NASA Astrophysics Data System (ADS)
Jiang, Nian-Quan
2005-10-01
By virtue of the n-partite entangled state, we extend the way of Agarwal-Simon's presenting single-mode squeezed state to n-mode case and find a new representation of the n-mode squeezed state. This n-mode squeezed state is also an entangled state and can be a superposition of n-mode coherent states.
New Three-Mode Squeezing Operators Gained via Tripartite Entangled State Representation
NASA Astrophysics Data System (ADS)
Jiang, Nian-Quan; Fan, Hong-Yi
2008-01-01
We show that the Agarwal Simon representation of single-mode squeezed states can be generalized to find new form of three-mode squeezed states. We use the tripartite entangled state representations |p,y,z> and |x,u,v> to realize this goal.
Hawking effects as a noisy quantum channel
NASA Astrophysics Data System (ADS)
Ahn, Doyeol
2018-01-01
In this work, we have shown that the evolution of the bipartite entangled state near the black hole with the Hawking radiation can be described by a noisy quantum channel, having a complete positive map with an "operator sum representation." The entanglement fidelity is obtained in analytic form from the "operator sum representation." The bipartite entangled state becomes bipartite mixed Gaussian state as the black hole evaporates. By comparing negativity and entanglement monotone with the analytical form of the entanglement fidelity, we found that the negativity and the entanglement monotone for s = 1/2 provide the upper and the lower bounds of the entanglement fidelity, respectively.
Braid group representation on quantum computation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Aziz, Ryan Kasyfil, E-mail: kasyfilryan@gmail.com; Muchtadi-Alamsyah, Intan, E-mail: ntan@math.itb.ac.id
2015-09-30
There are many studies about topological representation of quantum computation recently. One of diagram representation of quantum computation is by using ZX-Calculus. In this paper we will make a diagrammatical scheme of Dense Coding. We also proved that ZX-Calculus diagram of maximally entangle state satisfies Yang-Baxter Equation and therefore, we can construct a Braid Group representation of set of maximally entangle state.
Local unitary representation of braids and N-qubit entanglements
NASA Astrophysics Data System (ADS)
Yu, Li-Wei
2018-03-01
In this paper, by utilizing the idea of stabilizer codes, we give some relationships between one local unitary representation of braid group in N-qubit tensor space and the corresponding entanglement properties of the N-qubit pure state |Ψ >, where the N-qubit state |Ψ > is obtained by applying the braiding operation on the natural basis. Specifically, we show that the separability of |Ψ > =B|0> ^{⊗ N} is closely related to the diagrammatic version of the braid operator B. This may provide us more insights about the topological entanglement and quantum entanglement.
Teleportation of a Kind of Three-Mode Entangled States of Continuous Variables
NASA Astrophysics Data System (ADS)
Fan, Hong-Yi; Liang, Xian-Ting
2005-11-01
A quantum teleportation scheme to teleport a kind of tripartite entangled states of continuous variables by using a quantum channel composed of three bipartite entangled states is proposed. The joint Bell measurement is feasible because the bipartite entangled states are complete and the squeezed state has a natural representation in the entangled state basis. The calculation is greatly simplified by using the Schmidt decomposition of the entangled states. The project supported by the President Funds of the Chinese Academy of Sciences and National Natural Science Foundation of China under Grant No. 10475056
Entanglement entropy for 2D gauge theories with matters
NASA Astrophysics Data System (ADS)
Aoki, Sinya; Iizuka, Norihiro; Tamaoka, Kotaro; Yokoya, Tsuyoshi
2017-08-01
We investigate the entanglement entropy in 1 +1 -dimensional S U (N ) gauge theories with various matter fields using the lattice regularization. Here we use extended Hilbert space definition for entanglement entropy, which contains three contributions; (1) classical Shannon entropy associated with superselection sector distribution, where sectors are labeled by irreducible representations of boundary penetrating fluxes, (2) logarithm of the dimensions of their representations, which is associated with "color entanglement," and (3) EPR Bell pairs, which give "genuine" entanglement. We explicitly show that entanglement entropies (1) and (2) above indeed appear for various multiple "meson" states in gauge theories with matter fields. Furthermore, we employ transfer matrix formalism for gauge theory with fundamental matter field and analyze its ground state using hopping parameter expansion (HPE), where the hopping parameter K is roughly the inverse square of the mass for the matter. We evaluate the entanglement entropy for the ground state and show that all (1), (2), (3) above appear in the HPE, though the Bell pair part (3) appears in higher order than (1) and (2) do. With these results, we discuss how the ground state entanglement entropy in the continuum limit can be understood from the lattice ground state obtained in the HPE.
Highly entangled states with almost no secrecy.
Christandl, Matthias; Schuch, Norbert; Winter, Andreas
2010-06-18
In this Letter we illuminate the relation between entanglement and secrecy by providing the first example of a quantum state that is highly entangled, but from which, nevertheless, almost no secrecy can be extracted. More precisely, we provide two bounds on the bipartite entanglement of the totally antisymmetric state in dimension d×d. First, we show that the amount of secrecy that can be extracted from the state is low; to be precise it is bounded by O(1/d). Second, we show that the state is highly entangled in the sense that we need a large amount of singlets to create the state: entanglement cost is larger than a constant, independent of d. In order to obtain our results we use representation theory, linear programming, and the entanglement measure known as squashed entanglement. Our findings also clarify the relation between the squashed entanglement and the relative entropy of entanglement.
Divergence-free approach for obtaining decompositions of quantum-optical processes
NASA Astrophysics Data System (ADS)
Sabapathy, K. K.; Ivan, J. S.; García-Patrón, R.; Simon, R.
2018-02-01
Operator-sum representations of quantum channels can be obtained by applying the channel to one subsystem of a maximally entangled state and deploying the channel-state isomorphism. However, for continuous-variable systems, such schemes contain natural divergences since the maximally entangled state is ill defined. We introduce a method that avoids such divergences by utilizing finitely entangled (squeezed) states and then taking the limit of arbitrary large squeezing. Using this method, we derive an operator-sum representation for all single-mode bosonic Gaussian channels where a unique feature is that both quantum-limited and noisy channels are treated on an equal footing. This technique facilitates a proof that the rank-1 Kraus decomposition for Gaussian channels at its respective entanglement-breaking thresholds, obtained in the overcomplete coherent-state basis, is unique. The methods could have applications to simulation of continuous-variable channels.
Quantum Entanglement in Neural Network States
NASA Astrophysics Data System (ADS)
Deng, Dong-Ling; Li, Xiaopeng; Das Sarma, S.
2017-04-01
Machine learning, one of today's most rapidly growing interdisciplinary fields, promises an unprecedented perspective for solving intricate quantum many-body problems. Understanding the physical aspects of the representative artificial neural-network states has recently become highly desirable in the applications of machine-learning techniques to quantum many-body physics. In this paper, we explore the data structures that encode the physical features in the network states by studying the quantum entanglement properties, with a focus on the restricted-Boltzmann-machine (RBM) architecture. We prove that the entanglement entropy of all short-range RBM states satisfies an area law for arbitrary dimensions and bipartition geometry. For long-range RBM states, we show by using an exact construction that such states could exhibit volume-law entanglement, implying a notable capability of RBM in representing quantum states with massive entanglement. Strikingly, the neural-network representation for these states is remarkably efficient, in the sense that the number of nonzero parameters scales only linearly with the system size. We further examine the entanglement properties of generic RBM states by randomly sampling the weight parameters of the RBM. We find that their averaged entanglement entropy obeys volume-law scaling, and the meantime strongly deviates from the Page entropy of the completely random pure states. We show that their entanglement spectrum has no universal part associated with random matrix theory and bears a Poisson-type level statistics. Using reinforcement learning, we demonstrate that RBM is capable of finding the ground state (with power-law entanglement) of a model Hamiltonian with a long-range interaction. In addition, we show, through a concrete example of the one-dimensional symmetry-protected topological cluster states, that the RBM representation may also be used as a tool to analytically compute the entanglement spectrum. Our results uncover the unparalleled power of artificial neural networks in representing quantum many-body states regardless of how much entanglement they possess, which paves a novel way to bridge computer-science-based machine-learning techniques to outstanding quantum condensed-matter physics problems.
Accurate calculation of the geometric measure of entanglement for multipartite quantum states
NASA Astrophysics Data System (ADS)
Teng, Peiyuan
2017-07-01
This article proposes an efficient way of calculating the geometric measure of entanglement using tensor decomposition methods. The connection between these two concepts is explored using the tensor representation of the wavefunction. Numerical examples are benchmarked and compared. Furthermore, we search for highly entangled qubit states to show the applicability of this method.
Entanglement classification with matrix product states
NASA Astrophysics Data System (ADS)
Sanz, M.; Egusquiza, I. L.; di Candia, R.; Saberi, H.; Lamata, L.; Solano, E.
2016-07-01
We propose an entanglement classification for symmetric quantum states based on their diagonal matrix-product-state (MPS) representation. The proposed classification, which preserves the stochastic local operation assisted with classical communication (SLOCC) criterion, relates entanglement families to the interaction length of Hamiltonians. In this manner, we establish a connection between entanglement classification and condensed matter models from a quantum information perspective. Moreover, we introduce a scalable nesting property for the proposed entanglement classification, in which the families for N parties carry over to the N + 1 case. Finally, using techniques from algebraic geometry, we prove that the minimal nontrivial interaction length n for any symmetric state is bounded by .
NASA Astrophysics Data System (ADS)
Yu, Li-Wei; Ge, Mo-Lin
2017-03-01
The relationships between quantum entangled states and braid matrices have been well studied in recent years. However, most of the results are based on qubits. In this paper, we investigate the applications of 2-qutrit entanglement in the braiding associated with Z3 parafermion. The 2-qutrit entangled state | Ψ (θ) >, generated by the action of the localized unitary solution R ˘ (θ) of YBE on 2-qutrit natural basis, achieves its maximal ℓ1-norm and maximal von Neumann entropy simultaneously at θ = π / 3. Meanwhile, at θ = π / 3, the solutions of YBE reduces braid matrices, which implies the role of ℓ1-norm and entropy plays in determining real physical quantities. On the other hand, we give a new realization of 4-anyon topological basis by qutrit entangled states, then the 9 × 9 localized braid representation in 4-qutrit tensor product space (C3) ⊗ 4 is reduced to Jones representation of braiding in the 4-anyon topological basis. Hence, we conclude that the entangled states are powerful tools in analysing the characteristics of braiding and R ˘ -matrix.
From entanglement witness to generalized Catalan numbers
NASA Astrophysics Data System (ADS)
Cohen, E.; Hansen, T.; Itzhaki, N.
2016-07-01
Being extremely important resources in quantum information and computation, it is vital to efficiently detect and properly characterize entangled states. We analyze in this work the problem of entanglement detection for arbitrary spin systems. It is demonstrated how a single measurement of the squared total spin can probabilistically discern separable from entangled many-particle states. For achieving this goal, we construct a tripartite analogy between the degeneracy of entanglement witness eigenstates, tensor products of SO(3) representations and classical lattice walks with special constraints. Within this framework, degeneracies are naturally given by generalized Catalan numbers and determine the fraction of states that are decidedly entangled and also known to be somewhat protected against decoherence. In addition, we introduce the concept of a “sterile entanglement witness”, which for large enough systems detects entanglement without affecting much the system’s state. We discuss when our proposed entanglement witness can be regarded as a sterile one.
From entanglement witness to generalized Catalan numbers.
Cohen, E; Hansen, T; Itzhaki, N
2016-07-27
Being extremely important resources in quantum information and computation, it is vital to efficiently detect and properly characterize entangled states. We analyze in this work the problem of entanglement detection for arbitrary spin systems. It is demonstrated how a single measurement of the squared total spin can probabilistically discern separable from entangled many-particle states. For achieving this goal, we construct a tripartite analogy between the degeneracy of entanglement witness eigenstates, tensor products of SO(3) representations and classical lattice walks with special constraints. Within this framework, degeneracies are naturally given by generalized Catalan numbers and determine the fraction of states that are decidedly entangled and also known to be somewhat protected against decoherence. In addition, we introduce the concept of a "sterile entanglement witness", which for large enough systems detects entanglement without affecting much the system's state. We discuss when our proposed entanglement witness can be regarded as a sterile one.
From entanglement witness to generalized Catalan numbers
Cohen, E.; Hansen, T.; Itzhaki, N.
2016-01-01
Being extremely important resources in quantum information and computation, it is vital to efficiently detect and properly characterize entangled states. We analyze in this work the problem of entanglement detection for arbitrary spin systems. It is demonstrated how a single measurement of the squared total spin can probabilistically discern separable from entangled many-particle states. For achieving this goal, we construct a tripartite analogy between the degeneracy of entanglement witness eigenstates, tensor products of SO(3) representations and classical lattice walks with special constraints. Within this framework, degeneracies are naturally given by generalized Catalan numbers and determine the fraction of states that are decidedly entangled and also known to be somewhat protected against decoherence. In addition, we introduce the concept of a “sterile entanglement witness”, which for large enough systems detects entanglement without affecting much the system’s state. We discuss when our proposed entanglement witness can be regarded as a sterile one. PMID:27461089
Analysis and Design of Complex Network Environments
2014-02-01
entanglements among un- measured variables. This “potential entanglement ” type of network complexity is previously unaddressed in the literature, yet it...Appreciating the power of structural representations that allow for potential entanglement among unmeasured variables to simplify network inference problems...rely on the idea of subsystems and allows for potential entanglement among unmeasured states. As a result, inferring a system’s signal structure
Self-entanglement and the dissociation of homonuclear diatomic molecules
Gonis, A.; Zhang, X. -G.; Nicholson, D. M.; ...
2014-01-14
The concept of self-entanglement is introduced to describe a mixed state or ensemble density as a pure state in an augmented Hilbert space formed by the products of the individual states forming a mixed state (or ensemble). We use this representation of mixed states to show that upon dissociation a neutral homonuclear diatomic molecule will separate into two neutral atoms.
Entanglement classification in the noninteracting Fermi gas
NASA Astrophysics Data System (ADS)
Jafarizadeh, M. A.; Eghbalifam, F.; Nami, S.; Yahyavi, M.
In this paper, entanglement classification shared among the spins of localized fermions in the noninteracting Fermi gas is studied. It is proven that the Fermi gas density matrix is block diagonal on the basis of the projection operators to the irreducible representations of symmetric group Sn. Every block of density matrix is in the form of the direct product of a matrix and identity matrix. Then it is useful to study entanglement in every block of density matrix separately. The basis of corresponding Hilbert space are identified from the Schur-Weyl duality theorem. Also, it can be shown that the symmetric part of the density matrix is fully separable. Then it has been shown that the entanglement measure which is introduced in Eltschka et al. [New J. Phys. 10, 043104 (2008)] and Guhne et al. [New J. Phys. 7, 229 (2005)], is zero for the even n qubit Fermi gas density matrix. Then by focusing on three spin reduced density matrix, the entanglement classes have been investigated. In three qubit states there is an entanglement measure which is called 3-tangle. It can be shown that 3-tangle is zero for three qubit density matrix, but the density matrix is not biseparable for all possible values of its parameters and its eigenvectors are in the form of W-states. Then an entanglement witness for detecting non-separable state and an entanglement witness for detecting nonbiseparable states, have been introduced for three qubit density matrix by using convex optimization problem. Finally, the four spin reduced density matrix has been investigated by restricting the density matrix to the irreducible representations of Sn. The restricted density matrix to the subspaces of the irreducible representations: Ssym, S3,1 and S2,2 are denoted by ρsym, ρ3,1 and ρ2,2, respectively. It has been shown that some highly entangled classes (by using the results of Miyake [Phys. Rev. A 67, 012108 (2003)] for entanglement classification) do not exist in the blocks of density matrix ρ3,1 and ρ2,2, so these classes do not exist in the total Fermi gas density matrix.
Separability criteria based on Heisenberg–Weyl representation of density matrices
NASA Astrophysics Data System (ADS)
Chang, Jingmei; Cui, Meiyu; Zhang, Tinggui; Fei, Shao-Ming
2018-03-01
Separability is an important problem in theory of quantum entanglement. By using the Bloch representation of quantum states in terms of the Heisenberg–Weyl observable basis, we present a new separability criterion for bipartite quantum systems. It is shown that this criterion can be better than the previous ones in detecting entanglement. The results are generalized to multipartite quantum states. Project supported by the National Natural Science Foundation of China (Grant Nos. 11501153, 11661031, and 11675113) and the National Natural Science Foundation of Hainan Province, China (Grant No. 20161006).
Classical simulation of quantum many-body systems
NASA Astrophysics Data System (ADS)
Huang, Yichen
Classical simulation of quantum many-body systems is in general a challenging problem for the simple reason that the dimension of the Hilbert space grows exponentially with the system size. In particular, merely encoding a generic quantum many-body state requires an exponential number of bits. However, condensed matter physicists are mostly interested in local Hamiltonians and especially their ground states, which are highly non-generic. Thus, we might hope that at least some physical systems allow efficient classical simulation. Starting with one-dimensional (1D) quantum systems (i.e., the simplest nontrivial case), the first basic question is: Which classes of states have efficient classical representations? It turns out that this question is quantitatively related to the amount of entanglement in the state, for states with "little entanglement'' are well approximated by matrix product states (a data structure that can be manipulated efficiently on a classical computer). At a technical level, the mathematical notion for "little entanglement'' is area law, which has been proved for unique ground states in 1D gapped systems. We establish an area law for constant-fold degenerate ground states in 1D gapped systems and thus explain the effectiveness of matrix-product-state methods in (e.g.) symmetry breaking phases. This result might not be intuitively trivial as degenerate ground states in gapped systems can be long-range correlated. Suppose an efficient classical representation exists. How can one find it efficiently? The density matrix renormalization group is the leading numerical method for computing ground states in 1D quantum systems. However, it is a heuristic algorithm and the possibility that it may fail in some cases cannot be completely ruled out. Recently, a provably efficient variant of the density matrix renormalization group has been developed for frustration-free 1D gapped systems. We generalize this algorithm to all (i.e., possibly frustrated) 1D gapped systems. Note that the ground-state energy of 1D gapless Hamiltonians is computationally intractable even in the presence of translational invariance. It is tempting to extend methods and tools in 1D to two and higher dimensions (2+D), e.g., matrix product states are generalized to tensor network states. Since an area law for entanglement (if formulated properly) implies efficient matrix product state representations in 1D, an interesting question is whether a similar implication holds in 2+D. Roughly speaking, we show that an area law for entanglement (in any reasonable formulation) does not always imply efficient tensor network representations of the ground states of 2+D local Hamiltonians even in the presence of translational invariance. It should be emphasized that this result does not contradict with the common sense that in practice quantum states with more entanglement usually require more space to be stored classically; rather, it demonstrates that the relationship between entanglement and efficient classical representations is still far from being well understood. Excited eigenstates participate in the dynamics of quantum systems and are particularly relevant to the phenomenon of many-body localization (absence of transport at finite temperature in strongly correlated systems). We study the entanglement of excited eigenstates in random spin chains and expect that its singularities coincide with dynamical quantum phase transitions. This expectation is confirmed in the disordered quantum Ising chain using both analytical and numerical methods. Finally, we study the problem of generating ground states (possibly with topological order) in 1D gapped systems using quantum circuits. This is an interesting problem both in theory and in practice. It not only characterizes the essential difference between the entanglement patterns that give rise to trivial and nontrivial topological order, but also quantifies the difficulty of preparing quantum states with a quantum computer (in experiments).
NASA Astrophysics Data System (ADS)
Bhaskara, Vineeth S.; Panigrahi, Prasanta K.
2017-05-01
Concurrence, introduced by Hill and Wootters (Phys Rev Lett 78:5022, 1997), provides an important measure of entanglement for a general pair of qubits that is faithful: strictly positive for entangled states and vanishing for all separable states. Such a measure captures the entire content of entanglement, providing necessary and sufficient conditions for separability. We present an extension of concurrence to multiparticle pure states in arbitrary dimensions by a new framework using the Lagrange's identity and wedge product representation of separability conditions, which coincides with the "I-concurrence" of Rungta et al. (Phys Rev A 64:042315, 2001) who proposed by extending Wootters's spin-flip operator to a so-called universal inverter superoperator. Our framework exposes an inherent geometry of entanglement and may be useful for the further extensions to mixed and continuous variable states.
NASA Astrophysics Data System (ADS)
Liao, Qing-Hong; Zhang, Qi; Xu, Juan; Yan, Qiu-Rong; Liu, Ye; Chen, An
2016-06-01
We have studied the dynamics and transfer of the entanglement of the two identical atoms simultaneously interacting with vacuum field by employing the dressed-state representation. The two atoms are driven by classical fields. The influence of the initial entanglement degree of two atoms, the coupling strength between the atom and the classical field and the detuning between the atomic transition frequency and the frequency of classical field on the entanglement and atomic linear entropy is discussed. The initial entanglement of the two atoms can be transferred into the entanglement between the atom and cavity field when the dissipation is neglected. The maximally entangled state between the atoms and cavity field can be obtained under some certain conditions. The time of disentanglement of two atoms can be controlled and manipulated by adjusting the detuning and classical driving fields. Moreover, the larger the cavity decay rate is, the more quickly the entanglement of the two atoms decays. Supported by National Natural Science Foundation of China under Grant Nos. 11247213, 61368002, 11304010, 11264030, 61168001, China Postdoctoral Science Foundation under Grant No. 2013M531558, Jiangxi Postdoctoral Research Project under Grant No. 2013KY33, the Natural Science Foundation of Jiangxi Province under Grant No. 20142BAB217001, the Foundation for Young Scientists of Jiangxi Province (Jinggang Star) under Grant No. 20122BCB23002, the Research Foundation of the Education Department of Jiangxi Province under Grant Nos. GJJ13051, GJJ13057, and the Graduate Innovation Special Fund of Nanchang University under Grant No. cx2015137
NASA Astrophysics Data System (ADS)
Cha, Min-Chul; Chung, Myung-Hoon
2018-05-01
We study quantum phase transition of interacting fermions by measuring the local entanglement entropy in the one-dimensional Hubbard model. The reduced density matrices for blocks of a few sites are constructed from the ground state wave function in infinite systems by adopting the matrix product state representation where time-evolving block decimations are performed to obtain the lowest energy states. The local entanglement entropy, constructed from the reduced density matrices, as a function of the chemical potential shows clear signatures of the Mott transition. The value of the central charge, numerically determined from the universal properties of the local entanglement entropy, confirms that the transition is caused by the suppression of the charge degrees of freedom.
Steady-state entanglement and thermalization of coupled qubits in two common heat baths
NASA Astrophysics Data System (ADS)
Hu, Li-Zhen; Man, Zhong-Xiao; Xia, Yun-Jie
2018-03-01
In this work, we study the steady-state entanglement and thermalization of two coupled qubits embedded in two common baths with different temperatures. The common bath is relevant when the two qubits are difficult to be isolated to only contact with their local baths. With the quantum master equation constructed in the eigenstate representation of the coupled qubits, we have demonstrated the variations of steady-state entanglement with respect to various parameters of the qubits' system in both equilibrium and nonequilibrium cases of the baths. The coupling strength and energy detuning of the qubits as well as the temperature gradient of the baths are found to be beneficial to the enhancement of the entanglement. We note a dark state of the qubits that is free from time-evolution and its initial population can greatly influence the steady-state entanglement. By virtues of effective temperatures, we also study the thermalization of the coupled qubits and their variations with energy detuning.
On bipartite pure-state entanglement structure in terms of disentanglement
NASA Astrophysics Data System (ADS)
Herbut, Fedor
2006-12-01
Schrödinger's disentanglement [E. Schrödinger, Proc. Cambridge Philos. Soc. 31, 555 (1935)], i.e., remote state decomposition, as a physical way to study entanglement, is carried one step further with respect to previous work in investigating the qualitative side of entanglement in any bipartite state vector. Remote measurement (or, equivalently, remote orthogonal state decomposition) from previous work is generalized to remote linearly independent complete state decomposition both in the nonselective and the selective versions. The results are displayed in terms of commutative square diagrams, which show the power and beauty of the physical meaning of the (antiunitary) correlation operator inherent in the given bipartite state vector. This operator, together with the subsystem states (reduced density operators), constitutes the so-called correlated subsystem picture. It is the central part of the antilinear representation of a bipartite state vector, and it is a kind of core of its entanglement structure. The generalization of previously elaborated disentanglement expounded in this article is a synthesis of the antilinear representation of bipartite state vectors, which is reviewed, and the relevant results of [Cassinelli et al., J. Math. Anal. Appl. 210, 472 (1997)] in mathematical analysis, which are summed up. Linearly independent bases (finite or infinite) are shown to be almost as useful in some quantum mechanical studies as orthonormal ones. Finally, it is shown that linearly independent remote pure-state preparation carries the highest probability of occurrence. This singles out linearly independent remote influence from all possible ones.
Birman—Wenzl—Murakami Algebra and Topological Basis
NASA Astrophysics Data System (ADS)
Zhou, Cheng-Cheng; Xue, Kang; Wang, Gang-Cheng; Sun, Chun-Fang; Du, Gui-Jiao
2012-02-01
In this paper, we use entangled states to construct 9 × 9-matrix representations of Temperley—Lieb algebra (TLA), then a family of 9 × 9-matrix representations of Birman—Wenzl—Murakami algebra (BWMA) have been presented. Based on which, three topological basis states have been found. And we apply topological basis states to recast nine-dimensional BWMA into its three-dimensional counterpart. Finally, we find the topological basis states are spin singlet states in special case.
McKemmish, Laura K; McKenzie, Ross H; Hush, Noel S; Reimers, Jeffrey R
2015-10-14
Entanglement is sometimes regarded as the quintessential measure of the quantum nature of a system and its significance for the understanding of coupled electronic and vibrational motions in molecules has been conjectured. Previously, we considered the entanglement developed in a spatially localized diabatic basis representation of the electronic states, considering design rules for qubits in a low-temperature chemical quantum computer. We extend this to consider the entanglement developed during high-energy processes. We also consider the entanglement developed using adiabatic electronic basis, providing a novel way for interpreting effects of the breakdown of the Born-Oppenheimer (BO) approximation. We consider: (i) BO entanglement in the ground-state wavefunction relevant to equilibrium thermodynamics, (ii) BO entanglement associated with low-energy wavefunctions relevant to infrared and tunneling spectroscopies, (iii) BO entanglement in high-energy eigenfunctions relevant to chemical reaction processes, and (iv) BO entanglement developed during reactive wavepacket dynamics. A two-state single-mode diabatic model descriptive of a wide range of chemical phenomena is used for this purpose. The entanglement developed by BO breakdown correlates simply with the diameter of the cusp introduced by the BO approximation, and a hierarchy appears between the various BO-breakdown correction terms, with the first-derivative correction being more important than the second-derivative correction which is more important than the diagonal correction. This simplicity is in contrast to the complexity of BO-breakdown effects on thermodynamic, spectroscopic, and kinetic properties. Further, processes poorly treated at the BO level that appear adequately treated using the Born-Huang adiabatic approximation are found to have properties that can only be described using a non-adiabatic description. For the entanglement developed between diabatic electronic states and the nuclear motion, qualitatively differently behavior is found compared to traditional properties of the density matrix and hence entanglement provides new information about system properties. For chemical reactions, this type of entanglement simply builds up as the transition-state region is crossed. It is robust to small changes in parameter values and is therefore more attractive for making quantum qubits than is the related fragile ground-state entanglement, provided that coherent motion at the transition state can be sustained.
Maximally Entangled States of a Two-Qubit System
NASA Astrophysics Data System (ADS)
Singh, Manu P.; Rajput, B. S.
2013-12-01
Entanglement has been explored as one of the key resources required for quantum computation, the functional dependence of the entanglement measures on spin correlation functions has been established, correspondence between evolution of maximally entangled states (MES) of two-qubit system and representation of SU(2) group has been worked out and the evolution of MES under a rotating magnetic field has been investigated. Necessary and sufficient conditions for the general two-qubit state to be maximally entangled state (MES) have been obtained and a new set of MES constituting a very powerful and reliable eigen basis (different from magic bases) of two-qubit systems has been constructed. In terms of the MES constituting this basis, Bell’s States have been generated and all the qubits of two-qubit system have been obtained. It has shown that a MES corresponds to a point in the SO(3) sphere and an evolution of MES corresponds to a trajectory connecting two points on this sphere. Analysing the evolution of MES under a rotating magnetic field, it has been demonstrated that a rotating magnetic field is equivalent to a three dimensional rotation in real space leading to the evolution of a MES.
Entanglement entropy of highly degenerate States and fractal dimensions.
Castro-Alvaredo, Olalla A; Doyon, Benjamin
2012-03-23
We consider the bipartite entanglement entropy of ground states of extended quantum systems with a large degeneracy. Often, as when there is a spontaneously broken global Lie group symmetry, basis elements of the lowest-energy space form a natural geometrical structure. For instance, the spins of a spin-1/2 representation, pointing in various directions, form a sphere. We show that for subsystems with a large number m of local degrees of freedom, the entanglement entropy diverges as d/2 logm, where d is the fractal dimension of the subset of basis elements with nonzero coefficients. We interpret this result by seeing d as the (not necessarily integer) number of zero-energy Goldstone bosons describing the ground state. We suggest that this result holds quite generally for largely degenerate ground states, with potential applications to spin glasses and quenched disorder.
Effect of atomic spontaneous decay on entanglement in the generalized Jaynes-Cummings model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hessian, H.A.; Obada, A.-S.F.; Mohamed, A.-B.A.
2010-03-15
Some aspects of the irreversible dynamics of a generalized Jaynes-Cummings model are addressed. By working in the dressed-state representation, it is possible to split the dynamics of the entanglement and coherence. The exact solution of the master equation in the case of a high-Q cavity with atomic decay is found. Effects of the atomic spontaneous decay on the temporal evolution of partial entropies of the atom or the field and the total entropy as a quantitative measure entanglement are elucidated. The degree of entanglement, through the sum of the negative eigenvalues of the partially transposed density matrix and the negativemore » mutual information has been studied and compared with other measures.« less
Problem of quantifying quantum correlations with non-commutative discord
NASA Astrophysics Data System (ADS)
Majtey, A. P.; Bussandri, D. G.; Osán, T. M.; Lamberti, P. W.; Valdés-Hernández, A.
2017-09-01
In this work we analyze a non-commutativity measure of quantum correlations recently proposed by Guo (Sci Rep 6:25241, 2016). By resorting to a systematic survey of a two-qubit system, we detected an undesirable behavior of such a measure related to its representation-dependence. In the case of pure states, this dependence manifests as a non-satisfactory entanglement measure whenever a representation other than the Schmidt's is used. In order to avoid this basis-dependence feature, we argue that a minimization procedure over the set of all possible representations of the quantum state is required. In the case of pure states, this minimization can be analytically performed and the optimal basis turns out to be that of Schmidt's. In addition, the resulting measure inherits the main properties of Guo's measure and, unlike the latter, it reduces to a legitimate entanglement measure in the case of pure states. Some examples involving general mixed states are also analyzed considering such an optimization. The results show that, in most cases of interest, the use of Guo's measure can result in an overestimation of quantum correlations. However, since Guo's measure has the advantage of being easily computable, it might be used as a qualitative estimator of the presence of quantum correlations.
Foundations of statistical mechanics from symmetries of entanglement
Deffner, Sebastian; Zurek, Wojciech H.
2016-06-09
Envariance—entanglement assisted invariance—is a recently discovered symmetry of composite quantum systems. Here, we show that thermodynamic equilibrium states are fully characterized by their envariance. In particular, the microcanonical equilibrium of a systemmore » $${ \\mathcal S }$$ with Hamiltonian $${H}_{{ \\mathcal S }}$$ is a fully energetically degenerate quantum state envariant under every unitary transformation. A representation of the canonical equilibrium then follows from simply counting degenerate energy states. Finally, our conceptually novel approach is free of mathematically ambiguous notions such as ensemble, randomness, etc., and, while it does not even rely on probability, it helps to understand its role in the quantum world.« less
Fault-tolerant quantum computation with nondeterministic entangling gates
NASA Astrophysics Data System (ADS)
Auger, James M.; Anwar, Hussain; Gimeno-Segovia, Mercedes; Stace, Thomas M.; Browne, Dan E.
2018-03-01
Performing entangling gates between physical qubits is necessary for building a large-scale universal quantum computer, but in some physical implementations—for example, those that are based on linear optics or networks of ion traps—entangling gates can only be implemented probabilistically. In this work, we study the fault-tolerant performance of a topological cluster state scheme with local nondeterministic entanglement generation, where failed entangling gates (which correspond to bonds on the lattice representation of the cluster state) lead to a defective three-dimensional lattice with missing bonds. We present two approaches for dealing with missing bonds; the first is a nonadaptive scheme that requires no additional quantum processing, and the second is an adaptive scheme in which qubits can be measured in an alternative basis to effectively remove them from the lattice, hence eliminating their damaging effect and leading to better threshold performance. We find that a fault-tolerance threshold can still be observed with a bond-loss rate of 6.5% for the nonadaptive scheme, and a bond-loss rate as high as 14.5% for the adaptive scheme.
Geometry of entanglement witnesses and local detection of entanglement
NASA Astrophysics Data System (ADS)
Pittenger, Arthur O.; Rubin, Morton H.
2003-01-01
Let H[N]=H[d1]⊗⋯⊗H[dn] be a tensor product of Hilbert spaces and let τ0 be the closest separable state in the Hilbert-Schmidt norm to an entangled state ρ0. Let τ˜0 denote the closest separable state to ρ0 along the line segment from I/N to ρ0 where I is the identity matrix. Following A. O. Pittenger and M. H. Rubin [Linear Algebr. Appl. 346, 75 (2002)] a witness W0 detecting the entanglement of ρ0 can be constructed in terms of I, τ0, and τ˜0. If representations of τ0 and τ˜0 as convex combinations of separable projections are known, then the entanglement of ρ0 can be detected by local measurements. Gühne et al. [Phys. Rev. A 66, 062305 (2002)] obtain the minimum number of measurement settings required for a class of two-qubit states. We use our geometric approach to generalize their result to the corresponding two-qudit case when d is prime and obtain the minimum number of measurement settings. In those particular bipartite cases, τ0=τ˜0. We illustrate our general approach with a two-parameter family of three-qubit bound entangled states for which τ0≠τ˜0 and we show that our approach works for n qubits. We elaborated earlier [A. O. Pittenger, Linear Algebr. App. 359, 235 (2003)] on the role of a “far face” of the separable states relative to a bound entangled state ρ0 constructed from an orthogonal unextendible product base. In this paper the geometric approach leads to an entanglement witness expressible in terms of a constant times I and a separable density μ0 on the far face from ρ0. Up to a normalization this coincides with the witness obtained by Gühne et al. for the particular example analyzed there.
Berry phase and entanglement of three qubits in a new Yang-Baxter system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hu Taotao; Xue Kang; Wu Chunfeng
2009-08-15
In this paper we construct a new 8x8M matrix from the 4x4M matrix, where M/M is the image of the braid group representation. The 8x8M matrix and the 4x4M matrix both satisfy extraspecial 2-group algebra relations. By Yang-Baxteration approach, we derive a unitary R({theta},{phi}) matrix from the M matrix with parameters {phi} and {theta}. Three-qubit entangled states can be generated by using the R({theta},{phi}) matrix. A Hamiltonian for three qubits is constructed from the unitary R({theta},{phi}) matrix. We then study the entanglement and Berry phase of the Yang-Baxter system.
Emotion, Cognition, and Mental State Representation in Amygdala and Prefrontal Cortex
Salzman, C. Daniel; Fusi, Stefano
2011-01-01
Neuroscientists have often described cognition and emotion as separable processes implemented by different regions of the brain, such as the amygdala for emotion and the prefrontal cortex for cognition. In this framework, functional interactions between the amygdala and prefrontal cortex mediate emotional influences on cognitive processes such as decision-making, as well as the cognitive regulation of emotion. However, neurons in these structures often have entangled representations, whereby single neurons encode multiple cognitive and emotional variables. Here we review studies using anatomical, lesion, and neurophysiological approaches to investigate the representation and utilization of cognitive and emotional parameters. We propose that these mental state parameters are inextricably linked and represented in dynamic neural networks composed of interconnected prefrontal and limbic brain structures. Future theoretical and experimental work is required to understand how these mental state representations form and how shifts between mental states occur, a critical feature of adaptive cognitive and emotional behavior. PMID:20331363
NASA Astrophysics Data System (ADS)
You, Yi-Zhuang; Qi, Xiao-Liang; Xu, Cenke
We introduce the spectrum bifurcation renormalization group (SBRG) as a generalization of the real-space renormalization group for the many-body localized (MBL) system without truncating the Hilbert space. Starting from a disordered many-body Hamiltonian in the full MBL phase, the SBRG flows to the MBL fixed-point Hamiltonian, and generates the local conserved quantities and the matrix product state representations for all eigenstates. The method is applicable to both spin and fermion models with arbitrary interaction strength on any lattice in all dimensions, as long as the models are in the MBL phase. In particular, we focus on the 1 d interacting Majorana chain with strong disorder, and map out its phase diagram using the entanglement entropy. The SBRG flow also generates an entanglement holographic mapping, which duals the MBL state to a fragmented holographic space decorated with small blackholes.
Fock expansion of multimode pure Gaussian states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cariolaro, Gianfranco; Pierobon, Gianfranco, E-mail: gianfranco.pierobon@unipd.it
2015-12-15
The Fock expansion of multimode pure Gaussian states is derived starting from their representation as displaced and squeezed multimode vacuum states. The approach is new and appears to be simpler and more general than previous ones starting from the phase-space representation given by the characteristic or Wigner function. Fock expansion is performed in terms of easily evaluable two-variable Hermite–Kampé de Fériet polynomials. A relatively simple and compact expression for the joint statistical distribution of the photon numbers in the different modes is obtained. In particular, this result enables one to give a simple characterization of separable and entangled states, asmore » shown for two-mode and three-mode Gaussian states.« less
Quantifying matrix product state
NASA Astrophysics Data System (ADS)
Bhatia, Amandeep Singh; Kumar, Ajay
2018-03-01
Motivated by the concept of quantum finite-state machines, we have investigated their relation with matrix product state of quantum spin systems. Matrix product states play a crucial role in the context of quantum information processing and are considered as a valuable asset for quantum information and communication purpose. It is an effective way to represent states of entangled systems. In this paper, we have designed quantum finite-state machines of one-dimensional matrix product state representations for quantum spin systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rosales-Zarate, Laura E. C.; Drummond, P. D.
We calculate the quantum Renyi entropy in a phase-space representation for either fermions or bosons. This can also be used to calculate purity and fidelity, or the entanglement between two systems. We show that it is possible to calculate the entropy from sampled phase-space distributions in normally ordered representations, although this is not possible for all quantum states. We give an example of the use of this method in an exactly soluble thermal case. The quantum entropy cannot be calculated at all using sampling methods in classical symmetric (Wigner) or antinormally ordered (Husimi) phase spaces, due to inner-product divergences. Themore » preferred method is to use generalized Gaussian phase-space methods, which utilize a distribution over stochastic Green's functions. We illustrate this approach by calculating the reduced entropy and entanglement of bosonic or fermionic modes coupled to a time-evolving, non-Markovian reservoir.« less
NASA Astrophysics Data System (ADS)
Daoud, Mohammed; Kibler, Maurice
2018-04-01
A relation is established in the present paper between Dicke states in a d-dimensional space and vectors in the representation space of a generalized Weyl-Heisenberg algebra of finite dimension d. This provides a natural way to deal with the separable and entangled states of a system of N = d-1 symmetric qubit states. Using the decomposition property of Dicke states, it is shown that the separable states coincide with the Perelomov coherent states associated with the generalized Weyl-Heisenberg algebra considered in this paper. In the so-called Majorana scheme, the qudit (d-level) states are represented by N points on the Bloch sphere; roughly speaking, it can be said that a qudit (in a d-dimensional space) is describable by a N-qubit vector (in a N-dimensional space). In such a scheme, the permanent of the matrix describing the overlap between the N qubits makes it possible to measure the entanglement between the N qubits forming the qudit. This is confirmed by a Fubini-Study metric analysis. A new parameter, proportional to the permanent and called perma-concurrence, is introduced for characterizing the entanglement of a symmetric qudit arising from N qubits. For d=3 (i.e., N = 2), this parameter constitutes an alternative to the concurrence for two qubits. Other examples are given for d=4 and 5. A connection between Majorana stars and zeros of a Bargmmann function for qudits closes this article.
Geometric transformations of optical orbital angular momentum spatial modes
NASA Astrophysics Data System (ADS)
He, Rui; An, Xin
2018-02-01
With the aid of the bosonic mode conversions in two different coordinate frames, we show that (1) the coordinate eigenstate is exactly the EPR entangled state representation, and (2) the Laguerre-Gaussian (LG) mode is exactly the wave function of the common eigenvector of the orbital angular momentum and the total photon number operator. Moreover, by using the conversion of the bosonic modes, theWigner representation of the LG mode can be obtained directly. It provides an alternative to the method of Simon and Agarwal.
Continuous joint measurement and entanglement of qubits in remote cavities
NASA Astrophysics Data System (ADS)
Motzoi, Felix; Whaley, K. Birgitta; Sarovar, Mohan
2015-09-01
We present a first-principles theoretical analysis of the entanglement of two superconducting qubits in spatially separated microwave cavities by a sequential (cascaded) probe of the two cavities with a coherent mode, that provides a full characterization of both the continuous measurement induced dynamics and the entanglement generation. We use the SLH formalism to derive the full quantum master equation for the coupled qubits and cavities system, within the rotating wave and dispersive approximations, and conditioned equations for the cavity fields. We then develop effective stochastic master equations for the dynamics of the qubit system in both a polaronic reference frame and a reduced representation within the laboratory frame. We compare simulations with and analyze tradeoffs between these two representations, including the onset of a non-Markovian regime for simulations in the reduced representation. We provide conditions for ensuring persistence of entanglement and show that using shaped pulses enables these conditions to be met at all times under general experimental conditions. The resulting entanglement is shown to be robust with respect to measurement imperfections and loss channels. We also study the effects of qubit driving and relaxation dynamics during a weak measurement, as a prelude to modeling measurement-based feedback control in this cascaded system.
Selected Aspects of Markovian and Non-Markovian Quantum Master Equations
NASA Astrophysics Data System (ADS)
Lendi, K.
A few particular marked properties of quantum dynamical equations accounting for general relaxation and dissipation are selected and summarized in brief. Most results derive from the universal concept of complete positivity. The considerations mainly regard genuinely irreversible processes as characterized by a unique asymptotically stationary final state for arbitrary initial conditions. From ordinary Markovian master equations and associated quantum dynamical semigroup time-evolution, derivations of higher order Onsager coefficients and related entropy production are discussed. For general processes including non-faithful states a regularized version of quantum relative entropy is introduced. Further considerations extend to time-dependent infinitesimal generators of time-evolution and to a possible description of propagation of initial states entangled between open system and environment. In the coherence-vector representation of the full non-Markovian equations including entangled initial states, first results are outlined towards identifying mathematical properties of a restricted class of trial integral-kernel functions suited to phenomenological applications.
A characterization of positive linear maps and criteria of entanglement for quantum states
NASA Astrophysics Data System (ADS)
Hou, Jinchuan
2010-09-01
Let H and K be (finite- or infinite-dimensional) complex Hilbert spaces. A characterization of positive completely bounded normal linear maps from {\\mathcal B}(H) into {\\mathcal B}(K) is given, which particularly gives a characterization of positive elementary operators including all positive linear maps between matrix algebras. This characterization is then applied to give a representation of quantum channels (operations) between infinite-dimensional systems. A necessary and sufficient criterion of separability is given which shows that a state ρ on HotimesK is separable if and only if (ΦotimesI)ρ >= 0 for all positive finite-rank elementary operators Φ. Examples of NCP and indecomposable positive linear maps are given and are used to recognize some entangled states that cannot be recognized by the PPT criterion and the realignment criterion.
NASA Astrophysics Data System (ADS)
Xiang-Guo, Meng; Hong-Yi, Fan; Ji-Suo, Wang
2018-04-01
This paper proposes a kind of displaced thermal states (DTS) and explores how this kind of optical field emerges using the entangled state representation. The results show that the DTS can be generated by a coherent state passing through a diffusion channel with the diffusion coefficient ϰ only when there exists κ t = (e^{\\hbar ν /kBT} - 1 )^{-1}. Also, its statistical properties, such as mean photon number, Wigner function and entropy, are investigated.
Li, Bo; Li, Sheng-Hao; Zhou, Huan-Qiang
2009-06-01
A systematic analysis is performed for quantum phase transitions in a two-dimensional anisotropic spin-1/2 antiferromagnetic XYX model in an external magnetic field. With the help of an innovative tensor network algorithm, we compute the fidelity per lattice site to demonstrate that the field-induced quantum phase transition is unambiguously characterized by a pinch point on the fidelity surface, marking a continuous phase transition. We also compute an entanglement estimator, defined as a ratio between the one-tangle and the sum of squared concurrences, to identify both the factorizing field and the critical point, resulting in a quantitative agreement with quantum Monte Carlo simulation. In addition, the local order parameter is "derived" from the tensor network representation of the system's ground-state wave functions.
Generalised squeezing and information theory approach to quantum entanglement
NASA Technical Reports Server (NTRS)
Vourdas, A.
1993-01-01
It is shown that the usual one- and two-mode squeezing are based on reducible representations of the SU(1,1) group. Generalized squeezing is introduced with the use of different SU(1,1) rotations on each irreducible sector. Two-mode squeezing entangles the modes and information theory methods are used to study this entanglement. The entanglement of three modes is also studied with the use of the strong subadditivity property of the entropy.
Conditionally Teleported States Using Optical Squeezers and Photon Counting
NASA Astrophysics Data System (ADS)
Fan, Hong-Yi; Fan, Yue; Cheng, Hai-Ling
2002-04-01
By virtue of the neat expression of the two-mode squeezing operator in the Einstein, Podolsky and Rosen entangled state representation, we provide a new approach for discussing the teleportation scheme using optical squeezers and photon counting devices. We derive the explicit form of the teleported states, so that the conditional property of teleportation and teleportation fidelity of this protocol can be seen more clearly. The derivation is concise. The project supported by the President Foundation of the Chinese Academy of Sciences and National Natural Science Foundation of China
Quantum Entanglement Swapping between Two Multipartite Entangled States
NASA Astrophysics Data System (ADS)
Su, Xiaolong; Tian, Caixing; Deng, Xiaowei; Li, Qiang; Xie, Changde; Peng, Kunchi
2016-12-01
Quantum entanglement swapping is one of the most promising ways to realize the quantum connection among local quantum nodes. In this Letter, we present an experimental demonstration of the entanglement swapping between two independent multipartite entangled states, each of which involves a tripartite Greenberger-Horne-Zeilinger (GHZ) entangled state of an optical field. The entanglement swapping is implemented deterministically by means of a joint measurement on two optical modes coming from the two multipartite entangled states respectively and the classical feedforward of the measurement results. After entanglement swapping the two independent multipartite entangled states are merged into a large entangled state in which all unmeasured quantum modes are entangled. The entanglement swapping between a tripartite GHZ state and an Einstein-Podolsky-Rosen entangled state is also demonstrated and the dependence of the resultant entanglement on transmission loss is investigated. The presented experiment provides a feasible technical reference for constructing more complicated quantum networks.
Quantum Entanglement Swapping between Two Multipartite Entangled States.
Su, Xiaolong; Tian, Caixing; Deng, Xiaowei; Li, Qiang; Xie, Changde; Peng, Kunchi
2016-12-09
Quantum entanglement swapping is one of the most promising ways to realize the quantum connection among local quantum nodes. In this Letter, we present an experimental demonstration of the entanglement swapping between two independent multipartite entangled states, each of which involves a tripartite Greenberger-Horne-Zeilinger (GHZ) entangled state of an optical field. The entanglement swapping is implemented deterministically by means of a joint measurement on two optical modes coming from the two multipartite entangled states respectively and the classical feedforward of the measurement results. After entanglement swapping the two independent multipartite entangled states are merged into a large entangled state in which all unmeasured quantum modes are entangled. The entanglement swapping between a tripartite GHZ state and an Einstein-Podolsky-Rosen entangled state is also demonstrated and the dependence of the resultant entanglement on transmission loss is investigated. The presented experiment provides a feasible technical reference for constructing more complicated quantum networks.
Manfredi; Feix
2000-10-01
The properties of an alternative definition of quantum entropy, based on Wigner functions, are discussed. Such a definition emerges naturally from the Wigner representation of quantum mechanics, and can easily quantify the amount of entanglement of a quantum state. It is shown that smoothing of the Wigner function induces an increase in entropy. This fact is used to derive some simple rules to construct positive-definite probability distributions which are also admissible Wigner functions.
Mixtures of maximally entangled pure states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Flores, M.M., E-mail: mflores@nip.up.edu.ph; Galapon, E.A., E-mail: eric.galapon@gmail.com
We study the conditions when mixtures of maximally entangled pure states remain entangled. We found that the resulting mixed state remains entangled when the number of entangled pure states to be mixed is less than or equal to the dimension of the pure states. For the latter case of mixing a number of pure states equal to their dimension, we found that the mixed state is entangled provided that the entangled pure states to be mixed are not equally weighted. We also found that one can restrict the set of pure states that one can mix from in order tomore » ensure that the resulting mixed state is genuinely entangled. Also, we demonstrate how these results could be applied as a way to detect entanglement in mixtures of the entangled pure states with noise.« less
Generation of Path-Encoded Greenberger-Horne-Zeilinger States
NASA Astrophysics Data System (ADS)
Bergamasco, N.; Menotti, M.; Sipe, J. E.; Liscidini, M.
2017-11-01
We study the generation of Greenberger-Horne-Zeilinger (GHZ) states of three path-encoded photons. Inspired by the seminal work of Bouwmeester et al. [Phys. Rev. Lett. 82, 1345 (1999), 10.1103/PhysRevLett.82.1345] on polarization-entangled GHZ states, we find a corresponding path representation for the photon states of an optical circuit, identify the elements required for the state generation, and propose a possible implementation of our strategy. Besides the practical advantage of employing an integrated system that can be fabricated with proven lithographic techniques, our example suggests that it is possible to enhance the generation efficiency by using microring resonators.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deffner, Sebastian; Zurek, Wojciech H.
Envariance—entanglement assisted invariance—is a recently discovered symmetry of composite quantum systems. Here, we show that thermodynamic equilibrium states are fully characterized by their envariance. In particular, the microcanonical equilibrium of a systemmore » $${ \\mathcal S }$$ with Hamiltonian $${H}_{{ \\mathcal S }}$$ is a fully energetically degenerate quantum state envariant under every unitary transformation. A representation of the canonical equilibrium then follows from simply counting degenerate energy states. Finally, our conceptually novel approach is free of mathematically ambiguous notions such as ensemble, randomness, etc., and, while it does not even rely on probability, it helps to understand its role in the quantum world.« less
Entangled states in the role of witnesses
NASA Astrophysics Data System (ADS)
Wang, Bang-Hai
2018-05-01
Quantum entanglement lies at the heart of quantum mechanics and quantum information processing. In this work, we show a framework where entangled states play the role of witnesses. We extend the notion of entanglement witnesses, developing a hierarchy of witnesses for classes of observables. This hierarchy captures the fact that entangled states act as witnesses for detecting entanglement witnesses and separable states act as witnesses for the set of non-block-positive Hermitian operators. Indeed, more hierarchies of witnesses exist. We introduce the concept of finer and optimal entangled states. These definitions not only give an unambiguous and non-numeric quantification of entanglement and an alternative perspective on edge states but also answer the open question of what the remainder of the best separable approximation of a density matrix is. Furthermore, we classify all entangled states into disjoint families with optimal entangled states at its heart. This implies that we can focus only on the study of a typical family with optimal entangled states at its core when we investigate entangled states. Our framework also assembles many seemingly different findings with simple arguments that do not require lengthy calculations.
Are all maximally entangled states pure?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cavalcanti, D.; Brandao, F.G.S.L.; Terra Cunha, M.O.
We study if all maximally entangled states are pure through several entanglement monotones. In the bipartite case, we find that the same conditions which lead to the uniqueness of the entropy of entanglement as a measure of entanglement exclude the existence of maximally mixed entangled states. In the multipartite scenario, our conclusions allow us to generalize the idea of the monogamy of entanglement: we establish the polygamy of entanglement, expressing that if a general state is maximally entangled with respect to some kind of multipartite entanglement, then it is necessarily factorized of any other system.
Are all maximally entangled states pure?
NASA Astrophysics Data System (ADS)
Cavalcanti, D.; Brandão, F. G. S. L.; Terra Cunha, M. O.
2005-10-01
We study if all maximally entangled states are pure through several entanglement monotones. In the bipartite case, we find that the same conditions which lead to the uniqueness of the entropy of entanglement as a measure of entanglement exclude the existence of maximally mixed entangled states. In the multipartite scenario, our conclusions allow us to generalize the idea of the monogamy of entanglement: we establish the polygamy of entanglement, expressing that if a general state is maximally entangled with respect to some kind of multipartite entanglement, then it is necessarily factorized of any other system.
NASA Astrophysics Data System (ADS)
Shan, Chuan-Jia; Chen, Tao; Liu, Ji-Bing; Cheng, Wei-Wen; Liu, Tang-Kun; Huang, Yan-Xia; Li, Hong
2010-06-01
In this paper, we investigate the dynamical behaviour of entanglement in terms of concurrence in a bipartite system subjected to an external magnetic field under the action of dissipative environments in the extended Werner-like initial state. The interesting phenomenon of entanglement sudden death as well as sudden birth appears during the evolution process. We analyse in detail the effect of the purity of the initial entangled state of two qubits via Heisenberg XY interaction on the apparition time of entanglement sudden death and entanglement sudden birth. Furthermore, the conditions on the conversion of entanglement sudden death and entanglement sudden birth can be generalized when the initial entangled state is not pure. In particular, a critical purity of the initial mixed entangled state exists, above which entanglement sudden birth vanishes while entanglement sudden death appears. It is also noticed that stable entanglement, which is independent of different initial states of the qubits (pure or mixed state), occurs even in the presence of decoherence. These results arising from the combination of the extended Werner-like initial state and dissipative environments suggest an approach to control and enhance the entanglement even after purity induced sudden birth, death and revival.
The finite scaling for S = 1 XXZ chains with uniaxial single-ion-type anisotropy
NASA Astrophysics Data System (ADS)
Wang, Honglei; Xiong, Xingliang
2014-03-01
The scaling behavior of criticality for spin-1 XXZ chains with uniaxial single-ion-type anisotropy is investigated by employing the infinite matrix product state representation with the infinite time evolving block decimation method. At criticality, the accuracy of the ground state of a system is limited by the truncation dimension χ of the local Hilbert space. We present four evidences for the scaling of the entanglement entropy, the largest eigenvalue of the Schmidt decomposition, the correlation length, and the connection between the actual correlation length ξ and the energy. The result shows that the finite scalings are governed by the central charge of the critical system. Also, it demonstrates that the infinite time evolving block decimation algorithm by the infinite matrix product state representation can be a quite accurate method to simulate the critical properties at criticality.
NASA Astrophysics Data System (ADS)
Cardoso B., W.; Almeida G. de, N.
2008-07-01
We propose a scheme to partially teleport an unknown entangled atomic state. A high-Q cavity, supporting one mode of a weak coherent state, is needed to accomplish this process. By partial teleportation we mean that teleportation will occur by changing one of the partners of the entangled state to be teleported. The entangled state to be teleported is composed by one pair of particles, we called this surprising characteristic of maintaining the entanglement, even when one of the particle of the entangled pair being teleported is changed, of divorce of entangled states.
Experimental entanglement distillation and 'hidden' non-locality.
Kwiat, P G; Barraza-Lopez, S; Stefanov, A; Gisin, N
2001-02-22
Entangled states are central to quantum information processing, including quantum teleportation, efficient quantum computation and quantum cryptography. In general, these applications work best with pure, maximally entangled quantum states. However, owing to dissipation and decoherence, practically available states are likely to be non-maximally entangled, partially mixed (that is, not pure), or both. To counter this problem, various schemes of entanglement distillation, state purification and concentration have been proposed. Here we demonstrate experimentally the distillation of maximally entangled states from non-maximally entangled inputs. Using partial polarizers, we perform a filtering process to maximize the entanglement of pure polarization-entangled photon pairs generated by spontaneous parametric down-conversion. We have also applied our methods to initial states that are partially mixed. After filtering, the distilled states demonstrate certain non-local correlations, as evidenced by their violation of a form of Bell's inequality. Because the initial states do not have this property, they can be said to possess 'hidden' non-locality.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paavola, Janika; Hall, Michael J. W.; Paris, Matteo G. A.
The transition from quantum to classical, in the case of a quantum harmonic oscillator, is typically identified with the transition from a quantum superposition of macroscopically distinguishable states, such as the Schroedinger-cat state, into the corresponding statistical mixture. This transition is commonly characterized by the asymptotic loss of the interference term in the Wigner representation of the cat state. In this paper we show that the quantum-to-classical transition has different dynamical features depending on the measure for nonclassicality used. Measures based on an operatorial definition have well-defined physical meaning and allow a deeper understanding of the quantum-to-classical transition. Our analysismore » shows that, for most nonclassicality measures, the Schroedinger-cat state becomes classical after a finite time. Moreover, our results challenge the prevailing idea that more macroscopic states are more susceptible to decoherence in the sense that the transition from quantum to classical occurs faster. Since nonclassicality is a prerequisite for entanglement generation our results also bridge the gap between decoherence, which is lost only asymptotically, and entanglement, which may show a ''sudden death''. In fact, whereas the loss of coherences still remains asymptotic, we emphasize that the transition from quantum to classical can indeed occur at a finite time.« less
Experimental entanglement of a six-photon symmetric Dicke state.
Wieczorek, Witlef; Krischek, Roland; Kiesel, Nikolai; Michelberger, Patrick; Tóth, Géza; Weinfurter, Harald
2009-07-10
We report on the experimental observation and characterization of a six-photon entangled Dicke state. We obtain a fidelity as high as 0.654+/-0.024 and prove genuine six-photon entanglement by, amongst others, a two-setting witness yielding -0.422+/-0.148. This state has remarkable properties; e.g., it allows obtaining inequivalent entangled states of a lower qubit number via projective measurements, and it possesses a high entanglement persistency against qubit loss. We characterize the properties of the six-photon Dicke state experimentally by detecting and analyzing the entanglement of a variety of multipartite entangled states.
Optimal entanglement witnesses for qubits and qutrits
NASA Astrophysics Data System (ADS)
Bertlmann, Reinhold A.; Durstberger, Katharina; Hiesmayr, Beatrix C.; Krammer, Philipp
2005-11-01
We study the connection between the Hilbert-Schmidt measure of entanglement (that is the minimal distance of an entangled state to the set of separable states) and entanglement witness in terms of a generalized Bell inequality which distinguishes between entangled and separable states. A method for checking the nearest separable state to a given entangled one is presented. We illustrate the general results by considering isotropic states, in particular two-qubit and two-qutrit states—and their generalizations to arbitrary dimensions—where we calculate the optimal entanglement witnesses explicitly.
Complete tomography of a high-fidelity solid-state entangled spin-photon qubit pair.
De Greve, Kristiaan; McMahon, Peter L; Yu, Leo; Pelc, Jason S; Jones, Cody; Natarajan, Chandra M; Kim, Na Young; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Hadfield, Robert H; Forchel, Alfred; Fejer, M M; Yamamoto, Yoshihisa
2013-01-01
Entanglement between stationary quantum memories and photonic qubits is crucial for future quantum communication networks. Although high-fidelity spin-photon entanglement was demonstrated in well-isolated atomic and ionic systems, in the solid-state, where massively parallel, scalable networks are most realistically conceivable, entanglement fidelities are typically limited due to intrinsic environmental interactions. Distilling high-fidelity entangled pairs from lower-fidelity precursors can act as a remedy, but the required overhead scales unfavourably with the initial entanglement fidelity. With spin-photon entanglement as a crucial building block for entangling quantum network nodes, obtaining high-fidelity entangled pairs becomes imperative for practical realization of such networks. Here we report the first results of complete state tomography of a solid-state spin-photon-polarization-entangled qubit pair, using a single electron-charged indium arsenide quantum dot. We demonstrate record-high fidelity in the solid-state of well over 90%, and the first (99.9%-confidence) achievement of a fidelity that will unambiguously allow for entanglement distribution in solid-state quantum repeater networks.
Experimental test of entangled histories
NASA Astrophysics Data System (ADS)
Cotler, Jordan; Duan, Lu-Ming; Hou, Pan-Yu; Wilczek, Frank; Xu, Da; Yin, Zhang-Qi; Zu, Chong
2017-12-01
Entangled histories arise when a system partially decoheres in such a way that its past cannot be described by a sequence of states, but rather a superposition of sequences of states. Such entangled histories have not been previously observed. We propose and demonstrate the first experimental scheme to create entangled history states of the Greenberger-Horne-Zeilinger (GHZ) type. In our experiment, the polarization states of a single photon at three different times are prepared as a GHZ entangled history state. We define a GHZ functional which attains a maximum value 1 on the ideal GHZ entangled history state and is bounded above by 1 / 16 for any three-time history state lacking tripartite entanglement. We have measured the GHZ functional on a state we have prepared experimentally, yielding a value of 0 . 656 ± 0 . 005, clearly demonstrating the contribution of entangled histories.
Entanglement of three-qubit Greenberger-Horne-Zeilinger-symmetric states.
Eltschka, Christopher; Siewert, Jens
2012-01-13
The first characterization of mixed-state entanglement was achieved for two-qubit states in Werner's seminal work [Phys. Rev. A 40, 4277 (1989)]. A physically important extension concerns mixtures of a pure entangled state [such as the Greenberger-Horne-Zeilinger (GHZ) state] and the unpolarized state. These mixed states serve as benchmark for the robustness of multipartite entanglement. They share the symmetries of the GHZ state. We call such states GHZ symmetric. Here we give a complete description of the entanglement in the family of three-qubit GHZ-symmetric states and, in particular, of the three-qubit generalized Werner states. Our method relies on the appropriate parametrization of the states and on the invariance of entanglement properties under general local operations. An application is the definition of a symmetrization witness for the entanglement class of arbitrary three-qubit states.
Matrix product state description of Halperin states
NASA Astrophysics Data System (ADS)
Crépel, V.; Estienne, B.; Bernevig, B. A.; Lecheminant, P.; Regnault, N.
2018-04-01
Many fractional quantum Hall states can be expressed as a correlator of a given conformal field theory used to describe their edge physics. As a consequence, these states admit an economical representation as an exact matrix product state (MPS) that was extensively studied for the systems without any spin or any other internal degrees of freedom. In that case, the correlators are built from a single electronic operator, which is primary with respect to the underlying conformal field theory. We generalize this construction to the archetype of Abelian multicomponent fractional quantum Hall wave functions, the Halperin states. These can be written as conformal blocks involving multiple electronic operators and we explicitly derive their exact MPS representation. In particular, we deal with the caveat of the full wave-function symmetry and show that any additional SU(2) symmetry is preserved by the natural MPS truncation scheme provided by the conformal dimension. We use our method to characterize the topological order of the Halperin states by extracting the topological entanglement entropy. We also evaluate their bulk correlation lengths, which are compared to plasma analogy arguments.
General monogamy relations of quantum entanglement for multiqubit W-class states
NASA Astrophysics Data System (ADS)
Zhu, Xue-Na; Fei, Shao-Ming
2017-02-01
Entanglement monogamy is a fundamental property of multipartite entangled states. We investigate the monogamy relations for multiqubit generalized W-class states. Analytical monogamy inequalities are obtained for the concurrence of assistance, the entanglement of formation, and the entanglement of assistance.
Circuit QED: generation of two-transmon-qutrit entangled states via resonant interaction
NASA Astrophysics Data System (ADS)
Ye, Xi-Mei; Zheng, Zhen-Fei; Lu, Dao-Ming; Yang, Chui-Ping
2018-04-01
We present a way to create entangled states of two superconducting transmon qutrits based on circuit QED. Here, a qutrit refers to a three-level quantum system. Since only resonant interaction is employed, the entanglement creation can be completed within a short time. The degree of entanglement for the prepared entangled state can be controlled by varying the weight factors of the initial state of one qutrit, which allows the prepared entangled state to change from a partially entangled state to a maximally entangled state. Because a single cavity is used, only resonant interaction is employed, and none of identical qutrit-cavity coupling constant, measurement, and auxiliary qutrit is needed, this proposal is easy to implement in experiments. The proposal is quite general and can be applied to prepare a two-qutrit partially or maximally entangled state with two natural or artificial atoms of a ladder-type level structure, coupled to an optical or microwave cavity.
Quantifying entanglement with witness operators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brandao, Fernando G.S.L.
2005-08-15
We present a unifying approach to the quantification of entanglement based on entanglement witnesses, which includes several already established entanglement measures such as the negativity, the concurrence, and the robustness of entanglement. We then introduce an infinite family of new entanglement quantifiers, having as its limits the best separable approximation measure and the generalized robustness. Gaussian states, states with symmetry, states constrained to super-selection rules, and states composed of indistinguishable particles are studied under the view of the witnessed entanglement. We derive new bounds to the fidelity of teleportation d{sub min}, for the distillable entanglement E{sub D} and for themore » entanglement of formation. A particular measure, the PPT-generalized robustness, stands out due to its easy calculability and provides sharper bounds to d{sub min} and E{sub D} than the negativity in most of the states. We illustrate our approach studying thermodynamical properties of entanglement in the Heisenberg XXX and dimerized models.« less
Measurement of entanglement entropy in the two-dimensional Potts model using wavelet analysis.
Tomita, Yusuke
2018-05-01
A method is introduced to measure the entanglement entropy using a wavelet analysis. Using this method, the two-dimensional Haar wavelet transform of a configuration of Fortuin-Kasteleyn (FK) clusters is performed. The configuration represents a direct snapshot of spin-spin correlations since spin degrees of freedom are traced out in FK representation. A snapshot of FK clusters loses image information at each coarse-graining process by the wavelet transform. It is shown that the loss of image information measures the entanglement entropy in the Potts model.
EDITORIAL: Squeezed states and uncertainty relations
NASA Astrophysics Data System (ADS)
Jauregue-Renaud, Rocio; Kim, Young S.; Man'ko, Margarita A.; Moya-Cessa, Hector
2004-06-01
This special issue of Journal of Optics B: Quantum and Semiclassical Optics is composed mainly of extended versions of talks and papers presented at the Eighth International Conference on Squeezed States and Uncertainty Relations held in Puebla, Mexico on 9-13 June 2003. The Conference was hosted by Instituto de Astrofísica, Óptica y Electrónica, and the Universidad Nacional Autónoma de México. This series of meetings began at the University of Maryland, College Park, USA, in March 1991. The second and third workshops were organized by the Lebedev Physical Institute in Moscow, Russia, in 1992 and by the University of Maryland Baltimore County, USA, in 1993, respectively. Afterwards, it was decided that the workshop series should be held every two years. Thus the fourth meeting took place at the University of Shanxi in China and was supported by the International Union of Pure and Applied Physics (IUPAP). The next three meetings in 1997, 1999 and 2001 were held in Lake Balatonfüred, Hungary, in Naples, Italy, and in Boston, USA, respectively. All of them were sponsored by IUPAP. The ninth workshop will take place in Besançon, France, in 2005. The conference has now become one of the major international meetings on quantum optics and the foundations of quantum mechanics, where most of the active research groups throughout the world present their new results. Accordingly this conference has been able to align itself to the current trend in quantum optics and quantum mechanics. The Puebla meeting covered most extensively the following areas: quantum measurements, quantum computing and information theory, trapped atoms and degenerate gases, and the generation and characterization of quantum states of light. The meeting also covered squeeze-like transformations in areas other than quantum optics, such as atomic physics, nuclear physics, statistical physics and relativity, as well as optical devices. There were many new participants at this meeting, particularly from Latin American countries including, of course, Mexico. There were many talks on the subjects traditionally covered in this conference series, including quantum fluctuations, different forms of squeezing, unlike kinds of nonclassical states of light, and distinct representations of the quantum superposition principle, such as even and odd coherent states. The entanglement phenomenon, frequently in the form of the EPR paradox, is responsible for the main advantages of quantum engineering compared with classical methods. Even though entanglement has been known since the early days of quantum mechanics, its properties, such as the most appropriate entanglement measures, are still under current investigation. The phenomena of dissipations and decoherence of the initial pure states are very important because the fast decoherence can destroy all the advantages of quantum processes in teleportation, quantum computing and image processing. Due to this, methods of controlling the decoherence, such as by the use of different kinds of nonlinearities and deformations, are also under study. From the very beginning of quantum mechanics, the uncertainty relations were basic inequalities distinguishing the classical and quantum worlds. Among the theoretical methods for quantum optics and quantum mechanics, this conference covered phase space and group representations, such as the Wigner and probability distribution functions, which provide an alternative approach to the Schr\\"odinger or Heisenberg picture. Different forms of probability representations of quantum states are important tools to be applied in studying various quantum phenomena, such as quantum interference, decoherence and quantum tomography. They have been established also as a very useful tool in all branches of classical optics. From the mathematical point of view, it is well known that the coherent and squeezed states are representations of the Lorentz group. It was noted throughout the conference that another form of the Lorentz group, namely, the 2 x 2 representation of the SL(2,c) group, is becoming more prominent while providing the mathematical basis for the Poincaré sphere, entanglement, qubits and decoherence, as well as classical ray optics traditionally based on 2 x 2 `ABCD' matrices. The contributions of this special issue cover the most recent trends in all areas of quantum optics and the foundations of quantum mechanics.
Effect of weak measurement on entanglement distribution over noisy channels.
Wang, Xin-Wen; Yu, Sixia; Zhang, Deng-Yu; Oh, C H
2016-03-03
Being able to implement effective entanglement distribution in noisy environments is a key step towards practical quantum communication, and long-term efforts have been made on the development of it. Recently, it has been found that the null-result weak measurement (NRWM) can be used to enhance probabilistically the entanglement of a single copy of amplitude-damped entangled state. This paper investigates remote distributions of bipartite and multipartite entangled states in the amplitudedamping environment by combining NRWMs and entanglement distillation protocols (EDPs). We show that the NRWM has no positive effect on the distribution of bipartite maximally entangled states and multipartite Greenberger-Horne-Zeilinger states, although it is able to increase the amount of entanglement of each source state (noisy entangled state) of EDPs with a certain probability. However, we find that the NRWM would contribute to remote distributions of multipartite W states. We demonstrate that the NRWM can not only reduce the fidelity thresholds for distillability of decohered W states, but also raise the distillation efficiencies of W states. Our results suggest a new idea for quantifying the ability of a local filtering operation in protecting entanglement from decoherence.
Effect of weak measurement on entanglement distribution over noisy channels
Wang, Xin-Wen; Yu, Sixia; Zhang, Deng-Yu; Oh, C. H.
2016-01-01
Being able to implement effective entanglement distribution in noisy environments is a key step towards practical quantum communication, and long-term efforts have been made on the development of it. Recently, it has been found that the null-result weak measurement (NRWM) can be used to enhance probabilistically the entanglement of a single copy of amplitude-damped entangled state. This paper investigates remote distributions of bipartite and multipartite entangled states in the amplitudedamping environment by combining NRWMs and entanglement distillation protocols (EDPs). We show that the NRWM has no positive effect on the distribution of bipartite maximally entangled states and multipartite Greenberger-Horne-Zeilinger states, although it is able to increase the amount of entanglement of each source state (noisy entangled state) of EDPs with a certain probability. However, we find that the NRWM would contribute to remote distributions of multipartite W states. We demonstrate that the NRWM can not only reduce the fidelity thresholds for distillability of decohered W states, but also raise the distillation efficiencies of W states. Our results suggest a new idea for quantifying the ability of a local filtering operation in protecting entanglement from decoherence. PMID:26935775
Gaussian measures of entanglement versus negativities: Ordering of two-mode Gaussian states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adesso, Gerardo; Illuminati, Fabrizio; INFN Sezione di Napoli-Gruppo Collegato di Salerno, Via S. Allende, 84081 Baronissi, SA
2005-09-15
We study the entanglement of general (pure or mixed) two-mode Gaussian states of continuous-variable systems by comparing the two available classes of computable measures of entanglement: entropy-inspired Gaussian convex-roof measures and positive partial transposition-inspired measures (negativity and logarithmic negativity). We first review the formalism of Gaussian measures of entanglement, adopting the framework introduced in M. M. Wolf et al., Phys. Rev. A 69, 052320 (2004), where the Gaussian entanglement of formation was defined. We compute explicitly Gaussian measures of entanglement for two important families of nonsymmetric two-mode Gaussian state: namely, the states of extremal (maximal and minimal) negativities at fixedmore » global and local purities, introduced in G. Adesso et al., Phys. Rev. Lett. 92, 087901 (2004). This analysis allows us to compare the different orderings induced on the set of entangled two-mode Gaussian states by the negativities and by the Gaussian measures of entanglement. We find that in a certain range of values of the global and local purities (characterizing the covariance matrix of the corresponding extremal states), states of minimum negativity can have more Gaussian entanglement of formation than states of maximum negativity. Consequently, Gaussian measures and negativities are definitely inequivalent measures of entanglement on nonsymmetric two-mode Gaussian states, even when restricted to a class of extremal states. On the other hand, the two families of entanglement measures are completely equivalent on symmetric states, for which the Gaussian entanglement of formation coincides with the true entanglement of formation. Finally, we show that the inequivalence between the two families of continuous-variable entanglement measures is somehow limited. Namely, we rigorously prove that, at fixed negativities, the Gaussian measures of entanglement are bounded from below. Moreover, we provide some strong evidence suggesting that they are as well bounded from above.« less
Random SU(2) invariant tensors
NASA Astrophysics Data System (ADS)
Li, Youning; Han, Muxin; Ruan, Dong; Zeng, Bei
2018-04-01
SU(2) invariant tensors are states in the (local) SU(2) tensor product representation but invariant under the global group action. They are of importance in the study of loop quantum gravity. A random tensor is an ensemble of tensor states. An average over the ensemble is carried out when computing any physical quantities. The random tensor exhibits a phenomenon known as ‘concentration of measure’, which states that for any bipartition the average value of entanglement entropy of its reduced density matrix is asymptotically the maximal possible as the local dimensions go to infinity. We show that this phenomenon is also true when the average is over the SU(2) invariant subspace instead of the entire space for rank-n tensors in general. It is shown in our earlier work Li et al (2017 New J. Phys. 19 063029) that the subleading correction of the entanglement entropy has a mild logarithmic divergence when n = 4. In this paper, we show that for n > 4 the subleading correction is not divergent but a finite number. In some special situation, the number could be even smaller than 1/2, which is the subleading correction of random state over the entire Hilbert space of tensors.
Entanglement capacity of nonlocal Hamiltonians: A geometric approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lari, Behzad; Hassan, Ali Saif M.; Joag, Pramod S.
We develop a geometric approach to quantify the capability of creating entanglement for a general physical interaction acting on two qubits. We use the entanglement measure proposed by us for N-qubit pure states [Ali Saif M. Hassan and Pramod S. Joag, Phys. Rev. A 77, 062334 (2008)]. This geometric method has the distinct advantage that it gives the experimentally implementable criteria to ensure the optimal entanglement production rate without requiring a detailed knowledge of the state of the two qubit system. For the production of entanglement in practice, we need criteria for optimal entanglement production, which can be checked inmore » situ without any need to know the state, as experimentally finding out the state of a quantum system is generally a formidable task. Further, we use our method to quantify the entanglement capacity in higher level and multipartite systems. We quantify the entanglement capacity for two qutrits and find the maximal entanglement generation rate and the corresponding state for the general isotropic interaction between qutrits, using the entanglement measure of N-qudit pure states proposed by us [Ali Saif M. Hassan and Pramod S. Joag, Phys. Rev. A 80, 042302 (2009)]. Next we quantify the genuine three qubit entanglement capacity for a general interaction between qubits. We obtain the maximum entanglement generation rate and the corresponding three qubit state for a general isotropic interaction between qubits. The state maximizing the entanglement generation rate is of the Greenberger-Horne-Zeilinger class. To the best of our knowledge, the entanglement capacities for two qutrit and three qubit systems have not been reported earlier.« less
NASA Astrophysics Data System (ADS)
Huang, Li-Yuan; Fang, Mao-Fa
2008-07-01
The thermal entanglement and teleportation of a thermally mixed entangled state of a two-qubit Heisenberg XXX chain under the Dzyaloshinski-Moriya (DM) anisotropic antisymmetric interaction through a noisy quantum channel given by a Werner state is investigated. The dependences of the thermal entanglement of the teleported state on the DM coupling constant, the temperature and the entanglement of the noisy quantum channel are studied in detail for both the ferromagnetic and the antiferromagnetic cases. The result shows that a minimum entanglement of the noisy quantum channel must be provided in order to realize the entanglement teleportation. The values of fidelity of the teleported state are also studied for these two cases. It is found that under certain conditions, we can transfer an initial state with a better fidelity than that for any classical communication protocol.
Erol, Volkan; Ozaydin, Fatih; Altintas, Azmi Ali
2014-06-24
Entanglement has been studied extensively for unveiling the mysteries of non-classical correlations between quantum systems. In the bipartite case, there are well known measures for quantifying entanglement such as concurrence, relative entropy of entanglement (REE) and negativity, which cannot be increased via local operations. It was found that for sets of non-maximally entangled states of two qubits, comparing these entanglement measures may lead to different entanglement orderings of the states. On the other hand, although it is not an entanglement measure and not monotonic under local operations, due to its ability of detecting multipartite entanglement, quantum Fisher information (QFI) has recently received an intense attraction generally with entanglement in the focus. In this work, we revisit the state ordering problem of general two qubit states. Generating a thousand random quantum states and performing an optimization based on local general rotations of each qubit, we calculate the maximal QFI for each state. We analyze the maximized QFI in comparison with concurrence, REE and negativity and obtain new state orderings. We show that there are pairs of states having equal maximized QFI but different values for concurrence, REE and negativity and vice versa.
Erol, Volkan; Ozaydin, Fatih; Altintas, Azmi Ali
2014-01-01
Entanglement has been studied extensively for unveiling the mysteries of non-classical correlations between quantum systems. In the bipartite case, there are well known measures for quantifying entanglement such as concurrence, relative entropy of entanglement (REE) and negativity, which cannot be increased via local operations. It was found that for sets of non-maximally entangled states of two qubits, comparing these entanglement measures may lead to different entanglement orderings of the states. On the other hand, although it is not an entanglement measure and not monotonic under local operations, due to its ability of detecting multipartite entanglement, quantum Fisher information (QFI) has recently received an intense attraction generally with entanglement in the focus. In this work, we revisit the state ordering problem of general two qubit states. Generating a thousand random quantum states and performing an optimization based on local general rotations of each qubit, we calculate the maximal QFI for each state. We analyze the maximized QFI in comparison with concurrence, REE and negativity and obtain new state orderings. We show that there are pairs of states having equal maximized QFI but different values for concurrence, REE and negativity and vice versa. PMID:24957694
Sun, Wen-Yang; Wang, Dong; Shi, Jia-Dong; Ye, Liu
2017-01-01
In this work, there are two parties, Alice on Earth and Bob on the satellite, which initially share an entangled state, and some open problems, which emerge during quantum steering that Alice remotely steers Bob, are investigated. Our analytical results indicate that all entangled pure states and maximally entangled evolution states (EESs) are steerable, and not every entangled evolution state is steerable and some steerable states are only locally correlated. Besides, quantum steering from Alice to Bob experiences a “sudden death” with increasing decoherence strength. However, shortly after that, quantum steering experiences a recovery with the increase of decoherence strength in bit flip (BF) and phase flip (PF) channels. Interestingly, while they initially share an entangled pure state, all EESs are steerable and obey Bell nonlocality in PF and phase damping channels. In BF channels, all steerable states can violate Bell-CHSH inequality, but some EESs are unable to be employed to realize steering. However, when they initially share an entangled mixed state, the outcome is different from that of the pure state. Furthermore, the steerability of entangled mixed states is weaker than that of entangled pure states. Thereby, decoherence can induce the degradation of quantum steering, and the steerability of state is associated with the interaction between quantum systems and reservoirs. PMID:28145467
Experimental demonstration of a fully inseparable quantum state with nonlocalizable entanglement
Mičuda, M.; Koutný, D.; Miková, M.; Straka, I.; Ježek, M.; Mišta, L.
2017-01-01
Localizability of entanglement in fully inseparable states is a key ingredient of assisted quantum information protocols as well as measurement-based models of quantum computing. We investigate the existence of fully inseparable states with nonlocalizable entanglement, that is, with entanglement which cannot be localized between any pair of subsystems by any measurement on the remaining part of the system. It is shown, that the nonlocalizable entanglement occurs already in suitable mixtures of a three-qubit GHZ state and white noise. Further, we generalize this set of states to a two-parametric family of fully inseparable three-qubit states with nonlocalizable entanglement. Finally, we demonstrate experimentally the existence of nonlocalizable entanglement by preparing and characterizing one state from the family using correlated single photons and linear optical circuit. PMID:28344336
Experimental demonstration of a fully inseparable quantum state with nonlocalizable entanglement.
Mičuda, M; Koutný, D; Miková, M; Straka, I; Ježek, M; Mišta, L
2017-03-27
Localizability of entanglement in fully inseparable states is a key ingredient of assisted quantum information protocols as well as measurement-based models of quantum computing. We investigate the existence of fully inseparable states with nonlocalizable entanglement, that is, with entanglement which cannot be localized between any pair of subsystems by any measurement on the remaining part of the system. It is shown, that the nonlocalizable entanglement occurs already in suitable mixtures of a three-qubit GHZ state and white noise. Further, we generalize this set of states to a two-parametric family of fully inseparable three-qubit states with nonlocalizable entanglement. Finally, we demonstrate experimentally the existence of nonlocalizable entanglement by preparing and characterizing one state from the family using correlated single photons and linear optical circuit.
Secure key from bound entanglement.
Horodecki, Karol; Horodecki, Michał; Horodecki, Paweł; Oppenheim, Jonathan
2005-04-29
We characterize the set of shared quantum states which contain a cryptographically private key. This allows us to recast the theory of privacy as a paradigm closely related to that used in entanglement manipulation. It is shown that one can distill an arbitrarily secure key from bound entangled states. There are also states that have less distillable private keys than the entanglement cost of the state. In general, the amount of distillable key is bounded from above by the relative entropy of entanglement. Relationships between distillability and distinguishability are found for a class of states which have Bell states correlated to separable hiding states. We also describe a technique for finding states exhibiting irreversibility in entanglement distillation.
Entanglement distillation between solid-state quantum network nodes.
Kalb, N; Reiserer, A A; Humphreys, P C; Bakermans, J J W; Kamerling, S J; Nickerson, N H; Benjamin, S C; Twitchen, D J; Markham, M; Hanson, R
2017-06-02
The impact of future quantum networks hinges on high-quality quantum entanglement shared between network nodes. Unavoidable imperfections necessitate a means to improve remote entanglement by local quantum operations. We realize entanglement distillation on a quantum network primitive of distant electron-nuclear two-qubit nodes. The heralded generation of two copies of a remote entangled state is demonstrated through single-photon-mediated entangling of the electrons and robust storage in the nuclear spins. After applying local two-qubit gates, single-shot measurements herald the distillation of an entangled state with increased fidelity that is available for further use. The key combination of generating, storing, and processing entangled states should enable the exploration of multiparticle entanglement on an extended quantum network. Copyright © 2017, American Association for the Advancement of Science.
Energy as an entanglement witness for quantum many-body systems
NASA Astrophysics Data System (ADS)
Dowling, Mark R.; Doherty, Andrew C.; Bartlett, Stephen D.
2004-12-01
We investigate quantum many-body systems where all low-energy states are entangled. As a tool for quantifying such systems, we introduce the concept of the entanglement gap, which is the difference in energy between the ground-state energy and the minimum energy that a separable (unentangled) state may attain. If the energy of the system lies within the entanglement gap, the state of the system is guaranteed to be entangled. We find Hamiltonians that have the largest possible entanglement gap; for a system consisting of two interacting spin- 1/2 subsystems, the Heisenberg antiferromagnet is one such example. We also introduce a related concept, the entanglement-gap temperature: the temperature below which the thermal state is certainly entangled, as witnessed by its energy. We give an example of a bipartite Hamiltonian with an arbitrarily high entanglement-gap temperature for fixed total energy range. For bipartite spin lattices we prove a theorem demonstrating that the entanglement gap necessarily decreases as the coordination number is increased. We investigate frustrated lattices and quantum phase transitions as physical phenomena that affect the entanglement gap.
Entanglement of 3000 atoms by detecting one photon
NASA Astrophysics Data System (ADS)
Vuletic, Vladan
2016-05-01
Quantum-mechanically correlated (entangled) states of many particles are of interest in quantum information, quantum computing and quantum metrology. In particular, entangled states of many particles can be used to overcome limits on measurements performed with ensembles of independent atoms (standard quantum limit). Metrologically useful entangled states of large atomic ensembles (spin squeezed states) have been experimentally realized. These states display Gaussian spin distribution functions with a non-negative Wigner quasiprobability distribution function. We report the generation of entanglement in a large atomic ensemble via an interaction with a very weak laser pulse; remarkably, the detection of a single photon prepares several thousand atoms in an entangled state. We reconstruct a negative-valued Wigner function, and verify an entanglement depth (the minimum number of mutually entangled atoms) that comprises 90% of the atomic ensemble containing 3100 atoms. Further technical improvement should allow the generation of more complex Schrödinger cat states, and of states the overcome the standard quantum limit.
Accessible Information for Equally-Distant Partially-Entangled Alphabet State Resource
NASA Astrophysics Data System (ADS)
Hao, San-Ru; Hou, Bo-Yu; Xi, Xiao-Qiang; Yue, Rui-Hong
2002-02-01
We have proposed a quantum system with equally-distant partially-entangled alphabet states which has the minimal mutual overlap and the highly distinguishability, these quantum states are used as the "signal states" of the quantum communication. We have also constructed the positive operator-valued measure for these "signal states" and discussed their entanglement properties and measurement of entanglement. We calculate the accessible information for these alphabet states and show that the accessible information is closely related to the entanglement of the "signal states": the higher the entanglement of the "signal states", the better the accessible information of the quantum system, and the accessible information reaches its maximal value when the alphabet states have their maximal entanglement. The project supported in part by Foundation of the Science and Technology Committee of China, and Foundation of the Science and Technology Committee of Hunan Province of China under the contract FSTCH-21000205
Entanglement entropy and entanglement spectrum of the Kitaev model.
Yao, Hong; Qi, Xiao-Liang
2010-08-20
In this letter, we obtain an exact formula for the entanglement entropy of the ground state and all excited states of the Kitaev model. Remarkably, the entanglement entropy can be expressed in a simple separable form S = SG+SF, with SF the entanglement entropy of a free Majorana fermion system and SG that of a Z2 gauge field. The Z2 gauge field part contributes to the universal "topological entanglement entropy" of the ground state while the fermion part is responsible for the nonlocal entanglement carried by the Z2 vortices (visons) in the non-Abelian phase. Our result also enables the calculation of the entire entanglement spectrum and the more general Renyi entropy of the Kitaev model. Based on our results we propose a new quantity to characterize topologically ordered states--the capacity of entanglement, which can distinguish the st ates with and without topologically protected gapless entanglement spectrum.
Experimental determination of entanglement with a single measurement.
Walborn, S P; Souto Ribeiro, P H; Davidovich, L; Mintert, F; Buchleitner, A
2006-04-20
Nearly all protocols requiring shared quantum information--such as quantum teleportation or key distribution--rely on entanglement between distant parties. However, entanglement is difficult to characterize experimentally. All existing techniques for doing so, including entanglement witnesses or Bell inequalities, disclose the entanglement of some quantum states but fail for other states; therefore, they cannot provide satisfactory results in general. Such methods are fundamentally different from entanglement measures that, by definition, quantify the amount of entanglement in any state. However, these measures suffer from the severe disadvantage that they typically are not directly accessible in laboratory experiments. Here we report a linear optics experiment in which we directly observe a pure-state entanglement measure, namely concurrence. Our measurement set-up includes two copies of a quantum state: these 'twin' states are prepared in the polarization and momentum degrees of freedom of two photons, and concurrence is measured with a single, local measurement on just one of the photons.
Direct measurement of nonlocal entanglement of two-qubit spin quantum states.
Cheng, Liu-Yong; Yang, Guo-Hui; Guo, Qi; Wang, Hong-Fu; Zhang, Shou
2016-01-18
We propose efficient schemes of direct concurrence measurement for two-qubit spin and photon-polarization entangled states via the interaction between single-photon pulses and nitrogen-vacancy (NV) centers in diamond embedded in optical microcavities. For different entangled-state types, diversified quantum devices and operations are designed accordingly. The initial unknown entangled states are possessed by two spatially separated participants, and nonlocal spin (polarization) entanglement can be measured with the aid of detection probabilities of photon (NV center) states. This non-demolition entanglement measurement manner makes initial entangled particle-pair avoid complete annihilation but evolve into corresponding maximally entangled states. Moreover, joint inter-qubit operation or global qubit readout is not required for the presented schemes and the final analyses inform favorable performance under the current parameters conditions in laboratory. The unique advantages of spin qubits assure our schemes wide potential applications in spin-based solid quantum information and computation.
The generation of entangled states from independent particle sources
NASA Technical Reports Server (NTRS)
Rubin, Morton H.; Shih, Yan-Hua
1994-01-01
The generation of entangled states of two systems from product states is discussed for the case in which the paths of the two systems do not overlap. A particular method of measuring allows one to project out the nonlocal entangled state. An application to the production of four photon entangled states is outlined.
Entanglement and quantum teleportation via decohered tripartite entangled states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Metwally, N., E-mail: nmohamed31@gmail.com
2014-12-15
The entanglement behavior of two classes of multi-qubit system, GHZ and GHZ like states passing through a generalized amplitude damping channel is discussed. Despite this channel causes degradation of the entangled properties and consequently their abilities to perform quantum teleportation, one can always improve the lower values of the entanglement and the fidelity of the teleported state by controlling on Bell measurements, analyzer angle and channel’s strength. Using GHZ-like state within a generalized amplitude damping channel is much better than using the normal GHZ-state, where the decay rate of entanglement and the fidelity of the teleported states are smaller thanmore » those depicted for GHZ state.« less
NASA Astrophysics Data System (ADS)
Li, Song-Song
2018-01-01
We put forward a scheme on how to generate entangled state of Bose-Einstein condensate (BEC) using electromagnetically induced transparency (EIT). It is shown that we can rapidly generate the entangled state in the dynamical process and the entangled state maintained a long time interval. It is also shown that the better entangled state can be generated by decreasing coupling strengths of two classical laser fields, increasing two-photon detuning and total number of atoms.
Entanglement detection in optical lattices of bosonic atoms with collective measurements
NASA Astrophysics Data System (ADS)
Tóth, Géza
2004-05-01
The minimum requirements for entanglement detection are discussed for a spin chain in which the spins cannot be individually accessed. The methods presented detect entangled states close to a cluster state and a many-body singlet state, and seem to be viable for experimental realization in optical lattices of two-state bosonic atoms. The entanglement criteria are based on entanglement witnesses and on the uncertainty of collective observables.
Entanglement with negative Wigner function of three thousand atoms heralded by one photon
NASA Astrophysics Data System (ADS)
McConnell, Robert; Zhang, Hao; Hu, Jiazhong; Ćuk, Senka; Vuletić, Vladan
2016-06-01
Quantum-mechanically correlated (entangled) states of many particles are of interest in quantum information, quantum computing and quantum metrology. Metrologically useful entangled states of large atomic ensembles have been experimentally realized [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], but these states display Gaussian spin distribution functions with a non-negative Wigner function. Non-Gaussian entangled states have been produced in small ensembles of ions [11, 12], and very recently in large atomic ensembles [13, 14, 15]. Here, we generate entanglement in a large atomic ensemble via the interaction with a very weak laser pulse; remarkably, the detection of a single photon prepares several thousand atoms in an entangled state. We reconstruct a negative-valued Wigner function, an important hallmark of nonclassicality, and verify an entanglement depth (minimum number of mutually entangled atoms) of 2910 ± 190 out of 3100 atoms. Attaining such a negative Wigner function and the mutual entanglement of virtually all atoms is unprecedented for an ensemble containing more than a few particles. While the achieved purity of the state is slightly below the threshold for entanglement-induced metrological gain, further technical improvement should allow the generation of states that surpass this threshold, and of more complex Schrödinger cat states for quantum metrology and information processing.
Family of nonlocal bound entangled states
NASA Astrophysics Data System (ADS)
Yu, Sixia; Oh, C. H.
2017-03-01
Bound entanglement, being entangled yet not distillable, is essential to our understanding of the relations between nonlocality and entanglement besides its applications in certain quantum information tasks. Recently, bound entangled states that violate a Bell inequality have been constructed for a two-qutrit system, disproving a conjecture by Peres that bound entanglement is local. Here we construct this kind of nonlocal bound entangled state for all finite dimensions larger than two, making possible their experimental demonstration in most general systems. We propose a Bell inequality, based on a Hardy-type argument for nonlocality, and a steering inequality to identify their nonlocality. We also provide a family of entanglement witnesses to detect their entanglement beyond the Bell inequality and the steering inequality.
Typical Werner states satisfying all linear Bell inequalities with dichotomic measurements
NASA Astrophysics Data System (ADS)
Luo, Ming-Xing
2018-04-01
Quantum entanglement as a special resource inspires various distinct applications in quantum information processing. Unfortunately, it is NP-hard to detect general quantum entanglement using Bell testing. Our goal is to investigate quantum entanglement with white noises that appear frequently in experiment and quantum simulations. Surprisingly, for almost all multipartite generalized Greenberger-Horne-Zeilinger states there are entangled noisy states that satisfy all linear Bell inequalities consisting of full correlations with dichotomic inputs and outputs of each local observer. This result shows generic undetectability of mixed entangled states in contrast to Gisin's theorem of pure bipartite entangled states in terms of Bell nonlocality. We further provide an accessible method to show a nontrivial set of noisy entanglement with small number of parties satisfying all general linear Bell inequalities. These results imply typical incompleteness of special Bell theory in explaining entanglement.
NASA Astrophysics Data System (ADS)
A, Karimi; M, K. Tavassoly
2016-04-01
In this paper, after a brief review on the entangled squeezed states, we produce a new class of the continuous-variable-type entangled states, namely, deformed photon-added entangled squeezed states. These states are obtained via the iterated action of the f-deformed creation operator A = f (n)a † on the entangled squeezed states. In the continuation, by studying the criteria such as the degree of entanglement, quantum polarization as well as sub-Poissonian photon statistics, the two-mode correlation function, one-mode and two-mode squeezing, we investigate the nonclassical behaviors of the introduced states in detail by choosing a particular f-deformation function. It is revealed that the above-mentioned physical properties can be affected and so may be tuned by justifying the excitation number, after choosing a nonlinearity function. Finally, to generate the introduced states, we propose a theoretical scheme using the nonlinear Jaynes-Cummings model.
Entanglement with negative Wigner function of almost 3,000 atoms heralded by one photon.
McConnell, Robert; Zhang, Hao; Hu, Jiazhong; Ćuk, Senka; Vuletić, Vladan
2015-03-26
Quantum-mechanically correlated (entangled) states of many particles are of interest in quantum information, quantum computing and quantum metrology. Metrologically useful entangled states of large atomic ensembles have been experimentally realized, but these states display Gaussian spin distribution functions with a non-negative Wigner quasiprobability distribution function. Non-Gaussian entangled states have been produced in small ensembles of ions, and very recently in large atomic ensembles. Here we generate entanglement in a large atomic ensemble via an interaction with a very weak laser pulse; remarkably, the detection of a single photon prepares several thousand atoms in an entangled state. We reconstruct a negative-valued Wigner function--an important hallmark of non-classicality--and verify an entanglement depth (the minimum number of mutually entangled atoms) of 2,910 ± 190 out of 3,100 atoms. Attaining such a negative Wigner function and the mutual entanglement of virtually all atoms is unprecedented for an ensemble containing more than a few particles. Although the achieved purity of the state is slightly below the threshold for entanglement-induced metrological gain, further technical improvement should allow the generation of states that surpass this threshold, and of more complex Schrödinger cat states for quantum metrology and information processing. More generally, our results demonstrate the power of heralded methods for entanglement generation, and illustrate how the information contained in a single photon can drastically alter the quantum state of a large system.
Entanglement cost under positive-partial-transpose-preserving operations.
Audenaert, K; Plenio, M B; Eisert, J
2003-01-17
We study the entanglement cost under quantum operations preserving the positivity of the partial transpose (PPT operations). We demonstrate that this cost is directly related to the logarithmic negativity, thereby providing the operational interpretation for this entanglement measure. As examples we discuss general Werner states and arbitrary bipartite Gaussian states. Then we prove that for the antisymmetric Werner state PPT cost and PPT entanglement of distillation coincide. This is the first example of a truly mixed state for which entanglement manipulation is asymptotically reversible, which points towards a unique entanglement measure under PPT operations.
Minimal Entanglement Witness from Electrical Current Correlations.
Brange, F; Malkoc, O; Samuelsson, P
2017-01-20
Despite great efforts, an unambiguous demonstration of entanglement of mobile electrons in solid state conductors is still lacking. Investigating theoretically a generic entangler-detector setup, we here show that a witness of entanglement between two flying electron qubits can be constructed from only two current cross correlation measurements, for any nonzero detector efficiencies and noncollinear polarization vectors. We find that all entangled pure states, but not all mixed ones, can be detected with only two measurements, except the maximally entangled states, which require three. Moreover, detector settings for optimal entanglement witnessing are presented.
Minimal Entanglement Witness from Electrical Current Correlations
NASA Astrophysics Data System (ADS)
Brange, F.; Malkoc, O.; Samuelsson, P.
2017-01-01
Despite great efforts, an unambiguous demonstration of entanglement of mobile electrons in solid state conductors is still lacking. Investigating theoretically a generic entangler-detector setup, we here show that a witness of entanglement between two flying electron qubits can be constructed from only two current cross correlation measurements, for any nonzero detector efficiencies and noncollinear polarization vectors. We find that all entangled pure states, but not all mixed ones, can be detected with only two measurements, except the maximally entangled states, which require three. Moreover, detector settings for optimal entanglement witnessing are presented.
Characterizing entanglement with global and marginal entropic measures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adesso, Gerardo; Illuminati, Fabrizio; De Siena, Silvio
2003-12-01
We qualify the entanglement of arbitrary mixed states of bipartite quantum systems by comparing global and marginal mixednesses quantified by different entropic measures. For systems of two qubits we discriminate the class of maximally entangled states with fixed marginal mixednesses, and determine an analytical upper bound relating the entanglement of formation to the marginal linear entropies. This result partially generalizes to mixed states the quantification of entanglement with marginal mixednesses holding for pure states. We identify a class of entangled states that, for fixed marginals, are globally more mixed than product states when measured by the linear entropy. Such statesmore » cannot be discriminated by the majorization criterion.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Szabo, Levente; Koniorczyk, Matyas; Adam, Peter
We consider the entanglement manipulation capabilities of the universal covariant quantum cloner or quantum processor circuit for quantum bits. We investigate its use for cloning a member of a bipartite or a genuine tripartite entangled state of quantum bits. We find that for bipartite pure entangled states a nontrivial behavior of concurrence appears, while for GHZ entangled states a possibility of the partial extraction of bipartite entanglement can be achieved.
Two-step entanglement concentration for arbitrary electronic cluster state
NASA Astrophysics Data System (ADS)
Zhao, Sheng-Yang; Liu, Jiong; Zhou, Lan; Sheng, Yu-Bo
2013-12-01
We present an efficient protocol for concentrating an arbitrary four-electron less-entangled cluster state into a maximally entangled cluster state. As a two-step entanglement concentration protocol (ECP), it only needs one pair of less-entangled cluster state, which makes this ECP more economical. With the help of electronic polarization beam splitter (PBS) and the charge detection, the whole concentration process is essentially the quantum nondemolition (QND) measurement. Therefore, the concentrated maximally entangled state can be remained for further application. Moreover, the discarded terms in some traditional ECPs can be reused to obtain a high success probability. It is feasible and useful in current one-way quantum computation.
Handy elementary algebraic properties of the geometry of entanglement
NASA Astrophysics Data System (ADS)
Blair, Howard A.; Alsing, Paul M.
2013-05-01
The space of separable states of a quantum system is a hyperbolic surface in a high dimensional linear space, which we call the separation surface, within the exponentially high dimensional linear space containing the quantum states of an n component multipartite quantum system. A vector in the linear space is representable as an n-dimensional hypermatrix with respect to bases of the component linear spaces. A vector will be on the separation surface iff every determinant of every 2-dimensional, 2-by-2 submatrix of the hypermatrix vanishes. This highly rigid constraint can be tested merely in time asymptotically proportional to d, where d is the dimension of the state space of the system due to the extreme interdependence of the 2-by-2 submatrices. The constraint on 2-by-2 determinants entails an elementary closed formformula for a parametric characterization of the entire separation surface with d-1 parameters in the char- acterization. The state of a factor of a partially separable state can be calculated in time asymptotically proportional to the dimension of the state space of the component. If all components of the system have approximately the same dimension, the time complexity of calculating a component state as a function of the parameters is asymptotically pro- portional to the time required to sort the basis. Metric-based entanglement measures of pure states are characterized in terms of the separation hypersurface.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Zeqian
2004-08-01
Maximally entangled states should maximally violate the Bell inequality. It is proved that all two-qubit states that maximally violate the Bell-Clauser-Horne-Shimony-Holt inequality are exactly Bell states and the states obtained from them by local transformations. The proof is obtained by using the certain algebraic properties that Pauli's matrices satisfy. The argument is extended to the three-qubit system. Since all states obtained by local transformations of a maximally entangled state are equally valid entangled states, we thus give the characterizations of maximally entangled states in both the two-qubit and three-qubit systems in terms of the Bell inequality.
Experimental entanglement purification of arbitrary unknown states.
Pan, Jian-Wei; Gasparoni, Sara; Ursin, Rupert; Weihs, Gregor; Zeilinger, Anton
2003-05-22
Distribution of entangled states between distant locations is essential for quantum communication over large distances. But owing to unavoidable decoherence in the quantum communication channel, the quality of entangled states generally decreases exponentially with the channel length. Entanglement purification--a way to extract a subset of states of high entanglement and high purity from a large set of less entangled states--is thus needed to overcome decoherence. Besides its important application in quantum communication, entanglement purification also plays a crucial role in error correction for quantum computation, because it can significantly increase the quality of logic operations between different qubits. Here we demonstrate entanglement purification for general mixed states of polarization-entangled photons using only linear optics. Typically, one photon pair of fidelity 92% could be obtained from two pairs, each of fidelity 75%. In our experiments, decoherence is overcome to the extent that the technique would achieve tolerable error rates for quantum repeaters in long-distance quantum communication. Our results also imply that the requirement of high-accuracy logic operations in fault-tolerant quantum computation can be considerably relaxed.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mihaescu, Tatiana, E-mail: mihaescu92tatiana@gmail.com; Isar, Aurelian
We describe the evolution of the quantum entanglement of an open system consisting of two bosonic modes interacting with a common thermal environment, described by two different models. The initial state of the system is taken of Gaussian form. In the case of a thermal bath, characterized by temperature and dissipation constant which correspond to an asymptotic Gibbs state of the system, we show that for a zero temperature of the thermal bath an initial entangled Gaussian state remains entangled for all finite times. For an entangled initial squeezed thermal state, the phenomenon of entanglement sudden death takes place andmore » we calculate the survival time of entanglement. For the second model of the environment, corresponding to a non-Gibbs asymptotic state, we study the possibility of generating entanglement. We show that the generation of the entanglement between two uncoupled bosonic modes is possible only for definite values of the temperature and dissipation constant, which characterize the thermal environment.« less
Multi-frequency entanglement router system
NASA Astrophysics Data System (ADS)
Erdmann, Reinhard; Hughes, David
2017-05-01
A high performance free-space Wavelength Division Multiplexed (WDM) transceiver system is assessed as to its viability for routing collinear entangled photons in place of the classical optical signals for which it was designed. Explicit calculations demonstrate that entanglement in the input state is retained through transit of the system without intrinsic loss. Introducing spatial degrees of freedom changed the entanglement so that it could be manifested at remote locations, as required in non-local Bell test measurements or Quantum Key Distribution (QKD) Protocols. It was also found that by adding proper components, the exit state could be changed from being frequency entangled to polarization entangled, with respect to the (remote) paths of the photons. Finally it was found possible to route a complete entangled state to either of the two remote users by proper selection of the discrete frequencies in the input state. Each entanglement in the photon states was maximal, hence suited for Quantum Information Processing (QIP) applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumitru, Irina, E-mail: aniri-dum@yahoo.com; Isar, Aurelian
In the framework of the theory of open systems based on completely positive quantum dynamical semigroups, we give a description of the continuous variable entanglement for a system consisting of two non-interacting bosonic modes embedded in a thermal environment. The calculated measure of entanglement is entanglement of formation. We describe the evolution of entanglement in terms of the covariance matrix for symmetric Gaussian input states. In the case of an entangled initial squeezed thermal state, entanglement suppression (entanglement sudden death) takes place, for all non-zero temperatures of the thermal bath. After that, the system remains for all times in amore » separable state. For a zero temperature of the thermal bath, the system remains entangled for all finite times, but in the limit of asymptotic large times the state becomes separable.« less
Controllable gaussian-qubit interface for extremal quantum state engineering.
Adesso, Gerardo; Campbell, Steve; Illuminati, Fabrizio; Paternostro, Mauro
2010-06-18
We study state engineering through bilinear interactions between two remote qubits and two-mode gaussian light fields. The attainable two-qubit states span the entire physically allowed region in the entanglement-versus-global-purity plane. Two-mode gaussian states with maximal entanglement at fixed global and marginal entropies produce maximally entangled two-qubit states in the corresponding entropic diagram. We show that a small set of parameters characterizing extremally entangled two-mode gaussian states is sufficient to control the engineering of extremally entangled two-qubit states, which can be realized in realistic matter-light scenarios.
Faithful teleportation with arbitrary pure or mixed resource states
NASA Astrophysics Data System (ADS)
Zhao, Ming-Jing; Li, Zong-Guo; Fei, Shao-Ming; Wang, Zhi-Xi; Li-Jost, Xianqing
2011-05-01
We study faithful teleportation systematically with arbitrary entangled states as resources. The necessary conditions of mixed states to complete perfect teleportation are proved. Based on these results, the necessary and sufficient conditions of faithful teleportation of an unknown state |phirang in { C}^d with an entangled resource ρ in { C}^m \\otimes { C}^d and { C}^d \\otimes { C}^n are derived. It is shown that for ρ in { C}^m \\otimes { C}^d, ρ must be a maximally entangled state, while for ρ in { C}^d \\otimes { C}^n, ρ must be a pure maximally entangled state. Moreover, we show that the sender's measurements must be all projectors of maximally entangled pure states. The relations between the entanglement of the formation of the resource states and faithful teleportation are also discussed.
Generalized Reduction Formula for Discrete Wigner Functions of Multiqubit Systems
NASA Astrophysics Data System (ADS)
Srinivasan, K.; Raghavan, G.
2018-03-01
Density matrices and Discrete Wigner Functions are equally valid representations of multiqubit quantum states. For density matrices, the partial trace operation is used to obtain the quantum state of subsystems, but an analogous prescription is not available for discrete Wigner Functions. Further, the discrete Wigner function corresponding to a density matrix is not unique but depends on the choice of the quantum net used for its reconstruction. In the present work, we derive a reduction formula for discrete Wigner functions of a general multiqubit state which works for arbitrary quantum nets. These results would be useful for the analysis and classification of entangled states and the study of decoherence purely in a discrete phase space setting and also in applications to quantum computing.
Study of a monogamous entanglement measure for three-qubit quantum systems
NASA Astrophysics Data System (ADS)
Li, Qiting; Cui, Jianlian; Wang, Shuhao; Long, Gui-Lu
2016-06-01
The entanglement quantification and classification of multipartite quantum states is an important research area in quantum information. In this paper, in terms of the reduced density matrices corresponding to all possible partitions of the entire system, a bounded entanglement measure is constructed for arbitrary-dimensional multipartite quantum states. In particular, for three-qubit quantum systems, we prove that our entanglement measure satisfies the relation of monogamy. Furthermore, we present a necessary condition for characterizing maximally entangled states using our entanglement measure.
Experimental generation of tripartite polarization entangled states of bright optical beams
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, Liang; Liu, Yanhong; Deng, Ruijie
The multipartite polarization entangled states of bright optical beams directly associating with the spin states of atomic ensembles are one of the essential resources in the future quantum information networks, which can be conveniently utilized to transfer and convert quantum states across a network composed of many atomic nodes. In this letter, we present the experimental demonstration of tripartite polarization entanglement described by Stokes operators of optical field. The tripartite entangled states of light at the frequency resonant with D1 line of Rubidium atoms are transformed into the continuous variable polarization entanglement among three bright optical beams via an opticalmore » beam splitter network. The obtained entanglement is confirmed by the extended criterion for polarization entanglement of multipartite quantized optical modes.« less
Entangled spins and ghost-spins
NASA Astrophysics Data System (ADS)
Jatkar, Dileep P.; Narayan, K.
2017-09-01
We study patterns of quantum entanglement in systems of spins and ghost-spins regarding them as simple quantum mechanical toy models for theories containing negative norm states. We define a single ghost-spin as in [20] as a 2-state spin variable with an indefinite inner product in the state space. We find that whenever the spin sector is disentangled from the ghost-spin sector (both of which could be entangled within themselves), the reduced density matrix obtained by tracing over all the ghost-spins gives rise to positive entanglement entropy for positive norm states, while negative norm states have an entanglement entropy with a negative real part and a constant imaginary part. However when the spins are entangled with the ghost-spins, there are new entanglement patterns in general. For systems where the number of ghost-spins is even, it is possible to find subsectors of the Hilbert space where positive norm states always lead to positive entanglement entropy after tracing over the ghost-spins. With an odd number of ghost-spins however, we find that there always exist positive norm states with negative real part for entanglement entropy after tracing over the ghost-spins.
Entanglement of heavy quark impurities and generalized gravitational entropy
NASA Astrophysics Data System (ADS)
Kumar, S. Prem; Silvani, Dorian
2018-01-01
We calculate the contribution from non-conformal heavy quark sources to the entanglement entropy (EE) of a spherical region in N=4 SUSY Yang-Mills theory. We apply the generalized gravitational entropy method to non-conformal probe D-brane embeddings in AdS5×S5, dual to pointlike impurities exhibiting flows between quarks in large-rank tensor representations and the fundamental representation. For the D5-brane embedding which describes the screening of fundamental quarks in the UV to the antisymmetric tensor representation in the IR, the EE excess decreases non-monotonically towards its IR asymptotic value, tracking the qualitative behaviour of the one-point function of static fields sourced by the impurity. We also examine two classes of D3-brane embeddings, one which connects a symmetric representation source in the UV to fundamental quarks in the IR, and a second category which yields the symmetric representation source on the Coulomb branch. The EE excess for the former increases from the UV to the IR, whilst decreasing and becoming negative for the latter. In all cases, the probe free energy on hyperbolic space with β = 2 π increases monotonically towards the IR, supporting its interpretation as a relative entropy. We identify universal corrections, depending logarithmically on the VEV, for the symmetric representation on the Coulomb branch.
Highly Entangled, Non-random Subspaces of Tensor Products from Quantum Groups
NASA Astrophysics Data System (ADS)
Brannan, Michael; Collins, Benoît
2018-03-01
In this paper we describe a class of highly entangled subspaces of a tensor product of finite-dimensional Hilbert spaces arising from the representation theory of free orthogonal quantum groups. We determine their largest singular values and obtain lower bounds for the minimum output entropy of the corresponding quantum channels. An application to the construction of d-positive maps on matrix algebras is also presented.
NASA Astrophysics Data System (ADS)
Thapliyal, Ashish V.; Smolin, John A.
2003-12-01
Reversible state transformations under entanglement nonincreasing operations give rise to entanglement measures. It is well known that asymptotic local operations and classical communication (LOCC) are required to get a simple operational measure of bipartite pure state entanglement. For bipartite mixed states and multipartite pure states it is likely that a more powerful class of operations will be needed. To this end more powerful versions of state transformations (or reducibilities), namely, LOCCq (asymptotic LOCC with a sublinear amount of quantum communication) and CLOCC (asymptotic LOCC with catalysis) have been considered in the literature. In this paper we show that LOCCq state transformations are only as powerful as asymptotic LOCC state transformations for multipartite pure states. The basic tool we use is multipartite entanglement gambling: Any pure multipartite entangled state can be transformed to an Einstein-Podolsky-Rosen pair shared by some pair of parties and any irreducible m-party pure state (m⩾2) can be used to create any other state (pure or mixed) using LOCC. We consider applications of multipartite entanglement gambling to multipartite distillability and to characterizations of multipartite minimal entanglement generating sets. We briefly consider generalizations of this result to mixed states by defining the class of cat-distillable states, i.e., states from which cat states (|0⊗m>+|1⊗m>) may be distilled.
NASA Astrophysics Data System (ADS)
Singh, Harpreet; Arvind, Dorai, Kavita
2018-02-01
We embarked upon the task of experimental protection of different classes of tripartite entangled states, namely, the maximally entangled Greenberger-Horne-Zeilinger (GHZ) and W states and the tripartite entangled state called the W W ¯ state, using dynamical decoupling. The states were created on a three-qubit NMR quantum information processor and allowed to evolve in the naturally noisy NMR environment. Tripartite entanglement was monitored at each time instant during state evolution, using negativity as an entanglement measure. It was found that the W state is most robust while the GHZ-type states are most fragile against the natural decoherence present in the NMR system. The W W ¯ state, which is in the GHZ class yet stores entanglement in a manner akin to the W state, surprisingly turned out to be more robust than the GHZ state. The experimental data were best modeled by considering the main noise channel to be an uncorrelated phase damping channel acting independently on each qubit, along with a generalized amplitude damping channel. Using dynamical decoupling, we were able to achieve a significant protection of entanglement for GHZ states. There was a marginal improvement in the state fidelity for the W state (which is already robust against natural system decoherence), while the W W ¯ state showed a significant improvement in fidelity and protection against decoherence.
Gaussian intrinsic entanglement for states with partial minimum uncertainty
NASA Astrophysics Data System (ADS)
Mišta, Ladislav; Baksová, Klára
2018-01-01
We develop a recently proposed theory of a quantifier of bipartite Gaussian entanglement called Gaussian intrinsic entanglement (GIE) [L. Mišta, Jr. and R. Tatham, Phys. Rev. Lett. 117, 240505 (2016), 10.1103/PhysRevLett.117.240505]. Gaussian intrinsic entanglement provides a compromise between computable and physically meaningful entanglement quantifiers and so far it has been calculated for two-mode Gaussian states including all symmetric partial minimum-uncertainty states, weakly mixed asymmetric squeezed thermal states with partial minimum uncertainty, and weakly mixed symmetric squeezed thermal states. We improve the method of derivation of GIE and show that all previously derived formulas for GIE of weakly mixed states in fact hold for states with higher mixedness. In addition, we derive analytical formulas for GIE for several other classes of two-mode Gaussian states with partial minimum uncertainty. Finally, we show that, like for all previously known states, also for all currently considered states the GIE is equal to Gaussian Rényi-2 entanglement of formation. This finding strengthens a conjecture about the equivalence of GIE and Gaussian Rényi-2 entanglement of formation for all bipartite Gaussian states.
Entanglement detection in the vicinity of arbitrary Dicke states.
Duan, L-M
2011-10-28
Dicke states represent a class of multipartite entangled states that can be generated experimentally with many applications in quantum information. We propose a method to experimentally detect genuine multipartite entanglement in the vicinity of arbitrary Dicke states. The detection scheme can be used to experimentally quantify the entanglement depth of many-body systems and is easy to implement as it requires measurement of only three collective spin operators. The detection criterion is strong as it heralds multipartite entanglement even in cases where the state fidelity goes down exponentially with the number of qubits.
Monogamy inequality for entanglement and local contextuality
NASA Astrophysics Data System (ADS)
Camalet, S.
2017-06-01
We derive a monogamy inequality for entanglement and local contextuality, for any finite bipartite system. It essentially results from the relations between the entropy of a local state and the entanglement of the global state, and between the purity of a state, in the sense of majorization, and its ability to violate a given state-dependent noncontextuality inequality. We build an explicit entanglement monotone that satisfies the found monogamy inequality. An important consequence of this inequality is that there are global states too entangled to violate the local noncontextuality inequality.
Entanglement Concentration for Arbitrary Four-Photon Cluster State Assisted with Single Photons
NASA Astrophysics Data System (ADS)
Zhao, Sheng-Yang; Cai, Chun; Liu, Jiong; Zhou, Lan; Sheng, Yu-Bo
2016-02-01
We present an entanglement concentration protocol (ECP) to concentrate arbitrary four-photon less-entangled cluster state into maximally entangled cluster state. Different from other ECPs for cluster state, we only exploit the single photon as auxiliary, which makes this protocol feasible and economic. In our ECP, the concentrated maximally entangled state can be retained for further application and the discarded state can be reused for a higher success probability. This ECP works with the help of cross-Kerr nonlinearity and conventional photon detectors. This ECP may be useful in future one-way quantum computation.
Bound entangled states with a private key and their classical counterpart.
Ozols, Maris; Smith, Graeme; Smolin, John A
2014-03-21
Entanglement is a fundamental resource for quantum information processing. In its pure form, it allows quantum teleportation and sharing classical secrets. Realistic quantum states are noisy and their usefulness is only partially understood. Bound-entangled states are central to this question--they have no distillable entanglement, yet sometimes still have a private classical key. We present a construction of bound-entangled states with a private key based on classical probability distributions. From this emerge states possessing a new classical analogue of bound entanglement, distinct from the long-sought bound information. We also find states of smaller dimensions and higher key rates than previously known. Our construction has implications for classical cryptography: we show that existing protocols are insufficient for extracting private key from our distributions due to their "bound-entangled" nature. We propose a simple extension of existing protocols that can extract a key from them.
Gaussian maximally multipartite-entangled states
NASA Astrophysics Data System (ADS)
Facchi, Paolo; Florio, Giuseppe; Lupo, Cosmo; Mancini, Stefano; Pascazio, Saverio
2009-12-01
We study maximally multipartite-entangled states in the context of Gaussian continuous variable quantum systems. By considering multimode Gaussian states with constrained energy, we show that perfect maximally multipartite-entangled states, which exhibit the maximum amount of bipartite entanglement for all bipartitions, only exist for systems containing n=2 or 3 modes. We further numerically investigate the structure of these states and their frustration for n≤7 .
Entanglement in a spin- s antiferromagnetic Heisenberg chain
NASA Astrophysics Data System (ADS)
Hao, Xiang; Zhu, Shiqun
2005-10-01
The entanglement in a general Heisenberg antiferromagnetic chain of arbitrary spin- s is investigated. The entanglement is witnessed by the thermal energy which equals the minimum energy of any separable state. There is a characteristic temperature below that an entangled thermal state exists. The characteristic temperature for thermal entanglement is increased with spin s . When the total number of lattice is increased, the characteristic temperature decreases and then approaches a constant. This effect shows that the thermal entanglement can be detected in a real solid state system of larger number of lattices for finite temperature. The comparison of negativity and entanglement witness is obtained from the separability of the unentangled states. It is found that the thermal energy provides a sufficient condition for the existence of the thermal entanglement in a spin- s antiferromagnetic Heisenberg chain.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Thapliyal, Ashish V.; Smolin, John A.; IBM Thomas J. Watson Research Center, Yorktown Heights, New York 10598
2003-12-01
Reversible state transformations under entanglement nonincreasing operations give rise to entanglement measures. It is well known that asymptotic local operations and classical communication (LOCC) are required to get a simple operational measure of bipartite pure state entanglement. For bipartite mixed states and multipartite pure states it is likely that a more powerful class of operations will be needed. To this end more powerful versions of state transformations (or reducibilities), namely, LOCCq (asymptotic LOCC with a sublinear amount of quantum communication) and CLOCC (asymptotic LOCC with catalysis) have been considered in the literature. In this paper we show that LOCCq statemore » transformations are only as powerful as asymptotic LOCC state transformations for multipartite pure states. The basic tool we use is multipartite entanglement gambling: Any pure multipartite entangled state can be transformed to an Einstein-Podolsky-Rosen pair shared by some pair of parties and any irreducible m-party pure state (m{>=}2) can be used to create any other state (pure or mixed) using LOCC. We consider applications of multipartite entanglement gambling to multipartite distillability and to characterizations of multipartite minimal entanglement generating sets. We briefly consider generalizations of this result to mixed states by defining the class of cat-distillable states, i.e., states from which cat states (vertical bar 0{sup xm}>+vertical bar 1{sup xm}>) may be distilled.« less
Counterfactual entanglement and nonlocal correlations in separable states
NASA Astrophysics Data System (ADS)
Cohen, Oliver
1999-07-01
It is shown that the outcomes of measurements on systems in separable mixed states can be partitioned, via subsequent measurements on a disentangled extraneous system, into subensembles that display the statistics of entangled states. This motivates the introduction of the concept of ``counterfactual'' entanglement, which can be associated with all separable mixed states, including those that are factorable. This type of entanglement gives rise to a kind of postselection-induced Bell inequality violation. The significance of counterfactual entanglement, and its physical implications, are assessed.
Quantum Entanglement and Reduced Density Matrices
NASA Astrophysics Data System (ADS)
Purwanto, Agus; Sukamto, Heru; Yuwana, Lila
2018-05-01
We investigate entanglement and separability criteria of multipartite (n-partite) state by examining ranks of its reduced density matrices. Firstly, we construct the general formula to determine the criterion. A rank of origin density matrix always equals one, meanwhile ranks of reduced matrices have various ranks. Next, separability and entanglement criterion of multipartite is determined by calculating ranks of reduced density matrices. In this article we diversify multipartite state criteria into completely entangled state, completely separable state, and compound state, i.e. sub-entangled state and sub-entangledseparable state. Furthermore, we also shorten the calculation proposed by the previous research to determine separability of multipartite state and expand the methods to be able to differ multipartite state based on criteria above.
Faithful entanglement transference from qubits to continuous variable systems
NASA Astrophysics Data System (ADS)
Blanco, P.; Mundarain, D.
2011-05-01
In this work, we study the transference of entanglement between atomic qubits and the fields of two separate optical cavities. We show that it is possible to transfer all the entanglement of two maximal entangled qubits to the fields of the cavities without post-selection. Initially, the qubit system is in a maximal entangled state and the cavities are in a pure separable state with each cavity in a coherent state. For high excitation levels in the coherent fields, at some characteristic time T, the state of the qubit system becomes separable and at this time all the entanglement is deposited on the mono-modal fields of the cavities. We also consider retrieval of entanglement and an alternative protocol using post-selection.
Role of initial coherence on entanglement dynamics of two qubit X states
NASA Astrophysics Data System (ADS)
V, Namitha C.; Satyanarayana, S. V. M.
2018-02-01
Bipartite entanglement is a necessary resource in most processes in quantum information science. Decoherence resulting from the interaction of the bipartite system with environment not only degrades the entanglement, but can result in abrupt disentanglement, known as entanglement sudden death (ESD). In some cases, a subsequent revival of entanglement is also possible. ESD is an undesirable feature for the state to be used as a resource in applications. In order to delay or avoid ESD, it is necessary to understand its origin. In this work we investigate the role of initial coherence on entanglement dynamics of a spatially separated two qubit system in a common vacuum reservoir with dipolar interaction. We construct two classes of X states, namely, states with one photon coherence (X 1) and states with two photon coherence (X 2). Considering them as initial states, we study entanglement dynamics under Markov approximation. We find for states in X 1, ESD time, revival time and time over which the state remains disentangled increase with increase in coherence. On the other hand for states in X 2, with increase in coherence ESD time increases, revival time remains same and time of disentanglement decreases. Thus, states with two photon coherence are better resources for applications since their entanglement is robust against decoherence compared to states with one photon coherence.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Fu-Lin, E-mail: flzhang@tju.edu.cn; Chen, Jing-Ling, E-mail: chenjl@nankai.edu.cn; Centre for Quantum Technologies, National University of Singapore, 3 Science Drive 2, Singapore 117543
Recent experimental progress in prolonging the coherence time of a quantum system prompts us to explore the behavior of quantum entanglement at the beginning of the decoherence process. The response of the entanglement under an infinitesimal noise can serve as a signature of the robustness of entangled states. A crucial problem of this topic in multipartite systems is to compute the degree of entanglement in a mixed state. We find a family of global noise in three-qubit systems, which is composed of four W states. Under its influence, the linear response of the tripartite entanglement of a symmetrical three-qubit puremore » state is studied. A lower bound of the linear response is found to depend completely on the initial tripartite and bipartite entanglement. This result shows that the decay of tripartite entanglement is hastened by the bipartite one. - Highlights: • We study a set of W-type noise and its linear effect on symmetric pure states. • Its effect on two-qubit entanglement depends only on the initial concurrence. • A lower bound of the effect on 3-tangle is found in terms of initial entanglements. • We obtain the time of three-tangle sudden death for two families of typical states. • These reveal that the bipartite entanglement speeds up the decay of the tripartite one.« less
Coherence and entanglement measures based on Rényi relative entropies
NASA Astrophysics Data System (ADS)
Zhu, Huangjun; Hayashi, Masahito; Chen, Lin
2017-11-01
We study systematically resource measures of coherence and entanglement based on Rényi relative entropies, which include the logarithmic robustness of coherence, geometric coherence, and conventional relative entropy of coherence together with their entanglement analogues. First, we show that each Rényi relative entropy of coherence is equal to the corresponding Rényi relative entropy of entanglement for any maximally correlated state. By virtue of this observation, we establish a simple operational connection between entanglement measures and coherence measures based on Rényi relative entropies. We then prove that all these coherence measures, including the logarithmic robustness of coherence, are additive. Accordingly, all these entanglement measures are additive for maximally correlated states. In addition, we derive analytical formulas for Rényi relative entropies of entanglement of maximally correlated states and bipartite pure states, which reproduce a number of classic results on the relative entropy of entanglement and logarithmic robustness of entanglement in a unified framework. Several nontrivial bounds for Rényi relative entropies of coherence (entanglement) are further derived, which improve over results known previously. Moreover, we determine all states whose relative entropy of coherence is equal to the logarithmic robustness of coherence. As an application, we provide an upper bound for the exact coherence distillation rate, which is saturated for pure states.
Simultaneous entanglement swapping of multiple orbital angular momentum states of light.
Zhang, Yingwen; Agnew, Megan; Roger, Thomas; Roux, Filippus S; Konrad, Thomas; Faccio, Daniele; Leach, Jonathan; Forbes, Andrew
2017-09-21
High-bit-rate long-distance quantum communication is a proposed technology for future communication networks and relies on high-dimensional quantum entanglement as a core resource. While it is known that spatial modes of light provide an avenue for high-dimensional entanglement, the ability to transport such quantum states robustly over long distances remains challenging. To overcome this, entanglement swapping may be used to generate remote quantum correlations between particles that have not interacted; this is the core ingredient of a quantum repeater, akin to repeaters in optical fibre networks. Here we demonstrate entanglement swapping of multiple orbital angular momentum states of light. Our approach does not distinguish between different anti-symmetric states, and thus entanglement swapping occurs for several thousand pairs of spatial light modes simultaneously. This work represents the first step towards a quantum network for high-dimensional entangled states and provides a test bed for fundamental tests of quantum science.Entanglement swapping in high dimensions requires large numbers of entangled photons and consequently suffers from low photon flux. Here the authors demonstrate entanglement swapping of multiple spatial modes of light simultaneously, without the need for increasing the photon numbers with dimension.
Mathematical problems of quantum teleportation
NASA Astrophysics Data System (ADS)
Tanaka, Yoshiharu; Asano, Masanari; Ohya, Masanori
2011-03-01
It has been considered that a maximal entangled state is needed for complete quantum teleportation. However, Kossakowski and Ohya proposed a scheme of complete teleportation for nonmaximal entangled state [1]. Basing on their scheme, we proposed a teleportation model of 2-level state with a non-maximal entangled state [2]. In the present study, we construct its expanded model, in which Alice can teleport m-level state even if non-maximal entangled state is used.
NASA Astrophysics Data System (ADS)
Zhan, You-Bang; Zhang, Qun-Yong; Wang, Yu-Wu; Ma, Peng-Cheng
2010-01-01
We propose a scheme to teleport an unknown single-qubit state by using a high-dimensional entangled state as the quantum channel. As a special case, a scheme for teleportation of an unknown single-qubit state via three-dimensional entangled state is investigated in detail. Also, this scheme can be directly generalized to an unknown f-dimensional state by using a d-dimensional entangled state (d > f) as the quantum channel.
Entanglement branching operator
NASA Astrophysics Data System (ADS)
Harada, Kenji
2018-01-01
We introduce an entanglement branching operator to split a composite entanglement flow in a tensor network which is a promising theoretical tool for many-body systems. We can optimize an entanglement branching operator by solving a minimization problem based on squeezing operators. The entanglement branching is a new useful operation to manipulate a tensor network. For example, finding a particular entanglement structure by an entanglement branching operator, we can improve a higher-order tensor renormalization group method to catch a proper renormalization flow in a tensor network space. This new method yields a new type of tensor network states. The second example is a many-body decomposition of a tensor by using an entanglement branching operator. We can use it for a perfect disentangling among tensors. Applying a many-body decomposition recursively, we conceptually derive projected entangled pair states from quantum states that satisfy the area law of entanglement entropy.
Pseudo-entanglement evaluated in noninertial frames
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mehri-Dehnavi, Hossein, E-mail: mehri@alice.math.kindai.ac.jp; Research Center for Quantum Computing, Kinki University, 3-4-1 Kowakae, Higashi-Osaka, Osaka 577-8502; Mirza, Behrouz, E-mail: b.mirza@cc.iut.ac.ir
2011-05-15
Research Highlights: > We study pseudo-entanglement in noninertial frames. > We examine different measures of entanglement and nonclassical correlation for the state. > We find the threshold for entanglement is changed in noninertial frames. > We also describe the behavior of local unitary classes of states in noninertial frames. - Abstract: We study quantum discord, in addition to entanglement, of bipartite pseudo-entanglement in noninertial frames. It is shown that the entanglement degrades from its maximum value in a stationary frame to a minimum value in an infinite accelerating frame. There is a critical region found in which, for particular cases,more » entanglement of states vanishes for certain accelerations. The quantum discord of pseudo-entanglement decreases by increasing the acceleration. Also, for a physically inaccessible region, entanglement and nonclassical correlation are evaluated and shown to match the corresponding values of the physically accessible region for an infinite acceleration.« less
Entangling the Whole by Beam Splitting a Part.
Croal, Callum; Peuntinger, Christian; Chille, Vanessa; Marquardt, Christoph; Leuchs, Gerd; Korolkova, Natalia; Mišta, Ladislav
2015-11-06
A beam splitter is a basic linear optical element appearing in many optics experiments and is frequently used as a continuous-variable entangler transforming a pair of input modes from a separable Gaussian state into an entangled state. However, a beam splitter is a passive operation that can create entanglement from Gaussian states only under certain conditions. One such condition is that the input light is suitably squeezed. We demonstrate, experimentally, that a beam splitter can create entanglement even from modes which do not possess such a squeezing provided that they are correlated to, but not entangled with, a third mode. Specifically, we show that a beam splitter can create three-mode entanglement by acting on two modes of a three-mode fully separable Gaussian state without entangling the two modes themselves. This beam splitter property is a key mechanism behind the performance of the protocol for entanglement distribution by separable states. Moreover, the property also finds application in collaborative quantum dense coding in which decoding of transmitted information is assisted by interference with a mode of the collaborating party.
Entanglement Evolution of Jaynes-Cummings Model in Resonance Case and Non-resonance Case
NASA Astrophysics Data System (ADS)
Cheng, Jing; Chen, Xi; Shan, Chuan-Jia
2018-06-01
We investigate the entanglement evolution of a two-level atom and a quantized single model electromagnetic filed in the resonance and non-resonance cases. The effects of the initial state, detuning degree, photon number on the entanglement are shown in detail. The results show that the atom-cavity entanglement state appears with periodicity. The increasing of the photon number can make the period of quantum entanglement be shorter. In the non-resonant case, if we choose the suitable initial state the entanglement of atom-cavity can be 1.0
Observation of Entangled States of a Fully Controlled 20-Qubit System
NASA Astrophysics Data System (ADS)
Friis, Nicolai; Marty, Oliver; Maier, Christine; Hempel, Cornelius; Holzäpfel, Milan; Jurcevic, Petar; Plenio, Martin B.; Huber, Marcus; Roos, Christian; Blatt, Rainer; Lanyon, Ben
2018-04-01
We generate and characterize entangled states of a register of 20 individually controlled qubits, where each qubit is encoded into the electronic state of a trapped atomic ion. Entanglement is generated amongst the qubits during the out-of-equilibrium dynamics of an Ising-type Hamiltonian, engineered via laser fields. Since the qubit-qubit interactions decay with distance, entanglement is generated at early times predominantly between neighboring groups of qubits. We characterize entanglement between these groups by designing and applying witnesses for genuine multipartite entanglement. Our results show that, during the dynamical evolution, all neighboring qubit pairs, triplets, most quadruplets, and some quintuplets simultaneously develop genuine multipartite entanglement. Witnessing genuine multipartite entanglement in larger groups of qubits in our system remains an open challenge.
Computing quantum discord is NP-complete
NASA Astrophysics Data System (ADS)
Huang, Yichen
2014-03-01
We study the computational complexity of quantum discord (a measure of quantum correlation beyond entanglement), and prove that computing quantum discord is NP-complete. Therefore, quantum discord is computationally intractable: the running time of any algorithm for computing quantum discord is believed to grow exponentially with the dimension of the Hilbert space so that computing quantum discord in a quantum system of moderate size is not possible in practice. As by-products, some entanglement measures (namely entanglement cost, entanglement of formation, relative entropy of entanglement, squashed entanglement, classical squashed entanglement, conditional entanglement of mutual information, and broadcast regularization of mutual information) and constrained Holevo capacity are NP-hard/NP-complete to compute. These complexity-theoretic results are directly applicable in common randomness distillation, quantum state merging, entanglement distillation, superdense coding, and quantum teleportation; they may offer significant insights into quantum information processing. Moreover, we prove the NP-completeness of two typical problems: linear optimization over classical states and detecting classical states in a convex set, providing evidence that working with classical states is generically computationally intractable.
Relative entropy of entanglement and restricted measurements.
Piani, M
2009-10-16
We introduce variants of relative entropy of entanglement based on the optimal distinguishability from unentangled states by means of restricted measurements. In this way we are able to prove that the standard regularized entropy of entanglement is strictly positive for all multipartite entangled states. This implies that the asymptotic creation of a multipartite entangled state by means of local operations and classical communication always requires the consumption of a nonlocal resource at a strictly positive rate.
Quantifying entanglement properties of qudit mixed states with incomplete permutation symmetry
NASA Astrophysics Data System (ADS)
Barasiński, Artur; Nowotarski, Mateusz
2017-04-01
The characterization of entanglement properties in mixed states is important from both a theoretical and a practical point of view. While the estimation of entanglement of bipartite pure states is well established, for mixed states it is a considerably much harder task. The key elements of the mixed-state entanglement theory are given by the exact solutions which sometimes are possible for special states of high symmetry problems. In this paper, we present the exact investigation on the entanglement properties for a five-parameter family of highly symmetric two-qudit mixed states with equal but arbitrary finite local Hilbert space dimension. We achieve this by extensive analysis of various conditions of separability and the entanglement classification with respect to stochastic local operations and classical communication. Furthermore, our results can be used for an arbitrary state by proper application of the proposed twirling operator.
Relating the Resource Theories of Entanglement and Quantum Coherence.
Chitambar, Eric; Hsieh, Min-Hsiu
2016-07-08
Quantum coherence and quantum entanglement represent two fundamental features of nonclassical systems that can each be characterized within an operational resource theory. In this Letter, we unify the resource theories of entanglement and coherence by studying their combined behavior in the operational setting of local incoherent operations and classical communication (LIOCC). Specifically, we analyze the coherence and entanglement trade-offs in the tasks of state formation and resource distillation. For pure states we identify the minimum coherence-entanglement resources needed to generate a given state, and we introduce a new LIOCC monotone that completely characterizes a state's optimal rate of bipartite coherence distillation. This result allows us to precisely quantify the difference in operational powers between global incoherent operations, LIOCC, and local incoherent operations without classical communication. Finally, a bipartite mixed state is shown to have distillable entanglement if and only if entanglement can be distilled by LIOCC, and we strengthen the well-known Horodecki criterion for distillability.
Relating the Resource Theories of Entanglement and Quantum Coherence
NASA Astrophysics Data System (ADS)
Chitambar, Eric; Hsieh, Min-Hsiu
2016-07-01
Quantum coherence and quantum entanglement represent two fundamental features of nonclassical systems that can each be characterized within an operational resource theory. In this Letter, we unify the resource theories of entanglement and coherence by studying their combined behavior in the operational setting of local incoherent operations and classical communication (LIOCC). Specifically, we analyze the coherence and entanglement trade-offs in the tasks of state formation and resource distillation. For pure states we identify the minimum coherence-entanglement resources needed to generate a given state, and we introduce a new LIOCC monotone that completely characterizes a state's optimal rate of bipartite coherence distillation. This result allows us to precisely quantify the difference in operational powers between global incoherent operations, LIOCC, and local incoherent operations without classical communication. Finally, a bipartite mixed state is shown to have distillable entanglement if and only if entanglement can be distilled by LIOCC, and we strengthen the well-known Horodecki criterion for distillability.
NASA Astrophysics Data System (ADS)
Wang, F.; Huang, Y.-Y.; Zhang, Z.-Y.; Zu, C.; Hou, P.-Y.; Yuan, X.-X.; Wang, W.-B.; Zhang, W.-G.; He, L.; Chang, X.-Y.; Duan, L.-M.
2017-10-01
We experimentally demonstrate room-temperature storage of quantum entanglement using two nuclear spins weakly coupled to the electronic spin carried by a single nitrogen-vacancy center in diamond. We realize universal quantum gate control over the three-qubit spin system and produce entangled states in the decoherence-free subspace of the two nuclear spins. By injecting arbitrary collective noise, we demonstrate that the decoherence-free entangled state has coherence time longer than that of other entangled states by an order of magnitude in our experiment.
NASA Astrophysics Data System (ADS)
Kenfack, Lionel Tenemeza; Tchoffo, Martin; Fouokeng, Georges Collince; Fai, Lukong Cornelius
2018-04-01
The effects of 1/f^{α } (α =1,2) noise stemming from one or a collection of random bistable fluctuators (RBFs), on the evolution of entanglement, of three non-interacting qubits are investigated. Three different initial configurations of the qubits are analyzed in detail: the Greenberger-Horne-Zeilinger (GHZ)-type states, W-type states and mixed states composed of a GHZ state and a W state (GHZ-W). For each initial configuration, the evolution of entanglement is investigated for three different qubit-environment (Q-E) coupling setups, namely independent environments, mixed environments and common environment coupling. With the help of tripartite negativity and suitable entanglement witnesses, we show that the evolution of entanglement is extremely influenced not only by the initial configuration of the qubits, the spectrum of the environment and the Q-E coupling setup considered, but also by the number of RBF modeling the environment. Indeed, we find that the decay of entanglement is accelerated when the number of fluctuators modeling the environment is increased. Furthermore, we find that entanglement can survive indefinitely to the detrimental effects of noise even for increasingly larger numbers of RBFs. On the other hand, we find that the proficiency of the tripartite entanglement witnesses to detect entanglement is weaker than that of the tripartite negativity and that the symmetry of the initial states is broken when the qubits are coupled to the noise in mixed environments. Finally, we find that the 1 / f noise is more harmful to the survival of entanglement than the 1/f2 noise and that the mixed GHZ-W states followed by the GHZ-type states preserve better entanglement than the W-type ones.
Entanglement between two spatially separated atomic modes
NASA Astrophysics Data System (ADS)
Lange, Karsten; Peise, Jan; Lücke, Bernd; Kruse, Ilka; Vitagliano, Giuseppe; Apellaniz, Iagoba; Kleinmann, Matthias; Tóth, Géza; Klempt, Carsten
2018-04-01
Modern quantum technologies in the fields of quantum computing, quantum simulation, and quantum metrology require the creation and control of large ensembles of entangled particles. In ultracold ensembles of neutral atoms, nonclassical states have been generated with mutual entanglement among thousands of particles. The entanglement generation relies on the fundamental particle-exchange symmetry in ensembles of identical particles, which lacks the standard notion of entanglement between clearly definable subsystems. Here, we present the generation of entanglement between two spatially separated clouds by splitting an ensemble of ultracold identical particles prepared in a twin Fock state. Because the clouds can be addressed individually, our experiments open a path to exploit the available entangled states of indistinguishable particles for quantum information applications.
Distillation and purification of symmetric entangled Gaussian states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fiurasek, Jaromir
2010-10-15
We propose an entanglement distillation and purification scheme for symmetric two-mode entangled Gaussian states that allows to asymptotically extract a pure entangled Gaussian state from any input entangled symmetric Gaussian state. The proposed scheme is a modified and extended version of the entanglement distillation protocol originally developed by Browne et al. [Phys. Rev. A 67, 062320 (2003)]. A key feature of the present protocol is that it utilizes a two-copy degaussification procedure that involves a Mach-Zehnder interferometer with single-mode non-Gaussian filters inserted in its two arms. The required non-Gaussian filtering operations can be implemented by coherently combining two sequences ofmore » single-photon addition and subtraction operations.« less
Entanglement of two individual neutral atoms using Rydberg blockade.
Wilk, T; Gaëtan, A; Evellin, C; Wolters, J; Miroshnychenko, Y; Grangier, P; Browaeys, A
2010-01-08
We report the generation of entanglement between two individual 87Rb atoms in hyperfine ground states |F=1,M=1> and |F=2,M=2> which are held in two optical tweezers separated by 4 microm. Our scheme relies on the Rydberg blockade effect which prevents the simultaneous excitation of the two atoms to a Rydberg state. The entangled state is generated in about 200 ns using pulsed two-photon excitation. We quantify the entanglement by applying global Raman rotations on both atoms. We measure that 61% of the initial pairs of atoms are still present at the end of the entangling sequence. These pairs are in the target entangled state with a fidelity of 0.75.
NASA Astrophysics Data System (ADS)
Pal, Rajarshi; Bandyopadhyay, Somshubhro
2018-03-01
We consider the problem of establishing entangled states of optimal singlet fraction and negativity between two remote parties for every use of a noisy quantum channel and trace-preserving local operations and classical communication (LOCC) under the assumption that the parties do not share prior correlations. We show that for a family of quantum channels in every finite dimension d ≥3 , one-shot optimal singlet fraction and entanglement negativity are attained only with appropriate nonmaximally entangled states. A consequence of our results is that the ordering of entangled states in all finite dimensions may not be preserved under trace-preserving LOCC.
New Bell inequalities for three-qubit pure states
NASA Astrophysics Data System (ADS)
Das, Arpan; Datta, Chandan; Agrawal, Pankaj
2017-12-01
We introduce a set of Bell inequalities for a three-qubit system. Each inequality within this set is violated by all generalized GHZ states. The more entangled a generalized GHZ state is, the more will be the violation. This establishes a relation between nonlocality and entanglement for this class of states. Certain inequalities within this set are violated by pure biseparable states. We also provide numerical evidence that at least one of these Bell inequalities is violated by a pure genuinely entangled state. These Bell inequalities can distinguish between separable, biseparable and genuinely entangled pure three-qubit states. We also generalize this set to n-qubit systems and may be suitable to characterize the entanglement of n-qubit pure states.
Measurement-induced entanglement for excitation stored in remote atomic ensembles.
Chou, C W; de Riedmatten, H; Felinto, D; Polyakov, S V; van Enk, S J; Kimble, H J
2005-12-08
A critical requirement for diverse applications in quantum information science is the capability to disseminate quantum resources over complex quantum networks. For example, the coherent distribution of entangled quantum states together with quantum memory (for storing the states) can enable scalable architectures for quantum computation, communication and metrology. Here we report observations of entanglement between two atomic ensembles located in distinct, spatially separated set-ups. Quantum interference in the detection of a photon emitted by one of the samples projects the otherwise independent ensembles into an entangled state with one joint excitation stored remotely in 10(5) atoms at each site. After a programmable delay, we confirm entanglement by mapping the state of the atoms to optical fields and measuring mutual coherences and photon statistics for these fields. We thereby determine a quantitative lower bound for the entanglement of the joint state of the ensembles. Our observations represent significant progress in the ability to distribute and store entangled quantum states.
Ran, Du; Hu, Chang-Sheng; Yang, Zhen-Biao
2016-01-01
We study the entanglement transfer from a two-mode continuous variable system (initially in the two-mode SU(2) cat states) to a couple of discrete two-state systems (initially in an arbitrary mixed state), by use of the resonant Jaynes-Cummings (JC) interaction. We first quantitatively connect the entanglement transfer to non-Gaussianity of the two-mode SU(2) cat states and find a positive correlation between them. We then investigate the behaviors of the entanglement transfer and find that it is dependent on the initial state of the discrete systems. We also find that the largest possible value of the transferred entanglement exhibits a variety of behaviors for different photon number as well as for the phase angle of the two-mode SU(2) cat states. We finally consider the influences of the noise on the transferred entanglement. PMID:27553881
Hybrid entanglement between a trapped ion and a mirror
NASA Astrophysics Data System (ADS)
Corrêa, Clóvis; Vidiella-Barranco, A.
2018-05-01
We present a scheme for cavity-assisted generation of hybrid entanglement between a moving mirror belonging to an optomechanical cavity and a single trapped ion located inside a second cavity. Due to radiation pressure, it is possible to entangle the states of the moving mirror and the corresponding cavity field. Also, by tuning the second cavity field with the internal degrees of freedom of the ion, an entangled state of the cavity field/ion can be independently generated. The fields leaking from each cavity may be then combined in a beam splitter, and following the detection of the outgoing photons by conveniently placed photodetectors, we show that it is possible to generate entangled states of the moving mirror and the single trapped ion's center-of-mass vibration. In our scheme the generated states are hybrid entangled states, in the sense that they are constituted by discrete (Fock) states and continuous variable (coherent) states.
Quantifying entanglement in two-mode Gaussian states
NASA Astrophysics Data System (ADS)
Tserkis, Spyros; Ralph, Timothy C.
2017-12-01
Entangled two-mode Gaussian states are a key resource for quantum information technologies such as teleportation, quantum cryptography, and quantum computation, so quantification of Gaussian entanglement is an important problem. Entanglement of formation is unanimously considered a proper measure of quantum correlations, but for arbitrary two-mode Gaussian states no analytical form is currently known. In contrast, logarithmic negativity is a measure that is straightforward to calculate and so has been adopted by most researchers, even though it is a less faithful quantifier. In this work, we derive an analytical lower bound for entanglement of formation of generic two-mode Gaussian states, which becomes tight for symmetric states and for states with balanced correlations. We define simple expressions for entanglement of formation in physically relevant situations and use these to illustrate the problematic behavior of logarithmic negativity, which can lead to spurious conclusions.
Diagnosing Topological Edge States via Entanglement Monogamy.
Meichanetzidis, K; Eisert, J; Cirio, M; Lahtinen, V; Pachos, J K
2016-04-01
Topological phases of matter possess intricate correlation patterns typically probed by entanglement entropies or entanglement spectra. In this Letter, we propose an alternative approach to assessing topologically induced edge states in free and interacting fermionic systems. We do so by focussing on the fermionic covariance matrix. This matrix is often tractable either analytically or numerically, and it precisely captures the relevant correlations of the system. By invoking the concept of monogamy of entanglement, we show that highly entangled states supported across a system bipartition are largely disentangled from the rest of the system, thus, usually appearing as gapless edge states. We then define an entanglement qualifier that identifies the presence of topological edge states based purely on correlations present in the ground states. We demonstrate the versatility of this qualifier by applying it to various free and interacting fermionic topological systems.
Diagnosing Topological Edge States via Entanglement Monogamy
NASA Astrophysics Data System (ADS)
Meichanetzidis, K.; Eisert, J.; Cirio, M.; Lahtinen, V.; Pachos, J. K.
2016-04-01
Topological phases of matter possess intricate correlation patterns typically probed by entanglement entropies or entanglement spectra. In this Letter, we propose an alternative approach to assessing topologically induced edge states in free and interacting fermionic systems. We do so by focussing on the fermionic covariance matrix. This matrix is often tractable either analytically or numerically, and it precisely captures the relevant correlations of the system. By invoking the concept of monogamy of entanglement, we show that highly entangled states supported across a system bipartition are largely disentangled from the rest of the system, thus, usually appearing as gapless edge states. We then define an entanglement qualifier that identifies the presence of topological edge states based purely on correlations present in the ground states. We demonstrate the versatility of this qualifier by applying it to various free and interacting fermionic topological systems.
NASA Astrophysics Data System (ADS)
Jia, Ding
2017-12-01
The expected indefinite causal structure in quantum gravity poses a challenge to the notion of entanglement: If two parties are in an indefinite causal relation of being causally connected and not, can they still be entangled? If so, how does one measure the amount of entanglement? We propose to generalize the notions of entanglement and entanglement measure to address these questions. Importantly, the generalization opens the path to study quantum entanglement of states, channels, networks, and processes with definite or indefinite causal structure in a unified fashion, e.g., we show that the entanglement distillation capacity of a state, the quantum communication capacity of a channel, and the entanglement generation capacity of a network or a process are different manifestations of one and the same entanglement measure.
Strong monogamy of multiparty quantum entanglement for partially coherently superposed states
NASA Astrophysics Data System (ADS)
Kim, Jeong San
2016-03-01
We provide evidence for the validity of strong monogamy inequality of multiparty quantum entanglement using the square of convex-roof extended negativity (SCREN). We first consider a large class of multiqudit mixed states that are in a partially coherent superposition of a generalized W -class state and the vacuum, and provide some useful properties about this class of states. We show that monogamy inequality of multiqudit entanglement in terms of SCREN holds for this class of states. We further show that SCREN strong monogamy inequality of multiqudit entanglement also holds for this class of states. Thus SCREN is a good alternative for characterizing the monogamous and strongly monogamous properties of multiqudit entanglement.
Partially entangled states bridge in quantum teleportation
NASA Astrophysics Data System (ADS)
Cai, Xiao-Fei; Yu, Xu-Tao; Shi, Li-Hui; Zhang, Zai-Chen
2014-10-01
The traditional method for information transfer in a quantum communication system using partially entangled state resource is quantum distillation or direct teleportation. In order to reduce the waiting time cost in hop-by-hop transmission and execute independently in each node, we propose a quantum bridging method with partially entangled states to teleport quantum states from source node to destination node. We also prove that the designed specific quantum bridging circuit is feasible for partially entangled states teleportation across multiple intermediate nodes. Compared to two traditional ways, our partially entanglement quantum bridging method uses simpler logic gates, has better security, and can be used in less quantum resource situation.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Demkowicz-Dobrzanski, Rafal; Lewenstein, Maciej; Institut fuer Theoretische Physik, Universitaet Hannover, D-30167 Hannover
We solve the problem of the optimal cloning of pure entangled two-qubit states with a fixed degree of entanglement using local operations and classical communication. We show that, amazingly, classical communication between the parties can improve the fidelity of local cloning if and only if the initial entanglement is higher than a certain critical value. It is completely useless for weakly entangled states. We also show that bound entangled states with positive partial transpose are not useful as a resource to improve the best local cloning fidelity.
Universal entanglement timescale for Rényi entropies
NASA Astrophysics Data System (ADS)
Cresswell, Jesse C.
2018-02-01
Recently it was shown that the growth of entanglement in an initially separable state, as measured by the purity of subsystems, can be characterized by a timescale that takes a universal form for any Hamiltonian. We show that the same timescale governs the growth of entanglement for all Rényi entropies. Since the family of Rényi entropies completely characterizes the entanglement of a pure bipartite state, our timescale is a universal feature of bipartite entanglement. The timescale depends only on the interaction Hamiltonian and the initial state.
General form of genuine multipartite entanglement quantum channels for teleportation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Pingxing; Key Laboratory of Quantum Communication and Quantum Computation, University of Science and Technology of China, Hefei 230026; Department of Physics, National University of Defense Technology, Changsha 410073
2006-09-15
Recently Yeo and Chua [Phys. Rev. Lett. 96, 060502 (2006)] presented an explicit protocol for faithfully teleporting an arbitrary two-qubit state via a genuine four-qubit entanglement channel. Here we generalize completely their results to teleporting an arbitrary N-qubit state via genuine N-qubit entanglement channels. And we present the general form of the genuine multipartite entanglement channels, namely, the sufficient and necessary condition the genuine N-qubit entanglement channels must satisfy to teleport an arbitrary N-qubit state.
Optimal resource states for local state discrimination
NASA Astrophysics Data System (ADS)
Bandyopadhyay, Somshubhro; Halder, Saronath; Nathanson, Michael
2018-02-01
We study the problem of locally distinguishing pure quantum states using shared entanglement as a resource. For a given set of locally indistinguishable states, we define a resource state to be useful if it can enhance local distinguishability and optimal if it can distinguish the states as well as global measurements and is also minimal with respect to a partial ordering defined by entanglement and dimension. We present examples of useful resources and show that an entangled state need not be useful for distinguishing a given set of states. We obtain optimal resources with explicit local protocols to distinguish multipartite Greenberger-Horne-Zeilinger and graph states and also show that a maximally entangled state is an optimal resource under one-way local operations and classical communication to distinguish any bipartite orthonormal basis which contains at least one entangled state of full Schmidt rank.
Einstein-Podolsky-Rosen-steering swapping between two Gaussian multipartite entangled states
NASA Astrophysics Data System (ADS)
Wang, Meihong; Qin, Zhongzhong; Wang, Yu; Su, Xiaolong
2017-08-01
Multipartite Einstein-Podolsky-Rosen (EPR) steering is a useful quantum resource for quantum communication in quantum networks. It has potential applications in secure quantum communication, such as one-sided device-independent quantum key distribution and quantum secret sharing. By distributing optical modes of a multipartite entangled state to space-separated quantum nodes, a local quantum network can be established. Based on the existing multipartite EPR steering in a local quantum network, secure quantum communication protocol can be accomplished. In this manuscript, we present swapping schemes for EPR steering between two space-separated Gaussian multipartite entangled states, which can be used to connect two space-separated quantum networks. Two swapping schemes, including the swapping between a tripartite Greenberger-Horne-Zeilinger (GHZ) entangled state and an EPR entangled state and that between two tripartite GHZ entangled states, are analyzed. Various types of EPR steering are presented after the swapping of two space-separated independent multipartite entanglement states without direct interaction, which can be used to implement quantum communication between two quantum networks. The presented schemes provide technical reference for more complicated quantum networks with EPR steering.
Monogamy, polygamy, and other properties of entanglement of purification
NASA Astrophysics Data System (ADS)
Bagchi, Shrobona; Pati, Arun Kumar
2015-04-01
For bipartite pure and mixed quantum states, in addition to the quantum mutual information, there is another measure of total correlation, namely, the entanglement of purification. We study the monogamy, polygamy, and additivity properties of the entanglement of purification for pure and mixed states. In this paper, we show that, in contrast to the quantum mutual information which is strictly monogamous for any tripartite pure states, the entanglement of purification is polygamous for the same. This shows that there can be genuinely two types of total correlation across any bipartite cross in a pure tripartite state. Furthermore, we find the lower bound and actual values of the entanglement of purification for different classes of tripartite and higher-dimensional bipartite mixed states. Thereafter, we show that if entanglement of purification is not additive on tensor product states, it is actually subadditive. Using these results, we identify some states which are additive on tensor products for entanglement of purification. The implications of these findings on the quantum advantage of dense coding are briefly discussed, whereby we show that for tripartite pure states, it is strictly monogamous and if it is nonadditive, then it is superadditive on tensor product states.
Polarization entanglement purification for concatenated Greenberger-Horne-Zeilinger state
NASA Astrophysics Data System (ADS)
Zhou, Lan; Sheng, Yu-Bo
2017-10-01
Entanglement purification plays a fundamental role in long-distance quantum communication. In the paper, we put forward the first polarization entanglement purification protocol (EPP) for one type of nonlocal logic-qubit entanglement, i.e., concatenated Greenberger-Horne-Zeilinger (C-GHZ) state, resorting to the photon-atom interaction in low-quality (Q) cavity. In contrast to existing EPPs, this protocol can purify the bit-flip error and phase-flip error in both physic and logic level. Instead of measuring the photons directly, this protocol only requires to measure the atom states to judge whether the protocol is successful. In this way, the purified logic entangled states can be preserved for further application. Moreover, it makes this EPP repeatable so as to obtain a higher fidelity of logic entangled states. As the logic-qubit entanglement utilizes the quantum error correction (QEC) codes, which has an inherent stability against noise and decoherence, this EPP combined with the QEC codes may provide a double protection for the entanglement from the channel noise and may have potential applications in long-distance quantum communication.
Wang, Xin; Duan, Runyao
2017-11-03
We demonstrate the irreversibility of asymptotic entanglement manipulation under quantum operations that completely preserve the positivity of partial transpose (PPT), resolving a major open problem in quantum information theory. Our key tool is a new efficiently computable additive lower bound for the asymptotic relative entropy of entanglement with respect to PPT states, which can be used to evaluate the entanglement cost under local operations and classical communication (LOCC). We find that for any rank-two mixed state supporting on the 3⊗3 antisymmetric subspace, the amount of distillable entanglement by PPT operations is strictly smaller than one entanglement bit (ebit) while its entanglement cost under PPT operations is exactly one ebit. As a by-product, we find that for this class of states, both the Rains's bound and its regularization are strictly less than the asymptotic relative entropy of entanglement. So, in general, there is no unique entanglement measure for the manipulation of entanglement by PPT operations. We further show a computable sufficient condition for the irreversibility of entanglement distillation by LOCC (or PPT) operations.
Controlled Teleportation of a Qudit State by Partially Entangled GHZ States
NASA Astrophysics Data System (ADS)
Wang, Jin-wei; Shu, Lan; Mo, Zhi-wen; Zhang, Zhi-hua
2014-08-01
In this paper, we propose a controlled teleportation scheme which communicates an arbitrary ququart state via two sets of partially entangled GHZ state. The necessary measurements and operations are given detailedly. Furthmore the scheme is generalized to teleport a qudit state via s sets of partially entangled GHZ state.
NASA Astrophysics Data System (ADS)
Bartkiewicz, Karol; Lemr, Karel; Černoch, Antonín; Miranowicz, Adam
2017-03-01
We propose and experimentally implement an efficient procedure based on entanglement swapping to determine the Bell nonlocality measure of Horodecki et al. [Phys. Lett. A 200, 340 (1995), 10.1016/0375-9601(95)00214-N] and the fully entangled fraction of Bennett et al. [Phys. Rev. A 54, 3824 (1996), 10.1103/PhysRevA.54.3824] of an arbitrary two-qubit polarization-encoded state. The nonlocality measure corresponds to the amount of the violation of the Clauser-Horne-Shimony-Holt (CHSH) optimized over all measurement settings. By using simultaneously two copies of a given state, we measure directly only six parameters. This is an experimental determination of these quantities without quantum state tomography or continuous monitoring of all measurement bases in the usual CHSH inequality tests. We analyze how well the measured degrees of Bell nonlocality and other entanglement witnesses (including the fully entangled fraction and a nonlinear entropic witness) of an arbitrary two-qubit state can estimate its entanglement. In particular, we measure these witnesses and estimate the negativity of various two-qubit Werner states. Our approach could especially be useful for quantum communication protocols based on entanglement swapping.
NASA Astrophysics Data System (ADS)
Nomura, Yasunori; Rath, Pratik; Salzetta, Nico
2018-05-01
The past decade has seen a tremendous effort toward unraveling the relationship between entanglement and emergent spacetime. These investigations have revealed that entanglement between holographic degrees of freedom is crucial for the existence of bulk spacetime. We examine this connection from the other end of the entanglement spectrum and clarify the assertion that maximally entangled states have no reconstructable spacetime. To do so, we first define the conditions for bulk reconstructability. Under these terms, we scrutinize two cases of maximally entangled holographic states. One is the familiar example of AdS black holes; these are dual to thermal states of the boundary conformal field theory. Sending the temperature to the cutoff scale makes the state maximally entangled and the respective black hole consumes the spacetime. We then examine the de Sitter limit of Friedmann-Robertson-Walker (FRW) spacetimes. This limit is maximally entangled if one formulates the boundary theory on the holographic screen. Paralleling the anti-de Sitter (AdS) black hole, we find the resulting reconstructable region of spacetime vanishes. Motivated by these results, we prove a theorem showing that maximally entangled states have no reconstructable spacetime. Evidently, the emergence of spacetime is endemic to intermediate entanglement. By studying the manner in which intermediate entanglement is achieved, we uncover important properties about the boundary theory of FRW spacetimes. With this clarified understanding, our final discussion elucidates the natural way in which holographic Hilbert spaces may house states dual to different geometries. This paper provides a coherent picture clarifying the link between spacetime and entanglement and develops many promising avenues of further work.
Quantum entanglement in three accelerating qubits coupled to scalar fields
NASA Astrophysics Data System (ADS)
Dai, Yue; Shen, Zhejun; Shi, Yu
2016-07-01
We consider quantum entanglement of three accelerating qubits, each of which is locally coupled with a real scalar field, without causal influence among the qubits or among the fields. The initial states are assumed to be the GHZ and W states, which are the two representative three-partite entangled states. For each initial state, we study how various kinds of entanglement depend on the accelerations of the three qubits. All kinds of entanglement eventually suddenly die if at least two of three qubits have large enough accelerations. This result implies the eventual sudden death of all kinds of entanglement among three particles coupled with scalar fields when they are sufficiently close to the horizon of a black hole.
NASA Astrophysics Data System (ADS)
Cormann, Mirko; Caudano, Yves
2017-07-01
We express modular and weak values of observables of three- and higher-level quantum systems in their polar form. The Majorana representation of N-level systems in terms of symmetric states of N - 1 qubits provides us with a description on the Bloch sphere. With this geometric approach, we find that modular and weak values of observables of N-level quantum systems can be factored in N - 1 contributions. Their modulus is determined by the product of N - 1 ratios involving projection probabilities between qubits, while their argument is deduced from a sum of N - 1 solid angles on the Bloch sphere. These theoretical results allow us to study the geometric origin of the quantum phase discontinuity around singularities of weak values in three-level systems. We also analyze the three-box paradox (Aharonov and Vaidman 1991 J. Phys. A: Math. Gen. 24 2315-28) from the point of view of a bipartite quantum system. In the Majorana representation of this paradox, an observer comes to opposite conclusions about the entanglement state of the particles that were successfully pre- and postselected.
NASA Astrophysics Data System (ADS)
Chen, Hui-Na; Liu, Jin-Ming
2009-10-01
We present an optical scheme to almost completely teleport a bipartite entangled coherent state using a four-partite cluster-type entangled coherent state as quantum channel. The scheme is based on optical elements such as beam splitters, phase shifters, and photon detectors. We also obtain the average fidelity of the teleportation process. It is shown that the average fidelity is quite close to unity if the mean photon number of the coherent state is not too small.
Center for Quantum Algorithms and Complexity
2014-05-12
precisely, it asserts that for any subset L of particles, the entanglement entropy between L and L̄ is bounded by the surface area of L (the area is...ground states of gapped local Hamiltonians. Roughly, it says that the entanglement in such states is very local, and the entanglement entropy scales...the theorem states that the entanglement entropy is bounded by exp(X), where X = log(d/?). Hastingss result implies that ground states of gapped 1D
Detection-enhanced steady state entanglement with ions.
Bentley, C D B; Carvalho, A R R; Kielpinski, D; Hope, J J
2014-07-25
Driven dissipative steady state entanglement schemes take advantage of coupling to the environment to robustly prepare highly entangled states. We present a scheme for two trapped ions to generate a maximally entangled steady state with fidelity above 0.99, appropriate for use in quantum protocols. Furthermore, we extend the scheme by introducing detection of our dissipation process, significantly enhancing the fidelity. Our scheme is robust to anomalous heating and requires no sympathetic cooling.
NASA Astrophysics Data System (ADS)
Adesso, Gerardo; Giampaolo, Salvatore M.; Illuminati, Fabrizio
2007-10-01
We present a geometric approach to the characterization of separability and entanglement in pure Gaussian states of an arbitrary number of modes. The analysis is performed adapting to continuous variables a formalism based on single subsystem unitary transformations that has been recently introduced to characterize separability and entanglement in pure states of qubits and qutrits [S. M. Giampaolo and F. Illuminati, Phys. Rev. A 76, 042301 (2007)]. In analogy with the finite-dimensional case, we demonstrate that the 1×M bipartite entanglement of a multimode pure Gaussian state can be quantified by the minimum squared Euclidean distance between the state itself and the set of states obtained by transforming it via suitable local symplectic (unitary) operations. This minimum distance, corresponding to a , uniquely determined, extremal local operation, defines an entanglement monotone equivalent to the entropy of entanglement, and amenable to direct experimental measurement with linear optical schemes.
NASA Astrophysics Data System (ADS)
Denning, Emil V.; Iles-Smith, Jake; McCutcheon, Dara P. S.; Mork, Jesper
2017-12-01
Multiphoton entangled states are a crucial resource for many applications in quantum information science. Semiconductor quantum dots offer a promising route to generate such states by mediating photon-photon correlations via a confined electron spin, but dephasing caused by the host nuclear spin environment typically limits coherence (and hence entanglement) between photons to the spin T2* time of a few nanoseconds. We propose a protocol for the deterministic generation of multiphoton entangled states that is inherently robust against the dominating slow nuclear spin environment fluctuations, meaning that coherence and entanglement is instead limited only by the much longer spin T2 time of microseconds. Unlike previous protocols, the present scheme allows for the generation of very low error probability polarization encoded three-photon GHZ states and larger entangled states, without the need for spin echo or nuclear spin calming techniques.
NASA Astrophysics Data System (ADS)
Chen, Aixi; Nie, Wenjie; Li, Ling; Zeng, Wei; Liao, Qinghong; Xiao, Xianbo
2017-11-01
We investigate the steady-state entanglement in an optomechanical system with a levitated dielectric nanosphere and a higher order excited atomic ensemble. The single nanosphere is trapped by an external harmonic dipole trap and coupled to the single-mode cavity field by the effective optomechanical coupling, which depends on the steady-state position of the nanosphere. We show that the steady-state optomechanical entanglement can be generated via the effective optomechanical interaction between the mechanical motion and the cavity mode. Further, these exist an optimal effective cavity detuning that maximizes the optomechanical entanglement. We also analyze in detail the influences of the excitation number of atoms, the radius of the nanosphere and the thermal noise strength on the steady-state optomechanical entanglement. It is found that the steady-state entanglement can be enhanced by increasing the excitation number of atoms and the radius of the nanosphere.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cinelli, C.; Di Nepi, G.; De Martini, F.
2004-08-01
A parametric source of polarization-entangled photon pairs with striking spatial characteristics is reported. The distribution of the output electromagnetic k modes excited by spontaneous parametric down-conversion and coupled to the output detectors can be very broad. Using these states realized over a full entanglement ring output distribution, the nonlocal properties of the generated entanglement have been tested by standard Bell measurements and by Ou-Mandel interferometry. A 'mode-patchwork' technique based on the quantum superposition principle is adopted to synthesize in a straightforward and reliable way any kind of mixed state, of large conceptual and technological interest in modern quantum information. Tunablemore » Werner states and maximally entangled mixed states have indeed been created by this technique and investigated by quantum tomography. A study of the entropic and nonlocal properties of these states has been undertaken experimentally and theoretically, by a unifying variational approach.« less
EDITORIAL: Focus on Quantum Information and Many-Body Theory
NASA Astrophysics Data System (ADS)
Eisert, Jens; Plenio, Martin B.
2010-02-01
Quantum many-body models describing natural systems or materials and physical systems assembled piece by piece in the laboratory for the purpose of realizing quantum information processing share an important feature: intricate correlations that originate from the coherent interaction between a large number of constituents. In recent years it has become manifest that the cross-fertilization between research devoted to quantum information science and to quantum many-body physics leads to new ideas, methods, tools, and insights in both fields. Issues of criticality, quantum phase transitions, quantum order and magnetism that play a role in one field find relations to the classical simulation of quantum systems, to error correction and fault tolerance thresholds, to channel capacities and to topological quantum computation, to name but a few. The structural similarities of typical problems in both fields and the potential for pooling of ideas then become manifest. Notably, methods and ideas from quantum information have provided fresh approaches to long-standing problems in strongly correlated systems in the condensed matter context, including both numerical methods and conceptual insights. Focus on quantum information and many-body theory Contents TENSOR NETWORKS Homogeneous multiscale entanglement renormalization ansatz tensor networks for quantum critical systems M Rizzi, S Montangero, P Silvi, V Giovannetti and Rosario Fazio Concatenated tensor network states R Hübener, V Nebendahl and W Dür Entanglement renormalization in free bosonic systems: real-space versus momentum-space renormalization group transforms G Evenbly and G Vidal Finite-size geometric entanglement from tensor network algorithms Qian-Qian Shi, Román Orús, John Ove Fjærestad and Huan-Qiang Zhou Characterizing symmetries in a projected entangled pair state D Pérez-García, M Sanz, C E González-Guillén, M M Wolf and J I Cirac Matrix product operator representations B Pirvu, V Murg, J I Cirac and F Verstraete SIMULATION AND DYNAMICS A quantum differentiation of k-SAT instances B Tamir and G Ortiz Classical Ising model test for quantum circuits Joseph Geraci and Daniel A Lidar Exact matrix product solutions in the Heisenberg picture of an open quantum spin chain S R Clark, J Prior, M J Hartmann, D Jaksch and M B Plenio Exact solution of Markovian master equations for quadratic Fermi systems: thermal baths, open XY spin chains and non-equilibrium phase transition Tomaž Prosen and Bojan Žunkovič Quantum kinetic Ising models R Augusiak, F M Cucchietti, F Haake and M Lewenstein ENTANGLEMENT AND SPECTRAL PROPERTIES Ground states of unfrustrated spin Hamiltonians satisfy an area law Niel de Beaudrap, Tobias J Osborne and Jens Eisert Correlation density matrices for one-dimensional quantum chains based on the density matrix renormalization group W Münder, A Weichselbaum, A Holzner, Jan von Delft and C L Henley The invariant-comb approach and its relation to the balancedness of multipartite entangled states Andreas Osterloh and Jens Siewert Entanglement scaling of fractional quantum Hall states through geometric deformations Andreas M Läuchli, Emil J Bergholtz and Masudul Haque Entanglement versus gap for one-dimensional spin systems Daniel Gottesman and M B Hastings Entanglement spectra of critical and near-critical systems in one dimension F Pollmann and J E Moore Macroscopic bound entanglement in thermal graph states D Cavalcanti, L Aolita, A Ferraro, A García-Saez and A Acín Entanglement at the quantum phase transition in a harmonic lattice Elisabeth Rieper, Janet Anders and Vlatko Vedral Multipartite entanglement and frustration P Facchi, G Florio, U Marzolino, G Parisi and S Pascazio Entropic uncertainty relations—a survey Stephanie Wehner and Andreas Winter Entanglement in a spin system with inverse square statistical interaction D Giuliano, A Sindona, G Falcone, F Plastina and L Amico APPLICATIONS Time-dependent currents of one-dimensional bosons in an optical lattice J Schachenmayer, G Pupillo and A J Daley Implementing quantum gates using the ferromagnetic spin-J XXZ chain with kink boundary conditions Tom Michoel, Jaideep Mulherkar and Bruno Nachtergaele Long-distance entanglement in many-body atomic and optical systems Salvatore M Giampaolo and Fabrizio Illuminati QUANTUM MEMORIES AND TOPOLOGICAL ORDER Thermodynamic stability criteria for a quantum memory based on stabilizer and subsystem codes Stefano Chesi, Daniel Loss, Sergey Bravyi and Barbara M Terhal Topological color codes and two-body quantum lattice Hamiltonians M Kargarian, H Bombin and M A Martin-Delgado RENORMALIZATION Local renormalization method for random systems O Gittsovich, R Hübener, E Rico and H J Briegel
NASA Astrophysics Data System (ADS)
Schaibley, John; Burgers, Alex; McCracken, Greg; Duan, Luming; Berman, Paul; Steel, Duncan; Bracker, Allan; Gammon, Daniel; Sham, Lu
2013-03-01
A single electron spin confined to a single InAs quantum dot (QD) can serve as a qubit for quantum information processing. By utilizing the QD's optically excited trion states in the presence of an externally applied magnetic field, the QD spin can be rapidly initialized, manipulated and read out. A key resource for quantum information is the ability to entangle distinct QD spins. One approach relies on intermediate spin-photon entanglement to mediate the entanglement between distant QD spin qubits. We report a demonstration of quantum entanglement between a photon's polarization state and the spin state of a single electron confined to a single QD. Here, the photon is spontaneously emitted from one of the QD's trion states. The emitted photon's polarization along the detection axis is entangled with the resulting spin state of the QD. By performing projective measurements on the photon's polarization state and correlating these measurements with the state of the QD spin in two different bases, we obtain a lower bound on the entanglement fidelity of 0.59 (after background correction). The fidelity bound is limited almost entirely by the timing resolution of our single photon detector. The spin-photon entanglement generation rate is 3 ×103 s-1. Supported by: NSF, MURI, AFOSR, DARPA, ARO.
NASA Astrophysics Data System (ADS)
Heo, Jino; Kang, Min-Sung; Hong, Chang-Ho; Choi, Seong-Gon; Hong, Jong-Phil
2017-08-01
We propose quantum information processing schemes to generate and swap entangled states based on the interactions between flying photons and quantum dots (QDs) confined within optical cavities for quantum communication. To produce and distribute entangled states (Bell and Greenberger-Horne-Zeilinger [GHZ] states) between the photonic qubits of flying photons of consumers (Alice and Bob) and electron-spin qubits of a provider (trust center, or TC), the TC employs the interactions of the QD-cavity system, which is composed of a charged QD (negatively charged exciton) inside a single-sided cavity. Subsequently, the TC constructs an entanglement channel (Bell state and 4-qubit GHZ state) to link one consumer with another through entanglement swapping, which can be realized to exploit a probe photon with interactions of the QD-cavity systems and single-qubit measurements without Bell state measurement, for quantum communication between consumers. Consequently, the TC, which has quantum nodes (QD-cavity systems), can accomplish constructing the entanglement channel (authenticated channel) between two separated consumers from the distributions of entangled states and entanglement swapping. Furthermore, our schemes using QD-cavity systems, which are feasible with a certain probability of success and high fidelity, can be experimentally implemented with technology currently in use.
Sudden death of distillability in qutrit-qutrit systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Song Wei; Zhu Shiliang; Chen Lin
2009-07-15
We introduce the concept of distillability sudden death, i.e., free entangled states can evolve into nondistillable (bound entangled or separable) states in finite time under local noise. We describe the phenomenon through a specific model of local dephasing noise and compare the behavior of states in terms of the Bures fidelity. Then we propose a few methods to avoid distillability sudden death of states under (general) local dephasing noise so that free entangled states can be robust against decoherence. Moreover, we find that bound entangled states are unstable in the limit of infinite time.
Deterministic generation of multiparticle entanglement by quantum Zeno dynamics.
Barontini, Giovanni; Hohmann, Leander; Haas, Florian; Estève, Jérôme; Reichel, Jakob
2015-09-18
Multiparticle entangled quantum states, a key resource in quantum-enhanced metrology and computing, are usually generated by coherent operations exclusively. However, unusual forms of quantum dynamics can be obtained when environment coupling is used as part of the state generation. In this work, we used quantum Zeno dynamics (QZD), based on nondestructive measurement with an optical microcavity, to deterministically generate different multiparticle entangled states in an ensemble of 36 qubit atoms in less than 5 microseconds. We characterized the resulting states by performing quantum tomography, yielding a time-resolved account of the entanglement generation. In addition, we studied the dependence of quantum states on measurement strength and quantified the depth of entanglement. Our results show that QZD is a versatile tool for fast and deterministic entanglement generation in quantum engineering applications. Copyright © 2015, American Association for the Advancement of Science.
Quantum entanglement between an optical photon and a solid-state spin qubit.
Togan, E; Chu, Y; Trifonov, A S; Jiang, L; Maze, J; Childress, L; Dutt, M V G; Sørensen, A S; Hemmer, P R; Zibrov, A S; Lukin, M D
2010-08-05
Quantum entanglement is among the most fascinating aspects of quantum theory. Entangled optical photons are now widely used for fundamental tests of quantum mechanics and applications such as quantum cryptography. Several recent experiments demonstrated entanglement of optical photons with trapped ions, atoms and atomic ensembles, which are then used to connect remote long-term memory nodes in distributed quantum networks. Here we realize quantum entanglement between the polarization of a single optical photon and a solid-state qubit associated with the single electronic spin of a nitrogen vacancy centre in diamond. Our experimental entanglement verification uses the quantum eraser technique, and demonstrates that a high degree of control over interactions between a solid-state qubit and the quantum light field can be achieved. The reported entanglement source can be used in studies of fundamental quantum phenomena and provides a key building block for the solid-state realization of quantum optical networks.
Entanglement dynamics and decoherence of an atom coupled to a dissipative cavity field
NASA Astrophysics Data System (ADS)
Akhtarshenas, S. J.; Khezrian, M.
2010-04-01
In this paper, we investigate the entanglement dynamics and decoherence in the interacting system of a strongly driven two-level atom and a single mode vacuum field in the presence of dissipation for the cavity field. Starting with an initial product state with the atom in a general pure state and the field in a vacuum state, we show that the final density matrix is supported on {mathbb C}^2⊗{mathbb C}^2 space, and therefore, the concurrence can be used as a measure of entanglement between the atom and the field. The influences of the cavity decay on the quantum entanglement of the system are also discussed. We also examine the Bell-CHSH violation between the atom and the field and show that there are entangled states for which the Bell-BCSH inequality is not violated. Using the above system as a quantum channel, we also investigate the quantum teleportation of a generic qubit state and also a two-qubit entangled state, and show that in both cases the atom-field entangled state can be useful to teleport an unknown state with fidelity better than any classical channel.
General Method for Constructing Local Hidden Variable Models for Entangled Quantum States
NASA Astrophysics Data System (ADS)
Cavalcanti, D.; Guerini, L.; Rabelo, R.; Skrzypczyk, P.
2016-11-01
Entanglement allows for the nonlocality of quantum theory, which is the resource behind device-independent quantum information protocols. However, not all entangled quantum states display nonlocality. A central question is to determine the precise relation between entanglement and nonlocality. Here we present the first general test to decide whether a quantum state is local, and show that the test can be implemented by semidefinite programing. This method can be applied to any given state and for the construction of new examples of states with local hidden variable models for both projective and general measurements. As applications, we provide a lower-bound estimate of the fraction of two-qubit local entangled states and present new explicit examples of such states, including those that arise from physical noise models, Bell-diagonal states, and noisy Greenberger-Horne-Zeilinger and W states.
Teleportation via thermally entangled states of a two-qubit Heisenberg XX chain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeo Ye
2002-12-01
Recently, entanglement teleportation has been investigated by Lee and Kim [Phys. Rev. Lett. 84, 4236 (2000)]. In this paper we study entanglement teleportation via two separate thermally entangled states of a two-qubit Heisenberg XX chain. We established the condition under which the parameters of the model have to satisfy in order to teleport entanglement. The necessary minimum amount of thermal entanglement for some fixed strength of exchange coupling is a function of the magnetic field and the temperature.
Local unitary invariants for N-qubit pure states
NASA Astrophysics Data System (ADS)
Sharma, S. Shelly; Sharma, N. K.
2010-11-01
The concept of negativity font, a basic unit of multipartite entanglement, is introduced. Transformation properties of determinants of negativity fonts under local unitary (LU) transformations are exploited to obtain relevant N-qubit polynomial invariants and construct entanglement monotones from first principles. It is shown that entanglement monotones that detect the entanglement of specific parts of the composite system may be constructed to distinguish between states with distinct types of entanglement. The structural difference between entanglement monotones for an odd and even number of qubits is brought out.
Entanglement of two, three, or four plasmonically coupled quantum dots
NASA Astrophysics Data System (ADS)
Otten, Matthew; Shah, Raman A.; Scherer, Norbert F.; Min, Misun; Pelton, Matthew; Gray, Stephen K.
2015-09-01
We model the quantum dynamics of two, three, or four quantum dots (QDs) in proximity to a plasmonic system such as a metal nanoparticle or an array of metal nanoparticles. For all systems, an initial state with only one QD in its excited state evolves spontaneously into a state with entanglement between all pairs of QDs. The entanglement arises from the couplings of the QDs to the dissipative, plasmonic environment. Moreover, we predict that similarly entangled states can be generated in systems with appropriate geometries, starting in their ground states, by exciting the entire system with a single, ultrafast laser pulse. By using a series of repeated pulses, the system can also be prepared in an entangled state at an arbitrary time.
Quantum entanglement distillation with metamaterials.
al Farooqui, Md Abdullah; Breeland, Justin; Aslam, Muhammad I; Sadatgol, Mehdi; Özdemir, Şahin K; Tame, Mark; Yang, Lan; Güney, Durdu Ö
2015-07-13
We propose a scheme for the distillation of partially entangled two-photon Bell and three-photon W states using metamaterials. The distillation of partially entangled Bell states is achieved by using two metamaterials with polarization dependence, one of which is rotated by π/2 around the direction of propagation of the photons. On the other hand, the distillation of three-photon W states is achieved by using one polarization dependent metamaterial and two polarization independent metamaterials. Upon transmission of the photons of the partially entangled states through the metamaterials the entanglement of the states increases and they become distilled. This work opens up new directions in quantum optical state engineering by showing how metamaterials can be used to carry out a quantum information processing task.
Revised Geometric Measure of Entanglement in Infinite Dimensional Multipartite Quantum Systems
NASA Astrophysics Data System (ADS)
Wang, Yinzhu; Wang, Danxia; Huang, Li
2018-05-01
In Cao and Wang (J. Phys.: Math. Theor. 40, 3507-3542, 2007), the revised geometric measure of entanglement (RGME) for states in finite dimensional bipartite quantum systems was proposed. Furthermore, in Cao and Wang (Commun. Theor. Phys. 51(4), 613-620, 2009), the authors obtained the revised geometry measure of entanglement for multipartite states including three-qubit GHZ state, W state, and the generalized Smolin state in the presence of noise and the two-mode squeezed thermal state, and defined the Gaussian geometric entanglement measure. In this paper, we generalize the RGME to infinite dimensional multipartite quantum systems, and prove that this measure satisfies some necessary properties as a well-defined entanglement measure, including monotonicity under local operations and classical communications.
Measurement-Based Entanglement of Noninteracting Bosonic Atoms
NASA Astrophysics Data System (ADS)
Lester, Brian J.; Lin, Yiheng; Brown, Mark O.; Kaufman, Adam M.; Ball, Randall J.; Knill, Emanuel; Rey, Ana M.; Regal, Cindy A.
2018-05-01
We demonstrate the ability to extract a spin-entangled state of two neutral atoms via postselection based on a measurement of their spatial configuration. Typically, entangled states of neutral atoms are engineered via atom-atom interactions. In contrast, in our Letter, we use Hong-Ou-Mandel interference to postselect a spin-singlet state after overlapping two atoms in distinct spin states on an effective beam splitter. We verify the presence of entanglement and determine a bound on the postselected fidelity of a spin-singlet state of (0.62 ±0.03 ). The experiment has direct analogy to creating polarization entanglement with single photons and hence demonstrates the potential to use protocols developed for photons to create complex quantum states with noninteracting atoms.
Measurement-Based Entanglement of Noninteracting Bosonic Atoms.
Lester, Brian J; Lin, Yiheng; Brown, Mark O; Kaufman, Adam M; Ball, Randall J; Knill, Emanuel; Rey, Ana M; Regal, Cindy A
2018-05-11
We demonstrate the ability to extract a spin-entangled state of two neutral atoms via postselection based on a measurement of their spatial configuration. Typically, entangled states of neutral atoms are engineered via atom-atom interactions. In contrast, in our Letter, we use Hong-Ou-Mandel interference to postselect a spin-singlet state after overlapping two atoms in distinct spin states on an effective beam splitter. We verify the presence of entanglement and determine a bound on the postselected fidelity of a spin-singlet state of (0.62±0.03). The experiment has direct analogy to creating polarization entanglement with single photons and hence demonstrates the potential to use protocols developed for photons to create complex quantum states with noninteracting atoms.
Quantum Enhanced Imaging by Entangled States
2009-07-01
classes of entangled states. In tripartite systems two classes of genuine tripartite entanglement have been discovered, namely, the Greenberger -Horne...D. M. Greenberger , M. Horne and A. Zeilinger, in Bell’s Theorem, Quantum Theory, and Concepts of the Universe, ed. M. Kafatos (Kluwer, Dordrecht 1989...Gallium Indium Arsenide Phosphide (a III-V compound semiconductor) GHZ: Greenberger -Horne-Zeilinger (a class of entangled states) GLAD: General
NASA Astrophysics Data System (ADS)
Roa, Luis; Ladrón de Guevara, María L.; Soto-Moscoso, Matias; Catalán, Pamela
2018-05-01
In our work we consider the following problem in the context of teleportation: an unknown pure state has to be teleported and there are two laboratories which can perform the task. One laboratory uses a pure non-maximally entangled channel but has a capability of performing the joint measurement on bases with a constrained degree of entanglement; the other lab makes use of a mixed X-state channel but can perform a joint measurement on bases with higher entanglement degrees. We compare the average teleportation fidelity achieved in both cases, finding that the fidelity achieved with the X-state can surpass the obtained with a pure channel, even though the X-state is less entangled than the latter. We find the conditions under which this effect occurs. Our results evidence that the entanglement of the joint measurement plays a role as important as the entanglement of the channel in order to optimize the teleportation process. We include an example showing that the average fidelity of teleportation obtained with a Werner state channel can be greater than that obtained with a Bell state channel.
Quantum entanglement at ambient conditions in a macroscopic solid-state spin ensemble.
Klimov, Paul V; Falk, Abram L; Christle, David J; Dobrovitski, Viatcheslav V; Awschalom, David D
2015-11-01
Entanglement is a key resource for quantum computers, quantum-communication networks, and high-precision sensors. Macroscopic spin ensembles have been historically important in the development of quantum algorithms for these prospective technologies and remain strong candidates for implementing them today. This strength derives from their long-lived quantum coherence, strong signal, and ability to couple collectively to external degrees of freedom. Nonetheless, preparing ensembles of genuinely entangled spin states has required high magnetic fields and cryogenic temperatures or photochemical reactions. We demonstrate that entanglement can be realized in solid-state spin ensembles at ambient conditions. We use hybrid registers comprising of electron-nuclear spin pairs that are localized at color-center defects in a commercial SiC wafer. We optically initialize 10(3) identical registers in a 40-μm(3) volume (with [Formula: see text] fidelity) and deterministically prepare them into the maximally entangled Bell states (with 0.88 ± 0.07 fidelity). To verify entanglement, we develop a register-specific quantum-state tomography protocol. The entanglement of a macroscopic solid-state spin ensemble at ambient conditions represents an important step toward practical quantum technology.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harsij, Zeynab, E-mail: z.harsij@ph.iut.ac.ir; Mirza, Behrouz, E-mail: b.mirza@cc.iut.ac.ir
A helicity entangled tripartite state is considered in which the degree of entanglement is preserved in non-inertial frames. It is shown that Quantum Entanglement remains observer independent. As another measure of quantum correlation, Quantum Discord has been investigated. It is explicitly shown that acceleration has no effect on the degree of quantum correlation for the bipartite and tripartite helicity entangled states. Geometric Quantum Discord as a Hilbert–Schmidt distance is computed for helicity entangled states. It is shown that living in non-inertial frames does not make any influence on this distance, either. In addition, the analysis has been extended beyond singlemore » mode approximation to show that acceleration does not have any impact on the quantum features in the limit beyond the single mode. As an interesting result, while the density matrix depends on the right and left Unruh modes, the Negativity as a measure of Quantum Entanglement remains constant. Also, Quantum Discord does not change beyond single mode approximation. - Highlights: • The helicity entangled states here are observer independent in non-inertial frames. • It is explicitly shown that Quantum Discord for these states is observer independent. • Geometric Quantum Discord is also not affected by acceleration increase. • Extending to beyond single mode does not change the degree of entanglement. • Beyond single mode approximation the degree of Quantum Discord is also preserved.« less
Practical single-photon-assisted remote state preparation with non-maximally entanglement
NASA Astrophysics Data System (ADS)
Wang, Dong; Huang, Ai-Jun; Sun, Wen-Yang; Shi, Jia-Dong; Ye, Liu
2016-08-01
Remote state preparation (RSP) and joint remote state preparation (JRSP) protocols for single-photon states are investigated via linear optical elements with partially entangled states. In our scheme, by choosing two-mode instances from a polarizing beam splitter, only the sender in the communication protocol needs to prepare an ancillary single-photon and operate the entanglement preparation process in order to retrieve an arbitrary single-photon state from a photon pair in partially entangled state. In the case of JRSP, i.e., a canonical model of RSP with multi-party, we consider that the information of the desired state is split into many subsets and in prior maintained by spatially separate parties. Specifically, with the assistance of a single-photon state and a three-photon entangled state, it turns out that an arbitrary single-photon state can be jointly and remotely prepared with certain probability, which is characterized by the coefficients of both the employed entangled state and the target state. Remarkably, our protocol is readily to extend to the case for RSP and JRSP of mixed states with the all optical means. Therefore, our protocol is promising for communicating among optics-based multi-node quantum networks.
Quantum entanglement beyond Gaussian criteria
Gomes, R. M.; Salles, A.; Toscano, F.; Souto Ribeiro, P. H.; Walborn, S. P.
2009-01-01
Most of the attention given to continuous variable systems for quantum information processing has traditionally been focused on Gaussian states. However, non-Gaussianity is an essential requirement for universal quantum computation and entanglement distillation, and can improve the efficiency of other quantum information tasks. Here we report the experimental observation of genuine non-Gaussian entanglement using spatially entangled photon pairs. The quantum correlations are invisible to all second-order tests, which identify only Gaussian entanglement, and are revealed only under application of a higher-order entanglement criterion. Thus, the photons exhibit a variety of entanglement that cannot be reproduced by Gaussian states. PMID:19995963
Quantum entanglement beyond Gaussian criteria.
Gomes, R M; Salles, A; Toscano, F; Souto Ribeiro, P H; Walborn, S P
2009-12-22
Most of the attention given to continuous variable systems for quantum information processing has traditionally been focused on Gaussian states. However, non-Gaussianity is an essential requirement for universal quantum computation and entanglement distillation, and can improve the efficiency of other quantum information tasks. Here we report the experimental observation of genuine non-Gaussian entanglement using spatially entangled photon pairs. The quantum correlations are invisible to all second-order tests, which identify only Gaussian entanglement, and are revealed only under application of a higher-order entanglement criterion. Thus, the photons exhibit a variety of entanglement that cannot be reproduced by Gaussian states.
Equivalence between entanglement and the optimal fidelity of continuous variable teleportation.
Adesso, Gerardo; Illuminati, Fabrizio
2005-10-07
We devise the optimal form of Gaussian resource states enabling continuous-variable teleportation with maximal fidelity. We show that a nonclassical optimal fidelity of N-user teleportation networks is necessary and sufficient for N-party entangled Gaussian resources, yielding an estimator of multipartite entanglement. The entanglement of teleportation is equivalent to the entanglement of formation in a two-user protocol, and to the localizable entanglement in a multiuser one. Finally, we show that the continuous-variable tangle, quantifying entanglement sharing in three-mode Gaussian states, is defined operationally in terms of the optimal fidelity of a tripartite teleportation network.
General monogamy relation for the entanglement of formation in multiqubit systems.
Bai, Yan-Kui; Xu, Yuan-Fei; Wang, Z D
2014-09-05
We prove exactly that the squared entanglement of formation, which quantifies the bipartite entanglement, obeys a general monogamy inequality in an arbitrary multiqubit mixed state. Based on this kind of exotic monogamy relation, we are able to construct two sets of useful entanglement indicators: the first one can detect all genuine multiqubit entangled states even in the case of the two-qubit concurrence and n-tangles being zero, while the second one can be calculated via quantum discord and applied to multipartite entanglement dynamics. Moreover, we give a computable and nontrivial lower bound for multiqubit entanglement of formation.
Multipartite Entanglement Detection with Minimal Effort
NASA Astrophysics Data System (ADS)
Knips, Lukas; Schwemmer, Christian; Klein, Nico; Wieśniak, Marcin; Weinfurter, Harald
2016-11-01
Certifying entanglement of a multipartite state is generally considered a demanding task. Since an N qubit state is parametrized by 4N-1 real numbers, one might naively expect that the measurement effort of generic entanglement detection also scales exponentially with N . Here, we introduce a general scheme to construct efficient witnesses requiring a constant number of measurements independent of the number of qubits for states like, e.g., Greenberger-Horne-Zeilinger states, cluster states, and Dicke states. For four qubits, we apply this novel method to experimental realizations of the aforementioned states and prove genuine four-partite entanglement with two measurement settings only.
Measurement of the entanglement of two superconducting qubits via state tomography.
Steffen, Matthias; Ansmann, M; Bialczak, Radoslaw C; Katz, N; Lucero, Erik; McDermott, R; Neeley, Matthew; Weig, E M; Cleland, A N; Martinis, John M
2006-09-08
Demonstration of quantum entanglement, a key resource in quantum computation arising from a nonclassical correlation of states, requires complete measurement of all states in varying bases. By using simultaneous measurement and state tomography, we demonstrated entanglement between two solid-state qubits. Single qubit operations and capacitive coupling between two super-conducting phase qubits were used to generate a Bell-type state. Full two-qubit tomography yielded a density matrix showing an entangled state with fidelity up to 87%. Our results demonstrate a high degree of unitary control of the system, indicating that larger implementations are within reach.
NASA Astrophysics Data System (ADS)
Miranowicz, Adam; Bartkiewicz, Karol; Lambert, Neill; Chen, Yueh-Nan; Nori, Franco
2015-12-01
If a single-mode nonclassical light is combined with the vacuum on a beam splitter, then the output state is entangled. As proposed in [Phys. Rev. Lett. 94, 173602 (2005), 10.1103/PhysRevLett.94.173602], by measuring this output-state entanglement for a balanced lossless beam splitter, one can quantify the input-state nonclassicality. These measures of nonclassicality (referred to as entanglement potentials) can be based, in principle, on various entanglement measures, leading to the negativity (NP) and concurrence (CP) potentials, and the potential for the relative entropy of entanglement (REEP). We search for the maximal relative nonclassicality, which can be achieved by comparing two entanglement measures for (i) arbitrary two-qubit states and (ii) those which can be generated from a photon-number qubit via a balanced lossless beam splitter, where the qubit basis states are the vacuum and single-photon states. Surprisingly, we find that the maximal relative nonclassicality, measured by the REEP for a given value of the NP, can be increased (if NP <0.527 ) by using either a tunable beam splitter or by amplitude damping of the output state of the balanced beam splitter. We also show that the maximal relative nonclassicality, measured by the NP for a given value of the REEP, can be increased by phase damping (dephasing). Note that the entanglement itself is not increased by these losses (since they act locally), but the possible ratios of different measures are affected. Moreover, we show that partially dephased states can be more nonclassical than both pure states and completely dephased states, by comparing the NP for a given value of the REEP. Thus, one can conclude that not all standard entanglement measures can be used as entanglement potentials. Alternatively, one can infer that a single balanced lossless beam splitter is not always transferring the whole nonclassicality of its input state into the entanglement of its output modes. The application of a lossy beam splitter can solve this problem, at least for the cases analyzed in this paper.
NASA Astrophysics Data System (ADS)
Adesso, Gerardo; Illuminati, Fabrizio
2008-10-01
We investigate the structural aspects of genuine multipartite entanglement in Gaussian states of continuous variable systems. Generalizing the results of Adesso and Illuminati [Phys. Rev. Lett. 99, 150501 (2007)], we analyze whether the entanglement shared by blocks of modes distributes according to a strong monogamy law. This property, once established, allows us to quantify the genuine N -partite entanglement not encoded into 2,…,K,…,(N-1) -partite quantum correlations. Strong monogamy is numerically verified, and the explicit expression of the measure of residual genuine multipartite entanglement is analytically derived, by a recursive formula, for a subclass of Gaussian states. These are fully symmetric (permutation-invariant) states that are multipartitioned into blocks, each consisting of an arbitrarily assigned number of modes. We compute the genuine multipartite entanglement shared by the blocks of modes and investigate its scaling properties with the number and size of the blocks, the total number of modes, the global mixedness of the state, and the squeezed resources needed for state engineering. To achieve the exact computation of the block entanglement, we introduce and prove a general result of symplectic analysis: Correlations among K blocks in N -mode multisymmetric and multipartite Gaussian states, which are locally invariant under permutation of modes within each block, can be transformed by a local (with respect to the partition) unitary operation into correlations shared by K single modes, one per block, in effective nonsymmetric states where N-K modes are completely uncorrelated. Due to this theorem, the above results, such as the derivation of the explicit expression for the residual multipartite entanglement, its nonnegativity, and its scaling properties, extend to the subclass of non-symmetric Gaussian states that are obtained by the unitary localization of the multipartite entanglement of symmetric states. These findings provide strong numerical evidence that the distributed Gaussian entanglement is strongly monogamous under and possibly beyond specific symmetry constraints, and that the residual continuous-variable tangle is a proper measure of genuine multipartite entanglement for permutation-invariant Gaussian states under any multipartition of the modes.
Nonclassical features of trimodal excited coherent Greenberger - Horne - Zeilinger(GHZ) - type state
NASA Astrophysics Data System (ADS)
Merlin, J.; Ahmed, A. B. M.; Mohammed, S. Naina
2017-06-01
We examine the influence of photon excitation on each mode of the Glauber coherent GHZ type tripartite state. Concurrence is adopted as entanglement measure between bipartite entangled state. The pairwise concurrence is calculated and used as a quantifier of intermodal entanglement. The entanglement distribution among three modes is investigated using tangle as a measure and the residual entanglement is also calculated. The effect of the photon addition process on the quadrature squeezing is investigated. The higher order squeezing capacity of the photon addition process is also shown.
Entanglement of purification: from spin chains to holography
NASA Astrophysics Data System (ADS)
Nguyen, Phuc; Devakul, Trithep; Halbasch, Matthew G.; Zaletel, Michael P.; Swingle, Brian
2018-01-01
Purification is a powerful technique in quantum physics whereby a mixed quantum state is extended to a pure state on a larger system. This process is not unique, and in systems composed of many degrees of freedom, one natural purification is the one with minimal entanglement. Here we study the entropy of the minimally entangled purification, called the entanglement of purification, in three model systems: an Ising spin chain, conformal field theories holographically dual to Einstein gravity, and random stabilizer tensor networks. We conjecture values for the entanglement of purification in all these models, and we support our conjectures with a variety of numerical and analytical results. We find that such minimally entangled purifications have a number of applications, from enhancing entanglement-based tensor network methods for describing mixed states to elucidating novel aspects of the emergence of geometry from entanglement in the AdS/CFT correspondence.
Diffraction of entangled particles by light gratings
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sancho, Pedro, E-mail: psanchos@aemet.es
We analyze the diffraction regime of the Kapitza–Dirac effect for particles entangled in momentum. The detection patterns show two-particle interferences. In the single-mode case we identify a discontinuity in the set of joint detection probabilities, associated with the disconnected character of the space of non-separable states. For Gaussian multi-mode states we derive the diffraction patterns, providing an example of the dependence of the light–matter interaction on entanglement. When the particles are identical, we can explore the relation between exchange and entanglement effects. We find a complementary behavior between overlapping and Schmidt’s number. In particular, symmetric entanglement can cancel the exchangemore » effects. - Highlights: • Kapitza–Dirac diffraction of entangled particles shows multiparticle interference. • There is a discontinuity in the set of joint detection patterns of entangled states. • We find a complementary behavior between overlapping and Schmidt’s number. • Symmetric entanglement can cancel the exchange effects.« less
Entanglement distillation for quantum communication network with atomic-ensemble memories.
Li, Tao; Yang, Guo-Jian; Deng, Fu-Guo
2014-10-06
Atomic ensembles are effective memory nodes for quantum communication network due to the long coherence time and the collective enhancement effect for the nonlinear interaction between an ensemble and a photon. Here we investigate the possibility of achieving the entanglement distillation for nonlocal atomic ensembles by the input-output process of a single photon as a result of cavity quantum electrodynamics. We give an optimal entanglement concentration protocol (ECP) for two-atomic-ensemble systems in a partially entangled pure state with known parameters and an efficient ECP for the systems in an unknown partially entangled pure state with a nondestructive parity-check detector (PCD). For the systems in a mixed entangled state, we introduce an entanglement purification protocol with PCDs. These entanglement distillation protocols have high fidelity and efficiency with current experimental techniques, and they are useful for quantum communication network with atomic-ensemble memories.
NASA Astrophysics Data System (ADS)
Tang, Jing-Wu; Zhao, Guan-Xiang; He, Xiong-Hui
2011-05-01
Recently, Peng et al. [2010 Eur. Phys. J. D 58 403] proposed to teleport an arbitrary two-qubit state with a family of four-qubit entangled states, which simultaneously include the tensor product of two Bell states, linear cluster state and Dicke-class state. This paper proposes to implement their scheme in cavity quantum electrodynamics and then presents a new family of four-qubit entangled state |Ω4>1234. It simultaneously includes all the well-known four-qubit entangled states which can be used to teleport an arbitrary two-qubit state. The distinct advantage of the scheme is that it only needs a single setup to prepare the whole family of four-qubit entangled states, which will be very convenient for experimental realization. After discussing the experimental condition in detail, we show the scheme may be feasible based on present technology in cavity quantum electrodynamics.
Observation of entanglement witnesses for orbital angular momentum states
NASA Astrophysics Data System (ADS)
Agnew, M.; Leach, J.; Boyd, R. W.
2012-06-01
Entanglement witnesses provide an efficient means of determining the level of entanglement of a system using the minimum number of measurements. Here we demonstrate the observation of two-dimensional entanglement witnesses in the high-dimensional basis of orbital angular momentum (OAM). In this case, the number of potentially entangled subspaces scales as d(d - 1)/2, where d is the dimension of the space. The choice of OAM as a basis is relevant as each subspace is not necessarily maximally entangled, thus providing the necessary state for certain tests of nonlocality. The expectation value of the witness gives an estimate of the state of each two-dimensional subspace belonging to the d-dimensional Hilbert space. These measurements demonstrate the degree of entanglement and therefore the suitability of the resulting subspaces for quantum information applications.
Purification and switching protocols for dissipatively stabilized entangled qubit states
NASA Astrophysics Data System (ADS)
Hein, Sven M.; Aron, Camille; Türeci, Hakan E.
2016-06-01
Pure dephasing processes limit the fidelities achievable in driven-dissipative schemes for stabilization of entangled states of qubits. We propose a scheme which, combined with already existing entangling methods, purifies the desired entangled state by driving out of equilibrium auxiliary dissipative cavity modes coupled to the qubits. We lay out the specifics of our scheme and compute its efficiency in the particular context of two superconducting qubits in a cavity-QED architecture, where the strongly coupled auxiliary modes provided by collective cavity excitations can drive and sustain the qubits in maximally entangled Bell states with fidelities reaching 90% for experimentally accessible parameters.
Radiative processes of uniformly accelerated entangled atoms
NASA Astrophysics Data System (ADS)
Menezes, G.; Svaiter, N. F.
2016-05-01
We study radiative processes of uniformly accelerated entangled atoms, interacting with an electromagnetic field prepared in the Minkowski vacuum state. We discuss the structure of the rate of variation of the atomic energy for two atoms traveling in different hyperbolic world lines. We identify the contributions of vacuum fluctuations and radiation reaction to the generation of entanglement as well as to the decay of entangled states. Our results resemble the situation in which two inertial atoms are coupled individually to two spatially separated cavities at different temperatures. In addition, for equal accelerations we obtain that one of the maximally entangled antisymmetric Bell state is a decoherence-free state.
NASA Astrophysics Data System (ADS)
Buono, D.; Nocerino, G.; Solimeno, S.; Porzio, A.
2014-07-01
Entanglement, one of the most intriguing aspects of quantum mechanics, marks itself into different features of quantum states. For this reason different criteria can be used for verifying entanglement. In this paper we review some of the entanglement criteria casted for continuous variable states and link them to peculiar aspects of the original debate on the famous Einstein-Podolsky-Rosen (EPR) paradox. We also provide a useful expression for valuating Bell-type non-locality on Gaussian states. We also present the experimental measurement of a particular realization of the Bell operator over continuous variable entangled states produced by a sub-threshold type-II optical parametric oscillators (OPOs).
Noise effects on entanglement distribution by separable state
NASA Astrophysics Data System (ADS)
Bordbar, Najmeh Tabe; Memarzadeh, Laleh
2018-02-01
We investigate noise effects on the performance of entanglement distribution by separable state. We consider a realistic situation in which the mediating particle between two distant nodes of the network goes through a noisy channel. For a large class of noise models, we show that the average value of distributed entanglement between two parties is equal to entanglement between particular bipartite partitions of target qubits and exchange qubit in intermediate steps of the protocol. This result is valid for distributing two-qubit/qudit and three-qubit entangled states. In explicit examples of the noise family, we show that there exists a critical value of noise parameter beyond which distribution of distillable entanglement is not possible. Furthermore, we determine how this critical value increases in terms of Hilbert space dimension, when distributing d-dimensional Bell states.
Schrodinger's catapult II: entanglement between stationary and flying fields
NASA Astrophysics Data System (ADS)
Pfaff, W.; Axline, C.; Burkhart, L.; Vool, U.; Reinhold, P.; Frunzio, L.; Jiang, L.; Devoret, M.; Schoelkopf, R.
Entanglement between nodes is an elementary resource in a quantum network. An important step towards its realization is entanglement between stationary and flying states. Here we experimentally demonstrate entanglement generation between a long-lived cavity memory and traveling mode in circuit QED. A large on/off ratio and fast control over a parametric mixing process allow us to realize conversion with tunable magnitude and duration between standing and flying mode. In the case of half-conversion, we observe correlations between the standing and flying state that confirm the generation of entangled states. We show this for both single-photon and multi-photon states, paving the way for error-correctable remote entanglement. Our system could serve as an essential component in a modular architecture for error-protected quantum information processing.
Phase-Tuned Entangled State Generation between Distant Spin Qubits.
Stockill, R; Stanley, M J; Huthmacher, L; Clarke, E; Hugues, M; Miller, A J; Matthiesen, C; Le Gall, C; Atatüre, M
2017-07-07
Quantum entanglement between distant qubits is an important feature of quantum networks. Distribution of entanglement over long distances can be enabled through coherently interfacing qubit pairs via photonic channels. Here, we report the realization of optically generated quantum entanglement between electron spin qubits confined in two distant semiconductor quantum dots. The protocol relies on spin-photon entanglement in the trionic Λ system and quantum erasure of the Raman-photon path information. The measurement of a single Raman photon is used to project the spin qubits into a joint quantum state with an interferometrically stabilized and tunable relative phase. We report an average Bell-state fidelity for |ψ^{(+)}⟩ and |ψ^{(-)}⟩ states of 61.6±2.3% and a record-high entanglement generation rate of 7.3 kHz between distant qubits.
Phase-Tuned Entangled State Generation between Distant Spin Qubits
NASA Astrophysics Data System (ADS)
Stockill, R.; Stanley, M. J.; Huthmacher, L.; Clarke, E.; Hugues, M.; Miller, A. J.; Matthiesen, C.; Le Gall, C.; Atatüre, M.
2017-07-01
Quantum entanglement between distant qubits is an important feature of quantum networks. Distribution of entanglement over long distances can be enabled through coherently interfacing qubit pairs via photonic channels. Here, we report the realization of optically generated quantum entanglement between electron spin qubits confined in two distant semiconductor quantum dots. The protocol relies on spin-photon entanglement in the trionic Λ system and quantum erasure of the Raman-photon path information. The measurement of a single Raman photon is used to project the spin qubits into a joint quantum state with an interferometrically stabilized and tunable relative phase. We report an average Bell-state fidelity for |ψ(+)⟩ and |ψ(-)⟩ states of 61.6 ±2.3 % and a record-high entanglement generation rate of 7.3 kHz between distant qubits.
Preparation and measurement of three-qubit entanglement in a superconducting circuit.
Dicarlo, L; Reed, M D; Sun, L; Johnson, B R; Chow, J M; Gambetta, J M; Frunzio, L; Girvin, S M; Devoret, M H; Schoelkopf, R J
2010-09-30
Traditionally, quantum entanglement has been central to foundational discussions of quantum mechanics. The measurement of correlations between entangled particles can have results at odds with classical behaviour. These discrepancies grow exponentially with the number of entangled particles. With the ample experimental confirmation of quantum mechanical predictions, entanglement has evolved from a philosophical conundrum into a key resource for technologies such as quantum communication and computation. Although entanglement in superconducting circuits has been limited so far to two qubits, the extension of entanglement to three, eight and ten qubits has been achieved among spins, ions and photons, respectively. A key question for solid-state quantum information processing is whether an engineered system could display the multi-qubit entanglement necessary for quantum error correction, which starts with tripartite entanglement. Here, using a circuit quantum electrodynamics architecture, we demonstrate deterministic production of three-qubit Greenberger-Horne-Zeilinger (GHZ) states with fidelity of 88 per cent, measured with quantum state tomography. Several entanglement witnesses detect genuine three-qubit entanglement by violating biseparable bounds by 830 ± 80 per cent. We demonstrate the first step of basic quantum error correction, namely the encoding of a logical qubit into a manifold of GHZ-like states using a repetition code. The integration of this encoding with decoding and error-correcting steps in a feedback loop will be the next step for quantum computing with integrated circuits.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fortes, Raphael; Rigolin, Gustavo, E-mail: rigolin@ifi.unicamp.br
We push the limits of the direct use of partially pure entangled states to perform quantum teleportation by presenting several protocols in many different scenarios that achieve the optimal efficiency possible. We review and put in a single formalism the three major strategies known to date that allow one to use partially entangled states for direct quantum teleportation (no distillation strategies permitted) and compare their efficiencies in real world implementations. We show how one can improve the efficiency of many direct teleportation protocols by combining these techniques. We then develop new teleportation protocols employing multipartite partially entangled states. The threemore » techniques are also used here in order to achieve the highest efficiency possible. Finally, we prove the upper bound for the optimal success rate for protocols based on partially entangled Bell states and show that some of the protocols here developed achieve such a bound. -- Highlights: •Optimal direct teleportation protocols using directly partially entangled states. •We put in a single formalism all strategies of direct teleportation. •We extend these techniques for multipartite partially entangle states. •We give upper bounds for the optimal efficiency of these protocols.« less
Entanglement sensitivity to signal attenuation and amplification
NASA Astrophysics Data System (ADS)
Filippov, Sergey N.; Ziman, Mário
2014-07-01
We analyze general laws of continuous-variable entanglement dynamics during the deterministic attenuation and amplification of the physical signal carrying the entanglement. These processes are inevitably accompanied by noises, so we find fundamental limitations on noise intensities that destroy entanglement of Gaussian and non-Gaussian input states. The phase-insensitive amplification Φ1⊗Φ2⊗⋯ΦN with the power gain κi≥2 (≈3 dB, i =1,...,N) is shown to destroy entanglement of any N-mode Gaussian state even in the case of quantum-limited performance. In contrast, we demonstrate non-Gaussian states with the energy of a few photons such that their entanglement survives within a wide range of noises beyond quantum-limited performance for any degree of attenuation or gain. We detect entanglement preservation properties of the channel Φ1⊗Φ2, where each mode is deterministically attenuated or amplified. Gaussian states of high energy are shown to be robust to very asymmetric attenuations, whereas non-Gaussian states are at an advantage in the case of symmetric attenuation and general amplification. If Φ1=Φ2, the total noise should not exceed 1/2√κ2+1 to guarantee entanglement preservation.
Multi-Particle Interferometry Based on Double Entangled States
NASA Technical Reports Server (NTRS)
Pittman, Todd B.; Shih, Y. H.; Strekalov, D. V.; Sergienko, A. V.; Rubin, M. H.
1996-01-01
A method for producing a 4-photon entangled state based on the use of two independent pair sources is discussed. Of particular interest is that each of the pair sources produces a two-photon state which is simultaneously entangled in both polarization and space-time variables. Performing certain measurements which exploit this double entanglement provides an opportunity for verifying the recent demonstration of nonlocality by Greenberger, Horne, and Zeilinger.
Dissipative production of a maximally entangled steady state of two quantum bits.
Lin, Y; Gaebler, J P; Reiter, F; Tan, T R; Bowler, R; Sørensen, A S; Leibfried, D; Wineland, D J
2013-12-19
Entangled states are a key resource in fundamental quantum physics, quantum cryptography and quantum computation. Introduction of controlled unitary processes--quantum gates--to a quantum system has so far been the most widely used method to create entanglement deterministically. These processes require high-fidelity state preparation and minimization of the decoherence that inevitably arises from coupling between the system and the environment, and imperfect control of the system parameters. Here we combine unitary processes with engineered dissipation to deterministically produce and stabilize an approximate Bell state of two trapped-ion quantum bits (qubits), independent of their initial states. Compared with previous studies that involved dissipative entanglement of atomic ensembles or the application of sequences of multiple time-dependent gates to trapped ions, we implement our combined process using trapped-ion qubits in a continuous time-independent fashion (analogous to optical pumping of atomic states). By continuously driving the system towards the steady state, entanglement is stabilized even in the presence of experimental noise and decoherence. Our demonstration of an entangled steady state of two qubits represents a step towards dissipative state engineering, dissipative quantum computation and dissipative phase transitions. Following this approach, engineered coupling to the environment may be applied to a broad range of experimental systems to achieve desired quantum dynamics or steady states. Indeed, concurrently with this work, an entangled steady state of two superconducting qubits was demonstrated using dissipation.
Mode entanglement of Gaussian fermionic states
NASA Astrophysics Data System (ADS)
Spee, C.; Schwaiger, K.; Giedke, G.; Kraus, B.
2018-04-01
We investigate the entanglement of n -mode n -partite Gaussian fermionic states (GFS). First, we identify a reasonable definition of separability for GFS and derive a standard form for mixed states, to which any state can be mapped via Gaussian local unitaries (GLU). As the standard form is unique, two GFS are equivalent under GLU if and only if their standard forms coincide. Then, we investigate the important class of local operations assisted by classical communication (LOCC). These are central in entanglement theory as they allow one to partially order the entanglement contained in states. We show, however, that there are no nontrivial Gaussian LOCC (GLOCC) among pure n -partite (fully entangled) states. That is, any such GLOCC transformation can also be accomplished via GLU. To obtain further insight into the entanglement properties of such GFS, we investigate the richer class of Gaussian stochastic local operations assisted by classical communication (SLOCC). We characterize Gaussian SLOCC classes of pure n -mode n -partite states and derive them explicitly for few-mode states. Furthermore, we consider certain fermionic LOCC and show how to identify the maximally entangled set of pure n -mode n -partite GFS, i.e., the minimal set of states having the property that any other state can be obtained from one state inside this set via fermionic LOCC. We generalize these findings also to the pure m -mode n -partite (for m >n ) case.
Bounds on negativity for the success of quantum teleportation of qutrit-qubit system
NASA Astrophysics Data System (ADS)
K G, Paulson; Satyanarayana, S. V. M.
In the original protocol Bennet et.al., used maximally entangled pure states as quantum channel to teleport unknown states between distant observers with maximum fidelity. Noisy quantum channel can be used for imperfect teleportation. Both degree of entanglement and mixedness decide the success of teleportation in the case of mixed entangled quantum channel. . In one of our previous works, we discussed the existence of lower bound below which ,state is useless for quantum teleportation in the measure of entanglement for a fixed value of fidelity, and this lower bound decreases as rank increases for two-qubit system. We use negativity as the measure of entanglement. . In this work, we consider a qutrit-qubit system as quantum channel for teleportation, and study how the negativity and rank affect the teleportation fidelity for a class of states. We construct a new class of mixed entangled qutrit-qubit states as quantum channel, which is a convex sum of orthonormal maximally entangled and separable pure states. The classical limit of fidelity below which state is useless for quantum teleportation is fixed as 2/3. We numerically generate 30000 states and estimate the value of negativity below which each rank mixed state is useless for quantum teleportation. We also construct rank dependant boundary states by choosing appropriate eigen values, which act as upper bound for respective rank states.
NASA Astrophysics Data System (ADS)
Yamasaki, Hayata; Soeda, Akihito; Murao, Mio
2017-09-01
We introduce and analyze graph-associated entanglement cost, a generalization of the entanglement cost of quantum states to multipartite settings. We identify a necessary and sufficient condition for any multipartite entangled state to be constructible when quantum communication between the multiple parties is restricted to a quantum network represented by a tree. The condition for exact state construction is expressed in terms of the Schmidt ranks of the state defined with respect to edges of the tree. We also study approximate state construction and provide a second-order asymptotic analysis.
Determination of continuous variable entanglement by purity measurements.
Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio
2004-02-27
We classify the entanglement of two-mode Gaussian states according to their degree of total and partial mixedness. We derive exact bounds that determine maximally and minimally entangled states for fixed global and marginal purities. This characterization allows for an experimentally reliable estimate of continuous variable entanglement based on measurements of purity.
NASA Astrophysics Data System (ADS)
Boche, H.; Janßen, G.
2014-08-01
We consider one-way quantum state merging and entanglement distillation under compound and arbitrarily varying source models. Regarding quantum compound sources, where the source is memoryless, but the source state an unknown member of a certain set of density matrices, we continue investigations begun in the work of Bjelaković et al. ["Universal quantum state merging," J. Math. Phys. 54, 032204 (2013)] and determine the classical as well as entanglement cost of state merging. We further investigate quantum state merging and entanglement distillation protocols for arbitrarily varying quantum sources (AVQS). In the AVQS model, the source state is assumed to vary in an arbitrary manner for each source output due to environmental fluctuations or adversarial manipulation. We determine the one-way entanglement distillation capacity for AVQS, where we invoke the famous robustification and elimination techniques introduced by Ahlswede. Regarding quantum state merging for AVQS we show by example that the robustification and elimination based approach generally leads to suboptimal entanglement as well as classical communication rates.
Cao, Cong; Wang, Chuan; He, Ling-Yan; Zhang, Ru
2013-02-25
We investigate an atomic entanglement purification protocol based on the coherent state input-output process by working in low-Q cavity in the atom-cavity intermediate coupling region. The information of entangled states are encoded in three-level configured single atoms confined in separated one-side optical micro-cavities. Using the coherent state input-output process, we design a two-qubit parity check module (PCM), which allows the quantum nondemolition measurement for the atomic qubits, and show its use for remote parities to distill a high-fidelity atomic entangled ensemble from an initial mixed state ensemble nonlocally. The proposed scheme can further be used for unknown atomic states entanglement concentration. Also by exploiting the PCM, we describe a modified scheme for atomic entanglement concentration by introducing ancillary single atoms. As the coherent state input-output process is robust and scalable in realistic applications, and the detection in the PCM is based on the intensity of outgoing coherent state, the present protocols may be widely used in large-scaled and solid-based quantum repeater and quantum information processing.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adesso, Gerardo; CNR-INFM Coherentia, Naples; CNISM, Unita di Salerno, Salerno
2007-10-15
We present a geometric approach to the characterization of separability and entanglement in pure Gaussian states of an arbitrary number of modes. The analysis is performed adapting to continuous variables a formalism based on single subsystem unitary transformations that has been recently introduced to characterize separability and entanglement in pure states of qubits and qutrits [S. M. Giampaolo and F. Illuminati, Phys. Rev. A 76, 042301 (2007)]. In analogy with the finite-dimensional case, we demonstrate that the 1xM bipartite entanglement of a multimode pure Gaussian state can be quantified by the minimum squared Euclidean distance between the state itself andmore » the set of states obtained by transforming it via suitable local symplectic (unitary) operations. This minimum distance, corresponding to a, uniquely determined, extremal local operation, defines an entanglement monotone equivalent to the entropy of entanglement, and amenable to direct experimental measurement with linear optical schemes.« less
Lougovski, P.; Uskov, D. B.
2015-08-04
Entanglement can effectively increase communication channel capacity as evidenced by dense coding that predicts a capacity gain of 1 bit when compared to entanglement-free protocols. However, dense coding relies on Bell states and when implemented using photons the capacity gain is bounded by 0.585 bits due to one's inability to discriminate between the four optically encoded Bell states. In this research we study the following question: Are there alternative entanglement-assisted protocols that rely only on linear optics, coincidence photon counting, and separable single-photon input states and at the same time provide a greater capacity gain than 0.585 bits? In thismore » study, we show that besides the Bell states there is a class of bipartite four-mode two-photon entangled states that facilitate an increase in channel capacity. We also discuss how the proposed scheme can be generalized to the case of two-photon N-mode entangled states for N=6,8.« less
Evanescent-field-modulated two-qubit entanglement in an emitters-plasmon coupled system.
Zhang, Fan; Ren, Juanjuan; Duan, Xueke; Zhao, Chen; Gong, Qihuang; Gu, Ying
2018-06-13
Scalable integrated quantum information networks calls for controllable entanglement modulation at subwavelength scale. To reduce laser disturbance among adjacent nanostructures, here we theoretically demonstrate two-qubit entanglement modulated by an evanescent field of a dielectric nanowire in an emitter-AgNP coupled system. This coupled system is considered as a nano-cavity system embedded in an evanescent vacuum. Through varying the amplitude of evanescent field, the concurrence of steady-state entanglement can be modified from 0 to 0.75. Because the interaction between emitters and the nanowire is much weaker than that inside the coupled system, the range of modulation for two-qubit entanglement is insensitive to their distance. The evanescent field controlled entangled state engineering provides the possibility to avoid optical crosstalk for on-chip steady-state entanglement. © 2018 IOP Publishing Ltd.
Disentanglement in bipartite continuous-variable systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barbosa, F. A. S.; Coelho, A. S.; Nussenzveig, P.
2011-11-15
Entanglement in bipartite continuous-variable systems is investigated in the presence of partial losses such as those introduced by a realistic quantum communication channel, e.g., by propagation in an optical fiber. We find that entanglement can vanish completely for partial losses, in a situation reminiscent of so-called entanglement sudden death. Even states with extreme squeezing may become separable after propagation in lossy channels. Having in mind the potential applications of such entangled light beams to optical communications, we investigate the conditions under which entanglement can survive for all partial losses. Different loss scenarios are examined, and we derive criteria to testmore » the robustness of entangled states. These criteria are necessary and sufficient for Gaussian states. Our study provides a framework to investigate the robustness of continuous-variable entanglement in more complex multipartite systems.« less
Wormhole and entanglement (non-)detection in the ER=EPR correspondence
Bao, Ning; Pollack, Jason; Remmen, Grant N.
2015-11-19
The recently proposed ER=EPR correspondence postulates the existence of wormholes (Einstein-Rosen bridges) between entangled states (such as EPR pairs). Entanglement is famously known to be unobservable in quantum mechanics, in that there exists no observable (or, equivalently, projector) that can accurately pick out whether a generic state is entangled. Many features of the geometry of spacetime, however, are observables, so one might worry that the presence or absence of a wormhole could identify an entangled state in ER=EPR, violating quantum mechanics, specifically, the property of state-independence of observables. In this note, we establish that this cannot occur: there is nomore » measurement in general relativity that unambiguously detects the presence of a generic wormhole geometry. Furthermore, this statement is the ER=EPR dual of the undetectability of entanglement.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ming, Yang; Wu, Zi-jian; Xu, Fei, E-mail: feixu@nju.edu.cn
The nonmaximally entangled state is a special kind of entangled state, which has important applications in quantum information processing. It has been generated in quantum circuits based on bulk optical elements. However, corresponding schemes in integrated quantum circuits have been rarely considered. In this Letter, we propose an effective solution for this problem. An electro-optically tunable nonmaximally mode-entangled photon state is generated in an on-chip domain-engineered lithium niobate (LN) waveguide. Spontaneous parametric down-conversion and electro-optic interaction are effectively combined through suitable domain design to transform the entangled state into our desired formation. Moreover, this is a flexible approach to entanglementmore » architectures. Other kinds of reconfigurable entanglements are also achievable through this method. LN provides a very promising platform for future quantum circuit integration.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gheorghiu, Vlad; Yu Li; Cohen, Scott M.
We investigate the conditions under which a set S of pure bipartite quantum states on a DxD system can be locally cloned deterministically by separable operations, when at least one of the states is full Schmidt rank. We allow for the possibility of cloning using a resource state that is less than maximally entangled. Our results include that: (i) all states in S must be full Schmidt rank and equally entangled under the G-concurrence measure, and (ii) the set S can be extended to a larger clonable set generated by a finite group G of order |G|=N, the number ofmore » states in the larger set. It is then shown that any local cloning apparatus is capable of cloning a number of states that divides D exactly. We provide a complete solution for two central problems in local cloning, giving necessary and sufficient conditions for (i) when a set of maximally entangled states can be locally cloned, valid for all D; and (ii) local cloning of entangled qubit states with nonvanishing entanglement. In both of these cases, we show that a maximally entangled resource is necessary and sufficient, and the states must be related to each other by local unitary 'shift' operations. These shifts are determined by the group structure, so need not be simple cyclic permutations. Assuming this shifted form and partially entangled states, then in D=3 we show that a maximally entangled resource is again necessary and sufficient, while for higher-dimensional systems, we find that the resource state must be strictly more entangled than the states in S. All of our necessary conditions for separable operations are also necessary conditions for local operations and classical communication (LOCC), since the latter is a proper subset of the former. In fact, all our results hold for LOCC, as our sufficient conditions are demonstrated for LOCC, directly.« less
Cluster-type entangled coherent states: Generation and application
DOE Office of Scientific and Technical Information (OSTI.GOV)
An, Nguyen Ba; Kim, Jaewan; Korea Institute for Advanced Study, 207-43 Cheongryangni 2-dong, Dongdaemun-gu, Seoul 130-722
2009-10-15
We consider a type of (M+N)-mode entangled coherent states and propose a simple deterministic scheme to generate these states that can fly freely in space. We then exploit such free-flying states to teleport certain kinds of superpositions of multimode coherent states. We also address the issue of manipulating size and type of entangled coherent states by means of linear optics elements only.
Cluster-type entangled coherent states: Generation and application
NASA Astrophysics Data System (ADS)
An, Nguyen Ba; Kim, Jaewan
2009-10-01
We consider a type of (M+N) -mode entangled coherent states and propose a simple deterministic scheme to generate these states that can fly freely in space. We then exploit such free-flying states to teleport certain kinds of superpositions of multimode coherent states. We also address the issue of manipulating size and type of entangled coherent states by means of linear optics elements only.
Limits on entanglement from rotationally invariant scattering of spin systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harshman, N. L.
2006-06-15
This paper investigates the dynamical generation of entanglement in scattering systems, in particular two spin systems that interact via rotationally invariant scattering. The spin degrees of freedom of the in states are assumed to be in unentangled, pure states, as defined by the entropy of entanglement. Because of the restriction of rotationally symmetric interactions, perfectly entangling S matrices, i.e., those that lead to a maximally entangled out state, only exist for a certain class of separable in states. Using Clebsch-Gordan coefficients for the rotation group, the scattering phases that determine the S matrix are determined for the case of spinmore » systems with {sigma}=1/2, 1, and 3/2.« less
Comparison of qubit and qutrit like entangled squeezed and coherent states of light
NASA Astrophysics Data System (ADS)
Najarbashi, G.; Mirzaei, S.
2016-10-01
Squeezed state of light is one of the important subjects in quantum optics which is generated by optical nonlinear interactions. In this paper, we especially focus on qubit like entangled squeezed states (ESS's) generated by beam splitters, phase-shifter and cross Kerr nonlinearity. Moreover the Wigner function of two-mode qubit and qutrit like ESS are investigated. We will show that the distances of peaks of Wigner functions for two-mode ESS are entanglement sensitive and can be a witness for entanglement. Like the qubit cases, monogamy inequality is fulfilled for qutrit like ESS. These trends are compared with those obtained for qubit and qutrit like entangled coherent states (ECS).
NASA Astrophysics Data System (ADS)
Harsij, Zeynab; Mirza, Behrouz
2014-12-01
A helicity entangled tripartite state is considered in which the degree of entanglement is preserved in non-inertial frames. It is shown that Quantum Entanglement remains observer independent. As another measure of quantum correlation, Quantum Discord has been investigated. It is explicitly shown that acceleration has no effect on the degree of quantum correlation for the bipartite and tripartite helicity entangled states. Geometric Quantum Discord as a Hilbert-Schmidt distance is computed for helicity entangled states. It is shown that living in non-inertial frames does not make any influence on this distance, either. In addition, the analysis has been extended beyond single mode approximation to show that acceleration does not have any impact on the quantum features in the limit beyond the single mode. As an interesting result, while the density matrix depends on the right and left Unruh modes, the Negativity as a measure of Quantum Entanglement remains constant. Also, Quantum Discord does not change beyond single mode approximation.
NASA Astrophysics Data System (ADS)
Heo, Jino; Kang, Min-Sung; Hong, Chang-Ho; Yang, Hyeon; Choi, Seong-Gon
2017-01-01
We propose quantum information processing schemes based on cavity quantum electrodynamics (QED) for quantum communication. First, to generate entangled states (Bell and Greenberger-Horne-Zeilinger [GHZ] states) between flying photons and three-level atoms inside optical cavities, we utilize a controlled phase flip (CPF) gate that can be implemented via cavity QED). Subsequently, we present an entanglement swapping scheme that can be realized using single-qubit measurements and CPF gates via optical cavities. These schemes can be directly applied to construct an entanglement channel for a communication system between two users. Consequently, it is possible for the trust center, having quantum nodes, to accomplish the linked channel (entanglement channel) between the two separate long-distance users via the distribution of Bell states and entanglement swapping. Furthermore, in our schemes, the main physical component is the CPF gate between the photons and the three-level atoms in cavity QED, which is feasible in practice. Thus, our schemes can be experimentally realized with current technology.
Spatial entanglement of nonvacuum Gaussian states
NASA Astrophysics Data System (ADS)
Kiałka, Filip; Ahmadi, Mehdi; Dragan, Andrzej
2016-06-01
The vacuum state of a relativistic quantum field contains entanglement between regions separated by spacelike intervals. Such spatial entanglement can be revealed using an operational method introduced in [M. Rodriguez-Vazquez, M. del Rey, H. Westman, and J. Leon, Ann. Phys. (N.Y.) 351, 112 (2014), E. G. Brown, M. del Rey, H. Westman, J. Leon, and A. Dragan, Phys. Rev. D 91, 016005 (2015)]. In this approach, a cavity is instantaneously divided into halves by an introduction of an extra perfect mirror. Causal separation of the two regions of the cavity reveals nonlocal spatial correlations present in the field, which can be quantified by measuring particles generated in the process. We use this method to study spatial entanglement properties of nonvacuum Gaussian field states. In particular, we show how to enhance the amount of harvested spatial entanglement by an appropriate choice of the initial state of the field in the cavity. We find a counterintuitive influence of the initial entanglement between cavity modes on the spatial entanglement which is revealed by dividing the cavity in half.
Renormalizing Entanglement Distillation.
Waeldchen, Stephan; Gertis, Janina; Campbell, Earl T; Eisert, Jens
2016-01-15
Entanglement distillation refers to the task of transforming a collection of weakly entangled pairs into fewer highly entangled ones. It is a core ingredient in quantum repeater protocols, which are needed to transmit entanglement over arbitrary distances in order to realize quantum key distribution schemes. Usually, it is assumed that the initial entangled pairs are identically and independently distributed and are uncorrelated with each other, an assumption that might not be reasonable at all in any entanglement generation process involving memory channels. Here, we introduce a framework that captures entanglement distillation in the presence of natural correlations arising from memory channels. Conceptually, we bring together ideas from condensed-matter physics-ideas from renormalization and matrix-product states and operators-with those of local entanglement manipulation, Markov chain mixing, and quantum error correction. We identify meaningful parameter regions for which we prove convergence to maximally entangled states, arising as the fixed points of a matrix-product operator renormalization flow.
Renormalizing Entanglement Distillation
NASA Astrophysics Data System (ADS)
Waeldchen, Stephan; Gertis, Janina; Campbell, Earl T.; Eisert, Jens
2016-01-01
Entanglement distillation refers to the task of transforming a collection of weakly entangled pairs into fewer highly entangled ones. It is a core ingredient in quantum repeater protocols, which are needed to transmit entanglement over arbitrary distances in order to realize quantum key distribution schemes. Usually, it is assumed that the initial entangled pairs are identically and independently distributed and are uncorrelated with each other, an assumption that might not be reasonable at all in any entanglement generation process involving memory channels. Here, we introduce a framework that captures entanglement distillation in the presence of natural correlations arising from memory channels. Conceptually, we bring together ideas from condensed-matter physics—ideas from renormalization and matrix-product states and operators—with those of local entanglement manipulation, Markov chain mixing, and quantum error correction. We identify meaningful parameter regions for which we prove convergence to maximally entangled states, arising as the fixed points of a matrix-product operator renormalization flow.
Generating multi-photon W-like states for perfect quantum teleportation and superdense coding
NASA Astrophysics Data System (ADS)
Li, Ke; Kong, Fan-Zhen; Yang, Ming; Ozaydin, Fatih; Yang, Qing; Cao, Zhuo-Liang
2016-08-01
An interesting aspect of multipartite entanglement is that for perfect teleportation and superdense coding, not the maximally entangled W states but a special class of non-maximally entangled W-like states are required. Therefore, efficient preparation of such W-like states is of great importance in quantum communications, which has not been studied as much as the preparation of W states. In this paper, we propose a simple optical scheme for efficient preparation of large-scale polarization-based entangled W-like states by fusing two W-like states or expanding a W-like state with an ancilla photon. Our scheme can also generate large-scale W states by fusing or expanding W or even W-like states. The cost analysis shows that in generating large-scale W states, the fusion mechanism achieves a higher efficiency with non-maximally entangled W-like states than maximally entangled W states. Our scheme can also start fusion or expansion with Bell states, and it is composed of a polarization-dependent beam splitter, two polarizing beam splitters and photon detectors. Requiring no ancilla photon or controlled gate to operate, our scheme can be realized with the current photonics technology and we believe it enable advances in quantum teleportation and superdense coding in multipartite settings.
Extremal entanglement and mixedness in continuous variable systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio
2004-08-01
We investigate the relationship between mixedness and entanglement for Gaussian states of continuous variable systems. We introduce generalized entropies based on Schatten p norms to quantify the mixedness of a state and derive their explicit expressions in terms of symplectic spectra. We compare the hierarchies of mixedness provided by such measures with the one provided by the purity (defined as tr {rho}{sup 2} for the state {rho}) for generic n-mode states. We then review the analysis proving the existence of both maximally and minimally entangled states at given global and marginal purities, with the entanglement quantified by the logarithmic negativity.more » Based on these results, we extend such an analysis to generalized entropies, introducing and fully characterizing maximally and minimally entangled states for given global and local generalized entropies. We compare the different roles played by the purity and by the generalized p entropies in quantifying the entanglement and the mixedness of continuous variable systems. We introduce the concept of average logarithmic negativity, showing that it allows a reliable quantitative estimate of continuous variable entanglement by direct measurements of global and marginal generalized p entropies.« less
Quantum entanglement at ambient conditions in a macroscopic solid-state spin ensemble
Klimov, Paul V.; Falk, Abram L.; Christle, David J.; Dobrovitski, Viatcheslav V.; Awschalom, David D.
2015-01-01
Entanglement is a key resource for quantum computers, quantum-communication networks, and high-precision sensors. Macroscopic spin ensembles have been historically important in the development of quantum algorithms for these prospective technologies and remain strong candidates for implementing them today. This strength derives from their long-lived quantum coherence, strong signal, and ability to couple collectively to external degrees of freedom. Nonetheless, preparing ensembles of genuinely entangled spin states has required high magnetic fields and cryogenic temperatures or photochemical reactions. We demonstrate that entanglement can be realized in solid-state spin ensembles at ambient conditions. We use hybrid registers comprising of electron-nuclear spin pairs that are localized at color-center defects in a commercial SiC wafer. We optically initialize 103 identical registers in a 40-μm3 volume (with 0.95−0.07+0.05 fidelity) and deterministically prepare them into the maximally entangled Bell states (with 0.88 ± 0.07 fidelity). To verify entanglement, we develop a register-specific quantum-state tomography protocol. The entanglement of a macroscopic solid-state spin ensemble at ambient conditions represents an important step toward practical quantum technology. PMID:26702444
DOE Office of Scientific and Technical Information (OSTI.GOV)
Apel, V.M.; Curilef, S.; Plastino, A.R., E-mail: arplastino@unnoba.edu.ar
We explore the entanglement-related features exhibited by the dynamics of a composite quantum system consisting of a particle and an apparatus (here referred to as the “pointer”) that measures the position of the particle. We consider measurements of finite duration, and also the limit case of instantaneous measurements. We investigate the time evolution of the quantum entanglement between the particle and the pointer, with special emphasis on the final entanglement associated with the limit case of an impulsive interaction. We consider entanglement indicators based on the expectation values of an appropriate family of observables, and also an entanglement measure computedmore » on particular exact analytical solutions of the particle–pointer Schrödinger equation. The general behavior exhibited by the entanglement indicators is consistent with that shown by the entanglement measure evaluated on particular analytical solutions of the Schrödinger equation. In the limit of instantaneous measurements the system’s entanglement dynamics corresponds to that of an ideal quantum measurement process. On the contrary, we show that the entanglement evolution corresponding to measurements of finite duration departs in important ways from the behavior associated with ideal measurements. In particular, highly localized initial states of the particle lead to highly entangled final states of the particle–pointer system. This indicates that the above mentioned initial states, in spite of having an arbitrarily small position uncertainty, are not left unchanged by a finite-duration position measurement process. - Highlights: • We explore entanglement features of a quantum position measurement. • We consider instantaneous and finite-duration measurements. • We evaluate the entanglement of exact time-dependent particle–pointer states.« less
Faithful Squashed Entanglement
NASA Astrophysics Data System (ADS)
Brandão, Fernando G. S. L.; Christandl, Matthias; Yard, Jon
2011-09-01
Squashed entanglement is a measure for the entanglement of bipartite quantum states. In this paper we present a lower bound for squashed entanglement in terms of a distance to the set of separable states. This implies that squashed entanglement is faithful, that is, it is strictly positive if and only if the state is entangled. We derive the lower bound on squashed entanglement from a lower bound on the quantum conditional mutual information which is used to define squashed entanglement. The quantum conditional mutual information corresponds to the amount by which strong subadditivity of von Neumann entropy fails to be saturated. Our result therefore sheds light on the structure of states that almost satisfy strong subadditivity with equality. The proof is based on two recent results from quantum information theory: the operational interpretation of the quantum mutual information as the optimal rate for state redistribution and the interpretation of the regularised relative entropy of entanglement as an error exponent in hypothesis testing. The distance to the set of separable states is measured in terms of the LOCC norm, an operationally motivated norm giving the optimal probability of distinguishing two bipartite quantum states, each shared by two parties, using any protocol formed by local quantum operations and classical communication (LOCC) between the parties. A similar result for the Frobenius or Euclidean norm follows as an immediate consequence. The result has two applications in complexity theory. The first application is a quasipolynomial-time algorithm solving the weak membership problem for the set of separable states in LOCC or Euclidean norm. The second application concerns quantum Merlin-Arthur games. Here we show that multiple provers are not more powerful than a single prover when the verifier is restricted to LOCC operations thereby providing a new characterisation of the complexity class QMA.
Universal Features of Left-Right Entanglement Entropy.
Das, Diptarka; Datta, Shouvik
2015-09-25
We show the presence of universal features in the entanglement entropy of regularized boundary states for (1+1)D conformal field theories on a circle when the reduced density matrix is obtained by tracing over right- or left-moving modes. We derive a general formula for the left-right entanglement entropy in terms of the central charge and the modular S matrix of the theory. When the state is chosen to be an Ishibashi state, this measure of entanglement is shown to precisely reproduce the spatial entanglement entropy of a (2+1)D topological quantum field theory. We explicitly evaluate the left-right entanglement entropies for the Ising model, the tricritical Ising model and the su[over ^](2)_{k} Wess-Zumino-Witten model as examples.
System and method for clock synchronization and position determination using entangled photon pairs
NASA Technical Reports Server (NTRS)
Shih, Yanhua (Inventor)
2010-01-01
A system and method for clock synchronization and position determination using entangled photon pairs is provided. The present invention relies on the measurement of the second order correlation function of entangled states. Photons from an entangled photon source travel one-way to the clocks to be synchronized. By analyzing photon registration time histories generated at each clock location, the entangled states allow for high accuracy clock synchronization as well as high accuracy position determination.
Purified discord and multipartite entanglement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brown, Eric G.; Webster, Eric J.; Martín-Martínez, Eduardo, E-mail: emmfis@gmail.com
2013-10-15
We study bipartite quantum discord as a manifestation of a multipartite entanglement structure in the tripartite purified system. In particular, we find that bipartite quantum discord requires the presence of both bipartite and tripartite entanglement in the purification. This allows one to understand the asymmetry of quantum discord, D(A,B)≠D(B,A) in terms of entanglement monogamy. As instructive special cases, we study discord for qubits and Gaussian states in detail. As a result of this we shed new light on a counterintuitive property of Gaussian states: the presence of classical correlations necessarily requires the presence of quantum correlations. Finally, our results alsomore » shed new light on a protocol for remote activation of entanglement by a third party. -- Highlights: •Bipartite quantum discord as a manifestation of multipartite entanglement. •Relevance of quantum discord as a utilizable resource for quantum info. tasks. •Quantum discord manifests itself in entanglement in the purified state. •Relation between asymmetry of discord and entanglement monogamy. •Protocol for remote activation of entanglement by a third party.« less
Continuous-variable entanglement distillation of non-Gaussian mixed states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dong Ruifang; Lassen, Mikael; Department of Physics, Technical University of Denmark, Building 309, DK-2800 Lyngby
2010-07-15
Many different quantum-information communication protocols such as teleportation, dense coding, and entanglement-based quantum key distribution are based on the faithful transmission of entanglement between distant location in an optical network. The distribution of entanglement in such a network is, however, hampered by loss and noise that is inherent in all practical quantum channels. Thus, to enable faithful transmission one must resort to the protocol of entanglement distillation. In this paper we present a detailed theoretical analysis and an experimental realization of continuous variable entanglement distillation in a channel that is inflicted by different kinds of non-Gaussian noise. The continuous variablemore » entangled states are generated by exploiting the third order nonlinearity in optical fibers, and the states are sent through a free-space laboratory channel in which the losses are altered to simulate a free-space atmospheric channel with varying losses. We use linear optical components, homodyne measurements, and classical communication to distill the entanglement, and we find that by using this method the entanglement can be probabilistically increased for some specific non-Gaussian noise channels.« less
Projection of two biphoton qutrits onto a maximally entangled state.
Halevy, A; Megidish, E; Shacham, T; Dovrat, L; Eisenberg, H S
2011-04-01
Bell state measurements, in which two quantum bits are projected onto a maximally entangled state, are an essential component of quantum information science. We propose and experimentally demonstrate the projection of two quantum systems with three states (qutrits) onto a generalized maximally entangled state. Each qutrit is represented by the polarization of a pair of indistinguishable photons-a biphoton. The projection is a joint measurement on both biphotons using standard linear optics elements. This demonstration enables the realization of quantum information protocols with qutrits, such as teleportation and entanglement swapping. © 2011 American Physical Society
Distillation of photon entanglement using a plasmonic metamaterial
Asano, Motoki; Bechu, Muriel; Tame, Mark; Kaya Özdemir, Şahin; Ikuta, Rikizo; Güney, Durdu Ö.; Yamamoto, Takashi; Yang, Lan; Wegener, Martin; Imoto, Nobuyuki
2015-01-01
Plasmonics is a rapidly emerging platform for quantum state engineering with the potential for building ultra-compact and hybrid optoelectronic devices. Recent experiments have shown that despite the presence of decoherence and loss, photon statistics and entanglement can be preserved in single plasmonic systems. This preserving ability should carry over to plasmonic metamaterials, whose properties are the result of many individual plasmonic systems acting collectively, and can be used to engineer optical states of light. Here, we report an experimental demonstration of quantum state filtering, also known as entanglement distillation, using a metamaterial. We show that the metamaterial can be used to distill highly entangled states from less entangled states. As the metamaterial can be integrated with other optical components this work opens up the intriguing possibility of incorporating plasmonic metamaterials in on-chip quantum state engineering tasks. PMID:26670790
Distillation of photon entanglement using a plasmonic metamaterial.
Asano, Motoki; Bechu, Muriel; Tame, Mark; Kaya Özdemir, Şahin; Ikuta, Rikizo; Güney, Durdu Ö; Yamamoto, Takashi; Yang, Lan; Wegener, Martin; Imoto, Nobuyuki
2015-12-16
Plasmonics is a rapidly emerging platform for quantum state engineering with the potential for building ultra-compact and hybrid optoelectronic devices. Recent experiments have shown that despite the presence of decoherence and loss, photon statistics and entanglement can be preserved in single plasmonic systems. This preserving ability should carry over to plasmonic metamaterials, whose properties are the result of many individual plasmonic systems acting collectively, and can be used to engineer optical states of light. Here, we report an experimental demonstration of quantum state filtering, also known as entanglement distillation, using a metamaterial. We show that the metamaterial can be used to distill highly entangled states from less entangled states. As the metamaterial can be integrated with other optical components this work opens up the intriguing possibility of incorporating plasmonic metamaterials in on-chip quantum state engineering tasks.
Testing the structure of multipartite entanglement with Bell inequalities.
Brunner, Nicolas; Sharam, James; Vértesi, Tamás
2012-03-16
We show that the rich structure of multipartite entanglement can be tested following a device-independent approach. Specifically we present Bell inequalities for distinguishing between different types of multipartite entanglement, without placing any assumptions on the measurement devices used in the protocol, in contrast with usual entanglement witnesses. We first address the case of three qubits and present Bell inequalities that can be violated by W states but not by Greenberger-Horne-Zeilinger states, and vice versa. Next, we devise 'subcorrelation Bell inequalities' for any number of parties, which can provably not be violated by a broad class of multipartite entangled states (generalizations of Greenberger-Horne-Zeilinger states), but for which violations can be obtained for W states. Our results give insight into the nonlocality of W states. The simplicity and robustness of our tests make them appealing for experiments.
Holographic spin networks from tensor network states
NASA Astrophysics Data System (ADS)
Singh, Sukhwinder; McMahon, Nathan A.; Brennen, Gavin K.
2018-01-01
In the holographic correspondence of quantum gravity, a global on-site symmetry at the boundary generally translates to a local gauge symmetry in the bulk. We describe one way how the global boundary on-site symmetries can be gauged within the formalism of the multiscale renormalization ansatz (MERA), in light of the ongoing discussion between tensor networks and holography. We describe how to "lift" the MERA representation of the ground state of a generic one dimensional (1D) local Hamiltonian, which has a global on-site symmetry, to a dual quantum state of a 2D "bulk" lattice on which the symmetry appears gauged. The 2D bulk state decomposes in terms of spin network states, which label a basis in the gauge-invariant sector of the bulk lattice. This decomposition is instrumental to obtain expectation values of gauge-invariant observables in the bulk, and also reveals that the bulk state is generally entangled between the gauge and the remaining ("gravitational") bulk degrees of freedom that are not fixed by the symmetry. We present numerical results for ground states of several 1D critical spin chains to illustrate that the bulk entanglement potentially depends on the central charge of the underlying conformal field theory. We also discuss the possibility of emergent topological order in the bulk using a simple example, and also of emergent symmetries in the nongauge (gravitational) sector in the bulk. More broadly, our holographic model translates the MERA, a tensor network state, to a superposition of spin network states, as they appear in lattice gauge theories in one higher dimension.
Drop-in compatible entanglement for optical-fiber networks.
Hall, Matthew A; Altepeter, Joseph B; Kumar, Prem
2009-08-17
A growing number of quantum communication protocols require entanglement distribution among remote parties, which is best accomplished by exploiting the mature technology and extensive infrastructure of low-loss optical fiber. For this reason, a practical source of entangled photons must be drop-in compatible with optical fiber networks. Here we demonstrate such a source for the first time, in which the nonlinearity of standard single-mode fiber is utilized to yield entangled photon pairs in the 1310-nm O-band. Using an ultra-stable design, we produce polarization entanglement with 98.0% +/- 0.5% fidelity to a maximally entangled state as characterized via coincidence-basis tomography. To demonstrate the source's drop-in capability, we transmit one photon from each entangled pair through a telecommunications-grade optical amplifier set to boost classical 1550-nm (C-band) communication signals. We verify that the photon pairs experience no measurable decoherence upon passing through the active amplifier (the output state's fidelity with a maximally entangled state is 98.4% +/- 1.4%). (c) 2009 Optical Society of America
Not all pure entangled states are useful for sub-shot-noise interferometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hyllus, Philipp; Smerzi, Augusto; Guehne, Otfried
2010-07-15
We investigate the connection between the shot-noise limit in linear interferometers and particle entanglement. In particular, we ask whether sub-shot-noise sensitivity can be reached with all pure entangled input states of N particles if they can be optimized with local operations. Results on the optimal local transformations allow us to show that for N=2 all pure entangled states can be made useful for sub-shot-noise interferometry while for N>2 this is not the case. We completely classify the useful entangled states available in a bosonic two-mode interferometer. We apply our results to several states, in particular to multiparticle singlet states andmore » to cluster states. The latter turn out to be practically useless for sub-shot-noise interferometry. Our results are based on the Cramer-Rao bound and the Fisher information.« less
Photonic multipartite entanglement conversion using nonlocal operations
NASA Astrophysics Data System (ADS)
Tashima, T.; Tame, M. S.; Özdemir, Ş. K.; Nori, F.; Koashi, M.; Weinfurter, H.
2016-11-01
We propose a simple setup for the conversion of multipartite entangled states in a quantum network with restricted access. The scheme uses nonlocal operations to enable the preparation of states that are inequivalent under local operations and classical communication, but most importantly does not require full access to the states. It is based on a flexible linear optical conversion gate that uses photons, which are ideally suited for distributed quantum computation and quantum communication in extended networks. In order to show the basic working principles of the gate, we focus on converting a four-qubit entangled cluster state to other locally inequivalent four-qubit states, such as the Greenberger-Horne-Zeilinger and symmetric Dicke states. We also show how the gate can be incorporated into extended graph state networks and can be used to generate variable entanglement and quantum correlations without entanglement but nonvanishing quantum discord.
Deterministic delivery of remote entanglement on a quantum network.
Humphreys, Peter C; Kalb, Norbert; Morits, Jaco P J; Schouten, Raymond N; Vermeulen, Raymond F L; Twitchen, Daniel J; Markham, Matthew; Hanson, Ronald
2018-06-01
Large-scale quantum networks promise to enable secure communication, distributed quantum computing, enhanced sensing and fundamental tests of quantum mechanics through the distribution of entanglement across nodes 1-7 . Moving beyond current two-node networks 8-13 requires the rate of entanglement generation between nodes to exceed the decoherence (loss) rate of the entanglement. If this criterion is met, intrinsically probabilistic entangling protocols can be used to provide deterministic remote entanglement at pre-specified times. Here we demonstrate this using diamond spin qubit nodes separated by two metres. We realize a fully heralded single-photon entanglement protocol that achieves entangling rates of up to 39 hertz, three orders of magnitude higher than previously demonstrated two-photon protocols on this platform 14 . At the same time, we suppress the decoherence rate of remote-entangled states to five hertz through dynamical decoupling. By combining these results with efficient charge-state control and mitigation of spectral diffusion, we deterministically deliver a fresh remote state with an average entanglement fidelity of more than 0.5 at every clock cycle of about 100 milliseconds without any pre- or post-selection. These results demonstrate a key building block for extended quantum networks and open the door to entanglement distribution across multiple remote nodes.
Activating distillation with an infinitesimal amount of bound entanglement.
Vollbrecht, Karl Gerd H; Wolf, Michael M
2002-06-17
We show that bipartite quantum states of any dimension, which do not have a positive partial transpose (NPPT), become 1-distillable when one adds an infinitesimal amount of bound entanglement. To this end we investigate the activation properties of a new class of symmetric bound entangled states of full rank. It is shown that in this set there exist universal activator states capable of activating the distillation of any NPPT state. The result shows that even a small amount of bound entanglement can be useful for quantum information purposes.
Pedagogical introduction to the entropy of entanglement for Gaussian states
NASA Astrophysics Data System (ADS)
Demarie, Tommaso F.
2018-05-01
In quantum information theory, the entropy of entanglement is a standard measure of bipartite entanglement between two partitions of a composite system. For a particular class of continuous variable quantum states, the Gaussian states, the entropy of entanglement can be expressed elegantly in terms of symplectic eigenvalues, elements that characterise a Gaussian state and depend on the correlations of the canonical variables. We give a rigorous step-by-step derivation of this result and provide physical insights, together with an example that can be useful in practice for calculations.
Two-photon absorption by spectrally shaped entangled photons
NASA Astrophysics Data System (ADS)
Oka, Hisaki
2018-03-01
We theoretically investigate two-photon excitation by spectrally shaped entangled photons with energy anticorrelation in terms of how the real excitation of an intermediate state affects two-photon absorption by entangled photons. Spectral holes are introduced in the entangled photons around the energy levels of an intermediate state so that two-step excitation via the real excitation of the intermediated state can be suppressed. Using a three-level atomic system as an example, we show that the spectral holes well suppress the real excitation of the intermediate state and recover two-photon absorption via a virtual state. Furthermore, for a short pulse close to a monocycle, we show that the excitation efficiency by the spectrally shaped entangled photons can be enhanced a thousand times as large as that by uncorrelated photons.
Entanglement concentration for two-mode Gaussian states in non-inertial frames
NASA Astrophysics Data System (ADS)
Di Noia, Maurizio; Giraldi, Filippo; Petruccione, Francesco
2017-04-01
Entanglement creation and concentration by means of a beam splitter (BS) is analysed for a generic two-mode bipartite Gaussian state in a relativistic framework. The total correlations, the purity and the entanglement in terms of logarithmic negativity are analytically studied for observers in an inertial state and in a non-inertial state of uniform acceleration. The dependence of entanglement on the BS transmissivity due to the Unruh effect is analysed in the case when one or both observers undergo uniform acceleration. Due to the Unruh effect, depending on the initial Gaussian state parameters and observed accelerations, the best condition for entanglement generation limited to the two modes of the observers in their regions is not always a balanced beam splitter, as it is for the inertial case.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adesso, Gerardo; CNR-INFM Coherentia , Naples; Grup d'Informacio Quantica, Universitat Autonoma de Barcelona, E-08193 Bellaterra
2007-08-15
Quantum mechanics imposes 'monogamy' constraints on the sharing of entanglement. We show that, despite these limitations, entanglement can be fully 'promiscuous', i.e., simultaneously present in unlimited two-body and many-body forms in states living in an infinite-dimensional Hilbert space. Monogamy just bounds the divergence rate of the various entanglement contributions. This is demonstrated in simple families of N-mode (N{>=}4) Gaussian states of light fields or atomic ensembles, which therefore enable infinitely more freedom in the distribution of information, as opposed to systems of individual qubits. Such a finding is of importance for the quantification, understanding, and potential exploitation of shared quantummore » correlations in continuous variable systems. We discuss how promiscuity gradually arises when considering simple families of discrete variable states, with increasing Hilbert space dimension towards the continuous variable limit. Such models are somehow analogous to Gaussian states with asymptotically diverging, but finite, squeezing. In this respect, we find that non-Gaussian states (which in general are more entangled than Gaussian states) exhibit also the interesting feature that their entanglement is more shareable: in the non-Gaussian multipartite arena, unlimited promiscuity can be already achieved among three entangled parties, while this is impossible for Gaussian, even infinitely squeezed states.« less
NASA Astrophysics Data System (ADS)
Deng, Li; Chen, Ai-Xi; Zhang, Jian-Song
2011-11-01
We provide a scheme with which the transfer of the entangled state and the entanglement swapping can be realized in a system of neutral atoms via the Rydberg blockade. Our idea can be extended to teleport an unknown atomic state. According to the latest theoretical research of the Rydberg excitation and experimental reports of the Rydberg blockade effect in quantum information processing, we discuss the experimental feasibility of our scheme.
Fisher metric, geometric entanglement, and spin networks
NASA Astrophysics Data System (ADS)
Chirco, Goffredo; Mele, Fabio M.; Oriti, Daniele; Vitale, Patrizia
2018-02-01
Starting from recent results on the geometric formulation of quantum mechanics, we propose a new information geometric characterization of entanglement for spin network states in the context of quantum gravity. For the simple case of a single-link fixed graph (Wilson line), we detail the construction of a Riemannian Fisher metric tensor and a symplectic structure on the graph Hilbert space, showing how these encode the whole information about separability and entanglement. In particular, the Fisher metric defines an entanglement monotone which provides a notion of distance among states in the Hilbert space. In the maximally entangled gauge-invariant case, the entanglement monotone is proportional to a power of the area of the surface dual to the link thus supporting a connection between entanglement and the (simplicial) geometric properties of spin network states. We further extend such analysis to the study of nonlocal correlations between two nonadjacent regions of a generic spin network graph characterized by the bipartite unfolding of an intertwiner state. Our analysis confirms the interpretation of spin network bonds as a result of entanglement and to regard the same spin network graph as an information graph, whose connectivity encodes, both at the local and nonlocal level, the quantum correlations among its parts. This gives a further connection between entanglement and geometry.
Entanglement as minimal discord over state extensions
NASA Astrophysics Data System (ADS)
Luo, Shunlong
2016-09-01
The characterization and quantification of quantum correlations, which play an instrumental role in exploring and exploiting the quantum world, have been extensively and intensively studied in the past few decades. Of special prominence and significance are the concepts of entanglement and discord, which are usually regarded as very distinctive quantum correlations, with the latter going beyond the former. In this work we establish a direct and natural link between entanglement and discord via state extensions and reveal that entanglement is actually the intrinsic discord, by which we mean that entanglement is the irreducible residue of discord viewed from ambient spaces. Our approach, taking into account the contextuality of a quantum state and being of a global nature, stands in sharp contrast to the local operations and classical communication paradigm of entanglement, which focuses on the state itself via a local approach. Furthermore, we introduce a figure of merit which, on the one hand, captures the essence of entanglement, i.e., nonlocality and quantumness of correlations, and, on the other hand, leads to a quantitative decomposition of total correlations into classical correlations, dissonance, and entanglement. This demystifies the meaning of entanglement from the perspective of quantum measurements and provides a unified framework for the interplay of various correlations in terms of quantum measurements and mutual information.
High-efficient entanglement distillation from photon loss and decoherence.
Wang, Tie-Jun; Wang, Chuan
2015-11-30
We illustrate an entanglement distillation protocol (EDP) for a mixed photon-ensemble which composed of four kinds of entangled states and vacuum states. Exploiting the linear optics and local entanglement resource (four-qubit entangled GHZ state), we design the nondemolition parity-checking and qubit amplifying (PCQA) setup for photonic polarization degree of freedom which are the key device of our scheme. With the PCQA setup, a high-fidelity entangled photon-pair system can be achieved against the transmission losses and the decoherence in noisy channels. And in the available purification range for our EDP, the fidelity of this ensemble can be improved to the maximal value through iterated operations. Compared to the conventional entanglement purification schemes, our scheme largely reduces the initialization requirement of the distilled mixed quantum system, and overcomes the difficulties posed by inherent channel losses during photon transmission. All these advantages make this scheme more useful in the practical applications of long-distance quantum communication.
Quantum Entanglement and Chemical Reactivity.
Molina-Espíritu, M; Esquivel, R O; López-Rosa, S; Dehesa, J S
2015-11-10
The water molecule and a hydrogenic abstraction reaction are used to explore in detail some quantum entanglement features of chemical interest. We illustrate that the energetic and quantum-information approaches are necessary for a full understanding of both the geometry of the quantum probability density of molecular systems and the evolution of a chemical reaction. The energy and entanglement hypersurfaces and contour maps of these two models show different phenomena. The energy ones reveal the well-known stable geometry of the models, whereas the entanglement ones grasp the chemical capability to transform from one state system to a new one. In the water molecule the chemical reactivity is witnessed through quantum entanglement as a local minimum indicating the bond cleavage in the dissociation process of the molecule. Finally, quantum entanglement is also useful as a chemical reactivity descriptor by detecting the transition state along the intrinsic reaction path in the hypersurface of the hydrogenic abstraction reaction corresponding to a maximally entangled state.
Preservation of Gaussian state entanglement in a quantum beat laser by reservoir engineering
NASA Astrophysics Data System (ADS)
Qurban, Misbah; Islam, Rameez ul; Ge, Guo-Qin; Ikram, Manzoor
2018-04-01
Quantum beat lasers have been considered as sources of entangled radiation in continuous variables such as Gaussian states. In order to preserve entanglement and to minimize entanglement degradation due to the system’s interaction with the surrounding environment, we propose to engineer environment modes through insertion of another system in between the laser resonator and the environment. This makes the environment surrounding the two-mode laser a structured reservoir. It not only enhances the entanglement among two modes of the laser but also preserves the entanglement for sufficiently longer times, a stringent requirement for quantum information processing tasks.
Novel quantum phase transition from bounded to extensive entanglement
Zhang, Zhao; Ahmadain, Amr
2017-01-01
The nature of entanglement in many-body systems is a focus of intense research with the observation that entanglement holds interesting information about quantum correlations in large systems and their relation to phase transitions. In particular, it is well known that although generic, many-body states have large, extensive entropy, ground states of reasonable local Hamiltonians carry much smaller entropy, often associated with the boundary length through the so-called area law. Here we introduce a continuous family of frustration-free Hamiltonians with exactly solvable ground states and uncover a remarkable quantum phase transition whereby the entanglement scaling changes from area law into extensively large entropy. This transition shows that entanglement in many-body systems may be enhanced under special circumstances with a potential for generating “useful” entanglement for the purpose of quantum computing and that the full implications of locality and its restrictions on possible ground states may hold further surprises. PMID:28461464
Novel quantum phase transition from bounded to extensive entanglement.
Zhang, Zhao; Ahmadain, Amr; Klich, Israel
2017-05-16
The nature of entanglement in many-body systems is a focus of intense research with the observation that entanglement holds interesting information about quantum correlations in large systems and their relation to phase transitions. In particular, it is well known that although generic, many-body states have large, extensive entropy, ground states of reasonable local Hamiltonians carry much smaller entropy, often associated with the boundary length through the so-called area law. Here we introduce a continuous family of frustration-free Hamiltonians with exactly solvable ground states and uncover a remarkable quantum phase transition whereby the entanglement scaling changes from area law into extensively large entropy. This transition shows that entanglement in many-body systems may be enhanced under special circumstances with a potential for generating "useful" entanglement for the purpose of quantum computing and that the full implications of locality and its restrictions on possible ground states may hold further surprises.
Entanglement of coherent superposition of photon-subtraction squeezed vacuum
NASA Astrophysics Data System (ADS)
Liu, Cun-Jin; Ye, Wei; Zhou, Wei-Dong; Zhang, Hao-Liang; Huang, Jie-Hui; Hu, Li-Yun
2017-10-01
A new kind of non-Gaussian quantum state is introduced by applying nonlocal coherent superposition ( τa + sb) m of photon subtraction to two single-mode squeezed vacuum states, and the properties of entanglement are investigated according to the degree of entanglement and the average fidelity of quantum teleportation. The state can be seen as a single-variable Hermitian polynomial excited squeezed vacuum state, and its normalization factor is related to the Legendre polynomial. It is shown that, for τ = s, the maximum fidelity can be achieved, even over the classical limit (1/2), only for even-order operation m and equivalent squeezing parameters in a certain region. However, the maximum entanglement can be achieved for squeezing parameters with a π phase difference. These indicate that the optimal realizations of fidelity and entanglement could be different from one another. In addition, the parameter τ/ s has an obvious effect on entanglement and fidelity.
Resource-Efficient Measurement-Device-Independent Entanglement Witness
Verbanis, E.; Martin, A.; Rosset, D.; ...
2016-05-09
Imperfections in experimental measurement schemes can lead to falsely identifying, or over estimating, entanglement in a quantum system. A recent solution to this is to define schemes that are robust to measurement imperfections—measurement-device-independent entanglement witness (MDI-EW). This approach can be adapted to witness all entangled qubit states for a wide range of physical systems and does not depend on detection efficiencies or classical communication between devices. In this paper, we extend the theory to remove the necessity of prior knowledge about the two-qubit states to be witnessed. Moreover, we tested this model via a novel experimental implementation for MDI-EW thatmore » significantly reduces the experimental complexity. Finally, by applying it to a bipartite Werner state, we demonstrate the robustness of this approach against noise by witnessing entanglement down to an entangled state fraction close to 0.4.« less
Baur, M; Fedorov, A; Steffen, L; Filipp, S; da Silva, M P; Wallraff, A
2012-01-27
Teleportation of a quantum state may be used for distributing entanglement between distant qubits in quantum communication and for quantum computation. Here we demonstrate the implementation of a teleportation protocol, up to the single-shot measurement step, with superconducting qubits coupled to a microwave resonator. Using full quantum state tomography and evaluating an entanglement witness, we show that the protocol generates a genuine tripartite entangled state of all three qubits. Calculating the projection of the measured density matrix onto the basis states of two qubits allows us to reconstruct the teleported state. Repeating this procedure for a complete set of input states we find an average output state fidelity of 86%.
NASA Astrophysics Data System (ADS)
Chen, Hao; Kong, Chao; Hai, Wenhua
2018-06-01
We investigate quantum dynamics of a two-level ion trapped in the Lamb-Dicke regime of a δ -kicked optical lattice, based on the exact generalized coherent states rotated by a π / 2 pulse of Ramsey type experiment. The spatiotemporal evolutions of the spin-motion entangled states in different parameter regions are illustrated, and the parameter regions of different degrees of quantum stability described by the quantum fidelity are found. Time evolutions of the probability for the ion being in different pseudospin states reveal that the ultrafast entanglement generation and population transfers of the system can be analytically controlled by managing the laser pulses. The probability in an initially disentangled state shows periodic collapses (entanglement) and revivals (de-entanglement). Reduction of the stability degree results in enlarging the period of de-entanglement, while the instability and potential chaos will cause the sustained entanglement. The results could be justified experimentally in the existing setups and may be useful in engineering quantum dynamics for quantum information processing.
NASA Astrophysics Data System (ADS)
Huber, Daniel; Reindl, Marcus; Aberl, Johannes; Rastelli, Armando; Trotta, Rinaldo
2018-07-01
More than 80 years have passed since the first publication on entangled quantum states. Over this period, the concept of spookily interacting quantum states became an emerging field of science. After various experiments proving the existence of such non-classical states, visionary ideas were put forward to exploit entanglement in quantum information science and technology. These novel concepts have not yet come out of the experimental stage, mostly because of the lack of suitable, deterministic sources of entangled quantum states. Among many systems under investigation, semiconductor quantum dots are particularly appealing emitters of on-demand, single polarization-entangled photon pairs. While it was originally believed that quantum dots must exhibit a limited degree of entanglement related to decoherence effects typical of the solid-state, recent studies have invalidated this preconception. We review the relevant experiments which have led to these important discoveries and discuss the remaining challenges for the anticipated quantum technologies.
Einstein-Podolsky-Rosen entanglement and steering in two-well Bose-Einstein-condensate ground states
NASA Astrophysics Data System (ADS)
He, Q. Y.; Drummond, P. D.; Olsen, M. K.; Reid, M. D.
2012-08-01
We consider how to generate and detect Einstein-Podolsky-Rosen (EPR) entanglement and the steering paradox between groups of atoms in two separated potential wells in a Bose-Einstein condensate. We present experimental criteria for this form of entanglement and propose experimental strategies for detecting entanglement using two- or four-mode ground states. These approaches use spatial and/or internal modes. We also present higher-order criteria that act as signatures to detect the multiparticle entanglement present in this system. We point out the difference between spatial entanglement using separated detectors and other types of entanglement that do not require spatial separation. The four-mode approach with two spatial and two internal modes results in an entanglement signature with spatially separated detectors, conceptually similar to the original EPR paradox.
Entanglement polygon inequality in qubit systems
NASA Astrophysics Data System (ADS)
Qian, Xiao-Feng; Alonso, Miguel A.; Eberly, J. H.
2018-06-01
We prove a set of tight entanglement inequalities for arbitrary N-qubit pure states. By focusing on all bi-partite marginal entanglements between each single qubit and its remaining partners, we show that the inequalities provide an upper bound for each marginal entanglement, while the known monogamy relation establishes the lower bound. The restrictions and sharing properties associated with the inequalities are further analyzed with a geometric polytope approach, and examples of three-qubit GHZ-class and W-class entangled states are presented to illustrate the results.
Experimental Estimation of Entanglement at the Quantum Limit
NASA Astrophysics Data System (ADS)
Brida, Giorgio; Degiovanni, Ivo Pietro; Florio, Angela; Genovese, Marco; Giorda, Paolo; Meda, Alice; Paris, Matteo G. A.; Shurupov, Alexander
2010-03-01
Entanglement is the central resource of quantum information processing and the precise characterization of entangled states is a crucial issue for the development of quantum technologies. This leads to the necessity of a precise, experimental feasible measure of entanglement. Nevertheless, such measurements are limited both from experimental uncertainties and intrinsic quantum bounds. Here we present an experiment where the amount of entanglement of a family of two-qubit mixed photon states is estimated with the ultimate precision allowed by quantum mechanics.
Entangled states in quantum mechanics
NASA Astrophysics Data System (ADS)
Ruža, Jānis
2010-01-01
In some circles of quantum physicists, a view is maintained that the nonseparability of quantum systems-i.e., the entanglement-is a characteristic feature of quantum mechanics. According to this view, the entanglement plays a crucial role in the solution of quantum measurement problem, the origin of the “classicality” from the quantum physics, the explanation of the EPR paradox by a nonlocal character of the quantum world. Besides, the entanglement is regarded as a cornerstone of such modern disciplines as quantum computation, quantum cryptography, quantum information, etc. At the same time, entangled states are well known and widely used in various physics areas. In particular, this notion is widely used in nuclear, atomic, molecular, solid state physics, in scattering and decay theories as well as in other disciplines, where one has to deal with many-body quantum systems. One of the methods, how to construct the basis states of a composite many-body quantum system, is the so-called genealogical decomposition method. Genealogical decomposition allows one to construct recurrently by particle number the basis states of a composite quantum system from the basis states of its forming subsystems. These coupled states have a structure typical for entangled states. If a composite system is stable, the internal structure of its forming basis states does not manifest itself in measurements. However, if a composite system is unstable and decays onto its forming subsystems, then the measurables are the quantum numbers, associated with these subsystems. In such a case, the entangled state has a dynamical origin, determined by the Hamiltonian of the corresponding decay process. Possible correlations between the quantum numbers of resulting subsystems are determined by the symmetries-conservation laws of corresponding dynamical variables, and not by the quantum entanglement feature.
Heralded entanglement of two remote atoms
NASA Astrophysics Data System (ADS)
Krug, Michael; Hofmann, Julian; Ortegel, Norbert; Gerard, Lea; Redeker, Kai; Henkel, Florian; Rosenfeld, Wenjamin; Weber, Markus; Weinfurter, Harald
2012-06-01
Entanglement between atomic quantum memories at remote locations will be a key resource for future applications in quantum communication. One possibility to generate such entanglement over large distances is entanglement swapping starting from two quantum memories each entangled with a photon. The photons can be transported to a Bell-state measurement where after the atomic quantum memories are projected onto an entangled state. We have set up two independently operated single atom experiments separated by 20 m. Via a spontaneous decay process each quantum memory, in our case a single Rb-87 atom, emits a single photon whose polarization is entangled with the atomic spin. The photons one emitted from each atom are collected into single-mode optical fibers guided to a non-polarizing 50-50 beam-splitter and detected by avalanche photodetectors. Bunching of indistinguishable photons allows to perform a Bell-state measurement on the photons. Conditioned on the registration of particular two-photon coincidences the spin states of both atoms are measured. The observed correlations clearly prove the entanglement of the two atoms. This is a first step towards creating a basic node of a quantum network as well as a key prerequisite for a future loophole-free test of Bell's inequality.
Cosmological implications of quantum entanglement in the multiverse
NASA Astrophysics Data System (ADS)
Kanno, Sugumi
2015-12-01
We explore the cosmological implications of quantum entanglement between two causally disconnected universes in the multiverse. We first consider two causally separated de Sitter spaces with a state which is initially entangled. We derive the reduced density matrix of our universe and compute the spectrum of vacuum fluctuations. We then consider the same system with an initially non-entangled state. We find that due to quantum interference scale dependent modulations may enter the spectrum for the case of initially non-entangled state. This gives rise to the possibility that the existence of causally disconnected universes may be experimentally tested by analyzing correlators in detail.
Entanglement and quantum state geometry of a spin system with all-range Ising-type interaction
NASA Astrophysics Data System (ADS)
Kuzmak, A. R.
2018-04-01
The evolution of an N spin-1/2 system with all-range Ising-type interaction is considered. For this system we study the entanglement of one spin with the rest spins. It is shown that the entanglement depends on the number of spins and the initial state. Also, the geometry of the manifold, which contains entangled states, is obtained. For this case we find the dependence of entanglement on the scalar curvature of the manifold and examine it for different numbers of spins in the system. Finally we show that the transverse magnetic field leads to a change in the manifold topology.
NASA Astrophysics Data System (ADS)
Adesso, Gerardo; Serafini, Alessio; Illuminati, Fabrizio
2006-03-01
We present a complete analysis of the multipartite entanglement of three-mode Gaussian states of continuous-variable systems. We derive standard forms which characterize the covariance matrix of pure and mixed three-mode Gaussian states up to local unitary operations, showing that the local entropies of pure Gaussian states are bound to fulfill a relationship which is stricter than the general Araki-Lieb inequality. Quantum correlations can be quantified by a proper convex roof extension of the squared logarithmic negativity, the continuous-variable tangle, or contangle. We review and elucidate in detail the proof that in multimode Gaussian states the contangle satisfies a monogamy inequality constraint [G. Adesso and F. Illuminati, New J. Phys8, 15 (2006)]. The residual contangle, emerging from the monogamy inequality, is an entanglement monotone under Gaussian local operations and classical communications and defines a measure of genuine tripartite entanglements. We determine the analytical expression of the residual contangle for arbitrary pure three-mode Gaussian states and study in detail the distribution of quantum correlations in such states. This analysis yields that pure, symmetric states allow for a promiscuous entanglement sharing, having both maximum tripartite entanglement and maximum couplewise entanglement between any pair of modes. We thus name these states GHZ/W states of continuous-variable systems because they are simultaneous continuous-variable counterparts of both the GHZ and the W states of three qubits. We finally consider the effect of decoherence on three-mode Gaussian states, studying the decay of the residual contangle. The GHZ/W states are shown to be maximally robust against losses and thermal noise.
Teleportation with insurance of an entangled atomic state via cavity decay
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chimczak, Grzegorz; Tanas, Ryszard; Miranowicz, Adam
2005-03-01
We propose a scheme to teleport an entangled state of two {lambda}-type three-level atoms via photons. The teleportation protocol involves the local redundant encoding protecting the initial entangled state and allowing for repeating the detection until quantum information transfer is successful. We also show how to manipulate a state of many {lambda}-type atoms trapped in a cavity.
Quantum entanglement of local operators in conformal field theories.
Nozaki, Masahiro; Numasawa, Tokiro; Takayanagi, Tadashi
2014-03-21
We introduce a series of quantities which characterize a given local operator in any conformal field theory from the viewpoint of quantum entanglement. It is defined by the increased amount of (Rényi) entanglement entropy at late time for an excited state defined by acting the local operator on the vacuum. We consider a conformal field theory on an infinite space and take the subsystem in the definition of the entanglement entropy to be its half. We calculate these quantities for a free massless scalar field theory in two, four and six dimensions. We find that these results are interpreted in terms of quantum entanglement of a finite number of states, including Einstein-Podolsky-Rosen states. They agree with a heuristic picture of propagations of entangled particles.
Quantum-entanglement storage and extraction in quantum network node
NASA Astrophysics Data System (ADS)
Shan, Zhuoyu; Zhang, Yong
Quantum computing and quantum communication have become the most popular research topic. Nitrogen-vacancy (NV) centers in diamond have been shown the great advantage of implementing quantum information processing. The generation of entanglement between NV centers represents a fundamental prerequisite for all quantum information technologies. In this paper, we propose a scheme to realize the high-fidelity storage and extraction of quantum entanglement information based on the NV centers at room temperature. We store the entangled information of a pair of entangled photons in the Bell state into the nuclear spins of two NV centers, which can make these two NV centers entangled. And then we illuminate how to extract the entangled information from NV centers to prepare on-demand entangled states for optical quantum information processing. The strategy of engineering entanglement demonstrated here maybe pave the way towards a NV center-based quantum network.
Two-Photon Quantum Entanglement from Type-II Spontaneous Parametric Down-Conversion
NASA Astrophysics Data System (ADS)
Pittman, Todd Butler
The concept of two (or more) particle entanglement lies at the heart of many fascinating questions concerning the foundations of quantum mechanics. The counterintuitive nonlocal behavior of entangled states led Einstein, Podolsky, and Rosen (EPR) to ask their famous 1935 question, "Can quantum mechanical description of reality be considered complete?". Although the debate has been raging on for more than 60 years, there is still no absolutely conclusive answer to this question. For if entangled states exist and can be observed, then accepting quantum mechanics as a complete theory requires a drastic overhaul of one's physical intuition with regards to the common sense notions of locality and reality put forth by EPR. Contained herein are the results of research investigating various non-classical features of the two-photon entangled states produced in Type-II Spontaneous Parametric Down -Conversion (SPDC). Through a series of experiments we have manifest the nonlocal nature of the quantum mechanical "two-photon effective wavefunction" (or Biphoton) realized by certain photon-counting coincidence measurements performed on these states. In particular, we examine a special double entanglement, in which the states are seen to be simultaneously entangled in both spin and space-time variables. The observed phenomena based on this double entanglement lead to many interesting results which defy classical explanation, but are well described within the framework of quantum mechanics. The implications provide a unique perspective concerning the nature of the photon, and the concept of quantum entanglement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lougovski, P.; Uskov, D. B.
Entanglement can effectively increase communication channel capacity as evidenced by dense coding that predicts a capacity gain of 1 bit when compared to entanglement-free protocols. However, dense coding relies on Bell states and when implemented using photons the capacity gain is bounded by 0.585 bits due to one's inability to discriminate between the four optically encoded Bell states. In this research we study the following question: Are there alternative entanglement-assisted protocols that rely only on linear optics, coincidence photon counting, and separable single-photon input states and at the same time provide a greater capacity gain than 0.585 bits? In thismore » study, we show that besides the Bell states there is a class of bipartite four-mode two-photon entangled states that facilitate an increase in channel capacity. We also discuss how the proposed scheme can be generalized to the case of two-photon N-mode entangled states for N=6,8.« less
Effect of two-qutrit entanglement on quantum speed limit time of a bipartite V-type open system
DOE Office of Scientific and Technical Information (OSTI.GOV)
Behzadi, N., E-mail: n.behzadi@tabrizu.ac.ir; Ahansaz, B.; Ektesabi, A.
In the present paper, quantum speed limit (QSL) time of a bipartite V-type three-level atomic system under the effect of two-qutrit entanglement is investigated. Each party interacts with own independent reservoir. By considering two local unitarily equivalent Werner states and the Horodecki PPT state, as initial states, the QSL time is evaluated for each of them in the respective entangled regions. It is counterintuitively observed that the effect of entanglement on the QSL time driven from each of the initial Werner states are completely different when the degree of non-Markovianity is considerable. In addition, it is interesting that the effectmore » of entanglement of the non-equivalent Horodecki state on the calculated QSL time displays an intermediate behavior relative to the cases obtained for the Werner states.« less
Generation and applications of an ultrahigh-fidelity four-photon Greenberger-Horne-Zeilinger state.
Zhang, Chao; Huang, Yun-Feng; Zhang, Cheng-Jie; Wang, Jian; Liu, Bi-Heng; Li, Chuan-Feng; Guo, Guang-Can
2016-11-28
High-quality entangled photon pairs generated via spontaneous parametric down-conversion have made great contributions to the modern quantum information science and the fundamental tests of quantum mechanics. However, the quality of the entangled states decreases sharply when moving from biphoton to multiphoton experiments, mainly due to the lack of interactions between photons. Here, for the first time, we generate a four-photon Greenberger-Horne-Zeilinger state with a fidelity of 98%, which is even comparable to the best fidelity of biphoton entangled states. Thus, it enables us to demonstrate an ultrahigh-fidelity entanglement swapping-the key ingredient in various quantum information tasks. Our results push the fidelity of multiphoton entanglement generation to a new level and would be useful in some demanding tasks, e.g., we successfully demonstrate the genuine multipartite nonlocality of the observed state in the nonsignaling scenario by violating a novel Hardy-like inequality, which requires very high state-fidelity.
Maximally multipartite entangled states
NASA Astrophysics Data System (ADS)
Facchi, Paolo; Florio, Giuseppe; Parisi, Giorgio; Pascazio, Saverio
2008-06-01
We introduce the notion of maximally multipartite entangled states of n qubits as a generalization of the bipartite case. These pure states have a bipartite entanglement that does not depend on the bipartition and is maximal for all possible bipartitions. They are solutions of a minimization problem. Examples for small n are investigated, both analytically and numerically.
NASA Astrophysics Data System (ADS)
Ren, Ji-Gang; Yang, Bin; Yi, Zhen-Huan; Zhou, Fei; Chen, Kai; Peng, Cheng-Zhi; Pan, Jian-Wei
2009-08-01
Faithful long-distance quantum teleportation necessitates prior entanglement distribution between two communicated locations. The particle carrying on the unknown quantum information is then combined with one particle of the entangled states for Bell-state measurements, which leads to a transfer of the original quantum information onto the other particle of the entangled states. However in most of the implemented teleportation experiments nowadays, the Bell-state measurements are performed even before successful distribution of entanglement. This leads to an instant collapse of the quantum state for the transmitted particle, which is actually a single-particle transmission thereafter. Thus the true distance for quantum teleportation is, in fact, only in a level of meters. In the present experiment we design a novel scheme which has overcome this limit by utilizing fiber as quantum memory. A complete quantum teleportation is achieved upon successful entanglement distribution over 967 meters in public free space. Active feed-forward control techniques are developed for real-time transfer of quantum information. The overall experimental fidelities for teleported states are better than 89.6%, which signify high-quality teleportation.
NASA Astrophysics Data System (ADS)
Najarbashi, G.; Mirzaei, S.
2016-03-01
Multi-mode entangled coherent states are important resources for linear optics quantum computation and teleportation. Here we introduce the generalized balanced N-mode coherent states which recast in the multi-qudit case. The necessary and sufficient condition for bi-separability of such balanced N-mode coherent states is found. We particularly focus on pure and mixed multi-qubit and multi-qutrit like states and examine the degree of bipartite as well as tripartite entanglement using the concurrence measure. Unlike the N-qubit case, it is shown that there are qutrit states violating monogamy inequality. Using parity, displacement operator and beam splitters, we will propose a scheme for generating balanced N-mode entangled coherent states for even number of terms in superposition.
NASA Astrophysics Data System (ADS)
Chakrabarti, R.; Yogesh, V.
2016-04-01
We study the evolution of the hybrid entangled states in a bipartite (ultra) strongly coupled qubit-oscillator system. Using the generalized rotating wave approximation the reduced density matrices of the qubit and the oscillator are obtained. The reduced density matrix of the oscillator yields the phase space quasi probability distributions such as the diagonal P-representation, the Wigner W-distribution and the Husimi Q-function. In the strong coupling regime the Q-function evolves to uniformly separated macroscopically distinct Gaussian peaks representing ‘kitten’ states at certain specified times that depend on multiple time scales present in the interacting system. The ultrastrong coupling strength of the interaction triggers appearance of a large number of modes that quickly develop a randomization of their phase relationships. A stochastic averaging of the dynamical quantities sets in, and leads to the decoherence of the system. The delocalization in the phase space of the oscillator is studied by using the Wehrl entropy. The negativity of the W-distribution reflects the departure of the oscillator from the classical states, and allows us to study the underlying differences between various information-theoretic measures such as the Wehrl entropy and the Wigner entropy. Other features of nonclassicality such as the existence of the squeezed states and appearance of negative values of the Mandel parameter are realized during the course of evolution of the bipartite system. In the parametric regime studied here these properties do not survive in the time-averaged limit.
Tunable ion-photon entanglement in an optical cavity.
Stute, A; Casabone, B; Schindler, P; Monz, T; Schmidt, P O; Brandstätter, B; Northup, T E; Blatt, R
2012-05-23
Proposed quantum networks require both a quantum interface between light and matter and the coherent control of quantum states. A quantum interface can be realized by entangling the state of a single photon with the state of an atomic or solid-state quantum memory, as demonstrated in recent experiments with trapped ions, neutral atoms, atomic ensembles and nitrogen-vacancy spins. The entangling interaction couples an initial quantum memory state to two possible light-matter states, and the atomic level structure of the memory determines the available coupling paths. In previous work, the transition parameters of these paths determined the phase and amplitude of the final entangled state, unless the memory was initially prepared in a superposition state (a step that requires coherent control). Here we report fully tunable entanglement between a single (40)Ca(+) ion and the polarization state of a single photon within an optical resonator. Our method, based on a bichromatic, cavity-mediated Raman transition, allows us to select two coupling paths and adjust their relative phase and amplitude. The cavity setting enables intrinsically deterministic, high-fidelity generation of any two-qubit entangled state. This approach is applicable to a broad range of candidate systems and thus is a promising method for distributing information within quantum networks.
Li, Hui; Haldane, F D M
2008-07-04
We study the "entanglement spectrum" (a presentation of the Schmidt decomposition analogous to a set of "energy levels") of a many-body state, and compare the Moore-Read model wave function for the nu=5/2 fractional quantum Hall state with a generic 5/2 state obtained by finite-size diagonalization of the second-Landau-level-projected Coulomb interactions. Their spectra share a common "gapless" structure, related to conformal field theory. In the model state, these are the only levels, while in the "generic" case, they are separated from the rest of the spectrum by a clear "entanglement gap", which appears to remain finite in the thermodynamic limit. We propose that the low-lying entanglement spectrum can be used as a "fingerprint" to identify topological order.
Strong Einstein-Podolsky-Rosen steering with unconditional entangled states
NASA Astrophysics Data System (ADS)
Steinlechner, Sebastian; Bauchrowitz, Jöran; Eberle, Tobias; Schnabel, Roman
2013-02-01
In 1935 Schrödinger introduced the terms entanglement and steering in the context of the famous gedanken experiment discussed by Einstein, Podolsky, and Rosen (EPR). Here, we report on a sixfold increase of the observed EPR-steering effect with regard to previous experiments, as quantified by the Reid criterion. We achieved an unprecedented low conditional variance product of about 0.04<1, where 1 is the upper bound below which steering is demonstrated. The steering effect was observed on an unconditional two-mode-squeezed entangled state that contained a total vacuum state contribution of less than 8%, including detection imperfections. Together with the achieved high interference contrast between the entangled state and a bright coherent laser field, our state is compatible with efficient applications in high-power laser interferometers and fiber-based networks for entanglement distribution.
Qudit-teleportation for photons with linear optics.
Goyal, Sandeep K; Boukama-Dzoussi, Patricia E; Ghosh, Sibasish; Roux, Filippus S; Konrad, Thomas
2014-04-01
Quantum Teleportation, the transfer of the state of one quantum system to another without direct interaction between both systems, is an important way to transmit information encoded in quantum states and to generate quantum correlations (entanglement) between remote quantum systems. So far, for photons, only superpositions of two distinguishable states (one "qubit") could be teleported. Here we show how to teleport a "qudit", i.e. a superposition of an arbitrary number d of distinguishable states present in the orbital angular momentum of a single photon using d beam splitters and d additional entangled photons. The same entanglement resource might also be employed to collectively teleport the state of d/2 photons at the cost of one additional entangled photon per qubit. This is superior to existing schemes for photonic qubits, which require an additional pair of entangled photons per qubit.
Qudit-Teleportation for photons with linear optics
NASA Astrophysics Data System (ADS)
Goyal, Sandeep K.; Boukama-Dzoussi, Patricia E.; Ghosh, Sibasish; Roux, Filippus S.; Konrad, Thomas
2014-04-01
Quantum Teleportation, the transfer of the state of one quantum system to another without direct interaction between both systems, is an important way to transmit information encoded in quantum states and to generate quantum correlations (entanglement) between remote quantum systems. So far, for photons, only superpositions of two distinguishable states (one ``qubit'') could be teleported. Here we show how to teleport a ``qudit'', i.e. a superposition of an arbitrary number d of distinguishable states present in the orbital angular momentum of a single photon using d beam splitters and d additional entangled photons. The same entanglement resource might also be employed to collectively teleport the state of d/2 photons at the cost of one additional entangled photon per qubit. This is superior to existing schemes for photonic qubits, which require an additional pair of entangled photons per qubit.
Qudit-Teleportation for photons with linear optics
Goyal, Sandeep K.; Boukama-Dzoussi, Patricia E.; Ghosh, Sibasish; Roux, Filippus S.; Konrad, Thomas
2014-01-01
Quantum Teleportation, the transfer of the state of one quantum system to another without direct interaction between both systems, is an important way to transmit information encoded in quantum states and to generate quantum correlations (entanglement) between remote quantum systems. So far, for photons, only superpositions of two distinguishable states (one “qubit”) could be teleported. Here we show how to teleport a “qudit”, i.e. a superposition of an arbitrary number d of distinguishable states present in the orbital angular momentum of a single photon using d beam splitters and d additional entangled photons. The same entanglement resource might also be employed to collectively teleport the state of d/2 photons at the cost of one additional entangled photon per qubit. This is superior to existing schemes for photonic qubits, which require an additional pair of entangled photons per qubit. PMID:24686274
NASA Astrophysics Data System (ADS)
Ghasemi, M.; Tavassoly, M. K.; Nourmandipour, A.
2017-12-01
In this paper, we investigate the possibility of entanglement swapping between two independent nonperfect cavities consisting of an atom with finite lifetime of atomic levels (as two independent sources of dissipation), which interacts with a quantized electromagnetic field in the presence of detuning and Kerr medium. In fact, there is no direct interaction between the two atoms, therefore, no entanglement exists between them. We use the Bell state measurement performed on the photons leaving the cavities to swap the entanglement stored between the atom-fields in each cavity into atom-atom. Our motivation comes from the fact that two-qubit entangled states are of great interest for quantum information science and technologies. We discuss the effect of the initial state of the system, the detuning parameter, the Kerr medium and the two dissipation sources on the swapped entanglement to atom-atom. We interestingly find that when the atomic decay rates and photonic leakages from the cavities are equal, our system behaves as an ideal system with no dissipation. Our results show that it is possible to create a long-living atom-atom maximally entangled state in the presence of Kerr effect and dissipation; we determine these conditions in detail and also establish the final atom-atom Bell state.
Entanglement near the optical instability point in damped four wave mixing systems
NASA Astrophysics Data System (ADS)
Chiangga, S.; Temnuch, W.; Frank, T. D.
2018-06-01
Entanglement of electromagnetic field modes of signal and idler photons generated by four-wave mixing (FWM) devices is a quantum phenomenon that has been examined in various experimental and theoretical studies. The focus of this theoretical study is on two aspects of this phenomenon: the emergence of signal and idler photons due to an optical instability and the entanglement of the signal and idler modes above the instability threshold. For simple FWM devices that are subjected to damping it is shown that the signal and idler modes are entangled close to the point of optical instability at which the signal and idler photons emerges. The degree of entanglement as measured by a particular entanglement function proposed earlier in the literature assumes at the point of optical instability a unique value that is independent of the model parameters of the devices. The value is slightly higher than the value reported in a FWM experiment by Boyer et al (2008 Science 321 544). Numerical simulations suggest that the aforementioned entanglement function is U-shaped such that the degree of entanglement at the instability point is the maximal possible one and represents the optimal value. A similar U-shaped pattern was observed in an FWM experiment conducted by Lawrie et al (2016 Appl. Phys. Lett. 108 151107). Our semi-analytical findings are derived within the framework of the positive P representation of quantum optical processes and are compared with the aforementioned experimental observations by Boyer et al and Lawrie et al.
NASA Astrophysics Data System (ADS)
Cen, Longzhu; Zhang, Zijing; Zhang, Jiandong; Li, Shuo; Sun, Yifei; Yan, Linyu; Zhao, Yuan; Wang, Feng
2017-11-01
Circular polarization-entangled photons can be used to obtain an enhancement of the precision in a rotation measurement. In this paper, the method of entanglement transformation is used to produce NOON states in circular polarization from a readily generated linear polarization-entangled photon source. Detection of N -fold coincidences serves as the postselection and N -fold superoscillating fringes are obtained simultaneously. A parity strategy and conditional probabilistic statistics contribute to a better fringe, saturating the angle sensitivity to the Heisenberg limit. The impact of imperfect state preparation and detection is discussed both separately and jointly. For the separated case, the influence of each system imperfection is pronounced. For the joint case, the feasibility region for surpassing the standard quantum limit is given. Our work pushes the state preparation of circular polarization-entangled photons to the same level as that in the case of linear polarization. It is also confirmed that entanglement can be transformed into different frames for specific applications, serving as a useful scheme for using entangled sources.
Experimental generation of complex noisy photonic entanglement
NASA Astrophysics Data System (ADS)
Dobek, K.; Karpiński, M.; Demkowicz-Dobrzański, R.; Banaszek, K.; Horodecki, P.
2013-02-01
We present an experimental scheme based on spontaneous parametric down-conversion to produce multiple-photon pairs in maximally entangled polarization states using an arrangement of two type-I nonlinear crystals. By introducing correlated polarization noise in the paths of the generated photons we prepare mixed-entangled states whose properties illustrate fundamental results obtained recently in quantum information theory, in particular those concerning bound entanglement and privacy.
Verifying entanglement in the Hong-Ou-Mandel dip
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ray, Megan R.; Enk, S. J. van
2011-04-15
The Hong-Ou-Mandel interference dip is caused by an entangled state, a delocalized biphoton state. We propose a method of detecting this entanglement by utilizing inverse Hong-Ou-Mandel interference, while taking into account vacuum and multiphoton contaminations, phase noise, and other imperfections. The method uses just linear optics and photodetectors, and for single-mode photodetectors we find a lower bound on the amount of entanglement.
Analytical recursive method to ascertain multisite entanglement in doped quantum spin ladders
NASA Astrophysics Data System (ADS)
Roy, Sudipto Singha; Dhar, Himadri Shekhar; Rakshit, Debraj; SenDe, Aditi; Sen, Ujjwal
2017-08-01
We formulate an analytical recursive method to generate the wave function of doped short-range resonating valence bond (RVB) states as a tool to efficiently estimate multisite entanglement as well as other physical quantities in doped quantum spin ladders. We prove that doped RVB ladder states are always genuine multipartite entangled. Importantly, our results show that within specific doping concentration and model parameter regimes, the doped RVB state essentially characterizes the trends of genuine multiparty entanglement in the exact ground states of the Hubbard model with large on-site interactions, in the limit that yields the t -J Hamiltonian.
Entanglement of a class of non-Gaussian states in disordered harmonic oscillator systems
NASA Astrophysics Data System (ADS)
Abdul-Rahman, Houssam
2018-03-01
For disordered harmonic oscillator systems over the d-dimensional lattice, we consider the problem of finding the bipartite entanglement of the uniform ensemble of the energy eigenstates associated with a particular number of modes. Such an ensemble defines a class of mixed, non-Gaussian entangled states that are labeled, by the energy of the system, in an increasing order. We develop a novel approach to find the exact logarithmic negativity of this class of states. We also prove entanglement bounds and demonstrate that the low energy states follow an area law.
NASA Astrophysics Data System (ADS)
Dalton, B. J.; Goold, J.; Garraway, B. M.; Reid, M. D.
2017-02-01
These two accompanying papers are concerned with entanglement for systems of identical massive bosons and the relationship to spin squeezing and other quantum correlation effects. The main focus is on two mode entanglement, but multi-mode entanglement is also considered. The bosons may be atoms or molecules as in cold quantum gases. The previous paper I dealt with the general features of quantum entanglement and its specific definition in the case of systems of identical bosons. Entanglement is a property shared between two (or more) quantum sub-systems. In defining entanglement for systems of identical massive particles, it was concluded that the single particle states or modes are the most appropriate choice for sub-systems that are distinguishable, that the general quantum states must comply both with the symmetrization principle and the super-selection rules (SSR) that forbid quantum superpositions of states with differing total particle number (global SSR compliance). Further, it was concluded that (in the separable states) quantum superpositions of sub-system states with differing sub-system particle number (local SSR compliance) also do not occur. The present paper II determines possible tests for entanglement based on the treatment of entanglement set out in paper I. Several inequalities involving variances and mean values of operators have been previously proposed as tests for entanglement between two sub-systems. These inequalities generally involve mode annihilation and creation operators and include the inequalities that define spin squeezing. In this paper, spin squeezing criteria for two mode systems are examined, and spin squeezing is also considered for principle spin operator components where the covariance matrix is diagonal. The proof, which is based on our SSR compliant approach shows that the presence of spin squeezing in any one of the spin components requires entanglement of the relevant pair of modes. A simple Bloch vector test for entanglement is also derived. Thus we show that spin squeezing becomes a rigorous test for entanglement in a system of massive bosons, when viewed as a test for entanglement between two modes. In addition, other previously proposed tests for entanglement involving spin operators are considered, including those based on the sum of the variances for two spin components. All of the tests are still valid when the present concept of entanglement based on the symmetrization and SSR criteria is applied. These tests also apply in cases of multi-mode entanglement, though with restrictions in the case of sub-systems each consisting of pairs of modes. Tests involving quantum correlation functions are also considered and for global SSR compliant states these are shown to be equivalent to tests involving spin operators. A new weak correlation test is derived for entanglement based on local SSR compliance for separable states, complementing the stronger correlation test obtained previously when this is ignored. The Bloch vector test is equivalent to one case of this weak correlation test. Quadrature squeezing for single modes is also examined but not found to yield a useful entanglement test, whereas two mode quadrature squeezing proves to be a valid entanglement test, though not as useful as the Bloch vector test. The various entanglement tests are considered for well-known entangled states, such as binomial states, relative phase eigenstates and NOON states—sometimes the new tests are satisfied while than those obtained in other papers are not. The present paper II then outlines the theory for a simple two mode interferometer showing that such an interferometer can be used to measure the mean values and covariance matrix for the spin operators involved in entanglement tests for the two mode bosonic system. The treatment is also generalized to cover multi-mode interferometry. The interferometer involves a pulsed classical field characterized by a phase variable and an area variable defined by the time integral of the field amplitude, and leads to a coupling between the two modes. For simplicity the center frequency was chosen to be resonant with the inter-mode transition frequency. Measuring the mean and variance of the population difference between the two modes for the output state of the interferometer for various choices of interferometer variables is shown to enable the mean values and covariance matrix for the spin operators for the input quantum state of the two mode system to be determined. The paper concludes with a discussion of several key experimental papers on spin squeezing.
Sudden death of effective entanglement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roszak, K.; Institute of Physics, Wroclaw University of Technology, 50-370 Wroclaw; Horodecki, P.
2010-04-15
Sudden death of entanglement is a well-known effect resulting from the finite volume of separable states. We study the case when the observer has a limited measurement capability and analyze the effective entanglement (i.e., entanglement minimized over the output data). We show that in the well-defined system of two quantum dots monitored by single-electron transistors, one may observe a sudden death of effective entanglement when real, physical entanglement is still alive. For certain measurement setups, this occurs even for initial states for which sudden death of physical entanglement is not possible at all. The principles of the analysis may bemore » applied to other analogous scenarios, such as estimation of the parameters arising from quantum process tomography.« less
Evaluating convex roof entanglement measures.
Tóth, Géza; Moroder, Tobias; Gühne, Otfried
2015-04-24
We show a powerful method to compute entanglement measures based on convex roof constructions. In particular, our method is applicable to measures that, for pure states, can be written as low order polynomials of operator expectation values. We show how to compute the linear entropy of entanglement, the linear entanglement of assistance, and a bound on the dimension of the entanglement for bipartite systems. We discuss how to obtain the convex roof of the three-tangle for three-qubit states. We also show how to calculate the linear entropy of entanglement and the quantum Fisher information based on partial information or device independent information. We demonstrate the usefulness of our method by concrete examples.
Gaussian entanglement generation from coherence using beam-splitters
Wang, Zhong-Xiao; Wang, Shuhao; Ma, Teng; Wang, Tie-Jun; Wang, Chuan
2016-01-01
The generation and quantification of quantum entanglement is crucial for quantum information processing. Here we study the transition of Gaussian correlation under the effect of linear optical beam-splitters. We find the single-mode Gaussian coherence acts as the resource in generating Gaussian entanglement for two squeezed states as the input states. With the help of consecutive beam-splitters, single-mode coherence and quantum entanglement can be converted to each other. Our results reveal that by using finite number of beam-splitters, it is possible to extract all the entanglement from the single-mode coherence even if the entanglement is wiped out before each beam-splitter. PMID:27892537
Entanglement measures based on observable correlations
NASA Astrophysics Data System (ADS)
Luo, Shunlong
2008-06-01
By regarding quantum states as communication channels and using observable correlations quantitatively expressed by mutual information, we introduce a hierarchy of entanglement measures that includes the entanglement of formation as a particular instance. We compare the maximal and minimal measures and indicate the conceptual advantages of the minimal measure over the entanglement of formation. We reveal a curious feature of the entanglement of formation by showing that it can exceed the quantum mutual information, which is usually regarded as a theoretical measure of total correlations. This places the entanglement of formation in a broader scenario, highlights its peculiarity in relation to pure-state ensembles, and introduces a competing definition with intrinsic informational significance.
Graph state generation with noisy mirror-inverting spin chains
NASA Astrophysics Data System (ADS)
Clark, Stephen R.; Klein, Alexander; Bruderer, Martin; Jaksch, Dieter
2007-06-01
We investigate the influence of noise on a graph state generation scheme which exploits a mirror inverting spin chain. Within this scheme the spin chain is used repeatedly as an entanglement bus (EB) to create multi-partite entanglement. The noise model we consider comprises of each spin of this EB being exposed to independent local noise which degrades the capabilities of the EB. Here we concentrate on quantifying its performance as a single-qubit channel and as a mediator of a two-qubit entangling gate, since these are basic operations necessary for graph state generation using the EB. In particular, for the single-qubit case we numerically calculate the average channel fidelity and whether the channel becomes entanglement breaking, i.e. expunges any entanglement the transferred qubit may have with other external qubits. We find that neither local decay nor dephasing noise cause entanglement breaking. This is in contrast to local thermal and depolarizing noise where we determine a critical length and critical noise coupling, respectively, at which entanglement breaking occurs. The critical noise coupling for local depolarizing noise is found to exhibit a power-law dependence on the chain length. For two-qubits we similarly compute the average gate fidelity and whether the ability for this gate to create entanglement is maintained. The concatenation of these noisy gates for the construction of a five-qubit linear cluster state and a Greenberger Horne Zeilinger state indicates that the level of noise that can be tolerated for graph state generation is tightly constrained.
Entanglement entropy from tensor network states for stabilizer codes
NASA Astrophysics Data System (ADS)
He, Huan; Zheng, Yunqin; Bernevig, B. Andrei; Regnault, Nicolas
2018-03-01
In this paper, we present the construction of tensor network states (TNS) for some of the degenerate ground states of three-dimensional (3D) stabilizer codes. We then use the TNS formalism to obtain the entanglement spectrum and entropy of these ground states for some special cuts. In particular, we work out examples of the 3D toric code, the X-cube model, and the Haah code. The latter two models belong to the category of "fracton" models proposed recently, while the first one belongs to the conventional topological phases. We mention the cases for which the entanglement entropy and spectrum can be calculated exactly: For these, the constructed TNS is a singular value decomposition (SVD) of the ground states with respect to particular entanglement cuts. Apart from the area law, the entanglement entropies also have constant and linear corrections for the fracton models, while the entanglement entropies for the toric code models only have constant corrections. For the cuts we consider, the entanglement spectra of these three models are completely flat. We also conjecture that the negative linear correction to the area law is a signature of extensive ground-state degeneracy. Moreover, the transfer matrices of these TNSs can be constructed. We show that the transfer matrices are projectors whose eigenvalues are either 1 or 0. The number of nonzero eigenvalues is tightly related to the ground-state degeneracy.
Quantum communication for satellite-to-ground networks with partially entangled states
NASA Astrophysics Data System (ADS)
Chen, Na; Quan, Dong-Xiao; Pei, Chang-Xing; Yang-Hong
2015-02-01
To realize practical wide-area quantum communication, a satellite-to-ground network with partially entangled states is developed in this paper. For efficiency and security reasons, the existing method of quantum communication in distributed wireless quantum networks with partially entangled states cannot be applied directly to the proposed quantum network. Based on this point, an efficient and secure quantum communication scheme with partially entangled states is presented. In our scheme, the source node performs teleportation only after an end-to-end entangled state has been established by entanglement swapping with partially entangled states. Thus, the security of quantum communication is guaranteed. The destination node recovers the transmitted quantum bit with the help of an auxiliary quantum bit and specially defined unitary matrices. Detailed calculations and simulation analyses show that the probability of successfully transferring a quantum bit in the presented scheme is high. In addition, the auxiliary quantum bit provides a heralded mechanism for successful communication. Based on the critical components that are presented in this article an efficient, secure, and practical wide-area quantum communication can be achieved. Project supported by the National Natural Science Foundation of China (Grant Nos. 61072067 and 61372076), the 111 Project (Grant No. B08038), the Fund from the State Key Laboratory of Integrated Services Networks (Grant No. ISN 1001004), and the Fundamental Research Funds for the Central Universities (Grant Nos. K5051301059 and K5051201021).
Multipartite entangled states in particle mixing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blasone, M.; INFN Sezione di Napoli, Gruppo collegato di Salerno, Baronissi; Dell'Anno, F.
2008-05-01
In the physics of flavor mixing, the flavor states are given by superpositions of mass eigenstates. By using the occupation number to define a multiqubit space, the flavor states can be interpreted as multipartite mode-entangled states. By exploiting a suitable global measure of entanglement, based on the entropies related to all possible bipartitions of the system, we analyze the correlation properties of such states in the instances of three- and four-flavor mixing. Depending on the mixing parameters, and, in particular, on the values taken by the free phases, responsible for the CP-violation, entanglement concentrates in certain bipartitions. We quantify inmore » detail the amount and the distribution of entanglement in the physically relevant cases of flavor mixing in quark and neutrino systems. By using the wave packet description for localized particles, we use the global measure of entanglement, suitably adapted for the instance of multipartite mixed states, to analyze the decoherence, induced by the free evolution dynamics, on the quantum correlations of stationary neutrino beams. We define a decoherence length as the distance associated with the vanishing of the coherent interference effects among massive neutrino states. We investigate the role of the CP-violating phase in the decoherence process.« less
Signature of quantum entanglement in NH{sub 4}CuPO{sub 4}·H{sub 2}O
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chakraborty, Tanmoy, E-mail: tanmoy@iiserkol.ac.in; Singh, Harkirat; Mitra, Chiranjib, E-mail: chiranjib@iiserkol.ac.in
2014-01-21
Entangled solid state systems have gained a great deal of attention due to their fruitful applications in modern quantum technologies. Herein, detection of entanglement content from experimental magnetic susceptibility and specific heat data is reported for NH{sub 4}CuPO{sub 4}·H{sub 2}O in its solid state crystalline form. NH{sub 4}CuPO{sub 4}·H{sub 2}O is a prototype of Heisenberg spin 1/2 dimer system. Temperature dependent magnetic susceptibility and specific data are fitted to an isolated dimer model and the exchange coupling constant is determined. Field dependent magnetization isotherms taken at different temperatures are plotted in a three dimensional plot. Subsequently, entanglement is detected bothmore » from susceptibility and specific heat through two different entanglement measures; entanglement witness and entanglement of formation. The temperature evolution of entanglement is studied and the critical temperature is determined up to which entanglement exists. Temperature dependent nature of entanglement extracted from susceptibility and specific heat shows good consistency with each other. Moreover, the field dependent entanglement is also investigated.« less
Testing genuine tripartite quantum nonlocality with three two-level atoms in a driven cavity
NASA Astrophysics Data System (ADS)
Yuan, H.; Wei, L. F.
2013-10-01
It is known that the violation of Svetlichny's inequality (SI), rather than the usual Mermin's inequality (MI), is a robust criterion to confirm the existence of genuine multipartite quantum nonlocality. In this paper, we propose a feasible approach to test SI with three two-level atoms (TLAs) dispersively coupled to a driven cavity. The proposal is based on the joint measurements of the states of three TLAs by probing the steady-state transmission spectra of the driven cavity: each peak marks one of the computational basis states and its relative height corresponds to the probability superposed in the detected three-TLA state. With these kinds of joint measurements, the correlation functions in SI can be directly calculated, and thus the SI can be efficiently tested for typical tripartite entanglement, i.e., genuine tripartite entanglement [e.g., Greenberger-Horne-Zeilinger (GHZ) and W states] and biseparable three-qubit entangled states (e.g., |χ>12|ξ>3). Our numerical experiments show that the SI is violated only by three-qubit GHZ and W states, not by biseparable three-qubit entangled state |χ>12|ξ>3, while the MI can still be violated by biseparable three-qubit entangled states. Thus the violation of SI can be regarded as a robust criterion for the existence of genuine tripartite entanglement.
Quantum Tomography via Compressed Sensing: Error Bounds, Sample Complexity and Efficient Estimators
2012-09-27
particular, we require no entangling gates or ancillary systems for the procedure. In contrast with [19], our method is not restricted to processes that are...of states, such as those recently developed for use with permutation-invariant states [60], matrix product states [61] or multi-scale entangled states...process tomography: first prepare the Jamiołkowski state ρE (by adjoining an ancilla, preparing the maximally entangled state |ψ0, and applying E); then
Direct measurement of nonlinear properties of bipartite quantum states.
Bovino, Fabio Antonio; Castagnoli, Giuseppe; Ekert, Artur; Horodecki, Paweł; Alves, Carolina Moura; Sergienko, Alexander Vladimir
2005-12-09
Nonlinear properties of quantum states, such as entropy or entanglement, quantify important physical resources and are frequently used in quantum-information science. They are usually calculated from a full description of a quantum state, even though they depend only on a small number of parameters that specify the state. Here we extract a nonlocal and a nonlinear quantity, namely, the Renyi entropy, from local measurements on two pairs of polarization-entangled photons. We also introduce a "phase marking" technique which allows the selection of uncorrupted outcomes even with nondeterministic sources of entangled photons. We use our experimental data to demonstrate the violation of entropic inequalities. They are examples of nonlinear entanglement witnesses and their power exceeds all linear tests for quantum entanglement based on all possible Bell-Clauser-Horne-Shimony-Holt inequalities.
Spin entanglement, decoherence and Bohm's EPR paradox.
Cavalcanti, E G; Drummond, P D; Bachor, H A; Reid, M D
2009-10-12
We obtain criteria for entanglement and the EPR paradox for spin-entangled particles and analyse the effects of decoherence caused by absorption and state purity errors. For a two qubit photonic state, entanglement can occur for all transmission efficiencies. In this case, the state preparation purity must be above a threshold value. However, Bohm's spin EPR paradox can be achieved only above a critical level of loss. We calculate a required efficiency of 58%, which appears achievable with current quantum optical technologies. For a macroscopic number of particles prepared in a correlated state, spin entanglement and the EPR paradox can be demonstrated using our criteria for efficiencies eta > 1/3 and eta > 2/3 respectively. This indicates a surprising insensitivity to loss decoherence, in a macroscopic system of ultra-cold atoms or photons.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kunkri, Samir; Choudhary, Sujit K.; Ahanj, Ali
2006-02-15
Here we deal with a nonlocality argument proposed by Cabello, which is more general than Hardy's nonlocality argument, but still maximally entangled states do not respond. However, for most of the other entangled states, maximum probability of success of this argument is more than that of the Hardy's argument.
Efficient multiparticle entanglement via asymmetric Rydberg blockade.
Saffman, M; Mølmer, K
2009-06-19
We present an efficient method for producing N particle entangled states using Rydberg blockade interactions. Optical excitation of Rydberg states that interact weakly, yet have a strong coupling to a second control state is used to achieve state dependent qubit rotations in small ensembles. On the basis of quantitative calculations, we predict that an entangled quantum superposition state of eight atoms can be produced with a fidelity of 84% in cold Rb atoms.
Entanglement as a resource to distinguish orthogonal product states
Zhang, Zhi-Chao; Gao, Fei; Cao, Tian-Qing; Qin, Su-Juan; Wen, Qiao-Yan
2016-01-01
It is known that there are many sets of orthogonal product states which cannot be distinguished perfectly by local operations and classical communication (LOCC). However, these discussions have left the following open question: What entanglement resources are necessary and/or sufficient for this task to be possible with LOCC? In m ⊗ n, certain classes of unextendible product bases (UPB) which can be distinguished perfectly using entanglement as a resource, had been presented in 2008. In this paper, we present protocols which use entanglement more efficiently than teleportation to distinguish some classes of orthogonal product states in m ⊗ n, which are not UPB. For the open question, our results offer rather general insight into why entanglement is useful for such tasks, and present a better understanding of the relationship between entanglement and nonlocality. PMID:27458034
NASA Astrophysics Data System (ADS)
Guo, J. L.; Song, H. S.
2010-01-01
We study the thermal entanglement in the two-qubit Heisenberg XXZ model with the Dzyaloshinskii-Moriya (DM) interaction, and teleport an unknown state using the model in thermal equilibrium state as a quantum channel. The effects of DM interaction, including Dx and Dz interaction, the anisotropy and temperature on the entanglement and fully entangled fraction are considered. What deserves mentioning here is that for the antiferromagnetic case, the Dx interaction can be more helpful for increasing the entanglement and critical temperature than Dz, but this cannot for teleportation.
Thermal preparation of an entangled steady state of distant driven spin ensembles
NASA Astrophysics Data System (ADS)
Teper, Natalia
2018-02-01
Entanglement properties are studied in the continuous-variable system of three nitrogen-vacancy center ensembles cou-pled to separate transmission line resonators interconnected by current-biased Josephson junction. The circuit is enhanced by Josephson parametric amplifier, which serves as source of squeezed microwave field. Bosonic modes of nitrogen-vacancy-center ensembles exhibit steady state entanglement for certain range of parameters. Squeezed microwave field can be consider as a driving force of entanglement. Proposed scheme provides generating entanglement for each of the three pairs of spin ensembles.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Boche, H., E-mail: boche@tum.de; Janßen, G., E-mail: gisbert.janssen@tum.de
We consider one-way quantum state merging and entanglement distillation under compound and arbitrarily varying source models. Regarding quantum compound sources, where the source is memoryless, but the source state an unknown member of a certain set of density matrices, we continue investigations begun in the work of Bjelaković et al. [“Universal quantum state merging,” J. Math. Phys. 54, 032204 (2013)] and determine the classical as well as entanglement cost of state merging. We further investigate quantum state merging and entanglement distillation protocols for arbitrarily varying quantum sources (AVQS). In the AVQS model, the source state is assumed to vary inmore » an arbitrary manner for each source output due to environmental fluctuations or adversarial manipulation. We determine the one-way entanglement distillation capacity for AVQS, where we invoke the famous robustification and elimination techniques introduced by Ahlswede. Regarding quantum state merging for AVQS we show by example that the robustification and elimination based approach generally leads to suboptimal entanglement as well as classical communication rates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Adesso, Gerardo; Centre for Quantum Computation, DAMTP, Centre for Mathematical Sciences, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA; Serafini, Alessio
2006-03-15
We present a complete analysis of the multipartite entanglement of three-mode Gaussian states of continuous-variable systems. We derive standard forms which characterize the covariance matrix of pure and mixed three-mode Gaussian states up to local unitary operations, showing that the local entropies of pure Gaussian states are bound to fulfill a relationship which is stricter than the general Araki-Lieb inequality. Quantum correlations can be quantified by a proper convex roof extension of the squared logarithmic negativity, the continuous-variable tangle, or contangle. We review and elucidate in detail the proof that in multimode Gaussian states the contangle satisfies a monogamy inequalitymore » constraint [G. Adesso and F. Illuminati, New J. Phys8, 15 (2006)]. The residual contangle, emerging from the monogamy inequality, is an entanglement monotone under Gaussian local operations and classical communications and defines a measure of genuine tripartite entanglements. We determine the analytical expression of the residual contangle for arbitrary pure three-mode Gaussian states and study in detail the distribution of quantum correlations in such states. This analysis yields that pure, symmetric states allow for a promiscuous entanglement sharing, having both maximum tripartite entanglement and maximum couplewise entanglement between any pair of modes. We thus name these states GHZ/W states of continuous-variable systems because they are simultaneous continuous-variable counterparts of both the GHZ and the W states of three qubits. We finally consider the effect of decoherence on three-mode Gaussian states, studying the decay of the residual contangle. The GHZ/W states are shown to be maximally robust against losses and thermal noise.« less
Sudden death of entanglement and non-locality in two- and three-component quantum systems
NASA Astrophysics Data System (ADS)
Ann, Kevin
2011-12-01
Quantum entanglement and non-locality are non-classical characteristics of quantum states with phase coherence that are of central importance to physics, and relevant to the foundations of quantum mechanics and quantum information science. This thesis examines quantum entanglement and non-locality in two- and three-component quantum states with phase coherence when they are subject to statistically independent, classical, Markovian, phase noise in various combinations at the local and collective level. Because this noise reduces phase coherence, it can also reduce quantum entanglement and Bell non-locality. After introducing and contextualizing the research, the results are presented in three broad areas. The first area characterizes the relative time scales of decoherence and disentanglement in 2 x 2 and 3 x 3 quantum states, as well as the various subsystems of the two classes of entangled tripartite two-level quantum states. In all cases, it was found that disentanglement time scales are less than or equal to decoherence time scales. The second area examines the finite-time loss of entanglement, even as quantum state coherence is lost only asymptotically in time due to local dephasing noise, a phenomenon entitled "Entanglement Sudden Death" (ESD). Extending the initial discovery in the simplest 2 x 2 case, ESD is shown to exist in all other systems where mixed-state entanglement measures exist, the 2 x 3 and d x d systems, for finite d > 2. The third area concerns non-locality, which is a physical phenomenon independent of quantum mechanics and related to, though fundamentally different from, entanglement. Non-locality, as quantified by classes of Bell inequalities, is shown to be lost in finite time, even when decoherence occurs only asymptotically. This phenomenon was named "Bell Non-locality Sudden Death" (BNSD).
Joint Remote State Preparation Schemes for Two Different Quantum States Selectively
NASA Astrophysics Data System (ADS)
Shi, Jin
2018-05-01
The scheme for joint remote state preparation of two different one-qubit states according to requirement is proposed by using one four-dimensional spatial-mode-entangled KLM state as quantum channel. The scheme for joint remote state preparation of two different two-qubit states according to requirement is also proposed by using one four-dimensional spatial-mode-entangled KLM state and one three-dimensional spatial-mode-entangled GHZ state as quantum channels. Quantum non-demolition measurement, Hadamard gate operation, projective measurement and unitary transformation are included in the schemes.
NASA Astrophysics Data System (ADS)
Su, Zhaofeng; Guan, Ji; Li, Lvzhou
2018-01-01
Quantum entanglement is an indispensable resource for many significant quantum information processing tasks. However, in practice, it is difficult to distribute quantum entanglement over a long distance, due to the absorption and noise in quantum channels. A solution to this challenge is a quantum repeater, which can extend the distance of entanglement distribution. In this scheme, the time consumption of classical communication and local operations takes an important place with respect to time efficiency. Motivated by this observation, we consider a basic quantum repeater scheme that focuses on not only the optimal rate of entanglement concentration but also the complexity of local operations and classical communication. First, we consider the case where two different two-qubit pure states are initially distributed in the scenario. We construct a protocol with the optimal entanglement-concentration rate and less consumption of local operations and classical communication. We also find a criterion for the projective measurements to achieve the optimal probability of creating a maximally entangled state between the two ends. Second, we consider the case in which two general pure states are prepared and general measurements are allowed. We get an upper bound on the probability for a successful measurement operation to produce a maximally entangled state without any further local operations.
NASA Astrophysics Data System (ADS)
Singha Roy, Sudipto; Dhar, Himadri Shekhar; Rakshit, Debraj; Sen(De), Aditi; Sen, Ujjwal
2017-12-01
Phase transition in quantum many-body systems inevitably causes changes in certain physical properties which then serve as potential indicators of critical phenomena. Besides the traditional order parameters, characterization of quantum entanglement has proven to be a computationally efficient and successful method for detection of phase boundaries, especially in one-dimensional models. Here we determine the rich phase diagram of the ground states of a quantum spin-1/2 XXZ ladder by analyzing the variation of bipartite and multipartite entanglements. Our study characterizes the different ground state phases and notes the correspondence with known results, while highlighting the finer details that emerge from the behavior of ground state entanglement. Analysis of entanglement in the ground state provides a clearer picture of the complex ground state phase diagram of the system using only a moderate-size model.
Brachistochrone of entanglement for spin chains
NASA Astrophysics Data System (ADS)
Carlini, Alberto; Koike, Tatsuhiko
2017-03-01
We analytically investigate the role of entanglement in time-optimal state evolution as an application of the quantum brachistochrone, a general method for obtaining the optimal time-dependent Hamiltonian for reaching a target quantum state. As a model, we treat two qubits indirectly coupled through an intermediate qubit that is directly controllable, which represents a typical situation in quantum information processing. We find the time-optimal unitary evolution law and quantify residual entanglement by the two-tangle between the indirectly coupled qubits, for all possible sets of initial pure quantum states of a tripartite system. The integrals of the motion of the brachistochrone are determined by fixing the minimal time at which the residual entanglement is maximized. Entanglement plays a role for W and Greenberger-Horne-Zeilinger (GHz) initial quantum states, and for the bi-separable initial state in which the indirectly coupled qubits have a nonzero value of the 2-tangle.
Entanglement of two qubits coupled to an XY spin chain: Role of energy current
NASA Astrophysics Data System (ADS)
Liu, Ben-Qiong; Shao, Bin; Zou, Jian
2009-12-01
We investigate the entanglement dynamics of a two-qubit system which interacts with a Heisenberg XY spin chain constrained to carry an energy current. We show an explicit connection between the decoherence factor and entanglement, and numerically and analytically study the dynamical process of entanglement in both weak- and strong-coupling cases for two initial states, the general pure state and the mixed Werner state. We provide results that the entanglement evolution depends not only on the energy current, the anisotropy parameter and the system-environment couplings but also on the size of degrees of freedom of environment. In particular, our results imply that entanglement will be strongly suppressed by the introduction of energy current on the environmental spin chain in the weak-coupling region while it is not sensitive to the energy current in the strong-coupling region. We also observe the sudden death of entanglement in the system and show how the energy current affects the phenomenon.
Generalized Entanglement Entropies of Quantum Designs.
Liu, Zi-Wen; Lloyd, Seth; Zhu, Elton Yechao; Zhu, Huangjun
2018-03-30
The entanglement properties of random quantum states or dynamics are important to the study of a broad spectrum of disciplines of physics, ranging from quantum information to high energy and many-body physics. This Letter investigates the interplay between the degrees of entanglement and randomness in pure states and unitary channels. We reveal strong connections between designs (distributions of states or unitaries that match certain moments of the uniform Haar measure) and generalized entropies (entropic functions that depend on certain powers of the density operator), by showing that Rényi entanglement entropies averaged over designs of the same order are almost maximal. This strengthens the celebrated Page's theorem. Moreover, we find that designs of an order that is logarithmic in the dimension maximize all Rényi entanglement entropies and so are completely random in terms of the entanglement spectrum. Our results relate the behaviors of Rényi entanglement entropies to the complexity of scrambling and quantum chaos in terms of the degree of randomness, and suggest a generalization of the fast scrambling conjecture.
Generalized Entanglement Entropies of Quantum Designs
NASA Astrophysics Data System (ADS)
Liu, Zi-Wen; Lloyd, Seth; Zhu, Elton Yechao; Zhu, Huangjun
2018-03-01
The entanglement properties of random quantum states or dynamics are important to the study of a broad spectrum of disciplines of physics, ranging from quantum information to high energy and many-body physics. This Letter investigates the interplay between the degrees of entanglement and randomness in pure states and unitary channels. We reveal strong connections between designs (distributions of states or unitaries that match certain moments of the uniform Haar measure) and generalized entropies (entropic functions that depend on certain powers of the density operator), by showing that Rényi entanglement entropies averaged over designs of the same order are almost maximal. This strengthens the celebrated Page's theorem. Moreover, we find that designs of an order that is logarithmic in the dimension maximize all Rényi entanglement entropies and so are completely random in terms of the entanglement spectrum. Our results relate the behaviors of Rényi entanglement entropies to the complexity of scrambling and quantum chaos in terms of the degree of randomness, and suggest a generalization of the fast scrambling conjecture.
Orbital Angular Momentum-Entanglement Frequency Transducer.
Zhou, Zhi-Yuan; Liu, Shi-Long; Li, Yan; Ding, Dong-Sheng; Zhang, Wei; Shi, Shuai; Dong, Ming-Xin; Shi, Bao-Sen; Guo, Guang-Can
2016-09-02
Entanglement is a vital resource for realizing many tasks such as teleportation, secure key distribution, metrology, and quantum computations. To effectively build entanglement between different quantum systems and share information between them, a frequency transducer to convert between quantum states of different wavelengths while retaining its quantum features is indispensable. Information encoded in the photon's orbital angular momentum (OAM) degrees of freedom is preferred in harnessing the information-carrying capacity of a single photon because of its unlimited dimensions. A quantum transducer, which operates at wavelengths from 1558.3 to 525 nm for OAM qubits, OAM-polarization hybrid-entangled states, and OAM-entangled states, is reported for the first time. Nonclassical properties and entanglements are demonstrated following the conversion process by performing quantum tomography, interference, and Bell inequality measurements. Our results demonstrate the capability to create an entanglement link between different quantum systems operating in a photon's OAM degrees of freedom, which will be of great importance in building a high-capacity OAM quantum network.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolis, Nadia; Albrecht, Andreas; Holman, R.
We consider the effects of entanglement in the initial quantum state of scalar and tensor fluctuations during inflation. We allow the gauge-invariant scalar and tensor fluctuations to be entangled in the initial state and compute modifications to the various cosmological power spectra. We compute the angular power spectra (C{sub l}’s) for some specific cases of our entangled state and discuss what signals one might expect to find in CMB data. This entanglement also can break rotational invariance, allowing for the possibility that some of the large scale anomalies in the CMB power spectrum might be explained by this mechanism.
Steady-state entanglement activation in optomechanical cavities
NASA Astrophysics Data System (ADS)
Farace, Alessandro; Ciccarello, Francesco; Fazio, Rosario; Giovannetti, Vittorio
2014-02-01
Quantum discord, and related indicators, are raising a relentless interest as a novel paradigm of nonclassical correlations beyond entanglement. Here, we discover a discord-activated mechanism yielding steady-state entanglement production in a realistic continuous-variable setup. This comprises two coupled optomechanical cavities, where the optical modes (OMs) communicate through a fiber. We first use a simplified model to highlight the creation of steady-state discord between the OMs. We show next that such discord improves the level of stationary optomechanical entanglement attainable in the system, making it more robust against temperature and thermal noise.
A quantum proxy group signature scheme based on an entangled five-qubit state
NASA Astrophysics Data System (ADS)
Wang, Meiling; Ma, Wenping; Wang, Lili; Yin, Xunru
2015-09-01
A quantum proxy group signature (QPGS) scheme based on controlled teleportation is presented, by using the entangled five-qubit quantum state functions as quantum channel. The scheme uses the physical characteristics of quantum mechanics to implement delegation, signature and verification. The security of the scheme is guaranteed by the entanglement correlations of the entangled five-qubit state, the secret keys based on the quantum key distribution (QKD) and the one-time pad algorithm, all of which have been proven to be unconditionally secure and the signature anonymity.
Entanglement between total intensity and polarization for pairs of coherent states
NASA Astrophysics Data System (ADS)
Sanchidrián-Vaca, Carlos; Luis, Alfredo
2018-04-01
We examine entanglement between number and polarization, or number and relative phase, in pair coherent states and two-mode squeezed vacuum via linear entropy and covariance criteria. We consider the embedding of the two-mode Hilbert space in a larger space to get a well-defined factorization of the number-phase variables. This can be regarded as a kind of protoentanglement that can be extracted and converted into real particle entanglement via feasible experimental procedures. In particular this reveals interesting entanglement properties of pairs of coherent states.
NASA Astrophysics Data System (ADS)
Zha, Xinwei; Da, Zhang; Ahmed, Irfan; Zhang, Dan; Zhang, Yanpeng
2018-02-01
In this paper, we determine the complementarity relations for pure quantum states of N qubits by presenting the definition of local and non-local forms. By comparing the entanglement monogamy equality proposed by Coffman, Kundu, and Wootters, we prove that there exist strict monogamy laws for quantum correlations in all many-qubit systems. Further, the proper form of general entanglement monogamy equality for arbitrary quantum states is found with the characterization of total quantum correlation of qubits. These results may open a new window for multi-qubit entanglement.
Entanglement entropy of electronic excitations.
Plasser, Felix
2016-05-21
A new perspective into correlation effects in electronically excited states is provided through quantum information theory. The entanglement between the electron and hole quasiparticles is examined, and it is shown that the related entanglement entropy can be computed from the eigenvalue spectrum of the well-known natural transition orbital (NTO) decomposition. Non-vanishing entanglement is obtained whenever more than one NTO pair is involved, i.e., in the case of a multiconfigurational or collective excitation. An important implication is that in the case of entanglement it is not possible to gain a complete description of the state character from the orbitals alone, but more specific analysis methods are required to decode the mutual information between the electron and hole. Moreover, the newly introduced number of entangled states is an important property by itself giving information about excitonic structure. The utility of the formalism is illustrated in the cases of the excited states of two interacting ethylene molecules, the conjugated polymer para-phenylene vinylene, and the naphthalene molecule.
Remote entanglement stabilization for modular quantum computing
NASA Astrophysics Data System (ADS)
Didier, Nicolas; Shankar, S.; Mirrahimi, M.
Quantum information processing in a modular architecture requires to distribute and stabilize entanglement in a qubit network. We present autonomous entanglement stabilization protocols between two qubits that are coupled to distant cavities. The cavities coupling is mediated and controlled via a three-wave mixing device that generates either a delocalized mode or a two-mode squeezed state between the remote cavities depending on the pump frequency. Local drives on the qubits and the cavities steer and maintain the system to the desired qubit Bell state. We show that these reservoir-engineering based protocols stabilize entanglement in presence of qubit-cavity asymmetries and losses. Most spectacularly, even a weakly-squeezed state can stabilize a maximally entangled Bell state of two distant qubits through entanglement accumulation. This research was supported by the Agence Nationale de la Recherche under Grant ANR-14-CE26-0018, by Inria's DPEI under the TAQUILLA associated team and by ARO under Grant No. W911NF-14-1-0011.
Optimal estimation of entanglement in optical qubit systems
NASA Astrophysics Data System (ADS)
Brida, Giorgio; Degiovanni, Ivo P.; Florio, Angela; Genovese, Marco; Giorda, Paolo; Meda, Alice; Paris, Matteo G. A.; Shurupov, Alexander P.
2011-05-01
We address the experimental determination of entanglement for systems made of a pair of polarization qubits. We exploit quantum estimation theory to derive optimal estimators, which are then implemented to achieve ultimate bound to precision. In particular, we present a set of experiments aimed at measuring the amount of entanglement for states belonging to different families of pure and mixed two-qubit two-photon states. Our scheme is based on visibility measurements of quantum correlations and achieves the ultimate precision allowed by quantum mechanics in the limit of Poissonian distribution of coincidence counts. Although optimal estimation of entanglement does not require the full tomography of the states we have also performed state reconstruction using two different sets of tomographic projectors and explicitly shown that they provide a less precise determination of entanglement. The use of optimal estimators also allows us to compare and statistically assess the different noise models used to describe decoherence effects occurring in the generation of entanglement.
Optimization of entanglement witnesses
NASA Astrophysics Data System (ADS)
Lewenstein, M.; Kraus, B.; Cirac, J. I.; Horodecki, P.
2000-11-01
An entanglement witness (EW) is an operator that allows the detection of entangled states. We give necessary and sufficient conditions for such operators to be optimal, i.e., to detect entangled states in an optimal way. We show how to optimize general EW, and then we particularize our results to the nondecomposable ones; the latter are those that can detect positive partial transpose entangled states (PPTES's). We also present a method to systematically construct and optimize this last class of operators based on the existence of ``edge'' PPTES's, i.e., states that violate the range separability criterion [Phys. Lett. A 232, 333 (1997)] in an extreme manner. This method also permits a systematic construction of nondecomposable positive maps (PM's). Our results lead to a sufficient condition for entanglement in terms of nondecomposable EW's and PM's. Finally, we illustrate our results by constructing optimal EW acting on H=C2⊗C4. The corresponding PM's constitute examples of PM's with minimal ``qubit'' domains, or-equivalently-minimal Hermitian conjugate codomains.
Method for universal detection of two-photon polarization entanglement
NASA Astrophysics Data System (ADS)
Bartkiewicz, Karol; Horodecki, Paweł; Lemr, Karel; Miranowicz, Adam; Życzkowski, Karol
2015-03-01
Detecting and quantifying quantum entanglement of a given unknown state poses problems that are fundamentally important for quantum information processing. Surprisingly, no direct (i.e., without quantum tomography) universal experimental implementation of a necessary and sufficient test of entanglement has been designed even for a general two-qubit state. Here we propose an experimental method for detecting a collective universal witness, which is a necessary and sufficient test of two-photon polarization entanglement. It allows us to detect entanglement for any two-qubit mixed state and to establish tight upper and lower bounds on its amount. A different element of this method is the sequential character of its main components, which allows us to obtain relatively complicated information about quantum correlations with the help of simple linear-optical elements. As such, this proposal realizes a universal two-qubit entanglement test within the present state of the art of quantum optics. We show the optimality of our setup with respect to the minimal number of measured quantities.
Quantum key distribution with entangled photon sources
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ma Xiongfeng; Fung, Chi-Hang Fred; Lo, H.-K.
2007-07-15
A parametric down-conversion (PDC) source can be used as either a triggered single-photon source or an entangled-photon source in quantum key distribution (QKD). The triggering PDC QKD has already been studied in the literature. On the other hand, a model and a post-processing protocol for the entanglement PDC QKD are still missing. We fill in this important gap by proposing such a model and a post-processing protocol for the entanglement PDC QKD. Although the PDC model is proposed to study the entanglement-based QKD, we emphasize that our generic model may also be useful for other non-QKD experiments involving a PDCmore » source. Since an entangled PDC source is a basis-independent source, we apply Koashi and Preskill's security analysis to the entanglement PDC QKD. We also investigate the entanglement PDC QKD with two-way classical communications. We find that the recurrence scheme increases the key rate and the Gottesman-Lo protocol helps tolerate higher channel losses. By simulating a recent 144-km open-air PDC experiment, we compare three implementations: entanglement PDC QKD, triggering PDC QKD, and coherent-state QKD. The simulation result suggests that the entanglement PDC QKD can tolerate higher channel losses than the coherent-state QKD. The coherent-state QKD with decoy states is able to achieve highest key rate in the low- and medium-loss regions. By applying the Gottesman-Lo two-way post-processing protocol, the entanglement PDC QKD can tolerate up to 70 dB combined channel losses (35 dB for each channel) provided that the PDC source is placed in between Alice and Bob. After considering statistical fluctuations, the PDC setup can tolerate up to 53 dB channel losses.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lamoureux, Louis-Philippe; Navez, Patrick; Cerf, Nicolas J.
It is shown that any quantum operation that perfectly clones the entanglement of all maximally entangled qubit pairs cannot preserve separability. This 'entanglement no-cloning' principle naturally suggests that some approximate cloning of entanglement is nevertheless allowed by quantum mechanics. We investigate a separability-preserving optimal cloning machine that duplicates all maximally entangled states of two qubits, resulting in 0.285 bits of entanglement per clone, while a local cloning machine only yields 0.060 bits of entanglement per clone.
2012-09-27
we require no entangling gates or ancillary systems for the procedure. In contrast with [19], our method is not restricted to processes that are...states, such as those recently developed for use with permutation-invariant states [60], matrix product states [61] or multi-scale entangled states [62...by adjoining an ancilla, preparing the maximally entangled state |ψ0〉, and applying E); then do compressed quantum state tomography on ρE ; see
NASA Astrophysics Data System (ADS)
Guo, Rui; Zhou, Lan; Gu, Shi-Pu; Wang, Xing-Fu; Sheng, Yu-Bo
2017-03-01
The concatenated Greenberger-Horne-Zeilinger (C-GHZ) state is a new type of multipartite entangled state, which has potential application in future quantum information. In this paper, we propose a protocol of constructing arbitrary C-GHZ entangled state approximatively. Different from previous protocols, each logic qubit is encoded in the coherent state. This protocol is based on the linear optics, which is feasible in experimental technology. This protocol may be useful in quantum information based on the C-GHZ state.
Thermalization of entanglement.
Zhang, Liangsheng; Kim, Hyungwon; Huse, David A
2015-06-01
We explore the dynamics of the entanglement entropy near equilibrium in highly entangled pure states of two quantum-chaotic spin chains undergoing unitary time evolution. We examine the relaxation to equilibrium from initial states with either less or more entanglement entropy than the equilibrium value, as well as the dynamics of the spontaneous fluctuations of the entanglement that occur in equilibrium. For the spin chain with a time-independent Hamiltonian and thus an extensive conserved energy, we find slow relaxation of the entanglement entropy near equilibration. Such slow relaxation is absent in a Floquet spin chain with a Hamiltonian that is periodic in time and thus has no local conservation law. Therefore, we argue that slow diffusive energy transport is responsible for the slow relaxation of the entanglement entropy in the Hamiltonian system.
Tailoring entanglement through domain engineering in a lithium niobate waveguide
Ming, Yang; Tan, Ai-Hong; Wu, Zi-Jian; Chen, Zhao-Xian; Xu, Fei; Lu, Yan-Qing
2014-01-01
We propose to integrate the electro-optic (EO) tuning function into on-chip domain engineered lithium niobate (LN) waveguide. Due to the versatility of LN, both the spontaneously parametric down conversion (SPDC) and EO interaction could be realized simultaneously. Photon pairs are generated through SPDC, and the formation of entangled state is modulated by EO processes. An EO tunable polarization-entangled photon state is proposed. Orthogonally-polarized and parallel-polarized entanglements of photon pairs are instantly switchable by tuning the applied field. The characteristics of the source are theoretically investigated showing adjustable bandwidths and high entanglement degrees. Moreover, other kinds of reconfigurable entanglement are also achievable based on suitable domain-design. We believe tailoring entanglement based on domain engineering is a very promising solution for next generation function-integrated quantum circuits. PMID:24770555
Controlling bi-partite entanglement in multi-qubit systems
NASA Astrophysics Data System (ADS)
Plesch, Martin; Novotný, Jaroslav; Dzuráková, Zuzana; Buzek, Vladimír
2004-02-01
Bi-partite entanglement in multi-qubit systems cannot be shared freely. The rules of quantum mechanics impose bounds on how multi-qubit systems can be correlated. In this paper, we utilize a concept of entangled graphs with weighted edges in order to analyse pure quantum states of multi-qubit systems. Here qubits are represented by vertexes of the graph, while the presence of bi-partite entanglement is represented by an edge between corresponding vertexes. The weight of each edge is defined to be the entanglement between the two qubits connected by the edge, as measured by the concurrence. We prove that each entangled graph with entanglement bounded by a specific value of the concurrence can be represented by a pure multi-qubit state. In addition, we present a logic network with O(N2) elementary gates that can be used for preparation of the weighted entangled graphs of N qubits.
Robust distant-entanglement generation using coherent multiphoton scattering
NASA Astrophysics Data System (ADS)
Chan, Ching-Kit; Sham, L. J.
2013-03-01
The generation and controllability of entanglement between distant quantum states have been the heart of quantum computation and quantum information processing. Existing schemes for solid state qubit entanglement are based on the single-photon spectroscopy that has the merit of a high fidelity entanglement creation, but with a very limited efficiency. This severely restricts the scalability for a qubit network system. Here, we describe a new distant entanglement protocol using coherent multiphoton scattering. The scheme makes use of the postselection of large and distinguishable photon signals, and has both a high success probability and a high entanglement fidelity. Our result shows that the entanglement generation is robust against photon fluctuations, and has an average entanglement duration within the decoherence time in various qubit systems, based on existing experimental parameters. This research was supported by the U.S. Army Research Office MURI award W911NF0910406 and by NSF grant PHY-1104446.
Quantum discord bounds the amount of distributed entanglement.
Chuan, T K; Maillard, J; Modi, K; Paterek, T; Paternostro, M; Piani, M
2012-08-17
The ability to distribute quantum entanglement is a prerequisite for many fundamental tests of quantum theory and numerous quantum information protocols. Two distant parties can increase the amount of entanglement between them by means of quantum communication encoded in a carrier that is sent from one party to the other. Intriguingly, entanglement can be increased even when the exchanged carrier is not entangled with the parties. However, in light of the defining property of entanglement stating that it cannot increase under classical communication, the carrier must be quantum. Here we show that, in general, the increase of relative entropy of entanglement between two remote parties is bounded by the amount of nonclassical correlations of the carrier with the parties as quantified by the relative entropy of discord. We study implications of this bound, provide new examples of entanglement distribution via unentangled states, and put further limits on this phenomenon.
Blind Quantum Signature with Controlled Four-Particle Cluster States
NASA Astrophysics Data System (ADS)
Li, Wei; Shi, Jinjing; Shi, Ronghua; Guo, Ying
2017-08-01
A novel blind quantum signature scheme based on cluster states is introduced. Cluster states are a type of multi-qubit entangled states and it is more immune to decoherence than other entangled states. The controlled four-particle cluster states are created by acting controlled-Z gate on particles of four-particle cluster states. The presented scheme utilizes the above entangled states and simplifies the measurement basis to generate and verify the signature. Security analysis demonstrates that the scheme is unconditional secure. It can be employed to E-commerce systems in quantum scenario.
Teleportation of entangled states without Bell-state measurement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cardoso, Wesley B.; Baseia, B.; Avelar, A.T.
2005-10-15
In a recent paper [Phys. Rev. A 70, 025803 (2004)] we presented a scheme to teleport an entanglement of zero- and one-photon states from a bimodal cavity to another one, with 100% success probability. Here, inspired by recent results in the literature, we have modified our previous proposal to teleport the same entangled state without using Bell-state measurements. For comparison, the time spent, the fidelity, and the success probability for this teleportation are considered.
Robust quantum entanglement generation and generation-plus-storage protocols with spin chains
NASA Astrophysics Data System (ADS)
Estarellas, Marta P.; D'Amico, Irene; Spiller, Timothy P.
2017-04-01
Reliable quantum communication and/or processing links between modules are a necessary building block for various quantum processing architectures. Here we consider a spin-chain system with alternating strength couplings and containing three defects, which impose three domain walls between topologically distinct regions of the chain. We show that—in addition to its useful, high-fidelity, quantum state transfer properties—an entangling protocol can be implemented in this system, with optional localization and storage of the entangled states. We demonstrate both numerically and analytically that, given a suitable initial product-state injection, the natural dynamics of the system produces a maximally entangled state at a given time. We present detailed investigations of the effects of fabrication errors, analyzing random static disorder both in the diagonal and off-diagonal terms of the system Hamiltonian. Our results show that the entangled state formation is very robust against perturbations of up to ˜10 % the weaker chain coupling, and also robust against timing injection errors. We propose a further protocol, which manipulates the chain in order to localize and store each of the entangled qubits. The engineering of a system with such characteristics would thus provide a useful device for quantum information processing tasks involving the creation and storage of entangled resources.
Measuring the entanglement of bipartite pure states
NASA Astrophysics Data System (ADS)
Sancho, J. M.; Huelga, S. F.
2000-04-01
The problem of the experimental determination of the amount of entanglement of a bipartite pure state is addressed. We show that measuring a single observable does not suffice to determine the entanglement of a given unknown pure state of two particles. Possible minimal local measuring strategies are discussed, and a comparison is made on the basis of their best achievable precision.
Triviality of entanglement entropy in the Galilean vacuum
NASA Astrophysics Data System (ADS)
Hason, Itamar
2018-05-01
We study the entanglement entropy of the vacuum in non-relativistic local theories with Galilean or Schrödinger symmetry. We clear some confusion in the literature on the free Schrödinger case. We find that with only positive U (1) charge particles (states) and a unique zero U (1) charge state (the vacuum) the entanglement entropy must vanish in that state.
GENERAL: Entanglement sudden death induced by the Dzialoshinskii-Moriya interaction
NASA Astrophysics Data System (ADS)
Zeng, Hong-Fang; Shao, Bin; Yang, Lin-Guang; Li, Jian; Zou, Jian
2009-08-01
In this paper, we study the entanglement dynamics of two-spin Heisenberg XYZ model with the Dzialoshinskii-Moriya (DM) interaction. The system is initially prepared in the Werner state. The effects of purity of the initial state and DM coupling parameter on the evolution of entanglement are investigated. The necessary and sufficient condition for the appearance of the entanglement sudden death (ESD) phenomenon has been deduced. The result shows that the ESD always occurs if the initial state is sufficiently impure for the given coupling parameter or the DM interaction is sufficiently strong for the given initial state. Moreover, the critical values of them are calculated.
Quantum-Enhanced Sensing Based on Time Reversal of Nonlinear Dynamics.
Linnemann, D; Strobel, H; Muessel, W; Schulz, J; Lewis-Swan, R J; Kheruntsyan, K V; Oberthaler, M K
2016-07-01
We experimentally demonstrate a nonlinear detection scheme exploiting time-reversal dynamics that disentangles continuous variable entangled states for feasible readout. Spin-exchange dynamics of Bose-Einstein condensates is used as the nonlinear mechanism which not only generates entangled states but can also be time reversed by controlled phase imprinting. For demonstration of a quantum-enhanced measurement we construct an active atom SU(1,1) interferometer, where entangled state preparation and nonlinear readout both consist of parametric amplification. This scheme is capable of exhausting the quantum resource by detecting solely mean atom numbers. Controlled nonlinear transformations widen the spectrum of useful entangled states for applied quantum technologies.
NASA Astrophysics Data System (ADS)
Liu, Cheng-Ji; Li, Zhi-Hui; Bai, Chen-Ming; Si, Meng-Meng
2018-02-01
The concept of judgment space was proposed by Wang et al. (Phys. Rev. A 95, 022320, 2017), which was used to study some important properties of quantum entangled states based on local distinguishability. In this study, we construct 15 kinds of seven-qudit quantum entangled states in the sense of permutation, calculate their judgment space and propose a distinguishability rule to make the judgment space more clearly. Based on this rule, we study the local distinguishability of the 15 kinds of seven-qudit quantum entangled states and then propose a ( k, n) threshold quantum secret sharing scheme. Finally, we analyze the security of the scheme.
Experimental observation of four-photon entangled Dicke state with high fidelity.
Kiesel, N; Schmid, C; Tóth, G; Solano, E; Weinfurter, H
2007-02-09
We present the experimental observation of the symmetric four-photon entangled Dicke state with two excitations |D_{4};{(2)}. A simple experimental setup allowed quantum state tomography yielding a fidelity as high as 0.844+/-0.008. We study the entanglement persistency of the state using novel witness operators and focus on the demonstration of a remarkable property: depending on the orientation of a measurement on one photon, the remaining three photons are projected into both inequivalent classes of genuine tripartite entanglement, the Greenberger-Horne-Zeilinger and W class. Furthermore, we discuss possible applications of |D_{4};{(2)} in quantum communication.
Generation and confirmation of a (100 x 100)-dimensional entangled quantum system.
Krenn, Mario; Huber, Marcus; Fickler, Robert; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton
2014-04-29
Entangled quantum systems have properties that have fundamentally overthrown the classical worldview. Increasing the complexity of entangled states by expanding their dimensionality allows the implementation of novel fundamental tests of nature, and moreover also enables genuinely new protocols for quantum information processing. Here we present the creation of a (100 × 100)-dimensional entangled quantum system, using spatial modes of photons. For its verification we develop a novel nonlinear criterion which infers entanglement dimensionality of a global state by using only information about its subspace correlations. This allows very practical experimental implementation as well as highly efficient extraction of entanglement dimensionality information. Applications in quantum cryptography and other protocols are very promising.
Generation and confirmation of a (100 × 100)-dimensional entangled quantum system
Krenn, Mario; Huber, Marcus; Fickler, Robert; Lapkiewicz, Radek; Ramelow, Sven; Zeilinger, Anton
2014-01-01
Entangled quantum systems have properties that have fundamentally overthrown the classical worldview. Increasing the complexity of entangled states by expanding their dimensionality allows the implementation of novel fundamental tests of nature, and moreover also enables genuinely new protocols for quantum information processing. Here we present the creation of a (100 × 100)-dimensional entangled quantum system, using spatial modes of photons. For its verification we develop a novel nonlinear criterion which infers entanglement dimensionality of a global state by using only information about its subspace correlations. This allows very practical experimental implementation as well as highly efficient extraction of entanglement dimensionality information. Applications in quantum cryptography and other protocols are very promising. PMID:24706902
DOE Office of Scientific and Technical Information (OSTI.GOV)
Verbanis, E.; Martin, A.; Rosset, D.
Imperfections in experimental measurement schemes can lead to falsely identifying, or over estimating, entanglement in a quantum system. A recent solution to this is to define schemes that are robust to measurement imperfections—measurement-device-independent entanglement witness (MDI-EW). This approach can be adapted to witness all entangled qubit states for a wide range of physical systems and does not depend on detection efficiencies or classical communication between devices. In this paper, we extend the theory to remove the necessity of prior knowledge about the two-qubit states to be witnessed. Moreover, we tested this model via a novel experimental implementation for MDI-EW thatmore » significantly reduces the experimental complexity. Finally, by applying it to a bipartite Werner state, we demonstrate the robustness of this approach against noise by witnessing entanglement down to an entangled state fraction close to 0.4.« less
Hyperentanglement purification using imperfect spatial entanglement.
Wang, Tie-Jun; Mi, Si-Chen; Wang, Chuan
2017-02-06
As the interaction between the photons and the environment which will make the entangled photon pairs in less entangled states or even in mixed states, the security and the efficiency of quantum communication will decrease. We present an efficient hyperentanglement purification protocol that distills nonlocal high-fidelity hyper-entangled Bell states in both polarization and spatial-mode degrees of freedom from ensembles of two-photon system in mixed states using linear optics. Here, we consider the influence of the photon loss in the channel which generally is ignored in the conventional entanglement purification and hyperentanglement purification (HEP) schemes. Compared with previous HEP schemes, our HEP scheme decreases the requirement for nonlocal resources by employing high-dimensional mode-check measurement, and leads to a higher fidelity, especially in the range where the conventional HEP schemes become invalid but our scheme still can work.
Private States, Quantum Data Hiding, and the Swapping of Perfect Secrecy.
Christandl, Matthias; Ferrara, Roberto
2017-12-01
An important contribution to the understanding of quantum key distribution has been the discovery of entangled states from which secret bits, but no maximally entangled states, can be extracted [Horodecki et al., Phys. Rev. Lett. 94, 200501 (2005)PRLTAO0031-900710.1103/PhysRevLett.94.200501]. The construction of those states was based on an intuition that the quantum mechanical phenomena of data hiding and privacy might be related. In this Letter we firmly connect these two phenomena and highlight three aspects of this result. First, we simplify the definition of the secret key rate. Second, we give a formula for the one-way distillable entanglement of certain private states. Third, we consider the problem of extending the distance of quantum key distribution with help of intermediate stations, a setting called the quantum key repeater. We show that for protocols that first distill private states, it is essentially optimal to use the standard quantum repeater protocol based on entanglement distillation and entanglement swapping.
Private States, Quantum Data Hiding, and the Swapping of Perfect Secrecy
NASA Astrophysics Data System (ADS)
Christandl, Matthias; Ferrara, Roberto
2017-12-01
An important contribution to the understanding of quantum key distribution has been the discovery of entangled states from which secret bits, but no maximally entangled states, can be extracted [Horodecki et al., Phys. Rev. Lett. 94, 200501 (2005), 10.1103/PhysRevLett.94.200501]. The construction of those states was based on an intuition that the quantum mechanical phenomena of data hiding and privacy might be related. In this Letter we firmly connect these two phenomena and highlight three aspects of this result. First, we simplify the definition of the secret key rate. Second, we give a formula for the one-way distillable entanglement of certain private states. Third, we consider the problem of extending the distance of quantum key distribution with help of intermediate stations, a setting called the quantum key repeater. We show that for protocols that first distill private states, it is essentially optimal to use the standard quantum repeater protocol based on entanglement distillation and entanglement swapping.
Characterizing entanglement of an artificial atom and a cavity cat state with Bell's inequality
Vlastakis, Brian; Petrenko, Andrei; Ofek, Nissim; Sun, Luyan; Leghtas, Zaki; Sliwa, Katrina; Liu, Yehan; Hatridge, Michael; Blumoff, Jacob; Frunzio, Luigi; Mirrahimi, Mazyar; Jiang, Liang; Devoret, M. H.; Schoelkopf, R. J.
2015-01-01
The Schrodinger's cat thought experiment highlights the counterintuitive concept of entanglement in macroscopically distinguishable systems. The hallmark of entanglement is the detection of strong correlations between systems, most starkly demonstrated by the violation of a Bell inequality. No violation of a Bell inequality has been observed for a system entangled with a superposition of coherent states, known as a cat state. Here we use the Clauser–Horne–Shimony–Holt formulation of a Bell test to characterize entanglement between an artificial atom and a cat state, or a Bell-cat. Using superconducting circuits with high-fidelity measurements and real-time feedback, we detect correlations that surpass the classical maximum of the Bell inequality. We investigate the influence of decoherence with states up to 16 photons in size and characterize the system by introducing joint Wigner tomography. Such techniques demonstrate that information stored in superpositions of coherent states can be extracted efficiently, a crucial requirement for quantum computing with resonators. PMID:26611724
Characterizing entanglement of an artificial atom and a cavity cat state with Bell's inequality.
Vlastakis, Brian; Petrenko, Andrei; Ofek, Nissim; Sun, Luyan; Leghtas, Zaki; Sliwa, Katrina; Liu, Yehan; Hatridge, Michael; Blumoff, Jacob; Frunzio, Luigi; Mirrahimi, Mazyar; Jiang, Liang; Devoret, M H; Schoelkopf, R J
2015-11-27
The Schrodinger's cat thought experiment highlights the counterintuitive concept of entanglement in macroscopically distinguishable systems. The hallmark of entanglement is the detection of strong correlations between systems, most starkly demonstrated by the violation of a Bell inequality. No violation of a Bell inequality has been observed for a system entangled with a superposition of coherent states, known as a cat state. Here we use the Clauser-Horne-Shimony-Holt formulation of a Bell test to characterize entanglement between an artificial atom and a cat state, or a Bell-cat. Using superconducting circuits with high-fidelity measurements and real-time feedback, we detect correlations that surpass the classical maximum of the Bell inequality. We investigate the influence of decoherence with states up to 16 photons in size and characterize the system by introducing joint Wigner tomography. Such techniques demonstrate that information stored in superpositions of coherent states can be extracted efficiently, a crucial requirement for quantum computing with resonators.
Entanglement-induced quantum radiation
NASA Astrophysics Data System (ADS)
Iso, Satoshi; Tatsukawa, Rumi; Ueda, Kazushige; Yamamoto, Kazuhiro
2017-08-01
Quantum entanglement of the Minkowski vacuum state between left and right Rindler wedges generates thermal behavior in the right Rindler wedge, which is known as the Unruh effect. In this paper, we show that there is another consequence of this entanglement, namely entanglement-induced quantum radiation emanating from a uniformly accelerated object. We clarify why it is in agreement with our intuition that incoming and outgoing energy fluxes should cancel each other out in a thermalized state.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan Qiyuan; Jing Jiliang
2008-09-15
The effect of the Hawking temperature on the entanglement and teleportation for the scalar field in a most general, static, and asymptotically flat black hole with spherical symmetry has been investigated. It has been shown that the same 'initial entanglement' for the state parameter {alpha} and its 'normalized partners'{radical}(1-{alpha}{sup 2}) will be degraded by the Hawking effect with increasing Hawking temperature along two different trajectories except for the maximally entangled state. In the infinite Hawking temperature limit, corresponding to the case of the black hole evaporating completely, the state no longer has distillable entanglement for any {alpha}. It is interestingmore » to note that the mutual information in this limit is equal to just half of the 'initially mutual information'. It has also been demonstrated that the fidelity of teleportation decreases as the Hawking temperature increases, which indicates the degradation of entanglement.« less
Quantum steganography with large payload based on entanglement swapping of χ-type entangled states
NASA Astrophysics Data System (ADS)
Qu, Zhi-Guo; Chen, Xiu-Bo; Luo, Ming-Xing; Niu, Xin-Xin; Yang, Yi-Xian
2011-04-01
In this paper, we firstly propose a new simple method to calculate entanglement swapping of χ-type entangled states, and then present a novel quantum steganography protocol with large payload. The new protocol adopts entanglement swapping to build up the hidden channel within quantum secure direct communication with χ-type entangled states for securely transmitting secret messages. Comparing with the previous quantum steganographies, the capacity of the hidden channel is much higher, which is increased to eight bits. Meanwhile, due to the quantum uncertainty theorem and the no-cloning theorem its imperceptibility is proved to be great in the analysis, and its security is also analyzed in detail, which is proved that intercept-resend attack, measurement-resend attack, ancilla attack, man-in-the-middle attack or even Dos(Denial of Service) attack couldn't threaten it. As a result, the protocol can be applied in various fields of quantum communication.
Quantum frequency up-conversion of continuous variable entangled states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Wenyuan; Wang, Ning; Li, Zongyang
We demonstrate experimentally quantum frequency up-conversion of a continuous variable entangled optical field via sum-frequency-generation process. The two-color entangled state initially entangled at 806 and 1518 nm with an amplitude quadrature difference squeezing of 3.2 dB and phase quadrature sum squeezing of 3.1 dB is converted to a new entangled state at 530 and 1518 nm with the amplitude quadrature difference squeezing of 1.7 dB and phase quadrature sum squeezing of 1.8 dB. Our implementation enables the observation of entanglement between two light fields spanning approximately 1.5 octaves in optical frequency. The presented scheme is robust to the excess amplitude and phase noises of the pumpmore » field, making it a practical building block for quantum information processing and communication networks.« less
Squashed Entanglement, k-Extendibility, Quantum Markov Chains, and Recovery Maps
NASA Astrophysics Data System (ADS)
Li, Ke; Winter, Andreas
2018-02-01
Squashed entanglement (Christandl and Winter in J. Math. Phys. 45(3):829-840, 2004) is a monogamous entanglement measure, which implies that highly extendible states have small value of the squashed entanglement. Here, invoking a recent inequality for the quantum conditional mutual information (Fawzi and Renner in Commun. Math. Phys. 340(2):575-611, 2015) greatly extended and simplified in various work since, we show the converse, that a small value of squashed entanglement implies that the state is close to a highly extendible state. As a corollary, we establish an alternative proof of the faithfulness of squashed entanglement (Brandão et al. Commun. Math. Phys. 306:805-830, 2011). We briefly discuss the previous and subsequent history of the Fawzi-Renner bound and related conjectures, and close by advertising a potentially far-reaching generalization to universal and functorial recovery maps for the monotonicity of the relative entropy.
Generation of entanglement and its decay in a noisy environment
NASA Astrophysics Data System (ADS)
Huang, Jiehui
Entanglement plays a central role in distinguishing quantum mechanics from classical physics. Due to its fantastic properties and many potential applications in quantum information science, entanglement is attracting more and more attention. This thesis focuses on the generation of entanglement and its decay in a noisy environment. In the first experimental scheme to entangle two thermal fields, an atomic ensemble, composed of many identical four-level atoms, is employed. In the first Raman scattering, this atomic ensemble emits write signal photons after the pumping by a weak write pulse, accompanied by the transfer from one lower level to the other for some atoms. Similarly, the atomic ensemble emits read signal photons after the driving by a strong read pulse, and the ensemble turns back to its ground state after the second Raman scattering. The coherence between the two lower atomic levels plays a key role in establishing the quantum correlation between two emission fields, which is verified through the violation of Cauchy-Schwarz inequality. In particular, the controllable time delay between the two emission fields actually means the storage time of photonic information in this system, which sheds light on some potential applications, such as quantum memory. In the second experimental scheme for the generation of spatially separated multiphoton entanglement, two or more identical optical cavities are aligned along a bee-line, and a four-level atom runs through these cavities sequentially. By appropriately adjusting the passage time of the atom in each cavity or the Rabi frequency of the classical pumping laser, a photon can be generated via the interaction between the excited atom and the cavity modes. This adiabatic passage model is an effective method to map atomic coherence to photonic state in cavity QED, thus all photons in different cavities quantum-mechanically correlate with the moving atom. When a final detection is made on this atom, a generalized n-photon GHZ entangled state will be generated with certainty. Environment-induced disentanglement is another important topic in quantum optics. Based on the Peres-Horodecki criterion for separability of bipartite states, we develop the principal minor method for the verification of two-qubit entanglement. Among the fifteen principal minors (seven effective ones) of a given two-qubit state's partial transpose, if the minimum one is negative, the two-qubit state is entangled, otherwise it is separable. By applying this method to a two-qubit system under amplitude and phase dampings, we have derived the necessary and sufficient conditions for the entanglement sudden death of an initially entangled two-qubit state. Keywords: entanglement generation, atomic ensemble, two-qubit, multiphoton entanglement, cavity QED, entanglement sudden death (ESD), amplitude damping, phase damping, principal minor.
Entanglement transfer from microwaves to diamond NV centers
NASA Astrophysics Data System (ADS)
Gomez, Angela V.; Rodriguez, Ferney J.; Quiroga, Luis
2014-03-01
Strong candidates to create quantum entangled states in solid-state environments are the nitrogen-vacancy (NV) defect centers in diamond. By the combination of radiation from different wavelength (optical, microwave and radio-frequency), several protocols have been proposed to create entangled states of different NVs. Recently, experimental sources of non-classical microwave radiation have been successfully realized. Here, we consider the entanglement transfer from spatially separated two-mode microwave squeezed (entangled) photons to a pair of NV centers by exploiting the fact that the spin triplet ground state of a NV has a natural splitting with a frequency on the order of GHz (microwave range). We first demonstrate that the transfer process in the simplest case of a single pair of spatially separated NVs is feasible. Moreover, we proceed to extend the previous results to more realistic scenarios where 13C nuclear spin baths surrounding each NV are included, quantifying the degradation of the entanglement transfer by the dephasing/dissipation effects produced by the nuclear baths. Finally, we address the issue of assessing the possibility of entanglement transfer from the squeezed microwave light to two nuclear spins closely linked to different NV center electrons. Facultad de Ciencias Uniandes.
NASA Astrophysics Data System (ADS)
Sharma, Kapil K.; Pandey, S. N.
2016-12-01
In this article, the robustness of tripartite Greenberger-Horne-Zeilinger (GHZ) and W states is investigated against Dzyaloshinskii-Moriya (i.e. DM) interaction. We consider a closed system of three qubits and an environmental qubit. The environmental qubit interacts with any one of the three qubits through DM interaction. The tripartite system is initially prepared in GHZ and W states, respectively. The composite four qubits system evolve with unitary dynamics. We detach the environmental qubit by tracing out from four qubits, and profound impact of DM interaction is studied on the initial entanglement of the system. As a result, we find that the bipartite partitions of W states suffer from entanglement sudden death (i.e. ESD), while tripartite entanglement does not. On the other hand, bipartite partitions and tripartite entanglement in GHZ states do not feel any influence of DM interaction. So, we find that GHZ states have robust character than W states. In this work, we consider generalised GHZ and W states, and three π is used as an entanglement measure. This study can be useful in quantum information processing where unwanted DM interaction takes place.
Quantum entanglement and criticality of the antiferromagnetic Heisenberg model in an external field.
Liu, Guang-Hua; Li, Ruo-Yan; Tian, Guang-Shan
2012-06-27
By Lanczos exact diagonalization and the infinite time-evolving block decimation (iTEBD) technique, the two-site entanglement as well as the bipartite entanglement, the ground state energy, the nearest-neighbor correlations, and the magnetization in the antiferromagnetic Heisenberg (AFH) model under an external field are investigated. With increasing external field, the small size system shows some distinct upward magnetization stairsteps, accompanied synchronously with some downward two-site entanglement stairsteps. In the thermodynamic limit, the two-site entanglement, as well as the bipartite entanglement, the ground state energy, the nearest-neighbor correlations, and the magnetization are calculated, and the critical magnetic field h(c) = 2.0 is determined exactly. Our numerical results show that the quantum entanglement is sensitive to the subtle changing of the ground state, and can be used to describe the magnetization and quantum phase transition. Based on the discontinuous behavior of the first-order derivative of the entanglement entropy and fidelity per site, we think that the quantum phase transition in this model should belong to the second-order category. Furthermore, in the magnon existence region (h < 2.0), a logarithmically divergent behavior of block entanglement which can be described by a free bosonic field theory is observed, and the central charge c is determined to be 1.
Operational quantification of continuous-variable correlations.
Rodó, Carles; Adesso, Gerardo; Sanpera, Anna
2008-03-21
We quantify correlations (quantum and/or classical) between two continuous-variable modes as the maximal number of correlated bits extracted via local quadrature measurements. On Gaussian states, such "bit quadrature correlations" majorize entanglement, reducing to an entanglement monotone for pure states. For non-Gaussian states, such as photonic Bell states, photon-subtracted states, and mixtures of Gaussian states, the bit correlations are shown to be a monotonic function of the negativity. This quantification yields a feasible, operational way to measure non-Gaussian entanglement in current experiments by means of direct homodyne detection, without a complete state tomography.
Entanglement measures for intermediate separability of quantum states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ichikawa, Tsubasa; Sasaki, Toshihiko; Tsutsui, Izumi
We present a family of entanglement measures R{sub m} which act as indicators of separability of n-qubit quantum states into m subsystems for arbitrary 2{<=}m{<=}n. The measure R{sub m} vanishes if the state is separable into m subsystems, and for m=n it gives the Meyer-Wallach measure, while for m=2 it reduces, in effect, to the one introduced recently by Love et al. [Quantum Inf. Process. 6, 187 (2007)]. The measures R{sub m} are evaluated explicitly for the Greenberger-Horne-Zeilinger state and the W state (and its modifications, the W{sub k} or Dicke states) to show that these globally entangled states exhibitmore » rather distinct behaviors under the measures, indicating the utility of the measures R{sub m} for characterizing globally entangled states as well.« less
Experimental entanglement and nonlocality of a two-photon six-qubit cluster state.
Ceccarelli, Raino; Vallone, Giuseppe; De Martini, Francesco; Mataloni, Paolo; Cabello, Adán
2009-10-16
We create a six-qubit linear cluster state by transforming a two-photon hyperentangled state in which three qubits are encoded in each particle, one in the polarization and two in the linear momentum degrees of freedom. For this state, we demonstrate genuine six-qubit entanglement, persistency of entanglement against the loss of qubits, and higher violation than in previous experiments on Bell inequalities of the Mermin type.
Entanglement of spin waves among four quantum memories.
Choi, K S; Goban, A; Papp, S B; van Enk, S J; Kimble, H J
2010-11-18
Quantum networks are composed of quantum nodes that interact coherently through quantum channels, and open a broad frontier of scientific opportunities. For example, a quantum network can serve as a 'web' for connecting quantum processors for computation and communication, or as a 'simulator' allowing investigations of quantum critical phenomena arising from interactions among the nodes mediated by the channels. The physical realization of quantum networks generically requires dynamical systems capable of generating and storing entangled states among multiple quantum memories, and efficiently transferring stored entanglement into quantum channels for distribution across the network. Although such capabilities have been demonstrated for diverse bipartite systems, entangled states have not been achieved for interconnects capable of 'mapping' multipartite entanglement stored in quantum memories to quantum channels. Here we demonstrate measurement-induced entanglement stored in four atomic memories; user-controlled, coherent transfer of the atomic entanglement to four photonic channels; and characterization of the full quadripartite entanglement using quantum uncertainty relations. Our work therefore constitutes an advance in the distribution of multipartite entanglement across quantum networks. We also show that our entanglement verification method is suitable for studying the entanglement order of condensed-matter systems in thermal equilibrium.
Entanglement Equilibrium and the Einstein Equation.
Jacobson, Ted
2016-05-20
A link between the semiclassical Einstein equation and a maximal vacuum entanglement hypothesis is established. The hypothesis asserts that entanglement entropy in small geodesic balls is maximized at fixed volume in a locally maximally symmetric vacuum state of geometry and quantum fields. A qualitative argument suggests that the Einstein equation implies the validity of the hypothesis. A more precise argument shows that, for first-order variations of the local vacuum state of conformal quantum fields, the vacuum entanglement is stationary if and only if the Einstein equation holds. For nonconformal fields, the same conclusion follows modulo a conjecture about the variation of entanglement entropy.
Local Gaussian operations can enhance continuous-variable entanglement distillation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Shengli; Loock, Peter van; Institute of Theoretical Physics I, Universitaet Erlangen-Nuernberg, Staudtstrasse 7/B2, DE-91058 Erlangen
2011-12-15
Entanglement distillation is a fundamental building block in long-distance quantum communication. Though known to be useless on their own for distilling Gaussian entangled states, local Gaussian operations may still help to improve non-Gaussian entanglement distillation schemes. Here we show that by applying local squeezing operations both the performance and the efficiency of existing distillation protocols can be enhanced. We find that such an enhancement through local Gaussian unitaries can be obtained even when the initially shared Gaussian entangled states are mixed, as, for instance, after their distribution through a lossy-fiber communication channel.
Higher-order quantum entanglement
NASA Technical Reports Server (NTRS)
Zeilinger, Anton; Horne, Michael A.; Greenberger, Daniel M.
1992-01-01
In quantum mechanics, the general state describing two or more particles is a linear superposition of product states. Such a superposition is called entangled if it cannot be factored into just one product. When only two particles are entangled, the stage is set for Einstein-Podolsky-Rosen (EPR) discussions and Bell's proof that the EPR viewpoint contradicts quantum mechanics. If more than two particles are involved, new possibilities and phenomena arise. For example, the Greenberger, Horne, and Zeilinger (GHZ) disproof of EPR applies. Furthermore, as we point out, with three or more particles even entanglement itself can be an entangled property.
Observation of entanglement of a single photon with a trapped atom.
Volz, Jürgen; Weber, Markus; Schlenk, Daniel; Rosenfeld, Wenjamin; Vrana, Johannes; Saucke, Karen; Kurtsiefer, Christian; Weinfurter, Harald
2006-01-27
We report the observation of entanglement between a single trapped atom and a single photon at a wavelength suitable for low-loss communication over large distances, thereby achieving a crucial step towards long range quantum networks. To verify the entanglement, we introduce a single atom state analysis. This technique is used for full state tomography of the atom-photon qubit pair. The detection efficiency and the entanglement fidelity are high enough to allow in a next step the generation of entangled atoms at large distances, ready for a final loophole-free Bell experiment.
NASA Astrophysics Data System (ADS)
Higuchi, Atsushi; Iso, Satoshi; Ueda, Kazushige; Yamamoto, Kazuhiro
2017-10-01
The Minkowski vacuum state is expressed as an entangled state between the left and right Rindler wedges when it is constructed on the Rindler vacuum. In this paper, we further examine the entanglement structure and extend the expression to the future (expanding) and past (shrinking) Kasner spacetimes. This clarifies the origin of the quantum radiation produced by an Unruh-DeWitt detector in uniformly accelerated motion in the four-dimensional Minkowski spacetime. We also investigate the two-dimensional massless case where the quantum radiation vanishes but the same entanglement structure exists.
NASA Astrophysics Data System (ADS)
Man'ko, V. I.; Markovich, L. A.
2018-02-01
Quantum correlations in the state of four-level atom are investigated by using generic unitary transforms of the classical (diagonal) density matrix. Partial cases of pure state, X-state, Werner state are studied in details. The geometrical meaning of unitary Hilbert reference-frame rotations generating entanglement in the initially separable state is discussed. Characteristics of the entanglement in terms of concurrence, entropy and negativity are obtained as functions of the unitary matrix rotating the reference frame.
Experimental extraction of secure correlations from a noisy private state.
Dobek, K; Karpiński, M; Demkowicz-Dobrzański, R; Banaszek, K; Horodecki, P
2011-01-21
We report experimental generation of a noisy entangled four-photon state that exhibits a separation between the secure key contents and distillable entanglement, a hallmark feature of the recently established quantum theory of private states. The privacy analysis, based on the full tomographic reconstruction of the prepared state, is utilized in a proof-of-principle key generation. The inferiority of distillation-based strategies to extract the key is exposed by an implementation of an entanglement distillation protocol for the produced state.
Optimal estimation of two-qubit pure-state entanglement
NASA Astrophysics Data System (ADS)
Acín, Antonio; Tarrach, Rolf; Vidal, Guifré
2000-06-01
We present optimal measuring strategies for an estimation of the entanglement of unknown two-qubit pure states and of the degree of mixing of unknown single-qubit mixed states, of which N identical copies are available. The most general measuring strategies are considered in both situations, to conclude in the first case that a local, although collective, measurement suffices to estimate entanglement, a nonlocal property, optimally.
2009-08-01
transmitter state. For example, theory has shown that for a non-classical ten entangled photon N00N state used as a Type-1 sensor, typical losses...stemmed from Lloyd’s proof [14] that a large performance gain accrues from the use of entanglement in single- photon target detection within a lossy...output. These mode pairs are in independent identically distributed (iid), zero-mean, maximally- entangled Gaussian states with average photon number
Heralded entanglement between solid-state qubits separated by three metres.
Bernien, H; Hensen, B; Pfaff, W; Koolstra, G; Blok, M S; Robledo, L; Taminiau, T H; Markham, M; Twitchen, D J; Childress, L; Hanson, R
2013-05-02
Quantum entanglement between spatially separated objects is one of the most intriguing phenomena in physics. The outcomes of independent measurements on entangled objects show correlations that cannot be explained by classical physics. As well as being of fundamental interest, entanglement is a unique resource for quantum information processing and communication. Entangled quantum bits (qubits) can be used to share private information or implement quantum logical gates. Such capabilities are particularly useful when the entangled qubits are spatially separated, providing the opportunity to create highly connected quantum networks or extend quantum cryptography to long distances. Here we report entanglement of two electron spin qubits in diamond with a spatial separation of three metres. We establish this entanglement using a robust protocol based on creation of spin-photon entanglement at each location and a subsequent joint measurement of the photons. Detection of the photons heralds the projection of the spin qubits onto an entangled state. We verify the resulting non-local quantum correlations by performing single-shot readout on the qubits in different bases. The long-distance entanglement reported here can be combined with recently achieved initialization, readout and entanglement operations on local long-lived nuclear spin registers, paving the way for deterministic long-distance teleportation, quantum repeaters and extended quantum networks.
Entangling distant solid-state spins via thermal phonons
NASA Astrophysics Data System (ADS)
Cao, Puhao; Betzholz, Ralf; Zhang, Shaoliang; Cai, Jianming
2017-12-01
The implementation of quantum entangling gates between qubits is essential to achieve scalable quantum computation. Here, we propose a robust scheme to realize an entangling gate for distant solid-state spins via a mechanical oscillator in its thermal equilibrium state. By appropriate Hamiltonian engineering and usage of a protected subspace, we show that the proposed scheme is able to significantly reduce the thermal effect of the mechanical oscillator on the spins. In particular, we demonstrate that a high entangling gate fidelity can be achieved even for a relatively high thermal occupation. Our scheme can thus relax the requirement for ground-state cooling of the mechanical oscillator, and may find applications in scalable quantum information processing in hybrid solid-state architectures.
NASA Astrophysics Data System (ADS)
Li, Tao; Deng, Fu-Guo
2014-09-01
We present an efficient entanglement concentration protocol (ECP) for partially entangled four-photon χ-type states in the first time with only linear optical elements and single-photon detectors. Without any ancillary particles, the parties in quantum communication network can obtain a subset of four-photon systems in the standard | χ 00> state from a set of four-photon systems in a partially entangled χ-type state with the parameter-splitting method developed by Ren et al. (Phys. Rev. A 88:012302, 2013). The present ECP has the optimal success probability which is determined by the component with the minimal probability amplitude in the initial state. Moreover, it is easy to implement this ECP in experiment.
Joint temporal density measurements for two-photon state characterization.
Kuzucu, Onur; Wong, Franco N C; Kurimura, Sunao; Tovstonog, Sergey
2008-10-10
We demonstrate a technique for characterizing two-photon quantum states based on joint temporal correlation measurements using time-resolved single-photon detection by femtosecond up-conversion. We measure for the first time the joint temporal density of a two-photon entangled state, showing clearly the time anticorrelation of the coincident-frequency entangled photon pair generated by ultrafast spontaneous parametric down-conversion under extended phase-matching conditions. The new technique enables us to manipulate the frequency entanglement by varying the down-conversion pump bandwidth to produce a nearly unentangled two-photon state that is expected to yield a heralded single-photon state with a purity of 0.88. The time-domain correlation technique complements existing frequency-domain measurement methods for a more complete characterization of photonic entanglement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pirandola, Stefano; Mancini, Stefano; Vitali, David
2003-12-01
We study an isolated, perfectly reflecting, mirror illuminated by an intense laser pulse. We show that the resulting radiation pressure efficiently entangles a mirror vibrational mode with the two reflected optical sideband modes of the incident carrier beam. The entanglement of the resulting three-mode state is studied in detail and it is shown to be robust against the mirror mode temperature. We then show how this continuous-variable entanglement can be profitably used to teleport an unknown quantum state of an optical mode onto the vibrational mode of the mirror.
10-Qubit Entanglement and Parallel Logic Operations with a Superconducting Circuit
NASA Astrophysics Data System (ADS)
Song, Chao; Xu, Kai; Liu, Wuxin; Yang, Chui-ping; Zheng, Shi-Biao; Deng, Hui; Xie, Qiwei; Huang, Keqiang; Guo, Qiujiang; Zhang, Libo; Zhang, Pengfei; Xu, Da; Zheng, Dongning; Zhu, Xiaobo; Wang, H.; Chen, Y.-A.; Lu, C.-Y.; Han, Siyuan; Pan, Jian-Wei
2017-11-01
Here we report on the production and tomography of genuinely entangled Greenberger-Horne-Zeilinger states with up to ten qubits connecting to a bus resonator in a superconducting circuit, where the resonator-mediated qubit-qubit interactions are used to controllably entangle multiple qubits and to operate on different pairs of qubits in parallel. The resulting 10-qubit density matrix is probed by quantum state tomography, with a fidelity of 0.668 ±0.025 . Our results demonstrate the largest entanglement created so far in solid-state architectures and pave the way to large-scale quantum computation.
10-Qubit Entanglement and Parallel Logic Operations with a Superconducting Circuit.
Song, Chao; Xu, Kai; Liu, Wuxin; Yang, Chui-Ping; Zheng, Shi-Biao; Deng, Hui; Xie, Qiwei; Huang, Keqiang; Guo, Qiujiang; Zhang, Libo; Zhang, Pengfei; Xu, Da; Zheng, Dongning; Zhu, Xiaobo; Wang, H; Chen, Y-A; Lu, C-Y; Han, Siyuan; Pan, Jian-Wei
2017-11-03
Here we report on the production and tomography of genuinely entangled Greenberger-Horne-Zeilinger states with up to ten qubits connecting to a bus resonator in a superconducting circuit, where the resonator-mediated qubit-qubit interactions are used to controllably entangle multiple qubits and to operate on different pairs of qubits in parallel. The resulting 10-qubit density matrix is probed by quantum state tomography, with a fidelity of 0.668±0.025. Our results demonstrate the largest entanglement created so far in solid-state architectures and pave the way to large-scale quantum computation.
Observation of entanglement between itinerant microwave photons and a superconducting qubit.
Eichler, C; Lang, C; Fink, J M; Govenius, J; Filipp, S; Wallraff, A
2012-12-14
A localized qubit entangled with a propagating quantum field is well suited to study nonlocal aspects of quantum mechanics and may also provide a channel to communicate between spatially separated nodes in a quantum network. Here, we report the on-demand generation and characterization of Bell-type entangled states between a superconducting qubit and propagating microwave fields composed of zero-, one-, and two-photon Fock states. Using low noise linear amplification and efficient data acquisition we extract all relevant correlations between the qubit and the photon states and demonstrate entanglement with high fidelity.
Fidelity matters: the birth of entanglement in the mixing of Gaussian states.
Olivares, Stefano; Paris, Matteo G A
2011-10-21
We address the interaction of two Gaussian states through bilinear exchange Hamiltonians and analyze the correlations exhibited by the resulting bipartite systems. We demonstrate that entanglement arises if and only if the fidelity between the two input Gaussian states falls under a threshold value depending only on their purities, first moments, and the strength of the coupling. Our result clarifies the role of quantum fluctuations (squeezing) as a prerequisite for entanglement generation and provides a tool to optimize the generation of entanglement in linear systems of interest for quantum technology. © 2011 American Physical Society
NASA Astrophysics Data System (ADS)
Maleki, Yusef; Zheltikov, Aleksei M.
2018-01-01
An ensemble of nitrogen-vacancy (NV) centers coupled to a circuit QED device is shown to enable an efficient, high-fidelity generation of high-N00N states. Instead of first creating entanglement and then increasing the number of entangled particles N , our source of high-N00N states first prepares a high-N Fock state in one of the NV ensembles and then entangles it to the rest of the system. With such a strategy, high-N N00N states can be generated in just a few operational steps with an extraordinary fidelity. Once prepared, such a state can be stored over a longer period of time due to the remarkably long coherence time of NV centers.
Residual entanglement and sudden death: A direct connection
NASA Astrophysics Data System (ADS)
de Oliveira, J. G. G.; Peixoto de Faria, J. G.; Nemes, M. C.
2011-11-01
We explore the results of [V. Coffman, et al., Phys. Rev. A 61 (2000) 052306] derived for general tripartite states in a dynamical context. We study a class of physically motivated tripartite systems. We show that whenever entanglement sudden death occurs in one of the partitions residual entanglement will appear. For fourpartite systems however, the appearance of residual entanglement is not conditioned by sudden death of entanglement. We can only say that if sudden death of entanglement occurs in some partition there will certainly be residual entanglement.
Design of Quantum Algorithms Using Physics Tools
2014-06-02
invariant spin-1 chain that has a unique highly entangled ground state and exhibits some signatures of critical behavior. The entanglement entropy of one... entangled and found them hard to approximate using the MPS method. In follow on work Shor along with Sergey Bravyi, Libor Caha, Movassagh and Nagaj...They asked how entangled the ground state of a FF quantum spin-s chain with nearest-neighbor interactions can be for small values of s. While FF spin-1
Thermal entanglement and teleportation in a dipolar interacting system
NASA Astrophysics Data System (ADS)
Castro, C. S.; Duarte, O. S.; Pires, D. P.; Soares-Pinto, D. O.; Reis, M. S.
2016-04-01
Quantum teleportation, which depends on entangled states, is a fascinating subject and an important branch of quantum information processing. The present work reports the use of a dipolar spin thermal system as a noisy quantum channel to perform quantum teleportation. Non-locality, tested by violation of Bell's inequality and thermal entanglement, measured by negativity, shows that for the present model all entangled states, even those that do not violate Bell's inequality, are useful for teleportation.
Deep inelastic scattering as a probe of entanglement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kharzeev, Dmitri E.; Levin, Eugene M.
Using nonlinear evolution equations of QCD, we compute the von Neumann entropy of the system of partons resolved by deep inelastic scattering at a given Bjorken x and momentum transfer q 2 = - Q 2 . We interpret the result as the entropy of entanglement between the spatial region probed by deep inelastic scattering and the rest of the proton. At small x the relation between the entanglement entropy S ( x ) and the parton distribution x G ( x ) becomes very simple: S ( x ) = ln [ x G ( x ) ] .more » In this small x , large rapidity Y regime, all partonic microstates have equal probabilities—the proton is composed by an exponentially large number exp ( Δ Y ) of microstates that occur with equal and exponentially small probabilities exp ( - Δ Y ) , where Δ is defined by x G ( x ) ~ 1 / x Δ . For this equipartitioned state, the entanglement entropy is maximal—so at small x , deep inelastic scattering probes a maximally entangled state. Here, we propose the entanglement entropy as an observable that can be studied in deep inelastic scattering. This will then require event-by-event measurements of hadronic final states, and would allow to study the transformation of entanglement entropy into the Boltzmann one. We estimate that the proton is represented by the maximally entangled state at x ≤ 10 -3 ; this kinematic region will be amenable to studies at the Electron Ion Collider.« less
Deep inelastic scattering as a probe of entanglement
Kharzeev, Dmitri E.; Levin, Eugene M.
2017-06-03
Using nonlinear evolution equations of QCD, we compute the von Neumann entropy of the system of partons resolved by deep inelastic scattering at a given Bjorken x and momentum transfer q 2 = - Q 2 . We interpret the result as the entropy of entanglement between the spatial region probed by deep inelastic scattering and the rest of the proton. At small x the relation between the entanglement entropy S ( x ) and the parton distribution x G ( x ) becomes very simple: S ( x ) = ln [ x G ( x ) ] .more » In this small x , large rapidity Y regime, all partonic microstates have equal probabilities—the proton is composed by an exponentially large number exp ( Δ Y ) of microstates that occur with equal and exponentially small probabilities exp ( - Δ Y ) , where Δ is defined by x G ( x ) ~ 1 / x Δ . For this equipartitioned state, the entanglement entropy is maximal—so at small x , deep inelastic scattering probes a maximally entangled state. Here, we propose the entanglement entropy as an observable that can be studied in deep inelastic scattering. This will then require event-by-event measurements of hadronic final states, and would allow to study the transformation of entanglement entropy into the Boltzmann one. We estimate that the proton is represented by the maximally entangled state at x ≤ 10 -3 ; this kinematic region will be amenable to studies at the Electron Ion Collider.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhai, Liangjun; Zheng, Yujun, E-mail: yzheng@sdu.edu.cn
In the present study, the dynamical behaviors of tripartite entanglement of vibrations in triatomic molecules are studied based on the Lie algebraic models of molecules. The dynamical behaviors of tripartite entanglement of the local mode molecule H{sub 2}O and normal mode molecule NO{sub 2} are comparatively studied for different initial states by employing the general concurrence. Our results show that the dynamics of tripartite entanglement are relied on the dynamics of intramolecular energy distribution. The local mode molecule is more suitable to construct the tripartite entangled states. Also, the greater degree of tripartite entanglement can be obtained if the stretchingmore » vibration is first excited. These results shed new light on the understanding of quantum multipartite entanglement of vibrations in the polyatomic molecules.« less
Detection of multipartite entanglement in spin rings by use of exchange energy
NASA Astrophysics Data System (ADS)
Siloi, I.; Troiani, F.
2014-10-01
We investigate multipartite entanglement in rings of arbitrary spins with antiferromagnetic interactions between nearest neighbors. In particular, we show that the nondegenerate ground state of rings formed by an even number (N ) of spins is N -partite entangled, and exchange energy can thus be used as a multipartite-entanglement witness. We develop a general approach to compute the energy minima corresponding to biseparable states, and provide numerical results for a representative set of systems. Despite its global character, exchange energy also allows a spin-selective characterization of entanglement. In particular, in the presence of a magnetic defect, one can derive separability criteria for each individual spin, and use exchange energy for detecting entanglement between this and all the other spins.
Inoue, R; Yonehara, T; Miyamoto, Y; Koashi, M; Kozuma, M
2009-09-11
Three-dimensional entanglement of orbital angular momentum states of an atomic qutrit and a single photon qutrit has been observed. Their full state was reconstructed using quantum state tomography. The fidelity to the maximally entangled state of Schmidt rank 3 exceeds the threshold 2/3. This result confirms that the density matrix cannot be decomposed into an ensemble of pure states of Schmidt rank 1 or 2. That is, the Schmidt number of the density matrix must be equal to or greater than 3.
Quantum Teamwork for Unconditional Multiparty Communication with Gaussian States
NASA Astrophysics Data System (ADS)
Zhang, Jing; Adesso, Gerardo; Xie, Changde; Peng, Kunchi
2009-08-01
We demonstrate the capability of continuous variable Gaussian states to communicate multipartite quantum information. A quantum teamwork protocol is presented according to which an arbitrary possibly entangled multimode state can be faithfully teleported between two teams each comprising many cooperative users. We prove that N-mode Gaussian weighted graph states exist for arbitrary N that enable unconditional quantum teamwork implementations for any arrangement of the teams. These perfect continuous variable maximally multipartite entangled resources are typical among pure Gaussian states and are unaffected by the entanglement frustration occurring in multiqubit states.
Distillation of mixed-state continuous-variable entanglement by photon subtraction
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang Shengli; Loock, Peter van
2010-12-15
We present a detailed theoretical analysis for the distillation of one copy of a mixed two-mode continuous-variable entangled state using beam splitters and coherent photon-detection techniques, including conventional on-off detectors and photon-number-resolving detectors. The initial Gaussian mixed-entangled states are generated by transmitting a two-mode squeezed state through a lossy bosonic channel, corresponding to the primary source of errors in current approaches to optical quantum communication. We provide explicit formulas to calculate the entanglement in terms of logarithmic negativity before and after distillation, including losses in the channel and the photon detection, and show that one-copy distillation is still possible evenmore » for losses near the typical fiber channel attenuation length. A lower bound for the transmission coefficient of the photon-subtraction beam splitter is derived, representing the minimal value that still allows to enhance the entanglement.« less
Controlling dynamical entanglement in a Josephson tunneling junction
NASA Astrophysics Data System (ADS)
Ziegler, K.
2017-12-01
We analyze the evolution of an entangled many-body state in a Josephson tunneling junction and its dependence on the number of bosons and interaction strength. A N00N state, which is a superposition of two complementary Fock states, appears in the evolution with sufficient probability only for a moderate many-body interaction on an intermediate time scale. This time scale is inversely proportional to the tunneling rate. Many-body interaction strongly supports entanglement: The probability for creating an entangled state decays exponentially with the number of particles without many-body interaction, whereas it decays only like the inverse square root of the number of particles in the presence of many-body interaction.
Monogamy of αth power entanglement measurement in qubit systems
NASA Astrophysics Data System (ADS)
Luo, Yu; Li, Yongming
2015-11-01
In this paper, we study the αth power monogamy properties related to the entanglement measure in bipartite states. The monogamy relations related to the αth power of negativity and the Convex-Roof Extended Negativity are obtained for N-qubit states. We also give a tighter bound of hierarchical monogamy inequality for the entanglement of formation. We find that the GHZ state and W state can be used to distinguish both the αth power of the concurrence for 0 < α < 2 and the αth power of the entanglement of formation for 0 < α ≤ 1/2. Furthermore, we compare concurrence with negativity in terms of monogamy property and investigate the difference between them.
Entanglement and Coherence in Quantum State Merging.
Streltsov, A; Chitambar, E; Rana, S; Bera, M N; Winter, A; Lewenstein, M
2016-06-17
Understanding the resource consumption in distributed scenarios is one of the main goals of quantum information theory. A prominent example for such a scenario is the task of quantum state merging, where two parties aim to merge their tripartite quantum state parts. In standard quantum state merging, entanglement is considered to be an expensive resource, while local quantum operations can be performed at no additional cost. However, recent developments show that some local operations could be more expensive than others: it is reasonable to distinguish between local incoherent operations and local operations which can create coherence. This idea leads us to the task of incoherent quantum state merging, where one of the parties has free access to local incoherent operations only. In this case the resources of the process are quantified by pairs of entanglement and coherence. Here, we develop tools for studying this process and apply them to several relevant scenarios. While quantum state merging can lead to a gain of entanglement, our results imply that no merging procedure can gain entanglement and coherence at the same time. We also provide a general lower bound on the entanglement-coherence sum and show that the bound is tight for all pure states. Our results also lead to an incoherent version of Schumacher compression: in this case the compression rate is equal to the von Neumann entropy of the diagonal elements of the corresponding quantum state.
Collapse–revival of quantum discord and entanglement
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yan, Xue-Qun, E-mail: xqyan867@tom.com; Zhang, Bo-Ying
2014-10-15
In this paper the correlations dynamics of two atoms in the case of a micromaser-type system is investigated. Our results predict certain quasi-periodic collapse and revival phenomena for quantum discord and entanglement when the field is in Fock state and the two atoms are initially in maximally mixed state, which is a special separable state. Our calculations also show that the oscillations of the time evolution of both quantum discord and entanglement are almost in phase and they both have similar evolution behavior in some time range. The fact reveals the consistency of quantum discord and entanglement in some dynamicalmore » aspects. - Highlights: • The correlations dynamics of two atoms in the case of a micromaser-type system is investigated. • A quasi-periodic collapse and revival phenomenon for quantum discord and entanglement is reported. • A phenomenon of correlations revivals different from that of non-Markovian dynamics is revealed. • The oscillations of time evolution of both quantum discord and entanglement are almost in phase in our system. • Quantum discord and entanglement have similar evolution behavior in some time range.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Lin, E-mail: godyalin@163.com; Singh, Uttam, E-mail: uttamsingh@hri.res.in; Pati, Arun K., E-mail: akpati@hri.res.in
Compact expressions for the average subentropy and coherence are obtained for random mixed states that are generated via various probability measures. Surprisingly, our results show that the average subentropy of random mixed states approaches the maximum value of the subentropy which is attained for the maximally mixed state as we increase the dimension. In the special case of the random mixed states sampled from the induced measure via partial tracing of random bipartite pure states, we establish the typicality of the relative entropy of coherence for random mixed states invoking the concentration of measure phenomenon. Our results also indicate thatmore » mixed quantum states are less useful compared to pure quantum states in higher dimension when we extract quantum coherence as a resource. This is because of the fact that average coherence of random mixed states is bounded uniformly, however, the average coherence of random pure states increases with the increasing dimension. As an important application, we establish the typicality of relative entropy of entanglement and distillable entanglement for a specific class of random bipartite mixed states. In particular, most of the random states in this specific class have relative entropy of entanglement and distillable entanglement equal to some fixed number (to within an arbitrary small error), thereby hugely reducing the complexity of computation of these entanglement measures for this specific class of mixed states.« less
Quantum correlation of path-entangled two-photon states in waveguide arrays with defects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dou, Yiling; Xu, Lei; Han, Bin
We study the quantum correlation of path-entangled states of two photons in coupled one-dimensional waveguide arrays with lattice defects. Both off-diagonal and diagonal defects are considered, which show different effects on the quantum correlation of path-entangled two-photon states. Two-photon bunching or anti-bunching effects can be observed and controlled. The two photons are found to have a tendency to bunch at the side lobes with a repulsive off-diagonal defect, and the path-entanglement of the input two-photon state can be preserved during the propagation. We also found that defect modes may play an important role on the two-photon correlation of path-entangled statesmore » in the waveguide arrays. Due to the quantum interference effect, intriguing evolution dynamics of the two-photon correlation matrix elements with oscillation frequencies being either twice of or the same as that of a classical light wave, depending on the position of the correlation matrix element, is observed. Our results show that it is possible to manipulate the two-photon correlation properties of path-entangled states in waveguide arrays with lattice defects.« less
Emergence of entanglement with temperature and time in factorization-surface states
NASA Astrophysics Data System (ADS)
Chanda, Titas; Das, Tamoghna; Sadhukhan, Debasis; Pal, Amit Kumar; SenDe, Aditi; Sen, Ujjwal
2018-01-01
There exist zero-temperature states in quantum many-body systems that are fully factorized, thereby possessing vanishing entanglement, and hence being of no use as resource in quantum information processing tasks. Such states can become useful for quantum protocols when the temperature of the system is increased, and when the system is allowed to evolve under either the influence of an external environment, or a closed unitary evolution driven by its own Hamiltonian due to a sudden change in the system parameters. Using the one-dimensional anisotropic XY model in a uniform and an alternating transverse magnetic field, we show that entanglement of the thermal states, corresponding to the factorization points in the space of the system parameters, revives once or twice with increasing temperature. We also study the closed unitary evolution of the quantum spin chain driven out of equilibrium when the external magnetic fields are turned off, and show that considerable entanglement is generated during the dynamics, when the initial state has vanishing entanglement. Interestingly, we find that creation of entanglement for a pair of spins is possible when the system is made open to an external heat bath, interacting with the system through that spin-pair via a repetitive quantum interaction.
Multiple-copy entanglement transformation and entanglement catalysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duan Runyao; Feng Yuan; Li Xin
2005-04-01
We prove that any multiple-copy entanglement transformation [S. Bandyopadhyay, V. Roychowdhury, and U. Sen, Phys. Rev. A 65, 052315 (2002)] can be implemented by a suitable entanglement-assisted local transformation [D. Jonathan and M. B. Plenio, Phys. Rev. Lett. 83, 3566 (1999)]. Furthermore, we show that the combination of multiple-copy entanglement transformation and the entanglement-assisted one is still equivalent to the pure entanglement-assisted one. The mathematical structure of multiple-copy entanglement transformations then is carefully investigated. Many interesting properties of multiple-copy entanglement transformations are presented, which exactly coincide with those satisfied by the entanglement-assisted ones. Most interestingly, we show that an arbitrarilymore » large number of copies of state should be considered in multiple-copy entanglement transformations.« less
Entanglement for All Quantum States
ERIC Educational Resources Information Center
de la Torre, A. C.; Goyeneche, D.; Leitao, L.
2010-01-01
It is shown that a state that is factorizable in the Hilbert space corresponding to some choice of degrees of freedom becomes entangled for a different choice of degrees of freedom. Therefore, entanglement is not a special case but is ubiquitous in quantum systems. Simple examples are calculated and a general proof is provided. The physical…
Entangled cloning of stabilizer codes and free fermions
NASA Astrophysics Data System (ADS)
Hsieh, Timothy H.
2016-10-01
Though the no-cloning theorem [Wooters and Zurek, Nature (London) 299, 802 (1982), 10.1038/299802a0] prohibits exact replication of arbitrary quantum states, there are many instances in quantum information processing and entanglement measurement in which a weaker form of cloning may be useful. Here, I provide a construction for generating an "entangled clone" for a particular but rather expansive and rich class of states. Given a stabilizer code or free fermion Hamiltonian, this construction generates an exact entangled clone of the original ground state, in the sense that the entanglement between the original and the exact copy can be tuned to be arbitrarily small but finite, or large, and the relation between the original and the copy can also be modified to some extent. For example, this Rapid Communication focuses on generating time-reversed copies of stabilizer codes and particle-hole transformed ground states of free fermion systems, although untransformed clones can also be generated. The protocol leverages entanglement to simulate a transformed copy of the Hamiltonian without having to physically implement it and can potentially be realized in superconducting qubits or ultracold atomic systems.
Entanglement of remote material qubits through nonexciting interaction with single photons
NASA Astrophysics Data System (ADS)
Li, Gang; Zhang, Pengfei; Zhang, Tiancai
2018-05-01
We propose a scheme to entangle multiple material qubits through interaction with single photons via nonexciting processes associated with strongly coupling systems. The basic idea is based on the material state dependent reflection and transmission for the input photons. Thus, the material qubits in several systems can be entangled when one photon interacts with each system in cascade and the photon paths are mixed by the photon detection. The character of nonexciting of material qubits does not change the state of the material qubit and thus ensures the possibility of purifying entangled states by using more photons under realistic imperfect parameters. It also guarantees directly scaling up the scheme to entangle more qubits. Detailed analysis of fidelity and success probability of the scheme in the frame of an optical Fabry-Pérot cavity based strongly coupling system is presented. It is shown that a two-qubit entangled state with fidelity above 0.99 is promised with only two photons by using currently feasible experimental parameters. Our scheme can also be directly implemented on other strongly coupled system.
Entanglement-secured single-qubit quantum secret sharing
DOE Office of Scientific and Technical Information (OSTI.GOV)
Scherpelz, P.; Resch, R.; Berryrieser, D.
In single-qubit quantum secret sharing, a secret is shared between N parties via manipulation and measurement of one qubit at a time. Each qubit is sent to all N parties in sequence; the secret is encoded in the first participant's preparation of the qubit state and the subsequent participants' choices of state rotation or measurement basis. We present a protocol for single-qubit quantum secret sharing using polarization entanglement of photon pairs produced in type-I spontaneous parametric downconversion. We investigate the protocol's security against eavesdropping attack under common experimental conditions: a lossy channel for photon transmission, and imperfect preparation of themore » initial qubit state. A protocol which exploits entanglement between photons, rather than simply polarization correlation, is more robustly secure. We implement the entanglement-based secret-sharing protocol with 87% secret-sharing fidelity, limited by the purity of the entangled state produced by our present apparatus. We demonstrate a photon-number splitting eavesdropping attack, which achieves no success against the entanglement-based protocol while showing the predicted rate of success against a correlation-based protocol.« less
Measuring higher-dimensional entanglement
NASA Astrophysics Data System (ADS)
Datta, Chandan; Agrawal, Pankaj; Choudhary, Sujit K.
2017-04-01
We study local-realistic inequalities, Bell-type inequalities, for bipartite pure states of finite dimensional quantum systems—qudits. There are a number of proposed Bell-type inequalities for such systems. Our interest is in relating the value of the Bell-type inequality function with a measure of entanglement. Interestingly, we find that one of these inequalities, the Son-Lee-Kim inequality, can be used to measure entanglement of a pure bipartite qudit state and a class of mixed two-qudit states. Unlike the majority of earlier schemes in this direction, where the number of observables needed to characterize the entanglement increases with the dimension of the subsystems, this method needs only four observables. We also discuss the experimental feasibility of this scheme. It turns out that current experimental setups can be used to measure the entanglement using our scheme.
Entanglement and Berry Phase in a Parameterized Three-Qubit System
NASA Astrophysics Data System (ADS)
Shao, Wenyi; Du, Yangyang; Yang, Qi; Wang, Gangcheng; Sun, Chunfang; Xue, Kang
2017-03-01
In this paper, we construct a parameterized form of unitary breve {R}_{123}(θ 1,θ 2,φ) matrix through the Yang-Baxterization method. Acting such matrix on three-qubit natural basis as a quantum gate, we can obtain a set of entangled states, which possess the same entanglement value depending on the parameters 𝜃 1 and 𝜃 2. Particularly, such entangled states can produce a set of maximally entangled bases Greenberger-Horne-Zeilinger (GHZ) states with respect to 𝜃 1 = 𝜃 2 = π/2. Choosing a useful Hamiltonian, one can study the evolution of the eigenstates and investigate the result of Berry phase. It is not difficult to find that the Berry phase for this new three-qubit system consistent with the solid angle on the Bloch sphere.
Enhancing the absorption and energy transfer process via quantum entanglement
NASA Astrophysics Data System (ADS)
Zong, Xiao-Lan; Song, Wei; Zhou, Jian; Yang, Ming; Yu, Long-Bao; Cao, Zhuo-Liang
2018-07-01
The quantum network model is widely used to describe the dynamics of excitation energy transfer in photosynthesis complexes. Different from the previous schemes, we explore a specific network model, which includes both light-harvesting and energy transfer process. Here, we define a rescaled measure to manifest the energy transfer efficiency from external driving to the sink, and the external driving fields are used to simulate the energy absorption process. To study the role of initial state in the light-harvesting and energy transfer process, we assume the initial state of the donors to be two-qubit and three-qubit entangled states, respectively. In the two-qubit initial state case, we find that the initial entanglement between the donors can help to improve the absorption and energy transfer process for both the near-resonant and large-detuning cases. For the case of three-qubit initial state, we can see that the transfer efficiency will reach a larger value faster in the tripartite entanglement case compared to the bipartite entanglement case.
Ghose, S; Sinclair, N; Debnath, S; Rungta, P; Stock, R
2009-06-26
We analyze the relationship between tripartite entanglement and genuine tripartite nonlocality for three-qubit pure states in the Greenberger-Horne-Zeilinger class. We consider a family of states known as the generalized Greenberger-Horne-Zeilinger states and derive an analytical expression relating the three-tangle, which quantifies tripartite entanglement, to the Svetlichny inequality, which is a Bell-type inequality that is violated only when all three qubits are nonlocally correlated. We show that states with three-tangle less than 1/2 do not violate the Svetlichny inequality. On the other hand, a set of states known as the maximal slice states does violate the Svetlichny inequality, and exactly analogous to the two-qubit case, the amount of violation is directly related to the degree of tripartite entanglement. We discuss further interesting properties of the generalized Greenberger-Horne-Zeilinger and maximal slice states.
Approximating local observables on projected entangled pair states
NASA Astrophysics Data System (ADS)
Schwarz, M.; Buerschaper, O.; Eisert, J.
2017-06-01
Tensor network states are for good reasons believed to capture ground states of gapped local Hamiltonians arising in the condensed matter context, states which are in turn expected to satisfy an entanglement area law. However, the computational hardness of contracting projected entangled pair states in two- and higher-dimensional systems is often seen as a significant obstacle when devising higher-dimensional variants of the density-matrix renormalization group method. In this work, we show that for those projected entangled pair states that are expected to provide good approximations of such ground states of local Hamiltonians, one can compute local expectation values in quasipolynomial time. We therefore provide a complexity-theoretic justification of why state-of-the-art numerical tools work so well in practice. We finally turn to the computation of local expectation values on quantum computers, providing a meaningful application for a small-scale quantum computer.
Monogamy relation of multi-qubit systems for squared Tsallis-q entanglement
NASA Astrophysics Data System (ADS)
Yuan, Guang-Ming; Song, Wei; Yang, Ming; Li, Da-Chuang; Zhao, Jun-Long; Cao, Zhuo-Liang
2016-06-01
Tsallis-q entanglement is a bipartite entanglement measure which is the generalization of entanglement of formation for q tending to 1. We first expand the range of q for the analytic formula of Tsallis-q entanglement. For , we prove the monogamy relation in terms of the squared Tsallis-q entanglement for an arbitrary multi-qubit systems. It is shown that the multipartite entanglement indicator based on squared Tsallis-q entanglement still works well even when the indicator based on the squared concurrence loses its efficacy. We also show that the μ-th power of Tsallis-q entanglement satisfies the monogamy or polygamy inequalities for any three-qubit state.
Monogamy relation of multi-qubit systems for squared Tsallis-q entanglement.
Yuan, Guang-Ming; Song, Wei; Yang, Ming; Li, Da-Chuang; Zhao, Jun-Long; Cao, Zhuo-Liang
2016-06-27
Tsallis-q entanglement is a bipartite entanglement measure which is the generalization of entanglement of formation for q tending to 1. We first expand the range of q for the analytic formula of Tsallis-q entanglement. For , we prove the monogamy relation in terms of the squared Tsallis-q entanglement for an arbitrary multi-qubit systems. It is shown that the multipartite entanglement indicator based on squared Tsallis-q entanglement still works well even when the indicator based on the squared concurrence loses its efficacy. We also show that the μ-th power of Tsallis-q entanglement satisfies the monogamy or polygamy inequalities for any three-qubit state.
Entanglement replication in driven dissipative many-body systems.
Zippilli, S; Paternostro, M; Adesso, G; Illuminati, F
2013-01-25
We study the dissipative dynamics of two independent arrays of many-body systems, locally driven by a common entangled field. We show that in the steady state the entanglement of the driving field is reproduced in an arbitrarily large series of inter-array entangled pairs over all distances. Local nonclassical driving thus realizes a scale-free entanglement replication and long-distance entanglement distribution mechanism that has immediate bearing on the implementation of quantum communication networks.
Fermionic entanglement in superconducting systems
NASA Astrophysics Data System (ADS)
Di Tullio, M.; Gigena, N.; Rossignoli, R.
2018-06-01
We examine distinct measures of fermionic entanglement in the exact ground state of a finite superconducting system. It is first shown that global measures such as the one-body entanglement entropy, which represents the minimum relative entropy between the exact ground state and the set of fermionic Gaussian states, exhibit a close correlation with the BCS gap, saturating in the strong superconducting regime. The same behavior is displayed by the bipartite entanglement between the set of all single-particle states k of positive quasimomenta and their time-reversed partners k ¯. In contrast, the entanglement associated with the reduced density matrix of four single-particle modes k ,k ¯ , k',k¯' , which can be measured through a properly defined fermionic concurrence, exhibits a different behavior, showing a peak in the vicinity of the superconducting transition for states k ,k' close to the Fermi level and becoming small in the strong coupling regime. In the latter, such reduced state exhibits, instead, a finite mutual information and quantum discord. While the first measures can be correctly estimated with the BCS approximation, the previous four-level concurrence lies strictly beyond the latter, requiring at least a particle-number projected BCS treatment for its description. Formal properties of all previous entanglement measures are as well discussed.
Monogamy Relations for Squared Entanglement Negativity
NASA Astrophysics Data System (ADS)
Liu, Feng
2016-10-01
This paper contains two main contents. In the first part, we provide two counterexamples of monogamy inequalities for the squared entanglement negativity: one three-qutrit pure state which violates of the He—Vidal monogamy conjecture, and one four-qubit pure state which disproves the squared-negativity-based Regula—Martino—Lee—Adesso-class strong monogamy conjecture. In the second part, we investigate the sharing of the entanglement negativity in a composite cavity-reservoir system using the corresponding multipartite entanglement scores, and then we find that there is no simple dominating relation between multipartite entanglement scores and the entanglement negativity in composite cavity-reservoir systems. As a by-product, we further validate that the entanglement of two cavity photons is a decreasing function of the evolution time, and the entanglement will suddenly disappear interacting with independent reservoirs. Supported by the National Natural Science Foundation of China under Grant No. 60973135 and Shandong Provincial Natural Science Foundation of China under Grant No. ZR2015FQ006
Should Entanglement Measures be Monogamous or Faithful?
NASA Astrophysics Data System (ADS)
Lancien, Cécilia; Di Martino, Sara; Huber, Marcus; Piani, Marco; Adesso, Gerardo; Winter, Andreas
2016-08-01
"Is entanglement monogamous?" asks the title of a popular article [B. Terhal, IBM J. Res. Dev. 48, 71 (2004)], celebrating C. H. Bennett's legacy on quantum information theory. While the answer is affirmative in the qualitative sense, the situation is less clear if monogamy is intended as a quantitative limitation on the distribution of bipartite entanglement in a multipartite system, given some particular measure of entanglement. Here, we formalize what it takes for a bipartite measure of entanglement to obey a general quantitative monogamy relation on all quantum states. We then prove that an important class of entanglement measures fail to be monogamous in this general sense of the term, with monogamy violations becoming generic with increasing dimension. In particular, we show that every additive and suitably normalized entanglement measure cannot satisfy any nontrivial general monogamy relation while at the same time faithfully capturing the geometric entanglement structure of the fully antisymmetric state in arbitrary dimension. Nevertheless, monogamy of such entanglement measures can be recovered if one allows for dimension-dependent relations, as we show explicitly with relevant examples.
How entangled can a multi-party system possibly be?
NASA Astrophysics Data System (ADS)
Qi, Liqun; Zhang, Guofeng; Ni, Guyan
2018-06-01
The geometric measure of entanglement of a pure quantum state is defined to be its distance to the space of pure product (separable) states. Given an n-partite system composed of subsystems of dimensions d1 , … ,dn, an upper bound for maximally allowable entanglement is derived in terms of geometric measure of entanglement. This upper bound is characterized exclusively by the dimensions d1 , … ,dn of composite subsystems. Numerous examples demonstrate that the upper bound appears to be reasonably tight.
Tighter monogamy relations in multiqubit systems
NASA Astrophysics Data System (ADS)
Jin, Zhi-Xiang; Li, Jun; Li, Tao; Fei, Shao-Ming
2018-03-01
Monogamy relations characterize the distributions of entanglement in multipartite systems. We investigate monogamy relations related to the concurrence C , the entanglement of formation E , negativity Nc, and Tsallis-q entanglement Tq. Monogamy relations for the α th power of entanglement have been derived, which are tighter than the existing entanglement monogamy relations for some classes of quantum states. Detailed examples are presented.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lima Bernardo, Bertúlio de, E-mail: bertulio.fisica@gmail.com
We describe a novel quantum information protocol, which probabilistically entangles two distant photons that have never interacted. Different from the entanglement swapping protocol, which requires two pairs of maximally entangled photons as the input states, as well as a Bell-state measurement (BSM), the present scheme only requires three photons: two to be entangled and another to mediate the correlation, and no BSM, in a process that we call “entanglement mediation”. Furthermore, in analyzing the paths of the photons in our arrangement, we conclude that one of them, the mediator, exchanges information with the two others simultaneously, which seems to bemore » a new quantum-mechanical feature.« less
NASA Astrophysics Data System (ADS)
Galvez, Enrique J.; Shi, Lingyan; Alfano, Robert R.
2017-02-01
We investigated the preservation of non-local correlations between polarization-entangled photons when one of them traveled through brain tissue slices of different thicknesses. Using down-converted photons at a wavelength of 802 nm minimized the absorption by the tissue. After the light passed through the tissue samples, we performed quantum state tomography to obtain quantitative measures of the entanglement. We found that entanglement is preserved to a surprising degree, and when it degrades, it does so following a particular path in a tangle versus linear-entropy graph. Such a trajectory reveals direct transfer of probability from entangled to mixed state.
Influence of entanglements on glass transition temperature of polystyrene
NASA Astrophysics Data System (ADS)
Ougizawa, Toshiaki; Kinugasa, Yoshinori
2013-03-01
Chain entanglement is essential behavior of polymeric molecules and it seems to affect many physical properties such as not only viscosity of melt state but also glass transition temperature (Tg). But we have not attained the quantitative estimation because the entanglement density is considered as an intrinsic value of the polymer at melt state depending on the chemical structure. Freeze-drying method is known as one of the few ways to make different entanglement density sample from dilute solution. In this study, the influence of entanglements on Tg of polystyrene obtained by the freeze-dried method was estimated quantitatively. The freeze-dried samples showed Tg depression with decreasing the concentration of precursor solution due to the lower entanglement density and their depressed Tg would be saturated when the almost no intermolecular entanglement was formed. The molecular weight dependence of the maximum value of Tg depression was discussed.
Entanglement and thermodynamics after a quantum quench in integrable systems.
Alba, Vincenzo; Calabrese, Pasquale
2017-07-25
Entanglement and entropy are key concepts standing at the foundations of quantum and statistical mechanics. Recently, the study of quantum quenches revealed that these concepts are intricately intertwined. Although the unitary time evolution ensuing from a pure state maintains the system at zero entropy, local properties at long times are captured by a statistical ensemble with nonzero thermodynamic entropy, which is the entanglement accumulated during the dynamics. Therefore, understanding the entanglement evolution unveils how thermodynamics emerges in isolated systems. Alas, an exact computation of the entanglement dynamics was available so far only for noninteracting systems, whereas it was deemed unfeasible for interacting ones. Here, we show that the standard quasiparticle picture of the entanglement evolution, complemented with integrability-based knowledge of the steady state and its excitations, leads to a complete understanding of the entanglement dynamics in the space-time scaling limit. We thoroughly check our result for the paradigmatic Heisenberg chain.
Entanglement and thermodynamics after a quantum quench in integrable systems
NASA Astrophysics Data System (ADS)
Alba, Vincenzo; Calabrese, Pasquale
2017-07-01
Entanglement and entropy are key concepts standing at the foundations of quantum and statistical mechanics. Recently, the study of quantum quenches revealed that these concepts are intricately intertwined. Although the unitary time evolution ensuing from a pure state maintains the system at zero entropy, local properties at long times are captured by a statistical ensemble with nonzero thermodynamic entropy, which is the entanglement accumulated during the dynamics. Therefore, understanding the entanglement evolution unveils how thermodynamics emerges in isolated systems. Alas, an exact computation of the entanglement dynamics was available so far only for noninteracting systems, whereas it was deemed unfeasible for interacting ones. Here, we show that the standard quasiparticle picture of the entanglement evolution, complemented with integrability-based knowledge of the steady state and its excitations, leads to a complete understanding of the entanglement dynamics in the space-time scaling limit. We thoroughly check our result for the paradigmatic Heisenberg chain.
Programmable multimode quantum networks
Armstrong, Seiji; Morizur, Jean-François; Janousek, Jiri; Hage, Boris; Treps, Nicolas; Lam, Ping Koy; Bachor, Hans-A.
2012-01-01
Entanglement between large numbers of quantum modes is the quintessential resource for future technologies such as the quantum internet. Conventionally, the generation of multimode entanglement in optics requires complex layouts of beamsplitters and phase shifters in order to transform the input modes into entangled modes. Here we report the highly versatile and efficient generation of various multimode entangled states with the ability to switch between different linear optics networks in real time. By defining our modes to be combinations of different spatial regions of one beam, we may use just one pair of multi-pixel detectors in order to measure multiple entangled modes. We programme virtual networks that are fully equivalent to the physical linear optics networks they are emulating. We present results for N=2 up to N=8 entangled modes here, including N=2, 3, 4 cluster states. Our approach introduces the highly sought after attributes of flexibility and scalability to multimode entanglement. PMID:22929783
Quantum storage of orbital angular momentum entanglement in an atomic ensemble.
Ding, Dong-Sheng; Zhang, Wei; Zhou, Zhi-Yuan; Shi, Shuai; Xiang, Guo-Yong; Wang, Xi-Shi; Jiang, Yun-Kun; Shi, Bao-Sen; Guo, Guang-Can
2015-02-06
Constructing a quantum memory for a photonic entanglement is vital for realizing quantum communication and network. Because of the inherent infinite dimension of orbital angular momentum (OAM), the photon's OAM has the potential for encoding a photon in a high-dimensional space, enabling the realization of high channel capacity communication. Photons entangled in orthogonal polarizations or optical paths had been stored in a different system, but there have been no reports on the storage of a photon pair entangled in OAM space. Here, we report the first experimental realization of storing an entangled OAM state through the Raman protocol in a cold atomic ensemble. We reconstruct the density matrix of an OAM entangled state with a fidelity of 90.3%±0.8% and obtain the Clauser-Horne-Shimony-Holt inequality parameter S of 2.41±0.06 after a programed storage time. All results clearly show the preservation of entanglement during the storage.
Experimental Verification of Entanglement Generated in a Plasmonic System.
Dieleman, F; Tame, M S; Sonnefraud, Y; Kim, M S; Maier, S A
2017-12-13
A core process in many quantum tasks is the generation of entanglement. It is being actively studied in a variety of physical settings-from simple bipartite systems to complex multipartite systems. In this work we experimentally study the generation of bipartite entanglement in a nanophotonic system. Entanglement is generated via the quantum interference of two surface plasmon polaritons in a beamsplitter structure, i.e., utilizing the Hong-Ou-Mandel (HOM) effect, and its presence is verified using quantum state tomography. The amount of entanglement is quantified by the concurrence and we find values of up to 0.77 ± 0.04. Verifying entanglement in the output state from HOM interference is a nontrivial task and cannot be inferred from the visibility alone. The techniques we use to verify entanglement could be applied to other types of photonic system and therefore may be useful for the characterization of a range of different nanophotonic quantum devices.
Entanglement and thermodynamics after a quantum quench in integrable systems
Alba, Vincenzo; Calabrese, Pasquale
2017-01-01
Entanglement and entropy are key concepts standing at the foundations of quantum and statistical mechanics. Recently, the study of quantum quenches revealed that these concepts are intricately intertwined. Although the unitary time evolution ensuing from a pure state maintains the system at zero entropy, local properties at long times are captured by a statistical ensemble with nonzero thermodynamic entropy, which is the entanglement accumulated during the dynamics. Therefore, understanding the entanglement evolution unveils how thermodynamics emerges in isolated systems. Alas, an exact computation of the entanglement dynamics was available so far only for noninteracting systems, whereas it was deemed unfeasible for interacting ones. Here, we show that the standard quasiparticle picture of the entanglement evolution, complemented with integrability-based knowledge of the steady state and its excitations, leads to a complete understanding of the entanglement dynamics in the space–time scaling limit. We thoroughly check our result for the paradigmatic Heisenberg chain. PMID:28698379
Modular architectures for quantum networks
NASA Astrophysics Data System (ADS)
Pirker, A.; Wallnöfer, J.; Dür, W.
2018-05-01
We consider the problem of generating multipartite entangled states in a quantum network upon request. We follow a top-down approach, where the required entanglement is initially present in the network in form of network states shared between network devices, and then manipulated in such a way that the desired target state is generated. This minimizes generation times, and allows for network structures that are in principle independent of physical links. We present a modular and flexible architecture, where a multi-layer network consists of devices of varying complexity, including quantum network routers, switches and clients, that share certain resource states. We concentrate on the generation of graph states among clients, which are resources for numerous distributed quantum tasks. We assume minimal functionality for clients, i.e. they do not participate in the complex and distributed generation process of the target state. We present architectures based on shared multipartite entangled Greenberger–Horne–Zeilinger states of different size, and fully connected decorated graph states, respectively. We compare the features of these architectures to an approach that is based on bipartite entanglement, and identify advantages of the multipartite approach in terms of memory requirements and complexity of state manipulation. The architectures can handle parallel requests, and are designed in such a way that the network state can be dynamically extended if new clients or devices join the network. For generation or dynamical extension of the network states, we propose a quantum network configuration protocol, where entanglement purification is used to establish high fidelity states. The latter also allows one to show that the entanglement generated among clients is private, i.e. the network is secure.
Global Dirac bispinor entanglement under Lorentz boosts
NASA Astrophysics Data System (ADS)
Bittencourt, Victor A. S. V.; Bernardini, Alex E.; Blasone, Massimo
2018-03-01
The effects of Lorentz boosts on the quantum entanglement encoded by a pair of massive spin-1/2 particles are described according to the Lorentz covariant structure described by Dirac bispinors. The quantum system considered incorporates four degrees of freedom: two of them related to the bispinor intrinsic parity and the other two related to the bispinor spin projection, i.e., the Dirac particle helicity. Because of the natural multipartite structure involved, the Meyer-Wallach global measure of entanglement is preliminarily used for computing global quantum correlations, while the entanglement separately encoded by spin degrees of freedom is measured through the negativity of the reduced two-particle spin-spin state. A general framework to compute the changes on quantum entanglement induced by a boost is developed and then specialized to describe three particular antisymmetric two-particle states. According to the results obtained, two-particle spin-spin entanglement cannot be created by the action of a Lorentz boost in a spin-spin separable antisymmetric state. On the other hand, the maximal spin-spin entanglement encoded by antisymmetric superpositions is degraded by Lorentz boosts driven by high-speed frame transformations. Finally, the effects of boosts on chiral states are shown to exhibit interesting invariance properties, which can only be obtained through such a Lorentz covariant formulation of the problem.
Evolution of entanglement between distinguishable light states.
Stevenson, R Mark; Hudson, Andrew J; Bennett, Anthony J; Young, Robert J; Nicoll, Christine A; Ritchie, David A; Shields, Andrew J
2008-10-24
We investigate the evolution of quantum correlations over the lifetime of a multiphoton state. Measurements reveal time-dependent oscillations of the entanglement fidelity for photon pairs created by a single semiconductor quantum dot. The oscillations are attributed to the phase acquired in the intermediate, nondegenerate, exciton-photon state and are consistent with simulations. We conclude that emission of photon pairs by a typical quantum dot with finite polarization splitting is in fact entangled in a time-evolving state, and not classically correlated as previously regarded.
Li, Dong-Xiao; Shao, Xiao-Qiang; Wu, Jin-Hui; Yi, X X
2017-10-01
A new mechanism is proposed for dissipatively preparing maximal Bell entangled state of two atoms in an optical cavity. This scheme integrates the spontaneous emission, the light shift of atoms in the presence of dispersive microwave field, and the quantum Zeno dynamics induced by continuous coupling, to obtain a unique steady state irrespective of initial state. Even for a large cavity decay, a high-fidelity entangled state is achievable at a short convergence time, since the occupation of the cavity mode is inhibited by the Zeno requirement. Therefore, a low single-atom cooperativity C=g 2 /(κγ) is good enough for realizing a high fidelity of entanglement in a wide range of decoherence parameters. As a straightforward extension, the feasibility for preparation of two-atom Knill-Laflamme-Milburn state with the same mechanism is also discussed.
On-chip generation of high-dimensional entangled quantum states and their coherent control
NASA Astrophysics Data System (ADS)
Kues, Michael; Reimer, Christian; Roztocki, Piotr; Cortés, Luis Romero; Sciara, Stefania; Wetzel, Benjamin; Zhang, Yanbing; Cino, Alfonso; Chu, Sai T.; Little, Brent E.; Moss, David J.; Caspani, Lucia; Azaña, José; Morandotti, Roberto
2017-06-01
Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science. Specifically, the realization of high-dimensional states (D-level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics, for increasing the sensitivity of quantum imaging schemes, for improving the robustness and key rate of quantum communication protocols, for enabling a richer variety of quantum simulations, and for achieving more efficient and error-tolerant quantum computation. Integrated photonics has recently become a leading platform for the compact, cost-efficient, and stable generation and processing of non-classical optical states. However, so far, integrated entangled quantum sources have been limited to qubits (D = 2). Here we demonstrate on-chip generation of entangled qudit states, where the photons are created in a coherent superposition of multiple high-purity frequency modes. In particular, we confirm the realization of a quantum system with at least one hundred dimensions, formed by two entangled qudits with D = 10. Furthermore, using state-of-the-art, yet off-the-shelf telecommunications components, we introduce a coherent manipulation platform with which to control frequency-entangled states, capable of performing deterministic high-dimensional gate operations. We validate this platform by measuring Bell inequality violations and performing quantum state tomography. Our work enables the generation and processing of high-dimensional quantum states in a single spatial mode.
On-chip generation of high-dimensional entangled quantum states and their coherent control.
Kues, Michael; Reimer, Christian; Roztocki, Piotr; Cortés, Luis Romero; Sciara, Stefania; Wetzel, Benjamin; Zhang, Yanbing; Cino, Alfonso; Chu, Sai T; Little, Brent E; Moss, David J; Caspani, Lucia; Azaña, José; Morandotti, Roberto
2017-06-28
Optical quantum states based on entangled photons are essential for solving questions in fundamental physics and are at the heart of quantum information science. Specifically, the realization of high-dimensional states (D-level quantum systems, that is, qudits, with D > 2) and their control are necessary for fundamental investigations of quantum mechanics, for increasing the sensitivity of quantum imaging schemes, for improving the robustness and key rate of quantum communication protocols, for enabling a richer variety of quantum simulations, and for achieving more efficient and error-tolerant quantum computation. Integrated photonics has recently become a leading platform for the compact, cost-efficient, and stable generation and processing of non-classical optical states. However, so far, integrated entangled quantum sources have been limited to qubits (D = 2). Here we demonstrate on-chip generation of entangled qudit states, where the photons are created in a coherent superposition of multiple high-purity frequency modes. In particular, we confirm the realization of a quantum system with at least one hundred dimensions, formed by two entangled qudits with D = 10. Furthermore, using state-of-the-art, yet off-the-shelf telecommunications components, we introduce a coherent manipulation platform with which to control frequency-entangled states, capable of performing deterministic high-dimensional gate operations. We validate this platform by measuring Bell inequality violations and performing quantum state tomography. Our work enables the generation and processing of high-dimensional quantum states in a single spatial mode.
Electronic Entanglement Concentration for the Concatenated Greenberger-Horne-Zeilinger State
NASA Astrophysics Data System (ADS)
Ding, Shang-Ping; Zhou, Lan; Gu, Shi-Pu; Wang, Xing-Fu; Sheng, Yu-Bo
2017-06-01
Concatenated Greenberger-Horne-Zeilinger (C-GHZ) state, which encodes many physical qubits in a logic qubit will have important applications in both quantum communication and computation. In this paper, we will describe an entanglement concentration protocol (ECP) for electronic C-GHZ state, by exploiting the electronic polarization beam splitters (PBSs) and charge detection. This protocol has several advantages. First, the parties do not need to know the exact coefficients of the initial less-entangled C-GHZ state, which makes this protocol feasible. Second, with the help of charge detection, the distilled maximally entangled C-GHZ state can be remained for future application. Third, this protocol can be repeated to obtain a higher success probability. We hope that this protocol can be useful in future quantum computation based on electrons.
Entanglement and nonclassical properties of hypergraph states
NASA Astrophysics Data System (ADS)
Gühne, Otfried; Cuquet, Martí; Steinhoff, Frank E. S.; Moroder, Tobias; Rossi, Matteo; Bruß, Dagmar; Kraus, Barbara; Macchiavello, Chiara
2014-08-01
Hypergraph states are multiqubit states that form a subset of the locally maximally entangleable states and a generalization of the well-established notion of graph states. Mathematically, they can conveniently be described by a hypergraph that indicates a possible generation procedure of these states; alternatively, they can also be phrased in terms of a nonlocal stabilizer formalism. In this paper, we explore the entanglement properties and nonclassical features of hypergraph states. First, we identify the equivalence classes under local unitary transformations for up to four qubits, as well as important classes of five- and six-qubit states, and determine various entanglement properties of these classes. Second, we present general conditions under which the local unitary equivalence of hypergraph states can simply be decided by considering a finite set of transformations with a clear graph-theoretical interpretation. Finally, we consider the question of whether hypergraph states and their correlations can be used to reveal contradictions with classical hidden-variable theories. We demonstrate that various noncontextuality inequalities and Bell inequalities can be derived for hypergraph states.
Entanglement in a solid-state spin ensemble.
Simmons, Stephanie; Brown, Richard M; Riemann, Helge; Abrosimov, Nikolai V; Becker, Peter; Pohl, Hans-Joachim; Thewalt, Mike L W; Itoh, Kohei M; Morton, John J L
2011-02-03
Entanglement is the quintessential quantum phenomenon. It is a necessary ingredient in most emerging quantum technologies, including quantum repeaters, quantum information processing and the strongest forms of quantum cryptography. Spin ensembles, such as those used in liquid-state nuclear magnetic resonance, have been important for the development of quantum control methods. However, these demonstrations contain no entanglement and ultimately constitute classical simulations of quantum algorithms. Here we report the on-demand generation of entanglement between an ensemble of electron and nuclear spins in isotopically engineered, phosphorus-doped silicon. We combined high-field (3.4 T), low-temperature (2.9 K) electron spin resonance with hyperpolarization of the (31)P nuclear spin to obtain an initial state of sufficient purity to create a non-classical, inseparable state. The state was verified using density matrix tomography based on geometric phase gates, and had a fidelity of 98% relative to the ideal state at this field and temperature. The entanglement operation was performed simultaneously, with high fidelity, on 10(10) spin pairs; this fulfils one of the essential requirements for a silicon-based quantum information processor.
Experimental entanglement distillation of two-qubit mixed states under local operations.
Wang, Zhi-Wei; Zhou, Xiang-Fa; Huang, Yun-Feng; Zhang, Yong-Sheng; Ren, Xi-Feng; Guo, Guang-Can
2006-06-09
We experimentally demonstrate optimal entanglement distillation from two forms of two-qubit mixed states under local filtering operations according to the constructive method introduced by [F. Verstraete, Phys. Rev. A 64, 010101(R) (2001)10.1103/PhysRevA.64.010101]. In principle, our setup can be easily applied to distilling entanglement from arbitrary two-qubit partially mixed states. We also test the violation of the Clauser-Horne-Shinmony-Holt inequality for the distilled state from the first form of mixed state to show its "hidden nonlocality."
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mintert, Florian; Zyczkowski, Karol; Uniwersytet Jagiellonski, Instytut Fizyki im. M. Smoluchowskiego, ul. Reymonta 4, 30-059 Cracow
We propose to quantify the entanglement of pure states of NxN bipartite quantum systems by defining its Husimi distribution with respect to SU(N)xSU(N) coherent states. The Wehrl entropy is minimal if and only if the analyzed pure state is separable. The excess of the Wehrl entropy is shown to be equal to the subentropy of the mixed state obtained by partial trace of the bipartite pure state. This quantity, as well as the generalized (Renyi) subentropies, are proved to be Schur concave, so they are entanglement monotones and may be used as alternative measures of entanglement.
Entangled scalar and tensor fluctuations during inflation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Collins, Hael; Vardanyan, Tereza
2016-11-29
We show how the choice of an inflationary state that entangles scalar and tensor fluctuations affects the angular two-point correlation functions of the T, E, and B modes of the cosmic microwave background. The propagators for a state starting with some general quadratic entanglement are solved exactly, leading to predictions for the primordial scalar-scalar, tensor-tensor, and scalar-tensor power spectra. These power spectra are expressed in terms of general functions that describe the entangling structure of the initial state relative to the standard Bunch-Davies vacuum. We illustrate how such a state would modify the angular correlations in the CMB with amore » simple example where the initial state is a small perturbation away from the Bunch-Davies state. Because the state breaks some of the rotational symmetries, the angular power spectra no longer need be strictly diagonal.« less
Entanglement and asymmetric steering over two octaves of frequency difference
NASA Astrophysics Data System (ADS)
Olsen, M. K.
2017-12-01
The development of quantum technologies which use quantum states of the light field interacting with other systems creates a demand for entangled states spanning wide frequency ranges. In this work we analyze a parametric scheme of cascaded harmonic generation which promises to deliver bipartite entangled states in which the two modes are separated by two octaves in frequency. This scheme is potentially very useful for applications in quantum communication and computation networks as well as providing for quantum interfaces between a wider range of light and atomic ensembles than is presently practicable. It doubles the frequency range over which entanglement is presently available.
NASA Astrophysics Data System (ADS)
Jiao, Yong; Wakakuwa, Eyuri; Ogawa, Tomohiro
2018-02-01
We consider asymptotic convertibility of an arbitrary sequence of bipartite pure states into another by local operations and classical communication (LOCC). We adopt an information-spectrum approach to address cases where each element of the sequences is not necessarily a tensor power of a bipartite pure state. We derive necessary and sufficient conditions for the LOCC convertibility of one sequence to another in terms of spectral entropy rates of entanglement of the sequences. Based on these results, we also provide simple proofs for previously known results on the optimal rates of entanglement concentration and dilution of general sequences of bipartite pure states.
Quantum prisoners' dilemma under enhanced interrogation
NASA Astrophysics Data System (ADS)
Siopsis, George; Balu, Radhakrishnan; Solmeyer, Neal
2018-06-01
In the quantum version of prisoners' dilemma, each prisoner is equipped with a single qubit that the interrogator can entangle. We enlarge the available Hilbert space by introducing a third qubit that the interrogator can entangle with the other two. We discuss an enhanced interrogation technique based on tripartite entanglement and analyze Nash equilibria. We show that for tripartite entanglement approaching a W-state, we calculate the Nash equilibria numerically and show that they coincide with the Pareto-optimal choice where both prisoners cooperate. Upon continuous variation between a W-state and a pure bipartite entangled state, the game is shown to have a surprisingly rich structure. The role of bipartite and tripartite entanglement is explored to explain that structure. As an application, we consider an evolutionary game based on our quantum game with a network of agents on a square lattice with periodic boundary conditions and show that the strategy corresponding to Nash equilibrium completely dominates without placing any restrictions on the initial set of strategies.
Entangling two transportable neutral atoms via local spin exchange.
Kaufman, A M; Lester, B J; Foss-Feig, M; Wall, M L; Rey, A M; Regal, C A
2015-11-12
To advance quantum information science, physical systems are sought that meet the stringent requirements for creating and preserving quantum entanglement. In atomic physics, robust two-qubit entanglement is typically achieved by strong, long-range interactions in the form of either Coulomb interactions between ions or dipolar interactions between Rydberg atoms. Although such interactions allow fast quantum gates, the interacting atoms must overcome the associated coupling to the environment and cross-talk among qubits. Local interactions, such as those requiring substantial wavefunction overlap, can alleviate these detrimental effects; however, such interactions present a new challenge: to distribute entanglement, qubits must be transported, merged for interaction, and then isolated for storage and subsequent operations. Here we show how, using a mobile optical tweezer, it is possible to prepare and locally entangle two ultracold neutral atoms, and then separate them while preserving their entanglement. Ground-state neutral atom experiments have measured dynamics consistent with spin entanglement, and have detected entanglement with macroscopic observables; we are now able to demonstrate position-resolved two-particle coherence via application of a local gradient and parity measurements. This new entanglement-verification protocol could be applied to arbitrary spin-entangled states of spatially separated atoms. The local entangling operation is achieved via spin-exchange interactions, and quantum tunnelling is used to combine and separate atoms. These techniques provide a framework for dynamically entangling remote qubits via local operations within a large-scale quantum register.
Do all pure entangled states violate Bell's inequalities for correlation functions?
Zukowski, Marek; Brukner, Caslav; Laskowski, Wiesław; Wieśniak, Marcin
2002-05-27
Any pure entangled state of two particles violates a Bell inequality for two-particle correlation functions (Gisin's theorem). We show that there exist pure entangled N>2 qubit states that do not violate any Bell inequality for N particle correlation functions for experiments involving two dichotomic observables per local measuring station. We also find that Mermin-Ardehali-Belinskii-Klyshko inequalities may not always be optimal for refutation of local realistic description.
Gaussification and entanglement distillation of continuous-variable systems: a unifying picture.
Campbell, Earl T; Eisert, Jens
2012-01-13
Distillation of entanglement using only Gaussian operations is an important primitive in quantum communication, quantum repeater architectures, and distributed quantum computing. Existing distillation protocols for continuous degrees of freedom are only known to converge to a Gaussian state when measurements yield precisely the vacuum outcome. In sharp contrast, non-Gaussian states can be deterministically converted into Gaussian states while preserving their second moments, albeit by usually reducing their degree of entanglement. In this work-based on a novel instance of a noncommutative central limit theorem-we introduce a picture general enough to encompass the known protocols leading to Gaussian states, and new classes of protocols including multipartite distillation. This gives the experimental option of balancing the merits of success probability against entanglement produced.
Topology and entanglement in quench dynamics
NASA Astrophysics Data System (ADS)
Chang, Po-Yao
2018-06-01
We classify the topology of the quench dynamics by homotopy groups. A relation between the topological invariant of a postquench order parameter and the topological invariant of a static Hamiltonian is shown in d +1 dimensions (d =1 ,2 ,3 ). The midgap states in the entanglement spectrum of the postquench states reveal their topological nature. When a trivial quantum state is under a sudden quench to a Chern insulator, the midgap states in the entanglement spectrum form rings. These rings are analogous to the boundary Fermi rings in the Hopf insulators. Finally, we show a postquench order parameter in 3+1 dimensions can be characterized by the second Chern number. The number of Dirac cones in the entanglement spectrum is equal to the second Chern number.
NASA Astrophysics Data System (ADS)
Wang, Dong; Hoehn, Ross D.; Ye, Liu; Kais, Sabre
2016-07-01
We present a strategy for realizing multiparty-controlled remote state preparation (MCRSP) for a family of four-qubit cluster-type states by taking a pair of partial entanglements as the quantum channels. In this scenario, the encoded information is transmitted from the sender to a spatially separated receiver with control of the transmission by multiple parties. Predicated on the collaboration of all participants, the desired state can be faithfully restored at the receiver's location with high success probability by application of additional appropriate local operations and necessary classical communication. Moreover, this proposal for MCRSP can be faithfully achieved with unit total success probability when the quantum channels are distilled to maximally entangled ones.
Yu, Nengkun; Guo, Cheng; Duan, Runyao
2014-04-25
We introduce a notion of the entanglement transformation rate to characterize the asymptotic comparability of two multipartite pure entangled states under stochastic local operations and classical communication (SLOCC). For two well known SLOCC inequivalent three-qubit states |GHZ⟩=(1/2)(|000⟩+|111⟩) and |W⟩=(1/3)(|100⟩+|010⟩+|001⟩), we show that the entanglement transformation rate from |GHZ⟩ to |W⟩ is exactly 1. That means that we can obtain one copy of the W state from one copy of the Greenberg-Horne-Zeilinger (GHZ) state by SLOCC, asymptotically. We then apply similar techniques to obtain a lower bound on the entanglement transformation rates from an N-partite GHZ state to a class of Dicke states, and prove the tightness of this bound for some special cases which naturally generalize the |W⟩ state. A new lower bound on the tensor rank of the matrix permanent is also obtained by evaluating the tensor rank of Dicke states.
Optimal quantum error correcting codes from absolutely maximally entangled states
NASA Astrophysics Data System (ADS)
Raissi, Zahra; Gogolin, Christian; Riera, Arnau; Acín, Antonio
2018-02-01
Absolutely maximally entangled (AME) states are pure multi-partite generalizations of the bipartite maximally entangled states with the property that all reduced states of at most half the system size are in the maximally mixed state. AME states are of interest for multipartite teleportation and quantum secret sharing and have recently found new applications in the context of high-energy physics in toy models realizing the AdS/CFT-correspondence. We work out in detail the connection between AME states of minimal support and classical maximum distance separable (MDS) error correcting codes and, in particular, provide explicit closed form expressions for AME states of n parties with local dimension \
Teleportation of entangled states without Bell-state measurement via a two-photon process
NASA Astrophysics Data System (ADS)
dSouza, A. D.; Cardoso, W. B.; Avelar, A. T.; Baseia, B.
2011-02-01
In this letter we propose a scheme using a two-photon process to teleport an entangled field state of a bimodal cavity to another one without Bell-state measurement. The quantum information is stored in a zero- and two-photon entangled state. This scheme requires two three-level atoms in a ladder configuration, two bimodal cavities, and selective atomic detectors. The fidelity and success probability do not depend on the coefficients of the state to be teleported. For convenient choices of interaction times, the teleportation occurs with fidelity close to the unity.
Dissipative preparation of entangled many-body states with Rydberg atoms
NASA Astrophysics Data System (ADS)
Roghani, Maryam; Weimer, Hendrik
2018-07-01
We investigate a one-dimensional atomic lattice laser-driven to a Rydberg state, in which engineered dissipation channels lead to entanglement in the many-body system. In particular, we demonstrate the efficient generation of ground states of a frustration-free Hamiltonian, as well as states closely related to W states. We discuss the realization of the required coherent and dissipative terms, and we perform extensive numerical simulations characterizing the fidelity of the state preparation procedure. We identify the optimum parameters for high fidelity entanglement preparation and investigate the scaling with the size of the system.
Groverian measure of entanglement for mixed states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shapira, Daniel; Shimoni, Yishai; Biham, Ofer
2006-04-15
The Groverian entanglement measure, introduced earlier for pure quantum states of multiple qubits [O. Biham, M.A. Nielsen, and T. Osborne, Phys. Rev. A 65, 062312 (2002)], is generalized to the case of mixed states. The Groverian measure of a mixed state of n qubits is obtained by a purification procedure into a pure state of 2n qubits, followed by an optimization process, before the resulting state is fed into Grover's search algorithm. It is expressed in terms of the maximal success probability of the algorithm and in this sense provides an operational measure of entanglement.
Tokunaga, Yuuki; Kuwashiro, Shin; Yamamoto, Takashi; Koashi, Masato; Imoto, Nobuyuki
2008-05-30
We experimentally demonstrate a simple scheme for generating a four-photon entangled cluster state with fidelity over 0.860+/-0.015. We show that the fidelity is high enough to guarantee that the produced state is distinguished from Greenberger-Horne-Zeilinger, W, and Dicke types of genuine four-qubit entanglement. We also demonstrate basic operations of one-way quantum computing using the produced state and show that the output state fidelities surpass classical bounds, which indicates that the entanglement in the produced state essentially contributes to the quantum operation.
Quantum Imaging: New Methods and Applications
2012-01-23
entanglement, both in the sense of two-photon entanglement in a large Hilbert space of pixels and in the sense of entanglement of more than two... Greenberger -Horne-Zeilinger and W-states entangled in time (or energy) and space”, Phys. Rev. A 79, 025802-1- 025802-4 (2009). 34. R. Meyers, K.S
Manipulating mesoscopic multipartite entanglement with atom-light interfaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stasinska, J.; Rodo, C.; Paganelli, S.
2009-12-15
Entanglement between two macroscopic atomic ensembles induced by measurement on an ancillary light system has proven to be a powerful method for engineering quantum memories and quantum state transfer. Here we investigate the feasibility of such methods for generation, manipulation, and detection of genuine multipartite entanglement (Greenberger-Horne-Zeilinger and clusterlike states) between mesoscopic atomic ensembles without the need of individual addressing of the samples. Our results extend in a nontrivial way the Einstein-Podolsky-Rosen entanglement between two macroscopic gas samples reported experimentally in [B. Julsgaard, A. Kozhekin, and E. Polzik, Nature (London) 413, 400 (2001)]. We find that under realistic conditions, amore » second orthogonal light pulse interacting with the atomic samples, can modify and even reverse the entangling action of the first one leaving the samples in a separable state.« less
Quantum Entanglement in Double Quantum Systems and Jaynes-Cummings Model.
Jakubczyk, Paweł; Majchrowski, Klaudiusz; Tralle, Igor
2017-12-01
In the paper, we proposed a new approach to producing the qubits in electron transport in low-dimensional structures such as double quantum wells or double quantum wires (DQW). The qubit could arise as a result of quantum entanglement of two specific states of electrons in DQW structure. These two specific states are the symmetric and antisymmetric (with respect to inversion symmetry) states arising due to tunneling across the structure, while entanglement could be produced and controlled by means of the source of nonclassical light. We examined the possibility to produce quantum entanglement in the framework of Jaynes-Cummings model and have shown that at least in principle, the entanglement can be achieved due to series of "revivals" and "collapses" in the population inversion due to the interaction of a quantized single-mode EM field with a two-level system.
Monogamy relation of multi-qubit systems for squared Tsallis-q entanglement
Yuan, Guang-Ming; Song, Wei; Yang, Ming; Li, Da-Chuang; Zhao, Jun-Long; Cao, Zhuo-Liang
2016-01-01
Tsallis-q entanglement is a bipartite entanglement measure which is the generalization of entanglement of formation for q tending to 1. We first expand the range of q for the analytic formula of Tsallis-q entanglement. For , we prove the monogamy relation in terms of the squared Tsallis-q entanglement for an arbitrary multi-qubit systems. It is shown that the multipartite entanglement indicator based on squared Tsallis-q entanglement still works well even when the indicator based on the squared concurrence loses its efficacy. We also show that the μ-th power of Tsallis-q entanglement satisfies the monogamy or polygamy inequalities for any three-qubit state. PMID:27346605
Entanglement quantification by local unitary operations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Monras, A.; Giampaolo, S. M.; Gualdi, G.
2011-07-15
Invariance under local unitary operations is a fundamental property that must be obeyed by every proper measure of quantum entanglement. However, this is not the only aspect of entanglement theory where local unitary operations play a relevant role. In the present work we show that the application of suitable local unitary operations defines a family of bipartite entanglement monotones, collectively referred to as ''mirror entanglement.'' They are constructed by first considering the (squared) Hilbert-Schmidt distance of the state from the set of states obtained by applying to it a given local unitary operator. To the action of each different localmore » unitary operator there corresponds a different distance. We then minimize these distances over the sets of local unitary operations with different spectra, obtaining an entire family of different entanglement monotones. We show that these mirror-entanglement monotones are organized in a hierarchical structure, and we establish the conditions that need to be imposed on the spectrum of a local unitary operator for the associated mirror entanglement to be faithful, i.e., to vanish in and only in separable pure states. We analyze in detail the properties of one particularly relevant member of the family, the ''stellar mirror entanglement'' associated with the traceless local unitary operations with nondegenerate spectra and equispaced eigenvalues in the complex plane. This particular measure generalizes the original analysis of S. M. Giampaolo and F. Illuminati [Phys. Rev. A 76, 042301 (2007)], valid for qubits and qutrits. We prove that the stellar entanglement is a faithful bipartite entanglement monotone in any dimension and that it is bounded from below by a function proportional to the linear entropy and from above by the linear entropy itself, coinciding with it in two- and three-dimensional spaces.« less
Deterministic entanglement of superconducting qubits by parity measurement and feedback.
Ristè, D; Dukalski, M; Watson, C A; de Lange, G; Tiggelman, M J; Blanter, Ya M; Lehnert, K W; Schouten, R N; DiCarlo, L
2013-10-17
The stochastic evolution of quantum systems during measurement is arguably the most enigmatic feature of quantum mechanics. Measuring a quantum system typically steers it towards a classical state, destroying the coherence of an initial quantum superposition and the entanglement with other quantum systems. Remarkably, the measurement of a shared property between non-interacting quantum systems can generate entanglement, starting from an uncorrelated state. Of special interest in quantum computing is the parity measurement, which projects the state of multiple qubits (quantum bits) to a state with an even or odd number of excited qubits. A parity meter must discern the two qubit-excitation parities with high fidelity while preserving coherence between same-parity states. Despite numerous proposals for atomic, semiconducting and superconducting qubits, realizing a parity meter that creates entanglement for both even and odd measurement results has remained an outstanding challenge. Here we perform a time-resolved, continuous parity measurement of two superconducting qubits using the cavity in a three-dimensional circuit quantum electrodynamics architecture and phase-sensitive parametric amplification. Using postselection, we produce entanglement by parity measurement reaching 88 per cent fidelity to the closest Bell state. Incorporating the parity meter in a feedback-control loop, we transform the entanglement generation from probabilistic to fully deterministic, achieving 66 per cent fidelity to a target Bell state on demand. These realizations of a parity meter and a feedback-enabled deterministic measurement protocol provide key ingredients for active quantum error correction in the solid state.
Universal quantum computation with little entanglement.
Van den Nest, Maarten
2013-02-08
We show that universal quantum computation can be achieved in the standard pure-state circuit model while the entanglement entropy of every bipartition is small in each step of the computation. The entanglement entropy required for large-scale quantum computation even tends to zero. Moreover we show that the same conclusion applies to many entanglement measures commonly used in the literature. This includes e.g., the geometric measure, localizable entanglement, multipartite concurrence, squashed entanglement, witness-based measures, and more generally any entanglement measure which is continuous in a certain natural sense. These results demonstrate that many entanglement measures are unsuitable tools to assess the power of quantum computers.
Unitarily localizable entanglement of Gaussian states
DOE Office of Scientific and Technical Information (OSTI.GOV)
Serafini, Alessio; Adesso, Gerardo; Illuminati, Fabrizio
2005-03-01
We consider generic (mxn)-mode bipartitions of continuous-variable systems, and study the associated bisymmetric multimode Gaussian states. They are defined as (m+n)-mode Gaussian states invariant under local mode permutations on the m-mode and n-mode subsystems. We prove that such states are equivalent, under local unitary transformations, to the tensor product of a two-mode state and of m+n-2 uncorrelated single-mode states. The entanglement between the m-mode and the n-mode blocks can then be completely concentrated on a single pair of modes by means of local unitary operations alone. This result allows us to prove that the PPT (positivity of the partial transpose)more » condition is necessary and sufficient for the separability of (m+n)-mode bisymmetric Gaussian states. We determine exactly their negativity and identify a subset of bisymmetric states whose multimode entanglement of formation can be computed analytically. We consider explicit examples of pure and mixed bisymmetric states and study their entanglement scaling with the number of modes.« less