Loss-resilient photonic entanglement swapping using optical hybrid states
NASA Astrophysics Data System (ADS)
Lim, Youngrong; Joo, Jaewoo; Spiller, Timothy P.; Jeong, Hyunseok
2016-12-01
We propose a scheme of loss-resilient entanglement swapping between two distant parties via an imperfect optical channel. In this scheme, two copies of hybrid entangled states are prepared and the continuous-variable parts propagate through lossy media. In order to perform successful entanglement swapping, several different measurement schemes are considered for the continuous-variable parts such as single-photon detection for ideal cases and a homodyne detection for practical cases. We find that the entanglement swapping using hybrid states with small amplitudes offers larger entanglement than the discrete-variable entanglement swapping in the presence of large losses. Remarkably, this hybrid scheme still offers excellent robustness of entanglement to the detection inefficiency. Thus, the proposed scheme could be used for the practical quantum key distribution in hybrid optical states under photon losses.
Deterministic generation of a cluster state of entangled photons
NASA Astrophysics Data System (ADS)
Schwartz, I.; Cogan, D.; Schmidgall, E. R.; Don, Y.; Gantz, L.; Kenneth, O.; Lindner, N. H.; Gershoni, D.
2016-10-01
Photonic cluster states are a resource for quantum computation based solely on single-photon measurements. We use semiconductor quantum dots to deterministically generate long strings of polarization-entangled photons in a cluster state by periodic timed excitation of a precessing matter qubit. In each period, an entangled photon is added to the cluster state formed by the matter qubit and the previously emitted photons. In our prototype device, the qubit is the confined dark exciton, and it produces strings of hundreds of photons in which the entanglement persists over five sequential photons. The measured process map characterizing the device has a fidelity of 0.81 with that of an ideal device. Further feasible improvements of this device may reduce the resources needed for optical quantum information processing.
Compensated Crystal Assemblies for Type-II Entangled Photon Generation in Quantum Cluster States
2010-03-01
multi-crystal sources, such as cluster states, entanglement swapping, and teleportation . 15. SUBJECT TERMS quantum , entangled photons, joint...entanglement swapping, and teleportation . Key Words: quantum , entangled photons, joint spectral function, spontaneous parametric downconversion 2...DATES COVERED (From - To) OCT 2009 – SEP 2011 4. TITLE AND SUBTITLE COMPENSATED CRYSTAL ASSEMBLIES FOR TYPE-II ENTANGLED PHOTO GENERATION IN QUANTUM
NASA Astrophysics Data System (ADS)
A, Karimi; M, K. Tavassoly
2016-04-01
In this paper, after a brief review on the entangled squeezed states, we produce a new class of the continuous-variable-type entangled states, namely, deformed photon-added entangled squeezed states. These states are obtained via the iterated action of the f-deformed creation operator A = f (n)a † on the entangled squeezed states. In the continuation, by studying the criteria such as the degree of entanglement, quantum polarization as well as sub-Poissonian photon statistics, the two-mode correlation function, one-mode and two-mode squeezing, we investigate the nonclassical behaviors of the introduced states in detail by choosing a particular f-deformation function. It is revealed that the above-mentioned physical properties can be affected and so may be tuned by justifying the excitation number, after choosing a nonlinearity function. Finally, to generate the introduced states, we propose a theoretical scheme using the nonlinear Jaynes-Cummings model.
Experimental perfect state transfer of an entangled photonic qubit
Chapman, Robert J.; Santandrea, Matteo; Huang, Zixin; Corrielli, Giacomo; Crespi, Andrea; Yung, Man-Hong; Osellame, Roberto; Peruzzo, Alberto
2016-01-01
The transfer of data is a fundamental task in information systems. Microprocessors contain dedicated data buses that transmit bits across different locations and implement sophisticated routing protocols. Transferring quantum information with high fidelity is a challenging task, due to the intrinsic fragility of quantum states. Here we report on the implementation of the perfect state transfer protocol applied to a photonic qubit entangled with another qubit at a different location. On a single device we perform three routing procedures on entangled states, preserving the encoded quantum state with an average fidelity of 97.1%, measuring in the coincidence basis. Our protocol extends the regular perfect state transfer by maintaining quantum information encoded in the polarization state of the photonic qubit. Our results demonstrate the key principle of perfect state transfer, opening a route towards data transfer for quantum computing systems. PMID:27088483
Entangled mixed-state generation by twin-photon scattering
Puentes, G.; Aiello, A.; Woerdman, J. P.; Voigt, D.
2007-03-15
We report experimental results on mixed-state generation by multiple scattering of polarization-entangled photon pairs created from parametric down-conversion. By using a large variety of scattering optical systems we have experimentally obtained entangled mixed states that lie upon and below the Werner curve in the linear entropy-tangle plane. We have also introduced a simple phenomenological model built on the analogy between classical polarization optics and quantum maps. Theoretical predictions from such a model are in full agreement with our experimental findings.
Photon-number entangled states generated in Kerr media with optical parametric pumping
Kowalewska-Kudlaszyk, A.; Leonski, W.; Perina, Jan Jr.
2011-05-15
Two nonlinear Kerr oscillators mutually coupled by parametric pumping are studied as a source of states entangled in photon numbers. Temporal evolution of entanglement quantified by negativity shows the effects of sudden death and birth of entanglement. Entanglement is preserved even in asymptotic states under certain conditions. The role of reservoirs at finite temperature in entanglement evolution is elucidated. Relation between generation of entangled states and violation of Cauchy-Schwartz inequality for oscillator intensities is found.
A Multipli-entangled Photon Source for Cluster State Generation
2012-04-01
interferometric stability for any associated feed-forward methods required in photon-based quantum logic circuitry. 15. SUBJECT TERMS Quantum , entangled photons...required in photon-based quantum logic circuitry. Key Words: quantum , entangled photons, spontaneous parametric down-conversion 2. INTRODUCTION Photon...based quantum bits (qubits) continue to serve as one of the leading technologies for the demonstration of quantum computation. This is in part due to
Entangled coherent states versus entangled photon pairs for practical quantum-information processing
Park, Kimin; Jeong, Hyunseok
2010-12-15
We compare effects of decoherence and detection inefficiency on entangled coherent states (ECSs) and entangled photon pairs (EPPs), both of which are known to be particularly useful for quantum-information processing (QIP). When decoherence effects caused by photon losses are heavy, the ECSs outperform the EPPs as quantum channels for teleportation both in fidelities and in success probabilities. On the other hand, when inefficient detectors are used, the teleportation scheme using the ECSs suffers undetected errors that result in the degradation of fidelity, while this is not the case for the teleportation scheme using the EPPs. Our study reveals the merits and demerits of the two types of entangled states in realizing practical QIP under realistic conditions.
NASA Astrophysics Data System (ADS)
Wang, Zhen; Li, Heng-Mei; Yuan, Hong-Chun
2016-10-01
We theoretically introduce a kind of non-Gaussian entangled states, i.e., photon-subtracted two-mode squeezed coherent states (PSTMSCS), by successively subtracting photons from each mode of the two-mode squeezed coherent states. The normalization factor which is related to bivariate Hermite polynomials is obtained by virtue of the two-mode squeezing operator in entangled-states representation. The sub-Poissonian photon statistics, antibunching effects, and partial negative Wigner function, respectively, are observed numerically, which fully reflect the nonclassicality of the resultant states. Finally, employing the SV criteria and the EPR correlation, respectively, the entangled property of PSTMSCS is analyzed. It is shown that the photon subtraction operation can effectively enhance the inseparability between the two modes.
Generating Entangled Spin States for Quantum Metrology by Single-Photon Detection
NASA Astrophysics Data System (ADS)
McConnell, Robert; Zhang, Hao; Cuk, Senka; Hu, Jiazhong; Schleier-Smith, Monika; Vuletic, Vladan
2014-05-01
We present a proposal and latest experimental results on a probabilistic but heralded scheme to generate non-Gaussian entangled states of collective spin in large atomic ensembles by means of single-photon detection. One photon announces the preparation of a Dicke state, while two or more photons announce Schrödinger cat states. The entangled states thus produced allow interferometry below the Standard Quantum Limit (SQL). The method produces nearly pure states even for finite photon detection efficiency and weak atom-photon coupling. The entanglement generation can be made quasi-deterministic by means of repeated trial and feedback.
Photonic Four-qubit Entangled Decoherence-free States Assisted by Cavity-QED System
NASA Astrophysics Data System (ADS)
Chen, Chao
2016-11-01
We propose an efficient preparation of photonic four-qubit entangled decoherence-free states assisted by the cavity-QED system. By using the optical selection rule derived by a single electron charged self-assembled GaAs/InAs quantum dot in a micropillar resonator, two photons are used to generate four-qubit entangled decoherence-free states. Compared with previous entanglement based photonic protocols, the present one requires single-photon resources and is deterministic. These states may be applied to long-distance communications because only two photons are transmitted.
Protecting single-photon entangled state from photon loss with noiseless linear amplification
NASA Astrophysics Data System (ADS)
Zhang, ShengLi; Yang, Song; Zou, XuBo; Shi, BaoSen; Guo, GuangCan
2012-09-01
Single-photon entanglement provides a valuable resource for quantum communication and quantum repeaters. However, single-photon entanglement is sensitive to photon loss. In this Brief Report, we show that a noiseless linear amplifier is an efficient tool for protecting single-photon entanglement. The performance of ideal noiseless linear amplification as well as the nonideal amplification with on-off detectors and heralded single photons are also investigated.
Entanglement of Photon-Added Nonlinear Coherent States Via a Beam Splitter
NASA Astrophysics Data System (ADS)
Honarasa, Gholamreza; Bagheri, Alireza; Gharaati, Abdolrasoul
2016-10-01
Nonlinear coherent states, photon-added coherent states and photon-added nonlinear coherent states are three of the important generalizations of standard coherent states. In this article, a photon-added nonlinear coherent state and a vacuum state are injected on two input modes of a beam splitter and the entanglement of the output state is investigated using linear entropy as the measure. Then, the impact of nonclassicality of the photon-added nonlinear coherent state on entanglement of the output state is studied.
Generation of four-photon polarization entangled states with cross-Kerr nonlinearity
NASA Astrophysics Data System (ADS)
Wang, Meiyu; Yan, Fengli
2015-05-01
We show how to prepare three different types of four-photon polarization entangled states among four modes. The scheme only use cross-Kerr medium, polarization beam splitters and X homodyne measurements on coherent light fields, which can be efficiently implemented in quantum optical laboratories. GHZ states and symmetric Dick states can be generated in deterministic way based on the scheme. With the possible availability of suitable strong Kerr nonlinearity, another type of entangled state called genuine four-photon entangled state can be realized as well.
Practical single-photon-assisted remote state preparation with non-maximally entanglement
NASA Astrophysics Data System (ADS)
Wang, Dong; Huang, Ai-Jun; Sun, Wen-Yang; Shi, Jia-Dong; Ye, Liu
2016-08-01
Remote state preparation (RSP) and joint remote state preparation (JRSP) protocols for single-photon states are investigated via linear optical elements with partially entangled states. In our scheme, by choosing two-mode instances from a polarizing beam splitter, only the sender in the communication protocol needs to prepare an ancillary single-photon and operate the entanglement preparation process in order to retrieve an arbitrary single-photon state from a photon pair in partially entangled state. In the case of JRSP, i.e., a canonical model of RSP with multi-party, we consider that the information of the desired state is split into many subsets and in prior maintained by spatially separate parties. Specifically, with the assistance of a single-photon state and a three-photon entangled state, it turns out that an arbitrary single-photon state can be jointly and remotely prepared with certain probability, which is characterized by the coefficients of both the employed entangled state and the target state. Remarkably, our protocol is readily to extend to the case for RSP and JRSP of mixed states with the all optical means. Therefore, our protocol is promising for communicating among optics-based multi-node quantum networks.
Podoshvedov, S. A.
2008-03-15
We study a teleportation protocol of an unknown macroscopic qubit by means of a quantum channel composed of the displaced vacuum and single-photon states. The scheme is based on linear optical devices such as a beam splitter and photon number resolving detectors. A method based on conditional measurement is used to generate both the macroscopic qubit and entangled state composed from displaced vacuum and single-photon states. We show that such a qubit has both macroscopic and microscopic properties. In particular, we investigate a quantum teleportation protocol from a macroscopic object to a microscopic state.
Distillation of mixed-state continuous-variable entanglement by photon subtraction
Zhang Shengli; Loock, Peter van
2010-12-15
We present a detailed theoretical analysis for the distillation of one copy of a mixed two-mode continuous-variable entangled state using beam splitters and coherent photon-detection techniques, including conventional on-off detectors and photon-number-resolving detectors. The initial Gaussian mixed-entangled states are generated by transmitting a two-mode squeezed state through a lossy bosonic channel, corresponding to the primary source of errors in current approaches to optical quantum communication. We provide explicit formulas to calculate the entanglement in terms of logarithmic negativity before and after distillation, including losses in the channel and the photon detection, and show that one-copy distillation is still possible even for losses near the typical fiber channel attenuation length. A lower bound for the transmission coefficient of the photon-subtraction beam splitter is derived, representing the minimal value that still allows to enhance the entanglement.
Carving Complex Many-Atom Entangled States by Single-Photon Detection
NASA Astrophysics Data System (ADS)
Chen, Wenlan; Hu, Jiazhong; Duan, Yiheng; Braverman, Boris; Zhang, Hao; Vuletic, Vladan
2016-05-01
We propose a versatile and efficient method to generate a broad class of complex entangled states of many atoms via the detection of a single photon. For an atomic ensemble contained in a strongly coupled optical cavity illuminated by weak single- or multifrequency light, the atom-light interaction entangles the frequency spectrum of a transmitted photon with the collective spin of the atomic ensemble. Simple time-resolved detection of the transmitted photon then projects the atomic ensemble into a desired pure entangled state. This method can be implemented with existing technology, yields high success probability per trial, and can generate complex entangled states such as mesoscopic superposition states of coherent spin states with high fidelity.
Wang, Meiyu; Yan, Fengli; Gao, Ting
2016-01-01
We propose a theoretical protocol for preparing four-photon polarization entangled decoherence-free states, which are immune to the collective noise. With the assistance of the cross-Kerr nonlinearities, a two-photon spatial entanglement gate, two controlled-NOT gates, a four-photon polarization entanglement gate are inserted into the circuit, where X homodyne measurements are aptly applied. Combined with some swap gates and simple linear optical elements, four-photon polarization entangled decoherence-free states which can be utilized to represent two logical qubits, |0〉L and |1〉L are achieved at the output ports of the circuit. This generation scheme may be implemented with current experimental techniques. PMID:27901116
NASA Astrophysics Data System (ADS)
Heo, Jino; Kang, Min-Sung; Hong, Chang-Ho; Yang, Hyeon; Choi, Seong-Gon
2017-01-01
We propose quantum information processing schemes based on cavity quantum electrodynamics (QED) for quantum communication. First, to generate entangled states (Bell and Greenberger-Horne-Zeilinger [GHZ] states) between flying photons and three-level atoms inside optical cavities, we utilize a controlled phase flip (CPF) gate that can be implemented via cavity QED). Subsequently, we present an entanglement swapping scheme that can be realized using single-qubit measurements and CPF gates via optical cavities. These schemes can be directly applied to construct an entanglement channel for a communication system between two users. Consequently, it is possible for the trust center, having quantum nodes, to accomplish the linked channel (entanglement channel) between the two separate long-distance users via the distribution of Bell states and entanglement swapping. Furthermore, in our schemes, the main physical component is the CPF gate between the photons and the three-level atoms in cavity QED, which is feasible in practice. Thus, our schemes can be experimentally realized with current technology.
Generating arbitrary photon-number entangled states for continuous-variable quantum informatics.
Lee, Su-Yong; Park, Jiyong; Lee, Hai-Woong; Nha, Hyunchul
2012-06-18
We propose two experimental schemes that can produce an arbitrary photon-number entangled state (PNES) in a finite dimension. This class of entangled states naturally includes non-Gaussian continuous-variable (CV) states that may provide some practical advantages over the Gaussian counterparts (two-mode squeezed states). We particularly compare the entanglement characteristics of the Gaussian and the non-Gaussian states in view of the degree of entanglement and the Einstein-Podolsky-Rosen correlation, and further discuss their applications to the CV teleportation and the nonlocality test. The experimental imperfection due to the on-off photodetectors with nonideal efficiency is also considered in our analysis to show the feasibility of our schemes within existing technologies.
Experimental Ten-Photon Entanglement
NASA Astrophysics Data System (ADS)
Wang, Xi-Lin; Chen, Luo-Kan; Li, W.; Huang, H.-L.; Liu, C.; Chen, C.; Luo, Y.-H.; Su, Z.-E.; Wu, D.; Li, Z.-D.; Lu, H.; Hu, Y.; Jiang, X.; Peng, C.-Z.; Li, L.; Liu, N.-L.; Chen, Yu-Ao; Lu, Chao-Yang; Pan, Jian-Wei
2016-11-01
We report the first experimental demonstration of quantum entanglement among ten spatially separated single photons. A near-optimal entangled photon-pair source was developed with simultaneously a source brightness of ˜12 MHz /W , a collection efficiency of ˜70 % , and an indistinguishability of ˜91 % between independent photons, which was used for a step-by-step engineering of multiphoton entanglement. Under a pump power of 0.57 W, the ten-photon count rate was increased by about 2 orders of magnitude compared to previous experiments, while maintaining a state fidelity sufficiently high for proving the genuine ten-particle entanglement. Our work created a state-of-the-art platform for multiphoton experiments, and enabled technologies for challenging optical quantum information tasks, such as the realization of Shor's error correction code and high-efficiency scattershot boson sampling.
Experimental Ten-Photon Entanglement.
Wang, Xi-Lin; Chen, Luo-Kan; Li, W; Huang, H-L; Liu, C; Chen, C; Luo, Y-H; Su, Z-E; Wu, D; Li, Z-D; Lu, H; Hu, Y; Jiang, X; Peng, C-Z; Li, L; Liu, N-L; Chen, Yu-Ao; Lu, Chao-Yang; Pan, Jian-Wei
2016-11-18
We report the first experimental demonstration of quantum entanglement among ten spatially separated single photons. A near-optimal entangled photon-pair source was developed with simultaneously a source brightness of ∼12 MHz/W, a collection efficiency of ∼70%, and an indistinguishability of ∼91% between independent photons, which was used for a step-by-step engineering of multiphoton entanglement. Under a pump power of 0.57 W, the ten-photon count rate was increased by about 2 orders of magnitude compared to previous experiments, while maintaining a state fidelity sufficiently high for proving the genuine ten-particle entanglement. Our work created a state-of-the-art platform for multiphoton experiments, and enabled technologies for challenging optical quantum information tasks, such as the realization of Shor's error correction code and high-efficiency scattershot boson sampling.
Entanglement Dynamics of Electrons and Photons
NASA Astrophysics Data System (ADS)
Wu, Xiang-Yao; Liu, Xiao-Jing; Lu, Jing-Bin; Li, Tian-Shun; Zhang, Si-Qi; Liang, Yu; Ma, Ji; Li, Hong
2016-12-01
Entanglement is a fundamental feature of quantum theory as well as a key resource for quantum computing and quantum communication, but the entanglement mechanism has not been found at present. We think when the two subsystems exist interaction directly or indirectly, they can be in entanglement state. such as, in the Jaynes-Cummings model, the entanglement between the atom and the light field comes from their interaction. In this paper, we have studied the entanglement mechanism of electron-electron and photon-photon, which are from the spin-spin interaction. We found their total entanglement states are relevant both space state and spin state. When two electrons or two photons are far away, their entanglement states should be disappeared even if their spin state is entangled.
Multi-photon entanglement in high dimensions
NASA Astrophysics Data System (ADS)
Malik, Mehul; Erhard, Manuel; Huber, Marcus; Krenn, Mario; Fickler, Robert; Zeilinger, Anton
2016-04-01
Forming the backbone of quantum technologies today, entanglement has been demonstrated in physical systems as diverse as photons, ions and superconducting circuits. Although steadily pushing the boundary of the number of particles entangled, these experiments have remained in a two-dimensional space for each particle. Here we show the experimental generation of the first multi-photon entangled state where both the number of particles and dimensions are greater than two. Two photons in our state reside in a three-dimensional space, whereas the third lives in two dimensions. This asymmetric entanglement structure only appears in multiparticle entangled states with d > 2. Our method relies on combining two pairs of photons, high-dimensionally entangled in their orbital angular momentum. In addition, we show how this state enables a new type of ‘layered’ quantum communication protocol. Entangled states such as these serve as a manifestation of the complex dance of correlations that can exist within quantum mechanics.
Tomography of the quantum state of photons entangled in high dimensions
Agnew, Megan; Leach, Jonathan; McLaren, Melanie; Roux, F. Stef; Boyd, Robert W.
2011-12-15
Systems entangled in high dimensions have recently been proposed as important tools for various quantum information protocols, such as multibit quantum key distribution and loophole-free tests of nonlocality. It is therefore important to have precise knowledge of the nature of such entangled quantum states. We tomographically reconstruct the quantum state of the two photons produced by parametric downconversion that are entangled in a d-dimensional orbital angular momentum basis. We determine exactly the density matrix of the entangled two-qudit state with d ranging from 2 to 8. The recording of higher-dimensional states is limited only by the number of data points required and therefore the length of time needed to complete the measurements. We find all the measured states to have fidelities and linear entropies that satisfy the criteria required for a violation of the appropriate high-dimensional Bell inequality. Our results therefore precisely characterize the nature of the entanglement, thus establishing the suitability of such states for applications in quantum information science.
Quantum Authencryption with Two-Photon Entangled States for Off-Line Communicants
NASA Astrophysics Data System (ADS)
Ye, Tian-Yu
2016-02-01
In this paper, a quantum authencryption protocol is proposed by using the two-photon entangled states as the quantum resource. Two communicants Alice and Bob share two private keys in advance, which determine the generation of two-photon entangled states. The sender Alice sends the two-photon entangled state sequence encoded with her classical bits to the receiver Bob in the manner of one-step quantum transmission. Upon receiving the encoded quantum state sequence, Bob decodes out Alice's classical bits with the two-photon joint measurements and authenticates the integrity of Alice's secret with the help of one-way hash function. The proposed protocol only uses the one-step quantum transmission and needs neither a public discussion nor a trusted third party. As a result, the proposed protocol can be adapted to the case where the receiver is off-line, such as the quantum E-mail systems. Moreover, the proposed protocol provides the message authentication to one bit level with the help of one-way hash function and has an information-theoretical efficiency equal to 100 %.
NASA Astrophysics Data System (ADS)
Dong, Li; Wang, Jun-Xi; Li, Qing-Yang; Dong, Hai-Kuan; Xiu, Xiao-Ming; Gao, Ya-Jun
2016-07-01
Employing a polarization-entangled χ state, which is a four-photon genuine entangled state, we propose a protocol teleporting a general two-photon polarization state. Firstly, the sender needs to perform one Controlled-NOT gate, one Hadamard gate, and one Controlled-NOT gate on the state to be teleported in succession. Secondly, the sender performs local nondemolition parity analyses based on cross-Kerr nonlinearities and publicizes the achieved outcomes. Finally, conditioned on the sender's analysis outcomes, the receiver executes the single-photon unitary transformation operations on his own photons to obtain the state originally sit in the sender's location. Due to the employment of nondemolition parity analyses rather than four-qubit joint measurement, it can be realized more feasible with currently available technologies. Moreover, the resources of Bell states can be achieved because the nondestructive measurement is exploited, which facilitates other potential tasks of quantum information processing.
NASA Astrophysics Data System (ADS)
Cao, Cong; Fan, Ling; Chen, Xi; Duan, Yu-Wen; Wang, Tie-Jun; Zhang, Ru; Wang, Chuan
2017-04-01
We propose an efficient entanglement concentration protocol (ECP) for nonlocal three-atom systems in an arbitrary unknown less-entangled W state, resorting to the Faraday rotation of photonic polarization in cavity quantum electrodynamics and the systematic concentration method. In the first step of the present ECP, one party in quantum communication performs a parity-check measurement on her two atoms in two three-atom systems for dividing the composite six-atom systems into two groups. In the first group, the three parties will obtain some three-atom systems in a less-entangled state with two unknown coefficients. In the second group, they will obtain some less-entangled two-atom systems. In the second step of the ECP, the three parties can obtain a subset of three-atom systems in the standard maximally entangled W state by exploiting the above three-atom and two-atom systems. Moreover, the preserved systems in the failed instances can be used as the resource for the entanglement concentration in the next round. The total success probability of the ECP can therefore be largely increased by iterating the entanglement concentration process several rounds. The distinct feature of our ECP is that we can concentrate arbitrary unknown atomic entangled W states via photonic Faraday rotation, and thus it may be universal and useful for entanglement concentration in future quantum communication network.
Temporal Multimode Storage of Entangled Photon Pairs
NASA Astrophysics Data System (ADS)
Tiranov, Alexey; Strassmann, Peter C.; Lavoie, Jonathan; Brunner, Nicolas; Huber, Marcus; Verma, Varun B.; Nam, Sae Woo; Mirin, Richard P.; Lita, Adriana E.; Marsili, Francesco; Afzelius, Mikael; Bussières, Félix; Gisin, Nicolas
2016-12-01
Multiplexed quantum memories capable of storing and processing entangled photons are essential for the development of quantum networks. In this context, we demonstrate and certify the simultaneous storage and retrieval of two entangled photons inside a solid-state quantum memory and measure a temporal multimode capacity of ten modes. This is achieved by producing two polarization-entangled pairs from parametric down-conversion and mapping one photon of each pair onto a rare-earth-ion-doped (REID) crystal using the atomic frequency comb (AFC) protocol. We develop a concept of indirect entanglement witnesses, which can be used as Schmidt number witnesses, and we use it to experimentally certify the presence of more than one entangled pair retrieved from the quantum memory. Our work puts forward REID-AFC as a platform compatible with temporal multiplexing of several entangled photon pairs along with a new entanglement certification method, useful for the characterization of multiplexed quantum memories.
Experimental generation of complex noisy photonic entanglement
NASA Astrophysics Data System (ADS)
Dobek, K.; Karpiński, M.; Demkowicz-Dobrzański, R.; Banaszek, K.; Horodecki, P.
2013-02-01
We present an experimental scheme based on spontaneous parametric down-conversion to produce multiple-photon pairs in maximally entangled polarization states using an arrangement of two type-I nonlinear crystals. By introducing correlated polarization noise in the paths of the generated photons we prepare mixed-entangled states whose properties illustrate fundamental results obtained recently in quantum information theory, in particular those concerning bound entanglement and privacy.
Zhao, Yan-Jun; Wang, Changqing; Zhu, Xiaobo; Liu, Yu-xi
2016-01-01
It has been shown that there are not only transverse but also longitudinal couplings between microwave fields and a superconducting qubit with broken inversion symmetry of the potential energy. Using multiphoton processes induced by longitudinal coupling fields and frequency matching conditions, we design a universal algorithm to produce arbitrary superpositions of two-mode photon states of microwave fields in two separated transmission line resonators, which are coupled to a superconducting qubit. Based on our algorithm, we analyze the generation of evenly-populated states and NOON states. Compared to other proposals with only single-photon process, we provide an efficient way to produce entangled microwave photon states when the interactions between superconducting qubits and microwave fields are in the strong and ultrastrong regime. PMID:27033558
High-dimensional quantum key distribution with the entangled single-photon-added coherent state
NASA Astrophysics Data System (ADS)
Wang, Yang; Bao, Wan-Su; Bao, Hai-Ze; Zhou, Chun; Jiang, Mu-Sheng; Li, Hong-Wei
2017-04-01
High-dimensional quantum key distribution (HD-QKD) can generate more secure bits for one detection event so that it can achieve long distance key distribution with a high secret key capacity. In this Letter, we present a decoy state HD-QKD scheme with the entangled single-photon-added coherent state (ESPACS) source. We present two tight formulas to estimate the single-photon fraction of postselected events and Eve's Holevo information and derive lower bounds on the secret key capacity and the secret key rate of our protocol. We also present finite-key analysis for our protocol by using the Chernoff bound. Our numerical results show that our protocol using one decoy state can perform better than that of previous HD-QKD protocol with the spontaneous parametric down conversion (SPDC) using two decoy states. Moreover, when considering finite resources, the advantage is more obvious.
Photon Entanglement Through Brain Tissue
NASA Astrophysics Data System (ADS)
Shi, Lingyan; Galvez, Enrique J.; Alfano, Robert R.
2016-12-01
Photon entanglement, the cornerstone of quantum correlations, provides a level of coherence that is not present in classical correlations. Harnessing it by study of its passage through organic matter may offer new possibilities for medical diagnosis technique. In this work, we study the preservation of photon entanglement in polarization, created by spontaneous parametric down-conversion, after one entangled photon propagates through multiphoton-scattering brain tissue slices with different thickness. The Tangle-Entropy (TS) plots show the strong preservation of entanglement of photons propagating in brain tissue. By spatially filtering the ballistic scattering of an entangled photon, we find that its polarization entanglement is preserved and non-locally correlated with its twin in the TS plots. The degree of entanglement correlates better with structure and water content than with sample thickness.
Photon Entanglement Through Brain Tissue
Shi, Lingyan; Galvez, Enrique J.; Alfano, Robert R.
2016-01-01
Photon entanglement, the cornerstone of quantum correlations, provides a level of coherence that is not present in classical correlations. Harnessing it by study of its passage through organic matter may offer new possibilities for medical diagnosis technique. In this work, we study the preservation of photon entanglement in polarization, created by spontaneous parametric down-conversion, after one entangled photon propagates through multiphoton-scattering brain tissue slices with different thickness. The Tangle-Entropy (TS) plots show the strong preservation of entanglement of photons propagating in brain tissue. By spatially filtering the ballistic scattering of an entangled photon, we find that its polarization entanglement is preserved and non-locally correlated with its twin in the TS plots. The degree of entanglement correlates better with structure and water content than with sample thickness. PMID:27995952
Kuang Leman; Zhou Lan
2003-10-01
In this paper, we present a method to generate continuous-variable-type entangled states between photons and atoms in atomic Bose-Einstein condensate (BEC). The proposed method involves an atomic BEC with three internal states, a weak quantized probe laser, and a strong classical coupling laser, which form a three-level {lambda}-shaped BEC system. We consider a situation where the BEC is in electromagnetically induced transparency with the coupling laser being much stronger than the probe laser. In this case, the upper and intermediate levels are unpopulated, so that their adiabatic elimination enables an effective two-mode model involving only the atomic field at the lowest internal level and the quantized probe laser field. Atom-photon quantum entanglement is created through laser-atom and interatomic interactions, and two-photon detuning. We show how to generate atom-photon entangled coherent states and entangled states between photon (atom) coherent states and atom-(photon-) macroscopic quantum superposition (MQS) states, and between photon-MQS and atom-MQS states.
NASA Astrophysics Data System (ADS)
Xiu, Xiao-Ming; Li, Qing-Yang; Lin, Yan-Fang; Dong, Hai-Kuan; Dong, Li; Gao, Ya-Jun
2016-10-01
With the assistance of weak cross-Kerr nonlinearities, we present a preparation scheme of four-photon polarization-entangled decoherence-free states, which can be used to construct the minimal optical decoherence-free subspaces where a logical qubit is fully protected against collective decoherence. To complete the preparation task, one spatial entanglement process, two polarization entanglement processes, and one detecting process are applied. The fulfillments of the above processes are contributed by a cross-Kerr nonlinear interaction between the signal photons and a coherent state via Kerr media. Exploiting the available single-photon resource and simple linear optics elements, this scheme is feasible and desirable to be extended to the construction of multiphoton decoherence-free states against the collective decoherence.
Creating multiphoton-polarization bound entangled states
Wei, Tzu-Chieh; Lavoie, Jonathan; Kaltenbaek, Rainer
2011-03-15
Bound entangled states are the exotic objects in the entangled world. They require entanglement to create them, but once they are formed, it is not possible to locally distill any free entanglement from them. It is only until recently that a few bound entangled states were realized in the laboratory. Motivated by these experiments, we propose schemes for creating various classes of bound entangled states with photon polarization. These include Acin-Bruss-Lewenstein-Sanpara states, Duer's states, Lee-Lee-Kim bound entangled states, and an unextendible-product-basis bound entangled state.
Generating Entangled State with Parametric Amplifier
NASA Astrophysics Data System (ADS)
Huang, Jian
2017-04-01
We present a scheme for generating entangled state with parametric amplifier with different initial states. Its shown that the entangled state is always generated except some special cases by adjusting the coupling strength and the total number of photons.
NASA Astrophysics Data System (ADS)
Wang, Shuai; Hou, Li-Li; Chen, Xian-Feng; Xu, Xue-Fen
2015-06-01
We theoretically analyze the Einstein-Podolsky-Rosen (EPR) correlation, the quadrature squeezing, and the continuous-variable quantum teleportation when considering non-Gaussian entangled states generated by applying multiple-photon subtraction and multiple-photon addition to a two-mode squeezed vacuum state (TMSVs). Our results indicate that in the case of the multiple-photon-subtracted TMSVs with symmetric operations, the corresponding EPR correlation, the two-mode squeezing degree, the sum squeezing, and the fidelity of teleporting a coherent state or a squeezed vacuum state can be enhanced for any squeezing parameter r and these enhancements increase with the number of subtracted photons in the low-squeezing regime, while asymmetric multiple-photon subtractions will generally reduce these quantities. For the multiple-photon-added TMSVs, although it holds stronger entanglement, its EPR correlation, two-mode squeezing, sum squeezing, and the fidelity of a coherent state are always smaller than that of the TMSVs. Only when considering the case of teleporting a squeezed vacuum state does the symmetric photon addition make somewhat of an improvement in the fidelity for large-squeezing parameters. In addition, we analytically prove that a one-mode multiple-photon-subtracted TMSVs is equivalent to that of the one-mode multiple-photon-added one. And one-mode multiple-photon operations will diminish the above four quantities for any squeezing parameter r .
Quantum random number generator using photon-number path entanglement
NASA Astrophysics Data System (ADS)
Kwon, Osung; Cho, Young-Wook; Kim, Yoon-Ho
2010-08-01
We report an experimental implementation of quantum random number generator based on the photon-number-path entangled state. The photon-number-path entangled state is prepared by means of two-photon Hong-Ou-Mandel quantum interference at a beam splitter. The randomness in our scheme is of truly quantum mechanical origin as it comes from the projection measurement of the entangled two-photon state. The generated bit sequences satisfy the standard randomness test.
Dong Li; Xiu Xiaoming; Gao Yajun; Yi, X. X.
2011-10-15
Using three-photon polarization-entangled GHZ states or W states, we propose controlled quantum key distribution protocols for circumventing two main types of collective noise, collective dephasing noise, or collective rotation noise. Irrespective of the number of controllers, a three-photon state can generate a one-bit secret key. The storage technique of quantum states is dispensable for the controller and the receiver, and it therefore allows performing the process in a more convenient mode. If the photon cost in a security check is disregarded, then the efficiency theoretically approaches unity.
Ultrabright source of entangled photon pairs.
Dousse, Adrien; Suffczyński, Jan; Beveratos, Alexios; Krebs, Olivier; Lemaître, Aristide; Sagnes, Isabelle; Bloch, Jacqueline; Voisin, Paul; Senellart, Pascale
2010-07-08
A source of triggered entangled photon pairs is a key component in quantum information science; it is needed to implement functions such as linear quantum computation, entanglement swapping and quantum teleportation. Generation of polarization entangled photon pairs can be obtained through parametric conversion in nonlinear optical media or by making use of the radiative decay of two electron-hole pairs trapped in a semiconductor quantum dot. Today, these sources operate at a very low rate, below 0.01 photon pairs per excitation pulse, which strongly limits their applications. For systems based on parametric conversion, this low rate is intrinsically due to the Poissonian statistics of the source. Conversely, a quantum dot can emit a single pair of entangled photons with a probability near unity but suffers from a naturally very low extraction efficiency. Here we show that this drawback can be overcome by coupling an optical cavity in the form of a 'photonic molecule' to a single quantum dot. Two coupled identical pillars-the photonic molecule-were etched in a semiconductor planar microcavity, using an optical lithography method that ensures a deterministic coupling to the biexciton and exciton energy states of a pre-selected quantum dot. The Purcell effect ensures that most entangled photon pairs are emitted into two cavity modes, while improving the indistinguishability of the two optical recombination paths. A polarization entangled photon pair rate of 0.12 per excitation pulse (with a concurrence of 0.34) is collected in the first lens. Our results open the way towards the fabrication of solid state triggered sources of entangled photon pairs, with an overall (creation and collection) efficiency of 80%.
Frequency-bin entangled photons
Olislager, L.; Emplit, P.; Nguyen, A. T.; Massar, S.; Merolla, J.-M.; Huy, K. Phan
2010-07-15
A monochromatic laser pumping a parametric down-conversion crystal generates frequency-entangled photon pairs. We study this experimentally by addressing such frequency-entangled photons at telecommunication wavelengths (around 1550 nm) with fiber-optics components such as electro-optic phase modulators and narrow-band frequency filters. The theory underlying our approach uses the notion of frequency-bin entanglement. Our results show that the phase modulators address coherently up to eleven frequency bins, leading to an interference pattern which can violate by more than five standard deviations a Bell inequality adapted to our setup.
Entanglement from longitudinal and scalar photons
Franson, J. D
2011-09-15
The covariant quantization of the electromagnetic field in the Lorentz gauge gives rise to longitudinal and scalar photons in addition to the usual transverse photons. It is shown here that the exchange of longitudinal and scalar photons can produce entanglement between two distant atoms or harmonic oscillators. The form of the entangled states produced in this way is very different from that obtained in the Coulomb gauge, where the longitudinal and scalar photons do not exist. A generalized gauge transformation is used to show that all physically observable effects are the same in the two gauges, despite the differences in the form of the entangled states. An approach of this kind may be useful for a covariant description of the dynamics of quantum information processing.
Photonic multipartite entanglement conversion using nonlocal operations
NASA Astrophysics Data System (ADS)
Tashima, T.; Tame, M. S.; Özdemir, Ş. K.; Nori, F.; Koashi, M.; Weinfurter, H.
2016-11-01
We propose a simple setup for the conversion of multipartite entangled states in a quantum network with restricted access. The scheme uses nonlocal operations to enable the preparation of states that are inequivalent under local operations and classical communication, but most importantly does not require full access to the states. It is based on a flexible linear optical conversion gate that uses photons, which are ideally suited for distributed quantum computation and quantum communication in extended networks. In order to show the basic working principles of the gate, we focus on converting a four-qubit entangled cluster state to other locally inequivalent four-qubit states, such as the Greenberger-Horne-Zeilinger and symmetric Dicke states. We also show how the gate can be incorporated into extended graph state networks and can be used to generate variable entanglement and quantum correlations without entanglement but nonvanishing quantum discord.
Photonic module: An on-demand resource for photonic entanglement
Devitt, Simon J.; Greentree, Andrew D.; Hollenberg, Lloyd C. L.; Ionicioiu, Radu; O'Brien, Jeremy L.; Munro, William J.
2007-11-15
Photonic entanglement has a wide range of applications in quantum computation and communication. Here we introduce a device: the photonic module, which allows for the rapid, deterministic preparation of a large class of entangled photon states. The module is an application independent, ''plug and play'' device, with sufficient flexibility to prepare entanglement for all major quantum computation and communication applications in a completely deterministic fashion without number-discriminated photon detection. We present two alternative constructions for the module, one using free-space components and one in a photonic band-gap structure. The natural operation of the module is to generate states within the stabilizer formalism and we present an analysis on the cavity requirements to experimentally realize this device.
Photon statistics on the extreme entanglement
NASA Astrophysics Data System (ADS)
Zhang, Yang; Zhang, Jun; Yu, Chang-Shui
2016-04-01
The effects of photon bunching and antibunching correspond to the classical and quantum features of the electromagnetic field, respectively. No direct evidence suggests whether these effects can be potentially related to quantum entanglement. Here we design a cavity quantum electrodynamics model with two atoms trapped in to demonstrate the connections between the steady-state photon statistics and the two-atom entanglement. It is found that within the weak dissipations and to some good approximation, the local maximal two-atom entanglements perfectly correspond to not only the quantum feature of the electromagnetic field—the optimal photon antibunching, but also the classical feature—the optimal photon bunching. We also analyze the influence of strong dissipations and pure dephasing. An intuitive physical understanding is also given finally.
Photon statistics on the extreme entanglement
Zhang, Yang; Zhang, Jun; Yu, Chang-shui
2016-01-01
The effects of photon bunching and antibunching correspond to the classical and quantum features of the electromagnetic field, respectively. No direct evidence suggests whether these effects can be potentially related to quantum entanglement. Here we design a cavity quantum electrodynamics model with two atoms trapped in to demonstrate the connections between the steady-state photon statistics and the two-atom entanglement. It is found that within the weak dissipations and to some good approximation, the local maximal two-atom entanglements perfectly correspond to not only the quantum feature of the electromagnetic field—the optimal photon antibunching, but also the classical feature—the optimal photon bunching. We also analyze the influence of strong dissipations and pure dephasing. An intuitive physical understanding is also given finally. PMID:27053368
Broadband source of polarization entangled photons.
Fraine, A; Minaeva, O; Simon, D S; Egorov, R; Sergienko, A V
2012-06-01
A broadband source of polarization entangled photons based on type-II spontaneous parametric down conversion from a chirped PPKTP crystal is presented. With numerical simulation and experimental evaluation, we report a source of broadband polarization entangled states with a bandwidth of approximately 125 nm for use in quantum interferometry. The technique has the potential to become a basis for the development of flexible broadband sources with designed spectral properties.
Effect of polarization entanglement in photon-photon scattering
NASA Astrophysics Data System (ADS)
Rätzel, Dennis; Wilkens, Martin; Menzel, Ralf
2017-01-01
It is found that the differential cross section of photon-photon scattering is a function of the degree of polarization entanglement of the two-photon state. A reduced general expression for the differential cross section of photon-photon scattering is derived by applying simple symmetry arguments. An explicit expression is obtained for the example of photon-photon scattering due to virtual electron-positron pairs in quantum electrodynamics. It is shown how the effect in this explicit example can be explained as an effect of quantum interference and that it fits with the idea of distance-dependent forces.
NASA Astrophysics Data System (ADS)
Bashkirov, E. K.; Mastyugin, M. S.
2014-02-01
The influence of dipole-dipole interaction on the entanglement between two Δ-type artificial atoms interacting with two-mode field via non-degenerate two-photon transitions has been investigated. The atom-field system is assumed to be prepared in four-partite atom-field entangled state. The results show that the entanglement between two atoms can be increased by means of dipole-dipole interaction and for some initial states the entanglement sudden death effect can be weakened.
Jeong, Hyunseok; Nguyen Ba An
2006-08-15
We study Greenberger-Horne-Zeilinger-type (GHZ-type) and W-type three-mode entangled coherent states. Both types of entangled coherent states violate Mermin's version of the Bell inequality with threshold photon detection (i.e., without photon counting). Such an experiment can be performed using linear optics elements and threshold detectors with significant Bell violations for GHZ-type entangled coherent states. However, to demonstrate Bell-type inequality violations for W-type entangled coherent states, additional nonlinear interactions are needed. We also propose an optical scheme to generate W-type entangled coherent states in free-traveling optical fields. The required resources for the generation are a single-photon source, a coherent state source, beam splitters, phase shifters, photodetectors, and Kerr nonlinearities. Our scheme does not necessarily require strong Kerr nonlinear interactions; i.e., weak nonlinearities can be used for the generation of the W-type entangled coherent states. Furthermore, it is also robust against inefficiencies of the single-photon source and the photon detectors.
Generating two-photon entangled states in a driven two-atom system
Almutairi, Khulud; Tanas, Ryszard; Ficek, Zbigniew
2011-07-15
We describe a mechanism for a controlled generation of a pure Bell state with correlated atoms that involve two or zero excitations. The mechanism inhibits transitions into singly excited collective states of a two-atom system by shifting them from their unperturbed energies. The shift is accomplished by the dipole-dipole interaction between the atoms. The creation of the Bell state is found to be dependent on the relaxation of the atomic excitation. When the relaxation is not present or can be ignored, the state of the system evolves harmonically between a separable to the maximally entangled state. We follow the temporal evolution of the state and find that the concurrence can be different from zero only in the presence of the dipole-dipole interaction. Furthermore, in the limit of a large dipole-dipole interaction, the concurrence reduces to that predicted for an X state of the system. A general inequality is found which shows that the concurrence of an X-state system is a lower bound for the concurrence of the two-atom system. With the relaxation present, the general state of the system is a mixed state that under a strong dipole-dipole interaction reduces the system to an X-state form. We find that mixed states admit of lower level of entanglement, and the entanglement may occur over a finite range of time. A simple analytical expression is obtained for the steady-state concurrence which shows that there is a threshold value for the dipole-dipole interaction relative to the Rabi frequency of the driving field above which the atoms can be entangled over the entire time of the evolution.
Measuring protein concentration with entangled photons
NASA Astrophysics Data System (ADS)
Crespi, Andrea; Lobino, Mirko; Matthews, Jonathan C. F.; Politi, Alberto; Neal, Chris R.; Ramponi, Roberta; Osellame, Roberto; O'Brien, Jeremy L.
2012-06-01
Optical interferometry is amongst the most sensitive techniques for precision measurement. By increasing the light intensity, a more precise measurement can usually be made. However, if the sample is light sensitive entangled states can achieve the same precision with less exposure. This concept has been demonstrated in measurements of known optical components. Here, we use two-photon entangled states to measure the concentration of a blood protein in an aqueous buffer solution. We use an opto-fluidic device that couples a waveguide interferometer with a microfluidic channel. These results point the way to practical applications of quantum metrology to light-sensitive samples.
Concentration for unknown atomic entangled states via cavity decay
Cao Zhuoliang; Yang Ming; Zhang Lihua
2006-01-15
We present a physical scheme for entanglement concentration of unknown atomic entangled states via cavity decay. In the scheme, the atomic state is used as a stationary qubit and the photonic state as a flying qubit, and a close maximally entangled state can be obtained from pairs of partially entangled states probabilistically.
Lithography system using quantum entangled photons
NASA Technical Reports Server (NTRS)
Williams, Colin (Inventor); Dowling, Jonathan (Inventor); della Rossa, Giovanni (Inventor)
2002-01-01
A system of etching using quantum entangled particles to get shorter interference fringes. An interferometer is used to obtain an interference fringe. N entangled photons are input to the interferometer. This reduces the distance between interference fringes by n, where again n is the number of entangled photons.
Entanglement swapping between photons that have never coexisted.
Megidish, E; Halevy, A; Shacham, T; Dvir, T; Dovrat, L; Eisenberg, H S
2013-05-24
The role of the timing and order of quantum measurements is not just a fundamental question of quantum mechanics, but also a puzzling one. Any part of a quantum system that has finished evolving can be measured immediately or saved for later, without affecting the final results, regardless of the continued evolution of the rest of the system. In addition, the nonlocality of quantum mechanics, as manifested by entanglement, does not apply only to particles with spacelike separation, but also to particles with timelike separation. In order to demonstrate these principles, we generated and fully characterized an entangled pair of photons that have never coexisted. Using entanglement swapping between two temporally separated photon pairs, we entangle one photon from the first pair with another photon from the second pair. The first photon was detected even before the other was created. The observed two-photon state demonstrates that entanglement can be shared between timelike separated quantum systems.
Nonlocal hyperconcentration on entangled photons using photonic module system
NASA Astrophysics Data System (ADS)
Cao, Cong; Wang, Tie-Jun; Mi, Si-Chen; Zhang, Ru; Wang, Chuan
2016-06-01
Entanglement distribution will inevitably be affected by the channel and environment noise. Thus distillation of maximal entanglement nonlocally becomes a crucial goal in quantum information. Here we illustrate that maximal hyperentanglement on nonlocal photons could be distilled using the photonic module and cavity quantum electrodynamics, where the photons are simultaneously entangled in polarization and spatial-mode degrees of freedom. The construction of the photonic module in a photonic band-gap structure is presented, and the operation of the module is utilized to implement the photonic nondestructive parity checks on the two degrees of freedom. We first propose a hyperconcentration protocol using two identical partially hyperentangled initial states with unknown coefficients to distill a maximally hyperentangled state probabilistically, and further propose a protocol by the assistance of an ancillary single photon prepared according to the known coefficients of the initial state. In the two protocols, the total success probability can be improved greatly by introducing the iteration mechanism, and only one of the remote parties is required to perform the parity checks in each round of iteration. Estimates on the system requirements and recent experimental results indicate that our proposal is realizable with existing or near-further technologies.
Nonlocal hyperconcentration on entangled photons using photonic module system
Cao, Cong; Wang, Tie-Jun; Mi, Si-Chen; Zhang, Ru; Wang, Chuan
2016-06-15
Entanglement distribution will inevitably be affected by the channel and environment noise. Thus distillation of maximal entanglement nonlocally becomes a crucial goal in quantum information. Here we illustrate that maximal hyperentanglement on nonlocal photons could be distilled using the photonic module and cavity quantum electrodynamics, where the photons are simultaneously entangled in polarization and spatial-mode degrees of freedom. The construction of the photonic module in a photonic band-gap structure is presented, and the operation of the module is utilized to implement the photonic nondestructive parity checks on the two degrees of freedom. We first propose a hyperconcentration protocol using two identical partially hyperentangled initial states with unknown coefficients to distill a maximally hyperentangled state probabilistically, and further propose a protocol by the assistance of an ancillary single photon prepared according to the known coefficients of the initial state. In the two protocols, the total success probability can be improved greatly by introducing the iteration mechanism, and only one of the remote parties is required to perform the parity checks in each round of iteration. Estimates on the system requirements and recent experimental results indicate that our proposal is realizable with existing or near-further technologies.
System and method for clock synchronization and position determination using entangled photon pairs
NASA Technical Reports Server (NTRS)
Shih, Yanhua (Inventor)
2010-01-01
A system and method for clock synchronization and position determination using entangled photon pairs is provided. The present invention relies on the measurement of the second order correlation function of entangled states. Photons from an entangled photon source travel one-way to the clocks to be synchronized. By analyzing photon registration time histories generated at each clock location, the entangled states allow for high accuracy clock synchronization as well as high accuracy position determination.
Efficient Generation of Frequency-Multiplexed Entangled Single Photons
NASA Astrophysics Data System (ADS)
Qiu, Tian-Hui; Xie, Min
2016-12-01
We present two schemes to generate frequency-multiplexed entangled (FME) single photons by coherently mapping photonic entanglement into and out of a quantum memory based on Raman interactions. By splitting a single photon and performing subsequent state transfer, we separate the generation of entanglement and its frequency conversion, and find that the both progresses have the characteristic of inherent determinacy. Our theory can reproduce the prominent features of observed results including pulse shapes and the condition for deterministically generating the FME single photons. The schemes are suitable for the entangled photon pairs with a wider frequency range, and could be immune to the photon loss originating from cavity-mode damping, spontaneous emission, and the dephasing due to atomic thermal motion. The sources might have significant applications in wavelength-division-multiplexing quantum key distribution.
On-chip entangled photon source
Soh, Daniel B. S.; Bisson, Scott E.
2016-11-22
Various technologies pertaining to an on-chip entangled photon source are described herein. A light source is used to pump two resonator cavities that are resonant at two different respective wavelengths and two different respective polarizations. The resonator cavities are coupled to a four-wave mixing cavity that receives the light at the two wavelengths and outputs polarization-entangled photons.
Spin-photon entanglement interfaces in silicon carbide defect centers
NASA Astrophysics Data System (ADS)
Economou, Sophia E.; Dev, Pratibha
2016-12-01
Optically active spins in solid-state systems can be engineered to emit photons that are entangled with the spin in the solid. This allows for applications such as quantum communications, quantum key distribution, and distributed quantum computing. Recently, there has been a strong interest in silicon carbide defects, as they emit very close to the telecommunication wavelength, making them excellent candidates for long range quantum communications. In this work we develop explicit schemes for spin-photon entanglement in several SiC defects: the silicon monovacancy, the silicon divacancy, and the NV center in SiC. Distinct approaches are given for (i) single-photon and spin entanglement and (ii) the generation of long strings of entangled photons. The latter are known as cluster states and comprise a resource for measurement-based quantum information processing.
Spin-photon entanglement interfaces in silicon carbide defect centers.
Economou, Sophia E; Dev, Pratibha
2016-12-16
Optically active spins in solid-state systems can be engineered to emit photons that are entangled with the spin in the solid. This allows for applications such as quantum communications, quantum key distribution, and distributed quantum computing. Recently, there has been a strong interest in silicon carbide defects, as they emit very close to the telecommunication wavelength, making them excellent candidates for long range quantum communications. In this work we develop explicit schemes for spin-photon entanglement in several SiC defects: the silicon monovacancy, the silicon divacancy, and the NV center in SiC. Distinct approaches are given for (i) single-photon and spin entanglement and (ii) the generation of long strings of entangled photons. The latter are known as cluster states and comprise a resource for measurement-based quantum information processing.
Two-photon spectroscopy of excitons with entangled photons.
Schlawin, Frank; Mukamel, Shaul
2013-12-28
The utility of quantum light as a spectroscopic tool is demonstrated for frequency-dispersed pump-probe, integrated pump-probe, and two-photon fluorescence signals which show Ramsey fringes. Simulations of the frequency-dispersed transmission of a broadband pulse of entangled photons interacting with a three-level model of matter reveal how the non-classical time-bandwidth properties of entangled photons can be used to disentangle congested spectra, and reveal otherwise unresolved features. Quantum light effects are most pronounced at weak intensities when entangled photon pairs are well separated, and are gradually diminished at higher intensities when different photon pairs overlap.
The generation of entangled states from independent particle sources
NASA Technical Reports Server (NTRS)
Rubin, Morton H.; Shih, Yan-Hua
1994-01-01
The generation of entangled states of two systems from product states is discussed for the case in which the paths of the two systems do not overlap. A particular method of measuring allows one to project out the nonlocal entangled state. An application to the production of four photon entangled states is outlined.
Fiber transport of spatially entangled photons
NASA Astrophysics Data System (ADS)
Löffler, W.; Eliel, E. R.; Woerdman, J. P.; Euser, T. G.; Scharrer, M.; Russell, P.
2012-03-01
High-dimensional entangled photons pairs are interesting for quantum information and cryptography: Compared to the well-known 2D polarization case, the stronger non-local quantum correlations could improve noise resistance or security, and the larger amount of information per photon increases the available bandwidth. One implementation is to use entanglement in the spatial degree of freedom of twin photons created by spontaneous parametric down-conversion, which is equivalent to orbital angular momentum entanglement, this has been proven to be an excellent model system. The use of optical fiber technology for distribution of such photons has only very recently been practically demonstrated and is of fundamental and applied interest. It poses a big challenge compared to the established time and frequency domain methods: For spatially entangled photons, fiber transport requires the use of multimode fibers, and mode coupling and intermodal dispersion therein must be minimized not to destroy the spatial quantum correlations. We demonstrate that these shortcomings of conventional multimode fibers can be overcome by using a hollow-core photonic crystal fiber, which follows the paradigm to mimic free-space transport as good as possible, and are able to confirm entanglement of the fiber-transported photons. Fiber transport of spatially entangled photons is largely unexplored yet, therefore we discuss the main complications, the interplay of intermodal dispersion and mode mixing, the influence of external stress and core deformations, and consider the pros and cons of various fiber types.
Infrared spectroscopy assisted by entangled photons
NASA Astrophysics Data System (ADS)
Paterova, Anna V.; Lung, Shaun; Kalashnikov, Dmitry A.; Kulik, Sergei P.; Krivitsky, Leonid A.
2016-11-01
We describe a proof-of-concept of a method for measurement of both real (refraction) and imaginary (absorption) part of the refractive index in the infrared (IR) range by measuring an interference pattern in the visible range without the need for any spectral and spatial selection. The concept is based on nonlinear interference of entangled photons, generated via Spontaneous Parametric Down Conversion (SPDC). In our interferometer, the phase of the signal photon in the visible range depends on the phase of an entangled IR photon. When the IR photon is traveling through the media of interest, its properties can be found from the observations of the visible photon.
Extremal extensions of entanglement witnesses: Finding new bound entangled states
Sengupta, R.; Arvind
2011-09-15
In this paper, we discuss extremal extensions of entanglement witnesses based on Choi's map. The constructions are based on a generalization of the Choi map, from which we construct entanglement witnesses. These extremal extensions are powerful in terms of their capacity to detect entanglement of positive under partial transpose (PPT) entangled states and lead to unearthing of entanglement of new PPT states. We also use the Cholesky-like decomposition to construct entangled states which are revealed by these extremal entanglement witnesses.
Quantifying Photonic High-Dimensional Entanglement
NASA Astrophysics Data System (ADS)
Martin, Anthony; Guerreiro, Thiago; Tiranov, Alexey; Designolle, Sébastien; Fröwis, Florian; Brunner, Nicolas; Huber, Marcus; Gisin, Nicolas
2017-03-01
High-dimensional entanglement offers promising perspectives in quantum information science. In practice, however, the main challenge is to devise efficient methods to characterize high-dimensional entanglement, based on the available experimental data which is usually rather limited. Here we report the characterization and certification of high-dimensional entanglement in photon pairs, encoded in temporal modes. Building upon recently developed theoretical methods, we certify an entanglement of formation of 2.09(7) ebits in a time-bin implementation, and 4.1(1) ebits in an energy-time implementation. These results are based on very limited sets of local measurements, which illustrates the practical relevance of these methods.
Quantum Entanglement Swapping between Two Multipartite Entangled States
NASA Astrophysics Data System (ADS)
Su, Xiaolong; Tian, Caixing; Deng, Xiaowei; Li, Qiang; Xie, Changde; Peng, Kunchi
2016-12-01
Quantum entanglement swapping is one of the most promising ways to realize the quantum connection among local quantum nodes. In this Letter, we present an experimental demonstration of the entanglement swapping between two independent multipartite entangled states, each of which involves a tripartite Greenberger-Horne-Zeilinger (GHZ) entangled state of an optical field. The entanglement swapping is implemented deterministically by means of a joint measurement on two optical modes coming from the two multipartite entangled states respectively and the classical feedforward of the measurement results. After entanglement swapping the two independent multipartite entangled states are merged into a large entangled state in which all unmeasured quantum modes are entangled. The entanglement swapping between a tripartite GHZ state and an Einstein-Podolsky-Rosen entangled state is also demonstrated and the dependence of the resultant entanglement on transmission loss is investigated. The presented experiment provides a feasible technical reference for constructing more complicated quantum networks.
Cloning entangled photons to scales one can see
NASA Astrophysics Data System (ADS)
Sekatski, Pavel; Sanguinetti, Bruno; Pomarico, Enrico; Gisin, Nicolas; Simon, Christoph
2010-11-01
By amplifying photonic qubits it is possible to produce states that contain enough photons to be seen with the human eye, potentially bringing quantum effects to macroscopic scales [P. Sekatski, N. Brunner, C. Branciard, N. Gisin, and C. Simon, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.103.113601 103, 113601 (2009)]. In this paper we theoretically study quantum states obtained by amplifying one side of an entangled photon pair with different types of optical cloning machines for photonic qubits. We propose a detection scheme that involves lossy threshold detectors (such as the human eye) on the amplified side and conventional photon detectors on the other side. We show that correlations obtained with such coarse-grained measurements prove the entanglement of the initial photon pair and do not prove the entanglement of the amplified state. We emphasize the importance of the detection loophole in Bell violation experiments by giving a simple preparation technique for separable states that violate a Bell inequality without closing this loophole. Finally, we analyze the genuine entanglement of the amplified states and its robustness to losses before, during, and after amplification.
Cloning entangled photons to scales one can see
Sekatski, Pavel; Sanguinetti, Bruno; Pomarico, Enrico; Gisin, Nicolas; Simon, Christoph
2010-11-15
By amplifying photonic qubits it is possible to produce states that contain enough photons to be seen with the human eye, potentially bringing quantum effects to macroscopic scales [P. Sekatski, N. Brunner, C. Branciard, N. Gisin, and C. Simon, Phys. Rev. Lett. 103, 113601 (2009)]. In this paper we theoretically study quantum states obtained by amplifying one side of an entangled photon pair with different types of optical cloning machines for photonic qubits. We propose a detection scheme that involves lossy threshold detectors (such as the human eye) on the amplified side and conventional photon detectors on the other side. We show that correlations obtained with such coarse-grained measurements prove the entanglement of the initial photon pair and do not prove the entanglement of the amplified state. We emphasize the importance of the detection loophole in Bell violation experiments by giving a simple preparation technique for separable states that violate a Bell inequality without closing this loophole. Finally, we analyze the genuine entanglement of the amplified states and its robustness to losses before, during, and after amplification.
Distillation of photon entanglement using a plasmonic metamaterial.
Asano, Motoki; Bechu, Muriel; Tame, Mark; Kaya Özdemir, Şahin; Ikuta, Rikizo; Güney, Durdu Ö; Yamamoto, Takashi; Yang, Lan; Wegener, Martin; Imoto, Nobuyuki
2015-12-16
Plasmonics is a rapidly emerging platform for quantum state engineering with the potential for building ultra-compact and hybrid optoelectronic devices. Recent experiments have shown that despite the presence of decoherence and loss, photon statistics and entanglement can be preserved in single plasmonic systems. This preserving ability should carry over to plasmonic metamaterials, whose properties are the result of many individual plasmonic systems acting collectively, and can be used to engineer optical states of light. Here, we report an experimental demonstration of quantum state filtering, also known as entanglement distillation, using a metamaterial. We show that the metamaterial can be used to distill highly entangled states from less entangled states. As the metamaterial can be integrated with other optical components this work opens up the intriguing possibility of incorporating plasmonic metamaterials in on-chip quantum state engineering tasks.
Distillation of photon entanglement using a plasmonic metamaterial
Asano, Motoki; Bechu, Muriel; Tame, Mark; Kaya Özdemir, Şahin; Ikuta, Rikizo; Güney, Durdu Ö.; Yamamoto, Takashi; Yang, Lan; Wegener, Martin; Imoto, Nobuyuki
2015-01-01
Plasmonics is a rapidly emerging platform for quantum state engineering with the potential for building ultra-compact and hybrid optoelectronic devices. Recent experiments have shown that despite the presence of decoherence and loss, photon statistics and entanglement can be preserved in single plasmonic systems. This preserving ability should carry over to plasmonic metamaterials, whose properties are the result of many individual plasmonic systems acting collectively, and can be used to engineer optical states of light. Here, we report an experimental demonstration of quantum state filtering, also known as entanglement distillation, using a metamaterial. We show that the metamaterial can be used to distill highly entangled states from less entangled states. As the metamaterial can be integrated with other optical components this work opens up the intriguing possibility of incorporating plasmonic metamaterials in on-chip quantum state engineering tasks. PMID:26670790
Generating entangled quantum microwaves in a Josephson-photonics device
NASA Astrophysics Data System (ADS)
Dambach, Simon; Kubala, Björn; Ankerhold, Joachim
2017-02-01
When connecting a voltage-biased Josephson junction in series to several microwave cavities, a Cooper-pair current across the junction gives rise to a continuous emission of strongly correlated photons into the cavity modes. Tuning the bias voltage to the resonance where a single Cooper pair provides the energy to create an additional photon in each of the cavities, we demonstrate the entangling nature of these creation processes by simple witnesses in terms of experimentally accessible observables. To characterize the entanglement properties of the such created quantum states of light to the fullest possible extent, we then proceed to more elaborate entanglement criteria based on the knowledge of the full density matrix and provide a detailed study of bi- and multipartite entanglement. In particular, we illustrate how due to the relatively simple design of these circuits changes of experimental parameters allow one to access a wide variety of entangled states differing, e.g., in the number of entangled parties or the dimension of state space. Such devices, besides their promising potential to act as a highly versatile source of entangled quantum microwaves, may thus represent an excellent natural testbed for classification and quantification schemes developed in quantum information theory.
Two-Mode Excited Entangled Coherent State: Nonclassicality and Entanglement
NASA Astrophysics Data System (ADS)
Zhang, Hao-Liang; Wu, Jia-Ni; Liu, Cun-Jin; Hu, Yin-Quan; Hu, Li-Yun
2017-03-01
Two-mode excited entangled coherent states (TME-ECSs) are introduced by operating repeatedly the photon-excited operator on the ECSs. It is shown that the normalization constant is related to the product of two Laguerre polynomials. The influence of the operation on nonclassical behaviour of the ECSs is investigated in terms of cross-correlation function, anti-bunching effect and the negativity of Wigner function, which show that nonclassical properties can be enhanced. In addition, inseparability properties of the TME-ECSs are discussed by using Bell inequality and concurrence. It is found that the degree of quantum entanglement of even ECSs increases with the increase of the total excited photon number, and the violation of Bell inequality can be present for both even and odd case only when the total excited photon numbers are even and odd, respectively.
Wang Chuan; Zhang Yong; Jin Guangsheng
2011-09-15
We present an entanglement purification protocol and an entanglement concentration protocol for electron-spin entangled states, resorting to quantum-dot spin and optical-microcavity-coupled systems. The parity-check gates (PCGs) constructed by the cavity-spin-coupling system provide a different method for the entanglement purification of electron-spin entangled states. This protocol can efficiently purify an electron ensemble in a mixed entangled state. The PCGs can also concentrate electron-spin pairs in less-entangled pure states efficiently. The proposed methods are more flexible as only single-photon detection and single-electron detection are needed.
Entangling single photons from independently tuned semiconductor nanoemitters.
Sanaka, Kaoru; Pawlis, Alexander; Ladd, Thaddeus D; Sleiter, Darin J; Lischka, Klaus; Yamamoto, Yoshihisa
2012-09-12
Quantum communication systems based on nanoscale semiconductor devices is challenged by inhomogeneities from device to device. We address this challenge using ZnMgSe/ZnSe quantum-well nanostructures with local laser-based heating to tune the emission of single impurity-bound exciton emitters in two separate devices. The matched emission in combination with photon bunching enables quantum interference from the devices and allows the postselection of polarization-entangled single photons. The ability to entangle single photons emitted from nanometer-sized sources separated by macroscopic distances provides an essential step for a solid-state realization of a large-scale quantum optical network. This paves the way toward measurement-based entanglement generation between remote electron spins localized at macroscopically separated fluorine impurities.
Polarization-entangled light pulses of 10(5) photons.
Iskhakov, Timur Sh; Agafonov, Ivan N; Chekhova, Maria V; Leuchs, Gerd
2012-10-12
We experimentally demonstrate polarization entanglement for squeezed vacuum pulses containing more than 10(5) photons. We also study photon-number entanglement by calculating the Schmidt number and measuring its operational counterpart. Theoretically, our pulses are the more entangled the brighter they are. This promises important applications in quantum technologies, especially photonic quantum gates and quantum memories.
Trapping of coherence and entanglement in photonic band-gaps
NASA Astrophysics Data System (ADS)
Feng, Ling-Juan; Zhang, Ying-Jie; Xing, Gui-Chao; Xia, Yun-Jie; Gong, Shang-Qing
2017-02-01
We investigate the coherence trapping of a two-level atom transversally interacting with a reservoir with a photonic band-gap structure function. We then focus on the multipartite entanglement dynamics via genuinely multipartite concurrence among N independent atoms each locally coupled with its own reservoir. By considering the Lorentzian width and the system size, we find that for the resonant and near-resonant conditions, the increase of Lorentzian width and the decrease of system size can lead to the occurrence of coherence trapping and entanglement trapping. By choosing the multipartite GHZ state as atomic initial state, we show that the multipartite entanglement may exhibit entanglement sudden death depending on the initial condition and the system size. In addition, we also analyze how the crossover behaviors of two dynamical regimes are influenced by the Lorentzian width and the weight ratio, in terms of the non-Markovianity.
Highly efficient heralding of entangled single photons.
Ramelow, Sven; Mech, Alexandra; Giustina, Marissa; Gröblacher, Simon; Wieczorek, Witlef; Beyer, Jörn; Lita, Adriana; Calkins, Brice; Gerrits, Thomas; Nam, Sae Woo; Zeilinger, Anton; Ursin, Rupert
2013-03-25
Single photons are an important prerequisite for a broad spectrum of quantum optical applications. We experimentally demonstrate a heralded single-photon source based on spontaneous parametric down-conversion in collinear bulk optics, and fiber-coupled bolometric transition-edge sensors. Without correcting for background, losses, or detection inefficiencies, we measure an overall heralding efficiency of 83%. By violating a Bell inequality, we confirm the single-photon character and high-quality entanglement of our heralded single photons which, in combination with the high heralding efficiency, are a necessary ingredient for advanced quantum communication protocols such as one-sided device-independent quantum key distribution.
Quantum Discord and Entanglement of Quasi-Werner States Based on Bipartite Entangled Coherent States
NASA Astrophysics Data System (ADS)
Mishra, Manoj K.; Maurya, Ajay K.; Prakash, Hari
2016-06-01
Present work is an attempt to compare quantum discord and quantum entanglement of quasi-Werner states formed with the four bipartite entangled coherent states (ECS) used recently for quantum teleportation of a qubit encoded in superposed coherent state. Out of these, the quasi-Werner states based on maximally ECS due to its invariant nature under local operation is independent of measurement basis and mean photon numbers, while for quasi-Werner states based on non-maximally ECS, it depends upon measurement basis as well as on mean photon number. However, for large mean photon numbers since non-maximally ECS becomes almost maximally entangled therefore dependence of quantum discord for non-maximally ECS based quasi-Werner states on the measurement basis disappears.
Spectrally Engineering Photonic Entanglement with a Time Lens
NASA Astrophysics Data System (ADS)
Donohue, J. M.; Mastrovich, M.; Resch, K. J.
2016-12-01
A time lens, which can be used to reshape the spectral and temporal properties of light, requires the ultrafast manipulation of optical signals and presents a significant challenge for single-photon application. In this work, we construct a time lens based on dispersion and sum-frequency generation to spectrally engineer single photons from an entangled pair. The strong frequency anticorrelations between photons produced from spontaneous parametric down-conversion are converted to positive correlations after the time lens, consistent with a negative-magnification system. The temporal imaging of single photons enables new techniques for time-frequency quantum state engineering.
Teleportation of entangled states without Bell-state measurement
Cardoso, Wesley B.; Baseia, B.; Avelar, A.T.; Almeida, N.G. de
2005-10-15
In a recent paper [Phys. Rev. A 70, 025803 (2004)] we presented a scheme to teleport an entanglement of zero- and one-photon states from a bimodal cavity to another one, with 100% success probability. Here, inspired by recent results in the literature, we have modified our previous proposal to teleport the same entangled state without using Bell-state measurements. For comparison, the time spent, the fidelity, and the success probability for this teleportation are considered.
Entanglement teleportation via werner states
Lee; Kim
2000-05-01
Transfer of entanglement and information is studied for quantum teleportation of an unknown entangled state through noisy quantum channels. We find that the quantum entanglement of the unknown state can be lost during the teleportation even when the channel is quantum correlated. We introduce a fundamental parameter of correlation information which dissipates linearly during the teleportation through the noisy channel. Analyzing the transfer of correlation information, we show that the purity of the initial state is important in determining the entanglement of the replica state.
NASA Astrophysics Data System (ADS)
Yoshizawa, Akio; Fukuda, Daiji; Tsuchida, Hidemi
2014-02-01
We demonstrate a telecom-band fiber-optic two-photon Michelson interferometer using near-degenerate and collinear photon pairs with frequency entanglement. For spontaneous parametric down-conversion (SPDC), a continuous-wave laser diode pumps a periodically poled lithium niobate waveguide. Two threshold single-photon detectors record coincidence counts to observe two-photon interference and evaluate the correlation function. Multi-pair emission events are inevitable in SPDC and photon pairs without frequency entanglement are unintentionally registered as coincidence counts. In the demonstrated experiment, a mixture of photon pairs with and without frequency entanglement is present. The effects of such a mixed state on the correlation function are experimentally investigated. Two-photon interference of photon pairs without frequency entanglement is also measured for comparison.
NASA Astrophysics Data System (ADS)
Snyder, Douglas
2011-04-01
Haunted quantum entanglement involves entanglement between 2 entities where entanglement is based on 1 entity supplying which-way information regarding the other. This ww information is lost before it is released to the environment with the result that the entanglement is also lost. The result of losing entanglement is Young interference as if ww information never existed (not fringes and anti-fringes as in a quantum eraser). In an earlier hqe scenario, ww information is eliminated at a distance between an entangled atom and photon. In the hqe scenario here, the entangled entities are both photons and ww information provided by one photon regarding the other is lost with the accompanying loss of entanglement between the two photons. The entangled photon pairs are created in a similar process to that used by Kim et al. in their quantum eraser. The photon carrying the ww information (i.e., the idler photon) is effectively lost through the release of classical em radiation of a similar character to the idler photon into a box that is evacuated (except for the idler photon that traverses the box initially on one of its two possible paths to a detector) before the signal photon reaches its detection axis. ``Two slit'' interference for the signal photon shows no evidence that ww information ever existed regarding the signal photon.
Concurrence of a pair of time-bin entangled photons
NASA Astrophysics Data System (ADS)
Ávila, M.; Morales-Cadena, J. A.
2016-02-01
A metastable state ? subjected to a couple of pulses transits to an excited level ? of an atom with probabilities ? and ?, respectively. One photon is emitted in the transition from the level ? to a lower atomic level ?. A second photon is emitted in the transition from the level ? to a lowest atomic level ?. The first photon must be emitted before than the second one so they are both time ordered (time-bin) and entangled. It is calculated that the concurrence of the two produced time-bin photons as a function of ?, ? and the branching ratios of the two transitions ? and (?). It is found that the two produced photons are maximally entangled if the branching ratios are greater than 80%. It is also found that certain values of ?, ? and the branching ratios preclude entanglement between the two produced photons. Intervals of values for ? and ? where the concurrence is large enough and then two-qubit quantum information processing protocols can be optimally implemented are found.
Concurrent remote entanglement with quantum error correction against photon losses
NASA Astrophysics Data System (ADS)
Roy, Ananda; Stone, A. Douglas; Jiang, Liang
2016-09-01
Remote entanglement of distant, noninteracting quantum entities is a key primitive for quantum information processing. We present a protocol to remotely entangle two stationary qubits by first entangling them with propagating ancilla qubits and then performing a joint two-qubit measurement on the ancillas. Subsequently, single-qubit measurements are performed on each of the ancillas. We describe two continuous variable implementations of the protocol using propagating microwave modes. The first implementation uses propagating Schr o ̈ dinger cat states as the flying ancilla qubits, a joint-photon-number-modulo-2 measurement of the propagating modes for the two-qubit measurement, and homodyne detections as the final single-qubit measurements. The presence of inefficiencies in realistic quantum systems limit the success rate of generating high fidelity Bell states. This motivates us to propose a second continuous variable implementation, where we use quantum error correction to suppress the decoherence due to photon loss to first order. To that end, we encode the ancilla qubits in superpositions of Schrödinger cat states of a given photon-number parity, use a joint-photon-number-modulo-4 measurement as the two-qubit measurement, and homodyne detections as the final single-qubit measurements. We demonstrate the resilience of our quantum-error-correcting remote entanglement scheme to imperfections. Further, we describe a modification of our error-correcting scheme by incorporating additional individual photon-number-modulo-2 measurements of the ancilla modes to improve the success rate of generating high-fidelity Bell states. Our protocols can be straightforwardly implemented in state-of-the-art superconducting circuit-QED systems.
Local cloning of entangled states
Gheorghiu, Vlad; Yu Li; Cohen, Scott M.
2010-08-15
We investigate the conditions under which a set S of pure bipartite quantum states on a DxD system can be locally cloned deterministically by separable operations, when at least one of the states is full Schmidt rank. We allow for the possibility of cloning using a resource state that is less than maximally entangled. Our results include that: (i) all states in S must be full Schmidt rank and equally entangled under the G-concurrence measure, and (ii) the set S can be extended to a larger clonable set generated by a finite group G of order |G|=N, the number of states in the larger set. It is then shown that any local cloning apparatus is capable of cloning a number of states that divides D exactly. We provide a complete solution for two central problems in local cloning, giving necessary and sufficient conditions for (i) when a set of maximally entangled states can be locally cloned, valid for all D; and (ii) local cloning of entangled qubit states with nonvanishing entanglement. In both of these cases, we show that a maximally entangled resource is necessary and sufficient, and the states must be related to each other by local unitary 'shift' operations. These shifts are determined by the group structure, so need not be simple cyclic permutations. Assuming this shifted form and partially entangled states, then in D=3 we show that a maximally entangled resource is again necessary and sufficient, while for higher-dimensional systems, we find that the resource state must be strictly more entangled than the states in S. All of our necessary conditions for separable operations are also necessary conditions for local operations and classical communication (LOCC), since the latter is a proper subset of the former. In fact, all our results hold for LOCC, as our sufficient conditions are demonstrated for LOCC, directly.
Entanglement for All Quantum States
ERIC Educational Resources Information Center
de la Torre, A. C.; Goyeneche, D.; Leitao, L.
2010-01-01
It is shown that a state that is factorizable in the Hilbert space corresponding to some choice of degrees of freedom becomes entangled for a different choice of degrees of freedom. Therefore, entanglement is not a special case but is ubiquitous in quantum systems. Simple examples are calculated and a general proof is provided. The physical…
Photonic Crystal Fiber Based Entangled Photon Sources
2014-03-01
at 77K. The HNLF in plastic buffer coating is cooled to 77K by immersing it into a liquid nitrogen filled Dewar. Advancement of photons arrival...collected by using fiber-to-free space coupler (NA=0.25), which is placed closely right after the PBS. The multiple scattering random media is
Chekhova, M.V.; Ivanova, O.A.; Berardi, V.; Garuccio, A.
2005-08-15
We consider the quantum state of light produced via direct parametric decay of pump photons into photon triples in a medium with cubic nonlinearity. For this state generated in the near-collinear frequency-degenerate regime, the third- and second-order Glauber's correlation functions are calculated and the intensity distribution over frequency and wave vector is found. It is shown that the number of photons generated into a single mode via the three-photon down-conversion is proportional to the width of the frequency-angular intensity distribution for the corresponding two-photon phase matching (spontaneous parametric down-conversion). The intensity of three-photon parametric down-conversion is shown to have an extremely broad frequency spectrum, even for a fixed angle of scattering.
Entanglement with negative Wigner function of almost 3,000 atoms heralded by one photon.
McConnell, Robert; Zhang, Hao; Hu, Jiazhong; Ćuk, Senka; Vuletić, Vladan
2015-03-26
Quantum-mechanically correlated (entangled) states of many particles are of interest in quantum information, quantum computing and quantum metrology. Metrologically useful entangled states of large atomic ensembles have been experimentally realized, but these states display Gaussian spin distribution functions with a non-negative Wigner quasiprobability distribution function. Non-Gaussian entangled states have been produced in small ensembles of ions, and very recently in large atomic ensembles. Here we generate entanglement in a large atomic ensemble via an interaction with a very weak laser pulse; remarkably, the detection of a single photon prepares several thousand atoms in an entangled state. We reconstruct a negative-valued Wigner function--an important hallmark of non-classicality--and verify an entanglement depth (the minimum number of mutually entangled atoms) of 2,910 ± 190 out of 3,100 atoms. Attaining such a negative Wigner function and the mutual entanglement of virtually all atoms is unprecedented for an ensemble containing more than a few particles. Although the achieved purity of the state is slightly below the threshold for entanglement-induced metrological gain, further technical improvement should allow the generation of states that surpass this threshold, and of more complex Schrödinger cat states for quantum metrology and information processing. More generally, our results demonstrate the power of heralded methods for entanglement generation, and illustrate how the information contained in a single photon can drastically alter the quantum state of a large system.
High-yield entangled single photon source
Soh, Daniel B. S.; Bisson, Scott E.
2016-10-11
The various technologies presented herein relate to utilizing photons at respective idler and signal frequencies to facilitate generation of photons at a pump frequency. A strong pump field can be applied at the .omega..sub.i and the .omega..sub.s frequencies, with the generated idler and signal pulses being utilized to generate a photon pair at the .omega..sub.p frequency. Further, the idler pump power can be increased relative to the signal pump power such that the pump power P.sub.i>pump power P.sub.s. Such reversed operation (e.g., .omega..sub.i+.omega..sub.s.fwdarw..omega..sub.p1+.omega..sub.p2) can minimize and/or negate Raman scattering effects. By complying with an energy conservation requirement, the .omega..sub.i and .omega..sub.s photons interacting with the material through the four-wave mixing process facilitates the entanglement of the .omega..sub.p1 and .omega..sub.p2 photons. The .omega..sub.i and .omega..sub.s photons can be respectively formed in different length waveguides with a delay utilized to facilitate common timing between the .omega..sub.i and .omega..sub.s photons.
Entangled Photons Generation and Regeneration Using a Nonlinear Fiber Ring Resonator
NASA Astrophysics Data System (ADS)
Suchat, S.; Khunnam, W.; Yupapin, P. P.
2008-11-01
A new technique of an entangled photon pair generation and regeneration characterization using an all fiber optic scheme is investigated. The proposed system is consisted of a fiber optic ring resonator. The Kerr nonlinearity effect in the fiber ring resonator is exploited for the generation of two independent beams. The advantage of such a system is that it requires a simple arrangement without any optical pumping part and bulky optical components. Polarized light pulse trains are launched randomly into a nonlinear fiber optic ring resonator. Where the superpositions of light pulses in a nonlinear fiber optics ring resonator are randomly occurred which is formed the entangled photon pairs. A polarization controller controls polarization states of light pulses while circulating in the ring resonator. The entangled photons are seen on the avalanche photo-detector. Then the output of the entangled photon states recovery by using a fiber ring resonator incorporating an erbium-doped fiber (EDF) has been investigated. We have shown that the weak entangled photon states can be recovered after circulating in the amplified fiber optic medium. The results obtained have shown that this system can be used to achieve the recovered polarization entangled states with the obtained high gain. The amplifying noise has also been detected and seen on the spectrum output. This is affected to the entangled photon visibility, which is discussed.
Entanglement and quantum teleportation via decohered tripartite entangled states
Metwally, N.
2014-12-15
The entanglement behavior of two classes of multi-qubit system, GHZ and GHZ like states passing through a generalized amplitude damping channel is discussed. Despite this channel causes degradation of the entangled properties and consequently their abilities to perform quantum teleportation, one can always improve the lower values of the entanglement and the fidelity of the teleported state by controlling on Bell measurements, analyzer angle and channel’s strength. Using GHZ-like state within a generalized amplitude damping channel is much better than using the normal GHZ-state, where the decay rate of entanglement and the fidelity of the teleported states are smaller than those depicted for GHZ state.
Position-momentum-entangled photon pairs in nonlinear waveguides and transmission lines
NASA Astrophysics Data System (ADS)
Sherkunov, Y.; Whittaker, David M.; Fal'ko, Vladimir
2016-04-01
We analyze the correlation properties of light in nonlinear waveguides and transmission lines, predict the position-momentum realization of the Einstein-Podolsky-Rosen paradox for photon pairs in Kerr-type nonlinear photonic circuits, and we show how two-photon entangled states can be generated and detected.
Maximally entangled mixed-state generation via local operations
Aiello, A.; Puentes, G.; Voigt, D.; Woerdman, J. P.
2007-06-15
We present a general theoretical method to generate maximally entangled mixed states of a pair of photons initially prepared in the singlet polarization state. This method requires only local operations upon a single photon of the pair and exploits spatial degrees of freedom to induce decoherence. We report also experimental confirmation of these theoretical results.
Inseparability of photon-added Gaussian states
Li Hongrong; Li Fuli; Zhu Shiyao
2007-06-15
The inseparability of photon-added Gaussian states which are generated from two-mode Gaussian states by adding photons is investigated. According to the established inseparability conditions [New J. Phys. 7, 211 (2005); Phys. Rev. Lett. 96, 050503 (2006)], we find that even if a two-mode Gaussian state is separable, the photon-added Gaussian state becomes entangled when the purity of the Gaussian state is larger than a certain value. The lower bound of entanglement of symmetric photon-added Gaussian states is derived. The result shows that entanglement of the photon-added Gaussian states is involved with high-order moment correlations. We find that fidelity of teleporting coherent states cannot be raised by employing the photon-added Gaussian states as a quantum channel of teleportation.
Entanglement and Squeezing in Solid State Circuits
Wen Yihuo; Gui Lulong
2008-11-07
We investigate the dynamics of a system consisting of a Cooper-pair box and two superconducting transmission line resonators. There exist both linear and nonlinear interactions in such a system. We show that single-photon entanglement state can be generated in a simple way in the linear interaction regime. In nonlinear interaction regime, we derive the Hamiltonian of degenerate three-wave mixing and propose a scheme for generating squeezed state of microwave using the three-wave mixing in solid state circuits. In the following, we design a system for generating squeezed states of nanamechanical resonator.
NASA Astrophysics Data System (ADS)
Gupta, Manish Kumar; You, Chenglong; Dowling, Jonathan P.; Lee, Hwang
2016-05-01
We study the dynamics of decoherence in an optical fiber for the case of entangled photons. Such a study will allow us to increase the physical length of fiber for transmission of entangled photon from the sources such as SPDC. We analytically derive the model for Decoherence of entangled state photons in a single-mode fiber. We also show that entanglement lifetime can be increased for Bell state and Werner state with open loop control technique called Dynamical decoupling. The authors would like to acknowledge support from the Air Force Office of Scientific Research, the Army Research Office, the National Science Foundation and the Northrop Grumman Corporation.
Twisted photon entanglement through turbulent air across Vienna
Krenn, Mario; Handsteiner, Johannes; Fink, Matthias; Fickler, Robert; Zeilinger, Anton
2015-01-01
Photons with a twisted phase front can carry a discrete, in principle, unbounded amount of orbital angular momentum (OAM). The large state space allows for complex types of entanglement, interesting both for quantum communication and for fundamental tests of quantum theory. However, the distribution of such entangled states over large distances was thought to be infeasible due to influence of atmospheric turbulence, indicating a serious limitation on their usefulness. Here we show that it is possible to distribute quantum entanglement encoded in OAM over a turbulent intracity link of 3 km. We confirm quantum entanglement of the first two higher-order levels (with OAM=± 1ℏ and ± 2ℏ). They correspond to four additional quantum channels orthogonal to all that have been used in long-distance quantum experiments so far. Therefore, a promising application would be quantum communication with a large alphabet. We also demonstrate that our link allows access to up to 11 quantum channels of OAM. The restrictive factors toward higher numbers are technical limitations that can be circumvented with readily available technologies. PMID:26578763
Simultaneous observation of particle and wave behaviors of entangled photons
Man, Zhong-Xiao; Xia, Yun-Jie; An, Nguyen Ba
2017-01-01
We theoretically study wave-particle duality of two entangled photons in the spirit of quantum version of delayed-choice experiments using Hadamard gate controlled by the quantum state of an ancilla and show that the two photons may globally exhibit particle-like, wave-like or simultaneously both particle-like and wave-like behavior. We prove that the obtained results cannot be satisfactorily explained by any hidden-variable theory. We also propose an efficient and experimentally feasible scheme without using any ancilla and controlled-gates to directly (i.e., without postselection) observe the two-photon wave-particle superposed state as well as the continuous transition of their behavior between wave-like one and particle-like one. PMID:28211902
Simultaneous observation of particle and wave behaviors of entangled photons.
Man, Zhong-Xiao; Xia, Yun-Jie; An, Nguyen Ba
2017-02-13
We theoretically study wave-particle duality of two entangled photons in the spirit of quantum version of delayed-choice experiments using Hadamard gate controlled by the quantum state of an ancilla and show that the two photons may globally exhibit particle-like, wave-like or simultaneously both particle-like and wave-like behavior. We prove that the obtained results cannot be satisfactorily explained by any hidden-variable theory. We also propose an efficient and experimentally feasible scheme without using any ancilla and controlled-gates to directly (i.e., without postselection) observe the two-photon wave-particle superposed state as well as the continuous transition of their behavior between wave-like one and particle-like one.
Simultaneous observation of particle and wave behaviors of entangled photons
NASA Astrophysics Data System (ADS)
Man, Zhong-Xiao; Xia, Yun-Jie; An, Nguyen Ba
2017-02-01
We theoretically study wave-particle duality of two entangled photons in the spirit of quantum version of delayed-choice experiments using Hadamard gate controlled by the quantum state of an ancilla and show that the two photons may globally exhibit particle-like, wave-like or simultaneously both particle-like and wave-like behavior. We prove that the obtained results cannot be satisfactorily explained by any hidden-variable theory. We also propose an efficient and experimentally feasible scheme without using any ancilla and controlled-gates to directly (i.e., without postselection) observe the two-photon wave-particle superposed state as well as the continuous transition of their behavior between wave-like one and particle-like one.
Ikuta, Rikizo; Kato, Hiroshi; Kusaka, Yoshiaki; Yamamoto, Takashi; Imoto, Nobuyuki; Miki, Shigehito; Yamashita, Taro; Terai, Hirotaka; Wang, Zhen; Fujiwara, Mikio; Sasaki, Masahide; Koashi, Masato
2014-12-04
We experimentally demonstrate a high-fidelity visible-to-telecommunicationwavelength conversion of a photon by using a solid-state-based difference frequency generation. In the experiment, one half of a pico-second visible entangled photon pair at 780 nm is converted to a 1522-nm photon. Using superconducting single-photon detectors with low dark count rates and small timing jitters, we observed a fidelity of 0.93±0.04 after the wavelength conversion.
Fast entanglement detection for unknown states of two spatial qutrits
Lima, G.; Gomez, E. S.; Saavedra, C.; Vargas, A.; Vianna, R. O.
2010-07-15
We investigate the practicality of the method proposed by Maciel et al. [Phys. Rev. A. 80, 032325 (2009).] for detecting the entanglement of two spatial qutrits (three-dimensional quantum systems), which are encoded in the discrete transverse momentum of single photons transmitted through a multislit aperture. The method is based on the acquisition of partial information of the quantum state through projective measurements, and a data processing analysis done with semidefinite programs. This analysis relies on generating gradually an optimal entanglement witness operator, and numerical investigations have shown that it allows for the entanglement detection of unknown states with a cost much lower than full state tomography.
Multipartite entanglement in conditional states
NASA Astrophysics Data System (ADS)
Urbina, Juan Diego; Strunz, Walter T.; Viviescas, Carlos
2013-02-01
A key lesson of the decoherence program is that information flowing out from an open system is stored in the quantum state of the surroundings. Simultaneously, quantum measurement theory shows that the evolution of any open system when its environment is measured is nonlinear and leads to pure states conditioned on the measurement record. Here we report the discovery of a fundamental relation between measurement and entanglement which is characteristic of this scenario. It takes the form of a scaling law between the amount of entanglement in the conditional state of the system and the probabilities of the experimental outcomes obtained from measuring the state of the environment, with the latter modeled as a bosonic field linearly coupled with the system. Using the scaling, we construct the distribution of entanglement over the ensemble of experimental outcomes for standard models with one open channel and provide rigorous results on finite-time disentanglement in systems coupled to non-Markovian baths. In principle, the scaling allows the direct experimental detection and quantification of entanglement in conditional states of a large class of open systems by quantum tomography of the bath even when it consists of a single mode.
Temporal pure single photons generated from time-frequency entangled biphotons
NASA Astrophysics Data System (ADS)
Peng, Qian; Gu, Zhejie; Chen, J. F.; Zhang, Weiping
2016-11-01
Narrow-band time-frequency entangled biphotons are generated from spontaneous four-wave mixing in cold atom clouds. The coherence time of the entangled biphotons can be extended to sub-microseconds by the slow light effect. The temporal wavefunction of the biphotons can be manipulated through modulating the spectral or spatial mode of the controlling laser beams. Concerning a pair of entangled biphoton and the resulting heralded single photon, it was commonly believed that, time-frequency entanglement damages the temporal purity of the single photon. However, the case is totally different for biphotons with long coherence time which is far beyond the time resolution of single-photondetectors. We demonstrate that, the single photon heralded from these time-frequency entangled biphotons is in a pure temporal state. Therefore, single photons are able to be shaped through the time-frequency entanglement with their partner photons, while the single photons could be found to be still in a pure state and thus useful for quantum information processing and communication technology.
Distillation and purification of symmetric entangled Gaussian states
Fiurasek, Jaromir
2010-10-15
We propose an entanglement distillation and purification scheme for symmetric two-mode entangled Gaussian states that allows to asymptotically extract a pure entangled Gaussian state from any input entangled symmetric Gaussian state. The proposed scheme is a modified and extended version of the entanglement distillation protocol originally developed by Browne et al. [Phys. Rev. A 67, 062320 (2003)]. A key feature of the present protocol is that it utilizes a two-copy degaussification procedure that involves a Mach-Zehnder interferometer with single-mode non-Gaussian filters inserted in its two arms. The required non-Gaussian filtering operations can be implemented by coherently combining two sequences of single-photon addition and subtraction operations.
Sensitivity of entangled photon holes to loss and amplification
Franson, J. D.
2011-10-15
Energy-time entangled photon holes are shown to be relatively insensitive to photon loss due to absorption by atoms whose coherence times are longer than the time delays typically employed in nonlocal interferometry (a fraction of a nanosecond). Roughly speaking, the excited atoms do not retain any significant ''which-path'' information regarding the time at which a photon was absorbed. High-intensity entangled photon holes can also be amplified under similar conditions. Decoherence does occur from losses at beam splitters, and these results show that photon loss cannot always be adequately modeled using a sequence of beam splitters. These properties of entangled photon holes may be useful in quantum communications systems where the range of the system is limited by photon loss.
Bright Phase-Stable Broadband Fiber-Based Source of Polarization-Entangled Photon Pairs
2007-10-24
distribution 2, and quantum - state teleportation 3. For example, it is now well known that two parties, each sharing half of an entangled photon pair...FUNDING NUMBERS Bright Phase-Stable Broadband Fiber-Based Source of MURI Center for Photonic Quantum Information Systems: ARO/ARDA Program Polarization...wide range of quantum -information applications. 14. SUBJECT TERMS 15. NUMBER OF PAGES single photon source, microstructure fiber, photon correlation
NASA Astrophysics Data System (ADS)
Guerreiro, T.; Monteiro, F.; Martin, A.; Brask, J. B.; Vértesi, T.; Korzh, B.; Caloz, M.; Bussières, F.; Verma, V. B.; Lita, A. E.; Mirin, R. P.; Nam, S. W.; Marsilli, F.; Shaw, M. D.; Gisin, N.; Brunner, N.; Zbinden, H.; Thew, R. T.
2016-08-01
We demonstrate the violation of an Einstein-Podolsky-Rosen steering inequality developed for single-photon path entanglement with displacement-based detection. We use a high-rate source of heralded single-photon path-entangled states, combined with high-efficiency superconducting-based detectors, in a scheme that is free of any postselection and thus immune to the detection loophole. This result conclusively demonstrates single-photon entanglement in a one-sided device-independent scenario, and opens the way towards implementations of device-independent quantum technologies within the paradigm of path entanglement.
Theory of two-photon interactions with broadband down-converted light and entangled photons
NASA Astrophysics Data System (ADS)
Dayan, Barak
2007-10-01
When two-photon interactions are induced by down-converted light with a bandwidth that exceeds the pump bandwidth, they can obtain a behavior that is pulselike temporally, yet spectrally narrow. At low photon fluxes this behavior reflects the time and energy entanglement between the down-converted photons. However, two-photon interactions such as two-photon absorption (TPA) and sum-frequency generation (SFG) can exhibit such a behavior even at high power levels, as long as the final state (i.e., the atomic level in TPA, or the generated light in SFG) is narrow-band enough. This behavior does not depend on the squeezing properties of the light, is insensitive to linear losses, and has potential applications. In this paper we describe analytically this behavior for traveling-wave down conversion with continuous or pulsed pumping, both for high- and low-power regimes. For this we derive a quantum-mechanical expression for the down-converted amplitude generated by an arbitrary pump, and formulate operators that represent various two-photon interactions induced by broadband light. This model is in excellent agreement with experimental results of TPA and SFG with high-power down-converted light and with entangled photons [Dayan , Phys. Rev. Lett. 93, 023005 (2004); 94, 043602 (2005); Pe’er , ibid. 94, 073601 (2005)].
Experimental demonstration of five-photon entanglement and open-destination teleportation.
Zhao, Zhi; Chen, Yu-Ao; Zhang, An-Ning; Yang, Tao; Briegel, Hans J; Pan, Jian-Wei
2004-07-01
Quantum-mechanical entanglement of three or four particles has been achieved experimentally, and has been used to demonstrate the extreme contradiction between quantum mechanics and local realism. However, the realization of five-particle entanglement remains an experimental challenge. The ability to manipulate the entanglement of five or more particles is required for universal quantum error correction. Another key process in distributed quantum information processing, similar to encoding and decoding, is a teleportation protocol that we term 'open-destination' teleportation. An unknown quantum state of a single particle is teleported onto a superposition of N particles; at a later stage, this teleported state can be read out (for further applications) at any of the N particles, by a projection measurement on the remaining particles. Here we report a proof-of-principle demonstration of five-photon entanglement and open-destination teleportation (for N = 3). In the experiment, we use two entangled photon pairs to generate a four-photon entangled state, which is then combined with a single-photon state. Our experimental methods can be used for investigations of measurement-based quantum computation and multi-party quantum communication.
Sensing intruders using entanglement: a photonic quantum fence
Humble, Travis S; Bennink, Ryan S; Grice, Warren P; Owens, Israel J
2009-01-01
We describe the use of quantum-mechanically entangled photons for sensing intrusions across a physical perimeter. Our approach to intrusion detection uses the no-cloning principle of quantum information science as protection against an intruder s ability to spoof a sensor receiver using a classical intercept-resend attack. Moreover, we employ the correlated measurement outcomes from polarization-entangled photons to protect against quantum intercept-resend attacks, i.e., attacks using quantum teleportation. We explore the bounds on detection using quantum detection and estimation theory, and we experimentally demonstrate the underlying principle of entanglement-based detection using the visibility derived from polarization-correlation measurements.
Suppression of population transport and control of exciton distributions by entangled photons.
Schlawin, Frank; Dorfman, Konstantin E; Fingerhut, Benjamin P; Mukamel, Shaul
2013-01-01
Entangled photons provide an important tool for secure quantum communication, computing and lithography. Low intensity requirements for multi-photon processes make them idealy suited for minimizing damage in imaging applications. Here we show how their unique temporal and spectral features may be used in nonlinear spectroscopy to reveal properties of multiexcitons in chromophore aggregates. Simulations demostrate that they provide unique control tools for two-exciton states in the bacterial reaction centre of Blastochloris viridis. Population transport in the intermediate single-exciton manifold may be suppressed by the absorption of photon pairs with short entanglement time, thus allowing the manipulation of the distribution of two-exciton states. The quantum nature of the light is essential for achieving this degree of control, which cannot be reproduced by stochastic or chirped light. Classical light is fundamentally limited by the frequency-time uncertainty, whereas entangled photons have independent temporal and spectral characteristics not subjected to this uncertainty.
Suppression of population transport and control of exciton distributions by entangled photons
Schlawin, Frank; Dorfman, Konstantin E.; Fingerhut, Benjamin P.; Mukamel, Shaul
2013-01-01
Entangled photons provide an important tool for secure quantum communication, computing and lithography. Low intensity requirements for multi-photon processes make them idealy suited for minimizing damage in imaging applications. Here we show how their unique temporal and spectral features may be used in nonlinear spectroscopy to reveal properties of multiexcitons in chromophore aggregates. Simulations demostrate that they provide unique control tools for two-exciton states in the bacterial reaction centre of Blastochloris viridis. Population transport in the intermediate single-exciton manifold may be suppressed by the absorption of photon pairs with short entanglement time, thus allowing the manipulation of the distribution of two-exciton states. The quantum nature of the light is essential for achieving this degree of control, which cannot be reproduced by stochastic or chirped light. Classical light is fundamentally limited by the frequency-time uncertainty, whereas entangled photons have independent temporal and spectral characteristics not subjected to this uncertainty. PMID:23653194
Family of nonlocal bound entangled states
NASA Astrophysics Data System (ADS)
Yu, Sixia; Oh, C. H.
2017-03-01
Bound entanglement, being entangled yet not distillable, is essential to our understanding of the relations between nonlocality and entanglement besides its applications in certain quantum information tasks. Recently, bound entangled states that violate a Bell inequality have been constructed for a two-qutrit system, disproving a conjecture by Peres that bound entanglement is local. Here we construct this kind of nonlocal bound entangled state for all finite dimensions larger than two, making possible their experimental demonstration in most general systems. We propose a Bell inequality, based on a Hardy-type argument for nonlocality, and a steering inequality to identify their nonlocality. We also provide a family of entanglement witnesses to detect their entanglement beyond the Bell inequality and the steering inequality.
High-accurate nonlocal timing and positioning using entangled photon pairs
NASA Astrophysics Data System (ADS)
Valencia Gonzalez, Alejandra C.
One of the most surprising consequences of quantum mechanics is the concept of entanglement. This concept has intrigued the scientific community since it was first proposed by Einstein, Podolsky and Rosen in 1935 because of its connection to fundamental aspects regarding our conception of the universe. Nowadays, there are still open questions about the fundamental issues of quantum mechanics. Nevertheless, the unique characteristics of entanglement have been proposed for practical applications in the last years. Spontaneous Parametric Down Conversion (SPDC) has been recognized as a convenient source of entangled photon pairs. SPDC is a nonlinear optical process in which a pump laser beam is shone into a nonlinear crystal and occasionally one pump photon is down-converted to a pair of lower frequency photons that are entangled. Two photons in an entangled state are characterized by a single two-photon effective wavefunction, or Biphoton. They cannot be considered as the simple juxtaposition of two individual systems. This is a consequence of the quantum correlations between the two photons and implies that a measurement in one of the subsystems affects the total state of the composite system and, therefore, affects the output of a measurement performed in the other photon. The purpose of this dissertation is to show the potential of entangled photon pairs for high-accurate timing and positioning measurements. The entangled nature of the two-photon states allows, in principle, precise space-time correlation measurements to the femtosecond level, providing the physical foundations for high-accurate nonlocal distant clock synchronization. In this dissertation, the proof-of-principle demonstration of a "one-way" distant clock synchronization protocol is presented. The novel method is based on the measurements of the second order correlation function of entangled photon pairs. An experimental study of the behavior of the Biphoton when it travels through a dispersive
Manipulating Frequency-Bin Entangled States in Cold Atoms
Zavatta, A.; Artoni, M.; Viscor, D.; La Rocca, G.
2014-01-01
Optical manipulation of entanglement harnessing the frequency degree of freedom is important for encoding of quantum information. We here devise a phase-resonant excitation mechanism of an atomic interface where full control of a narrowband single-photon two-mode frequency entangled state can be efficiently achieved. We illustrate the working physical mechanism for an interface made of cold 87Rb atoms where entanglement is well preserved from degradation over a typical 100 μm length scale of the interface and with fractional delays of the order of unity. The scheme provides a basis for efficient multi-frequency and multi-photon entanglement, which is not easily accessible to polarization and spatial encoding. PMID:24487523
Wavelength-tunable entangled photons from silicon-integrated III-V quantum dots
NASA Astrophysics Data System (ADS)
Chen, Yan; Zhang, Jiaxiang; Zopf, Michael; Jung, Kyubong; Zhang, Yang; Keil, Robert; Ding, Fei; Schmidt, Oliver G.
2016-01-01
Many of the quantum information applications rely on indistinguishable sources of polarization-entangled photons. Semiconductor quantum dots are among the leading candidates for a deterministic entangled photon source; however, due to their random growth nature, it is impossible to find different quantum dots emitting entangled photons with identical wavelengths. The wavelength tunability has therefore become a fundamental requirement for a number of envisioned applications, for example, nesting different dots via the entanglement swapping and interfacing dots with cavities/atoms. Here we report the generation of wavelength-tunable entangled photons from on-chip integrated InAs/GaAs quantum dots. With a novel anisotropic strain engineering technique based on PMN-PT/silicon micro-electromechanical system, we can recover the quantum dot electronic symmetry at different exciton emission wavelengths. Together with a footprint of several hundred microns, our device facilitates the scalable integration of indistinguishable entangled photon sources on-chip, and therefore removes a major stumbling block to the quantum-dot-based solid-state quantum information platforms.
Wavelength-tunable entangled photons from silicon-integrated III–V quantum dots
Chen, Yan; Zhang, Jiaxiang; Zopf, Michael; Jung, Kyubong; Zhang, Yang; Keil, Robert; Ding, Fei; Schmidt, Oliver G.
2016-01-01
Many of the quantum information applications rely on indistinguishable sources of polarization-entangled photons. Semiconductor quantum dots are among the leading candidates for a deterministic entangled photon source; however, due to their random growth nature, it is impossible to find different quantum dots emitting entangled photons with identical wavelengths. The wavelength tunability has therefore become a fundamental requirement for a number of envisioned applications, for example, nesting different dots via the entanglement swapping and interfacing dots with cavities/atoms. Here we report the generation of wavelength-tunable entangled photons from on-chip integrated InAs/GaAs quantum dots. With a novel anisotropic strain engineering technique based on PMN-PT/silicon micro-electromechanical system, we can recover the quantum dot electronic symmetry at different exciton emission wavelengths. Together with a footprint of several hundred microns, our device facilitates the scalable integration of indistinguishable entangled photon sources on-chip, and therefore removes a major stumbling block to the quantum-dot-based solid-state quantum information platforms. PMID:26813326
Qubit entanglement between ring-resonator photon-pair sources on a silicon chip
Silverstone, J. W.; Santagati, R.; Bonneau, D.; Strain, M. J.; Sorel, M.; O'Brien, J. L.; Thompson, M. G.
2015-01-01
Entanglement—one of the most delicate phenomena in nature—is an essential resource for quantum information applications. Scalable photonic quantum devices must generate and control qubit entanglement on-chip, where quantum information is naturally encoded in photon path. Here we report a silicon photonic chip that uses resonant-enhanced photon-pair sources, spectral demultiplexers and reconfigurable optics to generate a path-entangled two-qubit state and analyse its entanglement. We show that ring-resonator-based spontaneous four-wave mixing photon-pair sources can be made highly indistinguishable and that their spectral correlations are small. We use on-chip frequency demultiplexers and reconfigurable optics to perform both quantum state tomography and the strict Bell-CHSH test, both of which confirm a high level of on-chip entanglement. This work demonstrates the integration of high-performance components that will be essential for building quantum devices and systems to harness photonic entanglement on the large scale. PMID:26245267
Ion-photon entanglement and quantum frequency conversion with trapped Ba^{+} ions.
Siverns, J D; Li, X; Quraishi, Q
2017-01-20
Trapped ions are excellent candidates for quantum nodes, as they possess many desirable features of a network node including long lifetimes, on-site processing capability, and production of photonic flying qubits. However, unlike classical networks in which data may be transmitted in optical fibers and where the range of communication is readily extended with amplifiers, quantum systems often emit photons that have a limited propagation range in optical fibers and, by virtue of the nature of a quantum state, cannot be noiselessly amplified. Here, we first describe a method to extract flying qubits from a Ba^{+} trapped ion via shelving to a long-lived, low-lying D-state with higher entanglement probabilities compared with current strong and weak excitation methods. We show a projected fidelity of ≈89% of the ion-photon entanglement. We compare several methods of ion-photon entanglement generation, and we show how the fidelity and entanglement probability varies as a function of the photon collection optic's numerical aperture. We then outline an approach for quantum frequency conversion of the photons emitted by the Ba^{+} ion to the telecommunication range for long-distance networking and to 780 nm for potential entanglement with rubidium-based quantum memories. Our approach is significant for extending the range of quantum networks and for the development of hybrid quantum networks compromised of different types of quantum memories.
Squashed entanglement and approximate private states
NASA Astrophysics Data System (ADS)
Wilde, Mark M.
2016-11-01
The squashed entanglement is a fundamental entanglement measure in quantum information theory, finding application as an upper bound on the distillable secret key or distillable entanglement of a quantum state or a quantum channel. This paper simplifies proofs that the squashed entanglement is an upper bound on distillable key for finite-dimensional quantum systems and solidifies such proofs for infinite-dimensional quantum systems. More specifically, this paper establishes that the logarithm of the dimension of the key system (call it log 2K) in an ɛ -approximate private state is bounded from above by the squashed entanglement of that state plus a term that depends only ɛ and log 2K. Importantly, the extra term does not depend on the dimension of the shield systems of the private state. The result holds for the bipartite squashed entanglement, and an extension of this result is established for two different flavors of the multipartite squashed entanglement.
Geometric phase and entanglement of Raman photon pairs in the presence of photonic band gap
NASA Astrophysics Data System (ADS)
Berrada, K.; Ooi, C. H. Raymond; Abdel-Khalek, S.
2015-03-01
Robustness of the geometric phase (GP) with respect to different noise effects is a basic condition for an effective quantum computation. Here, we propose a useful quantum system with real physical parameters by studying the GP of a pair of Stokes and anti-Stokes photons, involving Raman emission processes with and without photonic band gap (PBG) effect. We show that the properties of GP are very sensitive to the change of the Rabi frequency and time, exhibiting collapse phenomenon as the time becomes significantly large. The system allows us to obtain a state which remains with zero GP for longer times. This result plays a significant role to enhance the stabilization and control of the system dynamics. Finally, we investigate the nonlocal correlation (entanglement) between the pair photons by taking into account the effect of different parameters. An interesting correlation between the GP and entanglement is observed showing that the PBG stabilizes the fluctuations in the system and makes the entanglement more robust against the change of time and frequency.
Geometric phase and entanglement of Raman photon pairs in the presence of photonic band gap
Berrada, K.; Ooi, C. H. Raymond; Abdel-Khalek, S.
2015-03-28
Robustness of the geometric phase (GP) with respect to different noise effects is a basic condition for an effective quantum computation. Here, we propose a useful quantum system with real physical parameters by studying the GP of a pair of Stokes and anti-Stokes photons, involving Raman emission processes with and without photonic band gap (PBG) effect. We show that the properties of GP are very sensitive to the change of the Rabi frequency and time, exhibiting collapse phenomenon as the time becomes significantly large. The system allows us to obtain a state which remains with zero GP for longer times. This result plays a significant role to enhance the stabilization and control of the system dynamics. Finally, we investigate the nonlocal correlation (entanglement) between the pair photons by taking into account the effect of different parameters. An interesting correlation between the GP and entanglement is observed showing that the PBG stabilizes the fluctuations in the system and makes the entanglement more robust against the change of time and frequency.
Resilience of orbital-angular-momentum photonic qubits and effects on hybrid entanglement
Giovannini, Daniele; Nagali, Eleonora; Marrucci, Lorenzo; Sciarrino, Fabio
2011-04-15
The orbital angular momentum of light (OAM) provides a promising approach for the implementation of multidimensional states (qudits) for quantum-information purposes. In order to characterize the degradation undergone by the information content of qubits encoded in a bidimensional subspace of the orbital angular momentum degree of freedom of photons, we study how the state fidelity is affected by a transverse obstruction placed along the propagation direction of the light beam. Emphasis is placed on the effects of planar and radial hard-edged aperture functions on the state fidelity of Laguerre-Gaussian transverse modes and the entanglement properties of polarization-OAM hybrid-entangled photon pairs.
NASA Astrophysics Data System (ADS)
Lim, Hyang-Tag; Hong, Kang-Hee; Kim, Yoon-Ho
2016-05-01
An inexpensive and compact frequency multi-mode diode laser enables a compact two-photon polarization entanglement source via the continuous wave broadband pumped spontaneous parametric down-conversion (SPDC) process. Entanglement degradation caused by polarization mode dispersion (PMD) is one of the critical issues in optical fiber-based polarization entanglement distribution. We theoretically and experimentally investigate how the initial entanglement is degraded when the two-photon polarization entangled state undergoes PMD. We report an effect of PMD unique to broadband pumped SPDC, equally applicable to pulsed pumping as well as cw broadband pumping, which is that the amount of the entanglement degradation is asymmetrical to the PMD introduced to each quantum channel. We believe that our results have important applications in long-distance distribution of polarization entanglement via optical fiber channels.
Minimum-error discrimination of entangled quantum states
Lu, Y.; Coish, N.; Kaltenbaek, R.; Hamel, D. R.; Resch, K. J.; Croke, S.
2010-10-15
Strategies to optimally discriminate between quantum states are critical in quantum technologies. We present an experimental demonstration of minimum-error discrimination between entangled states, encoded in the polarization of pairs of photons. Although the optimal measurement involves projection onto entangled states, we use a result of J. Walgate et al. [Phys. Rev. Lett. 85, 4972 (2000)] to design an optical implementation employing only local polarization measurements and feed-forward, which performs at the Helstrom bound. Our scheme can achieve perfect discrimination of orthogonal states and minimum-error discrimination of nonorthogonal states. Our experimental results show a definite advantage over schemes not using feed-forward.
Nonlinear spectroscopy with entangled photons; manipulating quantum pathways of matter
Roslyak, Oleksiy; Marx, Christoph A.; Mukame, Shaul
2010-01-01
Optical signals obtained by the material response to classical laser fields are given by nonlinear response functions which can be expressed by sums over various quantum pathways of matter. We show that some pathways can be selected by using nonclassical fields, through the entanglement of photon and material pathways, which results in a different-power law dependence on the incoming field intensity. Spectrally overlapping stimulated Raman scattering (SRS) and two-photon-absorption (TPA) pathways in a pump probe experiment are separated by controlling the degree of entanglement of pairs of incoming photons. Pathway-selectivity opens up new avenues for mapping photon into material entanglement. New material information, otherwise erased by interferences among pathways, is revealed. PMID:20613885
Physical realization of quantum teleportation for a nonmaximal entangled state
Tanaka, Yoshiharu; Asano, Masanari; Ohya, Masanori
2010-08-15
Recently, Kossakowski and Ohya (K-O) proposed a new teleportation scheme which enables perfect teleportation even for a nonmaximal entangled state [A. Kossakowski and M. Ohya, Infinite Dimensional Analysis Quantum Probability and Related Topics 10, 411 (2007)]. To discuss a physical realization of the K-O scheme, we propose a model based on quantum optics. In our model, we take a superposition of Schroedinger's cat states as an input state being sent from Alice to Bob, and their entangled state is generated by a photon number state through a beam splitter. When the average photon number for our input states is equal to half the number of photons into the beam splitter, our model has high fidelity.
Physical realization of quantum teleportation for a nonmaximal entangled state
NASA Astrophysics Data System (ADS)
Tanaka, Yoshiharu; Asano, Masanari; Ohya, Masanori
2010-08-01
Recently, Kossakowski and Ohya (K-O) proposed a new teleportation scheme which enables perfect teleportation even for a nonmaximal entangled state [A. Kossakowski and M. Ohya, Infinite Dimensional Analysis Quantum Probability and Related Topics0219-025710.1142/S021902570700283X 10, 411 (2007)]. To discuss a physical realization of the K-O scheme, we propose a model based on quantum optics. In our model, we take a superposition of Schrödinger’s cat states as an input state being sent from Alice to Bob, and their entangled state is generated by a photon number state through a beam splitter. When the average photon number for our input states is equal to half the number of photons into the beam splitter, our model has high fidelity.
Quantum phase estimation using path-symmetric entangled states
NASA Astrophysics Data System (ADS)
Lee, Su-Yong; Lee, Chang-Woo; Lee, Jaehak; Nha, Hyunchul
2016-07-01
We study the sensitivity of phase estimation using a generic class of path-symmetric entangled states |φ>|0> + |0>|φ>, where an arbitrary state |φ> occupies one of two modes in quantum superposition. With this generalization, we identify the fundamental limit of phase estimation under energy constraint that is characterized by the photon statistics of the component state |φ>. We show that quantum Cramer-Rao bound (QCRB) can be indefinitely lowered with super-Poissonianity of the state |φ>. For possible measurement schemes, we demonstrate that a full photon-counting employing the path-symmetric entangled states achieves the QCRB over the entire range [0, 2π] of unknown phase shift ϕ whereas a parity measurement does so in a certain confined range of ϕ. By introducing a component state of the form , we particularly show that an arbitrarily small QCRB can be achieved even with a finite energy in an ideal situation. This component state also provides the most robust resource against photon loss among considered entangled states over the range of the average input energy Nav > 1. Finally we propose experimental schemes to generate these path-symmetric entangled states for phase estimation.
Quantum phase estimation using path-symmetric entangled states
Lee, Su-Yong; Lee, Chang-Woo; Lee, Jaehak; Nha, Hyunchul
2016-01-01
We study the sensitivity of phase estimation using a generic class of path-symmetric entangled states |φ〉|0〉 + |0〉|φ〉, where an arbitrary state |φ〉 occupies one of two modes in quantum superposition. With this generalization, we identify the fundamental limit of phase estimation under energy constraint that is characterized by the photon statistics of the component state |φ〉. We show that quantum Cramer-Rao bound (QCRB) can be indefinitely lowered with super-Poissonianity of the state |φ〉. For possible measurement schemes, we demonstrate that a full photon-counting employing the path-symmetric entangled states achieves the QCRB over the entire range [0, 2π] of unknown phase shift ϕ whereas a parity measurement does so in a certain confined range of ϕ. By introducing a component state of the form , we particularly show that an arbitrarily small QCRB can be achieved even with a finite energy in an ideal situation. This component state also provides the most robust resource against photon loss among considered entangled states over the range of the average input energy Nav > 1. Finally we propose experimental schemes to generate these path-symmetric entangled states for phase estimation. PMID:27457267
Optical microscope using an interferometric source of two-color, two-beam entangled photons
Dress, William B.; Kisner, Roger A.; Richards, Roger K.
2004-07-13
Systems and methods are described for an optical microscope using an interferometric source of multi-color, multi-beam entangled photons. A method includes: downconverting a beam of coherent energy to provide a beam of multi-color entangled photons; converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; transforming at least a portion of the converged multi-color entangled photon beam by interaction with a sample to generate an entangled photon specimen beam; and combining the entangled photon specimen beam with an entangled photon reference beam within a single beamsplitter. An apparatus includes: a multi-refringent device providing a beam of multi-color entangled photons; a condenser device optically coupled to the multi-refringent device, the condenser device converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; a beam probe director and specimen assembly optically coupled to the condenser device; and a beam splitter optically coupled to the beam probe director and specimen assembly, the beam splitter combining an entangled photon specimen beam from the beam probe director and specimen assembly with an entangled photon reference beam.
A periodic probabilistic photonic cluster state generator
NASA Astrophysics Data System (ADS)
Fanto, Michael L.; Smith, A. Matthew; Alsing, Paul M.; Tison, Christopher C.; Preble, Stefan F.; Lott, Gordon E.; Osman, Joseph M.; Szep, Attila; Kim, Richard S.
2014-10-01
The research detailed in this paper describes a Periodic Cluster State Generator (PCSG) consisting of a monolithic integrated waveguide device that employs four wave mixing, an array of probabilistic photon guns, single mode sequential entanglers and an array of controllable entangling gates between modes to create arbitrary cluster states. Utilizing the PCSG one is able to produce a cluster state with nearest neighbor entanglement in the form of a linear or square lattice. Cluster state resources of this type have been proven to be able to perform universal quantum computation.
Coherent control with qudit photon states
NASA Astrophysics Data System (ADS)
Rodrigues, I.; Cosme, O.; Pádua, S.
2010-06-01
In this paper the two-photon absorption by a molecule is studied when photons are prepared in a high-dimension entangled state. The light field is prepared in a spatial two-photon qudit state and its interaction with a molecule shows new interference effects observed in the calculated absorption cross-section. Oscillations in the absorption cross-section demonstrate its dependence on the path phases of the two-qudit state. The two-photon absorption cross-section is dependent on the dimension of the two-qudit photonic state.
Teleportation with insurance of an entangled atomic state via cavity decay
Chimczak, Grzegorz; Tanas, Ryszard; Miranowicz, Adam
2005-03-01
We propose a scheme to teleport an entangled state of two {lambda}-type three-level atoms via photons. The teleportation protocol involves the local redundant encoding protecting the initial entangled state and allowing for repeating the detection until quantum information transfer is successful. We also show how to manipulate a state of many {lambda}-type atoms trapped in a cavity.
Phase-stable source of polarization-entangled photons in a linear double-pass configuration.
Steinlechner, Fabian; Ramelow, Sven; Jofre, Marc; Gilaberte, Marta; Jennewein, Thomas; Torres, Juan P; Mitchell, Morgan W; Pruneri, Valerio
2013-05-20
We demonstrate a compact, robust, and highly efficient source of polarization-entangled photons, based on linear bi-directional down-conversion in a novel 'folded sandwich' configuration. Bi-directionally pumping a single periodically poled KTiOPO(4) (ppKTP) crystal with a 405-nm laser diode, we generate entangled photon pairs at the non-degenerate wavelengths 784 nm (signal) and 839 nm (idler), and achieve an unprecedented detection rate of 11.8 kcps for 10.4 μW of pump power (1.1 million pairs / mW), in a 2.9-nm bandwidth, while maintaining a very high two-photon entanglement quality, with a Bell-state fidelity of 99.3 ± 0.3%.
A high-brightness source of polarization-entangled photons optimized for applications in free space.
Steinlechner, Fabian; Trojek, Pavel; Jofre, Marc; Weier, Henning; Perez, Daniel; Jennewein, Thomas; Ursin, Rupert; Rarity, John; Mitchell, Morgan W; Torres, Juan P; Weinfurter, Harald; Pruneri, Valerio
2012-04-23
We present a simple but highly efficient source of polarization-entangled photons based on spontaneous parametric down-conversion (SPDC) in bulk periodically poled potassium titanyl phosphate crystals (PPKTP) pumped by a 405 nm laser diode. Utilizing one of the highest available nonlinear coefficients in a non-degenerate, collinear type-0 phase-matching configuration, we generate polarization entanglement via the crossed-crystal scheme and detect 0.64 million photon pair events/s/mW, while maintaining an overlap fidelity with the ideal Bell state of 0.98 at a pump power of 0.025 mW.
Observation of entanglement between a single trapped atom and a single photon
NASA Astrophysics Data System (ADS)
Blinov, B. B.; Moehring, D. L.; Duan, L.-M.; Monroe, C.
2004-03-01
An outstanding goal in quantum information science is the faithful mapping of quantum information between a stable quantum memory and a reliable quantum communication channel. This would allow, for example, quantum communication over remote distances, quantum teleportation of matter and distributed quantum computing over a `quantum internet'. Because quantum states cannot in general be copied, quantum information can only be distributed in these and other applications by entangling the quantum memory with the communication channel. Here we report quantum entanglement between an ideal quantum memory-represented by a single trapped 111Cd+ ion-and an ideal quantum communication channel, provided by a single photon that is emitted spontaneously from the ion. Appropriate coincidence measurements between the quantum states of the photon polarization and the trapped ion memory are used to verify their entanglement directly. Our direct observation of entanglement between stationary and `flying' qubits is accomplished without using cavity quantum electrodynamic techniques or prepared non-classical light sources. We envision that this source of entanglement may be used for a variety of quantum communication protocols and for seeding large-scale entangled states of trapped ion qubits for scalable quantum computing.
Entangled States, Holography and Quantum Surfaces
Chapline, G F
2003-08-13
Starting with an elementary discussion of quantum holography, we show that entangled quantum states of qubits provide a ''local'' representation of the global geometry and topology of quantum Riemann surfaces. This representation may play an important role in both mathematics and physics. Indeed, the simplest way to represent the fundamental objects in a ''theory of everything'' may be as muti-qubit entangled states.
Joo, Jaewoo; Ginossar, Eran
2016-01-01
We propose a deterministic scheme for teleporting an unknown qubit state through continuous-variable entangled states in superconducting circuits. The qubit is a superconducting two-level system and the bipartite quantum channel is a microwave photonic entangled coherent state between two cavities. A Bell-type measurement performed on the hybrid state of solid and photonic states transfers a discrete-variable unknown electronic state to a continuous-variable photonic cat state in a cavity mode. In order to facilitate the implementation of such complex protocols we propose a design for reducing the self-Kerr nonlinearity in the cavity. The teleporation scheme enables quantum information processing operations with circuit-QED based on entangled coherent states. These include state verification and single-qubit operations with entangled coherent states. These are shown to be experimentally feasible with the state of the art superconducting circuits. PMID:27245775
NASA Astrophysics Data System (ADS)
Joo, Jaewoo; Ginossar, Eran
2016-06-01
We propose a deterministic scheme for teleporting an unknown qubit state through continuous-variable entangled states in superconducting circuits. The qubit is a superconducting two-level system and the bipartite quantum channel is a microwave photonic entangled coherent state between two cavities. A Bell-type measurement performed on the hybrid state of solid and photonic states transfers a discrete-variable unknown electronic state to a continuous-variable photonic cat state in a cavity mode. In order to facilitate the implementation of such complex protocols we propose a design for reducing the self-Kerr nonlinearity in the cavity. The teleporation scheme enables quantum information processing operations with circuit-QED based on entangled coherent states. These include state verification and single-qubit operations with entangled coherent states. These are shown to be experimentally feasible with the state of the art superconducting circuits.
Joo, Jaewoo; Ginossar, Eran
2016-06-01
We propose a deterministic scheme for teleporting an unknown qubit state through continuous-variable entangled states in superconducting circuits. The qubit is a superconducting two-level system and the bipartite quantum channel is a microwave photonic entangled coherent state between two cavities. A Bell-type measurement performed on the hybrid state of solid and photonic states transfers a discrete-variable unknown electronic state to a continuous-variable photonic cat state in a cavity mode. In order to facilitate the implementation of such complex protocols we propose a design for reducing the self-Kerr nonlinearity in the cavity. The teleporation scheme enables quantum information processing operations with circuit-QED based on entangled coherent states. These include state verification and single-qubit operations with entangled coherent states. These are shown to be experimentally feasible with the state of the art superconducting circuits.
Diagnosing Topological Edge States via Entanglement Monogamy
NASA Astrophysics Data System (ADS)
Meichanetzidis, K.; Eisert, J.; Cirio, M.; Lahtinen, V.; Pachos, J. K.
2016-04-01
Topological phases of matter possess intricate correlation patterns typically probed by entanglement entropies or entanglement spectra. In this Letter, we propose an alternative approach to assessing topologically induced edge states in free and interacting fermionic systems. We do so by focussing on the fermionic covariance matrix. This matrix is often tractable either analytically or numerically, and it precisely captures the relevant correlations of the system. By invoking the concept of monogamy of entanglement, we show that highly entangled states supported across a system bipartition are largely disentangled from the rest of the system, thus, usually appearing as gapless edge states. We then define an entanglement qualifier that identifies the presence of topological edge states based purely on correlations present in the ground states. We demonstrate the versatility of this qualifier by applying it to various free and interacting fermionic topological systems.
Ming, Yang; Wu, Zi-jian; Xu, Fei Lu, Yan-qing; Cui, Guo-xin; Tan, Ai-hong
2014-04-28
The nonmaximally entangled state is a special kind of entangled state, which has important applications in quantum information processing. It has been generated in quantum circuits based on bulk optical elements. However, corresponding schemes in integrated quantum circuits have been rarely considered. In this Letter, we propose an effective solution for this problem. An electro-optically tunable nonmaximally mode-entangled photon state is generated in an on-chip domain-engineered lithium niobate (LN) waveguide. Spontaneous parametric down-conversion and electro-optic interaction are effectively combined through suitable domain design to transform the entangled state into our desired formation. Moreover, this is a flexible approach to entanglement architectures. Other kinds of reconfigurable entanglements are also achievable through this method. LN provides a very promising platform for future quantum circuit integration.
NASA Astrophysics Data System (ADS)
Ming, Yang; Wu, Zi-jian; Cui, Guo-xin; Tan, Ai-hong; Xu, Fei; Lu, Yan-qing
2014-04-01
The nonmaximally entangled state is a special kind of entangled state, which has important applications in quantum information processing. It has been generated in quantum circuits based on bulk optical elements. However, corresponding schemes in integrated quantum circuits have been rarely considered. In this Letter, we propose an effective solution for this problem. An electro-optically tunable nonmaximally mode-entangled photon state is generated in an on-chip domain-engineered lithium niobate (LN) waveguide. Spontaneous parametric down-conversion and electro-optic interaction are effectively combined through suitable domain design to transform the entangled state into our desired formation. Moreover, this is a flexible approach to entanglement architectures. Other kinds of reconfigurable entanglements are also achievable through this method. LN provides a very promising platform for future quantum circuit integration.
Interference in the recombination of frequency-entangled photon pairs
NASA Astrophysics Data System (ADS)
O'Donnell, Kevin A.; Garces, Veneranda G.
2015-11-01
We present experimental studies of the recombination of frequency-entangled photon pairs into single photons in a periodically poled lithium niobate crystal. With a delay ? between pair members, the measured rate of pair recombination ? presents a width of 25.6 fsec. It is observed that, depending on experimental conditions, ? can contain interference fringes that arise from the spatial correlations of the photon pairs. In particular, these correlations imply that each photon of a pair interferes with itself in the experiment before pair recombination, leading to the fringes in ?. A theoretical model is developed that provides favorable comparisons with the experimental results.
Collective two-particle resonances induced by photon entanglement
Richter, Marten; Mukamel, Shaul
2011-06-15
An assembly of noninteracting atoms may become correlated upon interaction with entangled photons, and certain elements of their joint density matrix can then show collective resonances. We explore experimental signatures of these resonances in the nonlinear response of a pair of two-level atoms. We find that these resonances are canceled out in stimulated signals such as pump-probe and two-photon absorption due to the destructive interference of two-photon-absorption and emission pathways in the joint two-particle space. However, they may be observed in photon statistics (Hanbury-Brown-Twiss) measurements through the attenuation of two-time intensity correlations.
NASA Astrophysics Data System (ADS)
Shi, Ronghua; Su, Qian; Guo, Ying; Huang, Dazu
2013-02-01
We demonstrate an anonymous quantum communication (AQC) via the non-maximally entanglement state analysis (NESA) based on the dining cryptographer problem (DCP). The security of the present AQC is ensured due to the quantum-mechanical impossibility of local unitary transformations between non-maximally entanglement states, which provides random numbers for the secure AQC. The analysis shows that the DCP-based AQC can be performed without intractability through the NESA in the multi-photon entangled quantum system.
Long distance measurement-device-independent quantum key distribution with entangled photon sources
Xu, Feihu; Qi, Bing; Liao, Zhongfa; Lo, Hoi-Kwong
2013-08-05
We present a feasible method that can make quantum key distribution (QKD), both ultra-long-distance and immune, to all attacks in the detection system. This method is called measurement-device-independent QKD (MDI-QKD) with entangled photon sources in the middle. By proposing a model and simulating a QKD experiment, we find that MDI-QKD with one entangled photon source can tolerate 77 dB loss (367 km standard fiber) in the asymptotic limit and 60 dB loss (286 km standard fiber) in the finite-key case with state-of-the-art detectors. Our general model can also be applied to other non-QKD experiments involving entanglement and Bell state measurements.
Coherent control with optical pulses for deterministic spin-photon entanglement
NASA Astrophysics Data System (ADS)
Truex, Katherine; Webster, L. A.; Duan, L.-M.; Sham, L. J.; Steel, D. G.
2013-11-01
We present a procedure for the optical coherent control of quantum bits within a quantum dot spin-exciton system, as a preliminary step to implementing a proposal by Yao, Liu, and Sham [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.95.030504 95, 030504 (2005)] for deterministic spin-photon entanglement. The experiment proposed here utilizes a series of picosecond optical pulses from a single laser to coherently control a single self-assembled quantum dot in a magnetic field, creating the precursor state in 25 ps with a predicted fidelity of 0.991. If allowed to decay in an appropriate cavity, the ideal precursor superposition state would create maximum spin-photon entanglement. Numerical simulations using values typical of InAs quantum dots give a predicted entropy of entanglement of 0.929, largely limited by radiative decay and electron spin flips.
Observation of strongly entangled photon pairs from a nanowire quantum dot
Versteegh, Marijn A. M.; Reimer, Michael E.; Jöns, Klaus D.; Dalacu, Dan; Poole, Philip J.; Gulinatti, Angelo; Giudice, Andrea; Zwiller, Val
2014-01-01
A bright photon source that combines high-fidelity entanglement, on-demand generation, high extraction efficiency, directional and coherent emission, as well as position control at the nanoscale is required for implementing ambitious schemes in quantum information processing, such as that of a quantum repeater. Still, all of these properties have not yet been achieved in a single device. Semiconductor quantum dots embedded in nanowire waveguides potentially satisfy all of these requirements; however, although theoretically predicted, entanglement has not yet been demonstrated for a nanowire quantum dot. Here, we demonstrate a bright and coherent source of strongly entangled photon pairs from a position-controlled nanowire quantum dot with a fidelity as high as 0.859±0.006 and concurrence of 0.80±0.02. The two-photon quantum state is modified via the nanowire shape. Our new nanoscale entangled photon source can be integrated at desired positions in a quantum photonic circuit, single-electron devices and light-emitting diodes. PMID:25358656
Entanglement as minimal discord over state extensions
NASA Astrophysics Data System (ADS)
Luo, Shunlong
2016-09-01
The characterization and quantification of quantum correlations, which play an instrumental role in exploring and exploiting the quantum world, have been extensively and intensively studied in the past few decades. Of special prominence and significance are the concepts of entanglement and discord, which are usually regarded as very distinctive quantum correlations, with the latter going beyond the former. In this work we establish a direct and natural link between entanglement and discord via state extensions and reveal that entanglement is actually the intrinsic discord, by which we mean that entanglement is the irreducible residue of discord viewed from ambient spaces. Our approach, taking into account the contextuality of a quantum state and being of a global nature, stands in sharp contrast to the local operations and classical communication paradigm of entanglement, which focuses on the state itself via a local approach. Furthermore, we introduce a figure of merit which, on the one hand, captures the essence of entanglement, i.e., nonlocality and quantumness of correlations, and, on the other hand, leads to a quantitative decomposition of total correlations into classical correlations, dissonance, and entanglement. This demystifies the meaning of entanglement from the perspective of quantum measurements and provides a unified framework for the interplay of various correlations in terms of quantum measurements and mutual information.
Optically Excited Entangled States in Organic Molecules Illuminate the Dark.
Upton, L; Harpham, M; Suzer, O; Richter, M; Mukamel, S; Goodson, T
2013-06-20
We utilize quantum entangled photons to carry out nonlinear optical spectroscopy in organic molecules with an extremely small number of photons. For the first time, fluorescence is reported as a result of entangled photon absorption in organic nonlinear optical molecules. Selectivity of the entangled photon absorption process is also observed and a theoretical model of this process is provided. Through these experiments and theoretical modeling it is found that while some molecules may not have strong classical nonlinear optical properties due to their excitation pathways; these same excitation pathways may enhance the entangled photon processes. It is found that the opposite is also true. Some materials with weak classical nonlinear optical effects may exhibit strong non-classical nonlinear optical effects. Our entangled photon fluorescence results provide the first steps in realizing and demonstrating the viability of entangled two-photon microscopy, remote sensing, and optical communications.
Lee, Su-Yong; Kim, Ho-Joon; Ji, Se-Wan; Nha, Hyunchul
2011-07-15
We investigate how the entanglement properties of a two-mode state can be improved by performing a coherent superposition operation ta+ra{sup {dagger}} of photon subtraction and addition, proposed by Lee and Nha [Phys. Rev. A 82, 053812 (2010)], on each mode. We show that the degree of entanglement, the Einstein-Podolsky-Rosen-type correlation, and the performance of quantum teleportation can be all enhanced for the output state when the coherent operation is applied to a two-mode squeezed state. The effects of the coherent operation are more prominent than those of the mere photon subtraction a and the addition a{sup {dagger}} particularly in the small-squeezing regime, whereas the optimal operation becomes the photon subtraction (case of r=0) in the large-squeezing regime.
Semiconductor devices for entangled photon pair generation: a review.
Orieux, Adeline; Versteegh, Marijn A M; Jöns, Klaus; Ducci, Sara
2017-03-27
Entanglement is one of the most fascinating properties of quantum mechanical systems; when two particles are entangled the measurement of the properties of one of the two allows to instantaneously know the properties of the other, whatever the distance separating them. In parallel with fundamental research on the foundations of quantum mechanics performed on complex experimental set-ups, we assist today to a bourgeoning of quantum information technologies bound to exploit entanglement for a large variety of applications such as secure communications, metrology and computation. Among the different physical systems under investigation, those involving photonic components are likely to play a central role and in this context semiconductor materials exhibit a huge potential in terms of integration of several quantum components in miniature chips. In this article we review the recent progress in the development of semiconductor devices emitting entangled photons. We will present the physical processes allowing to generate entanglement and the tools to characterize it; we will give an overview of major recent results of the last years and highlight perspectives for future developments.
Resolution of ghost imaging with entangled photons for different types of momentum correlation
NASA Astrophysics Data System (ADS)
Zhong, MaLin; Xu, Ping; Lu, LiangLiang; Zhu, ShiNing
2016-07-01
We present an analytical analysis of the spatial resolution of quantum ghost imaging implemented by entangled photons from a general, spontaneously parametric, down-conversion process. We find that the resolution is affected by both the pump beam waist and the nonlinear crystal length. Hence, we determined a method to improve the resolution for a certain imaging setup. It should be noted that the resolution is not uniquely related to the degree of entanglement of the photon pair since the resolution can be optimized for a certain degree of entanglement. For certain types of Einstein-Podolsky-Rosen (EPR) states——namely the momentum-correlated or momentum-positively correlated states——the resolution exhibits a simpler relationship with the pump beam waist and crystal length. Further, a vivid numerical simulation of ghost imaging is presented for different types of EPR states, which supports our analysis. This work discusses applicable references to the applications of quantum ghost imaging.
Multiplexed entangled photon-pair sources for all-fiber quantum networks
NASA Astrophysics Data System (ADS)
Zhou, Zhi-Yuan; Li, Yin-Hai; Xu, Li-Xin; Shi, Bao-Sen; Guo, Guang-Can
2016-11-01
The ultimate goal of quantum information science is to build a global quantum network, which enables quantum resources to be distributed and shared between remote parties. Such a quantum network can be realized using only fiber elements, thus deriving the advantages of low transmission loss, low cost, scalability, and integrability through mature fiber communication techniques such as dense wavelength division multiplexing. Hence high-quality entangled-photon sources based on fibers are in high demand. Here we report multiplexed polarization- and time-bin-entangled photon-pair sources based on the dispersion-shifted fiber operating at room temperature. The associated high quality of entanglement is characterized using interference, Bell's inequality, and quantum state tomography. The simultaneous presence of both types of entanglement in multi-channel pairs of a 100-GHz dense wavelength division multiplexing device indicates a great capacity in distributing entangled photons over multiple users. Our design provides a versatile platform and takes a big step toward constructing an all-fiber quantum network.
Multiplexed entangled photon-pair sources for all-fiber quantum networks
NASA Astrophysics Data System (ADS)
Li, Yin-Hai; Zhou, Zhi-Yuan; Xu, Zhao-Huai; Xu, Li-Xin; Shi, Bao-Sen; Guo, Guang-Can
2016-10-01
The ultimate goal of quantum information science is to build a global quantum network, which enables quantum resources to be distributed and shared between remote parties. Such a quantum network can be realized using only fiber elements, thus deriving the advantages of low transmission loss, low cost, scalability, and integrability through mature fiber communication techniques such as dense wavelength division multiplexing. Hence high-quality entangled-photon sources based on fibers are in high demand. Here we report multiplexed polarization- and time-bin-entangled photon-pair sources based on the dispersion-shifted fiber operating at room temperature. The associated high quality of entanglement is characterized using interference, Bell's inequality, and quantum state tomography. The simultaneous presence of both types of entanglement in multichannel pairs of a 100-GHz dense wavelength division multiplexing device indicates a great capacity in distributing entangled photons over multiple users. Our design provides a versatile platform and takes a big step toward constructing an all-fiber quantum network.
Non-Markovianity-assisted steady state entanglement.
Huelga, Susana F; Rivas, Ángel; Plenio, Martin B
2012-04-20
We analyze the steady state entanglement generated in a coherently coupled dimer system subject to dephasing noise as a function of the degree of Markovianity of the evolution. By keeping fixed the effective noise strength while varying the memory time of the environment, we demonstrate that non-Markovianity is an essential, quantifiable resource that may support the formation of steady state entanglement whereas purely Markovian dynamics governed by Lindblad master equations lead to separable steady states. This result illustrates possible mechanisms leading to long-lived entanglement in purely decohering, possibly local, environments. We present a feasible experimental demonstration of this noise assisted phenomenon using a system of trapped ions.
Tensor eigenvalues and entanglement of symmetric states
NASA Astrophysics Data System (ADS)
Bohnet-Waldraff, F.; Braun, D.; Giraud, O.
2016-10-01
Tensor eigenvalues and eigenvectors have been introduced in the recent mathematical literature as a generalization of the usual matrix eigenvalues and eigenvectors. We apply this formalism to a tensor that describes a multipartite symmetric state or a spin state, and we investigate to what extent the corresponding tensor eigenvalues contain information about the multipartite entanglement (or, equivalently, the quantumness) of the state. This extends previous results connecting entanglement to spectral properties related to the state. We show that if the smallest tensor eigenvalue is negative, the state is detected as entangled. While for spin-1 states the positivity of the smallest tensor eigenvalue is equivalent to separability, we show that for higher values of the angular momentum there is a correlation between entanglement and the value of the smallest tensor eigenvalue.
Bell-inequality tests with macroscopic entangled states of light
Stobinska, M.; Sekatski, P.; Gisin, N.; Buraczewski, A.; Leuchs, G.
2011-09-15
Quantum correlations may violate the Bell inequalities. Most experimental schemes confirming this prediction have been realized in all-optical Bell tests suffering from the detection loophole. Experiments which simultaneously close this loophole and the locality loophole are highly desirable and remain challenging. An approach to loophole-free Bell tests is based on amplification of the entangled photons (i.e., on macroscopic entanglement), for which an optical signal should be easy to detect. However, the macroscopic states are partially indistinguishable by classical detectors. An interesting idea to overcome these limitations is to replace the postselection by an appropriate preselection immediately after the amplification. This is in the spirit of state preprocessing revealing hidden nonlocality. Here, we examine one of the possible preselections, but the presented tools can be used for analysis of other schemes. Filtering methods making the macroscopic entanglement useful for Bell tests and quantum protocols are the subject of an intensive study in the field nowadays.
Experimental demonstration of a fully inseparable quantum state with nonlocalizable entanglement
Mičuda, M.; Koutný, D.; Miková, M.; Straka, I.; Ježek, M.; Mišta, L.
2017-01-01
Localizability of entanglement in fully inseparable states is a key ingredient of assisted quantum information protocols as well as measurement-based models of quantum computing. We investigate the existence of fully inseparable states with nonlocalizable entanglement, that is, with entanglement which cannot be localized between any pair of subsystems by any measurement on the remaining part of the system. It is shown, that the nonlocalizable entanglement occurs already in suitable mixtures of a three-qubit GHZ state and white noise. Further, we generalize this set of states to a two-parametric family of fully inseparable three-qubit states with nonlocalizable entanglement. Finally, we demonstrate experimentally the existence of nonlocalizable entanglement by preparing and characterizing one state from the family using correlated single photons and linear optical circuit. PMID:28344336
Experimental demonstration of a fully inseparable quantum state with nonlocalizable entanglement.
Mičuda, M; Koutný, D; Miková, M; Straka, I; Ježek, M; Mišta, L
2017-03-27
Localizability of entanglement in fully inseparable states is a key ingredient of assisted quantum information protocols as well as measurement-based models of quantum computing. We investigate the existence of fully inseparable states with nonlocalizable entanglement, that is, with entanglement which cannot be localized between any pair of subsystems by any measurement on the remaining part of the system. It is shown, that the nonlocalizable entanglement occurs already in suitable mixtures of a three-qubit GHZ state and white noise. Further, we generalize this set of states to a two-parametric family of fully inseparable three-qubit states with nonlocalizable entanglement. Finally, we demonstrate experimentally the existence of nonlocalizable entanglement by preparing and characterizing one state from the family using correlated single photons and linear optical circuit.
GENERAL: Steady State Entanglement and Saturation Effects in Correlated Spontaneous Emission Lasers
NASA Astrophysics Data System (ADS)
Wang, Fei; Hu, Xiang-Ming; Shi, Wen-Xing
2009-08-01
It has recently been shown that correlated spontaneous emission lasers (CEL) exhibit transient entanglement in the linear regime. Here we re-examine the quantum correlations in two-photon CEL and explore the saturation effects on continuous variable entanglement. It is shown that the steady state entanglement is obtainable in the weak or moderate saturation regime, while is washed out in the deep saturation regime.
Entanglement sharing in one-particle states
NASA Astrophysics Data System (ADS)
Lakshminarayan, Arul; Subrahmanyam, V.
2003-05-01
Entanglement sharing among sites of one-particle states is considered using the measure of concurrence. These are the simplest in a hierarchy of number-specific states of many qubits and correspond to “one-magnon” states of spins. We study the effects of onsite potentials that are both integrable and nonintegrable. In the integrable case, we point to a metal-insulator transition that reflects on the way entanglement is shared. In the nonintegrable case, the average entanglement content increases and saturates along with a transition to classical chaos. Such quantum chaotic states are shown to have universal concurrence distributions that are modified Bessel functions derivable within random matrix theory. Time-reversal breaking and time-evolving states are shown to possess significantly higher entanglement sharing capacity than eigenstates of time-reversal symmetric systems. We use the ordinary Harper and the kicked Harper Hamiltonians as model systems.
How Much Entanglement Can Be Generated between Two Atoms by Detecting Photons?
Lamata, L.; Garcia-Ripoll, J. J.; Cirac, J. I.
2007-01-05
It is possible to achieve an arbitrary amount of entanglement between two atoms using only spontaneously emitted photons, linear optics, single-photon sources, and projective measurements. This is in contrast to all current experimental proposals for entangling two atoms, which are fundamentally restricted to one entanglement bit or 'ebit'.
Experimental noise-resistant Bell-inequality violations for polarization-entangled photons
Bovino, Fabio A.; Castagnoli, Giuseppe; Cabello, Adan; Lamas-Linares, Antia
2006-06-15
We experimentally demonstrate that violations of Bell's inequalities for two-photon polarization-entangled states with colored noise are extremely robust, whereas this is not the case for states with white noise. Controlling the amount of noise by using the timing compensation scheme introduced by Kim et al. [Phys. Rev. A 67, 010301(R) (2003)], we have observed violations even for states with very high noise, in excellent agrement with the predictions of Cabello et al. [Phys. Rev. A 72, 052112 (2005)].
Experimental noise-resistant Bell-inequality violations for polarization-entangled photons
NASA Astrophysics Data System (ADS)
Bovino, Fabio A.; Castagnoli, Giuseppe; Cabello, Adán; Lamas-Linares, Antía
2006-06-01
We experimentally demonstrate that violations of Bell’s inequalities for two-photon polarization-entangled states with colored noise are extremely robust, whereas this is not the case for states with white noise. Controlling the amount of noise by using the timing compensation scheme introduced by Kim [Phys. Rev. A 67, 010301(R) (2003)], we have observed violations even for states with very high noise, in excellent agrement with the predictions of Cabello [Phys. Rev. A 72, 052112 (2005)].
Entanglement of remote transmon qubits by concurrent photon detection - Part 2
NASA Astrophysics Data System (ADS)
Narla, A.; Shankar, S.; Hatridge, M.; Pfaff, W.; Leghtas, Z.; Sliwa, K. M.; Zalys-Geller, E.; Frunzio, L.; Devoret, M. H.
One proposed realization for a quantum computer is the modular architecture, which consists of error-corrected quantum memories that are connected via a quantum router. A fundamental requirement for this modular quantum computer is the ability to entangle arbitrary, distant qubits on demand. This can be realized in circuit QED using a protocol inspired by recent experiments based on trapped ions and nitrogen-vacancy centers. First, each qubit is entangled with a single cavity photon (Fock state n=1) using sideband pulses. On their way out of the cavity, the now flying photons interfere on a beam-splitter and are concurrently detected by a novel microwave photo-multiplier that employs a third qubit-cavity system. In this protocol, the presence of losses in the photon flight path only affect the success probability of creating an entangled state but not its fidelity. In this talk, we present experimental results for this protocol and discuss the factors influencing the success probability and the fidelity of the generated entangled states. Work supported by ARO, AFOSR and YINQE.
Entanglement and the shareability of quantum states
NASA Astrophysics Data System (ADS)
Doherty, Andrew C.
2014-10-01
This brief review discusses the problem of determining whether a given quantum state is separable or entangled. I describe an established approach to this problem that is based on the monogamy of entanglement, which is the observation that a pair of quantum systems that are strongly entangled must be uncorrelated with the rest of the world. Unentangled states on the other hand involve correlations that can be shared with many other parties. Checking whether a given quantum state is shareable involves constructing certain symmetric quantum state extensions and I discuss how to do this using a class of optimizations known as semidefinite programs. An attractive feature of this approach is that it generates explicit entanglement witnesses that can be measured to demonstrate the entanglement experimentally. In recent years analysis of this approach has greatly increased our understanding of the complexity of determining whether a given quantum state is entangled and this review aims to give a unified discussion of these developments. Specifically, I describe how to use finite quantum de Finetti theorems to prove that highly shareable states are nearly separable and use these results to understand the computational complexity of the problem. This article is part of a special issue of Journal of Physics A: Mathematical and Theoretical devoted to ‘50 years of Bell’s theorem’.
Lougovski, P.; Uskov, D. B.
2015-08-04
Entanglement can effectively increase communication channel capacity as evidenced by dense coding that predicts a capacity gain of 1 bit when compared to entanglement-free protocols. However, dense coding relies on Bell states and when implemented using photons the capacity gain is bounded by 0.585 bits due to one's inability to discriminate between the four optically encoded Bell states. In this research we study the following question: Are there alternative entanglement-assisted protocols that rely only on linear optics, coincidence photon counting, and separable single-photon input states and at the same time provide a greater capacity gain than 0.585 bits? In thismore » study, we show that besides the Bell states there is a class of bipartite four-mode two-photon entangled states that facilitate an increase in channel capacity. We also discuss how the proposed scheme can be generalized to the case of two-photon N-mode entangled states for N=6,8.« less
Lougovski, P.; Uskov, D. B.
2015-08-04
Entanglement can effectively increase communication channel capacity as evidenced by dense coding that predicts a capacity gain of 1 bit when compared to entanglement-free protocols. However, dense coding relies on Bell states and when implemented using photons the capacity gain is bounded by 0.585 bits due to one's inability to discriminate between the four optically encoded Bell states. In this research we study the following question: Are there alternative entanglement-assisted protocols that rely only on linear optics, coincidence photon counting, and separable single-photon input states and at the same time provide a greater capacity gain than 0.585 bits? In this study, we show that besides the Bell states there is a class of bipartite four-mode two-photon entangled states that facilitate an increase in channel capacity. We also discuss how the proposed scheme can be generalized to the case of two-photon N-mode entangled states for N=6,8.
Entanglement classification with matrix product states
Sanz, M.; Egusquiza, I. L.; Di Candia, R.; Saberi, H.; Lamata, L.; Solano, E.
2016-01-01
We propose an entanglement classification for symmetric quantum states based on their diagonal matrix-product-state (MPS) representation. The proposed classification, which preserves the stochastic local operation assisted with classical communication (SLOCC) criterion, relates entanglement families to the interaction length of Hamiltonians. In this manner, we establish a connection between entanglement classification and condensed matter models from a quantum information perspective. Moreover, we introduce a scalable nesting property for the proposed entanglement classification, in which the families for N parties carry over to the N + 1 case. Finally, using techniques from algebraic geometry, we prove that the minimal nontrivial interaction length n for any symmetric state is bounded by . PMID:27457273
Entangled photon-pair two-dimensional fluorescence spectroscopy (EPP-2DFS).
Raymer, M G; Marcus, Andrew H; Widom, Julia R; Vitullo, Dashiell L P
2013-12-12
We introduce a new method, called entangled photon-pair two-dimensional fluorescence spectroscopy (EPP-2DFS), to sensitively probe the nonlinear electronic response of molecular systems. The method incorporates a separated two-photon ('Franson') interferometer, which generates time-frequency-entangled photon pairs, into the framework of a fluorescence-detected 2D optical spectroscopic experiment. The entangled photons are temporally shaped and phase-modulated in the interferometer, and are used to excite a two-photon-absorbing (TPA) sample, whose excited-state population is selectively detected by simultaneously monitoring the sample fluorescence and the exciting fields. In comparison to 'classical' 2DFS techniques, major advantages of this scheme are the suppression of uncorrelated background signals, the enhancement of simultaneous time-and-frequency resolution, the suppression of diagonal 2D spectral features, and the enhancement and narrowing of off-diagonal spectral cross-peaks that contain information about electronic couplings. These effects are a consequence of the pure-state field properties unique to a parametric down-conversion light source, which must be included in the quantum mechanical description of the composite field-molecule system. We numerically simulate the EPP-2DFS observable for the case of an electronically coupled molecular dimer. The EPP-2DFS spectrum is greatly simplified in comparison to its classical 2D counterpart. Our results indicate that EPP-2DFS can provide previously unattainable resolution to extract model Hamiltonian parameters from electronically coupled molecular dimers.
Multi-user distribution of polarization entangled photon pairs
NASA Astrophysics Data System (ADS)
Trapateau, J.; Ghalbouni, J.; Orieux, A.; Diamanti, E.; Zaquine, I.
2015-10-01
We experimentally demonstrate multi-user distribution of polarization entanglement using commercial telecom wavelength division demultiplexers. The entangled photon pairs are generated from a broadband source based on spontaneous parametric down conversion in a periodically poled lithium niobate crystal using a double path setup employing a Michelson interferometer and active phase stabilisation. We test and compare demultiplexers based on various technologies and analyze the effect of their characteristics, such as losses and polarization dependence, on the quality of the distributed entanglement for three channel pairs of each demultiplexer. In all cases, we obtain a Bell inequality violation, whose value depends on the demultiplexer features. This demonstrates that entanglement can be distributed to at least three user pairs of a network from a single source. Additionally, we verify for the best demultiplexer that the violation is maintained when the pairs are distributed over a total channel attenuation corresponding to 20 km of optical fiber. These techniques are therefore suitable for resource-efficient practical implementations of entanglement-based quantum key distribution and other quantum communication network applications.
Multi-user distribution of polarization entangled photon pairs
Trapateau, J.; Orieux, A.; Diamanti, E.; Zaquine, I.; Ghalbouni, J.
2015-10-14
We experimentally demonstrate multi-user distribution of polarization entanglement using commercial telecom wavelength division demultiplexers. The entangled photon pairs are generated from a broadband source based on spontaneous parametric down conversion in a periodically poled lithium niobate crystal using a double path setup employing a Michelson interferometer and active phase stabilisation. We test and compare demultiplexers based on various technologies and analyze the effect of their characteristics, such as losses and polarization dependence, on the quality of the distributed entanglement for three channel pairs of each demultiplexer. In all cases, we obtain a Bell inequality violation, whose value depends on the demultiplexer features. This demonstrates that entanglement can be distributed to at least three user pairs of a network from a single source. Additionally, we verify for the best demultiplexer that the violation is maintained when the pairs are distributed over a total channel attenuation corresponding to 20 km of optical fiber. These techniques are therefore suitable for resource-efficient practical implementations of entanglement-based quantum key distribution and other quantum communication network applications.
Photon exchange and entanglement formation during transmission through a rectangular quantum barrier
Sulyok, Georg; Durstberger-Rennhofer, Katharina; Summhammer, Johann
2015-01-01
When a quantum particle traverses a rectangular potential created by a quantum field both photon exchange and entanglement between particle and field take place. We present the full analytic solution of the Schrödinger equation of the composite particle–field system allowing investigation of these phenomena in detail and comparison to the results of a classical field treatment. Besides entanglement formation, remarkable differences also appear with respect to the symmetry between energy emission and absorption, resonance effects and if the field initially occupies the vacuum state. PMID:26345629
Entanglement of remote transmon qubits by concurrent photon detection - Part 1
NASA Astrophysics Data System (ADS)
Shankar, S.; Narla, A.; Hatridge, M.; Pfaff, W.; Leghtas, Z.; Sliwa, K. M.; Zalys-Geller, E.; Frunzio, L.; Devoret, M. H.
One proposed realization for a quantum computer is the modular architecture, which consists of error-corrected quantum memories that are connected via a quantum router. A fundamental requirement for this modular quantum computer is the ability to entangle arbitrary, distant qubits on demand. This can be realized in circuit QED using a protocol inspired by recent experiments based on trapped ions and nitrogen-vacancy centers. First, each qubit is entangled with a single cavity photon (Fock state n=1) using sideband pulses. On their way out of the cavity, the now flying photons interfere on a beam-splitter and are concurrently detected by a novel microwave photo-multiplier that employs a third qubit-cavity system. In this protocol, the presence of losses in the photon flight path only affect the success probability of creating an entangled state but not its fidelity. In this talk, we present the experimental realization of this protocol for entangling two transmon qubits, focusing on the implementation and optimization of the microwave photo-multiplier. Work supported by ARO, AFOSR and YINQE.
Telecloning of qudits via partially entangled states
NASA Astrophysics Data System (ADS)
Araneda, Gabriel; Cisternas, Nataly; Delgado, Aldo
2016-08-01
We study the process of quantum telecloning of d-dimensional pure quantum states using partially entangled pure states as quantum channel. This process efficiently mixes optimal universal symmetric cloning with quantum teleportation. It is shown that it is possible to implement universal symmetric telecloning in a probabilistic way using unambiguous state discrimination and quantum state separation schemes. It is also shown that other strategies, such as minimum error discrimination, lead to a decrease in the fidelity of the copies and that certain partially entangled pure states with maximal Schmidt rank lead to an average telecloning fidelity which is always above the optimal fidelity of measuring and preparation of quantum states. We also discuss the case of partially entangled pure states with non-maximal Schmidt rank. The results presented here are valid for arbitrary numbers of copies of a single-input qudit state of any dimension.
Liu, Siping; Yu, Rong; Li, Jiahua; Wu, Ying
2013-12-28
We explore the entanglement generation and the corresponding dynamics between two separate nitrogen-vacancy (NV) centers in diamond nanocrystal coupled to a photonic molecule consisting of a pair of coupled photonic crystal (PC) cavities. By calculating the entanglement concurrence with readily available experimental parameters, it is found that the entanglement degree strongly depends on the cavity-cavity hopping strength and the NV-center-cavity detuning. High concurrence peak and long-lived entanglement plateau can be achieved by properly adjusting practical system parameters. Meanwhile, we also discuss the influence of the coupling strength between the NV centers and the cavity modes on the behavior of the concurrence. Such a PC-NV system can be employed for quantum entanglement generation and represents a building block for an integrated nanophotonic network in a solid-state cavity quantum electrodynamics platform. In addition, the present theory can also be applied to other similar systems, such as two single quantum emitters positioned close to a microtoroidal resonator with the whispering-gallery-mode fields propagating inside the resonator.
Free-space quantum key distribution with entangled photons
NASA Astrophysics Data System (ADS)
Marcikic, Ivan; Lamas-Linares, Antía; Kurtsiefer, Christian
2006-09-01
The authors report on a complete experimental implementation of a quantum key distribution protocol through a free-space link using polarization-entangled photon pairs from a compact parametric downconversion source. Over 10h of uninterrupted communication between sites 1.5km apart, they observe average key generation rates of 630/s after error correction and privacy amplification. Their scheme requires no specific hardware channel for synchronization apart from a classical wireless link, and no explicit random number generator.
Topological minimally entangled states via geometric measure
NASA Astrophysics Data System (ADS)
Buerschaper, Oliver; García-Saez, Artur; Orús, Román; Wei, Tzu-Chieh
2014-11-01
Here we show how the Minimally Entangled States (MES) of a 2d system with topological order can be identified using the geometric measure of entanglement. We show this by minimizing this measure for the doubled semion, doubled Fibonacci and toric code models on a torus with non-trivial topological partitions. Our calculations are done either quasi-exactly for small system sizes, or using the tensor network approach in Orús et al (arXiv:1406.0585) for large sizes. As a byproduct of our methods, we see that the minimisation of the geometric entanglement can also determine the number of Abelian quasiparticle excitations in a given model. The results in this paper provide a very efficient and accurate way of extracting the full topological information of a 2d quantum lattice model from the multipartite entanglement structure of its ground states.
Entanglement transitions in random definite particle states
Vijayaraghavan, Vikram S.; Bhosale, Udaysinh T.; Lakshminarayan, Arul
2011-09-15
Entanglements within qubits are studied for the subspace of definite particle states or definite number of up spins. A transition from an algebraic decay of entanglement within two qubits with the total number N of qubits to an exponential one when the number of particles is increased from two to three is studied in detail. In particular the probability that the concurrence is nonzero is calculated using statistical methods and is shown to agree with numerical simulations. Further entanglement within a block of m qubits is studied using the log-negativity measure, which indicates that a transition from algebraic to exponential decay occurs when the number of particles exceeds m. Several algebraic exponents for the decay of the log negativity are analytically calculated. The transition is shown to be possibly connected to the changes in the density of states of the reduced density matrix, which has a divergence at the zero eigenvalue when the entanglement decays algebraically.
Nonbilocal measurement via an entangled state
Shmaya, Eran
2005-08-15
Two observers, who share a pair of particles in an entangled mixed state, can use it to perform some nonbilocal measurements over another bipartite system. In particular, one can construct a specific game played by the observers against a coordinator, in which they can score better than a pair of observers who only share a classical communication channel. The existence of such a game is an operational implication of an entanglement witness.
A bright PPKTP waveguide source of polarization entangled photons
Fanto, Michael; Tison, Christoper C.; Holwand, Gregory A; Preble, Dr. Stefan F; Alsing, Paul; Smith IV, Amos M
2015-01-01
The need for bright efficient sources of entangled photons has been a subject of tremendous research over the last decade. Researchers have been working to increase the brightness and purity to help overcome the spontaneous nature of the sources. Periodic poling has been implemented to allow for the use of crystals that would not normally satisfy the phase matching conditions. Utilizing periodic poling and single mode waveguide confinement of the pump field has yielded extremely large effective nonlinearities in sources easily producing millions of photon pairs. Here we will demonstrate these large nonlinearity effects in a periodically poled potassium titanyl phosphate (PPKTP) waveguide as well as characterizing the source purity.
Tsujimoto, Yoshiaki; Sugiura, Yukihiro; Ando, Makoto; Katsuse, Daisuke; Ikuta, Rikizo; Yamamoto, Takashi; Koashi, Masato; Imoto, Nobuyuki
2015-05-18
We experimentally demonstrated entanglement extraction scheme by using photons at the telecommunication band for optical-fiber-based quantum communications. We generated two pairs of non-degenerate polarization entangled photons at 780 nm and 1551 nm by spontaneous parametric down-conversion and distributed the two photons at 1551 nm through a collective phase damping channel which gives the same amount of random phase shift on the two photons. Through local operation and classical communication, we extracted an entangled photon pair from two phase-disturbed photon pairs. An observed fidelity of the extracted photon pair to a maximally entangled photon pair was 0.73 ± 0.07 which clearly shows the recovery of entanglement.
Entanglement and Coherence in Quantum State Merging.
Streltsov, A; Chitambar, E; Rana, S; Bera, M N; Winter, A; Lewenstein, M
2016-06-17
Understanding the resource consumption in distributed scenarios is one of the main goals of quantum information theory. A prominent example for such a scenario is the task of quantum state merging, where two parties aim to merge their tripartite quantum state parts. In standard quantum state merging, entanglement is considered to be an expensive resource, while local quantum operations can be performed at no additional cost. However, recent developments show that some local operations could be more expensive than others: it is reasonable to distinguish between local incoherent operations and local operations which can create coherence. This idea leads us to the task of incoherent quantum state merging, where one of the parties has free access to local incoherent operations only. In this case the resources of the process are quantified by pairs of entanglement and coherence. Here, we develop tools for studying this process and apply them to several relevant scenarios. While quantum state merging can lead to a gain of entanglement, our results imply that no merging procedure can gain entanglement and coherence at the same time. We also provide a general lower bound on the entanglement-coherence sum and show that the bound is tight for all pure states. Our results also lead to an incoherent version of Schumacher compression: in this case the compression rate is equal to the von Neumann entropy of the diagonal elements of the corresponding quantum state.
Entanglement and nonclassicality for multimode radiation-field states
Ivan, J. Solomon; Chaturvedi, S.; Ercolessi, E.; Marmo, G.; Morandi, G.; Mukunda, N.; Simon, R.
2011-03-15
Nonclassicality in the sense of quantum optics is a prerequisite for entanglement in multimode radiation states. In this work we bring out the possibilities of passing from the former to the latter, via action of classicality preserving systems like beam splitters, in a transparent manner. For single-mode states, a complete description of nonclassicality is available via the classical theory of moments, as a set of necessary and sufficient conditions on the photon number distribution. We show that when the mode is coupled to an ancilla in any coherent state, and the system is then acted upon by a beam splitter, these conditions turn exactly into signatures of negativity under partial transpose (NPT) entanglement of the output state. Since the classical moment problem does not generalize to two or more modes, we turn in these cases to other familiar sufficient but not necessary conditions for nonclassicality, namely the Mandel parameter criterion and its extensions. We generalize the Mandel matrix from one-mode states to the two-mode situation, leading to a natural classification of states with varying levels of nonclassicality. For two-mode states we present a single test that can, if successful, simultaneously show nonclassicality as well as NPT entanglement. We also develop a test for NPT entanglement after beam-splitter action on a nonclassical state, tracing carefully the way in which it goes beyond the Mandel nonclassicality test. The result of three-mode beam-splitter action after coupling to an ancilla in the ground state is treated in the same spirit. The concept of genuine tripartite entanglement, and scalar measures of nonclassicality at the Mandel level for two-mode systems, are discussed. Numerous examples illustrating all these concepts are presented.
Multipartite entangled states in particle mixing
Blasone, M.; Dell'Anno, F.; De Siena, S.; Di Mauro, M.; Illuminati, F.
2008-05-01
In the physics of flavor mixing, the flavor states are given by superpositions of mass eigenstates. By using the occupation number to define a multiqubit space, the flavor states can be interpreted as multipartite mode-entangled states. By exploiting a suitable global measure of entanglement, based on the entropies related to all possible bipartitions of the system, we analyze the correlation properties of such states in the instances of three- and four-flavor mixing. Depending on the mixing parameters, and, in particular, on the values taken by the free phases, responsible for the CP-violation, entanglement concentrates in certain bipartitions. We quantify in detail the amount and the distribution of entanglement in the physically relevant cases of flavor mixing in quark and neutrino systems. By using the wave packet description for localized particles, we use the global measure of entanglement, suitably adapted for the instance of multipartite mixed states, to analyze the decoherence, induced by the free evolution dynamics, on the quantum correlations of stationary neutrino beams. We define a decoherence length as the distance associated with the vanishing of the coherent interference effects among massive neutrino states. We investigate the role of the CP-violating phase in the decoherence process.
Nonlocal entanglement of coherent states, complementarity, and quantum erasure
Gerry, Christopher C.; Grobe, R.
2007-03-15
We describe a nonlocal method for generating entangled coherent states of a two-mode field wherein the field modes never meet. The proposed method is an extension of an earlier proposal [C. C. Gerry, Phys. Rev. A 59, 4095 (1999)] for the generation of superpositions of coherent states. A single photon injected into a Mach-Zehnder interferometer with cross-Kerr media in both arms coupling with two external fields in coherent states produces entangled coherent states upon detection at one of the output ports. We point out that our proposal can be alternatively viewed as a 'which path' experiment, and in the case of only one external field, we describe the implementation of a quantum eraser.
Total teleportation of a single-photon state
Humble, Travis S; Bennink, Ryan S; Grice, Warren P
2008-01-01
Recent demonstrations of teleportation have transferred quantum information encoded into either polarization or field-quadrature degrees of freedom (DOFs), but an outstanding question is how to simultaneously teleport quantum information encoded into multiple DOFs. We describe how the transverse-spatial, spectral and polarization states of a single photon can be simultaneously teleported using a pair of multimode, polarization-entangled photons derived from spontaneous parametric down-conversion. Furthermore, when the initial photon pair is maximally entangled in the spatial, spectral, and polarization DOFs then the photon s full quantum state can be reliably teleported using a Bell-state measurement based on sum-frequency generation.
Entanglement of Ince-Gauss Modes of Photons
NASA Astrophysics Data System (ADS)
Krenn, Mario; Fickler, Robert; Plick, William; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton
2012-02-01
Ince-Gauss modes are solutions of the paraxial wave equation in elliptical coordinates [1]. They are natural generalizations both of Laguerre-Gauss and of Hermite-Gauss modes, which have been used extensively in quantum optics and quantum information processing over the last decade [2]. Ince-Gauss modes are described by one additional real parameter -- ellipticity. For each value of ellipticity, a discrete infinite-dimensional Hilbert space exists. This conceptually new degree of freedom could open up exciting possibilities for higher-dimensional quantum optical experiments. We present the first entanglement of non-trivial Ince-Gauss Modes. In our setup, we take advantage of a spontaneous parametric down-conversion process in a non-linear crystal to create entangled photon pairs. Spatial light modulators (SLMs) are used as analyzers. [1] Miguel A. Bandres and Julio C. Guti'errez-Vega ``Ince Gaussian beams", Optics Letters, Vol. 29, Issue 2, 144-146 (2004) [2] Adetunmise C. Dada, Jonathan Leach, Gerald S. Buller, Miles J. Padgett, and Erika Andersson, ``Experimental high-dimensional two-photon entanglement and violations of generalized Bell inequalities", Nature Physics 7, 677-680 (2011)
A monolithically integrated polarization entangled photon pair source on a silicon chip
Matsuda, Nobuyuki; Le Jeannic, Hanna; Fukuda, Hiroshi; Tsuchizawa, Tai; Munro, William John; Shimizu, Kaoru; Yamada, Koji; Tokura, Yasuhiro; Takesue, Hiroki
2012-01-01
Integrated photonic circuits are one of the most promising platforms for large-scale photonic quantum information systems due to their small physical size and stable interferometers with near-perfect lateral-mode overlaps. Since many quantum information protocols are based on qubits defined by the polarization of photons, we must develop integrated building blocks to generate, manipulate, and measure the polarization-encoded quantum state on a chip. The generation unit is particularly important. Here we show the first integrated polarization-entangled photon pair source on a chip. We have implemented the source as a simple and stable silicon-on-insulator photonic circuit that generates an entangled state with 91 ± 2% fidelity. The source is equipped with versatile interfaces for silica-on-silicon or other types of waveguide platforms that accommodate the polarization manipulation and projection devices as well as pump light sources. Therefore, we are ready for the full-scale implementation of photonic quantum information systems on a chip. PMID:23150781
Delayed birth of distillable entanglement in the evolution of bound entangled states
Derkacz, Lukasz; Jakobczyk, Lech
2010-08-15
The dynamical creation of entanglement between three-level atoms coupled to the common vacuum is investigated. For the class of bound entangled initial states, we show that the dynamics of closely separated atoms generates stationary distillable entanglement of asymptotic states. We also find that the effect of delayed sudden birth of distillable entanglement occurs in the case of atoms separated by a distance comparable with the radiation wavelength.
Comment on 'Teleportation of entangled states without Bell-state measurement'
Zela, F. de
2006-08-15
We consider a protocol recently proposed by Cardoso et al. for teleporting entangled photon states from a bimodal cavity to another one. It is shown that the proposed protocol can afford full fidelity instead of the 97% fidelity that the authors ascribed to their scheme.
Entanglement and Decoherence in Two-Dimensional Coherent State Superpositions
NASA Astrophysics Data System (ADS)
Maleki, Y.
2017-03-01
A detailed investigation of entanglement in the generalized two-dimensional nonorthogonal states, which are expressed in the framework of superposed coherent states, is presented. In addition to quantifying entanglement of the generalized two-dimensional coherent states superposition, necessary and sufficient conditions for maximality of entanglement of these states are found. We show that a large class of maximally entangled coherent states can be constructed, and hence, some new maximally entangled coherent states are explicitly manipulated. The investigation is extended to the mixed system states and entanglement properties of such mixed states are investigated. It is shown that in some cases maximally entangled mixed states can be detected. Furthermore, the effect of decoherence, due to both cavity losses and noisy channel process, on such entangled states are studied and its features are discussed.
Quantum entanglement of quark colour states
Buividovich, P. V.; Kuvshinov, V. I.
2010-03-24
An analysis of quantum entanglement between the states of static colour charges in the vacuum of pure Yang-Mills theory is carried out. Hilbert space of physical states of the fields and the charges is endowed with a direct product structure by attaching an infinite Dirac string to each charge.
Rice, Perry R.
2005-07-01
I consider several interesting aspects of a new light source, a two-level atom, or N two-level atoms inside an optical parametric oscillator. I find that in the weak driving limit, detection of a transmitted or fluorescent photon generates a highly entangled state of the atom and the cavity. This entanglement can be used with beam splitters to create more complex quantum states and implement teleportation protocols. Also, one can store a single photon in the atoms, along the lines of recent slow and stopped light proposals and experiments.
Zhang, Jiaxiang; Zallo, Eugenio; Höfer, Bianca; Chen, Yan; Keil, Robert; Zopf, Michael; Böttner, Stefan; Ding, Fei; Schmidt, Oliver G
2017-01-11
We explore a method to achieve electrical control over the energy of on-demand entangled-photon emission from self-assembled quantum dots (QDs). The device used in our work consists of an electrically tunable diode-like membrane integrated onto a piezoactuator, which is capable of exerting a uniaxial stress on QDs. We theoretically reveal that, through application of the quantum-confined Stark effect to QDs by a vertical electric field, the critical uniaxial stress used to eliminate the fine structure splitting of QDs can be linearly tuned. This feature allows experimental realization of a triggered source of energy-tunable entangled-photon emission. Our demonstration represents an important step toward realization of a solid-state quantum repeater using indistinguishable entangled photons in Bell state measurements.
Quantum teleportation in space and frequency using entangled pairs of photons from a frequency comb
NASA Astrophysics Data System (ADS)
Song, Hongbin; Yonezawa, Hidehiro; Kuntz, Katanya B.; Heurs, Michele; Huntington, Elanor H.
2014-10-01
Using entangled pairs of photons from a frequency comb and wide-band frequency-resolved homodyne detection, we propose a sequential quantum teleportation protocol for continuous variables that teleports an unknown state in space and frequency. A subthreshold optical parametric oscillator (OPO) produces a comb of entangled pairs of photons separated by the free spectral range of the OPO cavity. Wide-band frequency-resolved homodyne detection enables direct access to the sum and difference of quadratures between different teeth in the comb. Such measurements are Einstein-Podolsky-Rosen nullifiers, and can be used as the basis for teleportation protocols. Our protocol for space-and-frequency teleportation effectively links arbitrary frequency channels for frequency-division multiplexing, which has applications in universal quantum computation and large-capacity quantum communication.
Einstein-Podolsky-Rosen Entanglement of Narrow-Band Photons from Cold Atoms
NASA Astrophysics Data System (ADS)
Lee, Jong-Chan; Park, Kwang-Kyoon; Zhao, Tian-Ming; Kim, Yoon-Ho
2016-12-01
Einstein-Podolsky-Rosen (EPR) entanglement introduced in 1935 deals with two particles that are entangled in their positions and momenta. Here we report the first experimental demonstration of EPR position-momentum entanglement of narrow-band photon pairs generated from cold atoms. By using two-photon quantum ghost imaging and ghost interference, we demonstrate explicitly that the narrow-band photon pairs violate the separability criterion, confirming EPR entanglement. We further demonstrate continuous variable EPR steering for positions and momenta of the two photons. Our new source of EPR-entangled narrow-band photons is expected to play an essential role in spatially multiplexed quantum information processing, such as, storage of quantum correlated images, quantum interface involving hyperentangled photons, etc.
Li, Ming; Zou, Chang-Ling; Ren, Xi-Feng; Xiong, Xiao; Cai, Yong-Jing; Guo, Guo-Ping; Tong, Li-Min; Guo, Guang-Can
2015-04-08
Photonic quantum technologies have been extensively studied in quantum information science, owing to the high-speed transmission and outstanding low-noise properties of photons. However, applications based on photonic entanglement are restricted due to the diffraction limit. In this work, we demonstrate for the first time the maintaining of quantum polarization entanglement in a nanoscale hybrid plasmonic waveguide composed of a fiber taper and a silver nanowire. The transmitted state throughout the waveguide has a fidelity of 0.932 with the maximally polarization entangled state Φ(+). Furthermore, the Clauser, Horne, Shimony, and Holt (CHSH) inequality test performed, resulting in value of 2.495 ± 0.147 > 2, demonstrates the violation of the hidden variable model. Because the plasmonic waveguide confines the effective mode area to subwavelength scale, it can bridge nanophotonics and quantum optics and may be used as near-field quantum probe in a quantum near-field micro/nanoscope, which can realize high spatial resolution, ultrasensitive, fiber-integrated, and plasmon-enhanced detection.
Yang Jian; Zhang Han; Peng Chengzhi; Chen Zengbing; Bao Xiaohui; Chen Shuai; Pan Jianwei
2009-10-15
In this paper, we report a realization of synchronization-free quantum teleportation and narrowband three-photon entanglement through interfering narrowband photon sources. Since both the single-photon and the entangled photon pair utilized are completely autonomous, it removes the requirement of high-demanding synchronization techniques in long-distance quantum communication with pulsed spontaneous parametric down-conversion sources. The frequency linewidth of the three-photon entanglement realized is on the order of several MHz, which matches the requirement of atomic ensemble based quantum memories. Such a narrowband multiphoton source will have applications in some advanced quantum communication protocols and linear optical quantum computation.
NASA Astrophysics Data System (ADS)
Assadi, Leila; Jafarpour, Mojtaba
2016-11-01
We use concurrence to study bipartite entanglement, Meyer-Wallach measure and its generalizations to study multi-partite entanglement and MABK and SASA inequalities to study the non-local properties of the 4-qubit entangled graph states, quantitatively. Then, we present 3 classifications, each one in accordance with one of the aforementioned properties. We also observe that the classification according to multipartite entanglement does exactly coincide with that according to nonlocal properties, but does not match with that according to bipartite entanglement. This observation signifies the fact that non-locality and multipartite entanglement enjoy the same basic underlying principles, while bipartite entanglement may not reveal the non-locality issue in its entirety.
Interferometric source of multi-color, multi-beam entangled photons with mirror and mixer
Dress, William B.; Kisner, Roger A.; Richards, Roger K.
2004-06-01
53 Systems and methods are described for an interferometric source of multi-color, multi-beam entangled photons. An apparatus includes: a multi-refringent device optically coupled to a source of coherent energy, the multi-refringent device providing a beam of multi-color entangled photons; a condenser device optically coupled to the multi-refringent device, the condenser device i) including a mirror and a mixer and ii) converging two spatially resolved portions of the beam of multi-color entangled photons into a converged multi-color entangled photon beam; a tunable phase adjuster optically coupled to the condenser device, the tunable phase adjuster changing a phase of at least a portion of the converged multi-color entangled photon beam to generate a first interferometeric multi-color entangled photon beam; and a beam splitter optically coupled to the condenser device, the beam splitter combining the first interferometeric multi-color entangled photon beam with a second interferometric multi-color entangled photon beam.
Creating maximally entangled states by gluing
NASA Astrophysics Data System (ADS)
Raissi, Zahra; Karimipour, Vahid
2017-03-01
We introduce a general method of gluing multi-partite states and show that entanglement swapping is a special class of a wider range of gluing operations. The gluing operation of two m and n qudit states consists of an entangling operation on two given qudits of the two states followed by operations of measurements of the two qudits in the computational basis. Depending on how many qudits (two, one or zero) we measure, we have three classes of gluing operation, resulting respectively in m+n-2, m+n-1, or m+n qudit states. Entanglement swapping belongs to the first class and has been widely studied, while the other two classes are presented and studied here. In particular, we study how larger GHZ and W states can be constructed when we glue the smaller GHZ and W states by the second method. Finally we prove that when we glue two states by the third method, the k-uniformity of the states is preserved. That is when a k-uniform state of m qudits is glued to a k'-uniform state of n qudits, the resulting state will be a min(k,k')-uniform of m+n qudits.
Superposition and entanglement of mesoscopic squeezed vacuum states in cavity QED
Chen Changyong; Feng Mang; Gao Kelin
2006-03-15
We propose a scheme to generate superposition and entanglement between the mesoscopic squeezed vacuum states by considering the two-photon interaction of N two-level atoms in a cavity with high quality factor, assisted by a strong driving field. By virtue of specific choices of the cavity detuning, a number of multiparty entangled states can be prepared, including the entanglement between the atomic and the squeezed vacuum cavity states and between the squeezed vacuum states and the coherent states of the cavities. We also present how to prepare entangled states and 'Schroedinger cats' states regarding the squeezed vacuum states of the cavity modes. The possible extension and application of our scheme are discussed. Our scheme is close to the reach with current cavity QED techniques.
Quantum Enhanced Imaging by Entangled States
2009-07-01
2009 13 . SUPPLEMENTARY NOTES 14. ABSTRACT The use of entangled states in a prospective standoff imaging sensor has been explored. Specifically... 13 FIGURE 6 UNFOLDED VERSION OF SETUP FOR PSEUDO-THERMAL GHOST IMAGING. ....................... 13 FIGURE 7 SYSTEM...ALONG ATMOSPHERIC PATH. (D)-(E) FFTS OF STARTING AND FINAL DISTRIBUTIONS OF BEAM. ABSCISSA IS IN CYCLES PER METER. ......... 22 FIGURE 13 VARIANCE
Testing nonlocal realism with entangled coherent states
Paternostro, Mauro; Jeong, Hyunseok
2010-03-15
We investigate the violation of nonlocal realism using entangled coherent states (ECSs) under nonlinear operations and homodyne measurements. We address recently proposed Leggett-type inequalities, including a class of optimized incompatibility inequalities proposed by Branciard et al. [Nature Phys. 4, 681 (2008)], and thoroughly assess the effects of detection inefficiency.
Generating coherent states of entangled spins
Yu Hongyi; Luo Yu; Yao Wang
2011-09-15
A coherent state of many spins contains quantum entanglement, which increases with a decrease in the collective spin value. We present a scheme to engineer this class of pure state based on incoherent spin pumping with a few collective raising or lowering operators. In a pumping scenario aimed for maximum entanglement, the steady state of N-pumped spin qubits realizes the ideal resource for the 1{yields}(N/2) quantum telecloning. We show how the scheme can be implemented in a realistic system of atomic spin qubits in an optical lattice. Error analysis shows that high-fidelity state engineering is possible for N{approx}O(100) spins in the presence of decoherence. The scheme can also prepare a resource state for the secret sharing protocol and for the construction of the large-scale Affleck-Kennedy-Lieb-Tasaki state.
Simultaneous Teleportation of the Spectral and Polarization States of a Photon
Humble, Travis S; Bennink, Ryan S; Grice, Warren P
2008-01-01
We describe how spectrally multimode, polarization-entangled photons simultaneously teleport quantum information encoded into the spectral and polarization degrees of freedom of a single photon using sum frequency generation to implement a Bell-state measurement.
Thermal entanglement between π-electrons in silicene and photons; occurrence of phase transitions
NASA Astrophysics Data System (ADS)
Rastgoo, S.; Golshan, M. M.
2017-03-01
In this article, the thermal entanglement between π-electronic states in a monolayer silicene sheet and a single mode quantized electromagnetic field is investigated. We assume that the system is in thermal equilibrium with the environment at a temperature T, so that the whole system is described by the Boltzmann distribution. Using the states of total Hamiltonian, the thermal density matrix and, consequently, its partially transposed one is computed, giving rise to the determination of negativity. Our analytical calculations, along with representative figures, show that the system is separable at zero temperature, exhibits a maximum, at a specific temperature, and asymptotically vanishes. Along these lines we also report the effects of electron-photon coupling, as well as the silicene buckling, on the entanglement. Specifically, we demonstrate that the maximal value of entanglement is larger for stronger electron-photon coupling, while it decreases for larger buckling effect. Moreover, we show that the gap in the total energy spectrum remains intact for any value of the buckling parameter. There is, however, one state whose energy changes sign, at a specific buckling, indicating a change of phase.
Wavelength-tunable sources of entangled photons interfaced with atomic vapours
Trotta, Rinaldo; Martín-Sánchez, Javier; Wildmann, Johannes S.; Piredda, Giovanni; Reindl, Marcus; Schimpf, Christian; Zallo, Eugenio; Stroj, Sandra; Edlinger, Johannes; Rastelli, Armando
2016-01-01
The prospect of using the quantum nature of light for secure communication keeps spurring the search and investigation of suitable sources of entangled photons. A single semiconductor quantum dot is one of the most attractive, as it can generate indistinguishable entangled photons deterministically and is compatible with current photonic-integration technologies. However, the lack of control over the energy of the entangled photons is hampering the exploitation of dissimilar quantum dots in protocols requiring the teleportation of quantum entanglement over remote locations. Here we introduce quantum dot-based sources of polarization-entangled photons whose energy can be tuned via three-directional strain engineering without degrading the degree of entanglement of the photon pairs. As a test-bench for quantum communication, we interface quantum dots with clouds of atomic vapours, and we demonstrate slow-entangled photons from a single quantum emitter. These results pave the way towards the implementation of hybrid quantum networks where entanglement is distributed among distant parties using optoelectronic devices. PMID:26815609
Unitarily localizable entanglement of Gaussian states
Serafini, Alessio; Adesso, Gerardo; Illuminati, Fabrizio
2005-03-01
We consider generic (mxn)-mode bipartitions of continuous-variable systems, and study the associated bisymmetric multimode Gaussian states. They are defined as (m+n)-mode Gaussian states invariant under local mode permutations on the m-mode and n-mode subsystems. We prove that such states are equivalent, under local unitary transformations, to the tensor product of a two-mode state and of m+n-2 uncorrelated single-mode states. The entanglement between the m-mode and the n-mode blocks can then be completely concentrated on a single pair of modes by means of local unitary operations alone. This result allows us to prove that the PPT (positivity of the partial transpose) condition is necessary and sufficient for the separability of (m+n)-mode bisymmetric Gaussian states. We determine exactly their negativity and identify a subset of bisymmetric states whose multimode entanglement of formation can be computed analytically. We consider explicit examples of pure and mixed bisymmetric states and study their entanglement scaling with the number of modes.
Multiple teleportation via partially entangled GHZ state
NASA Astrophysics Data System (ADS)
Xiong, Pei-Ying; Yu, Xu-Tao; Zhan, Hai-Tao; Zhang, Zai-Chen
2016-08-01
Quantum teleportation is important for quantum communication. We propose a protocol that uses a partially entangled Greenberger-Horne-Zeilinger (GHZ) state for single hop teleportation. Quantum teleportation will succeed if the sender makes a Bell state measurement, and the receiver performs the Hadamard gate operation, applies appropriate Pauli operators, introduces an auxiliary particle, and applies the corresponding unitary matrix to recover the transmitted state.We also present a protocol to realize multiple teleportation of partially entangled GHZ state without an auxiliary particle. We show that the success probability of the teleportation is always 0 when the number of teleportations is odd. In order to improve the success probability of a multihop, we introduce the method used in our single hop teleportation, thus proposing a multiple teleportation protocol using auxiliary particles and a unitary matrix. The final success probability is shown to be improved significantly for the method without auxiliary particles for both an odd or even number of teleportations.
NASA Astrophysics Data System (ADS)
Takeuchi, Shigeki
Quantum information science has been attracting significant attention recently. It harnesses the intrinsic nature of quantum mechanics such as quantum superposition, the uncertainty principle, and quantum entanglement to realize novel functions. Recently, quantum metrology has been emerging as an application of quantum information science. Among the many physical quanta, photons are an indispensable tool for metrology, as light-based measurements are applicable to fields ranging from astronomy to life science. In quantum metrology, quantum entanglement between photons is the phenomenon utilized.In this chapter, we will try to give a brief overview of this emerging field mainly focusing on two topics: Optical phase measurements beyond the standard quantum limit (SQL) and quantum optical coherence tomography (QOCT). The sensitivity of an optical phase measurement for a given photon number N is usually limited by $\sqrt{N}sqrt\{N\}\; ,\; which\; is\; called\; the\; SQL\; or\; shot\; noise\; limit.\; However,\; the\; SQL\; can\; be\; overcome\; when\; non-classical\; light\; is\; used.\; We\; explain\; the\; basic\; concepts\; and\; the\; recent\; experimental\; results\; that\; exceed\; the\; SQL,\; and\; an\; application\; of\; this\; technology\; for\; microscopy.\; QOCT\; harnesses\; the\; quantum$entanglement of photons in frequency to cancel out the dispersion effect, which degrades the resolution of conventional OCT. The mechanism of the dispersion cancellation and the latest experimental results will be given.
Quantum storage of entangled telecom-wavelength photons in an erbium-doped optical fibre
NASA Astrophysics Data System (ADS)
Saglamyurek, Erhan; Jin, Jeongwan; Verma, Varun B.; Shaw, Matthew D.; Marsili, Francesco; Nam, Sae Woo; Oblak, Daniel; Tittel, Wolfgang
2015-02-01
The realization of a future quantum Internet requires the processing and storage of quantum information at local nodes and interconnecting distant nodes using free-space and fibre-optic links. Quantum memories for light are key elements of such quantum networks. However, to date, neither an atomic quantum memory for non-classical states of light operating at a wavelength compatible with standard telecom fibre infrastructure, nor a fibre-based implementation of a quantum memory, has been reported. Here, we demonstrate the storage and faithful recall of the state of a 1,532 nm wavelength photon entangled with a 795 nm photon, in an ensemble of cryogenically cooled erbium ions doped into a 20-m-long silica fibre, using a photon-echo quantum memory protocol. Despite its currently limited efficiency and storage time, our broadband light-matter interface brings fibre-based quantum networks one step closer to reality.
Quantum imaging with N-photon states in position space.
Brainis, E
2011-11-21
We investigate the physics of quantum imaging with N > 2 entangled photons in position space. It is shown that, in paraxial approximation, the space-time propagation of the quantum state can be described by a generalized Huygens-Fresnel principle for the N-photon wave function. The formalism allows the initial conditions to be set on multiple reference planes, which is very convenient to describe the generation of multiple photon pairs in separate thin crystals. Applications involving state shaping and spatial entanglement swapping are developed.
Faithful teleportation with partially entangled states
Gour, Gilad
2004-10-01
We write explicitly a general protocol for faithful teleportation of a d-state particle (qudit) via a partially entangled pair of (pure) n-state particles. The classical communication cost (CCC) of the protocol is log{sub 2}(nd) bits, and it is implemented by a projective measurement performed by Alice, and a unitary operator performed by Bob (after receiving from Alice the measurement result). We prove the optimality of our protocol by a comparison with the concentrate and teleport strategy. We also show that if d>n/2, or if there is no residual entanglement left after the faithful teleportation, the CCC of any protocol is at least log{sub 2}(nd) bits. Furthermore, we find a lower bound on the CCC in the process transforming one bipartite state to another by means of local operation and classical communication.
NASA Astrophysics Data System (ADS)
Zhao, Jie; Zheng, Chun-Hong; Shi, Peng; Ren, Chun-Nian; Gu, Yong-Jian
2014-07-01
We present schemes for deterministically generating multi-qubit electron-spin entangled cluster states by the giant circular birefringence, induced by the interface between the spin of a photon and the spin of an electron confined in a quantum dot embedded in a double-sided microcavity. Based on this interface, we construct the controlled phase flip (CPF) gate deterministically which is performed on electron-spin qubits and is the essential component of the cluster-state generation. As one of the universal gates, the CPF gate constructed can also be utilized in achieving scalable quantum computing. Besides, we propose the entanglement concentration protocol to reconstruct a partially entangled cluster state into a maximally entangled one, resorting to the projection measurement on an ancillary photon. By iterating the concentration scheme several times, the maximum success probability can be achieved. The fidelities and experimental feasibilities are analyzed with respect to currently available techniques, indicating that our schemes can work well in both the strong and weak (Purcell) coupling regimes.
Quantum teleportation and entanglement swapping of matter qubits with coherent multiphoton states
NASA Astrophysics Data System (ADS)
Torres, J. M.; Bernád, J. Z.; Alber, G.
2014-07-01
Protocols for probabilistic entanglement-assisted quantum teleportation and for entanglement swapping of material qubits are presented. They are based on a protocol for postselective Bell- state projection which is capable of projecting two material qubits onto a Bell state with the help of ancillary coherent multiphoton states and postselection by balanced homodyne photodetection. Provided this photonic postselection is successful, we explore the theoretical possibilities of realizing unit-fidelity quantum teleportation and entanglement swapping with 25% success probability. This photon-assisted Bell projection is generated by coupling almost resonantly the two material qubits to single modes of the radiation field in two separate cavities in a Ramsey-type interaction sequence and by measuring the emerged field states in a balanced homodyne detection scenario. As these quantum protocols require basic tools of quantum state engineering of coherent multiphoton states and balanced homodyne photodetection, they may offer interesting perspectives in particular for current quantum optical applications in quantum information processing.
NASA Astrophysics Data System (ADS)
Gao, W. B.; Imamoglu, A.; Bernien, H.; Hanson, R.
2015-06-01
Realization of a quantum interface between stationary and flying qubits is a requirement for long-distance quantum communication and distributed quantum computation. The prospects for integrating many qubits on a single chip render solid-state spins promising candidates for stationary qubits. Certain solid-state systems, including quantum dots and nitrogen-vacancy centres in diamond, exhibit spin-state-dependent optical transitions, allowing for fast initialization, manipulation and measurement of the spins using laser excitation. Recent progress has brought spin photonics research in these materials into the quantum realm, allowing the demonstration of spin-photon entanglement, which in turn has enabled distant spin entanglement as well as quantum teleportation. Advances in the fabrication of photonic nanostructures hosting spin qubits suggest that chips incorporating a high-efficiency spin-photon interface in a quantum photonic network are within reach.
NASA Astrophysics Data System (ADS)
Yi, Xiao-jie
2017-04-01
We study quantum entanglement and phase-sensitivity of a Mach-Zehnder interferometer for the coherent spin state input. It's shown that entanglement and the Heisenberg limit of phase-sensitivity can be obtained adjusting the phase shift and increasing the total photons' number.
Characterizing entanglement of an artificial atom and a cavity cat state with Bell's inequality
NASA Astrophysics Data System (ADS)
Vlastakis, Brian; Petrenko, Andrei; Ofek, Nissim; Sun, Luyan; Leghtas, Zaki; Sliwa, Katrina; Liu, Yehan; Hatridge, Michael; Blumoff, Jacob; Frunzio, Luigi; Mirrahimi, Mazyar; Jiang, Liang; Devoret, M. H.; Schoelkopf, R. J.
2015-11-01
The Schrodinger's cat thought experiment highlights the counterintuitive concept of entanglement in macroscopically distinguishable systems. The hallmark of entanglement is the detection of strong correlations between systems, most starkly demonstrated by the violation of a Bell inequality. No violation of a Bell inequality has been observed for a system entangled with a superposition of coherent states, known as a cat state. Here we use the Clauser-Horne-Shimony-Holt formulation of a Bell test to characterize entanglement between an artificial atom and a cat state, or a Bell-cat. Using superconducting circuits with high-fidelity measurements and real-time feedback, we detect correlations that surpass the classical maximum of the Bell inequality. We investigate the influence of decoherence with states up to 16 photons in size and characterize the system by introducing joint Wigner tomography. Such techniques demonstrate that information stored in superpositions of coherent states can be extracted efficiently, a crucial requirement for quantum computing with resonators.
Entanglement of π-locally-maximally-entangleable states and the satisfiability problem
NASA Astrophysics Data System (ADS)
Makmal, Adi; Tiersch, Markus; Dunjko, Vedran; Wu, Shengjun
2014-10-01
In this paper we investigate the entanglement properties of the class of π-locally-maximally-entangleable (π-LME) states, which are also known as the real equally weighted states or the hypergraph states. The π-LME states comprise well-studied classes of quantum states (e.g., graph states) and exhibit a large degree of symmetry. Motivated by the structure of LME states, we show that the capacity to (efficiently) determine if a π-LME state is entangled would imply an efficient solution to the Boolean satisfiability problem. More concretely, we show that this particular problem of entanglement detection, phrased as a decision problem, is NP-complete. The restricted setting we consider yields a technically uninvolved proof, and illustrates that entanglement detection, even when quantum states under consideration are highly restricted, still remains difficult.
Transverse correlations in multiphoton entanglement
Wen Jianming; Rubin, Morton H.; Shih Yanhua
2007-10-15
We have analyzed the transverse correlation in multiphoton entanglement. The generalization of quantum ghost imaging is extended to the N-photon state. The Klyshko's two-photon advanced-wave picture is generalized to the N-photon case.
Electro-optic modulation for high-speed characterization of entangled photon pairs
Lukens, Joseph M.; Odele, Ogaga D.; Leaird, Daniel E.; Weiner, Andrew M.
2015-11-10
In this study, we demonstrate a new biphoton manipulation and characterization technique based on electro-optic intensity modulation and time shifting. By applying fast modulation signals with a sharply peaked cross-correlation to each photon from an entangled pair, it is possible to measure temporal correlations with significantly higher precision than that attainable using standard single-photon detection. Low-duty-cycle pulses and maximal-length sequences are considered as modulation functions, reducing the time spread in our correlation measurement by a factor of five compared to our detector jitter. With state-of-the-art electro-optic components, we expect the potential to surpass the speed of any single-photon detectors currently available.
Electro-optic modulation for high-speed characterization of entangled photon pairs
Lukens, Joseph M.; Odele, Ogaga D.; Leaird, Daniel E.; ...
2015-11-10
In this study, we demonstrate a new biphoton manipulation and characterization technique based on electro-optic intensity modulation and time shifting. By applying fast modulation signals with a sharply peaked cross-correlation to each photon from an entangled pair, it is possible to measure temporal correlations with significantly higher precision than that attainable using standard single-photon detection. Low-duty-cycle pulses and maximal-length sequences are considered as modulation functions, reducing the time spread in our correlation measurement by a factor of five compared to our detector jitter. With state-of-the-art electro-optic components, we expect the potential to surpass the speed of any single-photon detectors currentlymore » available.« less
Generation of Narrow-Band Polarization-Entangled Photon Pairs at a Rubidium D1 Line
NASA Astrophysics Data System (ADS)
Tian, Long; Li, Shujing; Yuan, Haoxiang; Wang, Hai
2016-12-01
Using the process of cavity-enhanced spontaneous parametric down-conversion (SPDC), we generate a narrow-band polarization-entangled photon pair resonant on the rubidium (Rb) D1 line (795 nm). The degenerate single-mode photon pair is selected by multiple temperature controlled etalons. The linewidth of generated polarization-entangled photon pairs is 15 MHz which matches the typical atomic memory bandwidth. The measured Bell parameter for the polarization-entangled photons S = 2.73 ± 0.04 which violates the Bell-CHSH inequality by ˜18 standard deviations. The presented entangled photon pair source could be utilized in quantum communication and quantum computing based on quantum memories in atomic ensemble.
Secured Optical Communications Using Quantum Entangled Two-Photon Transparency Modulation
NASA Technical Reports Server (NTRS)
Kojima, Jun (Inventor); Nguyen, Quang-Viet (Inventor); Lekki, John (Inventor)
2015-01-01
A system and method is disclosed wherein optical signals are coded in a transmitter by tuning or modulating the interbeam delay time (which modulates the fourth-order coherence) between pairs of entangled photons. The photon pairs are either absorbed or not absorbed (transparent) by an atomic or molecular fluorescer in a receiver, depending on the inter-beam delay that is introduced in the entangled photon pairs. Upon the absorption, corresponding fluorescent optical emissions follow at a certain wavelength, which are then detected by a photon detector. The advantage of the disclosed system is that it eliminates a need of a coincidence counter to realize the entanglement-based secure optical communications because the absorber acts as a coincidence counter for entangled photon pairs.
Entanglement of remote transmon qubits by concurrent measurement using Fock states
NASA Astrophysics Data System (ADS)
Narla, A.; Hatridge, M.; Shankar, S.; Leghtas, Z.; Sliwa, K. M.; Vlastakis, B.; Zalys-Geller, E.; Mirrahimi, M.; Devoret, M. H.
2015-03-01
A requirement of any modular quantum computer is the ability to maintain individual qubits in isolated environments while also being able to entangle arbitrary distant qubits on demand. For superconducting qubits, such a protocol can be realized by first entangling the qubits with flying microwave coherent states which are then concurrently detected by a parametric amplifier. This protocol has a 50% success probability but is vulnerable to losses between the qubits and the amplifier which reduce the entanglement fidelity. An alternative is to use itinerant Fock states, since losses now tend to reduce the success probability of creating an entangled state but not its fidelity. Such single-photon protocols have been implemented in trapped-ion and NV-center experiments. We present such a protocol tailored for entangling two transmon qubits in the circuit QED architecture. Each qubit is entangled with a Fock state of its cavity using sideband pulses. The Fock states leak out of the cavity, interfere on a beam-splitter which erases their which-path information, and are subsequently detected using a novel photo-detector realized by another qubit-cavity system. Simulations suggest that we can realize a high-fidelity entangled state with a success probability as large as 1%.
Quantum key distribution using entangled-photon trains with no basis selection
Inoue, Kyo; Takesue, Hiroki
2006-03-15
Conventional quantum key distribution (QKD) protocols include a basis selection process for providing a secure secret key. In contrast, this paper proposes an entanglement-based QKD with no basis selection procedure. Entangled-photon pulse trains with an average photon number less than one per pulse are sent to two legitimate parties, from which a secret key is created utilizing the entanglement nature. Eavesdropping on a transmission line is prevented by a condition of less than one photon per pulse, and sending classically correlated coherent pulses instead of quantum correlated ones is revealed by monitoring coincident count rate000.
On-chip generation of heralded photon-number states
Vergyris, Panagiotis; Meany, Thomas; Lunghi, Tommaso; Sauder, Gregory; Downes, James; Steel, M. J.; Withford, Michael J.; Alibart, Olivier; Tanzilli, Sébastien
2016-01-01
Beyond the use of genuine monolithic integrated optical platforms, we report here a hybrid strategy enabling on-chip generation of configurable heralded two-photon states. More specifically, we combine two different fabrication techniques, i.e., non-linear waveguides on lithium niobate for efficient photon-pair generation and femtosecond-laser-direct-written waveguides on glass for photon manipulation. Through real-time device manipulation capabilities, a variety of path-coded heralded two-photon states can be produced, ranging from product to entangled states. Those states are engineered with high levels of purity, assessed by fidelities of 99.5 ± 8% and 95.0 ± 8%, respectively, obtained via quantum interferometric measurements. Our strategy therefore stands as a milestone for further exploiting entanglement-based protocols, relying on engineered quantum states, and enabled by scalable and compatible photonic circuits. PMID:27775062
On-chip generation of heralded photon-number states
NASA Astrophysics Data System (ADS)
Vergyris, Panagiotis; Meany, Thomas; Lunghi, Tommaso; Sauder, Gregory; Downes, James; Steel, M. J.; Withford, Michael J.; Alibart, Olivier; Tanzilli, Sébastien
2016-10-01
Beyond the use of genuine monolithic integrated optical platforms, we report here a hybrid strategy enabling on-chip generation of configurable heralded two-photon states. More specifically, we combine two different fabrication techniques, i.e., non-linear waveguides on lithium niobate for efficient photon-pair generation and femtosecond-laser-direct-written waveguides on glass for photon manipulation. Through real-time device manipulation capabilities, a variety of path-coded heralded two-photon states can be produced, ranging from product to entangled states. Those states are engineered with high levels of purity, assessed by fidelities of 99.5 ± 8% and 95.0 ± 8%, respectively, obtained via quantum interferometric measurements. Our strategy therefore stands as a milestone for further exploiting entanglement-based protocols, relying on engineered quantum states, and enabled by scalable and compatible photonic circuits.
NASA Astrophysics Data System (ADS)
Shi, Zhengang; Song, Kehui
2016-12-01
We propose a one-step scheme for creating entanglement between two distant nitrogen-vacancy (NV) centers, which are placed in separate single-mode nanocavities in a planar photonic crystal (PC). With a laser-driven, the decoherence from the excited states of the NV centers can be effectively suppressed by virtue of the Raman transition in the dispersive regime. With the assistant of a strong classical field, fast operation can be achieved. The experimental feasibility of the scheme is discussed based on currently available technology.
Classical simulation of entangled states
NASA Astrophysics Data System (ADS)
Bharath, H. M.; Ravishankar, V.
2014-06-01
Characterization of nonclassicality or quantumness of a state is fundamental to foundations of quantum mechanics and quantum information. At the heart of the problem is the question whether there exist classical systems—howsoever complicated—that can mimic a given quantum state. Whilst this has been traditionally addressed through the violation of Bell inequality or nonseparability, we show that it is possible to go beyond them, by introducing the concept of classical simulation. Focusing on the two-qubit case, we show that, while for pure states, classical simulability is equivalent to existence of a local hidden variable (LHV) model, the conditions for simulability can be weaker for mixed states, demanding what we call only a generalized LHV description. Consequently, quantum states which defy a classical simulation—which we call exceptional—may require conditions which are more stringent than violation of Bell inequalities. We illustrate these features with a number of representative examples and discuss the underlying reasons, by employing fairly simple arguments.
Simple source for large linear cluster photonic states
NASA Astrophysics Data System (ADS)
Pilnyak, Y.; Aharon, N.; Istrati, D.; Megidish, E.; Retzker, A.; Eisenberg, H. S.
2017-02-01
The experimental realization of many-body entangled states is one of the main goals of quantum technology as these states are a key resource for quantum computation and quantum sensing. However, increasing the number of photons in an entangled state has been proved to be a painstakingly hard task. This is a result of the nondeterministic emission of current photon sources and the distinguishability between photons from different sources. Moreover, the generation rate and the complexity of the optical setups hinder scalability. Here we present a scheme that is compact, requires a very modest number of components, and avoids the distinguishability issues by using only one single-photon source. States of any number of photons are generated with the same configuration, with no need for increasing the optical setup. The basic operation of this scheme is experimentally demonstrated, and its sensitivity to imperfections is considered.
Computational complexity of projected entangled pair states.
Schuch, Norbert; Wolf, Michael M; Verstraete, Frank; Cirac, J Ignacio
2007-04-06
We determine the computational power of preparing projected entangled pair states (PEPS), as well as the complexity of classically simulating them, and generally the complexity of contracting tensor networks. While creating PEPS allows us to solve PP problems, the latter two tasks are both proven to be #P-complete. We further show how PEPS can be used to approximate ground states of gapped Hamiltonians and that creating them is easier than creating arbitrary PEPS. The main tool for our proofs is a duality between PEPS and postselection which allows us to use existing results from quantum complexity.
NASA Astrophysics Data System (ADS)
Poddubny, Alexander N.; Sukhorukov, Andrey A.
2015-09-01
The practical development of quantum plasmonic circuits incorporating non-classical interference [1] and sources of entangled states calls for a versatile quantum theoretical framework which can fully describe the generation and detection of entangled photons and plasmons. However, majority of the presently used theoretical approaches are typically limited to the toy models assuming loss-less and nondispersive elements or including just a few resonant modes. Here, we present a rigorous Green function approach describing entangled photon-plasmon state generation through spontaneous wave mixing in realistic metal-dielectric nanostructures. Our approach is based on the local Huttner-Barnett quantization scheme [2], which enables problem formulation in terms of a Hermitian Hamiltonian where the losses and dispersion are fully encoded in the electromagnetic Green functions. Hence, the problem can be addressed by the standard quantum mechanical perturbation theory, overcoming mathematical difficulties associated with other quantization schemes. We derive explicit expressions with clear physical meaning for the spatially dependent two-photon detection probability, single-photon detection probability and single-photon density matrix. In the limiting case of low-loss nondispersive waveguides our approach reproduces the previous results [3,4]. Importantly, our technique is far more general and can quantitatively describe generation and detection of spatially-entangled photons in arbitrary metal-dielectric structures taking into account actual losses and dispersion. This is essential to perform the design and optimization of plasmonic structures for generation and control of quantum entangled states. [1] J.S. Fakonas, H. Lee, Y.A. Kelaita and H.A. Atwater, Nature Photonics 8, 317(2014) [2] W. Vogel and D.-G. Welsch, Quantum Optics, Wiley (2006). [3] D.A. Antonosyan, A.S. Solntsev and A.A. Sukhorukov, Phys. Rev. A 90 043845 (2014) [4] L.-G. Helt, J.E. Sipe and M.J. Steel, ar
Nonclassical properties and quantum resources of hierarchical photonic superposition states
Volkoff, T. J.
2015-11-15
We motivate and introduce a class of “hierarchical” quantum superposition states of N coupled quantum oscillators. Unlike other well-known multimode photonic Schrödinger-cat states such as entangled coherent states, the hierarchical superposition states are characterized as two-branch superpositions of tensor products of single-mode Schrödinger-cat states. In addition to analyzing the photon statistics and quasiprobability distributions of prominent examples of these nonclassical states, we consider their usefulness for highprecision quantum metrology of nonlinear optical Hamiltonians and quantify their mode entanglement. We propose two methods for generating hierarchical superpositions in N = 2 coupled microwave cavities, exploiting currently existing quantum optical technology for generating entanglement between spatially separated electromagnetic field modes.
Deterministic photonic cluster state generation from quantum dot molecules
NASA Astrophysics Data System (ADS)
Economou, Sophia; Gimeno-Segovia, Mercedes; Rudolph, Terry
2014-03-01
Currently, the most promising approach for photon-based quantum information processing is measurement-based, or one-way, quantum computing. In this scheme, a large entangled state of photons is prepared upfront and the computation is implemented with single-qubit measurements alone. Available approaches to generating the cluster state are probabilistic, which makes scalability challenging. We propose to generate the cluster state using a quantum dot molecule with one electron spin per quantum dot. The two spins are coupled by exchange interaction and are periodically pulsed to produce photons. We show that the entanglement created by free evolution between the spins is transferred to the emitted photons, and thus a 2D photonic ladder can be created. Our scheme only utilizes single-spin gates and measurement, and is thus fully consistent with available technology.
Experimental demonstration of four-photon entanglement and high-fidelity teleportation.
Pan, J W; Daniell, M; Gasparoni, S; Weihs, G; Zeilinger, A
2001-05-14
We experimentally demonstrate observation of highly pure four-photon GHZ entanglement produced by parametric down-conversion and a projective measurement. At the same time this also demonstrates teleportation of entanglement with very high purity. Not only does the achieved high visibility enable various novel tests of quantum nonlocality, it also opens the possibility to experimentally investigate various quantum computation and communication schemes with linear optics. Our technique can, in principle, be used to produce entanglement of arbitrarily high order or, equivalently, teleportation and entanglement swapping over multiple stages.
Multipartite entanglement accumulation in quantum states: Localizable generalized geometric measure
NASA Astrophysics Data System (ADS)
Sadhukhan, Debasis; Roy, Sudipto Singha; Pal, Amit Kumar; Rakshit, Debraj; SenDe, Aditi; Sen, Ujjwal
2017-02-01
Multiparty quantum states are useful for a variety of quantum information and computation protocols. We define a multiparty entanglement measure based on local measurements on a multiparty quantum state and an entanglement measure averaged on the postmeasurement ensemble. Using the generalized geometric measure as the measure of multipartite entanglement for the ensemble, we demonstrate, in the case of several well-known classes of multipartite pure states, that the localized multipartite entanglement can exceed the entanglement present in the original state. We also show that measurement over multiple parties may be beneficial in enhancing localizable multipartite entanglement. We point out that localizable generalized geometric measure faithfully signals quantum critical phenomena in well-known quantum spin models even when considerable finite-size effect is present in the system.
Preparing entangled states by Lyapunov control
NASA Astrophysics Data System (ADS)
Shi, Z. C.; Wang, L. C.; Yi, X. X.
2016-12-01
By Lyapunov control, we present a protocol to prepare entangled states such as Bell states in the context of cavity QED system. The advantage of our method is of threefold. Firstly, we can only control the phase of classical fields to complete the preparation process. Secondly, the evolution time is sharply shortened when compared to adiabatic control. Thirdly, the final state is steady after removing control fields. The influence of decoherence caused by the atomic spontaneous emission and the cavity decay is discussed. The numerical results show that the control scheme is immune to decoherence, especially for the atomic spontaneous emission from |2rangle to |1rangle . This can be understood as the state staying in an invariant subspace. Finally, we generalize this method in preparation of W state.
Deterministic Quantum Key Distribution Using Two Non-orthogonal Entangled States
NASA Astrophysics Data System (ADS)
Guo, Ying; Zeng, Gui-Hua
2007-03-01
A deterministic quantum key distribution scheme using two non-orthogonal entangled states is proposed. In the proposed scheme, communicators share key information by exchanging one travelling photon with two random and secret polarization angles. The security of the distributed key is guaranteed by three checking phases in three-way channel and the communicators' secret polarization angles.
Entangled states and superradiant phase transitions
Aparicio Alcalde, M.; Cardenas, A. H.; Svaiter, N. F.; Bezerra, V. B.
2010-03-15
The full Dicke model is composed of a single bosonic mode and an ensemble of N identical two-level atoms. In the model, the coupling between the bosonic mode and the atoms generates resonant and nonresonant processes. We also consider a dipole-dipole interaction between the atoms, which is able to generate entangled states in the atomic system. By assuming thermal equilibrium with a reservoir at temperature {beta}{sup -1}, the transition from fluorescent to superradiant phase and the quantum phase transition are investigated. It is shown that the critical behavior of the full Dicke model is not modified by the introduction of the dipole-dipole interaction.
Quantum gravity, CPT symmetry and entangled states
NASA Astrophysics Data System (ADS)
Mavromatos, Nick E.
2012-03-01
In this talk I discuss the potential rôle of quantumgravity space-time foam on an induced intrinsic violation of CPT symmetry, resulting in (perturbatively weak) modifications of Einstein-Podolsky-Rosen (EPR) correlations in entangled particle states of neutral mesons. For specific models of foam, inspired from String theory, the modifications may be falsifiable at the current upgrade of the DAΦNE detector in Frascati NL. Advantages of neutral Kaons over other neutral mesons (e.g. B-mesons) for the possible detection of the phenomenon, are outlined.
NASA Astrophysics Data System (ADS)
Huang, Li-Yuan; Fang, Mao-Fa
2008-07-01
The thermal entanglement and teleportation of a thermally mixed entangled state of a two-qubit Heisenberg XXX chain under the Dzyaloshinski-Moriya (DM) anisotropic antisymmetric interaction through a noisy quantum channel given by a Werner state is investigated. The dependences of the thermal entanglement of the teleported state on the DM coupling constant, the temperature and the entanglement of the noisy quantum channel are studied in detail for both the ferromagnetic and the antiferromagnetic cases. The result shows that a minimum entanglement of the noisy quantum channel must be provided in order to realize the entanglement teleportation. The values of fidelity of the teleported state are also studied for these two cases. It is found that under certain conditions, we can transfer an initial state with a better fidelity than that for any classical communication protocol.
Multipartite entanglement in four-qubit graph states
NASA Astrophysics Data System (ADS)
Jafarpour, Mojtaba; Assadi, Leila
2016-03-01
We consider a compendium of the non-trivial four-qubit graphs, derive their corresponding quantum states and classify them into equivalent classes. We use Meyer-Wallach measure and its generalizations to study block-partition and global entanglement in these states. We obtain several entanglement quantities for each graph state, which present a comprehensive characterization of the entanglement properties of the latter. As a result, a number of correlations between the graph structure and multipartite entanglement quantities have also been established.
Parameter Estimation with Entangled Photons Produced by Parametric Down-Conversion
NASA Technical Reports Server (NTRS)
Cable, Hugo; Durkin, Gabriel A.
2010-01-01
We explore the advantages offered by twin light beams produced in parametric down-conversion for precision measurement. The symmetry of these bipartite quantum states, even under losses, suggests that monitoring correlations between the divergent beams permits a high-precision inference of any symmetry-breaking effect, e.g., fiber birefringence. We show that the quantity of entanglement is not the key feature for such an instrument. In a lossless setting, scaling of precision at the ultimate "Heisenberg" limit is possible with photon counting alone. Even as photon losses approach 100% the precision is shot-noise limited, and we identify the crossover point between quantum and classical precision as a function of detected flux. The predicted hypersensitivity is demonstrated with a Bayesian simulation.
Parameter estimation with entangled photons produced by parametric down-conversion.
Cable, Hugo; Durkin, Gabriel A
2010-07-02
We explore the advantages offered by twin light beams produced in parametric down-conversion for precision measurement. The symmetry of these bipartite quantum states, even under losses, suggests that monitoring correlations between the divergent beams permits a high-precision inference of any symmetry-breaking effect, e.g., fiber birefringence. We show that the quantity of entanglement is not the key feature for such an instrument. In a lossless setting, scaling of precision at the ultimate "Heisenberg" limit is possible with photon counting alone. Even as photon losses approach 100% the precision is shot-noise limited, and we identify the crossover point between quantum and classical precision as a function of detected flux. The predicted hypersensitivity is demonstrated with a Bayesian simulation.
Multipartite maximally entangled states in symmetric scenarios
NASA Astrophysics Data System (ADS)
González-Guillén, Carlos E.
2012-08-01
We consider the class of (N+1)-partite states suitable for protocols where there is a powerful party, the authority, and the other N parties play the same role, namely, the state of their system lies in the symmetric Hilbert space. We show that, within this scenario, there is a “maximally entangled state” that can be transform by a local operations and classical communication protocol into any other state. In addition, we show how to use the protocol efficiently, including the construction of the state, and discuss security issues for possible applications to cryptographic protocols. As an immediate consequence we recover a sequential protocol that implements the 1-to-N symmetric cloning.
NASA Astrophysics Data System (ADS)
Wang, He; Zhang, Yu Qing; Liu, Xue Feng; Hu, Yu Pu
2016-06-01
We propose a novel quantum dialogue protocol by using the generalized Bell states and entanglement swapping. In the protocol, a sequence of ordered two-qutrit entangled states acts as quantum information channel for exchanging secret messages directly and simultaneously. Besides, a secret key string is shared between the communicants to overcome information leakage. Different from those previous information leakage-resistant quantum dialogue protocols, the particles, composed of one of each pair of entangled states, are transmitted only one time in the proposed protocol. Security analysis shows that our protocol can overcome information leakage and resist several well-known attacks. Moreover, the efficiency of our scheme is acceptable.
Energy and momentum entanglement in parametric downconversion
NASA Astrophysics Data System (ADS)
Saldanha, Pablo L.; Monken, C. H.
2013-01-01
We present a simple treatment of the phenomenon of spontaneous parametric downconversion consisting of the coherent scattering of a single pump photon into an entangled photon pair inside a nonlinear crystal. The energy and momentum entanglement of the quantum state of the generated twin photons are seen as a consequence of the fundamental indistinguishability of the time and the position in which the photon pair is created inside the crystal. We also discuss some consequences of photon entanglement.
Entanglement of polar molecules in pendular states
NASA Astrophysics Data System (ADS)
Wei, Qi; Kais, Sabre; Friedrich, Bretislav; Herschbach, Dudley
2011-03-01
In proposals for quantum computers using arrays of trapped ultracold polar molecules as qubits, a strong external field with appreciable gradient is imposed in order to prevent quenching of the dipole moments by rotation and to distinguish among the qubit sites. That field induces the molecular dipoles to undergo pendular oscillations, which markedly affect the qubit states and the dipole-dipole interaction. We evaluate entanglement of the pendular qubit states for two linear dipoles, characterized by pairwise concurrence, as a function of the molecular dipole moment and rotational constant, strengths of the external field and the dipole-dipole coupling, and ambient temperature. We also evaluate a key frequency shift, △ω, produced by the dipole-dipole interaction. Under conditions envisioned for the proposed quantum computers, both the concurrence and △ω become very small for the ground eigenstate. In principle, such weak entanglement can be sufficient for operation of logic gates, provided the resolution is high enough to detect the △ω shift unambiguously. In practice, however, for many candidate polar molecules it appears a challenging task to attain adequate resolution. Simple approximate formulas fitted to our numerical results are provided from which the concurrence and △ω shift can be obtained in terms of unitless reduced variables.
Entanglement criteria for noise resistance of two-qudit states
NASA Astrophysics Data System (ADS)
Dutta, Arijit; Ryu, Junghee; Laskowski, Wiesław; Żukowski, Marek
2016-06-01
Noise affects production and transmission of entanglement. We use a handy approach for a noise resistance of entanglement of two-qudit systems. A geometric concept using correlation tensors of separable and entangled states is implemented to formulate entanglement criterion. We apply the criterion to the various types of noise (white, colored, local depolarizing and amplitude damping) admixtures with the initial (pure) state. We also study the noise resistance with respect to the violation of specific family of Bell inequalities (CGLMP). A broad set of numerical and analytical results is presented.
Fusion of entangled coherent W and GHZ states in cavity QED
NASA Astrophysics Data System (ADS)
Zang, Xue-Ping; Yang, Ming; Song, Wei; Cao, Zhuo-Liang
2016-07-01
Efficient preparation of W and GHZ states encoded in various degrees of freedom of quantum particles is vital in quantum information science. So far, most of the studies have focused on polarization encoded photonic W and GHZ states. In this paper, we focus on W- and GHZ-class entangled coherent states, and propose schemes to fuse small W- and GHZ-entangled coherent states into larger ones. Based on successive detuned interactions between optical modes and an ancilla atom, an (N + M - 2)-mode entangled coherent W state can be probabilistically prepared from an N-mode and an M-mode entangled coherent W states. This fusion scheme applies to entangled coherent GHZ states too, and it can succeed in a deterministic way. The ancilla atom only interacts with a single optical mode, which avoids the problem of synchronizing many atoms in the previous cavity QED based fusion schemes. The detuning property of the interaction makes the current fusion scheme more feasible that the ones based on resonant atom-light interactions. In addition, the two levels of the ancilla atom for encoding quantum information are two degenerate ground states, and the excited state is adiabatically eliminated during the fusion process, so the atomic decay from excited states does not affect the quality of the fusion process.
Generating multipartite entangled states of qubits distributed in different cavities
NASA Astrophysics Data System (ADS)
He, Xiao-Ling; Su, Qi-Ping; Zhang, Feng-Yang; Yang, Chui-Ping
2014-06-01
Cavity-based large-scale quantum information processing (QIP) needs a large number of qubits, and placing all of them in a single cavity quickly runs into many fundamental and practical problems such as the increase in cavity decay rate and decrease in qubit-cavity coupling strength. Therefore, future QIP most likely will require quantum networks consisting of a large number of cavities, each hosting and coupled to multiple qubits. In this work, we propose a way to prepare a -class entangled state of spatially separated multiple qubits in different cavities, which are connected to a coupler qubit. Because no cavity photon is excited, decoherence caused by the cavity decay is greatly suppressed during the entanglement preparation. This proposal needs only one coupler qubit and one operational step, and does not require using a classical pulse, so that the engineering complexity is much reduced and the operation is greatly simplified. As an example of the experimental implementation, we further give a numerical analysis, which shows that high-fidelity generation of the state using three superconducting phase qubits each embedded in a one-dimensional transmission line resonator is feasible within the present circuit QED technique. The proposal is quite general and can be applied to accomplish the same task with other types of qubits such as superconducting flux qubits, charge qubits, quantum dots, nitrogen-vacancy centers, and atoms.
NASA Astrophysics Data System (ADS)
He, Cheng; Lin, Liang; Sun, Xiao-Chen; Liu, Xiao-Ping; Lu, Ming-Hui; Chen, Yan-Feng
2014-01-01
As exotic phenomena in optics, topological states in photonic crystals have drawn much attention due to their fundamental significance and great potential applications. Because of the broken time-reversal symmetry under the influence of an external magnetic field, the photonic crystals composed of magneto-optical materials will lead to the degeneracy lifting and show particular topological characters of energy bands. The upper and lower bulk bands have nonzero integer topological numbers. The gapless edge states can be realized to connect two bulk states. This topological photonic states originated from the topological property can be analogous to the integer quantum Hall effect in an electronic system. The gapless edge state only possesses a single sign of gradient in the whole Brillouin zone, and thus the group velocity is only in one direction leading to the one-way energy flow, which is robust to disorder and impurity due to the nontrivial topological nature of the corresponding electromagnetic states. Furthermore, this one-way edge state would cross the Brillouin center with nonzero group velocity, where the negative-zero-positive phase velocity can be used to realize some interesting phenomena such as tunneling and backward phase propagation. On the other hand, under the protection of time-reversal symmetry, a pair of gapless edge states can also be constructed by using magnetic-electric coupling meta-materials, exhibiting Fermion-like spin helix topological edge states, which can be regarded as an optical counterpart of topological insulator originating from the spin-orbit coupling. The aim of this article is to have a comprehensive review of recent research literatures published in this emerging field of photonic topological phenomena. Photonic topological states and their related phenomena are presented and analyzed, including the chiral edge states, polarization dependent transportation, unidirectional waveguide and nonreciprocal optical transmission, all
Wu, Jin-Lei; Ji, Xin; Zhang, Shou
2017-01-01
We propose a dressed-state scheme to achieve shortcuts to adiabaticity in atom-cavity quantum electrodynamics for speeding up adiabatic two-atom quantum state transfer and maximum entanglement generation. Compared with stimulated Raman adiabatic passage, the dressed-state scheme greatly shortens the operation time in a non-adiabatic way. By means of some numerical simulations, we determine the parameters which can guarantee the feasibility and efficiency both in theory and experiment. Besides, numerical simulations also show the scheme is robust against the variations in the parameters, atomic spontaneous emissions and the photon leakages from the cavity.
Classification of multipartite entangled states by multidimensional determinants
Miyake, Akimasa
2003-01-01
We find that multidimensional determinants 'hyperdeterminants', related to entanglement measures (the so-called concurrence, or 3-tangle for two or three qubits, respectively), are derived from a duality between entangled states and separable states. By means of the hyperdeterminant and its singularities, the single copy of multipartite pure entangled states is classified into an onion structure of every closed subset, similar to that by the local rank in the bipartite case. This reveals how inequivalent multipartite entangled classes are partially ordered under local actions. In particular, the generic entangled class of the maximal dimension, distinguished as the nonzero hyperdeterminant, does not include the maximally entangled states in Bell's inequalities in general (e.g., in the n{>=}4 qubits), contrary to the widely known bipartite or three-qubit cases. It suggests that not only are they never locally interconvertible with the majority of multipartite entangled states, but they would have no grounds for the canonical n-partite entangled states. Our classification is also useful for the mixed states.
NASA Astrophysics Data System (ADS)
Chen, L. X.; Wu, Q. P.
2012-10-01
Recently, Dada et al. reported on the experimental entanglement concentration and violation of generalized Bell inequalities with orbital angular momentum (OAM) [Nat. Phys. 7, 677 (2011)]. Here we demonstrate that the high-dimensional entanglement concentration can be performed in arbitrary OAM subspaces with selectivity. Instead of violating the generalized Bell inequalities, the working principle of present entanglement concentration is visualized by the biphoton OAM Klyshko picture, and its good performance is confirmed and quantified through the experimental Shannon dimensionalities after concentration.
Generation of multiphoton entangled quantum states by means of integrated frequency combs.
Reimer, Christian; Kues, Michael; Roztocki, Piotr; Wetzel, Benjamin; Grazioso, Fabio; Little, Brent E; Chu, Sai T; Johnston, Tudor; Bromberg, Yaron; Caspani, Lucia; Moss, David J; Morandotti, Roberto
2016-03-11
Complex optical photon states with entanglement shared among several modes are critical to improving our fundamental understanding of quantum mechanics and have applications for quantum information processing, imaging, and microscopy. We demonstrate that optical integrated Kerr frequency combs can be used to generate several bi- and multiphoton entangled qubits, with direct applications for quantum communication and computation. Our method is compatible with contemporary fiber and quantum memory infrastructures and with chip-scale semiconductor technology, enabling compact, low-cost, and scalable implementations. The exploitation of integrated Kerr frequency combs, with their ability to generate multiple, customizable, and complex quantum states, can provide a scalable, practical, and compact platform for quantum technologies.
Tsirelson's bound and supersymmetric entangled states
Borsten, L.; Brádler, K.; Duff, M. J.
2014-01-01
A superqubit, belonging to a (2|1)-dimensional super-Hilbert space, constitutes the minimal supersymmetric extension of the conventional qubit. In order to see whether superqubits are more non-local than ordinary qubits, we construct a class of two-superqubit entangled states as a non-local resource in the CHSH game. Since super Hilbert space amplitudes are Grassmann numbers, the result depends on how we extract real probabilities and we examine three choices of map: (1) DeWitt (2) Trigonometric and (3) Modified Rogers. In cases (1) and (2), the winning probability reaches the Tsirelson bound pwin=cos2π/8≃0.8536 of standard quantum mechanics. Case (3) crosses Tsirelson's bound with pwin≃0.9265. Although all states used in the game involve probabilities lying between 0 and 1, case (3) permits other changes of basis inducing negative transition probabilities. PMID:25294964
Entangled states of spin and clock oscillators
NASA Astrophysics Data System (ADS)
Polzik, Eugene
2016-05-01
Measurements of one quadrature of an oscillator with precision beyond its vacuum state uncertainty have occupied a central place in quantum physics for decades. We have recently reported the first experimental implementation of such measurement with a magnetic oscillator. However, a much more intriguing goal is to trace an oscillator trajectory with the precision beyond the vacuum state uncertainty in both position and momentum, a feat naively assumed not possible due to the Heisenberg uncertainty principle. We have demonstrated that such measurement is possible if the oscillator is entangled with a quantum reference oscillator with an effective negative mass. The key element is the cancellation of the back action of the measurement on the composite system of two oscillators. Applications include measurements of e.-m. fields, accelleration, force and time with practically unlimited accuracy. In a more general sense, this approach leads to trajectories without quantum uncertainties and to achieving new fundamental bounds on the measurement precision.
A linear optical protocol of random quantum key distribution by using polarization entangled photons
NASA Astrophysics Data System (ADS)
Cao, Wen-Zhen; Wu, Yan-Hua; Jiang, Hui-Juan; Li, Chong
2010-02-01
Utilized polarization entangled photons, a linear optical protocol for generating random quantum key distribution (QKD) is proposed, which is made up of EPR-source, linear optical elements, and conventional photon detectors. It is shown that total efficiency of QKD η=100% in theory.
Generation of polarization-entangled photon pairs in a Bragg reflection waveguide
NASA Astrophysics Data System (ADS)
Vallés, A.; Hendrych, M.; Svozilík, J.; Machulka, R.; Abolghasem, P.; Kang, D.; Bijlani, B. J.; Helmy, A. S.; Torres, J. P.
2013-05-01
We demonstrate experimentally that spontaneous parametric down-conversion in an AlGaAs semiconductor Bragg reflection waveguide can make for paired photons highly entangled in the polarization degree of freedom at the telecommunication wavelength of 1550 nm. The pairs of photons show visibility higher than 90% in several polarization bases and violate a Clauser-Horne-Shimony-Holt Bell-like inequality by more than 3 standard deviations. This represents a significant step toward the realization of efficient and versatile self pumped sources of entangled photon pairs on-chip.
Ultrafast double-quantum-coherence spectroscopy of excitons with entangled photons
Richter, Marten; Mukamel, Shaul
2010-07-15
We calculate the four-wave-mixing signal of excitons generated at k{sub 4}=k{sub 1}+k{sub 2}-k{sub 3} by two pulsed entangled photon pairs (k{sub 1}, k{sub 2}) and (k{sub 3}, k{sub 4}), where all four modes are chronologically ordered. Entangled photons offer an unusual combination of bandwidths and temporal resolution not possible by classical beams. Contributions from different resonances can be selected by varying the parameters of the photon wave function. The signal scales linearly rather than quadratically with the laser field intensity, which allows performance of the measurements at low powers.
Quantum optical coherence tomography using three time-energy entangled photons
NASA Astrophysics Data System (ADS)
Lopez-Mago, Dorilian; Burguete, Arturo; Campos, Eernesto
2016-09-01
Quantum Optical Coherence Tomography can achieve a greater image resolution compared to its classical counterpart, due to the entanglement of the photon pairs. Following the idea that higher the number of entangled photons, higher the resolution, we study the physical underpinnings that appear when using photon triplets. Unlike the usual Hong-Ou-Mandel interferometer used for QOCT, a much simpler implementation in the form of a Michelson interferometer is used in this work. We find that axial resolution can be improved by a factor of four. Additionally, we provide the numerical method to reconstruct the image given the triple coincidence rate.
Entanglement of Formation for Werner States and Isotropic States via Logical Gates
NASA Astrophysics Data System (ADS)
Bertini, Cesarino; Chiara, Maria Luisa Dalla; Leporini, Roberto
To what extent is a logical characterization of entanglement possible? We investigate some correlations that hold between the concept of entanglement of formation for Werner states and for isotropic states and the probabilistic behavior of some quantum logical gates.
Cluster-type entangled coherent states: Generation and application
An, Nguyen Ba; Kim, Jaewan
2009-10-15
We consider a type of (M+N)-mode entangled coherent states and propose a simple deterministic scheme to generate these states that can fly freely in space. We then exploit such free-flying states to teleport certain kinds of superpositions of multimode coherent states. We also address the issue of manipulating size and type of entangled coherent states by means of linear optics elements only.
NASA Astrophysics Data System (ADS)
Zhang, Jiaxiang; Wildmann, Johannes S.; Ding, Fei; Trotta, Rinaldo; Huo, Yongheng; Zallo, Eugenio; Huber, Daniel; Rastelli, Armando; Schmidt, Oliver G.
2015-12-01
Triggered sources of entangled photon pairs are key components in most quantum communication protocols. For practical quantum applications, electrical triggering would allow the realization of compact and deterministic sources of entangled photons. Entangled-light-emitting-diodes based on semiconductor quantum dots are among the most promising sources that can potentially address this task. However, entangled-light-emitting-diodes are plagued by a source of randomness, which results in a very low probability of finding quantum dots with sufficiently small fine structure splitting for entangled-photon generation (~10-2). Here we introduce strain-tunable entangled-light-emitting-diodes that exploit piezoelectric-induced strains to tune quantum dots for entangled-photon generation. We demonstrate that up to 30% of the quantum dots in strain-tunable entangled-light-emitting-diodes emit polarization-entangled photons. An entanglement fidelity as high as 0.83 is achieved with fast temporal post selection. Driven at high speed, that is 400 MHz, strain-tunable entangled-light-emitting-diodes emerge as promising devices for high data-rate quantum applications.
Zhang, Jiaxiang; Wildmann, Johannes S.; Ding, Fei; Trotta, Rinaldo; Huo, Yongheng; Zallo, Eugenio; Huber, Daniel; Rastelli, Armando; Schmidt, Oliver G.
2015-01-01
Triggered sources of entangled photon pairs are key components in most quantum communication protocols. For practical quantum applications, electrical triggering would allow the realization of compact and deterministic sources of entangled photons. Entangled-light-emitting-diodes based on semiconductor quantum dots are among the most promising sources that can potentially address this task. However, entangled-light-emitting-diodes are plagued by a source of randomness, which results in a very low probability of finding quantum dots with sufficiently small fine structure splitting for entangled-photon generation (∼10−2). Here we introduce strain-tunable entangled-light-emitting-diodes that exploit piezoelectric-induced strains to tune quantum dots for entangled-photon generation. We demonstrate that up to 30% of the quantum dots in strain-tunable entangled-light-emitting-diodes emit polarization-entangled photons. An entanglement fidelity as high as 0.83 is achieved with fast temporal post selection. Driven at high speed, that is 400 MHz, strain-tunable entangled-light-emitting-diodes emerge as promising devices for high data-rate quantum applications. PMID:26621073
NASA Astrophysics Data System (ADS)
Chen, Li; Shao, Xiao-Qiang; Zhang, Shou
2009-11-01
We examine the entanglement dynamics between two strongly driven atoms off-resonantly coupled with a single-mode cavity via the two-photon process with the help of negativity in two different types of initial states. The results show that entanglement sudden death may occur under both the above conditions and the sudden death effect can be monitored by modulating the atom-cavity detunings. Furthermore, we also find an atomic decoherence-free subspace so that the initial entanglement between two atoms remains invariable in application.
Semiquantum secret sharing using entangled states
Li Qin; Chan, W. H.; Long Dongyang
2010-08-15
Secret sharing is a procedure for sharing a secret among a number of participants such that only the qualified subsets of participants have the ability to reconstruct the secret. Even in the presence of eavesdropping, secret sharing can be achieved when all the members are quantum. So what happens if not all the members are quantum? In this paper, we propose two semiquantum secret sharing protocols by using maximally entangled Greenberger-Horne-Zeilinger-type states in which quantum Alice shares a secret with two classical parties, Bob and Charlie, in a way that both parties are sufficient to obtain the secret, but one of them cannot. The presented protocols are also shown to be secure against eavesdropping.
Entanglement monotones and transformations of symmetric bipartite states
NASA Astrophysics Data System (ADS)
Girard, Mark W.; Gour, Gilad
2017-01-01
The primary goal in the study of entanglement as a resource theory is to find conditions that determine when one quantum state can or cannot be transformed into another via local operations and classical communication operations. This is typically done through entanglement monotones or conversion witnesses. Such quantities cannot be computed for arbitrary quantum states in general, but it is useful to consider classes of symmetric states for which closed-form expressions can be found. In this paper, we show how to compute the convex roof of any entanglement monotone for all Werner states. The convex roofs of the well-known Vidal monotones are computed for all isotropic states, and we show how this method can generalize to other entanglement measures and other types of symmetries as well. We also present necessary and sufficient conditions that determine when a pure bipartite state can be deterministically converted into a Werner state or an isotropic state.
Hang Chao; Huang Guoxiang
2010-11-15
We present a scheme for obtaining entangled photons and quantum phase gates in a room-temperature four-state tripod-type atomic system with two-mode active Raman gain (ARG). We analyze the linear and nonlinear optical responses of this ARG system and show that the scheme is fundamentally different from those based on electromagnetically induced transparency and hence can avoid significant probe-field absorption as well as a temperature-related Doppler effect. We demonstrate that highly entangled photon pairs can be produced and rapidly responding polarization qubit phase gates can be constructed based on the unique features of the enhanced cross-phase-modulation and superluminal probe-field propagation of the system.
NASA Astrophysics Data System (ADS)
Backens, Miriam
2017-02-01
L. Lamata et al. use an inductive approach to classify the entangled pure states of four qubits under stochastic local operations and classical communication (SLOCC) [Phys. Rev. A 75, 022318 (2007), 10.1103/PhysRevA.75.022318]. The inductive method yields a priori ten entanglement superclasses, of which they discard three as empty. One of the remaining superclasses is split into two, resulting in eight superclasses of genuine four-qubit entanglement. Here, we show that two of the three discarded superclasses are in fact nonempty and should have been retained. We give explicit expressions for the canonical states of those superclasses, up to SLOCC and qubit permutations. Furthermore, we confirm that the third discarded superclass is indeed empty, yielding a total of ten superclasses of genuine four-qubit entanglement under the inductive classification scheme.
Maximum entanglement in squeezed boson and fermion states
Khanna, F. C.; Malbouisson, J. M. C.; Santana, A. E.; Santos, E. S.
2007-08-15
A class of squeezed boson and fermion states is studied with particular emphasis on the nature of entanglement. We first investigate the case of bosons, considering two-mode squeezed states. Then we construct the fermion version to show that such states are maximum entangled, for both bosons and fermions. To achieve these results, we demonstrate some relations involving squeezed boson states. The generalization to the case of fermions is made by using Grassmann variables.
Quantum frequency up-conversion of continuous variable entangled states
Liu, Wenyuan; Wang, Ning; Li, Zongyang; Li, Yongmin
2015-12-07
We demonstrate experimentally quantum frequency up-conversion of a continuous variable entangled optical field via sum-frequency-generation process. The two-color entangled state initially entangled at 806 and 1518 nm with an amplitude quadrature difference squeezing of 3.2 dB and phase quadrature sum squeezing of 3.1 dB is converted to a new entangled state at 530 and 1518 nm with the amplitude quadrature difference squeezing of 1.7 dB and phase quadrature sum squeezing of 1.8 dB. Our implementation enables the observation of entanglement between two light fields spanning approximately 1.5 octaves in optical frequency. The presented scheme is robust to the excess amplitude and phase noises of the pump field, making it a practical building block for quantum information processing and communication networks.
Entanglement as a resource to distinguish orthogonal product states
Zhang, Zhi-Chao; Gao, Fei; Cao, Tian-Qing; Qin, Su-Juan; Wen, Qiao-Yan
2016-01-01
It is known that there are many sets of orthogonal product states which cannot be distinguished perfectly by local operations and classical communication (LOCC). However, these discussions have left the following open question: What entanglement resources are necessary and/or sufficient for this task to be possible with LOCC? In m ⊗ n, certain classes of unextendible product bases (UPB) which can be distinguished perfectly using entanglement as a resource, had been presented in 2008. In this paper, we present protocols which use entanglement more efficiently than teleportation to distinguish some classes of orthogonal product states in m ⊗ n, which are not UPB. For the open question, our results offer rather general insight into why entanglement is useful for such tasks, and present a better understanding of the relationship between entanglement and nonlocality. PMID:27458034
Entanglement as a resource to distinguish orthogonal product states
NASA Astrophysics Data System (ADS)
Zhang, Zhi-Chao; Gao, Fei; Cao, Tian-Qing; Qin, Su-Juan; Wen, Qiao-Yan
2016-07-01
It is known that there are many sets of orthogonal product states which cannot be distinguished perfectly by local operations and classical communication (LOCC). However, these discussions have left the following open question: What entanglement resources are necessary and/or sufficient for this task to be possible with LOCC? In m ⊗ n, certain classes of unextendible product bases (UPB) which can be distinguished perfectly using entanglement as a resource, had been presented in 2008. In this paper, we present protocols which use entanglement more efficiently than teleportation to distinguish some classes of orthogonal product states in m ⊗ n, which are not UPB. For the open question, our results offer rather general insight into why entanglement is useful for such tasks, and present a better understanding of the relationship between entanglement and nonlocality.
Quantum frequency up-conversion of continuous variable entangled states
NASA Astrophysics Data System (ADS)
Liu, Wenyuan; Wang, Ning; Li, Zongyang; Li, Yongmin
2015-12-01
We demonstrate experimentally quantum frequency up-conversion of a continuous variable entangled optical field via sum-frequency-generation process. The two-color entangled state initially entangled at 806 and 1518 nm with an amplitude quadrature difference squeezing of 3.2 dB and phase quadrature sum squeezing of 3.1 dB is converted to a new entangled state at 530 and 1518 nm with the amplitude quadrature difference squeezing of 1.7 dB and phase quadrature sum squeezing of 1.8 dB. Our implementation enables the observation of entanglement between two light fields spanning approximately 1.5 octaves in optical frequency. The presented scheme is robust to the excess amplitude and phase noises of the pump field, making it a practical building block for quantum information processing and communication networks.
Dissipative entanglement of solid-state spins in diamond
NASA Astrophysics Data System (ADS)
Rao, D. D. Bhaktavatsala; Yang, Sen; Wrachtrup, Jörg
2017-02-01
Generating robust entanglement among solid-state spins is key for applications in quantum information processing and precision sensing. Here we show a dissipative approach to generate such entanglement among the hyperfine coupled electron nuclear spins using the rapid optical decay of electronic excited states. The combined dark state interference effects of the optical and microwave driving fields in the presence of spontaneous emission from the short-lived excited state leads to a dissipative formation of an entangled steady state. We show that the dissipative entanglement is generated for any initial state conditions of the spins and is resilient to external field fluctuations. We analyze the scheme for both continuous and pulsed driving fields in the presence of realistic noise sources.
Open-system dynamics of graph-state entanglement.
Cavalcanti, Daniel; Chaves, Rafael; Aolita, Leandro; Davidovich, Luiz; Acín, Antonio
2009-07-17
We consider graph states of an arbitrary number of particles undergoing generic decoherence. We present methods to obtain lower and upper bounds for the system's entanglement in terms of that of considerably smaller subsystems. For an important class of noisy channels, namely, the Pauli maps, these bounds coincide and thus provide the exact analytical expression for the entanglement evolution. All of the results apply also to (mixed) graph-diagonal states and hold true for any convex entanglement monotone. Since any state can be locally depolarized to some graph-diagonal state, our method provides a lower bound for the entanglement decay of any arbitrary state. Finally, this formalism also allows for the direct identification of the robustness under size scaling of graph states in the presence of decoherence, merely by inspection of their connectivities.
Generation and purification of maximally entangled atomic states in optical cavities
Lougovski, P.; Walther, H.; Solano, E.
2005-01-01
We present a probabilistic scheme for generating and purifying maximally entangled states of two atoms inside an optical cavity via no-photon detection at the cavity output, where ideal detectors are not required. The intermediate mixed states can be continuously purified so as to violate Bell inequalities in a parametrized manner. The scheme relies on an additional strong-driving field that realizes, atypically, simultaneous Jaynes-Cummings and anti-Jaynes-Cummings interactions.
Entangled photon generation using four-wave mixing in azimuthally symmetric microresonators.
Camacho, Ryan M
2012-09-24
A novel quantum mechanical formulation of the bi-photon wavefunction and spectra resulting from four-wave mixing is developed for azimuthally symmetric systems. Numerical calculations are performed verifying the use of the angular group velocity and angular group velocity dispersion in such systems, as opposed their commonly used linear counterparts. The dispersion profile and bi-photon spectra of two illustrative examples are given, emphasizing the physical origin of the effects leading to the conditions for angular momentum and energy conservation. A scheme is proposed in which widely spaced narrowband entangled photons may be produced through a four-wave mixing process in a chip-scale ring resonator. The entangled photon pairs are found to conserve energy and momentum in the four-wave mixing interaction, even though both photon modes lie in spectral regions of steep angular group velocity dispersion.
Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength.
De Greve, Kristiaan; Yu, Leo; McMahon, Peter L; Pelc, Jason S; Natarajan, Chandra M; Kim, Na Young; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Hadfield, Robert H; Forchel, Alfred; Fejer, M M; Yamamoto, Yoshihisa
2012-11-15
Long-distance quantum teleportation and quantum repeater technologies require entanglement between a single matter quantum bit (qubit) and a telecommunications (telecom)-wavelength photonic qubit. Electron spins in III-V semiconductor quantum dots are among the matter qubits that allow for the fastest spin manipulation and photon emission, but entanglement between a single quantum-dot spin qubit and a flying (propagating) photonic qubit has yet to be demonstrated. Moreover, many quantum dots emit single photons at visible to near-infrared wavelengths, where silica fibre losses are so high that long-distance quantum communication protocols become difficult to implement. Here we demonstrate entanglement between an InAs quantum-dot electron spin qubit and a photonic qubit, by frequency downconversion of a spontaneously emitted photon from a singly charged quantum dot to a wavelength of 1,560 nanometres. The use of sub-10-picosecond pulses at a wavelength of 2.2 micrometres in the frequency downconversion process provides the necessary quantum erasure to eliminate which-path information in the photon energy. Together with previously demonstrated indistinguishable single-photon emission at high repetition rates, the present technique advances the III-V semiconductor quantum-dot spin system as a promising platform for long-distance quantum communication.
Generating multi-photon W-like states for perfect quantum teleportation and superdense coding
NASA Astrophysics Data System (ADS)
Li, Ke; Kong, Fan-Zhen; Yang, Ming; Ozaydin, Fatih; Yang, Qing; Cao, Zhuo-Liang
2016-08-01
An interesting aspect of multipartite entanglement is that for perfect teleportation and superdense coding, not the maximally entangled W states but a special class of non-maximally entangled W-like states are required. Therefore, efficient preparation of such W-like states is of great importance in quantum communications, which has not been studied as much as the preparation of W states. In this paper, we propose a simple optical scheme for efficient preparation of large-scale polarization-based entangled W-like states by fusing two W-like states or expanding a W-like state with an ancilla photon. Our scheme can also generate large-scale W states by fusing or expanding W or even W-like states. The cost analysis shows that in generating large-scale W states, the fusion mechanism achieves a higher efficiency with non-maximally entangled W-like states than maximally entangled W states. Our scheme can also start fusion or expansion with Bell states, and it is composed of a polarization-dependent beam splitter, two polarizing beam splitters and photon detectors. Requiring no ancilla photon or controlled gate to operate, our scheme can be realized with the current photonics technology and we believe it enable advances in quantum teleportation and superdense coding in multipartite settings.
Takesue, Hiroki; Inoue, Kyo
2004-09-01
We report the generation of polarization entangled photon pairs in the 1550-nm wavelength band using spontaneous four-wave mixing in a dispersion-shifted fiber loop. The use of the fiber-loop configuration made it possible to generate polarization entangled states very stably. With accidental coincidences subtracted, we obtained coincidence fringes with >90% visibilities, and observed a violation of Bell's inequality by seven standard deviations. We also confirmed the preservation of the quantum correlation between the photons even after they had been separated by 20 km of optical fiber.
Significant-Loophole-Free Test of Bell's Theorem with Entangled Photons
NASA Astrophysics Data System (ADS)
Giustina, Marissa; Versteegh, Marijn A. M.; Wengerowsky, Sören; Handsteiner, Johannes; Hochrainer, Armin; Phelan, Kevin; Steinlechner, Fabian; Kofler, Johannes; Larsson, Jan-Åke; Abellán, Carlos; Amaya, Waldimar; Pruneri, Valerio; Mitchell, Morgan W.; Beyer, Jörn; Gerrits, Thomas; Lita, Adriana E.; Shalm, Lynden K.; Nam, Sae Woo; Scheidl, Thomas; Ursin, Rupert; Wittmann, Bernhard; Zeilinger, Anton
2015-12-01
Local realism is the worldview in which physical properties of objects exist independently of measurement and where physical influences cannot travel faster than the speed of light. Bell's theorem states that this worldview is incompatible with the predictions of quantum mechanics, as is expressed in Bell's inequalities. Previous experiments convincingly supported the quantum predictions. Yet, every experiment requires assumptions that provide loopholes for a local realist explanation. Here, we report a Bell test that closes the most significant of these loopholes simultaneously. Using a well-optimized source of entangled photons, rapid setting generation, and highly efficient superconducting detectors, we observe a violation of a Bell inequality with high statistical significance. The purely statistical probability of our results to occur under local realism does not exceed 3.74 ×10-31 , corresponding to an 11.5 standard deviation effect.
Sequential Path Entanglement for Quantum Metrology
Jin, Xian-Min; Peng, Cheng-Zhi; Deng, Youjin; Barbieri, Marco; Nunn, Joshua; Walmsley, Ian A.
2013-01-01
Path entanglement is a key resource for quantum metrology. Using path-entangled states, the standard quantum limit can be beaten, and the Heisenberg limit can be achieved. However, the preparation and detection of such states scales unfavourably with the number of photons. Here we introduce sequential path entanglement, in which photons are distributed across distinct time bins with arbitrary separation, as a resource for quantum metrology. We demonstrate a scheme for converting polarization Greenberger-Horne-Zeilinger entanglement into sequential path entanglement. We observe the same enhanced phase resolution expected for conventional path entanglement, independent of the delay between consecutive photons. Sequential path entanglement can be prepared comparably easily from polarization entanglement, can be detected without using photon-number-resolving detectors, and enables novel applications.
NASA Astrophysics Data System (ADS)
Vallés, Adam; D'Ambrosio, Vincenzo; Hendrych, Martin; Mičuda, Michal; Marrucci, Lorenzo; Sciarrino, Fabio; Torres, Juan P.
2014-11-01
We demonstrate a scheme to generate noncoherent and coherent correlations, i.e., a tunable degree of entanglement, between degrees of freedom of a single photon. Its nature is analogous to the tuning of the purity (first-order coherence) of a single photon forming part of a two-photon state by tailoring the correlations between the paired photons. Therefore, well-known tools such as the Clauser-Horne-Shimony-Holt (CHSH) Bell-like inequality can also be used to characterize entanglement between degrees of freedom. More specifically, CHSH inequality tests are performed, making use of the polarization and the spatial shape of a single photon. The four modes required are two polarization modes and two spatial modes with different orbital angular momentum.
Orbital angular momentum of photons and the entanglement of Laguerre-Gaussian modes.
Krenn, Mario; Malik, Mehul; Erhard, Manuel; Zeilinger, Anton
2017-02-28
The identification of orbital angular momentum (OAM) as a fundamental property of a beam of light nearly 25 years ago has led to an extensive body of research around this topic. The possibility that single photons can carry OAM has made this degree of freedom an ideal candidate for the investigation of complex quantum phenomena and their applications. Research in this direction has ranged from experiments on complex forms of quantum entanglement to the interaction between light and quantum states of matter. Furthermore, the use of OAM in quantum information has generated a lot of excitement, as it allows for encoding large amounts of information on a single photon. Here, we explain the intuition that led to the first quantum experiment with OAM 15 years ago. We continue by reviewing some key experiments investigating fundamental questions on photonic OAM and the first steps to applying these properties in novel quantum protocols. At the end, we identify several interesting open questions that could form the subject of future investigations with OAM.This article is part of the themed issue 'Optical orbital angular momentum'.
Orbital angular momentum of photons and the entanglement of Laguerre-Gaussian modes
NASA Astrophysics Data System (ADS)
Krenn, Mario; Malik, Mehul; Erhard, Manuel; Zeilinger, Anton
2017-02-01
The identification of orbital angular momentum (OAM) as a fundamental property of a beam of light nearly 25 years ago has led to an extensive body of research around this topic. The possibility that single photons can carry OAM has made this degree of freedom an ideal candidate for the investigation of complex quantum phenomena and their applications. Research in this direction has ranged from experiments on complex forms of quantum entanglement to the interaction between light and quantum states of matter. Furthermore, the use of OAM in quantum information has generated a lot of excitement, as it allows for encoding large amounts of information on a single photon. Here, we explain the intuition that led to the first quantum experiment with OAM 15 years ago. We continue by reviewing some key experiments investigating fundamental questions on photonic OAM and the first steps to applying these properties in novel quantum protocols. At the end, we identify several interesting open questions that could form the subject of future investigations with OAM. This article is part of the themed issue 'Optical orbital angular momentum'.
Wang, Mei-Yu; Yan, Feng-Li; Gao, Ting
2016-01-01
We present two deterministic quantum entanglement distribution protocols for a four-photon Dicke polarization entangled state resorting to the frequency and spatial degrees of freedom, which are immune to an arbitrary collective-noise channel. Both of the protocols adopt the X homodyne measurement based on the cross-Kerr nonlinearity to complete the task of the single-photon detection with nearly unit probability in principle. After the four receivers share the photons, they add some local unitary operations to obtain a standard four-photon Dicke polarization entangled state. PMID:27412489
Preparing an Eight-Qubit Entangled State in Cavity QED
NASA Astrophysics Data System (ADS)
Li, Yuan-hua; Sang, Ming-huang; Nie, Yi-you
2016-11-01
An experimental protocol for preparing an eight-qubit entangled state in cavity QED is proposed, which is insensitive to the cavity decay and the thermal field. And the experimental feasibility of our protocol is discussed.
Generalizations of entanglement based on coherent states and convex sets
NASA Astrophysics Data System (ADS)
Barnum, Howard; Knill, Emanuel; Ortiz, Gerardo; Viola, Lorenza
2003-09-01
Unentangled pure states on a bipartite system are exactly the coherent states with respect to the group of local transformations. What aspects of the study of entanglement are applicable to generalized coherent states? Conversely, what can be learned about entanglement from the well-studied theory of coherent states? With these questions in mind, we characterize unentangled pure states as extremal states when considered as linear functionals on the local Lie algebra. As a result, a relativized notion of purity emerges, showing that there is a close relationship between purity, coherence, and (non)entanglement. To a large extent, these concepts can be defined and studied in the even more general setting of convex cones of states. Based on the idea that entanglement is relative, we suggest considering these notions in the context of partially ordered families of Lie algebras or convex cones, such as those that arise naturally for multipartite systems. The study of entanglement includes notions of local operations and, for information-theoretic purposes, entanglement measures and ways of scaling systems to enable asymptotic developments. We propose ways in which these may be generalized to the Lie-algebraic setting and, to a lesser extent, to the convex-cones setting. One of our motivations for this program is to understand the role of entanglementlike concepts in condensed matter. We discuss how our work provides tools for analyzing the correlations involved in quantum phase transitions and other aspects of condensed-matter systems.
Average subentropy, coherence and entanglement of random mixed quantum states
NASA Astrophysics Data System (ADS)
Zhang, Lin; Singh, Uttam; Pati, Arun K.
2017-02-01
Compact expressions for the average subentropy and coherence are obtained for random mixed states that are generated via various probability measures. Surprisingly, our results show that the average subentropy of random mixed states approaches the maximum value of the subentropy which is attained for the maximally mixed state as we increase the dimension. In the special case of the random mixed states sampled from the induced measure via partial tracing of random bipartite pure states, we establish the typicality of the relative entropy of coherence for random mixed states invoking the concentration of measure phenomenon. Our results also indicate that mixed quantum states are less useful compared to pure quantum states in higher dimension when we extract quantum coherence as a resource. This is because of the fact that average coherence of random mixed states is bounded uniformly, however, the average coherence of random pure states increases with the increasing dimension. As an important application, we establish the typicality of relative entropy of entanglement and distillable entanglement for a specific class of random bipartite mixed states. In particular, most of the random states in this specific class have relative entropy of entanglement and distillable entanglement equal to some fixed number (to within an arbitrary small error), thereby hugely reducing the complexity of computation of these entanglement measures for this specific class of mixed states.
Duality in entanglement of macroscopic states of light
NASA Astrophysics Data System (ADS)
Lee, Su-Yong; Lee, Chang-Woo; Kurzyński, Paweł; Kaszlikowski, Dagomir; Kim, Jaewan
2016-08-01
We investigate duality in entanglement of a bipartite multiphoton system generated from a coherent state of light. The system can exhibit polarization entanglement if the two parts are distinguished by their parity, or parity entanglement if the parts are distinguished by polarization. It was shown in Phys. Rev. Lett. 110, 140404 (2013), 10.1103/PhysRevLett.110.140404 that this phenomenon can be exploited as a method to test indistinguishability of two particles and it was conjectured that one can also test indistinguishability of macroscopic systems. We propose a setup to test this conjecture. Contrary to the previous studies using two-particle interference effect as in the Hong-Ou- Mandel setup, our setup neither assumes that the tested state is composed of single particles nor requires that the total number of particles be fixed. Consequently, the notion of entanglement duality is shown to be compatible with a broader class of physical systems. Moreover, by observing duality in entanglement in the above system one can confirm that macroscopic systems exhibit quantum behavior. As a practical side, entanglement duality is a useful concept that enables adaptive conversion of entanglement of one degree of freedom (DOF) to that of another DOF according to varying quantum protocols.
NASA Astrophysics Data System (ADS)
Gogyan, A.; Sisakyan, N.; Akhmedzhanov, R.; Malakyan, Yu
2014-11-01
Time-bin entangled single-photons are highly demanded for long distance quantum communication. We propose a heralded source of tunable narrowband single photons entangled in well-separated multiple temporal modes (time bins) with controllable amplitudes. The detection of a single Stokes photon generated in a cold atomic ensemble via Raman scattering of a weak write pulse heralds the preparation of one spin excitation stored within the atomic medium. A train of read laser pulses deterministically converts the atomic excitation into a single anti-Stokes photon delocalized in multi-time-bins. The waveforms of bins are well-controlled by the read pulse parameters. A scheme to measure the phase coherence across all time bins is suggested.
Three-observer Bell inequality violation on a two-qubit entangled state
NASA Astrophysics Data System (ADS)
Schiavon, Matteo; Calderaro, Luca; Pittaluga, Mirko; Vallone, Giuseppe; Villoresi, Paolo
2017-03-01
Bipartite Bell inequalities can simultaneously be violated by two different pairs of observers when weak measurements and signalling is employed. Here, we experimentally demonstrate the violation of two simultaneous CHSH inequalities by exploiting a two-photon polarisation maximally entangled state. Our results demonstrate that large double violation is experimentally achievable. Our demonstration may have impact for Quantum Key Distribution or certification of Quantum Random Number generators based on weak measurements.
Entanglement witnesses for graph states: General theory and examples
Jungnitsch, Bastian; Moroder, Tobias; Guehne, Otfried
2011-09-15
We present a general theory for the construction of witnesses that detect genuine multipartite entanglement in graph states. First, we present explicit witnesses for all graph states of up to six qubits which are better than all criteria so far. Therefore, lower fidelities are required in experiments that aim at the preparation of graph states. Building on these results, we develop analytical methods to construct two different types of entanglement witnesses for general graph states. For many classes of states, these operators exhibit white noise tolerances that converge to 1 when increasing the number of particles. We illustrate our approach for states such as the linear and the 2D cluster state. Finally, we study an entanglement monotone motivated by our approach for graph states.
General monogamy relations of quantum entanglement for multiqubit W-class states
NASA Astrophysics Data System (ADS)
Zhu, Xue-Na; Fei, Shao-Ming
2017-02-01
Entanglement monogamy is a fundamental property of multipartite entangled states. We investigate the monogamy relations for multiqubit generalized W-class states. Analytical monogamy inequalities are obtained for the concurrence of assistance, the entanglement of formation, and the entanglement of assistance.
Quantum state transfer between valley and photon qubits
NASA Astrophysics Data System (ADS)
Yang, Ming-Jay; Peng, Han-Ying; Na, Neil; Wu, Yu-Shu
2017-02-01
The electron-photon interaction in two-dimensional materials obeys the rule of "electron valley-photon polarization" correspondence. At the quantum level, such correspondence can be utilized to entangle valleys and polarizations and attain the transfer of quantum states (or information) between valley and photon qubits. Our paper presents a theoretical study of the interaction between the two types of qubits and the resultant quantum state transfer. A generic setup is introduced, which involves optical cavities enhancing the electron-photon interaction as well as facilitating both the entanglement and unentanglement between valleys and polarizations required by the transfer. The quantum system considered consists of electrons, optically excited trions, and cavity photons, with photons moving in and out of the system. A wave equation based analysis is performed, and analytical expressions are derived for the two important figures of merits that characterize the transfer, namely, yield and fidelity, allowing for the investigation of their dependences on various qubit and cavity parameters. A numerical study of the yield and fidelity has also been carried out. Overall, this paper shows promising characteristics in the valley-photon state transfer, with the conclusion that the valley-polarization correspondence can be exploited to achieve the transfer with good yield and high fidelity.
Characterizing entanglement of an artificial atom and a cavity cat state with Bell's inequality
Vlastakis, Brian; Petrenko, Andrei; Ofek, Nissim; Sun, Luyan; Leghtas, Zaki; Sliwa, Katrina; Liu, Yehan; Hatridge, Michael; Blumoff, Jacob; Frunzio, Luigi; Mirrahimi, Mazyar; Jiang, Liang; Devoret, M. H.; Schoelkopf, R. J.
2015-01-01
The Schrodinger's cat thought experiment highlights the counterintuitive concept of entanglement in macroscopically distinguishable systems. The hallmark of entanglement is the detection of strong correlations between systems, most starkly demonstrated by the violation of a Bell inequality. No violation of a Bell inequality has been observed for a system entangled with a superposition of coherent states, known as a cat state. Here we use the Clauser–Horne–Shimony–Holt formulation of a Bell test to characterize entanglement between an artificial atom and a cat state, or a Bell-cat. Using superconducting circuits with high-fidelity measurements and real-time feedback, we detect correlations that surpass the classical maximum of the Bell inequality. We investigate the influence of decoherence with states up to 16 photons in size and characterize the system by introducing joint Wigner tomography. Such techniques demonstrate that information stored in superpositions of coherent states can be extracted efficiently, a crucial requirement for quantum computing with resonators. PMID:26611724
Entanglement swapping of noisy states: A kind of superadditivity in nonclassicality
Sen, Aditi; Sen, Ujjwal; Brukner, Caslav; Buzek, Vladimir; Zukowski, Marek
2005-10-15
We address the question as to whether an entangled state that satisfies local realism will give a violation of the same after entanglement swapping in a suitable scenario. We consider such a possibility as a kind of superadditivity in nonclassicality. Importantly, it will indicate that checking for violation of local realism, in the state obtained after entanglement swapping, can be a method for detecting entanglement in the input state of the swapping procedure. We investigate various entanglement swapping schemes, which involve mixed initial states. The strength of violation of local realism by the state obtained after entanglement swapping is compared with the one for the input states. We obtain a kind of superadditivity of violation of local realism for Werner states, consequent upon entanglement swapping involving Greenberger-Horne-Zeilinger-state measurements. We also discuss whether entanglement swapping of specific states may be used in quantum repeaters with a substantially reduced need to perform the entanglement distillation step.
Entanglement equivalence of N-qubit symmetric states
Mathonet, P.; Krins, S.; Bastin, T.; Godefroid, M.; Solano, E.
2010-05-15
We study the interconversion of multipartite symmetric N-qubit states under stochastic local operations and classical communication (SLOCC). We demonstrate that if two symmetric states can be connected with a nonsymmetric invertible local operation (ILO), then they belong necessarily to the separable, W, or Greenberger-Horne-Zeilinger (GHZ) entanglement class, establishing a practical method of discriminating subsets of entanglement classes. Furthermore, we prove that there always exists a symmetric ILO connecting any pair of symmetric N-qubit states equivalent under SLOCC, simplifying the requirements for experimental implementations of local interconversion of those states.
Quantum teleportation of composite systems via mixed entangled states
Bandyopadhyay, Somshubhro; Sanders, Barry C.
2006-09-15
We analyze quantum teleportation for composite systems, specifically for concatenated teleporation (decomposing a large composite state into smaller states of dimension commensurate with the channel) and partial teleportation (teleporting one component of a larger quantum state). We obtain an exact expression for teleportation fidelity that depends solely on the dimension and singlet fraction for the entanglement channel and entanglement (measures by I concurrence) for the state; in fact quantum teleportation for composite systems provides an operational interpretation for I concurrence. In addition we obtain tight bounds on teleportation fidelity and prove that the average fidelity approaches the lower bound of teleportation fidelity in the high-dimension limit.
Entangled Coherent States Generation in two Superconducting LC Circuits
Chen Meiyu; Zhang Weimin
2008-11-07
We proposed a novel pure electronic (solid state) device consisting of two superconducting LC circuits coupled to a superconducting flux qubit. The entangled coherent states of the two LC modes is generated through the measurement of the flux qubit states. The interaction of the flux qubit and two LC circuits is controlled by the external microwave control lines. The geometrical structure of the LC circuits is adjustable and makes a strong coupling between them achievable. This entangled coherent state generator can be realized by using the conventional microelectronic fabrication techniques which increases the feasibility of the experiment.
Entanglement and Majorana edge states in the Kitaev model
NASA Astrophysics Data System (ADS)
Mandal, Saptarshi; Maiti, Moitri; Varma, Vipin Kerala
2016-07-01
We investigate the von Neumann entanglement entropy and Schmidt gap in the vortex-free ground state of the Kitaev model on the honeycomb lattice for square/rectangular and cylindrical subsystems. We find that, for both the subsystems, the free-fermionic contribution to the entanglement entropy SE exhibits signatures of the phase transitions between the gapless and gapped phases. However, within the gapless phase, we find that SE does not show an expected monotonic behavior as a function of the coupling Jz between the suitably defined one-dimensional chains for either geometry; moreover, the system generically reaches a point of minimum entanglement within the gapless phase before the entanglement saturates or increases again until the gapped phase is reached. This may be attributed to the onset of gapless modes in the bulk spectrum and the competition between the correlation functions along various bonds. In the gapped phase, on the other hand, SE always monotonically varies with Jz independent of the subregion size or shape. Finally, further confirming the Li-Haldane conjecture, we find that the Schmidt gap Δ defined from the entanglement spectrum also signals the topological transitions but only if there are corresponding zero-energy Majorana edge states that simultaneously appear or disappear across the transitions. We analytically corroborate some of our results on entanglement entropy, the Schmidt gap, and the bulk-edge correspondence using perturbation theory.
Entanglement universality of two-qubit X-states
Mendonça, Paulo E.M.F.; Marchiolli, Marcelo A.; Galetti, Diógenes
2014-12-15
We demonstrate that for every two-qubit state there is a X-counterpart, i.e., a corresponding two-qubit X-state of same spectrum and entanglement, as measured by concurrence, negativity or relative entropy of entanglement. By parametrizing the set of two-qubit X-states and a family of unitary transformations that preserve the sparse structure of a two-qubit X-state density matrix, we obtain the parametric form of a unitary transformation that converts arbitrary two-qubit states into their X-counterparts. Moreover, we provide a semi-analytic prescription on how to set the parameters of this unitary transformation in order to preserve concurrence or negativity. We also explicitly construct a set of X-state density matrices, parametrized by their purity and concurrence, whose elements are in one-to-one correspondence with the points of the concurrence versus purity (CP) diagram for generic two-qubit states. - Highlights: • Parametrization of separable, entangled and rank-specific two-qubit X-states. • Construction of a set of two-qubit X-states exhausting a two-qubit CP-diagram. • Parametrization of a disentangling unitary transformation for any two-qubit X-state. • Unitary transformation of any two-qubit state into a X-state of same entanglement.
NASA Astrophysics Data System (ADS)
Yoshizawa, Akio; Fukuda, Daiji; Tsuchida, Hidemi; Yamamoto, Noritsugu
2015-05-01
The chromatic group velocity dispersion tolerance of a fiber-optic two-photon interferometer is characterized for telecom-band photon pairs that are frequency entangled. Two indium-gallium-arsenide single-photon detectors are used to record the coincidence counts. A single-wavelength laser diode continuously pumps a periodically poled lithium niobate waveguide of 1-mm length. For near-degenerate spontaneous parametric downconversion, it generates wideband entangled collinear photon pairs. The spectral width of 115.8 nm is centered at 1550 nm. It is restricted by the performance of the single-photon detectors whose efficiency is poor beyond 1610 nm. Using a Michelson interferometer, two-photon interference signals are recorded with and without frequency entanglement. The frequency-entangled photon pairs are found to exhibit dispersion-tolerant two-photon interference, even though the two paths through the interferometer have different group velocity dispersion. The observed two-photon interference signal has a correlation time of 42.7 fs, in good agreement with calculations for a 115.8-nm spectral width. For comparison, results are also presented for photon pairs lacking frequency entanglement.
Experimental generation of a high-fidelity four-photon linear cluster state
NASA Astrophysics Data System (ADS)
Zhang, Chao; Huang, Yun-Feng; Liu, Bi-Heng; Li, Chuan-Feng; Guo, Guang-Can
2016-06-01
Cluster state plays a crucial role in one-way quantum computation. Here, we propose and experimentally demonstrate a scheme to prepare an ultrahigh-fidelity four-photon linear cluster state via a spontaneous parametric down-conversion process. The state fidelity is measured to be 0.9517 ±0.0027 . Our scheme can be directly extended to more photons to generate an N -qubit linear cluster state. Furthermore, our scheme is optimal for generating photonic linear cluster states in the sense of achieving the maximal success probability and having the simplest strategy. The key idea is that the photon pairs are prepared in some special nonmaximally entangled states instead of the normal Bell states. To generate a 2 N -qubit linear cluster state from N pairs of entangled photons, only (N -1 ) Hong-Ou-Mandel interferences are needed and a success probability of (1/4) N -1 is achieved.
Ran, Du; Hu, Chang-Sheng; Yang, Zhen-Biao
2016-01-01
We study the entanglement transfer from a two-mode continuous variable system (initially in the two-mode SU(2) cat states) to a couple of discrete two-state systems (initially in an arbitrary mixed state), by use of the resonant Jaynes-Cummings (JC) interaction. We first quantitatively connect the entanglement transfer to non-Gaussianity of the two-mode SU(2) cat states and find a positive correlation between them. We then investigate the behaviors of the entanglement transfer and find that it is dependent on the initial state of the discrete systems. We also find that the largest possible value of the transferred entanglement exhibits a variety of behaviors for different photon number as well as for the phase angle of the two-mode SU(2) cat states. We finally consider the influences of the noise on the transferred entanglement. PMID:27553881
Geometric descriptions of entangled states by auxiliary varieties
Holweck, Frederic; Luque, Jean-Gabriel; Thibon, Jean-Yves
2012-10-15
The aim of the paper is to propose geometric descriptions of multipartite entangled states using algebraic geometry. In the context of this paper, geometric means each stratum of the Hilbert space, corresponding to an entangled state, is an open subset of an algebraic variety built by classical geometric constructions (tangent lines, secant lines) from the set of separable states. In this setting, we describe well-known classifications of multipartite entanglement such as 2 Multiplication-Sign 2 Multiplication-Sign (n+ 1), for n Greater-Than-Or-Slanted-Equal-To 1, quantum systems and a new description with the 2 Multiplication-Sign 3 Multiplication-Sign 3 quantum system. Our results complete the approach of Miyake and make stronger connections with recent work of algebraic geometers. Moreover, for the quantum systems detailed in this paper, we propose an algorithm, based on the classical theory of invariants, to decide to which subvariety of the Hilbert space a given state belongs.
Minkowski structure for purity and entanglement of Gaussian bipartite states
NASA Astrophysics Data System (ADS)
de Oliveira, Marcos C.; Nicacio, Fernando; Mizrahi, Salomon S.
2013-11-01
The relation between the symplectic and Lorentz groups is explored to investigate entanglement features in a two-mode bipartite Gaussian state. We verify that the correlation matrix of arbitrary Gaussian states can be associated with a hyperbolic space with a Minkowski metric, which is divided in two regions: separabilitylike and entanglementlike, in equivalence to timelike and spacelike in special relativity. This correspondence naturally allows the definition of two insightful invariant squared distance measures: one related to the purity and another related to amount of entanglement. The second distance allows us to define a measure for entanglement in terms of the invariant interval between the given state and its closest separable state, given in a natural manner without the requirement of a minimization procedure.
Experimental Limits on Local Realism with Separable and Entangled Photons
2011-01-01
a photon received by Bob triggers a device which acts questionably on the unsuspecting feline ). There is only a single time slot available for the... feline fate information would not be available to her until after her photon reaches the (very remote) intrusive polarizer, and she had made a
Jeong, Hyunseok; Ralph, Timothy C.
2007-10-15
We study characteristics of superpositions and entanglement of thermal states at high temperatures and discuss their applications to quantum-information processing. We introduce thermal-state qubits and thermal-Bell states, which are a generalization of pure-state qubits and Bell states to thermal mixtures. A scheme is then presented to discriminate between the four thermal-Bell states without photon number resolving detection but with Kerr nonlinear interactions and two single-photon detectors. This enables one to perform quantum teleportation and gate operations for quantum computation with thermal-state qubits.
Optomechanically induced transparency associated with steady-state entanglement
NASA Astrophysics Data System (ADS)
He, Yong
2015-01-01
We theoretically investigate a two-cavity optomechanical system in which a cavity (cavity a ) couples to a mechanical resonator via radiation pressure and to another cavity (cavity c ) via a common waveguide. In the excitation of a strong pump filed to cavity a , the steady-state entanglement between cavity a and c , as a quantum channel, can be generated, which provides an indirect optical pathway to excite cavity c by means of the pump filed. Quantum interference between the direct and indirect optical pathways gives rise to an optomechanically induced transparency appearing in the probe transmission of cavity c . Unlike in a typical optomechanically induced transparency effect, the electromagnetical control of the transmission is implemented by resorting to the quantum channel. Furthermore, the coupling strength of the two cavities is an important factor of the quantum channel, which can influence the width of the transparency window and the bistable behavior of the mean photon number in cavity a . We also illustrate that the electromagnetical control via quantum channel can be exploited to implement the optical switch and the slow light.
NASA Astrophysics Data System (ADS)
Ye, Tian-Yu
2016-09-01
Recently, Liu et al. proposed a two-party quantum private comparison (QPC) protocol using entanglement swapping of Bell entangled state (Commun. Theor. Phys. 57 (2012) 583). Subsequently Liu et al. pointed out that in Liu et al.'s protocol, the TP can extract the two users' secret inputs without being detected by launching the Bell-basis measurement attack, and suggested the corresponding improvement to mend this loophole (Commun. Theor. Phys. 62 (2014) 210). In this paper, we first point out the information leakage problem toward TP existing in both of the above two protocols, and then suggest the corresponding improvement by using the one-way hash function to encrypt the two users' secret inputs. We further put forward the three-party QPC protocol also based on entanglement swapping of Bell entangled state, and then validate its output correctness and its security in detail. Finally, we generalize the three-party QPC protocol into the multi-party case, which can accomplish arbitrary pair's comparison of equality among K users within one execution. Supported by the National Natural Science Foundation of China under Grant No. 61402407
High-capacity quantum secure direct communication using hyper-entanglement of photonic qubits
NASA Astrophysics Data System (ADS)
Cai, Jiarui; Pan, Ziwen; Wang, Tie-Jun; Wang, Sihai; Wang, Chuan
2016-11-01
Hyper-entanglement is a system constituted by photons entangled in multiple degrees of freedom (DOF), being considered as a promising way of increasing channel capacity and guaranteeing powerful eavesdropping safeguard. In this work, we propose a coding scheme based on a 3-particle hyper-entanglement of polarization and orbital angular momentum (OAM) system and its application as a quantum secure direct communication (QSDC) protocol. The OAM values are specially encoded by Fibonacci sequence and the polarization carries information by defined unitary operations. The internal relations of the secret message enhances security due to principle of quantum mechanics and Fibonacci sequence. We also discuss the coding capacity and security property along with some simulation results to show its superiority and extensibility.
Bipartite quantum channels using multipartite cluster-type entangled coherent states
Munhoz, P. P.; Semiao, F. L.; Roversi, J. A.; Vidiella-Barranco, A.
2010-04-15
We propose a particular encoding for bipartite entangled states derived from multipartite cluster-type entangled coherent states (CTECSs). We investigate the effects of amplitude damping on the entanglement content of this bipartite state, as well as its usefulness as a quantum channel for teleportation. We find interesting relationships among the amplitude of the coherent states constituting the CTECSs, the number of subsystems forming the logical qubits (redundancy), and the extent to which amplitude damping affects the entanglement of the channel. For instance, in the sense of sudden death of entanglement, given a fixed value of the initial coherent state amplitude, the entanglement life span is shortened if redundancy is increased.
Multi-user quantum key distribution with entangled photons from an AlGaAs chip
NASA Astrophysics Data System (ADS)
Autebert, C.; Trapateau, J.; Orieux, A.; Lemaître, A.; Gomez-Carbonell, C.; Diamanti, E.; Zaquine, I.; Ducci, S.
2016-12-01
In view of real-world applications of quantum information technologies, the combination of miniature quantum resources with existing fibre networks is a crucial issue. Among such resources, on-chip entangled photon sources play a central role for applications spanning quantum communications, computing and metrology. Here, we use a semiconductor source of entangled photons operating at room temperature in conjunction with standard telecom components to demonstrate multi-user quantum key distribution, a core protocol for securing communications in quantum networks. The source consists of an AlGaAs chip-emitting polarisation entangled photon pairs over a large bandwidth in the main telecom band around 1550 nm without the use of any off-chip compensation or interferometric scheme; the photon pairs are directly launched into a dense wavelength division multiplexer (DWDM) and secret keys are distributed between several pairs of users communicating through different channels. We achieve a visibility measured after the DWDM of 87% and show long-distance key distribution using a 50-km standard telecom fibre link between two network users. These results illustrate a promising route to practical, resource-efficient implementations adapted to quantum network infrastructures.
NASA Astrophysics Data System (ADS)
Snyder, Douglas
For a pair of entangled signal-idler photons, one may ``lose'' the idler photon (that provides which-way information to the entangled signal photon) in many other photons with similar characteristics to the idler photon before the signal photon is detected, thereby losing the which-way information supplied to the signal photon and eliminating the entanglement. The experiment allows for a delayed choice on the idler photons (whether or not to lose the idler photon before the signal photon is detected) to determine the distribution of distant signal photons (either overall which-way or overall interference) without making correlations between signal and idler photon detections. When the idler photon is lost, it is lost in an optical microcavity filled with photons in the same mode as the idler photon. The experiment could provide the basis for a useful quantum communications device. It might be possible to use a micropost coated with a material such as Vantablack in place of the optical microcavity.
Attaining subclassical metrology in lossy systems with entangled coherent states
NASA Astrophysics Data System (ADS)
Knott, P. A.; Munro, W. J.; Dunningham, J. A.
2014-05-01
Quantum mechanics allows entanglement enhanced measurements to be performed, but loss remains an obstacle in constructing realistic quantum metrology schemes. However, recent work has revealed that entangled coherent states (ECSs) have the potential to perform robust subclassical measurements [J. Joo et al., Phys. Rev. Lett. 107, 083601 (2011), 10.1103/PhysRevLett.107.083601]. Up to now no read-out scheme has been devised that exploits this robust nature of ECSs, but we present here an experimentally accessible method of achieving precision close to the theoretical bound, even with loss. We show substantial improvements over unentangled classical states and highly entangled NOON states for a wide range of loss values, elevating quantum metrology to a realizable technology in the near future.
Minimum Copies of Schrödinger’s Cat State in the Multi-Photon System
Lu, Yiping; Zhao, Qing
2016-01-01
Multi-photon entanglement has been successfully studied by many theoretical and experimental groups. However, as the number of entangled photons increases, some problems are encountered, such as the exponential increase of time necessary to prepare the same number of copies of entangled states in experiment. In this paper, a new scheme is proposed based on the Lagrange multiplier and Feedback, which cuts down the required number of copies of Schrödinger’s Cat state in multi-photon experiment, which is realized with some noise in actual measurements, and still keeps the standard deviation in the error of fidelity unchanged. It reduces about five percent of the measuring time of eight-photon Schrödinger’s Cat state compared with the scheme used in the usual planning of actual measurements, and moreover it guarantees the same low error in fidelity. In addition, we also applied the same approach to the simulation of ten-photon entanglement, and we found that it reduces in priciple about twenty two percent of the required copies of Schrödinger’s Cat state compared with the conventionally used scheme of the uniform distribution; yet the distribution of optimized copies of the ten-photon Schrödinger’s Cat state gives better fidelity estimation than the uniform distribution for the same number of copies of the ten-photon Schrödinger’s Cat state. PMID:27576585
Preparing projected entangled pair states on a quantum computer.
Schwarz, Martin; Temme, Kristan; Verstraete, Frank
2012-03-16
We present a quantum algorithm to prepare injective projected entangled pair states (PEPS) on a quantum computer, a class of open tensor networks representing quantum states. The run time of our algorithm scales polynomially with the inverse of the minimum condition number of the PEPS projectors and, essentially, with the inverse of the spectral gap of the PEPS's parent Hamiltonian.
Quantum discord of bipartite entangled non-linear coherent states
NASA Astrophysics Data System (ADS)
Castro, E.; Zambrano, A.; Ladera, C. L.; Gómez, R.
2013-11-01
Quantum discord measures the fraction of the pair-wise mutual information that is locally inaccessible in a multipartite system. Nonzero quantum discord has interesting and significant applications because although non-zero entanglement guarantees the existence of quantum correlation in a bipartite quantum system, zero entanglement does not guarantee the absence of a quantum correlation. On the other hand, many quantum optics systems can be described as deformed quantum oscillators. In this work, we investigate the quantum discord of bipartite entangled nonlinear coherent states, in the context of the so-called f-deformed coherent states algebra. To calculate the quantum discord, we consider quasi- Werner mixed states bases on bipartite entangled f-deformed coherent states. Two explicit analytic expressions are derived for the quantum discord of two different nonlinear deformed coherent states. The first one considers deformed coherent states obtained as eigenstates of the annihilation deformed operator, and the second one is obtained by using a deformed displacement operator. We compare the quantum discord of those states, when the nonlinear deformation function is either associated with the SU(1,1) coherent states in the Gilmore-Perelomov or Barut-Girardello representations, respectively.
Experimental observation of sub-Rayleigh quantum imaging with a two-photon entangled source
Xu, De-Qin; Song, Xin-Bing; Li, Hong-Guo; Zhang, De-Jian; Wang, Hai-Bo; Xiong, Jun Wang, Kaige
2015-04-27
It has been theoretically predicted that N-photon quantum imaging can realize either an N-fold resolution improvement (Heisenberg-like scaling) or a √(N)-fold resolution improvement (standard quantum limit) beyond the Rayleigh diffraction bound, over classical imaging. Here, we report the experimental study on spatial sub-Rayleigh quantum imaging using a two-photon entangled source. Two experimental schemes are proposed and performed. In a Fraunhofer diffraction scheme with a lens, two-photon Airy disk pattern is observed with subwavelength diffraction property. In a lens imaging apparatus, however, two-photon sub-Rayleigh imaging for an object is realized with super-resolution property. The experimental results agree with the theoretical prediction in the two-photon quantum imaging regime.
Experimental observation of sub-Rayleigh quantum imaging with a two-photon entangled source
NASA Astrophysics Data System (ADS)
Xu, De-Qin; Song, Xin-Bing; Li, Hong-Guo; Zhang, De-Jian; Wang, Hai-Bo; Xiong, Jun; Wang, Kaige
2015-04-01
It has been theoretically predicted that N-photon quantum imaging can realize either an N-fold resolution improvement (Heisenberg-like scaling) or a √{ N } -fold resolution improvement (standard quantum limit) beyond the Rayleigh diffraction bound, over classical imaging. Here, we report the experimental study on spatial sub-Rayleigh quantum imaging using a two-photon entangled source. Two experimental schemes are proposed and performed. In a Fraunhofer diffraction scheme with a lens, two-photon Airy disk pattern is observed with subwavelength diffraction property. In a lens imaging apparatus, however, two-photon sub-Rayleigh imaging for an object is realized with super-resolution property. The experimental results agree with the theoretical prediction in the two-photon quantum imaging regime.
Investigation of non-classical states of atoms and photons
NASA Astrophysics Data System (ADS)
Kuzmich, Alexander M.
2000-08-01
This dissertation deals with theoretical and experimental research on nonclassical, or entangled, states of atoms and photons. In the first part, I describe two approaches to the preparation of entangled states of a large number of atoms. The first approach is based on the transfer of quantum correlations from non-classical light to the atomic spins. I consider three different situations: (a)the atoms are placed in a loss-free cavity and no relaxation of any kind is present; (b)the atoms are placed in a cavity with input and output for the electromagnetic field and the atoms spontaneously decay from the upper state; (c)there is no cavity around the atoms and spontaneous emission is present. I show that in all three situations with judicious choice of parameters, entangled samples of atoms can be produced. The second approach is based on quantum-nondemolition (QND) measurements of collective atomic operators. I describe experiments with pulsed and cw light as the probe, that result in squeezed spin states of atoms. When a rf magnetic field is applied to the atomic sample, sub- shot noise performance of an atomic spin interferometer is demonstrated. In the second part of the thesis I describe investigations of phase properties of two-photon and single-photon states. These experiments make use of spontaneous type-II down-conversion in a nonlinear crystal. First, interferometric measurement of a phase shift at the Heisenberg limit for a two-photon state is described. Next, a violation of Bell-type inequalities in phase space is demonstrated for the quantum optical version of the Einstein-Podolsky-Rosen state. Finally, some recent work directed toward homodyning a single photon against a strong local oscillator field is described.
A Single-Photon Subtractor for Multimode Quantum States
NASA Astrophysics Data System (ADS)
Ra, Young-Sik; Jacquard, Clément; Averchenko, Valentin; Roslund, Jonathan; Cai, Yin; Dufour, Adrien; Fabre, Claude; Treps, Nicolas
2016-05-01
In the last decade, single-photon subtraction has proved to be key operations in optical quantum information processing and quantum state engineering. Implementation of the photon subtraction has been based on linear optics and single-photon detection on single-mode resources. This technique, however, becomes unsuitable with multimode resources such as spectrally multimode squeezed states or continuous variables cluster states. We implement a single-photon subtractor for such multimode resources based on sum-frequency generation and single-photon detection. An input multimode quantum state interacts with a bright control beam whose spectrum has been engineered through ultrafast pulse-shaping. The multimode quantum state resulting from the single-photon subtractor is analyzed with multimode homodyne detection whose local oscillator spectrum is independently engineered. We characterize the single-photon subtractor via coherent-state quantum process tomography, which provides its mode-selectivity and subtraction modes. The ability to simultaneously control the state engineering and its detection ensures both flexibility and scalability in the production of highly entangled non-Gaussian quantum states.
Maximally entangled mixed states for qubit-qutrit systems
NASA Astrophysics Data System (ADS)
Mendonça, Paulo E. M. F.; Marchiolli, Marcelo A.; Hedemann, Samuel R.
2017-02-01
We consider the problems of maximizing the entanglement negativity of X-form qubit-qutrit density matrices with (i) a fixed spectrum and (ii) a fixed purity. In the first case, the problem is solved in full generality whereas, in the latter, partial solutions are obtained by imposing extra spectral constraints such as rank deficiency and degeneracy, which enable a semidefinite programming treatment for the optimization problem at hand. Despite the technically motivated assumptions, we provide strong numerical evidence that threefold degenerate X states of purity P reach the highest entanglement negativity accessible to arbitrary qubit-qutrit density matrices of the same purity, hence characterizing a sparse family of likely qubit-qutrit maximally entangled mixed states.
Bulk entanglement spectrum reveals quantum criticality within a topological state.
Hsieh, Timothy H; Fu, Liang
2014-09-05
A quantum phase transition is usually achieved by tuning physical parameters in a Hamiltonian at zero temperature. Here, we show that the ground state of a topological phase itself encodes critical properties of its transition to a trivial phase. To extract this information, we introduce an extensive partition of the system into two subsystems both of which extend throughout the bulk in all directions. The resulting bulk entanglement spectrum has a low-lying part that resembles the excitation spectrum of a bulk Hamiltonian, which allows us to probe a topological phase transition from a single wave function by tuning either the geometry of the partition or the entanglement temperature. As an example, this remarkable correspondence between the topological phase transition and the entanglement criticality is rigorously established for integer quantum Hall states.
Teleportation via thermally entangled states of a two-qubit Heisenberg XX chain
Yeo Ye
2002-12-01
Recently, entanglement teleportation has been investigated by Lee and Kim [Phys. Rev. Lett. 84, 4236 (2000)]. In this paper we study entanglement teleportation via two separate thermally entangled states of a two-qubit Heisenberg XX chain. We established the condition under which the parameters of the model have to satisfy in order to teleport entanglement. The necessary minimum amount of thermal entanglement for some fixed strength of exchange coupling is a function of the magnetic field and the temperature.
Garay-Palmett, K; McGuinness, H J; Cohen, Offir; Lundeen, J S; Rangel-Rojo, R; U'ren, A B; Raymer, M G; McKinstrie, C J; Radic, S; Walmsley, I A
2007-10-29
We study theoretically the generation of photon pairs by spontaneous four-wave mixing (SFWM) in photonic crystal optical fiber. We show that it is possible to engineer two-photon states with specific spectral correlation ("entanglement") properties suitable for quantum information processing applications. We focus on the case exhibiting no spectral correlations in the two-photon component of the state, which we call factorability, and which allows heralding of single-photon pure-state wave packets without the need for spectral post filtering. We show that spontaneous four wave mixing exhibits a remarkable flexibility, permitting a wider class of two-photon states, including ultra-broadband, highly-anticorrelated states.
NASA Astrophysics Data System (ADS)
D'Ambrosio, Vincenzo; Carvacho, Gonzalo; Graffitti, Francesco; Vitelli, Chiara; Piccirillo, Bruno; Marrucci, Lorenzo; Sciarrino, Fabio
2016-09-01
Light beams having a vectorial field structure, or polarization, that varies over the transverse profile and a central optical singularity are called vector vortex (VV) beams and may exhibit specific properties such as focusing into "light needles" or rotation invariance. VV beams have already found applications in areas ranging from microscopy to metrology, optical trapping, nano-optics, and quantum communication. Individual photons in such beams exhibit a form of single-particle quantum entanglement between different degrees of freedom. On the other hand, the quantum states of two photons can be also entangled with each other. Here, we combine these two concepts and demonstrate the generation of quantum entanglement between two photons that are both in VV states: a form of entanglement between two complex vectorial fields. This result may lead to quantum-enhanced applications of VV beams as well as to quantum information protocols fully exploiting the vectorial features of light.
Distributing entanglement and single photons through an intra-city, free-space quantum channel.
Resch, K; Lindenthal, M; Blauensteiner, B; Böhm, H; Fedrizzi, A; Kurtsiefer, C; Poppe, A; Schmitt-Manderbach, T; Taraba, M; Ursin, R; Walther, P; Weier, H; Weinfurter, H; Zeilinger, A
2005-01-10
We have distributed entangled photons directly through the atmosphere to a receiver station 7.8 km away over the city of Vienna, Austria at night. Detection of one photon from our entangled pairs constitutes a triggered single photon source from the sender. With no direct time-stable connection, the two stations found coincidence counts in the detection events by calculating the cross-correlation of locally-recorded time stamps shared over a public internet channel. For this experiment, our quantum channel was maintained for a total of 40 minutes during which time a coincidence lock found approximately 60000 coincident detection events. The polarization correlations in those events yielded a Bell parameter, S=2.27+/-0.019, which violates the CHSH-Bell inequality by 14 standard deviations. This result is promising for entanglement-based freespace quantum communication in high-density urban areas. It is also encouraging for optical quantum communication between ground stations and satellites since the length of our free-space link exceeds the atmospheric equivalent.
Entanglement in a solid-state spin ensemble.
Simmons, Stephanie; Brown, Richard M; Riemann, Helge; Abrosimov, Nikolai V; Becker, Peter; Pohl, Hans-Joachim; Thewalt, Mike L W; Itoh, Kohei M; Morton, John J L
2011-02-03
Entanglement is the quintessential quantum phenomenon. It is a necessary ingredient in most emerging quantum technologies, including quantum repeaters, quantum information processing and the strongest forms of quantum cryptography. Spin ensembles, such as those used in liquid-state nuclear magnetic resonance, have been important for the development of quantum control methods. However, these demonstrations contain no entanglement and ultimately constitute classical simulations of quantum algorithms. Here we report the on-demand generation of entanglement between an ensemble of electron and nuclear spins in isotopically engineered, phosphorus-doped silicon. We combined high-field (3.4 T), low-temperature (2.9 K) electron spin resonance with hyperpolarization of the (31)P nuclear spin to obtain an initial state of sufficient purity to create a non-classical, inseparable state. The state was verified using density matrix tomography based on geometric phase gates, and had a fidelity of 98% relative to the ideal state at this field and temperature. The entanglement operation was performed simultaneously, with high fidelity, on 10(10) spin pairs; this fulfils one of the essential requirements for a silicon-based quantum information processor.
Microwave photon Fock state generation by stimulated Raman adiabatic passage
NASA Astrophysics Data System (ADS)
Premaratne, Shavindra P.; Wellstood, F. C.; Palmer, B. S.
2017-01-01
The deterministic generation of non-classical states of light, including squeezed states, Fock states and Bell states, plays an important role in quantum information processing and exploration of the physics of quantum entanglement. Preparation of these non-classical states in resonators is non-trivial due to their inherent harmonicity. Here we use stimulated Raman adiabatic passage to generate microwave photon Fock states in a superconducting circuit quantum electrodynamics system comprised of a fixed-frequency transmon qubit in a three-dimensional microwave cavity at 20 mK. A two-photon process is employed to overcome a first order forbidden transition and the first, second and third Fock states are demonstrated. We also demonstrate how this all-microwave technique can be used to generate an arbitrary superposition of Fock states. Simulations of the system are in excellent agreement with the data and fidelities of 89%, 68% and 43% are inferred for the first three Fock states respectively.
NASA Astrophysics Data System (ADS)
Cardoso B., W.; Almeida G. de, N.
2008-07-01
We propose a scheme to partially teleport an unknown entangled atomic state. A high-Q cavity, supporting one mode of a weak coherent state, is needed to accomplish this process. By partial teleportation we mean that teleportation will occur by changing one of the partners of the entangled state to be teleported. The entangled state to be teleported is composed by one pair of particles, we called this surprising characteristic of maintaining the entanglement, even when one of the particle of the entangled pair being teleported is changed, of divorce of entangled states.
Osaka, Yoshiki; Yokoshi, Nobuhiko; Nakatani, Masatoshi; Ishihara, Hajime
2014-04-04
We theoretically investigate the up-conversion process of two entangled photons on a molecule, which is coupled by a cavity or nanoscale metallic structure. Within one-dimensional input-output theory, the propagators of the photons are derived analytically and the up-conversion probability is calculated numerically. It is shown that the coupling with the nanostructure clearly enhances the process. We also find that the enhancement becomes further pronounced for some balanced system parameters, such as the quantum correlation between photons, radiation decay, and coupling between the nanostructure and molecule. The nonmonotonic dependencies are reasonably explained in view of quantum interference between the coupled modes of the whole system. This result indicates that controlling quantum interference and correlation is crucial for few-photon nonlinearity, and provides a new guidance to wide variety of fields, e.g., quantum electronics and photochemistry.
Maximally Entangled States of a Two-Qubit System
NASA Astrophysics Data System (ADS)
Singh, Manu P.; Rajput, B. S.
2013-12-01
Entanglement has been explored as one of the key resources required for quantum computation, the functional dependence of the entanglement measures on spin correlation functions has been established, correspondence between evolution of maximally entangled states (MES) of two-qubit system and representation of SU(2) group has been worked out and the evolution of MES under a rotating magnetic field has been investigated. Necessary and sufficient conditions for the general two-qubit state to be maximally entangled state (MES) have been obtained and a new set of MES constituting a very powerful and reliable eigen basis (different from magic bases) of two-qubit systems has been constructed. In terms of the MES constituting this basis, Bell’s States have been generated and all the qubits of two-qubit system have been obtained. It has shown that a MES corresponds to a point in the SO(3) sphere and an evolution of MES corresponds to a trajectory connecting two points on this sphere. Analysing the evolution of MES under a rotating magnetic field, it has been demonstrated that a rotating magnetic field is equivalent to a three dimensional rotation in real space leading to the evolution of a MES.
Optimum Mixed-State Discrimination for Noisy Entanglement-Enhanced Sensing
NASA Astrophysics Data System (ADS)
Zhuang, Quntao; Zhang, Zheshen; Shapiro, Jeffrey H.
2017-01-01
Quantum metrology utilizes nonclassical resources, such as entanglement or squeezed light, to realize sensors whose performance exceeds that afforded by classical-state systems. Environmental loss and noise, however, easily destroy nonclassical resources and, thus, nullify the performance advantages of most quantum-enhanced sensors. Quantum illumination (QI) is different. It is a robust entanglement-enhanced sensing scheme whose 6 dB performance advantage over a coherent-state sensor of the same average transmitted photon number survives the initial entanglement's eradication by loss and noise. Unfortunately, an implementation of the optimum quantum receiver that would reap QI's full performance advantage has remained elusive, owing to its having to deal with a huge number of very noisy optical modes. We show how sum-frequency generation (SFG) can be fruitfully applied to optimum multimode Gaussian-mixed-state discrimination. Applied to QI, our analysis and numerical evaluations demonstrate that our SFG receiver saturates QI's quantum Chernoff bound. Moreover, augmenting our SFG receiver with a feedforward (FF) mechanism pushes its performance to the Helstrom bound in the limit of low signal brightness. The FF-SFG receiver, thus, opens the door to optimum quantum-enhanced imaging, radar detection, state and channel tomography, and communication in practical Gaussian-state situations.
NASA Astrophysics Data System (ADS)
Rosenblum, Serge; Borne, Adrien; Dayan, Barak
2017-03-01
The long-standing goal of deterministic quantum interactions between single photons and single atoms was recently realized in various experiments. Among these, an appealing demonstration relied on single-photon Raman interaction (SPRINT) in a three-level atom coupled to a single-mode waveguide. In essence, the interference-based process of SPRINT deterministically swaps the qubits encoded in a single photon and a single atom, without the need for additional control pulses. It can also be harnessed to construct passive entangling quantum gates, and can therefore form the basis for scalable quantum networks in which communication between the nodes is carried out only by single-photon pulses. Here we present an analytical and numerical study of SPRINT, characterizing its limitations and defining parameters for its optimal operation. Specifically, we study the effect of losses, imperfect polarization, and the presence of multiple excited states. In all cases we discuss strategies for restoring the operation of SPRINT.
Preparation of Entangled and Antiferromagnetic States by Dissipative Rydberg Pumping
NASA Astrophysics Data System (ADS)
Carr, A. W.; Saffman, M.
2013-07-01
We propose and analyze an approach for preparation of high fidelity entanglement and antiferromagnetic states using Rydberg mediated interactions with dissipation. Using asymmetric Rydberg interactions the two-atom Bell singlet is a dark state of the Rydberg pumping process. Master equation simulations demonstrate Bell singlet preparation fidelity F=0.998. Antiferromagnetic states are generated on a four-spin plaquette in agreement with results found from diagonalization of the transverse field Ising Hamiltonian.
Bandyopadhyay, Somshubhro
2010-02-15
It is shown that while entanglement ensures difficulty in discriminating a set of mutually orthogonal states perfectly by local operations and classical communication (LOCC), entanglement content does not. In particular, for a class of entangled multiqubit states, the maximum number of perfectly LOCC distinguishable orthogonal states is shown to be independent of the average entanglement of the states, and the spatial configuration with respect to which LOCC operations may be carried out. It is also pointed out that for this class, the makeup of an ensemble, that is whether it consists only of entangled states or not, determines the maximum number of perfectly distinguishable states.
A note on entanglement entropy, coherent states and gravity
NASA Astrophysics Data System (ADS)
Varadarajan, Madhavan
2016-03-01
The entanglement entropy of a free quantum field in a coherent state is independent of its stress energy content. We use this result to highlight the fact that while the Einstein equations for first order variations about a locally maximally symmetric vacuum state of geometry and quantum fields seem to follow from Jacobson's principle of maximal vacuum entanglement entropy, their possible derivation from this principle for the physically relevant case of finite but small variations remains an open issue. We also apply this result to the context of Bianchi's identification, independent of unknown Planck scale physics, of the first order variation of Bekenstein-Hawking area with that of vacuum entanglement entropy. We argue that under certain technical assumptions this identification seems not to be extendible to the context of finite but small variations to coherent states. Our particular method of estimation of entanglement entropy variation reveals the existence of certain contributions over and above those of References Jacobson (arXiv:1505.04753, 2015), Bianchi (arXiv:1211.0522 [gr-qc], 2012). We discuss the sense in which these contributions may be subleading to those in References Jacobson (arXiv:1505.04753, 2015), Bianchi (arXiv:1211.0522 [gr-qc], 2012).
Spin-Orbital Entangled States in Transition Metal Oxides
NASA Astrophysics Data System (ADS)
Oleś, Andrzej M.
The phenomenon of spin-orbital entanglement which occurs in superexchange models for transition metal oxides is introduced and explained. We present its consequences in the RVO_3 Mott insulators, with R=La,Pr,\\cdots ,Yb,Lu, and show that entanglement occurs here in excited states of the spin-orbital d^2 model and determines: (i) the temperature dependence of low-energy optical spectral weight, (ii) the phase diagram of the RVO_3 perovskites, and (iii) the dimerization observed in the magnon excitations in YVO_3. Entangled ground states occur in two other model systems: (i) the bilayer d^9 (Kugel-Khomskii) model, and (ii) the d^1 model on the triangular frustrated lattice. In such cases even the predictions concerning the magnetic exchange constants based on the mean field decoupling of spin and orbital operators are incorrect. On the example of a single hole doped to a Mott insulator with coexisting antiferromagnetic and alternating t_{2g} orbital order we show that transport is hindered by spin-orbital excitations. It is suggested that spin-orbital entanglement in Mott insulators might be controlled by doping, leading to orbital disordered states with possible new opportunities for thermoelectric applications.
Continuous-variable entanglement distillation with noiseless linear amplification
NASA Astrophysics Data System (ADS)
Yang, Song; Zhang, ShengLi; Zou, XuBo; Bi, SiWen; Lin, XuLing
2012-12-01
Quantum entanglement distillation is a probabilistic process which protects entanglement from environment-induced decoherence. In this paper, we investigate the distillation of a continuousvariable optic entangled state with noiseless linear amplification (NLA). NLA schemes perform better than the conventional photon-subtraction-based distillation scheme, particularly in distributing entanglement over extremely low efficiency quantum channels. Finally, a comparison between the NLA-based scheme and the local squeezing-enhanced photon subtraction scheme is also investigated.
Speedup of quantum evolution of multiqubit entanglement states
Zhang, Ying-Jie; Han, Wei; Xia, Yun-Jie; Tian, Jian-Xiang; Fan, Heng
2016-01-01
As is well known, quantum speed limit time (QSLT) can be used to characterize the maximal speed of evolution of quantum systems. We mainly investigate the QSLT of generalized N-qubit GHZ-type states and W-type states in the amplitude-damping channels. It is shown that, in the case N qubits coupled with independent noise channels, the QSLT of the entangled GHZ-type state is closely related to the number of qubits in the small-scale system. And the larger entanglement of GHZ-type states can lead to the shorter QSLT of the evolution process. However, the QSLT of the W-type states are independent of the number of qubits and the initial entanglement. Furthermore, by considering only M qubits among the N-qubit system respectively interacting with their own noise channels, QSLTs for these two types states are shorter than in the case N qubits coupled with independent noise channels. We therefore reach the interesting result that the potential speedup of quantum evolution of a given N-qubit GHZ-type state or W-type state can be realized in the case the number of the applied noise channels satisfying M < N. PMID:27283757
Quantum correlations in Gaussian states via Gaussian channels: steering, entanglement, and discord
NASA Astrophysics Data System (ADS)
Wang, Zhong-Xiao; Wang, Shuhao; Li, Qiting; Wang, Tie-Jun; Wang, Chuan
2016-06-01
Here we study the quantum steering, quantum entanglement, and quantum discord for Gaussian Einstein-Podolsky-Rosen states via Gaussian channels. And the sudden death phenomena for Gaussian steering and Gaussian entanglement are theoretically observed. We find that some Gaussian states have only one-way steering, which confirms the asymmetry of quantum steering. Also we investigate that the entangled Gaussian states without Gaussian steering and correlated Gaussian states own no Gaussian entanglement. Meanwhile, our results support the assumption that quantum entanglement is intermediate between quantum discord and quantum steering. Furthermore, we give experimental recipes for preparing quantum states with desired types of quantum correlations.
Quantum entanglement of locally excited states in Maxwell theory
NASA Astrophysics Data System (ADS)
Nozaki, Masahiro; Watamura, Naoki
2016-12-01
In 4 dimensional Maxwell gauge theory, we study the changes of (Rényi) entanglement entropy which are defined by subtracting the entropy for the ground state from the one for the locally excited states, generated by acting with gauge invariant local operators on the state. The changes for the operators which we consider in this paper reflect the electric-magnetic duality. The late-time value of changes can be interpreted in terms of electromagnetic quasi-particles. When the operator constructed of both electric and magnetic fields acts on the ground state, it shows that the operator acts on the late-time structure of quantum entanglement differently from free scalar fields.
NASA Astrophysics Data System (ADS)
Kim, Yong-Su; Kwon, Osung; Lee, Sang Min; Kim, Heonoh; Choi, Sang-Kyung; Park, Hee Su; Kim, Yoon-Ho
2011-08-01
Spatial interference of quantum mechanical particles exhibits a fundamental feature of quantum mechanics. A two-mode entangled state of N particles known as N00N state can give rise to non-classical interference. We report the first experimental observation of a three-photon N00N state exhibiting Young's double-slit type spatial quantum interference. Compared to a single-photon state, the three-photon entangled state generates interference fringes that are three times denser. Moreover, its interference visibility of 0.49 +/- 0.09 is well above the limit of 0.1 for spatial super-resolution of classical origin. The demonstration of spatial quantum interference by a N00N state composed of more than two photons represents an important step towards applying quantum entanglement to technologies such as lithography and imaging.
NASA Astrophysics Data System (ADS)
Thapliyal, Ashish Vachaspati
Entanglement is an essential element of quantum mechanics. The aim of this work is to explore various properties of entanglement from the viewpoints of both physics and information science, thus providing a unique picture of entanglement from an interdisciplinary point of view. The focus of this work is on quantifying entanglement as a resource. We start with bipartite states, proposing a new measure of bipartite entanglement called entanglement of assistance, showing that bound entangled states of rank two cannot exist, exploring the number of members required in the ensemble achieving the entanglement of formation and the possibility of bound entangled states that are negative under partial transposition (NPT bound entangled states). For multipartite states we introduce the notions of reducibilities and equivalences under entanglement non-increasing operations and we study the relations between various reducibilities and equivalences such as exact and asymptotic LOCC, asymptotic LOCCq, cLOCC, LOc, etc. We use this new language to attempt to quantify entanglement for multiple parties. We introduce the idea of entanglement span and minimal entanglement generating set and entanglement coefficients associated with it which are the entanglement measures, thus proposing a multicomponent measure of entanglement for three or more parties. We show that the class of Schmidt decomposable states have only GHZM or Cat-like entanglement. Further we introduce the class of multiseparable states for quantification of their entanglement and prove that they are equivalent to the Schmidt decomposable states, and thus have only Cat-like entanglement. We further explore the conditions under which LOCO equivalences are possible for multipartite isentropic states. We define Cat-distillability, EPRB-distillability and distillability for multipartite mixed states and show that distillability implies EPRB-distillability. Further we show that all non-factorizable pure states are Cat
Vortex Images, q-Calculus and Entangled Coherent States
NASA Astrophysics Data System (ADS)
Pashaev, Oktay K.
2012-02-01
The two circles theorem for hydrodynamic flow in annular domain bounded by two concentric circles is derived. Complex potential and velocity of the flow are represented as q-periodic functions and rewritten in terms of the Jackson q-integral. This theorem generalizes the Milne-Thomson one circle theorem and reduces to the last on in the limit q → ∞. By this theorem problem of vortex images in annular domain between coaxial cylinders is solved in terms of q-elementary functions. An infinite set of images, as symmetric points under two circles, is determined completely by poles of the q-logarithmic function, where dimensionless parameter q = r22/r21 is given by square ratio of the cylinder radii. Motivated by Möbius transformation for symmetrical points under generalized circle in complex plain, the system of symmetric spin coherent states corresponding to antipodal qubit states is introduced. By these states we construct the maximally entangled orthonormal two qubit spin coherent state basis, in the limiting case reducible to the Bell basis. Average energy of XYZ model in these states, describing finite localized structure with characteristic extremum points, appears as an energy surface in maximally entangled two qubit space. Generalizations to three and higher multiple qubits are found. We show that our entangled N qubit states are determined by set of complex Fibonacci and Lucas polynomials and corresponding Binet-Fibonacci q-calculus.
Programmable atom-photon quantum interface
NASA Astrophysics Data System (ADS)
Kurz, Christoph; Eich, Pascal; Schug, Michael; Müller, Philipp; Eschner, Jürgen
2016-06-01
We present the implementation of a programmable atom-photon quantum interface, employing a single trapped +40Ca ion and single photons. Depending on its mode of operation, the interface serves as a bidirectional atom-photon quantum-state converter, as a source of entangled atom-photon states, or as a quantum frequency converter of single photons. The interface lends itself particularly to interfacing ions with spontaneous parametric down-conversion-based single-photon or entangled-photon-pair sources.
Nonclassicality tests and entanglement witnesses for macroscopic mechanical superposition states
NASA Astrophysics Data System (ADS)
Gittsovich, Oleg; Moroder, Tobias; Asadian, Ali; Gühne, Otfried; Rabl, Peter
2015-02-01
We describe a set of measurement protocols for performing nonclassicality tests and the verification of entangled superposition states of macroscopic continuous variable systems, such as nanomechanical resonators. Following earlier works, we first consider a setup where a two-level system is used to indirectly probe the motion of the mechanical system via Ramsey measurements and discuss the application of this method for detecting nonclassical mechanical states. We then show that the generalization of this technique to multiple resonator modes allows the conditioned preparation and the detection of entangled mechanical superposition states. The proposed measurement protocols can be implemented in various qubit-resonator systems that are currently under experimental investigation and find applications in future tests of quantum mechanics at a macroscopic scale.
Asymptotic entanglement transformation between W and GHZ states
Vrana, Péter; Christandl, Matthias
2015-02-15
We investigate entanglement transformations with stochastic local operations and classical communication in an asymptotic setting using the concepts of degeneration and border rank of tensors from algebraic complexity theory. Results well-known in that field imply that GHZ states can be transformed into W states at rate 1 for any number of parties. As a generalization, we find that the asymptotic conversion rate from GHZ states to Dicke states is bounded as the number of subsystems increases and the number of excitations is fixed. By generalizing constructions of Coppersmith and Winograd and by using monotones introduced by Strassen, we also compute the conversion rate from W to GHZ states.
Photonic Bell-state analysis based on semiconductor-superconductor structures
NASA Astrophysics Data System (ADS)
Sabag, Evyatar; Bouscher, Shlomi; Marjieh, Raja; Hayat, Alex
2017-03-01
We propose a compact and highly efficient scheme for complete Bell-state analysis using two-photon absorption in a superconducting proximity region of a semiconductor avalanche photodiode. One-photon transitions to the superconducting Cooper-pair based condensate in the conduction band are forbidden, whereas two-photon transitions are allowed and are strongly enhanced by superconductivity. This Cooper-pair based two-photon absorption results in a strong detection preference of a specified entangled state. Our analysis shows high detection purity of the desired Bell state with negligible false detection probability. The theoretically demonstrated concept can pave the way towards practical realizations of advanced quantum information schemes.
NASA Astrophysics Data System (ADS)
Guo, Ying; Liao, Qin; Wang, Yijun; Huang, Duan; Huang, Peng; Zeng, Guihua
2017-03-01
A suitable photon-subtraction operation can be exploited to improve the maximal transmission of continuous-variable quantum key distribution (CVQKD) in point-to-point quantum communication. Unfortunately, the photon-subtraction operation faces solving the improvement transmission problem of practical quantum networks, where the entangled source is located in the third part, which may be controlled by a malicious eavesdropper, instead of in one of the trusted parts, controlled by Alice or Bob. In this paper, we show that a solution can come from using a non-Gaussian operation, in particular, the photon-subtraction operation, which provides a method to enhance the performance of entanglement-based (EB) CVQKD. Photon subtraction not only can lengthen the maximal transmission distance by increasing the signal-to-noise rate but also can be easily implemented with existing technologies. Security analysis shows that CVQKD with an entangled source in the middle (ESIM) from applying photon subtraction can well increase the secure transmission distance in both direct and reverse reconciliations of the EB-CVQKD scheme, even if the entangled source originates from an untrusted part. Moreover, it can defend against the inner-source attack, which is a specific attack by an untrusted entangled source in the framework of ESIM.
Experimental delayed-choice entanglement swapping
NASA Astrophysics Data System (ADS)
Ma, Xiao-Song; Zotter, Stefan; Kofler, Johannes; Ursin, Rupert; Jennewein, Thomas; Brukner, Časlav; Zeilinger, Anton
2012-06-01
Motivated by the question of which kind of physical interactions and processes are needed for the production of quantum entanglement, Peres has put forward the radical idea of delayed-choice entanglement swapping. There, entanglement can be `produced a posteriori, after the entangled particles have been measured and may no longer exist'. Here, we report the realization of Peres's gedanken experiment. Using four photons, we can actively delay the choice of measurement--implemented through a high-speed tunable bipartite-state analyser and a quantum random-number generator--on two of the photons into the time-like future of the registration of the other two photons. This effectively projects the two already registered photons onto one of two mutually exclusive quantum states in which the photons are either entangled (quantum correlations) or separable (classical correlations). This can also be viewed as `quantum steering into the past'.
NASA Astrophysics Data System (ADS)
Hwang, Myung-Joong; Choi, Mahn-Soo
2013-03-01
We study the effect of ultrastrong cavity-qubit coupling on the low-lying excitations of a chain of coupled circuit quantum electrodynamic (QED) systems. We show that, in the presence of the onsite ultrastrong coupling, the photon hopping between cavities can be mapped to the Ising interaction between the lowest two levels of individual circuit QED of the chain. Based on our mapping, we predict two nearly degenerate ground states whose wave functions involve maximal entanglement between the macroscopic quantum states of the cavities and the states of qubits and identify that they are mathematically equivalent to Majorana bound states. Further, we devise a scheme for the dispersive measurement of the ground states using an additional resonator attached to one end of the circuit QED chain. Finally, we discuss the effects of disorders and local noises on the coherence of the ground states.
Cornering Gapless Quantum States via Their Torus Entanglement
NASA Astrophysics Data System (ADS)
Witczak-Krempa, William; Hayward Sierens, Lauren E.; Melko, Roger G.
2017-02-01
The entanglement entropy (EE) has emerged as an important window into the structure of complex quantum states of matter. We analyze the universal part of the EE for gapless systems on tori in 2D and 3D, denoted by χ . Focusing on scale-invariant systems, we derive general nonperturbative properties for the shape dependence of χ and reveal surprising relations to the EE associated with corners in the entangling surface. We obtain closed-form expressions for χ in 2D and 3D within a model that arises in the study of conformal field theories (CFTs), and we use them to obtain Ansätze without fitting parameters for the 2D and 3D free boson CFTs. Our numerical lattice calculations show that the Ansätze are highly accurate. Finally, we discuss how the torus EE can act as a fingerprint of exotic states such as gapless quantum spin liquids, e.g., Kitaev's honeycomb model.
NASA Astrophysics Data System (ADS)
Bartkiewicz, Karol; Lemr, Karel; Černoch, Antonín; Miranowicz, Adam
2017-03-01
We propose and experimentally implement an efficient procedure based on entanglement swapping to determine the Bell nonlocality measure of Horodecki et al. [Phys. Lett. A 200, 340 (1995), 10.1016/0375-9601(95)00214-N] and the fully entangled fraction of Bennett et al. [Phys. Rev. A 54, 3824 (1996), 10.1103/PhysRevA.54.3824] of an arbitrary two-qubit polarization-encoded state. The nonlocality measure corresponds to the amount of the violation of the Clauser-Horne-Shimony-Holt (CHSH) optimized over all measurement settings. By using simultaneously two copies of a given state, we measure directly only six parameters. This is an experimental determination of these quantities without quantum state tomography or continuous monitoring of all measurement bases in the usual CHSH inequality tests. We analyze how well the measured degrees of Bell nonlocality and other entanglement witnesses (including the fully entangled fraction and a nonlinear entropic witness) of an arbitrary two-qubit state can estimate its entanglement. In particular, we measure these witnesses and estimate the negativity of various two-qubit Werner states. Our approach could especially be useful for quantum communication protocols based on entanglement swapping.
Leuenberger, Michael N; Flatté, Michael E; Awschalom, D D
2005-03-18
We propose a teleportation scheme that relies only on single-photon measurements and Faraday rotation, for teleportation of many-qubit entangled states stored in the electron spins of a quantum dot system. The interaction between a photon and the two electron spins, via Faraday rotation in microcavities, establishes Greenberger-Horne-Zeilinger entanglement in the spin-photon-spin system. The appropriate single-qubit measurements, and the communication of two classical bits, produce teleportation. This scheme provides the essential link between spintronic and photonic quantum information devices by permitting quantum information to be exchanged between them.
Multipartite Continuous-Variable Entanglement Distribution with Separable Gaussian States
NASA Astrophysics Data System (ADS)
Zeng, Chuan; Zhang, Jian-Zhong; Xie, Shu-Cui
2017-03-01
In this paper, a quantum proxy blind signature scheme based on controlled quantum teleportation is proposed. This scheme uses a genuine five-qubit entangled state as quantum channel and adopts the classical Vernam algorithm to blind message. We use the physical characteristics of quantum mechanics to implement delegation, signature and verification. Security analysis shows that our scheme is valid and satisfy the properties of a proxy blind signature, such as blindness, verifiability, unforgeability, undeniability.
Local cloning of arbitrarily entangled multipartite states
Kay, Alastair; Ericsson, Marie
2006-01-15
We examine the perfect cloning of nonlocal, orthogonal states using only local operations and classical communication. We provide a complete characterisation of the states that can be cloned under these restrictions, and their relation to distinguishability. We also consider the case of catalytic cloning, which we show provides no enhancement to the set of clonable states.
Gaussian measures of entanglement versus negativities: Ordering of two-mode Gaussian states
Adesso, Gerardo; Illuminati, Fabrizio
2005-09-15
We study the entanglement of general (pure or mixed) two-mode Gaussian states of continuous-variable systems by comparing the two available classes of computable measures of entanglement: entropy-inspired Gaussian convex-roof measures and positive partial transposition-inspired measures (negativity and logarithmic negativity). We first review the formalism of Gaussian measures of entanglement, adopting the framework introduced in M. M. Wolf et al., Phys. Rev. A 69, 052320 (2004), where the Gaussian entanglement of formation was defined. We compute explicitly Gaussian measures of entanglement for two important families of nonsymmetric two-mode Gaussian state: namely, the states of extremal (maximal and minimal) negativities at fixed global and local purities, introduced in G. Adesso et al., Phys. Rev. Lett. 92, 087901 (2004). This analysis allows us to compare the different orderings induced on the set of entangled two-mode Gaussian states by the negativities and by the Gaussian measures of entanglement. We find that in a certain range of values of the global and local purities (characterizing the covariance matrix of the corresponding extremal states), states of minimum negativity can have more Gaussian entanglement of formation than states of maximum negativity. Consequently, Gaussian measures and negativities are definitely inequivalent measures of entanglement on nonsymmetric two-mode Gaussian states, even when restricted to a class of extremal states. On the other hand, the two families of entanglement measures are completely equivalent on symmetric states, for which the Gaussian entanglement of formation coincides with the true entanglement of formation. Finally, we show that the inequivalence between the two families of continuous-variable entanglement measures is somehow limited. Namely, we rigorously prove that, at fixed negativities, the Gaussian measures of entanglement are bounded from below. Moreover, we provide some strong evidence suggesting that they
NASA Astrophysics Data System (ADS)
Yang, Yu-Feng; Chen, Ye-Hong; Wu, Qi-Cheng; Kang, Yi-Hao; Huang, Bi-Hua; Xia, Yan
2017-01-01
We present an efficient protocol to rapidly generate a three-dimensional entangled state for two atoms trapped in a cavity with quantum Zeno dynamics and Lewis-Riesenfeld invariants. The required time for the protocol is much shorter than that with adiabatic passage. The influence of various decoherence processes such as atomic spontaneous emission and photon loss on the fidelity of the three-dimensional entangled state is investigated. Numerical simulation demonstrates that the protocol is robust against both the atomic spontaneous emission and cavity decay. Different from Lin et al. (J Opt Soc Am B 33(4):519-524, 2016), the three-dimensional entangled state can be fast generated with only one step. Furthermore, the protocol can be generalized to generate N-dimensional entanglement state. Therefore, we hope the protocol may be useful in quantum information field.
Entanglement entropy from one-point functions in holographic states
NASA Astrophysics Data System (ADS)
Beach, Matthew J. S.; Lee, Jaehoon; Rabideau, Charles; Van Raamsdonk, Mark
2016-06-01
For holographic CFT states near the vacuum, entanglement entropies for spatial subsystems can be expressed perturbatively as an expansion in the one-point functions of local operators dual to light bulk fields. Using the connection between quantum Fisher information for CFT states and canonical energy for the dual spacetimes, we describe a general formula for this expansion up to second-order in the one-point functions, for an arbitrary ball-shaped region, extending the first-order result given by the entanglement first law. For two-dimensional CFTs, we use this to derive a completely explicit formula for the second-order contribution to the entanglement entropy from the stress tensor. We show that this stress tensor formula can be reproduced by a direct CFT calculation for states related to the vacuum by a local conformal transformation. This result can also be reproduced via the perturbative solution to a non-linear scalar wave equation on an auxiliary de Sitter spacetime, extending the first-order result in arXiv:1509.00113.
Quantum nonlocality of four-qubit entangled states
Wu, Chunfeng; Yeo, Ye; Oh, C. H.; Kwek, L. C.
2007-03-15
We derive a Bell inequality for testing violation of local realism. Quantum nonlocality of several four-qubit states is investigated. These include the Greenberger-Zeilinger-Horne (GHZ) state, W state, linear cluster state, and the state |{chi}> that has recently been proposed in [Phys. Rev. Lett. 96, 060502 (2006)]. The Bell inequality is optimally violated by |{chi}> but not violated by the GHZ state. The linear cluster state also violates the Bell inequality though not optimally. The state |{chi}> can thus be discriminated from the linear cluster state by using the inequality. Different aspects of four-partite entanglement are also studied by considering the usefulness of a family of four-qubit mixed states as resources for two-qubit teleportation. Our results generalize those in [Phys. Rev. Lett. 72, 797 (1994)].
Nonclassicality and decoherence of photon-subtracted squeezed states
NASA Astrophysics Data System (ADS)
Biswas, Asoka; Agarwal, Girish S.
2007-03-01
Single-photon subtracted squeezed vacuum states are equivalent to Schrodinger kitten states and show non-Gaussian nature in phase space. Such states are useful in entanglement distillation, loophole-free test of Bell's inequality, and quantum computing. We discuss nonclassical properties of these states in terms of the sub-Poissonian statistics and the negativity of the Wigner function. We derive a compact expression for the Wigner function from which we find the region of phase space where Wigner function is negative. We find an upper bound on the squeezing parameter for the state to exhibit sub-Poissonian statistics. We then study the effect of decoherence on the single-photon subtracted squeezed states. We present results for two different models of decoherence, viz. amplitude decay model and the phase diffusion model. In each case we give analytical results for the time evolution of the state. We discuss the loss of nonclassicality as a result of decoherence. We show through the study of their phase-space properties how these states decay to vacuum due to the decay of photons. We show that phase damping leads to very slow decoherence than the photon-number decay and the state remains nonclassical at long times.
Liang, Chuang; Lee, Kim Fook; Levin, Todd; Chen, Jun; Kumar, Prem
2006-07-24
We demonstrate a novel alignment-free all-fiber source for generating telecom-band polarization-entangled photon pairs. Polarization entanglement is created by injecting two relatively delayed, orthogonally polarized pump pulses into a piece of dispersion-shifted fiber, where each one independently engages in four-photon scattering, and then removing any distinguishability between the correlated photon-pairs produced by each pulse at the fiber output. Our scheme uses a Michelson-interferometer configuration with Faraday mirrors to achieve practically desirable features such as ultra-stable performance and turnkey operation. Up to 91.7% two-photon-interference visibility is observed without subtracting the accidental coincidences that arise from background photons while operating the source at room temperature.
Effects of Number Scaling on Entangled States in Quantum Mechanics
Benioff, Paul
2016-05-19
A summary of number structure scaling is followed by a description of the effects of number scaling in nonrelativistic quantum mechanics. The description extends earlier work to include the effects on the states of two or more interacting particles. Emphasis is placed on the effects on entangled states. The resulting scaling field is generalized to describe the effects on these states. It is also seen that one can use fiber bundles with fibers associated with single locations of the underlying space to describe the effects of scaling on arbitrary numbers of particles.
Entangled Biphoton Virtual-State Spectroscopy of the A(exp 2)Sigma(sup +)-X(exp 2)Pi System of OH
NASA Technical Reports Server (NTRS)
Kojima, Jun; Nguyen, Quang-Viet
2004-01-01
This Letter describes the first application of entanglement-induced virtual-state spectroscopy to a molecular system. Non-classical, non-monotonic behavior in a two-photon absorption cross section of the OH A-X system, induced by an entangled biphoton state is theoretically demonstrated. A Fourier transform analysis of the biphoton cross section permits access to the energy eigenvalues of intermediate rovibronic states with a fixed excitation photon energy. The dependence of the Fourier spectrum on the tuning range of the entanglement time (T(sub e)) and the relative path delay (tau(sub e)) is discussed. Our analysis reveals that the implementation of molecular virtual-state spectroscopy for the OH A-X system requires the tuning of tau(sub e) over a pico-second range with femto-second resolution.
Entangled Biphoton Virtual-State Spectroscopy of the A(exp 2)Sigma(+) - X(exp 2)Pi System of OH
NASA Technical Reports Server (NTRS)
Kojima, Jun; Nguyen, Quang-Viet
2004-01-01
This Letter describes the first application of entanglement-induced virtual-state spectroscopy to a molecular system. Non-classical, non-monotonic behavior in a two-photon absorption cross section of the OH A-X system, induced by an entangled biphoton state is theoretically demonstrated. A Fourier transform analysis of the biphoton cross section permits access to the energy eigenvalues of intermediate rovibronic states with a fixed excitation photon energy. The dependence of the Fourier spectrum on the tuning range of the entanglement time T(sub e), and the relative path delay tau(sub e) is discussed. Our analysis reveals that the implementation of molecular virtual-state spectroscopy for the OH A-X system requires the tuning of tau(sub e) over a pico-second range with femto-second resolution.
NASA Astrophysics Data System (ADS)
Cao, Cong; Chen, Xi; Duan, YuWen; Fan, Ling; Zhang, Ru; Wang, TieJun; Wang, Chuan
2016-10-01
Entanglement plays an important role in quantum information science, especially in quantum communications. Here we present an efficient entanglement concentration protocol (ECP) for nonlocal atom systems in the partially entangled W-class states, using the single-photon input-output process regarding low- Q cavity and linear optical elements. Compared with previously published ECPs for the concentration of non-maximally entangled atomic states, our protocol is much simpler and more efficient as it employs the Faraday rotation in cavity quantum electrodynamics (QED) and the parameter-splitting method. The Faraday rotation requires the cavity with low- Q factor and weak coupling to the atom, which makes the requirement for entanglement concentration much less stringent than the previous methods, and achievable with current cavity QED techniques. The parameter-splitting method resorts to linear-optical elements only. This ECP has high efficiency and fidelity in realistic experiments, and some imperfections during the experiment can be avoided efficiently with currently available techniques.
Conservation relation of nonclassicality and entanglement for Gaussian states in a beam splitter
NASA Astrophysics Data System (ADS)
Ge, Wenchao; Tasgin, Mehmet Emre; Zubairy, M. Suhail
2015-11-01
We study the relation between single-mode nonclassicality and two-mode entanglement in a beam splitter. We show that single-mode nonclassicality (the entanglement potential) of incident light cannot be transformed into two-mode entanglement completely after a single beam splitter. Some of the entanglement potential remains as single-mode nonclassicality in the two entangled output modes. Two-mode entanglement generated in the process can be equivalently quantified as an increase in the minimum uncertainty widths (or decrease in the squeezing) of the output states compared to the input states. We use the nonclassical depth and logarithmic negativity as single-mode nonclassicality and entanglement measures, respectively. We realize that a conservation relation between the two quantities can be adopted for Gaussian states, if one works in terms of uncertainty width. This conservation relation is extended to many sets of beam splitters.
Observation of squeezed states with strong photon-number oscillations
Mehmet, Moritz; Vahlbruch, Henning; Lastzka, Nico; Danzmann, Karsten; Schnabel, Roman
2010-01-15
Squeezed states of light constitute an important nonclassical resource in the field of high-precision measurements, for example, gravitational wave detection, as well as in the field of quantum information, for example, for teleportation, quantum cryptography, and distribution of entanglement in quantum computation networks. Strong squeezing in combination with high purity, high bandwidth, and high spatial mode quality is desirable in order to achieve significantly improved performances contrasting any classical protocols. Here we report on the observation of 11.5 dB of squeezing, together with relatively high state purity corresponding to a vacuum contribution of less than 5%, and a squeezing bandwidth of about 170 MHz. The analysis of our squeezed states reveals a significant production of higher-order pairs of quantum-correlated photons and the existence of strong photon-number oscillations.
Entanglement as a resource for local state discrimination in multipartite systems
NASA Astrophysics Data System (ADS)
Bandyopadhyay, Somshubhro; Halder, Saronath; Nathanson, Michael
2016-08-01
We explore the question of using an entangled state as a universal resource for implementing quantum measurements by local operations and classical communication (LOCC). We show that for most systems consisting of three or more subsystems, there is no entangled state from the same space that can enable all measurements by LOCC. This is in direct contrast to the bipartite case, where a maximally entangled state is a universal resource. Our results are obtained showing an equivalence between the problem of local state transformation and that of entanglement-assisted local unambiguous state discrimination.
Guehne, Otfried; Jungnitsch, Bastian; Moroder, Tobias; Weinstein, Yaakov S.
2011-11-15
The characterization of genuine multiparticle entanglement is important for entanglement theory as well as experimental studies related to quantum-information theory. Here, we completely characterize genuine multiparticle entanglement for four-qubit states diagonal in the cluster-state basis. In addition, we give a complete characterization of multiparticle entanglement for all five-qubit graph states mixed with white noise, for states diagonal in the basis corresponding to the five-qubit Y-shaped graph, and for a family of graph states with an arbitrary number of qubits.
Quantum teleportation from a propagating photon to a solid-state spin qubit.
Gao, W B; Fallahi, P; Togan, E; Delteil, A; Chin, Y S; Miguel-Sanchez, J; Imamoğlu, A
2013-01-01
A quantum interface between a propagating photon used to transmit quantum information and a long-lived qubit used for storage is of central interest in quantum information science. A method for implementing such an interface between dissimilar qubits is quantum teleportation. Here we experimentally demonstrate transfer of quantum information carried by a photon to a semiconductor spin using quantum teleportation. In our experiment, a single photon in a superposition state is generated using resonant excitation of a neutral dot. To teleport this photonic qubit, we generate an entangled spin-photon state in a second dot located 5 m away and interfere the photons from the two dots in a Hong-Ou-Mandel set-up. Thanks to an unprecedented degree of photon-indistinguishability, a coincidence detection at the output of the interferometer heralds successful teleportation, which we verify by measuring the resulting spin state after prolonging its coherence time by optical spin-echo.
Quantum teleportation from a propagating photon to a solid-state spin qubit
NASA Astrophysics Data System (ADS)
Gao, W. B.; Fallahi, P.; Togan, E.; Delteil, A.; Chin, Y. S.; Miguel-Sanchez, J.; Imamoğlu, A.
2013-11-01
A quantum interface between a propagating photon used to transmit quantum information and a long-lived qubit used for storage is of central interest in quantum information science. A method for implementing such an interface between dissimilar qubits is quantum teleportation. Here we experimentally demonstrate transfer of quantum information carried by a photon to a semiconductor spin using quantum teleportation. In our experiment, a single photon in a superposition state is generated using resonant excitation of a neutral dot. To teleport this photonic qubit, we generate an entangled spin-photon state in a second dot located 5 m away and interfere the photons from the two dots in a Hong-Ou-Mandel set-up. Thanks to an unprecedented degree of photon-indistinguishability, a coincidence detection at the output of the interferometer heralds successful teleportation, which we verify by measuring the resulting spin state after prolonging its coherence time by optical spin-echo.
Faithful test of nonlocal realism with entangled coherent states
Lee, Chang-Woo; Jeong, Hyunseok; Paternostro, Mauro
2011-02-15
We investigate the violation of Leggett's inequality for nonlocal realism using entangled coherent states and various types of local measurements. We prove mathematically the relation between the violation of the Clauser-Horne-Shimony-Holt form of Bell's inequality and Leggett's one when tested by the same resources. For Leggett inequalities, we generalize the nonlocal realistic bound to systems in Hilbert spaces larger than bidimensional ones and introduce an optimization technique that allows one to achieve larger degrees of violation by adjusting the local measurement settings. Our work describes the steps that should be performed to produce a self-consistent generalization of Leggett's original arguments to continuous-variable states.
Deterministic creation of stationary entangled states by dissipation
Alharbi, A. F.; Ficek, Z.
2010-11-15
We propose a practical physical system for creation of stationary entanglement by dissipation without employing environmental engineering techniques. The system proposed is composed of two perfectly distinguishable atoms, through their significantly different transition frequencies, with only one atom addressed by an external laser field. We show that the arrangement would easily be realized in practice by trapping the atoms at a distance equal to the quarter-wavelength of a standing-wave laser field and locating one of the atoms at a node and the other at the successive antinode of the wave. The undesirable dipole-dipole interaction between the atoms, which could be large at this small distance, is adjusted to zero by a specific initial preparation of the atoms or by a specific polarization of the atomic dipole moments. Following this arrangement, we show that the dissipative relaxation can create a stationary entanglement on demand by tuning the Rabi frequency of the laser field to the difference between the atomic transition frequencies. The laser field dresses the atom and we identify that the entangled state occurs when the frequency of one of the Rabi sidebands of the driven atom tunes to the frequency of the undriven atom. It is also found that this system behaves as a cascade open system where the fluorescence from the dressed atom drives the other atom with no feedback.
High-fidelity transfer and storage of photon states in a single nuclear spin
NASA Astrophysics Data System (ADS)
Yang, Sen; Wang, Ya; Rao, D. D. Bhaktavatsala; Hien Tran, Thai; Momenzadeh, Ali S.; Markham, M.; Twitchen, D. J.; Wang, Ping; Yang, Wen; Stöhr, Rainer; Neumann, Philipp; Kosaka, Hideo; Wrachtrup, Jörg
2016-08-01
Long-distance quantum communication requires photons and quantum nodes that comprise qubits for interaction with light and good memory capabilities, as well as processing qubits for the storage and manipulation of photons. Owing to the unavoidable photon losses, robust quantum communication over lossy transmission channels requires quantum repeater networks. A necessary and highly demanding prerequisite for these networks is the existence of quantum memories with long coherence times to reliably store the incident photon states. Here we demonstrate the high-fidelity (˜98%) coherent transfer of a photon polarization state to a single solid-state nuclear spin that has a coherence time of over 10 s. The storage process is achieved by coherently transferring the polarization state of a photon to an entangled electron-nuclear spin state of a nitrogen-vacancy centre in diamond. The nuclear spin-based optical quantum memory demonstrated here paves the way towards an absorption-based quantum repeater network.
Photon final states at the Tevatron
Campanelli, Mario; /University Coll. London
2008-04-01
The authors present here several recent measurements involving associate production of photons and jets at the Tevatron. In particular, inclusive photon + met from D0, and photon + b-jets and photon + b-jet + leptons + MET from CDF are described in some detail. These measurements offer a good test of QCD predictions in rather complex final states.
Chen, Geng; Zou, Yang; Zhang, Wen-Hao; Zhang, Zi-Huai; Zhou, Zong-Quan; He, De-Yong; Tang, Jian-Shun; Liu, Bi-Heng; Yu, Ying; Zha, Guo-Wei; Ni, Hai-Qiao; Niu, Zhi-Chuan; Han, Yong-Jian; Li, Chuan-Feng; Guo, Guang-Can
2016-01-01
Quantum emitters generating individual entangled photon pairs (IEPP) have significant fundamental advantages over schemes that suffer from multiple photon emission, or schemes that require post-selection techniques or the use of photon-number discriminating detectors. Quantum dots embedded within nanowires (QD-NWs) represent one of the most promising candidate for quantum emitters that provide a high collection efficiency of photons. However, a quantum emitter that generates IEPP in the telecom band is still an issue demanding a prompt solution. Here, we demonstrate in principle that IEPPs in the telecom band can be created by combining a single QD-NW and a nonlinear crystal waveguide. The QD-NW system serves as the single photon source, and the emitted visible single photons are split into IEPPs at approximately 1.55 μm through the process of spontaneous parametric down conversion (SPDC) in a periodically poled lithium niobate (PPLN) waveguide. The compatibility of the QD-PPLN interface is the determinant factor in constructing this novel hybrid-quantum-emitter (HQE). Benefiting from the desirable optical properties of QD-NWs and the extremely high nonlinear conversion efficiency of PPLN waveguides, we successfully generate IEPPs in the telecom band with the polarization degree of freedom. The entanglement of the generated photon pairs is confirmed by the entanglement witness. Our experiment paves the way to producing HQEs inheriting the advantages of multiple systems. PMID:27225881
NASA Astrophysics Data System (ADS)
Barasiński, Artur; Nowotarski, Mateusz
2016-12-01
We analyze the entanglement properties for the not-completely-permutation-symmetric states of quantum systems composed of two subsystems with an equal but arbitrary finite local Hilbert space dimension. We investigate both pure and mixed states with such a symmetry obtained by relaxing the symmetry requirement of the axisymmetric states. For such states we discuss the entanglement classification with respect to stochastic local operations and classical communication and establish the entanglement quantitatively by means of concurrence and negativity. In particular, we determine the separability criterion in the frame of various methods, including the k -positive map witness, optimal Schmidt-number witnesses, and entanglement measures.
Nonmaximally entangled states can be better for multiple linear optical teleportation.
Modławska, Joanna; Grudka, Andrzej
2008-03-21
We investigate multiple linear optical teleportation in the Knill-Laflamme-Milburn scheme with both maximally and nonmaximally entangled states. We show that if the qubit is teleported several times via a nonmaximally entangled state, then the errors introduced in the previous teleportations can be corrected by the errors introduced in the following teleportations. This effect is so strong that it leads to another interesting phenomenon: i.e., the total probability of successful multiple linear optical teleportation is higher for nonmaximally entangled states than maximally entangled states.
Resonant photonic States in coupled heterostructure photonic crystal waveguides.
Cox, Jd; Sabarinathan, J; Singh, Mr
2010-02-09
In this paper, we study the photonic resonance states and transmission spectra of coupled waveguides made from heterostructure photonic crystals. We consider photonic crystal waveguides made from three photonic crystals A, B and C, where the waveguide heterostructure is denoted as B/A/C/A/B. Due to the band structure engineering, light is confined within crystal A, which thus act as waveguides. Here, photonic crystal C is taken as a nonlinear photonic crystal, which has a band gap that may be modified by applying a pump laser. We have found that the number of bound states within the waveguides depends on the width and well depth of photonic crystal A. It has also been found that when both waveguides are far away from each other, the energies of bound photons in each of the waveguides are degenerate. However, when they are brought close to each other, the degeneracy of the bound states is removed due to the coupling between them, which causes these states to split into pairs. We have also investigated the effect of the pump field on photonic crystal C. We have shown that by applying a pump field, the system may be switched between a double waveguide to a single waveguide, which effectively turns on or off the coupling between degenerate states. This reveals interesting results that can be applied to develop new types of nanophotonic devices such as nano-switches and nano-transistors.
Witnessing entanglement without entanglement witness operators
Pezzè, Luca; Li, Yan; Li, Weidong; Smerzi, Augusto
2016-01-01
Quantum mechanics predicts the existence of correlations between composite systems that, although puzzling to our physical intuition, enable technologies not accessible in a classical world. Notwithstanding, there is still no efficient general method to theoretically quantify and experimentally detect entanglement of many qubits. Here we propose to detect entanglement by measuring the statistical response of a quantum system to an arbitrary nonlocal parametric evolution. We witness entanglement without relying on the tomographic reconstruction of the quantum state, or the realization of witness operators. The protocol requires two collective settings for any number of parties and is robust against noise and decoherence occurring after the implementation of the parametric transformation. To illustrate its user friendliness we demonstrate multipartite entanglement in different experiments with ions and photons by analyzing published data on fidelity visibilities and variances of collective observables. PMID:27681625
Witnessing entanglement without entanglement witness operators
NASA Astrophysics Data System (ADS)
Pezzè, Luca; Li, Yan; Li, Weidong; Smerzi, Augusto
2016-10-01
Quantum mechanics predicts the existence of correlations between composite systems that, although puzzling to our physical intuition, enable technologies not accessible in a classical world. Notwithstanding, there is still no efficient general method to theoretically quantify and experimentally detect entanglement of many qubits. Here we propose to detect entanglement by measuring the statistical response of a quantum system to an arbitrary nonlocal parametric evolution. We witness entanglement without relying on the tomographic reconstruction of the quantum state, or the realization of witness operators. The protocol requires two collective settings for any number of parties and is robust against noise and decoherence occurring after the implementation of the parametric transformation. To illustrate its user friendliness we demonstrate multipartite entanglement in different experiments with ions and photons by analyzing published data on fidelity visibilities and variances of collective observables.
Experimental generation of tripartite polarization entangled states of bright optical beams
NASA Astrophysics Data System (ADS)
Wu, Liang; Yan, Zhihui; Liu, Yanhong; Deng, Ruijie; Jia, Xiaojun; Xie, Changde; Peng, Kunchi
2016-04-01
The multipartite polarization entangled states of bright optical beams directly associating with the spin states of atomic ensembles are one of the essential resources in the future quantum information networks, which can be conveniently utilized to transfer and convert quantum states across a network composed of many atomic nodes. In this letter, we present the experimental demonstration of tripartite polarization entanglement described by Stokes operators of optical field. The tripartite entangled states of light at the frequency resonant with D1 line of Rubidium atoms are transformed into the continuous variable polarization entanglement among three bright optical beams via an optical beam splitter network. The obtained entanglement is confirmed by the extended criterion for polarization entanglement of multipartite quantized optical modes.
Entanglement and extreme spin squeezing of unpolarized states
NASA Astrophysics Data System (ADS)
Vitagliano, Giuseppe; Apellaniz, Iagoba; Kleinmann, Matthias; Lücke, Bernd; Klempt, Carsten; Tóth, Géza
2017-01-01
We present criteria to detect the depth of entanglement in macroscopic ensembles of spin-j particles using the variance and second moments of the collective spin components. The class of states detected goes beyond traditional spin-squeezed states by including Dicke states and other unpolarized states. The criteria derived are easy to evaluate numerically even for systems of very many particles and outperform past approaches, especially in practical situations where noise is present. We also derive analytic lower bounds based on the linearization of our criteria, which make it possible to define spin-squeezing parameters for Dicke states. In addition, we obtain spin squeezing parameters also from the condition derived in (Sørensen and Mølmer 2001 Phys. Rev. Lett. 86 4431). We also extend our results to systems with fluctuating number of particles.
Quantum memory for entangled continuous-variable states
NASA Astrophysics Data System (ADS)
Jensen, K.; Wasilewski, W.; Krauter, H.; Fernholz, T.; Nielsen, B. M.; Owari, M.; Plenio, M. B.; Serafini, A.; Wolf, M. M.; Polzik, E. S.
2011-01-01
A quantum memory for light is a key element for the realization of future quantum information networks. Requirements for a good quantum memory are versatility (allowing a wide range of inputs) and preservation of quantum information in a way unattainable with any classical memory device. Here we demonstrate such a quantum memory for continuous-variable entangled states, which play a fundamental role in quantum information processing. We store an extensive alphabet of two-mode 6.0dB squeezed states obtained by varying the orientation of squeezing and the displacement of the states. The two components of the entangled state are stored in two room-temperature cells separated by 0.5m, one for each mode, with a memory time of 1ms. The true quantum character of the memory is rigorously proved by showing that the experimental memory fidelity 0.52+/-0.02 significantly exceeds the benchmark of 0.45 for the best possible classical memory for a range of displacements.
Exchangeable, stationary, and entangled chains of Gaussian states
NASA Astrophysics Data System (ADS)
Parthasarathy, K. R.; Sengupta, Ritabrata
2015-10-01
We explore conditions on the covariance matrices of a consistent chain of mean zero finite mode Gaussian states in order that the chain may be exchangeable or stationary. For an exchangeable chain, our conditions are necessary and sufficient. Every stationary Gaussian chain admits an asymptotic entropy rate. Whereas an exchangeable chain admits a simple expression for its entropy rate, in our examples of stationary chains, the same admits an integral formula based on the asymptotic eigenvalue distribution for Toeplitz matrices. An example of a stationary entangled Gaussian chain is given.
Muon-fluorine entangled states in molecular magnets.
Lancaster, T; Blundell, S J; Baker, P J; Brooks, M L; Hayes, W; Pratt, F L; Manson, J L; Conner, M M; Schlueter, J A
2007-12-31
The information accessible from a muon-spin relaxation experiment can be limited due to a lack of knowledge of the precise muon stopping site. We demonstrate here the possibility of localizing a spin polarized muon in a known stopping state in a molecular material containing fluorine. The muon-spin precession that results from the entangled nature of the muon spin and surrounding nuclear spins is sensitive to the nature of the stopping site. We use this property to identify three classes of sites that occur in molecular magnets and describe the extent to which the muon distorts its surroundings.
Edge Theories in Projected Entangled Pair State Models
NASA Astrophysics Data System (ADS)
Yang, S.; Lehman, L.; Poilblanc, D.; Van Acoleyen, K.; Verstraete, F.; Cirac, J. I.; Schuch, N.
2014-01-01
We analyze the low energy excitations of spin lattice systems in two dimensions at zero temperature within the framework of projected entangled pair state models. Perturbations in the bulk give rise to physical excitations located at the edge. We identify the corresponding degrees of freedom, give a procedure to derive the edge Hamiltonian, and illustrate that it can exhibit a rich phase diagram. For topological models, the edge Hamiltonian is constrained by the topological order in the bulk, which gives rise to one-dimensional edge models with unconventional properties; for instance, a topologically ordered bulk can protect a ferromagnetic Ising chain at the edge against spontaneous symmetry breaking.
NASA Astrophysics Data System (ADS)
Sun, Wen-Yang; Wang, Dong; Shi, Jia-Dong; Ye, Liu
2017-02-01
In this work, there are two parties, Alice on Earth and Bob on the satellite, which initially share an entangled state, and some open problems, which emerge during quantum steering that Alice remotely steers Bob, are investigated. Our analytical results indicate that all entangled pure states and maximally entangled evolution states (EESs) are steerable, and not every entangled evolution state is steerable and some steerable states are only locally correlated. Besides, quantum steering from Alice to Bob experiences a “sudden death” with increasing decoherence strength. However, shortly after that, quantum steering experiences a recovery with the increase of decoherence strength in bit flip (BF) and phase flip (PF) channels. Interestingly, while they initially share an entangled pure state, all EESs are steerable and obey Bell nonlocality in PF and phase damping channels. In BF channels, all steerable states can violate Bell-CHSH inequality, but some EESs are unable to be employed to realize steering. However, when they initially share an entangled mixed state, the outcome is different from that of the pure state. Furthermore, the steerability of entangled mixed states is weaker than that of entangled pure states. Thereby, decoherence can induce the degradation of quantum steering, and the steerability of state is associated with the interaction between quantum systems and reservoirs.
Sun, Wen-Yang; Wang, Dong; Shi, Jia-Dong; Ye, Liu
2017-01-01
In this work, there are two parties, Alice on Earth and Bob on the satellite, which initially share an entangled state, and some open problems, which emerge during quantum steering that Alice remotely steers Bob, are investigated. Our analytical results indicate that all entangled pure states and maximally entangled evolution states (EESs) are steerable, and not every entangled evolution state is steerable and some steerable states are only locally correlated. Besides, quantum steering from Alice to Bob experiences a “sudden death” with increasing decoherence strength. However, shortly after that, quantum steering experiences a recovery with the increase of decoherence strength in bit flip (BF) and phase flip (PF) channels. Interestingly, while they initially share an entangled pure state, all EESs are steerable and obey Bell nonlocality in PF and phase damping channels. In BF channels, all steerable states can violate Bell-CHSH inequality, but some EESs are unable to be employed to realize steering. However, when they initially share an entangled mixed state, the outcome is different from that of the pure state. Furthermore, the steerability of entangled mixed states is weaker than that of entangled pure states. Thereby, decoherence can induce the degradation of quantum steering, and the steerability of state is associated with the interaction between quantum systems and reservoirs. PMID:28145467
Studying the thermally entangled state of a three-qubit Heisenberg XX ring via quantum teleportation
Yeo, Ye
2003-08-01
We consider quantum teleportation as a tool to investigate the thermally entangled state of a three-qubit Heisenberg XX ring. Our investigation reveals interesting aspects of quantum entanglement not reflected by the pairwise thermal concurrence of the state. In particular, two mixtures of different pairs of W states, which result in the same concurrence, could yield very different average teleportation fidelities.
Entanglement of three-qubit pure states in terms of teleportation capability
Lee, Soojoon; Joo, Jaewoo; Kim, Jaewan
2005-08-15
We define an entanglement measure, called the partial tangle, which represents the residual two-qubit entanglement of a three-qubit pure state. By its explicit calculations for three-qubit pure states, we show that the partial tangle is closely related to the faithfulness of a teleportation scheme over a three-qubit pure state.
Steady-state entanglement of a Bose-Einstein condensate and a nanomechanical resonator
Asjad, Muhammad; Saif, Farhan
2011-09-15
We analyze the steady-state entanglement between Bose-Einstein condensate trapped inside an optical cavity with a moving end mirror (nanomechanical resonator) driven by a single mode laser. The quantized laser field mediates the interaction between the Bose-Einstein condensate and nanomechanical resonator. In particular, we study the influence of temperature on the entanglement of the coupled system, and note that the steady-state entanglement is fragile with respect to temperature.
Entanglement analysis of two-mode Gaussian states in a parametric down-converter
NASA Astrophysics Data System (ADS)
Tahira, Rabia; Ge, Guoqin; Ikram, Manzoor
2017-04-01
Parametric down-conversion has been studied as a source of entangled radiation (Lee et al 2008 J. Phys. B: At. Mol. Opt. Phys. 41 145504). We investigate and quantify the entanglement of this system when the initial cavity modes are taken as two-mode Gaussian states. We study the effect of nonclassicality, purity, noise and leakage through the cavity modes on the two-mode Gaussian state entanglement.
Quantum secret sharing protocol based on four-dimensional three-particle entangled states
NASA Astrophysics Data System (ADS)
Xiang, Yi; Mo, Zhi Wen
2016-01-01
In this paper, we proposed a three-party quantum secret sharing (QSS) scheme using four-dimensional three-particle entangled states. In this QSS scheme, each agent can obtain a shadow of the secret key by performing single-particle measurements. Compared with the existing QSS protocol, this scheme has high efficiency and can resist the eavesdropping attack and entangle-measuring attack, which using three-particle entangled states are based on four-dimensional Hilbert space.
Comparison of qubit and qutrit like entangled squeezed and coherent states of light
NASA Astrophysics Data System (ADS)
Najarbashi, G.; Mirzaei, S.
2016-10-01
Squeezed state of light is one of the important subjects in quantum optics which is generated by optical nonlinear interactions. In this paper, we especially focus on qubit like entangled squeezed states (ESS's) generated by beam splitters, phase-shifter and cross Kerr nonlinearity. Moreover the Wigner function of two-mode qubit and qutrit like ESS are investigated. We will show that the distances of peaks of Wigner functions for two-mode ESS are entanglement sensitive and can be a witness for entanglement. Like the qubit cases, monogamy inequality is fulfilled for qutrit like ESS. These trends are compared with those obtained for qubit and qutrit like entangled coherent states (ECS).
Pattern classification using maximally entangled quantum states (MES)
NASA Astrophysics Data System (ADS)
Singh, Manu Pratap; Rajput, B. S.
2014-04-01
Pattern classifications have been performed by employing the method of Grover's iteration on Bell's MES and Singh-Rajput MES in a two-qubit system and it has been demonstrated that, for any pattern classification, in a two-qubit system the maximally entangled states of Singh-Rajput eigenbasis provide the most suitable choice of search states while, in no case, any of Bell's states is suitable for such pattern classifications. Applying the method of Grover's iterate on three different superpositions in a three-qubit system, it has been shown that the choice of exclusive superposition, as the search state, is the most suitable one for the desired pattern classifications based on Grover's iterative search algorithm.
Fast and simple scheme for generating NOON states of photons in circuit QED.
Su, Qi-Ping; Yang, Chui-Ping; Zheng, Shi-Biao
2014-01-28
The generation, manipulation and fundamental understanding of entanglement lies at very heart of quantum mechanics. Among various types of entangled states, the NOON states are a kind of special quantum entangled states with two orthogonal component states in maximal superposition, which have a wide range of potential applications in quantum communication and quantum information processing. Here, we propose a fast and simple scheme for generating NOON states of photons in two superconducting resonators by using a single superconducting transmon qutrit. Because only one superconducting qutrit and two resonators are used, the experimental setup for this scheme is much simplified when compared with the previous proposals requiring a setup of two superconducting qutrits and three cavities. In addition, this scheme is easier and faster to implement than the previous proposals, which require using a complex microwave pulse, or a small pulse Rabi frequency in order to avoid nonresonant transitions.
Fast and simple scheme for generating NOON states of photons in circuit QED
Su, Qi-Ping; Yang, Chui-Ping; Zheng, Shi-Biao
2014-01-01
The generation, manipulation and fundamental understanding of entanglement lies at very heart of quantum mechanics. Among various types of entangled states, the NOON states are a kind of special quantum entangled states with two orthogonal component states in maximal superposition, which have a wide range of potential applications in quantum communication and quantum information processing. Here, we propose a fast and simple scheme for generating NOON states of photons in two superconducting resonators by using a single superconducting transmon qutrit. Because only one superconducting qutrit and two resonators are used, the experimental setup for this scheme is much simplified when compared with the previous proposals requiring a setup of two superconducting qutrits and three cavities. In addition, this scheme is easier and faster to implement than the previous proposals, which require using a complex microwave pulse, or a small pulse Rabi frequency in order to avoid nonresonant transitions. PMID:24469334
Reliable Entanglement Verification
NASA Astrophysics Data System (ADS)
Arrazola, Juan; Gittsovich, Oleg; Donohue, John; Lavoie, Jonathan; Resch, Kevin; Lütkenhaus, Norbert
2013-05-01
Entanglement plays a central role in quantum protocols. It is therefore important to be able to verify the presence of entanglement in physical systems from experimental data. In the evaluation of these data, the proper treatment of statistical effects requires special attention, as one can never claim to have verified the presence of entanglement with certainty. Recently increased attention has been paid to the development of proper frameworks to pose and to answer these type of questions. In this work, we apply recent results by Christandl and Renner on reliable quantum state tomography to construct a reliable entanglement verification procedure based on the concept of confidence regions. The statements made do not require the specification of a prior distribution nor the assumption of an independent and identically distributed (i.i.d.) source of states. Moreover, we develop efficient numerical tools that are necessary to employ this approach in practice, rendering the procedure ready to be employed in current experiments. We demonstrate this fact by analyzing the data of an experiment where photonic entangled two-photon states were generated and whose entanglement is verified with the use of an accessible nonlinear witness.
On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom
Feng, Lan-Tian; Zhang, Ming; Zhou, Zhi-Yuan; Li, Ming; Xiong, Xiao; Yu, Le; Shi, Bao-Sen; Guo, Guo-Ping; Dai, Dao-Xin; Ren, Xi-Feng; Guo, Guang-Can
2016-01-01
In the quantum world, a single particle can have various degrees of freedom to encode quantum information. Controlling multiple degrees of freedom simultaneously is necessary to describe a particle fully and, therefore, to use it more efficiently. Here we introduce the transverse waveguide-mode degree of freedom to quantum photonic integrated circuits, and demonstrate the coherent conversion of a photonic quantum state between path, polarization and transverse waveguide-mode degrees of freedom on a single chip. The preservation of quantum coherence in these conversion processes is proven by single-photon and two-photon quantum interference using a fibre beam splitter or on-chip beam splitters. These results provide us with the ability to control and convert multiple degrees of freedom of photons for quantum photonic integrated circuit-based quantum information process. PMID:27321821
On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom.
Feng, Lan-Tian; Zhang, Ming; Zhou, Zhi-Yuan; Li, Ming; Xiong, Xiao; Yu, Le; Shi, Bao-Sen; Guo, Guo-Ping; Dai, Dao-Xin; Ren, Xi-Feng; Guo, Guang-Can
2016-06-20
In the quantum world, a single particle can have various degrees of freedom to encode quantum information. Controlling multiple degrees of freedom simultaneously is necessary to describe a particle fully and, therefore, to use it more efficiently. Here we introduce the transverse waveguide-mode degree of freedom to quantum photonic integrated circuits, and demonstrate the coherent conversion of a photonic quantum state between path, polarization and transverse waveguide-mode degrees of freedom on a single chip. The preservation of quantum coherence in these conversion processes is proven by single-photon and two-photon quantum interference using a fibre beam splitter or on-chip beam splitters. These results provide us with the ability to control and convert multiple degrees of freedom of photons for quantum photonic integrated circuit-based quantum information process.
On-chip coherent conversion of photonic quantum entanglement between different degrees of freedom
NASA Astrophysics Data System (ADS)
Feng, Lan-Tian; Zhang, Ming; Zhou, Zhi-Yuan; Li, Ming; Xiong, Xiao; Yu, Le; Shi, Bao-Sen; Guo, Guo-Ping; Dai, Dao-Xin; Ren, Xi-Feng; Guo, Guang-Can
2016-06-01
In the quantum world, a single particle can have various degrees of freedom to encode quantum information. Controlling multiple degrees of freedom simultaneously is necessary to describe a particle fully and, therefore, to use it more efficiently. Here we introduce the transverse waveguide-mode degree of freedom to quantum photonic integrated circuits, and demonstrate the coherent conversion of a photonic quantum state between path, polarization and transverse waveguide-mode degrees of freedom on a single chip. The preservation of quantum coherence in these conversion processes is proven by single-photon and two-photon quantum interference using a fibre beam splitter or on-chip beam splitters. These results provide us with the ability to control and convert multiple degrees of freedom of photons for quantum photonic integrated circuit-based quantum information process.
High-dimensional entanglement certification
Huang, Zixin; Maccone, Lorenzo; Karim, Akib; Macchiavello, Chiara; Chapman, Robert J.; Peruzzo, Alberto
2016-01-01
Quantum entanglement is the ability of joint quantum systems to possess global properties (correlation among systems) even when subsystems have no definite individual property. Whilst the 2-dimensional (qubit) case is well-understood, currently, tools to characterise entanglement in high dimensions are limited. We experimentally demonstrate a new procedure for entanglement certification that is suitable for large systems, based entirely on information-theoretics. It scales more efficiently than Bell’s inequality and entanglement witness. The method we developed works for arbitrarily large system dimension d and employs only two local measurements of complementary properties. This procedure can also certify whether the system is maximally entangled. We illustrate the protocol for families of bipartite states of qudits with dimension up to 32 composed of polarisation-entangled photon pairs. PMID:27311935
Highly efficient entanglement swapping and teleportation at telecom wavelength.
Jin, Rui-Bo; Takeoka, Masahiro; Takagi, Utako; Shimizu, Ryosuke; Sasaki, Masahide
2015-03-20
Entanglement swapping at telecom wavelengths is at the heart of quantum networking in optical fiber infrastructures. Although entanglement swapping has been demonstrated experimentally so far using various types of entangled photon sources both in near-infrared and telecom wavelength regions, the rate of swapping operation has been too low to be applied to practical quantum protocols, due to limited efficiency of entangled photon sources and photon detectors. Here we demonstrate drastic improvement of the efficiency at telecom wavelength by using two ultra-bright entangled photon sources and four highly efficient superconducting nanowire single photon detectors. We have attained a four-fold coincidence count rate of 108 counts per second, which is three orders higher than the previous experiments at telecom wavelengths. A raw (net) visibility in a Hong-Ou-Mandel interference between the two independent entangled sources was 73.3 ± 1.0% (85.1 ± 0.8%). We performed the teleportation and entanglement swapping, and obtained a fidelity of 76.3% in the swapping test. Our results on the coincidence count rates are comparable with the ones ever recorded in teleportation/swapping and multi-photon entanglement generation experiments at around 800 nm wavelengths. Our setup opens the way to practical implementation of device-independent quantum key distribution and its distance extension by the entanglement swapping as well as multi-photon entangled state generation in telecom band infrastructures with both space and fiber links.
NASA Astrophysics Data System (ADS)
Quan, Runai; Zhai, Yiwei; Wang, Mengmeng; Hou, Feiyan; Wang, Shaofeng; Xiang, Xiao; Liu, Tao; Zhang, Shougang; Dong, Ruifang
2016-07-01
Based on the second-order quantum interference between frequency entangled photons that are generated by parametric down conversion, a quantum strategic algorithm for synchronizing two spatially separated clocks has been recently presented. In the reference frame of a Hong-Ou-Mandel (HOM) interferometer, photon correlations are used to define simultaneous events. Once the HOM interferometer is balanced by use of an adjustable optical delay in one arm, arrival times of simulta- neously generated photons are recorded by each clock. The clock offset is determined by correlation measurement of the recorded arrival times. Utilizing this algorithm, we demonstrate a proof-of-principle experiment for synchronizing two clocks separated by 4 km fiber link. A minimum timing stability of 0.44 ps at averaging time of 16000 s is achieved with an absolute time accuracy of 73.2 ps. The timing stability is verified to be limited by the correlation measurement device and ideally can be better than 10 fs. Such results shine a light to the application of quantum clock synchronization in the real high-accuracy timing system.
Quan, Runai; Zhai, Yiwei; Wang, Mengmeng; Hou, Feiyan; Wang, Shaofeng; Xiang, Xiao; Liu, Tao; Zhang, Shougang; Dong, Ruifang
2016-01-01
Based on the second-order quantum interference between frequency entangled photons that are generated by parametric down conversion, a quantum strategic algorithm for synchronizing two spatially separated clocks has been recently presented. In the reference frame of a Hong-Ou-Mandel (HOM) interferometer, photon correlations are used to define simultaneous events. Once the HOM interferometer is balanced by use of an adjustable optical delay in one arm, arrival times of simulta- neously generated photons are recorded by each clock. The clock offset is determined by correlation measurement of the recorded arrival times. Utilizing this algorithm, we demonstrate a proof-of-principle experiment for synchronizing two clocks separated by 4 km fiber link. A minimum timing stability of 0.44 ps at averaging time of 16000 s is achieved with an absolute time accuracy of 73.2 ps. The timing stability is verified to be limited by the correlation measurement device and ideally can be better than 10 fs. Such results shine a light to the application of quantum clock synchronization in the real high-accuracy timing system. PMID:27452276
A revisit to non-maximally entangled mixed states: teleportation witness, noisy channel and discord
NASA Astrophysics Data System (ADS)
Roy, Sovik; Ghosh, Biplab
2017-04-01
We constructed a class of non-maximally entangled mixed states (Adhikari et al. in Quantum Inf Comput 10:0398, 2010) and extensively studied their entanglement properties and also their usefulness as teleportation channels. In this article, we have revisited our constructed state and have studied it from three different perspectives. Since every entangled state is associated with a witness operator, we have found a suitable entanglement as well as teleportation witness operator for our non-maximally entangled mixed states. We considered the noisy channel's effects on our constructed states to see how much it affects the states' capacities as teleportation channels. For this purpose, we have mainly focussed on amplitude damping channel. A comparative study on concurrence and quantum discord of our constructed state of Adhikari et al. (2010) has also been carried out here.
Methods and apparatus of entangled photon generation using four-wave mixing
Camacho, Ryan
2016-02-23
A non-linear optical device is provided. The device comprises an optical disk or ring microresonator fabricated from a material that exhibits an optical nonlinearity able to produce degenerate four-wave mixing (FWM) in response to a pump beam having a pump frequency in a specified effective range. The microresonator is conformed to exhibit an angular group velocity minimum at a pump frequency within the specified effective range such that there is zero angular group velocity dispersion at the pump frequency. We refer to such a pump frequency as the "zero dispersion frequency". In embodiments, excitation of the resonator by a pump beam of sufficient intensity at the zero-dispersion frequency causes the resonator to emit a frequency comb of entangled photon pairs wherein the respective frequencies in each pair are symmetrically placed about the zero-dispersion frequency.
Grothendieck's constant and local models for noisy entangled quantum states
Acin, Antonio; Gisin, Nicolas; Toner, Benjamin
2006-06-15
We relate the nonlocal properties of noisy entangled states to Grothendieck's constant, a mathematical constant appearing in Banach space theory. For two-qubit Werner states {rho}{sub p}{sup W}=p|{psi}{sup -}><{psi}{sup -}|+(1-p)1/4, we show that there is a local model for projective measurements if and only if p{<=}1/K{sub G}(3), where K{sub G}(3) is Grothendieck's constant of order 3. Known bounds on K{sub G}(3) prove the existence of this model at least for p < or approx. 0.66, quite close to the current region of Bell violation, p{approx}0.71. We generalize this result to arbitrary quantum states.
NASA Astrophysics Data System (ADS)
Chung, T. H.; Juska, G.; Moroni, S. T.; Pescaglini, A.; Gocalinska, A.; Pelucchi, E.
2016-12-01
Scalability and foundry compatibility (as apply to conventional silicon-based integrated computer processors, for example) in developing quantum technologies are major challenges facing current research. Here we introduce a quantum photonic technology that has the potential to enable the large-scale fabrication of semiconductor-based, site-controlled, scalable arrays of electrically driven sources of polarization-entangled photons that may be able to encode quantum information. The design of the sources is based on quantum dots grown in micrometre-sized pyramidal recesses along the crystallographic direction (111)B, which theoretically ensures high symmetry of the quantum dots—a requirement for bright entangled-photon emission. A selective electric injection scheme in these non-planar structures allows a high density of light-emitting diodes to be obtained, with some producing entangled photon pairs that also violate Bell's inequality. Compatibility with semiconductor fabrication technology, good reproducibility and lithographic position control make these devices attractive candidates for integrated photonic circuits for quantum information processing.
NASA Astrophysics Data System (ADS)
Leontiev, A. V.; Lobkov, V. S.; Mitrofanova, T. G.; Shmelyov, A. G.; Samartsev, V. V.
2012-09-01
A new method of two-photon excitation of femtosecond signals of ``entangled'' free induction decay (EFID) by two crossed 790-nm laser beams in a CdS crystal at room temperature has been realized for the first time. This ``entangled'' (through the wave vectors) coherent response appears only in the case when the photons involved to the process of two-photon excitation of the sample belong to the different laser beams. This technique allows one to separate the EFID signal from the exciting femtosecond pulses and to vary the response wavelength by varying the angle between their wave vectors. The most optimal case occurs when the angle between the wave vectors of exciting pulses as well as the angle between each of these wave vectors and that of the response is equal to 60°.
Chen, Lixiang; She, Weilong
2008-09-15
We demonstrate that single photons from a rotating q-plate exhibit an entanglement in three degrees of freedom of spin, orbital angular momentum, and the rotational Doppler shift (RDS) due to the nonconservation of total spin and orbital angular momenta. We find that the rotational Doppler shift deltaomega = Omega((delta)s + deltal) , where s, l and Omega are quantum numbers of spin, orbital angular momentum, and rotating velocity of the q-plate, respectively. Of interest is that the rotational Doppler shift directly reflects the rotational symmetry of q-plates and can be also expressed as deltaomega = (Omega)n , where n = 2(q-1) denotes the fold number of rotational symmetry. Besides, based on this single-photon spin-orbit-RDS entanglement, we propose an experimental scheme to sort photons of different frequency shifts according to individual orbital angular momentum.
Entanglement and communication-reducing properties of noisy N-qubit states
Laskowski, Wieslaw; Paterek, Tomasz; Brukner, Caslav; Zukowski, Marek
2010-04-15
We consider properties of states of many qubits, which arise after sending certain entangled states via various noisy channels (white noise, colored noise, local depolarization, dephasing, and amplitude damping). Entanglement of these states and their ability to violate certain classes of Bell inequalities are studied. States which violate them allow a higher than classical efficiency in solving related distributed computational tasks with constrained communication. This is a direct property of such states--not requiring their further modification via stochastic local operations and classical communication such as entanglement purification or distillation procedures. We identify families of multiparticle states which are entangled but nevertheless allow the local realistic description of specific Bell experiments. For some of them, the 'gap' between the critical values for entanglement and violation of Bell inequality remains finite even in the limit of infinitely many qubits.
NASA Astrophysics Data System (ADS)
Ye, Tian-Yu
2015-04-01
In this paper, using the quantum entanglement swapping technologies under the collective-dephasing noise and the collective-rotation noise, two robust quantum dialogue protocols are proposed, respectively. The logical Bell states are used as the traveling states to combat the collective noise. The auxiliary logical Bell state is shared privately between two participants through the manner of direct transmission first. After encoded with the receiver's secret messages, it swaps entanglement with its adjacent logical Bell state. In this way, the information leakage problem is avoided. Moreover, Eve's active attacks can be detected with the help of decoy photon technology. For decoding, the Bell state measurements rather than the four-qubit joint measurements are needed.
Fujiwara, Mikio; Wakabayashi, Ryota; Sasaki, Masahide; Takeoka, Masahiro
2017-02-20
We report a wavelength division multiplexed time-bin entangled photon pair source in telecom wavelength using a 10 μm radius Si ring resonator. This compact resonator has two add ports and two drop ports. By pumping one add port by a continuous laser, we demonstrate an efficient generation of two-wavelength division multiplexed time-bin entangled photon pairs in the telecom C-band, which come out of one drop port, and are then split into the signal and idler photons via a wavelength filter. The resonator structure enhances four-wave mixing for pair generation. Moreover, we demonstrate the double-port pumping where two counter propagating pump lights are injected to generate entanglement from the two drop ports simultaneously. We successfully observe the highly entangled outputs from both two drop ports. Surprisingly, the count rate at each drop port is even increased by twice that of the single-port pumping. Possible mechanisms of this observation are discussed. Our technique allows for the efficient use of the Si ring resonator and widens its functionality for variety of applications.
Kunkri, Samir; Choudhary, Sujit K.; Ahanj, Ali; Joag, Pramod
2006-02-15
Here we deal with a nonlocality argument proposed by Cabello, which is more general than Hardy's nonlocality argument, but still maximally entangled states do not respond. However, for most of the other entangled states, maximum probability of success of this argument is more than that of the Hardy's argument.
Quantum computation and entangled state generation through a cavity output process
NASA Astrophysics Data System (ADS)
Xia, Yan; Hu, Chun; Song, Jie; Song, He-Shan
2011-10-01
We propose a protocol to realize quantum phase gates and generate entangled states between two atoms trapped in one cavity. In Lamb-Dick limits, it is not necessary to require coincidence detections, which will relax the conditions for the experimental realization. The protocol can be generalized to generate N-atom entangled states.
Phase sensitivity of two nonlinear interferometers with inputting entangled coherent states
NASA Astrophysics Data System (ADS)
Wei, Chao-Ping; Xiao-Yu, Hu; Ya-Fei, Yu; Zhi-Ming, Zhang
2016-04-01
We investigate the phase sensitivity of the SU(1,1) interfereometer [SU(1,1)I] and the modified Mach-Zehnder interferometer (MMZI) with the entangled coherent states (ECS) as inputs. We consider the ideal case and the situations in which the photon losses are taken into account. We find that, under ideal conditions, the phase sensitivity of both the MMZI and the SU(1,1)I can beat the shot-noise limit (SNL) and approach the Heisenberg limit (HL). In the presence of photon losses, the ECS can beat the coherent and squeezed states as inputs in the SU(1,1)I, and the MMZI is more robust against internal photon losses than the SU(1,1)I. Project supported by the Major Research Plan of the National Natural Science Foundation of China (Grant No. 91121023), the National Natural Science Foundation of China (Grant Nos. 11574092, 61378012, and 60978009), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20124407110009), the National Basic Research Program of China (Grant Nos. 2011CBA00200 and 2013CB921804), and the Program for Innovative Research Team in University (Grant No. IRT1243).
Phase-locked indistinguishable photons with synthesized waveforms from a solid-state source
NASA Astrophysics Data System (ADS)
Matthiesen, Clemens; Geller, Martin; Schulte, Carsten H. H.; Le Gall, Claire; Hansom, Jack; Li, Zhengyong; Hugues, Maxime; Clarke, Edmund; Atatüre, Mete
2013-03-01
Resonance fluorescence in the Heitler regime provides access to single photons with coherence well beyond the Fourier transform limit of the transition, and holds the promise to circumvent environment-induced dephasing common to all solid-state systems. Here we demonstrate that the coherently generated single photons from a single self-assembled InAs quantum dot display mutual coherence with the excitation laser on a timescale exceeding 3 s. Exploiting this degree of mutual coherence, we synthesize near-arbitrary coherent photon waveforms by shaping the excitation laser field. In contrast to post-emission filtering, our technique avoids both photon loss and degradation of the single-photon nature for all synthesized waveforms. By engineering pulsed waveforms of single photons, we further demonstrate that separate photons generated coherently by the same laser field are fundamentally indistinguishable, lending themselves to the creation of distant entanglement through quantum interference.
All-order dispersion cancellation and energy-time entangled state.
Ryu, Jinsoo; Cho, Kiyoung; Oh, Cha-Hwan; Kang, Hoonsoo
2017-01-23
Dispersion cancellation with an energy-time entangled photon pair in Hong-Ou-Mandel (HOM) interference is one phenomenon that reveals the nonclassical nature of the entangled photon pair. This phenomenon has been observed in materials with very weak dispersions. If the higher-order dispersion coefficient is non-negligible, then the experiment must be modified to realize dispersion cancellation. All-order dispersion cancellation using balanced dispersion was suggested by Steinberg. However, the same phenomenon is expected to occur even if a photon pair is not entangled. This behaviour can be explained by path indistinguishability with identical dispersion. To achieve an all-order dispersion experiment that cannot be explained classically, we modified the experiment and performed another all-order dispersion cancellation experiment that cannot be explained by identical dispersion. This is the first demonstration of nonclassical all-order dispersion cancellation.
Quantum teleportation of a generic two-photon state with weak cross-Kerr nonlinearities
NASA Astrophysics Data System (ADS)
Wang, Meiyu; Yan, Fengli
2016-08-01
We present a scheme for teleporting a generic two-photon polarization state by using two EPR states as quantum channel based on weak cross-Kerr nonlinearities. As the core component of the present framework, the quantum nondemolition detector based on the weak cross-Kerr nonlinearity acts as an EPR entangler as well as the Bell-state analyzer. This makes the teleportation protocol be achieved near deterministically and be feasible in the current experimental technology.
Trail, Collin M; Madhok, Vaibhav; Deutsch, Ivan H
2008-10-01
We study the dynamical generation of entanglement as a signature of chaos in a system of periodically kicked coupled tops, where chaos and entanglement arise from the same physical mechanism. The long-time-averaged entanglement as a function of the position of an initially localized wave packet very closely correlates with the classical phase space surface of section--it is nearly uniform in the chaotic sea, and reproduces the detailed structure of the regular islands. The uniform value in the chaotic sea is explained by the random state conjecture. As classically chaotic dynamics take localized distributions in phase space to random distributions, quantized versions take localized coherent states to pseudorandom states in Hilbert space. Such random states are highly entangled, with an average value near that of the maximally entangled state. For a map with global chaos, we derive that value based on analytic results for the entropy of random states. For a mixed phase space, we use the Percival conjecture to identify a "chaotic subspace" of the Hilbert space. The typical entanglement, averaged over the unitarily invariant Haar measure in this subspace, agrees with the long-time-averaged entanglement for initial states in the chaotic sea. In all cases the dynamically generated entanglement is that of a random complex vector, even though the system is time-reversal invariant, and the Floquet operator is a member of the circular orthogonal ensemble.
NASA Astrophysics Data System (ADS)
Adesso, Gerardo; Giampaolo, Salvatore M.; Illuminati, Fabrizio
2007-10-01
We present a geometric approach to the characterization of separability and entanglement in pure Gaussian states of an arbitrary number of modes. The analysis is performed adapting to continuous variables a formalism based on single subsystem unitary transformations that has been recently introduced to characterize separability and entanglement in pure states of qubits and qutrits [S. M. Giampaolo and F. Illuminati, Phys. Rev. A 76, 042301 (2007)]. In analogy with the finite-dimensional case, we demonstrate that the 1×M bipartite entanglement of a multimode pure Gaussian state can be quantified by the minimum squared Euclidean distance between the state itself and the set of states obtained by transforming it via suitable local symplectic (unitary) operations. This minimum distance, corresponding to a , uniquely determined, extremal local operation, defines an entanglement monotone equivalent to the entropy of entanglement, and amenable to direct experimental measurement with linear optical schemes.
Adesso, Gerardo; Giampaolo, Salvatore M.; Illuminati, Fabrizio
2007-10-15
We present a geometric approach to the characterization of separability and entanglement in pure Gaussian states of an arbitrary number of modes. The analysis is performed adapting to continuous variables a formalism based on single subsystem unitary transformations that has been recently introduced to characterize separability and entanglement in pure states of qubits and qutrits [S. M. Giampaolo and F. Illuminati, Phys. Rev. A 76, 042301 (2007)]. In analogy with the finite-dimensional case, we demonstrate that the 1xM bipartite entanglement of a multimode pure Gaussian state can be quantified by the minimum squared Euclidean distance between the state itself and the set of states obtained by transforming it via suitable local symplectic (unitary) operations. This minimum distance, corresponding to a, uniquely determined, extremal local operation, defines an entanglement monotone equivalent to the entropy of entanglement, and amenable to direct experimental measurement with linear optical schemes.
NASA Astrophysics Data System (ADS)
Bose, Soumyakanti; Kumar, M. Sanjay
2017-01-01
Continuous-variable beam-splitter (BS)-generated entanglement from single-mode optical states generated by a single nonclassicality (NC)-inducing operation has been found to be immensely important in several information processing tasks. There exists a broader class of optical states, generated from successive action of multiple different NC-inducing operations, which show many intriguing nonclassical properties; however, the BS conversion of the NC for such states remains unexplored. In this work we have critically analyzed the BS-generated entanglement from such nonclassical optical states at input. Here we present a scenario where BS output entanglement becomes nonmonotonic with the input NC parameters, accessible experimentally (e.g., number of photon excitation and squeezing strength), in contrast to the previous results with states comprising a single NC-inducing operation. We explain this counterintuitive feature in terms of the competition between these two NC-inducing operations as manifest in the contours of the Q functions associated with these states.
Large-Alphabet Quantum Key Distribution Using Energy-Time Entangled Bipartite States
NASA Astrophysics Data System (ADS)
Ali-Khan, Irfan; Broadbent, Curtis J.; Howell, John C.
2007-02-01
We present a protocol for large-alphabet quantum key distribution (QKD) using energy-time entangled biphotons. Binned, high-resolution timing measurements are used to generate a large-alphabet key with over 10 bits of information per photon pair, albeit with large noise. QKD with 5% bit error rate is demonstrated with 4 bits of information per photon pair, where the security of the quantum channel is determined by the visibility of Franson interference fringes. The protocol is easily generalizable to even larger alphabets, and utilizes energy-time entanglement which is robust to transmission over large distances in fiber.
Entangling qubit registers via many-body states of ultracold atoms
NASA Astrophysics Data System (ADS)
Melko, R. G.; Herdman, C. M.; Iouchtchenko, D.; Roy, P.-N.; Del Maestro, A.
2016-04-01
Inspired by the experimental measurement of the Rényi entanglement entropy in a lattice of ultracold atoms by Islam et al. [Nature (London) 528, 77 (2015), 10.1038/nature15750], we propose a method to entangle two spatially separated qubits using the quantum many-body state as a resource. Through local operations accessible in an experiment, entanglement is transferred to a qubit register from atoms at the ends of a one-dimensional chain. We compute the operational entanglement, which bounds the entanglement physically transferable from the many-body resource to the register, and discuss a protocol for its experimental measurement. Finally, we explore measures for the amount of entanglement available in the register after transfer, suitable for use in quantum information applications.
Comparison of quantum discord and fully entangled fraction of two classes of d⊗ d^2 states
NASA Astrophysics Data System (ADS)
Behdani, Javad; Akhtarshenas, Seyed Javad; Sarbishaei, Mohsen
2017-01-01
The quantumness of a generic state is the resource of many applications in quantum information theory, and it is interesting to survey the measures which are able to detect its trace in the properties of the state. In this work, we study the quantum discord and fully entangled fraction of two classes of bipartite states and compare their behaviors. These classes are complements to the d⊗ d Werner and isotropic states, in the sense that each class possesses the same purification as the corresponding complemental class of states. Our results show that maximally entangled mixed states are also maximally discordant states, leading to a generalization of the well-known fact that all maximally entangled pure states have also maximum quantum discord. Moreover, it is shown that the separability-entanglement boundary of a Werner or isotropic state is manifested as an inflection point in the diagram of quantum discord of the corresponding complemental state.
Microwave photon Fock state generation by stimulated Raman adiabatic passage
Premaratne, Shavindra P.; Wellstood, F. C.; Palmer, B. S.
2017-01-01
The deterministic generation of non-classical states of light, including squeezed states, Fock states and Bell states, plays an important role in quantum information processing and exploration of the physics of quantum entanglement. Preparation of these non-classical states in resonators is non-trivial due to their inherent harmonicity. Here we use stimulated Raman adiabatic passage to generate microwave photon Fock states in a superconducting circuit quantum electrodynamics system comprised of a fixed-frequency transmon qubit in a three-dimensional microwave cavity at 20 mK. A two-photon process is employed to overcome a first order forbidden transition and the first, second and third Fock states are demonstrated. We also demonstrate how this all-microwave technique can be used to generate an arbitrary superposition of Fock states. Simulations of the system are in excellent agreement with the data and fidelities of 89%, 68% and 43% are inferred for the first three Fock states respectively. PMID:28128205
Entanglement generation from deformed spin coherent states using a beam splitter
NASA Astrophysics Data System (ADS)
Berrada, K.; El Baz, M.; Saif, F.; Hassouni, Y.; Mnia, S.
2009-07-01
Using the linear entropy as a measure of entanglement, we investigate the effect of a beam splitter on the Perelomov coherent states for the q-deformed Uq(su(2)) algebra. We distinguish two cases: in the classical q → 1 limit, we find that the states become Glauber coherent states as the spin tends to infinity; whereas for q ≠ 1, the states, contrary to the earlier case, become entangled as they pass through a beam splitter. The entanglement strongly depends on the q-deformation parameter and the amplitude Z of the state.
Harsij, Zeynab Mirza, Behrouz
2014-12-15
A helicity entangled tripartite state is considered in which the degree of entanglement is preserved in non-inertial frames. It is shown that Quantum Entanglement remains observer independent. As another measure of quantum correlation, Quantum Discord has been investigated. It is explicitly shown that acceleration has no effect on the degree of quantum correlation for the bipartite and tripartite helicity entangled states. Geometric Quantum Discord as a Hilbert–Schmidt distance is computed for helicity entangled states. It is shown that living in non-inertial frames does not make any influence on this distance, either. In addition, the analysis has been extended beyond single mode approximation to show that acceleration does not have any impact on the quantum features in the limit beyond the single mode. As an interesting result, while the density matrix depends on the right and left Unruh modes, the Negativity as a measure of Quantum Entanglement remains constant. Also, Quantum Discord does not change beyond single mode approximation. - Highlights: • The helicity entangled states here are observer independent in non-inertial frames. • It is explicitly shown that Quantum Discord for these states is observer independent. • Geometric Quantum Discord is also not affected by acceleration increase. • Extending to beyond single mode does not change the degree of entanglement. • Beyond single mode approximation the degree of Quantum Discord is also preserved.
Odd numbers of photons and teleportation
NASA Astrophysics Data System (ADS)
Enk, S. J.
2003-02-01
Several teleportation protocols, namely those using entangled coherent states, entangled squeezed states, and the single-photon Einstein-Podolsky-Rosen state, are all shown to be particular instances of a more general scheme that relies on the detection of an odd number of photons.
NASA Astrophysics Data System (ADS)
Shan, Chuan-Jia; Chen, Tao; Liu, Ji-Bing; Cheng, Wei-Wen; Liu, Tang-Kun; Huang, Yan-Xia; Li, Hong
2010-06-01
In this paper, we investigate the dynamical behaviour of entanglement in terms of concurrence in a bipartite system subjected to an external magnetic field under the action of dissipative environments in the extended Werner-like initial state. The interesting phenomenon of entanglement sudden death as well as sudden birth appears during the evolution process. We analyse in detail the effect of the purity of the initial entangled state of two qubits via Heisenberg XY interaction on the apparition time of entanglement sudden death and entanglement sudden birth. Furthermore, the conditions on the conversion of entanglement sudden death and entanglement sudden birth can be generalized when the initial entangled state is not pure. In particular, a critical purity of the initial mixed entangled state exists, above which entanglement sudden birth vanishes while entanglement sudden death appears. It is also noticed that stable entanglement, which is independent of different initial states of the qubits (pure or mixed state), occurs even in the presence of decoherence. These results arising from the combination of the extended Werner-like initial state and dissipative environments suggest an approach to control and enhance the entanglement even after purity induced sudden birth, death and revival.
Entanglement Involved in Time Evolution of Two-Mode Squeezed State in Single-Mode Diffusion Channel
NASA Astrophysics Data System (ADS)
Xu, Xue-Fen; Fan, Hong-Yi
2017-02-01
We derive the evolution law of an initial two-mode squeezed vacuum state sech2λ e^{a^{dag }b^{dagger }tanh λ }\\vert 00rangle < 00\\vert e^{ab tanh λ } (a pure state) passing through an a-mode diffusion channel described by the master equation dρ ( t) /dt=-κ [ a^{dagger}aρ ( t) -a^{dagger}ρ ( t) a-aρ ( t) a^{dagger}+ρ ( t) aa^{dagger}] , since the two-mode squeezed state is simultaneously an entangled state, the final state which emerges from this channel is a two-mode mixed state. Performing partial trace over the b-mode of ρ(t) yields a new chaotic field, ρ a(t) = {sech2λ}/{1+κt sech2λ}:exp [ {-sech2λ}/{1+κt sech2λ }a^{dagger }a ] :, which exhibits higher temperature and more photon numbers, showing the diffusion effect. Besides, measuring a-mode of ρ(t) to find n photons will result in the collapse of the two-mode system to a new Laguerre polynomial-weighted chaotic state in b-mode, which also exhibits entanglement.
NASA Astrophysics Data System (ADS)
Du, Fang-Fang; Long, Gui-Lu
2017-01-01
We present a refined entanglement concentration protocol (ECP) for an arbitrary unknown less-entangled four-electron-spin cluster state by exploring the optical selection rules derived from the quantum-dot spins in one-sided optical microcavities. In our ECP, the parties obtain not only the four-electron-spin systems in the partial entanglement with two unknown parameters, but also the less-entangled two-electron-spin systems in the first step. Utilizing the above preserved systems as the resource for the second step of our ECP, the parties can obtain a standard cluster state by keeping the robust odd-parity instances with two parity-check gates. Meanwhile, the systems in the rest three instances can be used as the resource in the next round of our ECP. The success probability of our ECP is largely increased by iteration of the ECP process. Moreover, all the coefficients of our ECP are unknown for the parties without assistance of extra single electron-spin, so our ECP maybe has good applications in quantum communication network in the future.
Improvement on "Quantum Key Agreement Protocol with Maximally Entangled States"
NASA Astrophysics Data System (ADS)
Chong, Song-Kong; Tsai, Chia-Wei; Hwang, Tzonelih
2011-06-01
Recently, Hsueh and Chen [in Proceedings of the 14th Information Security Conference, National Taiwan University of Science and Technology, Taipei, pp. 236-242, 2004] proposed a quantum key agreement (QKA) protocol with maximally entangled states. Their protocol allows two users to negotiate a secret key in such a way that no one can predetermine the shared key alone. This study points out two security flaws in their protocol: (1) a legitimate but malicious user can fully control the shared key alone; (2) an eavesdropper can obtain the shared key without being detected. A possible solution is presented to avoid these attacks and also Tsai et al.'s CNOT attack [in Proceedings of the 20th Cryptology and Information Security Conference, National Chiao Tung University, Hsinchu, pp. 210-213, 2010] on Hsueh and Chen protocol to obtain the shared key without being detected.
Probabilistic teleportation of a three-particle state via three pairs of entangled particles
Fang Jianxing; Lin Yinsheng; Zhu Shiqun; Chen Xianfeng
2003-01-01
A scheme for teleporting an arbitrary three-particle state is proposed when three pairs of entangled particles are used as quantum channels. Quantum teleportation can be successfully realized with a certain probability if the receiver adopts an appropriate unitary-reduction strategy. The probability of successful teleportation is determined by the smallest coefficients of the three entangled pairs.
Motes, Keith R; Olson, Jonathan P; Rabeaux, Evan J; Dowling, Jonathan P; Olson, S Jay; Rohde, Peter P
2015-05-01
Quantum number-path entanglement is a resource for supersensitive quantum metrology and in particular provides for sub-shot-noise or even Heisenberg-limited sensitivity. However, such number-path entanglement has been thought to be resource intensive to create in the first place--typically requiring either very strong nonlinearities, or nondeterministic preparation schemes with feedforward, which are difficult to implement. Very recently, arising from the study of quantum random walks with multiphoton walkers, as well as the study of the computational complexity of passive linear optical interferometers fed with single-photon inputs, it has been shown that such passive linear optical devices generate a superexponentially large amount of number-path entanglement. A logical question to ask is whether this entanglement may be exploited for quantum metrology. We answer that question here in the affirmative by showing that a simple, passive, linear-optical interferometer--fed with only uncorrelated, single-photon inputs, coupled with simple, single-mode, disjoint photodetection--is capable of significantly beating the shot-noise limit. Our result implies a pathway forward to practical quantum metrology with readily available technology.
General Method for Constructing Local Hidden Variable Models for Entangled Quantum States
NASA Astrophysics Data System (ADS)
Cavalcanti, D.; Guerini, L.; Rabelo, R.; Skrzypczyk, P.
2016-11-01
Entanglement allows for the nonlocality of quantum theory, which is the resource behind device-independent quantum information protocols. However, not all entangled quantum states display nonlocality. A central question is to determine the precise relation between entanglement and nonlocality. Here we present the first general test to decide whether a quantum state is local, and show that the test can be implemented by semidefinite programing. This method can be applied to any given state and for the construction of new examples of states with local hidden variable models for both projective and general measurements. As applications, we provide a lower-bound estimate of the fraction of two-qubit local entangled states and present new explicit examples of such states, including those that arise from physical noise models, Bell-diagonal states, and noisy Greenberger-Horne-Zeilinger and W states.
A Criterion for Maximally Six-Qubit Entangled States via Coefficient Matrix
NASA Astrophysics Data System (ADS)
Yu, Yan; Zha, Xin Wei; Li, Wei
2017-03-01
In a recent paper (J. Phys. A: Math. Theor 45, 075308 (2012)), Li et al. established the coefficient matrix of six-qubit entangled states. With an emphasis on six qubits, we present a new criterion for maximally six-qubit entangled states via those coefficient matrices. By calculating the determinants of coefficient matrix, one use the criterion that characterize these states. Moreover, the criterion via the coefficient matrices gives rise to the combination of maximally multi-qubit entangled state(MMES) and matrix, and we believe that the new criterion can play an important role in quantum information.
Tokunaga, Yuuki; Kuwashiro, Shin; Yamamoto, Takashi; Koashi, Masato; Imoto, Nobuyuki
2008-05-30
We experimentally demonstrate a simple scheme for generating a four-photon entangled cluster state with fidelity over 0.860+/-0.015. We show that the fidelity is high enough to guarantee that the produced state is distinguished from Greenberger-Horne-Zeilinger, W, and Dicke types of genuine four-qubit entanglement. We also demonstrate basic operations of one-way quantum computing using the produced state and show that the output state fidelities surpass classical bounds, which indicates that the entanglement in the produced state essentially contributes to the quantum operation.
Efficient simultaneous dense coding and teleportation with two-photon four-qubit cluster states
NASA Astrophysics Data System (ADS)
Zhang, Cai; Situ, Haozhen; Li, Qin; He, Guang Ping
2016-08-01
We firstly propose a simultaneous dense coding protocol with two-photon four-qubit cluster states in which two receivers can simultaneously get their respective classical information sent by a sender. Because each photon has two degrees of freedom, the protocol will achieve a high transmittance. The security of the simultaneous dense coding protocol has also been analyzed. Secondly, we investigate how to simultaneously teleport two different quantum states with polarization and path degree of freedom using cluster states to two receivers, respectively, and discuss its security. The preparation and transmission of two-photon four-qubit cluster states is less difficult than that of four-photon entangled states, and it has been experimentally generated with nearly perfect fidelity and high generation rate. Thus, our protocols are feasible with current quantum techniques.
NASA Astrophysics Data System (ADS)
Bartkiewicz, Karol; Chimczak, Grzegorz; Lemr, Karel
2017-02-01
We describe a direct method for experimental determination of the negativity of an arbitrary two-qubit state with 11 measurements performed on multiple copies of the two-qubit system. Our method is based on the experimentally accessible sequences of singlet projections performed on up to four qubit pairs. In particular, our method permits the application of the Peres-Horodecki separability criterion to an arbitrary two-qubit state. We explicitly demonstrate that measuring entanglement in terms of negativity requires three measurements more than detecting two-qubit entanglement. The reported minimal set of interferometric measurements provides a complete description of bipartite quantum entanglement in terms of two-photon interference. This set is smaller than the set of 15 measurements needed to perform a complete quantum state tomography of an arbitrary two-qubit system. Finally, we demonstrate that the set of nine Makhlin's invariants needed to express the negativity can be measured by performing 13 multicopy projections. We demonstrate both that these invariants are a useful theoretical concept for designing specialized quantum interferometers and that their direct measurement within the framework of linear optics does not require performing complete quantum state tomography.
Tapia, O
2014-02-01
Four fundamental aspects bearing on molecular simulations are considered: (1) A different perception of quantum states; mappings from abstract Hilbert space down to laboratory levels; (2) Introduction of photon number Fock space; photonic bases tie together matter-to-photon quantum states: coherent photon-matter states. (3) Chemical tenets framed via photonic-base-states incorporating and defining multi-partite basis sets. (4) Entanglement provides a quantum-physical view connectable to a chemical bond concept. Amplitude modulations of physical quantum states realize (express) chemical change; Feshbach resonance states as a royal path to handle an equivalent to bond breaking/forming by coupling continuum-to-discrete base states. We observe that, for driving chemical processes within photonic framework, microwaves enter not only as heating sources but can act naturally in a quantum physical manner as causes for catalytic activity.
Random pure states: Quantifying bipartite entanglement beyond the linear statistics.
Vivo, Pierpaolo; Pato, Mauricio P; Oshanin, Gleb
2016-05-01
We analyze the properties of entangled random pure states of a quantum system partitioned into two smaller subsystems of dimensions N and M. Framing the problem in terms of random matrices with a fixed-trace constraint, we establish, for arbitrary N≤M, a general relation between the n-point densities and the cross moments of the eigenvalues of the reduced density matrix, i.e., the so-called Schmidt eigenvalues, and the analogous functionals of the eigenvalues of the Wishart-Laguerre ensemble of the random matrix theory. This allows us to derive explicit expressions for two-level densities, and also an exact expression for the variance of von Neumann entropy at finite N,M. Then, we focus on the moments E{K^{a}} of the Schmidt number K, the reciprocal of the purity. This is a random variable supported on [1,N], which quantifies the number of degrees of freedom effectively contributing to the entanglement. We derive a wealth of analytical results for E{K^{a}} for N=2 and 3 and arbitrary M, and also for square N=M systems by spotting for the latter a connection with the probability P(x_{min}^{GUE}≥sqrt[2N]ξ) that the smallest eigenvalue x_{min}^{GUE} of an N×N matrix belonging to the Gaussian unitary ensemble is larger than sqrt[2N]ξ. As a by-product, we present an exact asymptotic expansion for P(x_{min}^{GUE}≥sqrt[2N]ξ) for finite N as ξ→∞. Our results are corroborated by numerical simulations whenever possible, with excellent agreement.
Random pure states: Quantifying bipartite entanglement beyond the linear statistics
NASA Astrophysics Data System (ADS)
Vivo, Pierpaolo; Pato, Mauricio P.; Oshanin, Gleb
2016-05-01
We analyze the properties of entangled random pure states of a quantum system partitioned into two smaller subsystems of dimensions N and M . Framing the problem in terms of random matrices with a fixed-trace constraint, we establish, for arbitrary N ≤M , a general relation between the n -point densities and the cross moments of the eigenvalues of the reduced density matrix, i.e., the so-called Schmidt eigenvalues, and the analogous functionals of the eigenvalues of the Wishart-Laguerre ensemble of the random matrix theory. This allows us to derive explicit expressions for two-level densities, and also an exact expression for the variance of von Neumann entropy at finite N ,M . Then, we focus on the moments E {Ka} of the Schmidt number K , the reciprocal of the purity. This is a random variable supported on [1 ,N ] , which quantifies the number of degrees of freedom effectively contributing to the entanglement. We derive a wealth of analytical results for E {Ka} for N =2 and 3 and arbitrary M , and also for square N =M systems by spotting for the latter a connection with the probability P (xminGUE≥√{2 N }ξ ) that the smallest eigenvalue xminGUE of an N ×N matrix belonging to the Gaussian unitary ensemble is larger than √{2 N }ξ . As a by-product, we present an exact asymptotic expansion for P (xminGUE≥√{2 N }ξ ) for finite N as ξ →∞ . Our results are corroborated by numerical simulations whenever possible, with excellent agreement.
Tailoring entanglement through domain engineering in a lithium niobate waveguide
Ming, Yang; Tan, Ai-Hong; Wu, Zi-Jian; Chen, Zhao-Xian; Xu, Fei; Lu, Yan-Qing
2014-01-01
We propose to integrate the electro-optic (EO) tuning function into on-chip domain engineered lithium niobate (LN) waveguide. Due to the versatility of LN, both the spontaneously parametric down conversion (SPDC) and EO interaction could be realized simultaneously. Photon pairs are generated through SPDC, and the formation of entangled state is modulated by EO processes. An EO tunable polarization-entangled photon state is proposed. Orthogonally-polarized and parallel-polarized entanglements of photon pairs are instantly switchable by tuning the applied field. The characteristics of the source are theoretically investigated showing adjustable bandwidths and high entanglement degrees. Moreover, other kinds of reconfigurable entanglement are also achievable based on suitable domain-design. We believe tailoring entanglement based on domain engineering is a very promising solution for next generation function-integrated quantum circuits. PMID:24770555
Ghali, Mohsen; Ohtani, Keita; Ohno, Yuzo; Ohno, Hideo
2012-02-07
Semiconductor quantum dots are potential sources for generating polarization-entangled photons efficiently. The main prerequisite for such generation based on biexciton-exciton cascaded emission is to control the exciton fine-structure splitting. Among various techniques investigated for this purpose, an electric field is a promising means to facilitate the integration into optoelectronic devices. Here we demonstrate the generation of polarization-entangled photons from single GaAs quantum dots by an electric field. In contrast to previous studies, which were limited to In(Ga)As quantum dots, GaAs island quantum dots formed by a thickness fluctuation were used because they exhibit a larger oscillator strength and emit light with a shorter wavelength. A forward voltage was applied to a Schottky diode to control the fine-structure splitting. We observed a decrease and suppression in the fine-structure splitting of the studied single quantum dot with the field, which enabled us to generate polarization-entangled photons with a high fidelity of 0.72 ± 0.05.
Ghali, Mohsen; Ohtani, Keita; Ohno, Yuzo; Ohno, Hideo
2012-01-01
Semiconductor quantum dots are potential sources for generating polarization-entangled photons efficiently. The main prerequisite for such generation based on biexciton–exciton cascaded emission is to control the exciton fine-structure splitting. Among various techniques investigated for this purpose, an electric field is a promising means to facilitate the integration into optoelectronic devices. Here we demonstrate the generation of polarization-entangled photons from single GaAs quantum dots by an electric field. In contrast to previous studies, which were limited to In(Ga)As quantum dots, GaAs island quantum dots formed by a thickness fluctuation were used because they exhibit a larger oscillator strength and emit light with a shorter wavelength. A forward voltage was applied to a Schottky diode to control the fine-structure splitting. We observed a decrease and suppression in the fine-structure splitting of the studied single quantum dot with the field, which enabled us to generate polarization-entangled photons with a high fidelity of 0.72±0.05. PMID:22314357
Tomographic reconstruction of time-bin-entangled qudits
NASA Astrophysics Data System (ADS)
Nowierski, Samantha J.; Oza, Neal N.; Kumar, Prem; Kanter, Gregory S.
2016-10-01
We describe an experimental implementation to generate and measure high-dimensional time-bin-entangled qudits. Two-photon time-bin entanglement is generated via spontaneous four-wave mixing in single-mode fiber. Unbalanced Mach-Zehnder interferometers transform selected time bins to polarization entanglement, allowing standard polarization-projective measurements to be used for complete quantum state tomographic reconstruction. Here we generate maximally entangled qubits (d =2 ) , qutrits (d =3 ) , and ququarts (d =4 ) , as well as other phase-modulated nonmaximally entangled qubits and qutrits. We reconstruct and verify all generated states using maximum-likelihood estimation tomography.
NASA Astrophysics Data System (ADS)
Cruz-Delgado, D.; Ramirez-Alarcon, R.; Ortiz-Ricardo, E.; Monroy-Ruz, J.; Dominguez-Serna, F.; Cruz-Ramirez, H.; Garay-Palmett, K.; U’Ren, A. B.
2016-06-01
We have designed and implemented a photon-pair source, based on the spontaneous four wave mixing (SFWM) process in a few-mode fiber, in a geometry which permits multiple, simultaneous SFWM processes, each associated with a distinct combination of transverse modes for the four participating waves. In our source: i) each process is group-velocity-matched so that it is, by design, nearly-factorable, and ii) the spectral separation between neighboring processes is greater than the marginal spectral width of each process. Consequently, there is a direct correspondence between the joint amplitude of each process and each of the Schmidt mode pairs of the overall two-photon state. Our approach permits hybrid entanglement in discrete frequency and in transverse mode, whereby control of the number of supported fiber transverse modes allows scalability to higher dimensions while spectral filtering may be used for straightforward Schmidt mode discrimination.
Cruz-Delgado, D; Ramirez-Alarcon, R; Ortiz-Ricardo, E; Monroy-Ruz, J; Dominguez-Serna, F; Cruz-Ramirez, H; Garay-Palmett, K; U'Ren, A B
2016-06-07
We have designed and implemented a photon-pair source, based on the spontaneous four wave mixing (SFWM) process in a few-mode fiber, in a geometry which permits multiple, simultaneous SFWM processes, each associated with a distinct combination of transverse modes for the four participating waves. In our source: i) each process is group-velocity-matched so that it is, by design, nearly-factorable, and ii) the spectral separation between neighboring processes is greater than the marginal spectral width of each process. Consequently, there is a direct correspondence between the joint amplitude of each process and each of the Schmidt mode pairs of the overall two-photon state. Our approach permits hybrid entanglement in discrete frequency and in transverse mode, whereby control of the number of supported fiber transverse modes allows scalability to higher dimensions while spectral filtering may be used for straightforward Schmidt mode discrimination.
Cruz-Delgado, D.; Ramirez-Alarcon, R.; Ortiz-Ricardo, E.; Monroy-Ruz, J.; Dominguez-Serna, F.; Cruz-Ramirez, H.; Garay-Palmett, K.; U’Ren, A. B.
2016-01-01
We have designed and implemented a photon-pair source, based on the spontaneous four wave mixing (SFWM) process in a few-mode fiber, in a geometry which permits multiple, simultaneous SFWM processes, each associated with a distinct combination of transverse modes for the four participating waves. In our source: i) each process is group-velocity-matched so that it is, by design, nearly-factorable, and ii) the spectral separation between neighboring processes is greater than the marginal spectral width of each process. Consequently, there is a direct correspondence between the joint amplitude of each process and each of the Schmidt mode pairs of the overall two-photon state. Our approach permits hybrid entanglement in discrete frequency and in transverse mode, whereby control of the number of supported fiber transverse modes allows scalability to higher dimensions while spectral filtering may be used for straightforward Schmidt mode discrimination. PMID:27271284
Entanglement of periodic states, the quantum Fourier transform, and Shor's factoring algorithm
Most, Yonatan; Biham, Ofer; Shimoni, Yishai
2010-05-15
The preprocessing stage of Shor's algorithm generates a class of quantum states referred to as periodic states, on which the quantum Fourier transform is applied. Such states also play an important role in other quantum algorithms that rely on the quantum Fourier transform. Since entanglement is believed to be a necessary resource for quantum computational speedup, we analyze the entanglement of periodic states and the way it is affected by the quantum Fourier transform. To this end, we derive a formula that evaluates the Groverian entanglement measure for periodic states. Using this formula, we explain the surprising result that the Groverian entanglement of the periodic states built up during the preprocessing stage is only slightly affected by the quantum Fourier transform.
Mitra, Arnab; Vyas, Reeta; Erenso, Daniel
2007-11-15
The generation of entanglement between two identical, interacting quantum dots - initially in ground states--by a coherent field and the subsequent time evolution of the entanglement are studied by calculating the concurrence between the two dots. The results predict that while it is possible to generate entanglement (or entanglement of formation, as defined for a mixed state) between the two dots, at no time do the dots become fully entangled to each other or is a maximally entangled Bell state ever achieved. We also observe that the degree of entanglement increases with an increase in the photon number inside the cavity and a decrease in the dot-photon coupling. The behavior of the two-dot system, initially prepared in an entangled state and interacting with thermal light, is also studied.
Continuous-variable entanglement distillation of non-Gaussian mixed states
Dong Ruifang; Lassen, Mikael; Heersink, Joel; Marquardt, Christoph; Leuchs, Gerd; Andersen, Ulrik L.
2010-07-15
Many different quantum-information communication protocols such as teleportation, dense coding, and entanglement-based quantum key distribution are based on the faithful transmission of entanglement between distant location in an optical network. The distribution of entanglement in such a network is, however, hampered by loss and noise that is inherent in all practical quantum channels. Thus, to enable faithful transmission one must resort to the protocol of entanglement distillation. In this paper we present a detailed theoretical analysis and an experimental realization of continuous variable entanglement distillation in a channel that is inflicted by different kinds of non-Gaussian noise. The continuous variable entangled states are generated by exploiting the third order nonlinearity in optical fibers, and the states are sent through a free-space laboratory channel in which the losses are altered to simulate a free-space atmospheric channel with varying losses. We use linear optical components, homodyne measurements, and classical communication to distill the entanglement, and we find that by using this method the entanglement can be probabilistically increased for some specific non-Gaussian noise channels.
Simultaneous suppression of time and energy uncertainties in a single-photon frequency-comb state
NASA Astrophysics Data System (ADS)
Ren, Changliang; Hofmann, Holger F.
2014-05-01
A single photon prepared in a time-energy state described by a frequency comb combines the extreme precision of energy defined by a single tooth of the comb with a high sensitivity to small shifts in time defined by the narrowness of a single pulse in the long sequence of pulses that describe the frequency-comb state in the time domain. We show how this simultaneous suppression of time and energy uncertainties can be described by a separation of scales, and we compare this with the suppression of uncertainties in the two-particle correlations of an entangled state. To illustrate the sensitivity of the frequency-comb states to small shifts in time and frequency, we consider the Hong-Ou-Mandel dips observed in two-photon interference when both time and frequency shifts between the input photons are varied. It is shown that the interference of two photons in equivalent frequency-comb states results in a two-dimensional Hong-Ou-Mandel dip that is narrow in both time and frequency, while the corresponding entangled photon pairs are only sensitive to temporal shifts. Frequency-comb states thus represent an alternative approach to quantum operations beyond the uncertainty limit.
NASA Astrophysics Data System (ADS)
Tanaka, Yoshiharu; Asano, Masanari; Ohya, Masanori
2012-02-01
In this paper, we constmct a teleportation model with nonmaximal entangled state. This model, called the m-level teleportation, is discussed on the basis of the Kossakowski and Ohya teleportation scheme. For this study, we define a generalized Bell state in terms of Latn square, by which we derive a general form of appropriate nonmaximal entangled state for a perfect m-level teleportation.
Quantum-state transfer from an ion to a photon.
Stute, A; Casabone, B; Brandstätter, B; Friebe, K; Northup, T E; Blatt, R
2013-03-01
One model for quantum networks(1,2) is based on the probabilistic measurement of two photons, each entangled with a distant node, e.g., an atom or atomic ensemble(3-7). A second, deterministic model transfers information directly from an atom onto a cavity photon, which carries it to a second node(8), as recently demonstrated with neutral atoms(9). In both cases, the challenge is to transfer information efficiently while preserving coherence. Here, following the second scheme, we map the quantum state of an ion onto a photon within an optical cavity. Using an ion enables deterministic state initialization(10,11), while the cavity provides coherent coupling to a well-defined output mode(12-15). Although it is often assumed that a cavity-based quantum interface requires the strong-coupling regime, we show transfer fidelities of 92% in the presence of non-negligible decoherence and characterize the interplay between fidelity and efficiency. Our time-independent mapping process offers a promising route toward ion-based quantum networks.
Grover's search algorithm with an entangled database state
NASA Astrophysics Data System (ADS)
Alsing, Paul M.; McDonald, Nathan
2011-05-01
Grover's oracle based unstructured search algorithm is often stated as "given a phone number in a directory, find the associated name." More formally, the problem can be stated as "given as input a unitary black box Uf for computing an unknown function f:{0,1}n ->{0,1}find x=x0 an element of {0,1}n such that f(x0) =1, (and zero otherwise). The crucial role of the externally supplied oracle Uf (whose inner workings are unknown to the user) is to change the sign of the solution 0 x , while leaving all other states unaltered. Thus, Uf depends on the desired solution x0. This paper examines an amplitude amplification algorithm in which the user encodes the directory (e.g. names and telephone numbers) into an entangled database state, which at a later time can be queried on one supplied component entry (e.g. a given phone number t0) to find the other associated unknown component (e.g. name x0). For N=2n names x with N associated phone numbers t , performing amplitude amplification on a subspace of size N of the total space of size N2 produces the desired state 0 0 x t in √N steps. We discuss how and why sequential (though not concurrent parallel) searches can be performed on multiple database states. Finally, we show how this procedure can be generalized to databases with more than two correlated lists (e.g. x t s r ...).
Quantum Storage of Orbital Angular Momentum Entanglement in an Atomic Ensemble
NASA Astrophysics Data System (ADS)
Ding, Dong-Sheng; Zhang, Wei; Zhou, Zhi-Yuan; Shi, Shuai; Xiang, Guo-Yong; Wang, Xi-Shi; Jiang, Yun-Kun; Shi, Bao-Sen; Guo, Guang-Can
2015-02-01
Constructing a quantum memory for a photonic entanglement is vital for realizing quantum communication and network. Because of the inherent infinite dimension of orbital angular momentum (OAM), the photon's OAM has the potential for encoding a photon in a high-dimensional space, enabling the realization of high channel capacity communication. Photons entangled in orthogonal polarizations or optical paths had been stored in a different system, but there have been no reports on the storage of a photon pair entangled in OAM space. Here, we report the first experimental realization of storing an entangled OAM state through the Raman protocol in a cold atomic ensemble. We reconstruct the density matrix of an OAM entangled state with a fidelity of 90.3 % ±0.8 % and obtain the Clauser-Horne-Shimony-Holt inequality parameter S of 2.41 ±0.06 after a programed storage time. All results clearly show the preservation of entanglement during the storage.
Quantum Cloning of an Unknown 2-Atom State via Entangled Cluster States
NASA Astrophysics Data System (ADS)
Yu, L.-z.; Zhong, F.
2016-06-01
This paper presented a scheme for cloning a 2-atom state in the QED cavity with the help of Victor who is the state's preparer. The cloning scheme has two steps. In the first step, the scheme requires probabilistic teleportation of a 2-atom state that is unknown in advance, and uses a 4-atom cluster state as quantum channel. In the second step, perfect copies of the 2-atom entangled state may be realized with the assistance of Victor. The finding is that our scheme has two outstanding advantages: it is not sensitive to the cavity decay, and Bell state is easy to identify.
Room-temperature steady-state optomechanical entanglement on a chip
Zou Changling; Zou Xubo; Sun Fangwen; Han Zhengfu; Guo Guangcan
2011-09-15
A potential experimental system, based on high-stress stoichiometric silicon nitride (Si{sub 3}N{sub 4}), is proposed to generate steady-state optomechanical entanglement at room temperature. In the proposed structure, a nanostring interacts dispersively and reactively with a microdisk cavity via the evanescent field. We study the role of both dispersive and reactive couplings in generating optomechanical entanglement, and show that the room-temperature entanglement can be effectively obtained through the dispersive couplings under the reasonable experimental parameters. In particular, in the limits of high temperature (T) and high mechanical quality factor (Q{sub m}), we find that the logarithmic entanglement depends only on the ratio T/Q{sub m}. This indicates that improvements of the material quantity and structure design may lead to more efficient generation of stationary high-temperature entanglement.
Room-temperature steady-state optomechanical entanglement on a chip
NASA Astrophysics Data System (ADS)
Zou, Chang-Ling; Zou, Xu-Bo; Sun, Fang-Wen; Han, Zheng-Fu; Guo, Guang-Can
2011-09-01
A potential experimental system, based on high-stress stoichiometric silicon nitride (Si3N4), is proposed to generate steady-state optomechanical entanglement at room temperature. In the proposed structure, a nanostring interacts dispersively and reactively with a microdisk cavity via the evanescent field. We study the role of both dispersive and reactive couplings in generating optomechanical entanglement, and show that the room-temperature entanglement can be effectively obtained through the dispersive couplings under the reasonable experimental parameters. In particular, in the limits of high temperature (T) and high mechanical quality factor (Qm), we find that the logarithmic entanglement depends only on the ratio T/Qm. This indicates that improvements of the material quantity and structure design may lead to more efficient generation of stationary high-temperature entanglement.
Entangled states decoherence in coupled molecular spin clusters
NASA Astrophysics Data System (ADS)
Troiani, Filippo; Szallas, Attila; Bellini, Valerio; Affronte, Marco
2010-03-01
Localized electron spins in solid-state systems are widely investigated as potential building blocks of quantum devices and computers. While most efforts in the field have been focused on semiconductor low-dimensional structures, molecular antiferromagnets were recently recognized as alternative implementations of effective few-level spin systems. Heterometallic, Cr-based spin rings behave as effective spin-1/2 systems at low temperature and show long decoherence times [1]; besides, they can be chemically linked and magnetically coupled in a controllable fascion [2]. Here, we theoretically investigate the decoherence of the Bell states in such ring dimers, resulting from hyperfine interactions with nuclear spins. Based on a microscopic description of the molecules [3], we simulate the effect of inhomogeneous broadening, spectral diffusion and electron-nuclear entanglement on the electron-spin coherence, estimating the role of the different nuclei (and of possible chemical substitutions), as well as the effect of simple spin-echo sequences. References: [1] F. Troiani, et al., Phys. Rev. Lett. 94, 207208 (2005). [2] G. A. Timco, S: Carretta, F. Troiani et al., Nature Nanotech. 4, 173 (2009). [3] F. Troiani, V. Bellini, and M. Affronte, Phys. Rev. B 77, 054428 (2008).
Manipulation of electronic states and photonic states in nanosilicon
NASA Astrophysics Data System (ADS)
Huang, Wei-Qi; Huang, Zhong-Mei; Miao, Xin-Jian; Qin, Chao-Jian; Lv, Quan
2014-04-01
On different size hierarchy, period symmetry provides energy band structure, and symmetry breaking produces localized states in gap, for example nanostructures open electronic band gap by confining electrons, but defects in symmetry system produce localized electronic states in gap. The experimental results demonstrate that controlling localized states in gap by changing passivation environment can manipulate emission wavelength, such as stimulated emission at 700 nm due to oxygen passivation and enhanced electroluminescence near 1600 nm due to ytterbium passivation on nanosilicon. In same way, modulating filling fraction and period parameters in photonic crystal enlarges width of photonic band gap (PBG) by confining photons. Symmetry breaking due to defects is effective in manipulating photonic states. New applications for selecting modes in nanolaser and for building single photon source in quantum information are explored by manipulating and coupling between electronic states and photonic states.
Teleportation of a two-atom entangled state with a thermal cavity
Jin Lihua; Jin Xingri; Zhang Shou
2005-08-15
We present a scheme to teleport an unknown atomic entangled state in driven cavity QED. In our scheme, the success probability can reach 1.0. In addition, the scheme is insensitive to the cavity decay and the thermal field.
Paraan, Francis N. C.; Korepin, Vladimir E.; Molina-Vilaplana, Javier; Bose, Sougato
2011-09-15
We quantify the extractable entanglement of excited states of a Lieb-Liniger gas that are obtained from coarse-grained measurements on the ground state in which the boson number in one of two complementary contiguous partitions of the gas is determined. Numerically exact results obtained from the coordinate Bethe ansatz show that the von Neumann entropy of the resulting bipartite pure state increases monotonically with the strength of repulsive interactions and saturates to the impenetrable-boson limiting value. We also present evidence indicating that the largest amount of entanglement can be extracted from the most probable projected state having half the number of bosons in a given partition. Our study points to a fundamental difference between the nature of the entanglement in free-bosonic and free-fermionic systems, with the entanglement in the former being zero after projection, while that in the latter (corresponding to the impenetrable-boson limit) being nonzero.
Entanglement concentration for two-mode Gaussian states in non-inertial frames
NASA Astrophysics Data System (ADS)
Di Noia, Maurizio; Giraldi, Filippo; Petruccione, Francesco
2017-04-01
Entanglement creation and concentration by means of a beam splitter (BS) is analysed for a generic two-mode bipartite Gaussian state in a relativistic framework. The total correlations, the purity and the entanglement in terms of logarithmic negativity are analytically studied for observers in an inertial state and in a non-inertial state of uniform acceleration. The dependence of entanglement on the BS transmissivity due to the Unruh effect is analysed in the case when one or both observers undergo uniform acceleration. Due to the Unruh effect, depending on the initial Gaussian state parameters and observed accelerations, the best condition for entanglement generation limited to the two modes of the observers in their regions is not always a balanced beam splitter, as it is for the inertial case.
Qudit-teleportation for photons with linear optics.
Goyal, Sandeep K; Boukama-Dzoussi, Patricia E; Ghosh, Sibasish; Roux, Filippus S; Konrad, Thomas
2014-04-01
Quantum Teleportation, the transfer of the state of one quantum system to another without direct interaction between both systems, is an important way to transmit information encoded in quantum states and to generate quantum correlations (entanglement) between remote quantum systems. So far, for photons, only superpositions of two distinguishable states (one "qubit") could be teleported. Here we show how to teleport a "qudit", i.e. a superposition of an arbitrary number d of distinguishable states present in the orbital angular momentum of a single photon using d beam splitters and d additional entangled photons. The same entanglement resource might also be employed to collectively teleport the state of d/2 photons at the cost of one additional entangled photon per qubit. This is superior to existing schemes for photonic qubits, which require an additional pair of entangled photons per qubit.
Describing Polarization States of Photon Vortices
NASA Astrophysics Data System (ADS)
Afanasev, Andrei; Howell, Dartagnan
2017-01-01
Electromagnetic waves with large values of Orbital Angular Momentum (OAM) along their direction of propagation were demonstrated in a broad range wavelengths, from radio to optical. Photons with large OAM, or ``twisted photons'' can be generated with higher energies in helical undulators or via Compton backscattering. Description of the polarization states of such photons will be a subject of this talk. In particular, we consider representing twisted-photon polarization with Poincare sphere, Majorana sphere, and Dalitz plots, and discuss advantages for each approach.
Polarization entangled cluster state generation in a lithium niobate chip
NASA Astrophysics Data System (ADS)
Szep, Attila; Kim, Richard; Shin, Eunsung; Fanto, Michael L.; Osman, Joseph; Alsing, Paul M.
2016-10-01
We present a design of a quantum information processing C-phase (Controlled-phase) gate applicable for generating cluster states that has a form of integrated photonic circuits assembled with cascaded directional couplers on a Ti in-diffused Lithium Niobate (Ti-LN) platform where directional couplers as the integrated optical analogue of bulk beam splitters are used as fundamental building blocks. Based on experimentally optimized fabrication parameters of Ti-LN optical waveguides operating at an 810nm wavelength, an integrated Ti-LN quantum C-phase gate is designed and simulated. Our proposed C-phase gate consists of three tunable directional couplers cascaded together with having different weighted switching ratios for providing a tool of routing vertically- and horizontally-polarized photons independently. Its operation mechanism relies on selectively controlling the optical coupling of orthogonally polarized modes via the change in the index of refraction, and its operation is confirmed by the BPM simulation.
Chen Zeqian
2004-08-01
Maximally entangled states should maximally violate the Bell inequality. It is proved that all two-qubit states that maximally violate the Bell-Clauser-Horne-Shimony-Holt inequality are exactly Bell states and the states obtained from them by local transformations. The proof is obtained by using the certain algebraic properties that Pauli's matrices satisfy. The argument is extended to the three-qubit system. Since all states obtained by local transformations of a maximally entangled state are equally valid entangled states, we thus give the characterizations of maximally entangled states in both the two-qubit and three-qubit systems in terms of the Bell inequality.
Entanglement monogamy in a three-qubit state
NASA Astrophysics Data System (ADS)
Huang, Jie-Hui; Zhu, Shi-Yao
2008-07-01
We investigate the monogamy nature of entanglement in a three-qubit system. A monogamy inequality is presented to describe the exclusive relation between the A-B two-qubit concurrence CAB and the AB-C three-qubit concurrence C(AB)C , which represents the entanglement between qubits A and B as a whole and the third qubit C . It is found that the entanglement between any two qubits in a three-qubit system is limited by the entanglement between these two qubits and another qubit. As a consequence, we present the upper bounds for the concurrence CAB , when the concurrence between qubits A and C (CAC) and the concurrence between qubits B and C (CBC) are both given or one of the two is provided.
Geometrically induced singular behavior of entanglement
NASA Astrophysics Data System (ADS)
Cavalcanti, D.; Saldanha, P. L.; Cosme, O.; Brandão, F. G. S. L.; Monken, C. H.; Pádua, S.; Santos, M. França; Cunha, M. O. Terra
2008-07-01
We show that the geometry of the set of quantum states plays a crucial role in the behavior of entanglement in different physical systems. More specifically, it is shown that singular points at the border of the set of unentangled states originate singularities in the dynamics of entanglement of smoothly varying quantum states. We illustrate this result by implementing a photonic parametric down-conversion experiment. Moreover, this effect is connected to recently discovered singularities in condensed matter models.
Quantum communication for satellite-to-ground networks with partially entangled states
NASA Astrophysics Data System (ADS)
Chen, Na; Quan, Dong-Xiao; Pei, Chang-Xing; Yang-Hong
2015-02-01
To realize practical wide-area quantum communication, a satellite-to-ground network with partially entangled states is developed in this paper. For efficiency and security reasons, the existing method of quantum communication in distributed wireless quantum networks with partially entangled states cannot be applied directly to the proposed quantum network. Based on this point, an efficient and secure quantum communication scheme with partially entangled states is presented. In our scheme, the source node performs teleportation only after an end-to-end entangled state has been established by entanglement swapping with partially entangled states. Thus, the security of quantum communication is guaranteed. The destination node recovers the transmitted quantum bit with the help of an auxiliary quantum bit and specially defined unitary matrices. Detailed calculations and simulation analyses show that the probability of successfully transferring a quantum bit in the presented scheme is high. In addition, the auxiliary quantum bit provides a heralded mechanism for successful communication. Based on the critical components that are presented in this article an efficient, secure, and practical wide-area quantum communication can be achieved. Project supported by the National Natural Science Foundation of China (Grant Nos. 61072067 and 61372076), the 111 Project (Grant No. B08038), the Fund from the State Key Laboratory of Integrated Services Networks (Grant No. ISN 1001004), and the Fundamental Research Funds for the Central Universities (Grant Nos. K5051301059 and K5051201021).
NASA Astrophysics Data System (ADS)
Ota, Yukihiro; Mikami, Shuji; Yoshida, Motoyuki; Ohba, Ichiro
2007-11-01
Yu, Brown and Chuang investigated the entanglement attainable from unitary transformed thermal states in liquid-state nuclear magnetic resonance (NMR). Their research gave insight into the role of entanglement in a liquid-state NMR quantum computer. However, they assumed that the Zeeman energy of each nuclear spin which corresponds to a qubit takes a common value for all; there is no chemical shift. In this paper, we research a model with chemical shifts and analytically derive the physical parameter region where unitary transformed thermal states are entangled, by employing the positive partial transposition (PPT) criterion with respect to any bipartition. The analysis taking account of the chemical shift reveals how the difference between quantum gates reflects on the physical parameter region where unitary transformed thermal states are entangled. In addition, we examine the distillability of unitary transformed thermal states and the effect of the chemical shifts on the boundary between the separability and the nonseparability.