflects a crossover to a transport mechanism whereby nanoparticles adsorb on polymer chains and diffuse using them as “vehicles” over a characteristic desorption time scale. Repetition of random desorption events then leads to Fickian long time NP diffusion. Complementary simulations for a range of chain lengths and low to moderate NP–polymer attraction strengths are also performed. They allow testing of the proposed diffusion mechanisms and qualitatively support the theoretically predicted dynamic crossover behavior. In conclusion, when the desorption time is smaller than or comparable to the onset of entangled polymer dynamics, the NP diffusivity becomes almost chain length independent.« less

  8. Theory and Simulation of Attractive Nanoparticle Transport in Polymer Melts

    DOE PAGES

    Yamamoto, Umi; Carrillo, Jan-Michael Y.; Bocharova, Vera; ...

    2018-03-06

    We theoretically study the diffusion of a single attractive nanoparticle (NP) in unentangled and entangled polymer melts based on combining microscopic “core–shell” and “vehicle” mechanisms in a dynamic bond percolation theory framework. A physical picture is constructed which addresses the role of chain length (N), degree of entanglement, nanoparticle size, and NP–polymer attraction strength. The nanoparticle diffusion constant is predicted to initially decrease with N due to the dominance of the core–shell mechanism, then to cross over to the vehicle diffusion regime with a weaker N dependence, and eventually plateau at large enough N. This behavior corresponds to decoupling ofmore » NP diffusivity from the macroscopic melt viscosity, which is reminiscent of repulsive NPs in entangled melts, but here it occurs for a distinct physical reason. Specifically, it reflects a crossover to a transport mechanism whereby nanoparticles adsorb on polymer chains and diffuse using them as “vehicles” over a characteristic desorption time scale. Repetition of random desorption events then leads to Fickian long time NP diffusion. Complementary simulations for a range of chain lengths and low to moderate NP–polymer attraction strengths are also performed. They allow testing of the proposed diffusion mechanisms and qualitatively support the theoretically predicted dynamic crossover behavior. In conclusion, when the desorption time is smaller than or comparable to the onset of entangled polymer dynamics, the NP diffusivity becomes almost chain length independent.« less

  9. Generalizing entanglement

    NASA Astrophysics Data System (ADS)

    Jia, Ding

    2017-12-01

    The expected indefinite causal structure in quantum gravity poses a challenge to the notion of entanglement: If two parties are in an indefinite causal relation of being causally connected and not, can they still be entangled? If so, how does one measure the amount of entanglement? We propose to generalize the notions of entanglement and entanglement measure to address these questions. Importantly, the generalization opens the path to study quantum entanglement of states, channels, networks, and processes with definite or indefinite causal structure in a unified fashion, e.g., we show that the entanglement distillation capacity of a state, the quantum communication capacity of a channel, and the entanglement generation capacity of a network or a process are different manifestations of one and the same entanglement measure.

  10. Physical Organic Chemistry of Supramolecular Polymers

    PubMed Central

    Serpe, Michael J.; Craig, Stephen L.

    2008-01-01

    Unlike the case of traditional covalent polymers, the entanglements that determine properties of supramolecular polymers are defined by very specific, intermolecular interactions. Recent work using modular molecular platforms to probe the mechanisms underlying mechanical response of supramolecular polymers is reviewed. The contributions of supramolecular kinetics, thermodynamics, and conformational flexibility to supramolecular polymer properties in solutions of discrete polymers, in networks, and at interfaces, are described. Molecule-to-material relationships are established through methods reminiscent of classic physical organic chemistry. PMID:17279638

  11. Polymer-entanglement-driven coassembly of hybrid superparamagnetic nanoparticles: Tunable structures and flexible functionalization.

    PubMed

    Zhan, Xiaohui; Yi, Qiangying; Cai, Shuang; Zhou, Xiaoxi; Ma, Shaohua; Lan, Fang; Gu, Zhongwei; Wu, Yao

    2017-12-15

    In this study, we report a facile and versatile strategy for preparing a type of pH-responsive superparamagnetic hybrid coassemblies featuring a series of controls over the morphology and multi-functionalization simultaneously and efficiently. Via the entanglement interactions, the combine of fixed PEG-b-P4VP modified Fe 3 O 4 NPs (D-Fe 3 O 4 @mPEG-b-P4VP) and different well-designed free PEG-b-P4VP, which are analogous to two amphiphiles, contributes these hybrid superstructures with multiple, well-defined morphologies and targeted fluorescent properties. In contrast to other studies, our work overcame several defects (e.g., interior NPs' randomness, cumbersome assembly parameter adjustment and functionalization) of the conventional assembly of modified inorganic NPs and demonstrated that this coassembly strategy can be used as a versatile tool for the controllable assembly of other NPs or polymers. Finally, taking the coassembly C1 as a desirable drug delivery carrier, good biocompatibility and pH-triggered drug release were successfully verified. The current study indicated that these magnetic coassemblies are promising as multifunctional and multipurpose carriers in biological, medical, catalytic, and coating applications. Copyright © 2017. Published by Elsevier Inc.

  12. Morphologically and size uniform monodisperse particles and their shape-directed self-assembly

    DOEpatents

    Collins, Joshua E.; Bell, Howard Y.; Ye, Xingchen; Murray, Christopher Bruce

    2015-11-17

    Monodisperse particles having: a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology are disclosed. Due to their uniform size and shape, the monodisperse particles self assemble into superlattices. The particles may be luminescent particles such as down-converting phosphor particles and up-converting phosphors. The monodisperse particles of the invention have a rare earth-containing lattice which in one embodiment may be an yttrium-containing lattice or in another may be a lanthanide-containing lattice. The monodisperse particles may have different optical properties based on their composition, their size, and/or their morphology (or shape). Also disclosed is a combination of at least two types of monodisperse particles, where each type is a plurality of monodisperse particles having a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology; and where the types of monodisperse particles differ from one another by composition, by size, or by morphology. In a preferred embodiment, the types of monodisperse particles have the same composition but different morphologies. Methods of making and methods of using the monodisperse particles are disclosed.

  13. Preparation and characterization of monodisperse large-porous silica microspheres as the matrix for protein separation.

    PubMed

    Xia, Hongjun; Wan, Guangping; Zhao, Junlong; Liu, Jiawei; Bai, Quan

    2016-11-04

    High performance liquid chromatography (HPLC) is a kind of efficient separation technology and has been used widely in many fields. Micro-sized porous silica microspheres as the most popular matrix have been used for fast separation and analysis in HPLC. In this paper, the monodisperse large-porous silica microspheres with controllable size and structure were successfully synthesized with polymer microspheres as the templates and characterized. First, the poly(glycidyl methacrylate-co-ethyleneglycol dimethacrylate) microspheres (P GMA-EDMA ) were functionalized with tetraethylenepentamine (TEPA) to generate amino groups which act as a catalyst in hydrolysis of tetraethyl orthosilicate (TEOS) to form Si-containing low molecular weight species. Then the low molecular weight species diffused into the functionalized P GMA-EDMA microspheres by induction force of the amino groups to form polymer/silica hybrid microspheres. Finally, the organic polymer templates were removed by calcination, and the large-porous silica microspheres were obtained. The compositions, morphology, size distribution, specific surface area and pore size distribution of the porous silica microspheres were characterized by infrared analyzer, scanning-electron microscopy, dynamic laser scattering, the mercury intrusion method and thermal gravimetric analysis, respectively. The results show that the agglomeration of the hybrid microspheres can be overcome when the templates were functionalized with TEPA as amination reagent, and the yield of 95.7% of the monodisperse large-porous silica microspheres can be achieved with high concentration of polymer templates. The resulting large-porous silica microspheres were modified with octadecyltrichlorosilane (ODS) and the chromatographic evaluation was performed by separating the proteins and the digest of BSA. The baseline separation of seven kinds of protein standards was achieved, and the column delivered a better performance when separating BSA digests

  14. Shifting of the melting point for semi-crystalline polymer nanofibers

    NASA Astrophysics Data System (ADS)

    Arinstein, A.; Liu, Y.; Rafailovich, M.; Zussman, E.

    2011-02-01

    The depression of melting temperature as a function of the diameter of electrospun semi-crystalline polymer nanofibers is discussed. Due to fast solvent evaporation during nanofiber electrospinning, there occurs the fixation of topological structure of the polymer matrix corresponding to chain entanglement of the initial concentration of the semi-dilute solution. The resulting level of chain entanglement is lower than that in polymer bulk at equilibrium. This difference results in an addition to the entropy jump corresponding to the polymer's melting, and accounts for the observed shift in melting temperature in as-spun fibers. The proposed concept is found to be in good agreement with experimental results obtained for as-spun poly(ethylene-co-vinyl acetate) (PEVA) and low-density polyethylene (LDPE) fibers.

  15. Morphologically and size uniform monodisperse particles and their shape-directed self-assembly

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, Joshua E.; Bell, Howard Y.; Ye, Xingchen

    2017-09-12

    Monodisperse particles having: a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology are disclosed. Due to their uniform size and shape, the monodisperse particles self assemble into superlattices. The particles may be luminescent particles such as down-converting phosphor particles and up-converting phosphors. The monodisperse particles of the invention have a rare earth-containing lattice which in one embodiment may be an yttrium-containing lattice or in another may be a lanthanide-containing lattice. The monodisperse particles may have different optical properties based on their composition, their size, and/or their morphology (or shape). Alsomore » disclosed is a combination of at least two types of monodisperse particles, where each type is a plurality of monodisperse particles having a single pure crystalline phase of a rare earth-containing lattice, a uniform three-dimensional size, and a uniform polyhedral morphology; and where the types of monodisperse particles differ from one another by composition, by size, or by morphology. In a preferred embodiment, the types of monodisperse particles have the same composition but different morphologies. Methods of making and methods of using the monodisperse particles are disclosed.« less

  16. Controlled Release from Recombinant Polymers

    PubMed Central

    Price, Robert; Poursaid, Azadeh; Ghandehari, Hamidreza

    2014-01-01

    Recombinant polymers provide a high degree of molecular definition for correlating structure with function in controlled release. The wide array of amino acids available as building blocks for these materials lend many advantages including biorecognition, biodegradability, potential biocompatibility, and control over mechanical properties among other attributes. Genetic engineering and DNA manipulation techniques enable the optimization of structure for precise control over spatial and temporal release. Unlike the majority of chemical synthetic strategies used, recombinant DNA technology has allowed for the production of monodisperse polymers with specifically defined sequences. Several classes of recombinant polymers have been used for controlled drug delivery. These include, but are not limited to, elastin-like, silk-like, and silk-elastinlike proteins, as well as emerging cationic polymers for gene delivery. In this article, progress and prospects of recombinant polymers used in controlled release will be reviewed. PMID:24956486

  17. Polymer physics experiments with single DNA molecules

    NASA Astrophysics Data System (ADS)

    Smith, Douglas E.

    1999-11-01

    Bacteriophage DNA molecules were taken as a model flexible polymer chain for the experimental study of polymer dynamics at the single molecule level. Video fluorescence microscopy was used to directly observe the conformational dynamics of fluorescently labeled molecules, optical tweezers were used to manipulate individual molecules, and micro-fabricated flow cells were used to apply controlled hydrodynamic strain to molecules. These techniques constitute a powerful new experimental approach in the study of basic polymer physics questions. I have used these techniques to study the diffusion and relaxation of isolated and entangled polymer molecules and the hydrodynamic deformation of polymers in elongational and shear flows. These studies revealed a rich, and previously unobserved, ``molecular individualism'' in the dynamical behavior of single molecules. Individual measurements on ensembles of identical molecules allowed the average conformation to be determined as well as the underlying probability distributions for molecular conformation. Scaling laws, that predict the dependence of properties on chain length and concentration, were also tested. The basic assumptions of the reptation model were directly confirmed by visualizing the dynamics of entangled chains.

  18. Precisely Size-Tunable Monodisperse Hairy Plasmonic Nanoparticles via Amphiphilic Star-Like Block Copolymers.

    PubMed

    Chen, Yihuang; Yoon, Young Jun; Pang, Xinchang; He, Yanjie; Jung, Jaehan; Feng, Chaowei; Zhang, Guangzhao; Lin, Zhiqun

    2016-12-01

    In situ precision synthesis of monodisperse hairy plasmonic nanoparticles with tailored dimensions and compositions by capitalizing on amphiphilic star-like diblock copolymers as nanoreactors are reported. Such hairy plasmonic nanoparticles comprise uniform noble metal nanoparticles intimately and perpetually capped by hydrophobic polymer chains (i.e., "hairs") with even length. Interestingly, amphiphilic star-like diblock copolymer nanoreactors retain the spherical shape under reaction conditions, and the diameter of the resulting plasmonic nanoparticles and the thickness of polymer chains situated on the surface of the nanoparticle can be readily and precisely tailored. These hairy nanoparticles can be regarded as hard/soft core/shell nanoparticles. Notably, the polymer "hairs" are directly and permanently tethered to the noble metal nanoparticle surface, thereby preventing the aggregation of nanoparticles and rendering their dissolution in nonpolar solvents and the homogeneous distribution in polymer matrices with long-term stability. This amphiphilic star-like block copolymer nanoreactor-based strategy is viable and robust and conceptually enables the design and synthesis of a rich variety of hairy functional nanoparticles with new horizons for fundamental research on self-assembly and technological applications in plasmonics, catalysis, energy conversion and storage, bioimaging, and biosensors. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Large-size monodisperse latexes as a commercial space product

    NASA Technical Reports Server (NTRS)

    Kornfeld, D. M.

    1977-01-01

    Proposed spacelab production of large-size (2-40 micron diameter) monodispersed latexes is discussed. Explanations are given for the present lack of monodisperse particles in this size range. The four main topics discussed are: (1) the potential uses of these large particle size latexes, (2) why it is necessary for the particles to have a very narrow size distribution, (3) why large amounts of these monodisperse latexes are needed, and (4) why it is necessary to go to microgravity to prepare these latexes.

  20. Soft Polydimethylsiloxane Elastomers from Architecture-driven Entanglement Free Design

    PubMed Central

    Cai, Li-Heng; Kodger, Thomas E.; Guerra, Rodrigo E.; Pegoraro, Adrian F.; Rubinstein, Michael; Weitz, David A.

    2015-01-01

    We fabricate soft, solvent-free polydimethylsiloxane (PDMS) elastomers by crosslinking bottlebrush polymers rather than linear polymers. We design the chemistry to allow commercially available linear PDMS precursors to deterministically form bottlebrush polymers, which are simultaneously crosslinked, enabling a one-step synthesis. The bottlebrush architecture prevents the formation of entanglements, resulting in elastomers with precisely controllable elastic moduli from ~1 to ~100 kPa, below the intrinsic lower limit of traditional elastomers. Moreover, the solvent-free nature of the soft PDMS elastomers enables a negligible contact adhesion compared to commercially available silicone products of similar stiffness. The exceptional combination of softness and negligible adhesiveness may greatly broaden the applications of PDMS elastomers in both industry and research. PMID:26259975

  1. Quantitative Modeling of Entangled Polymer Rheology: Experiments, Tube Models and Slip-Link Simulations

    NASA Astrophysics Data System (ADS)

    Desai, Priyanka Subhash

    Rheology properties are sensitive indicators of molecular structure and dynamics. The relationship between rheology and polymer dynamics is captured in the constitutive model, which, if accurate and robust, would greatly aid molecular design and polymer processing. This dissertation is thus focused on building accurate and quantitative constitutive models that can help predict linear and non-linear viscoelasticity. In this work, we have used a multi-pronged approach based on the tube theory, coarse-grained slip-link simulations, and advanced polymeric synthetic and characterization techniques, to confront some of the outstanding problems in entangled polymer rheology. First, we modified simple tube based constitutive equations in extensional rheology and developed functional forms to test the effect of Kuhn segment alignment on a) tube diameter enlargement and b) monomeric friction reduction between subchains. We, then, used these functional forms to model extensional viscosity data for polystyrene (PS) melts and solutions. We demonstrated that the idea of reduction in segmental friction due to Kuhn alignment is successful in explaining the qualitative difference between melts and solutions in extension as revealed by recent experiments on PS. Second, we compiled literature data and used it to develop a universal tube model parameter set and prescribed their values and uncertainties for 1,4-PBd by comparing linear viscoelastic G' and G" mastercurves for 1,4-PBds of various branching architectures. The high frequency transition region of the mastercurves superposed very well for all the 1,4-PBds irrespective of their molecular weight and architecture, indicating universality in high frequency behavior. Therefore, all three parameters of the tube model were extracted from this high frequency transition region alone. Third, we compared predictions of two versions of the tube model, Hierarchical model and BoB model against linear viscoelastic data of blends of 1,4-PBd

  2. Rapid Polymer Transport in a Single Nanometer-Scale Pore

    NASA Astrophysics Data System (ADS)

    Kasianowicz, J. J.

    1998-03-01

    Protein ion channels are nanometer-scale pores that control the transport of ions and polymers across cell membranes. We compared the ability of charged and nonelectrolyte linear polymers to partition into a single channel reconstituted into a planar lipid bilayer membrane. The entry of each polymer (e.g. monodisperse length single-stranded homopolymeric RNA1 or poly(ethylene glycol)2,3) into the pore caused characteristic transient decreases in the channel's ionic conductance. The ionic current blockades yield detailed information about the physical properties of the polymers and the pore. The biological and technological significance of the results will be discussed.

  3. A Phase of Liposomes with Entangled Tubular Vesicles

    NASA Astrophysics Data System (ADS)

    Chiruvolu, Shivkumar; Warriner, Heidi E.; Naranjo, Edward; Idziak, Stefan H. J.; Radler, Joachim O.; Plano, Robert J.; Zasadzinski, Joseph A.; Safinya, Cyrus R.

    1994-11-01

    An equilibrium phase belonging to the family of bilayer liposomes in ternary mixtures of dimyristoylphosphatidylcholine (DMPC), water, and geraniol (a biological alcohol derived from oil-soluble vitamins that acts as a cosurfactant) has been identified. Electron and optical microscopy reveal the phase, labeled Ltv, to be composed of highly entangled tubular vesicles. In situ x-ray diffraction confirms that the tubule walls are multilamellar with the lipids in the chain-melted state. Macroscopic observations show that the Ltv phase coexists with the well-known L_4 phase of spherical vesicles and a bulk L_α phase. However, the defining characteristic of the Ltv phase is the Weissenberg rod climbing effect under shear, which results from its polymer-like entangled microstructure.

  4. Macrocyclic receptors immobilized to monodisperse porous polymer particles by chemical grafting and physical impregnation for strontium capture: a comparative study.

    PubMed

    Song, Yang; Du, Yi; Lv, Dachao; Ye, Gang; Wang, Jianchen

    2014-06-15

    Separation of strontium is of great significance for radioactive waste treatment and environmental remediation after nuclear accidents. In this work, a novel class of adsorbent (Crown-g-MPPPs) was synthesized by chemical grafting a macrocyclic ether receptor to monodisperse porous polymer particles (MPPPs) for strontium adsorption. Meanwhile, a counterpart material (Crown@MPPPs) with the receptor molecules immobilized to the MPPPs substrate by physical impregnation was prepared. To investigate how the immobilization manner and distribution of the receptors influence the adsorption ability, a comparative study on the adsorption behaviour of the two materials towards Sr(II) in HNO3 media was accomplished. Due to the shorter diffusion path and covalently-bonded structure, Crown-g-MPPPs showed faster adsorption kinetics and better stability for cycle use. While Crown@MPPPs had the advantages of facile synthesis and higher adsorption capacity, owing to the absence of conformational constraint to form complexation with Sr(II). Kinetic functions (Lagergren pseudo-first-order/pseudo-second-order functions) and adsorption isotherm models (Langmuir/Freundlich models) were used to fit the experimental data and examine the adsorption mechanism. On this basis, a chromatographic process was proposed by using Crown@MPPPs for an effective separation of Sr(II) (91%) in simulated high level liquid waste (HLLW). Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Functional Supramolecular Polymers*

    PubMed Central

    Aida, T.; Meijer, E.W.; Stupp, S.I.

    2012-01-01

    Supramolecular polymers can be random and entangled coils with the mechanical properties of plastics and elastomers, but with great capacity for processability, recycling, and self-healing due to their reversible monomer-to-polymer transitions. At the other extreme, supramolecular polymers can be formed by self-assembly among designed subunits to yield shape-persistent and highly ordered filaments. The use of strong and directional interactions among molecular subunits can achieve not only rich dynamic behavior but also high degrees of internal order that are not known in ordinary polymers. They can resemble, for example, the ordered and dynamic one-dimensional supramolecular assemblies of the cell cytoskeleton, and possess useful biological and electronic functions. PMID:22344437

  6. Entanglement entropy and entanglement spectrum of the Kitaev model.

    PubMed

    Yao, Hong; Qi, Xiao-Liang

    2010-08-20

    In this letter, we obtain an exact formula for the entanglement entropy of the ground state and all excited states of the Kitaev model. Remarkably, the entanglement entropy can be expressed in a simple separable form S = SG+SF, with SF the entanglement entropy of a free Majorana fermion system and SG that of a Z2 gauge field. The Z2 gauge field part contributes to the universal "topological entanglement entropy" of the ground state while the fermion part is responsible for the nonlocal entanglement carried by the Z2 vortices (visons) in the non-Abelian phase. Our result also enables the calculation of the entire entanglement spectrum and the more general Renyi entropy of the Kitaev model. Based on our results we propose a new quantity to characterize topologically ordered states--the capacity of entanglement, which can distinguish the st ates with and without topologically protected gapless entanglement spectrum.

  7. Crazing of nanocomposites with polymer-tethered nanoparticles

    DOE PAGES

    Meng, Dong; Kumar, Sanat K.; Ge, Ting; ...

    2016-09-07

    The crazing behavior of polymer nanocomposites formed by blending polymer grafted nanoparticles with an entangled polymer melt is studied by molecular dynamics simulations. We focus on the three key differences in the crazing behavior of a composite relative to the pure homopolymer matrix, namely, a lower yield stress, a smaller extension ratio, and a grafted chain length dependent failure stress. The yield behavior is found to be mostly controlled by the local nanoparticle-grafted polymer interfacial energy, with the grafted polymer-polymer matrix interfacial structure being of little to no relevance. Increasing the attraction between nanoparticle core and the grafted polymer inhibitsmore » void nucleation and leads to a higher yield stress. In the craze growth regime, the presence of “grafted chain” sections of ≈100 monomers alters the mechanical response of composite samples, giving rise to smaller extension ratios and higher drawing stresses than for the homopolymer matrix. As a result, the dominant failure mechanism of composite samples depends strongly on the length of the grafted chains, with disentanglement being the dominant mechanism for short chains, while bond breaking is the failure mode for chain lengths >10N e, where N e is the entanglement length.« less

  8. Modular entanglement.

    PubMed

    Gualdi, Giulia; Giampaolo, Salvatore M; Illuminati, Fabrizio

    2011-02-04

    We introduce and discuss the concept of modular entanglement. This is the entanglement that is established between the end points of modular systems composed by sets of interacting moduli of arbitrarily fixed size. We show that end-to-end modular entanglement scales in the thermodynamic limit and rapidly saturates with the number of constituent moduli. We clarify the mechanisms underlying the onset of entanglement between distant and noninteracting quantum systems and its optimization for applications to quantum repeaters and entanglement distribution and sharing.

  9. Entanglement branching operator

    NASA Astrophysics Data System (ADS)

    Harada, Kenji

    2018-01-01

    We introduce an entanglement branching operator to split a composite entanglement flow in a tensor network which is a promising theoretical tool for many-body systems. We can optimize an entanglement branching operator by solving a minimization problem based on squeezing operators. The entanglement branching is a new useful operation to manipulate a tensor network. For example, finding a particular entanglement structure by an entanglement branching operator, we can improve a higher-order tensor renormalization group method to catch a proper renormalization flow in a tensor network space. This new method yields a new type of tensor network states. The second example is a many-body decomposition of a tensor by using an entanglement branching operator. We can use it for a perfect disentangling among tensors. Applying a many-body decomposition recursively, we conceptually derive projected entangled pair states from quantum states that satisfy the area law of entanglement entropy.

  10. Polymer Disentanglement during 3D Printing

    NASA Astrophysics Data System (ADS)

    McIlroy, Claire; Olmsted, Peter D.

    Although 3D printing has the potential to transform manufacturing processes, improving the strength of printed parts to rival that of traditionally-manufactured parts remains an underlying issue. The most common method, fused filament fabrication (FFF), involves melting a thermoplastic, followed by layer-by-layer filament extrusion to fabricate a 3D object. The key to ensuring strength at the weld between layers is successful inter-diffusion and re-entanglement of the melt across the interface. Under typical printing conditions the melt experiences high strain rates within the nozzle, which can significantly stretch and orient the polymers. Consequently, inter-diffusion does not occur from an equilibrium state. The printed layer also cools towards the glass transition, which limits inter-diffusion time. We employ a continuum polymer model (Rolie-Poly) that incorporates flow-induced changes in the entanglement density to predict how an amorphous polymer melt is deformed during FFF. The deformation is dominated by the deposition process, which involves a 90 degree turn and transformation from circular to elliptical geometry. Polymers become highly stretched and aligned with the flow direction, which significantly disentangles the melt via convective constraint release.

  11. Renormalizing Entanglement Distillation.

    PubMed

    Waeldchen, Stephan; Gertis, Janina; Campbell, Earl T; Eisert, Jens

    2016-01-15

    Entanglement distillation refers to the task of transforming a collection of weakly entangled pairs into fewer highly entangled ones. It is a core ingredient in quantum repeater protocols, which are needed to transmit entanglement over arbitrary distances in order to realize quantum key distribution schemes. Usually, it is assumed that the initial entangled pairs are identically and independently distributed and are uncorrelated with each other, an assumption that might not be reasonable at all in any entanglement generation process involving memory channels. Here, we introduce a framework that captures entanglement distillation in the presence of natural correlations arising from memory channels. Conceptually, we bring together ideas from condensed-matter physics-ideas from renormalization and matrix-product states and operators-with those of local entanglement manipulation, Markov chain mixing, and quantum error correction. We identify meaningful parameter regions for which we prove convergence to maximally entangled states, arising as the fixed points of a matrix-product operator renormalization flow.

  12. Renormalizing Entanglement Distillation

    NASA Astrophysics Data System (ADS)

    Waeldchen, Stephan; Gertis, Janina; Campbell, Earl T.; Eisert, Jens

    2016-01-01

    Entanglement distillation refers to the task of transforming a collection of weakly entangled pairs into fewer highly entangled ones. It is a core ingredient in quantum repeater protocols, which are needed to transmit entanglement over arbitrary distances in order to realize quantum key distribution schemes. Usually, it is assumed that the initial entangled pairs are identically and independently distributed and are uncorrelated with each other, an assumption that might not be reasonable at all in any entanglement generation process involving memory channels. Here, we introduce a framework that captures entanglement distillation in the presence of natural correlations arising from memory channels. Conceptually, we bring together ideas from condensed-matter physics—ideas from renormalization and matrix-product states and operators—with those of local entanglement manipulation, Markov chain mixing, and quantum error correction. We identify meaningful parameter regions for which we prove convergence to maximally entangled states, arising as the fixed points of a matrix-product operator renormalization flow.

  13. Exploring ways to control the properties of polymer thin films

    NASA Astrophysics Data System (ADS)

    Clough, Andrew R.

    Understanding the causes of deviations from bulk-like properties observed in polymer thin films is of interest both from a fundamental standpoint and in order to tailor the properties of polymer thin films used by industry as coatings and in the production of microelectronic devices. As thicknesses are decreased below 100 nm, interfacial effects start to become important. In addition, a confinement effect occurs when the film thickness becomes comparable to the unperturbed size of the polymer chain. In this thesis, we modify polymer films in a controllable way in order to study how some of these properties may be related and potentially adjusted. One of these properties is the glass transition temperature, which is seen to vary with the film thickness for films thinner than 100 nm. While there appears to be a consensus that the variation is attributable to the interactions the polymer has with the film interfaces, important questions concerning how the observed changes may affect the onset of large scale, liquid-like motions in the films have been seldom investigated. We modify the substrate interface with grafted polymer chains, which is known to instill interfacial slippage, to investigate the relation, if any, between the glass transition temperature and large scale chain motions in the films. As another part of the effort to find ways to control the properties of polymer films, we study the effect of swelling films with solvents of different qualities. Studies have shown that modifying the solvent quality used when preparing films by spin-coating, in which solvent from a polymer solution is rapidly removed to form thin uniform films, can affect some properties by modifying the degree of inter-chain entanglement in the film. As it is often difficult to spin-coat films when the solvent is poor, we investigate whether solvent swelling can also be used to modify this entanglement. We find that solvent swelling is able to modify the degree of entanglement in the

  14. Entanglement Length in Miscible Blends of cis-Polyisoprene and Poly(ptert-butylstyrene)

    NASA Astrophysics Data System (ADS)

    Watanabe, Hiroshi; Matsumiya, Yumi

    In miscible polymer blends, the entanglement length is common for the components, but its changes with the composition w remain unclear. For this problem, this study analyzed viscoelastic data for miscible blends of cis-polyisoprene (PI) and poly(ptert-butylstyrene) (PtBS), considering the basic feature that the local relaxation is determined only by wPI. On the basis of this feature, a series of unentangled low- M PI/PtBS blends having various M and a given wPI were utilized as references for well-entangled high- M PI/PtBS blends having the same wPI, and the modulus data of the references were subtracted from the high- M blend data. For an optimally chosen reference, the storage modulus Ge'of the high- M blends obtained after the subtraction exhibited a clear entanglement plateau GN and the corresponding Ge' ' decreased in proportion to 1/ ω at high frequencies ω. Thus, the onset of entanglement relaxation was detected. The GN values were well described by a linear mixing rule of the entanglement length with the number fraction of Kuhn segments of the components being utilized as the averaging weight. This result, not explained by a mean-field picture of entanglement, is discussed in relation to local packing of bulky PtBS chains and skinny PI chains.

  15. Witnessing entanglement without entanglement witness operators

    PubMed Central

    Pezzè, Luca; Li, Yan; Li, Weidong; Smerzi, Augusto

    2016-01-01

    Quantum mechanics predicts the existence of correlations between composite systems that, although puzzling to our physical intuition, enable technologies not accessible in a classical world. Notwithstanding, there is still no efficient general method to theoretically quantify and experimentally detect entanglement of many qubits. Here we propose to detect entanglement by measuring the statistical response of a quantum system to an arbitrary nonlocal parametric evolution. We witness entanglement without relying on the tomographic reconstruction of the quantum state, or the realization of witness operators. The protocol requires two collective settings for any number of parties and is robust against noise and decoherence occurring after the implementation of the parametric transformation. To illustrate its user friendliness we demonstrate multipartite entanglement in different experiments with ions and photons by analyzing published data on fidelity visibilities and variances of collective observables. PMID:27681625

  16. Witnessing entanglement without entanglement witness operators.

    PubMed

    Pezzè, Luca; Li, Yan; Li, Weidong; Smerzi, Augusto

    2016-10-11

    Quantum mechanics predicts the existence of correlations between composite systems that, although puzzling to our physical intuition, enable technologies not accessible in a classical world. Notwithstanding, there is still no efficient general method to theoretically quantify and experimentally detect entanglement of many qubits. Here we propose to detect entanglement by measuring the statistical response of a quantum system to an arbitrary nonlocal parametric evolution. We witness entanglement without relying on the tomographic reconstruction of the quantum state, or the realization of witness operators. The protocol requires two collective settings for any number of parties and is robust against noise and decoherence occurring after the implementation of the parametric transformation. To illustrate its user friendliness we demonstrate multipartite entanglement in different experiments with ions and photons by analyzing published data on fidelity visibilities and variances of collective observables.

  17. A phase of liposomes with entangled tubular vesicles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiruvolu, S.; Naranjo, E.; Warriner, H.E.

    1994-11-18

    An equilibrium phase belonging to the family of bilayer liposomes in ternary mixtures of dimyristoylphosphatidylcholine (DMPC), water, and geraniol (a biological alcohol derived from oil-soluble vitamins that acts as a cosurfactant) has been identified. Electron and optical microscopy reveal the phase, labeled L{sub tv}, to be composed of highly entangled tubular vesicles. In situ x-ray diffraction confirms that the tubule walls are multilamellar with the lipids in the chain-melted state. Macroscopic observations show that the L{sub tv} phase coexists with the well-known L{sub 4} phase of spherical vesicles and a bulk L{sub {alpha}} phase. However, the defining characteristic of themore » L{sub tv} phase is the Weissenberg rod climbing effect under shear, which results from its polymer-like entangled microstructure. 26 refs., 5 figs.« less

  18. From intermediate anisotropic to isotropic friction at large strain rates to account for viscosity thickening in polymer solutions

    NASA Astrophysics Data System (ADS)

    Stephanou, Pavlos S.; Kröger, Martin

    2018-05-01

    The steady-state extensional viscosity of dense polymeric liquids in elongational flows is known to be peculiar in the sense that for entangled polymer melts it monotonically decreases—whereas for concentrated polymer solutions it increases—with increasing strain rate beyond the inverse Rouse time. To shed light on this issue, we solve the kinetic theory model for concentrated polymer solutions and entangled melts proposed by Curtiss and Bird, also known as the tumbling-snake model, supplemented by a variable link tension coefficient that we relate to the uniaxial nematic order parameter of the polymer. As a result, the friction tensor is increasingly becoming isotropic at large strain rates as the polymer concentration decreases, and the model is seen to capture the experimentally observed behavior. Additional refinements may supplement the present model to capture very strong flows. We furthermore derive analytic expressions for small rates and the linear viscoelastic behavior. This work builds upon our earlier work on the use of the tumbling-snake model under shear and demonstrates its capacity to improve our microscopic understanding of the rheology of entangled polymer melts and concentrated polymer solutions.

  19. Monodisperse aerosol generator

    DOEpatents

    Ortiz, Lawrence W.; Soderholm, Sidney C.

    1990-01-01

    An aerosol generator is described which is capable of producing a monodisperse aerosol within narrow limits utilizing an aqueous solution capable of providing a high population of seed nuclei and an organic solution having a low vapor pressure. The two solutions are cold nebulized, mixed, vaporized, and cooled. During cooling, particles of the organic vapor condense onto the excess seed nuclei, and grow to a uniform particle size.

  20. Tailored synthesis of monodispersed nano/submicron porous silicon oxycarbide (SiOC) spheres with improved Li-storage performance as an anode material for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Shi, Huimin; Yuan, Anbao; Xu, Jiaqiang

    2017-10-01

    A spherical silicon oxycarbide (SiOC) material (monodispersed nano/submicron porous SiOC spheres) is successfully synthesized via a specially designed synthetic strategy involving pyrolysis of phenyltriethoxysilane derived pre-ceramic polymer spheres at 900 °C. In order to prevent sintering of the pre-ceramic polymer spheres upon heating, a given amount of hollow porous SiO2 nanobelts which are separately prepared from tetraethyl orthosilicate with CuO nanobelts as templates are introduced into the pre-ceramic polymer spheres before pyrolysis. This material is investigated as an anode for lithium-ion batteries in comparison with the large-size bulk SiOC material synthesized under the similar conditions but without hollow SiO2 nanobelts. The maximum reversible specific capacity of ca. 900 mAh g-1 is delivered at the current density of 100 mA g-1 and ca. 98% of the initial capacity is remained after 100 cycles at 100 mA g-1 for the SiOC spheres material, which are much superior to the bulk SiOC material. The improved lithium storage performance in terms of specific capacity and cyclability is attributed to its particular morphology of monodisperse nano/submicron porous spheres as well as its modified composition and microstructure. This SiOC material has higher Li-storage activity and better stability against volume expansion during repeated lithiation and delithiation cycling.

  1. A general and robust strategy for the synthesis of nearly monodisperse colloidal nanocrystals

    NASA Astrophysics Data System (ADS)

    Pang, Xinchang; Zhao, Lei; Han, Wei; Xin, Xukai; Lin, Zhiqun

    2013-06-01

    Colloidal nanocrystals exhibit a wide range of size- and shape-dependent properties and have found application in myriad fields, incuding optics, electronics, mechanics, drug delivery and catalysis, to name but a few. Synthetic protocols that enable the simple and convenient production of colloidal nanocrystals with controlled size, shape and composition are therefore of key general importance. Current strategies include organic solution-phase synthesis, thermolysis of organometallic precursors, sol-gel processes, hydrothermal reactions and biomimetic and dendrimer templating. Often, however, these procedures require stringent experimental conditions, are difficult to generalize, or necessitate tedious multistep reactions and purification. Recently, linear amphiphilic block co-polymer micelles have been used as templates to synthesize functional nanocrystals, but the thermodynamic instability of these micelles limits the scope of this approach. Here, we report a general strategy for crafting a large variety of functional nanocrystals with precisely controlled dimensions, compositions and architectures by using star-like block co-polymers as nanoreactors. This new class of co-polymers forms unimolecular micelles that are structurally stable, therefore overcoming the intrinsic instability of linear block co-polymer micelles. Our approach enables the facile synthesis of organic solvent- and water-soluble nearly monodisperse nanocrystals with desired composition and architecture, including core-shell and hollow nanostructures. We demonstrate the generality of our approach by describing, as examples, the synthesis of various sizes and architectures of metallic, ferroelectric, magnetic, semiconductor and luminescent colloidal nanocrystals.

  2. Developing a molecular picture for polymer glasses under large deformation

    NASA Astrophysics Data System (ADS)

    Wang, Shi-Qing; Cheng, Shiwang; Wang, Panpan

    2014-03-01

    Polymer glasses differ from most other types of glassy materials because they can be ductile under tensile extension. Remarkably, a ductile polymer can turn brittle and vice versa. For example, upon cooling, the glass changes from ductile to brittle at a temperature known as the brittle-ductile transition temperature (BDT). Aging causes the ductile glass to be brittle. Mechanical ``rejuvenation'' or pressurization brings a brittle glass into a ductile state. Finally, one glass can be ductile 100 degrees below Tg while another polymer is already brittle even just 10 degree below Tg. Polystyrene and bisphenol A polycarbonate are at the two extremes in the family of polymer glasses. How to rationale such a wide range of behavior in terms of a molecular picture has been a challenging task. What is the role of ``chain entanglement''? Since many of the procedures including the temperature change do not alter the ``chain entanglement'', it is clearly insufficient to explain the nature of the BDT in terms of the entanglement density. Our work attempts to answer the question of what then is the role of chain networking. We have formulated a molecular picture that presents a unifying and coherent explanation for all the known phenomenology concerning the BDT and condition for crazing. This work is supported, in part, by NSF (CMMI-0926522 and DMR-1105135).

  3. Diffusion of Small Sticky Nanoparticles in a Polymer Melt: A Dynamic Light Scattering Study

    NASA Astrophysics Data System (ADS)

    Carroll, Bobby; Bocharova, Vera; Cheng, Shiwang; Yamamoto, Umi; Kisliuk, Alex; Schweizer, Ken; Sokolov, Alexei

    The study of dynamics in complex fluids such as polymers has gained a broad interest in advanced materials and biomedical applications. Of particular interest is the motion of nanoparticles in these systems, which influences the mechanical and structural properties of composite materials, properties of colloidal systems, and biochemical processes in biological systems. Theoretical work predicts a violation of Stokes-Einstein (SE) relationship for diffusion of small nanoparticles in strongly-entangled polymer melt systems, with diffusion of nanoparticles much faster than expected DSE. It is attributed to differences between local and macroscopic viscosity. In this study, the diffusion of nanoparticles in polymer melts below and above entanglement molecular weight is measured using dynamic light scattering. The measured results are compared with simulations that provide quantitative predictions for SE violations. Our results are two-fold: (1) diffusion at lower molecular weights is slower than expected DSE due to chain absorption; and (2) diffusion becomes much (20 times) faster than DSE, at higher entanglements due to a reduced local viscosity.

  4. Experimental mixture design as a tool for the synthesis of antimicrobial selective molecularly imprinted monodisperse microbeads.

    PubMed

    Benito-Peña, Elena; Navarro-Villoslada, Fernando; Carrasco, Sergio; Jockusch, Steffen; Ottaviani, M Francesca; Moreno-Bondi, Maria C

    2015-05-27

    The effect of the cross-linker on the shape and size of molecular imprinted polymer (MIP) beads prepared by precipitation polymerization has been evaluated using a chemometric approach. Molecularly imprinted microspheres for the selective recognition of fluoroquinolone antimicrobials were prepared in a one-step precipitation polymerization procedure using enrofloxacin (ENR) as the template molecule, methacrylic acid as functional monomer, 2-hydroxyethyl methacrylate as hydrophilic comonomer, and acetonitrile as the porogen. The type and amount of cross-linker, namely ethylene glycol dimethacrylate, divinylbenzene or trimethylolpropane trimethacrylate, to obtain monodispersed MIP spherical beads in the micrometer range was optimized using a simplex lattice design. Particle size and morphology were assessed by scanning electron microscopy, dynamic light scattering, and nitrogen adsorption measurements. Electron paramagnetic resonance spectroscopy in conjunction with a nitroxide as spin probe revealed information about the microviscosity and polarity of the binding sites in imprinted and nonimprinted polymer beads.

  5. Molecular weight between entanglements for κ- and ι-carrageenans in an ionic liquid.

    PubMed

    Horinaka, Jun-ichi; Urabayashi, Yuhei; Wang, Xiaochen; Takigawa, Toshikazu

    2014-08-01

    The molecular weight between entanglements (Me) for κ- and ι-carrageenans, sulfated galactans, was examined in concentrated solutions using an ionic liquid 1-butyl-3-methylimidazolium acetate as a solvent. The dynamic viscoelasticity data for the solutions measured at different temperatures were overlapped according to the time-temperature superposition principle, and the obtained master curves exhibited the flow and rubbery plateau zones, being typical of concentrated polymer solutions having entanglement coupling. The values of Me for κ- and ι-carrageenans in the solutions were determined from the plateau moduli. Then the values of Me in the molten state (Me,melt) estimated as a material constant to be 6.6×10(3) and 7.2×10(3), respectively. The close values of Me,melt for κ- and ι-carrageenans indicate that 4-sulfate group of ι-carrageenan are not so influential for the entanglement network. Compared with agarose, a non-sulfate galactan, carrageenans have larger values of average spacing between entanglements. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Entanglement entropy and entanglement spectrum of triplet topological superconductors.

    PubMed

    Oliveira, T P; Ribeiro, P; Sacramento, P D

    2014-10-22

    We analyze the entanglement entropy properties of a 2D p-wave superconductor with Rashba spin-orbit coupling, which displays a rich phase-space that supports non-trivial topological phases, as the chemical potential and the Zeeman term are varied. We show that the entanglement entropy and its derivatives clearly signal the topological transitions and we find numerical evidence that for this model the derivative with respect to the magnetization provides a sensible signature of each topological phase. Following the area law for the entanglement entropy, we systematically analyze the contributions that are proportional to or independent of the perimeter of the system, as a function of the Hamiltonian coupling constants and the geometry of the finite subsystem. For this model, we show that even though the topological entanglement entropy vanishes, it signals the topological phase transitions in a finite system. We also observe a relationship between a topological contribution to the entanglement entropy in a half-cylinder geometry and the number of edge states, and that the entanglement spectrum has robust modes associated with each edge state, as in other topological systems.

  7. Structure and Dynamics of Polymers in Cylindrical Nanoconfinement: A Molecular Dynamics Study

    NASA Astrophysics Data System (ADS)

    Pressly, James; Riggleman, Robert; Winey, Karen

    The structure and dynamics of polymers under nanoconfinement is critical for understanding how polymers behave in applications from hydraulic fracking to fabricating integrated circuits. We previously used simulations to explore the effect of the diameter of cylindrical pores (d = 10-40 σ, where σ is the unit length in reduced units) on polymer end-to-end distance (Ree,perp, Ree,par) , entanglement density, melt diffusion coefficient (D), and local relaxation time (τperp, τpar) at fixed polymer chain length (N = 350). These studies found D, Ree,par, and τperp increased with increasing confinement while entanglement density, Ree,perp, and τpar decreased. Experiments also found that D increased but to a lesser extent. Here, we examine the molecular weight dependence of these properties using N = 25, 50, 100, 200, 350, and 500 confined to pores of diameter 14 σ to examine a range of confinements. Our preliminary results show that as N increases D and Ree,par, increase as well, relative to the unconfined state, while entanglement density and Ree,perp decrease, consistent with our previous work. Interestingly, τ is shown to be independent of chain length indicating the impact of confinement imposed by reducing pore diameter is distinct from that imposed by increasing chain length.

  8. Many Body Effects on Particle Diffusion in Polymer Nanocomposites

    NASA Astrophysics Data System (ADS)

    Dell, Zachary E.; Schweizer, Kenneth S.

    2014-03-01

    Recent statistical mechanical theories of nanoparticle motion in polymer melts and networks have focused on the dilute particle limit. By combining PRISM theory predictions for microscopic structural correlations, and a new formulation of self-consistent dynamical mode coupling theory, we extend dilute theories to finite filler loading. As a minimalist model, the polymer dynamics are first assumed to be unperturbed by the presence of the nanoparticles. The long time particle diffusivity in unentangled and entangled melts is determined as a function of polymer tube diameter and radius of gyration, nanoparticle diameter, and polymer-filler attraction strength under both constant volume and constant pressure situations. The influence of nanocomposite statistical structure (depletion, steric stabilization, bridging) on dynamics is also investigated. Using recent theoretical developments for predicting tube diameters in nanocomposites, the consequences of filler-induced tube dilation on nanoparticle motion is established. In entangled melts, increasing filler loading first modestly speeds up diffusion, and then dramatically when the inter-filler separation becomes smaller than the tube diameter. At very high loadings, a filler glass transition is generically predicted.

  9. Deterministically Entangling Two Remote Atomic Ensembles via Light-Atom Mixed Entanglement Swapping

    PubMed Central

    Liu, Yanhong; Yan, Zhihui; Jia, Xiaojun; Xie, Changde

    2016-01-01

    Entanglement of two distant macroscopic objects is a key element for implementing large-scale quantum networks consisting of quantum channels and quantum nodes. Entanglement swapping can entangle two spatially separated quantum systems without direct interaction. Here we propose a scheme of deterministically entangling two remote atomic ensembles via continuous-variable entanglement swapping between two independent quantum systems involving light and atoms. Each of two stationary atomic ensembles placed at two remote nodes in a quantum network is prepared to a mixed entangled state of light and atoms respectively. Then, the entanglement swapping is unconditionally implemented between the two prepared quantum systems by means of the balanced homodyne detection of light and the feedback of the measured results. Finally, the established entanglement between two macroscopic atomic ensembles is verified by the inseparability criterion of correlation variances between two anti-Stokes optical beams respectively coming from the two atomic ensembles. PMID:27165122

  10. Microscopic theory of topologically entangled fluids of rigid macromolecules

    NASA Astrophysics Data System (ADS)

    Sussman, Daniel M.; Schweizer, Kenneth S.

    2011-06-01

    We present a first-principles theory for the slow dynamics of a fluid of entangling rigid crosses of zero excluded volume based on a generalization of the dynamic mean-field approach of Szamel for infinitely thin nonrotating rods. The latter theory exactly includes topological constraints at the two-body collision level and self-consistently renormalizes an effective diffusion tensor to account for many-body effects. Remarkably, it predicts scaling laws consistent with the phenomenological reptation-tube predictions of Doi and Edwards for the long-time diffusion and the localization length in the heavily entangled limit. We generalize this approach to a different macromolecular architecture, infinitely thin three-dimensional crosses, and also extend the range of densities over which a dynamic localization length can be calculated for rods. Ideal gases of nonrotating crosses have recently received attention in computer simulations and are relevant as a simple model of both a strong-glass former and entangling star-branched polymers. Comparisons of our theory with these simulations reveal reasonable agreement for the magnitude and reduced density dependence of the localization length and also the self-diffusion constant if the consequences of local density fluctuations are taken into account.

  11. Thermalization of entanglement.

    PubMed

    Zhang, Liangsheng; Kim, Hyungwon; Huse, David A

    2015-06-01

    We explore the dynamics of the entanglement entropy near equilibrium in highly entangled pure states of two quantum-chaotic spin chains undergoing unitary time evolution. We examine the relaxation to equilibrium from initial states with either less or more entanglement entropy than the equilibrium value, as well as the dynamics of the spontaneous fluctuations of the entanglement that occur in equilibrium. For the spin chain with a time-independent Hamiltonian and thus an extensive conserved energy, we find slow relaxation of the entanglement entropy near equilibration. Such slow relaxation is absent in a Floquet spin chain with a Hamiltonian that is periodic in time and thus has no local conservation law. Therefore, we argue that slow diffusive energy transport is responsible for the slow relaxation of the entanglement entropy in the Hamiltonian system.

  12. Polygamy of distributed entanglement

    NASA Astrophysics Data System (ADS)

    Buscemi, Francesco; Gour, Gilad; Kim, Jeong San

    2009-07-01

    While quantum entanglement is known to be monogamous (i.e., shared entanglement is restricted in multipartite settings), here we show that distributed entanglement (or the potential for entanglement) is by nature polygamous. By establishing the concept of one-way unlocalizable entanglement (UE) and investigating its properties, we provide a polygamy inequality of distributed entanglement in tripartite quantum systems of arbitrary dimension. We also provide a polygamy inequality in multiqubit systems and several trade-offs between UE and other correlation measures.

  13. Polygamy of distributed entanglement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Buscemi, Francesco; Gour, Gilad; Department of Mathematics and Statistics, University of Calgary, Alberta, T2N 1N4

    While quantum entanglement is known to be monogamous (i.e., shared entanglement is restricted in multipartite settings), here we show that distributed entanglement (or the potential for entanglement) is by nature polygamous. By establishing the concept of one-way unlocalizable entanglement (UE) and investigating its properties, we provide a polygamy inequality of distributed entanglement in tripartite quantum systems of arbitrary dimension. We also provide a polygamy inequality in multiqubit systems and several trade-offs between UE and other correlation measures.

  14. Apparatus for and method of producing monodisperse submicron polymer powders from solution

    DOEpatents

    Noid, Donald W.; Otaigbe, Joshua U.; Barnes, Michael D.; Sumpter, Bobby G.; Kung, Chung-Yi

    2002-01-01

    This invention describes a method of producing polymer powders from solution in a compatible solvent using a new device referred to as a microdroplets on demand generator (MODG). The embodiment of this invention is the MODG apparatus and its relevance as a method to extensive application in materials science and technology. Proof of concept is demonstrated using poly(ethylene) glycol polymer microparticles generated with the MODG and captured in a microparticle levitation device.

  15. Behavior of grafted polymers on nanofillers and their influence on polymer nanocomposite properties

    NASA Astrophysics Data System (ADS)

    Dukes, Douglas Michael

    grafted with varying amounts of polymer chains at different curvatures. Particles as small as 15 monomers in size were found to already be in the large particle limit, a result that has many implications regarding the dispersibility of grafted fillers in composites. At low graft densities, melt chains were found to form entanglements with the brush all the way to the particle surface, implying the particle is not effectively screened by the grafted chains. The mechanical properties of these grafted silica composites were studied as a function of matrix polymer fraction. As more matrix polymer is introduced, the dominant contribution to the behavior shifts from the grafted chains to the matrix chains. This elucidates the role of grafted chains on the mechanical properties of grafted nanoparticle composites. As the graft density is increased, the wettability of grafted chains was shown to decrease, causing fewer entanglements between grafted chains and matrix chains, resulting in poorer reinforcement. Interesting behavior was observed at low graft densities; a pronounced shape memory effect occurred at high particle concentrations. It is proposed that the grafted chains entangle with adjacent grafted chains, forming a three-dimensional network of entangled brushes attached to silica cores. This structure effectively forms "cross-links" as in elastomeric systems, giving an entropic restorative force to stretched chains. Thus, above Tg, when chains have a higher degree of mobility, the composites can be stretched to over 800%. When cooled to below Tg, they retain the deformed geometry. Upon reheating above Tg, the composite is restored to its original dimensions. This work has identified means of improving theoretical models to better guide future experiments and lead to predictability in polymer composite design. Grafted chains have the demonstrated ability to control the morphology and reinforcement in polymer composites. The behavior of grafted chains were shown to

  16. In vivo dynamical behavior of yeast chromatin modeled as an entangled polymer network with constraint release

    NASA Astrophysics Data System (ADS)

    Wang, Chenxi; Kilfoil, Maria L.

    2013-03-01

    The high fidelity segregation of chromatin is the central problem in cell mitosis. The role of mechanics underlying this, however, is undetermined. Work in this area has largely focused on cytoskeletal elements of the process. Preliminary work in our lab suggests the mechanical properties of chromatin are fundamental in this process. Nevertheless, the mechanical properties of chromatin in the cellular context are not well-characterized. For better understanding of the role of mechanics in this cellular process, and of the chromatin mechanics in vivo generally, a systematic dynamical description of chromatin in vivo is required. Accordingly, we label specific sites on chromatin with fluorescent proteins of different wave lengths, enabling us to detect multiple spots separately in 3D and track their displacements in time inside living yeast cells. We analyze the pairwise cross-correlated motion between spots as a function of relative distance along the DNA contour. Comparison between the reptation model and our data serves to test our conjecture that chromatin in the cell is basically an entangled polymer network under constraints to thermal motion, and removal of constraints by non-thermal cellular processes is expected to affect its dynamic behavior.

  17. Enzyme Induced Formation of Monodisperse Hydrogel Nanoparticles Tunable in Size

    DOE PAGES

    Bocharova, Vera; Sharp, Danna; Jones, Aaron; ...

    2015-03-09

    Here, we report a novel approach to synthesize monodisperse hydrogel nanoparticles that are tunable in size. The distinctive feature of our approach is the use of a multicopper oxidase enzyme, laccase, as both a biocatalyst and template for nanoparticle growth. We utilize the ferroxidase activity of laccase to initiate localized production of iron(III) cations from the oxidation of iron(II) cations. We demonstrate that nanoparticles are formed in a dilute polymer solution of alginate as a result of cross-linking between alginate and enzymatically produced iron(III) cations. Exerting control over the enzymatic reaction allows for nanometer-scale tuning of the hydrogel nanoparticle radiimore » in the range of 30–100 nm. Moreover, the nanoparticles and their growth kinetics were characterized via dynamic light scattering, atomic force microscopy, and UV–vis spectroscopy. Our finding opens up a new avenue for the synthesis of tunable nanoscale hydrogel particles for biomedical applications.« less

  18. Mesoscopic monodisperse ferromagnetic colloids enable magnetically controlled photonic crystals.

    PubMed

    Xu, Xiangling; Majetich, Sara A; Asher, Sanford A

    2002-11-20

    We report here the first synthesis of mesoscopic, monodisperse particles which contain nanoscopic inclusions of ferromagnetic cobalt ferrites. These monodisperse ferromagnetic composite particles readily self-assemble into magnetically responsive photonic crystals that efficiently Bragg diffract incident light. Magnetic fields can be used to control the photonic crystal orientation and, thus, the diffracted wavelength. We demonstrate the use of these ferromagnetic particles to fabricate magneto-optical diffracting fluids and magnetically switchable diffracting mirrors.

  19. Modeling semiflexible polymer networks

    NASA Astrophysics Data System (ADS)

    Broedersz, C. P.; MacKintosh, F. C.

    2014-07-01

    This is an overview of theoretical approaches to semiflexible polymers and their networks. Such semiflexible polymers have large bending rigidities that can compete with the entropic tendency of a chain to crumple up into a random coil. Many studies on semiflexible polymers and their assemblies have been motivated by their importance in biology. Indeed, cross-linked networks of semiflexible polymers form a major structural component of tissue and living cells. Reconstituted networks of such biopolymers have emerged as a new class of biological soft matter systems with remarkable material properties, which have spurred many of the theoretical developments discussed here. Starting from the mechanics and dynamics of individual semiflexible polymers, the physics of semiflexible bundles, entangled solutions, and disordered cross-linked networks are reviewed. Finally, recent developments on marginally stable fibrous networks, which exhibit critical behavior similar to other marginal systems such as jammed soft matter, are discussed.

  20. Plasmon assisted enhanced nonlinear refraction of monodispersed silver nanoparticles and their tunability.

    PubMed

    Lama, Pemba; Suslov, Anatoliy; Walser, Ardie D; Dorsinville, Roger

    2014-06-02

    Nonlinear optical characterizations were performed on monodispersed silver (Ag) nanoparticles (NPs) of various sizes using a picosecond Z-scan technique with excitation wavelengths of 532 nm and 1064 nm. The Ag NPs were fabricated using a heterogeneous condensation technique in a gas medium. The nonlinear refraction values were higher for the monodispersed Ag NPs whose surface plasmon resonance (SPR) peak is closer to the excitation wavelength. The higher nonlinear optical response is explained in terms of an electric field enhancement near the SPR. Moreover, the fabrication method allows the tailoring of the nonlinear refraction index of the Ag NPs by tuning the SPR peak of the sample. A comparison of the nonlinear refraction index of the monodispersed and polydispersed Ag NPs showed that the nonlinear refractive index of the monodispersed Ag NPs is higher.

  1. Purification of Logic-Qubit Entanglement

    PubMed Central

    Zhou, Lan; Sheng, Yu-Bo

    2016-01-01

    Recently, the logic-qubit entanglement shows its potential application in future quantum communication and quantum network. However, the entanglement will suffer from the noise and decoherence. In this paper, we will investigate the first entanglement purification protocol for logic-qubit entanglement. We show that both the bit-flip error and phase-flip error in logic-qubit entanglement can be well purified. Moreover, the bit-flip error in physical-qubit entanglement can be completely corrected. The phase-flip in physical-qubit entanglement error equals to the bit-flip error in logic-qubit entanglement, which can also be purified. This entanglement purification protocol may provide some potential applications in future quantum communication and quantum network. PMID:27377165

  2. Purification of Logic-Qubit Entanglement.

    PubMed

    Zhou, Lan; Sheng, Yu-Bo

    2016-07-05

    Recently, the logic-qubit entanglement shows its potential application in future quantum communication and quantum network. However, the entanglement will suffer from the noise and decoherence. In this paper, we will investigate the first entanglement purification protocol for logic-qubit entanglement. We show that both the bit-flip error and phase-flip error in logic-qubit entanglement can be well purified. Moreover, the bit-flip error in physical-qubit entanglement can be completely corrected. The phase-flip in physical-qubit entanglement error equals to the bit-flip error in logic-qubit entanglement, which can also be purified. This entanglement purification protocol may provide some potential applications in future quantum communication and quantum network.

  3. Entanglement and quantum teleportation via decohered tripartite entangled states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Metwally, N., E-mail: nmohamed31@gmail.com

    2014-12-15

    The entanglement behavior of two classes of multi-qubit system, GHZ and GHZ like states passing through a generalized amplitude damping channel is discussed. Despite this channel causes degradation of the entangled properties and consequently their abilities to perform quantum teleportation, one can always improve the lower values of the entanglement and the fidelity of the teleported state by controlling on Bell measurements, analyzer angle and channel’s strength. Using GHZ-like state within a generalized amplitude damping channel is much better than using the normal GHZ-state, where the decay rate of entanglement and the fidelity of the teleported states are smaller thanmore » those depicted for GHZ state.« less

  4. Fabrication of monodispersive nanoscale alginate-chitosan core-shell particulate systems for controlled release studies

    NASA Astrophysics Data System (ADS)

    Körpe, Didem Aksoy; Malekghasemi, Soheil; Aydın, Uğur; Duman, Memed

    2014-12-01

    Biopolymers such as chitosan and alginate are widely used for controlled drug delivery systems. The present work aimed to develop a new protocol for preparation of monodisperse alginate-coated chitosan nanoparticles at nanoscale. Modifications of preparation protocol contain changing the pH of polymer solutions and adding extra centrifugation steps into the procedure. While chitosan nanoparticles were synthesized by ionic gelation method, they were coated with alginate by electrostatic interaction. The size, morphology, charge, and structural characterization of prepared core-shell nanoparticulated system were performed by AFM, Zeta sizer, and FTIR. BSA and DOX were loaded as test biomolecules to core and shell part of the nanoparticle, respectively. Release profiles of BSA and DOX were determined by spectrophotometry. The sizes of both chitosan and alginate-coated chitosan nanoparticles which were prepared by modified protocol were measured to be 50 ± 10 and 60 ± 3 nm, respectively. After loading BSA and DOX, the average size of the particles increased to 80 ± 7 nm. Moreover, while the zeta potential of chitosan nanoparticles was positive value, the value was inverted to negative after alginate coating. Release profile measurements of BSA and DOX were determined during 57 and 2 days, respectively. Our results demonstrated that monodisperse alginate-coated nanoparticles were synthesized and loaded successfully using our modified protocol.

  5. Production of large-particle-size monodisperse latexes

    NASA Technical Reports Server (NTRS)

    Vanderhoff, J. W.; El-Aasser, M. L.; Micale, F. J.; Sudol, E. D.; Tseng, C. M.; Silwanowicz, A.

    1984-01-01

    The research program achieved two objectives: (1) it has refined and extended the experimental techniques for preparing monodisperse latexes in quantity on the ground up to a particle diameter of 10 microns; and (2) it has demonstrated that a microgravity environment can be used to grow monodisperse latexes to larger sizes, where the limitations in size have yet to be defined. The experimental development of the monodisperse latex reactor (MLR) and the seeded emulsion polymerizations carried out in the laboratory prototype of the flight hardware, as a function of the operational parameters is discussed. The emphasis is directed towards the measurement, interpretation, and modeling of the kinetics of seeded emulsion polymerization and successive seeded emulsion polymerization. The recipe development of seeded emulsion polymerization as a function of particle size is discussed. The equilibrium swelling of latex particles with monomers was investigated both theoretically and experimentally. Extensive studies are reported on both the type and concentration of initiators, surfactants, and inhibitors, which eventually led to the development of the flight recipes. The experimental results of the flight experiments are discussed, as well as the experimental development of inhibition of seeded emulsion polymerization in terms of time of inhibition and the effect of inhibitors on the kinetics of polymerization.

  6. Entanglement negativity in the multiverse

    NASA Astrophysics Data System (ADS)

    Kanno, Sugumi; Shock, Jonathan P.; Soda, Jiro

    2015-03-01

    We explore quantum entanglement between two causally disconnected regions in the multiverse. We first consider a free massive scalar field, and compute the entanglement negativity between two causally separated open charts in de Sitter space. The qualitative feature of it turns out to be in agreement with that of the entanglement entropy. We then introduce two observers who determine the entanglement between two causally disconnected de Sitter spaces. When one of the observers remains constrained to a region of the open chart in a de Sitter space, we find that the scale dependence enters into the entanglement. We show that a state which is initially maximally entangled becomes more entangled or less entangled on large scales depending on the mass of the scalar field and recovers the initial entanglement in the small scale limit. We argue that quantum entanglement may provide some evidence for the existence of the multiverse.

  7. Single molecule studies of flexible polymers under shear and mixed flows

    NASA Astrophysics Data System (ADS)

    Teixeira, Rodrigo Esquivel

    We combine manipulation and single molecule visualization of flexible DNA polymers with the generation of controlled simple shear and planar mixed flows for the investigation of polymer flow physics. With the ability to observe polymer conformation directly and follow its evolution in both dilute and entangled regimes we provide a direct test for molecular models. The coil-stretch transition of polymer extension was investigated in planar mixed flows approaching simple shear. Visualization of individual molecules revealed a sharp coil-stretch transition in the steady-state length of the polymer with increasing strain rate in flows slightly more straining than rotational. In slightly more rotational flows significant transient polymer deformation was observed. Next, dilute polymers were visualized in the flow-gradient plane of a steady shear flow. By exploiting the linear proportionality between polymer mass and image intensity, the radius of gyration tensor elements ( Gij) were measured over time. Then, the Giesekus stress tensor was used to obtain the bulk shear viscosity and first normal stress coefficient, thus performing rheology measurements from single molecule conformations. End-over-end tumbling was discovered for the first time, confirming a long-standing prediction and numerous single-chain computer simulation studies. The tumbling frequency followed Wi0.62, and an equation derived from simple advection and diffusion arguments was able to reproduce these observations. Power spectral densities of chain orientation trajectories were found to be single-peaked around the tumbling frequency, thus suggesting a periodic character for polymer dynamics. Finally, we investigated well-entangled polymer solutions. Identical preparations were used in both rheological characterizations and single molecule observations under a variety of shear flow histories. Polymer extension relaxations after the cessation of a fast shear flow revealed two intrinsic characteristic

  8. Entanglement negativity in the multiverse

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kanno, Sugumi; Shock, Jonathan P.; Soda, Jiro, E-mail: sugumi.kanno@ehu.es, E-mail: jonathan.shock@uct.ac.za, E-mail: jiro@phys.sci.kobe-u.ac.jp

    2015-03-01

    We explore quantum entanglement between two causally disconnected regions in the multiverse. We first consider a free massive scalar field, and compute the entanglement negativity between two causally separated open charts in de Sitter space. The qualitative feature of it turns out to be in agreement with that of the entanglement entropy. We then introduce two observers who determine the entanglement between two causally disconnected de Sitter spaces. When one of the observers remains constrained to a region of the open chart in a de Sitter space, we find that the scale dependence enters into the entanglement. We show thatmore » a state which is initially maximally entangled becomes more entangled or less entangled on large scales depending on the mass of the scalar field and recovers the initial entanglement in the small scale limit. We argue that quantum entanglement may provide some evidence for the existence of the multiverse.« less

  9. Excessive distribution of quantum entanglement

    NASA Astrophysics Data System (ADS)

    Zuppardo, Margherita; Krisnanda, Tanjung; Paterek, Tomasz; Bandyopadhyay, Somshubhro; Banerjee, Anindita; Deb, Prasenjit; Halder, Saronath; Modi, Kavan; Paternostro, Mauro

    2016-01-01

    We classify entanglement distribution protocols based on whether or not entanglement gain is observed with respect to communicated and initial entanglement. We call a protocol nonexcessive if the gain of entanglement is bounded by the communicated entanglement and excessive if it violates this bound. We present examples of excessive protocols that achieve significant gain, independently of the presence of the initial and (or) communicated entanglement. We show that, for certain entanglement measures, excessive entanglement distribution is possible even with pure states, which sheds light on the possibility of formulating a unifying approach to quantifiers of quantum correlations. We point out a "catalytic" effect, where a protocol is turned into an excessive one by sending an intermediate particle (which does not change the initial entanglement) in advance of the designated carrier. Finally, we analyze the protocols in noisy scenarios and show that, under suitable conditions, excessive distribution may be the only way to achieve entanglement gain.

  10. Entangled-coherent-state quantum key distribution with entanglement witnessing

    NASA Astrophysics Data System (ADS)

    Simon, David S.; Jaeger, Gregg; Sergienko, Alexander V.

    2014-01-01

    An entanglement-witness approach to quantum coherent-state key distribution and a system for its practical implementation are described. In this approach, eavesdropping can be detected by a change in sign of either of two witness functions: an entanglement witness S or an eavesdropping witness W. The effects of loss and eavesdropping on system operation are evaluated as a function of distance. Although the eavesdropping witness W does not directly witness entanglement for the system, its behavior remains related to that of the true entanglement witness S. Furthermore, W is easier to implement experimentally than S. W crosses the axis at a finite distance, in a manner reminiscent of entanglement sudden death. The distance at which this occurs changes measurably when an eavesdropper is present. The distance dependence of the two witnesses due to amplitude reduction and due to increased variance resulting from both ordinary propagation losses and possible eavesdropping activity is provided. Finally, the information content and secure key rate of a continuous variable protocol using this witness approach are given.

  11. Interphase and particle dispersion correlations in polymer nanocomposites

    NASA Astrophysics Data System (ADS)

    Senses, Erkan

    Particle dispersion in polymer matrices is a major parameter governing the mechanical performance of polymer nanocomposites. Controlling particle dispersion and understanding aging of composites under large shear and temperature variations determine the processing conditions and lifetime of composites which are very important for diverse applications in biomedicine, highly reinforced materials and more importantly for the polymer composites with adaptive mechanical responses. This thesis investigates the role of interphase layers between particles and polymer matrices in two bulk systems where particle dispersion is altered upon deformation in repulsive composites, and good-dispersion of particles is retained after multiple oscillatory shearing and aging cycles in attractive composites. We demonstrate that chain desorption and re-adsorption processes in attractive composites under shear can effectively enhance the bulk microscopic mechanical properties, and long chains of adsorbed layers lead to a denser entangled interphase layer. We further designed experiments where particles are physically adsorbed with bimodal lengths of homopolymer chains to underpin the entanglement effect in interphases. Bimodal adsorbed chains are shown to improve the interfacial strength and used to modulate the elastic properties of composites without changing the particle loading, dispersion state or polymer conformation. Finally, the role of dynamic asymmetry (different mobilities in polymer blends) and chemical heterogeneity in the interphase layer are explored in systems of poly(methyl methacrylate) adsorbed silica nanoparticles dispersed in poly(ethylene oxide) matrix. Such nanocomposites are shown to exhibit unique thermal-stiffening behavior at temperatures above glass transitions of both polymers. These interesting findings suggest that the mobility of the surface-bound polymer is essential for reinforcement in polymer nanocomposites, contrary to existing glassy layer theories

  12. Cluster synthesis of monodisperse rutile-TiO2 nanoparticles and dielectric TiO2-vinylidene fluoride oligomer nanocomposites

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balasubramanian, B; Kraemer, KL; Valloppilly, SR

    2011-09-13

    The embedding of oxide nanoparticles in polymer matrices produces a greatly enhanced dielectric response by combining the high dielectric strength and low loss of suitable host polymers with the high electric polarizability of nanoparticles. The fabrication of oxide-polymer nanocomposites with well-controlled distributions of nanoparticles is, however, challenging due to the thermodynamic and kinetic barriers between the polymer matrix and nanoparticle fillers. In the present study, monodisperse TiO2 nanoparticles having an average particle size of 14.4 nm and predominant rutile phase were produced using a cluster-deposition technique without high-temperature thermal annealing and subsequently coated with uniform vinylidene fluoride oligomer (VDFO) moleculesmore » using a thermal evaporation source, prior to deposition as TiO2-VDFO nanocomposite films on suitable substrates. The molecular coatings on TiO2 nanoparticles serve two purposes, namely to prevent the TiO2 nanoparticles from contacting each other and to couple the nanoparticle polarization to the matrix. Parallel-plate capacitors made of TiO2-VDFO nanocomposite film as the dielectric exhibit minimum dielectric dispersion and low dielectric loss. Dielectric measurements also show an enhanced effective dielectric constant in TiO2-VDFO nanocomposites as compared to that of pure VDFO. This study demonstrates for the first time a unique electroactive particle coating in the form of a ferroelectric VDFO that has high-temperature stability as compared to conventionally used polymers for fabricating dielectric oxide-polymer nanocomposites.« less

  13. Quantum entanglement in time

    NASA Astrophysics Data System (ADS)

    Nowakowski, Marcin

    2017-05-01

    In this paper we present a concept of quantum entanglement in time in a context of entangled consistent histories. These considerations are supported by presentation of necessary tools closely related to those acting on a space of spatial multipartite quantum states. We show that in similarity to monogamy of quantum entanglement in space, quantum entanglement in time is also endowed with this property for a particular history. Basing on these observations, we discuss further bounding of temporal correlations and derive analytically the Tsirelson bound implied by entangled histories for the Leggett-Garg inequalities.

  14. High-dimensional entanglement certification

    NASA Astrophysics Data System (ADS)

    Huang, Zixin; Maccone, Lorenzo; Karim, Akib; Macchiavello, Chiara; Chapman, Robert J.; Peruzzo, Alberto

    2016-06-01

    Quantum entanglement is the ability of joint quantum systems to possess global properties (correlation among systems) even when subsystems have no definite individual property. Whilst the 2-dimensional (qubit) case is well-understood, currently, tools to characterise entanglement in high dimensions are limited. We experimentally demonstrate a new procedure for entanglement certification that is suitable for large systems, based entirely on information-theoretics. It scales more efficiently than Bell’s inequality and entanglement witness. The method we developed works for arbitrarily large system dimension d and employs only two local measurements of complementary properties. This procedure can also certify whether the system is maximally entangled. We illustrate the protocol for families of bipartite states of qudits with dimension up to 32 composed of polarisation-entangled photon pairs.

  15. Ceramic microparticles and capsules via microfluidic processing of a preceramic polymer.

    PubMed

    Ye, Congwang; Chen, Anthony; Colombo, Paolo; Martinez, Carlos

    2010-08-06

    We have developed a robust technique to fabricate monodispersed solid and porous ceramic particles and capsules from single and double emulsion drops composed of silsesquioxane preceramic polymer. A microcapillary microfluidic device was used to generate the monodispersed drops. In this device, two round capillaries are aligned facing each other inside a square capillary. Three fluids are needed to generate the double emulsions. The inner fluid, which flows through the input capillary, and the middle fluid, which flows through the void space between the square and inner fluid capillaries, form a coaxial co-flow in a direction that is opposite to the flow of the outer fluid. As the three fluids are forced through the exit capillary, the inner and middle fluids break into monodispersed double emulsion drops in a single-step process, at rates of up to 2000 drops s(-1). Once the drops are generated, the silsesquioxane is cross-linked in solution and the cross-linked particles are dried and pyrolysed in an inert atmosphere to form oxycarbide glass particles. Particles with diameters ranging from 30 to 180 microm, shell thicknesses ranging from 10 to 50 microm and shell pore diameters ranging from 1 to 10 microm were easily prepared by changing fluid flow rates, device dimensions and fluid composition. The produced particles and capsules can be used in their polymeric state or pyrolysed to ceramic. This technique can be extended to other preceramic polymers and can be used to generate unique core-shell multimaterial particles.

  16. Dynamic cross-correlations between entangled biofilaments as they diffuse

    PubMed Central

    Tsang, Boyce; Dell, Zachary E.; Jiang, Lingxiang; Schweizer, Kenneth S.; Granick, Steve

    2017-01-01

    Entanglement in polymer and biological physics involves a state in which linear interthreaded macromolecules in isotropic liquids diffuse in a spatially anisotropic manner beyond a characteristic mesoscopic time and length scale (tube diameter). The physical reason is that linear macromolecules become transiently localized in directions transverse to their backbone but diffuse with relative ease parallel to it. Within the resulting broad spectrum of relaxation times there is an extended period before the longest relaxation time when filaments occupy a time-averaged cylindrical space of near-constant density. Here we show its implication with experiments based on fluorescence tracking of dilutely labeled macromolecules. The entangled pairs of aqueous F-actin biofilaments diffuse with separation-dependent dynamic cross-correlations that exceed those expected from continuum hydrodynamics up to strikingly large spatial distances of ≈15 µm, which is more than 104 times the size of the solvent water molecules in which they are dissolved, and is more than 50 times the dynamic tube diameter, but is almost equal to the filament length. Modeling this entangled system as a collection of rigid rods, we present a statistical mechanical theory that predicts these long-range dynamic correlations as an emergent consequence of an effective long-range interpolymer repulsion due to the de Gennes correlation hole, which is a combined consequence of chain connectivity and uncrossability. The key physical assumption needed to make theory and experiment agree is that solutions of entangled biofilaments localized in tubes that are effectively dynamically incompressible over the relevant intermediate time and length scales. PMID:28283664

  17. Are all maximally entangled states pure?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cavalcanti, D.; Brandao, F.G.S.L.; Terra Cunha, M.O.

    We study if all maximally entangled states are pure through several entanglement monotones. In the bipartite case, we find that the same conditions which lead to the uniqueness of the entropy of entanglement as a measure of entanglement exclude the existence of maximally mixed entangled states. In the multipartite scenario, our conclusions allow us to generalize the idea of the monogamy of entanglement: we establish the polygamy of entanglement, expressing that if a general state is maximally entangled with respect to some kind of multipartite entanglement, then it is necessarily factorized of any other system.

  18. Are all maximally entangled states pure?

    NASA Astrophysics Data System (ADS)

    Cavalcanti, D.; Brandão, F. G. S. L.; Terra Cunha, M. O.

    2005-10-01

    We study if all maximally entangled states are pure through several entanglement monotones. In the bipartite case, we find that the same conditions which lead to the uniqueness of the entropy of entanglement as a measure of entanglement exclude the existence of maximally mixed entangled states. In the multipartite scenario, our conclusions allow us to generalize the idea of the monogamy of entanglement: we establish the polygamy of entanglement, expressing that if a general state is maximally entangled with respect to some kind of multipartite entanglement, then it is necessarily factorized of any other system.

  19. Quantum entanglement percolation

    NASA Astrophysics Data System (ADS)

    Siomau, Michael

    2016-09-01

    Quantum communication demands efficient distribution of quantum entanglement across a network of connected partners. The search for efficient strategies for the entanglement distribution may be based on percolation theory, which describes evolution of network connectivity with respect to some network parameters. In this framework, the probability to establish perfect entanglement between two remote partners decays exponentially with the distance between them before the percolation transition point, which unambiguously defines percolation properties of any classical network or lattice. Here we introduce quantum networks created with local operations and classical communication, which exhibit non-classical percolation transition points leading to striking communication advantages over those offered by the corresponding classical networks. We show, in particular, how to establish perfect entanglement between any two nodes in the simplest possible network—the 1D chain—using imperfectly entangled pairs of qubits.

  20. Quantifying entanglement with witness operators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brandao, Fernando G.S.L.

    2005-08-15

    We present a unifying approach to the quantification of entanglement based on entanglement witnesses, which includes several already established entanglement measures such as the negativity, the concurrence, and the robustness of entanglement. We then introduce an infinite family of new entanglement quantifiers, having as its limits the best separable approximation measure and the generalized robustness. Gaussian states, states with symmetry, states constrained to super-selection rules, and states composed of indistinguishable particles are studied under the view of the witnessed entanglement. We derive new bounds to the fidelity of teleportation d{sub min}, for the distillable entanglement E{sub D} and for themore » entanglement of formation. A particular measure, the PPT-generalized robustness, stands out due to its easy calculability and provides sharper bounds to d{sub min} and E{sub D} than the negativity in most of the states. We illustrate our approach studying thermodynamical properties of entanglement in the Heisenberg XXX and dimerized models.« less

  1. Methods for producing monodispersed particles of barium titanate

    DOEpatents

    Hu, Zhong-Cheng

    2001-01-01

    The present invention is a low-temperature controlled method for producing high-quality, ultrafine monodispersed nanocrystalline microsphere powders of barium titanate and other pure or composite oxide materials having particles ranging from nanosized to micronsized particles. The method of the subject invention comprises a two-stage process. The first stage produces high quality monodispersed hydrous titania microsphere particles prepared by homogeneous precipitation via dielectric tuning in alcohol-water mixed solutions of inorganic salts. Titanium tetrachloride is used as an inorganic salt precursor material. The second stage converts the pure hydrous titania microsphere particles into crystalline barium titanate microsphere powders via low-temperature, hydrothermal reactions.

  2. High-dimensional entanglement certification

    PubMed Central

    Huang, Zixin; Maccone, Lorenzo; Karim, Akib; Macchiavello, Chiara; Chapman, Robert J.; Peruzzo, Alberto

    2016-01-01

    Quantum entanglement is the ability of joint quantum systems to possess global properties (correlation among systems) even when subsystems have no definite individual property. Whilst the 2-dimensional (qubit) case is well-understood, currently, tools to characterise entanglement in high dimensions are limited. We experimentally demonstrate a new procedure for entanglement certification that is suitable for large systems, based entirely on information-theoretics. It scales more efficiently than Bell’s inequality and entanglement witness. The method we developed works for arbitrarily large system dimension d and employs only two local measurements of complementary properties. This procedure can also certify whether the system is maximally entangled. We illustrate the protocol for families of bipartite states of qudits with dimension up to 32 composed of polarisation-entangled photon pairs. PMID:27311935

  3. Simple solvothermal synthesis of hydrophobic magnetic monodispersed Fe{sub 3}O{sub 4} nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Jing; Wang, Lu; Wang, Jing, E-mail: Jingwang@home.ipe.ac.cn

    Graphical abstract: A facile method to produce monodispersed magnetite nanoparticles is based on the solvothermal reaction of iron acetylacetonate (Fe(acac)3) decomposition. The sizes ranged from 7 to 12 nm, which could be controlled by adjusting the volume ratio of oleylamine to n-hexane. Display Omitted Highlights: ► The solvethermal reaction of Fe(acac){sub 3} decomposition was carried out at mild temperature in the presence of oleylamine and n-hexane. ► The size of nanocrystals is controlled by adjusting the volume ratio of oleylamine to n-hexane. ► The low-boiling-point solvent n-hexane offered autogenous pressure parameter after gasified in the reaction temperature. ► The asmore » prepared hydrophobic monodisperse Fe{sub 3}O{sub 4} NPs can be used to prepare the magnetic micelles for future biomedical applications. -- Abstract: A new solvothermal method is proposed for the preparation of Fe{sub 3}O{sub 4} nanoparticles (NPs) from iron acetylacetonate in the presence of oleylamine and n-hexane. The products are characterized by X-ray powder diffraction, infrared (IR) spectroscopy, transmission electron microscopy, thermogravimetry/differential thermogravimetry (TG/DTG) analysis, and vibrating sample magnetometery. The new procedure yields superparamagnetic monodispersed Fe{sub 3}O{sub 4} particles with sizes ranging from 7 nm to 12 nm. The nanocrystal sizes are controlled by adjusting the volume ratio of oleylamine to n-hexane. IR and TG/DTG analyses indicate that the oleylamine molecules, as stabilizers, are adsorbed on the surface of Fe{sub 3}O{sub 4} NPs as bilayer adsorption models. The surface adsorption quantities of oleylamine on 7.5 and 10.4 nm-diameter Fe{sub 3}O{sub 4} NPs are 18% and 11%, respectively. The hydrophobic surface of the obtained nanocrystals is passivated by adsorbed organic solvent molecules. These molecules provide stability against agglomeration, enable solubility in nonpolar solvents, and allow the formation of magnetic

  4. Monodisperse Latex Reactor (MLR): A materials processing space shuttle mid-deck payload

    NASA Technical Reports Server (NTRS)

    Kornfeld, D. M.

    1985-01-01

    The monodisperse latex reactor experiment has flown five times on the space shuttle, with three more flights currently planned. The objectives of this project is to manufacture, in the microgravity environment of space, large particle-size monodisperse polystyrene latexes in particle sizes larger and more uniform than can be manufactured on Earth. Historically it has been extremely difficult, if not impossible to manufacture in quantity very high quality monodisperse latexes on Earth in particle sizes much above several micrometers in diameter due to buoyancy and sedimentation problems during the polymerization reaction. However the MLR project has succeeded in manufacturing in microgravity monodisperse latex particles as large as 30 micrometers in diameter with a standard deviation of 1.4 percent. It is expected that 100 micrometer particles will have been produced by the completion of the the three remaining flights. These tiny, highly uniform latex microspheres have become the first material to be commercially marketed that was manufactured in space.

  5. Tripartite counterfactual entanglement distribution.

    PubMed

    Chen, Yuanyuan; Gu, Xuemei; Jiang, Dong; Xie, Ling; Chen, Lijun

    2015-08-10

    We propose two counterfactual schemes for tripartite entanglement distribution without any physical particles travelling through the quantum channel. One scheme arranges three participators to connect with the absorption object by using switch. Using the "chained" quantum Zeno effect, three participators can accomplish the task of entanglement distribution with unique counterfactual interference probability. Another scheme uses Michelson-type interferometer to swap two entanglement pairs such that the photons of three participators are entangled. Moreover, the distance of entanglement distribution is doubled as two distant absorption objects are used. We also discuss the implementation issues to show that the proposed schemes can be realized with current technology.

  6. Quantum entanglement beyond Gaussian criteria.

    PubMed

    Gomes, R M; Salles, A; Toscano, F; Souto Ribeiro, P H; Walborn, S P

    2009-12-22

    Most of the attention given to continuous variable systems for quantum information processing has traditionally been focused on Gaussian states. However, non-Gaussianity is an essential requirement for universal quantum computation and entanglement distillation, and can improve the efficiency of other quantum information tasks. Here we report the experimental observation of genuine non-Gaussian entanglement using spatially entangled photon pairs. The quantum correlations are invisible to all second-order tests, which identify only Gaussian entanglement, and are revealed only under application of a higher-order entanglement criterion. Thus, the photons exhibit a variety of entanglement that cannot be reproduced by Gaussian states.

  7. Faithful Squashed Entanglement

    NASA Astrophysics Data System (ADS)

    Brandão, Fernando G. S. L.; Christandl, Matthias; Yard, Jon

    2011-09-01

    Squashed entanglement is a measure for the entanglement of bipartite quantum states. In this paper we present a lower bound for squashed entanglement in terms of a distance to the set of separable states. This implies that squashed entanglement is faithful, that is, it is strictly positive if and only if the state is entangled. We derive the lower bound on squashed entanglement from a lower bound on the quantum conditional mutual information which is used to define squashed entanglement. The quantum conditional mutual information corresponds to the amount by which strong subadditivity of von Neumann entropy fails to be saturated. Our result therefore sheds light on the structure of states that almost satisfy strong subadditivity with equality. The proof is based on two recent results from quantum information theory: the operational interpretation of the quantum mutual information as the optimal rate for state redistribution and the interpretation of the regularised relative entropy of entanglement as an error exponent in hypothesis testing. The distance to the set of separable states is measured in terms of the LOCC norm, an operationally motivated norm giving the optimal probability of distinguishing two bipartite quantum states, each shared by two parties, using any protocol formed by local quantum operations and classical communication (LOCC) between the parties. A similar result for the Frobenius or Euclidean norm follows as an immediate consequence. The result has two applications in complexity theory. The first application is a quasipolynomial-time algorithm solving the weak membership problem for the set of separable states in LOCC or Euclidean norm. The second application concerns quantum Merlin-Arthur games. Here we show that multiple provers are not more powerful than a single prover when the verifier is restricted to LOCC operations thereby providing a new characterisation of the complexity class QMA.

  8. Sustainable synthesis of monodispersed spinel nano-ferrites

    EPA Science Inventory

    A sustainable approach for the synthesis of various monodispersed spinel ferrite nanoparticles has been developed that occurs at water-toluene interface under both conventional and microwave hydrothermal conditions. This general synthesis procedure utilizes readily available and ...

  9. Detecting faked continuous-variable entanglement using one-sided device-independent entanglement witnesses

    NASA Astrophysics Data System (ADS)

    Opanchuk, B.; Arnaud, L.; Reid, M. D.

    2014-06-01

    We demonstrate the principle of one-sided device-independent continuous-variable (CV) quantum information. In situations of no trust, we show by enactment how the use of standard CV entanglement criteria can mislead Charlie into thinking that Alice and Bob share entanglement, when the data are actually generated classically using a local-hidden-variable theory based on the Wigner function. We distinguish between criteria that demonstrate CV entanglement, and criteria that demonstrate the CV Einstein-Podolsky-Rosen (EPR) steering paradox. We show that the latter, but not the former, are necessarily one-sided device-independent entanglement witnesses, and can be used by Charlie to signify genuine EPR entanglement, if he trusts only Alice. A monogamy result for the EPR steering paradox confirms the security of the shared amplitude values in that case.

  10. Photon Entanglement Through Brain Tissue

    PubMed Central

    Shi, Lingyan; Galvez, Enrique J.; Alfano, Robert R.

    2016-01-01

    Photon entanglement, the cornerstone of quantum correlations, provides a level of coherence that is not present in classical correlations. Harnessing it by study of its passage through organic matter may offer new possibilities for medical diagnosis technique. In this work, we study the preservation of photon entanglement in polarization, created by spontaneous parametric down-conversion, after one entangled photon propagates through multiphoton-scattering brain tissue slices with different thickness. The Tangle-Entropy (TS) plots show the strong preservation of entanglement of photons propagating in brain tissue. By spatially filtering the ballistic scattering of an entangled photon, we find that its polarization entanglement is preserved and non-locally correlated with its twin in the TS plots. The degree of entanglement correlates better with structure and water content than with sample thickness. PMID:27995952

  11. Photon Entanglement Through Brain Tissue.

    PubMed

    Shi, Lingyan; Galvez, Enrique J; Alfano, Robert R

    2016-12-20

    Photon entanglement, the cornerstone of quantum correlations, provides a level of coherence that is not present in classical correlations. Harnessing it by study of its passage through organic matter may offer new possibilities for medical diagnosis technique. In this work, we study the preservation of photon entanglement in polarization, created by spontaneous parametric down-conversion, after one entangled photon propagates through multiphoton-scattering brain tissue slices with different thickness. The Tangle-Entropy (TS) plots show the strong preservation of entanglement of photons propagating in brain tissue. By spatially filtering the ballistic scattering of an entangled photon, we find that its polarization entanglement is preserved and non-locally correlated with its twin in the TS plots. The degree of entanglement correlates better with structure and water content than with sample thickness.

  12. Photon Entanglement Through Brain Tissue

    NASA Astrophysics Data System (ADS)

    Shi, Lingyan; Galvez, Enrique J.; Alfano, Robert R.

    2016-12-01

    Photon entanglement, the cornerstone of quantum correlations, provides a level of coherence that is not present in classical correlations. Harnessing it by study of its passage through organic matter may offer new possibilities for medical diagnosis technique. In this work, we study the preservation of photon entanglement in polarization, created by spontaneous parametric down-conversion, after one entangled photon propagates through multiphoton-scattering brain tissue slices with different thickness. The Tangle-Entropy (TS) plots show the strong preservation of entanglement of photons propagating in brain tissue. By spatially filtering the ballistic scattering of an entangled photon, we find that its polarization entanglement is preserved and non-locally correlated with its twin in the TS plots. The degree of entanglement correlates better with structure and water content than with sample thickness.

  13. Experimental purification of two-atom entanglement.

    PubMed

    Reichle, R; Leibfried, D; Knill, E; Britton, J; Blakestad, R B; Jost, J D; Langer, C; Ozeri, R; Seidelin, S; Wineland, D J

    2006-10-19

    Entanglement is a necessary resource for quantum applications--entanglement established between quantum systems at different locations enables private communication and quantum teleportation, and facilitates quantum information processing. Distributed entanglement is established by preparing an entangled pair of quantum particles in one location, and transporting one member of the pair to another location. However, decoherence during transport reduces the quality (fidelity) of the entanglement. A protocol to achieve entanglement 'purification' has been proposed to improve the fidelity after transport. This protocol uses separate quantum operations at each location and classical communication to distil high-fidelity entangled pairs from lower-fidelity pairs. Proof-of-principle experiments distilling entangled photon pairs have been carried out. However, these experiments obtained distilled pairs with a low probability of success and required destruction of the entangled pairs, rendering them unavailable for further processing. Here we report efficient and non-destructive entanglement purification with atomic quantum bits. Two noisy entangled pairs were created and distilled into one higher-fidelity pair available for further use. Success probabilities were above 35 per cent. The many applications of entanglement purification make it one of the most important techniques in quantum information processing.

  14. Quantum entanglement beyond Gaussian criteria

    PubMed Central

    Gomes, R. M.; Salles, A.; Toscano, F.; Souto Ribeiro, P. H.; Walborn, S. P.

    2009-01-01

    Most of the attention given to continuous variable systems for quantum information processing has traditionally been focused on Gaussian states. However, non-Gaussianity is an essential requirement for universal quantum computation and entanglement distillation, and can improve the efficiency of other quantum information tasks. Here we report the experimental observation of genuine non-Gaussian entanglement using spatially entangled photon pairs. The quantum correlations are invisible to all second-order tests, which identify only Gaussian entanglement, and are revealed only under application of a higher-order entanglement criterion. Thus, the photons exhibit a variety of entanglement that cannot be reproduced by Gaussian states. PMID:19995963

  15. Entanglement-assisted quantum convolutional coding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wilde, Mark M.; Brun, Todd A.

    2010-04-15

    We show how to protect a stream of quantum information from decoherence induced by a noisy quantum communication channel. We exploit preshared entanglement and a convolutional coding structure to develop a theory of entanglement-assisted quantum convolutional coding. Our construction produces a Calderbank-Shor-Steane (CSS) entanglement-assisted quantum convolutional code from two arbitrary classical binary convolutional codes. The rate and error-correcting properties of the classical convolutional codes directly determine the corresponding properties of the resulting entanglement-assisted quantum convolutional code. We explain how to encode our CSS entanglement-assisted quantum convolutional codes starting from a stream of information qubits, ancilla qubits, and shared entangled bits.

  16. Facile Syntheses of Monodisperse Ultra-Small Au Clusters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bertino, Massimo F.; Sun, Zhong-Ming; Zhang, Rui

    2006-11-02

    During our effort to synthesize the tetrahedral Au20 cluster, we found a facile synthetic route to prepare monodisperse suspensions of ultra-small Au clusters AuN (N<12) using diphosphine ligands. In our monophasic and single-pot synthesis, a Au precursor ClAu(I)PPh3 and a bidentate phosphine ligand P(Ph)2(CH2)MP(Ph)2 (Ph = phenyl) are dissolved in an organic solvent. Au(I) is reduced slowly by a borane-tert-butylamine complex to form Au clusters coordinated by the diphosphine ligand. The Au clusters are characterized by both high resolution mass spectrometry and UV-Vis absorption spectroscopy. We found that the mean cluster size obtained depends on the chain length M ofmore » the ligand. In particular, a single monodispersed Au11 cluster is obtained with the P(Ph)2(CH2)3P(Ph)2 ligand, whereas P(Ph)2(CH2)MP(Ph)2 ligands with M = 5 and 6 yield Au10 and Au8 clusters. The simplicity of our synthetic method makes it suitable for large-scale production of nearly monodisperse ultrasmall Au clusters. It is suggested that diphosphines provide a set of flexible ligands to allow size-controlled synthesis of Au nanoparticles.« less

  17. Protecting single-photon entanglement with practical entanglement source

    NASA Astrophysics Data System (ADS)

    Zhou, Lan; Ou-Yang, Yang; Wang, Lei; Sheng, Yu-Bo

    2017-06-01

    Single-photon entanglement (SPE) is important for quantum communication and quantum information processing. However, SPE is sensitive to photon loss. In this paper, we discuss a linear optical amplification protocol for protecting SPE. Different from the previous protocols, we exploit the practical spontaneous parametric down-conversion (SPDC) source to realize the amplification, for the ideal entanglement source is unavailable in current quantum technology. Moreover, we prove that the amplification using the entanglement generated from SPDC source as auxiliary is better than the amplification assisted with single photons. The reason is that the vacuum state from SPDC source will not affect the amplification, so that it can be eliminated automatically. This protocol may be useful in future long-distance quantum communications.

  18. An entangled-light-emitting diode.

    PubMed

    Salter, C L; Stevenson, R M; Farrer, I; Nicoll, C A; Ritchie, D A; Shields, A J

    2010-06-03

    An optical quantum computer, powerful enough to solve problems so far intractable using conventional digital logic, requires a large number of entangled photons. At present, entangled-light sources are optically driven with lasers, which are impractical for quantum computing owing to the bulk and complexity of the optics required for large-scale applications. Parametric down-conversion is the most widely used source of entangled light, and has been used to implement non-destructive quantum logic gates. However, these sources are Poissonian and probabilistically emit zero or multiple entangled photon pairs in most cycles, fundamentally limiting the success probability of quantum computational operations. These complications can be overcome by using an electrically driven on-demand source of entangled photon pairs, but so far such a source has not been produced. Here we report the realization of an electrically driven source of entangled photon pairs, consisting of a quantum dot embedded in a semiconductor light-emitting diode (LED) structure. We show that the device emits entangled photon pairs under d.c. and a.c. injection, the latter achieving an entanglement fidelity of up to 0.82. Entangled light with such high fidelity is sufficient for application in quantum relays, in core components of quantum computing such as teleportation, and in entanglement swapping. The a.c. operation of the entangled-light-emitting diode (ELED) indicates its potential function as an on-demand source without the need for a complicated laser driving system; consequently, the ELED is at present the best source on which to base future scalable quantum information applications.

  19. Probing the cross-effect of strains in non-linear elasticity of nearly regular polymer networks by pure shear deformation.

    PubMed

    Katashima, Takuya; Urayama, Kenji; Chung, Ung-il; Sakai, Takamasa

    2015-05-07

    The pure shear deformation of the Tetra-polyethylene glycol gels reveals the presence of an explicit cross-effect of strains in the strain energy density function even for the polymer networks with nearly regular structure including no appreciable amount of structural defect such as trapped entanglement. This result is in contrast to the expectation of the classical Gaussian network model (Neo Hookean model), i.e., the vanishing of the cross effect in regular networks with no trapped entanglement. The results show that (1) the cross effect of strains is not dependent on the network-strand length; (2) the cross effect is not affected by the presence of non-network strands; (3) the cross effect is proportional to the network polymer concentration including both elastically effective and ineffective strands; (4) no cross effect is expected exclusively in zero limit of network concentration in real polymer networks. These features indicate that the real polymer networks with regular network structures have an explicit cross-effect of strains, which originates from some interaction between network strands (other than entanglement effect) such as nematic interaction, topological interaction, and excluded volume interaction.

  20. Highly Monodisperse Microporous Polymeric and Carbonaceous Nanospheres with Multifunctional Properties

    PubMed Central

    Ouyang, Yi; Shi, Huimin; Fu, Ruowen; Wu, Dingcai

    2013-01-01

    Fabrication of monodisperse porous polymeric nanospheres with diameters below 500 nm remains a great challenge, due to serious crosslinking between neighboring nanospheres during pore-making process. Here we show how a versatile hypercrosslinking strategy can be used to prepare monodisperse microporous polystyrene nanospheres (MMPNSs) with diameters as low as ca. 190 nm. In our approach, an unreactive crosslinked PS outer skin as protective layer can be in-situ formed at the very beginning of hypercrosslinking treatment to minimize the undesired inter-sphere crosslinking. The as-prepared MMPNSs with a well-developed microporous network demonstrate unusual multifunctional properties, including remarkable colloidal stability in aqueous solution, good adsorption-release property for drug, and large adsorption capacity toward organic vapors. Surprisingly, MMPNSs can be directly transformed into high-surface-area monodisperse carbon nanospheres with good colloidal stability via a facile hydrothermal-assisted carbonization procedure. These findings provide a new benchmark for fabricating well-defined porous nanospheres with great promise for various applications. PMID:23478487

  1. Ceramic microparticles and capsules via microfluidic processing of a preceramic polymer

    PubMed Central

    Ye, Congwang; Chen, Anthony; Colombo, Paolo; Martinez, Carlos

    2010-01-01

    We have developed a robust technique to fabricate monodispersed solid and porous ceramic particles and capsules from single and double emulsion drops composed of silsesquioxane preceramic polymer. A microcapillary microfluidic device was used to generate the monodispersed drops. In this device, two round capillaries are aligned facing each other inside a square capillary. Three fluids are needed to generate the double emulsions. The inner fluid, which flows through the input capillary, and the middle fluid, which flows through the void space between the square and inner fluid capillaries, form a coaxial co-flow in a direction that is opposite to the flow of the outer fluid. As the three fluids are forced through the exit capillary, the inner and middle fluids break into monodispersed double emulsion drops in a single-step process, at rates of up to 2000 drops s−1. Once the drops are generated, the silsesquioxane is cross-linked in solution and the cross-linked particles are dried and pyrolysed in an inert atmosphere to form oxycarbide glass particles. Particles with diameters ranging from 30 to 180 µm, shell thicknesses ranging from 10 to 50 µm and shell pore diameters ranging from 1 to 10 µm were easily prepared by changing fluid flow rates, device dimensions and fluid composition. The produced particles and capsules can be used in their polymeric state or pyrolysed to ceramic. This technique can be extended to other preceramic polymers and can be used to generate unique core–shell multimaterial particles. PMID:20484226

  2. Purified discord and multipartite entanglement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, Eric G.; Webster, Eric J.; Martín-Martínez, Eduardo, E-mail: emmfis@gmail.com

    2013-10-15

    We study bipartite quantum discord as a manifestation of a multipartite entanglement structure in the tripartite purified system. In particular, we find that bipartite quantum discord requires the presence of both bipartite and tripartite entanglement in the purification. This allows one to understand the asymmetry of quantum discord, D(A,B)≠D(B,A) in terms of entanglement monogamy. As instructive special cases, we study discord for qubits and Gaussian states in detail. As a result of this we shed new light on a counterintuitive property of Gaussian states: the presence of classical correlations necessarily requires the presence of quantum correlations. Finally, our results alsomore » shed new light on a protocol for remote activation of entanglement by a third party. -- Highlights: •Bipartite quantum discord as a manifestation of multipartite entanglement. •Relevance of quantum discord as a utilizable resource for quantum info. tasks. •Quantum discord manifests itself in entanglement in the purified state. •Relation between asymmetry of discord and entanglement monogamy. •Protocol for remote activation of entanglement by a third party.« less

  3. Mixtures of maximally entangled pure states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flores, M.M., E-mail: mflores@nip.up.edu.ph; Galapon, E.A., E-mail: eric.galapon@gmail.com

    We study the conditions when mixtures of maximally entangled pure states remain entangled. We found that the resulting mixed state remains entangled when the number of entangled pure states to be mixed is less than or equal to the dimension of the pure states. For the latter case of mixing a number of pure states equal to their dimension, we found that the mixed state is entangled provided that the entangled pure states to be mixed are not equally weighted. We also found that one can restrict the set of pure states that one can mix from in order tomore » ensure that the resulting mixed state is genuinely entangled. Also, we demonstrate how these results could be applied as a way to detect entanglement in mixtures of the entangled pure states with noise.« less

  4. Experimental test of entangled histories

    NASA Astrophysics Data System (ADS)

    Cotler, Jordan; Duan, Lu-Ming; Hou, Pan-Yu; Wilczek, Frank; Xu, Da; Yin, Zhang-Qi; Zu, Chong

    2017-12-01

    Entangled histories arise when a system partially decoheres in such a way that its past cannot be described by a sequence of states, but rather a superposition of sequences of states. Such entangled histories have not been previously observed. We propose and demonstrate the first experimental scheme to create entangled history states of the Greenberger-Horne-Zeilinger (GHZ) type. In our experiment, the polarization states of a single photon at three different times are prepared as a GHZ entangled history state. We define a GHZ functional which attains a maximum value 1 on the ideal GHZ entangled history state and is bounded above by 1 / 16 for any three-time history state lacking tripartite entanglement. We have measured the GHZ functional on a state we have prepared experimentally, yielding a value of 0 . 656 ± 0 . 005, clearly demonstrating the contribution of entangled histories.

  5. One-pot template-free synthesis of monodisperse hollow hydrogel microspheres and their resulting properties.

    PubMed

    Lim, Hyung-Seok; Kwon, Eunji; Lee, Moonjoo; Moo Lee, Young; Suh, Kyung-Do

    2013-08-01

    Monodisperse poly(methacrylic acid/ethyleneglycoldimethacrylate) (MAA/EGDMA) hollow microcapsules, which exhibit pH-responsive behavior, are prepared by diffusion of cationic surfactants and hydrophobic interaction. During the association of the negatively charged hydrogel microspheres and an oppositely charged surfactant (cetyltrimethylammonium bromide, CTA(+)B), the hydrophobic polymer-surfactant complexes that form are separated from the internal water; consequently, a hollow structure can be formed. Confocal laser scanning microscopy, UV spectro-scopy and zeta potential are employed to study the formation of the hollow structure during the diffusion of the cationic surfactant. The controlled release behavior of methylene blue as a model drug from the as-prepared poly(MAA/EGDMA) microcapsules with a hollow structure is investigated under different pH conditions. The hollow structure can be retained, even during repetitive pH changes. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Family of nonlocal bound entangled states

    NASA Astrophysics Data System (ADS)

    Yu, Sixia; Oh, C. H.

    2017-03-01

    Bound entanglement, being entangled yet not distillable, is essential to our understanding of the relations between nonlocality and entanglement besides its applications in certain quantum information tasks. Recently, bound entangled states that violate a Bell inequality have been constructed for a two-qutrit system, disproving a conjecture by Peres that bound entanglement is local. Here we construct this kind of nonlocal bound entangled state for all finite dimensions larger than two, making possible their experimental demonstration in most general systems. We propose a Bell inequality, based on a Hardy-type argument for nonlocality, and a steering inequality to identify their nonlocality. We also provide a family of entanglement witnesses to detect their entanglement beyond the Bell inequality and the steering inequality.

  7. Controlled Interactions between Two Dimensional Layered Inorganic Nanosheets and Polymers

    DTIC Science & Technology

    2016-06-15

    transition metal and non- pair electrons of amine allows us to develop scalable, stable and uniform composite films with numerous combinations of TMD...modification of TMDs sheets with amine-terminated polymers is introduced and the strong Lewis acid-base interaction between transition metal and non- pair ...can be readily entangled with other chains of the matrix polymer, thereby ensuring homogeneous PNC formation. The solvent medium offers an extra

  8. Pseudo-entanglement evaluated in noninertial frames

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mehri-Dehnavi, Hossein, E-mail: mehri@alice.math.kindai.ac.jp; Research Center for Quantum Computing, Kinki University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502; Mirza, Behrouz, E-mail: b.mirza@cc.iut.ac.ir

    2011-05-15

    Research Highlights: > We study pseudo-entanglement in noninertial frames. > We examine different measures of entanglement and nonclassical correlation for the state. > We find the threshold for entanglement is changed in noninertial frames. > We also describe the behavior of local unitary classes of states in noninertial frames. - Abstract: We study quantum discord, in addition to entanglement, of bipartite pseudo-entanglement in noninertial frames. It is shown that the entanglement degrades from its maximum value in a stationary frame to a minimum value in an infinite accelerating frame. There is a critical region found in which, for particular cases,more » entanglement of states vanishes for certain accelerations. The quantum discord of pseudo-entanglement decreases by increasing the acceleration. Also, for a physically inaccessible region, entanglement and nonclassical correlation are evaluated and shown to match the corresponding values of the physically accessible region for an infinite acceleration.« less

  9. Method for producing monodisperse aerosols

    DOEpatents

    Ortiz, Lawrence W.; Soderholm, Sidney C.

    1990-01-01

    An aerosol generator is described which is capable of producing a monodisperse aerosol within narrow limits utilizing an aqueous solution capable of providing a high population of seed nuclei and an organic solution having a low vapor pressure. The two solutions are cold nebulized, mixed, vaporized, and cooled. During cooling, particles of the organic vapor condense onto the excess seed nuclei, and grow to a uniform particle size.

  10. Sudden death of effective entanglement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roszak, K.; Institute of Physics, Wroclaw University of Technology, 50-370 Wroclaw; Horodecki, P.

    2010-04-15

    Sudden death of entanglement is a well-known effect resulting from the finite volume of separable states. We study the case when the observer has a limited measurement capability and analyze the effective entanglement (i.e., entanglement minimized over the output data). We show that in the well-defined system of two quantum dots monitored by single-electron transistors, one may observe a sudden death of effective entanglement when real, physical entanglement is still alive. For certain measurement setups, this occurs even for initial states for which sudden death of physical entanglement is not possible at all. The principles of the analysis may bemore » applied to other analogous scenarios, such as estimation of the parameters arising from quantum process tomography.« less

  11. Preparation and magnetic properties of magnetic photonic crystal by using monodisperse polystyrene covered Fe3O4 nanoparticles onto glass substrate

    NASA Astrophysics Data System (ADS)

    Azizi, Zahra Sadat; Tehranchi, Mohammad Mehdi; Vakili, Seyed Hamed; Pourmahdian, Saeed

    2018-05-01

    Engineering approach towards combined photonic band gap properties and magnetic/polymer composite particles, attract considerable attention of researchers due to their unique properties. In this research, two different magnetic particles were prepared by nearly monodisperse polystyrene spheres as bead with two concentrations of Fe3O4 nanoparticles to prepare magnetic photonic crystals (MPCs). The crystal surfaces and particles morphology were investigated employing scanning electron microscopy and transmission electron microscopy. The volume fraction of magnetic material embedded into colloidal spheres and their morphology was found to be a key parameter in the optical and magneto-optical properties of transparent MPC.

  12. Quantum entanglement for systems of identical bosons: II. Spin squeezing and other entanglement tests

    NASA Astrophysics Data System (ADS)

    Dalton, B. J.; Goold, J.; Garraway, B. M.; Reid, M. D.

    2017-02-01

    These two accompanying papers are concerned with entanglement for systems of identical massive bosons and the relationship to spin squeezing and other quantum correlation effects. The main focus is on two mode entanglement, but multi-mode entanglement is also considered. The bosons may be atoms or molecules as in cold quantum gases. The previous paper I dealt with the general features of quantum entanglement and its specific definition in the case of systems of identical bosons. Entanglement is a property shared between two (or more) quantum sub-systems. In defining entanglement for systems of identical massive particles, it was concluded that the single particle states or modes are the most appropriate choice for sub-systems that are distinguishable, that the general quantum states must comply both with the symmetrization principle and the super-selection rules (SSR) that forbid quantum superpositions of states with differing total particle number (global SSR compliance). Further, it was concluded that (in the separable states) quantum superpositions of sub-system states with differing sub-system particle number (local SSR compliance) also do not occur. The present paper II determines possible tests for entanglement based on the treatment of entanglement set out in paper I. Several inequalities involving variances and mean values of operators have been previously proposed as tests for entanglement between two sub-systems. These inequalities generally involve mode annihilation and creation operators and include the inequalities that define spin squeezing. In this paper, spin squeezing criteria for two mode systems are examined, and spin squeezing is also considered for principle spin operator components where the covariance matrix is diagonal. The proof, which is based on our SSR compliant approach shows that the presence of spin squeezing in any one of the spin components requires entanglement of the relevant pair of modes. A simple Bloch vector test for

  13. Entanglement entropy with a time-dependent Hamiltonian

    NASA Astrophysics Data System (ADS)

    Sivaramakrishnan, Allic

    2018-03-01

    The time evolution of entanglement tracks how information propagates in interacting quantum systems. We study entanglement entropy in CFT2 with a time-dependent Hamiltonian. We perturb by operators with time-dependent source functions and use the replica trick to calculate higher-order corrections to entanglement entropy. At first order, we compute the correction due to a metric perturbation in AdS3/CFT2 and find agreement on both sides of the duality. Past first order, we find evidence of a universal structure of entanglement propagation to all orders. The central feature is that interactions entangle unentangled excitations. Entanglement propagates according to "entanglement diagrams," proposed structures that are motivated by accessory spacetime diagrams for real-time perturbation theory. To illustrate the mechanisms involved, we compute higher-order corrections to free fermion entanglement entropy. We identify an unentangled operator, one which does not change the entanglement entropy to any order. Then, we introduce an interaction and find it changes entanglement entropy by entangling the unentangled excitations. The entanglement propagates in line with our conjecture. We compute several entanglement diagrams. We provide tools to simplify the computation of loop entanglement diagrams, which probe UV effects in entanglement propagation in CFT and holography.

  14. Universal quantum computation with little entanglement.

    PubMed

    Van den Nest, Maarten

    2013-02-08

    We show that universal quantum computation can be achieved in the standard pure-state circuit model while the entanglement entropy of every bipartition is small in each step of the computation. The entanglement entropy required for large-scale quantum computation even tends to zero. Moreover we show that the same conclusion applies to many entanglement measures commonly used in the literature. This includes e.g., the geometric measure, localizable entanglement, multipartite concurrence, squashed entanglement, witness-based measures, and more generally any entanglement measure which is continuous in a certain natural sense. These results demonstrate that many entanglement measures are unsuitable tools to assess the power of quantum computers.

  15. Multi-frequency entanglement router system

    NASA Astrophysics Data System (ADS)

    Erdmann, Reinhard; Hughes, David

    2017-05-01

    A high performance free-space Wavelength Division Multiplexed (WDM) transceiver system is assessed as to its viability for routing collinear entangled photons in place of the classical optical signals for which it was designed. Explicit calculations demonstrate that entanglement in the input state is retained through transit of the system without intrinsic loss. Introducing spatial degrees of freedom changed the entanglement so that it could be manifested at remote locations, as required in non-local Bell test measurements or Quantum Key Distribution (QKD) Protocols. It was also found that by adding proper components, the exit state could be changed from being frequency entangled to polarization entangled, with respect to the (remote) paths of the photons. Finally it was found possible to route a complete entangled state to either of the two remote users by proper selection of the discrete frequencies in the input state. Each entanglement in the photon states was maximal, hence suited for Quantum Information Processing (QIP) applications.

  16. Entangled spins and ghost-spins

    NASA Astrophysics Data System (ADS)

    Jatkar, Dileep P.; Narayan, K.

    2017-09-01

    We study patterns of quantum entanglement in systems of spins and ghost-spins regarding them as simple quantum mechanical toy models for theories containing negative norm states. We define a single ghost-spin as in [20] as a 2-state spin variable with an indefinite inner product in the state space. We find that whenever the spin sector is disentangled from the ghost-spin sector (both of which could be entangled within themselves), the reduced density matrix obtained by tracing over all the ghost-spins gives rise to positive entanglement entropy for positive norm states, while negative norm states have an entanglement entropy with a negative real part and a constant imaginary part. However when the spins are entangled with the ghost-spins, there are new entanglement patterns in general. For systems where the number of ghost-spins is even, it is possible to find subsectors of the Hilbert space where positive norm states always lead to positive entanglement entropy after tracing over the ghost-spins. With an odd number of ghost-spins however, we find that there always exist positive norm states with negative real part for entanglement entropy after tracing over the ghost-spins.

  17. Towards Cluster-Assembled Materials of True Monodispersity in Size and Chemical Environment: Synthesis, Dynamics and Activity

    DTIC Science & Technology

    2016-10-27

    AFRL-AFOSR-UK-TR-2016-0037 Towards cluster-assembled materials of true monodispersity in size and chemical environment: Synthesis, Dynamics and...Towards cluster-assembled materials of true monodispersity in size and chemical environment: synthesis, dynamics and activity 5a.  CONTRACT NUMBER 5b...report Towards cluster-assembled materials of true monodispersity in size and chemical environment: Synthesis, Dynamics and Activity Ulrich Heiz

  18. Higher-order quantum entanglement

    NASA Technical Reports Server (NTRS)

    Zeilinger, Anton; Horne, Michael A.; Greenberger, Daniel M.

    1992-01-01

    In quantum mechanics, the general state describing two or more particles is a linear superposition of product states. Such a superposition is called entangled if it cannot be factored into just one product. When only two particles are entangled, the stage is set for Einstein-Podolsky-Rosen (EPR) discussions and Bell's proof that the EPR viewpoint contradicts quantum mechanics. If more than two particles are involved, new possibilities and phenomena arise. For example, the Greenberger, Horne, and Zeilinger (GHZ) disproof of EPR applies. Furthermore, as we point out, with three or more particles even entanglement itself can be an entangled property.

  19. Holographic entanglement entropy and entanglement thermodynamics of 'black' non-susy D3 brane

    NASA Astrophysics Data System (ADS)

    Bhattacharya, Aranya; Roy, Shibaji

    2018-06-01

    Like BPS D3 brane, the non-supersymmetric (non-susy) D3 brane of type IIB string theory is also known to have a decoupling limit and leads to a non-supersymmetric AdS/CFT correspondence. The throat geometry in this case represents a QFT which is neither conformal nor supersymmetric. The 'black' version of the non-susy D3 brane in the decoupling limit describes a QFT at finite temperature. Here we first compute the entanglement entropy for small subsystem of such QFT from the decoupled geometry of 'black' non-susy D3 brane using holographic technique. Then we study the entanglement thermodynamics for the weakly excited states of this QFT from the asymptotically AdS geometry of the decoupled 'black' non-susy D3 brane. We observe that for small subsystem this background indeed satisfies a first law like relation with a universal (entanglement) temperature inversely proportional to the size of the subsystem and an (entanglement) pressure normal to the entangling surface. Finally we show how the entanglement entropy makes a cross-over to the thermal entropy at high temperature.

  20. Entanglement by Path Identity.

    PubMed

    Krenn, Mario; Hochrainer, Armin; Lahiri, Mayukh; Zeilinger, Anton

    2017-02-24

    Quantum entanglement is one of the most prominent features of quantum mechanics and forms the basis of quantum information technologies. Here we present a novel method for the creation of quantum entanglement in multipartite and high-dimensional systems. The two ingredients are (i) superposition of photon pairs with different origins and (ii) aligning photons such that their paths are identical. We explain the experimentally feasible creation of various classes of multiphoton entanglement encoded in polarization as well as in high-dimensional Hilbert spaces-starting only from nonentangled photon pairs. For two photons, arbitrary high-dimensional entanglement can be created. The idea of generating entanglement by path identity could also apply to quantum entities other than photons. We discovered the technique by analyzing the output of a computer algorithm. This shows that computer designed quantum experiments can be inspirations for new techniques.

  1. Entanglement by Path Identity

    NASA Astrophysics Data System (ADS)

    Krenn, Mario; Hochrainer, Armin; Lahiri, Mayukh; Zeilinger, Anton

    2017-02-01

    Quantum entanglement is one of the most prominent features of quantum mechanics and forms the basis of quantum information technologies. Here we present a novel method for the creation of quantum entanglement in multipartite and high-dimensional systems. The two ingredients are (i) superposition of photon pairs with different origins and (ii) aligning photons such that their paths are identical. We explain the experimentally feasible creation of various classes of multiphoton entanglement encoded in polarization as well as in high-dimensional Hilbert spaces—starting only from nonentangled photon pairs. For two photons, arbitrary high-dimensional entanglement can be created. The idea of generating entanglement by path identity could also apply to quantum entities other than photons. We discovered the technique by analyzing the output of a computer algorithm. This shows that computer designed quantum experiments can be inspirations for new techniques.

  2. High-speed monodisperse droplet generation by ultrasonically controlled micro-jet breakup

    NASA Astrophysics Data System (ADS)

    Frommhold, Philipp Erhard; Lippert, Alexander; Holsteyns, Frank Ludwig; Mettin, Robert

    2014-04-01

    A liquid jet that is ejected from a nozzle into air will disintegrate into drops via the well-known Plateau-Rayleigh instability within a certain range of Ohnesorge and Reynolds numbers. With the focus on the micrometer scale, we investigate the control of this process by superimposing a suitable ultrasonic signal, which causes the jet to break up into a very precise train of monodisperse droplets. The jet leaves a pressurized container of liquid via a small orifice of about 20 μm diameter. The break-up process and the emerging droplets are recorded via high-speed imaging. An extended parameter study of exit speed and ultrasonic frequency is carried out for deionized water to evaluate the jet's state and the subsequent generation of monodisperse droplets. Maximum exit velocities obtained reach almost 120 m s-1, and frequencies have been applied up to 1.8 MHz. Functionality of the method is confirmed for five additional liquids for moderate jet velocities 38 m s-1. For the uncontrolled jet disintegration, the drop size spectra revealed broad distributions and downstream drop growth by collision, while the acoustic control generated monodisperse droplets with a standard deviation less than 0.5 %. By adjustment of the acoustic excitation frequency, drop diameters could be tuned continuously from about 30 to 50 μm for all exit speeds. Good agreement to former experiments and theoretical approaches is found for the relation of overpressure and jet exit speed, and for the observed stability regions of monodisperse droplet generation in the parameter plane of jet speed and acoustic excitation frequency. Fitting of two free parameters of the general theory to the liquids and nozzles used is found to yield an even higher precision. Furthermore, the high-velocity instability limit of regular jet breakup described by von Ohnesorge has been superseded by more than a factor of two without entering the wind-induced instability regime, and monodisperse droplet generation was

  3. Spread of entanglement and causality

    NASA Astrophysics Data System (ADS)

    Casini, Horacio; Liu, Hong; Mezei, Márk

    2016-07-01

    We investigate causality constraints on the time evolution of entanglement entropy after a global quench in relativistic theories. We first provide a general proof that the so-called tsunami velocity is bounded by the speed of light. We then generalize the free particle streaming model of [1] to general dimensions and to an arbitrary entanglement pattern of the initial state. In more than two spacetime dimensions the spread of entanglement in these models is highly sensitive to the initial entanglement pattern, but we are able to prove an upper bound on the normalized rate of growth of entanglement entropy, and hence the tsunami velocity. The bound is smaller than what one gets for quenches in holographic theories, which highlights the importance of interactions in the spread of entanglement in many-body systems. We propose an interacting model which we believe provides an upper bound on the spread of entanglement for interacting relativistic theories. In two spacetime dimensions with multiple intervals, this model and its variations are able to reproduce intricate results exhibited by holographic theories for a significant part of the parameter space. For higher dimensions, the model bounds the tsunami velocity at the speed of light. Finally, we construct a geometric model for entanglement propagation based on a tensor network construction for global quenches.

  4. Entanglement structures in qubit systems

    NASA Astrophysics Data System (ADS)

    Rangamani, Mukund; Rota, Massimiliano

    2015-09-01

    Using measures of entanglement such as negativity and tangles we provide a detailed analysis of entanglement structures in pure states of non-interacting qubits. The motivation for this exercise primarily comes from holographic considerations, where entanglement is inextricably linked with the emergence of geometry. We use the qubit systems as toy models to probe the internal structure, and introduce some useful measures involving entanglement negativity to quantify general features of entanglement. In particular, our analysis focuses on various constraints on the pattern of entanglement which are known to be satisfied by holographic sates, such as the saturation of Araki-Lieb inequality (in certain circumstances), and the monogamy of mutual information. We argue that even systems as simple as few non-interacting qubits can be useful laboratories to explore how the emergence of the bulk geometry may be related to quantum information principles.

  5. Correcting quantum errors with entanglement.

    PubMed

    Brun, Todd; Devetak, Igor; Hsieh, Min-Hsiu

    2006-10-20

    We show how entanglement shared between encoder and decoder can simplify the theory of quantum error correction. The entanglement-assisted quantum codes we describe do not require the dual-containing constraint necessary for standard quantum error-correcting codes, thus allowing us to "quantize" all of classical linear coding theory. In particular, efficient modern classical codes that attain the Shannon capacity can be made into entanglement-assisted quantum codes attaining the hashing bound (closely related to the quantum capacity). For systems without large amounts of shared entanglement, these codes can also be used as catalytic codes, in which a small amount of initial entanglement enables quantum communication.

  6. Holographic storage of biphoton entanglement.

    PubMed

    Dai, Han-Ning; Zhang, Han; Yang, Sheng-Jun; Zhao, Tian-Ming; Rui, Jun; Deng, You-Jin; Li, Li; Liu, Nai-Le; Chen, Shuai; Bao, Xiao-Hui; Jin, Xian-Min; Zhao, Bo; Pan, Jian-Wei

    2012-05-25

    Coherent and reversible storage of multiphoton entanglement with a multimode quantum memory is essential for scalable all-optical quantum information processing. Although a single photon has been successfully stored in different quantum systems, storage of multiphoton entanglement remains challenging because of the critical requirement for coherent control of the photonic entanglement source, multimode quantum memory, and quantum interface between them. Here we demonstrate a coherent and reversible storage of biphoton Bell-type entanglement with a holographic multimode atomic-ensemble-based quantum memory. The retrieved biphoton entanglement violates the Bell inequality for 1 μs storage time and a memory-process fidelity of 98% is demonstrated by quantum state tomography.

  7. Matching relations for optimal entanglement concentration and purification

    PubMed Central

    Kong, Fan-Zhen; Xia, Hui-Zhi; Yang, Ming; Yang, Qing; Cao, Zhuo-Liang

    2016-01-01

    The bilateral controlled NOT (CNOT) operation plays a key role in standard entanglement purification process, but the CNOT operation may not be the optimal joint operation in the sense that the output entanglement is maximized. In this paper, the CNOT operations in both the Schmidt-projection based entanglement concentration and the entanglement purification schemes are replaced with a general joint unitary operation, and the optimal matching relations between the entangling power of the joint unitary operation and the non-maximal entangled channel are found for optimizing the entanglement in- crement or the output entanglement. The result is somewhat counter-intuitive for entanglement concentration. The output entanglement is maximized when the entangling power of the joint unitary operation and the quantum channel satisfy certain relation. There exist a variety of joint operations with non-maximal entangling power that can induce a maximal output entanglement, which will greatly broaden the set of the potential joint operations in entanglement concentration. In addition, the entanglement increment in purification process is maximized only by the joint unitary operations (including CNOT) with maximal entangling power. PMID:27189800

  8. Precision polymers and 3D DNA nanostructures: emergent assemblies from new parameter space.

    PubMed

    Serpell, Christopher J; Edwardson, Thomas G W; Chidchob, Pongphak; Carneiro, Karina M M; Sleiman, Hanadi F

    2014-11-05

    Polymer self-assembly and DNA nanotechnology have both proved to be powerful nanoscale techniques. To date, most attempts to merge the fields have been limited to placing linear DNA segments within a polydisperse block copolymer. Here we show that, by using hydrophobic polymers of a precisely predetermined length conjugated to DNA strands, and addressable 3D DNA prisms, we are able to effect the formation of unprecedented monodisperse quantized superstructures. The structure and properties of larger micelles-of-prisms were probed in depth, revealing their ability to participate in controlled release of their constituent nanostructures, and template light-harvesting energy transfer cascades, mediated through both the addressability of DNA and the controlled aggregation of the polymers.

  9. Network dynamics in nanofilled polymers

    NASA Astrophysics Data System (ADS)

    Baeza, Guilhem P.; Dessi, Claudia; Costanzo, Salvatore; Zhao, Dan; Gong, Shushan; Alegria, Angel; Colby, Ralph H.; Rubinstein, Michael; Vlassopoulos, Dimitris; Kumar, Sanat K.

    2016-04-01

    It is well accepted that adding nanoparticles (NPs) to polymer melts can result in significant property improvements. Here we focus on the causes of mechanical reinforcement and present rheological measurements on favourably interacting mixtures of spherical silica NPs and poly(2-vinylpyridine), complemented by several dynamic and structural probes. While the system dynamics are polymer-like with increased friction for low silica loadings, they turn network-like when the mean face-to-face separation between NPs becomes smaller than the entanglement tube diameter. Gel-like dynamics with a Williams-Landel-Ferry temperature dependence then result. This dependence turns particle dominated, that is, Arrhenius-like, when the silica loading increases to ~31 vol%, namely, when the average nearest distance between NP faces becomes comparable to the polymer's Kuhn length. Our results demonstrate that the flow properties of nanocomposites are complex and can be tuned via changes in filler loading, that is, the character of polymer bridges which `tie' NPs together into a network.

  10. Multipartite Entanglement And Firewalls

    NASA Astrophysics Data System (ADS)

    Luo, Shengqiao; Stoltenberg, Henry; Albrecht, Andreas

    2016-03-01

    Black holes offer an exciting area to explore the nature of quantum gravity. The classic work on Hawking radiation indicates that black holes should decay via quantum effects, but our ideas about how this might work at a technical level are incomplete. Recently Almheiri-Marolf-Polchinski-Sully AMPS have noted an apparent paradox in reconciling fundamental properties of quantum mechanics with standard beliefs about black holes. One way to resolve the paradox is to postulate the existence of a ``firewall'' inside the black hole horizon which prevents objects from falling smoothly toward the singularity. A fundamental limitation on the behavior of quantum entanglement known as ``monogamy'' plays a key role in the AMPS argument. Our goal is to study and apply many-body entanglement theory to consider the entanglement among different parts of Hawking radiation and black holes. We identified an example which could change the AMPS accounting of quantum entanglement and perhaps eliminating the need for a firewall. Looking at different many body entanglement measures and their monogamy properties can tell us subtle ways in which different subsystems can share their entanglement. Specific measures we consider include negativity, concurrence, and mutual information. Taking insights from these different measures, we constructed toy models for black hole decay which have different entanglement behaviors than those assumed by AMPS. We hope to use our effective toy model to demonstrate interesting new ways of thinking about black holes.

  11. Encapsulation of cell into monodispersed hydrogels on microfluidic device

    NASA Astrophysics Data System (ADS)

    Choi, Chang-Hyoung; Lee, Ji-Hye; Shim, Hyun-Woo; Lee, Nae-Rym; Jung, Jae-Hoon; Yoon, Tae-Ho; Kim, Dong-Pyo; Lee, Chang-Soo

    2007-12-01

    In here, we present the microfluidic approach to produce monodispersed microbeads that will contain viable cells. The utilization of microfludics is helpful to synthesize monodispersed alginate hydrogels and in situ encapsulate cell into the generating hydrogels in microfludic device. First, the condition of formation of hydrogels in multiphase flows including oil, CaCl II, and alginate was optimized. Based on the preliminary survey, microfludic device could easily manipulate the size of alginate beads having narrow size distribution. The microfluidic method manipulates the size of hydrogel microbeads from 30 to 200um with a variation less than 2%. For the proof of concept of cell entrapment, the live yeast expressing green fluorescence protein is successfully encapsulated in microfluidic device.

  12. Evaluating convex roof entanglement measures.

    PubMed

    Tóth, Géza; Moroder, Tobias; Gühne, Otfried

    2015-04-24

    We show a powerful method to compute entanglement measures based on convex roof constructions. In particular, our method is applicable to measures that, for pure states, can be written as low order polynomials of operator expectation values. We show how to compute the linear entropy of entanglement, the linear entanglement of assistance, and a bound on the dimension of the entanglement for bipartite systems. We discuss how to obtain the convex roof of the three-tangle for three-qubit states. We also show how to calculate the linear entropy of entanglement and the quantum Fisher information based on partial information or device independent information. We demonstrate the usefulness of our method by concrete examples.

  13. Secure key from bound entanglement.

    PubMed

    Horodecki, Karol; Horodecki, Michał; Horodecki, Paweł; Oppenheim, Jonathan

    2005-04-29

    We characterize the set of shared quantum states which contain a cryptographically private key. This allows us to recast the theory of privacy as a paradigm closely related to that used in entanglement manipulation. It is shown that one can distill an arbitrarily secure key from bound entangled states. There are also states that have less distillable private keys than the entanglement cost of the state. In general, the amount of distillable key is bounded from above by the relative entropy of entanglement. Relationships between distillability and distinguishability are found for a class of states which have Bell states correlated to separable hiding states. We also describe a technique for finding states exhibiting irreversibility in entanglement distillation.

  14. Distilling entanglement with noisy operations

    NASA Astrophysics Data System (ADS)

    Chang, Jinho; Bae, Joonwoo; Kwon, Younghun

    Entanglement distillation is a fundamental task in quantum information processing. It not only extracts entanglement out of corrupted systems but also leads to protecting systems of interest against intervention with environment. In this work, we consider a realistic scenario of entanglement distillation where noisy quantum operations are applied. In particular, the two-way distillation protocol that tolerates the highest error rate is considered. We show that among all types of noise there are only four equivalence classes according to the distillability condition. Since the four classes are connected by local unitary transformations, our results can be used to improve entanglement distillability in practice when entanglement distillation is performed in a realistic setting.

  15. Extracellular biosynthesis of monodispersed gold nanoparticles by a SAM capping route

    NASA Astrophysics Data System (ADS)

    Wen, Li; Lin, Zhonghua; Gu, Pingying; Zhou, Jianzhang; Yao, Bingxing; Chen, Guoliang; Fu, Jinkun

    2009-02-01

    Monodispersed gold nanoparticles capped with a self-assembled monolayer of dodecanethiol were biosynthesized extracellularly by an efficient, simple, and environmental friendly procedure, which involved the use of Bacillus megatherium D01 as the reducing agent and the use of dodecanethiol as the capping ligand at 26 °C. The kinetics of gold nanoparticle formation was followed by transmission electron microscope (TEM) and UV-vis spectroscopy. It was shown that reaction time was an important parameter in controlling the morphology of gold nanoparticles. The effect of thiol on the shape, size, and dispersity of gold nanoparticles was also studied. The results showed that the presence of thiol during the biosynthesis could induce the formation of small size gold nanoparticles (<2.5 nm), hold the shape of spherical nanoparticles, and promote the monodispersity of nanoparticles. Through the modulation of reaction time and the use of thiol, monodispersed spherical gold nanoparticles capped with thiol of 1.9 ± 0.8 nm size were formed by using Bacillus megatherium D01.

  16. Synthesis and Biological Response of Size-Specific, Monodisperse Drug-Silica Nanoconjugates

    PubMed Central

    Tang, Li; Fan, Timothy M.; Borst, Luke B.; Cheng, Jianjun

    2012-01-01

    Drug-containing nanoparticles (NPs) with monodisperse, controlled particle sizes are highly desirable for drug delivery. Accumulating evidence suggests that NPs with sizes less than 50 nm demonstrate superior performance in vitro and in vivo. However, it is difficult to fabricate monodisperse, drug-containing NPs with discrete and incremental difference in sizes required for studying and characterizing existing relationships among particle size, biologic processing, and therapeutic functionality. Here, we report a scalable process of fabricating drug-silica conjugated nanoparticles, termed drug-silica nanoconjugates (drug-NCs), which possess monodisperse size distributions and desirable particle sizes as small as 20 nm. We found that 20-nm NCs are superior to their 50-nm and 200-nm NC analogues by 2–5 and 10–20 folds, respectively, with regard to tumor accumulation and penetration, and cellular internalization. These fundamental findings underscore the importance and necessity of further miniaturizing nanomedicine size for optimized drug delivery applications. PMID:22494403

  17. Entanglement hamiltonian and entanglement contour in inhomogeneous 1D critical systems

    NASA Astrophysics Data System (ADS)

    Tonni, Erik; Rodríguez-Laguna, Javier; Sierra, Germán

    2018-04-01

    Inhomogeneous quantum critical systems in one spatial dimension have been studied by using conformal field theory in static curved backgrounds. Two interesting examples are the free fermion gas in the harmonic trap and the inhomogeneous XX spin chain called rainbow chain. For conformal field theories defined on static curved spacetimes characterised by a metric which is Weyl equivalent to the flat metric, with the Weyl factor depending only on the spatial coordinate, we study the entanglement hamiltonian and the entanglement spectrum of an interval adjacent to the boundary of a segment where the same boundary condition is imposed at the endpoints. A contour function for the entanglement entropies corresponding to this configuration is also considered, being closely related to the entanglement hamiltonian. The analytic expressions obtained by considering the curved spacetime which characterises the rainbow model have been checked against numerical data for the rainbow chain, finding an excellent agreement.

  18. Geometry of entanglement witnesses and local detection of entanglement

    NASA Astrophysics Data System (ADS)

    Pittenger, Arthur O.; Rubin, Morton H.

    2003-01-01

    Let H[N]=H[d1]⊗⋯⊗H[dn] be a tensor product of Hilbert spaces and let τ0 be the closest separable state in the Hilbert-Schmidt norm to an entangled state ρ0. Let τ˜0 denote the closest separable state to ρ0 along the line segment from I/N to ρ0 where I is the identity matrix. Following A. O. Pittenger and M. H. Rubin [Linear Algebr. Appl. 346, 75 (2002)] a witness W0 detecting the entanglement of ρ0 can be constructed in terms of I, τ0, and τ˜0. If representations of τ0 and τ˜0 as convex combinations of separable projections are known, then the entanglement of ρ0 can be detected by local measurements. Gühne et al. [Phys. Rev. A 66, 062305 (2002)] obtain the minimum number of measurement settings required for a class of two-qubit states. We use our geometric approach to generalize their result to the corresponding two-qudit case when d is prime and obtain the minimum number of measurement settings. In those particular bipartite cases, τ0=τ˜0. We illustrate our general approach with a two-parameter family of three-qubit bound entangled states for which τ0≠τ˜0 and we show that our approach works for n qubits. We elaborated earlier [A. O. Pittenger, Linear Algebr. App. 359, 235 (2003)] on the role of a “far face” of the separable states relative to a bound entangled state ρ0 constructed from an orthogonal unextendible product base. In this paper the geometric approach leads to an entanglement witness expressible in terms of a constant times I and a separable density μ0 on the far face from ρ0. Up to a normalization this coincides with the witness obtained by Gühne et al. for the particular example analyzed there.

  19. Entanglement Entropy of Black Holes.

    PubMed

    Solodukhin, Sergey N

    2011-01-01

    The entanglement entropy is a fundamental quantity, which characterizes the correlations between sub-systems in a larger quantum-mechanical system. For two sub-systems separated by a surface the entanglement entropy is proportional to the area of the surface and depends on the UV cutoff, which regulates the short-distance correlations. The geometrical nature of entanglement-entropy calculation is particularly intriguing when applied to black holes when the entangling surface is the black-hole horizon. I review a variety of aspects of this calculation: the useful mathematical tools such as the geometry of spaces with conical singularities and the heat kernel method, the UV divergences in the entropy and their renormalization, the logarithmic terms in the entanglement entropy in four and six dimensions and their relation to the conformal anomalies. The focus in the review is on the systematic use of the conical singularity method. The relations to other known approaches such as 't Hooft's brick-wall model and the Euclidean path integral in the optical metric are discussed in detail. The puzzling behavior of the entanglement entropy due to fields, which non-minimally couple to gravity, is emphasized. The holographic description of the entanglement entropy of the blackhole horizon is illustrated on the two- and four-dimensional examples. Finally, I examine the possibility to interpret the Bekenstein-Hawking entropy entirely as the entanglement entropy.

  20. Entanglement Entropy of Black Holes

    NASA Astrophysics Data System (ADS)

    Solodukhin, Sergey N.

    2011-10-01

    The entanglement entropy is a fundamental quantity, which characterizes the correlations between sub-systems in a larger quantum-mechanical system. For two sub-systems separated by a surface the entanglement entropy is proportional to the area of the surface and depends on the UV cutoff, which regulates the short-distance correlations. The geometrical nature of entanglement-entropy calculation is particularly intriguing when applied to black holes when the entangling surface is the black-hole horizon. I review a variety of aspects of this calculation: the useful mathematical tools such as the geometry of spaces with conical singularities and the heat kernel method, the UV divergences in the entropy and their renormalization, the logarithmic terms in the entanglement entropy in four and six dimensions and their relation to the conformal anomalies. The focus in the review is on the systematic use of the conical singularity method. The relations to other known approaches such as 't Hooft's brick-wall model and the Euclidean path integral in the optical metric are discussed in detail. The puzzling behavior of the entanglement entropy due to fields, which non-minimally couple to gravity, is emphasized. The holographic description of the entanglement entropy of the blackhole horizon is illustrated on the two- and four-dimensional examples. Finally, I examine the possibility to interpret the Bekenstein-Hawking entropy entirely as the entanglement entropy.

  1. Relay entanglement and clusters of correlated spins

    NASA Astrophysics Data System (ADS)

    Doronin, S. I.; Zenchuk, A. I.

    2018-06-01

    Considering a spin-1/2 chain, we suppose that the entanglement passes from a given pair of particles to another one, thus establishing the relay transfer of entanglement along the chain. Therefore, we introduce the relay entanglement as a sum of all pairwise entanglements in a spin chain. For more detailed studying the effects of remote pairwise entanglements, we use the partial sums collecting entanglements between the spins separated by up to a certain number of nodes. The problem of entangled cluster formation is considered, and the geometric mean entanglement is introduced as a characteristic of quantum correlations in a cluster. Generally, the lifetime of a cluster decreases with an increase in its size.

  2. General polygamy inequality of multiparty quantum entanglement

    NASA Astrophysics Data System (ADS)

    Kim, Jeong San

    2012-06-01

    Using entanglement of assistance, we establish a general polygamy inequality of multiparty entanglement in arbitrary-dimensional quantum systems. For multiparty closed quantum systems, we relate our result with the monogamy of entanglement, and clarify that the entropy of entanglement bounds both monogamy and polygamy of multiparty quantum entanglement.

  3. Precursor engineering and controlled conversion for the synthesis of monodisperse thiolate-protected metal nanoclusters

    NASA Astrophysics Data System (ADS)

    Yu, Yong; Yao, Qiaofeng; Luo, Zhentao; Yuan, Xun; Lee, Jim Yang; Xie, Jianping

    2013-05-01

    In very recent years, thiolate-protected metal nanoclusters (or thiolated MNCs) with core sizes smaller than 2 nm have emerged as a new direction in nanoparticle research due to their discrete and size dependent electronic structures and molecular-like properties, such as HOMO-LUMO transitions in optical absorptions, quantized charging, and strong luminescence. Synthesis of monodisperse thiolated MNCs in sufficiently large quantities (up to several hundred micrograms) is necessary for establishing reliable size-property relationships and exploring potential applications. This Feature Article reviews recent progress in the development of synthetic strategies for the production of monodisperse thiolated MNCs. The preparation of monodisperse thiolated MNCs is viewed as an engineerable process where both the precursors (input) and their conversion chemistry (processing) may be rationally designed to achieve the desired outcome - monodisperse thiolated MNCs (output). Several strategies for tailoring the precursor and the conversion process are analyzed to arrive at a unifying understanding of the processes involved.

  4. Multipartite entanglement and firewalls

    NASA Astrophysics Data System (ADS)

    Luo, Shengqiao; Stoltenberg, Henry; Albrecht, Andreas

    2017-03-01

    Black holes offer an exciting area to explore the nature of quantum gravity. The classic work on Hawking radiation indicates that black holes should decay via quantum effects, but our ideas about how this might work at a technical level are incomplete. Recently Almheiri-Marolf-Polchinski-Sully (AMPS) have noted an apparent paradox in reconciling fundamental properties of quantum mechanics with standard beliefs about black holes. One way to resolve the paradox is to postulate the existence of a "firewall" inside the black hole horizon which prevents objects from falling smoothly toward the singularity. A fundamental limitation on the behavior of quantum entanglement known as "monogamy" plays a key role in the AMPS argument. Our goal is to study and apply many-body entanglement theory to consider the entanglement among different parts of Hawking radiation and black holes. Using the multipartite entanglement measure called negativity, we identify an example which could change the AMPS accounting of quantum entanglement and perhaps eliminate the need for a firewall. Specifically, we constructed a toy model for black hole decay which has different entanglement behavior than that assumed by AMPS. We discuss the additional steps that would be needed to bring lessons from our toy model to our understanding of realistic black holes.

  5. Quantum Entanglement and Chemical Reactivity.

    PubMed

    Molina-Espíritu, M; Esquivel, R O; López-Rosa, S; Dehesa, J S

    2015-11-10

    The water molecule and a hydrogenic abstraction reaction are used to explore in detail some quantum entanglement features of chemical interest. We illustrate that the energetic and quantum-information approaches are necessary for a full understanding of both the geometry of the quantum probability density of molecular systems and the evolution of a chemical reaction. The energy and entanglement hypersurfaces and contour maps of these two models show different phenomena. The energy ones reveal the well-known stable geometry of the models, whereas the entanglement ones grasp the chemical capability to transform from one state system to a new one. In the water molecule the chemical reactivity is witnessed through quantum entanglement as a local minimum indicating the bond cleavage in the dissociation process of the molecule. Finally, quantum entanglement is also useful as a chemical reactivity descriptor by detecting the transition state along the intrinsic reaction path in the hypersurface of the hydrogenic abstraction reaction corresponding to a maximally entangled state.

  6. Entangled states in the role of witnesses

    NASA Astrophysics Data System (ADS)

    Wang, Bang-Hai

    2018-05-01

    Quantum entanglement lies at the heart of quantum mechanics and quantum information processing. In this work, we show a framework where entangled states play the role of witnesses. We extend the notion of entanglement witnesses, developing a hierarchy of witnesses for classes of observables. This hierarchy captures the fact that entangled states act as witnesses for detecting entanglement witnesses and separable states act as witnesses for the set of non-block-positive Hermitian operators. Indeed, more hierarchies of witnesses exist. We introduce the concept of finer and optimal entangled states. These definitions not only give an unambiguous and non-numeric quantification of entanglement and an alternative perspective on edge states but also answer the open question of what the remainder of the best separable approximation of a density matrix is. Furthermore, we classify all entangled states into disjoint families with optimal entangled states at its heart. This implies that we can focus only on the study of a typical family with optimal entangled states at its core when we investigate entangled states. Our framework also assembles many seemingly different findings with simple arguments that do not require lengthy calculations.

  7. Lithography using quantum entangled particles

    NASA Technical Reports Server (NTRS)

    Williams, Colin (Inventor); Dowling, Jonathan (Inventor)

    2003-01-01

    A system of etching using quantum entangled particles to get shorter interference fringes. An interferometer is used to obtain an interference fringe. N entangled photons are input to the interferometer. This reduces the distance between interference fringes by n, where again n is the number of entangled photons.

  8. Lithography using quantum entangled particles

    NASA Technical Reports Server (NTRS)

    Williams, Colin (Inventor); Dowling, Jonathan (Inventor)

    2001-01-01

    A system of etching using quantum entangled particles to get shorter interference fringes. An interferometer is used to obtain an interference fringe. N entangled photons are input to the interferometer. This reduces the distance between interference fringes by n, where again n is the number of entangled photons.

  9. Highly entangled states with almost no secrecy.

    PubMed

    Christandl, Matthias; Schuch, Norbert; Winter, Andreas

    2010-06-18

    In this Letter we illuminate the relation between entanglement and secrecy by providing the first example of a quantum state that is highly entangled, but from which, nevertheless, almost no secrecy can be extracted. More precisely, we provide two bounds on the bipartite entanglement of the totally antisymmetric state in dimension d×d. First, we show that the amount of secrecy that can be extracted from the state is low; to be precise it is bounded by O(1/d). Second, we show that the state is highly entangled in the sense that we need a large amount of singlets to create the state: entanglement cost is larger than a constant, independent of d. In order to obtain our results we use representation theory, linear programming, and the entanglement measure known as squashed entanglement. Our findings also clarify the relation between the squashed entanglement and the relative entropy of entanglement.

  10. Fabrication of a multifunctional nano-in-micro drug delivery platform by microfluidic templated encapsulation of porous silicon in polymer matrix.

    PubMed

    Zhang, Hongbo; Liu, Dongfei; Shahbazi, Mohammad-Ali; Mäkilä, Ermei; Herranz-Blanco, Bárbara; Salonen, Jarno; Hirvonen, Jouni; Santos, Hélder A

    2014-07-09

    A multifunctional nano-in-micro drug delivery platform is developed by conjugating the porous silicon nanoparticles with mucoadhesive polymers and subsequent encapsulation into a pH-responsive polymer using microfluidics. The multistage platform shows monodisperse size distribution and pH-responsive payload release, and the released nanoparticles are mucoadhesive. Moreover, this platform is capable of simultaneously loading and releasing multidrugs with distinct properties. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Inter-Universal Quantum Entanglement

    NASA Astrophysics Data System (ADS)

    Robles-Pérez, S. J.; González-Díaz, P. F.

    2015-01-01

    The boundary conditions to be imposed on the quantum state of the whole multiverse could be such that the universes would be created in entangled pairs. Then, interuniversal entanglement would provide us with a vacuum energy for each single universe that might be fitted with observational data, making testable not only the multiverse proposal but also the boundary conditions of the multiverse. Furthermore, the second law of the entanglement thermodynamics would enhance the expansion of the single universes.

  12. Entanglement-induced quantum radiation

    NASA Astrophysics Data System (ADS)

    Iso, Satoshi; Tatsukawa, Rumi; Ueda, Kazushige; Yamamoto, Kazuhiro

    2017-08-01

    Quantum entanglement of the Minkowski vacuum state between left and right Rindler wedges generates thermal behavior in the right Rindler wedge, which is known as the Unruh effect. In this paper, we show that there is another consequence of this entanglement, namely entanglement-induced quantum radiation emanating from a uniformly accelerated object. We clarify why it is in agreement with our intuition that incoming and outgoing energy fluxes should cancel each other out in a thermalized state.

  13. Modeling the Inhomogeneous Response of Steady and Transient Flows of Entangled Micellar Solutions

    NASA Astrophysics Data System (ADS)

    McKinley, Gareth

    2008-03-01

    Surfactant molecules can self-assemble in solution into long flexible structures known as wormlike micelles. These structures entangle, forming a viscoelastic network similar to those in entangled polymer melts and solutions. However, in contrast to `inert' polymeric networks, wormlike micelles continuously break and reform leading to an additional relaxation mechanism and the name `living polymers'. Observations in both classes of entangled fluids have shown that steady and transient shearing flows of these solutions exhibit spatial inhomogeneities such as `shear-bands' at sufficiently large applied strains. In the present work, we investigate the dynamical response of a class of two-species elastic network models which can capture, in a self-consistent manner, the creation and destruction of elastically-active network segments, as well as diffusive coupling between the microstructural conformations and the local state of stress in regions with large spatial gradients of local deformation. These models incorporate a discrete version of the micellar breakage and reforming dynamics originally proposed by Cates and capture, at least qualitatively, non-affine tube deformation and chain disentanglement. The `flow curves' of stress and apparent shear rate resulting from an assumption of homogeneous deformation is non-monotonic and linear stability analysis shows that the region of non-monotonic response is unstable. Calculation of the full inhomogeneous flow field results in localized shear bands that grow linearly in extent across the gap as the apparent shear rate increases. Time-dependent calculations in step strain, large amplitude oscillatory shear (LAOS) and in start up of steady shear flow show that the velocity profile in the gap and the total stress measured at the bounding surfaces are coupled and evolve in a complex non-monotonic manner as the shear bands develop and propagate.

  14. General no-go theorem for entanglement extraction

    NASA Astrophysics Data System (ADS)

    Simidzija, Petar; Jonsson, Robert H.; Martín-Martínez, Eduardo

    2018-06-01

    We study under what circumstances a separable bipartite system A-B can or cannot become entangled through local interactions with a bilocal entangled source S1-S2 . We obtain constraints on the general forms of the interaction Hamiltonians coupling A with S1 and B with S2 necessary for A and B to become entangled. We are able to generalize and provide nonperturbative insight on several previous no-go theorems of entanglement harvesting from quantum fields using these general results. We also discuss the role of communication in the process of entanglement extraction, establishing a distinction between genuine entanglement extraction and communication-assisted entanglement generation.

  15. Entanglement as a signature of quantum chaos.

    PubMed

    Wang, Xiaoguang; Ghose, Shohini; Sanders, Barry C; Hu, Bambi

    2004-01-01

    We explore the dynamics of entanglement in classically chaotic systems by considering a multiqubit system that behaves collectively as a spin system obeying the dynamics of the quantum kicked top. In the classical limit, the kicked top exhibits both regular and chaotic dynamics depending on the strength of the chaoticity parameter kappa in the Hamiltonian. We show that the entanglement of the multiqubit system, considered for both the bipartite and the pairwise entanglement, yields a signature of quantum chaos. Whereas bipartite entanglement is enhanced in the chaotic region, pairwise entanglement is suppressed. Furthermore, we define a time-averaged entangling power and show that this entangling power changes markedly as kappa moves the system from being predominantly regular to being predominantly chaotic, thus sharply identifying the edge of chaos. When this entangling power is averaged over all states, it yields a signature of global chaos. The qualitative behavior of this global entangling power is similar to that of the classical Lyapunov exponent.

  16. Optimization of entanglement witnesses

    NASA Astrophysics Data System (ADS)

    Lewenstein, M.; Kraus, B.; Cirac, J. I.; Horodecki, P.

    2000-11-01

    An entanglement witness (EW) is an operator that allows the detection of entangled states. We give necessary and sufficient conditions for such operators to be optimal, i.e., to detect entangled states in an optimal way. We show how to optimize general EW, and then we particularize our results to the nondecomposable ones; the latter are those that can detect positive partial transpose entangled states (PPTES's). We also present a method to systematically construct and optimize this last class of operators based on the existence of ``edge'' PPTES's, i.e., states that violate the range separability criterion [Phys. Lett. A 232, 333 (1997)] in an extreme manner. This method also permits a systematic construction of nondecomposable positive maps (PM's). Our results lead to a sufficient condition for entanglement in terms of nondecomposable EW's and PM's. Finally, we illustrate our results by constructing optimal EW acting on H=C2⊗C4. The corresponding PM's constitute examples of PM's with minimal ``qubit'' domains, or-equivalently-minimal Hermitian conjugate codomains.

  17. High thermal conductivity in electrostatically engineered amorphous polymers

    PubMed Central

    Shanker, Apoorv; Li, Chen; Kim, Gun-Ho; Gidley, David; Pipe, Kevin P.; Kim, Jinsang

    2017-01-01

    High thermal conductivity is critical for many applications of polymers (for example, packaging of light-emitting diodes), in which heat must be dissipated efficiently to maintain the functionality and reliability of a system. Whereas uniaxially extended chain morphology has been shown to significantly enhance thermal conductivity in individual polymer chains and fibers, bulk polymers with coiled and entangled chains have low thermal conductivities (0.1 to 0.4 W m−1 K−1). We demonstrate that systematic ionization of a weak anionic polyelectrolyte, polyacrylic acid (PAA), resulting in extended and stiffened polymer chains with superior packing, can significantly enhance its thermal conductivity. Cross-plane thermal conductivity in spin-cast amorphous films steadily grows with PAA degree of ionization, reaching up to ~1.2 W m−1 K−1, which is on par with that of glass and about six times higher than that of most amorphous polymers, suggesting a new unexplored molecular engineering strategy to achieve high thermal conductivities in amorphous bulk polymers. PMID:28782022

  18. Rheology and microstructure of filled polymer melts

    NASA Astrophysics Data System (ADS)

    Anderson, Benjamin John

    The states of particle dispersion in polymer nanocomposite melts are studied through rheological characterization of nanocomposite melt mechanical properties and small angle X-ray scattering measurement of the particle microstructure. The particle microstructure probed with scattering is related to bulk flow mechanics to determine the origin of slow dynamics in these complex dispersions: whether a gel or glass transition or a slowing down of dispersing phase dynamics. These studies were conducted to understand polymer mediated particle-particle interactions and potential particle-polymer phase separation. The phase behavior of the dispersion will be governed by enthalpic and entropic contributions. A variety of phases are expected: homogeneous fluid, phase separated, or non-equilibrium gel. The effects of dispersion control parameters, namely particle volume fraction, polymer molecular weight, and polymer-particle surface affinity, on the phase behavior of 44 nm silica dispersions are studied in low molecular weight polyethylene oxide (PEO), polyethylene oxide dimethylether (PEODME), and polytetrahydrofuran (PTHF). Scattering measurements of the particle second virial coefficient in PEO melts indicates repulsive particles by a value slightly greater than unity. In PEO nanocomposites, dispersion dynamics slow down witnessed by a plateau in the elastic modulus as the particle separation approaches the length scale of the polymer radius of gyration. As the polymer molecular weight is increased, the transition shifts to lower particle volume fractions. Below polymer entanglement, the slow dynamics mimics that of a colloidal glass by the appearance of two relaxation times in the viscous modulus that display power law scaling with volume fraction. Above entanglement, the slow dynamics is qualitatively different resembling the behavior of a gelled suspension yet lacking any sign of scattering from particle agglomerates. As polymer molecular weight is increased at a fixed

  19. Monogamy Relations for Squared Entanglement Negativity

    NASA Astrophysics Data System (ADS)

    Liu, Feng

    2016-10-01

    This paper contains two main contents. In the first part, we provide two counterexamples of monogamy inequalities for the squared entanglement negativity: one three-qutrit pure state which violates of the He—Vidal monogamy conjecture, and one four-qubit pure state which disproves the squared-negativity-based Regula—Martino—Lee—Adesso-class strong monogamy conjecture. In the second part, we investigate the sharing of the entanglement negativity in a composite cavity-reservoir system using the corresponding multipartite entanglement scores, and then we find that there is no simple dominating relation between multipartite entanglement scores and the entanglement negativity in composite cavity-reservoir systems. As a by-product, we further validate that the entanglement of two cavity photons is a decreasing function of the evolution time, and the entanglement will suddenly disappear interacting with independent reservoirs. Supported by the National Natural Science Foundation of China under Grant No. 60973135 and Shandong Provincial Natural Science Foundation of China under Grant No. ZR2015FQ006

  20. Entanglement timescale

    NASA Astrophysics Data System (ADS)

    Yang, I.-Sheng

    2018-03-01

    We derive the time scale for two initially pure subsystems to become entangled with each other through an arbitrary Hamiltonian that couples them. The entanglement timescale is inversely proportional to the "correlated uncertainty" between the two subsystems, a quantity which we will define and analyze in this paper. Our result is still applicable when one of the subsystems started in an arbitrarily mixed state, thus it generalizes the well-known "decoherence time scale" while coupled to a thermal state.

  1. Thermodynamic entanglement of magnonic condensates

    NASA Astrophysics Data System (ADS)

    Yuan, H. Y.; Yung, Man-Hong

    2018-02-01

    Over the past decade, significant progress has been achieved to create Bose-Einstein condensates (BECs) of magnetic excitations, i.e., magnons, at room temperature, which is a novel quantum many-body system with a strong spin-spin correlation, and contains potential applications in magnonic spintronics. For quantum information science, the magnonic condensates can become an attractive source of quantum entanglement, which plays a central role in most of the quantum information processing tasks. Here we theoretically study the entanglement properties of a magnon gas above and below the condensation temperature. We show that the thermodynamic entanglement of the spins is a manifestation of the off-diagonal long-range order; the entanglement of the condensate does not vanish, even if the spins are separated by an infinitely long distance, which is fundamentally distinct from the normal magnetic ordering below the Curie temperature. In addition, the phase-transition point occurs when the derivative of the entanglement changes abruptly. These results provide a theoretical foundation for a future investigation of the magnon BEC in terms of quantum entanglement.

  2. Monodisperse mesoporous silica nanoparticles of distinct topology.

    PubMed

    Luo, Leilei; Liang, Yucang; Erichsen, Egil Sev; Anwander, Reiner

    2017-06-01

    Monodisperse and uniform high-quality MCM(Mobil Composition of Matter)-48-type CMSNs (Cubic Mesoporous Silica Nanoparticles) are readily prepared by simply optimizing the molar ratio of ethanol and surfactant in the system TEOS-CTAB-NaOH-H 2 O-EtOH (TEOS=tetraethyl orthosilicate, CTAB=cetyltrimethylammonium bromide, EtOH=ethanol). In the absence of ethanol only hexagonal mesoporous silica with ellipsoidal and spherical morphology are obtained. The presence of ethanol drives a mesophase transformation from hexagonal to mixed hexagonal/cubic, further to purely cubic, and finally to a mixed cubic/lamellar. This is accompanied by a morphology evolution involving a mixture of ellipses/spheres, regular rods, uniform spheres, and finally a mixture of spheres/flakes. Preserving the three-dimensional (3D) cubic MCM-48 structure, use of a small amount of ethanol is beneficial to the improvement of the monodispersity of the CMSNs. Moreover, the quality of the CMSNs can also be controlled by changing the surfactant concentration or adjusting the stirring rate. All MSNs were characterized using powder X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and N 2 physisorption, indicating highly long-range ordered pore arrays, high specific surface areas (max. 1173 m 2 g -1 ) as well as high pore volumes (max. 1.14 cm 3 g -1 ). The monodispersity of the CMSNs was verified by statistical particle size distribution from SEM (scanning electron microscopy)/TEM (transmission electron microscopy) images and DLS (dynamic light scattering). The mesophase transformation can be rationalized on the basis of an ethanol-driven change of the surfactant packing structure and charge matching at the surfactant/silicate interface. The corresponding morphology evolution can be elucidated by an ethanol-controlled hydrolysis rate of TEOS and degree of condensation of oligomeric silicate species via a nucleation and growth process. Copyright © 2017 Elsevier Inc. All

  3. Minimal Entanglement Witness from Electrical Current Correlations.

    PubMed

    Brange, F; Malkoc, O; Samuelsson, P

    2017-01-20

    Despite great efforts, an unambiguous demonstration of entanglement of mobile electrons in solid state conductors is still lacking. Investigating theoretically a generic entangler-detector setup, we here show that a witness of entanglement between two flying electron qubits can be constructed from only two current cross correlation measurements, for any nonzero detector efficiencies and noncollinear polarization vectors. We find that all entangled pure states, but not all mixed ones, can be detected with only two measurements, except the maximally entangled states, which require three. Moreover, detector settings for optimal entanglement witnessing are presented.

  4. Optimal entanglement witnesses for qubits and qutrits

    NASA Astrophysics Data System (ADS)

    Bertlmann, Reinhold A.; Durstberger, Katharina; Hiesmayr, Beatrix C.; Krammer, Philipp

    2005-11-01

    We study the connection between the Hilbert-Schmidt measure of entanglement (that is the minimal distance of an entangled state to the set of separable states) and entanglement witness in terms of a generalized Bell inequality which distinguishes between entangled and separable states. A method for checking the nearest separable state to a given entangled one is presented. We illustrate the general results by considering isotropic states, in particular two-qubit and two-qutrit states—and their generalizations to arbitrary dimensions—where we calculate the optimal entanglement witnesses explicitly.

  5. Minimal Entanglement Witness from Electrical Current Correlations

    NASA Astrophysics Data System (ADS)

    Brange, F.; Malkoc, O.; Samuelsson, P.

    2017-01-01

    Despite great efforts, an unambiguous demonstration of entanglement of mobile electrons in solid state conductors is still lacking. Investigating theoretically a generic entangler-detector setup, we here show that a witness of entanglement between two flying electron qubits can be constructed from only two current cross correlation measurements, for any nonzero detector efficiencies and noncollinear polarization vectors. We find that all entangled pure states, but not all mixed ones, can be detected with only two measurements, except the maximally entangled states, which require three. Moreover, detector settings for optimal entanglement witnessing are presented.

  6. Detecting entanglement with Jarzynski's equality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hide, Jenny; Vedral, Vlatko; Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543

    2010-06-15

    We present a method for detecting the entanglement of a state using nonequilibrium processes. A comparison of relative entropies allows us to construct an entanglement witness. The relative entropy can further be related to the quantum Jarzynski equality, allowing nonequilibrium work to be used in entanglement detection. To exemplify our results, we consider two different spin chains.

  7. Spacetime from Entanglement

    NASA Astrophysics Data System (ADS)

    Swingle, Brian

    2018-03-01

    This is an idiosyncratic colloquium-style review of the idea that spacetime and gravity can emerge from entanglement. Drawing inspiration from the conjectured duality between quantum gravity in anti de Sitter space and certain conformal field theories, we argue that tensor networks can be used to define a discrete geometry that encodes entanglement geometrically. With the additional assumption that a continuum limit can be taken, the resulting geometry necessarily obeys Einstein's equations. The discussion takes the point of view that the emergence of spacetime and gravity is a mysterious phenomenon of quantum many-body physics that we would like to understand. We also briefly discuss possible experiments to detect emergent gravity in highly entangled quantum systems.

  8. Diffusion of Sticky Nanoparticles in a Polymer Melt: Crossover from Suppressed to Enhanced Transport

    DOE PAGES

    Carroll, Bobby; Bocharova, Vera; Carrillo, Jan-Michael Y.; ...

    2018-03-09

    The self-diffusion of a single large particle in a fluid is usually described by the classic Stokes–Einstein (SE) hydrodynamic relation. However, there are many fluids where the SE prediction for nanoparticles diffusion fails. These systems include diffusion of nanoparticles in porous media, in entangled and unentangled polymer melts and solutions, and protein diffusion in biological environments. A fundamental understanding of the microscopic parameters that govern nanoparticle diffusion is relevant to a wide range of applications. Here in this work, we present experimental measurements of the tracer diffusion coefficient of small and large nanoparticles that experience strong attractions with unentangled andmore » entangled polymer melt matrices. For the small nanoparticle system, a crossover from suppressed to enhanced diffusion is observed with increasing polymer molecular weight. We interpret these observations based on our theoretical and simulation insights of the preceding article (paper 1) as a result of a crossover from an effective hydrodynamic core–shell to a nonhydrodynamic vehicle mechanism of transport, with the latter strongly dependent on polymer–nanoparticle desorption time. In conclusion, a general zeroth-order qualitative picture for small sticky nanoparticle diffusion in polymer melts is proposed.« less

  9. Diffusion of Sticky Nanoparticles in a Polymer Melt: Crossover from Suppressed to Enhanced Transport

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, Bobby; Bocharova, Vera; Carrillo, Jan-Michael Y.

    The self-diffusion of a single large particle in a fluid is usually described by the classic Stokes–Einstein (SE) hydrodynamic relation. However, there are many fluids where the SE prediction for nanoparticles diffusion fails. These systems include diffusion of nanoparticles in porous media, in entangled and unentangled polymer melts and solutions, and protein diffusion in biological environments. A fundamental understanding of the microscopic parameters that govern nanoparticle diffusion is relevant to a wide range of applications. Here in this work, we present experimental measurements of the tracer diffusion coefficient of small and large nanoparticles that experience strong attractions with unentangled andmore » entangled polymer melt matrices. For the small nanoparticle system, a crossover from suppressed to enhanced diffusion is observed with increasing polymer molecular weight. We interpret these observations based on our theoretical and simulation insights of the preceding article (paper 1) as a result of a crossover from an effective hydrodynamic core–shell to a nonhydrodynamic vehicle mechanism of transport, with the latter strongly dependent on polymer–nanoparticle desorption time. In conclusion, a general zeroth-order qualitative picture for small sticky nanoparticle diffusion in polymer melts is proposed.« less

  10. Gaussian entanglement distribution with gigahertz bandwidth.

    PubMed

    Ast, Stefan; Ast, Melanie; Mehmet, Moritz; Schnabel, Roman

    2016-11-01

    The distribution of entanglement with Gaussian statistic can be used to generate a mathematically proven secure key for quantum cryptography. The distributed secret key rate is limited by the entanglement strength, the entanglement bandwidth, and the bandwidth of the photoelectric detectors. The development of a source for strongly bipartite entangled light with high bandwidth promises an increased measurement speed and a linear boost in the secure data rate. Here, we present the experimental realization of a Gaussian entanglement source with a bandwidth of more than 1.25 GHz. The entanglement spectrum was measured with balanced homodyne detectors and was quantified via the inseparability criterion introduced by Duan and coworkers with a critical value of 4 below which entanglement is certified. Our measurements yielded an inseparability value of about 1.8 at a frequency of 300 MHz to about 2.8 at 1.2 GHz, extending further to about 3.1 at 1.48 GHz. In the experiment we used two 2.6 mm long monolithic periodically poled potassium titanyl phosphate (KTP) resonators to generate two squeezed fields at the telecommunication wavelength of 1550 nm. Our result proves the possibility of generating and detecting strong continuous-variable entanglement with high speed.

  11. Measuring higher-dimensional entanglement

    NASA Astrophysics Data System (ADS)

    Datta, Chandan; Agrawal, Pankaj; Choudhary, Sujit K.

    2017-04-01

    We study local-realistic inequalities, Bell-type inequalities, for bipartite pure states of finite dimensional quantum systems—qudits. There are a number of proposed Bell-type inequalities for such systems. Our interest is in relating the value of the Bell-type inequality function with a measure of entanglement. Interestingly, we find that one of these inequalities, the Son-Lee-Kim inequality, can be used to measure entanglement of a pure bipartite qudit state and a class of mixed two-qudit states. Unlike the majority of earlier schemes in this direction, where the number of observables needed to characterize the entanglement increases with the dimension of the subsystems, this method needs only four observables. We also discuss the experimental feasibility of this scheme. It turns out that current experimental setups can be used to measure the entanglement using our scheme.

  12. Experimental Ten-Photon Entanglement.

    PubMed

    Wang, Xi-Lin; Chen, Luo-Kan; Li, W; Huang, H-L; Liu, C; Chen, C; Luo, Y-H; Su, Z-E; Wu, D; Li, Z-D; Lu, H; Hu, Y; Jiang, X; Peng, C-Z; Li, L; Liu, N-L; Chen, Yu-Ao; Lu, Chao-Yang; Pan, Jian-Wei

    2016-11-18

    We report the first experimental demonstration of quantum entanglement among ten spatially separated single photons. A near-optimal entangled photon-pair source was developed with simultaneously a source brightness of ∼12  MHz/W, a collection efficiency of ∼70%, and an indistinguishability of ∼91% between independent photons, which was used for a step-by-step engineering of multiphoton entanglement. Under a pump power of 0.57 W, the ten-photon count rate was increased by about 2 orders of magnitude compared to previous experiments, while maintaining a state fidelity sufficiently high for proving the genuine ten-particle entanglement. Our work created a state-of-the-art platform for multiphoton experiments, and enabled technologies for challenging optical quantum information tasks, such as the realization of Shor's error correction code and high-efficiency scattershot boson sampling.

  13. Entanglement tsunami: universal scaling in holographic thermalization.

    PubMed

    Liu, Hong; Suh, S Josephine

    2014-01-10

    We consider the time evolution of entanglement entropy after a global quench in a strongly coupled holographic system, whose subsequent equilibration is described in the gravity dual by the gravitational collapse of a thin shell of matter resulting in a black hole. In the limit of large regions of entanglement, the evolution of entanglement entropy is controlled by the geometry around and inside the event horizon of the black hole, resulting in regimes of pre-local-equilibration quadratic growth (in time), post-local-equilibration linear growth, a late-time regime in which the evolution does not carry memory of the size and shape of the entangled region, and a saturation regime with critical behavior resembling those in continuous phase transitions. Collectively, these regimes suggest a picture of entanglement growth in which an "entanglement tsunami" carries entanglement inward from the boundary. We also make a conjecture on the maximal rate of entanglement growth in relativistic systems.

  14. Experimental entanglement distillation and 'hidden' non-locality.

    PubMed

    Kwiat, P G; Barraza-Lopez, S; Stefanov, A; Gisin, N

    2001-02-22

    Entangled states are central to quantum information processing, including quantum teleportation, efficient quantum computation and quantum cryptography. In general, these applications work best with pure, maximally entangled quantum states. However, owing to dissipation and decoherence, practically available states are likely to be non-maximally entangled, partially mixed (that is, not pure), or both. To counter this problem, various schemes of entanglement distillation, state purification and concentration have been proposed. Here we demonstrate experimentally the distillation of maximally entangled states from non-maximally entangled inputs. Using partial polarizers, we perform a filtering process to maximize the entanglement of pure polarization-entangled photon pairs generated by spontaneous parametric down-conversion. We have also applied our methods to initial states that are partially mixed. After filtering, the distilled states demonstrate certain non-local correlations, as evidenced by their violation of a form of Bell's inequality. Because the initial states do not have this property, they can be said to possess 'hidden' non-locality.

  15. From entanglement witness to generalized Catalan numbers

    NASA Astrophysics Data System (ADS)

    Cohen, E.; Hansen, T.; Itzhaki, N.

    2016-07-01

    Being extremely important resources in quantum information and computation, it is vital to efficiently detect and properly characterize entangled states. We analyze in this work the problem of entanglement detection for arbitrary spin systems. It is demonstrated how a single measurement of the squared total spin can probabilistically discern separable from entangled many-particle states. For achieving this goal, we construct a tripartite analogy between the degeneracy of entanglement witness eigenstates, tensor products of SO(3) representations and classical lattice walks with special constraints. Within this framework, degeneracies are naturally given by generalized Catalan numbers and determine the fraction of states that are decidedly entangled and also known to be somewhat protected against decoherence. In addition, we introduce the concept of a “sterile entanglement witness”, which for large enough systems detects entanglement without affecting much the system’s state. We discuss when our proposed entanglement witness can be regarded as a sterile one.

  16. From entanglement witness to generalized Catalan numbers.

    PubMed

    Cohen, E; Hansen, T; Itzhaki, N

    2016-07-27

    Being extremely important resources in quantum information and computation, it is vital to efficiently detect and properly characterize entangled states. We analyze in this work the problem of entanglement detection for arbitrary spin systems. It is demonstrated how a single measurement of the squared total spin can probabilistically discern separable from entangled many-particle states. For achieving this goal, we construct a tripartite analogy between the degeneracy of entanglement witness eigenstates, tensor products of SO(3) representations and classical lattice walks with special constraints. Within this framework, degeneracies are naturally given by generalized Catalan numbers and determine the fraction of states that are decidedly entangled and also known to be somewhat protected against decoherence. In addition, we introduce the concept of a "sterile entanglement witness", which for large enough systems detects entanglement without affecting much the system's state. We discuss when our proposed entanglement witness can be regarded as a sterile one.

  17. From entanglement witness to generalized Catalan numbers

    PubMed Central

    Cohen, E.; Hansen, T.; Itzhaki, N.

    2016-01-01

    Being extremely important resources in quantum information and computation, it is vital to efficiently detect and properly characterize entangled states. We analyze in this work the problem of entanglement detection for arbitrary spin systems. It is demonstrated how a single measurement of the squared total spin can probabilistically discern separable from entangled many-particle states. For achieving this goal, we construct a tripartite analogy between the degeneracy of entanglement witness eigenstates, tensor products of SO(3) representations and classical lattice walks with special constraints. Within this framework, degeneracies are naturally given by generalized Catalan numbers and determine the fraction of states that are decidedly entangled and also known to be somewhat protected against decoherence. In addition, we introduce the concept of a “sterile entanglement witness”, which for large enough systems detects entanglement without affecting much the system’s state. We discuss when our proposed entanglement witness can be regarded as a sterile one. PMID:27461089

  18. Generation of a monodispersed aerosol

    NASA Technical Reports Server (NTRS)

    Schenck, H.; Mikasa, M.; Devicariis, R.

    1974-01-01

    The identity and laboratory test methods for the generation of a monodispersed aerosol are reported on, and are subjected to the following constraints and parameters; (1) size distribution; (2) specific gravity; (3) scattering properties; (4) costs; (5) production. The procedure called for the collection of information from the literature, commercial available products, and experts working in the field. The following topics were investigated: (1) aerosols; (2) air pollution -- analysis; (3) atomizers; (4) dispersion; (5) particles -- optics, size analysis; (6) smoke -- generators, density measurements; (7) sprays; (8) wind tunnels -- visualization.

  19. Preparation and characterization of erythromycin molecularly imprinted polymers based on distillation-precipitation polymerization.

    PubMed

    Liu, Jiang; Li, Le; Tang, Hui; Zhao, Feilang; Ye, Bang-Ce; Li, Yingchun; Yao, Jun

    2015-09-01

    Erythromycin-imprinted polymers with excellent recognition properties were prepared by an innovative strategy called distillation-precipitation polymerization. The interaction between erythromycin and methacrylic acid was studied by ultraviolet absorption spectroscopy, and the as-prepared materials were characterized by Fourier-transform infrared spectroscopy and scanning electron microscopy. Moreover, their binding performances were evaluated in detail by static, kinetic and selective sorption tests. It was found that the molecularly imprinted polymers afforded good morphology, monodispersity, and high adsorption capacity when the fraction of the monomers was 7 vol% in the whole reaction system, and the adsorption data for imprinted polymers correlated well with the Langmuir model. The maximum capacity of the imprinted and the non-imprinted polymers for adsorbing erythromycin is 44.03 and 19.95 mg/g, respectively. The kinetic studies revealed that the adsorption process fitted a pseudo-second-order kinetic model. Furthermore, the imprinted polymers display higher affinity toward erythromycin, compared with its analogue roxithromycin. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Gaussian maximally multipartite-entangled states

    NASA Astrophysics Data System (ADS)

    Facchi, Paolo; Florio, Giuseppe; Lupo, Cosmo; Mancini, Stefano; Pascazio, Saverio

    2009-12-01

    We study maximally multipartite-entangled states in the context of Gaussian continuous variable quantum systems. By considering multimode Gaussian states with constrained energy, we show that perfect maximally multipartite-entangled states, which exhibit the maximum amount of bipartite entanglement for all bipartitions, only exist for systems containing n=2 or 3 modes. We further numerically investigate the structure of these states and their frustration for n≤7 .

  1. Three-dimensionally ordered array of air bubbles in a polymer film

    NASA Technical Reports Server (NTRS)

    Srinivasarao, M.; Collings, D.; Philips, A.; Patel, S.; Brown, C. S. (Principal Investigator)

    2001-01-01

    We report the formation of a three-dimensionally ordered array of air bubbles of monodisperse pore size in a polymer film through a templating mechanism based on thermocapillary convection. Dilute solutions of a simple, coil-like polymer in a volatile solvent are cast on a glass slide in the presence of moist air flowing across the surface. Evaporative cooling and the generation of an ordered array of breath figures leads to the formation of multilayers of hexagonally packed water droplets that are preserved in the final, solid polymer film as spherical air bubbles. The dimensions of these bubbles can be controlled simply by changing the velocity of the airflow across the surface. When these three-dimensionally ordered macroporous materials have pore dimensions comparable to the wavelength of visible light, they are of interest as photonic band gaps and optical stop-bands.

  2. Counterfactual entanglement distribution without transmitting any particles.

    PubMed

    Guo, Qi; Cheng, Liu-Yong; Chen, Li; Wang, Hong-Fu; Zhang, Shou

    2014-04-21

    To date, all schemes for entanglement distribution needed to send entangled particles or a separable mediating particle among distant participants. Here, we propose a counterfactual protocol for entanglement distribution against the traditional forms, that is, two distant particles can be entangled with no physical particles travel between the two remote participants. We also present an alternative scheme for realizing the counterfactual photonic entangled state distribution using Michelson-type interferometer and self-assembled GaAs/InAs quantum dot embedded in a optical microcavity. The numerical analysis about the effect of experimental imperfections on the performance of the scheme shows that the entanglement distribution may be implementable with high fidelity.

  3. Entanglement quantification by local unitary operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Monras, A.; Giampaolo, S. M.; Gualdi, G.

    2011-07-15

    Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitary operations play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as ''mirror entanglement.'' They are constructed by first considering the (squared) Hilbert-Schmidt distance of the state from the set of states obtained by applying to it a given local unitary operator. To the action of each different localmore » unitary operator there corresponds a different distance. We then minimize these distances over the sets of local unitary operations with different spectra, obtaining an entire family of different entanglement monotones. We show that these mirror-entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary operator for the associated mirror entanglement to be faithful, i.e., to vanish in and only in separable pure states. We analyze in detail the properties of one particularly relevant member of the family, the ''stellar mirror entanglement'' associated with the traceless local unitary operations with nondegenerate spectra and equispaced eigenvalues in the complex plane. This particular measure generalizes the original analysis of S. M. Giampaolo and F. Illuminati [Phys. Rev. A 76, 042301 (2007)], valid for qubits and qutrits. We prove that the stellar entanglement is a faithful bipartite entanglement monotone in any dimension and that it is bounded from below by a function proportional to the linear entropy and from above by the linear entropy itself, coinciding with it in two- and three-dimensional spaces.« less

  4. Deformed photon-added entangled squeezed vacuum and one-photon states: Entanglement, polarization, and nonclassical properties

    NASA Astrophysics Data System (ADS)

    A, Karimi; M, K. Tavassoly

    2016-04-01

    In this paper, after a brief review on the entangled squeezed states, we produce a new class of the continuous-variable-type entangled states, namely, deformed photon-added entangled squeezed states. These states are obtained via the iterated action of the f-deformed creation operator A = f (n)a † on the entangled squeezed states. In the continuation, by studying the criteria such as the degree of entanglement, quantum polarization as well as sub-Poissonian photon statistics, the two-mode correlation function, one-mode and two-mode squeezing, we investigate the nonclassical behaviors of the introduced states in detail by choosing a particular f-deformation function. It is revealed that the above-mentioned physical properties can be affected and so may be tuned by justifying the excitation number, after choosing a nonlinearity function. Finally, to generate the introduced states, we propose a theoretical scheme using the nonlinear Jaynes-Cummings model.

  5. Entanglement-Gradient Routing for Quantum Networks.

    PubMed

    Gyongyosi, Laszlo; Imre, Sandor

    2017-10-27

    We define the entanglement-gradient routing scheme for quantum repeater networks. The routing framework fuses the fundamentals of swarm intelligence and quantum Shannon theory. Swarm intelligence provides nature-inspired solutions for problem solving. Motivated by models of social insect behavior, the routing is performed using parallel threads to determine the shortest path via the entanglement gradient coefficient, which describes the feasibility of the entangled links and paths of the network. The routing metrics are derived from the characteristics of entanglement transmission and relevant measures of entanglement distribution in quantum networks. The method allows a moderate complexity decentralized routing in quantum repeater networks. The results can be applied in experimental quantum networking, future quantum Internet, and long-distance quantum communications.

  6. Entanglement measures based on observable correlations

    NASA Astrophysics Data System (ADS)

    Luo, Shunlong

    2008-06-01

    By regarding quantum states as communication channels and using observable correlations quantitatively expressed by mutual information, we introduce a hierarchy of entanglement measures that includes the entanglement of formation as a particular instance. We compare the maximal and minimal measures and indicate the conceptual advantages of the minimal measure over the entanglement of formation. We reveal a curious feature of the entanglement of formation by showing that it can exceed the quantum mutual information, which is usually regarded as a theoretical measure of total correlations. This places the entanglement of formation in a broader scenario, highlights its peculiarity in relation to pure-state ensembles, and introduces a competing definition with intrinsic informational significance.

  7. Self-organization of silver nanoparticles forming on chemical reduction to give monodisperse spheres

    NASA Astrophysics Data System (ADS)

    Yakutik, I. M.; Shevchenko, G. P.

    2004-09-01

    It was found possible to produce monodisperse spherical silver particles using K-Na-tartrate as the reductant for Ag + in the presence of gelatin. It was shown that the silver spheres form in the process of spontaneous self-organization of 10-15 nm-sized primary particles. The conditions making it possible to control the sizes of the monodisperse spheres in the range from 150 nm to 1.5 μm were specified.

  8. Experimental entanglement purification of arbitrary unknown states.

    PubMed

    Pan, Jian-Wei; Gasparoni, Sara; Ursin, Rupert; Weihs, Gregor; Zeilinger, Anton

    2003-05-22

    Distribution of entangled states between distant locations is essential for quantum communication over large distances. But owing to unavoidable decoherence in the quantum communication channel, the quality of entangled states generally decreases exponentially with the channel length. Entanglement purification--a way to extract a subset of states of high entanglement and high purity from a large set of less entangled states--is thus needed to overcome decoherence. Besides its important application in quantum communication, entanglement purification also plays a crucial role in error correction for quantum computation, because it can significantly increase the quality of logic operations between different qubits. Here we demonstrate entanglement purification for general mixed states of polarization-entangled photons using only linear optics. Typically, one photon pair of fidelity 92% could be obtained from two pairs, each of fidelity 75%. In our experiments, decoherence is overcome to the extent that the technique would achieve tolerable error rates for quantum repeaters in long-distance quantum communication. Our results also imply that the requirement of high-accuracy logic operations in fault-tolerant quantum computation can be considerably relaxed.

  9. Should Entanglement Measures be Monogamous or Faithful?

    NASA Astrophysics Data System (ADS)

    Lancien, Cécilia; Di Martino, Sara; Huber, Marcus; Piani, Marco; Adesso, Gerardo; Winter, Andreas

    2016-08-01

    "Is entanglement monogamous?" asks the title of a popular article [B. Terhal, IBM J. Res. Dev. 48, 71 (2004)], celebrating C. H. Bennett's legacy on quantum information theory. While the answer is affirmative in the qualitative sense, the situation is less clear if monogamy is intended as a quantitative limitation on the distribution of bipartite entanglement in a multipartite system, given some particular measure of entanglement. Here, we formalize what it takes for a bipartite measure of entanglement to obey a general quantitative monogamy relation on all quantum states. We then prove that an important class of entanglement measures fail to be monogamous in this general sense of the term, with monogamy violations becoming generic with increasing dimension. In particular, we show that every additive and suitably normalized entanglement measure cannot satisfy any nontrivial general monogamy relation while at the same time faithfully capturing the geometric entanglement structure of the fully antisymmetric state in arbitrary dimension. Nevertheless, monogamy of such entanglement measures can be recovered if one allows for dimension-dependent relations, as we show explicitly with relevant examples.

  10. Structure of disordered gold-polymer thin films using small angle x-ray scattering

    NASA Astrophysics Data System (ADS)

    Teixeira, F. S.; Salvadori, M. C.; Cattani, M.; Brown, I. G.

    2010-11-01

    We have investigated the structure of disordered gold-polymer thin films using small angle x-ray scattering and compared the results with the predictions of a theoretical model based on two approaches—a structure form factor approach and the generalized Porod law. The films are formed of polymer-embedded gold nanoclusters and were fabricated by very low energy gold ion implantation into polymethylmethacrylate (PMMA). The composite films span (with dose variation) the transition from electrically insulating to electrically conducting regimes, a range of interest fundamentally and technologically. We find excellent agreement with theory and show that the PMMA-Au films have monodispersive or polydispersive characteristics depending on the implanted ion dose.

  11. Evolution equation for quantum entanglement

    NASA Astrophysics Data System (ADS)

    Konrad, Thomas; de Melo, Fernando; Tiersch, Markus; Kasztelan, Christian; Aragão, Adriano; Buchleitner, Andreas

    2008-02-01

    Quantum information technology largely relies on a precious and fragile resource, quantum entanglement, a highly non-trivial manifestation of the coherent superposition of states of composite quantum systems. However, our knowledge of the time evolution of this resource under realistic conditions-that is, when corrupted by environment-induced decoherence-is so far limited, and general statements on entanglement dynamics in open systems are scarce. Here we prove a simple and general factorization law for quantum systems shared by two parties, which describes the time evolution of entanglement on passage of either component through an arbitrary noisy channel. The robustness of entanglement-based quantum information processing protocols is thus easily and fully characterized by a single quantity.

  12. Efficient entanglement distillation without quantum memory.

    PubMed

    Abdelkhalek, Daniela; Syllwasschy, Mareike; Cerf, Nicolas J; Fiurášek, Jaromír; Schnabel, Roman

    2016-05-31

    Entanglement distribution between distant parties is an essential component to most quantum communication protocols. Unfortunately, decoherence effects such as phase noise in optical fibres are known to demolish entanglement. Iterative (multistep) entanglement distillation protocols have long been proposed to overcome decoherence, but their probabilistic nature makes them inefficient since the success probability decays exponentially with the number of steps. Quantum memories have been contemplated to make entanglement distillation practical, but suitable quantum memories are not realised to date. Here, we present the theory for an efficient iterative entanglement distillation protocol without quantum memories and provide a proof-of-principle experimental demonstration. The scheme is applied to phase-diffused two-mode-squeezed states and proven to distil entanglement for up to three iteration steps. The data are indistinguishable from those that an efficient scheme using quantum memories would produce. Since our protocol includes the final measurement it is particularly promising for enhancing continuous-variable quantum key distribution.

  13. Efficient entanglement distillation without quantum memory

    PubMed Central

    Abdelkhalek, Daniela; Syllwasschy, Mareike; Cerf, Nicolas J.; Fiurášek, Jaromír; Schnabel, Roman

    2016-01-01

    Entanglement distribution between distant parties is an essential component to most quantum communication protocols. Unfortunately, decoherence effects such as phase noise in optical fibres are known to demolish entanglement. Iterative (multistep) entanglement distillation protocols have long been proposed to overcome decoherence, but their probabilistic nature makes them inefficient since the success probability decays exponentially with the number of steps. Quantum memories have been contemplated to make entanglement distillation practical, but suitable quantum memories are not realised to date. Here, we present the theory for an efficient iterative entanglement distillation protocol without quantum memories and provide a proof-of-principle experimental demonstration. The scheme is applied to phase-diffused two-mode-squeezed states and proven to distil entanglement for up to three iteration steps. The data are indistinguishable from those that an efficient scheme using quantum memories would produce. Since our protocol includes the final measurement it is particularly promising for enhancing continuous-variable quantum key distribution. PMID:27241946

  14. Orbital Angular Momentum-Entanglement Frequency Transducer.

    PubMed

    Zhou, Zhi-Yuan; Liu, Shi-Long; Li, Yan; Ding, Dong-Sheng; Zhang, Wei; Shi, Shuai; Dong, Ming-Xin; Shi, Bao-Sen; Guo, Guang-Can

    2016-09-02

    Entanglement is a vital resource for realizing many tasks such as teleportation, secure key distribution, metrology, and quantum computations. To effectively build entanglement between different quantum systems and share information between them, a frequency transducer to convert between quantum states of different wavelengths while retaining its quantum features is indispensable. Information encoded in the photon's orbital angular momentum (OAM) degrees of freedom is preferred in harnessing the information-carrying capacity of a single photon because of its unlimited dimensions. A quantum transducer, which operates at wavelengths from 1558.3 to 525 nm for OAM qubits, OAM-polarization hybrid-entangled states, and OAM-entangled states, is reported for the first time. Nonclassical properties and entanglements are demonstrated following the conversion process by performing quantum tomography, interference, and Bell inequality measurements. Our results demonstrate the capability to create an entanglement link between different quantum systems operating in a photon's OAM degrees of freedom, which will be of great importance in building a high-capacity OAM quantum network.

  15. Process for preparation of large-particle-size monodisperse latexes

    NASA Technical Reports Server (NTRS)

    Vanderhoff, J. W.; Micale, F. J.; El-Aasser, M. S.; Kornfeld, D. M. (Inventor)

    1981-01-01

    Monodisperse latexes having a particle size in the range of 2 to 40 microns are prepared by seeded emulsion polymerization in microgravity. A reaction mixture containing smaller monodisperse latex seed particles, predetermined amounts of monomer, emulsifier, initiator, inhibitor and water is placed in a microgravity environment, and polymerization is initiated by heating. The reaction is allowed to continue until the seed particles grow to a predetermined size, and the resulting enlarged particles are then recovered. A plurality of particle-growing steps can be used to reach larger sizes within the stated range, with enlarge particles from the previous steps being used as seed particles for the succeeding steps. Microgravity enables preparation of particles in the stated size range by avoiding gravity related problems of creaming and settling, and flocculation induced by mechanical shear that have precluded their preparation in a normal gravity environment.

  16. Lithography system using quantum entangled photons

    NASA Technical Reports Server (NTRS)

    Williams, Colin (Inventor); Dowling, Jonathan (Inventor); della Rossa, Giovanni (Inventor)

    2002-01-01

    A system of etching using quantum entangled particles to get shorter interference fringes. An interferometer is used to obtain an interference fringe. N entangled photons are input to the interferometer. This reduces the distance between interference fringes by n, where again n is the number of entangled photons.

  17. Entanglement polygon inequality in qubit systems

    NASA Astrophysics Data System (ADS)

    Qian, Xiao-Feng; Alonso, Miguel A.; Eberly, J. H.

    2018-06-01

    We prove a set of tight entanglement inequalities for arbitrary N-qubit pure states. By focusing on all bi-partite marginal entanglements between each single qubit and its remaining partners, we show that the inequalities provide an upper bound for each marginal entanglement, while the known monogamy relation establishes the lower bound. The restrictions and sharing properties associated with the inequalities are further analyzed with a geometric polytope approach, and examples of three-qubit GHZ-class and W-class entangled states are presented to illustrate the results.

  18. Quantum entanglement of high angular momenta.

    PubMed

    Fickler, Robert; Lapkiewicz, Radek; Plick, William N; Krenn, Mario; Schaeff, Christoph; Ramelow, Sven; Zeilinger, Anton

    2012-11-02

    Single photons with helical phase structures may carry a quantized amount of orbital angular momentum (OAM), and their entanglement is important for quantum information science and fundamental tests of quantum theory. Because there is no theoretical upper limit on how many quanta of OAM a single photon can carry, it is possible to create entanglement between two particles with an arbitrarily high difference in quantum number. By transferring polarization entanglement to OAM with an interferometric scheme, we generate and verify entanglement between two photons differing by 600 in quantum number. The only restrictive factors toward higher numbers are current technical limitations. We also experimentally demonstrate that the entanglement of very high OAM can improve the sensitivity of angular resolution in remote sensing.

  19. Entanglement verification with detection efficiency mismatch

    NASA Astrophysics Data System (ADS)

    Zhang, Yanbao; Lütkenhaus, Norbert

    Entanglement is a necessary condition for secure quantum key distribution (QKD). When there is an efficiency mismatch between various detectors used in the QKD system, it is still an open problem how to verify entanglement. Here we present a method to address this problem, given that the detection efficiency mismatch is characterized and known. The method works without assuming an upper bound on the number of photons going to each threshold detector. Our results suggest that the efficiency mismatch affects the ability to verify entanglement: the larger the efficiency mismatch is, the smaller the set of entangled states that can be verified becomes. When there is no mismatch, our method can verify entanglement even if the method based on squashing maps [PRL 101, 093601 (2008)] fails.

  20. Entanglement distillation between solid-state quantum network nodes.

    PubMed

    Kalb, N; Reiserer, A A; Humphreys, P C; Bakermans, J J W; Kamerling, S J; Nickerson, N H; Benjamin, S C; Twitchen, D J; Markham, M; Hanson, R

    2017-06-02

    The impact of future quantum networks hinges on high-quality quantum entanglement shared between network nodes. Unavoidable imperfections necessitate a means to improve remote entanglement by local quantum operations. We realize entanglement distillation on a quantum network primitive of distant electron-nuclear two-qubit nodes. The heralded generation of two copies of a remote entangled state is demonstrated through single-photon-mediated entangling of the electrons and robust storage in the nuclear spins. After applying local two-qubit gates, single-shot measurements herald the distillation of an entangled state with increased fidelity that is available for further use. The key combination of generating, storing, and processing entangled states should enable the exploration of multiparticle entanglement on an extended quantum network. Copyright © 2017, American Association for the Advancement of Science.

  1. Distilling quantum entanglement via mode-matched filtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang Yuping; Kumar, Prem

    We propose an avenue toward distillation of quantum entanglement that is implemented by directly passing the entangled qubits through a mode-matched filter. This approach can be applied to a common class of entanglement impurities appearing in photonic systems, where the impurities inherently occupy different spatiotemporal modes than the entangled qubits. As a specific application, we show that our method can be used to significantly purify the telecom-band entanglement generated via the Kerr nonlinearity in single-mode fibers where a substantial amount of Raman-scattering noise is concomitantly produced.

  2. Teleportation of entanglement over 143 km

    PubMed Central

    Herbst, Thomas; Scheidl, Thomas; Fink, Matthias; Handsteiner, Johannes; Wittmann, Bernhard; Ursin, Rupert; Zeilinger, Anton

    2015-01-01

    As a direct consequence of the no-cloning theorem, the deterministic amplification as in classical communication is impossible for unknown quantum states. This calls for more advanced techniques in a future global quantum network, e.g., for cloud quantum computing. A unique solution is the teleportation of an entangled state, i.e., entanglement swapping, representing the central resource to relay entanglement between distant nodes. Together with entanglement purification and a quantum memory it constitutes a so-called quantum repeater. Since the aforementioned building blocks have been individually demonstrated in laboratory setups only, the applicability of the required technology in real-world scenarios remained to be proven. Here we present a free-space entanglement-swapping experiment between the Canary Islands of La Palma and Tenerife, verifying the presence of quantum entanglement between two previously independent photons separated by 143 km. We obtained an expectation value for the entanglement-witness operator, more than 6 SDs beyond the classical limit. By consecutive generation of the two required photon pairs and space-like separation of the relevant measurement events, we also showed the feasibility of the swapping protocol in a long-distance scenario, where the independence of the nodes is highly demanded. Because our results already allow for efficient implementation of entanglement purification, we anticipate our research to lay the ground for a fully fledged quantum repeater over a realistic high-loss and even turbulent quantum channel. PMID:26578764

  3. Teleportation of entanglement over 143 km.

    PubMed

    Herbst, Thomas; Scheidl, Thomas; Fink, Matthias; Handsteiner, Johannes; Wittmann, Bernhard; Ursin, Rupert; Zeilinger, Anton

    2015-11-17

    As a direct consequence of the no-cloning theorem, the deterministic amplification as in classical communication is impossible for unknown quantum states. This calls for more advanced techniques in a future global quantum network, e.g., for cloud quantum computing. A unique solution is the teleportation of an entangled state, i.e., entanglement swapping, representing the central resource to relay entanglement between distant nodes. Together with entanglement purification and a quantum memory it constitutes a so-called quantum repeater. Since the aforementioned building blocks have been individually demonstrated in laboratory setups only, the applicability of the required technology in real-world scenarios remained to be proven. Here we present a free-space entanglement-swapping experiment between the Canary Islands of La Palma and Tenerife, verifying the presence of quantum entanglement between two previously independent photons separated by 143 km. We obtained an expectation value for the entanglement-witness operator, more than 6 SDs beyond the classical limit. By consecutive generation of the two required photon pairs and space-like separation of the relevant measurement events, we also showed the feasibility of the swapping protocol in a long-distance scenario, where the independence of the nodes is highly demanded. Because our results already allow for efficient implementation of entanglement purification, we anticipate our research to lay the ground for a fully fledged quantum repeater over a realistic high-loss and even turbulent quantum channel.

  4. Residual entanglement and sudden death: A direct connection

    NASA Astrophysics Data System (ADS)

    de Oliveira, J. G. G.; Peixoto de Faria, J. G.; Nemes, M. C.

    2011-11-01

    We explore the results of [V. Coffman, et al., Phys. Rev. A 61 (2000) 052306] derived for general tripartite states in a dynamical context. We study a class of physically motivated tripartite systems. We show that whenever entanglement sudden death occurs in one of the partitions residual entanglement will appear. For fourpartite systems however, the appearance of residual entanglement is not conditioned by sudden death of entanglement. We can only say that if sudden death of entanglement occurs in some partition there will certainly be residual entanglement.

  5. Entanglement between two spatially separated atomic modes

    NASA Astrophysics Data System (ADS)

    Lange, Karsten; Peise, Jan; Lücke, Bernd; Kruse, Ilka; Vitagliano, Giuseppe; Apellaniz, Iagoba; Kleinmann, Matthias; Tóth, Géza; Klempt, Carsten

    2018-04-01

    Modern quantum technologies in the fields of quantum computing, quantum simulation, and quantum metrology require the creation and control of large ensembles of entangled particles. In ultracold ensembles of neutral atoms, nonclassical states have been generated with mutual entanglement among thousands of particles. The entanglement generation relies on the fundamental particle-exchange symmetry in ensembles of identical particles, which lacks the standard notion of entanglement between clearly definable subsystems. Here, we present the generation of entanglement between two spatially separated clouds by splitting an ensemble of ultracold identical particles prepared in a twin Fock state. Because the clouds can be addressed individually, our experiments open a path to exploit the available entangled states of indistinguishable particles for quantum information applications.

  6. Temporal Multimode Storage of Entangled Photon Pairs

    NASA Astrophysics Data System (ADS)

    Tiranov, Alexey; Strassmann, Peter C.; Lavoie, Jonathan; Brunner, Nicolas; Huber, Marcus; Verma, Varun B.; Nam, Sae Woo; Mirin, Richard P.; Lita, Adriana E.; Marsili, Francesco; Afzelius, Mikael; Bussières, Félix; Gisin, Nicolas

    2016-12-01

    Multiplexed quantum memories capable of storing and processing entangled photons are essential for the development of quantum networks. In this context, we demonstrate and certify the simultaneous storage and retrieval of two entangled photons inside a solid-state quantum memory and measure a temporal multimode capacity of ten modes. This is achieved by producing two polarization-entangled pairs from parametric down-conversion and mapping one photon of each pair onto a rare-earth-ion-doped (REID) crystal using the atomic frequency comb (AFC) protocol. We develop a concept of indirect entanglement witnesses, which can be used as Schmidt number witnesses, and we use it to experimentally certify the presence of more than one entangled pair retrieved from the quantum memory. Our work puts forward REID-AFC as a platform compatible with temporal multiplexing of several entangled photon pairs along with a new entanglement certification method, useful for the characterization of multiplexed quantum memories.

  7. Diffraction of entangled particles by light gratings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sancho, Pedro, E-mail: psanchos@aemet.es

    We analyze the diffraction regime of the Kapitza–Dirac effect for particles entangled in momentum. The detection patterns show two-particle interferences. In the single-mode case we identify a discontinuity in the set of joint detection probabilities, associated with the disconnected character of the space of non-separable states. For Gaussian multi-mode states we derive the diffraction patterns, providing an example of the dependence of the light–matter interaction on entanglement. When the particles are identical, we can explore the relation between exchange and entanglement effects. We find a complementary behavior between overlapping and Schmidt’s number. In particular, symmetric entanglement can cancel the exchangemore » effects. - Highlights: • Kapitza–Dirac diffraction of entangled particles shows multiparticle interference. • There is a discontinuity in the set of joint detection patterns of entangled states. • We find a complementary behavior between overlapping and Schmidt’s number. • Symmetric entanglement can cancel the exchange effects.« less

  8. Entanglement of spin waves among four quantum memories.

    PubMed

    Choi, K S; Goban, A; Papp, S B; van Enk, S J; Kimble, H J

    2010-11-18

    Quantum networks are composed of quantum nodes that interact coherently through quantum channels, and open a broad frontier of scientific opportunities. For example, a quantum network can serve as a 'web' for connecting quantum processors for computation and communication, or as a 'simulator' allowing investigations of quantum critical phenomena arising from interactions among the nodes mediated by the channels. The physical realization of quantum networks generically requires dynamical systems capable of generating and storing entangled states among multiple quantum memories, and efficiently transferring stored entanglement into quantum channels for distribution across the network. Although such capabilities have been demonstrated for diverse bipartite systems, entangled states have not been achieved for interconnects capable of 'mapping' multipartite entanglement stored in quantum memories to quantum channels. Here we demonstrate measurement-induced entanglement stored in four atomic memories; user-controlled, coherent transfer of the atomic entanglement to four photonic channels; and characterization of the full quadripartite entanglement using quantum uncertainty relations. Our work therefore constitutes an advance in the distribution of multipartite entanglement across quantum networks. We also show that our entanglement verification method is suitable for studying the entanglement order of condensed-matter systems in thermal equilibrium.

  9. Heralded entanglement of two remote atoms

    NASA Astrophysics Data System (ADS)

    Krug, Michael; Hofmann, Julian; Ortegel, Norbert; Gerard, Lea; Redeker, Kai; Henkel, Florian; Rosenfeld, Wenjamin; Weber, Markus; Weinfurter, Harald

    2012-06-01

    Entanglement between atomic quantum memories at remote locations will be a key resource for future applications in quantum communication. One possibility to generate such entanglement over large distances is entanglement swapping starting from two quantum memories each entangled with a photon. The photons can be transported to a Bell-state measurement where after the atomic quantum memories are projected onto an entangled state. We have set up two independently operated single atom experiments separated by 20 m. Via a spontaneous decay process each quantum memory, in our case a single Rb-87 atom, emits a single photon whose polarization is entangled with the atomic spin. The photons one emitted from each atom are collected into single-mode optical fibers guided to a non-polarizing 50-50 beam-splitter and detected by avalanche photodetectors. Bunching of indistinguishable photons allows to perform a Bell-state measurement on the photons. Conditioned on the registration of particular two-photon coincidences the spin states of both atoms are measured. The observed correlations clearly prove the entanglement of the two atoms. This is a first step towards creating a basic node of a quantum network as well as a key prerequisite for a future loophole-free test of Bell's inequality.

  10. Quantum entanglement distillation with metamaterials.

    PubMed

    al Farooqui, Md Abdullah; Breeland, Justin; Aslam, Muhammad I; Sadatgol, Mehdi; Özdemir, Şahin K; Tame, Mark; Yang, Lan; Güney, Durdu Ö

    2015-07-13

    We propose a scheme for the distillation of partially entangled two-photon Bell and three-photon W states using metamaterials. The distillation of partially entangled Bell states is achieved by using two metamaterials with polarization dependence, one of which is rotated by π/2 around the direction of propagation of the photons. On the other hand, the distillation of three-photon W states is achieved by using one polarization dependent metamaterial and two polarization independent metamaterials. Upon transmission of the photons of the partially entangled states through the metamaterials the entanglement of the states increases and they become distilled. This work opens up new directions in quantum optical state engineering by showing how metamaterials can be used to carry out a quantum information processing task.

  11. Verifying genuine high-order entanglement.

    PubMed

    Li, Che-Ming; Chen, Kai; Reingruber, Andreas; Chen, Yueh-Nan; Pan, Jian-Wei

    2010-11-19

    High-order entanglement embedded in multipartite multilevel quantum systems (qudits) with many degrees of freedom (DOFs) plays an important role in quantum foundation and quantum engineering. Verifying high-order entanglement without the restriction of system complexity is a critical need in any experiments on general entanglement. Here, we introduce a scheme to efficiently detect genuine high-order entanglement, such as states close to genuine qudit Bell, Greenberger-Horne-Zeilinger, and cluster states as well as multilevel multi-DOF hyperentanglement. All of them can be identified with two local measurement settings per DOF regardless of the qudit or DOF number. The proposed verifications together with further utilities such as fidelity estimation could pave the way for experiments by reducing dramatically the measurement overhead.

  12. Quantum Entanglement in Neural Network States

    NASA Astrophysics Data System (ADS)

    Deng, Dong-Ling; Li, Xiaopeng; Das Sarma, S.

    2017-04-01

    Machine learning, one of today's most rapidly growing interdisciplinary fields, promises an unprecedented perspective for solving intricate quantum many-body problems. Understanding the physical aspects of the representative artificial neural-network states has recently become highly desirable in the applications of machine-learning techniques to quantum many-body physics. In this paper, we explore the data structures that encode the physical features in the network states by studying the quantum entanglement properties, with a focus on the restricted-Boltzmann-machine (RBM) architecture. We prove that the entanglement entropy of all short-range RBM states satisfies an area law for arbitrary dimensions and bipartition geometry. For long-range RBM states, we show by using an exact construction that such states could exhibit volume-law entanglement, implying a notable capability of RBM in representing quantum states with massive entanglement. Strikingly, the neural-network representation for these states is remarkably efficient, in the sense that the number of nonzero parameters scales only linearly with the system size. We further examine the entanglement properties of generic RBM states by randomly sampling the weight parameters of the RBM. We find that their averaged entanglement entropy obeys volume-law scaling, and the meantime strongly deviates from the Page entropy of the completely random pure states. We show that their entanglement spectrum has no universal part associated with random matrix theory and bears a Poisson-type level statistics. Using reinforcement learning, we demonstrate that RBM is capable of finding the ground state (with power-law entanglement) of a model Hamiltonian with a long-range interaction. In addition, we show, through a concrete example of the one-dimensional symmetry-protected topological cluster states, that the RBM representation may also be used as a tool to analytically compute the entanglement spectrum. Our results uncover the

  13. Images in quantum entanglement

    NASA Astrophysics Data System (ADS)

    Bowden, G. J.

    2009-08-01

    A system for classifying and quantifying entanglement in spin 1/2 pure states is presented based on simple images. From the image point of view, an entangled state can be described as a linear superposition of separable object wavefunction ΨO plus a portion of its own inverse image. Bell states can be defined in this way: \\Psi = 1/\\sqrt 2 (\\Psi _O \\pm \\Psi _I ). Using the method of images, the three-spin 1/2 system is discussed in some detail. This system can exhibit exclusive three-particle ν123 entanglement, two-particle entanglements ν12, ν13, ν23 and/or mixtures of all four. All four image states are orthogonal both to each other and to the object wavefunction. In general, five entanglement parameters ν12, ν13, ν23, ν123 and phi123 are required to define the general entangled state. In addition, it is shown that there is considerable scope for encoding numbers, at least from the classical point of view but using quantum-mechanical principles. Methods are developed for their extraction. It is shown that concurrence can be used to extract even-partite, but not odd-partite information. Additional relationships are also presented which can be helpful in the decoding process. However, in general, numerical methods are mandatory. A simple roulette method for decoding is presented and discussed. But it is shown that if the encoder chooses to use transcendental numbers for the angles defining the target function (α1, β1), etc, the method rapidly turns into the Devil's roulette, requiring finer and finer angular steps.

  14. Entanglement capacity of nonlocal Hamiltonians: A geometric approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lari, Behzad; Hassan, Ali Saif M.; Joag, Pramod S.

    We develop a geometric approach to quantify the capability of creating entanglement for a general physical interaction acting on two qubits. We use the entanglement measure proposed by us for N-qubit pure states [Ali Saif M. Hassan and Pramod S. Joag, Phys. Rev. A 77, 062334 (2008)]. This geometric method has the distinct advantage that it gives the experimentally implementable criteria to ensure the optimal entanglement production rate without requiring a detailed knowledge of the state of the two qubit system. For the production of entanglement in practice, we need criteria for optimal entanglement production, which can be checked inmore » situ without any need to know the state, as experimentally finding out the state of a quantum system is generally a formidable task. Further, we use our method to quantify the entanglement capacity in higher level and multipartite systems. We quantify the entanglement capacity for two qutrits and find the maximal entanglement generation rate and the corresponding state for the general isotropic interaction between qutrits, using the entanglement measure of N-qudit pure states proposed by us [Ali Saif M. Hassan and Pramod S. Joag, Phys. Rev. A 80, 042302 (2009)]. Next we quantify the genuine three qubit entanglement capacity for a general interaction between qubits. We obtain the maximum entanglement generation rate and the corresponding three qubit state for a general isotropic interaction between qubits. The state maximizing the entanglement generation rate is of the Greenberger-Horne-Zeilinger class. To the best of our knowledge, the entanglement capacities for two qutrit and three qubit systems have not been reported earlier.« less

  15. One-pot synthesis of monodisperse CoFe2O4@Ag core-shell nanoparticles and their characterization.

    PubMed

    Hara, Shuta; Aisu, Jumpei; Kato, Masahiro; Aono, Takashige; Sugawa, Kosuke; Takase, Kouichi; Otsuki, Joe; Shimizu, Shigeru; Ikake, Hiroki

    2018-06-08

    In recent years, monodispersed magnetic nanoparticles with a core/shell structure are expected for their wide applications including magnetic fluid, recoverable catalysts, and biological analysis. However, their synthesis method needs numerous processes such as solvent substitution, exchange of protective agents, and centrifugation. A simple and rapid method for the synthesis of monodispersed core-shell nanoparticles makes it possible to accelerate their further applications. This paper describes a simple and rapid one-pot synthesis of core (CoFe 2 O 4 )-shell (Ag) nanoparticles with high monodispersity. The synthesized nanoparticles showed plasmonic light absorption owing to the Ag shell. Moreover, the magnetic property of the nanoparticles had a soft magnetic behavior at room temperature and a hard magnetic behavior at 5 K. In addition, the nanoparticles showed high monodispersity with a low polydispersity index (PDI) value of 0.083 in hexane.

  16. One-pot synthesis of monodisperse CoFe2O4@Ag core-shell nanoparticles and their characterization

    NASA Astrophysics Data System (ADS)

    Hara, Shuta; Aisu, Jumpei; Kato, Masahiro; Aono, Takashige; Sugawa, Kosuke; Takase, Kouichi; Otsuki, Joe; Shimizu, Shigeru; Ikake, Hiroki

    2018-06-01

    In recent years, monodispersed magnetic nanoparticles with a core/shell structure are expected for their wide applications including magnetic fluid, recoverable catalysts, and biological analysis. However, their synthesis method needs numerous processes such as solvent substitution, exchange of protective agents, and centrifugation. A simple and rapid method for the synthesis of monodispersed core-shell nanoparticles makes it possible to accelerate their further applications. This paper describes a simple and rapid one-pot synthesis of core (CoFe2O4)-shell (Ag) nanoparticles with high monodispersity. The synthesized nanoparticles showed plasmonic light absorption owing to the Ag shell. Moreover, the magnetic property of the nanoparticles had a soft magnetic behavior at room temperature and a hard magnetic behavior at 5 K. In addition, the nanoparticles showed high monodispersity with a low polydispersity index (PDI) value of 0.083 in hexane.

  17. Entanglement quantification by local unitary operations

    NASA Astrophysics Data System (ADS)

    Monras, A.; Adesso, G.; Giampaolo, S. M.; Gualdi, G.; Davies, G. B.; Illuminati, F.

    2011-07-01

    Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitary operations play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as “mirror entanglement.” They are constructed by first considering the (squared) Hilbert-Schmidt distance of the state from the set of states obtained by applying to it a given local unitary operator. To the action of each different local unitary operator there corresponds a different distance. We then minimize these distances over the sets of local unitary operations with different spectra, obtaining an entire family of different entanglement monotones. We show that these mirror-entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary operator for the associated mirror entanglement to be faithful, i.e., to vanish in and only in separable pure states. We analyze in detail the properties of one particularly relevant member of the family, the “stellar mirror entanglement” associated with the traceless local unitary operations with nondegenerate spectra and equispaced eigenvalues in the complex plane. This particular measure generalizes the original analysis of S. M. Giampaolo and F. Illuminati [Phys. Rev. APLRAAN1050-294710.1103/PhysRevA.76.042301 76, 042301 (2007)], valid for qubits and qutrits. We prove that the stellar entanglement is a faithful bipartite entanglement monotone in any dimension and that it is bounded from below by a function proportional to the linear entropy and from above by the linear entropy itself, coinciding with it in two- and three-dimensional spaces.

  18. Bell nonlocality and fully entangled fraction measured in an entanglement-swapping device without quantum state tomography

    NASA Astrophysics Data System (ADS)

    Bartkiewicz, Karol; Lemr, Karel; Černoch, Antonín; Miranowicz, Adam

    2017-03-01

    We propose and experimentally implement an efficient procedure based on entanglement swapping to determine the Bell nonlocality measure of Horodecki et al. [Phys. Lett. A 200, 340 (1995), 10.1016/0375-9601(95)00214-N] and the fully entangled fraction of Bennett et al. [Phys. Rev. A 54, 3824 (1996), 10.1103/PhysRevA.54.3824] of an arbitrary two-qubit polarization-encoded state. The nonlocality measure corresponds to the amount of the violation of the Clauser-Horne-Shimony-Holt (CHSH) optimized over all measurement settings. By using simultaneously two copies of a given state, we measure directly only six parameters. This is an experimental determination of these quantities without quantum state tomography or continuous monitoring of all measurement bases in the usual CHSH inequality tests. We analyze how well the measured degrees of Bell nonlocality and other entanglement witnesses (including the fully entangled fraction and a nonlinear entropic witness) of an arbitrary two-qubit state can estimate its entanglement. In particular, we measure these witnesses and estimate the negativity of various two-qubit Werner states. Our approach could especially be useful for quantum communication protocols based on entanglement swapping.

  19. Scaling of Linking and Writhing Numbers for Spherically Confined and Topologically Equilibrated Flexible Polymers

    PubMed Central

    Marko, John F.

    2011-01-01

    Scaling laws for Gauss linking number Ca and writhing number Wr for spherically confined flexible polymers with thermally fluctuating topology are analyzed. For ideal (phantom) polymers each of N segments of length unity confined to a spherical pore of radius R there are two scaling regimes: for sufficiently weak confinement (R ⪢ N1/3) each chain has |Wr| ≈ N1/2, and each pair of chains has average |Ca| ≈ N/R3/2; alternately for sufficiently tight confinement (N1/3 ⪢ R), |Wr| ≈ |CA| ≈ N/R3/2. Adding segment-segment avoidance modifies this result: for n chains with excluded volume interactions |Ca| ≈ (N/n)1/2f(ϕ) where f is a scaling function that depends approximately linearly on the segment concentration ϕ = nN/R3. Scaling results for writhe are used to estimate the maximum writhe of a polymer; this is demonstrated to be realizable through a writhing instability that occurs for a polymer which is able to change knotting topology and which is subject to an applied torque. Finally, scaling results for linking are used to estimate bounds on the entanglement complexity of long chromosomal DNA molecules inside cells, and to show how “lengthwise” chromosome condensation can suppress DNA entanglement. PMID:21686050

  20. Entanglement enhances cooling in microscopic quantum refrigerators.

    PubMed

    Brunner, Nicolas; Huber, Marcus; Linden, Noah; Popescu, Sandu; Silva, Ralph; Skrzypczyk, Paul

    2014-03-01

    Small self-contained quantum thermal machines function without external source of work or control but using only incoherent interactions with thermal baths. Here we investigate the role of entanglement in a small self-contained quantum refrigerator. We first show that entanglement is detrimental as far as efficiency is concerned-fridges operating at efficiencies close to the Carnot limit do not feature any entanglement. Moving away from the Carnot regime, we show that entanglement can enhance cooling and energy transport. Hence, a truly quantum refrigerator can outperform a classical one. Furthermore, the amount of entanglement alone quantifies the enhancement in cooling.

  1. Customizing vacuum fluctuations for enhanced entanglement creation

    NASA Astrophysics Data System (ADS)

    Wang, Jin

    2018-07-01

    This paper connects the creation of entanglement through cavity enhanced decay rate with practical design parameters such as cavity dimension and cavity mirror reflectivity. The clarification of specific physical parameters on cavity enhanced emission in relation to entanglement creation is discussed. It is found that entanglement increases as the size of the cavity decreases, or the reflectivity of the cavity mirrors increases. Additionally, the negative effect of individual qubit decoherence on the entanglement is discussed. These results can be used to design or choose a practical system for implementing entanglement between two qubits for quantum computation and information processing.

  2. Interuniversal entanglement in a cyclic multiverse

    NASA Astrophysics Data System (ADS)

    Robles-Pérez, Salvador; Balcerzak, Adam; Dąbrowski, Mariusz P.; Krämer, Manuel

    2017-04-01

    We study scenarios of parallel cyclic multiverses which allow for a different evolution of the physical constants, while having the same geometry. These universes are classically disconnected, but quantum-mechanically entangled. Applying the thermodynamics of entanglement, we calculate the temperature and the entropy of entanglement. It emerges that the entropy of entanglement is large at big bang and big crunch singularities of the parallel universes as well as at the maxima of the expansion of these universes. The latter seems to confirm earlier studies that quantum effects are strong at turning points of the evolution of the universe performed in the context of the timeless nature of the Wheeler-DeWitt equation and decoherence. On the other hand, the entropy of entanglement at big rip singularities is going to zero despite its presumably quantum nature. This may be an effect of total dissociation of the universe structures into infinitely separated patches violating the null energy condition. However, the temperature of entanglement is large/infinite at every classically singular point and at maximum expansion and seems to be a better measure of quantumness.

  3. Generalized Entanglement Entropies of Quantum Designs.

    PubMed

    Liu, Zi-Wen; Lloyd, Seth; Zhu, Elton Yechao; Zhu, Huangjun

    2018-03-30

    The entanglement properties of random quantum states or dynamics are important to the study of a broad spectrum of disciplines of physics, ranging from quantum information to high energy and many-body physics. This Letter investigates the interplay between the degrees of entanglement and randomness in pure states and unitary channels. We reveal strong connections between designs (distributions of states or unitaries that match certain moments of the uniform Haar measure) and generalized entropies (entropic functions that depend on certain powers of the density operator), by showing that Rényi entanglement entropies averaged over designs of the same order are almost maximal. This strengthens the celebrated Page's theorem. Moreover, we find that designs of an order that is logarithmic in the dimension maximize all Rényi entanglement entropies and so are completely random in terms of the entanglement spectrum. Our results relate the behaviors of Rényi entanglement entropies to the complexity of scrambling and quantum chaos in terms of the degree of randomness, and suggest a generalization of the fast scrambling conjecture.

  4. Spatial entanglement of nonvacuum Gaussian states

    NASA Astrophysics Data System (ADS)

    Kiałka, Filip; Ahmadi, Mehdi; Dragan, Andrzej

    2016-06-01

    The vacuum state of a relativistic quantum field contains entanglement between regions separated by spacelike intervals. Such spatial entanglement can be revealed using an operational method introduced in [M. Rodriguez-Vazquez, M. del Rey, H. Westman, and J. Leon, Ann. Phys. (N.Y.) 351, 112 (2014), E. G. Brown, M. del Rey, H. Westman, J. Leon, and A. Dragan, Phys. Rev. D 91, 016005 (2015)]. In this approach, a cavity is instantaneously divided into halves by an introduction of an extra perfect mirror. Causal separation of the two regions of the cavity reveals nonlocal spatial correlations present in the field, which can be quantified by measuring particles generated in the process. We use this method to study spatial entanglement properties of nonvacuum Gaussian field states. In particular, we show how to enhance the amount of harvested spatial entanglement by an appropriate choice of the initial state of the field in the cavity. We find a counterintuitive influence of the initial entanglement between cavity modes on the spatial entanglement which is revealed by dividing the cavity in half.

  5. Generalized Entanglement Entropies of Quantum Designs

    NASA Astrophysics Data System (ADS)

    Liu, Zi-Wen; Lloyd, Seth; Zhu, Elton Yechao; Zhu, Huangjun

    2018-03-01

    The entanglement properties of random quantum states or dynamics are important to the study of a broad spectrum of disciplines of physics, ranging from quantum information to high energy and many-body physics. This Letter investigates the interplay between the degrees of entanglement and randomness in pure states and unitary channels. We reveal strong connections between designs (distributions of states or unitaries that match certain moments of the uniform Haar measure) and generalized entropies (entropic functions that depend on certain powers of the density operator), by showing that Rényi entanglement entropies averaged over designs of the same order are almost maximal. This strengthens the celebrated Page's theorem. Moreover, we find that designs of an order that is logarithmic in the dimension maximize all Rényi entanglement entropies and so are completely random in terms of the entanglement spectrum. Our results relate the behaviors of Rényi entanglement entropies to the complexity of scrambling and quantum chaos in terms of the degree of randomness, and suggest a generalization of the fast scrambling conjecture.

  6. Robust entanglement between a movable mirror and atomic ensemble and entanglement transfer in coupled optomechanical system

    PubMed Central

    Bai, Cheng-Hua; Wang, Dong-Yang; Wang, Hong-Fu; Zhu, Ai-Dong; Zhang, Shou

    2016-01-01

    We propose a scheme for the creation of robust entanglement between a movable mirror and atomic ensemble at the macroscopic level in coupled optomechanical system. We numerically simulate the degree of entanglement of the bipartite macroscopic entanglement and show that it depends on the coupling strength between the cavities and is robust with respect to the certain environment temperature. Inspiringly and surprisingly, according to the reported relation between the mechanical damping rate and the mechanical frequency of the movable mirror, the numerical simulation result shows that such bipartite macroscopic entanglement persists for environment temperature up to 170 K, which breaks the liquid nitrogen cooling and liquid helium cooling and largely lowers down the experiment cost. We also investigate the entanglement transfer based on this coupled system. The scheme can be used for the realization of quantum memories for continuous variable quantum information processing and quantum-limited displacement measurements. PMID:27624534

  7. Entropy-driven phase transitions of entanglement

    NASA Astrophysics Data System (ADS)

    Facchi, Paolo; Florio, Giuseppe; Parisi, Giorgio; Pascazio, Saverio; Yuasa, Kazuya

    2013-05-01

    We study the behavior of bipartite entanglement at fixed von Neumann entropy. We look at the distribution of the entanglement spectrum, that is, the eigenvalues of the reduced density matrix of a quantum system in a pure state. We report the presence of two continuous phase transitions, characterized by different entanglement spectra, which are deformations of classical eigenvalue distributions.

  8. On-chip continuous-variable quantum entanglement

    NASA Astrophysics Data System (ADS)

    Masada, Genta; Furusawa, Akira

    2016-09-01

    Entanglement is an essential feature of quantum theory and the core of the majority of quantum information science and technologies. Quantum computing is one of the most important fruits of quantum entanglement and requires not only a bipartite entangled state but also more complicated multipartite entanglement. In previous experimental works to demonstrate various entanglement-based quantum information processing, light has been extensively used. Experiments utilizing such a complicated state need highly complex optical circuits to propagate optical beams and a high level of spatial interference between different light beams to generate quantum entanglement or to efficiently perform balanced homodyne measurement. Current experiments have been performed in conventional free-space optics with large numbers of optical components and a relatively large-sized optical setup. Therefore, they are limited in stability and scalability. Integrated photonics offer new tools and additional capabilities for manipulating light in quantum information technology. Owing to integrated waveguide circuits, it is possible to stabilize and miniaturize complex optical circuits and achieve high interference of light beams. The integrated circuits have been firstly developed for discrete-variable systems and then applied to continuous-variable systems. In this article, we review the currently developed scheme for generation and verification of continuous-variable quantum entanglement such as Einstein-Podolsky-Rosen beams using a photonic chip where waveguide circuits are integrated. This includes balanced homodyne measurement of a squeezed state of light. As a simple example, we also review an experiment for generating discrete-variable quantum entanglement using integrated waveguide circuits.

  9. Synthesis of highly-monodisperse spherical titania particles with diameters in the submicron range.

    PubMed

    Tanaka, Shunsuke; Nogami, Daisuke; Tsuda, Natsuki; Miyake, Yoshikazu

    2009-06-15

    Monodisperse titania spheres with particle diameters in the range 380-960 nm were successfully synthesized by hydrolysis and condensation of titanium tetraisopropoxide. The preparation was performed using ammonia or dodecylamine (DDA) as a catalyst in methanol/acetonitrile co-solvent at room temperature. The samples were characterized by powder X-ray diffraction, scanning electron microscopy, transmission electron microscopy, dynamic light scattering, and nitrogen sorption measurement. The use of DDA was effective for the synthesis of monodisperse titania spheres with low coefficient of variation. When the titania spherical particles with coefficient of variation less than 4% were obtained, the colloidal crystallization easily occurred simply by centrifugation. The monodispersity was maintained even after crystallization of the particles by high temperature annealing. The titania particles prepared using DDA had mesopores near the surface of the spheres, providing high pore accessibility to the sphere from the surface-air interface. The particle size uniformity and photocatalytic reactivity of the titania prepared using DDA were higher than those of the titania prepared using ammonia.

  10. Entanglement replication in driven dissipative many-body systems.

    PubMed

    Zippilli, S; Paternostro, M; Adesso, G; Illuminati, F

    2013-01-25

    We study the dissipative dynamics of two independent arrays of many-body systems, locally driven by a common entangled field. We show that in the steady state the entanglement of the driving field is reproduced in an arbitrarily large series of inter-array entangled pairs over all distances. Local nonclassical driving thus realizes a scale-free entanglement replication and long-distance entanglement distribution mechanism that has immediate bearing on the implementation of quantum communication networks.

  11. Quantum Entanglement Growth under Random Unitary Dynamics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nahum, Adam; Ruhman, Jonathan; Vijay, Sagar

    Characterizing how entanglement grows with time in a many-body system, for example, after a quantum quench, is a key problem in nonequilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time-dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the “entanglement tsunami” in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar-Parisi-Zhang (KPZ) equation. The mean entanglement growsmore » linearly in time, while fluctuations grow like (time) 1/3 and are spatially correlated over a distance ∝(time) 2/3. We derive KPZ universal behavior in three complementary ways, by mapping random entanglement growth to (i) a stochastic model of a growing surface, (ii) a “minimal cut” picture, reminiscent of the Ryu-Takayanagi formula in holography, and (iii) a hydrodynamic problem involving the dynamical spreading of operators. We demonstrate KPZ universality in 1D numerically using simulations of random unitary circuits. Importantly, the leading-order time dependence of the entropy is deterministic even in the presence of noise, allowing us to propose a simple coarse grained minimal cut picture for the entanglement growth of generic Hamiltonians, even without noise, in arbitrary dimensionality. We clarify the meaning of the “velocity” of entanglement growth in the 1D entanglement tsunami. We show that in higher dimensions, noisy entanglement evolution maps to the well-studied problem of pinning of a membrane or domain wall by disorder.« less

  12. Quantum Entanglement Growth under Random Unitary Dynamics

    NASA Astrophysics Data System (ADS)

    Nahum, Adam; Ruhman, Jonathan; Vijay, Sagar; Haah, Jeongwan

    2017-07-01

    Characterizing how entanglement grows with time in a many-body system, for example, after a quantum quench, is a key problem in nonequilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time-dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the "entanglement tsunami" in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar-Parisi-Zhang (KPZ) equation. The mean entanglement grows linearly in time, while fluctuations grow like (time )1/3 and are spatially correlated over a distance ∝(time )2/3. We derive KPZ universal behavior in three complementary ways, by mapping random entanglement growth to (i) a stochastic model of a growing surface, (ii) a "minimal cut" picture, reminiscent of the Ryu-Takayanagi formula in holography, and (iii) a hydrodynamic problem involving the dynamical spreading of operators. We demonstrate KPZ universality in 1D numerically using simulations of random unitary circuits. Importantly, the leading-order time dependence of the entropy is deterministic even in the presence of noise, allowing us to propose a simple coarse grained minimal cut picture for the entanglement growth of generic Hamiltonians, even without noise, in arbitrary dimensionality. We clarify the meaning of the "velocity" of entanglement growth in the 1D entanglement tsunami. We show that in higher dimensions, noisy entanglement evolution maps to the well-studied problem of pinning of a membrane or domain wall by disorder.

  13. Quantum Entanglement Growth under Random Unitary Dynamics

    DOE PAGES

    Nahum, Adam; Ruhman, Jonathan; Vijay, Sagar; ...

    2017-07-24

    Characterizing how entanglement grows with time in a many-body system, for example, after a quantum quench, is a key problem in nonequilibrium quantum physics. We study this problem for the case of random unitary dynamics, representing either Hamiltonian evolution with time-dependent noise or evolution by a random quantum circuit. Our results reveal a universal structure behind noisy entanglement growth, and also provide simple new heuristics for the “entanglement tsunami” in Hamiltonian systems without noise. In 1D, we show that noise causes the entanglement entropy across a cut to grow according to the celebrated Kardar-Parisi-Zhang (KPZ) equation. The mean entanglement growsmore » linearly in time, while fluctuations grow like (time) 1/3 and are spatially correlated over a distance ∝(time) 2/3. We derive KPZ universal behavior in three complementary ways, by mapping random entanglement growth to (i) a stochastic model of a growing surface, (ii) a “minimal cut” picture, reminiscent of the Ryu-Takayanagi formula in holography, and (iii) a hydrodynamic problem involving the dynamical spreading of operators. We demonstrate KPZ universality in 1D numerically using simulations of random unitary circuits. Importantly, the leading-order time dependence of the entropy is deterministic even in the presence of noise, allowing us to propose a simple coarse grained minimal cut picture for the entanglement growth of generic Hamiltonians, even without noise, in arbitrary dimensionality. We clarify the meaning of the “velocity” of entanglement growth in the 1D entanglement tsunami. We show that in higher dimensions, noisy entanglement evolution maps to the well-studied problem of pinning of a membrane or domain wall by disorder.« less

  14. Fisher metric, geometric entanglement, and spin networks

    NASA Astrophysics Data System (ADS)

    Chirco, Goffredo; Mele, Fabio M.; Oriti, Daniele; Vitale, Patrizia

    2018-02-01

    Starting from recent results on the geometric formulation of quantum mechanics, we propose a new information geometric characterization of entanglement for spin network states in the context of quantum gravity. For the simple case of a single-link fixed graph (Wilson line), we detail the construction of a Riemannian Fisher metric tensor and a symplectic structure on the graph Hilbert space, showing how these encode the whole information about separability and entanglement. In particular, the Fisher metric defines an entanglement monotone which provides a notion of distance among states in the Hilbert space. In the maximally entangled gauge-invariant case, the entanglement monotone is proportional to a power of the area of the surface dual to the link thus supporting a connection between entanglement and the (simplicial) geometric properties of spin network states. We further extend such analysis to the study of nonlocal correlations between two nonadjacent regions of a generic spin network graph characterized by the bipartite unfolding of an intertwiner state. Our analysis confirms the interpretation of spin network bonds as a result of entanglement and to regard the same spin network graph as an information graph, whose connectivity encodes, both at the local and nonlocal level, the quantum correlations among its parts. This gives a further connection between entanglement and geometry.

  15. Entanglement as minimal discord over state extensions

    NASA Astrophysics Data System (ADS)

    Luo, Shunlong

    2016-09-01

    The characterization and quantification of quantum correlations, which play an instrumental role in exploring and exploiting the quantum world, have been extensively and intensively studied in the past few decades. Of special prominence and significance are the concepts of entanglement and discord, which are usually regarded as very distinctive quantum correlations, with the latter going beyond the former. In this work we establish a direct and natural link between entanglement and discord via state extensions and reveal that entanglement is actually the intrinsic discord, by which we mean that entanglement is the irreducible residue of discord viewed from ambient spaces. Our approach, taking into account the contextuality of a quantum state and being of a global nature, stands in sharp contrast to the local operations and classical communication paradigm of entanglement, which focuses on the state itself via a local approach. Furthermore, we introduce a figure of merit which, on the one hand, captures the essence of entanglement, i.e., nonlocality and quantumness of correlations, and, on the other hand, leads to a quantitative decomposition of total correlations into classical correlations, dissonance, and entanglement. This demystifies the meaning of entanglement from the perspective of quantum measurements and provides a unified framework for the interplay of various correlations in terms of quantum measurements and mutual information.

  16. Stabilized entanglement of massive mechanical oscillators.

    PubMed

    Ockeloen-Korppi, C F; Damskägg, E; Pirkkalainen, J-M; Asjad, M; Clerk, A A; Massel, F; Woolley, M J; Sillanpää, M A

    2018-04-01

    Quantum entanglement is a phenomenon whereby systems cannot be described independently of each other, even though they may be separated by an arbitrarily large distance 1 . Entanglement has a solid theoretical and experimental foundation and is the key resource behind many emerging quantum technologies, including quantum computation, cryptography and metrology. Entanglement has been demonstrated for microscopic-scale systems, such as those involving photons 2-5 , ions 6 and electron spins 7 , and more recently in microwave and electromechanical devices 8-10 . For macroscopic-scale objects 8-14 , however, it is very vulnerable to environmental disturbances, and the creation and verification of entanglement of the centre-of-mass motion of macroscopic-scale objects remains an outstanding goal. Here we report such an experimental demonstration, with the moving bodies being two massive micromechanical oscillators, each composed of about 10 12 atoms, coupled to a microwave-frequency electromagnetic cavity that is used to create and stabilize the entanglement of their centre-of-mass motion 15-17 . We infer the existence of entanglement in the steady state by combining measurements of correlated mechanical fluctuations with an analysis of the microwaves emitted from the cavity. Our work qualitatively extends the range of entangled physical systems and has implications for quantum information processing, precision measurements and tests of the limits of quantum mechanics.

  17. Cosmological perturbations in the entangled inflationary universe

    NASA Astrophysics Data System (ADS)

    Robles-Pérez, Salvador J.

    2018-03-01

    In this paper, the model of a multiverse made up of universes that are created in entangled pairs that conserve the total momentum conjugated to the scale factor is presented. For the background spacetime, assumed is a Friedmann-Robertson-Walker metric with a scalar field with mass m minimally coupled to gravity. For the fields that propagate in the entangled spacetimes, the perturbations of the spacetime and the scalar field, whose quantum states become entangled too, are considered. They turn out to be in a quasithermal state, and the corresponding thermodynamical magnitudes are computed. Three observables are expected to be caused by the creation of the universes in entangled pairs: a modification of the Friedmann equation because of the entanglement of the spacetimes, a modification of the effective value of the potential of the scalar field by the backreaction of the perturbation modes, and a modification of the spectrum of fluctuations because the thermal distribution is induced by the entanglement of the partner universes. The later would be a distinctive feature of the creation of universes in entangled pairs.

  18. Gauge field entanglement in Kitaev's honeycomb model

    NASA Astrophysics Data System (ADS)

    Dóra, Balázs; Moessner, Roderich

    2018-01-01

    A spin fractionalizes into matter and gauge fermions in Kitaev's spin liquid on the honeycomb lattice. This follows from a Jordan-Wigner mapping to fermions, allowing for the construction of a minimal entropy ground-state wave function on the cylinder. We use this to calculate the entanglement entropy by choosing several distinct partitionings. First, by partitioning an infinite cylinder into two, the -ln2 topological entanglement entropy is reconfirmed. Second, the reduced density matrix of the gauge sector on the full cylinder is obtained after tracing out the matter degrees of freedom. This allows for evaluating the gauge entanglement Hamiltonian, which contains infinitely long-range correlations along the symmetry axis of the cylinder. The matter-gauge entanglement entropy is (Ny-1 )ln2 , with Ny the circumference of the cylinder. Third, the rules for calculating the gauge sector entanglement of any partition are determined. Rather small correctly chosen gauge partitions can still account for the topological entanglement entropy in spite of long-range correlations in the gauge entanglement Hamiltonian.

  19. Measurement-Device-Independent Approach to Entanglement Measures

    NASA Astrophysics Data System (ADS)

    Shahandeh, Farid; Hall, Michael J. W.; Ralph, Timothy C.

    2017-04-01

    Within the context of semiquantum nonlocal games, the trust can be removed from the measurement devices in an entanglement-detection procedure. Here, we show that a similar approach can be taken to quantify the amount of entanglement. To be specific, first, we show that in this context, a small subset of semiquantum nonlocal games is necessary and sufficient for entanglement detection in the local operations and classical communication paradigm. Second, we prove that the maximum payoff for these games is a universal measure of entanglement which is convex and continuous. Third, we show that for the quantification of negative-partial-transpose entanglement, this subset can be further reduced down to a single arbitrary element. Importantly, our measure is measurement device independent by construction and operationally accessible. Finally, our approach straightforwardly extends to quantify the entanglement within any partitioning of multipartite quantum states.

  20. Edge theory approach to topological entanglement entropy, mutual information, and entanglement negativity in Chern-Simons theories

    NASA Astrophysics Data System (ADS)

    Wen, Xueda; Matsuura, Shunji; Ryu, Shinsei

    2016-06-01

    We develop an approach based on edge theories to calculate the entanglement entropy and related quantities in (2+1)-dimensional topologically ordered phases. Our approach is complementary to, e.g., the existing methods using replica trick and Witten's method of surgery, and applies to a generic spatial manifold of genus g , which can be bipartitioned in an arbitrary way. The effects of fusion and braiding of Wilson lines can be also straightforwardly studied within our framework. By considering a generic superposition of states with different Wilson line configurations, through an interference effect, we can detect, by the entanglement entropy, the topological data of Chern-Simons theories, e.g., the R symbols, monodromy, and topological spins of quasiparticles. Furthermore, by using our method, we calculate other entanglement/correlation measures such as the mutual information and the entanglement negativity. In particular, it is found that the entanglement negativity of two adjacent noncontractible regions on a torus provides a simple way to distinguish Abelian and non-Abelian topological orders.

  1. Molecular Velcro constructed from polymer loop brushes showing enhanced adhesion force

    NASA Astrophysics Data System (ADS)

    Zhou, Tian; Han, Biao; Han, Lin; Li, Christopher; Department of Materials Science; Engineering Team; School of Biomedical Engineering, Science; Health Systems Team

    2015-03-01

    Molecular Velcro is commonly seen in biological systems as the formation of strong physical entanglement at molecular scale could induce strong adhesion, which is crucial to many biological processes. To mimic this structure, we designed, and fabricated polymer loop brushes using polymer single crystals with desired surface functionality and controlled chain folding. Compared with reported loop brushes fabricated using triblock copolymers, the present loop bushes have precise loop sizes, loop grafting density, and well controlled tethering locations on the solid surface. Atomic force microscopy-based force spectroscopy measurements using a polymer chain coated probe reveal that the adhesion force are significantly enhanced on the loop brush surface as compared with its single-strand counterpart. This study directly shows the effect of polymer brush conformation on their properties, and suggests a promising strategy for advanced polymer surface design.

  2. Approaches to Measuring Entanglement in Chemical Magnetometers

    PubMed Central

    2013-01-01

    Chemical magnetometers are radical pair systems such as solutions of pyrene and N,N-dimethylaniline (Py–DMA) that show magnetic field effects in their spin dynamics and their fluorescence. We investigate the existence and decay of quantum entanglement in free geminate Py–DMA radical pairs and discuss how entanglement can be assessed in these systems. We provide an entanglement witness and propose possible observables for experimentally estimating entanglement in radical pair systems with isotropic hyperfine couplings. As an application, we analyze how the field dependence of the entanglement lifetime in Py–DMA could in principle be used for magnetometry and illustrate the propagation of measurement errors in this approach. PMID:24372396

  3. Entanglement Entropy in Two-Dimensional String Theory.

    PubMed

    Hartnoll, Sean A; Mazenc, Edward A

    2015-09-18

    To understand an emergent spacetime is to understand the emergence of locality. Entanglement entropy is a powerful diagnostic of locality, because locality leads to a large amount of short distance entanglement. Two-dimensional string theory is among the very simplest instances of an emergent spatial dimension. We compute the entanglement entropy in the large-N matrix quantum mechanics dual to two-dimensional string theory in the semiclassical limit of weak string coupling. We isolate a logarithmically large, but finite, contribution that corresponds to the short distance entanglement of the tachyon field in the emergent spacetime. From the spacetime point of view, the entanglement is regulated by a nonperturbative "graininess" of space.

  4. Quantum steganography with large payload based on entanglement swapping of χ-type entangled states

    NASA Astrophysics Data System (ADS)

    Qu, Zhi-Guo; Chen, Xiu-Bo; Luo, Ming-Xing; Niu, Xin-Xin; Yang, Yi-Xian

    2011-04-01

    In this paper, we firstly propose a new simple method to calculate entanglement swapping of χ-type entangled states, and then present a novel quantum steganography protocol with large payload. The new protocol adopts entanglement swapping to build up the hidden channel within quantum secure direct communication with χ-type entangled states for securely transmitting secret messages. Comparing with the previous quantum steganographies, the capacity of the hidden channel is much higher, which is increased to eight bits. Meanwhile, due to the quantum uncertainty theorem and the no-cloning theorem its imperceptibility is proved to be great in the analysis, and its security is also analyzed in detail, which is proved that intercept-resend attack, measurement-resend attack, ancilla attack, man-in-the-middle attack or even Dos(Denial of Service) attack couldn't threaten it. As a result, the protocol can be applied in various fields of quantum communication.

  5. Tighter entanglement monogamy relations of qubit systems

    NASA Astrophysics Data System (ADS)

    Jin, Zhi-Xiang; Fei, Shao-Ming

    2017-03-01

    Monogamy relations characterize the distributions of entanglement in multipartite systems. We investigate monogamy relations related to the concurrence C and the entanglement of formation E. We present new entanglement monogamy relations satisfied by the α -th power of concurrence for all α ≥ 2, and the α -th power of the entanglement of formation for all α ≥ √{2}. These monogamy relations are shown to be tighter than the existing ones.

  6. Use of entanglement in quantum optics

    NASA Technical Reports Server (NTRS)

    Horne, Michael A.; Bernstein, Herbert J.; Greenberger, Daniel M.; Zeilinger, Anton

    1992-01-01

    Several recent demonstrations of two-particle interferometry are reviewed and shown to be examples of either color entanglement or beam entanglement. A device, called a number filter, is described and shown to be of value in preparing beam entanglements. Finally, we note that all three concepts (color and beam entaglement, and number filtering) may be extended to three or more particles.

  7. Slowing down of ring polymer diffusion caused by inter-ring threading.

    PubMed

    Lee, Eunsang; Kim, Soree; Jung, YounJoon

    2015-06-01

    Diffusion of long ring polymers in a melt is much slower than the reorganization of their internal structures. While direct evidence for entanglements has not been observed in the long ring polymers unlike linear polymer melts, threading between the rings is suspected to be the main reason for slowing down of ring polymer diffusion. It is, however, difficult to define the threading configuration between two rings because the rings have no chain end. In this work, evidence for threading dynamics of ring polymers is presented by using molecular dynamics simulation and applying a novel analysis method. The simulation results are analyzed in terms of the statistics of persistence and exchange times that have proved useful in studying heterogeneous dynamics of glassy systems. It is found that the threading time of ring polymer melts increases more rapidly with the degree of polymerization than that of linear polymer melts. This indicates that threaded ring polymers cannot diffuse until an unthreading event occurs, which results in the slowing down of ring polymer diffusion. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. GENERAL: Thermal entanglement and teleportation of a thermally mixed entangled state of a Heisenberg chain through a Werner state

    NASA Astrophysics Data System (ADS)

    Huang, Li-Yuan; Fang, Mao-Fa

    2008-07-01

    The thermal entanglement and teleportation of a thermally mixed entangled state of a two-qubit Heisenberg XXX chain under the Dzyaloshinski-Moriya (DM) anisotropic antisymmetric interaction through a noisy quantum channel given by a Werner state is investigated. The dependences of the thermal entanglement of the teleported state on the DM coupling constant, the temperature and the entanglement of the noisy quantum channel are studied in detail for both the ferromagnetic and the antiferromagnetic cases. The result shows that a minimum entanglement of the noisy quantum channel must be provided in order to realize the entanglement teleportation. The values of fidelity of the teleported state are also studied for these two cases. It is found that under certain conditions, we can transfer an initial state with a better fidelity than that for any classical communication protocol.

  9. Maximally multipartite entangled states

    NASA Astrophysics Data System (ADS)

    Facchi, Paolo; Florio, Giuseppe; Parisi, Giorgio; Pascazio, Saverio

    2008-06-01

    We introduce the notion of maximally multipartite entangled states of n qubits as a generalization of the bipartite case. These pure states have a bipartite entanglement that does not depend on the bipartition and is maximal for all possible bipartitions. They are solutions of a minimization problem. Examples for small n are investigated, both analytically and numerically.

  10. Entangled states in quantum mechanics

    NASA Astrophysics Data System (ADS)

    Ruža, Jānis

    2010-01-01

    In some circles of quantum physicists, a view is maintained that the nonseparability of quantum systems-i.e., the entanglement-is a characteristic feature of quantum mechanics. According to this view, the entanglement plays a crucial role in the solution of quantum measurement problem, the origin of the “classicality” from the quantum physics, the explanation of the EPR paradox by a nonlocal character of the quantum world. Besides, the entanglement is regarded as a cornerstone of such modern disciplines as quantum computation, quantum cryptography, quantum information, etc. At the same time, entangled states are well known and widely used in various physics areas. In particular, this notion is widely used in nuclear, atomic, molecular, solid state physics, in scattering and decay theories as well as in other disciplines, where one has to deal with many-body quantum systems. One of the methods, how to construct the basis states of a composite many-body quantum system, is the so-called genealogical decomposition method. Genealogical decomposition allows one to construct recurrently by particle number the basis states of a composite quantum system from the basis states of its forming subsystems. These coupled states have a structure typical for entangled states. If a composite system is stable, the internal structure of its forming basis states does not manifest itself in measurements. However, if a composite system is unstable and decays onto its forming subsystems, then the measurables are the quantum numbers, associated with these subsystems. In such a case, the entangled state has a dynamical origin, determined by the Hamiltonian of the corresponding decay process. Possible correlations between the quantum numbers of resulting subsystems are determined by the symmetries-conservation laws of corresponding dynamical variables, and not by the quantum entanglement feature.

  11. Relative entropy of entanglement and restricted measurements.

    PubMed

    Piani, M

    2009-10-16

    We introduce variants of relative entropy of entanglement based on the optimal distinguishability from unentangled states by means of restricted measurements. In this way we are able to prove that the standard regularized entropy of entanglement is strictly positive for all multipartite entangled states. This implies that the asymptotic creation of a multipartite entangled state by means of local operations and classical communication always requires the consumption of a nonlocal resource at a strictly positive rate.

  12. Entanglement Equilibrium and the Einstein Equation.

    PubMed

    Jacobson, Ted

    2016-05-20

    A link between the semiclassical Einstein equation and a maximal vacuum entanglement hypothesis is established. The hypothesis asserts that entanglement entropy in small geodesic balls is maximized at fixed volume in a locally maximally symmetric vacuum state of geometry and quantum fields. A qualitative argument suggests that the Einstein equation implies the validity of the hypothesis. A more precise argument shows that, for first-order variations of the local vacuum state of conformal quantum fields, the vacuum entanglement is stationary if and only if the Einstein equation holds. For nonconformal fields, the same conclusion follows modulo a conjecture about the variation of entanglement entropy.

  13. Entanglement classification with matrix product states

    NASA Astrophysics Data System (ADS)

    Sanz, M.; Egusquiza, I. L.; di Candia, R.; Saberi, H.; Lamata, L.; Solano, E.

    2016-07-01

    We propose an entanglement classification for symmetric quantum states based on their diagonal matrix-product-state (MPS) representation. The proposed classification, which preserves the stochastic local operation assisted with classical communication (SLOCC) criterion, relates entanglement families to the interaction length of Hamiltonians. In this manner, we establish a connection between entanglement classification and condensed matter models from a quantum information perspective. Moreover, we introduce a scalable nesting property for the proposed entanglement classification, in which the families for N parties carry over to the N + 1 case. Finally, using techniques from algebraic geometry, we prove that the minimal nontrivial interaction length n for any symmetric state is bounded by .

  14. Entanglement of Distillation for Lattice Gauge Theories.

    PubMed

    Van Acoleyen, Karel; Bultinck, Nick; Haegeman, Jutho; Marien, Michael; Scholz, Volkher B; Verstraete, Frank

    2016-09-23

    We study the entanglement structure of lattice gauge theories from the local operational point of view, and, similar to Soni and Trivedi [J. High Energy Phys. 1 (2016) 1], we show that the usual entanglement entropy for a spatial bipartition can be written as the sum of an undistillable gauge part and of another part corresponding to the local operations and classical communication distillable entanglement, which is obtained by depolarizing the local superselection sectors. We demonstrate that the distillable entanglement is zero for pure Abelian gauge theories at zero gauge coupling, while it is in general nonzero for the non-Abelian case. We also consider gauge theories with matter, and show in a perturbative approach how area laws-including a topological correction-emerge for the distillable entanglement. Finally, we also discuss the entanglement entropy of gauge fixed states and show that it has no relation to the physical distillable entropy.

  15. Quantum key distribution with entangled photon sources

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma Xiongfeng; Fung, Chi-Hang Fred; Lo, H.-K.

    2007-07-15

    A parametric down-conversion (PDC) source can be used as either a triggered single-photon source or an entangled-photon source in quantum key distribution (QKD). The triggering PDC QKD has already been studied in the literature. On the other hand, a model and a post-processing protocol for the entanglement PDC QKD are still missing. We fill in this important gap by proposing such a model and a post-processing protocol for the entanglement PDC QKD. Although the PDC model is proposed to study the entanglement-based QKD, we emphasize that our generic model may also be useful for other non-QKD experiments involving a PDCmore » source. Since an entangled PDC source is a basis-independent source, we apply Koashi and Preskill's security analysis to the entanglement PDC QKD. We also investigate the entanglement PDC QKD with two-way classical communications. We find that the recurrence scheme increases the key rate and the Gottesman-Lo protocol helps tolerate higher channel losses. By simulating a recent 144-km open-air PDC experiment, we compare three implementations: entanglement PDC QKD, triggering PDC QKD, and coherent-state QKD. The simulation result suggests that the entanglement PDC QKD can tolerate higher channel losses than the coherent-state QKD. The coherent-state QKD with decoy states is able to achieve highest key rate in the low- and medium-loss regions. By applying the Gottesman-Lo two-way post-processing protocol, the entanglement PDC QKD can tolerate up to 70 dB combined channel losses (35 dB for each channel) provided that the PDC source is placed in between Alice and Bob. After considering statistical fluctuations, the PDC setup can tolerate up to 53 dB channel losses.« less

  16. Tsallis entropy and entanglement constraints in multiqubit systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Jeong San

    We show that the restricted shareability and distribution of multiqubit entanglement can be characterized by Tsallis-q entropy. We first provide a class of bipartite entanglement measures named Tsallis-q entanglement, and provide its analytic formula in two-qubit systems for 1{<=}q{<=}4. For 2{<=}q{<=}3, we show a monogamy inequality of multiqubit entanglement in terms of Tsallis-q entanglement, and we also provide a polygamy inequality using Tsallis-q entropy for 1{<=}q{<=}2 and 3{<=}q{<=}4.

  17. Entanglement in a spin- s antiferromagnetic Heisenberg chain

    NASA Astrophysics Data System (ADS)

    Hao, Xiang; Zhu, Shiqun

    2005-10-01

    The entanglement in a general Heisenberg antiferromagnetic chain of arbitrary spin- s is investigated. The entanglement is witnessed by the thermal energy which equals the minimum energy of any separable state. There is a characteristic temperature below that an entangled thermal state exists. The characteristic temperature for thermal entanglement is increased with spin s . When the total number of lattice is increased, the characteristic temperature decreases and then approaches a constant. This effect shows that the thermal entanglement can be detected in a real solid state system of larger number of lattices for finite temperature. The comparison of negativity and entanglement witness is obtained from the separability of the unentangled states. It is found that the thermal energy provides a sufficient condition for the existence of the thermal entanglement in a spin- s antiferromagnetic Heisenberg chain.

  18. Quantum Enhanced Imaging by Entangled States

    DTIC Science & Technology

    2009-07-01

    classes of entangled states. In tripartite systems two classes of genuine tripartite entanglement have been discovered, namely, the Greenberger -Horne...D. M. Greenberger , M. Horne and A. Zeilinger, in Bell’s Theorem, Quantum Theory, and Concepts of the Universe, ed. M. Kafatos (Kluwer, Dordrecht 1989...Gallium Indium Arsenide Phosphide (a III-V compound semiconductor) GHZ: Greenberger -Horne-Zeilinger (a class of entangled states) GLAD: General

  19. Decentralized Routing and Diameter Bounds in Entangled Quantum Networks

    NASA Astrophysics Data System (ADS)

    Gyongyosi, Laszlo; Imre, Sandor

    2017-04-01

    Entangled quantum networks are a necessity for any future quantum internet, long-distance quantum key distribution, and quantum repeater networks. The entangled quantum nodes can communicate through several different levels of entanglement, leading to a heterogeneous, multi-level entangled network structure. The level of entanglement between the quantum nodes determines the hop distance, the number of spanned nodes, and the probability of the existence of an entangled link in the network. In this work we define a decentralized routing for entangled quantum networks. We show that the probability distribution of the entangled links can be modeled by a specific distribution in a base-graph. The results allow us to perform efficient routing to find the shortest paths in entangled quantum networks by using only local knowledge of the quantum nodes. We give bounds on the maximum value of the total number of entangled links of a path. The proposed scheme can be directly applied in practical quantum communications and quantum networking scenarios. This work was partially supported by the Hungarian Scientific Research Fund - OTKA K-112125.

  20. Entangling the Whole by Beam Splitting a Part.

    PubMed

    Croal, Callum; Peuntinger, Christian; Chille, Vanessa; Marquardt, Christoph; Leuchs, Gerd; Korolkova, Natalia; Mišta, Ladislav

    2015-11-06

    A beam splitter is a basic linear optical element appearing in many optics experiments and is frequently used as a continuous-variable entangler transforming a pair of input modes from a separable Gaussian state into an entangled state. However, a beam splitter is a passive operation that can create entanglement from Gaussian states only under certain conditions. One such condition is that the input light is suitably squeezed. We demonstrate, experimentally, that a beam splitter can create entanglement even from modes which do not possess such a squeezing provided that they are correlated to, but not entangled with, a third mode. Specifically, we show that a beam splitter can create three-mode entanglement by acting on two modes of a three-mode fully separable Gaussian state without entangling the two modes themselves. This beam splitter property is a key mechanism behind the performance of the protocol for entanglement distribution by separable states. Moreover, the property also finds application in collaborative quantum dense coding in which decoding of transmitted information is assisted by interference with a mode of the collaborating party.

  1. Entanglement model of homeopathy as an example of generalized entanglement predicted by weak quantum theory.

    PubMed

    Walach, H

    2003-08-01

    Homeopathy is scientifically banned, both for lack of consistent empirical findings, but more so for lack of a sound theoretical model to explain its purported effects. This paper makes an attempt to introduce an explanatory idea based on a generalized version of quantum mechanics (QM), the weak quantum theory (WQT). WQT uses the algebraic formalism of QM proper, but drops some restrictions and definitions typical for QM. This results in a general axiomatic framework similar to QM, but more generalized and applicable to all possible systems. Most notably, WQT predicts entanglement, which in QM is known as Einstein-Podolsky-Rosen (EPR) correlatedness within quantum systems. According to WQT, this entanglement is not only tied to quantum systems, but is to be expected whenever a global and a local variable describing a system are complementary. This idea is used here to reconstruct homeopathy as an exemplification of generalized entanglement as predicted by WQT. It transpires that homeopathy uses two instances of generalized entanglement: one between the remedy and the original substance (potentiation principle) and one between the individual symptoms of a patient and the general symptoms of a remedy picture (similarity principle). By bringing these two elements together, double entanglement ensues, which is reminiscent of cryptographic and teleportation applications of entanglement in QM proper. Homeopathy could be a macroscopic analogue to quantum teleportation. This model is exemplified and some predictions are derived, which make it possible to test the model. Copyright 2003 S. Karger GmbH, Freiburg

  2. Optomechanical entanglement via non-degenerate parametric interactions

    NASA Astrophysics Data System (ADS)

    Ahmed, Rizwan; Qamar, Shahid

    2017-10-01

    We present a scheme for the optomechanical entanglement between a micro-mechanical mirror and the field inside a bimodal cavity system using a non-degenerate optical parametric amplifier (NOPA). Our results show that the introduction of NOPA makes the entanglement stronger or more robust against the mean number of average thermal phonons and cavity decay. Interestingly, macroscopic entanglement depends upon the choice of the phase associated with classical field driving NOPA. We also consider the effects of input laser power on optomechanical entanglement.

  3. Tsallis entropy and entanglement constraints in multiqubit systems

    NASA Astrophysics Data System (ADS)

    Kim, Jeong San

    2010-06-01

    We show that the restricted shareability and distribution of multiqubit entanglement can be characterized by Tsallis-q entropy. We first provide a class of bipartite entanglement measures named Tsallis-q entanglement, and provide its analytic formula in two-qubit systems for 1⩽q⩽4. For 2⩽q⩽3, we show a monogamy inequality of multiqubit entanglement in terms of Tsallis-q entanglement, and we also provide a polygamy inequality using Tsallis-q entropy for 1⩽q⩽2 and 3⩽q⩽4.

  4. Polygamy of entanglement in multipartite quantum systems

    NASA Astrophysics Data System (ADS)

    Kim, Jeong San

    2009-08-01

    We show that bipartite entanglement distribution (or entanglement of assistance) in multipartite quantum systems is by nature polygamous. We first provide an analytical upper bound for the concurrence of assistance in bipartite quantum systems and derive a polygamy inequality of multipartite entanglement in arbitrary-dimensional quantum systems.

  5. Electronic entanglement in late transition metal oxides.

    PubMed

    Thunström, Patrik; Di Marco, Igor; Eriksson, Olle

    2012-11-02

    We present a study of the entanglement in the electronic structure of the late transition metal monoxides--MnO, FeO, CoO, and NiO--obtained by means of density-functional theory in the local density approximation combined with dynamical mean-field theory. The impurity problem is solved through exact diagonalization, which grants full access to the thermally mixed many-body ground state density operator. The quality of the electronic structure is affirmed through a direct comparison between the calculated electronic excitation spectrum and photoemission experiments. Our treatment allows for a quantitative investigation of the entanglement in the electronic structure. Two main sources of entanglement are explicitly resolved through the use of a fidelity based geometrical entanglement measure, and additional information is gained from a complementary entropic entanglement measure. We show that the interplay of crystal field effects and Coulomb interaction causes the entanglement in CoO to take a particularly intricate form.

  6. Entangled photons from single atoms and molecules

    NASA Astrophysics Data System (ADS)

    Nordén, Bengt

    2018-05-01

    The first two-photon entanglement experiment performed 50 years ago by Kocher and Commins (KC) provided isolated pairs of entangled photons from an atomic three-state fluorescence cascade. In view of questioning of Bell's theorem, data from these experiments are re-analyzed and shown sufficiently precise to confirm quantum mechanical and dismiss semi-classical theory without need for Bell's inequalities. Polarization photon correlation anisotropy (A) is useful: A is near unity as predicted quantum mechanically and well above the semi-classic range, 0 ⩽ A ⩽ 1 / 2 . Although yet to be found, one may envisage a three-state molecule emitting entangled photon pairs, in analogy with the KC atomic system. Antibunching in fluorescence from single molecules in matrix and entangled photons from quantum dots promise it be possible. Molecules can have advantages to parametric down-conversion as the latter photon distribution is Poissonian and unsuitable for producing isolated pairs of entangled photons. Analytical molecular applications of entangled light are also envisaged.

  7. Real-time imaging of quantum entanglement.

    PubMed

    Fickler, Robert; Krenn, Mario; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton

    2013-01-01

    Quantum Entanglement is widely regarded as one of the most prominent features of quantum mechanics and quantum information science. Although, photonic entanglement is routinely studied in many experiments nowadays, its signature has been out of the grasp for real-time imaging. Here we show that modern technology, namely triggered intensified charge coupled device (ICCD) cameras are fast and sensitive enough to image in real-time the effect of the measurement of one photon on its entangled partner. To quantitatively verify the non-classicality of the measurements we determine the detected photon number and error margin from the registered intensity image within a certain region. Additionally, the use of the ICCD camera allows us to demonstrate the high flexibility of the setup in creating any desired spatial-mode entanglement, which suggests as well that visual imaging in quantum optics not only provides a better intuitive understanding of entanglement but will improve applications of quantum science.

  8. Real-Time Imaging of Quantum Entanglement

    PubMed Central

    Fickler, Robert; Krenn, Mario; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton

    2013-01-01

    Quantum Entanglement is widely regarded as one of the most prominent features of quantum mechanics and quantum information science. Although, photonic entanglement is routinely studied in many experiments nowadays, its signature has been out of the grasp for real-time imaging. Here we show that modern technology, namely triggered intensified charge coupled device (ICCD) cameras are fast and sensitive enough to image in real-time the effect of the measurement of one photon on its entangled partner. To quantitatively verify the non-classicality of the measurements we determine the detected photon number and error margin from the registered intensity image within a certain region. Additionally, the use of the ICCD camera allows us to demonstrate the high flexibility of the setup in creating any desired spatial-mode entanglement, which suggests as well that visual imaging in quantum optics not only provides a better intuitive understanding of entanglement but will improve applications of quantum science. PMID:23715056

  9. Controlling bi-partite entanglement in multi-qubit systems

    NASA Astrophysics Data System (ADS)

    Plesch, Martin; Novotný, Jaroslav; Dzuráková, Zuzana; Buzek, Vladimír

    2004-02-01

    Bi-partite entanglement in multi-qubit systems cannot be shared freely. The rules of quantum mechanics impose bounds on how multi-qubit systems can be correlated. In this paper, we utilize a concept of entangled graphs with weighted edges in order to analyse pure quantum states of multi-qubit systems. Here qubits are represented by vertexes of the graph, while the presence of bi-partite entanglement is represented by an edge between corresponding vertexes. The weight of each edge is defined to be the entanglement between the two qubits connected by the edge, as measured by the concurrence. We prove that each entangled graph with entanglement bounded by a specific value of the concurrence can be represented by a pure multi-qubit state. In addition, we present a logic network with O(N2) elementary gates that can be used for preparation of the weighted entangled graphs of N qubits.

  10. Quantum discord bounds the amount of distributed entanglement.

    PubMed

    Chuan, T K; Maillard, J; Modi, K; Paterek, T; Paternostro, M; Piani, M

    2012-08-17

    The ability to distribute quantum entanglement is a prerequisite for many fundamental tests of quantum theory and numerous quantum information protocols. Two distant parties can increase the amount of entanglement between them by means of quantum communication encoded in a carrier that is sent from one party to the other. Intriguingly, entanglement can be increased even when the exchanged carrier is not entangled with the parties. However, in light of the defining property of entanglement stating that it cannot increase under classical communication, the carrier must be quantum. Here we show that, in general, the increase of relative entropy of entanglement between two remote parties is bounded by the amount of nonclassical correlations of the carrier with the parties as quantified by the relative entropy of discord. We study implications of this bound, provide new examples of entanglement distribution via unentangled states, and put further limits on this phenomenon.

  11. Entanglement of purification: from spin chains to holography

    NASA Astrophysics Data System (ADS)

    Nguyen, Phuc; Devakul, Trithep; Halbasch, Matthew G.; Zaletel, Michael P.; Swingle, Brian

    2018-01-01

    Purification is a powerful technique in quantum physics whereby a mixed quantum state is extended to a pure state on a larger system. This process is not unique, and in systems composed of many degrees of freedom, one natural purification is the one with minimal entanglement. Here we study the entropy of the minimally entangled purification, called the entanglement of purification, in three model systems: an Ising spin chain, conformal field theories holographically dual to Einstein gravity, and random stabilizer tensor networks. We conjecture values for the entanglement of purification in all these models, and we support our conjectures with a variety of numerical and analytical results. We find that such minimally entangled purifications have a number of applications, from enhancing entanglement-based tensor network methods for describing mixed states to elucidating novel aspects of the emergence of geometry from entanglement in the AdS/CFT correspondence.

  12. Fast Entanglement Establishment via Local Dynamics for Quantum Repeater Networks

    NASA Astrophysics Data System (ADS)

    Gyongyosi, Laszlo; Imre, Sandor

    Quantum entanglement is a necessity for future quantum communication networks, quantum internet, and long-distance quantum key distribution. The current approaches of entanglement distribution require high-delay entanglement transmission, entanglement swapping to extend the range of entanglement, high-cost entanglement purification, and long-lived quantum memories. We introduce a fundamental protocol for establishing entanglement in quantum communication networks. The proposed scheme does not require entanglement transmission between the nodes, high-cost entanglement swapping, entanglement purification, or long-lived quantum memories. The protocol reliably establishes a maximally entangled system between the remote nodes via dynamics generated by local Hamiltonians. The method eliminates the main drawbacks of current schemes allowing fast entanglement establishment with a minimized delay. Our solution provides a fundamental method for future long-distance quantum key distribution, quantum repeater networks, quantum internet, and quantum-networking protocols. This work was partially supported by the GOP-1.1.1-11-2012-0092 project sponsored by the EU and European Structural Fund, by the Hungarian Scientific Research Fund - OTKA K-112125, and by the COST Action MP1006.

  13. Strategy for good dispersion of well-defined tetrapods in semiconducting polymer matrices.

    PubMed

    Lim, Jaehoon; Borg, Lisa zur; Dolezel, Stefan; Schmid, Friederike; Char, Kookheon; Zentel, Rudolf

    2014-10-01

    The morphology or dispersion control in inorganic/organic hybrid systems is studied, which consist of monodisperse CdSe tetrapods (TPs) with grafted semiconducting block copolymers with excess polymers of the same type. Tetrapod arm-length and amount of polymer loading are varied in order to find the ideal morphology for hybrid solar cells. Additionally, polymers without anchor groups are mixed with the TPs to study the effect of such anchor groups on the hybrid morphology. A numerical model is developed and Monte Carlo simulations to study the basis of compatibility or dispersibility of TPs in polymer matrices are performed. The simulations show that bare TPs tend to form clusters in the matrix of excess polymers. The clustering is significantly reduced after grafting polymer chains to the TPs, which is confirmed experimentally. Transmission electron microscopy reveals that the block copolymer-TP mixtures ("hybrids") show much better film qualities and TP distributions within the films when compared with the homopolymer-TP mixtures ("blends"), representing massive aggregations and cracks in the films. This grafting-to approach for the modification of TPs significantly improves the dispersion of the TPs in matrices of "excess" polymers up to the arm length of 100 nm. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Preparation of Entangled Polymer Melts of Various Architecture for Coarse-Grained Models

    DTIC Science & Technology

    2011-09-01

    Simulator ( LAMMPS ). This report presents a theory overview and a manual how to use the method. 15. SUBJECT TERMS Ammunition, coarse-grained model...polymer builder, LAMMPS 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18. NUMBER OF PAGES 26 19a. NAME OF RESPONSIBLE PERSON...scale Atomic/Molecular Massively Parallel Simulator ( LAMMPS ). Gel is an in house written C program of coarse- grained polymer builder, and LAMMPS is

  15. Entanglement-assisted quantum feedback control

    NASA Astrophysics Data System (ADS)

    Yamamoto, Naoki; Mikami, Tomoaki

    2017-07-01

    The main advantage of quantum metrology relies on the effective use of entanglement, which indeed allows us to achieve strictly better estimation performance over the standard quantum limit. In this paper, we propose an analogous method utilizing entanglement for the purpose of feedback control. The system considered is a general linear dynamical quantum system, where the control goal can be systematically formulated as a linear quadratic Gaussian control problem based on the quantum Kalman filtering method; in this setting, an entangled input probe field is effectively used to reduce the estimation error and accordingly the control cost function. In particular, we show that, in the problem of cooling an opto-mechanical oscillator, the entanglement-assisted feedback control can lower the stationary occupation number of the oscillator below the limit attainable by the controller with a coherent probe field and furthermore beats the controller with an optimized squeezed probe field.

  16. Gaussian entanglement distribution via satellite

    NASA Astrophysics Data System (ADS)

    Hosseinidehaj, Nedasadat; Malaney, Robert

    2015-02-01

    In this work we analyze three quantum communication schemes for the generation of Gaussian entanglement between two ground stations. Communication occurs via a satellite over two independent atmospheric fading channels dominated by turbulence-induced beam wander. In our first scheme, the engineering complexity remains largely on the ground transceivers, with the satellite acting simply as a reflector. Although the channel state information of the two atmospheric channels remains unknown in this scheme, the Gaussian entanglement generation between the ground stations can still be determined. On the ground, distillation and Gaussification procedures can be applied, leading to a refined Gaussian entanglement generation rate between the ground stations. We compare the rates produced by this first scheme with two competing schemes in which quantum complexity is added to the satellite, thereby illustrating the tradeoff between space-based engineering complexity and the rate of ground-station entanglement generation.

  17. Entanglement cost under positive-partial-transpose-preserving operations.

    PubMed

    Audenaert, K; Plenio, M B; Eisert, J

    2003-01-17

    We study the entanglement cost under quantum operations preserving the positivity of the partial transpose (PPT operations). We demonstrate that this cost is directly related to the logarithmic negativity, thereby providing the operational interpretation for this entanglement measure. As examples we discuss general Werner states and arbitrary bipartite Gaussian states. Then we prove that for the antisymmetric Werner state PPT cost and PPT entanglement of distillation coincide. This is the first example of a truly mixed state for which entanglement manipulation is asymptotically reversible, which points towards a unique entanglement measure under PPT operations.

  18. Delocalizing entanglement of anisotropic black branes

    NASA Astrophysics Data System (ADS)

    Jahnke, Viktor

    2018-01-01

    We study the mutual information between pairs of regions on the two asymptotic boundaries of maximally extended anisotropic black branes. This quantity characterizes the local pattern of entanglement of the thermofield double states which are dual to these geometries. We analyze the disruption of the mutual information in anisotropic shock wave geometries and show that the entanglement velocity plays an important role in this phenomenon. Moreover, we compute several chaos-related properties of this system, such as the entanglement velocity, the butterfly velocity, and the scrambling time. We find that the butterfly velocity and the entanglement velocity violate the upper bounds proposed in [1-3], but remain bounded by their corresponding values in the infrared effective theory.

  19. Production of Entanglement Entropy by Decoherence

    NASA Astrophysics Data System (ADS)

    Merkli, M.; Berman, G. P.; Sayre, R. T.; Wang, X.; Nesterov, A. I.

    We examine the dynamics of entanglement entropy of all parts in an open system consisting of a two-level dimer interacting with an environment of oscillators. The dimer-environment interaction is almost energy conserving. We find the precise link between decoherence and production of entanglement entropy. We show that not all environment oscillators carry significant entanglement entropy and we identify the oscillator frequency regions which contribute to the production of entanglement entropy. For energy conserving dimer-environment interactions the models are explicitly solvable and our results hold for all dimer-environment coupling strengths. We carry out a mathematically rigorous perturbation theory around the energy conserving situation in the presence of small non-energy conserving interactions.

  20. Efficient entanglement distribution over 200 kilometers.

    PubMed

    Dynes, J F; Takesue, H; Yuan, Z L; Sharpe, A W; Harada, K; Honjo, T; Kamada, H; Tadanaga, O; Nishida, Y; Asobe, M; Shields, A J

    2009-07-06

    Here we report the first demonstration of entanglement distribution over a record distance of 200 km which is of sufficient fidelity to realize secure communication. In contrast to previous entanglement distribution schemes, we use detection elements based on practical avalanche photodiodes (APDs) operating in a self-differencing mode. These APDs are low-cost, compact and easy to operate requiring only electrical cooling to achieve high single photon detection efficiency. The self-differencing APDs in combination with a reliable parametric down-conversion source demonstrate that entanglement distribution over ultra-long distances has become both possible and practical. Consequently the outlook is extremely promising for real world entanglement-based communication between distantly separated parties.

  1. Multipartite entanglement via the Mayer-Vietoris theorem

    NASA Astrophysics Data System (ADS)

    Patrascu, Andrei T.

    2017-10-01

    The connection between entanglement and topology manifests itself in the form of the ER-EPR duality. This statement however refers to the maximally entangled states only. In this article I study the multipartite entanglement and the way in which it relates to the topological interpretation of the ER-EPR duality. The 2 dimensional genus 1 torus will be generalised to a n-dimensional general torus, where the information about the multipartite entanglement will be encoded in the higher inclusion maps of the Mayer-Vietorist sequence.

  2. Wess-Zumino consistency condition for entanglement entropy.

    PubMed

    Banerjee, Shamik

    2012-07-06

    In this Letter, we consider the variation of the entanglement entropy of a region as the shape of the entangling surface is changed. We show that the variation satisfies a Wess-Zumino-like integrability condition in field theories which can be consistently coupled to gravity. In this case, the "anomaly" is localized on the entangling surface. The solution of the integrability condition should give all the nontrivial finite local terms which can appear in the variation of the entanglement entropy. The answers depend on the intrinsic and extrinsic geometry of the entangling surface, but the form does not depend on the details of the field theory. The coefficients, which multiply the purely geometric contributions, will depend on the particular details of the field theory.

  3. Universal Features of Left-Right Entanglement Entropy.

    PubMed

    Das, Diptarka; Datta, Shouvik

    2015-09-25

    We show the presence of universal features in the entanglement entropy of regularized boundary states for (1+1)D conformal field theories on a circle when the reduced density matrix is obtained by tracing over right- or left-moving modes. We derive a general formula for the left-right entanglement entropy in terms of the central charge and the modular S matrix of the theory. When the state is chosen to be an Ishibashi state, this measure of entanglement is shown to precisely reproduce the spatial entanglement entropy of a (2+1)D topological quantum field theory. We explicitly evaluate the left-right entanglement entropies for the Ising model, the tricritical Ising model and the su[over ^](2)_{k} Wess-Zumino-Witten model as examples.

  4. Highly retrievable spin-wave-photon entanglement source.

    PubMed

    Yang, Sheng-Jun; Wang, Xu-Jie; Li, Jun; Rui, Jun; Bao, Xiao-Hui; Pan, Jian-Wei

    2015-05-29

    Entanglement between a single photon and a quantum memory forms the building blocks for a quantum repeater and quantum network. Previous entanglement sources are typically with low retrieval efficiency, which limits future larger-scale applications. Here, we report a source of highly retrievable spin-wave-photon entanglement. Polarization entanglement is created through interaction of a single photon with an ensemble of atoms inside a low-finesse ring cavity. The cavity is engineered to be resonant for dual spin-wave modes, which thus enables efficient retrieval of the spin-wave qubit. An intrinsic retrieval efficiency up to 76(4)% has been observed. Such a highly retrievable atom-photon entanglement source will be very useful in future larger-scale quantum repeater and quantum network applications.

  5. A spatially nonlocal model for polymer-penetrant diffusion

    NASA Astrophysics Data System (ADS)

    Edwards, D. A.

    Diffusion of a penetrant in a polymer entanglement network cannot be described by Fick's Law alone; rather, one must incorporate other nonlocal effects. In contrast to previous viscoelastic models which have modeled these effects through hereditary integrals in time, a new model is presented exploiting the disparate lengths of the polymer in the glassy (dry) and rubbery (saturated) states. This model leads to a partial integrodifferential equation which is nonlocal in space. The system is recast as a moving boundary-value problem between sets of coupled partial differential equations. Using singular perturbation techniques, sorption in a semi-infinite polymer is studied on several time scales with varying exposed interface conditions. Though some of the results match with those from viscoelastic models, new physically relevant behaviors also appear. These include the formation of stopping fronts and overshoot in the pseudostress.

  6. Entanglement dynamics in itinerant fermionic and bosonic systems

    NASA Astrophysics Data System (ADS)

    Pillarishetty, Durganandini

    2017-04-01

    The concept of quantum entanglement of identical particles is fundamental in a wide variety of quantum information contexts involving composite quantum systems. However, the role played by particle indistinguishabilty in entanglement determination is being still debated. In this work, we study, theoretically, the entanglement dynamics in some itinerant bosonic and fermionic systems. We show that the dynamical behaviour of particle entanglement and spatial or mode entanglement are in general different. We also discuss the effect of fermionic and bosonic statistics on the dynamical behaviour. We suggest that the different dynamical behaviour can be used to distinguish between particle and mode entanglement in identical particle systems and discuss possible experimental realizations for such studies. I acknowledge financial support from DST, India through research Grant.

  7. The role of curvature in entanglement

    NASA Astrophysics Data System (ADS)

    Buck, Gregory

    2015-10-01

    Which tangles more readily: curly hair or straight hair? A perhaps natural thought, supported by some theoretical evidence, is to associate curvature and entanglement, and assume that they would grow together-that an increase in one fosters an increase in the other. However we have biological examples such as DNA in the chromosome, and mechanical examples such as coiled telephone cords, in which much more curvature is employed than is required for the packing, and in which tangling is presumably detrimental. We offer a resolution to this conundrum. We show, that at least for simple but generally applicable models, the relationship between curvature and entanglement is subtle: if we keep filament density constant and increase curvature, the entanglement initially increases, passes through a maximum, then decreases, so there is a regime where increasing curvature increases entanglement, and there is also a regime where increasing curvature decreases entanglement. This has implications for filament packing in many circumstances, and in particular for the compaction structure of DNA in the cell-it provides a straightforward argument for the view that one purpose of DNA coiling and supercoiling is to inhibit entanglement. It also tells us to expect that wavy hair-neither the straightest nor the curliest-tangles most readily.

  8. Entanglement of 3000 atoms by detecting one photon

    NASA Astrophysics Data System (ADS)

    Vuletic, Vladan

    2016-05-01

    Quantum-mechanically correlated (entangled) states of many particles are of interest in quantum information, quantum computing and quantum metrology. In particular, entangled states of many particles can be used to overcome limits on measurements performed with ensembles of independent atoms (standard quantum limit). Metrologically useful entangled states of large atomic ensembles (spin squeezed states) have been experimentally realized. These states display Gaussian spin distribution functions with a non-negative Wigner quasiprobability distribution function. We report the generation of entanglement in a large atomic ensemble via an interaction with a very weak laser pulse; remarkably, the detection of a single photon prepares several thousand atoms in an entangled state. We reconstruct a negative-valued Wigner function, and verify an entanglement depth (the minimum number of mutually entangled atoms) that comprises 90% of the atomic ensemble containing 3100 atoms. Further technical improvement should allow the generation of more complex Schrödinger cat states, and of states the overcome the standard quantum limit.

  9. Quantum coherence and entanglement in the avian compass.

    PubMed

    Pauls, James A; Zhang, Yiteng; Berman, Gennady P; Kais, Sabre

    2013-06-01

    The radical-pair mechanism is one of two distinct mechanisms used to explain the navigation of birds in geomagnetic fields, however little research has been done to explore the role of quantum entanglement in this mechanism. In this paper we study the lifetime of radical-pair entanglement corresponding to the magnitude and direction of magnetic fields to show that the entanglement lasts long enough in birds to be used for navigation. We also find that the birds appear to not be able to orient themselves directly based on radical-pair entanglement due to a lack of orientation sensitivity of the entanglement in the geomagnetic field. To explore the entanglement mechanism further, we propose a model in which the hyperfine interactions are replaced by local magnetic fields of similar strength. The entanglement of the radical pair in this model lasts longer and displays an angular sensitivity in weak magnetic fields, both of which are not present in previous models.

  10. Robust distant-entanglement generation using coherent multiphoton scattering

    NASA Astrophysics Data System (ADS)

    Chan, Ching-Kit; Sham, L. J.

    2013-03-01

    The generation and controllability of entanglement between distant quantum states have been the heart of quantum computation and quantum information processing. Existing schemes for solid state qubit entanglement are based on the single-photon spectroscopy that has the merit of a high fidelity entanglement creation, but with a very limited efficiency. This severely restricts the scalability for a qubit network system. Here, we describe a new distant entanglement protocol using coherent multiphoton scattering. The scheme makes use of the postselection of large and distinguishable photon signals, and has both a high success probability and a high entanglement fidelity. Our result shows that the entanglement generation is robust against photon fluctuations, and has an average entanglement duration within the decoherence time in various qubit systems, based on existing experimental parameters. This research was supported by the U.S. Army Research Office MURI award W911NF0910406 and by NSF grant PHY-1104446.

  11. Experimental determination of entanglement with a single measurement.

    PubMed

    Walborn, S P; Souto Ribeiro, P H; Davidovich, L; Mintert, F; Buchleitner, A

    2006-04-20

    Nearly all protocols requiring shared quantum information--such as quantum teleportation or key distribution--rely on entanglement between distant parties. However, entanglement is difficult to characterize experimentally. All existing techniques for doing so, including entanglement witnesses or Bell inequalities, disclose the entanglement of some quantum states but fail for other states; therefore, they cannot provide satisfactory results in general. Such methods are fundamentally different from entanglement measures that, by definition, quantify the amount of entanglement in any state. However, these measures suffer from the severe disadvantage that they typically are not directly accessible in laboratory experiments. Here we report a linear optics experiment in which we directly observe a pure-state entanglement measure, namely concurrence. Our measurement set-up includes two copies of a quantum state: these 'twin' states are prepared in the polarization and momentum degrees of freedom of two photons, and concurrence is measured with a single, local measurement on just one of the photons.

  12. Fermionic entanglement in superconducting systems

    NASA Astrophysics Data System (ADS)

    Di Tullio, M.; Gigena, N.; Rossignoli, R.

    2018-06-01

    We examine distinct measures of fermionic entanglement in the exact ground state of a finite superconducting system. It is first shown that global measures such as the one-body entanglement entropy, which represents the minimum relative entropy between the exact ground state and the set of fermionic Gaussian states, exhibit a close correlation with the BCS gap, saturating in the strong superconducting regime. The same behavior is displayed by the bipartite entanglement between the set of all single-particle states k of positive quasimomenta and their time-reversed partners k ¯. In contrast, the entanglement associated with the reduced density matrix of four single-particle modes k ,k ¯ , k',k¯' , which can be measured through a properly defined fermionic concurrence, exhibits a different behavior, showing a peak in the vicinity of the superconducting transition for states k ,k' close to the Fermi level and becoming small in the strong coupling regime. In the latter, such reduced state exhibits, instead, a finite mutual information and quantum discord. While the first measures can be correctly estimated with the BCS approximation, the previous four-level concurrence lies strictly beyond the latter, requiring at least a particle-number projected BCS treatment for its description. Formal properties of all previous entanglement measures are as well discussed.

  13. Quantum communication using a multiqubit entangled channel

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ghose, Shohini, E-mail: sghose@wlu.ca; Institute for Quantum Computing, University of Waterloo, Ontario; Hamel, Angele

    We describe a protocol in which two senders each teleport a qubit to a receiver using a multiqubit entangled state. The multiqubit channel used for teleportation is genuinely 4-qubit entangled and is not equivalent to a product of maximally entangled Bell pairs under local unitary operations. We discuss a scenario in which both senders must participate for the qubits to be successfully teleported. Such an all-or-nothing scheme cannot be implemented with standard two-qubit entangled Bell pairs and can be useful for different communication and computing tasks.

  14. Universal entanglement timescale for Rényi entropies

    NASA Astrophysics Data System (ADS)

    Cresswell, Jesse C.

    2018-02-01

    Recently it was shown that the growth of entanglement in an initially separable state, as measured by the purity of subsystems, can be characterized by a timescale that takes a universal form for any Hamiltonian. We show that the same timescale governs the growth of entanglement for all Rényi entropies. Since the family of Rényi entropies completely characterizes the entanglement of a pure bipartite state, our timescale is a universal feature of bipartite entanglement. The timescale depends only on the interaction Hamiltonian and the initial state.

  15. Quantum communication using a multiqubit entangled channel

    NASA Astrophysics Data System (ADS)

    Ghose, Shohini; Hamel, Angele

    2015-12-01

    We describe a protocol in which two senders each teleport a qubit to a receiver using a multiqubit entangled state. The multiqubit channel used for teleportation is genuinely 4-qubit entangled and is not equivalent to a product of maximally entangled Bell pairs under local unitary operations. We discuss a scenario in which both senders must participate for the qubits to be successfully teleported. Such an all-or-nothing scheme cannot be implemented with standard two-qubit entangled Bell pairs and can be useful for different communication and computing tasks.

  16. Monogamy inequality for entanglement and local contextuality

    NASA Astrophysics Data System (ADS)

    Camalet, S.

    2017-06-01

    We derive a monogamy inequality for entanglement and local contextuality, for any finite bipartite system. It essentially results from the relations between the entropy of a local state and the entanglement of the global state, and between the purity of a state, in the sense of majorization, and its ability to violate a given state-dependent noncontextuality inequality. We build an explicit entanglement monotone that satisfies the found monogamy inequality. An important consequence of this inequality is that there are global states too entangled to violate the local noncontextuality inequality.

  17. Entanglement sensitivity to signal attenuation and amplification

    NASA Astrophysics Data System (ADS)

    Filippov, Sergey N.; Ziman, Mário

    2014-07-01

    We analyze general laws of continuous-variable entanglement dynamics during the deterministic attenuation and amplification of the physical signal carrying the entanglement. These processes are inevitably accompanied by noises, so we find fundamental limitations on noise intensities that destroy entanglement of Gaussian and non-Gaussian input states. The phase-insensitive amplification Φ1⊗Φ2⊗⋯ΦN with the power gain κi≥2 (≈3 dB, i =1,...,N) is shown to destroy entanglement of any N-mode Gaussian state even in the case of quantum-limited performance. In contrast, we demonstrate non-Gaussian states with the energy of a few photons such that their entanglement survives within a wide range of noises beyond quantum-limited performance for any degree of attenuation or gain. We detect entanglement preservation properties of the channel Φ1⊗Φ2, where each mode is deterministically attenuated or amplified. Gaussian states of high energy are shown to be robust to very asymmetric attenuations, whereas non-Gaussian states are at an advantage in the case of symmetric attenuation and general amplification. If Φ1=Φ2, the total noise should not exceed 1/2√κ2+1 to guarantee entanglement preservation.

  18. Monodisperse spindle-like FeWO{sub 4} nanoparticles: Controlled hydrothermal synthesis and enhanced optical properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Jinxue; Zhou, Xiaoyu; Lu, Yibin

    2012-12-15

    Monodisperse FeWO{sub 4} nanoparticles with specific spindle-like morphology have been synthesized in the presence of citric acid through hydrothermal process. In the synthesis route, citric acid played four roles such as the reducing agent, chelating regents, structure-directing agent and stabilizing agents. In addition, the morphology of FeWO{sub 4} was dramatically tuned by the pH value of the precursor medium. The optical properties of FeWO{sub 4} were investigated with UV-Vis spectra and photoluminescence spectroscopy. The photocatalytic experiments demonstrated that the decomposition efficiency of the monodisperse spindle-like FeWO{sub 4} nanoparticles is 74% after 30 min of UV irradiation, which displayed remarkable enhancedmore » photodegradation activity compared with ordinary FeWO{sub 4} sample (57%) and normal TiO{sub 2} photocatalysts P-25 (56%). - Monodisperse spindle-like FeWO{sub 4} nanoparticles with enhanced photocatalytic activities. Highlights: Black-Right-Pointing-Pointer Monodisperse spindle-like FeWO{sub 4} were synthesized with hydrothermal method. Black-Right-Pointing-Pointer Citric acid plays key roles in the hydrothermal synthesis. Black-Right-Pointing-Pointer Their morphology can be tuned with pH value of the precursor medium. Black-Right-Pointing-Pointer They show enhanced photocatalytic activities with irradiation of UV light.« less

  19. Quantum-entanglement storage and extraction in quantum network node

    NASA Astrophysics Data System (ADS)

    Shan, Zhuoyu; Zhang, Yong

    Quantum computing and quantum communication have become the most popular research topic. Nitrogen-vacancy (NV) centers in diamond have been shown the great advantage of implementing quantum information processing. The generation of entanglement between NV centers represents a fundamental prerequisite for all quantum information technologies. In this paper, we propose a scheme to realize the high-fidelity storage and extraction of quantum entanglement information based on the NV centers at room temperature. We store the entangled information of a pair of entangled photons in the Bell state into the nuclear spins of two NV centers, which can make these two NV centers entangled. And then we illuminate how to extract the entangled information from NV centers to prepare on-demand entangled states for optical quantum information processing. The strategy of engineering entanglement demonstrated here maybe pave the way towards a NV center-based quantum network.

  20. Entanglement Hamiltonians for Chiral Fermions with Zero Modes.

    PubMed

    Klich, Israel; Vaman, Diana; Wong, Gabriel

    2017-09-22

    In this Letter, we study the effect of topological zero modes on entanglement Hamiltonians and the entropy of free chiral fermions in (1+1)D. We show how Riemann-Hilbert solutions combined with finite rank perturbation theory allow us to obtain exact expressions for entanglement Hamiltonians. In the absence of the zero mode, the resulting entanglement Hamiltonians consist of local and bilocal terms. In the periodic sector, the presence of a zero mode leads to an additional nonlocal contribution to the entanglement Hamiltonian. We derive an exact expression for this term and for the resulting change in the entanglement entropy.

  1. Robust Distant Entanglement Generation Using Coherent Multiphoton Scattering

    NASA Astrophysics Data System (ADS)

    Chan, Ching-Kit; Sham, L. J.

    2013-02-01

    We describe a protocol to entangle two qubits at a distance by using resonance fluorescence. The scheme makes use of the postselection of large and distinguishable fluorescence signals corresponding to entangled and unentangled qubit states and has the merits of both high success probability and high entanglement fidelity owing to the multiphoton nature. Our result shows that the entanglement generation is robust against photon fluctuations in the fluorescence signals for a wide range of driving fields. We also demonstrate that this new protocol has an average entanglement duration within the decoherence time of corresponding qubit systems, based on current experimental photon efficiency.

  2. Robust distant entanglement generation using coherent multiphoton scattering.

    PubMed

    Chan, Ching-Kit; Sham, L J

    2013-02-15

    We describe a protocol to entangle two qubits at a distance by using resonance fluorescence. The scheme makes use of the postselection of large and distinguishable fluorescence signals corresponding to entangled and unentangled qubit states and has the merits of both high success probability and high entanglement fidelity owing to the multiphoton nature. Our result shows that the entanglement generation is robust against photon fluctuations in the fluorescence signals for a wide range of driving fields. We also demonstrate that this new protocol has an average entanglement duration within the decoherence time of corresponding qubit systems, based on current experimental photon efficiency.

  3. Quantum Entanglement and Reduced Density Matrices

    NASA Astrophysics Data System (ADS)

    Purwanto, Agus; Sukamto, Heru; Yuwana, Lila

    2018-05-01

    We investigate entanglement and separability criteria of multipartite (n-partite) state by examining ranks of its reduced density matrices. Firstly, we construct the general formula to determine the criterion. A rank of origin density matrix always equals one, meanwhile ranks of reduced matrices have various ranks. Next, separability and entanglement criterion of multipartite is determined by calculating ranks of reduced density matrices. In this article we diversify multipartite state criteria into completely entangled state, completely separable state, and compound state, i.e. sub-entangled state and sub-entangledseparable state. Furthermore, we also shorten the calculation proposed by the previous research to determine separability of multipartite state and expand the methods to be able to differ multipartite state based on criteria above.

  4. Influence of the bound polymer layer on nanoparticle diffusion in polymer melts

    DOE PAGES

    Griffin, Philip J.; Bocharova, Vera; Middleton, L. Robert; ...

    2016-09-23

    We measure the center-of-mass diffusion of silica nanoparticles (NPs) in entangled poly(2-vinylpyridine) (P2VP) melts using Rutherford backscattering spectrometry. While these NPs are well within the size regime where enhanced, nonhydrodynamic NP transport is theoretically predicted and has been observed experimentally (2R NP/d tube ≈ 3, where 2R NP is the NP diameter and d tube is the tube diameter), we find that the diffusion of these NPs in P2VP is in fact well-described by the hydrodynamic Stokes–Einstein relation. The effective NP diameter 2R eff is significantly larger than 2R NP and strongly dependent on P2VP molecular weight, consistent with themore » presence of a bound polymer layer on the NP surface with thickness h eff ≈ 1.1R g. Our results show that the bound polymer layer significantly augments the NP hydrodynamic size in polymer melts with attractive polymer–NP interactions and effectively transitions the mechanism of NP diffusion from the nonhydrodynamic to hydrodynamic regime, particularly at high molecular weights where NP transport is expected to be notably enhanced. Lastly, these results provide the first experimental demonstration that hydrodynamic NP transport in polymer melts requires particles of size ≳5d tube, consistent with recent theoretical predictions.« less

  5. Experimental entanglement of a six-photon symmetric Dicke state.

    PubMed

    Wieczorek, Witlef; Krischek, Roland; Kiesel, Nikolai; Michelberger, Patrick; Tóth, Géza; Weinfurter, Harald

    2009-07-10

    We report on the experimental observation and characterization of a six-photon entangled Dicke state. We obtain a fidelity as high as 0.654+/-0.024 and prove genuine six-photon entanglement by, amongst others, a two-setting witness yielding -0.422+/-0.148. This state has remarkable properties; e.g., it allows obtaining inequivalent entangled states of a lower qubit number via projective measurements, and it possesses a high entanglement persistency against qubit loss. We characterize the properties of the six-photon Dicke state experimentally by detecting and analyzing the entanglement of a variety of multipartite entangled states.

  6. Deterministic delivery of remote entanglement on a quantum network.

    PubMed

    Humphreys, Peter C; Kalb, Norbert; Morits, Jaco P J; Schouten, Raymond N; Vermeulen, Raymond F L; Twitchen, Daniel J; Markham, Matthew; Hanson, Ronald

    2018-06-01

    Large-scale quantum networks promise to enable secure communication, distributed quantum computing, enhanced sensing and fundamental tests of quantum mechanics through the distribution of entanglement across nodes 1-7 . Moving beyond current two-node networks 8-13 requires the rate of entanglement generation between nodes to exceed the decoherence (loss) rate of the entanglement. If this criterion is met, intrinsically probabilistic entangling protocols can be used to provide deterministic remote entanglement at pre-specified times. Here we demonstrate this using diamond spin qubit nodes separated by two metres. We realize a fully heralded single-photon entanglement protocol that achieves entangling rates of up to 39 hertz, three orders of magnitude higher than previously demonstrated two-photon protocols on this platform 14 . At the same time, we suppress the decoherence rate of remote-entangled states to five hertz through dynamical decoupling. By combining these results with efficient charge-state control and mitigation of spectral diffusion, we deterministically deliver a fresh remote state with an average entanglement fidelity of more than 0.5 at every clock cycle of about 100 milliseconds without any pre- or post-selection. These results demonstrate a key building block for extended quantum networks and open the door to entanglement distribution across multiple remote nodes.

  7. Room temperature vortex fluidic synthesis of monodispersed amorphous proto-vaterite.

    PubMed

    Peng, Wenhong; Chen, Xianjue; Zhu, Shenmin; Guo, Cuiping; Raston, Colin L

    2014-10-11

    Monodispersed particles of amorphous calcium carbonate (ACC) 90 to 200 nm in diameter are accessible at room temperature in ethylene glycol and water using a vortex fluidic device (VFD). The ACC material is stable for at least two weeks under ambient conditions.

  8. Quantifying and tuning entanglement for quantum systems

    NASA Astrophysics Data System (ADS)

    Xu, Qing

    A 2D Ising model with transverse field on a triangular lattice is studied using exact diagonalization. The quantum entanglement of the system is quantified by the entanglement of formation. The ground state property of the system is studied and the quantified entanglement is shown to be closely related to the ground state wavefunction while the singularity in the entanglement as a function of the transverse field is a reasonable indicator of the quantum phase transition. In order to tune the entanglement, one can either include an impurity in the otherwise homogeneous system whose strength is tunable, or one can vary the external transverse field as a tuner. The latter kind of tuning involves complicated dynamical properties of the system. From the study of the dynamics on a comparatively smaller system, we provide ways to tune the entanglement without triggering any decoherence. The finite temperature effect is also discussed. Besides showing above physical results, the realization of the trace-minimization method in our system is provided; the scalability of such method to larger systems is argued.

  9. Fermionic entanglement that survives a black hole

    NASA Astrophysics Data System (ADS)

    Martín-Martínez, Eduardo; León, Juan

    2009-10-01

    We introduce an arbitrary number of accessible modes when analyzing bipartite entanglement degradation due to Unruh effect between two partners Alice and Rob. Under the single mode approximation (SMA) a fermion field only had a few accessible levels due to Pauli exclusion principle conversely to bosonic fields which had an infinite number of excitable levels. This was argued to justify entanglement survival in the fermionic case in the SMA infinite acceleration limit. Here we relax SMA. Hence, an infinite number of modes are excited as the observer Rob accelerates, even for a fermion field. We will prove that, despite this analogy with the bosonic case, entanglement loss is limited. We will show that this comes from fermionic statistics through the characteristic structure it imposes on the infinite dimensional density matrix for Rob. Surprisingly, the surviving entanglement is independent of the specific maximally entangled state chosen, the kind of fermionic field analyzed, and the number of accessible modes considered. We shall discuss whether this surviving entanglement goes beyond the purely statistical correlations, giving insight concerning the black hole information paradox.

  10. Multi-Party Quantum Private Comparison Protocol Based on Entanglement Swapping of Bell Entangled States

    NASA Astrophysics Data System (ADS)

    Ye, Tian-Yu

    2016-09-01

    Recently, Liu et al. proposed a two-party quantum private comparison (QPC) protocol using entanglement swapping of Bell entangled state (Commun. Theor. Phys. 57 (2012) 583). Subsequently Liu et al. pointed out that in Liu et al.'s protocol, the TP can extract the two users' secret inputs without being detected by launching the Bell-basis measurement attack, and suggested the corresponding improvement to mend this loophole (Commun. Theor. Phys. 62 (2014) 210). In this paper, we first point out the information leakage problem toward TP existing in both of the above two protocols, and then suggest the corresponding improvement by using the one-way hash function to encrypt the two users' secret inputs. We further put forward the three-party QPC protocol also based on entanglement swapping of Bell entangled state, and then validate its output correctness and its security in detail. Finally, we generalize the three-party QPC protocol into the multi-party case, which can accomplish arbitrary pair's comparison of equality among K users within one execution. Supported by the National Natural Science Foundation of China under Grant No. 61402407

  11. Entangling two transportable neutral atoms via local spin exchange.

    PubMed

    Kaufman, A M; Lester, B J; Foss-Feig, M; Wall, M L; Rey, A M; Regal, C A

    2015-11-12

    To advance quantum information science, physical systems are sought that meet the stringent requirements for creating and preserving quantum entanglement. In atomic physics, robust two-qubit entanglement is typically achieved by strong, long-range interactions in the form of either Coulomb interactions between ions or dipolar interactions between Rydberg atoms. Although such interactions allow fast quantum gates, the interacting atoms must overcome the associated coupling to the environment and cross-talk among qubits. Local interactions, such as those requiring substantial wavefunction overlap, can alleviate these detrimental effects; however, such interactions present a new challenge: to distribute entanglement, qubits must be transported, merged for interaction, and then isolated for storage and subsequent operations. Here we show how, using a mobile optical tweezer, it is possible to prepare and locally entangle two ultracold neutral atoms, and then separate them while preserving their entanglement. Ground-state neutral atom experiments have measured dynamics consistent with spin entanglement, and have detected entanglement with macroscopic observables; we are now able to demonstrate position-resolved two-particle coherence via application of a local gradient and parity measurements. This new entanglement-verification protocol could be applied to arbitrary spin-entangled states of spatially separated atoms. The local entangling operation is achieved via spin-exchange interactions, and quantum tunnelling is used to combine and separate atoms. These techniques provide a framework for dynamically entangling remote qubits via local operations within a large-scale quantum register.

  12. Simple and inexpensive microfluidic devices for the generation of monodisperse multiple emulsions

    NASA Astrophysics Data System (ADS)

    Li, Er Qiang; Zhang, Jia Ming; Thoroddsen, Sigurdur T.

    2014-01-01

    Droplet-based microfluidic devices have become a preferred versatile platform for various fields in physics, chemistry and biology. Polydimethylsiloxane soft lithography, the mainstay for fabricating microfluidic devices, usually requires the usage of expensive apparatus and a complex manufacturing procedure. Here, we report the design and fabrication of simple and inexpensive microfluidic devices based on microscope glass slides and pulled glass capillaries, for generating monodisperse multiple emulsions. The advantages of our method lie in a simple manufacturing procedure, inexpensive processing equipment and flexibility in the surface modification of the designed microfluidic devices. Different types of devices have been designed and tested and the experimental results demonstrated their robustness for preparing monodisperse single, double, triple and multi-component emulsions.

  13. Entanglement asymmetry for boosted black branes and the bound

    NASA Astrophysics Data System (ADS)

    Mishra, Rohit; Singh, Harvendra

    2017-06-01

    We study the effects of asymmetry in the entanglement thermodynamics of CFT subsystems. It is found that “boosted” Dp-brane backgrounds give rise to the first law of the entanglement thermodynamics where the CFT pressure asymmetry plays a decisive role in the entanglement. Two different strip like subsystems, one parallel to the boost and the other perpendicular, are studied in the perturbative regime Tthermal ≪ TE. We mainly seek to quantify this entanglement asymmetry as a ratio of the first-order entanglement entropies of the excitations. We discuss the AdS-wave backgrounds at zero temperature having maximum asymmetry from where a bound on entanglement asymmetry is obtained. The entanglement asymmetry reduces as we switch on finite temperature in the CFT while it is maximum at zero temperature.

  14. Entanglement in Self-Supervised Dynamics

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2011-01-01

    A new type of correlation has been developed similar to quantum entanglement in self-supervised dynamics (SSD). SSDs have been introduced as a quantum-classical hybrid based upon the Madelung equation in which the quantum potential is replaced by an information potential. As a result, SSD preserves the quantum topology along with superposition, entanglement, and wave-particle duality. At the same time, it can be implemented in any scale including the Newtonian scale. The main properties of SSD associated with simulating intelligence have been formulated. The attention with this innovation is focused on intelligent agents interaction based upon the new fundamental non-New tonian effect; namely, entanglement.

  15. Drop-in compatible entanglement for optical-fiber networks.

    PubMed

    Hall, Matthew A; Altepeter, Joseph B; Kumar, Prem

    2009-08-17

    A growing number of quantum communication protocols require entanglement distribution among remote parties, which is best accomplished by exploiting the mature technology and extensive infrastructure of low-loss optical fiber. For this reason, a practical source of entangled photons must be drop-in compatible with optical fiber networks. Here we demonstrate such a source for the first time, in which the nonlinearity of standard single-mode fiber is utilized to yield entangled photon pairs in the 1310-nm O-band. Using an ultra-stable design, we produce polarization entanglement with 98.0% +/- 0.5% fidelity to a maximally entangled state as characterized via coincidence-basis tomography. To demonstrate the source's drop-in capability, we transmit one photon from each entangled pair through a telecommunications-grade optical amplifier set to boost classical 1550-nm (C-band) communication signals. We verify that the photon pairs experience no measurable decoherence upon passing through the active amplifier (the output state's fidelity with a maximally entangled state is 98.4% +/- 1.4%). (c) 2009 Optical Society of America

  16. Entanglement branes in a two-dimensional string theory

    DOE PAGES

    Donnelly, William; Wong, Gabriel

    2017-09-20

    What is the meaning of entanglement in a theory of extended objects such as strings? To address this question we consider the spatial entanglement between two intervals in the Gross-Taylor model, the string theory dual to two-dimensional Yang-Mills theory at large N. The string diagrams that contribute to the entanglement entropy describe open strings with endpoints anchored to the entangling surface, as first argued by Susskind. We develop a canonical theory of these open strings, and describe how closed strings are divided into open strings at the level of the Hilbert space. Here, we derive the modular Hamiltonian for themore » Hartle-Hawking state and show that the corresponding reduced density matrix describes a thermal ensemble of open strings ending on an object at the entangling surface that we call an entanglement brane, or E-brane.« less

  17. Statistical mechanics of multipartite entanglement

    NASA Astrophysics Data System (ADS)

    Facchi, P.; Florio, G.; Marzolino, U.; Parisi, G.; Pascazio, S.

    2009-02-01

    We characterize the multipartite entanglement of a system of n qubits in terms of the distribution function of the bipartite purity over all balanced bipartitions. We search for those (maximally multipartite entangled) states whose purity is minimum for all bipartitions and recast this optimization problem into a problem of statistical mechanics.

  18. Entanglement sum rules.

    PubMed

    Swingle, Brian

    2013-09-06

    We compute the entanglement entropy of a wide class of models that may be characterized as describing matter coupled to gauge fields. Our principle result is an entanglement sum rule that states that the entropy of the full system is the sum of the entropies of the two components. In the context of the models we consider, this result applies to the full entropy, but more generally it is a statement about the additivity of universal terms in the entropy. Our proof simultaneously extends and simplifies previous arguments, with extensions including new models at zero temperature as well as the ability to treat finite temperature crossovers. We emphasize that while the additivity is an exact statement, each term in the sum may still be difficult to compute. Our results apply to a wide variety of phases including Fermi liquids, spin liquids, and some non-Fermi liquid metals. For example, we prove that our model of an interacting Fermi liquid has exactly the log violation of the area law for entanglement entropy predicted by the Widom formula in agreement with earlier arguments.

  19. Gaussian entanglement generation from coherence using beam-splitters

    PubMed Central

    Wang, Zhong-Xiao; Wang, Shuhao; Ma, Teng; Wang, Tie-Jun; Wang, Chuan

    2016-01-01

    The generation and quantification of quantum entanglement is crucial for quantum information processing. Here we study the transition of Gaussian correlation under the effect of linear optical beam-splitters. We find the single-mode Gaussian coherence acts as the resource in generating Gaussian entanglement for two squeezed states as the input states. With the help of consecutive beam-splitters, single-mode coherence and quantum entanglement can be converted to each other. Our results reveal that by using finite number of beam-splitters, it is possible to extract all the entanglement from the single-mode coherence even if the entanglement is wiped out before each beam-splitter. PMID:27892537

  20. Quantifying entanglement in two-mode Gaussian states

    NASA Astrophysics Data System (ADS)

    Tserkis, Spyros; Ralph, Timothy C.

    2017-12-01

    Entangled two-mode Gaussian states are a key resource for quantum information technologies such as teleportation, quantum cryptography, and quantum computation, so quantification of Gaussian entanglement is an important problem. Entanglement of formation is unanimously considered a proper measure of quantum correlations, but for arbitrary two-mode Gaussian states no analytical form is currently known. In contrast, logarithmic negativity is a measure that is straightforward to calculate and so has been adopted by most researchers, even though it is a less faithful quantifier. In this work, we derive an analytical lower bound for entanglement of formation of generic two-mode Gaussian states, which becomes tight for symmetric states and for states with balanced correlations. We define simple expressions for entanglement of formation in physically relevant situations and use these to illustrate the problematic behavior of logarithmic negativity, which can lead to spurious conclusions.

  1. Diagnosing Topological Edge States via Entanglement Monogamy.

    PubMed

    Meichanetzidis, K; Eisert, J; Cirio, M; Lahtinen, V; Pachos, J K

    2016-04-01

    Topological phases of matter possess intricate correlation patterns typically probed by entanglement entropies or entanglement spectra. In this Letter, we propose an alternative approach to assessing topologically induced edge states in free and interacting fermionic systems. We do so by focussing on the fermionic covariance matrix. This matrix is often tractable either analytically or numerically, and it precisely captures the relevant correlations of the system. By invoking the concept of monogamy of entanglement, we show that highly entangled states supported across a system bipartition are largely disentangled from the rest of the system, thus, usually appearing as gapless edge states. We then define an entanglement qualifier that identifies the presence of topological edge states based purely on correlations present in the ground states. We demonstrate the versatility of this qualifier by applying it to various free and interacting fermionic topological systems.

  2. Diagnosing Topological Edge States via Entanglement Monogamy

    NASA Astrophysics Data System (ADS)

    Meichanetzidis, K.; Eisert, J.; Cirio, M.; Lahtinen, V.; Pachos, J. K.

    2016-04-01

    Topological phases of matter possess intricate correlation patterns typically probed by entanglement entropies or entanglement spectra. In this Letter, we propose an alternative approach to assessing topologically induced edge states in free and interacting fermionic systems. We do so by focussing on the fermionic covariance matrix. This matrix is often tractable either analytically or numerically, and it precisely captures the relevant correlations of the system. By invoking the concept of monogamy of entanglement, we show that highly entangled states supported across a system bipartition are largely disentangled from the rest of the system, thus, usually appearing as gapless edge states. We then define an entanglement qualifier that identifies the presence of topological edge states based purely on correlations present in the ground states. We demonstrate the versatility of this qualifier by applying it to various free and interacting fermionic topological systems.

  3. Selection of quasi-monodisperse super-micron aerosol particles

    NASA Astrophysics Data System (ADS)

    Rösch, Michael; Pfeifer, Sascha; Wiedensohler, Alfred; Stratmann, Frank

    2014-05-01

    Size-segregated quasi monodisperse particles are essential for e.g. fundamental research concerning cloud microphysical processes. Commonly a DMA (Differential Mobility Analyzer) is used to produce quasi-monodisperse submicron particles. Thereto first, polydisperse aerosol particles are bipolarly charged by a neutralizer, and then selected according to their electrical mobility with the DMA [Knutson et al. 1975]. Selecting a certain electrical mobility with a DMA results in a particle size distribution, which contains singly charged particles as well as undesired multiply charged larger particles. Often these larger particles need to either be removed from the generated aerosol or their signals have to be corrected for in the data inversion and interpretation process. This problem becomes even more serious when considering super-micron particles. Here we will present two different techniques for generating quasi-monodisperse super-micron aerosol particles with no or only an insignificant number of larger sized particles being present. First, we use a combination of a cyclone with adjustable aerodynamic cut-off diameter and our custom-built Maxi-DMA [Raddatz et al. 2013]. The cyclone removes particles larger than the desired ones prior to mobility selection with the DMA. This results in a reduction of the number of multiply charged particles of up to 99.8%. Second, we utilize a new combination of cyclone and PCVI (Pumped Counterflow Virtual Impactor), which is based on purely inertial separation and avoids particle charging. The PCVI instrument was previously described by Boulter et al. (2006) and Kulkarni et al. (2011). With our two setups we are able to produce quasi-monodisperse aerosol particles in the diameter range from 0.5 to 4.4 µm without a significant number of larger undesired particles being present. Acknowledgements: This work was done within the framework of the DFG funded Ice Nucleation research UnIT (INUIT, FOR 1525) under WE 4722/1-1. References

  4. Efficient creation of multipartite entanglement in flux qubits.

    PubMed

    Ferber, J; Wilhelm, F K

    2010-07-09

    We investigate three superconducting flux qubits coupled in a loop. In this setup, tripartite entanglement can be created in a natural, controllable, and stable way. Both generic kinds of tripartite entanglement--the W type as well as the GHZ type entanglement--can be identified among the eigenstates. We also discuss the violation of Bell inequalities in this system and show the impact of a limited measurement fidelity on the detection of entanglement and quantum nonlocality.

  5. Lamellar Biogels: Fluid-Membrane Based Hydrogels Containing Polymer-Lipids

    NASA Astrophysics Data System (ADS)

    Warriner, Heidi E.; Davidson, P.; Slack, N. L.; Idziak, S. H. J.; Schmidt, H. W.; Safinya, C. R.

    1996-03-01

    A new class of lamellar biogels containing low molecular weight (MW 5181, 2053 and 576 g/mole) polyethylene glycol-surfactants is described (H. Warriner et. al., Science, (in press)). The gels were formed in 7 different systems using two types of polymer-surfactants: (i) polymer-lipids based on the lipid DMPE covalently attached to the different MW of PEG (ii) polymer-surfactants of the two largest PEG MW covalently attached to double-tailed phenyl surfactants with 14 or 18 carbon tails. Unlike isotropic hydrogels of polymer networks, these membrane-based liquid crystalline biogels, labeled L_α,g, form through the addition of water to a liquid-like L_α phase. The signature of the L_α,g regime in these systems is a dramatic increase in layer-dislocation defects, stabilized by aggregation of the PEG-surfactants to the high curvature defect regions. These regions connect and "entangle" the membranes, causing gelation. A simple model describing these phenomena is that the inclusion of the polymer-surfactants in lamellar membranes softens the free energy of high curvature line-defects, leading to proliferation and gelation.

  6. Entanglement sharing via qudit channels: Nonmaximally entangled states may be necessary for one-shot optimal singlet fraction and negativity

    NASA Astrophysics Data System (ADS)

    Pal, Rajarshi; Bandyopadhyay, Somshubhro

    2018-03-01

    We consider the problem of establishing entangled states of optimal singlet fraction and negativity between two remote parties for every use of a noisy quantum channel and trace-preserving local operations and classical communication (LOCC) under the assumption that the parties do not share prior correlations. We show that for a family of quantum channels in every finite dimension d ≥3 , one-shot optimal singlet fraction and entanglement negativity are attained only with appropriate nonmaximally entangled states. A consequence of our results is that the ordering of entangled states in all finite dimensions may not be preserved under trace-preserving LOCC.

  7. Emulsifier-free emulsion polymerization produces highly charged, monodisperse particles for near infrared photonic crystals.

    PubMed

    Reese, Chad E; Asher, Sanford A

    2002-04-01

    We have developed emulsifier-free, emulsion polymerization recipes for the synthesis of highly charged, monodisperse latex particles of diameters between 500 and 1100 nm. These latexes consist of poly[styrene-(co-2-hydroxyethyl methacrylate)] spherical particles whose surfaces are functionalized with sulfate and carboxylic acid groups. These highly charged, monodisperse particles readily self-assemble into robust, three-dimensionally ordered crystalline colloidal array photonic crystals that Bragg diffract light in the near infrared spectral region. By altering the particle number density, the diffraction wavelength can be tuned from approximately 1000 to approximately 4000 nm.

  8. Energy as an entanglement witness for quantum many-body systems

    NASA Astrophysics Data System (ADS)

    Dowling, Mark R.; Doherty, Andrew C.; Bartlett, Stephen D.

    2004-12-01

    We investigate quantum many-body systems where all low-energy states are entangled. As a tool for quantifying such systems, we introduce the concept of the entanglement gap, which is the difference in energy between the ground-state energy and the minimum energy that a separable (unentangled) state may attain. If the energy of the system lies within the entanglement gap, the state of the system is guaranteed to be entangled. We find Hamiltonians that have the largest possible entanglement gap; for a system consisting of two interacting spin- 1/2 subsystems, the Heisenberg antiferromagnet is one such example. We also introduce a related concept, the entanglement-gap temperature: the temperature below which the thermal state is certainly entangled, as witnessed by its energy. We give an example of a bipartite Hamiltonian with an arbitrarily high entanglement-gap temperature for fixed total energy range. For bipartite spin lattices we prove a theorem demonstrating that the entanglement gap necessarily decreases as the coordination number is increased. We investigate frustrated lattices and quantum phase transitions as physical phenomena that affect the entanglement gap.

  9. Collapse–revival of quantum discord and entanglement

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yan, Xue-Qun, E-mail: xqyan867@tom.com; Zhang, Bo-Ying

    2014-10-15

    In this paper the correlations dynamics of two atoms in the case of a micromaser-type system is investigated. Our results predict certain quasi-periodic collapse and revival phenomena for quantum discord and entanglement when the field is in Fock state and the two atoms are initially in maximally mixed state, which is a special separable state. Our calculations also show that the oscillations of the time evolution of both quantum discord and entanglement are almost in phase and they both have similar evolution behavior in some time range. The fact reveals the consistency of quantum discord and entanglement in some dynamicalmore » aspects. - Highlights: • The correlations dynamics of two atoms in the case of a micromaser-type system is investigated. • A quasi-periodic collapse and revival phenomenon for quantum discord and entanglement is reported. • A phenomenon of correlations revivals different from that of non-Markovian dynamics is revealed. • The oscillations of time evolution of both quantum discord and entanglement are almost in phase in our system. • Quantum discord and entanglement have similar evolution behavior in some time range.« less

  10. Photonic and Phononic Entanglement with Hybrid Species Ion Chains

    NASA Astrophysics Data System (ADS)

    Crocker, Clayton; Lichtman, Martin; Sosnova, Ksenia; Nguyen, Tuan; Carter, Allison; Inlek, Volkan; Ruth, Hanna; Monroe, Christopher

    2017-04-01

    Trapped atomic ions represent a leading platform for quantum information networks due to their long coherence times and diverse set of entangling operations. External fields can drive strong local entangling interactions via phonons, and remote qubits can be entangled via emitted photons. Unfortunately, resonant light from the photonic entanglement process can disrupt nearby memory qubits. We resolve this crosstalk by introducing a separate atomic species to the trap for use as a photonic entanglement qubit. We report successful demonstration of both entangling gates between the mixed species qubit pair through their collective motion, and entanglement between our remote entanglement qubit and emitted visible photons. We additionally report our progress on a new trapping apparatus that was implemented to improve these operations to a level required for scaling up the system size. This work is supported by the ARO with funding from the IARPA LogiQ program, the AFOSR, the ARO MURI on Modular Quantum Circuits, the AFOSR MURI on Quantum Transduction, and the ARL Center for Distributed Quantum Information.

  11. Continuous-variable entanglement distillation of non-Gaussian mixed states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dong Ruifang; Lassen, Mikael; Department of Physics, Technical University of Denmark, Building 309, DK-2800 Lyngby

    2010-07-15

    Many different quantum-information communication protocols such as teleportation, dense coding, and entanglement-based quantum key distribution are based on the faithful transmission of entanglement between distant location in an optical network. The distribution of entanglement in such a network is, however, hampered by loss and noise that is inherent in all practical quantum channels. Thus, to enable faithful transmission one must resort to the protocol of entanglement distillation. In this paper we present a detailed theoretical analysis and an experimental realization of continuous variable entanglement distillation in a channel that is inflicted by different kinds of non-Gaussian noise. The continuous variablemore » entangled states are generated by exploiting the third order nonlinearity in optical fibers, and the states are sent through a free-space laboratory channel in which the losses are altered to simulate a free-space atmospheric channel with varying losses. We use linear optical components, homodyne measurements, and classical communication to distill the entanglement, and we find that by using this method the entanglement can be probabilistically increased for some specific non-Gaussian noise channels.« less

  12. The spatial response of nonlinear strain propagation in response to actively driven microspheres through entangled actin networks

    NASA Astrophysics Data System (ADS)

    Falzone, Tobias; Blair, Savanna; Robertson-Anderson, Rae

    2015-03-01

    The semiflexible biopolymer actin, a ubiquitous component of nearly all biological organisms, plays an important role in many mechanically-driven processes such as muscle contraction, cancer invasion and cell motility. As such, entangled actin networks, which possess unique and complex viscoelastic properties, have been the subject of much theoretical and experimental work. However, due to this viscoelastic complexity, much is still unknown regarding the correlation of the applied stress on actin networks to the induced filament strain at the molecular and micro scale. Here, we use simultaneous optical trapping and fluorescence microscopy to characterize the link between applied microscopic forces and strain propagation as a function of strain rate and concentration. Specifically, we track fiduciary markers on entangled actin filaments before, during and after actively driving embedded microspheres through the network. These measurements provide much needed insight into the molecular-level dynamics connecting stress and strain in semiflexible polymer networks.

  13. Experimental witness of genuine high-dimensional entanglement

    NASA Astrophysics Data System (ADS)

    Guo, Yu; Hu, Xiao-Min; Liu, Bi-Heng; Huang, Yun-Feng; Li, Chuan-Feng; Guo, Guang-Can

    2018-06-01

    Growing interest has been invested in exploring high-dimensional quantum systems, for their promising perspectives in certain quantum tasks. How to characterize a high-dimensional entanglement structure is one of the basic questions to take full advantage of it. However, it is not easy for us to catch the key feature of high-dimensional entanglement, for the correlations derived from high-dimensional entangled states can be possibly simulated with copies of lower-dimensional systems. Here, we follow the work of Kraft et al. [Phys. Rev. Lett. 120, 060502 (2018), 10.1103/PhysRevLett.120.060502], and present the experimental realizing of creation and detection, by the normalized witness operation, of the notion of genuine high-dimensional entanglement, which cannot be decomposed into lower-dimensional Hilbert space and thus form the entanglement structures existing in high-dimensional systems only. Our experiment leads to further exploration of high-dimensional quantum systems.

  14. Resource-Efficient Measurement-Device-Independent Entanglement Witness

    DOE PAGES

    Verbanis, E.; Martin, A.; Rosset, D.; ...

    2016-05-09

    Imperfections in experimental measurement schemes can lead to falsely identifying, or over estimating, entanglement in a quantum system. A recent solution to this is to define schemes that are robust to measurement imperfections—measurement-device-independent entanglement witness (MDI-EW). This approach can be adapted to witness all entangled qubit states for a wide range of physical systems and does not depend on detection efficiencies or classical communication between devices. In this paper, we extend the theory to remove the necessity of prior knowledge about the two-qubit states to be witnessed. Moreover, we tested this model via a novel experimental implementation for MDI-EW thatmore » significantly reduces the experimental complexity. Finally, by applying it to a bipartite Werner state, we demonstrate the robustness of this approach against noise by witnessing entanglement down to an entangled state fraction close to 0.4.« less

  15. Characterizing entanglement with global and marginal entropic measures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adesso, Gerardo; Illuminati, Fabrizio; De Siena, Silvio

    2003-12-01

    We qualify the entanglement of arbitrary mixed states of bipartite quantum systems by comparing global and marginal mixednesses quantified by different entropic measures. For systems of two qubits we discriminate the class of maximally entangled states with fixed marginal mixednesses, and determine an analytical upper bound relating the entanglement of formation to the marginal linear entropies. This result partially generalizes to mixed states the quantification of entanglement with marginal mixednesses holding for pure states. We identify a class of entangled states that, for fixed marginals, are globally more mixed than product states when measured by the linear entropy. Such statesmore » cannot be discriminated by the majorization criterion.« less

  16. Distillation and purification of symmetric entangled Gaussian states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiurasek, Jaromir

    2010-10-15

    We propose an entanglement distillation and purification scheme for symmetric two-mode entangled Gaussian states that allows to asymptotically extract a pure entangled Gaussian state from any input entangled symmetric Gaussian state. The proposed scheme is a modified and extended version of the entanglement distillation protocol originally developed by Browne et al. [Phys. Rev. A 67, 062320 (2003)]. A key feature of the present protocol is that it utilizes a two-copy degaussification procedure that involves a Mach-Zehnder interferometer with single-mode non-Gaussian filters inserted in its two arms. The required non-Gaussian filtering operations can be implemented by coherently combining two sequences ofmore » single-photon addition and subtraction operations.« less

  17. Entanglement of a quantum field with a dispersive medium.

    PubMed

    Klich, Israel

    2012-08-10

    In this Letter we study the entanglement of a quantum radiation field interacting with a dielectric medium. In particular, we describe the quantum mixed state of a field interacting with a dielectric through plasma and Drude models and show that these generate very different entanglement behavior, as manifested in the entanglement entropy of the field. We also present a formula for a "Casimir" entanglement entropy, i.e., the distance dependence of the field entropy. Finally, we study a toy model of the interaction between two plates. In this model, the field entanglement entropy is divergent; however, as in the Casimir effect, its distance-dependent part is finite, and the field matter entanglement is reduced when the objects are far.

  18. Quantum key distribution with an entangled light emitting diode

    NASA Astrophysics Data System (ADS)

    Dzurnak, B.; Stevenson, R. M.; Nilsson, J.; Dynes, J. F.; Yuan, Z. L.; Skiba-Szymanska, J.; Farrer, I.; Ritchie, D. A.; Shields, A. J.

    2015-12-01

    Measurements performed on entangled photon pairs shared between two parties can allow unique quantum cryptographic keys to be formed, creating secure links between users. An advantage of using such entangled photon links is that they can be adapted to propagate entanglement to end users of quantum networks with only untrusted nodes. However, demonstrations of quantum key distribution with entangled photons have so far relied on sources optically excited with lasers. Here, we realize a quantum cryptography system based on an electrically driven entangled-light-emitting diode. Measurement bases are passively chosen and we show formation of an error-free quantum key. Our measurements also simultaneously reveal Bell's parameter for the detected light, which exceeds the threshold for quantum entanglement.

  19. Radiative processes of uniformly accelerated entangled atoms

    NASA Astrophysics Data System (ADS)

    Menezes, G.; Svaiter, N. F.

    2016-05-01

    We study radiative processes of uniformly accelerated entangled atoms, interacting with an electromagnetic field prepared in the Minkowski vacuum state. We discuss the structure of the rate of variation of the atomic energy for two atoms traveling in different hyperbolic world lines. We identify the contributions of vacuum fluctuations and radiation reaction to the generation of entanglement as well as to the decay of entangled states. Our results resemble the situation in which two inertial atoms are coupled individually to two spatially separated cavities at different temperatures. In addition, for equal accelerations we obtain that one of the maximally entangled antisymmetric Bell state is a decoherence-free state.

  20. Thermodynamical detection of entanglement by Maxwell's demons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maruyama, Koji; Vedral, Vlatko; Morikoshi, Fumiaki

    2005-01-01

    Quantum correlation, or entanglement, is now believed to be an indispensable physical resource for certain tasks in quantum information processing, for which classically correlated states cannot be useful. Besides information processing, what kind of physical processes can exploit entanglement? In this paper, we show that there is indeed a more basic relationship between entanglement and its usefulness in thermodynamics. We derive an inequality showing that we can extract more work out of a heat bath via entangled systems than via classically correlated ones. We also analyze the work balance of the process as a heat engine, in connection with themore » second law of thermodynamics.« less

  1. Partially entangled states bridge in quantum teleportation

    NASA Astrophysics Data System (ADS)

    Cai, Xiao-Fei; Yu, Xu-Tao; Shi, Li-Hui; Zhang, Zai-Chen

    2014-10-01

    The traditional method for information transfer in a quantum communication system using partially entangled state resource is quantum distillation or direct teleportation. In order to reduce the waiting time cost in hop-by-hop transmission and execute independently in each node, we propose a quantum bridging method with partially entangled states to teleport quantum states from source node to destination node. We also prove that the designed specific quantum bridging circuit is feasible for partially entangled states teleportation across multiple intermediate nodes. Compared to two traditional ways, our partially entanglement quantum bridging method uses simpler logic gates, has better security, and can be used in less quantum resource situation.

  2. Heralded entanglement between solid-state qubits separated by three metres.

    PubMed

    Bernien, H; Hensen, B; Pfaff, W; Koolstra, G; Blok, M S; Robledo, L; Taminiau, T H; Markham, M; Twitchen, D J; Childress, L; Hanson, R

    2013-05-02

    Quantum entanglement between spatially separated objects is one of the most intriguing phenomena in physics. The outcomes of independent measurements on entangled objects show correlations that cannot be explained by classical physics. As well as being of fundamental interest, entanglement is a unique resource for quantum information processing and communication. Entangled quantum bits (qubits) can be used to share private information or implement quantum logical gates. Such capabilities are particularly useful when the entangled qubits are spatially separated, providing the opportunity to create highly connected quantum networks or extend quantum cryptography to long distances. Here we report entanglement of two electron spin qubits in diamond with a spatial separation of three metres. We establish this entanglement using a robust protocol based on creation of spin-photon entanglement at each location and a subsequent joint measurement of the photons. Detection of the photons heralds the projection of the spin qubits onto an entangled state. We verify the resulting non-local quantum correlations by performing single-shot readout on the qubits in different bases. The long-distance entanglement reported here can be combined with recently achieved initialization, readout and entanglement operations on local long-lived nuclear spin registers, paving the way for deterministic long-distance teleportation, quantum repeaters and extended quantum networks.

  3. Entanglement in Quantum-Classical Hybrid

    NASA Technical Reports Server (NTRS)

    Zak, Michail

    2011-01-01

    It is noted that the phenomenon of entanglement is not a prerogative of quantum systems, but also occurs in other, non-classical systems such as quantum-classical hybrids, and covers the concept of entanglement as a special type of global constraint imposed upon a broad class of dynamical systems. Application of hybrid systems for physics of life, as well as for quantum-inspired computing, has been outlined. In representing the Schroedinger equation in the Madelung form, there is feedback from the Liouville equation to the Hamilton-Jacobi equation in the form of the quantum potential. Preserving the same topology, the innovators replaced the quantum potential with other types of feedback, and investigated the property of these hybrid systems. A function of probability density has been introduced. Non-locality associated with a global geometrical constraint that leads to an entanglement effect was demonstrated. Despite such a quantum like characteristic, the hybrid can be of classical scale and all the measurements can be performed classically. This new emergence of entanglement sheds light on the concept of non-locality in physics.

  4. Scaling of Tripartite Entanglement at Impurity Quantum Phase Transitions.

    PubMed

    Bayat, Abolfazl

    2017-01-20

    The emergence of a diverging length scale in many-body systems at a quantum phase transition implies that total entanglement has to reach its maximum there. In order to fully characterize this, one has to consider multipartite entanglement as, for instance, bipartite entanglement between individual particles fails to signal this effect. However, quantification of multipartite entanglement is very hard, and detecting it may not be possible due to the lack of accessibility to all individual particles. For these reasons it will be more sensible to partition the system into relevant subsystems, each containing a few to many spins, and study entanglement between those constituents as a coarse-grain picture of multipartite entanglement between individual particles. In impurity systems, famously exemplified by two-impurity and two-channel Kondo models, it is natural to divide the system into three parts, namely, impurities and the left and right bulks. By exploiting two tripartite entanglement measures, based on negativity, we show that at impurity quantum phase transitions the tripartite entanglement diverges and shows scaling behavior. While the critical exponents are different for each tripartite entanglement measure, they both provide very similar critical exponents for the two-impurity and the two-channel Kondo models, suggesting that they belong to the same universality class.

  5. Experimental generation of complex noisy photonic entanglement

    NASA Astrophysics Data System (ADS)

    Dobek, K.; Karpiński, M.; Demkowicz-Dobrzański, R.; Banaszek, K.; Horodecki, P.

    2013-02-01

    We present an experimental scheme based on spontaneous parametric down-conversion to produce multiple-photon pairs in maximally entangled polarization states using an arrangement of two type-I nonlinear crystals. By introducing correlated polarization noise in the paths of the generated photons we prepare mixed-entangled states whose properties illustrate fundamental results obtained recently in quantum information theory, in particular those concerning bound entanglement and privacy.

  6. Mode entanglement of Gaussian fermionic states

    NASA Astrophysics Data System (ADS)

    Spee, C.; Schwaiger, K.; Giedke, G.; Kraus, B.

    2018-04-01

    We investigate the entanglement of n -mode n -partite Gaussian fermionic states (GFS). First, we identify a reasonable definition of separability for GFS and derive a standard form for mixed states, to which any state can be mapped via Gaussian local unitaries (GLU). As the standard form is unique, two GFS are equivalent under GLU if and only if their standard forms coincide. Then, we investigate the important class of local operations assisted by classical communication (LOCC). These are central in entanglement theory as they allow one to partially order the entanglement contained in states. We show, however, that there are no nontrivial Gaussian LOCC (GLOCC) among pure n -partite (fully entangled) states. That is, any such GLOCC transformation can also be accomplished via GLU. To obtain further insight into the entanglement properties of such GFS, we investigate the richer class of Gaussian stochastic local operations assisted by classical communication (SLOCC). We characterize Gaussian SLOCC classes of pure n -mode n -partite states and derive them explicitly for few-mode states. Furthermore, we consider certain fermionic LOCC and show how to identify the maximally entangled set of pure n -mode n -partite GFS, i.e., the minimal set of states having the property that any other state can be obtained from one state inside this set via fermionic LOCC. We generalize these findings also to the pure m -mode n -partite (for m >n ) case.

  7. Fiber transport of spatially entangled photons

    NASA Astrophysics Data System (ADS)

    Löffler, W.; Eliel, E. R.; Woerdman, J. P.; Euser, T. G.; Scharrer, M.; Russell, P.

    2012-03-01

    High-dimensional entangled photons pairs are interesting for quantum information and cryptography: Compared to the well-known 2D polarization case, the stronger non-local quantum correlations could improve noise resistance or security, and the larger amount of information per photon increases the available bandwidth. One implementation is to use entanglement in the spatial degree of freedom of twin photons created by spontaneous parametric down-conversion, which is equivalent to orbital angular momentum entanglement, this has been proven to be an excellent model system. The use of optical fiber technology for distribution of such photons has only very recently been practically demonstrated and is of fundamental and applied interest. It poses a big challenge compared to the established time and frequency domain methods: For spatially entangled photons, fiber transport requires the use of multimode fibers, and mode coupling and intermodal dispersion therein must be minimized not to destroy the spatial quantum correlations. We demonstrate that these shortcomings of conventional multimode fibers can be overcome by using a hollow-core photonic crystal fiber, which follows the paradigm to mimic free-space transport as good as possible, and are able to confirm entanglement of the fiber-transported photons. Fiber transport of spatially entangled photons is largely unexplored yet, therefore we discuss the main complications, the interplay of intermodal dispersion and mode mixing, the influence of external stress and core deformations, and consider the pros and cons of various fiber types.

  8. Compact continuous-variable entanglement distillation.

    PubMed

    Datta, Animesh; Zhang, Lijian; Nunn, Joshua; Langford, Nathan K; Feito, Alvaro; Plenio, Martin B; Walmsley, Ian A

    2012-02-10

    We introduce a new scheme for continuous-variable entanglement distillation that requires only linear temporal and constant physical or spatial resources. Distillation is the process by which high-quality entanglement may be distributed between distant nodes of a network in the unavoidable presence of decoherence. The known versions of this protocol scale exponentially in space and doubly exponentially in time. Our optimal scheme therefore provides exponential improvements over existing protocols. It uses a fixed-resource module-an entanglement distillery-comprising only four quantum memories of at most 50% storage efficiency and allowing a feasible experimental implementation. Tangible quantum advantages are obtainable by using existing off-resonant Raman quantum memories outside their conventional role of storage.

  9. Ultrasound-driven Megahertz Faraday Waves for Generation of Monodisperse Micro Droplets and Applications

    NASA Astrophysics Data System (ADS)

    Tsai, Chen S.; Mao, Rong W.; Lin, Shih K.; Tsai, Shirley C.; Boss, Gerry; Brenner, Matt; Smaldone, Gerry; Mahon, Sari; Shahverdi, Kaveh; Zhu, Yun

    Our theoretical findings on instability of Faraday waves at megahertz (MHz) drive frequency and realization of silicon-based MHz multiple-Fourier horn ultrasonic nozzles (MFHUNs) together have enabled generation of mono-disperse droplets of controllable diameter (2.5-6.0 μm) at very low electrical drive power (<0.5 Watt). The resulting battery-run clogging-free droplet generator has imminent application to pulmonary (inhalation) drug delivery and other potential applications. Here an update of advances on analysis and design of the MHz MFHUNs and the underlying physical mechanism for generation of mono-disperse micro droplets, and the nebulizer platform for application to detoxification of cyanide poisoning are presented.

  10. Experimental Estimation of Entanglement at the Quantum Limit

    NASA Astrophysics Data System (ADS)

    Brida, Giorgio; Degiovanni, Ivo Pietro; Florio, Angela; Genovese, Marco; Giorda, Paolo; Meda, Alice; Paris, Matteo G. A.; Shurupov, Alexander

    2010-03-01

    Entanglement is the central resource of quantum information processing and the precise characterization of entangled states is a crucial issue for the development of quantum technologies. This leads to the necessity of a precise, experimental feasible measure of entanglement. Nevertheless, such measurements are limited both from experimental uncertainties and intrinsic quantum bounds. Here we present an experiment where the amount of entanglement of a family of two-qubit mixed photon states is estimated with the ultimate precision allowed by quantum mechanics.

  11. Hyperentanglement purification using imperfect spatial entanglement.

    PubMed

    Wang, Tie-Jun; Mi, Si-Chen; Wang, Chuan

    2017-02-06

    As the interaction between the photons and the environment which will make the entangled photon pairs in less entangled states or even in mixed states, the security and the efficiency of quantum communication will decrease. We present an efficient hyperentanglement purification protocol that distills nonlocal high-fidelity hyper-entangled Bell states in both polarization and spatial-mode degrees of freedom from ensembles of two-photon system in mixed states using linear optics. Here, we consider the influence of the photon loss in the channel which generally is ignored in the conventional entanglement purification and hyperentanglement purification (HEP) schemes. Compared with previous HEP schemes, our HEP scheme decreases the requirement for nonlocal resources by employing high-dimensional mode-check measurement, and leads to a higher fidelity, especially in the range where the conventional HEP schemes become invalid but our scheme still can work.

  12. Localizable entanglement in antiferromagnetic spin chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, B.-Q.; Korepin, V.E.

    2004-06-01

    Antiferromagnetic spin chains play an important role in condensed matter and statistical mechanics. Recently XXX spin chain was discussed in relation to information theory. Here we consider localizable entanglement. It is how much entanglement can be localized on two spins by performing local measurements on other individual spins (in a system of many interacting spins). We consider the ground state of antiferromagnetic spin chain. We study localizable entanglement [represented by concurrence] between two spins. It is a function of the distance. We start with isotropic spin chain. Then we study effects of anisotropy and magnetic field. We conclude that anisotropymore » increases the localizable entanglement. We discovered high sensitivity to a magnetic field in cases of high symmetry. We also evaluated concurrence of these two spins before the measurement to illustrate that the measurement raises the concurrence.« less

  13. Highly efficient entanglement swapping and teleportation at telecom wavelength

    PubMed Central

    Jin, Rui-Bo; Takeoka, Masahiro; Takagi, Utako; Shimizu, Ryosuke; Sasaki, Masahide

    2015-01-01

    Entanglement swapping at telecom wavelengths is at the heart of quantum networking in optical fiber infrastructures. Although entanglement swapping has been demonstrated experimentally so far using various types of entangled photon sources both in near-infrared and telecom wavelength regions, the rate of swapping operation has been too low to be applied to practical quantum protocols, due to limited efficiency of entangled photon sources and photon detectors. Here we demonstrate drastic improvement of the efficiency at telecom wavelength by using two ultra-bright entangled photon sources and four highly efficient superconducting nanowire single photon detectors. We have attained a four-fold coincidence count rate of 108 counts per second, which is three orders higher than the previous experiments at telecom wavelengths. A raw (net) visibility in a Hong-Ou-Mandel interference between the two independent entangled sources was 73.3 ± 1.0% (85.1 ± 0.8%). We performed the teleportation and entanglement swapping, and obtained a fidelity of 76.3% in the swapping test. Our results on the coincidence count rates are comparable with the ones ever recorded in teleportation/swapping and multi-photon entanglement generation experiments at around 800 nm wavelengths. Our setup opens the way to practical implementation of device-independent quantum key distribution and its distance extension by the entanglement swapping as well as multi-photon entangled state generation in telecom band infrastructures with both space and fiber links. PMID:25791212

  14. Highly efficient entanglement swapping and teleportation at telecom wavelength.

    PubMed

    Jin, Rui-Bo; Takeoka, Masahiro; Takagi, Utako; Shimizu, Ryosuke; Sasaki, Masahide

    2015-03-20

    Entanglement swapping at telecom wavelengths is at the heart of quantum networking in optical fiber infrastructures. Although entanglement swapping has been demonstrated experimentally so far using various types of entangled photon sources both in near-infrared and telecom wavelength regions, the rate of swapping operation has been too low to be applied to practical quantum protocols, due to limited efficiency of entangled photon sources and photon detectors. Here we demonstrate drastic improvement of the efficiency at telecom wavelength by using two ultra-bright entangled photon sources and four highly efficient superconducting nanowire single photon detectors. We have attained a four-fold coincidence count rate of 108 counts per second, which is three orders higher than the previous experiments at telecom wavelengths. A raw (net) visibility in a Hong-Ou-Mandel interference between the two independent entangled sources was 73.3 ± 1.0% (85.1 ± 0.8%). We performed the teleportation and entanglement swapping, and obtained a fidelity of 76.3% in the swapping test. Our results on the coincidence count rates are comparable with the ones ever recorded in teleportation/swapping and multi-photon entanglement generation experiments at around 800 nm wavelengths. Our setup opens the way to practical implementation of device-independent quantum key distribution and its distance extension by the entanglement swapping as well as multi-photon entangled state generation in telecom band infrastructures with both space and fiber links.

  15. Generation of monodisperse droplets by spontaneous condensation of flow in nozzles

    NASA Technical Reports Server (NTRS)

    Lai, Der-Shaiun; Kadambi, J. R.

    1993-01-01

    Submicron size monodisperse particles are of interest in many industrial and scientific applications. These include the manufacture of ceramic parts using fine ceramic particles, the production of thin films by deposition of ionized clusters, monodisperse seed particles for laser anemometry, and the study of size dependence of cluster chemical and physical properties. An inexpensive and relatively easy way to generate such particles is by utilizing the phenomenon of spontaneous condensation. The phenomenon occurs when the vapor or a mixture of a vapor and a noncondensing gas is expanded at a high expansion rate. The saturation line is crossed with the supercooled vapor behaving like a gas, until all of a sudden at the so called Wilson point, condensation occurs, resulting in a large number of relatively monodisperse droplets. The droplet size is a function of the expansion rate, inlet conditions, mass fraction of vapor, gas properties, etc. Spontaneous condensation of steam and water vapor and air mixture in a one dimensional nozzle was modeled and the resulting equations solved numerically. The droplet size distribution at the exit of various one dimensional nozzles and the flow characteristics such as pressure ratio, mean droplet radius, vapor and droplet temperatures, nucleation flux, supercooling, wetness, etc., along the axial distance were obtained. The numerical results compared very well with the available experimental data. The effect of inlet conditions, nozzle expansion rates, and vapor mass fractions on droplet mean radius, droplet size distribution, and pressure ratio were examined.

  16. Entanglement for All Quantum States

    ERIC Educational Resources Information Center

    de la Torre, A. C.; Goyeneche, D.; Leitao, L.

    2010-01-01

    It is shown that a state that is factorizable in the Hilbert space corresponding to some choice of degrees of freedom becomes entangled for a different choice of degrees of freedom. Therefore, entanglement is not a special case but is ubiquitous in quantum systems. Simple examples are calculated and a general proof is provided. The physical…

  17. Computational complexity in entanglement transformations

    NASA Astrophysics Data System (ADS)

    Chitambar, Eric A.

    In physics, systems having three parts are typically much more difficult to analyze than those having just two. Even in classical mechanics, predicting the motion of three interacting celestial bodies remains an insurmountable challenge while the analogous two-body problem has an elementary solution. It is as if just by adding a third party, a fundamental change occurs in the structure of the problem that renders it unsolvable. In this thesis, we demonstrate how such an effect is likewise present in the theory of quantum entanglement. In fact, the complexity differences between two-party and three-party entanglement become quite conspicuous when comparing the difficulty in deciding what state changes are possible for these systems when no additional entanglement is consumed in the transformation process. We examine this entanglement transformation question and its variants in the language of computational complexity theory, a powerful subject that formalizes the concept of problem difficulty. Since deciding feasibility of a specified bipartite transformation is relatively easy, this task belongs to the complexity class P. On the other hand, for tripartite systems, we find the problem to be NP-Hard, meaning that its solution is at least as hard as the solution to some of the most difficult problems humans have encountered. One can then rigorously defend the assertion that a fundamental complexity difference exists between bipartite and tripartite entanglement since unlike the former, the full range of forms realizable by the latter is incalculable (assuming P≠NP). However, similar to the three-body celestial problem, when one examines a special subclass of the problem---invertible transformations on systems having at least one qubit subsystem---we prove that the problem can be solved efficiently. As a hybrid of the two questions, we find that the question of tripartite to bipartite transformations can be solved by an efficient randomized algorithm. Our results are

  18. Entanglement entropy of electromagnetic edge modes.

    PubMed

    Donnelly, William; Wall, Aron C

    2015-03-20

    The vacuum entanglement entropy of Maxwell theory, when evaluated by standard methods, contains an unexpected term with no known statistical interpretation. We resolve this two-decades old puzzle by showing that this term is the entanglement entropy of edge modes: classical solutions determined by the electric field normal to the entangling surface. We explain how the heat kernel regularization applied to this term leads to the negative divergent expression found by Kabat. This calculation also resolves a recent puzzle concerning the logarithmic divergences of gauge fields in 3+1 dimensions.

  19. Quantum cryptography with perfect multiphoton entanglement.

    PubMed

    Luo, Yuhui; Chan, Kam Tai

    2005-05-01

    Multiphoton entanglement in the same polarization has been shown theoretically to be obtainable by type-I spontaneous parametric downconversion (SPDC), which can generate bright pulses more easily than type-II SPDC. A new quantum cryptographic protocol utilizing polarization pairs with the detected type-I entangled multiphotons is proposed as quantum key distribution. We calculate the information capacity versus photon number corresponding to polarization after considering the transmission loss inside the optical fiber, the detector efficiency, and intercept-resend attacks at the level of channel error. The result compares favorably with all other schemes employing entanglement.

  20. Monogamy Inequality for Any Local Quantum Resource and Entanglement.

    PubMed

    Camalet, S

    2017-09-15

    We derive a monogamy inequality for any local quantum resource and entanglement. It results from the fact that there is always a convex measure for a quantum resource, as shown here, and from the relation between entanglement and local entropy. One of its consequences is an entanglement monogamy different from that usually discussed. If the local resource is nonuniformity or coherence, it is satisfied by familiar resource and entanglement measures. The ensuing upper bound for the local coherence, determined by the entanglement, is independent of the basis used to define the coherence.

  1. Monogamy Inequality for Any Local Quantum Resource and Entanglement

    NASA Astrophysics Data System (ADS)

    Camalet, S.

    2017-09-01

    We derive a monogamy inequality for any local quantum resource and entanglement. It results from the fact that there is always a convex measure for a quantum resource, as shown here, and from the relation between entanglement and local entropy. One of its consequences is an entanglement monogamy different from that usually discussed. If the local resource is nonuniformity or coherence, it is satisfied by familiar resource and entanglement measures. The ensuing upper bound for the local coherence, determined by the entanglement, is independent of the basis used to define the coherence.

  2. Quantum key distribution with an entangled light emitting diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dzurnak, B.; Stevenson, R. M.; Nilsson, J.

    Measurements performed on entangled photon pairs shared between two parties can allow unique quantum cryptographic keys to be formed, creating secure links between users. An advantage of using such entangled photon links is that they can be adapted to propagate entanglement to end users of quantum networks with only untrusted nodes. However, demonstrations of quantum key distribution with entangled photons have so far relied on sources optically excited with lasers. Here, we realize a quantum cryptography system based on an electrically driven entangled-light-emitting diode. Measurement bases are passively chosen and we show formation of an error-free quantum key. Our measurementsmore » also simultaneously reveal Bell's parameter for the detected light, which exceeds the threshold for quantum entanglement.« less

  3. Faithful entanglement transference from qubits to continuous variable systems

    NASA Astrophysics Data System (ADS)

    Blanco, P.; Mundarain, D.

    2011-05-01

    In this work, we study the transference of entanglement between atomic qubits and the fields of two separate optical cavities. We show that it is possible to transfer all the entanglement of two maximal entangled qubits to the fields of the cavities without post-selection. Initially, the qubit system is in a maximal entangled state and the cavities are in a pure separable state with each cavity in a coherent state. For high excitation levels in the coherent fields, at some characteristic time T, the state of the qubit system becomes separable and at this time all the entanglement is deposited on the mono-modal fields of the cavities. We also consider retrieval of entanglement and an alternative protocol using post-selection.

  4. Remote entanglement stabilization for modular quantum computing

    NASA Astrophysics Data System (ADS)

    Didier, Nicolas; Shankar, S.; Mirrahimi, M.

    Quantum information processing in a modular architecture requires to distribute and stabilize entanglement in a qubit network. We present autonomous entanglement stabilization protocols between two qubits that are coupled to distant cavities. The cavities coupling is mediated and controlled via a three-wave mixing device that generates either a delocalized mode or a two-mode squeezed state between the remote cavities depending on the pump frequency. Local drives on the qubits and the cavities steer and maintain the system to the desired qubit Bell state. We show that these reservoir-engineering based protocols stabilize entanglement in presence of qubit-cavity asymmetries and losses. Most spectacularly, even a weakly-squeezed state can stabilize a maximally entangled Bell state of two distant qubits through entanglement accumulation. This research was supported by the Agence Nationale de la Recherche under Grant ANR-14-CE26-0018, by Inria's DPEI under the TAQUILLA associated team and by ARO under Grant No. W911NF-14-1-0011.

  5. COMPARISON OF MONODISPERSE AND POLYDISPERSE AEROSOL DEPOSITION IN A PACKED BED

    EPA Science Inventory

    COMPARISON OF MONODISPERSE AND POLYDISPERSE AEROSOL DEPOSITION IN A PACKED BED. Jacky A. Rosati, Dept. of Environmental Sciences and Engineering, University of North Carolina, Chapel Hill, NC 27599; Chong S. Kim, USEPA National Health and Environmental Effects Research Laboratory...

  6. Entanglement entropy and entanglement spectrum of Bi1-xSbx (111) bilayers.

    PubMed

    Brzezińska, Marta; Bieniek, Maciej; Woźniak, Tomasz; Potasz, Paweł; Wójs, Arkadiusz

    2018-02-14

    We study topological properties of Bi$_{1-x}$Sb$_{x}$ bilayers in the (111) plane using entanglement measures. Electronic structures are investigated within multi-orbital tight-binding model and structural stability is confirmed through first-principles calculations. Topologically non-trivial nature of bismuth bilayer is proved by the presence of spectral flow in the entanglement spectrum. We consider topological phase transitions driven by a composition change x, an applied external electric field in Bi bilayer and strain in Sb bilayer. Composition- and strain-induced phase transitions reveal a finite discontinuity in the entanglement entropy. This quantity remains a continuous function of the electric field strength, but shows a finite discontinuity in the first derivative. We relate the difference in behavior of the entanglement entropy to the breaking of inversion symmetry in the last case. © 2018 IOP Publishing Ltd.

  7. Entanglement entropy and entanglement spectrum of Bi1-x Sb x (1 1 1) bilayers.

    PubMed

    Brzezińska, Marta; Bieniek, Maciej; Woźniak, Tomasz; Potasz, Paweł; Wójs, Arkadiusz

    2018-02-28

    We study topological properties of Bi 1-x Sb x bilayers in the (1 1 1) plane using entanglement measures. Electronic structures are investigated within multi-orbital tight-binding model and structural stability is confirmed through first-principles calculations. The topologically non-trivial nature of the bismuth bilayer is proved by the presence of spectral flow in the entanglement spectrum. We consider topological phase transitions driven by a composition change x, an applied external electric field in Bi bilayers and strain in Sb bilayers. Composition- and strain-induced phase transitions reveal a finite discontinuity in the entanglement entropy. This quantity remains a continuous function of the electric field strength, but shows a finite discontinuity in the first derivative. We relate the difference in behavior of the entanglement entropy to the breaking of inversion symmetry in the last case.

  8. Entanglement entropy and entanglement spectrum of Bi1-x Sb x (1 1 1) bilayers

    NASA Astrophysics Data System (ADS)

    Brzezińska, Marta; Bieniek, Maciej; Woźniak, Tomasz; Potasz, Paweł; Wójs, Arkadiusz

    2018-03-01

    We study topological properties of Bi1-x Sb x bilayers in the (1 1 1) plane using entanglement measures. Electronic structures are investigated within multi-orbital tight-binding model and structural stability is confirmed through first-principles calculations. The topologically non-trivial nature of the bismuth bilayer is proved by the presence of spectral flow in the entanglement spectrum. We consider topological phase transitions driven by a composition change x, an applied external electric field in Bi bilayers and strain in Sb bilayers. Composition- and strain-induced phase transitions reveal a finite discontinuity in the entanglement entropy. This quantity remains a continuous function of the electric field strength, but shows a finite discontinuity in the first derivative. We relate the difference in behavior of the entanglement entropy to the breaking of inversion symmetry in the last case.

  9. Counterfactual entanglement and nonlocal correlations in separable states

    NASA Astrophysics Data System (ADS)

    Cohen, Oliver

    1999-07-01

    It is shown that the outcomes of measurements on systems in separable mixed states can be partitioned, via subsequent measurements on a disentangled extraneous system, into subensembles that display the statistics of entangled states. This motivates the introduction of the concept of ``counterfactual'' entanglement, which can be associated with all separable mixed states, including those that are factorable. This type of entanglement gives rise to a kind of postselection-induced Bell inequality violation. The significance of counterfactual entanglement, and its physical implications, are assessed.

  10. Elastic instabilities in planar elongational flow of monodisperse polymer solutions

    PubMed Central

    Haward, Simon J.; McKinley, Gareth H.; Shen, Amy Q.

    2016-01-01

    We investigate purely elastic flow instabilities in the almost ideal planar stagnation point elongational flow field generated by a microfluidic optimized-shape cross-slot extensional rheometer (OSCER). We use time-resolved flow velocimetry and full-field birefringence microscopy to study the behavior of a series of well-characterized viscoelastic polymer solutions under conditions of low fluid inertia and over a wide range of imposed deformation rates. At low deformation rates the flow is steady and symmetric and appears Newtonian-like, while at high deformation rates we observe the onset of a flow asymmetry resembling the purely elastic instabilities reported in standard-shaped cross-slot devices. However, for intermediate rates, we observe a new type of elastic instability characterized by a lateral displacement and time-dependent motion of the stagnation point. At the onset of this new instability, we evaluate a well-known dimensionless criterion M that predicts the onset of elastic instabilities based on geometric and rheological scaling parameters. The criterion yields maximum values of M which compare well with critical values of M for the onset of elastic instabilities in viscometric torsional flows. We conclude that the same mechanism of tension acting along curved streamlines governs the onset of elastic instabilities in both extensional (irrotational) and torsional (rotational) viscoelastic flows. PMID:27616181

  11. Entanglement of Dirac fields in an expanding spacetime

    NASA Astrophysics Data System (ADS)

    Fuentes, Ivette; Mann, Robert B.; Martín-Martínez, Eduardo; Moradi, Shahpoor

    2010-08-01

    We study the entanglement generated between Dirac modes in a 2-dimensional conformally flat Robertson-Walker universe. We find radical qualitative differences between the bosonic and fermionic entanglement generated by the expansion. The particular way in which fermionic fields get entangled encodes more information about the underlying spacetime than the bosonic case, thereby allowing us to reconstruct the parameters of the history of the expansion. This highlights the importance of bosonic/fermionic statistics to account for relativistic effects on the entanglement of quantum fields.

  12. A quantitative witness for Greenberger-Horne-Zeilinger entanglement.

    PubMed

    Eltschka, Christopher; Siewert, Jens

    2012-01-01

    Along with the vast progress in experimental quantum technologies there is an increasing demand for the quantification of entanglement between three or more quantum systems. Theory still does not provide adequate tools for this purpose. The objective is, besides the quest for exact results, to develop operational methods that allow for efficient entanglement quantification. Here we put forward an analytical approach that serves both these goals. We provide a simple procedure to quantify Greenberger-Horne-Zeilinger-type multipartite entanglement in arbitrary three-qubit states. For two qubits this method is equivalent to Wootters' seminal result for the concurrence. It establishes a close link between entanglement quantification and entanglement detection by witnesses, and can be generalised both to higher dimensions and to more than three parties.

  13. A quantitative witness for Greenberger-Horne-Zeilinger entanglement

    PubMed Central

    Eltschka, Christopher; Siewert, Jens

    2012-01-01

    Along with the vast progress in experimental quantum technologies there is an increasing demand for the quantification of entanglement between three or more quantum systems. Theory still does not provide adequate tools for this purpose. The objective is, besides the quest for exact results, to develop operational methods that allow for efficient entanglement quantification. Here we put forward an analytical approach that serves both these goals. We provide a simple procedure to quantify Greenberger-Horne-Zeilinger–type multipartite entanglement in arbitrary three-qubit states. For two qubits this method is equivalent to Wootters' seminal result for the concurrence. It establishes a close link between entanglement quantification and entanglement detection by witnesses, and can be generalised both to higher dimensions and to more than three parties. PMID:23267431

  14. Measuring entanglement entropy in a quantum many-body system.

    PubMed

    Islam, Rajibul; Ma, Ruichao; Preiss, Philipp M; Tai, M Eric; Lukin, Alexander; Rispoli, Matthew; Greiner, Markus

    2015-12-03

    Entanglement is one of the most intriguing features of quantum mechanics. It describes non-local correlations between quantum objects, and is at the heart of quantum information sciences. Entanglement is now being studied in diverse fields ranging from condensed matter to quantum gravity. However, measuring entanglement remains a challenge. This is especially so in systems of interacting delocalized particles, for which a direct experimental measurement of spatial entanglement has been elusive. Here, we measure entanglement in such a system of itinerant particles using quantum interference of many-body twins. Making use of our single-site-resolved control of ultracold bosonic atoms in optical lattices, we prepare two identical copies of a many-body state and interfere them. This enables us to directly measure quantum purity, Rényi entanglement entropy, and mutual information. These experiments pave the way for using entanglement to characterize quantum phases and dynamics of strongly correlated many-body systems.

  15. Deterministic entanglement generation from driving through quantum phase transitions.

    PubMed

    Luo, Xin-Yu; Zou, Yi-Quan; Wu, Ling-Na; Liu, Qi; Han, Ming-Fei; Tey, Meng Khoon; You, Li

    2017-02-10

    Many-body entanglement is often created through the system evolution, aided by nonlinear interactions between the constituting particles. These very dynamics, however, can also lead to fluctuations and degradation of the entanglement if the interactions cannot be controlled. Here, we demonstrate near-deterministic generation of an entangled twin-Fock condensate of ~11,000 atoms by driving a arubidium-87 Bose-Einstein condensate undergoing spin mixing through two consecutive quantum phase transitions (QPTs). We directly observe number squeezing of 10.7 ± 0.6 decibels and normalized collective spin length of 0.99 ± 0.01. Together, these observations allow us to infer an entanglement-enhanced phase sensitivity of ~6 decibels beyond the standard quantum limit and an entanglement breadth of ~910 atoms. Our work highlights the power of generating large-scale useful entanglement by taking advantage of the different entanglement landscapes separated by QPTs. Copyright © 2017, American Association for the Advancement of Science.

  16. Entanglement of the vacuum between left, right, future, and past: The origin of entanglement-induced quantum radiation

    NASA Astrophysics Data System (ADS)

    Higuchi, Atsushi; Iso, Satoshi; Ueda, Kazushige; Yamamoto, Kazuhiro

    2017-10-01

    The Minkowski vacuum state is expressed as an entangled state between the left and right Rindler wedges when it is constructed on the Rindler vacuum. In this paper, we further examine the entanglement structure and extend the expression to the future (expanding) and past (shrinking) Kasner spacetimes. This clarifies the origin of the quantum radiation produced by an Unruh-DeWitt detector in uniformly accelerated motion in the four-dimensional Minkowski spacetime. We also investigate the two-dimensional massless case where the quantum radiation vanishes but the same entanglement structure exists.

  17. Monogamy relation of multi-qubit systems for squared Tsallis-q entanglement

    PubMed Central

    Yuan, Guang-Ming; Song, Wei; Yang, Ming; Li, Da-Chuang; Zhao, Jun-Long; Cao, Zhuo-Liang

    2016-01-01

    Tsallis-q entanglement is a bipartite entanglement measure which is the generalization of entanglement of formation for q tending to 1. We first expand the range of q for the analytic formula of Tsallis-q entanglement. For , we prove the monogamy relation in terms of the squared Tsallis-q entanglement for an arbitrary multi-qubit systems. It is shown that the multipartite entanglement indicator based on squared Tsallis-q entanglement still works well even when the indicator based on the squared concurrence loses its efficacy. We also show that the μ-th power of Tsallis-q entanglement satisfies the monogamy or polygamy inequalities for any three-qubit state. PMID:27346605

  18. Monogamy relation of multi-qubit systems for squared Tsallis-q entanglement

    NASA Astrophysics Data System (ADS)

    Yuan, Guang-Ming; Song, Wei; Yang, Ming; Li, Da-Chuang; Zhao, Jun-Long; Cao, Zhuo-Liang

    2016-06-01

    Tsallis-q entanglement is a bipartite entanglement measure which is the generalization of entanglement of formation for q tending to 1. We first expand the range of q for the analytic formula of Tsallis-q entanglement. For , we prove the monogamy relation in terms of the squared Tsallis-q entanglement for an arbitrary multi-qubit systems. It is shown that the multipartite entanglement indicator based on squared Tsallis-q entanglement still works well even when the indicator based on the squared concurrence loses its efficacy. We also show that the μ-th power of Tsallis-q entanglement satisfies the monogamy or polygamy inequalities for any three-qubit state.

  19. Monogamy relation of multi-qubit systems for squared Tsallis-q entanglement.

    PubMed

    Yuan, Guang-Ming; Song, Wei; Yang, Ming; Li, Da-Chuang; Zhao, Jun-Long; Cao, Zhuo-Liang

    2016-06-27

    Tsallis-q entanglement is a bipartite entanglement measure which is the generalization of entanglement of formation for q tending to 1. We first expand the range of q for the analytic formula of Tsallis-q entanglement. For , we prove the monogamy relation in terms of the squared Tsallis-q entanglement for an arbitrary multi-qubit systems. It is shown that the multipartite entanglement indicator based on squared Tsallis-q entanglement still works well even when the indicator based on the squared concurrence loses its efficacy. We also show that the μ-th power of Tsallis-q entanglement satisfies the monogamy or polygamy inequalities for any three-qubit state.

  20. Convex Optimization over Classes of Multiparticle Entanglement

    NASA Astrophysics Data System (ADS)

    Shang, Jiangwei; Gühne, Otfried

    2018-02-01

    A well-known strategy to characterize multiparticle entanglement utilizes the notion of stochastic local operations and classical communication (SLOCC), but characterizing the resulting entanglement classes is difficult. Given a multiparticle quantum state, we first show that Gilbert's algorithm can be adapted to prove separability or membership in a certain entanglement class. We then present two algorithms for convex optimization over SLOCC classes. The first algorithm uses a simple gradient approach, while the other one employs the accelerated projected-gradient method. For demonstration, the algorithms are applied to the likelihood-ratio test using experimental data on bound entanglement of a noisy four-photon Smolin state [Phys. Rev. Lett. 105, 130501 (2010), 10.1103/PhysRevLett.105.130501].

  1. Modeling nonlinear dynamic properties of dielectric elastomers with various crosslinks, entanglements, and finite deformations

    NASA Astrophysics Data System (ADS)

    Zhang, Junshi; Chen, Hualing; Li, Dichen

    2018-02-01

    Subject to an AC voltage, dielectric elastomers (DEs) behave as a nonlinear vibration, implying potential applications as soft dynamical actuators and robots. In this article, by utilizing the Lagrange's equation, a theoretical model is deduced to investigate the dynamic performances of DEs by considering three internal properties, including crosslinks, entanglements, and finite deformations of polymer chains. Numerical calculations are employed to describe the dynamic response, stability, periodicity, and resonance properties of DEs. It is observed that the frequency and nonlinearity of dynamic response are tuned by the internal properties of DEs. Phase paths and Poincaré maps are utilized to detect the stability and periodicity of the nonlinear vibrations of DEs, which demonstrate that transitions between aperiodic and quasi-periodic vibrations may occur when the three internal properties vary. The resonance of DEs involving the three internal properties of polymer chains is also investigated.

  2. Schemes generating entangled states and entanglement swapping between photons and three-level atoms inside optical cavities for quantum communication

    NASA Astrophysics Data System (ADS)

    Heo, Jino; Kang, Min-Sung; Hong, Chang-Ho; Yang, Hyeon; Choi, Seong-Gon

    2017-01-01

    We propose quantum information processing schemes based on cavity quantum electrodynamics (QED) for quantum communication. First, to generate entangled states (Bell and Greenberger-Horne-Zeilinger [GHZ] states) between flying photons and three-level atoms inside optical cavities, we utilize a controlled phase flip (CPF) gate that can be implemented via cavity QED). Subsequently, we present an entanglement swapping scheme that can be realized using single-qubit measurements and CPF gates via optical cavities. These schemes can be directly applied to construct an entanglement channel for a communication system between two users. Consequently, it is possible for the trust center, having quantum nodes, to accomplish the linked channel (entanglement channel) between the two separate long-distance users via the distribution of Bell states and entanglement swapping. Furthermore, in our schemes, the main physical component is the CPF gate between the photons and the three-level atoms in cavity QED, which is feasible in practice. Thus, our schemes can be experimentally realized with current technology.

  3. Molecular Strategies for Morphology Control in Semiconducting Polymers for Optoelectronics.

    PubMed

    Rahmanudin, Aiman; Sivula, Kevin

    2017-06-28

    Solution-processable semiconducting polymers have been explored over the last decades for their potential applications in inexpensively fabricated transistors, diodes and photovoltaic cells. However, a remaining challenge in the field is to control the solid-state self-assembly of polymer chains in thin films devices, as the aspects of (semi)crystallinity, grain boundaries, and chain entanglement can drastically affect intra-and inter-molecular charge transport/transfer and thus device performance. In this short review we examine how the aspects of molecular weight and chain rigidity affect solid-state self-assembly and highlight molecular engineering strategies to tune thin film morphology. Side chain engineering, flexibly linking conjugation segments, and block co-polymer strategies are specifically discussed with respect to their effect on field effect charge carrier mobility in transistors and power conversion efficiency in solar cells. Example systems are taken from recent literature including work from our laboratories to illustrate the potential of molecular engineering semiconducting polymers.

  4. Remarks on entanglement entropy in string theory

    NASA Astrophysics Data System (ADS)

    Balasubramanian, Vijay; Parrikar, Onkar

    2018-03-01

    Entanglement entropy for spatial subregions is difficult to define in string theory because of the extended nature of strings. Here we propose a definition for bosonic open strings using the framework of string field theory. The key difference (compared to ordinary quantum field theory) is that the subregion is chosen inside a Cauchy surface in the "space of open string configurations." We first present a simple calculation of this entanglement entropy in free light-cone string field theory, ignoring subtleties related to the factorization of the Hilbert space. We reproduce the answer expected from an effective field theory point of view, namely a sum over the one-loop entanglement entropies corresponding to all the particle-excitations of the string, and further show that the full string theory regulates ultraviolet divergences in the entanglement entropy. We then revisit the question of factorization of the Hilbert space by analyzing the covariant phase-space associated with a subregion in Witten's covariant string field theory. We show that the pure gauge (i.e., BRST exact) modes in the string field become dynamical at the entanglement cut. Thus, a proper definition of the entropy must involve an extended Hilbert space, with new stringy edge modes localized at the entanglement cut.

  5. Monodisperse Magneto-Fluorescent Bifunctional Nanoprobes for Bioapplications

    NASA Astrophysics Data System (ADS)

    Zhang, Hongwang; Huang, Heng; Pralle, Arnd; Zeng, Hao

    2013-03-01

    We present the work on the synthesis of dye-doped monodisperse Fe/SiO2 core/shell nanoparticles as bifunctional probes for bioapplications. Magnetic nanoparticles (NP) have been widely studied as nano-probes for bio-imaging, sensing as well as for cancer therapy. Among all the NPs, Fe NPs have been the focus because they have very high magnetization. However, Fe NPs are usually not stable in ambient due to the fast surface oxidation of the NPs. On the other hand, dye molecules have long been used as probes for bio-imaging. But they are sensitive to environmental conditions. It requires passivation for both so that they can be stable for applications. In this work, monodisperse Fe NPs with sizes ranging from 13-20 nm have been synthesized through the chemical thermal-decomposition in a solution. Silica shells were then coated on the Fe NPs by a two-phase oil-in-water method. Dye molecules were first bonded to a silica precursor and then encapsulated into the silica shell during the coating process. The silica shells protect both the Fe NPs and dye molecules, which makes them as robust probes. The dye doped Fe/SiO2 core/shell NPs remain both highly magnetic and highly fluorescent. The stable dye doped Fe/SiO2NPs have been used as a dual functional probe for both magnetic heating and local nanoscale temperature sending, and their performance will be reported. Research supported by NSF DMR 0547036, DMR1104994.

  6. Design and synthesis of digitally encoded polymers that can be decoded and erased

    NASA Astrophysics Data System (ADS)

    Roy, Raj Kumar; Meszynska, Anna; Laure, Chloé; Charles, Laurence; Verchin, Claire; Lutz, Jean-François

    2015-05-01

    Biopolymers such as DNA store information in their chains using controlled sequences of monomers. Here we describe a non-natural information-containing macromolecule that can store and retrieve digital information. Monodisperse sequence-encoded poly(alkoxyamine amide)s were synthesized using an iterative strategy employing two chemoselective steps: the reaction of a primary amine with an acid anhydride and the radical coupling of a carbon-centred radical with a nitroxide. A binary code was implemented in the polymer chains using three monomers: one nitroxide spacer and two interchangeable anhydrides defined as 0-bit and 1-bit. This methodology allows encryption of any desired sequence in the chains. Moreover, the formed sequences are easy to decode using tandem mass spectrometry. Indeed, these polymers follow predictable fragmentation pathways that can be easily deciphered. Moreover, poly(alkoxyamine amide)s are thermolabile. Thus, the digital information encrypted in the chains can be erased by heating the polymers in the solid state or in solution.

  7. Design and synthesis of digitally encoded polymers that can be decoded and erased.

    PubMed

    Roy, Raj Kumar; Meszynska, Anna; Laure, Chloé; Charles, Laurence; Verchin, Claire; Lutz, Jean-François

    2015-05-26

    Biopolymers such as DNA store information in their chains using controlled sequences of monomers. Here we describe a non-natural information-containing macromolecule that can store and retrieve digital information. Monodisperse sequence-encoded poly(alkoxyamine amide)s were synthesized using an iterative strategy employing two chemoselective steps: the reaction of a primary amine with an acid anhydride and the radical coupling of a carbon-centred radical with a nitroxide. A binary code was implemented in the polymer chains using three monomers: one nitroxide spacer and two interchangeable anhydrides defined as 0-bit and 1-bit. This methodology allows encryption of any desired sequence in the chains. Moreover, the formed sequences are easy to decode using tandem mass spectrometry. Indeed, these polymers follow predictable fragmentation pathways that can be easily deciphered. Moreover, poly(alkoxyamine amide)s are thermolabile. Thus, the digital information encrypted in the chains can be erased by heating the polymers in the solid state or in solution.

  8. Entanglement preservation by continuous distillation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mundarain, D.; Orszag, M.

    2009-05-15

    We study the two-qubit entanglement preservation for a system in the presence of independent thermal baths. We use a combination of filtering operations and distillation protocols as a series of frequent measurements on the system. It is shown that a small fraction of the total amount of available copies of the system preserves or even improves its initial entanglement during the evolution.

  9. On-chip entangled photon source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Soh, Daniel B. S.; Bisson, Scott E.

    Various technologies pertaining to an on-chip entangled photon source are described herein. A light source is used to pump two resonator cavities that are resonant at two different respective wavelengths and two different respective polarizations. The resonator cavities are coupled to a four-wave mixing cavity that receives the light at the two wavelengths and outputs polarization-entangled photons.

  10. Delayed-Choice Experiments and the Metaphysics of Entanglement

    NASA Astrophysics Data System (ADS)

    Egg, Matthias

    2013-09-01

    Delayed-choice experiments in quantum mechanics are often taken to undermine a realistic interpretation of the quantum state. More specifically, Healey has recently argued that the phenomenon of delayed-choice entanglement swapping is incompatible with the view that entanglement is a physical relation between quantum systems. This paper argues against these claims. It first reviews two paradigmatic delayed-choice experiments and analyzes their metaphysical implications. It then applies the results of this analysis to the case of entanglement swapping, showing that such experiments pose no threat to realism about entanglement.

  11. Efficient Measurement of Multiparticle Entanglement with Embedding Quantum Simulator.

    PubMed

    Chen, Ming-Cheng; Wu, Dian; Su, Zu-En; Cai, Xin-Dong; Wang, Xi-Lin; Yang, Tao; Li, Li; Liu, Nai-Le; Lu, Chao-Yang; Pan, Jian-Wei

    2016-02-19

    The quantum measurement of entanglement is a demanding task in the field of quantum information. Here, we report the direct and scalable measurement of multiparticle entanglement with embedding photonic quantum simulators. In this embedding framework [R. Di Candia et al. Phys. Rev. Lett. 111, 240502 (2013)], the N-qubit entanglement, which does not associate with a physical observable directly, can be efficiently measured with only two (for even N) and six (for odd N) local measurement settings. Our experiment uses multiphoton quantum simulators to mimic dynamical concurrence and three-tangle entangled systems and to track their entanglement evolutions.

  12. Thickness Dependence of Failure in Ultra-thin Glassy Polymer Films

    NASA Astrophysics Data System (ADS)

    Bay, Reed; Shimomura, Shinichiro; Liu, Yujie; Ilton, Mark; Crosby, Alfred

    The physical properties of polymer thin films change as the polymer chains become confined. Similar changes in mechanical properties have been observed, though these critical properties have only been explored a limited extent and with indirect methods. Here, we use a recently developed method to measure the complete uniaxial stress strain relationship of polymer thin films of polystyrene films (PS, Mw =130kg/mol, 490kg/mol, and 853kg/mol) as a function of thickness (20 nm-220nm). In this method, we hold a `dog-bone' shaped film on water between a flexible cantilever and a movable rigid boundary, measuring force-displacement from the cantilever deflection. From our measurements, we find that the modulus decreases as the PS chains become confined. The PS thin films exhibit ``ideal perfectly plastic'' behavior due to crazing, which differs from the typical brittle response of bulk PS. The draw stress due to crazing decreases with film thickness. These results provide new fundamental insight into how polymer behavior is altered due to structural changes in the entangled polymer network upon confinement. NSF DMR 1608614.

  13. Lower and upper bounds for entanglement of Rényi-α entropy.

    PubMed

    Song, Wei; Chen, Lin; Cao, Zhuo-Liang

    2016-12-23

    Entanglement Rényi-α entropy is an entanglement measure. It reduces to the standard entanglement of formation when α tends to 1. We derive analytical lower and upper bounds for the entanglement Rényi-α entropy of arbitrary dimensional bipartite quantum systems. We also demonstrate the application our bound for some concrete examples. Moreover, we establish the relation between entanglement Rényi-α entropy and some other entanglement measures.

  14. Quantum Entanglement Molecular Absorption Spectrum Simulator

    NASA Technical Reports Server (NTRS)

    Nguyen, Quang-Viet; Kojima, Jun

    2006-01-01

    Quantum Entanglement Molecular Absorption Spectrum Simulator (QE-MASS) is a computer program for simulating two photon molecular-absorption spectroscopy using quantum-entangled photons. More specifically, QE-MASS simulates the molecular absorption of two quantum-entangled photons generated by the spontaneous parametric down-conversion (SPDC) of a fixed-frequency photon from a laser. The two-photon absorption process is modeled via a combination of rovibrational and electronic single-photon transitions, using a wave-function formalism. A two-photon absorption cross section as a function of the entanglement delay time between the two photons is computed, then subjected to a fast Fourier transform to produce an energy spectrum. The program then detects peaks in the Fourier spectrum and displays the energy levels of very short-lived intermediate quantum states (or virtual states) of the molecule. Such virtual states were only previously accessible using ultra-fast (femtosecond) laser systems. However, with the use of a single-frequency continuous wave laser to produce SPDC photons, and QEMASS program, these short-lived molecular states can now be studied using much simpler laser systems. QE-MASS can also show the dependence of the Fourier spectrum on the tuning range of the entanglement time of any externally introduced optical-path delay time. QE-MASS can be extended to any molecule for which an appropriate spectroscopic database is available. It is a means of performing an a priori parametric analysis of entangled photon spectroscopy for development and implementation of emerging quantum-spectroscopic sensing techniques. QE-MASS is currently implemented using the Mathcad software package.

  15. Quantum entanglement in photoactive prebiotic systems.

    PubMed

    Tamulis, Arvydas; Grigalavicius, Mantas

    2014-06-01

    This paper contains the review of quantum entanglement investigations in living systems, and in the quantum mechanically modelled photoactive prebiotic kernel systems. We define our modelled self-assembled supramolecular photoactive centres, composed of one or more sensitizer molecules, precursors of fatty acids and a number of water molecules, as a photoactive prebiotic kernel systems. We propose that life first emerged in the form of such minimal photoactive prebiotic kernel systems and later in the process of evolution these photoactive prebiotic kernel systems would have produced fatty acids and covered themselves with fatty acid envelopes to become the minimal cells of the Fatty Acid World. Specifically, we model self-assembling of photoactive prebiotic systems with observed quantum entanglement phenomena. We address the idea that quantum entanglement was important in the first stages of origins of life and evolution of the biospheres because simultaneously excite two prebiotic kernels in the system by appearance of two additional quantum entangled excited states, leading to faster growth and self-replication of minimal living cells. The quantum mechanically modelled possibility of synthesizing artificial self-reproducing quantum entangled prebiotic kernel systems and minimal cells also impacts the possibility of the most probable path of emergence of protocells on the Earth or elsewhere. We also examine the quantum entangled logic gates discovered in the modelled systems composed of two prebiotic kernels. Such logic gates may have application in the destruction of cancer cells or becoming building blocks of new forms of artificial cells including magnetically active ones.

  16. Observation of entanglement witnesses for orbital angular momentum states

    NASA Astrophysics Data System (ADS)

    Agnew, M.; Leach, J.; Boyd, R. W.

    2012-06-01

    Entanglement witnesses provide an efficient means of determining the level of entanglement of a system using the minimum number of measurements. Here we demonstrate the observation of two-dimensional entanglement witnesses in the high-dimensional basis of orbital angular momentum (OAM). In this case, the number of potentially entangled subspaces scales as d(d - 1)/2, where d is the dimension of the space. The choice of OAM as a basis is relevant as each subspace is not necessarily maximally entangled, thus providing the necessary state for certain tests of nonlocality. The expectation value of the witness gives an estimate of the state of each two-dimensional subspace belonging to the d-dimensional Hilbert space. These measurements demonstrate the degree of entanglement and therefore the suitability of the resulting subspaces for quantum information applications.

  17. Determination of continuous variable entanglement by purity measurements.

    PubMed

    Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio

    2004-02-27

    We classify the entanglement of two-mode Gaussian states according to their degree of total and partial mixedness. We derive exact bounds that determine maximally and minimally entangled states for fixed global and marginal purities. This characterization allows for an experimentally reliable estimate of continuous variable entanglement based on measurements of purity.

  18. Detection-enhanced steady state entanglement with ions.

    PubMed

    Bentley, C D B; Carvalho, A R R; Kielpinski, D; Hope, J J

    2014-07-25

    Driven dissipative steady state entanglement schemes take advantage of coupling to the environment to robustly prepare highly entangled states. We present a scheme for two trapped ions to generate a maximally entangled steady state with fidelity above 0.99, appropriate for use in quantum protocols. Furthermore, we extend the scheme by introducing detection of our dissipation process, significantly enhancing the fidelity. Our scheme is robust to anomalous heating and requires no sympathetic cooling.

  19. Transfer of entangled state, entanglement swapping and quantum information processing via the Rydberg blockade

    NASA Astrophysics Data System (ADS)

    Deng, Li; Chen, Ai-Xi; Zhang, Jian-Song

    2011-11-01

    We provide a scheme with which the transfer of the entangled state and the entanglement swapping can be realized in a system of neutral atoms via the Rydberg blockade. Our idea can be extended to teleport an unknown atomic state. According to the latest theoretical research of the Rydberg excitation and experimental reports of the Rydberg blockade effect in quantum information processing, we discuss the experimental feasibility of our scheme.

  20. Design framework for entanglement-distribution switching networks

    NASA Astrophysics Data System (ADS)

    Drost, Robert J.; Brodsky, Michael

    2016-09-01

    The distribution of quantum entanglement appears to be an important component of applications of quantum communications and networks. The ability to centralize the sourcing of entanglement in a quantum network can provide for improved efficiency and enable a variety of network structures. A necessary feature of an entanglement-sourcing network node comprising several sources of entangled photons is the ability to reconfigurably route the generated pairs of photons to network neighbors depending on the desired entanglement sharing of the network users at a given time. One approach to such routing is the use of a photonic switching network. The requirements for an entanglement distribution switching network are less restrictive than for typical conventional applications, leading to design freedom that can be leveraged to optimize additional criteria. In this paper, we present a mathematical framework defining the requirements of an entanglement-distribution switching network. We then consider the design of such a switching network using a number of 2 × 2 crossbar switches, addressing the interconnection of these switches and efficient routing algorithms. In particular, we define a worst-case loss metric and consider 6 × 6, 8 × 8, and 10 × 10 network designs that optimize both this metric and the number of crossbar switches composing the network. We pay particular attention to the 10 × 10 network, detailing novel results proving the optimality of the proposed design. These optimized network designs have great potential for use in practical quantum networks, thus advancing the concept of quantum networks toward reality.