Science.gov

Sample records for enteric viruses coliphages

  1. Water quality indicators: bacteria, coliphages, enteric viruses.

    PubMed

    Lin, Johnson; Ganesh, Atheesha

    2013-12-01

    Water quality through the presence of pathogenic enteric microorganisms may affect human health. Coliform bacteria, Escherichia coli and coliphages are normally used as indicators of water quality. However, the presence of above-mentioned indicators do not always suggest the presence of human enteric viruses. It is important to study human enteric viruses in water. Human enteric viruses can tolerate fluctuating environmental conditions and survive in the environment for long periods of time becoming causal agents of diarrhoeal diseases. Therefore, the potential of human pathogenic viruses as significant indicators of water quality is emerging. Human Adenoviruses and other viruses have been proposed as suitable indices for the effective identification of such organisms of human origin contaminating water systems. This article reports on the recent developments in the management of water quality specifically focusing on human enteric viruses as indicators.

  2. Surveillance of enteric viruses and coliphages in a tropical urban catchment.

    PubMed

    Rezaeinejad, S; Vergara, G G R V; Woo, C H; Lim, T T; Sobsey, M D; Gin, K Y H

    2014-07-01

    An assessment of the occurrence and concentration of enteric viruses and coliphages was carried out in highly urbanized catchment waters in the tropical city-state of Singapore. Target enteric viruses in this study were noroviruses, adenoviruses, astroviruses and rotaviruses. In total, 65 water samples were collected from canals and the reservoir of the Marina catchment on a monthly basis over a period of a year. Quantitative PCR (qPCR) and single agar layer plaque assay (SAL) were used to enumerate target enteric viruses and coliphages in water samples, respectively. The most prevalent pathogen were noroviruses, detected in 37 samples (57%), particularly norovirus genogroup II (48%), with a mean concentration of 3.7 × 10(2) gene copies per liter. Rotavirus was the second most prevalent virus (40%) with a mean concentration of 2.5 × 10(2) GC/L. The mean concentrations of somatic and male-specific coliphages were 2.2 × 10(2) and 1.1 × 10(2) PFU/100 ml, respectively. The occurrence and concentration of each target virus and the ratio of somatic to male-specific coliphages varied at different sampling sites in the catchment. For sampling sites with higher frequency of occurrence and concentration of viruses, the ratio of somatic to male-specific coliphages was generally much lower than other sampling sites with lower incidences of enteric viruses. Overall, higher statistical correlation was observed between target enteric viruses than between enteric viruses and coliphages. However, male-specific coliphages were positively correlated with norovirus concentrations. A multi-level integrated surveillance system, which comprises the monitoring of bacterial indicators, coliphages and selected enteric viruses, could help to meet recreational and surface water quality criteria in a complex urbanized catchment. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Evaluation of FRNA coliphages as indicators of human enteric viruses in a tropical urban freshwater catchment.

    PubMed

    Vergara, G G R V; Goh, S G; Rezaeinejad, S; Chang, S Y; Sobsey, M D; Gin, K Y H

    2015-08-01

    This study aimed to evaluate the relationship between FRNA coliphages (FRNA GI to GIV) and human enteric viruses (human adenoviruses, HAdV, astroviruses, AstV, noroviruses, NoV, and rotaviruses, RoV) in a tropical urban freshwater catchment. Positive associations between human-specific coliphages and human viral pathogens substantiate their use as viral indicators and in microbial source tracking. Reverse transcription qPCR was used to measure the concentrations of viruses and FRNA coliphages in concentrated water samples. Environmental water samples were also analyzed for male-specific (F+) and somatic (Som) coliphages using plaque assay. The most abundant enteric virus was NoV (55%) followed by HAdV (33%), RoV (33%), and AstV (23%), while the most abundant FRNA genogroup was GI (85%) followed by GII (48%), GIV (8%) and GIII (7%). Concentrations of human-specific coliphages FRNA GII were positively correlated with NoV, HAdV, RoV, AstV, F+ and Som (τ = 0.5 to 0.3, P < 0.05) while concentrations of animal-specific coliphages FRNA GI were negatively correlated with HAdV and RoV (τ = -0.2, P < 0.05). This study demonstrates statistical relationships between human-specific coliphages and a suite of human enteric viruses in the environment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Assessment of F-RNA coliphage as a potential indicator of enteric virus contamination of hog carcasses.

    PubMed

    Jones, T H; Johns, M W

    2012-08-01

    Hepatitis E virus (HEV) is common in pigs, and some swine HEV strains are closely related to human strains. The zoonotic transmission of HEV is now well established. HEV can be detected by molecular techniques, but the significance of the presence of viral nucleic acid is questionable when foods are subjected to virus inactivation treatments. F-RNA coliphages are attractive candidates as indicators for enteric viruses because they are similar in size and survival characteristics and can be rapidly cultured. Information on the contamination of hog carcasses with enteric or hepatic viruses during slaughter is lacking. The objective of this study was to compare the incidence and levels of contamination of hog carcasses with F-RNA coliphages, HEV, total aerobic bacteria, coliforms, and Escherichia coli at different stages of the dressing process. Hog carcasses entering the commercial slaughter facility are heavily contaminated with F-RNA coliphages and HEV. Subsequent processes such as scalding, singing, and pasteurization can reduce the incidence and levels of F-RNA coliphages and HEV substantially to almost undetectable levels. Large discrepancies between the amount of viral nucleic acid and infectious F-RNA coliphage particles, both at high levels and low levels of contamination, were observed. The prevalence and levels of viable F-RNA coliphages were lower than those of total aerobic bacteria, coliforms, and E. coli in the anal area and on random sites before pasteurization. At a research abattoir, there was no overall mean reduction of viable F-RNA coliphages recovered from random sites before pasteurization and after washing, whereas overall mean reductions of 1.2, 2.6, and 2.9 log CFU for total aerobic bacteria, coliforms, and E. coli, respectively, were obtained. These findings suggest that bacteria such as coliforms and E. coli may not be suitable as indicators for enteric viruses in a meat processing environment.

  5. Comparative study of enteric viruses, coliphages and indicator bacteria for evaluating water quality in a tropical high-altitude system

    PubMed Central

    2009-01-01

    Background Bacteria used as indicators for pathogenic microorganisms in water are not considered adequate as enteric virus indicators. Surface water from a tropical high-altitude system located in Mexico City that receives rainwater, treated and non-treated wastewater used for irrigation, and groundwater used for drinking, was studied. Methods The presence of enterovirus, rotavirus, astrovirus, coliphage, coliform bacteria, and enterococci was determined during annual cycles in 2001 and 2002. Enteric viruses in concentrated water samples were detected by reverse transcriptase-polymerase chain reaction (RT-PCR). Coliphages were detected using the double agar layer method. Bacteria analyses of the water samples were carried out by membrane filtration. Results The presence of viruses and bacteria in the water used for irrigation showed no relationship between current bacterial indicator detection and viral presence. Coliphages showed strong association with indicator bacteria and enterovirus, but weak association with other enteric viruses. Enterovirus and rotavirus showed significant seasonal differences in water used for irrigation, although this was not clear for astrovirus. Conclusion Coliphages proved to be adequate faecal pollution indicators for the irrigation water studied. Viral presence in this tropical high-altitude system showed a similar trend to data previously reported for temperate zones. PMID:19860917

  6. Comparative study of enteric viruses, coliphages and indicator bacteria for evaluating water quality in a tropical high-altitude system.

    PubMed

    Espinosa, Ana C; Arias, Carlos F; Sánchez-Colón, Salvador; Mazari-Hiriart, Marisa

    2009-10-27

    Bacteria used as indicators for pathogenic microorganisms in water are not considered adequate as enteric virus indicators. Surface water from a tropical high-altitude system located in Mexico City that receives rainwater, treated and non-treated wastewater used for irrigation, and groundwater used for drinking, was studied. The presence of enterovirus, rotavirus, astrovirus, coliphage, coliform bacteria, and enterococci was determined during annual cycles in 2001 and 2002. Enteric viruses in concentrated water samples were detected by reverse transcriptase-polymerase chain reaction (RT-PCR). Coliphages were detected using the double agar layer method. Bacteria analyses of the water samples were carried out by membrane filtration. The presence of viruses and bacteria in the water used for irrigation showed no relationship between current bacterial indicator detection and viral presence. Coliphages showed strong association with indicator bacteria and enterovirus, but weak association with other enteric viruses. Enterovirus and rotavirus showed significant seasonal differences in water used for irrigation, although this was not clear for astrovirus. Coliphages proved to be adequate faecal pollution indicators for the irrigation water studied. Viral presence in this tropical high-altitude system showed a similar trend to data previously reported for temperate zones.

  7. Evaluation of an anion exchange resin-based method for concentration of F-RNA coliphages (enteric virus indicators) from water samples.

    PubMed

    Pérez-Méndez, A; Chandler, J C; Bisha, B; Goodridge, L D

    2014-08-01

    Enteric viral contaminants in water represent a public health concern, thus methods for detecting these viruses or their indicator microorganisms are needed. Because enteric viruses and their viral indicators are often found at low concentrations in water, their detection requires upfront concentration methods. In this study, a strong basic anion exchange resin was evaluated as an adsorbent material for the concentration of F-RNA coliphages (MS2, Qβ, GA, and HB-P22). These coliphages are recognized as enteric virus surrogates and fecal indicator organisms. Following adsorption of the coliphages from 50ml water samples, direct RNA isolation and real time RT-PCR detection were performed. In water samples containing 10(5)pfu/ml of the F-RNA coliphages, the anion exchange resin (IRA-900) adsorbed over 96.7% of the coliphages present, improving real time RT-PCR detection by 5-7 cycles compared to direct testing. F-RNA coliphage RNA recovery using the integrated method ranged from 12.6% to 77.1%. Resin-based concentration of samples with low levels of the F-RNA coliphages allowed for 10(0)pfu/ml (MS2 and Qβ) and 10(-1)pfu/ml (GA and HB-P22) to be detected. The resin-based method offers considerable advantages in cost, speed, simplicity and field adaptability.

  8. Removal of indigenous coliphages and enteric viruses during riverbank filtration from highly polluted river water in Delhi (India).

    PubMed

    Sprenger, C; Lorenzen, G; Grunert, A; Ronghang, M; Dizer, H; Selinka, H-C; Girones, R; Lopez-Pila, J M; Mittal, A K; Szewzyk, R

    2014-06-01

    Emerging countries frequently afflicted by waterborne diseases require safe and cost-efficient production of drinking water, a task that is becoming more challenging as many rivers carry a high degree of pollution. A study was conducted on the banks of the Yamuna River, Delhi, India, to ascertain if riverbank filtration (RBF) can significantly improve the quality of the highly polluted surface water in terms of virus removal (coliphages, enteric viruses). Human adenoviruses and noroviruses, both present in the Yamuna River in the range of 10(5) genomes/100 mL, were undetectable after 50 m infiltration and approximately 119 days of underground passage. Indigenous somatic coliphages, used as surrogates of human pathogenic viruses, underwent approximately 5 log10 removal after only 3.8 m of RBF. The initial removal after 1 m was 3.3 log10, and the removal between 1 and 2.4 m and between 2.4 and 3.8 m was 0.7 log10 each. RBF is therefore an excellent candidate to improve the water situation in emerging countries with respect to virus removal.

  9. Preliminary Source Tracking of Male-Specific (F(+)) RNA Coliphage on Lettuce as a Surrogate of Enteric Viruses Using Reverse Transcription-PCR.

    PubMed

    Yazdi, Mojgan; Yavarmanesh, Masoud; Bahreini, Masumeh; Mohebbi, Mohebbat

    2017-03-01

    The aim of this research was to preliminary track fecal source male-specific F(+)RNA coliphages including human and animals in lettuce. At first, two published virus extraction procedures of ultracentrifugation and PEG precipitation were compared using DAL assay for determining the recovery efficiency in lettuce spiked artificially with three concentrations (10(2), 10(4), 10(6) pfu/100 ml) of MS2 coliphage. The results showed that PEG precipitation had the highest recovery in which the recovery efficiency at the spiked level of 10(6) pfu/100 ml was 16.63 %. Aqueous phase obtained from the final step of PEG method was applied for enumeration of coliphage and viral RNA extraction in naturally contaminated lettuce samples (N = 30) collected from two sources (market and farm). The samples were then analyzed based on (I, II, III, and IV primer sets) using RT-PCR method. Coliphages were detected in 9 (60 %) and 12 (80 %) out of 15 market and farm samples, respectively, using DAL assay, whereas male-specific F(+)RNA coliphages were detected using the RT-PCR method in 9 (60 %) and 13 (86.6 %) out of 15 samples of market and farm, respectively. Based on the results, only genotype I of male-specific F(+)RNA coliphages was detected in lettuce samples and no sample tested was positive for other genotypes (II, III, and IV).

  10. Application of F⁺RNA Coliphages as Source Tracking Enteric Viruses on Parsley and Leek Using RT-PCR.

    PubMed

    Shahrampour, Dina; Yavarmanesh, Masoud; Najafi, Mohammad Bagher Habibi; Mohebbi, Mohebbat

    2015-12-01

    The objective of this study was to identify sources of fecal contamination in leek and parsley, by using four different F(+)RNA coliphage genogroups (IV, I indicate animal fecal contamination and II, III indicate human fecal contamination). Three different concentrations (10(2), 10(4), 10(6) pfu/ml) of MS2 coliphage were inoculated on the surface of parsley and leek samples for detection of phage recovery efficiency among two methods of elution concentration (PEG-precipitation and Ultracentrifugation) by performing double agar layer (DAL) assay in three replications. Highest recovery of MS2 was observed in PEG method and in 10(6) inoculation concentration. Accordingly, the PEG method was used for washing and isolation of potentially contaminated phages of 30 collected samples (15 samples from the market and 15 samples from the farm). The final solutions of PEG method were tested for the enumeration of plaques by DAL assay. Total RNA was then extracted from recovered phages, and RT-PCR was performed by using four primer sets I, II, III, and IV. Incidence of F(+)RNA coliphages was observed in 12/15 (80 %) and 10/15 (66/6 %) of samples were obtained from farm and market, respectively, using both DAL and RT-PCR test methods. Different genotypes (I, II, and IV) of F(+)RNA coliphages were found in farm samples, while only genotype I was detected in market samples by using the primer sets. Due to the higher frequency of genotype I and IV, the absence of genotype III, and also the low frequency of genotype II, it is concluded that the contamination of vegetable (parsley and leek) in Neyshabour, Iran is most likely originated from animal sources.

  11. Inactivation of a model coliphage virus in water by iodine

    NASA Technical Reports Server (NTRS)

    Brion, Gail M.; Silverstein, Joann

    1992-01-01

    Until now, NASA's space water reuse research program has not considered the transport of water-borne infectious enteric viruses; however, viral diseases probably are a signifficant concern in long-duration space missions. To simplify monitoring and prediction of pathogen distribution, model indicator strains historically have been used. In this research, the male specific RNA coliphage MS-2 is used as a model of enteric viruses due to their similar size and biochemical composition. Inactivation of some water-borne enteric viruses by iodine has previously been characterized. In this paper, iodine inactivation of the model coliphage MS-2 in buffered water is compared with earlier bench-scale disinfection survival data and with survival in iodinated simulated shower water used in a test water recycling system.

  12. Inactivation of a model coliphage virus in water by iodine

    NASA Technical Reports Server (NTRS)

    Brion, Gail M.; Silverstein, Joann

    1992-01-01

    Until now, NASA's space water reuse research program has not considered the transport of water-borne infectious enteric viruses; however, viral diseases probably are a signifficant concern in long-duration space missions. To simplify monitoring and prediction of pathogen distribution, model indicator strains historically have been used. In this research, the male specific RNA coliphage MS-2 is used as a model of enteric viruses due to their similar size and biochemical composition. Inactivation of some water-borne enteric viruses by iodine has previously been characterized. In this paper, iodine inactivation of the model coliphage MS-2 in buffered water is compared with earlier bench-scale disinfection survival data and with survival in iodinated simulated shower water used in a test water recycling system.

  13. Airborne enteric coliphages and bacteria in sewage treatment plants.

    PubMed

    Heinonen-Tanski, Helvi; Reponen, Tiina; Koivunen, Jari

    2009-05-01

    The concentrations of airborne culturable microorganisms were determined in wastewater and sludge treatment processes of seven sewage treatment plants. Two types of coliphages, Salmonella and total viable bacteria were sampled by the BioSampler and the numbers of faecal coliforms and enterococci were obtained from the Andersen 6-stage impactor. The BioSampler recovered higher numbers of airborne coliphage viruses than has been measured with other liquid samplers in previous studies, suggesting that this sampler has improved efficiency for sampling airborne coliphages. Airborne coliphages were detected in many stages of the wastewater or sludge treatment process. The highest microbiological air contaminations were found in pre-treatment and aerated grit separation stages of the operation. This was attributed to aerosolisation of microorganisms by mechanical handling or forced aeration. Aeration and settling processes located outdoors caused low microbial concentrations, but the brush aerator released more microorganisms into the air. Our results emphasize the necessity for controlling the exposure of sewage workers to airborne microorganisms, especially in process areas that involve mechanical agitation or forced aeration of wastewater.

  14. Spatial distribution of enteric viruses and somatic coliphages in a Lagoon used as drinking water source and recreation in Southern Brazil.

    PubMed

    Elmahdy, M E I; Fongaro, G; Magri, M E; Petruccio, M M; Barardi, C R M

    2016-10-01

    This study aimed to evaluate the contamination level of the Peri Lagoon, the main freshwater reservoir of Santa Catarina Island, Southern Brazil, for human adenovirus (HAdV), hepatitis A virus (HAV), rotavirus species A (RVA), and somatic coliphages (SOMCPH). Viruses were also investigated in sediments and their sensitivity against natural sunlight was analysed by studying their spatial distribution in different depths of the water column. A total of 84 water samples and 48 sediment samples were examined by qPCR or RT-qPCR. Infectivity of HAdV and SOMCPH was determined and quantified by plaque assay method. A sum of 64% and 48% of water and sediment samples were positive for HAdV, respectively. RVA was present in 33% and 18% of water and sediment samples, and 25% of water samples were positive for HAV. HAdV were infectious in 76% of water and 83% of sediment samples that were positive by qPCR. SOMCPH could be detected in 42% and 18% of water and sediment samples, respectively. The data pointed a variation of viruses' prevalence according to the different water column depths. These results demonstrated that water sources and sediments contaminated by human wastes could play an important role in the recontamination of water columns harvested for further treatment or used for recreational purposes. These data can be of great value for future risk assessment analysis. Copyright © 2016. Published by Elsevier GmbH.

  15. Waterborne Viruses and F-Specific Coliphages in Mixed-Use Watersheds: Microbial Associations, Host Specificities, and Affinities with Environmental/Land Use Factors

    PubMed Central

    Jones, Tineke H.; Brassard, Julie; Topp, Edward; Wilkes, Graham

    2016-01-01

    ABSTRACT From the years 2008 to 2014, a total of 1,155 water samples were collected (spring to fall) from 24 surface water sampling sites located in a mixed-used but predominantly agricultural (i.e., dairy livestock production) river basin in eastern Ontario, Canada. Water was analyzed for viable F-specific DNA (F-DNA) and F-specific RNA (F-RNA) (genogroup I [GI] to GIV) coliphage and a suite of molecularly detected viruses (norovirus [GI to GIV], torque teno virus [TTV], rotavirus, kobuvirus, adenovirus, astrovirus, hepatitis A, and hepatitis E). F-DNA and F-RNA coliphage were detected in 33 and 28% of the samples at maximum concentrations of 2,000 and 16,300 PFU · 100 ml−1, respectively. Animal TTV, human TTV, kobuvirus, astrovirus, and norovirus GIII were the most prevalent viruses, found in 23, 20, 13, 12, and 11% of samples, respectively. Viable F-DNA coliphage was found to be a modest positive indicator of molecularly detected TTV. F-RNA coliphage, unlike F-DNA coliphage, was a modest positive predictor of norovirus and rotavirus. There were, however, a number of significant negative associations among F-specific coliphage and viruses. F-DNA coliphage densities of >142 PFU · 100 ml−1 delineated conditions when ∼95% of water samples contained some type of virus. Kobuvirus was the virus most strongly related to detection of any other virus. Land use had some associations with virus/F-specific coliphage detection, but season and surface water flow were the variables that were most important for broadly delineating detection. Higher relative levels of detection of human viruses and human F-RNA coliphage were associated with higher relative degrees of upstream human land development in a catchment. IMPORTANCE This study is one of the first, to our knowledge, to evaluate relationships among F-specific coliphages and a large suite of enteric viruses in mixed-use but agriculturally dominated surface waters in Canada. This study suggested that relationships

  16. F-coliphages, porcine adenovirus and porcine teschovirus as potential indicator viruses of fecal contamination for pork carcass processing.

    PubMed

    Jones, Tineke H; Muehlhauser, Victoria

    2017-01-16

    There are concerns about the zoonotic transmission of viruses through undercooked pork products. There is a lack of information on suitable indicator viruses for fecal contamination with pathogenic enteric viruses in the meat processing chain. The study compared the incidence and levels of contamination of hog carcasses with F-coliphages, porcine teschovirus (PTV), and porcine adenovirus (PAdV) at different stages of the dressing process to assess their potential as indicator viruses of fecal contamination. One hundred swab samples (200cm(2)) were collected from random sites on hog carcasses at 4 different stages of the dressing process and from retail pork over the span of a year from 2 pork processing plants (500/plant). Viable F-coliphages, PAdV DNA and PTV RNA were each detected on ≥99% of the incoming carcasses at both plants and were traceable through the pork processing chain. Significant correlations were observed between viable F-coliphages and PAdV DNA and between F-coliphages and PTV RNA but not between PAdV DNA and PTV RNA at the various stages of pork processing. Detection of viable F-coliphages was more sensitive than genomic copies of PAdV and PTV at low levels of contamination, making F-coliphages a preferred indicator in the pork slaughter process as it also provides an indication of infectivity. For plant A, F-RNA coliphages were detected in 25%, 63%, and 21% of carcass swabs after pasteurization, evisceration, and retail pork products, respectively. For plant B, F-coliphages were detected in 33%, 25%, and 13% of carcass swabs after skinning, evisceration, and retail pork samples, respectively. Viable F-RNA coliphages were genotyped. Viable F-RNA GII and GIII were generally not detected at the earlier stages of the slaughter process but they were detected on 13% of carcasses after evisceration and 2% of retail pork samples at plant A, which raises concerns of potential food handler contamination during pork processing. Consumers could be at risk

  17. Animal viruses, coliphages, and bacteria in aerosols and wastewater at a spray irrigation site.

    PubMed

    Brenner, K P; Scarpino, P V; Clark, C S

    1988-02-01

    Aerosol samples collected at the Muskegon County Wastewater Management System Number 1 spray irrigation site in Michigan by using the Army prototype XM2 Biological Sampler/Collector were examined for the presence of animal viruses, coliphages, and bacteria. Air samples, collected in Earle lactalbumen hydrolysate, and wastewater samples were filtered through a 0.45- and 1.2-micron membrane filter sandwich, pretreated with 10% beef extract (pH 7.0), and assayed for animal viruses by the plaque method on Buffalo green monkey kidney cells. Untreated air and wastewater samples were assayed for coliphages by the soft agar overlay method with three Escherichia coli hosts (ATCC 13706, 15597, and 11303) and for bacteria by the heterotrophic plate count method. Filtered air samples were assayed for coliphages by the most-probable-number method with the same three hosts. Although no animal viruses were detected in the aerosol samples, coliphages and bacteria were recovered. E. coli ATCC 13706 coliphage were recovered more often and in greater numbers than either of the other two types of coliphages. Concentrations of animal viruses, coliphages, and bacteria detected in the raw influent decreased as the wastewater was aerated and stored in the lagoons. No animal viruses were detected in the wastewater at the pump station just before distribution to the spray irrigation rigs. The most-probable-number method was more sensitive and consistent than the overlay procedure in detecting low levels of coliphages in air samples.

  18. Animal viruses, coliphages, and bacteria in aerosols and wastewater at a spray irrigation site.

    PubMed Central

    Brenner, K P; Scarpino, P V; Clark, C S

    1988-01-01

    Aerosol samples collected at the Muskegon County Wastewater Management System Number 1 spray irrigation site in Michigan by using the Army prototype XM2 Biological Sampler/Collector were examined for the presence of animal viruses, coliphages, and bacteria. Air samples, collected in Earle lactalbumen hydrolysate, and wastewater samples were filtered through a 0.45- and 1.2-micron membrane filter sandwich, pretreated with 10% beef extract (pH 7.0), and assayed for animal viruses by the plaque method on Buffalo green monkey kidney cells. Untreated air and wastewater samples were assayed for coliphages by the soft agar overlay method with three Escherichia coli hosts (ATCC 13706, 15597, and 11303) and for bacteria by the heterotrophic plate count method. Filtered air samples were assayed for coliphages by the most-probable-number method with the same three hosts. Although no animal viruses were detected in the aerosol samples, coliphages and bacteria were recovered. E. coli ATCC 13706 coliphage were recovered more often and in greater numbers than either of the other two types of coliphages. Concentrations of animal viruses, coliphages, and bacteria detected in the raw influent decreased as the wastewater was aerated and stored in the lagoons. No animal viruses were detected in the wastewater at the pump station just before distribution to the spray irrigation rigs. The most-probable-number method was more sensitive and consistent than the overlay procedure in detecting low levels of coliphages in air samples. PMID:3128164

  19. Clostridium perfringens and somatic coliphages as indicators of the efficiency of drinking water treatment for viruses and protozoan cysts.

    PubMed Central

    Payment, P; Franco, E

    1993-01-01

    To find the most suitable indicator of viral and parasitic contamination of drinking water, large-volume samples were collected and analyzed for the presence of pathogens (cultivable human enteric viruses, Giardia lamblia cysts, and Cryptosporidium oocysts) and potential indicators (somatic and male-specific coliphages, Clostridium perfringens). The samples were obtained from three water treatment plants by using conventional or better treatments (ozonation, biological filtration). All samples of river water contained the microorganisms sought, and only C. perfringens counts were correlated with human enteric viruses, cysts, or oocysts. For settled and filtered water samples, all indicators were statistically correlated with human enteric viruses but not with cysts or oocysts. By using multiple regression, the somatic coliphage counts were the only explanatory variable for the human enteric virus counts in settled water, while in filtered water samples it was C. perfringens counts. Finished water samples of 1,000 liters each were free of all microorganisms, except for a single sample that contained low levels of cysts and oocysts of undetermined viability. Three of nine finished water samples of 20,000 liters each revealed residual levels of somatic coliphages at 0.03, 0.10, and 0.26 per 100 liters. Measured virus removal was more than 4 to 5 log10, and cyst removal was more than 4 log10. Coliphage and C. perfringens counts suggested that the total removal and inactivation was more than 7 log10 viable microorganisms. C. perfringens counts appear to be the most suitable indicator for the inactivation and removal of viruses in drinking water treatment.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8368831

  20. Clostridium perfringens and somatic coliphages as indicators of the efficiency of drinking water treatment for viruses and protozoan cysts.

    PubMed

    Payment, P; Franco, E

    1993-08-01

    To find the most suitable indicator of viral and parasitic contamination of drinking water, large-volume samples were collected and analyzed for the presence of pathogens (cultivable human enteric viruses, Giardia lamblia cysts, and Cryptosporidium oocysts) and potential indicators (somatic and male-specific coliphages, Clostridium perfringens). The samples were obtained from three water treatment plants by using conventional or better treatments (ozonation, biological filtration). All samples of river water contained the microorganisms sought, and only C. perfringens counts were correlated with human enteric viruses, cysts, or oocysts. For settled and filtered water samples, all indicators were statistically correlated with human enteric viruses but not with cysts or oocysts. By using multiple regression, the somatic coliphage counts were the only explanatory variable for the human enteric virus counts in settled water, while in filtered water samples it was C. perfringens counts. Finished water samples of 1,000 liters each were free of all microorganisms, except for a single sample that contained low levels of cysts and oocysts of undetermined viability. Three of nine finished water samples of 20,000 liters each revealed residual levels of somatic coliphages at 0.03, 0.10, and 0.26 per 100 liters. Measured virus removal was more than 4 to 5 log10, and cyst removal was more than 4 log10. Coliphage and C. perfringens counts suggested that the total removal and inactivation was more than 7 log10 viable microorganisms. C. perfringens counts appear to be the most suitable indicator for the inactivation and removal of viruses in drinking water treatment.(ABSTRACT TRUNCATED AT 250 WORDS)

  1. Enteric viruses

    USDA-ARS?s Scientific Manuscript database

    Characteristic clinical signs associated with viral enteritis in young poultry include diarrhea, anorexia, litter eating, ruffled feathers, and poor growth. Intestines may have lesions; intestines are typically dilated and are filled with fluid and gaseous contents. The sequela to clinical disease...

  2. Enteric hepatitis viruses

    PubMed Central

    Tahaei, Seyed Mohammad Ebrahim; Zali, Mohammad Reza

    2012-01-01

    Hepatitis viruses are infectious agents that can infect liver and cause inflammation. The infection triggers immune response against infected cells that leads to the destruction of hepatic cells. This destruction has two consequences: leaking ALT and AST liver enzymes which increases during the course of disease and accumulation of bilirubin- a red pigmented compound released from dead red cells- which causes the yellow coloration of eyes and skin. These viruses transmit through diverse routes i.e. blood transfusion, sexual contacts and consuming water or food contaminated by feces. Enteric hepatitis viruses use the latter route for transmission; hence their outbreaks are more common in underdeveloped countries. There are currently two distinguished enteric hepatitis viruses, hepatitis A and hepatitis E. These viruses belong to different family of viruses and their epidemiological characteristics are different. These infections can be diagnosed by an ELISA for IgM antibody. A vaccine has been developed in last decade of twentieth century for hepatitis A virus, which is administered mostly in the developed world i.e. U.S and Japan. Treatment for these infections is mostly supportive; however, in the case of fulminant hepatitis the liver transplantation might be necessary. PMID:24834192

  3. Enteric hepatitis viruses.

    PubMed

    Tahaei, Seyed Mohammad Ebrahim; Mohebbi, Seyed Reza; Zali, Mohammad Reza

    2012-01-01

    Hepatitis viruses are infectious agents that can infect liver and cause inflammation. The infection triggers immune response against infected cells that leads to the destruction of hepatic cells. This destruction has two consequences: leaking ALT and AST liver enzymes which increases during the course of disease and accumulation of bilirubin- a red pigmented compound released from dead red cells- which causes the yellow coloration of eyes and skin. These viruses transmit through diverse routes i.e. blood transfusion, sexual contacts and consuming water or food contaminated by feces. Enteric hepatitis viruses use the latter route for transmission; hence their outbreaks are more common in underdeveloped countries. There are currently two distinguished enteric hepatitis viruses, hepatitis A and hepatitis E. These viruses belong to different family of viruses and their epidemiological characteristics are different. These infections can be diagnosed by an ELISA for IgM antibody. A vaccine has been developed in last decade of twentieth century for hepatitis A virus, which is administered mostly in the developed world i.e. U.S and Japan. Treatment for these infections is mostly supportive; however, in the case of fulminant hepatitis the liver transplantation might be necessary.

  4. A fate model of pathogenic viruses in a composting toilet based on coliphage inactivation.

    PubMed

    Kazama, Shinobu; Tameike, Narue; Nakagawa, Naoko; Otaki, Masahiro

    2011-01-01

    A composting toilet using sawdust as a matrix has the potential to trap pathogens that might occasionally be contained in human feces. Therefore, care should be taken when handling the sawdust. It should also be noted that pathogenic viruses tend to have stronger tolerance than pathogenic bacteria. The fates of several species of coliphages, T4, lambda, Qbeta and MS2, in sawdust were investigated as a viral model. The fates of coliphages were significantly different among them, and they changed in response to temperature and the water content of the sawdust. As the results, T4 coliphage had the strongest tolerance and Qbeta had the weakest one in sawdust. It was estimated the days required to decrease virus to a safe level based on a risk assessment. According to the rates of Qbeta and T4, 15 days and 167 days were required respectively for a safe level of infection risk based on actually operated composting toilet condition. Thus, it was significantly different depending on the species and sawdust conditions.

  5. Incidence of Somatic and F+ Coliphage at Three Great Lake Beaches

    EPA Science Inventory

    There is a growing interest for the potential use of coliphage as an alternative indicator to assess fecal pollution in recreational waters. Coliphage are a group of viruses that infect E. coli and are commonly used as models to infer the likely presence of human enteric viral pa...

  6. Incidence of Somatic and F+ Coliphage at Three Great Lake Beaches

    EPA Science Inventory

    There is a growing interest for the potential use of coliphage as an alternative indicator to assess fecal pollution in recreational waters. Coliphage are a group of viruses that infect E. coli and are commonly used as models to infer the likely presence of human enteric viral pa...

  7. Bacteriophages as indicators of fecal pollution and enteric virus removal.

    PubMed

    McMinn, Brian R; Ashbolt, Nicholas J; Korajkic, Asja

    2017-03-17

    Bacteriophages are an attractive alternative to fecal indicator bacteria (FIB), particularly as surrogates of enteric virus fate and transport, due to their closer morphological and biological properties. Based on a review of published data, we summarize densities of coliphages (F+ and somatic), Bacteroides spp. and enterococci bacteriophages (phages) in individual human waste, raw wastewater, ambient fresh and marine waters and removal through wastewater treatment processes utilizing traditional treatments. We also provide comparisons with FIB and enteric viruses whenever possible. Lastly, we examine fate and transport characteristics in the aquatic environment and provide an overview of the environmental factors affecting their survival. In summary, concentrations of bacteriophages in various sources were consistently lower than FIB, but more reflective of infectious enteric virus levels. Overall, our investigation indicates that bacteriophages may be adequate viral surrogates, especially in built systems, such as wastewater treatment plants. This article is protected by copyright. All rights reserved.

  8. In situ inactivation of animal viruses and a coliphage in nonaerated liquid and semiliquid animal wastes.

    PubMed

    Pesaro, F; Sorg, I; Metzler, A

    1995-01-01

    The persistence of five animal viruses, representing picorna-, rota-, parvo-, adeno-, and herpesviruses, and the coliphage f2 was determined in the field by exposing the viruses to different animal wastes and by adopting an established filter sandwich technique. This technique allows us to copy the natural state of viruses in the environment, where adsorption onto or incorporation into suspended solids may prolong virus survival. Using filter sandwiches either equipped with porous (15 nm in diameter) or poreless polycarbonate (PC) membranes, it was possible to differentiate between overall virus inactivation and the effect of virucidal agents that act through poreless PC membranes. Depending on ambient temperature, pH, and type of animal waste, values for time, in days, required for a 90% reduction of virus titer varied widely, ranging from less than 1 week for herpesvirus to more than 6 months for rotavirus. Virus inactivation progressed substantially faster in liquid cattle manure, a mixture of urine and water (pH > 8.0), than in semiliquid wastes that consisted of mixtures of feces, urine, water, and bedding materials (pH < 8.0). Hitherto unidentified virucidal agents that permeate poreless PC membranes contributed substantially to the overall inactivation. On the other hand, substances that protect rotavirus and possibly other viruses from inactivation may be present in animal wastes. Together, the study showed that viruses contained in manure may persist for prolonged periods of time if stored under nonaerated conditions. At times of land application, this may lead to environmental contamination with pathogens.

  9. Waterborne Viruses and F-Specific Coliphages in Mixed-Use Watersheds: Microbial Associations, Host Specificities, and Affinities with Environmental/Land Use Factors.

    PubMed

    Jones, Tineke H; Brassard, Julie; Topp, Edward; Wilkes, Graham; Lapen, David R

    2017-02-01

    From the years 2008 to 2014, a total of 1,155 water samples were collected (spring to fall) from 24 surface water sampling sites located in a mixed-used but predominantly agricultural (i.e., dairy livestock production) river basin in eastern Ontario, Canada. Water was analyzed for viable F-specific DNA (F-DNA) and F-specific RNA (F-RNA) (genogroup I [GI] to GIV) coliphage and a suite of molecularly detected viruses (norovirus [GI to GIV], torque teno virus [TTV], rotavirus, kobuvirus, adenovirus, astrovirus, hepatitis A, and hepatitis E). F-DNA and F-RNA coliphage were detected in 33 and 28% of the samples at maximum concentrations of 2,000 and 16,300 PFU · 100 ml(-1), respectively. Animal TTV, human TTV, kobuvirus, astrovirus, and norovirus GIII were the most prevalent viruses, found in 23, 20, 13, 12, and 11% of samples, respectively. Viable F-DNA coliphage was found to be a modest positive indicator of molecularly detected TTV. F-RNA coliphage, unlike F-DNA coliphage, was a modest positive predictor of norovirus and rotavirus. There were, however, a number of significant negative associations among F-specific coliphage and viruses. F-DNA coliphage densities of >142 PFU · 100 ml(-1) delineated conditions when ∼95% of water samples contained some type of virus. Kobuvirus was the virus most strongly related to detection of any other virus. Land use had some associations with virus/F-specific coliphage detection, but season and surface water flow were the variables that were most important for broadly delineating detection. Higher relative levels of detection of human viruses and human F-RNA coliphage were associated with higher relative degrees of upstream human land development in a catchment.

  10. Decay of Coliphages in Sewage-Contaminated Freshwater: Uncertainty and Seasonal Effects.

    PubMed

    Wu, Jianyong; Cao, Yiping; Young, Brianna; Yuen, Yvonne; Jiang, Sharon; Melendez, Daira; Griffith, John F; Stewart, Jill R

    2016-11-01

    Understanding the fate of enteric viruses in water is vital for protection of water quality. However, the decay of enteric viruses is not well characterized, and its uncertainty has not been examined yet. In this study, the decay of coliphages, an indicator for enteric viruses, was investigated in situ under both sunlit and shaded conditions as well as in summer and winter. The decay rates of coliphages and their uncertainties were analyzed using a Bayesian approach. The results from the summer experiments revealed that the decay rates of somatic coliphages were significantly higher in sunlight (1.29 ± 0.06 day(-1)) than in shade (0.96 ± 0.04 day(-1)), but the decay rates of male-specific (F+) coliphages were not significantly different between sunlight (1.09 ± 0.09 day(-1)) and shaded treatments (1.11 ± 0.08 day(-1)). The decay rates of both F+ coliphages (0.25 ± 0.02 day(-1)) and somatic coliphages (0.12 ± 0.01 day(-1)) in winter were considerably lower than those in summer. Temperature and chlorophyll a (chla) concentration varied significantly (p < 0.001) between the two seasons, suggesting that these parameters might be important contributors to the seasonal variation of coliphage decay. Additionally, the Bayesian approach provided full distributions of decay rates and reduced the uncertainty, offering useful information for comparing decay rates under different conditions.

  11. Removal of human enteric viruses and indicator microorganisms from domestic wastewater by aerated lagoons.

    PubMed

    Locas, Annie; Martinez, Veronica; Payment, Pierre

    2010-02-01

    Aerated lagoons offer a low-cost and simple approach to treating domestic wastewater in small municipalities. The objective of the current study was to evaluate, for each cell in the lagoons, the removal of indicator microorganisms and human enteric viruses under warm (summer) and cold (early spring) conditions. The two sites are located in southwest Quebec, Canada. Samples were assayed for thermotolerant coliforms, enterococci, Clostridium perfringens, somatic and male-specific coliphages, and culturable human enteric viruses (HEV). The results show higher removal under warm ambient conditions for all microorganisms. Thermotolerant coliforms and enterococci were removed to a greater extent than C. perfringens and HEV. HEV removal was only observed in warm ambient conditions. The removal of coliphages was different from the observed removal of HEV. The use of coliphages as surrogates for HEV has been proposed, but this does not seem appropriate for aerated lagoons, as the removal of coliphages overestimates the removal of HEV. Given the low observed removal of HEV during this study, the effluents remain a significant source of pathogens that can affect drinking water treatment plants drawing their raw water from receiving streams. Ultraviolet disinfection of treated wastewater effluent is a possible solution.

  12. Enteric viruses of poultry

    USDA-ARS?s Scientific Manuscript database

    Despite the economic importance of the poultry gut, very little is known about the complex gut microbial community. Enteric disease syndromes such as Runting-Stunting Syndrome (RSS) in broiler chickens and Poult Enteritis Complex (PEC) in young turkeys are difficult to characterize and reproduce in ...

  13. Comparative inactivation of poliovirus type 3 and MS2 coliphage in demand-free phosphate buffer by using ozone.

    PubMed

    Finch, G R; Fairbairn, N

    1991-11-01

    MS2 coliphage (ATCC 15597-B1) has been proposed by the U.S. Environmental Protection Agency as a surrogate for enteric viruses to determine the engineering requirements of chemical disinfection systems on the basis of previous experience with chlorine. The objective of this study was to determine whether MS2 coliphage was a suitable indicator for the inactivation of enteric viruses when ozone disinfection systems were used. Bench-scale experiments were conducted in 2-liter-batch shrinking reactors containing ozone demand-free 0.05 M phosphate buffer (pH 6.9) at 22 degrees C. Ozone was added as a side stream from a concentrated stock solution. It was found that an ozone residual of less than 40 micrograms/liter at the end of 20 s inactivated greater than 99.99% of MS2 coliphage in the demand-free buffer. When MS2 was compared directly with poliovirus type 3 in paired experiments, 1.6 log units more inactivation was observed with MS2 coliphage than with poliovirus type 3. It was concluded that the use of MS2 coliphage as a surrogate organism for studies of enteric virus with ozone disinfection systems overestimated the inactivation of enteric viruses. It is recommended that the regulatory agencies evaluate their recommendations for using MS2 coliphage as an indicator of enteric viruses.

  14. Occurrence and reduction of human viruses, F-specific RNA coliphage genogroups and microbial indicators at a full-scale wastewater treatment plant in Japan.

    PubMed

    Hata, A; Kitajima, M; Katayama, H

    2013-02-01

    To evaluate and compare the reductions of human viruses and F-specific coliphages in a full-scale wastewater treatment plant based on the quantitative PCR (qPCR) and plate count assays. A total of 24 water samples were collected from four locations at the plant, and the relative abundance of human viruses and F-RNA phage genogroups were determined by qPCR. Of the 10 types of viruses tested, enteric adenoviruses were the most prevalent in both influent and effluent wastewater samples. Of the different treatment steps, the activated sludge process was most effective in reducing the microbial loads. Viruses and F-RNA phages showed variable reduction; among them, GI and GIII F-RNA phages showed the lowest and the highest reduction, respectively. Ten types of viruses were present in wastewater that is discharged into public water bodies after treatment. The variability in reduction for the different virus types demonstrates that selection of adequate viral indicators is important for evaluating the efficacy of wastewater treatment and ensuring the water safety. Our comprehensive analyses of the occurrence and reduction of viruses and indicators can contribute to the future establishment of appropriate viral indicators to evaluate the efficacy of wastewater treatment. © 2012 The Society for Applied Microbiology.

  15. Inactivation Rates of Coliphages Isolated from Waste Water Treatment Plant Effluents in Georgia

    EPA Science Inventory

    Coliphages are a type of host-specific bacteriophages that infect E. coli and are found abundantly in the gut of animals, including humans. They share many structural similarities with human enteric viruses and are being evaluated as indicators for the presence of enteric viral c...

  16. Enteric viruses in molluscan shellfish.

    PubMed

    Gabrieli, Rosanna; Macaluso, Alessia; Lanni, Luigi; Saccares, Stefano; Di Giamberardino, Fabiola; Cencioni, Barbara; Petrinca, Anna Rita; Divizia, Maurizio

    2007-10-01

    One hundred and thirty-seven bivalves were collected for environmental monitoring and the market; all the samples were analysed by RT-PCR test. Bacteriological counts meeting the European Union shellfish criteria were reached by 69.5% of all the samples, whereas the overall positive values for enteric virus presence were: 25.5%, 18.2%, 8.0% and 2.1% for Rotavirus, Astrovirus, Enteroviruses, Norovirus, respectively. Mussels appear to be the most contaminated bivalves, with 64.8% of positive samples, 55.7% and 22.7% respectively for clams and oysters, whereas in the bivalves collected for human consumption 50.7% were enteric virus positive, as compared to 56.4% of the samples collected for growing-area classification. The overall positive sample was 54.0%.

  17. Pathogenic Enteric Viruses and Microbial Indicators during Secondary Treatment of Municipal Wastewater.

    PubMed

    Montazeri, Naim; Goettert, Dorothee; Achberger, Eric C; Johnson, Crystal N; Prinyawiwatkul, Witoon; Janes, Marlene E

    2015-09-01

    Pathogenic enteric viruses are responsible for a wide range of infections in humans, with diverse symptoms. Raw and partially treated wastewaters are major sources of environmental contamination with enteric viruses. We monitored a municipal secondary wastewater treatment plant (New Orleans, LA) on a monthly basis for norovirus (NoV) GI and GII and enterovirus serotypes using multiplex reverse transcription-quantitative PCR (RT-qPCR) and microbial indicators of fecal contamination using standard plating methods. Densities of indicator bacteria (enterococci, fecal coliforms, and Escherichia coli) did not show monthly or seasonal patterns. Norovirus GII was more abundant than GI and, along with enterovirus serotypes, increased in influent during fall and spring. The highest NoV GI density in influent was in the fall, reaching an average of 4.0 log10 genomic copies/100 ml. Norovirus GI removal (0.95 log10) was lower than that for GII, enterovirus serotypes, and male-specific coliphages (1.48 log10) or for indicator bacteria (4.36 log10), suggesting higher resistance of viruses to treatment. Male-specific coliphages correlated with NoV GII densities in influent and effluent (r = 0.48 and 0.76, respectively) and monthly removal, indicating that male-specific coliphages can be more reliable than indicator bacteria to monitor norovirus GII load and microbial removal. Dominant norovirus genotypes were classified into three GI genotypes (GI.1, GI.3, and GI.4) and four GII genotypes (GII.3, GII.4, GII.13, and GII.21), dominated by GI.1 and GII.4 strains. Some of the seasonal and temporal patterns we observed in the pathogenic enteric viruses were different from those of epidemiological observations.

  18. Pathogenic Enteric Viruses and Microbial Indicators during Secondary Treatment of Municipal Wastewater

    PubMed Central

    Goettert, Dorothee; Achberger, Eric C.; Johnson, Crystal N.; Prinyawiwatkul, Witoon

    2015-01-01

    Pathogenic enteric viruses are responsible for a wide range of infections in humans, with diverse symptoms. Raw and partially treated wastewaters are major sources of environmental contamination with enteric viruses. We monitored a municipal secondary wastewater treatment plant (New Orleans, LA) on a monthly basis for norovirus (NoV) GI and GII and enterovirus serotypes using multiplex reverse transcription-quantitative PCR (RT-qPCR) and microbial indicators of fecal contamination using standard plating methods. Densities of indicator bacteria (enterococci, fecal coliforms, and Escherichia coli) did not show monthly or seasonal patterns. Norovirus GII was more abundant than GI and, along with enterovirus serotypes, increased in influent during fall and spring. The highest NoV GI density in influent was in the fall, reaching an average of 4.0 log10 genomic copies/100 ml. Norovirus GI removal (0.95 log10) was lower than that for GII, enterovirus serotypes, and male-specific coliphages (1.48 log10) or for indicator bacteria (4.36 log10), suggesting higher resistance of viruses to treatment. Male-specific coliphages correlated with NoV GII densities in influent and effluent (r = 0.48 and 0.76, respectively) and monthly removal, indicating that male-specific coliphages can be more reliable than indicator bacteria to monitor norovirus GII load and microbial removal. Dominant norovirus genotypes were classified into three GI genotypes (GI.1, GI.3, and GI.4) and four GII genotypes (GII.3, GII.4, GII.13, and GII.21), dominated by GI.1 and GII.4 strains. Some of the seasonal and temporal patterns we observed in the pathogenic enteric viruses were different from those of epidemiological observations. PMID:26162869

  19. Assessment of coliphage surrogates for testing drinking water treatment devices.

    PubMed

    Gerba, Charles P; Abd-Elmaksoud, Sherif; Newick, Huikheng; El-Esnawy, Nagwa A; Barakat, Ahmed; Ghanem, Hossam

    2015-03-01

    Test protocols have been developed by the United States Environmental Protection Agency (USEPA) and the World Health Organization (WHO) to test water treatment devices/systems that are used at the individual and home levels to ensure the removal of waterborne viruses. The goal of this study was to assess if coliphage surrogates could be used in this testing in place of the currently required use of animal or human enteric viruses. Five different coliphages (MS-2, PRD1, ΦX-174, Qβ, and fr) were compared to the removal of poliovirus type 1 (LSc-2ab) by eight different water treatment devices/systems using a general case and a challenge case (high organic load, dissolved solids, and turbidity) test water as defined by the USEPA. The performance of the units was rated as a pass/fail based on a 4 log removal/inactivation of the viruses. In all cases, a failure or a pass of the units/system for poliovirus also corresponded to a pass/fail by all of the coliphages. In summary, in using pass/fail criteria as recommended under USEPA guidelines for testing water treatment device/systems, the use of coliphages should be considered as an alternative to reduce cost and time of testing such devices/systems.

  20. Removal of bacterial fecal indicators, coliphages and enteric adenoviruses from waters with high fecal pollution by slow sand filtration.

    PubMed

    Bauer, Rosalie; Dizer, Halim; Graeber, Ingeborg; Rosenwinkel, Karl-Heinz; López-Pila, Juan M

    2011-01-01

    The aim of the present study was to estimate the performance of slow sand filtration (SSF) facilities, including the time needed for reaching stabilization (maturation), operated with surface water bearing high fecal contamination, representing realistic conditions of rivers in many emerging countries. Surface water spiked with wastewater was infiltrated at different pore water velocities (PWV) and samples were collected at different migration distances. The samples were analyzed for phages and to a lesser extent for fecal bacteria and enteric adenoviruses. At the PWV of 50 cm/d, at which somatic phages showed highest removal, their mean log(10) removal after 90 cm migration was 3.2. No substantial differences of removal rates were observed at PWVs between 100 and 900 cm/d (2.3 log(10) mean removal). The log(10) mean removal of somatic phages was less than the observed for fecal bacteria and tended more towards that of enteric adenoviruses This makes somatic phages a potentially better process indicator than Escherichia coli for the removal of viruses in SSF. We conclude that SSF, and by inference in larger scale river bank filtration (RBF), is an excellent option as a component in multi-barrier systems for drinking water treatment also in areas where the sources of raw water are considerably fecally polluted, as often found in many emerging countries. Copyright © 2010 Elsevier Ltd. All rights reserved.

  1. Human enteric viruses--potential indicators for enhanced monitoring of recreational water quality.

    PubMed

    Updyke, Erin Allmann; Wang, Zi; Sun, Si; Connell, Christina; Kirs, Marek; Wong, Mayee; Lu, Yuanan

    2015-10-01

    Recreational waters contaminated with human fecal pollution are a public health concern, and ensuring the safety of recreational waters for public use is a priority of both the Environmental Protection Agency (EPA) and the Centers for Disease Control and Prevention (CDC). Current recreational water standards rely on fecal indicator bacteria (FIB) levels as indicators of human disease risk. However present evidence indicates that levels of FIB do not always correspond to the presence of other potentially harmful organisms, such as viruses. Thus, enteric viruses are currently tested as water quality indicators, but have yet to be successfully implemented in routine monitoring of water quality. This study utilized enteric viruses as possible alternative indicators of water quality to examine 18 different fresh and offshore recreational waters on O'ahu, Hawai'i, by using newly established laboratory techniques including highly optimized PCR, real time PCR, and viral infectivity assays. All sample sites were detected positive for human enteric viruses by PCR including enterovirus, norovirus genogroups I and II, and male specific FRNA coliphage. A six time-point seasonal study of enteric virus presence indicated significant variation in virus detection between the rainy and dry seasons. Quantitative PCR detected the presence of norovirus genogroup II at levels at which disease risk may occur, and there was no correlation found between enteric virus presence and FIB counts. Under the present laboratory conditions, no infectious viruses were detected from the samples PCR-positive for enteric viruses. These data emphasize both the need for additional indicators for improved monitoring of water quality, and the feasibility of using enteric viruses as these indicators.

  2. Effective reduction of enteric bacteria and viruses during the anaerobic digestion of biomass and wastes

    SciTech Connect

    Fannin, K.F.; Hsu, P.H.; Mensinger, J.; Cahill, C.

    1984-01-01

    Natural resource depletion increases the amount of waste requiring efficient and affordable disposal alternatives. Through effective management, many of these so-called wastes can be utilized as important energy and agricultural resources. One such management approach involves the utilization of emergent aquatic plant species, such as water hyacinth, to remove nutrients from the wastewater during growth. This process produces an energy-containing biomass that can then be anaerobically digested either separately or with other waste components to produce energy-containing methane and an effluent residue containing significant quantities of protein and nutrients. This residue can be utilized as an effective fertilizer, soil conditioner, or animal feed supplement provided it is rendered reasonably safe from such contaminants as enteric microorganisms. This study was conducted to identify the digester operating parameters that affect the survival of enteric bacteria and viruses during the anaerobic digestion of blends of water hyacinth and primary sewage sludge. Solids retetion time and temperature were demonstrated to be important parameters affecting the survival of poliovirus, f-2 coliphage, Streptoccus fecalis, and Escherichia coli during anaerobic digestion. The die-off rates of the coliphages were similar to those of the poliovirus at 35/sup 0/C. S. fecalis appeared to be the most stable of any of the bacteria and viruses studied. All organisms were more stable at 25 than at 35/sup 0/C. The data demonstrate that the concentration of enteric bacteria and viruses can be effectively reduced during anaerobic digestion using techniques, such as increased solids retention times and mesophilic temperatures, that are consistent with achieving high methane yields. The survival of enteric viruses during anaerobic digestion may be affected by the characteristics of the feedstock as well as by the process operating conditions.

  3. OCCURRENCE OF ENTERIC VIRUSES IN WATERS

    EPA Science Inventory

    A number of different types of human enteric viruses cause waterborne outbreaks when individuals are exposed to contaminated drinking and recreational waters. Vaccination against poliovirus has virtually eliminated poliomyelitis from the planet, but other members of the enterovi...

  4. OCCURRENCE OF ENTERIC VIRUSES IN SURFACE WATERS

    EPA Science Inventory

    Human enteric viruses cause a number of diseases when individuals are exposed to contaminated drinking & recreational waters. Vaccination against poliovirus has virtually eliminated poliomyelitis from the planet. Other members of enterovirus group cause numerous diseases. Hepatit...

  5. OCCURRENCE OF ENTERIC VIRUSES IN WATERS

    EPA Science Inventory

    A number of different types of human enteric viruses cause waterborne outbreaks when individuals are exposed to contaminated drinking and recreational waters. Vaccination against poliovirus has virtually eliminated poliomyelitis from the planet, but other members of the enterovi...

  6. OCCURRENCE OF ENTERIC VIRUSES IN SURFACE WATERS

    EPA Science Inventory

    Human enteric viruses cause a number of diseases when individuals are exposed to contaminated drinking & recreational waters. Vaccination against poliovirus has virtually eliminated poliomyelitis from the planet. Other members of enterovirus group cause numerous diseases. Hepatit...

  7. Coliphages and Gastrointestinal Illness in Recreational Waters

    PubMed Central

    Benjamin-Chung, Jade; Arnold, Benjamin F.; Wade, Timothy J.; Schiff, Kenneth; Griffith, John F.; Dufour, Alfred P.; Weisberg, Stephen B.

    2017-01-01

    Background: Coliphages have been proposed as indicators of fecal contamination in recreational waters because they better mimic the persistence of pathogenic viruses in the environment and wastewater treatment than fecal indicator bacteria. We estimated the association between coliphages and gastrointestinal illness and compared it with the association with culturable enterococci. Methods: We pooled data from six prospective cohort studies that enrolled coastal beachgoers in California, Alabama, and Rhode Island. Water samples were collected and gastrointestinal illness within 10 days of the beach visit was recorded. Samples were tested for enterococci and male-specific and somatic coliphages. We estimated cumulative incidence ratios (CIR) for the association between swimming in water with detectable coliphage and gastrointestinal illness when human fecal pollution was likely present, not likely present, and under all conditions combined. The reference group was unexposed swimmers. We defined continuous and threshold-based exposures (coliphage present/absent, enterococci >35 vs. ≤35 CFU/100 ml). Results: Under all conditions combined, there was no association between gastrointestinal illness and swimming in water with detectable coliphage or enterococci. When human fecal pollution was likely present, coliphage and enterococci were associated with increased gastrointestinal illness, and there was an association between male-specific coliphage level and illness that was somewhat stronger than the association between enterococci and illness. There were no substantial differences between male-specific and somatic coliphage. Conclusions: Somatic coliphage and enterococci had similar associations with gastrointestinal illness; there was some evidence that male-specific coliphage had a stronger association with illness than enterococci in marine waters with human fecal contamination. PMID:28489717

  8. Application of enteric viruses for fecal pollution source tracking in environmental waters.

    PubMed

    Wong, Kelvin; Fong, Theng-Theng; Bibby, Kyle; Molina, Marirosa

    2012-09-15

    Microbial source tracking (MST) tools are used to identify sources of fecal pollution for accurately assessing public health risk and implementing best management practices (BMPs). This review focuses on the potential of enteric viruses for MST applications. Following host infection, enteric viruses replicate and are excreted in high numbers in the hosts' feces and urine. Due to the specificity in host infection, enteric viruses have been considered one of the most accurate library-independent culture-independent MST tools. In an assessment of molecular viral assays based on sensitivity, specificity and the density of the target virus in fecal-impacted samples, human adenovirus and human polyomavirus were found to be the most promising human-specific viral markers. However, more research is needed to identify promising viral markers for livestock because of cross-reactions that were observed among livestock species or the limited number of samples tested for specificity. Other viral indicators of fecal origin, F+ RNA coliphage and pepper mild mottle virus, have also been proposed as potential targets for developing MST markers. Enhancing the utility of enteric viruses for MST applications through next generation sequencing (NGS) and virus concentration technology is discussed in the latter part of this review. The massive sequence databases generated by shotgun and gene-targeted metagenomics enable more efficient and reliable design of MST assays. Finally, recent studies revealed that alternative virus concentration methodologies may be more cost-effective than standard technologies such as 1MDS; however, improvements in the recovery efficiency and consistency are still needed. Overall, developments in metagenomic information combined with efficient concentration methodologies, as well as high host-specificity, make enteric viruses a promising tool in MST applications. Published by Elsevier Ltd.

  9. Thermal inactivation of enteric viruses and bioaccumulation of enteric foodborne viruses in live oysters (Crassostrea virginica)

    USDA-ARS?s Scientific Manuscript database

    Human enteric viruses are one of the main causative agents of shellfish associated outbreaks. In this study, the kinetics of viral bioaccumulation in live oysters and the heat stability of the most predominant enteric viruses were determined in both tissue culture and in oyster tissues. A human nor...

  10. Removal of Escherichia coli, Enterococcus fecalis, coliphage MS2, poliovirus, and hepatitis A virus from oysters (Crassostrea virginica) and hard shell clams (Mercinaria mercinaria) by depuration.

    PubMed

    Love, David C; Lovelace, Greg L; Sobsey, Mark D

    2010-10-15

    Filter-feeding bivalve mollusks (shellfish) can bioaccumulate pathogenic microorganisms in up to 1000-fold higher levels than overlying waters, and therefore disease risks are associated with consuming raw or partially cooked shellfish. Many of these shellfish-borne diseases are due to enteric bacteria and viruses associated with fecal contamination. To control shellfish-borne diseases, guidelines for shellfish harvest waters and shellfish meat have been devised, which include cleansing of contaminated shellfish by depuration in controlled systems, heat pasteurization, or relay to clean waters. This study examines the depuration of oysters (Crassostrea virginica) and hard shell clams (Mercinaria mercinaria) in a flow-through depuration system under variable temperature (12 °C, 18 °C, and 25 °C), salinity (8 ppt, 18 ppt, and 28 ppt), turbidity (<1NTU, 10NTU, and 20NTU), pH (pH 7 and pH 8), and algae conditions (0 cells/mL and 50,000 cells/mL), with constant dissolved oxygen (5-7 mg/L). Oysters and hard shell clams were artificially contaminated with enteric microorganisms: Escherichia coli, Enterococcus faecalis, coliphage MS2, Poliovirus type-1 and Hepatitis A virus HM-175 (HAV), then depurated in 5-day trials with daily sampling. In oysters, optimizing environmental parameters of water temperature improved E. coli, MS2, poliovirus and HAV depuration, and optimized salinity improved E. coli, E. faecalis, and MS2 depuration rates. In hard shell clams, salinity improved E. coli and E. faecalis depuration rates. Adjusting turbidity, pH or algae did not improve microorganism depuration in either oysters or hard shell clams, with the exception of turbidity on E. faecalis in hard shell clams. Microorganism depuration rates in oysters from greatest to least were: MS2>E. coli>E. faecalis>poliovirus>HAV, and in clams depuration rates from greatest to least were: E. coli>E. faecalis>HAV>MS2>poliovirus. Because E. coli and E. faecalis were removed at faster rates than HAV

  11. Somatic Coliphage Profiles of Produce and Environmental Samples from Farms in Northern México.

    PubMed

    Bartz, Faith E; Hodge, Domonique Watson; Heredia, Norma; de Aceituno, Anna Fabiszewski; Solís, Luisa; Jaykus, Lee-Ann; Garcia, Santos; Leon, Juan S

    2016-09-01

    Somatic coliphages were quantified in 459 produce and environmental samples from 11 farms in Northern Mexico to compare amounts of somatic coliphages among different types of fresh produce and environmental samples across the production steps on farms. Rinsates from cantaloupe melons, jalapeño peppers, tomatoes, and the hands of workers, soil, and water were collected during 2011-2012 at four successive steps on each farm, from the field before harvest through the packing facility, and assayed by FastPhage MPN Quanti-tray method. Cantaloupe farm samples contained more coliphages than jalapeño or tomato (p range <0.01-0.03). Across production steps, jalapeños had higher coliphage percentages before harvest than during packing (p = 0.03), while tomatoes had higher coliphage concentrations at packing than all preceding production steps (p range <0.01-0.02). These findings support the use of targeted produce-specific interventions at multiple points in the process of growing and packing produce to reduce the risk of enteric virus contamination and improve food safety during fruit and vegetable production.

  12. Field-based evaluation of a male-specific (F+) RNA coliphage ...

    EPA Pesticide Factsheets

    Fecal contamination of water poses a significant risk to public health due to the potential presence of pathogens, including enteric viruses. Thus, sensitive, reliable and easy to use methods for the detection of microorganisms are needed to evaluate water quality. In this study, we performed a field evaluation of an anion-exchange resin based platform to concentrate F-RNA coliphages (fecal/enteric virus indicators) from diverse fecally impacted environmental waters. In this platform, F-RNA coliphages are adsorbed to anion-exchange resin and direct nucleic acid isolation is performed, yielding a sample amenable to real-time reverse transcriptase PCR detection. Matrix-dependent inhibition was evaluated using known quantities of spiked F-RNA coliphage genogroups GI, GII, GII and GIV. Detection was successful in 97%, 72%, 85% and 98% of the samples for spiked F-RNA coliphage GI, GII, GIII and GIV, respectively, and was differentially affected by inhibitory properties specific to each water sample. No association between inhibition and the water samples’ physicochemical properties was apparent. Parallel evaluations of the spiked samples with internal amplification control (IAC) reactions (a widely used control to assess inhibition) demonstrated that IAC reaction inhibition was not agreement with that observed for spiked samples, suggesting that testing of spiked samples allows for better assessments of matrix-dependent inhibition. Additionally, the anion-

  13. Interaction of human adenoviruses and coliphages with kaolinite and bentonite.

    PubMed

    Bellou, Maria I; Syngouna, Vasiliki I; Tselepi, Maria A; Kokkinos, Petros A; Paparrodopoulos, Spyros C; Vantarakis, Apostolos; Chrysikopoulos, Constantinos V

    2015-06-01

    Human adenoviruses (hAdVs) are pathogenic viruses responsible for public health problems worldwide. They have also been used as viral indicators in environmental systems. Coliphages (e.g., MS2, ΦX174) have also been studied as indicators of viral pollution in fecally contaminated water. Our objective was to evaluate the distribution of three viral fecal indicators (hAdVs, MS2, and ΦΧ174), between two different phyllosilicate clays (kaolinite and bentonite) and the aqueous phase. A series of static and dynamic experiments were conducted under two different temperatures (4, 25°C) for a time period of seven days. HAdV adsorption was examined in DNase I reaction buffer (pH=7.6, and ionic strength (IS)=1.4mM), whereas coliphage adsorption in phosphate buffered saline solution (pH=7, IS=2mM). Moreover, the effect of IS on hAdV adsorption under static conditions was evaluated. The adsorption of hAdV was assessed by real-time PCR and its infectivity was tested by cultivation methods. The coliphages MS2 and ΦΧ174 were assayed by the double-layer overlay method. The experimental results have shown that coliphage adsorption onto both kaolinite and bentonite was higher for the dynamic than the static experiments; whereas hAdV adsorption was lower under dynamic conditions. The adsorption of hAdV increased with decreasing temperature, contrary to the results obtained for the coliphages. This study examines the combined effect of temperature, agitation, clay type, and IS on hAdV adsorption onto clays. The results provide useful new information on the effective removal of viral fecal indicators (MS2, ΦX174 and hAdV) from dilute aqueous solutions by adsorption onto kaolinite and bentonite. Factors enabling enteric viruses to penetrate soils, groundwater and travel long distances within aquifers are important public health issues. Because the observed adsorption behavior of surrogate coliphages MS2 and ΦΧ174 is substantially different to that of hAdV, neither MS2 nor

  14. Incidence of Enteric Viruses in Groundwater from Household Wells in Wisconsin

    PubMed Central

    Borchardt, Mark A.; Bertz, Phil D.; Spencer, Susan K.; Battigelli, David A.

    2003-01-01

    Recent studies on the contamination of groundwater with human enteric viruses have focused on public water systems, whereas little is known about the occurrence of viruses in private household wells. The objective of the present study was to estimate the incidence of viruses in Wisconsin household wells located near septage land application sites or in rural subdivisions served by septic systems. Fifty wells in seven hydrogeologic districts were sampled four times over a year, once each season. Reverse transcriptase PCR (RT-PCR), followed by Southern hybridization, was used to detect enteroviruses, rotavirus, hepatitis A virus (HAV), and Norwalk-like viruses (NLVs). In addition, cell culture was used to detect culturable enteroviruses. Companion water samples were collected for total coliforms, Escherichia coli, fecal enterococci, F-specific RNA coliphages, nitrate, and chloride analyses. Among the 50 wells, four (8%) were positive for viruses by RT-PCR. Three wells were positive for HAV, and the fourth well was positive for both rotavirus and NLV in one sample and an enterovirus in another sample. Contamination was transient, since none of the wells was virus positive for two sequential samples. Culturable enteroviruses were not detected in any of the wells. Water quality indicators were not statistically associated with virus occurrence, although some concordance was noted for chloride. The present study is the first in the United States to systematically monitor private household wells for virus contamination and, combined with data for public wells, provides further insight on the extent of groundwater contamination with human enteric viruses. PMID:12571044

  15. Thermal Inactivation of Enteric Viruses and Bioaccumulation of Enteric Foodborne Viruses in Live Oysters (Crassostrea virginica)

    PubMed Central

    Araud, Elbashir; DiCaprio, Erin; Ma, Yuanmei; Lou, Fangfei; Gao, Yu; Kingsley, David; Hughes, John H.

    2016-01-01

    Human enteric viruses are among the main causative agents of shellfish-associated outbreaks. In this study, the kinetics of viral bioaccumulation in live oysters and the heat stabilities of the predominant enteric viruses were determined both in tissue culture and in oyster tissues. A human norovirus (HuNoV) GII.4 strain, HuNoV surrogates (murine norovirus [MNV-1], Tulane virus [TV]), hepatitis A virus (HAV), and human rotavirus (RV) bioaccumulated to high titers within oyster tissues, with different patterns of bioaccumulation for the different viruses. We tested the thermal stability of each virus at 62, 72, and 80°C in culture medium. The viruses can be ranked from the most heat resistant to the least stable as follows: HAV, RV, TV, MNV-1. In addition, we found that oyster tissues provided protection to the viruses during heat treatment. To decipher the mechanism underlying viral inactivation by heat, purified TV was treated at 80°C for increasing time intervals. It was found that the integrity of the viral capsid was disrupted, whereas viral genomic RNA remained intact. Interestingly, heat treatment leading to complete loss of TV infectivity was not sufficient to completely disrupt the receptor binding activity of TV, as determined by the porcine gastric mucin–magnetic bead binding assay. Similarly, HuNoV virus-like particles (VLPs) and a HuNoV GII.4 strain retained some receptor binding ability following heat treatment. Although foodborne viruses have variable heat stability, 80°C for >6 min was sufficient to completely inactivate enteric viruses in oysters, with the exception of HAV. PMID:26826225

  16. Vulnerability of Drinking-Water Wells in La Crosse, Wisconsin, to Enteric-Virus Contamination from Surface Water Contributions

    PubMed Central

    Borchardt, Mark A.; Haas, Nathaniel L.; Hunt, Randall J.

    2004-01-01

    Human enteric viruses can contaminate municipal drinking-water wells, but few studies have examined the routes by which viruses enter these wells. In the present study, the objective was to monitor the municipal wells of La Crosse, Wisconsin, for enteric viruses and determine whether the amount of Mississippi River water infiltrating the wells was related to the frequency of virus detection. From March 2001 to February 2002, one river water site and four wells predicted by hydrogeological modeling to have variable degrees of surface water contributions were sampled monthly for enteric viruses, microbial indicators of sanitary quality, and oxygen and hydrogen isotopes. 18O/16O and 2H/1H ratios were used to determine the level of surface water contributions. All samples were collected prior to chlorination at the wellhead. By reverse transcription-PCR (RT-PCR), 24 of 48 municipal well water samples (50%) were positive for enteric viruses, including enteroviruses, rotavirus, hepatitis A virus (HAV), and noroviruses. Of 12 river water samples, 10 (83%) were virus positive by RT-PCR. Viable enteroviruses were not detected by cell culture in the well samples, although three well samples were positive for culturable HAV. Enteroviruses detected in the wells by RT-PCR were identified as several serotypes of echoviruses and group A and group B coxsackieviruses. None of the well water samples was positive for indicators of sanitary quality, namely male-specific and somatic coliphages, total coliform bacteria, Escherichia coli, and fecal enterococci. Contrary to expectations, viruses were found in all wells regardless of the level of surface water contributions. This result suggests that there were other unidentified sources, in addition to surface water, responsible for the contamination. PMID:15466536

  17. Vulnerability of drinking-water wells in La Crosse, Wisconsin, to enteric-virus contamination from surface water contributions

    USGS Publications Warehouse

    Borchardt, M. A.; Haas, N.L.; Hunt, R.J.

    2004-01-01

    Human enteric viruses can contaminate municipal drinking-water wells, but few studies have examined the routes by which viruses enter these wells. In the present study, the objective was to monitor the municipal wells of La Crosse, Wisconsin, for enteric viruses and determine whether the amount of Mississippi River water infiltrating the wells was related to the frequency of virus detection. From March 2001 to February 2002, one river water site and four wells predicted by hydrogeological modeling to have variable degrees of surface water contributions were sampled monthly for enteric viruses, microbial indicators of sanitary quality, and oxygen and hydrogen isotopes. 18O/ 16O and 2H/1H ratios were used to determine the level of surface water contributions. All samples were collected prior to chlorination at the wellhead. By reverse transcription-PCR (RT-PCR), 24 of 48 municipal well water samples (50%) were positive for enteric viruses, including enteroviruses, rotavirus, hepatitis A virus (HAV), and noroviruses. Of 12 river water samples, 10 (83%) were virus positive by RT-PCR. Viable enteroviruses were not detected by cell culture in the well samples, although three well samples were positive for culturable HAV. Enteroviruses detected in the wells by RT-PCR were identified as several serotypes of echoviruses and group A and group B coxsackieviruses. None of the well water samples was positive for indicators of sanitary quality, namely male-specific and somatic coliphages, total coliform bacteria, Escherichia coli, and fecal enterococci. Contrary to expectations, viruses were found in all wells regardless of the level of surface water contributions. This result suggests that there were other unidentified sources, in addition to surface water, responsible for the contamination.

  18. Vulnerability of drinking-water wells in La Crosse, Wisconsin, to enteric-virus contamination from surface water contributions.

    PubMed

    Borchardt, Mark A; Haas, Nathaniel L; Hunt, Randall J

    2004-10-01

    Human enteric viruses can contaminate municipal drinking-water wells, but few studies have examined the routes by which viruses enter these wells. In the present study, the objective was to monitor the municipal wells of La Crosse, Wisconsin, for enteric viruses and determine whether the amount of Mississippi River water infiltrating the wells was related to the frequency of virus detection. From March 2001 to February 2002, one river water site and four wells predicted by hydrogeological modeling to have variable degrees of surface water contributions were sampled monthly for enteric viruses, microbial indicators of sanitary quality, and oxygen and hydrogen isotopes. (18)O/(16)O and (2)H/(1)H ratios were used to determine the level of surface water contributions. All samples were collected prior to chlorination at the wellhead. By reverse transcription-PCR (RT-PCR), 24 of 48 municipal well water samples (50%) were positive for enteric viruses, including enteroviruses, rotavirus, hepatitis A virus (HAV), and noroviruses. Of 12 river water samples, 10 (83%) were virus positive by RT-PCR. Viable enteroviruses were not detected by cell culture in the well samples, although three well samples were positive for culturable HAV. Enteroviruses detected in the wells by RT-PCR were identified as several serotypes of echoviruses and group A and group B coxsackieviruses. None of the well water samples was positive for indicators of sanitary quality, namely male-specific and somatic coliphages, total coliform bacteria, Escherichia coli, and fecal enterococci. Contrary to expectations, viruses were found in all wells regardless of the level of surface water contributions. This result suggests that there were other unidentified sources, in addition to surface water, responsible for the contamination.

  19. Molecular survey of enteric viruses in commercial chicken farms in Korea with a history of enteritis.

    PubMed

    Koo, B S; Lee, H R; Jeon, E O; Han, M S; Min, K C; Lee, S B; Mo, I P

    2013-11-01

    Several enteric viruses have increasingly received attention as potential causative agents of runting-stunting syndrome (RSS) in chickens. A molecular survey was performed to determine the presence of a broad range of enteric viruses, namely chicken astrovirus (CAstV), avian nephritis virus (ANV), chicken parvovirus (ChPV), infectious bronchitis virus (IBV), avian rotavirus (AvRV), avian reovirus (ARV), and fowl adenovirus (FAdV), in intestinal samples derived from 34 commercial chicken flocks that experienced enteritis outbreaks between 2010 and 2012. Using techniques such as PCR and reverse-transcription PCR, enteric viruses were identified in a total of 85.3% of investigated commercial chicken flocks in Korea. Furthermore, diverse combinations of 2 or more enteric viruses were simultaneously identified in 51.7% of chicken farms positive for enteric viruses. The rank order of positivity for enteric viruses was as follows: ANV (44.1%), CAstV (38.2%), ChPV (26.5%), IBV (20.6%), ARV (8.8%), AvRV (5.9%), and FAdV (2.9%). Additionally, other pathogens such as Escherichia coli, Salmonella spp., Eimeria spp., and FAdV were detected in 79% of chicken flocks positive for enteric viruses using PCR, bacterial isolation, and microscopic examination. The results of our study indicate the presence of several enteric viruses with various combinations in commercial chicken farms that experienced enteritis outbreaks. Experimental studies are required to further understand the roles of enteric viruses in RSS in commercial chickens.

  20. Enteric virus and vibrio contamination of shellfish: intervention strategies

    USDA-ARS?s Scientific Manuscript database

    INTRODUCTION. Molluscan shellfish include oysters, clams, mussels, and cockles, which can cause illnesses from a variety of human pathogens. Enteric viruses, like norovirus and hepatitis A virus, are generally transmitted to shellfish through fecal contamination of shellfish harvesting areas, alth...

  1. Development of reference antisera to enteric-origin avian viruses

    USDA-ARS?s Scientific Manuscript database

    Recent molecular surveys have revealed geographically distinct lineages of avian reovirus, rotavirus and astrovirus circulating in commercial poultry. To improve our understanding of enteric virus pathogenesis, specific immunological reagents are needed to detect viruses in histological samples. To ...

  2. Enteric viruses of chickens and turkeys

    USDA-ARS?s Scientific Manuscript database

    Although enteric disease in commercial poultry operations is common, and often unofficially reported and discussed by field veterinarians as “non-specific enteric disease”, three recognized enteric syndromes do exist in poultry: poult enteritis complex (PEC) and poult enteritis mortality syndrome (P...

  3. Factors affecting decay of Salmonella Birkenhead and coliphage MS2 during mesophilic anaerobic digestion and air drying of sewage sludge.

    PubMed

    Mondal, Tania; Rouch, Duncan A; Thurbon, Nerida; Smith, Stephen R; Deighton, Margaret A

    2015-06-01

    Factors affecting the decay of Salmonella Birkenhead and coliphage, as representatives of bacterial and viral pathogens, respectively, during mesophilic anaerobic digestion (MAD) and air drying treatment of anaerobically digested sewage sludge were investigated. Controlled concentrations of S. Birkenhead were inoculated into non-sterile, autoclaved, γ-irradiated and nutrient-supplemented sludge and cultures were incubated at 37 °C (MAD sludge treatment temperature) or 20 °C (summer air drying sludge treatment temperature). Nutrient limitation caused by microbial competition was the principal mechanism responsible for the decay of S. Birkenhead by MAD and during air drying of digested sludge. The effects of protease activity in sludge on MS2 coliphage decay in digested and air dried sludge were also investigated. MS2 coliphage showed a 3.0-3.5 log10 reduction during incubation with sludge-protease extracts at 37 °C for 25 h. Proteases produced by indigenous microbes in sludge potentially increase coliphage inactivation and may therefore have a significant role in the decay of enteric viruses in sewage sludge. The results help to explain the loss of viability of enteric bacteria and viral pathogens with treatment process time and contribute to fundamental understanding of the various biotic inactivation mechanisms operating in sludge treatment processes at mesophilic and ambient temperatures.

  4. Processing Strategies to Inactivate Enteric Viruses in Shellfish: Limitations of Surrogate Viruses and Molecular Methods

    USDA-ARS?s Scientific Manuscript database

    Noroviruses, hepatitis A and E viruses, sapovirus, astrovirus, rotavirus, Aichi virus, enteric adenoviruses, poliovirus, and other enteroviruses enter shellfish through contaminated seawater or by contamination during handling and processing, resulting in outbreaks ranging from isolated to epidemic....

  5. Replication of coliphage Q beta as affected by host cell number, nutrition, competition from insusceptible cells and non-FRNA coliphages.

    PubMed

    Woody, M A; Cliver, D O

    1997-04-01

    F-specific RNA (FRNA) coliphages, which infect Escherichia coli by attachment to F pili, might serve as indicators of human enteric viruses in groundwater, provided these phages do not replicate in groundwater and replicate only to a limited extent in wastewater. Several factors that could influence phage replication in either of these environments were examined. Q beta did not replicate when host cells were fewer than 10(4) cfu ml-1. Replication selected for insusceptible cells when Q beta was incubated with its E. coli host. Loss of Q beta, presumably by inactivation, occurred in autoclaved on-site and urban wastewater, autoclaved groundwater, and in filter-sterilized spent LB broth. Replication did not occur in LB broth diluted with sterile saline to 1% of its original strength, which indicates that replication of FRNA coliphages cannot occur in such nutrient-poor environments as wastewater and groundwater. Competition from non-FRNA coliphages and insusceptible cells tended to reduce Q beta replication, as predicted, but phage yields unexpectedly increased significantly when Enterococcus faecalis was added to cultures.

  6. Persistence of enteric viruses within oysters (Crassostrea virginica)

    USDA-ARS?s Scientific Manuscript database

    It is well known that water-borne enteric viruses are concentrated by bivalves. Why these viruses are selectively retained and remain infectious within shellfish tissues for extended periods is unknown. Our current hypothesis is that phagocytic hemocytes (blood cells) are a site of virus persiste...

  7. AN OVERVIEW OF ENTERIC VIRUS EXTRACTION AND ASSAY METHODS

    USDA-ARS?s Scientific Manuscript database

    Enteric viruses, particularly norovirus and hepatitis A virus, are major contaminants of molluscan shellfish, leading to outbreaks of viral illness. A host of procedures have been developed for the extraction and assay of viruses from shellfish. Early extraction and assay methods focused on the de...

  8. 9 CFR 113.204 - Mink Enteritis Vaccine, Killed Virus.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 9 Animals and Animal Products 1 2014-01-01 2014-01-01 false Mink Enteritis Vaccine, Killed Virus. 113.204 Section 113.204 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE..., Killed Virus, shall be prepared from virus-bearing cell culture fluids or tissues obtained from mink that...

  9. 9 CFR 113.204 - Mink Enteritis Vaccine, Killed Virus.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 9 Animals and Animal Products 1 2013-01-01 2013-01-01 false Mink Enteritis Vaccine, Killed Virus. 113.204 Section 113.204 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE..., Killed Virus, shall be prepared from virus-bearing cell culture fluids or tissues obtained from mink that...

  10. 9 CFR 113.204 - Mink Enteritis Vaccine, Killed Virus.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 9 Animals and Animal Products 1 2012-01-01 2012-01-01 false Mink Enteritis Vaccine, Killed Virus. 113.204 Section 113.204 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE..., Killed Virus, shall be prepared from virus-bearing cell culture fluids or tissues obtained from mink that...

  11. 9 CFR 113.204 - Mink Enteritis Vaccine, Killed Virus.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 9 Animals and Animal Products 1 2011-01-01 2011-01-01 false Mink Enteritis Vaccine, Killed Virus. 113.204 Section 113.204 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE..., Killed Virus, shall be prepared from virus-bearing cell culture fluids or tissues obtained from mink that...

  12. 9 CFR 113.204 - Mink Enteritis Vaccine, Killed Virus.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 9 Animals and Animal Products 1 2010-01-01 2010-01-01 false Mink Enteritis Vaccine, Killed Virus. 113.204 Section 113.204 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE..., Killed Virus, shall be prepared from virus-bearing cell culture fluids or tissues obtained from mink that...

  13. Environmental factors and chemical and microbiological water-quality constituents related to the presence of enteric viruses in ground water from small public water supplies in southeastern Michigan

    USGS Publications Warehouse

    Francy, Donna S.; Bushon, Rebecca N.; Stopar, Julie; Luzano, Emma J.; Fout, G. Shay

    2004-01-01

    A study of small public ground-water-supply wells that produce water from discontinuous sand and gravel aquifers was done from July 1999 through July 2001 in southeastern Michigan. Samples were collected to determine the occurrence of viral pathogens and microbiological indicators of fecal contamination (indicators), determine whether indicators are adequate predictors of the presence of enteric viruses, and determine the factors that affect the presence of enteric viruses. Small systems are those that serve less than 3,300 people. Samples were analyzed for specific enteric viruses by reverse transcriptase-polymerase chain reaction (RT-PCR), for culturable viruses by cell culture, and for the indicators total coliforms, Escherichia coli (E. coli), enterococci, and F-specific and somatic coliphage. Ancillary environmental and water-quality data were collected or compiled. A total of 169 regular samples and 32 replicate pairs were collected from 38 wells. Replicate pairs were samples collected at the same well on the same date. One well was sampled 6 times, 30 wells were sampled five times, 6 wells were sampled twice, and 1 well was sampled once. By use of RT-PCR, enterovirus was found in four wells (10.5 percent) and hepatitis A virus (HAV) in five wells (13.2 percent). In two of these wells, investigators found both enterovirus and HAV, but on different sampling dates. Culturable viruses were found one time in two wells (5.9 percent), and neither of these wells was positive for viruses by use of RT-PCR on any sampling date. If results for all viruses are combined, 9 of the 38 small public-supply wells were positive for enteric viruses (23.7 percent) by either cell culture or RT-PCR. One or more indicators were found in 18 of 38 wells. Total coliforms, E. coli, enterococci, and F-specific and somatic coliphage were found in 34.2, 10.5, 15.8, 5.9, and 5.9 percent, respectively, of the wells tested. In only 3 out of 18 wells were samples positive for an indicator on

  14. Survival of human enteric viruses in the environment and food.

    PubMed

    Rzezutka, Artur; Cook, Nigel

    2004-10-01

    Human enteric pathogenic viruses can enter the environment through discharge of waste materials from infected persons, and be transmitted back to susceptible persons to continue the cycle of disease. Contamination of food with viruses may also promote disease outbreaks. A number of studies have investigated the survival characteristics of several enteric viruses in various environments and foodstuffs, to help explain the transmissibility of these pathogens. This review deals with published work on enteric virus survival on fomites, and in waters, soil, and foods; the results of these studies have illustrated the robust survival of viruses in these environments. Much information is lacking, however, especially for foodstuffs and soils, and no detailed information is available concerning the survival of noroviruses, the most significant foodborne type.

  15. Airborne coliphages from wastewater treatment facilities.

    PubMed Central

    Fannin, K F; Spendlove, J C; Cochran, K W; Gannon, J J

    1976-01-01

    The emission (from wastewater treatment plants) of airborne coliphages that form plaques on two strains of Escherichia coli was investigated. Two activated-sludge and two trickling-filter plants were studied. Field sampling procedures used large-volume air samplers with recirculation devices. Coliphages were enumerated by a most-probable-number (MPN) procedure. Temperature, relative humidity, windspeed, and presence of sunlight were monitored. Concurrent samples of sewage were taken during each air-sampling run. Average coliphage levels in the airborne emissions of trickling-filter beds and activated-sludge units were 2.84 X 10(-1) and 3.02 X 10(-1) MPN/m3, respectively, for all positive observations, and sewage liquor concentrations from the sources were 4.48 X 10(5) and 2.94 X 10(6) plaque-forming units/liter, respectively, depending upon the E. coli host used for assay. This work establishes minimal airborne-coliphage concentrations from the plants studied. The procedures employed will be useful in evaluating the animal virus levels in these emissions. PMID:1275492

  16. Field survey of enteric viruses in solid waste landfill leachates.

    PubMed Central

    Sobsey, M D

    1978-01-01

    Because municipal solid waste may contain fecal material from a variety of sources, there is concern that the leachate discharged from some solid waste landfills may contain enteric pathogens, including enteric viruses. In this study, 22 leachate samples from 21 different landfills in the United States and Canada were examined for enteric viruses. The sites represented a broad range of conditions for solid waste landfills and the leachate samples ranged from 10.3 to 18 liters in volume. Enteric viruses were found in only one of the 22 leachate samples examined. Two viruses, identified as poliovirus types 1 and 3, were found in an 11.8 liter sample obtained from a site where solid waste landfill practice was deficient. The low levels of enteric viruses detected in field samples of raw leachate and the opportunities for further reductions in the virus concentration of leachates by such processes as thermal inactivation, removal by soil and dilution in ground and surface waters, suggest that leachates from properly operated solid waste landfills do not constitute an environmental or public health hazard due to enteric viruses. PMID:28677

  17. Field survey of enteric viruses in solid waste landfill leachates.

    PubMed

    Sobsey, M D

    1978-09-01

    Because municipal solid waste may contain fecal material from a variety of sources, there is concern that the leachate discharged from some solid waste landfills may contain enteric pathogens, including enteric viruses. In this study, 22 leachate samples from 21 different landfills in the United States and Canada were examined for enteric viruses. The sites represented a broad range of conditions for solid waste landfills and the leachate samples ranged from 10.3 to 18 liters in volume. Enteric viruses were found in only one of the 22 leachate samples examined. Two viruses, identified as poliovirus types 1 and 3, were found in an 11.8 liter sample obtained from a site where solid waste landfill practice was deficient. The low levels of enteric viruses detected in field samples of raw leachate and the opportunities for further reductions in the virus concentration of leachates by such processes as thermal inactivation, removal by soil and dilution in ground and surface waters, suggest that leachates from properly operated solid waste landfills do not constitute an environmental or public health hazard due to enteric viruses.

  18. Detection of enteric viruses in shellfish

    USDA-ARS?s Scientific Manuscript database

    Norovirus and hepatitis A virus contamination are significant threats to the safety of shellfish and other foods. Methods for the extraction and assay of these viruses from shellfish are complex, time consuming, and technically challenging. Here, we itemize some of the salient points in extracting...

  19. Presence of human enteric viruses in deep urban groundwater

    USDA-ARS?s Scientific Manuscript database

    Enteric viruses, because of their small size, have a high potential to move deeply through the subsurface environment, penetrate aquitards, and reach confined aquifers. Until recently, few water utilities or researchers were aware of possible virus presence in deep aquifers and wells. Over the past ...

  20. A dilemma for viruses and giant viruses: which endocytic pathway to use to enter cells?

    PubMed

    Ghigo, Eric

    2010-01-01

    Viruses must enter host cells to deliver their genetic material and accessory proteins. Endocytosis offers to viruses the opportunity to enter host cells. However, endocytosis is a complex phenomenon that includes different mechanisms, clathrin-mediated endocytosis, caveolin-mediated endocytosis, macropinocytosis, and phagocytosis. Here, I describe the ways used by different viruses to exploit these endocytic pathways.

  1. Identification of Enteric Viruses in Foods from Mexico City.

    PubMed

    Parada-Fabián, José Carlos; Juárez-García, Patricia; Natividad-Bonifacio, Iván; Vázquez-Salinas, Carlos; Quiñones-Ramírez, Elsa Irma

    2016-09-01

    Foodborne viruses are a common and, probably, the most under-recognized cause of outbreaks of gastroenteritis. Among the main foods involved in the transmission of human enteric viruses are mollusks, and fruits and vegetables irrigated with wastewater and/or washed with non-potable water or contaminated by contact with surfaces or hands of the infected personnel during its preparation. In this study, 134 food samples were analyzed for the detection of Norovirus, Rotavirus, and Hepatitis A virus (HAV) by amplification of conserved regions of these viruses. From the 134 analyzed samples, 14 were positive for HAV, 6 for Norovirus, and 11 for Rotavirus. This is the first report in Mexico where emphasis is given to the presence of HAV and Norovirus on perishable foods and food from fisheries, as well as Rotavirus on frozen vegetables, confirming the role of vegetables and bivalve mollusks as transmitting vehicles of enteric viruses.

  2. Bacteriophages as enteric viral indicators in bivalve mollusc management.

    PubMed

    Hodgson, Kate R; Torok, Valeria A; Turnbull, Alison R

    2017-08-01

    Human enteric viruses, such as norovirus and hepatitis A virus, are spread by a variety of routes including faecal-oral transmission. Contaminated bivalve shellfish are regularly implicated in foodborne viral disease outbreaks internationally. Traditionally indicator bacteria, the coliforms and Escherichia coli, have been used to detect faecal pollution in growing waters and shellfish. However, studies have established that they are inadequate as indicators of the risk of human enteric viruses. Bacteriophages have been identified as potential indicators or surrogates for human enteric viruses due to their similarities in morphology, behaviour in water environments and resistance to disinfectant treatments. The somatic coliphages, male-specific RNA coliphages (FRNA coliphages) and the bacteriophages of Bacteroides are the groups recognised as most suitable for water and shellfish testing. In this review, we discuss the rationale and supporting evidence for the application of bacteriophages as surrogates for human enteric viruses in shellfish under a variety of conditions. There is some evidence to support the validity of using bacteriophage levels to indicate viral risk in shellfish in highly contaminated sites and following adverse sewage events. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  3. Phytocompounds for the control of human enteric viruses.

    PubMed

    D'Souza, Doris H

    2014-02-01

    Plant extracts and associated polyphenols are known for their varied health benefits that include antioxidant effects and antimicrobial properties. The increasing consumer demand for cost-effective and natural alternatives to chemically-synthesized antimicrobials and therapeutics that are also sustainable makes the field of phytochemical research rather intriguing and challenging. Human enteric viruses are increasingly recognized worldwide as significant causes of human disease in adults and children, alike. In the absence of available vaccines for the human noroviruses, plant extracts are gaining popularity for the prevention and treatment of viral diseases. Research on plant extracts (particularly polyphenols derived from fruits) for human enteric virus control will be briefly summarized in this article.

  4. Enteric and indicator virus removal by surface flow wetlands.

    PubMed

    Rachmadi, Andri T; Kitajima, Masaaki; Pepper, Ian L; Gerba, Charles P

    2016-01-15

    We investigated the occurrence and attenuation of several human enteric viruses (i.e., norovirus, adenovirus, Aichi virus 1, polyomaviruses, and enterovirus) as well as a plant virus, pepper mild mottle virus (PMMoV), at two surface flow wetlands in Arizona. The retention time in one of the wetlands was seven days, whereas in the other wetland it could not be defined. Water samples were collected at the inlet and outlet from the wetlands over nine months, and concentration of viral genomes was determined by quantitative polymerase chain reaction (qPCR). Of the human enteric viruses tested, adenovirus and Aichi virus 1 were found in the greatest prevalence in treated wastewater (i.e., inlet of the wetlands). Reduction efficiencies of enteric viruses by the wetlands ranged from 1 to 3 log10. Polyomaviruses were generally removed to below detection limit, indicating at least 2 to 4 log10 removal. PMMoV was detected in a greater concentration in the inlet of both wetlands for all the viruses tested (10(4) to 10(7) genome copies/L), but exhibited little or no removal (1 log10 or less). To determine the factors associated with virus genome attenuation (as determined by qPCR), the persistence of PMMoV and poliovirus type 1 (an enterovirus) was studied in autoclaved and natural wetland water, and deionized water incubated under three different temperatures for 21 days. A combination of elevated water temperature and biological activities reduced poliovirus by 1 to 4 log10, while PMMoV was not significantly reduced during this time period. Overall, PMMoV showed much greater persistence than human viruses in the wetland treatment.

  5. The effect of carvacrol on enteric viruses.

    PubMed

    Sánchez, C; Aznar, R; Sánchez, G

    2015-01-02

    Carvacrol, a monoterpenic phenol, is said to have extensive antimicrobial activity in a wide range of food spoilage or pathogenic fungi, yeast and bacteria. The aim of this study was to assess its antiviral activity on norovirus surrogates, feline calicivirus (FCV), murine norovirus (MNV), and hepatitis A virus (HAV), as well as its potential in food applications. Initially, different concentrations of carvacrol (0.25, 0.5, 1%) were individually mixed with each virus at titers of ca. 6-7 log TCID50/ml and incubated 2h at 37°C. Carvacrol at 0.5% completely inactivated the two norovirus surrogates, whereas 1% concentration was required to achieve ca. 1 log reduction of HAV. In lettuce wash water, carvacrol efficacy on MNV was dependent on the chemical oxygen demand (COD), with no effect over 300 ppm. A 4 log reduction in FCV infectivity was observed when 0.5% carvacrol was used to sanitize lettuce wash water, regardless of COD. Carvacrol was also evaluated as a natural disinfectant of produce, showing 1% carvacrol reduced inoculated NoV surrogates titers in lettuce by 1 log after 30 min contact. These results represent a step forward in improving food safety by using carvacrol as an alternative natural additive to reduce viral contamination in the fresh vegetable industry. Copyright © 2014 Elsevier B.V. All rights reserved.

  6. Prevalence of enteric viruses in human immunodeficiency virus seropositive patients in Venezuela.

    PubMed

    González, G G; Pujol, F H; Liprandi, F; Deibis, L; Ludert, J E

    1998-08-01

    The prevalence of enteric viruses associated with gastroenteritis was determined in 125 stool samples from patients infected with the human immunodeficiency virus (HIV), with or without diarrhea. Diagnostic assays included enzyme immunoassays for the identification of rotavirus, adenovirus, and Norwalk virus; polyacrylamide gel electrophoresis for atypical rotaviruses and picobirnaviruses and polymerase chain reaction for astrovirus. Enteric viruses were detected in 6.4% (8 of 125) of the stools collected: five (4.0%) samples positive for adenoviruses, and three (2.3%) samples positive for picobirnaviruses were detected. No rotavirus, astrovirus, or Norwalk virus were observed. Only one of the viruses identified (adenovirus) was found in a sample from a patient with diarrhea. Viruses were detected in 10% of the patients with AIDS, 14% of the symptomatic patients, and none of the asymptomatic persons. These results do not support a major role for enteric viruses in the diarrhea suffered by HIV-infected patients.

  7. Expression and serological reactivity of hemorrhagic enteritis virus hexon protein.

    PubMed

    Lobová, Dana; Celer, Vladimír

    2016-05-01

    The aim of this work was to express the recombinant hexon protein of the hemorrhagic enteritis virus, to establish the diagnostic value of this protein for serological detection of antibodies in turkey serum samples and to assess seroprevalence of the infection in the Czech Republic. The N' terminal part of the hexon protein was expressed in a bacterial expression system and used as an antigen in an ELISA test for the detection of hemorrhagic enteritis virus specific antibodies in turkey sera. Validation of the test was performed by comparison with a commercially available ELISA test. Serological reactivity was assessed on a panel of 126 turkey sera by a newly developed ELISA test. Serum samples were taken from turkey farms with the history of hemorrhagic enteritis virus infection, from farms with animals free of infection, and from turkey farms following vaccination. Both ELISA kits gave identical results (100 %) with the tested sera. ELISA based on the recombinant hexon protein thus proved useful and cheaper for detection of antibodies in turkey flocks infected with the hemorrhagic enteritis virus.

  8. Bacteriophages as indicators of faecal pollution and enteric virus removal

    EPA Science Inventory

    Bacteriophages are an attractive alternative to fecal indicator bacteria (FIB), particularly as surrogates of enteric virus fate and transport due to their closer morphological and biological properties compared to FIB. Based on a meta-analysis of published data, we summarize con...

  9. Coliphages and gastrointestinal illness in recreational waters: pooled analysis of six coastal beach cohorts

    EPA Science Inventory

    BACKGROUND: Coliphages have been proposed as indicators of fecal contamination in recreational waters because they better mimic the persistence of pathogenic viruses in the environment and wastewater treatment than fecal indicator bacteria. We estimated the association between co...

  10. Identification of a Bovine Enteric Calicivirus, Kırklareli Virus, Distantly Related to Neboviruses, in Calves with Enteritis in Turkey

    PubMed Central

    Alkan, Feray; Karayel, İlke; Catella, Cristiana; Bodnar, Livia; Lanave, Gianvito; Bányai, Krisztián; Di Martino, Barbara; Decaro, Nicola; Buonavoglia, Canio

    2015-01-01

    A calicivirus was detected in neonatal calves with enteritis in Kırklareli, Thrace, Turkey. In the full-length genome, Kırklareli virus was related (48% nucleotide identity) to bovine enteric caliciviruses (Nebovirus genus). The virus was also detected in a herd in Ankara, Central Anatolia, but not in other Turkish prefectures. PMID:26292294

  11. Coliphages as ecological indicators of enteroviruses in various water systems*

    PubMed Central

    Šimková, A.; Červenka, J.

    1981-01-01

    The occurrence of coliphages and enteroviruses in a variety of water systems in Czechoslovakia was monitored for two years. Two host strains of Escherichia coli bacteria were used to test 1161 water samples for the presence of bacteriophages. These strains were polyvalent hosts for a broad spectrum of morphologically distinct coliphages, and their use thus gave quantitative data on the degree of viral pollution in any given water sample. Ninety-two water samples were tested in parallel for the presence of enteroviruses, by using a flocculation method to concentrate the viruses followed by isolation in cultures of a buffalo green monkey (BGM) kidney continuous cell line. The enterovirus and coliphage recovery rates showed similar differences when waters with different levels of pollution were compared. Seasonal fluctuations of both the coliphage and enterovirus (mostly poliovirus) levels in river water were demonstrated by statistical analysis of the data collected. The levels increased in the winter and sharply declined in the summer months as the river water temperature increased. Chemical pollution did not seem to influence the survival of either the coliphages or the enteroviruses in the observed rivers. PMID:6274536

  12. Hemocytes Are Sites of Enteric Virus Persistence within Oysters ▿

    PubMed Central

    Provost, Keleigh; Dancho, Brooke A.; Ozbay, Gulnihal; Anderson, Robert S.; Richards, Gary P.; Kingsley, David H.

    2011-01-01

    The goal of this study was to determine how enteric viruses persist within shellfish tissues. Several lines of novel evidence show that phagocytic blood cells (hemocytes) of Eastern oysters (Crassostrea virginica) play an important role in the retention of virus particles. Our results demonstrated an association of virus contamination with hemocytes but not with hemolymph. Live oysters contaminated overnight with hepatitis A virus (HAV) and murine norovirus (MNV) had 56% and 80% of extractable virus associated with hemocytes, respectively. Transfer of HAV-contaminated hemocytes to naïve (virus-free) oysters resulted in naïve oyster meat testing HAV positive for up to 3 weeks. Acid tolerance of HAV, MNV, poliovirus (PV), and feline calicivirus (FCV) correlated with the ability of each virus to persist within oysters. Using reverse transcription-PCR (RT-PCR) to evaluate persistence of these viruses in oysters, we showed that HAV persisted the longest (>21 days) and was most acid resistant, MNV and PV were less tolerant of acidic pH, persisting for up to 12 days and 1 day, respectively, and FCV did not persist (<1 day) within oysters and was not acid tolerant. This suggests that the ability of a virus to tolerate the acidic conditions typical of phagolysosomal vesicles within hemocytes plays a role in determining virus persistence in shellfish. Evaluating oyster and hemocyte homogenates and live contaminated oysters as a prelude to developing improved viral RNA extraction methods, we found that viruses were extracted more expediently from hemocytes than from whole shellfish tissues and gave similar RT-PCR detection sensitivities. PMID:21948840

  13. Enteric viruses in a mangrove lagoon, survival and shellfish incidence

    SciTech Connect

    Lopez de Cardona, I.; Bermudez, M.; Billmire, E.; Hazen, T.C.

    1988-12-31

    Mangrove oysters (Crassostrea rhizophorae) were screened for enteric viruses. For 18 months oysters were collected from Cano Boqueron, a tropical mangrove lagoon on the southwest coast of Puerto Rico. This popular tourist resort has two primary sewage treatment plants which service 158 single family cabanas. In spite of the heavy seasonal input of sewage to Cano Boqueron and high densities of fecal coliform bacteria, enteric viruses were not detected in shellfish meat. Because no viruses were detected in the oysters, a virus survival study was performed. Poliovirus type 1 was placed in diffusion chambers in situ at two sites in Cano Boqueron. More than 95% of the poliovirus inactivation occurred within 24 h. Virus inactivation was significantly different by site, indicating different inactivation rates within the lagoon. Chamber studies done simultaneously with Escherichia coli did not reveal differences between sites. It is suggested that the sewage effluent had an antiviral effect in the absence of an antibacterial effect. This study demonstrates the importance for establishing microbial contamination standards for shellfish growing waters in the tropics based upon in situ studies with tropical species, e.g. mangrove oyster.

  14. Detection of enteric viruses in treated drinking water.

    PubMed Central

    Keswick, B H; Gerba, C P; DuPont, H L; Rose, J B

    1984-01-01

    The occurrence of viruses in conventionally treated drinking water derived from a heavily polluted source was evaluated by collecting and analyzing 38 large-volume (65- to 756-liter) samples of water from a 9 m3/s (205 X 10(6) gallons [776 X 10(6) liters] per day) water treatment plant. Samples of raw, clarified, filtered, and chlorinated finished water were concentrated by using the filter adsorption-elution technique. Of 23 samples of finished water, 19 (83%) contained viruses. None of the nine finished water samples collected during the dry season contained detectable total coliform bacteria. Seven of nine finished water samples collected during the dry season met turbidity, total coliform bacteria, and total residual chlorine standards. Of these, four contained virus. During the dry season the percent removals were 25 to 93% for enteric viruses, 89 to 100% for bacteria, and 81% for turbidity. During the rainy season the percent removals were 0 to 43% for enteric viruses, 80 to 96% for bacteria, and 63% for turbidity. None of the 14 finished water samples collected during the rainy season met turbidity standards, and all contained rotaviruses or enteroviruses. PMID:6331313

  15. Comparative uptake of enteric viruses into spinach and green onions.

    PubMed

    Hirneisen, Kirsten A; Kniel, Kalmia E

    2013-03-01

    Root uptake of enteric pathogens and subsequent internalization has been a produce safety concern and is being investigated as a potential route of pre-harvest contamination. The objective of this study was to determine the ability of hepatitis A virus (HAV) and the human norovirus surrogate, murine norovirus (MNV), to internalize in spinach and green onions through root uptake in both soil and hydroponic systems. HAV or MNV was inoculated into soil matrices or into two hydroponic systems, floating and nutrient film technique systems. Viruses present within spinach and green onions were detected by RT-qPCR or infectivity assays after inactivating externally present viruses with Virkon(®). HAV and MNV were not detected in green onion plants grown up to 20 days and HAV was detected in only 1 of 64 spinach plants grown in contaminated soil substrate systems up to 20 days. Compared to soil systems, a drastic difference in virus internalization was observed in hydroponic systems; HAV or pressure-treated HAV and MNV were internalized up to 4 log RT-qPCR units and internalized MNV was shown to remain infectious. Understanding the interactions of human enteric viruses on produce can aid in the elucidation of the mechanisms of attachment and internalization, and aid in understanding risks associated with contamination events.

  16. Inactivation of enteric viruses in minimally processed berries and herbs.

    PubMed

    Butot, S; Putallaz, T; Amoroso, R; Sánchez, G

    2009-06-01

    Several hepatitis A virus (HAV) and human norovirus (HuNoV) outbreaks due to consumption of contaminated berries and vegetables have recently been reported. Model experiments were performed to determine the effectiveness of freeze-drying, freeze-drying combined with heating, and steam blanching for inactivation of enteric viruses that might be present on the surface of berries and herbs. Inactivation of HAV and inactivation of feline calicivirus, a surrogate for HuNoV, were assessed by viral culturing and quantitative reverse transcription PCR (RT-PCR), whereas HuNoV survival was determined only by quantitative RT-PCR. While freeze-drying barely reduced (<1.3 log(10) units) the amount of HAV RNA detected in frozen produce, a greater decline in HAV infectivity was observed. The resistance of HuNoV genogroup I (GI) to freeze-drying was significantly higher than that of HuNoV GII on berries. Addition of a terminal dry heat treatment at 120 degrees C after freeze-drying enhanced virus inactivation by at least 2 log(10) units, except for HuNoV GII. The results suggest that steam blanching at 95 degrees C for 2.5 min effectively inactivated infectious enteric viruses if they were present in herbs. Our results provide data for adjusting food processing technologies if viral contamination of raw materials is suspected.

  17. Coliphages as indicators of gastrointestinal illness in recreational waters: a pooled analysis of six prospective marine beach cohorts

    EPA Science Inventory

    Background: Coliphages have been proposed as potential indicators of fecal contamination of marine recreational waters because they may better predict the presence of viruses than fecal indicator bacteria. We estimated the association between the presence of coliphages and self-r...

  18. Coliphages as indicators of gastrointestinal illness in recreational waters: a pooled analysis of six prospective marine beach cohorts

    EPA Science Inventory

    Background: Coliphages have been proposed as potential indicators of fecal contamination of marine recreational waters because they may better predict the presence of viruses than fecal indicator bacteria. We estimated the association between the presence of coliphages and self-r...

  19. Feline fecal virome reveals novel and prevalent enteric viruses

    PubMed Central

    Ng, Terry Fei Fan; Mesquita, João Rodrigo; Nascimento, Maria São José; Kondov, Nikola O.; Wong, Walt; Reuter, Gábor; Knowles, Nick J.; Vega, Everardo; Esona, Mathew D.; Deng, Xutao; Vinjé, Jan; Delwart, Eric

    2014-01-01

    Humans keep more than 80 million cats worldwide, ensuring frequent contacts with their viruses. Despite such interactions the enteric virome of cats remains poorly understood. We analyzed a fecal sample from a single healthy cat from Portugal using viral metagenomics and detected five eukaryotic viral genomes. These viruses included a novel picornavirus (proposed genus “Sakobuvirus”) and bocavirus (feline bocavirus 2), a variant of feline astrovirus 2 and sequence fragments of a highly divergent feline rotavirus and picobirnavirus. Feline sakobuvirus A represents the prototype species of a proposed new genus in the Picornaviridae family, distantly related to human salivirus and kobuvirus. Feline astroviruses (mamastrovirus 2) are the closest relatives of the classic human astroviruses (mamastrovirus 1), suggestive of past cross-species transmission. Presence of these viruses by PCR among Portuguese cats was detected in 13% (rotavirus), 7% (astrovirus), 6% (bocavirus), 4% (sakobuvirus), and 4% (picobirnavirus) of 55 feline fecal samples. Co-infections were frequent with 40% (4/10) of cats shedding more than one of these viruses. Our study provides an initial unbiased description of the feline fecal virome indicating a high level of asymptomatic infections. Availability of the genome sequences of these viruses will facilitate future tropism and disease association studies. PMID:24793097

  20. Enteric viruses in New Zealand drinking-water sources.

    PubMed

    Williamson, W M; Ball, A; Wolf, S; Hewitt, J; Lin, S; Scholes, P; Ambrose, V; Robson, B; Greening, G E

    2011-01-01

    This study determined whether human pathogenic viruses are present in two New Zealand surface waters that are used as drinking-water sources. Enteric viruses were concentrated using hollow-fibre ultrafiltration and detected using PCR for adenovirus (AdV), and reverse transcription PCR for norovirus (NOV) genogroups I-III, enterovirus, rotavirus (RoV) and hepatitis E virus (HEV). Target viruses were detected in 106/109 (97%) samples, with 67/109 (61%) samples positive for three or more viral types at any one time. AdV, NoV and ROV were detected the most frequently, and HEV the least frequently. Human NoV was not usually associated with animal NOV. Our results suggest that New Zealand would be well served by assessing the ability of drinking-water treatment plants to remove viruses from the source waters, and that this assessment could be based on the viral concentration of AdV-NoV-RoV. The long-term aim of our work is to use this information to estimate the risk of waterborne viral infection.

  1. Norovirus and other human enteric viruses in moroccan shellfish.

    PubMed

    Benabbes, Laila; Ollivier, Joanna; Schaeffer, Julien; Parnaudeau, Sylvain; Rhaissi, Houria; Nourlil, Jalal; Le Guyader, Françoise S

    2013-03-01

    The aim of this study was to evaluate the presence of human enteric viruses in shellfish collected along the Mediterranean Sea and Atlantic Coast of Morocco. A total of 77 samples were collected from areas potentially contaminated by human sewage. Noroviruses were detected in 30 % of samples, with an equal representation of GI and GII strains, but were much more frequently found in cockles or clams than in oysters. The method used, including extraction efficiency controls, allowed the quantification of virus concentration. As in previous reports, results showed levels of contamination between 100 and 1,000 copies/g of digestive tissues. Sapoviruses were detected in 13 % of samples mainly in oyster and clam samples. Hepatitis A virus was detected in two samples, with concentrations around 100 RNA copies/g of digestive tissues. Only two samples were contaminated with enterovirus and none with norovirus GIV or Aichi virus. This study highlights the interest of studying shellfish samples from different countries and different production areas. A better knowledge of shellfish contamination helps us to understand virus levels in shellfish and to improve shellfish safety, thus protecting consumers.

  2. African swine fever virus uses macropinocytosis to enter host cells.

    PubMed

    Sánchez, Elena G; Quintas, Ana; Pérez-Núñez, Daniel; Nogal, Marisa; Barroso, Susana; Carrascosa, Ángel L; Revilla, Yolanda

    2012-01-01

    African swine fever (ASF) is caused by a large and highly pathogenic DNA virus, African swine fever virus (ASFV), which provokes severe economic losses and expansion threats. Presently, no specific protection or vaccine against ASF is available, despite the high hazard that the continued occurrence of the disease in sub-Saharan Africa, the recent outbreak in the Caucasus in 2007, and the potential dissemination to neighboring countries, represents. Although virus entry is a remarkable target for the development of protection tools, knowledge of the ASFV entry mechanism is still very limited. Whereas early studies have proposed that the virus enters cells through receptor-mediated endocytosis, the specific mechanism used by ASFV remains uncertain. Here we used the ASFV virulent isolate Ba71, adapted to grow in Vero cells (Ba71V), and the virulent strain E70 to demonstrate that entry and internalization of ASFV includes most of the features of macropinocytosis. By a combination of optical and electron microscopy, we show that the virus causes cytoplasm membrane perturbation, blebbing and ruffles. We have also found that internalization of the virions depends on actin reorganization, activity of Na(+)/H(+) exchangers, and signaling events typical of the macropinocytic mechanism of endocytosis. The entry of virus into cells appears to directly stimulate dextran uptake, actin polarization and EGFR, PI3K-Akt, Pak1 and Rac1 activation. Inhibition of these key regulators of macropinocytosis, as well as treatment with the drug EIPA, results in a considerable decrease in ASFV entry and infection. In conclusion, this study identifies for the first time the whole pathway for ASFV entry, including the key cellular factors required for the uptake of the virus and the cell signaling involved.

  3. African Swine Fever Virus Uses Macropinocytosis to Enter Host Cells

    PubMed Central

    Sánchez, Elena G.; Quintas, Ana; Pérez-Núñez, Daniel; Nogal, Marisa; Barroso, Susana; Carrascosa, Ángel L.; Revilla, Yolanda

    2012-01-01

    African swine fever (ASF) is caused by a large and highly pathogenic DNA virus, African swine fever virus (ASFV), which provokes severe economic losses and expansion threats. Presently, no specific protection or vaccine against ASF is available, despite the high hazard that the continued occurrence of the disease in sub-Saharan Africa, the recent outbreak in the Caucasus in 2007, and the potential dissemination to neighboring countries, represents. Although virus entry is a remarkable target for the development of protection tools, knowledge of the ASFV entry mechanism is still very limited. Whereas early studies have proposed that the virus enters cells through receptor-mediated endocytosis, the specific mechanism used by ASFV remains uncertain. Here we used the ASFV virulent isolate Ba71, adapted to grow in Vero cells (Ba71V), and the virulent strain E70 to demonstrate that entry and internalization of ASFV includes most of the features of macropinocytosis. By a combination of optical and electron microscopy, we show that the virus causes cytoplasm membrane perturbation, blebbing and ruffles. We have also found that internalization of the virions depends on actin reorganization, activity of Na+/H+ exchangers, and signaling events typical of the macropinocytic mechanism of endocytosis. The entry of virus into cells appears to directly stimulate dextran uptake, actin polarization and EGFR, PI3K-Akt, Pak1 and Rac1 activation. Inhibition of these key regulators of macropinocytosis, as well as treatment with the drug EIPA, results in a considerable decrease in ASFV entry and infection. In conclusion, this study identifies for the first time the whole pathway for ASFV entry, including the key cellular factors required for the uptake of the virus and the cell signaling involved. PMID:22719252

  4. Comparison of canine parvovirus with mink enteritis virus by restriction site mapping.

    PubMed Central

    McMaster, G K; Tratschin, J D; Siegl, G

    1981-01-01

    The genomes of canine parvovirus and mink enteritis virus were compared by restriction enzyme analysis of their replicative-form DNAs. Of 79 mapped sites, 68, or 86%, were found to be common for both types of DNA, indicating that canine parvovirus and mink enteritis virus are closely related viruses. Whether they evolved from a common precursor or whether canine parvovirus is derived from mink enteritis virus, however, cannot be deduced from our present data. Images PMID:6264109

  5. Molecular detection of enteric viruses from diarrheic calves in Egypt.

    PubMed

    Mohamed, Fakry F; Mansour, Shimaa M G; El-Araby, Iman E; Mor, Sunil K; Goyal, Sagar M

    2017-01-01

    Neonatal calf diarrhea (NCD) is a major cause of morbidity, mortality and economic losses in the beef and dairy industries. This study was conducted to investigate the existence of enteric viruses in two Egyptian farms with a history of recurrent diarrhea. Fecal samples were collected from 25 diarrheic calves. RNA was extracted and tested by reverse transcription polymerase chain reaction (RT-PCR) for the presence of rotavirus, norovirus, astrovirus, torovirus, coronavirus and bovine viral diarrhea virus. Overall, 76 % (19/25) of samples tested positive for one or more viruses. Rota-, noro- and astroviruses were detected in 48 %, 24 % and 32 % of tested samples, respectively. About 37 % (7/19) of positive samples had two different viruses. One-month-old calves were the group most vulnerable to infections. Based on phylogenetic analysis, bovine rotaviruses were of genotypes G6 and G10, bovine noroviruses were in GIII.2, and bovine astroviruses were in the BAstV lineage 1. Astrovirus sequences showed a high level nucleotide sequence similarity with the Brazilian BAstV sequences available in GenBank. We believe this is the first report of bovine norovirus and bovine astrovirus circulating among calves in Egypt. Further epidemiological studies are recommended to investigate their presence on a wider scale, to predict their association with NCD, and to design appropriate diagnostic and control methods.

  6. Coherent Soft X-ray Diffraction Imaging of Coliphage PR772 at the Linac Coherent Light Source

    DOE Data Explorer

    Reddy, Hemanth, K.N.

    2017-01-05

    A dataset of coherent soft X-ray diffraction images of Coliphage PR772 virus, collected at the Atomic Molecular Optics (AMO) beamline with pnCCD detectors in the LAMP instrument at the Linac Coherent Light Source.

  7. Ultraviolet devitalization of eight selected enteric viruses in estuarine water.

    PubMed

    Hill, W F; Hamblet, F E; Benton, W H; Akin, E W

    1970-05-01

    The effect of ultraviolet (UV) radiation on the devitalization of eight selected enteric viruses suspended in estuarine water was determined. The surviving fractions of each virus were calculated and then plotted against the UV exposure time for purposes of comparison. Analytical assessment of the survival data for each virus consisted of least squares regression analysis for determination of intercepts and slope functions. All data were examined for statistical significance. When the slope function of each virus was compared against the slope function of poliovirus type 1, the analytical findings indicated that poliovirus types 2 and 3, echovirus types 1 and 11, and coxsackievirus A-9 exhibited similar devitalization characteristics in that no statistically significant difference was found (P > 0.05). Conversely, the devitalization characteristics of coxsackievirus B-1 and reovirus type 1 were dissimilar from those of poliovirus type 1 in that a statistically significant difference was found between the slope functions (P < 0.05). This observed difference in devitalization of coxsackievirus B-1 and reovirus type 1 was attributed primarily to the frequency distribution of single and aggregate virions, the geometric configuration, the size of the aggregates, and the severity of aggregation. The devitalization curve of coxsackievirus B-1 was characteristic of a retardant die-away curve. The devitalization curve of reovirus type 1 was characteristic of a multihittype curve. The calculated devitalization half-life values for poliovirus types 1, 2, and 3; echovirus types 1 and 11; coxsackievirus types A-9 and B-1; and reovirus type 1 were 2.8, 3.1, 2.7, 2.8, 3.2, 3.1, 4.0, 4.0 sec, respectively. These basic data should facilitate an operative extrapolation of the findings to the applied situation. It was concluded that UV can be highly effective and provide a reliable safety factor in treating estuarine water.

  8. Shellfish-associated enteric virus illness: virus localization, disease outbreaks and prevention

    USDA-ARS?s Scientific Manuscript database

    Numerous outbreaks of shellfish-borne enteric virus illness have been reported worldwide. Most notable among the outbreaks are those involving norovirus illness and hepatitis A. Lessons learned from outbreak investigations indicate that most outbreaks are preventable. Anthropogenic sources of con...

  9. The influence of commensal bacteria on infection with enteric viruses.

    PubMed

    Karst, Stephanie M

    2016-04-01

    The intestinal microbiota exerts a marked influence in the mammalian host, both during homeostasis and disease. However, until very recently, there has been relatively little focus on the potential effect of commensal microorganisms on viral infection of the intestinal tract. In this Progress article, I review the recent advances that elucidate the mechanisms by which enteric viruses use commensal bacteria to enhance viral infectivity. These mechanisms segregate into two general categories: the direct facilitation of viral infection, including bacterial stabilization of viral particles and the facilitation of viral attachment to host target cells; and the indirect skewing of the antiviral immune response in a manner that promotes viral infection. Finally, I discuss the implications of these interactions for the development of vaccines and novel therapeutic approaches.

  10. The influence of commensal bacteria on infection with enteric viruses

    PubMed Central

    Karst, Stephanie M.

    2016-01-01

    The intestinal microbiota exerts a marked influence in the mammalian host, both during homeostasis and disease. However, until very recently, there has been relatively little focus on the potential effect of commensal microorganisms on viral infection of the intestinal tract. In this Progress article, I review the recent advances that elucidate the mechanisms by which enteric viruses use commensal bacteria to enhance viral infectivity. These mechanisms segregate into two general categories: the direct facilitation of viral infection, including bacterial stabilization of viral particles and the facilitation of viral attachment to host target cells; and the indirect skewing of the antiviral immune response in a manner that promotes viral infection. Finally, I discuss the implications of these interactions for the development of vaccines and novel therapeutic approaches. PMID:26853118

  11. A mass balance approach to the fate of viruses in a municipal wastewater treatment plant during summer and winter seasons.

    PubMed

    Ulbricht, Katharina; Selinka, Hans-Christoph; Wolter, Stefanie; Rosenwinkel, Karl-Heinz; Nogueira, Regina

    2014-01-01

    In contrast to previous discussion on general virus removal efficiency and identifying surrogates for human pathogenic viruses, this study focuses on virus retention within each step of a wastewater treatment plant (WWTP). Additionally, the influence of weather conditions on virus removal was addressed. To account for the virus retention, this study describes a mass balance of somatic coliphages (bacterial viruses) in a municipal WWTP, performed in the winter and summer seasons of 2011. In the winter season, the concentration of coliphages entering the WWTP was about 1 log lower than in summer. The mass balance in winter revealed a virus inactivation of 85.12 ± 13.97%. During the summer season, virus inactivation was significantly higher (95.25 ± 3.69%, p-value <0.05), most likely due to additional virus removal in the secondary clarifier by insolation. Thus, a total removal of coliphages of about 2.78 log units was obtained in summer compared to 1.95 log units in winter. Rainfall events did not statistically correlate with the concentrations of coliphages entering the WWTP in summer.

  12. Heat inactivation of enteric viruses in dewatered wastewater sludge.

    PubMed

    Ward, R L; Ashley, C S

    1978-12-01

    The effect of moisture content on the rates of heat inactivation of enteric viruses in wastewater sludge was determined. The protective effect of raw sludge on poliovirus previously observed (R. L. Ward, C. S. Ashley, and R. H. Moseley, Appl. Environ. Microbiol. 32:339--346, 1976) was found to be greatly enhanced in sludge dewatered by evaporation. Other enteroviruses responded in a similar fashion. This effect did not appear to be due merely to the state of dryness of the sludge samples because in humus-deficient soil, a relatively inert material, the rate of poliovirus inactivation by heat was not significantly altered through dewatering. Instead, this effect appeared to have been caused by protective substances in the sludge, such as detergents, which are concentrated through dewatering. As reported previously (R. L. Ward and C. S. Ashley, Appl. Environ. Microbiol. 34:681-688, 1977; R. L. Ward and C. S. Ashley, Appl. Environ. Microbiol 36:889--897, 1978) raw sludge is not protective of reovirus, but, instead, the ionic detergents in sludge cause the rate of heat inactivation of this virus to be accelerated. Dewatering of sludge, however, was found to partially reverse this virucidal effect. Evidence is presented indicating that this reversal is caused by an unidentified protective substance in sludge also concentrated through dewatering. Finally, it was shown that the effects of raw sludge on heat inactivation of poliovirus and reovirus are greatly reduced by composting, a result that correlated with the degradation of detergents.

  13. Comparison of methods for evaluating the thermal stability of human enteric viruses.

    PubMed

    Arthur, Sabastine E; Gibson, Kristen E

    2015-03-01

    Human enteric viruses have been identified as one of the predominant causative agents of food-borne illnesses in developed countries, and it is estimated that human norovirus accounts for a majority of these illnesses each year. Not all of these viruses can be cultured and hence relatively little is known about their pathogenesis and physicochemical properties. To overcome this, researchers have utilized different virus surrogates for the study of non-cultivable human enteric viruses. In this review, we discuss various methods utilized for the evaluation of the thermal stability of human enteric viruses, compare the results of these methods, and examine how researchers may move toward a single standard approach (i.e., temperatures, virus concentrations, volume/weight of matrices, etc.) for determining thermal inactivation profiles of human enteric viruses and their surrogates. Based on our review, we found that temperature, time of exposure, type of matrix, analysis type, type of heat application, and the concentration and volume of virus used in the experiments were highly variable across virus surrogates even for the same surrogates. Because of these differences-along with the inherent limitations of using surrogate viruses-comparison of these methods and how the results may be extrapolated to human enteric viruses is quite challenging. As a result, we discuss how researchers may move toward a single standard approach for determining thermal inactivation profiles of human enteric viruses and their surrogates.

  14. Enteric Virus Infections and Diarrhea in Healthy and Human Immunodeficiency Virus-Infected Children

    PubMed Central

    Liste, Mary B.; Natera, Ivelisse; Suarez, José A.; Pujol, Flor H.; Liprandi, Ferdinando; Ludert, Juan E.

    2000-01-01

    Forty-three stool samples from 27 human immunodeficiency virus (HIV)-seropositive children and 38 samples from 38 HIV-negative children, collected during a 15-month period, were examined for enteric viruses. Diagnostic assays included enzyme immunoassays for rotavirus, adenovirus, and Norwalk virus; polyacrylamide gel electrophoresis for picobirnavirus and atypical rotavirus; and PCR for astrovirus and enterovirus. Specimens from HIV-positive children were more likely than those of HIV-negative children to have enterovirus (56 versus 21%; P < 0.0002) and astrovirus (12 versus 0%; P < 0.02), but not rotavirus (5 versus 8%; P > 0.5). No adenoviruses, picobirnaviruses, or Norwalk viruses were found. The rates of virus-associated diarrhea were similar among HIV-positive and HIV-negative children. Enteroviruses were excreted for up to 6 months in HIV-positive children; however, no evidence for prolonged excretion of poliovirus vaccine was observed. These results suggest that although infection with enterovirus and astrovirus may be frequent in HIV-infected children, enteric viruses are not associated with the diarrhea frequently suffered by these children. PMID:10921942

  15. Dynamics of Virus Distribution in a Defined Swine Production Network Using Enteric Viruses as Molecular Markers.

    PubMed

    Lachapelle, Virginie; Letellier, Ann; Fravalo, Philippe; Brassard, Julie; L'Homme, Yvan

    2017-02-15

    Modern swine production systems represent complex and dynamic networks involving numerous stakeholders. For instance, livestock transporters carry live animals between fattening sites, abattoirs, and other premises on a daily basis. This interconnected system may increase the risk of microbial spread within and between networks, although little information is available in that regard. In the present study, a swine network composed of 10 finishing farms, one abattoir, and three types of stakeholders (veterinarians, livestock transporters, and nutritional technicians) in Quebec, Canada, was selected to investigate specific vectors and reservoirs of enteric viruses. Environmental samples were collected from the premises over a 12-month period. Samples were screened using targeted reverse transcription-PCR and sequencing of two selected viral markers, group A rotaviruses (RVA) and porcine astroviruses (PoAstV), both prevalent and genetically heterogeneous swine enteric viruses. The results revealed frequent contamination of farm sites (21.4 to 100%), livestock transporter vehicles (30.6 to 68.8%) and, most importantly, the abattoir yard (46.7 to 94.1%), depending on the sample types. Although high levels of strain diversity for both viruses were found, identical PoAstV and RVA strains were detected in specific samples from farms, the abattoir yard, and the livestock transporter vehicle, suggesting interconnections between these premises and transporters. Overall, the results from this study underscore the potential role of abattoirs and livestock transport as a reservoir and transmission route for enteric viruses within and between animal production networks, respectively.

  16. Differential depuration of poliovirus, Escherichia coli, and a coliphage by the common mussel, Mytilus edulis

    SciTech Connect

    Power, U.F.; Collins, J.K. )

    1989-06-01

    The elimination of sewage effluent-associated poliovirus, Escherichia coli, and a 22-nm icosahedral coliphage by the common mussel, Mytilus edulis, was studied. Both laboratory-and commercial-scale recirculating, UV depuration systems were used in this study. In the laboratory system, the logarithms of the poliovirus, E. coli, and coliphage levels were reduced by 1.86, 2.9, and 2.16, respectively, within 52 h of depuration. The relative patterns and rates of elimination of the three organisms suggest that they are eliminated from mussels by different mechanisms during depuration under suitable conditions. Poliovirus was not included in experiments undertaken in the commercial-scale depuration system. The differences in the relative rates and patterns of elimination were maintained for E. coli and coliphage in this system, with the logarithm of the E. coli levels being reduced by 3.18 and the logarithm of the coliphage levels being reduced by 0.87. The results from both depuration systems suggest that E. coli is an inappropriate indicator of the efficiency of virus elimination during depuration. The coliphage used appears to be a more representative indicator. Depuration under stressful conditions appeared to have a negligible affect on poliovirus and coliphage elimination rates from mussels. However, the rate and pattern of E. coli elimination were dramatically affected by these conditions. Therefore, monitoring E. coli counts might prove useful in ensuring that mussels are functioning well during depuration.

  17. [Morphological characteristics of haemorrhagic enteritis in dogs caused by parvo-like viruses (author's transl)].

    PubMed

    v d Gaag, I; van den Ingh, T S; van Dijk, J E

    1980-03-15

    Various outbreaks of parvo-like virus infection in dogs are reported. A form of haemorrhagic enteritis was observed, which was microscopically characterized by a hypo-regenerative villous atrophy of the small intestine, which bears a close resemblance to the typical lesion of feline panleucopenia. This pathomorphological feature may be regarded as typical of canine enteritis due to a parvo-like virus.

  18. Retention of Enteric Viruses by the Hemocytes of the Eastern Oyster (Crassostrea virginica)

    USDA-ARS?s Scientific Manuscript database

    Shellfish are an important vector for transmission of enteric pathogens. Interventions, such as depuration, do not adequately clear enteric viruses, while fecal bacteria levels are significantly reduced. Why viruses are retained in the bivalve flesh is not well understood. We hypothesize that phagoc...

  19. Enteritis

    MedlinePlus

    ... disease The inflammation can also involve the stomach ( gastritis ) and large intestine ( colitis ). Risk factors include: Recent ... Crohn disease Dehydration Diarrhea - overview Fever Food poisoning Gastritis Radiation enteritis Salmonella enterocolitis Shigellosis Review Date 5/ ...

  20. Comparative examination of cats with feline leukemia virus-associated enteritis and other relevant forms of feline enteritis.

    PubMed

    Kipar, A; Kremendahl, J; Jackson, M L; Reinacher, M

    2001-07-01

    Cats with feline leukemia virus (FeLV)-associated enteritis (FAE), enteritis of other known viral etiology (parvovirus [PV], enteric coronavirus [CoV]), and enteritis of unknown etiology with histologic features similar to those of FAE and PV enteritis (EUE) and FeLV-negative and FeLV-positive cats without enterocyte alterations were examined. Amount and types of infiltrating leukocytes in the jejunum and activity and cellular constituents of mesenteric lymph nodes, spleen, and bone marrow were determined. PV and CoV infections were confirmed by immunohistologic demonstration of PV and CoV antigen, ultrastructural demonstration of viral particles in the intestinal content, and in situ hybridization for PV genome. FeLV infection was detected by immunohistology for gp70, p27, and p15E. Latent FeLV infection was excluded by polymerase chain reaction methods for exogenous FeLV DNA. Enterocyte lesions involved the crypts in cats with PV enteritis, FAE, and EUE and the villous tips in cats with CoV enteritis. Inflammatory infiltration was generally dominated by mononuclear cells and was moderate in the unaltered intestine and in cats with PV enteritis and marked in cats with FAE, CoV enteritis, and EUE. In cats with EUE, myeloid/histiocyte antigen-positive macrophages were relatively numerous, suggesting recruitment of peripheral blood monocytes. Lymphoid tissues were depleted in cats with PV enteritis and with EUE but were normal or hyperplastic in cats with FAE. Bone marrow activity was decreased in cats with PV enteritis; in cats with FAE or EUE and in FeLV-positive cats without enterocyte alterations, activity was slightly increased. In cats with FAE and PV enteritis, a T-cell-dominated response prevailed. EUE showed some parallels to human inflammatory bowel disease, indicating a potential harmful effect of infiltrating macrophages on the intestinal epithelium.

  1. Dynamics of Virus Distribution in a Defined Swine Production Network Using Enteric Viruses as Molecular Markers

    PubMed Central

    Letellier, Ann; Fravalo, Philippe; Brassard, Julie; L'Homme, Yvan

    2016-01-01

    ABSTRACT Modern swine production systems represent complex and dynamic networks involving numerous stakeholders. For instance, livestock transporters carry live animals between fattening sites, abattoirs, and other premises on a daily basis. This interconnected system may increase the risk of microbial spread within and between networks, although little information is available in that regard. In the present study, a swine network composed of 10 finishing farms, one abattoir, and three types of stakeholders (veterinarians, livestock transporters, and nutritional technicians) in Quebec, Canada, was selected to investigate specific vectors and reservoirs of enteric viruses. Environmental samples were collected from the premises over a 12-month period. Samples were screened using targeted reverse transcription-PCR and sequencing of two selected viral markers, group A rotaviruses (RVA) and porcine astroviruses (PoAstV), both prevalent and genetically heterogeneous swine enteric viruses. The results revealed frequent contamination of farm sites (21.4 to 100%), livestock transporter vehicles (30.6 to 68.8%) and, most importantly, the abattoir yard (46.7 to 94.1%), depending on the sample types. Although high levels of strain diversity for both viruses were found, identical PoAstV and RVA strains were detected in specific samples from farms, the abattoir yard, and the livestock transporter vehicle, suggesting interconnections between these premises and transporters. Overall, the results from this study underscore the potential role of abattoirs and livestock transport as a reservoir and transmission route for enteric viruses within and between animal production networks, respectively. IMPORTANCE Using rotaviruses and astroviruses as markers of enteric contamination in a swine network has revealed the potential role of abattoirs and livestock transporters as a reservoir and vectors of enteric pathogens. The results from this study highlight the importance of tightening

  2. Reduction of Enteric Viruses by Blueberry Juice and Blueberry Proanthocyanidins.

    PubMed

    Joshi, Snehal S; Howell, Amy B; D'Souza, Doris H

    2016-12-01

    Blueberry and blueberry extracts are known for their health benefits and antimicrobial properties. Natural therapeutic or preventive options to decrease the incidences of foodborne viral illnesses are becoming popular and being researched. This study aimed to determine the antiviral effects of blueberry juice (BJ) and blueberry proanthocyanidins (BB-PAC, B-type PAC structurally different from A-type PAC found in cranberries) against the infectivity of hepatitis A virus (HAV) and human norovirus surrogates (feline calicivirus (FCV-F9) and murine norovirus (MNV-1)) at 37 °C over 24 h using standard plaque assays. Viruses at ~5 log PFU/ml were mixed with equal volumes of BJ (pH 2.8), neutralized BJ (pH 7.0), BB-PAC (1, 2, 4, and 10 mg/ml), malic acid (pH 3.0), or phosphate-buffered saline (pH 7.2) and incubated over 24 h at 37 °C. Each experiment was carried out in duplicate and replicated thrice. FCV-F9 titers were found to be reduced to undetectable levels with 1 and 2 mg/ml BB-PAC after 5 min, with 0.5 mg/ml BB-PAC after 1-h, and with BJ after 3-h. MNV-1 titers were reduced to undetectable levels after 3 h with 1, 2, and 5 mg/ml BB-PAC and after 6 h with BJ. HAV titers were reduced to undetectable levels after 30 min with 2 and 5 mg/ml BB-PAC, after 3 h with 1 mg/ml BB-PAC, and by ~2 log PFU/ml with BJ after 24-h. BB-PAC shows preventive potential against infection by the tested enteric viruses in a dose- and time-dependent manner, although further in vitro studies in model food systems and in vivo studies using animal models are warranted.

  3. A FILTERABLE VIRUS CAUSING ENTERITIS AND PNEUMONIA IN CALVES

    PubMed Central

    Baker, James A.

    1943-01-01

    An infectious disease of calves has been described which is characterized by fever, diarrhea, and pneumonia, followed soon by recovery. On autopsy of animals killed at the height of the disease, there is found a catarrhal enteritis and a bronchopneumonia that is usually confined to the anterior lobes of the lungs. From this disease an agent has been secured by the serial inoculation of lung extracts that produces a pneumonia in white mice. Attempts to demonstrate by the same means a similar agent in uninoculated mice from the same stock have yielded negative results. Suspensions of the lungs of the mice with pneumonia, when inoculated intranasally or intratracheally into calves, cause a disease like the natural infection, characterized by fever, diarrhea, and pneumonia. In two experiments pen contact of normal calves with calves inoculated with the passed material resulted in the typical disease. Early in its course the causative agent is found only in the lungs and intestines, but at its height is generally distributed throughout the body. Calves that have recovered from the induced disease are resistant to subsequent infection and their blood serum will neutralize the causative agent as not previously. Sera from calves that have recovered from the natural disease also neutralize the agent. Cultures from the infected lungs of calves and mice as a rule show no growth, and material that has been passed through Berkefeld N filters produces the characteristic disease. It is therefore concluded that this disease of calves is caused by a filterable virus. PMID:19871340

  4. IMPROVED DETECTION OF HUMAN ENTERIC VIRUSES IN FOODS BY RT-PCR. (R826139)

    EPA Science Inventory

    Human enteric viruses (including hepatitis A virus (HAV) and Norwalk-like viruses (NLVs)) are now recognized as common causes of foodborne disease. While methods to detect these agents in clinical specimens have improved significantly over the last 10 years, applications to fo...

  5. IMPROVED DETECTION OF HUMAN ENTERIC VIRUSES IN FOODS BY RT-PCR. (R826139)

    EPA Science Inventory

    Human enteric viruses (including hepatitis A virus (HAV) and Norwalk-like viruses (NLVs)) are now recognized as common causes of foodborne disease. While methods to detect these agents in clinical specimens have improved significantly over the last 10 years, applications to fo...

  6. Hydrogeological and statistical evidence for wide-spread enteric virus contamination of deep municipal wells

    USDA-ARS?s Scientific Manuscript database

    Over the past eight years our research group has repeatedly detected human enteric viruses in water produced from deep (over 800 ft) bedrock water-supply wells in Madison, WI. The likely source of the viruses is leakage from urban sewers. These virus detections have been surprising because human ent...

  7. Source and transport of human enteric viruses in deep municipal water supply wells

    USDA-ARS?s Scientific Manuscript database

    Until recently, few water utilities or researchers were aware of possible virus presence in deep aquifers and wells. Over the past several years, repeated detection of enteric viruses in water from deep wells in south-central Wisconsin, shows that viruses can be significant groundwater contaminants ...

  8. DEVELOPMENT OF HOMOLOGOUS VIRAL INTERNAL CONTROLS FOR USE IN RT-PCR ASSAYS OF WATERBORNE ENTERIC VIRUSES

    EPA Science Inventory

    Enteric viruses often contaminate water sources causing frequent outbreaks of gastroenteritis. Reverse transcription-polymerase chain reaction (RT-PCR) assays are commonly used for detection of human enteric viruses in environmental and drinking water samples. RT-PCR provides ...

  9. DEVELOPMENT OF HOMOLOGOUS VIRAL INTERNAL CONTROLS FOR USE IN RT-PCR ASSAYS OF WATERBORNE ENTERIC VIRUSES

    EPA Science Inventory

    Enteric viruses often contaminate water sources causing frequent outbreaks of gastroenteritis. Reverse transcription-polymerase chain reaction (RT-PCR) assays are commonly used for detection of human enteric viruses in environmental and drinking water samples. RT-PCR provides ...

  10. Coliphage and indigenous phage in Mamala Bay, Oahu, Hawaii.

    PubMed

    Paul, J H; Rose, J B; Jiang, S C; London, P; Xhou, X; Kellogg, C

    1997-01-01

    Public concern over the discharge of primarily treated sewage by two offshore outfalls in Mamala Bay, Oahu, prompted a multidisciplinary study to determine the impact of such activities on the water quality in the bay and at adjacent recreational beaches. As part of this study, we determined the abundance of coliphage as an indicator of fecal pollution along with total viral direct counts and phages infective for Vibrio parahaemoltyicus 16 at stations in Mamala Bay in four quarterly samplings over 13 months. Coliphage (< 1 to 1.2 x 10(3)/liter) were found during each quarterly sampling along an offshore transect to the Sand Island waste treatment facility outfall. The nonpoint coastal stations (Pearl Harbor, Ala Wai Canal, and Ke'ehi Lagoon) had high levels of coliphage during the storm event sampling in February 1994 but much lower levels or none when sampled during dry weather. Coliphage were absent at all samplings at Waikiki Beach and at the control station off Diamond Head. Viral direct counts in eutrophic coastal stations (Pearl Harbor, Ke'ehi Lagoon, Ala Moana Beach, and Ala Wai canal) averaged 10(9)/liter, while counts at offshore stations ranged from 9 x 10(7) to 1 x 10(9) viruses/liter, values similar to those for other marine environments. Vibriophage were found mainly in eutrophic coastal environments (Ala Wai Canal, Pearl Harbor, and Ke'ehi Lagoon) and at the Sand Island Transect stations D1 and D2. The greatest abundance was found during the storm event (February 1994) sampling. These results suggest that the Sand Island outfall influenced the water quality of the immediate surrounding waters but had little effect on the quality of the recreational beaches. Nonpoint discharge sources appeared to be more important in the distribution of fecal indicators in the coastal zone.

  11. The effect of chlorine and combined chlorine/UV treatment on coliphages in drinking water disinfection.

    PubMed

    Zyara, Alyaa M; Torvinen, Eila; Veijalainen, Anna-Maria; Heinonen-Tanski, Helvi

    2016-08-01

    Chlorine disinfection is a globally used method to ensure the safety of drinking water. However, it has not always been successful against viruses and, therefore, it is important to find new methods to disinfect water. Seventeen different coliphages were isolated from the treated municipal wastewater. These coliphages and MS2 were treated with different dosages of chlorine in drinking water, and a combined chlorine/ultraviolet irradiation treatment for the chlorine-resistant coliphages. Chlorine disinfection with 0.3-0.5 mg/L total chlorine (free Cl-dosage 0.12-0.21 mg/L) for 10 min achieved 2.5-5.7 Log10-reductions for 11 sensitive coliphages. The six most resistant coliphages showed no reduction with these chlorine concentrations. MS2 was intermediate in chlorine resistance, and thus it is not a good indicator for viruses in chlorine disinfection. In the combined treatment total chlorine of 0.05-0.25 mg/L (free Cl-dosage 0.02-0.08 mg/L) and ultraviolet irradiation (14-22 mWs/cm(2)) were more effective than chlorine alone, and 3-5 Log10-reductions were achieved for the chlorine-resistant strains. The chlorination efficiency could be increased by higher dosages and longer contact times, but this could increase the formation of disinfection by-products. Therefore, the combination treatment is a recommended disinfection method.

  12. Pathogenic simian immunodeficiency virus infection is associated with expansion of the enteric virome.

    PubMed

    Handley, Scott A; Thackray, Larissa B; Zhao, Guoyan; Presti, Rachel; Miller, Andrew D; Droit, Lindsay; Abbink, Peter; Maxfield, Lori F; Kambal, Amal; Duan, Erning; Stanley, Kelly; Kramer, Joshua; Macri, Sheila C; Permar, Sallie R; Schmitz, Joern E; Mansfield, Keith; Brenchley, Jason M; Veazey, Ronald S; Stappenbeck, Thaddeus S; Wang, David; Barouch, Dan H; Virgin, Herbert W

    2012-10-12

    Pathogenic simian immunodeficiency virus (SIV) infection is associated with enteropathy, which likely contributes to AIDS progression. To identify candidate etiologies for AIDS enteropathy, we used next-generation sequencing to define the enteric virome during SIV infection in nonhuman primates. Pathogenic, but not nonpathogenic, SIV infection was associated with significant expansion of the enteric virome. We identified at least 32 previously undescribed enteric viruses during pathogenic SIV infection and confirmed their presence by using viral culture and PCR testing. We detected unsuspected mucosal adenovirus infection associated with enteritis as well as parvovirus viremia in animals with advanced AIDS, indicating the pathogenic potential of SIV-associated expansion of the enteric virome. No association between pathogenic SIV infection and the family-level taxonomy of enteric bacteria was detected. Thus, enteric viral infections may contribute to AIDS enteropathy and disease progression. These findings underline the importance of metagenomic analysis of the virome for understanding AIDS pathogenesis.

  13. Enteric Virus Survival during Household Laundering and Impact of Disinfection with Sodium Hypochlorite▿

    PubMed Central

    Gerba, Charles P.; Kennedy, Denise

    2007-01-01

    This study was conducted to determine whether enteric viruses (adenovirus, rotavirus, and hepatitis A virus) added to cotton cloth swatches survive the wash cycle, the rinse cycle, and a 28-min permanent press drying cycle as commonly practiced in households in the United States. Detergent with and without bleach (sodium hypochlorite) was added to washing machines containing sterile and virus-inoculated 58-cm2 swatches, 3.2 kg of cotton T-shirts and underwear, and a soiled pillowcase designed to simulate the conditions (pH, organic load, etc.) encountered in soiled laundry. The most important factors for the reduction of virus in laundry were passage through the drying cycle and the addition of sodium hypochlorite. Washing with detergent alone was not found to be effective for the removal or inactivation of enteric viruses, as significant concentrations of virus were found on the swatches (reductions of 92 to 99%). It was also demonstrated that viruses are readily transferred from contaminated cloths to uncontaminated clothes. The use of sodium hypochlorite reduced the number of infectious viruses on the swatches after washing and drying by at least 99.99%. Laundering practices in common use in the United States do not eliminate enteric and respiratory viruses from clothes. The use of bleach can further reduce the numbers of enteric viruses in laundry. PMID:17526793

  14. Tissue distribution of a coliphage and Escherichia coli in mussels after contamination and depuration.

    PubMed Central

    Power, U F; Collins, J K

    1990-01-01

    Experiments were undertaken to determine the tissue distribution of Escherichia coli and a coliphage after contamination of the common mussel (Mytilus edulis). Mussels were contaminated with high levels of feces-associated E. coli and a 22-nm icosahedral coliphage over a 2-day period in a flowing-seawater facility. After contamination, individual tissues were carefully dissected and assayed for E. coli and the coliphage. Contaminated mussels were also analyzed to determine the tissue distribution of the contaminants after 24- and 48-h depuration periods. The majority of each contaminant was located in the digestive tract (94 and 89% of E. coli and coliphage, respectively). Decreasing concentrations were found in the gills and labial palps, foot and muscles, mantle lobes, and hemolymph. Our results indicate that contamination above levels in water occurred only in the digestive tract. Contaminated mussels were depurated in a commercial-scale recirculating UV depuration system over a 48-h period. The percent reductions of E. coli occurred in the following order: digestive tract, hemolymph, foot and muscles, mantle lobes, and gills and labial palps. The percent reductions of the coliphage were different, occurring in the following order: hemolymph, foot and muscles, gills and labial palps, mantle lobes, and digestive tract. Our results clearly demonstrate that E. coli and the coliphage are differentially eliminated from the digestive tract. The two microorganisms are eliminated at similar rates from the remaining tissues. Our results also clearly show that the most significant coliphage retention after depuration for 48 h is in the digestive tract. Thus, conventional depuration practices are inappropriate for efficient virus elimination from mussels. PMID:2180372

  15. Enteric viruses in raw vegetables and groundwater used for irrigation in South Korea.

    PubMed

    Cheong, Sooryun; Lee, Cheonghoon; Song, Sung Won; Choi, Weon Cheon; Lee, Chan Hee; Kim, Sang-Jong

    2009-12-01

    Raw vegetables irrigated with groundwater that may contain enteric viruses can be associated with food-borne viral disease outbreaks. In this study, we performed reverse transcription-PCR (RT-PCR) and cell culture-PCR to monitor the occurrence of enteric viruses in groundwater samples and in raw vegetables that were cultivated using that groundwater in South Korea. Samples were collected 10 times from three farms located in Gyeonggi Province, South Korea. RT-PCR and cell culture-PCR were performed to detect adenoviruses (AdVs), enteroviruses (EVs), noroviruses (NoVs), and rotaviruses, followed by sequence analyses of the detected strains. Of the 29 groundwater samples and the 30 vegetable samples, five (17%) and three (10%) were positive for enteric viruses, respectively. AdVs were the most frequently detected viruses in four groundwater and three vegetable samples. EVs and NoVs were detected in only one groundwater sample and one spinach sample, respectively. The occurrence of enteric viruses in groundwater and vegetable samples was not correlated with the water temperature and the levels of indicator bacteria, respectively. Phylogenetic analysis indicated that most of the detected AdVs were temporally distributed, irrespective of sample type. Our results indicate that raw vegetables may be contaminated with a broad range of enteric viruses, which may originate from virus-infected farmers and virus-contaminated irrigation water, and these vegetables may act as a potential vector of food-borne viral transmission.

  16. Isolation and immunisation studies of a canine parco-like virus from dogs with haemorrhagic enteritis.

    PubMed

    Appel, M J; Scott, F W; Carmichael, L E

    1979-08-25

    A newly recognised canine parvo like virus was isolated from faeces of dogs with haemorrhagic enteritis. Cell cultures from several species were susceptible to it. Virus infected cells could be demonstrated by staining with fluorescent antibody reagents (prepared against canine virus or feline panleucopenia virus) or by haemagglutination with pig or rhesus monkey red blood cells. Inhibition of haemagglutination by specific antiserum prepared in specific-pathogen-free beagles provided a convenient method for viral identification. Experimental inoculation of specific-pathogen-free beagles resulted in elevated body temperatures and caused lymphopenia lasting one to three days. Feline panleucopenia virus vaccines protected dogs against challenge with virulent canine parvo-like virus.

  17. Inactivation modeling of human enteric virus surrogates, MS2, Qβ, and ΦX174, in water using UVC-LEDs, a novel disinfecting system.

    PubMed

    Kim, Do-Kyun; Kim, Soo-Ji; Kang, Dong-Hyun

    2017-01-01

    In order to assure the microbial safety of drinking water, UVC-LED treatment has emerged as a possible technology to replace the use of conventional low pressure (LP) mercury vapor UV lamps. In this investigation, inactivation of Human Enteric Virus (HuEV) surrogates with UVC-LEDs was investigated in a water disinfection system, and kinetic model equations were applied to depict the surviving infectivities of the viruses. MS2, Qβ, and ΦX 174 bacteriophages were inoculated into sterile distilled water (DW) and irradiated with UVC-LED printed circuit boards (PCBs) (266nm and 279nm) or conventional LP lamps. Infectivities of bacteriophages were effectively reduced by up to 7-log after 9mJ/cm(2) treatment for MS2 and Qβ, and 1mJ/cm(2) for ΦX 174. UVC-LEDs showed a superior viral inactivation effect compared to conventional LP lamps at the same dose (1mJ/cm(2)). Non-log linear plot patterns were observed, so that Weibull, Biphasic, Log linear-tail, and Weibull-tail model equations were used to fit the virus survival curves. For MS2 and Qβ, Weibull and Biphasic models fit well with R(2) values approximately equal to 0.97-0.99, and the Weibull-tail equation accurately described survival of ΦX 174. The level of UV-susceptibility among coliphages measured by the inactivation rate constant, k, was statistically different (ΦX 174 (ssDNA)>MS2, Qβ (ssRNA)), and indicated that sensitivity to UV was attributed to viral genetic material. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Application of enteric viruses for fecal pollution source tracking in environmental waters

    EPA Science Inventory

    Microbial source tracking (MST) tools are used to identify sources of fecal pollution for accurately assessing public health risk and implementing best management practices (BMPs). This review focuses on the potential of enteric viruses for MST applications. Following host infect...

  19. Application of enteric viruses for fecal pollution source tracking in environmental waters

    EPA Science Inventory

    Microbial source tracking (MST) tools are used to identify sources of fecal pollution for accurately assessing public health risk and implementing best management practices (BMPs). This review focuses on the potential of enteric viruses for MST applications. Following host infect...

  20. Ecology of coliphages in southern California coastal waters.

    PubMed

    Reyes, V C; Jiang, S C

    2010-08-01

    This study aims to investigate the ecology of coliphages, an important microbial pollution indicator. Specifically, our experiments address (i) the ability of environmental Escherichia coli (E. coli) to serve as hosts for coliphage replication, and (ii) the temporal and spatial distribution of coliphages in coastal waters. Water samples from three locations in California's Newport Bay watershed were tested for the presence of coliphages every 2 weeks for an entire year. A total of nine E. coli strains isolated from various sources served as hosts for coliphage detection. Coliphage occurrence was significantly different between freshwater, estuarine and coastal locations and correlated with water temperature, salinity and rainfall in the watershed. The coliphages isolated on the environmental hosts had a broad host-range relative to the coliphages isolated on an E. coli strain from sewage and a US EPA recommended strain for coliphage detection. Coliphage occurrence was related to the temperature, rainfall and salinity within the bay. The adaptation to a broad host-range may enable the proliferation of coliphages in the aquatic environment. Understanding the seasonal variation of phages is useful for establishing a background level of coliphage presence in coastal waters. The broad host-range of coliphages isolated on the environmental E. coli host calls for investigation of coliphage replication in the aquatic environment.

  1. Groundwater sampling methods using glass wool filtration to trace human enteric viruses in Madison, Wisconsin

    USDA-ARS?s Scientific Manuscript database

    Human enteric viruses have been detected in the Madison, Wisconsin deep municipal well system. Earlier projects by the Wisconsin Geological and Natural History Survey (WGNHS) have used glass wool filters to sample groundwater for these viruses directly from the deep municipal wells. Polymerase chain...

  2. Retention of Enteric Viruses by the Hemocytes of the Eastern Oyster (Crassostrea virginica)

    USDA-ARS?s Scientific Manuscript database

    Virus accumulation and persistence in bivalve mollusks has long been documented in the United States and also throughout the world. Shellfish are an important vector for transmission of enteric pathogens. Interventions, such as depuration, do not adequately clear oysters of virus, while fecal bacter...

  3. Human enteric viruses in groundwater from a confined bedrock aquifer

    USGS Publications Warehouse

    Borchardt, M. A.; Bradbury, K.R.; Gotkowitz, M.B.; Cherry, J.A.; Parker, B.L.

    2007-01-01

    Confined aquifers are overlain by low-permeability aquitards that are commonly assumed to protect underlying aquifers from microbial contaminants. However, empirical data on microbial contamination beneath aquitards is limited. This study determined the occurrence of human pathogenic viruses in well water from a deep sandstone aquifer confined by a regionally extensive shale aquitard. Three public water-supply wells were each sampled 10 times over 15 months. Samples were analyzed by reverse transcription-polymerase chain reaction (RT-PCR) for several virus groups and by cell culture for infectious enteroviruses. Seven of 30 samples were positive by RT-PCR for enteroviruses; one of these was positive for infectious echovirus 18. The virus-positive samples were collected from two wells cased through the aquitard, indicating the viruses were present in the confined aquifer. Samples from the same wells showed atmospheric tritium, indicating water recharged within the past few decades. Hydrogeologic conditions support rapid porous media transport of viruses through the upper sandstone aquifer to the top of the aquitard 61 m below ground surface. Natural fractures in the shale aquitard are one possible virus transport pathway through the aquitard; however, windows, cross-connecting well bores, or imperfect grout seals along well casings also may be involved. Deep confined aquifers can be more vulnerable to contamination by human viruses than commonly believed. ?? 2007 American Chemical Society.

  4. Inadequately Treated Wastewater as a Source of Human Enteric Viruses in the Environment

    PubMed Central

    Okoh, Anthony I.; Sibanda, Thulani; Gusha, Siyabulela S.

    2010-01-01

    Human enteric viruses are causative agents in both developed and developing countries of many non-bacterial gastrointestinal tract infections, respiratory tract infections, conjunctivitis, hepatitis and other more serious infections with high morbidity and mortality in immunocompromised individuals such as meningitis, encephalitis and paralysis. Human enteric viruses infect and replicate in the gastrointestinal tract of their hosts and are released in large quantities in the stools of infected individuals. The discharge of inadequately treated sewage effluents is the most common source of enteric viral pathogens in aquatic environments. Due to the lack of correlation between the inactivation rates of bacterial indicators and viral pathogens, human adenoviruses have been proposed as a suitable index for the effective indication of viral contaminants in aquatic environments. This paper reviews the major genera of pathogenic human enteric viruses, their pathogenicity and epidemiology, as well as the role of wastewater effluents in their transmission. PMID:20644692

  5. Occurrence and distribution of microbiological contamination and enteric viruses in shallow ground water in Baltimore and Harford counties, Maryland

    USGS Publications Warehouse

    Banks, William S.L.; Battigelli, David A.

    2002-01-01

    The U.S. Geological Survey, in cooperation with the Maryland Department of the Environment and the Wisconsin State Laboratory of Hygiene, conducted a study to characterize the occurrence and distribution of viral contamination in small (withdrawing less than 10,000 gallons per day) public water-supply wells screened in the shallow aquifer in the Piedmont Physiographic Province in Baltimore and Harford Counties, Maryland. Two hundred sixty-three small public water-supply wells were in operation in these counties during the spring of 2000. Ninety-one of these sites were selected for sampling using a methodology that distributed the samples evenly over the population and the spatial extent of the study area. Each site, and its potential susceptibility to microbiological contamination, was evaluated with regard to hole depth, casing interval, and open interval. Each site was evaluated using characteristics such as on-site geology and on-site land use.Samples were collected by pumping between 200 and 400 gallons of untreated well water through an electropositive cartridge filter. Water concentrates were subjected to cell-culture assay for the detection of culturable viruses and reverse-transcription polymerase chain reaction/gene probe assays to detect viral ribonucleic acid; grab samples were analyzed for somatic and male-specific coliphages, Bacteroides fragilis, Clostridium perfringens, enterococci, Escherichia coli, total coliforms, total oxidized nitrogen, nitrite, organic nitrogen, total phosphate, ortho-phosphate, calcium, magnesium, sodium, potas-sium, chloride, sulfate, iron, acid-neutralizing capacity, pH, specific conductance, temperature, and dissolved oxygen.One sample tested positive for the presence of the ribonucleic acid of rotavirus through poly-merase chain-reaction analysis. Twenty-nine per-cent of the samples (26 of 90) had bacterial con-tamination. About 7 percent of the samples (6 of 90) were contaminated with either male-specific coliphage

  6. Presence of enteric viruses in water samples for consumption in Colombia: Challenges for supply systems.

    PubMed

    Peláez, Dioselina; Guzmán, Blanca Lisseth; Rodríguez, Johanna; Acero, Felipe; Nava, Gerardo

    2016-04-15

    Since drinking water can be a vehicle for the transmission of pathogens, the detection of enteric viruses in these water samples is essential to establish the appropriate measures to control and prevent associated diseases.  To analyze the results obtained for enteric viruses in water samples for human consumption received at the Colombian Instituto Nacional de Salud and establish their association with the data on water quality in Colombian municipalities.  We conducted a descriptive-retrospective analysis of the results obtained in the detection of rotavirus, enterovirus, hepatitis A virus and adenovirus in water samples received for complementary studies of enteric hepatitis, acute diarrheal disease and foodborne diseases. Data were correlated with the results of water quality surveillance determined by the national human consumption water quality index (IRCA).  Of the 288 samples processed from 102 Colombian municipalities, 50.7% were positive for viruses: 26.73% for hepatitis A virus, 20.48% for enterovirus and rotavirus and 18.05% for adenovirus. Viruses were detected in 48.26% of non-treated water samples and in 45.83% of treated water samples. The IRCA index showed no correlation with the presence of viruses.  The presence of viruses in water represents a public health risk and, therefore, the prevention of virus transmission through water requires appropriate policies to reinforce water supply systems and improve epidemiological surveillance.

  7. The Detection Rate of Enteric Viruses and Clostridium difficile in a Waste Water Treatment Plant Effluent.

    PubMed

    Steyer, Andrej; Gutiérrez-Aguirre, Ion; Rački, Nejc; Beigot Glaser, Sara; Brajer Humar, Barbara; Stražar, Marjeta; Škrjanc, Igor; Poljšak-Prijatelj, Mateja; Ravnikar, Maja; Rupnik, Maja

    2015-02-07

    Waste water treatment plant (WWTP) is considered as an important source of surface water contamination by enteric pathogens. In this study, we describe the occurrence of enteric viruses (group A rotaviruses, noroviruses, astroviruses, sapoviruses, hepatitis A virus, and hepatitis E virus) and Clostridium difficile in the effluent of a wastewater treatment plant during a 1-year period. Enteric viruses were simultaneously and efficiently concentrated in a single step using methacrylate monolithic chromatographic support. Rotaviruses, noroviruses (genogroup I and II), and sapoviruses were detected in all 12 concentrated samples, whereas astroviruses were not detected in August and September and hepatitis A and E viruses were not detected at all. Clostridium difficile was detected in all samples and altogether 121 strains were isolated and grouped into 32 different ribotypes of which 014/020 and 010 were most prevalent. Pathogens detected in WWTP effluent partially reflect the epidemiological situation of enteric viruses and C. difficile in human population and open the discussion on implementation of possible techniques for virus and bacteria removal from WWTP effluent prior to release into the surface water system.

  8. Efficient strategy for constructing duck enteritis virus-based live attenuated vaccine against homologous and heterologous H5N1 avian influenza virus and duck enteritis virus infection.

    PubMed

    Zou, Zhong; Hu, Yong; Liu, Zhigang; Zhong, Wei; Cao, Hangzhou; Chen, Huanchun; Jin, Meilin

    2015-04-16

    Duck is susceptible to many pathogens, such as duck hepatitis virus, duck enteritis virus (DEV), duck tembusu virus, H5N1 highly pathogenic avian influenza virus (HPAIV) in particular. With the significant role of duck in the evolution of H5N1 HPAIV, control and eradication of H5N1 HPAIV in duck through vaccine immunization is considered an effective method in minimizing the threat of a pandemic outbreak. Consequently, a practical strategy to construct a vaccine against these pathogens should be determined. In this study, the DEV was examined as a candidate vaccine vector to deliver the hemagglutinin (HA) gene of H5N1, and its potential as a polyvalent vaccine was evaluated. A modified mini-F vector was inserted into the gB and UL26 gene junction of the attenuated DEV vaccine strain C-KCE genome to generate an infectious bacterial artificial chromosome (BAC) of C-KCE (vBAC-C-KCE). The HA gene of A/duck/Hubei/xn/2007 (H5N1) was inserted into the C-KCE genome via the mating-assisted genetically integrated cloning (MAGIC) to generate the recombinant vector pBAC-C-KCE-HA. A bivalent vaccine C-KCE-HA was developed by eliminating the BAC backbone. Ducks immunized with C-KCE-HA induced both the cross-reactive antibodies and T cell response against H5. Moreover, C-KCE-HA-immunized ducks provided rapid and long-lasting protection against homologous and heterologous HPAIV H5N1 and DEV clinical signs, death, and primary viral replication. In conclusion, our BAC-C-KCE is a promising platform for developing a polyvalent live attenuated vaccine.

  9. Adhesion of human pathogenic enteric viruses and surrogate viruses to inert and vegetal food surfaces.

    PubMed

    Deboosere, Nathalie; Pinon, Anthony; Caudrelier, Yvette; Delobel, Alexandre; Merle, Ghislaine; Perelle, Sylvie; Temmam, Sarah; Loutreul, Julie; Morin, Thierry; Estienney, Marie; Belliot, Gael; Pothier, Pierre; Gantzer, Christophe; Vialette, Michèle

    2012-10-01

    Enteric viruses, particularly human Noroviruses (NoV) and hepatitis A virus (HAV), are key food-borne pathogens. The attachment of these pathogens to foodstuff and food-contact surfaces is an important mechanism in the human contamination process. Studies were done to investigate the nature of the physicochemical forces, such as hydrophobic and electrostatic ones, involved in the interaction virus/matrix but, at this day, only few data are available concerning surface properties of viruses and prediction of the adhesion capacity of one specific virus onto matrices is still very difficult. The purpose of this study was to propose a reference system, including a representative virus surrogate, able to predict as close as possible behaviour of pathogenic viruses in term of adhesion on inert (stainless steel and polypropylene) and food surfaces (lettuce leaves, strawberries and raspberries). The adhesion of human pathogenic enteric viruses, cultivable strain of HAV and non-cultivable strains of human NoV (genogroups I and II), have been quantified and compared to these of human enteric viruses surrogates, included the MNV-1 and three F-specific RNA bacteriophages (MS2, GA and Qβ). A standardized approach was developed to assess and quantify viral adhesion on tested matrices after a contact time with each virus using real-time RT-PCR. Methods used for virus recovery were in accordance with the CEN recommendations, including a bovine Enterovirus type 1 as control to monitor the efficiency of the extraction process and amplification procedure from directly extracted or eluted samples. The adhesion of human pathogenic viruses, ranging from 0.1 to 2%, could be comparable for all matrices studied, except for NoV GII on soft fruits. Adhesion percentages obtained for the studied surrogate virus and phages were shown to be comparable to those of HAV and NoV on inert and lettuce surfaces. The MNV-1 appeared as the best candidate to simulate adhesion phenomena of all human

  10. Relationships Between Environmental Factors, Bacterial Indicators, and the Occurrence of Enteric Viruses in Estuarine Sediments

    PubMed Central

    LaBelle, Raymond L.; Gerba, Charles P.; Goyal, Sagar M.; Melnick, Joseph L.; Cech, Irina; Bogdan, Gregory F.

    1980-01-01

    Current standards for evaluation of the public health safety of recreational and shellfish-harvesting waters are based upon bacteriological analysis, but do not include an evaluation of the number of viruses. The objective of this study was to determine the occurrence of enteric viruses in estuarine sediments and to find a relationship, if any, between the presence of viruses in seawater or sediment or both and various biological and physicochemical characteristics of the environment. Viruses were found in greater numbers in sediment than in overlying seawater on a volume basis. Several types of enteroviruses were isolated: coxsackievirus types A16, B1, and B5, echovirus type 1, and poliovirus type 2. On several occasions, viruses were isolated from sediments when overlying seawaters met bacteriological water quality standards for recreational use. Statistical analysis of the relationship between viruses in seawater or in sediment and other variables measured yielded only one significant association: the number of viruses in sediment was found to be positively correlated with the number of fecal coliforms in sediment. No other physical, chemical, or biological characteristic of seawater or sediment that was measured showed statistically significant association with viral numbers. No correlation was found between bacterial indicators and virus in the overlying waters. The data indicated that evaluation of the presence of bacteria and viruses in sediment may provide additional insight into long-term water quality conditions and that indicator bacteria in water are not reflective of the concentration of enteric viruses in marine waters. PMID:6247974

  11. Evaluation of Human Enteric Viruses in Surface Water and Drinking Water Resources in Southern Ghana

    PubMed Central

    Gibson, Kristen E.; Opryszko, Melissa C.; Schissler, James T.; Guo, Yayi; Schwab, Kellogg J.

    2011-01-01

    An estimated 884 million people worldwide do not have access to an improved drinking water source, and the microbial quality of these sources is often unknown. In this study, a combined tangential flow, hollow fiber ultrafiltration (UF), and real-time PCR method was applied to large volume (100 L) groundwater (N = 4), surface water (N = 9), and finished (i.e., receiving treatment) drinking water (N = 6) samples for the evaluation of human enteric viruses and bacterial indicators. Human enteric viruses including norovirus GI and GII, adenovirus, and polyomavirus were detected in five different samples including one groundwater, three surface water, and one drinking water sample. Total coliforms and Escherichia coli assessed for each sample before and after UF revealed a lack of correlation between bacterial indicators and the presence of human enteric viruses. PMID:21212196

  12. Evaluation of human enteric viruses in surface water and drinking water resources in southern Ghana.

    PubMed

    Gibson, Kristen E; Opryszko, Melissa C; Schissler, James T; Guo, Yayi; Schwab, Kellogg J

    2011-01-01

    An estimated 884 million people worldwide do not have access to an improved drinking water source, and the microbial quality of these sources is often unknown. In this study, a combined tangential flow, hollow fiber ultrafiltration (UF), and real-time PCR method was applied to large volume (100 L) groundwater (N = 4), surface water (N = 9), and finished (i.e., receiving treatment) drinking water (N = 6) samples for the evaluation of human enteric viruses and bacterial indicators. Human enteric viruses including norovirus GI and GII, adenovirus, and polyomavirus were detected in five different samples including one groundwater, three surface water, and one drinking water sample. Total coliforms and Escherichia coli assessed for each sample before and after UF revealed a lack of correlation between bacterial indicators and the presence of human enteric viruses.

  13. Metagenomic analysis of the shrew enteric virome reveals novel viruses related to human stool-associated viruses.

    PubMed

    Sasaki, Michihito; Orba, Yasuko; Ueno, Keisuke; Ishii, Akihiro; Moonga, Ladslav; Hang'ombe, Bernard M; Mweene, Aaron S; Ito, Kimihito; Sawa, Hirofumi

    2015-02-01

    Shrews are small insectivorous mammals that are distributed worldwide. Similar to rodents, shrews live on the ground and are commonly found near human residences. In this study, we investigated the enteric virome of wild shrews in the genus Crocidura using a sequence-independent viral metagenomics approach. A large portion of the shrew enteric virome was composed of insect viruses, whilst novel viruses including cyclovirus, picornavirus and picorna-like virus were also identified. Several cycloviruses, including variants of human cycloviruses detected in cerebrospinal fluid and stools, were detected in wild shrews at a high prevalence rate. The identified picornavirus was distantly related to human parechovirus, inferring the presence of a new genus in this family. The identified picorna-like viruses were characterized as different species of calhevirus 1, which was discovered previously in human stools. Complete or nearly complete genome sequences of these novel viruses were determined in this study and then were subjected to further genetic characterization. Our study provides an initial view of the diversity and distinctiveness of the shrew enteric virome and highlights unique novel viruses related to human stool-associated viruses.

  14. Infectious pancreatic necrosis virus enters CHSE-214 cells via macropinocytosis.

    PubMed

    Levican, Jorge; Miranda-Cárdenas, Camila; Soto-Rifo, Ricardo; Aguayo, Francisco; Gaggero, Aldo; León, Oscar

    2017-06-08

    Infectious pancreatic necrosis virus (IPNV) is a non-enveloped virus belonging to the Birnaviridae family. IPNV produces an acute disease in salmon fingerlings, with high mortality rates and persistent infection in survivors. Although there are reports of IPNV binding to various cells, the viral receptor and entry pathways remain unknown. The aim of this study was to determine the endocytic pathway that allows for IPNV entry. We observed that IPNV stimulated fluid uptake and virus particles co-localysed with the uptake marker dextran in intracellular compartments, suggesting a role for macropinocytosis in viral entry. Consistent with this idea, viral infection was significantly reduced when the Na+/H+ exchanger NHE1 was inhibited with 5-(N-Ethyl-N-isopropyl) amiloride (EIPA). Neither chlorpromazine nor filipin complex I affected IPNV infection. To examine the role of macropinocytosis regulators, additional inhibitors were tested. Inhibitors of the EGFR pathway and the effectors Pak1, Rac1 and PKC reduced viral infection. Together, our results indicate that IPNV is mainly internalized into CHSE-214 cells by macropinocytosis.

  15. Detection of enteric viruses in activated sludge by feasible concentration methods.

    PubMed

    Prado, Tatiana; Gaspar, Ana Maria Coimbra; Miagostovich, Marize Pereira

    2014-01-01

    Human enteric viruses are responsible to cause several diseases, including gastroenteritis and hepatitis, and can be present in high amounts in sewage sludge. This study compared virus recovery efficiency of two feasible concentration methods used for detecting human adenovirus (HAdV), rotavirus species A (RV-A), norovirus genogroup II (NoV GII) and hepatitis A virus (HAV) in sewage sludge from an activated sludge process. Twelve sewage sludge samples were collected bi-monthly from January to July, 2011. Ultracentrifugation was compared with a simplified protocol based on beef extract elution for recovering enteric viruses. Viruses were quantified by quantitative real-time PCR assays and virus recovery efficiency and limits of detection were determined. Methods showed mean recovery rates lower than 7.5%, presenting critical limits of detection (higher than 10(2) - 10(3) genome copies - GC L(-1) for all viruses analyzed). Nevertheless, HAdV were detected in 90% of the analyzed sewage sludge samples (range: 1.8 × 10(4) to 1.1 × 10(5) GC L(-1)), followed by RV-A and NoV (both in 50%) and HAV (8%). Results suggesting that activated sludge is contaminated with high viral loads and HAdV are widely disseminated in these samples. The low virus recovery rates achieved, especially for HAV, indicate that other feasible concentration methods could be developed to improve virus recovery efficiency in these environmental matrices.

  16. Detection of enteric viruses in activated sludge by feasible concentration methods

    PubMed Central

    Prado, Tatiana; Gaspar, Ana Maria Coimbra; Miagostovich, Marize Pereira

    2014-01-01

    Human enteric viruses are responsible to cause several diseases, including gastroenteritis and hepatitis, and can be present in high amounts in sewage sludge. This study compared virus recovery efficiency of two feasible concentration methods used for detecting human adenovirus (HAdV), rotavirus species A (RV-A), norovirus genogroup II (NoV GII) and hepatitis A virus (HAV) in sewage sludge from an activated sludge process. Twelve sewage sludge samples were collected bi-monthly from January to July, 2011. Ultracentrifugation was compared with a simplified protocol based on beef extract elution for recovering enteric viruses. Viruses were quantified by quantitative real-time PCR assays and virus recovery efficiency and limits of detection were determined. Methods showed mean recovery rates lower than 7.5%, presenting critical limits of detection (higher than 102 – 103 genome copies - GC L−1 for all viruses analyzed). Nevertheless, HAdV were detected in 90% of the analyzed sewage sludge samples (range: 1.8 × 104 to 1.1 × 105 GC L−1), followed by RV-A and NoV (both in 50%) and HAV (8%). Results suggesting that activated sludge is contaminated with high viral loads and HAdV are widely disseminated in these samples. The low virus recovery rates achieved, especially for HAV, indicate that other feasible concentration methods could be developed to improve virus recovery efficiency in these environmental matrices. PMID:24948954

  17. A one-step centrifugal ultrafiltration method to concentrate enteric viruses from wastewater.

    PubMed

    Qiu, Yuanyuan; Lee, Bonita E; Ruecker, Norma J; Neumann, Norman; Ashbolt, Nicholas; Pang, Xiaoli

    2016-11-01

    A one-step centrifugal ultrafiltration method was developed to enhance rapid detection of human enteric viruses and co-occurring viruses in wastewater. Samples were collected pre- and post-UV treatment at two full-scale tertiary municipal wastewater treatment plants in Calgary, Canada. Viruses were concentrated from 100mL wastewater samples through direct centrifugation using the Centricon Plus-70 ultrafilter. Seven viruses, including norovirus, rotavirus, sapovirus, astrovirus, enterovirus, adenovirus and JC virus, were tested using real-time quantitative PCR (rt-qPCR) and cell culture. All of the viruses were detected in pre- and post-UV samples by rt-qPCR, with rotavirus the most numerous (6.6 log10 GE copies/L). Infectious viruses, by cell culture, were found in all tested pre-UV samples but only in one post-UV sample. The results were comparable and consistent to that obtained using virus adsorption-elution method, indicating that the centrifugal ultrafiltration method is adequate to retain the viruses and maintain their infectivity during processing. As a simple, rapid and cost-effective method to screen wastewater viruses, this one-step centrifugal ultrafiltration method may serve as an effective approach to assess virus removal and gain knowledge of human virus activity during wastewater treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. A 1-Year Study on the Detection of Human Enteric Viruses in New Caledonia.

    PubMed

    Kaas, Laetitia; Gourinat, Ann-Claire; Urbès, Florence; Langlet, Jérémie

    2016-03-01

    Human enteric viruses occur in high concentrations in wastewater and can contaminate receiving environmental waters. Due to the lack of data on the prevalence of enteric viruses in New Caledonia, the presence and the concentrations of enteric viruses in wastewater and seawater were determined. Untreated wastewater and seawater samples were collected monthly for 1 year from a wastewater treatment plant (WWTP) and from the WWTP's outlet, located directly on a popular recreational beach. Samples were tested for norovirus genogroups I and II (NoV GI and GII), astroviruses (AsV), sapoviruses (SaV), enteroviruses (EV), hepatitis A viruses (HAV), rotaviruses (RoV), human adenoviruses (HAdV) and human polyomaviruses (HPyV). To support these data, faecal samples from cases of gastroenteritis were tested for the first time for NoV and detected in the population. NoV GI, NoV GII, EV, SaV, HAdV and HPyV were detected in all wastewaters, RoV in 75% and AsV in 67%. HAV were not detected in wastewater. Overall, 92% of seawater samples were positive for at least one virus. HPyV were detected most frequently in 92% of samples and at concentrations up to 7.7 × 10(3) genome copies/L. NoV GI, NoV GII, EV, SaV, RoV and HAdV were found in 33, 66, 41, 33, 16 and 66% of seawater samples, respectively. AsV were not detected in seawater. This study reports for the first time the presence of NoV and other enteric viruses in New Caledonia and highlights the year-round presence of enteric viruses in the seawater of a popular beach.

  19. Techniques for the recovery of enteric viruses from artificially contaminated marine sediments.

    PubMed

    Pianetti, Anna; Citterio, Barbara; Sabatini, Luigia; Pierfelici, Lucia; Colantoni, Paolo; Bruscolini, Francesca

    2007-01-01

    Viruses are an important component of aquatic microbial communities and marine sediments may represent an optimal means for their survival. The aim of this study was to evaluate different methods for virus recovery from marine sediments. Three methods were used for virus recovery from artificially contaminated sediments: elution and centrifugation technique, sonication technique, and mechanical disgregation followed by elution and centrifuge technique. The sonication technique obtained the highest virus recovery percentages (94,25%). Eluent 2 provided more efficient recovery of enteric viruses than eluent 1 presumably due to the presence, in eluent 2, of NANO3, a chaotropic agent that enhances the solubilization of hydrophobic compounds in water. Finally, the authors confirm the importance of searching for viruses in sediments, which protect them from inactivation by biological, chemical and physical factors and allow them to survive longer than in the overlaying water column.

  20. Case report: epithelial intracytoplasmic herpes viral inclusions associated with an outbreak of duck virus enteritis

    USGS Publications Warehouse

    Barr, B.C.; Jessup, David A.; Docherty, Douglas E.; Lownestine, L.J.

    1992-01-01

    Several muscovy ducks from a free-roaming flock of 65 muscovy and mallard ducks died over a 3-week period. Three muscovy ducks were necropsied. Gross and microscopic changes were compatible with duck virus enteritis, and the virus was isolated. In addition to intranuclear viral inclusion bodies in several tissues, intracytoplasmic inclusion bodies were present in esophageal and cloacal epithelium, By electron microscopy, the membrane-bound intracytoplasmic inclusions were found to contain enveloped herpesvirus, and nuclei contained herpes viral nucleocapsids.

  1. Thermal Inactivation of Foodborne Enteric Viruses and Their Viral Surrogates in Foods.

    PubMed

    Bozkurt, Hayriye; D'Souza, Doris H; Davidson, P Michael

    2015-08-01

    Foodborne viruses, in particular human norovirus and hepatitis A virus, are the most common causes of food-associated infections and foodborne illness outbreaks around the world. Since it is currently not possible to cultivate human noroviruses and the wild-type strain of hepatitis A virus in vitro, the use of a variety of viral surrogates is essential to determine appropriate thermal processing conditions to reduce the risk associated with their contamination of food. Therefore, the objectives of this review are to (i) present pertinent characteristics of enteric foodborne viruses and their viral surrogates, (ii) discuss the viral surrogates currently used in thermal inactivation studies and their significance and value, (iii) summarize available data on thermal inactivation kinetics of enteric viruses, (iv) discuss factors affecting the efficacy of thermal treatment, (v) discuss suggested mechanisms of thermal inactivation, and (vi) provide insights on foodborne enteric viruses and viral surrogates for future studies and industrial applications. The overall goal of this review is to contribute to the development of appropriate thermal processing protocols to ensure safe food for human consumption.

  2. Impact of the use of an alcohol-based hand sanitizer in the home on reduction in probability of infection by respiratory and enteric viruses.

    PubMed

    Tamimi, A H; Maxwell, S; Edmonds, S L; Gerba, C P

    2015-11-01

    The goal of this study was to determine the reduction in risk of infection by viruses with the use of an alcohol-based hand sanitizer, used in addition to routine hand washing, in family members in households. A quantitative microbial risk model was used to determine the probability of infection from the concentration of virus on the hands. The model incorporated variation in hand size, frequency of touching orifices (nose, mouth, eyes), and percent transfer to the site of infection, as well as, dose-response for each virus. Data on the occurrence of virus on household members' hands from an intervention study using MS-2 coliphage was used to determine the reduction of viruses on the hands pre- and post-intervention. It was found that the risk of rhinovirus, rotavirus or norovirus infection after the intervention was reduced by 47-98% depending upon the initial concentration of virus on the hands.

  3. Diversity in the Enteric Viruses Detected in Outbreaks of Gastroenteritis from Mumbai, Western India

    PubMed Central

    Chitambar, Shobha; Gopalkrishna, Varanasi; Chhabra, Preeti; Patil, Pooja; Verma, Harsha; Lahon, Anismrita; Arora, Ritu; Tatte, Vaishali; Ranshing, Sujata; Dhale, Ganesh; Kolhapure, Rajendra; Tikute, Sanjay; Kulkarni, Jagannath; Bhardwaj, Renu; Akarte, Sulbha; Pawar, Sashikant

    2012-01-01

    Faecal specimens collected from two outbreaks of acute gastroenteritis that occurred in southern Mumbai, India in March and October, 2006 were tested for seven different enteric viruses. Among the 218 specimens tested, 95 (43.6%) were positive, 73 (76.8%) for a single virus and 22 (23.2%) for multiple viruses. Single viral infections in both, March and October showed predominance of enterovirus (EV, 33.3% and 40%) and rotavirus A (RVA, 33.3% and 25%). The other viruses detected in these months were norovirus (NoV, 12.1% and 10%), rotavirus B (RVB, 12.1% and 10%), enteric adenovirus (AdV, 6.1% and 7.5%), Aichivirus (AiV, 3% and 7.5%) and human astrovirus (HAstV, 3% and 0%). Mixed viral infections were largely represented by two viruses (84.6% and 88.9%), a small proportion showed presence of three (7.7% and 11%) and four (7.7% and 0%) viruses in the two outbreaks. Genotyping of the viruses revealed predominance of RVA G2P[4], RVB G2 (Indian Bangladeshi lineage), NoV GII.4, AdV-40, HAstV-8 and AiV B types. VP1/2A junction region based genotyping showed presence of 11 different serotypes of EVs. Although no virus was detected in the tested water samples, examination of both water and sewage pipelines in gastroenteritis affected localities indicated leakages and possibility of contamination of drinking water with sewage water. Coexistence of multiple enteric viruses during the two outbreaks of gastroenteritis emphasizes the need to expand such investigations to other parts of India. PMID:22690171

  4. Presence of enteric viruses in freshwater and their removal by the conventional drinking water treatment process.

    PubMed Central

    Hurst, C. J.

    1991-01-01

    A review of results published in English or French between 1980 and 1990 was carried out to determine the levels of indigenous human enteric viruses in untreated surface and subsurface freshwaters, as well as in drinking water that had undergone the complete conventional treatment process. For this purpose, the conventional treatment process was defined as an operation that included coagulation followed by sedimentation, filtration, and disinfection. Also assessed was the stepwise efficiency of the conventional treatment process, as practised at full-scale facilities, for removing indigenous viruses from naturally occurring freshwaters. A list was compiled of statistical correlations relating to the occurrence of indigenous viruses in water. PMID:1647273

  5. PRESENCE OF ENTERIC VIRUSES IN FRESHWATER AND THEIR REMOVAL BY THE CONVENTIONAL DRINKING WATER TREATMENT PROCESS

    EPA Science Inventory

    A review of results published in English or French between 1980 and 1990 was carried out to determine the levels of indigenous human enteric viruses in untreated surface and subsurface freshwaters, as well as in drinking water that had undergone the complete conventional treatmen...

  6. PRESENCE OF ENTERIC VIRUSES IN FRESHWATER AND THEIR REMOVAL BY THE CONVENTIONAL DRINKING WATER TREATMENT PROCESS

    EPA Science Inventory

    A review of results published in English or French between 1980 and 1990 was carried out to determine the levels of indigenous human enteric viruses in untreated surface and subsurface freshwaters, as well as in drinking water that had undergone the complete conventional treatmen...

  7. A MULTIPLEX REVERSE TRANSCIPTION-PCR METHOD FOR DETECTION OF HUMAN ENTERIC VIRUSES IN GROUNDWATER

    EPA Science Inventory

    Untreated groundwater is responsible for about half of the waterborne disease outbreaks in the United States. Human enteric viruses are thought to be leading etiological agents of many of these outbreaks, but there is relatively little information on the types and levels of viru...

  8. A MULTIPLEX REVERSE TRANSCIPTION-PCR METHOD FOR DETECTION OF HUMAN ENTERIC VIRUSES IN GROUNDWATER

    EPA Science Inventory

    Untreated groundwater is responsible for about half of the waterborne disease outbreaks in the United States. Human enteric viruses are thought to be leading etiological agents of many of these outbreaks, but there is relatively little information on the types and levels of viru...

  9. Bacteriophage removal efficiency as a validation and operational monitoring tool for virus reduction in wastewater reclamation: Review.

    PubMed

    Amarasiri, Mohan; Kitajima, Masaaki; Nguyen, Thanh H; Okabe, Satoshi; Sano, Daisuke

    2017-09-15

    The multiple-barrier concept is widely employed in international and domestic guidelines for wastewater reclamation and reuse for microbiological risk management, in which a wastewater reclamation system is designed to achieve guideline values of the performance target of microbe reduction. Enteric viruses are one of the pathogens for which the target reduction values are stipulated in guidelines, but frequent monitoring to validate human virus removal efficacy is challenging in a daily operation due to the cumbersome procedures for virus quantification in wastewater. Bacteriophages have been the first choice surrogate for this task, because of the well-characterized nature of strains and the presence of established protocols for quantification. Here, we performed a meta-analysis to calculate the average log10 reduction values (LRVs) of somatic coliphages, F-specific phages, MS2 coliphage and T4 phage by membrane bioreactor, activated sludge, constructed wetlands, pond systems, microfiltration and ultrafiltration. The calculated LRVs of bacteriophages were then compared with reported human enteric virus LRVs. MS2 coliphage LRVs in MBR processes were shown to be lower than those of norovirus GII and enterovirus, suggesting it as a possible validation and operational monitoring tool. The other bacteriophages provided higher LRVs compared to human viruses. The data sets on LRVs of human viruses and bacteriophages are scarce except for MBR and conventional activated sludge processes, which highlights the necessity of investigating LRVs of human viruses and bacteriophages in multiple treatment unit processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Enteric virus contamination of foods through industrial practices: a primer on intervention strategies.

    PubMed

    Richards, G P

    2001-08-01

    Hepatitis A and E viruses, rotaviruses, Norwalk-like caliciviruses, and astroviruses are among the enteric viruses known to cause food- and waterborne illness. These viruses are spread by the fecal-oral route and are a major cause of morbidity and mortality worldwide. Foods may be contaminated at any time pre- or post-harvest; however, many outbreaks are associated with foods handled by infected restaurant workers. Produce may be contaminated by improper irrigation or fertilization practices, by the hands of infected pickers or processors, or as the result of adulteration during any stage of handling. Outbreaks have been commonly associated with foods which are served raw or only lightly cooked, such as molluscan shellfish, fruits and vegetables, and salads or products contaminated after cooking like frosted bakery products. The farming, shellfish, processing, transportation, and restaurant industries must maintain vigilance to reduce outbreaks of enteric virus illness. Intervention strategies to enhance product safety include increased industry and consumer education; changes in industrial practices, product management, and processing technologies; worker immunizations; and the development of improved monitoring tools for the detection of enteric viruses in foods.

  11. Effects of sanitation, freezing and frozen storage on enteric viruses in berries and herbs.

    PubMed

    Butot, S; Putallaz, T; Sánchez, G

    2008-08-15

    Norovirus (NV) and hepatitis A virus (HAV) are foodborne enteric viruses associated with outbreaks of disease following consumption of fresh or frozen produce. Model experiments were performed to determine the effectiveness of certain commercial processes for the removal of enteric viruses that might be present in berries and herbs. The survival and persistence of HAV, NV, rotavirus (RV) and feline calicivirus (FCV), a surrogate for NV, in frozen produce over time were determined. Survival and inactivation of HAV, RV and FCV were assessed by viral culture and quantitative reverse transcription-PCR (RT-PCR), whereas NV persistence was determined by quantitative RT-PCR only. Freezing did not significantly reduce the viability of any of the viruses except the infectivity of FCV in strawberries. Frozen storage for 3 months had limited effects on HAV and RV survival in all tested food products, whereas in frozen raspberries and strawberries FCV infectivity showed the highest decay rate due to acid pH. To simulate postharvesting conditions, fresh berries and herbs were rinsed with tap, warm or chlorinated water or with a chlorine dioxide (ClO(2)) solution. Available chlorine at a concentration of 200 ppm and ClO(2) at 10 ppm reduced measurable enteric viruses in raspberry and parsley samples by less than 2 log(10) units.

  12. Diversity of somatic coliphages in coastal regions with different levels of anthropogenic activity in São Paulo State, Brazil.

    PubMed

    Burbano-Rosero, E M; Ueda-Ito, M; Kisielius, J J; Nagasse-Sugahara, T K; Almeida, B C; Souza, C P; Markman, C; Martins, G G; Albertini, L; Rivera, I N G

    2011-06-01

    Bacteriophages are the most abundant and genetically diverse viruses on Earth, with complex ecology in both quantitative and qualitative terms. Somatic coliphages (SC) have been reported to be good indicators of fecal pollution in seawater. This study focused on determining the concentration of SC and their diversity by electron microscopy of seawater, plankton, and bivalve samples collected at three coastal regions in São Paulo, Brazil. The SC counts varied from <1 to 3.4 × 10(3) PFU/100 ml in seawater (73 samples tested), from <1 to 4.7 × 10(2) PFU/g in plankton (46 samples tested), and from <1 to 2.2 × 10(1) PFU/g in bivalves (11 samples tested). In seawater samples, a relationship between the thermotolerant coliforms and Escherichia coli and SC was observed at the three regions (P = 0.0001) according to the anthropogenic activities present at each region. However, SC were found in plankton samples from three regions: Baixada Santista (17/20), Canal de São Sebastião (6/14), and Ubatuba (3/12). In seawater samples collected from Baixada Santista, four morphotypes were observed: A1 (4.5%), B1 (50%), C1 (36.4%), and D1 (9.1%). One coliphage, Siphoviridae type T1, had the longest tail: between 939 and 995 nm. In plankton samples, Siphoviridae (65.8%), Podoviridae (15.8%), Microviridae (15.8%), and Myoviridae (2.6%) were found. In bivalves, only the morphotype B1 was observed. These SC were associated with enteric hosts: enterobacteria, E. coli, Proteus, Salmonella, and Yersinia. Baixada Santista is an area containing a high level of fecal pollution compared to those in the Canal de São Sebastião and Ubatuba. This is the first report of coliphage diversity in seawater, plankton, and bivalve samples collected from São Paulo coastal regions. A better characterization of SC diversity in coastal environments will help with the management and evaluation of the microbiological risks for recreation, seafood cultivation, and consumption.

  13. Immunoperoxidase method with human immune serum globulin for broad-spectrum detection of cultivable human enteric viruses: application to enumeration of cultivable viruses in environmental samples.

    PubMed Central

    Payment, P; Trudel, M

    1985-01-01

    The detection and enumeration of most cultivable human enteric viruses from water is possible if samples are first inoculated onto a suitable cell line such as MA-104 or BGM. Virus growth is then detected by an indirect immunoperoxidase method with human immune serum globulin as the source of antibody to most enteric viruses. The number of positive cell cultures in the immunoperoxidase assay is used to calculate the virus titer (as a most probable number) in the sample assayed. Images PMID:3004330

  14. Assessment of sewer source contamination of drinking water wells using tracers and human enteric viruses.

    PubMed

    Hunt, Randall J; Borchardt, Mark A; Richards, Kevin D; Spencer, Susan K

    2010-10-15

    This study investigated the source, transport, and occurrence of human enteric viruses in municipal well water, focusing on sanitary sewer sources. A total of 33 wells from 14 communities were sampled once for wastewater tracers and viruses. Wastewater tracers were detected in four of these wells, and five wells were virus- positive by qRT-PCR. These results, along with exclusion of wells with surface water sources, were used to select three wells for additional investigation. Viruses and wastewater tracers were found in the groundwater at all sites. Some wastewater tracers, such as ionic detergents, flame retardants, and cholesterol, were considered unambiguous evidence of wastewater. Sampling at any given time may not show concurrent virus and tracer presence; however, given sufficient sampling over time, a relation between wastewater tracers and virus occurrence was identified. Presence of infectious viruses at the wellhead demonstrates that high-capacity pumping induced sufficiently short travel times for the transport of infectious viruses. Therefore, drinking-water wells are vulnerable to contaminants that travel along fast groundwater flowpaths even if they contribute a small amount of virus-laden water to the well. These results suggest that vulnerability assessments require characterization of "low yield-fast transport" in addition to traditional "high yield-slow transport", pathways.

  15. Assessment of sewer source contamination of drinking water wells using tracers and human enteric viruses

    USGS Publications Warehouse

    Hunt, R.J.; Borchardt, M. A.; Richards, K.D.; Spencer, S. K.

    2010-01-01

    This study investigated the source, transport, and occurrence of human enteric viruses in municipal well water, focusing on sanitary sewer sources. A total of 33 wells from 14 communities were sampled once for wastewater tracers and viruses. Wastewater tracers were detected in four of these wells, and five wells were virus- positive by qRT-PCR. These results, along with exclusion of wells with surface water sources, were used to select three wells for additional investigation. Viruses and wastewater tracers were found in the groundwater at all sites. Some wastewater tracers, such as ionic detergents, flame retardants, and cholesterol, were considered unambiguous evidence of wastewater. Sampling at any given time may not show concurrent virus and tracer presence; however, given sufficient sampling over time, a relation between wastewater tracers and virus occurrence was identified. Presence of infectious viruses at the wellhead demonstrates that high-capacity pumping induced sufficiently short travel times for the transport of infectious viruses. Therefore, drinking-water wells are vulnerable to contaminants that travel along fast groundwater flowpaths even if they contribute a small amount of virus-laden water to the well. These results suggest that vulnerability assessments require characterization of "low yield-fast transport" in addition to traditional "high yield-slow transport", pathways. ?? 2010 American Chemical Society.

  16. Intra-laboratory validation of a concentration method adapted for the enumeration of infectious F-specific RNA coliphage, enterovirus, and hepatitis A virus from inoculated leaves of salad vegetables.

    PubMed

    Dubois, Eric; Hennechart, Catherine; Deboosère, Nathalie; Merle, Ghislaine; Legeay, Odile; Burger, Christian; Le Calvé, Marie; Lombard, Bertrand; Ferré, Virginie; Traoré, Ousmane

    2006-04-25

    Salad vegetables exposed to fecal contamination may cause outbreaks of hepatitis or gastro-enteritis if they are eaten raw. A procedure, based on elution with phosphate-buffered saline and concentration by filtration through membrane filters, was developed for the recovery of enteric viruses from salad leaves. The method was evaluated using lettuce leaves inoculated with hepatitis A virus (HAV), poliovirus, and MS2 bacteriophage. In addition, this method was validated by an intra-laboratory study using leaves of various salad vegetables inoculated with MS2 phage. The French standard NF V 03-110 was used to establish the general principle and the technical protocol of the validation procedure. Linear regression models describing the quantitative reactions were good fits to data in the whole range of viral concentrations tested, which was from about 1 to 4 log plaque-forming units (PFU) per 25 g of lettuce. The fractions of inoculated viruses recovered were estimated to be about 64% for HAV, 18% for poliovirus, and 29% for MS2. No significant effect of the food matrix was found using various types of salad vegetable (butter lettuce, iceberg lettuce, romaine lettuce, witloof chicory, curly endive, corn salad, rocket and watercress). Moreover, the variance of the results was constant for all levels of virus contamination within the experimental range. Intermediate reproducibility experiments were also performed to allow calculation of the uncertainty factor, which was found to be 0.58 log PFU/25 g. When used in association with phage enumeration, this validated procedure is rapid enough to be used for screening salad vegetables for evaluation of the efficacy of processes for control of pathogenic microorganisms on such foods.

  17. Simultaneous investigation of influenza and enteric viruses in the stools of adult patients consulting in general practice for acute diarrhea

    PubMed Central

    2012-01-01

    Background Gastrointestinal symptoms are not an uncommon manifestation of an influenza virus infection. In the present study, we aimed to investigate the presence of influenza viruses in the stools of adult patients consulting their general practitioner for uncomplicated acute diarrhea (AD) and the proportion of concurrent infections by enteric and influenza viruses. Method A case-control study was conducted from December 2010 to April 2011. Stool specimens were collected and tested for influenza viruses A (seasonal A/H3N2 and pandemic A/H1N1) and B, and for four enteric viruses (astrovirus, group A rotavirus, human enteric adenovirus, norovirus of genogroups I – NoVGI - and genogroup II - NoVGII). Results General practitioners enrolled 138 cases and 93 controls. Of the 138 stool specimens collected, 92 (66.7%) were positive for at least one of the four enteric viruses analysed and 10 (7.2%) tested positive for one influenza virus. None of these 10 influenza positive patients reported respiratory symptoms. In five influenza-positive patients (3.6%), we also detected one enteric virus, with 4 of them being positive for influenza B (2 had co-detection with NoVGI, 1 with NoVGII, and 1 with astrovirus). None of the 93 controls tested positive for one of the enteric and/or other influenza viruses we investigated. Conclusions In this study we showed that the simultaneous detection of influenza and enteric viruses is not a rare event. We have also reported, for the first time in general practice, the presence of seasonal and pandemic influenza viruses in the stools of adult patients consulting for uncomplicated AD. A simultaneous investigation of enteric and influenza viruses in patients complaining of gastrointestinal symptoms could be useful for future studies to better identify the agents responsible for AD. PMID:22709374

  18. AN UNEXPECTED TEMPORAL PATTERN OF COLIPHAGE ISOLATION IN GROUNDWATERS SAMPLED FROM WELLS AT VARIED DISTANCES FROM RECLAIMED WATER RECHARGE SITES

    EPA Science Inventory

    Potable and monitoring wells located in close proximity to a large groundwater recharge project which utilizes a blend of surface water and reclaimed wastewater for recharge were tested for coliphage over a period of 6 months to assess the potential for virus migration. During th...

  19. AN UNEXPECTED TEMPORAL PATTERN OF COLIPHAGE ISOLATION IN GROUNDWATERS SAMPLED FROM WELLS AT VARIED DISTANCES FROM RECLAIMED WATER RECHARGE SITES

    EPA Science Inventory

    Potable and monitoring wells located in close proximity to a large groundwater recharge project which utilizes a blend of surface water and reclaimed wastewater for recharge were tested for coliphage over a period of 6 months to assess the potential for virus migration. During th...

  20. Removal of native coliphages and coliform bacteria from municipal wastewater by various wastewater treatment processes: implications to water reuse.

    PubMed

    Zhang, K; Farahbakhsh, K

    2007-06-01

    The efficacy of a conventional activated sludge wastewater treatment process and the membrane bioreactor technology in removing microbial pathogens was investigated. Total and fecal coliforms and somatic and F-specific coliphages were used as indicators of pathogenic bacteria and viruses. Up to 5.7 logs removal of coliforms and 5.5 logs of coliphages were observed in the conventional treatment process with advanced tertiary treatment. Addition of chemical coagulants seemed to improve the efficacy of primary and secondary treatment for microorganism removal. Complete removal of fecal coliforms and up to 5.8 logs removal of coliphages was observed in the MBR system. It was shown that the MBR system was capable of high removal of coliphages despite the variation in feed coliphage concentrations. The results of this study indicated that the MBR system can achieve better microbial removal in far fewer steps than the conventional activated sludge process with advanced tertiary treatment. The final effluent from either treatment processes can be potentially reused.

  1. A new and simple method for concentration of enteric viruses from water.

    PubMed

    Li, J W; Wang, X W; Rui, Q Y; Song, N; Zhang, F G; Ou, Y C; Chao, F H

    1998-09-01

    A new type of electropositive filter media particle was tested to adsorb bacteriophage f2 and enteric viruses from tap water. 3 x nutrient broth (pH 7.2) was used to elute the adsorbed viruses, and the eluate was reconcentrated by polyethylene glycol (Mw 6000) precipitation with a final concentration of 10% (wt./vol.). The adsorption of bacteriophage was reliable and efficient, and not affected by the pH value, temperature, turbidity and organic materials in water. This method gave a recovery of Polio 1 virus 96.0% for small-volume tap water; 88.7% for large-volume water; and gave a comparable recovery of HAV, Coxsackie B3 and Echo 7 from tap water. The concentration method need not acidify virus-containing water, add exogenous multivalent cation salts, or require expensive equipment.

  2. Bacterial lipopolysaccharide binding enhances virion stability and promotes environmental fitness of an enteric virus.

    PubMed

    Robinson, Christopher M; Jesudhasan, Palmy R; Pfeiffer, Julie K

    2014-01-15

    Enteric viruses, including poliovirus and reovirus, encounter a vast microbial community in the mammalian gastrointestinal tract, which has been shown to promote virus replication and pathogenesis. Investigating the underlying mechanisms, we find that poliovirus binds bacterial surface polysaccharides, which enhances virion stability and cell attachment by increasing binding to the viral receptor. Additionally, we identified a poliovirus mutant, VP1-T99K, with reduced lipopolysaccharide (LPS) binding. Although T99K and WT poliovirus cell attachment, replication, and pathogenesis in mice are equivalent, VP1-T99K poliovirus was unstable in feces following peroral inoculation of mice. Consequently, the ratio of mutant virus in feces is reduced following additional cycles of infection in mice. Thus, the mutant virus incurs a fitness cost when environmental stability is a factor. These data suggest that poliovirus binds bacterial surface polysaccharides, enhancing cell attachment and environmental stability, potentially promoting transmission to a new host.

  3. An outbreak of duck virus enteritis (duck plague) in a captive flock of mixed waterfowl

    USGS Publications Warehouse

    Montgomery, R.D.; Stein, G.; Novilla, M.N.; Hurley, Sarah S.; Fink, R.J.

    1981-01-01

    An outbreak of duck virus enteritis occurred in a flock of captive waterfowl composed of mallards (Anas platyrhynchos), black ducks (Anas rubripes), and Canada geese (Branta canadensis). Although all three species were housed together, morbidity and mortality were confined to the 227 black ducks and Canada geese, of which 180 died and the rest were left in a weakened condition. Lesions are given for 20 black ducks and 4 Canada geese dying from DVE. In addition, both horizontal and vertical transmission are discussed as possible sources of the virus that caused this outbreak.

  4. Prevalence and Genetic Diversity of Enteric Viruses in Children with Diarrhea in Ouagadougou, Burkina Faso.

    PubMed

    Ouédraogo, Nafissatou; Kaplon, Jérôme; Bonkoungou, Isidore Juste O; Traoré, Alfred Sababénédjo; Pothier, Pierre; Barro, Nicolas; Ambert-Balay, Katia

    2016-01-01

    Enteric viruses are a major cause of diarrhea in children, especially those under five years old. Identifying the viral agents is critical to the development of effective preventive measures. This study aimed to determine the prevalence and genetic diversity of common enteric viruses in children under five years old in Burkina Faso. Stool samples from children with (n = 263) and without (n = 50) diarrhea disorders were collected in Ouagadougou, Burkina Faso from November 2011 to September 2012. Rotavirus, norovirus, sapovirus, astrovirus, adenovirus and Aichivirus A were detected using real-time or end-point (RT-)PCR. Rotavirus strains were G and P genotyped by multiplex RT-PCR and other viral strains were characterized by sequencing of viral subgenomic segements. At least one viral agent was detected in 85.6% and 72% of the symptomatic and asymptomatic patients, respectively. Rotavirus (63.5%), adenovirus (31.2%) and genogroup II norovirus (18.2%) were the most prevalent viruses in symptomatic patients, but only rotavirus and genogroup II norovirus were significantly associated with diarrhea (OR: 7.9, 95%CI: 3.7-17; OR: 3.5, 95%CI: 1-11.7, respectively). Sapovirus (10.3%), astrovirus (4.9%), genogroup I norovirus (2.7%) and Aichivirus A (0.8%) were less prevalent. The predominant genotype of rotavirus was G9P[8] (36.5%), and the predominant norovirus strain was GII.4 variant 2012 (71.4%). Among sapovirus, the genogroup II (87.5%) predominated. Astrovirus type 1 (41.7%) was the most frequent astrovirus identified. Aichivirus A belonged to the three genotypes (A, B and C). Enteric adenoviruses type 40 and 41 were identified in 10.2% and 5.1% respectively. Several cases of co-infections were detected. The results highlight the high prevalence and the high diversity of enteric viruses in Burkinabe children.

  5. Prevalence and Genetic Diversity of Enteric Viruses in Children with Diarrhea in Ouagadougou, Burkina Faso

    PubMed Central

    Ouédraogo, Nafissatou; Kaplon, Jérôme; Bonkoungou, Isidore Juste O.; Traoré, Alfred Sababénédjo; Pothier, Pierre; Barro, Nicolas; Ambert- Balay, Katia

    2016-01-01

    Enteric viruses are a major cause of diarrhea in children, especially those under five years old. Identifying the viral agents is critical to the development of effective preventive measures. This study aimed to determine the prevalence and genetic diversity of common enteric viruses in children under five years old in Burkina Faso. Stool samples from children with (n = 263) and without (n = 50) diarrhea disorders were collected in Ouagadougou, Burkina Faso from November 2011 to September 2012. Rotavirus, norovirus, sapovirus, astrovirus, adenovirus and Aichivirus A were detected using real-time or end-point (RT-)PCR. Rotavirus strains were G and P genotyped by multiplex RT-PCR and other viral strains were characterized by sequencing of viral subgenomic segements. At least one viral agent was detected in 85.6% and 72% of the symptomatic and asymptomatic patients, respectively. Rotavirus (63.5%), adenovirus (31.2%) and genogroup II norovirus (18.2%) were the most prevalent viruses in symptomatic patients, but only rotavirus and genogroup II norovirus were significantly associated with diarrhea (OR: 7.9, 95%CI: 3.7–17; OR: 3.5, 95%CI: 1–11.7, respectively). Sapovirus (10.3%), astrovirus (4.9%), genogroup I norovirus (2.7%) and Aichivirus A (0.8%) were less prevalent. The predominant genotype of rotavirus was G9P[8] (36.5%), and the predominant norovirus strain was GII.4 variant 2012 (71.4%). Among sapovirus, the genogroup II (87.5%) predominated. Astrovirus type 1 (41.7%) was the most frequent astrovirus identified. Aichivirus A belonged to the three genotypes (A, B and C). Enteric adenoviruses type 40 and 41 were identified in 10.2% and 5.1% respectively. Several cases of co-infections were detected. The results highlight the high prevalence and the high diversity of enteric viruses in Burkinabe children. PMID:27092779

  6. Assessment of the efficacy of membrane filtration processes to remove human enteric viruses and the suitability of bacteriophages and a plant virus as surrogates for those viruses.

    PubMed

    Shirasaki, N; Matsushita, T; Matsui, Y; Murai, K

    2017-05-15

    Here, we evaluated the efficacy of direct microfiltration (MF) and ultrafiltration (UF) to remove three representative human enteric viruses (i.e., adenovirus [AdV] type 40, coxsackievirus [CV] B5, and hepatitis A virus [HAV] IB), and one surrogate of human caliciviruses (i.e., murine norovirus [MNV] type 1). Eight different MF membranes and three different UF membranes were used. We also examined the ability of coagulation pretreatment with high-basicity polyaluminum chloride (PACl) to enhance virus removal by MF. The removal ratios of two bacteriophages (MS2 and φX174) and a plant virus (pepper mild mottle virus; PMMoV) were compared with the removal ratios of the human enteric viruses to assess the suitability of these viruses to be used as surrogates for human enteric viruses. The virus removal ratios obtained with direct MF with membranes with nominal pore sizes of 0.1-0.22 μm differed, depending on the membrane used; adsorptive interactions, particularly hydrophobic interactions between virus particles and the membrane surface, were dominant factors for virus removal. In contrast, direct UF with membranes with nominal molecular weight cutoffs of 1-100 kDa effectively removed viruses through size exclusion, and >4-log10 removal was achieved when a membrane with a nominal molecular weight cutoff of 1 kDa was used. At pH 7 and 8, in-line coagulation-MF with nonsulfated high-basicity PACls containing Al30 species had generally a better virus removal (i.e., >4-log10 virus removal) than the other aluminum-based coagulants, except for φX174. For all of the filtration processes, the removal ratios of AdV, CV, HAV, and MNV were comparable and strongly correlated with each other. The removal ratios of MS2 and PMMoV were comparable or smaller than those of the three human enteric viruses and MNV, and were strongly correlated with those of the three human enteric viruses and MNV. The removal ratios obtained with coagulation-MF for φX174 were markedly smaller than

  7. Concentration of enteric viruses from tap water using an anion exchange resin-based method.

    PubMed

    Pérez-Méndez, A; Chandler, J C; Bisha, B; Goodridge, L D

    2014-09-01

    Detecting low concentrations of enteric viruses in water is needed for public health-related monitoring and control purposes. Thus, there is a need for sensitive, rapid and cost effective enteric viral concentration methods compatible with downstream molecular detection. Here, a virus concentration method based on adsorption of the virus to an anion exchange resin and direct isolation of nucleic acids is presented. Ten liter samples of tap water spiked with different concentrations (10-10,000 TCID50/10 L) of human adenovirus 40 (HAdV-40), hepatitis A virus (HAV) or rotavirus (RV) were concentrated and detected by real time PCR or real time RT-PCR. This method improved viral detection compared to direct testing of spiked water samples where the ΔCt was 12.1 for AdV-40 and 4.3 for HAV. Direct detection of RV in water was only possible for one of the three replicates tested (Ct of 37), but RV detection was improved using the resin method (all replicates tested positive with an average Ct of 30, n=3). The limit of detection of the method was 10 TCID50/10 L for HAdV-40 and HAV, and 100 TCID50/10 L of water for RV. These results compare favorably with detection limits reported for more expensive and laborious methods. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. New strain of mouse hepatitis virus as the cause of lethal enteritis in infant mice.

    PubMed Central

    Hierholzer, J C; Broderson, J R; Murphy, F A

    1979-01-01

    A new strain of mouse hepatitis virus (MHV) was isolated from pooled gut suspensions from an epizootic of lethal enteritis in newborn mice. Negative-contrast electron microscopy showed an abundance of coronavirus particles in the intestinal contents and intestinal epithelium of moribund mice. We found no other virus in the epizootic. Dams seroconverted to MHV polyvalent antigen and to the agent isolated, but did not develop antibodies to other known mouse pathogens. Virus propagated in NCTC-1469 tissue culture produced enteric disease in suckling mice but not fatal diarrhea; the dams of these mice also developed antibodies to MHV and to the isolates. By complement fixation, single radial hemolysis, and quantal neutralization tests, we found the isolates antigenically most closely related to MHV-S, unilaterally related to MHV-JHM, and more distantly related to MHV-1, MHV-3, MHV-A59, and human coronavirus OC-43. We also studied cross-reactions among the murine and human coronaviruses in detail. Tissues of infected newborn mice were examined by light microscopy, thin-section electron microscopy, and frozen-section indirect immunofluorescence, revealing that viral antigen, virus particles, and pathological changes were limited to the intestinal tract. We have designated our isolates as MHV-S/CDC. Images PMID:222687

  9. Sampling methods for recovery of human enteric viruses from environmental surfaces.

    PubMed

    Turnage, Nicole L; Gibson, Kristen E

    2017-06-17

    Acute gastroenteritis causes the second highest infectious disease burden worldwide. Human enteric viruses have been identified as leading causative agents of acute gastroenteritis as well as foodborne illnesses in the U.S. and are generally transmitted by fecal-oral contamination. There is growing evidence of transmission occurring via contaminated fomite including food contact surfaces. Additionally, human enteric viruses have been shown to remain infectious on fomites over prolonged periods of time. To better understand viral persistence, there is a need for more studies to investigate this phenomenon. Therefore, optimization of surface sampling methods is essential to aid in understanding environmental contamination to ensure proper preventative measures are being applied. In general, surface sampling studies are limited and highly variable among recovery efficiencies and research parameters used (e.g., virus type/density, surface type, elution buffers, tools). This review aims to discuss the various factors impacting surface sampling of viruses from fomites and to explore how researchers could move towards a more sensitive and standard sampling method. Copyright © 2017. Published by Elsevier B.V.

  10. Comparative study of two extraction methods for enteric virus recovery from sewage sludge by molecular methods.

    PubMed

    Schlindwein, A D; Simões, C M O; Barardi, C R M

    2009-07-01

    The aim of this study was to compare two nucleic acid extraction methods for the recovery of enteric viruses from activated sludge. Test samples were inoculated with human adenovirus (AdV), hepatitis A virus (HAV), poliovirus (PV) and rotavirus (RV) and were then processed by an adsorption-elution-precipitation method. Two extraction methods were used: an organic solvent-based method and a silica method. The organic-based method was able to recoup 20% of the AdV, 90% of the RV and 100% of both the PV and HAV from seeded samples. The silica method was able to recoup 1.8% of the AdV and 90% of the RV. These results indicate that the organic-based method is more suitable for detecting viruses in sewage sludge.

  11. Enteric virus infection risk from intrusion of sewage into a drinking water distribution network.

    PubMed

    Teunis, P F M; Xu, M; Fleming, K K; Yang, J; Moe, C L; Lechevallier, M W

    2010-11-15

    Contaminants from the soil surrounding drinking water distribution systems are thought to not enter the drinking water when sufficient internal pressure is maintained. Pressure transients may cause short intervals of negative pressure, and the soil near drinking water pipes often contains fecal material due to the proximity of sewage lines, so that a pressure event may cause intrusion of pathogens. This paper presents a risk model for predicting intrusion and dilution of viruses and their transport to consumers. Random entry and dilution of virus was simulated by embedding the hydraulic model into a Monte Carlo simulation. Special attention was given to adjusting for the coincidence of virus presence and use of tap water, as independently occurring short-term events within the longer interval that the virus is predicted to travel in any branch of the distribution system. The probability that a consumer drinks water contaminated with virus is small, but when this happens the virus concentration tends to be high and the risk of infection may be considerable. The spatial distribution of infection risk is highly heterogeneous. The presence of a chlorine residual reduces the infection risk.

  12. Three-Year Study To Assess Human Enteric Viruses in Shellfish

    PubMed Central

    Le Guyader, F.; Haugarreau, L.; Miossec, L.; Dubois, E.; Pommepuy, M.

    2000-01-01

    The main pathogenic enteric viruses able to persist in the environment, such as hepatitis A virus (HAV), Norwalk-like virus (NLV), enterovirus (EV), rotavirus (RV), and astrovirus (AV), were detected by reverse transcription-PCR and hybridization in shellfish during a 3-year study. Oyster samples (n = 108), occasionally containing bacteria, were less frequently contaminated, showing positivity for AV (17%), NLV (23%), EV (19%), and RV (27%), whereas mussel samples, collected in areas routinely impacted by human sewage, were more highly contaminated: AV (50%), HAV (13%), NLV (35%), EV (45%), and RV (52%). Sequences obtained from HAV and NLV amplicons showed a great variety of strains, especially for NLV (strains close to Mexico, Snow Mountain Agent, or Norwalk virus). Viral contamination was mainly observed during winter months, although there were some seasonal differences among the viruses. This first study of virus detection over a fairly long period of time suggests that routine analysis of shellfish by a molecular technique is feasible. PMID:10919776

  13. Uptake and survival of enteric viruses in the blue crab, Callinectes sapidus.

    PubMed Central

    Hejkal, T W; Gerba, C P

    1981-01-01

    Uptake of poliovirus 1 by the blue crab, Callinectes sapidus, was measured to assess the likelihood of contamination by human enteric viruses. Virus was found in all parts of the crab within 2 h after the crab was placed in contaminated artificial seawater. The highest concentrations of virus were found in the hemolymph and digestive tract, but the meat also contained virus. The concentration of virus in the crabs was generally less than in the surrounding water. Changes in salinity did not substantially affect the rate of accumulation. An increase in temperature from 15 to 25 degrees C increased the rates of both uptake and removal. Poliovirus survived up to 6 days in crabs at a temperature of 15 degrees C and a salinity of 10 g/kg. When contaminated crabs were boiled, 99.9% of poliovirus 1, simian rotavirus SA11, and a natural isolate of echovirus 1 were inactivated within 8 min. These data demonstrate that viruses in crabs should not pose a serious health hazard if recommended cooking procedures are used. PMID:6261683

  14. Comparing extraction buffers to identify optimal method to extract somatic coliphages from sewage sludges.

    PubMed

    Murthi, Poornima; Praveen, Chandni; Jesudhasan, Palmy R; Pillai, Suresh D

    2012-08-01

    Somatic coliphages are present in high numbers in sewage sludge. Since they are conservative indicators of viruses during wastewater treatment processes, they are being used to evaluate the effectiveness of sludge treatment processes. However, efficient methods to extract them from sludge are lacking. The objective was to compare different virus extraction procedures and develop a method to extract coliphages from sewage sludge. Twelve different extraction buffers and procedures varying in composition, pH, and sonication were compared in their ability to recover indigenous phages from sludges. The 3% buffered beef extract (BBE) (pH 9.0), the 10% BBE (pH 9.0), and the 10% BBE (pH 7.0) with sonication were short-listed and their recovery efficiency was determined using coliphage-spiked samples. The highest recovery was 16% for the extraction that involved 10% BBE at pH 9.0. There is a need to develop methods to extract somatic phages from sludges for monitoring sludge treatment processes. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Molecular Detection and Genotyping of Male-Specific Coliphages by Reverse Transcription-PCR and Reverse Line Blot Hybridization

    PubMed Central

    Vinjé, Jan; Oudejans, Sjon J. G.; Stewart, Jill R.; Sobsey, Mark D.; Long, Sharon C.

    2004-01-01

    In recent years, there has been increased interest in the use of male-specific or F+ coliphages as indicators of microbial inputs to source waters. Sero- or genotyping of these coliphages can also be used for microbial source tracking (MST). Among the male-specific coliphages, the F+ RNA (FRNA) viruses are well studied, while little is known about the F+ DNA (FDNA) viruses. We have developed a reverse line blot hybridization (RLB) assay which allows for the simultaneous detection and genotyping of both FRNA as well as FDNA coliphages. These assays included a novel generic duplex reverse transcription-PCR (RT-PCR) assay for FRNA viruses as well as a generic PCR for FDNA viruses. The RT-PCR assays were validated by using 190 field and prototype strains. Subsequent DNA sequencing and phylogenetic analyses of RT-PCR products revealed the classification of six different FRNA clusters, including the well-established subgroups I through IV, and three different FDNA clusters, including one (CH) not previously described. Within the leviviruses, a potentially new subgroup (called JS) including strains having more than 40% nucleotide sequence diversity with the known levivirus subgroups (MS2 and GA) was identified. We designed subgroup-specific oligonucleotides that were able to genotype all nine (six FRNA, three FDNA) different clusters. Application of the method to a panel of 351 enriched phage samples from animal feces and wastewater, including known prototype strains (MS2, GA, Qβ, M11, FI, and SP for FRNA and M13, f1, and fd for FDNA), resulted in successful genotyping of 348 (99%) of the samples. In summary, we developed a novel method for standardized genotyping of F+ coliphages as a useful tool for large-scale MST studies. PMID:15466543

  16. Detection of enteric viruses in sewage sludge and treated wastewater effluent.

    PubMed

    Schlindwein, A D; Rigotto, C; Simões, C M O; Barardi, C R M

    2010-01-01

    Sewage sludge and treated wastewater when contaminated with enteric virus and discharged into the environment, could pose a human health risk. The aim of study was to verify the presence and viability of enteric viruses in sewage sludge and treated wastewater at a local sewage plant in Florianopolis city, Brazil. Sewage sludge was concentrated by organic flocculation and polyethylene glycol precipitation and wastewater by electronegative membrane filtration and ultrafiltration by Centriprep Concentrator. Adenovirus (AdV), hepatitis A virus (HAV), and Rotavirus (RV) were examined for all samples for 12 months and Poliovirus (PV) was also tested for in sewage sludge samples. AdV was the most prevalent in both kind of samples, followed by RV, PV (in sludge) and HAV. Viral viability by cell culture (ICC-PCR) was: AdV: 100%, HAV: 16.7%, PV: 91.7%, RV: 25% in sludge and AdV: 66.6%, HAV: 66.6% and RV: 0% in wastewater. IFA for AdV in sludge ranged from 70 to 300 FFU/ml. QPCR for AdV ranged from 4.6 x 10(4) to 1.2 x 10(6) and from 50 to 1.3 x 10(4) gc/ml in sludge and wastewater, respectively. HAV quantification in sludge ranged from 3.1 x 10(2) to 5.4 x 10(2) gc/ml. In conclusion, it was possible to correlate presence and viability of enteric viruses in the environmental samples analyzed.

  17. Occurrence of enteric viruses in reclaimed and surface irrigation water: relationship with microbiological and physicochemical indicators.

    PubMed

    López-Gálvez, F; Truchado, P; Sánchez, G; Aznar, R; Gil, M I; Allende, A

    2016-10-01

    To assess the prevalence of enteric viruses in different irrigation water sources and in the irrigated produce, and the possible links with microbiological and physicochemical water characteristics. The prevalence and levels of Escherichia coli, Norovirus (NoV) genogroup I (GI) and II (GII), as well as Hepatitis A virus were assessed in three types of water: surface water (surface-W), reclaimed water subjected to secondary treatment (secondary-W) and reclaimed water subjected to tertiary treatment (tertiary-W), as well as in zucchini irrigated with these irrigation water sources. Chemical oxygen demand (COD), turbidity, total suspended solids, alkalinity and maximum filterable volume (MFV) were also measured in the water. Higher prevalence of NoV in secondary-W (GI 100%, GII 55·6%) and tertiary-W (GI 91·7%, GII 66·7%) compared with surface-W (GI 58·4%, GII 22·2%) was observed. Nov GI showed positive correlation with E. coli (Spearman's correlation coefficient = 0·68, P < 0·01), and with some physicochemical parameters such as COD (0·52, P < 0·01), turbidity (0·52, P < 0·01) and MFV (0·54, P < 0·01). Escherichia coli and enteric viruses were not detected in zucchini. There is a potential risk of contamination of crops with NoV when reclaimed water is used for irrigation. Increase the knowledge on the prevalence of enteric viruses in different irrigation water sources, and its consequences for fresh produce safety. © 2016 The Society for Applied Microbiology.

  18. Phenolic Compounds of Potato Peel Extracts: Their Antioxidant Activity and Protection against Human Enteric Viruses.

    PubMed

    Silva-BeltrÁn, Norma Patricia; Chaidez-Quiroz, Cristóbal; López-Cuevas, Osvaldo; Ruiz-Cruz, Saul; López-Mata, Marco A; Del-Toro-SÁnchez, Carmen Lizette; Marquez-Rios, Enrique; Ornelas-Paz, José de Jesús

    2017-02-28

    Potato peels (PP) contain several bioactive compounds. These compounds are known to provide human health benefits, including antioxidant and antimicrobial properties. In addition, these compounds could have effects on human enteric viruses that have not yet been reported. The objective of the present study was to evaluate the phenolic composition, antioxidant properties in the acidified ethanol extract (AEE) and water extract of PP, and the antiviral effects on the inhibition of Av-05 and MS2 bacteriophages, which were used as human enteric viral surrogates. The AEE showed the highest phenolic content and antioxidant activity. Chlorogenic and caffeic acids were the major phenolic acids. In vitro analysis indicated that PP had a strong antioxidant activity. A 3 h incubation with AEE at a concentration of 5 mg/ml was needed to reduce the PFU/ml (plaque-forming unit per unit volume) of Av-05 and MS2 by 2.8 and 3.9 log₁₀, respectively, in a dose-dependent manner. Our data suggest that PP has potential to be a source of natural antioxidants against enteric viruses.

  19. Propidium Monoazide Coupled with PCR Predicts Infectivity of Enteric Viruses in Swine Manure and Biofertilized Soil.

    PubMed

    Fongaro, Gislaine; Hernández, Marta; García-González, María Cruz; Barardi, Célia Regina Monte; Rodríguez-Lázaro, David

    2016-03-01

    The use of propidium monoazide (PMA) coupled with real-time PCR (RT-qPCR or qPCR for RNA or DNA viruses, respectively) was assessed to discriminate infectious enteric viruses in swine raw manure, swine effluent from anaerobic biodigester (AB) and biofertilized soils. Those samples were spiked either with infectious and heat-inactivated human adenovirus-2 (HAdV-2) or mengovirus (vMC0), and PMA-qPCR/RT-qPCR allowed discriminating inactivated viruses from the infective particles, with significant reductions (>99.9%). Then, the procedure was further assayed to evaluate the presence and stability of two non-cultivable viruses (porcine adenovirus and rotavirus A) in natural samples (swine raw manure, swine effluent from AB and biofertilized soils); it demonstrated viral inactivation during the storage period at 23 °C. As a result, the combination of PMA coupled to real-time PCR can be a promising alternative for prediction of viral infectivity in comparison to more labour-intensive and costly techniques such as animal or tissue-culture infectivity methods, and for those viruses that do not have currently available cell culture techniques.

  20. Detection of low levels of enteric viruses in metropolitan and airplane sewage.

    PubMed Central

    Shieh, Y S; Baric, R S; Sobsey, M D

    1997-01-01

    To detect less prevalent viruses, such as wild-type polioviruses in sewage from a highly immunized community, a method was developed to efficiently recover viruses and remove PCR inhibitors. The method consisted of initial separation of solids from liquid, followed by solvent extractions, polyethylene glycol precipitations, Sephadex G-200 chromatography, and guanidinium isothiocyanate (GIT) extraction. To elute viruses from the separated solids, 0.5 M threonine (pH 7.5) was as efficient as 3% beef extract but conferred no PCR inhibition. In samples that were concentrated approximately 1,000-fold, 21% of the initially seeded viruses were recovered. When poliovirus type 3 (PV3) Sabin strain at low levels and PV1 LSc strain at high levels were seeded in raw sewage, PV3 was specifically detected in the final sample concentrates at sensitivities of 14 PFU by direct PCR and 0.7 PFU by GIT extraction-PCR. While applying the method to international airplane sewage, which contains high levels of solids as well as commercial sanitizers, 44% (7 of 16) of the samples were found to harbor enteroviruses by both cell culture infectivity and pan-enterovirus PCR analyses. Nucleotide sequencing of the PCR products revealed that multiple enterovirus genotypes were amplified from each final sewage concentrate, whereas the fewer virus genotypes detected by cell culture infectivity were probably the better growing strains. By this method, we demonstrated that air travel may contribute to the intercontinental dissemination of enteric pathogens. PMID:9361427

  1. Pathogenic Escherichia coli and enteric viruses in biosolids and related top soil improvers in Italy.

    PubMed

    Tozzoli, R; Di Bartolo, I; Gigliucci, F; Brambilla, G; Monini, M; Vignolo, E; Caprioli, A; Morabito, S

    2017-01-01

    To investigate the presence of genomic traits associated with a set of enteric viruses as well as pathogenic Escherichia coli in top soil improvers (TSI) from Italy. Twenty-four TSI samples originating from municipal sewage sludges, pig manure, green and household wastes were analysed by real time PCR for the presence of hepatitis E virus (HEV), porcine and human adenovirus (HuAdV), norovirus, rotavirus and diarrhoeagenic E. coli. None of the samples was found positive for HEV or rotavirus. Four samples were positive for the presence of nucleic acids from human norovirus, two of them being also positive for HuAdV. Real time PCR screening gave positive results for many of the virulence genes characteristic of diarrhoeagenic E. coli in 21 samples. These included the verocytotoxin-coding genes, in some cases associated with intimin-coding gene, and markers of enteroaggregative, enterotoxigenic and enteroinvasive E. coli. These results provide evidence that enteric viruses and pathogenic E. coli may be released into the environment through the use of sludge-derived TSI. The results highlight that the TSI-related environmental risk for the food chain should be more deeply assessed. © 2016 The Society for Applied Microbiology.

  2. Effect of 2-(a Hydroxybenzyl) Benzimidazole on Teschen Disease Virus, Pig Enteric Viruses, and Foot-and-Mouth Disease Virus in Kidney Cell Cultures.

    PubMed

    Dardiri, A H; Delay, P D; Bachrach, H L

    1964-07-01

    The synthetic compound, 2-((a) hydroxybenzyl) benzimidazole (HBB) partially inhibited the cytopathogenicity and multiplication of Teschen disease virus (TDV) and 6 enteric-cytopathogenic porcine orphan (ECPO) viruses in swine cells but not of foot-and-mouth disease virus (FMDV) in bovine kidney cells. For FMDV, there appeared to be a slight enhancement in virus yield and in cytopathic effect when HBB was present. The inhibition of the viral cytopathic effect and reproduction of TDV and ECPO viruses was related to the concentration of HBB. At the inhibitory level, the compound did not cause any changes in the microscopic structure of pig kidney or bovine kidney cells. The suppression of TDV multiplication was reversed when HBB was removed. The compound did not inactivate TDV or FMDV.

  3. Effect of 2-(a Hydroxybenzyl) Benzimidazole on Teschen Disease Virus, Pig Enteric Viruses, and Foot-and-Mouth Disease Virus in Kidney Cell Cultures

    PubMed Central

    Dardiri, A. H.; DeLay, P. D.; Bachrach, H. L.

    1964-01-01

    The synthetic compound, 2-(a hydroxybenzyl) benzimidazole (HBB) partially inhibited the cytopathogenicity and multiplication of Teschen disease virus (TDV) and 6 enteric-cytopathogenic porcine orphan (ECPO) viruses in swine cells but not of foot-and-mouth disease virus (FMDV) in bovine kidney cells. For FMDV, there appeared to be a slight enhancement in virus yield and in cytopathic effect when HBB was present. The inhibition of the viral cytopathic effect and reproduction of TDV and ECPO viruses was related to the concentration of HBB. At the inhibitory level, the compound did not cause any changes in the microscopic structure of pig kidney or bovine kidney cells. The suppression of TDV multiplication was reversed when HBB was removed. The compound did not inactivate TDV or FMDV. Imagesp164-a PMID:17649516

  4. Inactivation of internalized and surface contaminated enteric viruses in green onions.

    PubMed

    Hirneisen, Kirsten A; Kniel, Kalmia E

    2013-09-02

    With increasing outbreaks of gastroenteritis associated with produce, it is important to assess interventions to reduce the risk of illness. UV, ozone and high pressure are non-thermal processing technologies that have potential to inactivate human pathogens on produce and allow the retention of fresh-like organoleptic properties. The objective of this study was to determine if UV, ozone, and high pressure are effective technologies compared to traditional chlorine spray on green onions to reduce enteric viral pathogens and to determine the effect of location of the virus (surface or internalized) on the efficacy of these processes. Mature green onion plants were inoculated with murine norovirus (MNV), hepatitis A virus (HAV) and human adenovirus type 41 (Ad41) either on the surface through spot inoculation or through inoculating contaminated hydroponic solution allowing for uptake of the virus into the internal tissues. Inoculated green onions were treated with UV (240 mJ s/cm(2)), ozone (6.25 ppm for 10 min), pressure (500 MPa, for 5 min at 20°C), or sprayed with calcium hypochlorite (150 ppm, 4°C). Viral inactivation was determined by comparing treated and untreated inoculated plants using cell culture infectivity assays. Processing treatments were observed to greatly affect viral inactivation. Viral inactivation for all three viruses was greatest after pressure treatment and the lowest inactivation was observed after chlorine and UV treatment. Both surface inoculated viruses and viruses internalized in green onions were inactivated to some extent by these post-harvest processing treatments. These results suggest that ozone and high pressure processes aimed to reduce the level of microbial contamination of produce have the ability to inactivate viruses if they become localized in the interior portions of produce.

  5. Myxoma and vaccinia viruses exploit different mechanisms to enter and infect human cancer cells

    SciTech Connect

    Villa, Nancy Y.; Bartee, Eric; Mohamed, Mohamed R.; Rahman, Masmudur M.; Barrett, John W.; McFadden, Grant

    2010-06-05

    Myxoma (MYXV) and vaccinia (VACV) viruses have recently emerged as potential oncolytic agents that can infect and kill different human cancer cells. Although both are structurally similar, it is unknown whether the pathway(s) used by these poxviruses to enter and cause oncolysis in cancer cells are mechanistically similar. Here, we compared the entry of MYXV and VACV-WR into various human cancer cells and observed significant differences: 1 - low-pH treatment accelerates fusion-mediated entry of VACV but not MYXV, 2 - the tyrosine kinase inhibitor genistein inhibits entry of VACV, but not MYXV, 3 - knockdown of PAK1 revealed that it is required for a late stage event downstream of MYXV entry into cancer cells, whereas PAK1 is required for VACV entry into the same target cells. These results suggest that VACV and MYXV exploit different mechanisms to enter into human cancer cells, thus providing some rationale for their divergent cancer cell tropisms.

  6. Real-time fluorescence loop-mediated isothermal amplification for the diagnosis of hemorrhagic enteritis virus.

    PubMed

    Liu, Xuemei; Li, Yuhao; Xu, Chenggang; Qin, Jianru; Hao, Jianyong; Feng, Min; Tan, Liqiang; Jia, Weixin; Liao, Ming; Cao, Weisheng

    2014-04-01

    Suspected cases of hemorrhagic enteritis associated with hemorrhagic enteritis virus (HEV) are becoming more frequent among yellow chickens in the Guangdong Province of China. In this study, we have developed a one-step, ecumenical, real-time fluorescence loop-mediated isothermal amplification (RealAmp) assay for the rapid diagnosis of HEV. The RealAmp assay was performed at 63°C and reduced the assay time to 15min, using a simple and portable device, the ESE-Quant Tube Scanner. The detection limit of DNA was 1fg/μl, and the detection was specific only to HEV. We also used nested PCR to evaluate the application of the RealAmp assay. The coincidence rate of the two methods was 100%. Our data indicated that the RealAmp assay provides a sensitive, specific, and user-friendly diagnostic tool for the identification and quantification of HEV for field diagnosis and in laboratory research.

  7. Myxoma and vaccinia viruses exploit different mechanisms to enter and infect human cancer cells.

    PubMed

    Villa, Nancy Y; Bartee, Eric; Mohamed, Mohamed R; Rahman, Masmudur M; Barrett, John W; McFadden, Grant

    2010-06-05

    Myxoma (MYXV) and vaccinia (VACV) viruses have recently emerged as potential oncolytic agents that can infect and kill different human cancer cells. Although both are structurally similar, it is unknown whether the pathway(s) used by these poxviruses to enter and cause oncolysis in cancer cells are mechanistically similar. Here, we compared the entry of MYXV and VACV-WR into various human cancer cells and observed significant differences: 1--low-pH treatment accelerates fusion-mediated entry of VACV but not MYXV, 2--the tyrosine kinase inhibitor genistein inhibits entry of VACV, but not MYXV, 3--knockdown of PAK1 revealed that it is required for a late stage event downstream of MYXV entry into cancer cells, whereas PAK1 is required for VACV entry into the same target cells. These results suggest that VACV and MYXV exploit different mechanisms to enter into human cancer cells, thus providing some rationale for their divergent cancer cell tropisms.

  8. Adaptation and growth kinetics study of an Indian isolate of virulent duck enteritis virus in Vero cells.

    PubMed

    Aravind, S; Kamble, Nitin M; Gaikwad, Satish S; Shukla, Sanjeev Kumar; Dey, Sohini; Mohan, C Madhan

    2015-01-01

    Duck virus enteritis, also known as duck plague, is a viral infection of ducks caused by duck enteritis virus (DEV). The control of the disease is mainly done by vaccination with chicken embryo adapted live virus that is known to be poorly immunogenic and elicits only partial protection. Further, the embryo propagated vaccine virus pose a threat of harboring other infectious agents. Seeing these limitations, the present study reports for the first time regarding propagation and adaptation of a virulent Indian isolate of duck enteritis virus in Vero cell line. In this study isolation of an outbreak virus from Kerala state was done in chicken embryo fibroblast cell culture (CEF). Then adapted the DEV isolate in the Vero cell line. The characteristic cytopathic effects (CPE) of clumping and fusion of Vero cells were observed starting from the 7th passage onwards. The presence of the virus and its multiplication in Vero cells was confirmed by detection of viral specific DNA and antigen by using polymerase chain reaction (PCR) and indirect immuno fluorescent assay (IIFA), respectively. PCR detection of DEV using self designed primers for US4 (gD) and UL30 (DNA Polymerase) gene has been reported for the in the present study. The kinetics of DEV in Vero cells revealed a maximum infectivity titer of 10(5.6) TCID 50/ml after 48hr of viral infection. Compared to chicken embryo adapted DVE vaccine virus, the Vero cell culture system is free from other infectious agents. So it will be a good candidate for cultivation and propagation of duck enteritis virus vaccine strain. Further research studies are suggested to explore the feasibility of utilizing this Vero cell culture adapted DEV isolate for developing an attenuated vaccine virus against duck virus enteritis.

  9. HN gene c-terminal extension of Newcastle disease virus is not the determinant of the enteric tropism

    USDA-ARS?s Scientific Manuscript database

    The hemagglutinin-neuraminidase (HN) protein of Newcastle disease virus (NDV) plays an important role in virus pathogenicity and tissue tropism. Sequence analysis revealed that the HN gene of many asymptomatic enteric NDV strains encodes a larger open reading frame (616 amino acids, aa) with additio...

  10. Use of propidium monoazide in reverse transcriptase PCR to distinguish between infectious and noninfectious enteric viruses in water samples

    EPA Science Inventory

    Human enteric viruses can be present in untreated and inadequately treated drinking water. Molecular methods, such as the reverse transcriptase PCR (RT-PCR), can detect viral genomes in a few hours, but they cannot distinguish between infectious and noninfectious viruses. Since o...

  11. THE USE OF RT-PCR FOR THE DETECTION OF ENTERIC VIRUSES IN PRAIRIE SURFACE DRINKING WATER SUPPLIES

    EPA Science Inventory

    Concerns over the microbial safety of drinking water supplies have focused on bacteria and parasites while the occurrence of pathogenic waterborne viruses have been largely ignored. In fact, water supplies are not routinely monitored for human enteric viruses. This is despite t...

  12. THE USE OF RT-PCR FOR THE DETECTION OF ENTERIC VIRUSES IN PRAIRIE SURFACE DRINKING WATER SUPPLIES

    EPA Science Inventory

    Concerns over the microbial safety of drinking water supplies have focused on bacteria and parasites while the occurrence of pathogenic waterborne viruses have been largely ignored. In fact, water supplies are not routinely monitored for human enteric viruses. This is despite t...

  13. Use of propidium monoazide in reverse transcriptase PCR to distinguish between infectious and noninfectious enteric viruses in water samples

    EPA Science Inventory

    Human enteric viruses can be present in untreated and inadequately treated drinking water. Molecular methods, such as the reverse transcriptase PCR (RT-PCR), can detect viral genomes in a few hours, but they cannot distinguish between infectious and noninfectious viruses. Since o...

  14. Characterisation of bovine viral diarrhoea virus (BVDV) isolates from an outbreak with haemorrhagic enteritis and severe pneumonia.

    PubMed

    Yeşilbağ, Kadir; Förster, Christine; Ozyiğit, M Ozgür; Alpay, Gizem; Tuncer, Pelin; Thiel, Heinz-Jürgen; König, Matthias

    2014-02-21

    During 2007 a disease outbreak occurred in cattle in the Marmara region of western Turkey characterised by severe pneumonia and haemorrhagic enteritis in calves. Cases from three farms at different locations were examined and bovine viral diarrhoea virus (BVDV) isolated in all cases. Phylogenetic characterisation of the virus isolates allocated them in a new cluster tentatively named as BVDV-1r.

  15. Enteric viruses in HIV-1 seropositive and HIV-1 seronegative children with diarrheal diseases in Brazil

    PubMed Central

    Rocha, Monica Simões; Fumian, Tulio Machado; Maranhão, Adriana Gonçalves; de Assis, Rosane Maria; Xavier, Maria da Penha Trindade Pinheiro; Rocha, Myrna Santos; Miagostovich, Marize Pereira; Leite, José Paulo Gagliardi; Volotão, Eduardo de Mello

    2017-01-01

    Diarrheal diseases (DD) have distinct etiological profiles in immune-deficient and immune-competent patients. This study compares detection rates, genotype distribution and viral loads of different enteric viral agents in HIV-1 seropositive (n = 200) and HIV-1 seronegative (n = 125) children hospitalized with DD in Rio de Janeiro, Brazil. Except for group A rotavirus (RVA), which were detected through enzyme immunoassay, the other enteric viruses (norovirus [NoV], astrovirus [HAstV], adenovirus [HAdV] and bocavirus [HBoV]) were detected through PCR or RT-PCR. A quantitative PCR was performed for RVA, NoV, HAstV, HAdV and HBoV. Infections with NoV (19% vs. 9.6%; p<0.001), HBoV (14% vs. 7.2%; p = 0.042) and HAdV (30.5% vs. 14.4%; p<0.001) were significantly more frequent among HIV-1 seropositive children. RVA was significantly less frequent among HIV-1 seropositive patients (6.5% vs. 20%; p<0.001). Similarly, frequency of infection with HAstV was lower among HIV-1 seropositive children (5.5% vs. 12.8%; p = 0.018). Among HIV-1 seropositive children 33 (16.5%) had co-infections, including three enteric viruses, such as NoV, HBoV and HAdV (n = 2) and NoV, HAstV and HAdV (n = 2). The frequency of infection with more than one virus was 17 (13.6%) in the HIV-1 negative group, triple infection (NoV + HAstV + HBoV) being observed in only one patient. The median viral load of HAstV in feces was significantly higher among HIV-1 positive children compared to HIV-1 negative children. Concerning children infected with RVA, NoV, HBoV and HAdV, no statistically significant differences were observed in the medians of viral loads in feces, comparing HIV-1 seropositive and HIV-1 seronegative children. Similar detection rates were observed for RVA, HAstV and HAdV, whilst NoV and HBoV were significantly more prevalent among children with CD4+ T lymphocyte count below 200 cells/mm3. Enteric viruses should be considered an important cause of DD in HIV-1 seropositive children, along with

  16. Round-robin comparison of methods for the detection of human enteric viruses in lettuce.

    PubMed

    Le Guyader, Françoise S; Schultz, Anna-Charlotte; Haugarreau, Larissa; Croci, Luciana; Maunula, Leena; Duizer, Erwin; Lodder-Verschoor, Froukje; von Bonsdorff, Carl-Henrik; Suffredini, Elizabetha; van der Poel, Wim M M; Reymundo, Rosanna; Koopmans, Marion

    2004-10-01

    Five methods that detect human enteric virus contamination in lettuce were compared. To mimic multiple contaminations as observed after sewage contamination, artificial contamination was with human calicivirus and poliovirus and animal calicivirus strains at different concentrations. Nucleic acid extractions were done at the same time in the same laboratory to reduce assay-to-assay variability. Results showed that the two critical steps are the washing step and removal of inhibitors. The more reliable methods (sensitivity, simplicity, low cost) included an elution/concentration step and a commercial kit. Such development of sensitive methods for viral detection in foods other than shellfish is important to improve food safety.

  17. Detection of enteric viruses in oysters by using the polymerase chain reaction.

    PubMed Central

    Atmar, R L; Metcalf, T G; Neill, F H; Estes, M K

    1993-01-01

    A procedure for the detection of enteric viral nucleic acid in oysters by the polymerase chain reaction was developed. Known quantities of poliovirus type 1 were seeded into oysters. Virus was extracted and concentrated by using organic flocculation and polyethylene glycol precipitation. Inhibitors of reverse transcription-polymerase chain reaction were present in the oyster extracts, preventing amplification of target viral nucleic acid. The use of cetyltrimethylammonium bromide precipitation sufficiently removed inhibitors to allow detection of as few as 10 PFU of poliovirus. Norwalk virus also could be detected after being seeded into oysters. This methodology may be useful for the detection of these and other shellfish-borne viral pathogens. Images PMID:8382024

  18. Abundance and Distribution of Enteric Bacteria and Viruses in Coastal and Estuarine Sediments—a Review

    PubMed Central

    Hassard, Francis; Gwyther, Ceri L.; Farkas, Kata; Andrews, Anthony; Jones, Vera; Cox, Brian; Brett, Howard; Jones, Davey L.; McDonald, James E.; Malham, Shelagh K.

    2016-01-01

    The long term survival of fecal indicator organisms (FIOs) and human pathogenic microorganisms in sediments is important from a water quality, human health and ecological perspective. Typically, both bacteria and viruses strongly associate with particulate matter present in freshwater, estuarine and marine environments. This association tends to be stronger in finer textured sediments and is strongly influenced by the type and quantity of clay minerals and organic matter present. Binding to particle surfaces promotes the persistence of bacteria in the environment by offering physical and chemical protection from biotic and abiotic stresses. How bacterial and viral viability and pathogenicity is influenced by surface attachment requires further study. Typically, long-term association with surfaces including sediments induces bacteria to enter a viable-but-non-culturable (VBNC) state. Inherent methodological challenges of quantifying VBNC bacteria may lead to the frequent under-reporting of their abundance in sediments. The implications of this in a quantitative risk assessment context remain unclear. Similarly, sediments can harbor significant amounts of enteric viruses, however, the factors regulating their persistence remains poorly understood. Quantification of viruses in sediment remains problematic due to our poor ability to recover intact viral particles from sediment surfaces (typically <10%), our inability to distinguish between infective and damaged (non-infective) viral particles, aggregation of viral particles, and inhibition during qPCR. This suggests that the true viral titre in sediments may be being vastly underestimated. In turn, this is limiting our ability to understand the fate and transport of viruses in sediments. Model systems (e.g., human cell culture) are also lacking for some key viruses, preventing our ability to evaluate the infectivity of viruses recovered from sediments (e.g., norovirus). The release of particle-bound bacteria and

  19. Abundance and Distribution of Enteric Bacteria and Viruses in Coastal and Estuarine Sediments-a Review.

    PubMed

    Hassard, Francis; Gwyther, Ceri L; Farkas, Kata; Andrews, Anthony; Jones, Vera; Cox, Brian; Brett, Howard; Jones, Davey L; McDonald, James E; Malham, Shelagh K

    2016-01-01

    The long term survival of fecal indicator organisms (FIOs) and human pathogenic microorganisms in sediments is important from a water quality, human health and ecological perspective. Typically, both bacteria and viruses strongly associate with particulate matter present in freshwater, estuarine and marine environments. This association tends to be stronger in finer textured sediments and is strongly influenced by the type and quantity of clay minerals and organic matter present. Binding to particle surfaces promotes the persistence of bacteria in the environment by offering physical and chemical protection from biotic and abiotic stresses. How bacterial and viral viability and pathogenicity is influenced by surface attachment requires further study. Typically, long-term association with surfaces including sediments induces bacteria to enter a viable-but-non-culturable (VBNC) state. Inherent methodological challenges of quantifying VBNC bacteria may lead to the frequent under-reporting of their abundance in sediments. The implications of this in a quantitative risk assessment context remain unclear. Similarly, sediments can harbor significant amounts of enteric viruses, however, the factors regulating their persistence remains poorly understood. Quantification of viruses in sediment remains problematic due to our poor ability to recover intact viral particles from sediment surfaces (typically <10%), our inability to distinguish between infective and damaged (non-infective) viral particles, aggregation of viral particles, and inhibition during qPCR. This suggests that the true viral titre in sediments may be being vastly underestimated. In turn, this is limiting our ability to understand the fate and transport of viruses in sediments. Model systems (e.g., human cell culture) are also lacking for some key viruses, preventing our ability to evaluate the infectivity of viruses recovered from sediments (e.g., norovirus). The release of particle-bound bacteria and

  20. Release of infectious human enteric viruses by full-scale wastewater utilities.

    PubMed

    Simmons, Fredrick James; Xagoraraki, Irene

    2011-06-01

    In the United States, infectious human enteric viruses are introduced daily into the environment through the discharge of treated water and the digested sludge (biosolids). In this study, a total of 30 wastewater and 6 biosolids samples were analyzed over five months (May-September 2008-2009) from five full-scale wastewater treatment plants (WWTPs) in Michigan using real-time PCR and cell culture assays. Samples were collected from four different locations at each WWTP (influent, pre-disinfection, post-disinfection and biosolids) using the 1MDS electropositive cartridge filter. Adenovirus (HAdV), enterovirus (EV) and norovirus genogroup II (NoV GGII) were detected in 100%, 67% and 10%, respectively of the wastewater samples using real-time PCR. Cytopathic effect (CPE) was present in 100% of the cell culture samples for influent, pre- and post-disinfection and biosolids with an average log concentration of 4.1 (2.9-4.7, range) 1.1 (0.0-2.3, range) and 0.5 (0.0-1.6, range) MPN/100 L and 2.1 (0.5-4.1) viruses/g, respectively. A significant log reduction in infectious viruses throughout the wastewater treatment process was observed at an average 4.2 (1.9-5.0, range) log units. A significant difference (p-value <0.05) was observed using real-time PCR data for HAdV but not for EV (p-value >0.05) removal in MBR as compared to conventional treatment. MBR treatment was able to achieve an additional 2 and 0.5 log reduction of HAdV and EV, respectively. This study has demonstrated the release of infectious enteric viruses in the final effluent and biosolids of wastewater treatment into the environment.

  1. Molecular epidemiology of enteric viruses in children with sporadic gastroenteritis in Valencia, Venezuela.

    PubMed

    González, Germán G; Liprandi, Ferdinando; Ludert, Juan E

    2011-11-01

    The epidemiology and clinical symptoms in infants and young children with acute sporadic viral gastroenteritis due to viral etiologies other than rotaviruses have not been studied thoroughly in developing countries. Fecal specimens from 480 children <5 years of age who were admitted to a large children's hospital in the city of Valencia, Venezuela, with acute diarrhea during January to December 2003 were collected and screened by ELISA and RT-PCR for rotavirus, adenovirus, norovirus, sapovirus, and astrovirus. Viral isolates were partially characterized by phylogenetic analysis. Norovirus viral load was determined by qRT-PCR. Viruses were identified in 205 (43%) of the 480 stool samples collected. Rotavirus was the virus detected most frequently (21%), followed by norovirus (13%), adenovirus (5%), sapovirus (3%), and astrovirus (2%). Viral infection rates were highest in the 6- to 11-month-old group (49%) and lowest in children >24 months old. Norovirus GII was more prevalent (90%) than GI (10%). Enteric adenovirus (serotypes 40/41) was present in 43% of the adenovirus-positive samples. Rotavirus infection caused more severe clinical symptoms than the other viruses detected, with more vomiting (84%) and dehydration (11%) that led to hospital admission of 20% of the children with acute gastroenteritis. Rotavirus and norovirus showed marked and opposite seasonal patterns. No association was observed between disease severity and viral load in children infected with norovirus. These results not only confirm the impact of rotavirus infection in Venezuela but also indicate that other enteric viruses, especially noroviruses, contribute significantly to sporadic acute gastroenteritis and to the burden of disease. Copyright © 2011 Wiley-Liss, Inc.

  2. Analysis of experimental mink enteritis virus infection in mink: in situ hybridization, serology, and histopathology.

    PubMed Central

    Uttenthal, A; Larsen, S; Lund, E; Bloom, M E; Storgård, T; Alexandersen, S

    1990-01-01

    Strand-specific hybridization probes were used in in situ hybridization studies to localize cells containing mink enteritis virus (MEV) virion DNA or MEV replicative-form DNA and mRNA. Following the experimental MEV infection of 3-month-old unvaccinated mink, a significant increase in serum antibodies to MEV was detected at postinfection day (PID) 6, 2 days after the onset of fecal shedding of virus. Prior to the appearance of virus in feces, viral DNA could be detected in the mesenteric lymph node and intestine. The largest percentage of cells positive for virion DNA was 10% and was detected in the intestine on PID 6. However, replication of the virus apparently peaked at PID 4. The number of MEV replicative-form DNA and mRNA molecules was found to be approximately 250,000 copies per infected lymph node cell or crypt epithelial cell. The localization, levels, and time course of viral replication have important implications for the pathogenesis of MEV-induced disease. The data presented on MEV are correlated with earlier results on the other mink parvovirus, Aleutian mink disease parvovirus, and a possible explanation for the remarkable differences in pathogenesis of disease caused by these two parvoviruses is discussed. Images PMID:2159543

  3. Egg drop syndrome virus enters duck embryonic fibroblast cells via clathrin-mediated endocytosis.

    PubMed

    Huang, Jingjing; Tan, Dan; Wang, Yang; Liu, Caihong; Xu, Jiamin; Wang, Jingyu

    2015-12-02

    Previous studies of egg drop syndrome virus (EDSV) is restricted to serological surveys, disease diagnostics, and complete viral genome analysis. Consequently, the infection characteristics and entry routes of EDSV are poorly understood. Therefore, we aimed to explore the entry pathway of EDSV into duck embryonic fibroblast (DEF) cells as well as the infection characteristics and proliferation of EDSV in primary DEF and primary chicken embryo liver (CEL) cells. Transmission electron microscopy revealed that the virus triggered DEF cell membrane invagination as early as 10 min post-infection and that integrated endocytic vesicles formed at 20 min post-infection. The virus yield in EDSV-infected DEF cells treated with chlorpromazine (CPZ), sucrose, methyl-β-cyclodextrin (MβCD), or NH4Cl was measured by quantitative real-time PCR. Compared with the mock treatment, CPZ and sucrose greatly inhibited the production of viral progeny in a dose-dependent manner, while MβCD treatment did not result in a significant difference. Furthermore, NH4Cl had a strong inhibitory effect on the production of EDSV progeny. In addition, indirect immunofluorescence demonstrated that virus particles clustered on the surface of DEF cells treated with CPZ or sucrose. These results indicate that EDSV enters DEF cells through clathrin-mediated endocytosis followed by a pH-dependent step, which is similar to the mechanism of entry of human adenovirus types 2 and 5. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Acute gastroenteritis and enteric viruses in hospitalised children in southern Brazil: aetiology, seasonality and clinical outcomes.

    PubMed

    Raboni, Sonia Maria; Damasio, Guilherme Augusto Costa; Ferreira, Carla E O; Pereira, Luciane A; Nogueira, Meri B; Vidal, Luine R; Cruz, Cristina R; Almeida, Sergio M

    2014-07-01

    Viral acute gastroenteritis (AG) is a significant cause of hospitalisation in children younger than five years. Group A rotavirus (RVA) is responsible for 30% of these cases. Following the introduction of RVA immunisation in Brazil in 2006, a decreased circulation of this virus has been observed. However, AG remains an important cause of hospitalisation of paediatric patients and only limited data are available regarding the role of other enteric viruses in these cases. We conducted a prospective study of paediatric patients hospitalised for AG. Stool samples were collected to investigate human adenovirus (HAdV), RVA, norovirus (NoV) and astrovirus (AstV). NoV typing was performed by nucleotide sequencing and phylogenetic analysis. From the 225 samples tested, 60 (26%) were positive for at least one viral agent. HAdV, NoV, RVA and AstV were detected in 16%, 8%, 6% and 0% of the samples, respectively. Mixed infections were found in nine patients: HAdV/RVA (5), HAdV/NoV (3) and HAdV/NoV/RVA (1). The frequency of fever and lymphocytosis was significantly higher in virus-infected patients. Phylogenetic analysis of NoV indicated that all of these viruses belonged to genotype GII.4. The significant frequency of these pathogens in patients with AG highlights the need to routinely implement laboratory investigations.

  5. Human Adenoviruses and Coliphages in Urban Runoff-Impacted Coastal Waters of Southern California

    PubMed Central

    Jiang, Sunny; Noble, Rachel; Chu, Weiping

    2001-01-01

    A nested-PCR method was used to detect the occurrence of human adenovirus in coastal waters of Southern California. Twenty- to forty-liter water samples were collected from 12 beach locations from Malibu to the border of Mexico between February and March 1999. All sampling sites were located at mouths of major rivers and creeks. Two ultrafiltration concentration methods, tangential flow filtration (TFF) and vortex flow filtration (VFF), were compared using six environmental samples. Human adenoviruses were detected in 4 of the 12 samples tested after nucleic acid extraction of VFF concentrates. The most probable number of adenoviral genomes ranged from 880 to 7,500 per liter of water. Coliphages were detected at all sites, with the concentration varying from 5.3 to 3332 PFU/liter of water. F-specific coliphages were found at 5 of the 12 sites, with the concentration ranging from 5.5 to 300 PFU/liter. The presence of human adenovirus was not significantly correlated with the concentration of coliphage (r = 0.32) but was significantly correlated (r = 0.99) with F-specific coliphage. The bacterial indicators (total coliforms, fecal coliforms, and enterococci) were found to exceed California recreational water quality daily limits at 5 of the 12 sites. However, this excess of bacterial indicators did not correlate with the presence of human adenoviruses in coastal waters. The results of this study call for both a reevaluation of our current recreational water quality standards to reflect the viral quality of recreational waters and monitoring of recreational waters for human viruses on a regular basis. PMID:11133443

  6. Inactivation of enteric microorganisms with chemical disinfectants, UV irradiation and combined chemical/UV treatments.

    PubMed

    Koivunen, J; Heinonen-Tanski, H

    2005-04-01

    The relative disinfection efficiencies of peracetic acid (PAA), hydrogen peroxide (H2O2) and sodium hypochlorite (NaOCl) against Escherichia coli, Enterococcus faecalis, Salmonella enteritidis and coliphage MS2 virus were studied in laboratory-scale experiments. This study also evaluated the efficiency of combined PAA/ultraviolet irradiation (UV) and H2O2/UV treatments to determine if the microbial inactivation was synergistic. Microbial cultures were added into a synthetic wastewater-like test medium and treated by chemical disinfectants with a 10 min contact time, UV irradiation or the combination of chemical and UV treatments. A peracetic acid dose of 3 mg/l resulted in approximately 2-3 log enteric bacterial reductions, whereas 7-15 mg/l PAA was needed to achieve 1-1.5 log coliphage MS2 reductions. Doses of 3-150 mg/l hydrogen peroxide achieved below 0.2 log microbial reductions. Sodium hypochlorite treatments caused 0.3-1 log microbial reductions at an 18 mg/l chlorine dose, while 2.6 log reductions of E. faecalis were achieved at a 12 mg/l chlorine dose. The results indicate that PAA could represent a good alternative to chlorine compounds in disinfection procedures, especially in wastewaters containing easily oxidizable organic matter. Hydrogen peroxide is not an efficient disinfectant against enteric microorganisms in wastewaters. The combined PAA/UV disinfection showed increased disinfection efficiency and synergistic benefits with all the enteric bacteria tested but lower synergies for the coliphage MS2. This suggests that this method could improve the efficiency and reliability of disinfection in wastewater treatment plants. The combined H2O2/UV disinfection only slightly influenced the microbial reductions compared to UV treatments and showed some antagonism and no synergies.

  7. Applicability of Bio-wipes for the collection of human faecal specimens for detection and characterisation of enteric viruses.

    PubMed

    Mans, J; van Zyl, W B; Taylor, M B; Page, N A; Sobsey, M D; Barnard, T G; Potgieter, N

    2014-03-01

    To determine whether gastroenteritis viruses and other enteric viruses could be detected in faecal specimens collected with Bio-wipes. Faecal specimens, self-collected with Bio-wipes, from 190 individuals (94 diarrhoeal, 93 non-diarrhoeal, 3 unknown) were screened for eight human enteric viruses (enterovirus, hepatitis A virus, adenovirus, astrovirus, norovirus GI and GII, sapovirus and rotavirus) by real-time (reverse transcription)-polymerase chain reaction. Rotaviruses and noroviruses from positive specimens were genotyped. At least one enteric virus could be detected in 82.6% (157/190) of faecal specimens. Mixed infections of up to four different viruses could be detected in both diarrhoeal and non-diarrhoeal specimens. Enteroviruses were detected most frequently (63.7%), followed by adenoviruses (48.4%) and noroviruses (32.2%). Genotyping was successful for 78.6% of rotaviruses and 44.8% of noroviruses. Bio-wipes provide a user friendly, easier method for stool collection that facilitates enteric virus detection and genetic characterisation. © 2013 John Wiley & Sons Ltd.

  8. Large scale survey of enteric viruses in river and waste water underlines the health status of the local population.

    PubMed

    Prevost, B; Lucas, F S; Goncalves, A; Richard, F; Moulin, L; Wurtzer, S

    2015-06-01

    Although enteric viruses constitute a major cause of acute waterborne diseases worldwide, environmental data about occurrence and viral load of enteric viruses in water are not often available. In this study, enteric viruses (i.e., adenovirus, aichivirus, astrovirus, cosavirus, enterovirus, hepatitis A and E viruses, norovirus of genogroups I and II, rotavirus A and salivirus) were monitored in the Seine River and the origin of contamination was untangled. A total of 275 water samples were collected, twice a month for one year, from the river Seine, its tributaries and the major WWTP effluents in the Paris agglomeration. All water samples were negative for hepatitis A and E viruses. AdV, NVGI, NVGII and RV-A were the most prevalent and abundant populations in all water samples. The viral load and the detection frequency increased significantly between the samples collected the most upstream and the most downstream of the Paris urban area. The calculated viral fluxes demonstrated clearly the measurable impact of WWTP effluents on the viral contamination of the Seine River. The viral load was seasonal for almost all enteric viruses, in accordance with the gastroenteritis recordings provided by the French medical authorities. These results implied the existence of a close relationship between the health status of inhabitants and the viral contamination of WWTP effluents and consequently surface water contamination. Subsequently, the regular analysis of wastewater could serve as a proxy for the monitoring of the human viruses circulating in both a population and surface water. Copyright © 2015. Published by Elsevier Ltd.

  9. A survey of North American migratory waterfowl for duck plague (duck virus enteritis) virus

    USGS Publications Warehouse

    Brand, Christopher J.; Docherty, Douglas E.

    1984-01-01

    A survey of migratory waterfowl for duck plague (DP) virus was conducted in the Mississippi and Central flyways during 1982 and in the Atlantic and Pacific flyways during 1983. Cloacal and pharyngeal swabs were collected from 3,169 migratory waterfowl in these four flyways, principally mallards (Anas platyrhynchos L.), black ducks (Anas rubripes Brewster), and pintails (Anas acuta L). In addition 1,033 birds were sampled from areas of recurrent DP outbreaks among nonmigratory and captive waterfowl, and 590 from Lake Andes National Wildlife Refuge, the site of the only known major DP outbreak in migratory waterfowl. Duck plague virus was not found in any of the samples. Results support the hypothesis that DP is not established in North American migratory waterfowl as an enzootic disease.

  10. Assessment and risk modeling of airborne enteric viruses emitted from wastewater reused for irrigation.

    PubMed

    Courault, D; Albert, I; Perelle, S; Fraisse, A; Renault, P; Salemkour, A; Amato, P

    2017-08-15

    Reclamation of wastewater (WW) for irrigation, after treatment represents a challenge that could alleviate pressure on water resources and address the increasing demand for agriculture. However, the risks to human health must be assessed, particularly those related to human enteric viruses that resist standard treatments in most wastewater treatment plants (WWTP). The risks associated with exposure to viral bioaerosols near WWTP and near agricultural plots irrigated with WW are poorly documented. The objectives of this study were to 1) better characterize human enteric viruses found in bioaerosols near a "standard WWTP" and over fields irrigated with treated WW and 2) propose a numeric model to assess the health risk to populations located close to the irrigated areas, with particular attention to norovirus, which is responsible for most viral gastroenteritis in France. Water and air samples were collected at various locations in the largest French WW-irrigated site near Clermont-Ferrand, at the WWTP entrance and after treatment, in the air above activated sludge basins, and above fields irrigated with WW. Various enteric viruses were found in the water samples collected both before and after treatment. Norovirus was the most abundant with >10e4 genome copies/l (GC/L) before treatment and ~10e3 GC/L after treatment. Low quantities (<10e3GC/m(3)) were detected in the air above active sludge pools and irrigated plots. Hepatitis E virus was detected in all sampled compartments. A quantitative microbial risk assessment (QMRA) approach, including a simplified atmospheric dispersion model, allowed assessment of norovirus infection risk. The Bayesian QMRA approach considered wind speed measurements over 21years, and the variability and uncertainty of all measurements throughout the chain up to the risk. The probability of infection within one year for the most exposed WWTP employees was >10e-4 for strong wind speed (≥3m/s) and a constant emission rate of 8e3 GC/m(3)/s

  11. Diversity of Somatic Coliphages in Coastal Regions with Different Levels of Anthropogenic Activity in São Paulo State, Brazil ▿

    PubMed Central

    Burbano-Rosero, E. M.; Ueda-Ito, M.; Kisielius, J. J.; Nagasse-Sugahara, T. K.; Almeida, B. C.; Souza, C. P.; Markman, C.; Martins, G. G.; Albertini, L.; Rivera, I. N. G.

    2011-01-01

    Bacteriophages are the most abundant and genetically diverse viruses on Earth, with complex ecology in both quantitative and qualitative terms. Somatic coliphages (SC) have been reported to be good indicators of fecal pollution in seawater. This study focused on determining the concentration of SC and their diversity by electron microscopy of seawater, plankton, and bivalve samples collected at three coastal regions in São Paulo, Brazil. The SC counts varied from <1 to 3.4 × 103 PFU/100 ml in seawater (73 samples tested), from <1 to 4.7 × 102 PFU/g in plankton (46 samples tested), and from <1 to 2.2 × 101 PFU/g in bivalves (11 samples tested). In seawater samples, a relationship between the thermotolerant coliforms and Escherichia coli and SC was observed at the three regions (P = 0.0001) according to the anthropogenic activities present at each region. However, SC were found in plankton samples from three regions: Baixada Santista (17/20), Canal de São Sebastião (6/14), and Ubatuba (3/12). In seawater samples collected from Baixada Santista, four morphotypes were observed: A1 (4.5%), B1 (50%), C1 (36.4%), and D1 (9.1%). One coliphage, Siphoviridae type T1, had the longest tail: between 939 and 995 nm. In plankton samples, Siphoviridae (65.8%), Podoviridae (15.8%), Microviridae (15.8%), and Myoviridae (2.6%) were found. In bivalves, only the morphotype B1 was observed. These SC were associated with enteric hosts: enterobacteria, E. coli, Proteus, Salmonella, and Yersinia. Baixada Santista is an area containing a high level of fecal pollution compared to those in the Canal de São Sebastião and Ubatuba. This is the first report of coliphage diversity in seawater, plankton, and bivalve samples collected from São Paulo coastal regions. A better characterization of SC diversity in coastal environments will help with the management and evaluation of the microbiological risks for recreation, seafood cultivation, and consumption. PMID:21531842

  12. Varicella zoster virus (VZV) infects and establishes latency in enteric neurons.

    PubMed

    Chen, Jason J; Gershon, Anne A; Li, Zhishan; Cowles, Robert A; Gershon, Michael D

    2011-12-01

    Case reports have linked varicella-zoster virus (VZV) to gastrointestinal disorders, including severe abdominal pain preceding fatal varicella and acute colonic pseudoobstruction (Ogilvie's syndrome). Because we had previously detected DNA and transcripts encoding latency-associated VZV gene products in the human gut, we sought to determine whether latent VZV is present in the human enteric nervous system (ENS) and, if so, to identify the cells in which it is located and its route to the bowel. Neither DNA, nor transcripts encoding VZV gene products, could be detected in resected gut from any of seven control children (<1 year old) who had not received the varicella vaccine or experienced varicella; however, VZV DNA and transcripts were each found to be present in resected bowel from 6/6 of children with a past history of varicella and in that of 6/7 of children who received the varicella vaccine. Both wild-type (WT) and vaccine-type (vOka) VZV thus establish latent infection in human gut. To determine routes by which VZV might gain access to the bowel, we injected guinea pigs with human or guinea pig lymphocytes expressing green fluorescent protein (GFP) under the control of the VZV ORF66 gene (VZV(OKA66.GFP)). GFP-expressing enteric neurons were found throughout the bowel within 2 days and continued to be present for greater than 6 weeks. DNA encoding VZV gene products also appeared in enteric and dorsal root ganglion (DRG) neurons following intradermal administration of WT-VZV and in enteric neurons after intradermal injection of VZV(OKA66.GFP); moreover, a small number of guinea pig DRG neurons were found to project both to the skin and the intraperitoneal viscera. Viremia, in which lymphocytes carry VZV, or axonal transport from DRG neurons infected through their epidermal projections are thus each potential routes that enable VZV to gain access to the ENS.

  13. An enteric virus can replace the beneficial function of commensal bacteria

    PubMed Central

    Kernbauer, Elisabeth; Ding, Yi; Cadwell, Ken

    2014-01-01

    Intestinal microbial communities have profound effects on host physiology1. Whereas the symbiotic contribution of commensal bacteria is well established, the role of eukaryotic viruses that are present in the gastrointestinal tract under homeostatic conditions is undefined2,3. Here, we demonstrate that a common enteric RNA virus can replace the beneficial function of commensal bacteria in the intestine. Murine norovirus (MNV) infection of germfree or antibiotics-treated mice restored intestinal morphology and lymphocyte function without inducing overt inflammation and disease. The presence of MNV also suppressed an expansion of group 2 innate lymphoid cells (ILCs) observed in the absence of bacteria, and induced transcriptional changes in the intestine associated with immune development and type I interferon (IFN) signaling. Consistent with this observation, the IFNα receptor was essential for the ability of MNV to compensate for bacterial depletion. Importantly, MNV infection offset the deleterious effect of antibiotics-treatment in models of intestinal injury and pathogenic bacterial infection. These data indicate that eukaryotic viruses have the capacity to support intestinal homeostasis and shape mucosal immunity akin to commensal bacteria. PMID:25409145

  14. An enteric virus can replace the beneficial function of commensal bacteria.

    PubMed

    Kernbauer, Elisabeth; Ding, Yi; Cadwell, Ken

    2014-12-04

    Intestinal microbial communities have profound effects on host physiology. Whereas the symbiotic contribution of commensal bacteria is well established, the role of eukaryotic viruses that are present in the gastrointestinal tract under homeostatic conditions is undefined. Here we demonstrate that a common enteric RNA virus can replace the beneficial function of commensal bacteria in the intestine. Murine norovirus (MNV) infection of germ-free or antibiotic-treated mice restored intestinal morphology and lymphocyte function without inducing overt inflammation and disease. The presence of MNV also suppressed an expansion of group 2 innate lymphoid cells observed in the absence of bacteria, and induced transcriptional changes in the intestine associated with immune development and type I interferon (IFN) signalling. Consistent with this observation, the IFN-α receptor was essential for the ability of MNV to compensate for bacterial depletion. Importantly, MNV infection offset the deleterious effect of treatment with antibiotics in models of intestinal injury and pathogenic bacterial infection. These data indicate that eukaryotic viruses have the capacity to support intestinal homeostasis and shape mucosal immunity, similarly to commensal bacteria.

  15. Bacillus subtilis and surfactin inhibit the transmissible gastroenteritis virus entering intestinal epithelial cells.

    PubMed

    Wang, Xiaoqing; Hu, Weiwei; Zhu, Liqi; Yang, Qian

    2017-03-07

    Intestinal epithelial cells are the targets for transmissible gastroenteritis virus (TGEV) infection. It is urgently to develop a novel candidate against TGEV entry. Bacillus subtilis is a probiotics with excellent anti-microorganism properties, and one of its secretions, surfactin, has been regarded as the versatile weapons for most plant pathogens, especially for the enveloped virus. We demonstrate for the first time that Bacillus subtilis OKB105 and its surfactin can effectively inhibit one animal coronavirus, TGEV, entering the intestinal porcine epithelial cell line (IPEC-J2). Then, several different experiments were performed to seek for the might mechanisms. The plaque assays showed that surfactant could reduce the plaque generation of TGEV in a dose dependent manner. Meanwhile, the after incubated with TGEV for 1.5 h, Bacillus subtilis could attach TGEV particles to their surface so that the number of virus to bind to the host cells was declined. Furthermore, our data showed that the inhibition of Bacillus subtilis was closely related to the competition with TGEV for the viral-entry receptors, including epidermal growth factor receptor (EGFR) and aminopopeptidase N (APN) protein. In addition, Western blotting and apoptosis analysis indicated that Bacillus subtilis could enhance the resistance of IPEC-J2 cells by up regulating the expression of TLR-6 and reducing the percentage of apoptotic cells. Taken together, our results suggest that Bacillus subtilis OKB105 and its surfactin can antagonize TGEV entry in vitro and may serve as promising new candidates for TGEV prevention.

  16. Bacteriophages as indicators of faecal pollution and enteric ...

    EPA Pesticide Factsheets

    Bacteriophages are an attractive alternative to fecal indicator bacteria (FIB), particularly as surrogates of enteric virus fate and transport due to their closer morphological and biological properties compared to FIB. Based on a meta-analysis of published data, we summarize concentrations of coliphages (F+ and somatic), Bacteroides spp. and enterococci bacteriophages (phages) in human waste, non-human waste, fresh and marine waters as well as removal through wastewater treatment processes. We also provide comparisons with FIB and enteric viruses whenever possible. Lastly, we examine fate and transport characteristics in the environment and provide an overview of the methods available for detection and enumeration of bacteriophages. In summary, concentrations of FIB bacteriophages in various sources were consistently lower than FIB, but more reflective of infectious enteric virus levels. Our investigation supports use of bacteriophages as viral surrogates especially for wastewater treatment processes, while additional research is needed to clarify their utility as indicators of viral fate and transport in the ambient water. Describes concentrations and removal through environmental and engineered systems of bacteriophages, fecal indicator bacteria and viral pathogens.

  17. Effect of green tea extract on enteric viruses and its application as natural sanitizer.

    PubMed

    Randazzo, W; Falcó, I; Aznar, R; Sánchez, G

    2017-09-01

    In this work, the effect of green tea extract (GTE) was assessed against murine norovirus (MNV) and hepatitis A virus (HAV) at different temperatures, exposure times and pH conditions. Initially, GTE at 0.5 and 5 mg/ml were individually mixed with each virus at 5 log TCID50/ml and incubated 2 h at 37 °C at different pHs (from 5.5 to 8.5). GTE affected both viruses depending on pH with higher reductions observed in alkaline conditions. Secondly, different concentrations of GTE (0.5 and 5 mg/ml) were mixed with viral suspensions and incubated for 2 or 16 h at 4, 25 and 37 °C at pH 7.2. A concentration-, temperature- and exposure time-dependent response was showed by GTE in suspension tests, where complete inactivation was achieved after overnight exposure at 37 °C for both viruses and also at 25 °C for HAV. In addition, antiviral effect of GTE proved efficient in the surface disinfection tests since 1.5 log reduction and complete inactivation were recorded for MNV and HAV on stainless steel and glass surfaces treated with 10 mg/ml GTE for 30 min, analyzed in accordance with ISO 13697:2001. GTE was also evaluated as a natural disinfectant of produce, showing 10 mg/ml GTE reduced MNV and HAV titers in lettuce and spinach by more than 1.5 log after 30 min treatment. The results show a potential of GTE as natural disinfectant able to limit enteric viral (cross-)contaminations conveyed by food and food-contact surfaces. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Ultraviolet Devitalization of Eight Selected Enteric Viruses in Estuarine Water 1

    PubMed Central

    Hill, William F.; Hamblet, Frederick E.; Benton, William H.; Akin, Elmer W.

    1970-01-01

    The effect of ultraviolet (UV) radiation on the devitalization of eight selected enteric viruses suspended in estuarine water was determined. The surviving fractions of each virus were calculated and then plotted against the UV exposure time for purposes of comparison. Analytical assessment of the survival data for each virus consisted of least squares regression analysis for determination of intercepts and slope functions. All data were examined for statistical significance. When the slope function of each virus was compared against the slope function of poliovirus type 1, the analytical findings indicated that poliovirus types 2 and 3, echovirus types 1 and 11, and coxsackievirus A-9 exhibited similar devitalization characteristics in that no statistically significant difference was found (P > 0.05). Conversely, the devitalization characteristics of coxsackievirus B-1 and reovirus type 1 were dissimilar from those of poliovirus type 1 in that a statistically significant difference was found between the slope functions (P < 0.05). This observed difference in devitalization of coxsackievirus B-1 and reovirus type 1 was attributed primarily to the frequency distribution of single and aggregate virions, the geometric configuration, the size of the aggregates, and the severity of aggregation. The devitalization curve of coxsackievirus B-1 was characteristic of a retardant die-away curve. The devitalization curve of reovirus type 1 was characteristic of a multihittype curve. The calculated devitalization half-life values for poliovirus types 1, 2, and 3; echovirus types 1 and 11; coxsackievirus types A-9 and B-1; and reovirus type 1 were 2.8, 3.1, 2.7, 2.8, 3.2, 3.1, 4.0, 4.0 sec, respectively. These basic data should facilitate an operative extrapolation of the findings to the applied situation. It was concluded that UV can be highly effective and provide a reliable safety factor in treating estuarine water. Images PMID:4316273

  19. Molecular Characterization of a Bovine Enteric Calicivirus: Relationship to the Norwalk-Like Viruses

    PubMed Central

    Liu, B. L.; Lambden, P. R.; Günther, H.; Otto, P.; Elschner, M.; Clarke, I. N.

    1999-01-01

    Jena virus (JV) is a noncultivatable bovine enteric calicivirus associated with diarrhea in calves and was first described in Jena, Germany. The virus was serially passaged 11 times in colostrum-deprived newborn calves and caused diarrheal disease symptoms at each passage. The complete JV genome sequence was determined by using cDNA made from partially purified virus obtained from a single stool sample. JV has a positive-sense single-stranded RNA genome which is 7,338 nucleotides in length, excluding the poly(A) tail. JV genome organization is similar to that of the human Norwalk-like viruses (NLVs), with three separate open reading frames (ORFs) and a 24-nucleotide sequence motif located at the 5′ terminus of the genome and at the start of ORF 2. The polyprotein (ORF 1) consists of 1,680 amino acids and has the characteristic 2C helicase, 3C protease, and 3D RNA polymerase motifs also found in the NLVs. However, comparison of the N-terminal 100 amino acids of the JV polyprotein with those of the group 1 and group 2 NLVs showed a considerable divergence in sequence. The capsid protein (ORF 2) at 519 amino acids is smaller than that of all other caliciviruses. JV ORF 2 was translated in vitro to produce a 55-kDa protein that reacted with postinfection serum but not preinfection serum. Phylogenetic studies based on partial RNA polymerase sequences indicate that within the Caliciviridae JV is most closely related to the group 1 NLVs. PMID:9847396

  20. Enteric Viruses of Humans and Animals in Aquatic Environments: Health Risks, Detection, and Potential Water Quality Assessment Tools

    PubMed Central

    Fong, Theng-Theng; Lipp, Erin K.

    2005-01-01

    Waterborne enteric viruses threaten both human and animal health. These pathogens are host specific and cause a wide range of diseases and symptoms in humans or other animals. While considerable research has documented the risk of enteric viruses to human health from contact with contaminated water, the current bacterial indicator-based methods for evaluation of water quality are often ineffectual proxies for pathogenic viruses. Additionally, relatively little work has specifically investigated the risk of waterborne viruses to animal health, and this risk currently is not addressed by routine water quality assessments. Nonetheless, because of their host specificity, enteric viruses can fulfill a unique role both for assessing health risks and as measures of contamination source in a watershed, yet the use of animal, as well as human, host-specific viruses in determining sources of fecal pollution has received little attention. With improved molecular detection assays, viruses from key host groups can be targeted directly using PCR amplification or hybridization with a high level of sensitivity and specificity. A multispecies viral analysis would provide needed information for controlling pollution by source, determining human health risks based on assessments of human virus loading and exposure, and determining potential risks to production animal health and could indicate the potential for the presence of other zoonotic pathogens. While there is a need to better understand the prevalence and environmental distribution of nonhuman enteric viruses, the development of improved methods for specific and sensitive detection will facilitate the use of these microbes for library-independent source tracking and water quality assessment tools. PMID:15944460

  1. Enteric viruses and adenovirus diversity in waters from 2016 Olympic venues.

    PubMed

    Staggemeier, Rodrigo; Heck, Tatiana M S; Demoliner, Meriane; Ritzel, Rute G F; Röhnelt, Nicole M S; Girardi, Viviane; Venker, Carolina A; Spilki, Fernando R

    2017-05-15

    Rio de Janeiro's inner and coastal waters are heavily impacted by human sewage pollution for decades. Enteric viruses, including human adenoviruses (HAdV), human enterovirus (EV), group A rotavirus (RV) and hepatitis A virus (HAV) are more likely to be found in contaminated surface waters. The present work aimed to assess the frequency and loads of EV, HAdV-C and -F species, RV and HAV in sand and water samples from venues used during the 2016 Summer Olympics and by tourists attending the event. Sixteen monthly collections were carried out from March 2015 to July 2016 in 12 different sites from Rio de Janeiro, Brazil. Total and thermotolerant coliform counting was performed along molecular detection of virus was performed using quantitative polymerase chain reaction (qPCR). Analyses of all samples were further investigated by integrated cell culture PCR to check about the presence of HAdV infectious virus particles. The results show that 95.9% of water samples showed contamination with at least one type of virus. Regarding the viruses individually (% for water and sand respectively): HAdV-C (93.1%-57.8%), HAdV-F (25.3%-0%), RV (12.3%-4.4%), EV (26.7%-8.8%) and HAV (0%). The viral loads ranged from 10(3)gc/L up to 10(9)gc/L (water), and 10(3)gc/g to 10(6)gc/g (sand). In the phylogenetic tree, were classified into four main clusters, referring to species C, D, F and BAdV. And up to 90% of sites studied presented at least once presence of infectious HAdV-C. The most contaminated points were the Rodrigo de Freitas Lagoon, where Olympic rowing took place, and the Marina da Glória, the starting point for the sailing races, demonstrating serious problem of fecal contamination of water resources and threatens the health of Olympic athletes, tourists and residents.

  2. White spot syndrome virus enters crayfish hematopoietic tissue cells via clathrin-mediated endocytosis.

    PubMed

    Huang, Jiajun; Li, Fang; Wu, Junjun; Yang, Feng

    2015-12-01

    White spot syndrome virus (WSSV) is a major pathogen of aquacultured shrimp. However, the mechanism of its entry remains poorly understood. In this study, by analyzing the internalization of WSSV using crayfish hematopoietic tissue (HPT) cells, we showed that WSSV virions were engulfed by cell membrane invaginations sharing the features of clathrin-coated pits and then internalized into coated cytoplasmic vesicles. Further investigation indicated that WSSV internalization was significantly inhibited by chlorpromazine (CPZ) but not genistein. The internalized virions were colocalized with endogenous clathrin as well as transferrin which undergoes clathrin-dependent uptake. Preventing endosome acidification by ammonium chloride (NH4Cl) or chloroquine (CQ) dramatically reduced WSSV entry as well. Moreover, disturbance of dynamin activity or depletion of membrane cholesterol also blocked WSSV uptake. These data indicate that WSSV enters crayfish HPT cells via clathrin-mediated endocytosis in a pH-dependent manner, and membrane cholesterol as well as dynamin is critical for efficient viral entry.

  3. A METHOD TO REMOVE ENVIRONMENTAL INHIBITORS PRIOR TO THE DETECTION OF WATERBORNE ENTERIC VIRUSES BY REVERSE TRANSCRIPTION-POLYMERASE CHAIN REACTION

    EPA Science Inventory

    A method was developed to remove environmental inhibitors from sample concentrates prior to detection of human enteric viruses using the reverse transcription-polymerase chain reaction (RT-PCR).Environmental inhibitors, concentrated along with viruses during water sample processi...

  4. A METHOD TO REMOVE ENVIRONMENTAL INHIBITORS PRIOR TO THE DETECTION OF WATERBORNE ENTERIC VIRUSES BY REVERSE TRANSCRIPTION-POLYMERASE CHAIN REACTION

    EPA Science Inventory

    A method was developed to remove environmental inhibitors from sample concentrates prior to detection of human enteric viruses using the reverse transcription-polymerase chain reaction (RT-PCR).Environmental inhibitors, concentrated along with viruses during water sample processi...

  5. Isolation of an adenovirus and an adeno-associated virus from goat kids with enteritis.

    PubMed

    Olson, Erik J; Haskell, Scott R R; Frank, Rodney K; Lehmkuhl, Howard D; Hobbs, Lea Ann; Warg, Janet V; Landgraf, John G; Wünschmann, Arno

    2004-09-01

    A dairy goat operation in Minnesota experienced a sudden, markedly increased mortality among its neonatal goats. Approximately 60 of 130 kids (46%) died. The animals had diarrhea and dyspnea of 1-2 days duration before death. Necropsy of 4 goat kids revealed marked, acute, catarrhal enteritis and fibrinous pleuropneumonia. Mannheimia haemolytica was isolated from the lungs. Basophilic inclusion bodies filling the entire nucleus were present in enterocytes of the ileum of 3 goats. Adenoviral particles were detected in the feces by electron microscopy and adenovirus was subsequently isolated from the intestinal content together with a parvo-like virus (dependovirus). Morphology, physicochemical characteristics, and neutralization tests indicated that the adenovirus resembled ovine adenovirus-2 (OAdV-2). However, the PstI restriction endonuclease pattern produced by the goat adenovirus was distinct from that of OAdV-2. This is the first report of enteritis in goats with an adenovirus antigenically related to OAdV-2 and with a parvo-like dependovirus.

  6. Live Attenuated Vaccine Based on Duck Enteritis Virus against Duck Hepatitis A Virus Types 1 and 3

    PubMed Central

    Zou, Zhong; Ma, Ji; Huang, Kun; Chen, Huanchun; Liu, Ziduo; Jin, Meilin

    2016-01-01

    As causative agents of duck viral hepatitis, duck hepatitis A virus type 1 (DHAV-1) and type 3 (DHAV-3) causes significant economic losses in the duck industry. However, a licensed commercial vaccine that simultaneously controls both pathogens is currently unavailable. Here, we generated duck enteritis virus recombinants (rC-KCE-2VP1) containing both VP1 from DHAV-1 (VP1/DHAV-1) and VP1 from DHAV-3 (VP1/DHAV-3) between UL27 and UL26. A self-cleaving 2A-element of FMDV was inserted between the two different types of VP1, allowing production of both proteins from a single open reading frame. Immunofluorescence and Western blot analysis results demonstrated that both VP1 proteins were robustly expressed in rC-KCE-2VP1-infected chicken embryo fibroblasts. Ducks that received a single dose of rC-KCE-2VP1 showed potent humoral and cellular immune responses and were completely protected against challenges of both pathogenic DHAV-1 and DHAV-3 strains. The protection was rapid, achieved as early as 3 days after vaccination. Moreover, viral replication was fully blocked in vaccinated ducks as early as 1 week post-vaccination. These results demonstrated, for the first time, that recombinant rC-KCE-2VP1 is potential fast-acting vaccine against DHAV-1 and DHAV-3. PMID:27777571

  7. Removal properties of human enteric viruses in a pilot-scale membrane bioreactor (MBR) process.

    PubMed

    Miura, Takayuki; Okabe, Satoshi; Nakahara, Yoshihito; Sano, Daisuke

    2015-05-15

    In order to evaluate removal properties of human enteric viruses from wastewater by a membrane bioreactor (MBR), influent, anoxic and oxic mixed liquor, and membrane effluent samples were collected in a pilot-scale anoxic-oxic MBR process for 16 months, and concentrations of enteroviruses, norovirus GII, and sapoviruses were determined by real-time PCR using murine norovirus as a process control. Mixed liquor samples were separated into liquid and solid phases by centrifugation, and viruses in the bulk solution and those associated with mixed liquor suspended solids (MLSS) were quantified. Enteroviruses, norovirus GII, and sapoviruses were detected in the influent throughout the sampling period (geometrical mean, 4.0, 3.1, and 4.4 log copies/mL, respectively). Enterovirus concentrations in the solid phase of mixed liquor were generally lower than those in the liquid phase, and the mean log reduction value between influent and anoxic mixed liquor was 0.40 log units. In contrast, norovirus GII and sapovirus concentrations in the solid phase were equal to or higher than those in the liquid phase, and higher log reduction values (1.3 and 1.1 log units, respectively) were observed between influent and anoxic mixed liquor. This suggested that enteroviruses were less associated with MLSS than norovirus GII and sapoviruses, resulting in lower enterovirus removal in the activated sludge process. Enteroviruses and norovirus GII were detected in the MBR effluent but sapoviruses were not in any effluent samples. When MLSS concentration was reduced to 50-60% of a normal operation level, passages of enteroviruses and norovirus GII through a PVDF microfiltration membrane were observed. Since rejection of viruses by the membrane was not related to trans-membrane pressure which was monitored as a parameter of membrane fouling, the results indicated that adsorption to MLSS plays an important role in virus removal by an MBR, and removal properties vary by viruses reflecting different

  8. Characterization of duck enteritis virus UL53 gene and glycoprotein K

    PubMed Central

    2011-01-01

    Background Most of the previous research work had focused on the epidemiology and prevention of duck enteritis virus (DEV). Whilst with the development of protocols in molecular biology, nowadays more and more information about the genes of DEV was reported. But little information about DEV UL53 gene and glycoprotein K(gK) was known except our reported data. Results In our paper, the fluorescent quantitative real-time PCR(FQ-RT-PCR) assay and nucleic acid inhibition test were used to study the transcription characteristic of the DEV UL53 gene. Except detecting the mRNA of DEV UL53 gene, the product gK encoded by UL53 gene was detected through the expression kinetics of UL53 gene by the purified rabbit anti-UL53 protein polyclonal antibodies. Western-blotting and indirect immunofluorescence assays were used to detect gK. From the results of these experiments, the UL53 gene and gK were respectively identified as a late gene and a really late protein. On the other hand, the indirect immunofluorescence assay provided another information that the intracellular localization of DEV gK was mainly distributed in cytoplasm. Conclusions By way of conclusions, we conceded that DEV UL53 gene is a really late gene, which is coincident with properties of UL53 homologs from other herpesvirus, such as ILTV(Infectious Laryngotracheitis virus) and HSV-1(Herpes simplex virus type 1). The properties of intracellular localization about gK protein provided a foundation for further functional analysis and further studies will be focused on constructing of the UL53 gene DEV mutant. PMID:21586146

  9. High prevalence of enteric viruses in untreated individual drinking water sources and surface water in Slovenia.

    PubMed

    Steyer, Andrej; Torkar, Karmen Godič; Gutiérrez-Aguirre, Ion; Poljšak-Prijatelj, Mateja

    2011-09-01

    Waterborne infections have been shown to be important in outbreaks of gastroenteritis throughout the world. Although improved sanitary conditions are being progressively applied, fecal contaminations remain an emerging problem also in developed countries. The aim of our study was to investigate the prevalence of fecal contaminated water sources in Slovenia, including surface waters and groundwater sources throughout the country. In total, 152 water samples were investigated, of which 72 samples represents groundwater from individual wells, 17 samples from public collection supplies and 63 samples from surface stream waters. Two liters of untreated water samples were collected and concentrated by the adsorption/elution technique with positively charged filters followed by an additional ultracentrifugation step. Group A rotaviruses, noroviruses (genogroups I and II) and astroviruses were detected with real-time RT-PCR method in 69 (45.4%) out of 152 samples collected, of which 31/89 (34.8%) drinking water and 38/63 (60.3%) surface water samples were positive for at least one virus tested. In 30.3% of drinking water samples group A rotaviruses were detected (27/89), followed by noroviruses GI (2.2%; 2/89) and astroviruses (2.2%; 2/89). In drinking groundwater samples group A rotaviruses were detected in 27 out of 72 tested samples (37.5%), genogroup I noroviruses in two (2.8%), and human astroviruses in one (1.4%) samples. In surface water samples norovirus genogroup GII was the most frequently detected (41.3%; 26/63), followed by norovirus GI (33.3%; 21/63), human astrovirus (27.0%; 17/63) and group A rotavirus (17.5%; 11/63). Our study demonstrates relatively high percentage of groundwater contamination in Slovenia and, suggests that raw groundwater used as individual drinking water supply may constitute a possible source of enteric virus infections. In the future, testing for enteric viruses should be applied for drinking water sources in waterborne outbreaks

  10. NDV HN gene C-terminal extension is not the determinant of the enteric tropism but influences the virus virulence

    USDA-ARS?s Scientific Manuscript database

    Many asymptomatic enteric Newcastle disease virus (NDV) strains contain a larger hemagglutinin-neuraminidase (HN) protein (616 amino acids, aa) than that (571 aa) of virulent respirotropic NDV strains. Therefore, it has been suspected that the 45 aa extension at the C-terminus of HN influences the v...

  11. Characterization of preferential flow pathways in a siliciclastic aquifer system using human enteric viruses and groundwater geochemistry

    USDA-ARS?s Scientific Manuscript database

    Human enteric viruses have been recognized as an emerging groundwater contaminant and are found only in human waste. In urban environments the most likely source of human waste is from sanitary sewers. Determining the travel time for near-surface contaminants to reach deep public supply wells is i...

  12. Three-dimensional structure of a protozoal double-stranded RNA virus that infects the enteric pathogen Giardia lamblia.

    PubMed

    Janssen, Mandy E W; Takagi, Yuko; Parent, Kristin N; Cardone, Giovanni; Nibert, Max L; Baker, Timothy S

    2015-01-15

    Giardia lamblia virus (GLV) is a small, nonenveloped, nonsegmented double-stranded RNA (dsRNA) virus infecting Giardia lamblia, the most common protozoan pathogen of the human intestine and a major agent of waterborne diarrheal disease worldwide. GLV (genus Giardiavirus) is a member of family Totiviridae, along with several other groups of protozoal or fungal viruses, including Leishmania RNA viruses and Trichomonas vaginalis viruses. Interestingly, GLV is more closely related than other Totiviridae members to a group of recently discovered metazoan viruses that includes penaeid shrimp infectious myonecrosis virus (IMNV). Moreover, GLV is the only known protozoal dsRNA virus that can transmit efficiently by extracellular means, also like IMNV. In this study, we used transmission electron cryomicroscopy and icosahedral image reconstruction to examine the GLV virion at an estimated resolution of 6.0 Å. Its outermost diameter is 485 Å, making it the largest totivirus capsid analyzed to date. Structural comparisons of GLV and other totiviruses highlighted a related "T=2" capsid organization and a conserved helix-rich fold in the capsid subunits. In agreement with its unique capacity as a protozoal dsRNA virus to survive and transmit through extracellular environments, GLV was found to be more thermoresistant than Trichomonas vaginalis virus 1, but no specific protein machinery to mediate cell entry, such as the fiber complexes in IMNV, could be localized. These and other structural and biochemical findings provide a basis for future work to dissect the cell entry mechanism of GLV into a "primitive" (early-branching) eukaryotic host and an important enteric pathogen of humans. Numerous pathogenic bacteria, including Corynebacterium diphtheriae, Salmonella enterica, and Vibrio cholerae, are infected with lysogenic bacteriophages that contribute significantly to bacterial virulence. In line with this phenomenon, several pathogenic protozoa, including Giardia lamblia

  13. Three-Dimensional Structure of a Protozoal Double-Stranded RNA Virus That Infects the Enteric Pathogen Giardia lamblia

    PubMed Central

    Janssen, Mandy E. W.; Takagi, Yuko; Parent, Kristin N.; Cardone, Giovanni

    2014-01-01

    ABSTRACT Giardia lamblia virus (GLV) is a small, nonenveloped, nonsegmented double-stranded RNA (dsRNA) virus infecting Giardia lamblia, the most common protozoan pathogen of the human intestine and a major agent of waterborne diarrheal disease worldwide. GLV (genus Giardiavirus) is a member of family Totiviridae, along with several other groups of protozoal or fungal viruses, including Leishmania RNA viruses and Trichomonas vaginalis viruses. Interestingly, GLV is more closely related than other Totiviridae members to a group of recently discovered metazoan viruses that includes penaeid shrimp infectious myonecrosis virus (IMNV). Moreover, GLV is the only known protozoal dsRNA virus that can transmit efficiently by extracellular means, also like IMNV. In this study, we used transmission electron cryomicroscopy and icosahedral image reconstruction to examine the GLV virion at an estimated resolution of 6.0 Å. Its outermost diameter is 485 Å, making it the largest totivirus capsid analyzed to date. Structural comparisons of GLV and other totiviruses highlighted a related “T=2” capsid organization and a conserved helix-rich fold in the capsid subunits. In agreement with its unique capacity as a protozoal dsRNA virus to survive and transmit through extracellular environments, GLV was found to be more thermoresistant than Trichomonas vaginalis virus 1, but no specific protein machinery to mediate cell entry, such as the fiber complexes in IMNV, could be localized. These and other structural and biochemical findings provide a basis for future work to dissect the cell entry mechanism of GLV into a “primitive” (early-branching) eukaryotic host and an important enteric pathogen of humans. IMPORTANCE Numerous pathogenic bacteria, including Corynebacterium diphtheriae, Salmonella enterica, and Vibrio cholerae, are infected with lysogenic bacteriophages that contribute significantly to bacterial virulence. In line with this phenomenon, several pathogenic protozoa

  14. Inactivation of f2 coliphage in municipal effluent by the use of various disinfectants.

    PubMed Central

    Hajenian, H.; Butler, M.

    1980-01-01

    Bromine chloride, chlorine and peracetic acid inactivated f2 coliphages in effluent but in order to achieve 99.99% inactivation the three disinfectants were required at about 1, 10 and 100 mg/l respectively. The activity of chlorine was halved by the presence of added organic matter, whereas bromine chloride and peracetic acid were very little affected. When a second successive dose of virus was added to the reaction mixture, the virus was inactivated only by peracetic acid despite the fact that in the chlorine-treated effluent residual chlorine was detected. The addition of a second dose of disinfectant inactivated residual virus in the same way as the first dose. PMID:7358964

  15. Protective effects of recombinant glycoprotein D based prime boost approach against duck enteritis virus in mice model.

    PubMed

    Aravind, S; Kamble, Nitin Machindra; Gaikwad, Satish S; Shukla, Sanjeev Kumar; Saravanan, R; Dey, Sohini; Mohan, C Madhan

    2015-11-01

    Duck virus enteritis, also known as duck plague, is an acute herpes viral infection of ducks caused by duck enteritis virus (DEV). The method of repeated immunization with a live attenuated vaccine has been used for the prevention and control of duck enteritis virus (DEV). However, the incidence of the disease in vaccinated flocks and latency reactivation are the major constraints in the present vaccination programme. The immunogenicity and protective efficacy afforded by intramuscular inoculation of plasmid DNA encoding DEV glycoprotein D (pCDNA-gD) followed by DEV gD expressed in Saccharomyces cerevisia (rgD) was assessed in a murine model. Compared with mice inoculated with DNA (pCDNA-gD) or protein (rgD) only, mice inoculated with the combination of gD DNA and protein had enhanced ELISA antibody titers to DEV and had accelerated clearance of virus following challenge infection. Furthermore, the highest levels of lymphocyte proliferation response, IL-4, IL-12 and IFN-γ production were induced following priming with the DNA vaccine and boosting with the rgD protein. For instance, the specially designed recombinant DEV vector vaccine would be the best choice to use in ducks. It offers an excellent solution to the low vaccination coverage rate in ducks. We expect that the application of this novel vaccine in the near future will greatly decrease the virus load in the environment and reduce outbreaks of DEV in ducks.

  16. Detection of bacterial indicators and human and bovine enteric viruses in surface water and groundwater sources potentially impacted by animal and human wastes in Lower Yakima Valley, Washington.

    PubMed

    Gibson, Kristen E; Schwab, Kellogg J

    2011-01-01

    Tangential flow ultrafiltration (UF) was used to concentrate and recover bacterial indicators and enteric viruses from 100 liters of groundwater (GW; n = 10) and surface water (SW; n = 11) samples collected in Lower Yakima Valley, WA. Human and bovine enteric viruses were analyzed in SW and GW concentrates by real-time PCR by using integrated inhibition detection.

  17. Detection of Bacterial Indicators and Human and Bovine Enteric Viruses in Surface Water and Groundwater Sources Potentially Impacted by Animal and Human Wastes in Lower Yakima Valley, Washington▿

    PubMed Central

    Gibson, Kristen E.; Schwab, Kellogg J.

    2011-01-01

    Tangential flow ultrafiltration (UF) was used to concentrate and recover bacterial indicators and enteric viruses from 100 liters of groundwater (GW; n = 10) and surface water (SW; n = 11) samples collected in Lower Yakima Valley, WA. Human and bovine enteric viruses were analyzed in SW and GW concentrates by real-time PCR by using integrated inhibition detection. PMID:21075875

  18. Concentration and Quantification of Somatic and F+ Coliphage from Recreational Waters

    EPA Science Inventory

    Somatic and F+ coliphages are promising alternative fecal indicators, but current detection methods are hindered by lower levels of coliphages in surface waters compared to traditional bacterial fecal indicators. We evaluated the ability of dead-end hollow fiber ultrafiltration (...

  19. Use of Propidium Monoazide in Reverse Transcriptase PCR To Distinguish between Infectious and Noninfectious Enteric Viruses in Water Samples▿

    PubMed Central

    Parshionikar, Sandhya; Laseke, Ian; Fout, G. Shay

    2010-01-01

    Human enteric viruses can be present in untreated and inadequately treated drinking water. Molecular methods, such as the reverse transcriptase PCR (RT-PCR), can detect viral genomes in a few hours, but they cannot distinguish between infectious and noninfectious viruses. Since only infectious viruses are a public health concern, methods that not only are rapid but also provide information on the infectivity of viruses are of interest. The intercalating dye propidium monoazide (PMA) has been used for distinguishing between viable and nonviable bacteria with DNA genomes, but it has not been used to distinguish between infectious and noninfectious enteric viruses with RNA genomes. In this study, PMA in conjunction with RT-PCR (PMA-RT-PCR) was used to determine the infectivity of enteric RNA viruses in water. Coxsackievirus, poliovirus, echovirus, and Norwalk virus were rendered noninfectious or inactivated by treatment with heat (72°C, 37°C, and 19°C) or hypochlorite. Infectious or native and noninfectious or inactivated viruses were treated with PMA. This was followed by RNA extraction and RT-PCR or quantitative RT-PCR (qRT-PCR) analysis. The PMA-RT-PCR results indicated that PMA treatment did not interfere with detection of infectious or native viruses but prevented detection of noninfectious or inactivated viruses that were rendered noninfectious or inactivated by treatment at 72°C and 37°C and by hypochlorite treatment. However, PMA-RT-PCR was unable to prevent detection of enteroviruses that were rendered noninfectious by treatment at 19°C. After PMA treatment poliovirus that was rendered noninfectious by treatment at 37°C was undetectable by qRT-PCR, but PMA treatment did not affect detection of Norwalk virus. PMA-RT-PCR was also shown to be effective for detecting infectious poliovirus in the presence of noninfectious virus and in an environmental matrix. We concluded that PMA can be used to differentiate between potentially infectious and noninfectious

  20. Use of propidium monoazide in reverse transcriptase PCR to distinguish between infectious and noninfectious enteric viruses in water samples.

    PubMed

    Parshionikar, Sandhya; Laseke, Ian; Fout, G Shay

    2010-07-01

    Human enteric viruses can be present in untreated and inadequately treated drinking water. Molecular methods, such as the reverse transcriptase PCR (RT-PCR), can detect viral genomes in a few hours, but they cannot distinguish between infectious and noninfectious viruses. Since only infectious viruses are a public health concern, methods that not only are rapid but also provide information on the infectivity of viruses are of interest. The intercalating dye propidium monoazide (PMA) has been used for distinguishing between viable and nonviable bacteria with DNA genomes, but it has not been used to distinguish between infectious and noninfectious enteric viruses with RNA genomes. In this study, PMA in conjunction with RT-PCR (PMA-RT-PCR) was used to determine the infectivity of enteric RNA viruses in water. Coxsackievirus, poliovirus, echovirus, and Norwalk virus were rendered noninfectious or inactivated by treatment with heat (72 degrees C, 37 degrees C, and 19 degrees C) or hypochlorite. Infectious or native and noninfectious or inactivated viruses were treated with PMA. This was followed by RNA extraction and RT-PCR or quantitative RT-PCR (qRT-PCR) analysis. The PMA-RT-PCR results indicated that PMA treatment did not interfere with detection of infectious or native viruses but prevented detection of noninfectious or inactivated viruses that were rendered noninfectious or inactivated by treatment at 72 degrees C and 37 degrees C and by hypochlorite treatment. However, PMA-RT-PCR was unable to prevent detection of enteroviruses that were rendered noninfectious by treatment at 19 degrees C. After PMA treatment poliovirus that was rendered noninfectious by treatment at 37 degrees C was undetectable by qRT-PCR, but PMA treatment did not affect detection of Norwalk virus. PMA-RT-PCR was also shown to be effective for detecting infectious poliovirus in the presence of noninfectious virus and in an environmental matrix. We concluded that PMA can be used to differentiate

  1. Expression and distribution of the duck enteritis virus UL51 protein in experimentally infected ducks.

    PubMed

    Shen, Chanjuan; Cheng, Anchun; Wang, Mingshu; Xu, Chao; Jia, Renyong; Chen, Xiaoyue; Zhu, Dekang; Luo, Qihui; Cui, Hengmin; Zhou, Yi; Wang, Yin; Xu, Zhiwen; Chen, Zhengli; Wang, Xiaoyu

    2010-06-01

    To determine the expression and distribution of tegument proteins encoded by duck enteritis virus (DEV) UL51 gene in tissues of experimentally infected ducks, for the first time, an immunoperoxidase staining method to detect UL51 protein (UL51p) in paraffin-embedded tissues is reported. A rabbit anti-UL51 polyclonal serum, raised against a recombinant 6-His-UL51 fusion protein expressed in Escherichia coli, was prepared, purified, and used as primary antibodies. Fifty-eight 30-day-old DEV-free ducks were intramuscularly inoculated with the pathogenic DEV CHv strain as infection group, and two ducks were selected as preinfection group. The tissues were collected at sequential time points between 2 and 480 hr postinoculation (PI) and prepared for immunoperoxidase staining. DEV UL51p was first found in the spleen and liver at 8 hr PI; in the bursa of Fabricius and thymus at 12 hr PI; in the Harders glands, esophagus, small intestine (including the duodenum, jejunum, and ileum), and large intestine (including the caecum and rectum) at 24 hr PI; in the glandularis ventriculus at 48 hr PI; and in the pancreas, cerebrum, kidney, lung, and myocardium at 72 hr PI. Throughout the infection process, the UL51p was not seen in the muscle. Furthermore, the intensity of positive staining of DEV UL51p antigen in various tissues increased sharply from 8 to 96 hr PI, peaked during 120-144 hr PI, and then decreased steadily from 216 to 480 hr PI, suggesting that the expressional levels of DEV UL51p in systemic organs have a close correlation with the progression of duck virus enteritis (DVE) disease. A number of DEV UL51p was distributed in the bursa of Fabricius, thymus, spleen, liver, esophagus, small intestine, and large intestine of DEV-infected ducks, whereas less DEV UL51p was distributed in the Harders glands, glandularis ventriculus, cerebrum, kidney, lung, pancreas, and myocardium of DEV-infected ducks. Moreover, DEV UL51p can be expressed in the cytoplasm of various types

  2. Quantification of enteric viruses, pathogen indicators, and Salmonella bacteria in class B anaerobically digested biosolids by culture and molecular methods.

    PubMed

    Wong, Kelvin; Onan, Brandon M; Xagoraraki, Irene

    2010-10-01

    The most common class B biosolids in the United States are generated by mesophilic anaerobic digestion (MAD), and MAD biosolids have been used for land application. However, the pathogen levels in MAD biosolids are still unclear, especially with respect to enteric viruses. In this study, we determined the occurrence and the quantitative levels of enteric viruses and indicators in 12 MAD biosolid samples and of Salmonella enterica in 6 MAD biosolid samples. Three dewatered biosolid samples were also included in this study for purposes of comparison. Human adenoviruses (HAdV) had the highest gene levels and were detected more frequently than other enteric viruses. The gene levels of noroviruses (NV) reported were comparable to those of enteroviruses (EV) and human polyomaviruses (HPyV). The occurrence percentages of HAdV, HAdV species F, EV, NV GI, NV GII, and HPyV in MAD samples were 83, 83, 42, 50, 75, and 58%, respectively. No hepatitis A virus was detected. Infectious HAdV was detected more frequently than infectious EV, and all infectious HAdV were detected when samples were propagated in A549 cells. Based on most-probable-number (MPN) analysis, A549 cells were more susceptible to biosolid-associated viruses than BGM cells. All indicator levels in MAD biosolids were approximately 10(4) MPN or PFU per gram (dry), and the dewatered biosolids had significantly higher indicator levels than the MAD biosolids. Only two MAD samples tested positive for Salmonella enterica, where the concentration was below 1.0 MPN/4 g. This study provides a broad comparison of the prevalence of different enteric viruses in MAD biosolids and reports the first detection of noroviruses in class B biosolids. The observed high quantitative and infectivity levels of adenoviruses in MAD biosolids indicate that adenovirus is a good indicator for the evaluation of sludge treatment efficiency.

  3. Enteric viruses in Brazilian turkey flocks: single and multiple virus infection frequency according to age and clinical signs of intestinal disease.

    PubMed

    Moura-Alvarez, J; Chacon, J V; Scanavini, L S; Nuñez, L F N; Astolfi-Ferreira, C S; Jones, R C; Piantino Ferreira, A J

    2013-04-01

    Poult enteritis complex has been associated with enteritis and reduction in growth rates in commercial turkeys worldwide. Intestinal samples from 76 turkey flocks from different Brazilian states affected or not with intestinal disorders were evaluated for the presence of adenovirus groups 1 and 2 (TAV), astrovirus types 1 and 2 (TAstV-1 and TAstV-2), turkey coronavirus (TCoV), reovirus, rotavirus, and avian nephritis virus (ANV) using PCR. The percentage of positive samples was categorized according to the geographic origin, age of the flocks, and presence of clinical signs of intestinal disease. The percentage of samples that were positive for at least one virus was 93.4%, whereas the percentage of samples that were positive for more than one virus was 69.7%. An average of 3.20 viruses per sample was detected in turkeys in the growing phase of the production cycle (1 to 4 wk of age). The TAstV-1 and TCoV were the most frequently observed viruses in growing phase turkeys and occurred simultaneously in 85% of these samples. In turkeys in the finishing phase of development (5 to 18 wk), a lower average number of viruses was observed (2.41), and the most frequent viruses isolated in these turkeys were TAstV-1 (57.1%) and rotavirus (51.8%). Overall, every virus was detected more frequently in growing phase turkeys than in finishing phase turkeys with the exception of TAV. Samples from flocks exhibiting clinical signs of intestinal disease showed a higher rate of positivity, and TAstV-1, TAstV-2, and TCoV were the most frequently occurring viruses in this cohort. Birds without clinical signs most frequently harbored TAstV-1 and rotavirus. Future studies should focus on the description and elucidation of the role of each virus, as well as the pathogenic and immunological implications of the different combinations of viruses in turkeys.

  4. Latency of Varicella Zoster Virus in Dorsal Root, Cranial, and Enteric Ganglia in Vaccinated Children

    PubMed Central

    Gershon, Anne A.; Chen, Jason; Davis, Larry; Krinsky, Clarissa; Cowles, Robert; Reichard, Ross; Gershon, Michael

    2012-01-01

    Despite vaccination, varicella-zoster virus (VZV) remains an important pathogen. We investigated VZV latency in autopsy specimens from vaccinees, in gastrointestinal tissue removed surgically, and in a guinea pig model. We propose that retrograde transport from infected skin and viremia deliver VZV to neurons in which it becomes latent. Wild type (WT) VZV was found to be latent in many ganglia of vaccinated children with no history of varicella, suggesting that subclinical infection with WT-VZV occurs with subsequent viremic dissemination. The 30% to 40% rate of WT-VZV zoster reported in vaccinees and occasional trigeminal zoster due to vaccine type VZV (vOka) are consistent with viremic delivery of VZV to multiple ganglia. Most human intestinal specimens contained latent VZV within neurons of the enteric nervous system (ENS). Induction of viremia in guinea pigs led to VZV latency throughout the ENS. The possibility VZV reactivation in the ENS is an unsuspected cause of gastrointestinal disease requires future investigation. PMID:23303966

  5. MHC class I molecules are enriched in caveolae but do not enter with simian virus 40.

    PubMed

    Anderson, H A; Chen, Y; Norkin, L C

    1998-06-01

    Simian virus 40 (SV40) binds to MHC class I molecules anywhere on the cell surface and then enters through caveolae. The fate of class I molecules after SV40 binding is not known. Sensitivity of 125I-surface-labelled class I molecules to papain cleavage was used to distinguish internalized class I molecules from class I molecules remaining at the cell surface. Whereas the caveolae-enriched membrane microdomain was found to also be enriched for class I molecules, no internalized papain-resistant 125I-surface-labelled class I molecules could be detected at any time in either control cells or in cells preadsorbed with saturating amounts of SV40. Instead, 125I-surface-labelled class I molecules, as well as preadsorbed 125I-labelled anti-class I antibodies, accumulated in the medium, coincident with the turnover of class I molecules at the cell surface. The class I heavy chains that accumulated in the medium were truncated and their release was specifically prevented by the metalloprotease inhibitor 1,10-phenanthroline. Thus, whereas class I molecules mediate SV40 binding, they do not appear to mediate SV40 entry.

  6. Increased numbers of duodenal mucosal mast cells in turkeys inoculated with hemorrhagic enteritis virus.

    PubMed

    Opengart, K; Eyre, P; Domermuth, C H

    1992-05-01

    The relation between average duodenal mast cell count, duodenal mucosal mast cell numbers, duodenal connective tissue mast cell numbers, circulating basophil numbers, heterophil-to-lymphocyte ratio, and lesion score were studied to gain an understanding of the events that may lead to intestinal lesion formation associated with hemorrhagic enteritis virus (HEV) infection. Changes in vascular permeability in the duodenum in birds inoculated with HEV were examined, using colloidal carbon and ferritin as vascular markers. Turkeys inoculated with HEV had significantly (P less than 0.05) higher duodenal mast cell counts than did noninfected controls. Birds inoculated with HEV had significantly (P less than 0.05) more mucosal mast cells than did phosphate-buffered saline solution-inoculated birds. Connective tissue mast cell and basophil numbers were unaffected by viral inoculation. Thermal stress did not have significant effect on lesion severity, but did increase number of birds that developed the characteristic intestinal lesions. The heterophil-to-lymphocyte ratio was significantly (P less than 0.05) higher in HEV-inoculated birds, compared with phosphate-buffered saline solution-inoculated controls. Increase in vascular permeability was only detected in HEV-inoculated birds with intestinal lesions. Results indicate that mast cells, and the vasoactive mediators contained within mast cells, may be important in the early manifestation of HEV infection. They also provide a possible mechanism through which biochemical and physiologic changes characteristic of HEV infection can occur.

  7. DETECTION BY PCR OF HUMAN ENTERIC VIRUSES CONCENTRATED FROM LARGE VOLUMES OF WATER

    EPA Science Inventory

    Viruses are recovered and concentrated from water by passage through a positively charged cartridge filter. Following virus elution from the cartridge filter with beef extract and concentration of the beef extract solution, viruses are usually assayed by cell culture. However...

  8. DETECTION BY PCR OF HUMAN ENTERIC VIRUSES CONCENTRATED FROM LARGE VOLUMES OF WATER

    EPA Science Inventory

    Viruses are recovered and concentrated from water by passage through a positively charged cartridge filter. Following virus elution from the cartridge filter with beef extract and concentration of the beef extract solution, viruses are usually assayed by cell culture. However...

  9. Preparation of MS2 Phage-Like Particles and Their Use As Potential Process Control Viruses for Detection and Quantification of Enteric RNA Viruses in Different Matrices

    PubMed Central

    Mikel, Pavel; Vasickova, Petra; Tesarik, Radek; Malenovska, Hana; Kulich, Pavel; Vesely, Tomas; Kralik, Petr

    2016-01-01

    The detection and quantification of enteric RNA viruses is based on isolation of viral RNA from the sample followed by quantitative reverse transcription polymerase chain reaction (RT-qPCR). To control the whole process of analysis and in order to guarantee the validity and reliability of results, process control viruses (PCV) are used. The present article describes the process of preparation and use of such PCV– MS2 phage-like particles (MS2 PLP) – in RT-qPCR detection and quantification of enteric RNA viruses. The MS2 PLP were derived from bacteriophage MS2 carrying a unique and specific de novo-constructed RNA target sequence originating from the DNA of two extinct species. The amount of prepared MS2 particles was quantified using four independent methods – UV spectrophotometry, fluorimetry, transmission electron microscopy and a specifically developed duplex RT-qPCR. To evaluate the usefulness of MS2 PLP in routine diagnostics different matrices known to harbor enteric RNA viruses (swab samples, liver tissue, serum, feces, and vegetables) were artificially contaminated with specific amounts of MS2 PLP. The extraction efficiencies were calculated for each individual matrix. The prepared particles fulfill all requirements for PCV – they are very stable, non-infectious, and are genetically distinct from the target RNA viruses. Due to these properties they represent a good morphological and physiochemical model. The use of MS2 PLP as a PCV in detection and quantification of enteric RNA viruses was evaluated in different types of matrices. PMID:28133456

  10. Detection of human enteric viruses in oysters by in vivo and in vitro amplification of nucleic acids.

    PubMed Central

    Chung, H; Jaykus, L A; Sobsey, M D

    1996-01-01

    This study describes the detection of enteroviruses and hepatitis A virus in 31 naturally contaminated oyster specimens by nucleic acid amplification and oligonucleotide probing. Viruses were extracted by adsorption-elution-precipitation from 50-g oyster samples harvested from an area receiving sewage effluent discharge. Ninety percent of each extract was inoculated into primate kidney cell cultures for virus isolation and infectivity assay. Viruses in the remaining 10% of oyster extract that was not inoculated into cell cultures were further purified and concentrated by a procedure involving Freon extraction, polyethylene glycol precipitation, and Pro-Cipitate precipitation. After 3 to 4 weeks of incubation, RNA was extracted from inoculated cultures that were negative for cytopathic effects (CPE). These RNA extracts and the RNA from virions purified and concentrated directly from oyster extracts were subjected to reverse transcriptase PCR (RT-PCR) with primer pairs for human enteroviruses and hepatitis A virus. The resulting amplicons were confirmed by internal oligonucleotide probe hybridization. For the portions of oyster sample extracts inoculated into cell cultures, 12 (39%) were positive for human enteroviruses by CPE and 6 (19%) were positive by RT-PCR and oligoprobing of RNA extracts from CPE-negative cell cultures. For the remaining sample portions tested by direct RT-PCR and oligoprobing after further concentration, five (about 16%) were confirmed to be positive for human enteroviruses. Hepatitis A virus was also detected in RNA extracts of two CPE-positive samples by RT-PCR and oligoprobing. Combining the data from all three methods, enteric viruses were detected in 18 of 31 (58%) samples. Detection by nucleic acid methods increased the number of positive samples by 50% over detection by CPE in cell culture. Hence, nucleic acid amplification methods increase the detection of noncytopathic human enteric viruses in oysters. PMID:8837433

  11. Sunlight inactivation of somatic coliphage in the presence of natural organic matter.

    PubMed

    Sun, Chen-Xi; Kitajima, Masaaki; Gin, Karina Yew-Hoong

    2016-01-15

    Long wavelengths of sunlight spectrum (UVA and visible light), as well as natural organic matter (NOM) are important environmental factors affecting survival of viruses in aquatic environment through direct and indirect inactivation. In order to understand the virus inactivation kinetics under such conditions, this study investigated the effects of Suwannee River natural organic matter (NOM) on the inactivation of a somatic coliphage, phiX174, by UVA and visible light. Experiments were carried out to examine the virucidal effects of UVA/visible light, assess the influence of SRNOM at different concentrations, and identify the effective ROS in virus inactivation. The results from this study showed that the presence of NOM could either enhance virus inactivation or reduce virus inactivation depending on the concentration, where the inactivation rate followed a parabolic relationship against NOM concentration. The results indicated that moderate levels of NOM (11 ppm) had the strongest antiviral activity, while very low or very high NOM concentrations prolonged virus survival. The results also showed that OH▪ was the primary ROS in causing phiX174 (ssDNA virus) inactivation, unlike previous findings where (1)O2 was the primary ROS causing MS2 (ssRNA virus) inactivation. The phiX174 inactivation by OH∙ could be described as k=3.7 ✕ 10(13)[OH∙]+1.404 (R(2)=0.8527).

  12. Detection of Infectious Enteroviruses, Enterovirus Genomes, Somatic Coliphages, and Bacteroides fragilis Phages in Treated Wastewater

    PubMed Central

    Gantzer, C.; Maul, A.; Audic, J. M.; Schwartzbrod, L.

    1998-01-01

    cultures. However, under our experimental conditions, nondetection of the genome implies the absence of infectious viruses. There was a significant correlation between the concentration of somatic coliphages or B. fragilis phages and the presence of infectious enteroviruses or the presence of the enterovirus genome. However, the somatic coliphage concentration did not lead to fluctuations in the infectious enterovirus concentration, whereas the B. fragilis phage concentration did. PMID:9797281

  13. The pathogenesis of duck virus enteritis in experimentally infected ducks: a quantitative time-course study using TaqMan polymerase chain reaction.

    PubMed

    Xuefeng, Qi; Xiaoyan, Yang; Anchun, Cheng; Mingshu, Wang; Dekang, Zhu; Renyong, Jia

    2008-06-01

    Duck virus enteritis is an acute and contagious herpesvirus infection of duck, geese and swans with high morbidity and mortality. The kinetics of viral DNA loads and immunohistochemical localization of virulent duck enteritis virus, as well as histopathological examination in various tissues of ducks following oral infection, were investigated. The time course for the appearance of viral antigen and tissue lesions in various tissues was coincident with the levels of duck enteritis virus at the various sites, suggesting that the levels of duck enteritis virus in systemic organs have a close correlation with the progression of disease. The abundance of target epithelial and lymphoid cells may contribute to the high levels of virus infection and replication in lymphoid and intestinal tissues.

  14. Presence of pathogenic enteric viruses in illegally imported meat and meat products to EU by international air travelers.

    PubMed

    Rodríguez-Lázaro, David; Diez-Valcarce, Marta; Montes-Briones, Rebeca; Gallego, David; Hernández, Marta; Rovira, Jordi

    2015-09-16

    One hundred twenty two meat samples confiscated from passengers on flights from non-European countries at the International Airport of Bilbao (Spain) were tested for the presence of the main foodborne viral pathogens (human noroviruses genogroups I and II, hepatitis A and E viruses) during 2012 and 2013. A sample process control virus, murine norovirus, was used to evaluate the correct performance of the method. Overall, 67 samples were positive for at least one enteric viruses, 65 being positive for hepatitis E virus (53.3%), 3 for human norovirus genogroup I (2.5%) and 1 for human norovirus genogroup II (0.8%), whereas hepatitis A virus was not detected in any sample. The type of positive meat samples was diverse, but mainly was pork meat products (64.2%). The geographical origin of the positive samples was wide and diverse; samples from 15 out 19 countries tested were positive for at least one virus. However, the estimated virus load was low, ranging from 55 to 9.0 × 10(4) PDU per gram of product. The results obtained showed the potential introduction of viral agents in travelers' luggage, which constitute a neglected route of introduction and transmission.

  15. Effect of distance from the polluting focus on relative concentrations of Bacteroides fragilis phages and coliphages in mussels.

    PubMed Central

    Lucena, F; Lasobras, J; McIntosh, D; Forcadell, M; Jofre, J

    1994-01-01

    Concentrations of fecal bacteria, somatic and F-specific coliphages, and phages infecting Bacteroides fragilis in naturally occurring black mussels (Mytilus edulis) were determined. Mussels were collected over a 7-month period at four sampling sites with different levels of fecal pollution. Concentrations of both fecal bacteria and bacteriophages in mussel meat paralleled the concentration of fecal bacteria in the overlying waters. Mussels bioaccumulated efficiently, although with different efficiencies, all of the microorganisms studied. Ratios comparing the levels of microorganisms in mussels were determined. These ratios changed in mussels collected at the different sites. They suggest that bacteriophages infecting B. fragilis and somatic coliphages have the lowest decay rates among the microorganisms studied, with the exception of Clostridium perfringens. On the contrary, concentrations of F-specific coliphages showed a greater rate of decay than the other bacteriophages at sites more distant from the focus of contamination. Additionally, levels of enteroviruses were studied in a number of samples, and in these samples, the B. fragilis bacteriophages clearly outnumbered the enteroviruses. The results of this study indicate that, under the environmental conditions studied, the fate of phages infecting B. fragilis released into the marine environment resembles that of human viruses more than any other microorganism examined. Images PMID:8074509

  16. Quantifying viruses and bacteria in wastewater—Results, interpretation methods, and quality control

    USGS Publications Warehouse

    Francy, Donna S.; Stelzer, Erin A.; Bushon, Rebecca N.; Brady, Amie M.G.; Mailot, Brian E.; Spencer, Susan K.; Borchardt, Mark A.; Elber, Ashley G.; Riddell, Kimberly R.; Gellner, Terry M.

    2011-01-01

    Membrane bioreactors (MBR), used for wastewater treatment in Ohio and elsewhere in the United States, have pore sizes small enough to theoretically reduce concentrations of protozoa and bacteria, but not viruses. Sampling for viruses in wastewater is seldom done and not required. Instead, the bacterial indicators Escherichia coli (E. coli) and fecal coliforms are the required microbial measures of effluents for wastewater-discharge permits. Information is needed on the effectiveness of MBRs in removing human enteric viruses from wastewaters, particularly as compared to conventional wastewater treatment before and after disinfection. A total of 73 regular and 28 quality-control (QC) samples were collected at three MBR and two conventional wastewater plants in Ohio during 23 regular and 3 QC sampling trips in 2008-10. Samples were collected at various stages in the treatment processes and analyzed for bacterial indicators E. coli, fecal coliforms, and enterococci by membrane filtration; somatic and F-specific coliphage by the single agar layer (SAL) method; adenovirus, enterovirus, norovirus GI and GII, rotavirus, and hepatitis A virus by molecular methods; and viruses by cell culture. While addressing the main objective of the study-comparing removal of viruses and bacterial indicators in MBR and conventional plants-it was realized that work was needed to identify data analysis and quantification methods for interpreting enteric virus and QC data. Therefore, methods for quantifying viruses, qualifying results, and applying QC data to interpretations are described in this report. During each regular sampling trip, samples were collected (1) before conventional or MBR treatment (post-preliminary), (2) after secondary or MBR treatment (post-secondary or post-MBR), (3) after tertiary treatment (one conventional plant only), and (4) after disinfection (post-disinfection). Glass-wool fiber filtration was used to concentrate enteric viruses from large volumes, and small

  17. Assessment and Evaluation of an Integrated Hybrid Anaerobic-Aerobic Sewage Treatment System for the Removal of Enteric Viruses.

    PubMed

    El-Senousy, Waled Morsy; Abou-Elela, Sohair Imam

    2017-02-14

    The capability of a cost-effective and a small size decentralized pilot wastewater treatment plant (WWTP) to remove enteric viruses such as rotavirus, norovirus genogroup I (GGI), norovirus genogroup II (GGII), Hepatitis E virus (HEV), and adenovirus was studied. This pilot plant is an integrated hybrid anaerobic/aerobic setup which consisted of anaerobic sludge blanket (UASB), biological aerated filter (BAF), and inclined plate settler (IPS). Both the UASB and BAF are packed with a non-woven polyester fabric (NWPF). Results indicated that the overall log10 reductions of enteric viruses' genome copies through the whole system were 3.1 ± 1, 3.3 ± 0.5, and 2.6 ± 0.9 log10 for rotavirus, norovirus GGI, and adenovirus, respectively. Reduction efficiency for both norovirus GGII and HEV after the different treatment steps could not be calculated because there were no significant numbers of positive samples for both viruses. The overall reduction of rotavirus infectious units through the whole system was 2.2 ± 0.8 log10 reduction which is very close to the overall log10 reduction of adenovirus infectious units through the whole system which was 2.1 ± 0.8 log10 reduction. There was no considerable difference in the removal efficiency for different rotavirus G and P types. Adenovirus 41 was the only type detected in the all positive samples. Although the pilot WWTP investigated is cost effective, has a small footprint, does not need a long distance network pipes, and easy to operate, its efficiency to remove enteric viruses is comparable with the conventional centralized WWTPs.

  18. QUALITY ASSURANCE FOR METHODS TO DETECT HUMAN ENTERIC VIRUSES IN DRINKING WATER

    EPA Science Inventory

    Surface or groundwaters impacted by untreated or inadequately treated domestic wastes may contain human pathogenic viruses that cause hepatitis, gastroenteritis, meningitis, encephalitis, myocarditis, diabetes, conjunctivitis and temporary or permanent paralysis. These viruses c...

  19. QUALITY ASSURANCE FOR METHODS TO DETECT HUMAN ENTERIC VIRUSES IN DRINKING WATER

    EPA Science Inventory

    Surface or groundwaters impacted by untreated or inadequately treated domestic wastes may contain human pathogenic viruses that cause hepatitis, gastroenteritis, meningitis, encephalitis, myocarditis, diabetes, conjunctivitis and temporary or permanent paralysis. These viruses c...

  20. Human enteric viruses in groundwater indicate offshore transport of human sewage to coral reefs of the Upper Florida Keys

    USGS Publications Warehouse

    Futch, J. Carrie; Griffin, Dale W.; Lipp, Erin K.

    2010-01-01

    To address the issue of human sewage reaching corals along the main reef of the Florida Keys, samples were collected from surface water, groundwater and coral [surface mucopolysaccharide layers (SML)] along a 10 km transect near Key Largo, FL. Samples were collected semi-annually between July 2003 and September 2005 and processed for faecal indicator bacteria (faecal coliform bacteria, enterococci and Clostridium perfringens) and human-specific enteric viruses (enterovirus RNA and adenovirus DNA) by (RT)-nested polymerase chain reaction. Faecal indicator bacteria concentrations were generally higher nearshore and in the coral SML. Enteric viruses were evenly distributed across the transect stations. Adenoviruses were detected in 37 of 75 samples collected (49.3%) whereas enteroviruses were only found in 8 of 75 samples (10.7%). Both viruses were detected twice as frequently in coral compared with surface water or groundwater. Offshore, viruses were most likely to be found in groundwater, especially during the wet summer season. These data suggest that polluted groundwater may be moving to the outer reef environment in the Florida Keys.

  1. Detection of multiple enteric virus strains within a foodborne outbreak of gastroenteritis: an indication of the source of contamination.

    PubMed Central

    Gallimore, C. I.; Pipkin, C.; Shrimpton, H.; Green, A. D.; Pickford, Y.; McCartney, C.; Sutherland, G.; Brown, D. W. G.; Gray, J. J.

    2005-01-01

    An outbreak of acute gastroenteritis of suspected viral aetiology occurred in April 2003 in the British Royal Fleet Auxiliary ship (RFA) Argus deployed in the Northern Arabian Gulf. There were 37 cases amongst a crew of 400 personnel. Of 13 samples examined from cases amongst the crew, six enteric viruses were detected by reverse transcriptase polymerase chain reaction (RT-PCR). Five different viruses were identified including, three norovirus genotypes, a sapovirus and a rotavirus. No multiple infections were detected. A common food source was implicated in the outbreak and epidemiological analysis showed a statistically significant association with salad as the source of the outbreak, with a relative risk of 3.41 (95% confidence interval of 1.7-6.81) of eating salad on a particular date prior to the onset of symptoms. Faecal contamination of the salad at source was the most probable explanation for the diversity of viruses detected and characterized. PMID:15724709

  2. COLIPHAGES AS POTENTIAL VIRAL INDICATORS OF FECAL POLLUTION

    EPA Science Inventory

    Friedman, Stephanie D. In press. Coliphages as Potential Viral Indicators of Fecal Pollution (Abstract). To be presented at the SWS/GERS Fall Joint Society Meeting: Communication and Collaboration: Coastal Systems of the Gulf of Mexico and Southeastern United States, 6-9 October ...

  3. COLIPHAGES AS POTENTIAL VIRAL INDICATORS OF FECAL POLLUTION

    EPA Science Inventory

    Friedman, Stephanie D. In press. Coliphages as Potential Viral Indicators of Fecal Pollution (Abstract). To be presented at the SWS/GERS Fall Joint Society Meeting: Communication and Collaboration: Coastal Systems of the Gulf of Mexico and Southeastern United States, 6-9 October ...

  4. Potential usefulness of bacteriophages that infect Bacteroides fragilis as model organisms for monitoring virus removal in drinking water treatment plants.

    PubMed Central

    Jofre, J; Ollé, E; Ribas, F; Vidal, A; Lucena, F

    1995-01-01

    The presence of bacteriophages at different stages in three drinking water treatment plants was evaluated to study the usefulness of phages as model organisms for assessing the efficiency of the processes. The bacteriophages tested were somatic coliphages, F-specific coliphages, and phages infecting Bacteroides fragilis. The presence of enteroviruses and currently used bacterial indicators was also determined. Most bacteriophages were removed during the prechlorination-flocculation-sedimentation step. In these particular treatment plants, which include prechlorination, phages were, in general, more resistant to the treatment processes than present bacterial indicators, with the exception, in some cases, of clostridia. Bacteriophages infecting B. fragilis were found to be more resistant to water treatment than either somatic or F-specific coliphages or even clostridia. Enteric viruses were found only in untreated water in low numbers, and consequently, the efficiency of the plants in the removal of viruses could not be evaluated with precision. The numbers and frequencies of detection of the various microorganisms in water samples taken in the distribution network served by the three plants confirm the results found in the finished water at the plants. PMID:7574632

  5. One-year Surveillance of Human Enteric Viruses in Raw and Treated Wastewaters, Downstream River Waters, and Drinking Waters.

    PubMed

    Iaconelli, M; Muscillo, M; Della Libera, S; Fratini, M; Meucci, L; De Ceglia, M; Giacosa, D; La Rosa, G

    2017-03-01

    Human enteric viruses are a major cause of waterborne diseases, and can be transmitted by contaminated water of all kinds, including drinking and recreational water. The objectives of the present study were to assess the occurrence of enteric viruses (enterovirus, norovirus, adenovirus, hepatitis A and E virus) in raw and treated wastewaters, in rivers receiving wastewater discharges, and in drinking waters. Wastewater treatment plants' (WWTP) pathogen removal efficiencies by adenovirus quantitative real-time PCR and the presence of infectious enterovirus, by cell culture assays, in treated wastewaters and in surface waters were also evaluated. A total of 90 water samples were collected: raw and treated wastewaters (treated effluents and ultrafiltered water reused for industrial purposes), water from two rivers receiving treated discharges, and drinking water. Nested PCR assays were used for the identification of viral DNA/RNA, followed by direct amplicon sequencing. All raw sewage samples (21/21), 61.9 % of treated wastewater samples (13/21), and 25 % of ultrafiltered water samples (3/12) were contaminated with at least one viral family. Multiple virus families and genera were frequently detected. Mean positive PCRs per sample decreased significantly from raw to treated sewage and to ultrafiltered waters. Moreover, quantitative adenovirus data showed a reduction in excess of 99 % in viral genome copies following wastewater treatment. In surface waters, 78.6 % (22/28) of samples tested positive for one or more viruses by molecular methods, but enterovirus-specific infectivity assays did not reveal infectious particles in these samples. All drinking water samples tested negative for all viruses, demonstrating the effectiveness of treatment in removing viral pathogens from drinking water. Integrated strategies to manage water from all sources are crucial to ensure water quality.

  6. Detection of Potential Infectious Enteric Viruses in Fresh Produce by (RT)-qPCR Preceded by Nuclease Treatment.

    PubMed

    Marti, Elisabet; Ferrary-Américo, Monique; Barardi, Célia Regina Monte

    2017-04-27

    Foodborne illnesses associated with contaminated fresh produce are a common public health problem and there is an upward trend of outbreaks caused by enteric viruses, especially human noroviruses (HNoVs) and hepatitis A virus (HAV). This study aimed to assess the use of DNase and RNase coupled to qPCR and RT-qPCR, respectively, to detect intact particles of human adenoviruses (HAdVs), HNoV GI and GII and HAV in fresh produce. Different concentrations of DNase and RNase were tested to optimize the degradation of free DNA and RNA from inactivated HAdV and murine norovirus (MNV), respectively. Results indicated that 10 µg/ml of RNase was able to degrade more than 4 log10 (99.99%) of free RNA, and 1 U of DNase degraded the range of 0.84-2.5 log10 of free DNA depending on the fresh produce analysed. The treatment with nucleases coupled to (RT)-qPCR was applied to detect potential infectious virus in organic lettuce, green onions and strawberries collected in different seasons. As a result, no intact particles of HNoV GI and GII were detected in the 36 samples analysed, HAdV was found in one sample and HAV was present in 33.3% of the samples, without any reasonable distribution pattern among seasons. In conclusion, RT-qPCR preceded by RNase treatment of eluted samples from fresh produce is a good alternative to detect undamaged RNA viruses and therefore, potential infectious viruses. Moreover, this study provides data about the prevalence of enteric viruses in organic fresh produce from Brazil.

  7. Source and transport of human enteric viruses in deep municipal water supply wells.

    PubMed

    Bradbury, Kenneth R; Borchardt, Mark A; Gotkowitz, Madeline; Spencer, Susan K; Zhu, Jun; Hunt, Randall J

    2013-05-07

    Until recently, few water utilities or researchers were aware of possible virus presence in deep aquifers and wells. During 2008 and 2009 we collected a time series of virus samples from six deep municipal water-supply wells. The wells range in depth from approximately 220 to 300 m and draw water from a sandstone aquifer. Three of these wells draw water from beneath a regional aquitard, and three draw water from both above and below the aquitard. We also sampled a local lake and untreated sewage as potential virus sources. Viruses were detected up to 61% of the time in each well sampled, and many groundwater samples were positive for virus infectivity. Lake samples contained viruses over 75% of the time. Virus concentrations and serotypes observed varied markedly with time in all samples. Sewage samples were all extremely high in virus concentration. Virus serotypes detected in sewage and groundwater were temporally correlated, suggesting very rapid virus transport, on the order of weeks, from the source(s) to wells. Adenovirus and enterovirus levels in the wells were associated with precipitation events. The most likely source of the viruses in the wells was leakage of untreated sewage from sanitary sewer pipes.

  8. Source and transport of human enteric viruses in deep municipal water supply wells

    USGS Publications Warehouse

    Bradbury, Kenneth R.; Borchardt, Mark A.; Gotkowitz, Madeline; Spencer, Susan K.; Zhu, Jun; Hunt, Randall J.

    2013-01-01

    Until recently, few water utilities or researchers were aware of possible virus presence in deep aquifers and wells. During 2008 and 2009 we collected a time series of virus samples from six deep municipal water-supply wells. The wells range in depth from approximately 220 to 300 m and draw water from a sandstone aquifer. Three of these wells draw water from beneath a regional aquitard, and three draw water from both above and below the aquitard. We also sampled a local lake and untreated sewage as potential virus sources. Viruses were detected up to 61% of the time in each well sampled, and many groundwater samples were positive for virus infectivity. Lake samples contained viruses over 75% of the time. Virus concentrations and serotypes observed varied markedly with time in all samples. Sewage samples were all extremely high in virus concentration. Virus serotypes detected in sewage and groundwater were temporally correlated, suggesting very rapid virus transport, on the order of weeks, from the source(s) to wells. Adenovirus and enterovirus levels in the wells were associated with precipitation events. The most likely source of the viruses in the wells was leakage of untreated sewage from sanitary sewer pipes.

  9. The vaccine efficacy of recombinant duck enteritis virus expressing secreted E with or without PrM proteins of duck tembusu virus.

    PubMed

    Chen, Pucheng; Liu, Jinxiong; Jiang, Yongping; Zhao, Yuhui; Li, Qimeng; Wu, Li; He, Xijun; Chen, Hualan

    2014-09-15

    A newly emerged tembusu virus that causes egg-drop has been affecting ducks in China since 2010. Currently, no vaccine is available for this disease. A live attenuated duck enteritis virus (DEV; a herpesvirus) vaccine has been used routinely to control lethal DEV in ducks since the 1960s. Here, we constructed two recombinant DEVs by transfecting overlapping fosmid DNAs. One virus, rDEV-TE, expresses the truncated form of the envelope glycoprotein (TE) of duck tembusu virus (DTMUV), and the other virus, rDEV-PrM/TE, expresses both the TE and pre-membrane proteins (PrM). Animal study demonstrated that both recombinant viruses induced measurable anti-DTMUV neutralizing antibodies in ducks. After two doses of recombinant virus, rDEV-PrM/TE completely protected ducks from DTMUV challenge, whereas rDEV-TE only conferred partial protection. These results demonstrate that recombinant DEV expressing the TE and pre-membrane proteins is protective and can serve as a potential candidate vaccine to prevent DTMUV infection in ducks.

  10. Survival of prototype strains of somatic coliphage families in environmental waters and when exposed to UV low-pressure monochromatic radiation or heat.

    PubMed

    Lee, Hee Suk; Sobsey, Mark D

    2011-06-01

    The potential use of specific somatic coliphage taxonomic groups as viral indicators based on their persistence and prevalence in water was investigated. Representative type strains of the 4 major somatic coliphage taxonomic groups were seeded into reagent water and an ambient surface water source of drinking water and the survival of the added phages was measured over 90 days at temperatures of 23-25 and 4 °C. Microviridae (type strain PhiX174), Siphoviridae (type strain Lambda), and Myoviridae (type strain T4) viruses were the most persistent in water at the temperatures tested. The Microviridae (type strain PhiX174) and the Siphoviridae (type strain Lambda) were the most resistant viruses to UV radiation and the Myoviridae (type strain T4) and the Microviridae (type strain PhiX174) were the most resistant viruses to heat. Based on their greater persistence in water over time and their relative resistance to heat and/or UV radiation, the Myoviridae (type strain T4), the Microviridae (type strain PhiX174), and the Siphoviridae (type strain Lambda) were the preferred candidate somatic coliphages as fecal indicator viruses in water, with the Microviridae (type strain PhiX174) the most resistant to these conditions overall. Copyright © 2011 Elsevier Ltd. All rights reserved.

  11. Expression and characterization of duck enteritis virus gI gene

    PubMed Central

    2011-01-01

    Background At present, alphaherpesviruses gI gene and its encoding protein have been extensively studied. It is likely that gI protein and its homolog play similar roles in virions direct cell-to-cell spread of alphaherpesviruses. But, little is known about the characteristics of DEV gI gene. In this study, we expressed and presented the basic properties of the DEV gI protein. Results The special 1221-bp fragment containing complete open reading frame(ORF) of duck enteritis virus(DEV) gI gene was extracted from plasmid pMD18-T-gI, and then cloned into prokaryotic expression vector pET-32a(+), resulting in pET-32a(+)-gI. After being confirmed by PCR, restriction endonuclease digestion and sequencing, pET-32a(+)-gI was transformed into E.coli BL21(DE3) competent cells for overexpression. DEV gI gene was successfully expressed by the addition of isopropyl-β-D-thiogalactopyranoside(IPTG). SDS-PAGE showed that the recombinant protein His6-tagged gI molecular weight was about 61 kDa. Subsequently, the expressed product was applied to generate specific antibody against gI protein. The specificity of the rabbit immuneserum was confirmed by its ability to react with the recombinant protein His6-tagged gI. In addition, real time-PCR was used to determine the the levels of the mRNA transcripts of gI gene, the results showed that the DEV gI gene was transcribed most abundantly during the late phase of infection. Furthermore, indirect immunofluorescence(IIF) was established to study the gI protein expression and localization in DEV-infected duck embryo fibroblasts (DEFs), the results confirmed that the protein was expressed and located in the cytoplasm of the infected cells, intensively. Conclusions The recombinant prokaryotic expression vector of DEV gI gene was constructed successfully. The gI protein was successfully expressed by E.coli BL21(DE3) and maintained its antigenicity very well. The basic information of the transcription and intracellular localization of gI gene

  12. Expression and characterization of UL16 gene from duck enteritis virus

    PubMed Central

    2011-01-01

    Background Previous studies have indicated that the UL16 protein and its homologs from herpesvirus were conserved and played similar roles in viral DNA packaging, virion assembly, budding, and egress. However, there was no report on the UL16 gene product of duck enteritis virus (DEV). In this study, we analyzed the amino acid sequence of UL16 using bioinformatics tools and expressed in Escherichia coli Rosetta (DE3) induced by isopropy1-β-D-thiogalactopyranoside (IPTG). The recombinant protein was produced, purified using a Ni-NTA column and used to generate the polyclonal antibody against UL16. The intracellular distribution of the DEV UL16 product was carried out using indirect immunofluorescence assay. Results In our study, UL16 gene of DEV was composed of 1089 nucleotides, which encoded 362 amino acids. Multiple sequence alignment suggested that the UL16 gene was highly conserved in herpesvirus family. The UL16 gene was cloned into a pET prokaryotic expression vector and transformed into Escherichia coli Rossetta (DE3) induced by IPTG. A 60kDa fusion protein band corresponding to the predicted size was produced on the SDS-PAGE, purified using a Ni-NTA column. Anti-UL16 polyclonal sera was prepared by immunizing rabbits, and reacted with a band in the IPTG induced cell lysates with an apparent molecular mass of 60 kDa. In vivo expression of the UL16 protein in DEV infected duck embryo fibroblast cells (DEFs) was localized mostly around perinuclear cytoplasmic area and in cytosol using indirect immunofluorescence assay. Conclusions The UL16 gene of DEV was successfully cloned, expressed and detected in DEV infected DEFs for the first time. The UL16 protein localized mostly around perinuclear cytoplasmic area and in cytosol in DEV infected DEFs. DEV UL16 shared high similarity with UL16 family members, indicating that DEV UL16 many has similar function with its homologs. All these results may provide some insight for further research about full characterizations

  13. Metagenomic identification of novel enteric viruses in urban wild rats and genome characterization of a group A rotavirus

    PubMed Central

    Sachsenröder, Jana; Braun, Anne; Machnowska, Patrycja; Ng, Terry Fei Fan; Deng, Xutao; Guenther, Sebastian; Bernstein, Samuel; Ulrich, Rainer G.; Delwart, Eric

    2014-01-01

    Rats are known as reservoirs and vectors for several zoonotic pathogens. However, information on the viruses shed by urban wild rats that could pose a zoonotic risk to human health is scare. Here, intestinal contents from 20 wild Norway rats (Rattus norvegicus) collected in the city of Berlin, Germany, were subjected to metagenomic analysis of viral nucleic acids. The determined faecal viromes of rats consisted of a variety of known and unknown viruses, and were highly variable among the individuals. Members of the families Parvoviridae and Picobirnaviridae represented the most abundant species. Novel picornaviruses, bocaviruses, sapoviruses and stool-associated circular ssDNA viruses were identified, which showed only low sequence identity to known representatives of the corresponding taxa. In addition, noroviruses and rotaviruses were detected as potential zoonotic gastroenteritis viruses. However, partial-genome sequence analyses indicated that the norovirus was closely related to the recently identified rat norovirus and the rotavirus B was closely related to the rat rotavirus strain IDIR; both viruses clustered separately from respective human virus strains in phylogenetic trees. In contrast, the rotavirus A sequences showed high identity to human and animal strains. Analysis of the nearly complete genome of this virus revealed the known genotypes G3, P[3] and N2 for three of the genome segments, whereas the remaining eight genome segments represented the novel genotypes I20–R11–C11–M10–A22–T14–E18–H13. Our results indicated a high heterogeneity of enteric viruses present in urban wild rats; their ability to be transmitted to humans remains to be assessed in the future. PMID:25121550

  14. Metagenomic identification of novel enteric viruses in urban wild rats and genome characterization of a group A rotavirus.

    PubMed

    Sachsenröder, Jana; Braun, Anne; Machnowska, Patrycja; Ng, Terry Fei Fan; Deng, Xutao; Guenther, Sebastian; Bernstein, Samuel; Ulrich, Rainer G; Delwart, Eric; Johne, Reimar

    2014-12-01

    Rats are known as reservoirs and vectors for several zoonotic pathogens. However, information on the viruses shed by urban wild rats that could pose a zoonotic risk to human health is scare. Here, intestinal contents from 20 wild Norway rats (Rattus norvegicus) collected in the city of Berlin, Germany, were subjected to metagenomic analysis of viral nucleic acids. The determined faecal viromes of rats consisted of a variety of known and unknown viruses, and were highly variable among the individuals. Members of the families Parvoviridae and Picobirnaviridae represented the most abundant species. Novel picornaviruses, bocaviruses, sapoviruses and stool-associated circular ssDNA viruses were identified, which showed only low sequence identity to known representatives of the corresponding taxa. In addition, noroviruses and rotaviruses were detected as potential zoonotic gastroenteritis viruses. However, partial-genome sequence analyses indicated that the norovirus was closely related to the recently identified rat norovirus and the rotavirus B was closely related to the rat rotavirus strain IDIR; both viruses clustered separately from respective human virus strains in phylogenetic trees. In contrast, the rotavirus A sequences showed high identity to human and animal strains. Analysis of the nearly complete genome of this virus revealed the known genotypes G3, P[3] and N2 for three of the genome segments, whereas the remaining eight genome segments represented the novel genotypes I20-R11-C11-M10-A22-T14-E18-H13. Our results indicated a high heterogeneity of enteric viruses present in urban wild rats; their ability to be transmitted to humans remains to be assessed in the future.

  15. Reduction of Norwalk virus, poliovirus 1, and bacteriophage MS2 by ozone disinfection of water.

    PubMed

    Shin, Gwy-Am; Sobsey, Mark D

    2003-07-01

    Norwalk virus and other human caliciviruses (noroviruses) are major agents of gastroenteritis, and water is a major route of their transmission. In an effort to control Norwalk virus in drinking water, Norwalk virus reduction by bench-scale ozone disinfection was determined using quantitative reverse transcription (RT)-PCR for virus assays. Two other enteric viruses, poliovirus 1 and coliphage MS2, were included for comparison, and their reductions were assayed by infectivity assays as well as by RT-PCR. Virus reductions by ozone were determined using a dose of 0.37 mg of ozone/liter at pH 7 and 5 degrees C for up to 5 min. Based on two RT-PCR assays, the reductions of Norwalk virus were >3 log(10) within a contact time of 10 s, and these were similar to the reductions of the other two viruses determined by the same assay methods. Also, the virus reductions detected by RT-PCR assays were similar to those detected by infectivity assays, indicating that the RT-PCR assay is a reliable surrogate assay for both culturable and nonculturable viruses disinfected with ozone. Overall, the results of this study indicate that Norwalk virus as well as other enteric viruses can be reduced rapidly and extensively by ozone disinfection and that RT-PCR is a useful surrogate assay for both culturable and nonculturable viruses disinfected with ozone.

  16. Enteral virus infections in early childhood and an enhanced type 1 diabetes-associated antibody response to dietary insulin.

    PubMed

    Mäkelä, Miia; Vaarala, Outi; Hermann, Robert; Salminen, Kimmo; Vahlberg, Tero; Veijola, Riitta; Hyöty, Heikki; Knip, Mikael; Simell, Olli; Ilonen, Jorma

    2006-08-01

    Enteral virus infections may trigger the development of beta-cell-specific autoimmunity by interacting with the gut-associated lymphoid system. We analyzed the effect of three different virus infections on immunization to dietary insulin in children carrying increased genetic risk for type 1 diabetes. Forty-six of 238 children developed multiple diabetes-associated autoantibodies and 31 clinical diabetes (median follow-up time 75 months). Insulin-binding antibodies were measured with EIA method (median follow-up time 24 months). Antibodies to enteroviruses, rotavirus and adenovirus were measured with EIA in samples drawn at birth and the ages of 3 and 6 months. Nineteen enterovirus, 14 rotavirus and 8 adenovirus infections were diagnosed. At the ages of 6, 12, and 18 months, the concentrations of insulin-binding antibodies were higher in children with postnatal entero-, rota- and/or adenovirus infections than in children without these infections. Children who subsequently developed ICA or IA-2 antibodies or clinical type 1 diabetes had higher concentrations of insulin-binding antibodies than children who remained autoantibody negative. Our data suggest that enteral virus infections can enhance immune response to insulin, induced primarily by bovine insulin in cow's milk. An enhanced antibody response to dietary insulin preceded the development of beta-cell specific autoimmunity and type 1 diabetes.

  17. Construction of a recombinant duck enteritis virus vaccine expressing hemagglutinin of H9N2 avian influenza virus and evaluation of its efficacy in ducks.

    PubMed

    Sun, Ying; Yang, Chenghuai; Li, Junping; Li, Ling; Cao, Minghui; Li, Qihong; Li, Huijiao

    2017-01-01

    H9 subtype avian influenza viruses (AIVs) remain a significant burden in the poultry industry and are considered to be one of the most likely causes of any new influenza pandemic in humans. As ducks play an important role in the maintenance of H9 viruses in nature, successful control of the spread of H9 AIVs in ducks will have significant beneficial effects on public health. Duck enteritis virus (DEV) may be a promising candidate viral vector for aquatic poultry vaccination. In this study, we constructed a recombinant DEV, rDEV-∆UL2-HA, inserting the hemagglutinin (HA) gene from duck-origin H9N2 AIV into the UL2 gene by homologous recombination. One-step growth analyses showed that the HA gene insertion had no effect on viral replication and suggested that the UL2 gene was nonessential for virus growth in vitro. In vivo tests further showed that the insertion of the HA gene in place of the UL2 gene did not affect the immunogenicity of the virus. Moreover, a single dose of 10(3) TCID50 of rDEV-∆UL2-HA induced solid protection against lethal DEV challenge and completely prevented H9N2 AIV viral shedding. To our knowledge, this is the first report of a DEV-vectored vaccine providing robust protection against both DEV and H9N2 AIV virus infections in ducks.

  18. Infectivity-destroying Effect of Humidity for Dried Coliphage T1

    PubMed Central

    Lorenz, P. R.

    1968-01-01

    Infectivity of dried coliphage T1 has been measured as a function of humidity, temperature, and atmospheric pressure. Loss of infectivity by a factor of 104 was caused by water vapor of approximately 40 to 85% saturation when the microorganisms were kept for 3 days at 34 C in evacuated containers. At humidities below 40% and above 90% saturation, no loss of infectivity occurred. At a temperature of 24 C, the infectivity loss was 20-fold. When the virus preparation was kept at 34 C and atmospheric pressure, some loss of infectivity was also found at humidities below 40% and above 90% saturation. Damage to tail proteins or to the phage chromosome is considered as a possible explanation for the inactivation. PMID:5684204

  19. Oral Phage Therapy of Acute Bacterial Diarrhea With Two Coliphage Preparations: A Randomized Trial in Children From Bangladesh.

    PubMed

    Sarker, Shafiqul Alam; Sultana, Shamima; Reuteler, Gloria; Moine, Deborah; Descombes, Patrick; Charton, Florence; Bourdin, Gilles; McCallin, Shawna; Ngom-Bru, Catherine; Neville, Tara; Akter, Mahmuda; Huq, Sayeeda; Qadri, Firdausi; Talukdar, Kaisar; Kassam, Mohamed; Delley, Michèle; Loiseau, Chloe; Deng, Ying; El Aidy, Sahar; Berger, Bernard; Brüssow, Harald

    2016-02-01

    Antibiotic resistance is rising in important bacterial pathogens. Phage therapy (PT), the use of bacterial viruses infecting the pathogen in a species-specific way, is a potential alternative. T4-like coliphages or a commercial Russian coliphage product or placebo was orally given over 4 days to Bangladeshi children hospitalized with acute bacterial diarrhea. Safety of oral phage was assessed clinically and by functional tests; coliphage and Escherichia coli titers and enteropathogens were determined in stool and quantitative diarrhea parameters (stool output, stool frequency) were measured. Stool microbiota was studied by 16S rRNA gene sequencing; the genomes of four fecal Streptococcus isolates were sequenced. No adverse events attributable to oral phage application were observed (primary safety outcome). Fecal coliphage was increased in treated over control children, but the titers did not show substantial intestinal phage replication (secondary microbiology outcome). 60% of the children suffered from a microbiologically proven E. coli diarrhea; the most frequent diagnosis was ETEC infections. Bacterial co-pathogens were also detected. Half of the patients contained phage-susceptible E. coli colonies in the stool. E. coli represented less than 5% of fecal bacteria. Stool ETEC titers showed only a short-lived peak and were otherwise close to the replication threshold determined for T4 phage in vitro. An interim analysis after the enrollment of 120 patients showed no amelioration in quantitative diarrhea parameter by PT over standard care (tertiary clinical outcome). Stool microbiota was characterized by an overgrowth with Streptococcus belonging to the Streptococcus gallolyticus and Streptococcus salivarius species groups, their abundance correlated with quantitative diarrhea outcome, but genome sequencing did not identify virulence genes. Oral coliphages showed a safe gut transit in children, but failed to achieve intestinal amplification and to improve diarrhea

  20. Oral Phage Therapy of Acute Bacterial Diarrhea With Two Coliphage Preparations: A Randomized Trial in Children From Bangladesh

    PubMed Central

    Sarker, Shafiqul Alam; Sultana, Shamima; Reuteler, Gloria; Moine, Deborah; Descombes, Patrick; Charton, Florence; Bourdin, Gilles; McCallin, Shawna; Ngom-Bru, Catherine; Neville, Tara; Akter, Mahmuda; Huq, Sayeeda; Qadri, Firdausi; Talukdar, Kaisar; Kassam, Mohamed; Delley, Michèle; Loiseau, Chloe; Deng, Ying; El Aidy, Sahar; Berger, Bernard; Brüssow, Harald

    2016-01-01

    Background Antibiotic resistance is rising in important bacterial pathogens. Phage therapy (PT), the use of bacterial viruses infecting the pathogen in a species-specific way, is a potential alternative. Method T4-like coliphages or a commercial Russian coliphage product or placebo was orally given over 4 days to Bangladeshi children hospitalized with acute bacterial diarrhea. Safety of oral phage was assessed clinically and by functional tests; coliphage and Escherichia coli titers and enteropathogens were determined in stool and quantitative diarrhea parameters (stool output, stool frequency) were measured. Stool microbiota was studied by 16S rRNA gene sequencing; the genomes of four fecal Streptococcus isolates were sequenced. Findings No adverse events attributable to oral phage application were observed (primary safety outcome). Fecal coliphage was increased in treated over control children, but the titers did not show substantial intestinal phage replication (secondary microbiology outcome). 60% of the children suffered from a microbiologically proven E. coli diarrhea; the most frequent diagnosis was ETEC infections. Bacterial co-pathogens were also detected. Half of the patients contained phage-susceptible E. coli colonies in the stool. E. coli represented less than 5% of fecal bacteria. Stool ETEC titers showed only a short-lived peak and were otherwise close to the replication threshold determined for T4 phage in vitro. An interim analysis after the enrollment of 120 patients showed no amelioration in quantitative diarrhea parameter by PT over standard care (tertiary clinical outcome). Stool microbiota was characterized by an overgrowth with Streptococcus belonging to the Streptococcus gallolyticus and Streptococcus salivarius species groups, their abundance correlated with quantitative diarrhea outcome, but genome sequencing did not identify virulence genes. Interpretation Oral coliphages showed a safe gut transit in children, but failed to achieve

  1. Occurrence of human enteric viruses at freshwater beaches during swimming season and its link to water inflow.

    PubMed

    Lee, Chang Soo; Lee, Cheonghoon; Marion, Jason; Wang, Qiuhong; Saif, Linda; Lee, Jiyoung

    2014-02-15

    Human enteric viruses are significant etiological agents for many recreational waterborne illnesses. The occurrence and density of human enteric viruses such as human adenovirus (HAdV), human enterovirus (HEnV), and human norovirus genogroups I/II (HNoV GI/GII) were investigated using quantitative real-time PCR (qPCR) at freshwater beaches along with monitoring fecal indicators and environmental parameters. During the 2009 swimming season, water samples were collected from three inland freshwater beaches in Ohio, USA. Of the total samples, 40% (26/65) and 17% (11/65) were positive for HAdV and HEnV respectively, but HNoV GI/GII were not detected. There was no significant association among the detected human enteric viruses (HAdV and HEnV) and fecal bacteria indicators (Escherichia coli and Bacteroides) by Spearman correlation and principal component analyses. Logistic regression analysis also revealed that the odds of finding HAdV or HEnV was not influenced by levels of fecal bacteria indicators. However, there was a 14-fold increase in the odds of HEnV detection for each 1-log increase in daily water inflow (m(3)/s) into freshwater beach reservoirs (adjusted odds ratio=14.2; 95% confidence interval=1.19-171). In summary, the viral occurrence at the freshwater beaches was not readily explained by the levels of fecal bacteria indicators, but appeared to be more related to water reservoir inflows. These results suggest that hydrological data must be considered in future epidemiology efforts aimed at characterizing beach water safety. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Molecular epidemiology of enteric viruses in patients with acute gastroenteritis in Aichi prefecture, Japan, 2008/09-2013/14.

    PubMed

    Nakamura, Noriko; Kobayashi, Shinichi; Minagawa, Hiroko; Matsushita, Tadashi; Sugiura, Wataru; Iwatani, Yasumasa

    2016-07-01

    Acute gastroenteritis is a critical infectious disease that affects infants and young children throughout the world, including Japan. This retrospective study was conducted from September 2008 to August 2014 (six seasons: 2008/09-2013/14) to investigate the incidence of enteric viruses responsible for 1,871 cases of acute gastroenteritis in Aichi prefecture, Japan. Of the 1,871 cases, 1,100 enteric viruses were detected in 978 samples, of which strains from norovirus (NoV) genogroup II (60.9%) were the most commonly detected, followed by strains of rotavirus A (RVA) (23.2%), adenovirus (AdV) type 41 (8.2%), sapovirus (SaV) (3.6%), human astrovirus (HAstV) (2.8%), and NoV genogroup I (1.3%). Sequencing of the NoV genogroup II (GII) strains revealed that GII.4 was the most common genotype, although four different GII.4 variants were also identified. The most common G-genotype of RVA was G1 (63.9%), followed by G3 (27.1%), G2 (4.7%) and G9 (4.3%). Three genogroups of SaV strains were found: GI (80.0%), GII (15.0%), and GV (5.0%). HAstV strains were genotyped as HAstV-1 (80.6%), HAstV-8 (16.1%), and HAstV-3 (3.2%). These results show that NoV GII was the leading cause of sporadic acute viral gastroenteritis, although a variety of enteric viruses were detected during the six-season surveillance period.

  3. Infected Peripheral Blood Mononuclear Cells Transmit Latent Varicella Zoster Virus Infection to the Guinea Pig Enteric Nervous System

    PubMed Central

    Gan, Lin; Wang, Mingli; Chen, Jason J.; Gershon, Michael D.; Gershon, Anne A.

    2014-01-01

    Latent wild-type (WT) and vaccine (vOka) varicella-zoster virus (VZV) are found in the human enteric nervous system (ENS). VZV also infects guinea pig enteric neurons in vitro, establishes latency and can be reactivated. We therefore determined whether lymphocytes infected in vitro with VZV secrete infectious virions and can transfer infection in vivo to the ENS of recipient guinea pigs. T lymphocytes (CD3-immunoreactive) were preferentially infected following co-culture of guinea pig or human peripheral blood mononuclear cells with VZV-infected HELF. VZV proliferated in the infected T cells and expressed immediate early and late VZV genes. Electron microscopy confirmed that VZV-infected T cells produced encapsulated virions. Extracellular virus, however, was pleomorphic, suggesting degradation occurred prior to release, which was confirmed by the failure of VZV-infected T cells to secrete infectious virions. Intravenous injection of WT- or vOka-infected PBMCs, nevertheless, transmitted VZV to recipient animals (guinea pig > human lymphocytes). Two days post-inoculation, lung and liver, but not gut, contained DNA and transcripts encoding ORFs 4, 40, 66 and 67. Twenty-eight days after infection, gut contained DNA and transcripts encoding ORFs 4 and 66 but neither DNA nor transcripts could any longer be found in lung or liver. In situ hybridization revealed VZV DNA in enteric neurons, which also expressed ORF63p (but not ORF68p) immunoreactivity. Observations suggest that VZV infects T cells, which can transfer VZV to and establish latency in enteric neurons in vivo. Guinea pigs may be useful for studies of VZV pathogenesis in the ENS. PMID:24965252

  4. Infected peripheral blood mononuclear cells transmit latent varicella zoster virus infection to the guinea pig enteric nervous system.

    PubMed

    Gan, Lin; Wang, Mingli; Chen, Jason J; Gershon, Michael D; Gershon, Anne A

    2014-10-01

    Latent wild-type (WT) and vaccine (vOka) varicella zoster virus (VZV) are found in the human enteric nervous system (ENS). VZV also infects guinea pig enteric neurons in vitro, establishes latency and can be reactivated. We therefore determined whether lymphocytes infected in vitro with VZV secrete infectious virions and can transfer infection in vivo to the ENS of recipient guinea pigs. T lymphocytes (CD3-immunoreactive) were preferentially infected following co-culture of guinea pig or human peripheral blood mononuclear cells with VZV-infected HELF. VZV proliferated in the infected T cells and expressed immediate early and late VZV genes. Electron microscopy confirmed that VZV-infected T cells produced encapsulated virions. Extracellular virus, however, was pleomorphic, suggesting degradation occurred prior to release, which was confirmed by the failure of VZV-infected T cells to secrete infectious virions. Intravenous injection of WT- or vOka-infected PBMCs, nevertheless, transmitted VZV to recipient animals (guinea pig > human lymphocytes). Two days post-inoculation, lung and liver, but not gut, contained DNA and transcripts encoding ORFs 4, 40, 66 and 67. Twenty-eight days after infection, gut contained DNA and transcripts encoding ORFs 4 and 66 but neither DNA nor transcripts could any longer be found in lung or liver. In situ hybridization revealed VZV DNA in enteric neurons, which also expressed ORF63p (but not ORF68p) immunoreactivity. Observations suggest that VZV infects T cells, which can transfer VZV to and establish latency in enteric neurons in vivo. Guinea pigs may be useful for studies of VZV pathogenesis in the ENS.

  5. Preliminary study of the UL55 gene based on infectious Chinese virulent duck enteritis virus bacterial artificial chromosome clone.

    PubMed

    Wu, Ying; Li, Yangguang; Wang, Mingshu; Sun, Kunfeng; Jia, Renyong; Chen, Shun; Zhu, Dekang; Liu, Mafeng; Yang, Qiao; Zhao, Xinxin; Chen, Xiaoyue; Cheng, Anchun

    2017-04-13

    Lethal Duck Enteritis Virus (DEV) infection can cause high morbidity and mortality of many species of waterfowl within the order Anseriformes. However, little is known about the function of viral genes including the conserved UL55 gene among alpha herpes virus due to the obstacles in maintenance and manipulation of DEV genome in host cells. In this paper, we constructed an infectious bacteria artificial chromosome (BAC) clone of the lethal clinical isolate duck enteritis virus Chinese virulent strain (DEV CHv) by inserting a transfer vector containing BAC mini-F sequence and selection marker EGFP into UL23 gene using homologous recombination. UL55 deletion and its revertant mutant were generated by two-step RED recombination in E. coli on basis of rescued recombinant virus. The function of UL55 gene in DEV replication and its effect on distribution of UL26.5 protein were carried out by growth characteristics and co-localization analysis. The complete genome of DEV CHv can be stably maintained in E. coli as a BAC clone and reconstituted again in DEF cells. The generated UL55 deletion mutant based on DEV CHv-BAC-G displayed similar growth curves, plaque morphology and virus titer of its parental virus in infected Duck Embryo Fibroblast (DEF) cells. Immunofluorescence assay indicated that the loss of UL55 gene do not affect the distribution of UL26.5 protein in intracellular. These data also suggest infectious BAC clone of DEV CHv will facilitate the gene function studies of DEV genome. We have successfully developed an infectious BAC clone of lethal clinical isolate DEV CHv for the first time. The generated UL55 gene mutant based on that demonstrated this platform would be a very useful tool for functional study of DEV genes. We found the least known DEV UL55 is dispensable for virus replication and UL26.5 distribution, and it could be a very promise candidate locus for developing bivalent vaccine. Experiment are now in progress for testifying the possibility of UL55

  6. The prevalence of enteric RNA viruses in stools from diarrheic and non-diarrheic people in southwestern Alberta, Canada.

    PubMed

    Leblanc, Danielle; Inglis, G Douglas; Boras, Valerie F; Brassard, Julie; Houde, Alain

    2017-01-01

    Southwestern Alberta is a region of Canada that has high rates of enteritis as well as high densities of livestock. The presence of enteric RNA viruses, specifically norovirus (NoV) GI, GII, GIII, GIV; sapovirus (SaV); rotavirus (RV); and astrovirus (AstV), was evaluated in stools from diarrheic (n = 2281) and non-diarrheic (n = 173) people over a 1-year period in 2008 and 2009. Diarrheic individuals lived in rural (46.6 %) and urban (53.4 %) settings and ranged in age from less than 1 month to 102 years, and the highest prevalence of infection in these individuals was in November. In all, viruses were detected in diarrheic stools from 388 individuals (17.0 %). NoV GII was the most frequently detected virus (8.0 %; n = 182) followed by SaV (4.3 %; n = 97), RV (2.0 %; n = 46), AstV (1.8 %; n = 42), NoV GI (0.9 %; n = 20), and NoV GIV (0.1 %; n = 1). Animal NoV GIII was never detected. The prevalence of mixed viral infections in diarrheic individuals was 2.8 % (n = 11). Children from 1 to 5 years of age accounted for the highest prevalence of positive stools, followed by the elderly individuals (≥70 years). Only NoV GII (1.2 %; n = 2) and SaV (1.2 %; n = 2) were detected in stools from non-diarrheic people. Sequence analysis of a subset of stools revealed homology to NoV, SaV and RV sequences from humans but not to strains from non-human animals. The results of this study do not support the hypothesis that viruses of animal origin have a significant impact on the occurrence of acute gastroenteritis caused by RNA enteric viruses in people living in southwestern Alberta.

  7. Ozone disinfection dynamics of enteric viruses provide evidence that infectious titer reduction is triggered by alterations to viral colloidal properties.

    PubMed

    Vanden Bossche, G; Wustmann, U; Krietemeyer, S

    1994-11-01

    The inactivation dynamics of three enteric virus species (polio-, rota- and parvovirus) were analysed in different aqueous suspensions by using O3 under continuous flow conditions. A mathematical model for the reaction rate of infectious titer reduction was proposed, based on the thermodynamic principles of phase behaviour of colloids suspended in aqueous environments. Up to a certain threshold dosage of residual ozone (RO), and depending on the type of test virus and the ionic or organic load in the stock suspension, the logarithm of the reaction rate constant of viral inactivation rate was observed to vary in a rather sigmoidal manner with log RO concentration. Data from photon correlation spectroscopy, electron microscopy and tensiometric analysis suggested that below the threshold RO, the pattern of virus inactivation dynamics reflects the varying potential of different-sized viral particles (VPs) to adsorb to the cellular monolayer. There is strong evidence that oxidant-induced surface activity of organic matter causes redistribution of VP infectivity. This hypothesis was statistically corroborated inasmuch as experimental inactivation data proved to be satisfactorily fitted by a logistic equation. It was concluded that viral infection, and thus viral inactivation, is a complex process which is governed largely by the classical laws of colloidal behaviour. The latter is suggested to appreciably determine the capability of inoculated VPs to infect host cultures. This notion may especially be cause for concern when regulatory requirements for virus disinfection are being based on titration results from in vitro testing procedures.

  8. Post-epizootic surveys of waterfowl for duck plague (duck virus enteritis)

    USGS Publications Warehouse

    Brand, C.J.; Docherty, D.E.

    1988-01-01

    Surviving birds from nine duck plague outbreaks in urban and confined waterfowl were sampled for duck plague (DP) virus and DP antibody during 1979-86. Duck plague virus was found in combined oral and cloacal swabs of birds from three outbreaks, and DP-neutralizing antibody was demonstrated in some birds from all nine outbreaks. Greater prevalence of DP antibody and higher titers were found in survivors from confined populations than from free-flying urban populations. Free-flying waterfowl from within 52 km of four DP outbreak sites were also sampled; virus was not found in any birds, but DP antibody was found in urban waterfowl in the vicinity of an outbreak in Potterville, Michigan. No evidence of exposure to or shedding of DP virus in migratory waterfowl was found in two regions where DP appears enzootic in urban and confined waterfowl (Eastern Shore of Maryland and the vicinity of Sacramento, California).

  9. [Hepatitis A and E enterically transmitted virus infections of the liver].

    PubMed

    Siegl, G

    2004-08-01

    Hepatitis A virus (a picornavirus) and hepatitis E virus (so far unclassified) are small, non-enveloped and relatively stable RNA viruses with many similar, yet, not identical characteristics. Both viruses are transmitted preferentially by the fecal-oral route. Consequently, their spread is favoured by poor personal hygiene and inappropriate sanitary conditions. Infection can pass subclinically, take an acute and self limiting course, and can also manifest as fulminant hepatitis with liver failure. True chronic disease is unknown. Laboratory diagnosis is preferentially performed by serology, but can also be complemented by assay for viral RNA in stool or serum. Resolution of infection leads to immunity which, in the case of hepatitis A, is known to be fully protective and most likely lifelong. Available hepatitis A vaccines are able to induce a similar state of protection. Vaccines for hepatitis E are under development. Specific antiviral treatment is not yet available, neither for hepatitis A nor for hepatitis E.

  10. Data report. The fate of human enteric viruses in a natural sewage recycling system

    SciTech Connect

    Vaughn, J.M.; Landry, E.F.

    1980-09-01

    A two-year study was conducted to determine the virus-removing capacity of two man-made ecosystems designed for the treatment of raw domestic wastewater. The first treatment system consisted of two meadows followed by a marsh-pond unit (M/M/P). The second system contained individual marsh and pond units (M/P). All systems demonstrated moderate virus removal, with the marsh/pond system yielding the most consistent removal rates. Within this system, the greater potential for virus removal appeared to occur in the marsh unit. In addition to the production of system-oriented data, improved techniques for the concentration and enumeration of human viruses from sewage-polluted aquatic systems were developed.

  11. Detection of human enteric viruses in stream water with RT-PCR and cell culture.

    USGS Publications Warehouse

    Denis-Mize, K.; Fout, G.S.; Dahling, D.R.; Francy, D.S.

    2004-01-01

    A multiplex RT-PCR method was used to measure virus occurrence at five stream water sites that span a range of hydroclimatic, water-quality, and land-use characteristics. The performance of the molecular method was evaluated in comparison with traditional cell culture and Escherichia coli membrane filtration assays. The study incorporated multiple quality controls and included a control for virus recovery during the sampling procedure as well as controls to detect potentially false-negative and false-positive data. Poliovirus recovery ranged from 16 to 65% and was variable, even in samples collected within the same stream. All five sites were positive for viruses by both molecular and cell culture-based virus assays. Enteroviruses, reoviruses, rotaviruses, and hepatitis A viruses were detected, but the use of the quality controls proved critical for interpretation of the molecular data. All sites showed evidence of faecal contamination, and culturable viruses were detected in four samples that would have met the US Environmental Protection Agency's recommended E. coli guideline for safe recreational water.

  12. Chlorine inactivation of coliphage MS2 on strawberries by industrial-scale water washing units.

    PubMed

    Casteel, Michael J; Schmidt, Charles E; Sobsey, Mark D

    2009-06-01

    Fruits and vegetables (produce) intended for minimal processing are often rinsed or washed in water. Chlorine and other sanitizers are used during washing to inactivate produce spoilage microbes, but such procedures may also inactivate pathogens epidemiologically linked to produce, such as hepatitis A virus (HAV). However, no information exists on the efficacy of chlorinated wash water to inactivate HAV and other viruses on produce in actual practice, because of obvious safety concerns. In contrast, coliphage MS2 (a bacterial virus) is commonly used as a surrogate for some pathogenic viruses and may be safely used in field studies. In the present investigation, strawberries seeded with MS2 were passed through industrial-scale water washing units operated with or without added sodium hypochlorite. MS2 on strawberries was inactivated by 68%, 92% and 96% at free chlorine (FC) concentrations of < or = 2, 20 and 200 ppm in wash water, respectively. MS2 was detected in wash water containing < or = 2 ppm FC in one trial, but was not detected in water containing 20 or 200 ppm FC. The presence and absence of MS2 in wash water containing various levels of FC highlight the importance of controlling sanitizer levels to prevent viral cross contamination of strawberries.

  13. Human viruses and viral indicators in marine water at two recreational beaches in Southern California, USA.

    PubMed

    Love, David C; Rodriguez, Roberto A; Gibbons, Christopher D; Griffith, John F; Yu, Qilu; Stewart, Jill R; Sobsey, Mark D

    2014-03-01

    Waterborne enteric viruses may pose disease risks to bather health but occurrence of these viruses has been difficult to characterize at recreational beaches. The aim of this study was to evaluate water for human virus occurrence at two Southern California recreational beaches with a history of beach closures. Human enteric viruses (adenovirus and norovirus) and viral indicators (F+ and somatic coliphages) were measured in water samples over a 4-month period from Avalon Beach, Catalina Island (n = 324) and Doheny Beach, Orange County (n = 112). Human viruses were concentrated from 40 L samples and detected by nested reverse transcriptase polymerase chain reaction (PCR). Detection frequencies at Doheny Beach were 25.5% (adenovirus) and 22.3% (norovirus), and at Avalon Beach were 9.3% (adenovirus) and 0.7% (norovirus). Positive associations between adenoviruses and fecal coliforms were observed at Doheny (p = 0.02) and Avalon (p = 0.01) Beaches. Human viruses were present at both beaches at higher frequencies than previously detected in the region, suggesting that the virus detection methods presented here may better measure potential health risks to bathers. These virus recovery, concentration, and molecular detection methods are advancing practices so that analysis of enteric viruses can become more effective and routine for recreational water quality monitoring.

  14. A Duck Enteritis Virus-Vectored Bivalent Live Vaccine Provides Fast and Complete Protection against H5N1 Avian Influenza Virus Infection in Ducks ▿ † §

    PubMed Central

    Liu, Jinxiong; Chen, Pucheng; Jiang, Yongping; Wu, Li; Zeng, Xianying; Tian, Guobin; Ge, Jinying; Kawaoka, Yoshihiro; Bu, Zhigao; Chen, Hualan

    2011-01-01

    Ducks play an important role in the maintenance of highly pathogenic H5N1 avian influenza viruses (AIVs) in nature, and the successful control of AIVs in ducks has important implications for the eradication of the disease in poultry and its prevention in humans. The inactivated influenza vaccine is expensive, labor-intensive, and usually needs 2 to 3 weeks to induce protective immunity in ducks. Live attenuated duck enteritis virus (DEV; a herpesvirus) vaccine is used routinely to control lethal DEV infections in many duck-producing areas. Here, we first established a system to generate the DEV vaccine strain by using the transfection of overlapping fosmid DNAs. Using this system, we constructed two recombinant viruses, rDEV-ul41HA and rDEV-us78HA, in which the hemagglutinin (HA) gene of the H5N1 virus A/duck/Anhui/1/06 was inserted and stably maintained within the ul41 gene or between the us7 and us8 genes of the DEV genome. Duck studies indicated that rDEV-us78HA had protective efficacy similar to that of the live DEV vaccine against lethal DEV challenge; importantly, a single dose of 106 PFU of rDEV-us78HA induced complete protection against a lethal H5N1 virus challenge in as little as 3 days postvaccination. The protective efficacy against both lethal DEV and H5N1 challenge provided by rDEV-ul41HA inoculation in ducks was slightly weaker than that provided by rDEV-us78HA. These results demonstrate, for the first time, that recombinant DEV is suitable for use as a bivalent live attenuated vaccine, providing rapid protection against both DEV and H5N1 virus infection in ducks. PMID:21865383

  15. A duck enteritis virus-vectored bivalent live vaccine provides fast and complete protection against H5N1 avian influenza virus infection in ducks.

    PubMed

    Liu, Jinxiong; Chen, Pucheng; Jiang, Yongping; Wu, Li; Zeng, Xianying; Tian, Guobin; Ge, Jinying; Kawaoka, Yoshihiro; Bu, Zhigao; Chen, Hualan

    2011-11-01

    Ducks play an important role in the maintenance of highly pathogenic H5N1 avian influenza viruses (AIVs) in nature, and the successful control of AIVs in ducks has important implications for the eradication of the disease in poultry and its prevention in humans. The inactivated influenza vaccine is expensive, labor-intensive, and usually needs 2 to 3 weeks to induce protective immunity in ducks. Live attenuated duck enteritis virus (DEV; a herpesvirus) vaccine is used routinely to control lethal DEV infections in many duck-producing areas. Here, we first established a system to generate the DEV vaccine strain by using the transfection of overlapping fosmid DNAs. Using this system, we constructed two recombinant viruses, rDEV-ul41HA and rDEV-us78HA, in which the hemagglutinin (HA) gene of the H5N1 virus A/duck/Anhui/1/06 was inserted and stably maintained within the ul41 gene or between the us7 and us8 genes of the DEV genome. Duck studies indicated that rDEV-us78HA had protective efficacy similar to that of the live DEV vaccine against lethal DEV challenge; importantly, a single dose of 10(6) PFU of rDEV-us78HA induced complete protection against a lethal H5N1 virus challenge in as little as 3 days postvaccination. The protective efficacy against both lethal DEV and H5N1 challenge provided by rDEV-ul41HA inoculation in ducks was slightly weaker than that provided by rDEV-us78HA. These results demonstrate, for the first time, that recombinant DEV is suitable for use as a bivalent live attenuated vaccine, providing rapid protection against both DEV and H5N1 virus infection in ducks.

  16. Presence, infectivity, and stability of enteric viruses in seawater: Relationship to marine water quality in the Florida Keys

    USGS Publications Warehouse

    Wetz, J.J.; Lipp, E.K.; Griffin, Dale W.; Lukasik, J.; Wait, D.; Sobsey, M.D.; Scott, T.M.; Rose, J.B.

    2004-01-01

    Concerns about the presence of enteric viruses in the surface waters of the Florida Keys prompted analyses of virus stability and persistence in these waters. In an in vitro study we evaluated the survival of poliovirus and stability of viral RNA in filtered natural seawater (FSW), unfiltered natural seawater (USW), artificial seawater (ASW) and DI water. This study compared cell culture infectivity with direct reverse transcription-polymerase chain reaction analysis. Attenuated poliovirus was seeded in the above water types and incubated in the dark at 22 and 30??C for 60 days. At 22??C, enhanced poliovirus survival and enhanced detection of viral RNA was observed in the seeded DI water control, artificial seawater and FSW samples. Detection of viruses in unfiltered seawater decreased rapidly at both temperatures by both methods of detection, suggesting that in the natural environment detection of enteroviral RNA may indicate a recent contamination event. In addition, in situ sampling in the Florida Keys during the late winter of 2000 revealed the presence of infectious enteroviruses at two sites and no sites exceeded recommended levels of microbial water quality indicators (enterococci or fecal coliform bacteria). ?? 2003 Elsevier Ltd. All rights reserved.

  17. Enteric viruses in surface water and sediment samples from the catchment area of Peri Lagoon, Santa Catarina State, Brazil.

    PubMed

    Elmahdy, E M; Fongaro, G; Schissi, C D; Petrucio, M M; Barardi, C R M

    2016-02-01

    This paper aims to quantify human adenovirus (HAdV), rotavirus species A (RVA), and hepatitis A virus (HAV) in surface water and sediments and to determine the viability of HAdV in these samples. Water and sediment samples were collected, and HAdV, RVA, and HAV were quantified by real-time polymerase chain reaction (PCR); HAdV was also evaluated for infectivity by a plaque assay (PA). For the water samples, HAdV was detected in 70.8% of the summer collections, with 82.4% containing infectious HAdV; the HAdV incidence in winter was 62.5%. For the sediment samples, the incidence of HAdV was 37.5% in the summer collections, with 66.7% containing infectious HAdV; the HAdV incidence in winter was 37.5%. RVA was detected in 20.8 and 45.8% of surface water samples collected in summer and winter, respectively, and 8.3 and 12.5% of sediment samples collected in summer and winter, respectively. HAV was detected only in surface waters, with 54.8 and 12.5% positivity in summer and winter samples, respectively. This study demonstrated that enteric viruses are present in water and sediments and that the presence of infectious viruses should be investigated whenever possible for quantitative microbial risk assessment studies. Combined analyses of water and sediments are important for reliable public health risk analysis of recreational and lagoon waters.

  18. A MULTI-LABORATORY EVALUATION OF METHODS FOR DETECTING ENTERIC VIRUSES IN SOILS

    EPA Science Inventory

    Two candidate methods for the recovery and detection of viruses in soil were subjected to round robin comparative testing by members of the American Society for Testing and Materials D19:24:04:04 Subcommittee Task Group. Selection of the methods, designated “Berg” and “Goyal,” wa...

  19. DETECTION OF HUMAN ENTERIC VIRUSES IN STREAM WATER WITH RT-PCR AND CELL CULTURE

    EPA Science Inventory

    A multiplex RT-PCR method was used to measure virus occurrence at five stream water sites that span a range of hydroclimatic, water-quality, and land-use characteristics. The performance of the molecular method was evaluated in comparison to traditional cell culture and Escherich...

  20. DETECTION OF HUMAN ENTERIC VIRUSES IN STREAM WATER WITH RT-PCR AND CELL CULTURE

    EPA Science Inventory

    A multiplex RT-PCR method was used to measure virus occurrence at five stream water sites that span a range of hydroclimatic, water-quality, and land-use characteristics. The performance of the molecular method was evaluated in comparison to traditional cell culture and Escherich...

  1. A MULTI-LABORATORY EVALUATION OF METHODS FOR DETECTING ENTERIC VIRUSES IN SOILS

    EPA Science Inventory

    Two candidate methods for the recovery and detection of viruses in soil were subjected to round robin comparative testing by members of the American Society for Testing and Materials D19:24:04:04 Subcommittee Task Group. Selection of the methods, designated “Berg” and “Goyal,” wa...

  2. Presence of enteric viruses in source waters for drinking water production in The Netherlands.

    PubMed

    Lodder, W J; van den Berg, H H J L; Rutjes, S A; de Roda Husman, A M

    2010-09-01

    The quality of drinking water in The Netherlands has to comply with the Dutch Drinking Water Directive: less than one infection in 10,000 persons per year may occur due to consumption of unboiled drinking water. Since virus concentrations in drinking waters may be below the detection limit but entail a public health risk, the infection risk from drinking water consumption requires the assessment of the virus concentrations in source waters and of the removal efficiency of treatment processes. In this study, samples of source waters were taken during 4 years of regular sampling (1999 to 2002), and enteroviruses, reoviruses, somatic phages, and F-specific phages were detected in 75% (range, 0.0033 to 5.2 PFU/liter), 83% (0.0030 to 5.9 PFU/liter), 100% (1.1 to 114,156 PFU/liter), and 97% (0.12 to 14,403 PFU/liter), respectively, of 75 tested source water samples originating from 10 locations for drinking water production. By endpoint dilution reverse transcription-PCR (RT-PCR), 45% of the tested source water samples were positive for norovirus RNA (0.22 to 177 PCR-detectable units [PDU]/liter), and 48% were positive for rotavirus RNA (0.65 to 2,249 PDU/liter). Multiple viruses were regularly detected in the source water samples. A significant correlation between the concentrations of the two phages and those of the enteroviruses could be demonstrated. The virus concentrations varied greatly between 10 tested locations, and a seasonal effect was observed. Peak concentrations of pathogenic viruses occur in source waters used for drinking water production. If seasonal and short-term fluctuations coincide with less efficient or failing treatment, an unacceptable public health risk from exposure to this drinking water may occur.

  3. Indigenous somatic coliphage removal from a real municipal wastewater by a submerged membrane bioreactor.

    PubMed

    Wu, Jinling; Li, Haitao; Huang, Xia

    2010-03-01

    The membrane bioreactor (MBR) features many advantages, such as its excellent effluent quality and compactness. Moreover, the MBR is well known for its disinfectant capacity. This paper investigates virus removal performance for municipal wastewater using a submerged MBR and the operational conditions affecting the virus removal using indigenous somatic coliphages (SC) as an indicator for viruses. The results revealed that the municipal wastewater acquired by the Qinghe Municipal Wastewater Treatment Plant, Beijing, contained an SC concentration of (2.81+/-1.51)x10(4)PFU ml(-1), which varies seasonally due to spontaneous decay. In the MBR system, the biomass process dominates SC removal. Membrane rejection is an essential supplement of biomass process for SC removal. In this paper, the relative contributions of biomass process and membrane rejection during the start-up and steady operational periods are discussed in detail. The major factors affecting SC removal are biodegradation, membrane pore size, and gel layer formation on the membrane. During long-term experiments, it was demonstrated that high inoculated sludge concentration, long hydraulic retention time, moderate fouling layer, and non-frequent chemical cleaning are favorable for high SC removal in MBR systems. Copyright 2009 Elsevier Ltd. All rights reserved.

  4. Improved Inactivation of Nonenveloped Enteric Viruses and Their Surrogates by a Novel Alcohol-Based Hand Sanitizer ▿

    PubMed Central

    Macinga, David R.; Sattar, Syed A.; Jaykus, Lee-Ann; Arbogast, James W.

    2008-01-01

    Norovirus is the leading cause of food-related illness in the United States, and contamination of ready-to-eat items by food handlers poses a high risk for disease. This study reports the in vitro (suspension test) and in vivo (fingerpad protocol) assessments of a new ethanol-based hand sanitizer containing a synergistic blend of polyquaternium polymer and organic acid, which is active against viruses of public health importance, including norovirus. When tested in suspension, the test product reduced the infectivity of the nonenveloped viruses human rotavirus (HRV), poliovirus type 1 (PV-1), and the human norovirus (HNV) surrogates feline calicivirus (FCV) F-9 and murine norovirus type 1 (MNV-1) by greater than 3 log10 after a 30-s exposure. In contrast, a benchmark alcohol-based hand sanitizer reduced only HRV by greater than 3 log10 and none of the additional viruses by greater than 1.2 log10 after the same exposure. In fingerpad experiments, the test product produced a 2.48 log10 reduction of MNV-1 after a 30-s exposure, whereas a 75% ethanol control produced a 0.91 log10 reduction. Additionally, the test product reduced the infectivity titers of adenovirus type 5 (ADV-5) and HRV by ≥3.16 log10 and ≥4.32 log10, respectively, by the fingerpad assay within 15 s; and PV-1 was reduced by 2.98 log10 in 30 s by the same method. Based on these results, we conclude that this new ethanol-based hand sanitizer is a promising option for reducing the transmission of enteric viruses, including norovirus, by food handlers and care providers. PMID:18586970

  5. Improved inactivation of nonenveloped enteric viruses and their surrogates by a novel alcohol-based hand sanitizer.

    PubMed

    Macinga, David R; Sattar, Syed A; Jaykus, Lee-Ann; Arbogast, James W

    2008-08-01

    Norovirus is the leading cause of food-related illness in the United States, and contamination of ready-to-eat items by food handlers poses a high risk for disease. This study reports the in vitro (suspension test) and in vivo (fingerpad protocol) assessments of a new ethanol-based hand sanitizer containing a synergistic blend of polyquaternium polymer and organic acid, which is active against viruses of public health importance, including norovirus. When tested in suspension, the test product reduced the infectivity of the nonenveloped viruses human rotavirus (HRV), poliovirus type 1 (PV-1), and the human norovirus (HNV) surrogates feline calicivirus (FCV) F-9 and murine norovirus type 1 (MNV-1) by greater than 3 log(10) after a 30-s exposure. In contrast, a benchmark alcohol-based hand sanitizer reduced only HRV by greater than 3 log(10) and none of the additional viruses by greater than 1.2 log(10) after the same exposure. In fingerpad experiments, the test product produced a 2.48 log(10) reduction of MNV-1 after a 30-s exposure, whereas a 75% ethanol control produced a 0.91 log(10) reduction. Additionally, the test product reduced the infectivity titers of adenovirus type 5 (ADV-5) and HRV by > or =3.16 log(10) and > or =4.32 log(10), respectively, by the fingerpad assay within 15 s; and PV-1 was reduced by 2.98 log(10) in 30 s by the same method. Based on these results, we conclude that this new ethanol-based hand sanitizer is a promising option for reducing the transmission of enteric viruses, including norovirus, by food handlers and care providers.

  6. F+ RNA coliphage-based microbial source tracking in water resources of South Korea.

    PubMed

    Lee, Jung Eun; Lee, Heetae; Cho, You-Hee; Hur, Hor-Gil; Ko, GwangPyo

    2011-12-15

    We previously demonstrated that genotyping followed by proper statistical analyses of F plus (F+)-specific RNA coliphages can effectively represent fecal origins of either humans or animals. Here, we performed microbial source tracking (MST) using F+ RNA coliphages as a target MST microorganism for identifying fecal sources contaminating ground and surface water in metropolitan Seoul and Gyeonggi Province in South Korea. In total, 71 groundwater and 5 surface water samples were collected and screened for the presence of F+ RNA coliphages. More than 124 F+ coliphages were isolated from six groundwater and five surface water samples by the single agar layer method. F+ RNA coliphages were predominant in both waters (100% and 91%, respectively). Genotyping of 118 F+ RNA coliphages revealed that most (51/60) of the groundwater F+ RNA coliphages belonged to group I, whereas both groups I (25/58) and IV (31/58) were predominantly observed in surface water. Further comparison of phage isolates from human and animal (pig, cow, goose, and chicken) fecal sources using nucleic acid sequencing and principal coordinate analysis showed that groundwater samples formed clusters associated with cow feces, whereas surface waters formed clusters related to chicken and human feces. These results indicate the potential of the F+ RNA coliphage-based MST for identifying fecal contamination sources, which may be further exploited and validated in different geographical regions of the world. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Detection of enteric viruses in Hungarian surface waters: first steps towards environmental surveillance.

    PubMed

    Kern, Anita; Kadar, Mihaly; Szomor, Katalin; Berencsi, György; Kapusinszky, Beatrix; Vargha, Marta

    2013-12-01

    Waterborne viruses infect the human population through the consumption of contaminated drinking water and by direct contact with polluted surface water during recreational activity. Although water related viral outbreaks are a major public health concern, virus detection is not a part of the water quality monitoring scheme, mainly due to the absence of routine analysis methods. In the present study, we implemented various approaches for water concentration and virus detection, and tested on Hungarian surface water samples. Eighty samples were collected from 16 sites in Hungary. Samples were concentrated by glass wool and membrane filtration. Human adenoviruses were detected by conventional and quantitative real-time polymerase chain reaction (PCR) methods in 56% (45/80) of the samples; viral titers ranged from 8.60 × 10(1) to 3.91 × 10(4) genome copies per liter. Noroviruses and enteroviruses were detected in 30% (24/80) and 13% (10/80) of samples, respectively, by reverse transcription-PCR assays. Results indicate a high prevalence of viral human pathogens in surface waters, suggesting the necessity of a detailed survey focusing on the quality of natural bathing waters and drinking water sources.

  8. Virus removal during simulated soil-aquifer treatment.

    PubMed

    Quanrud, David M; Carroll, Sean M; Gerba, Charles P; Arnold, Robert G

    2003-02-01

    Removals of indigenous coliphage and seeded poliovirus type 1 during simulated soil-aquifer treatment were evaluated during transport of secondary effluent under unsaturated flow conditions in 1-m soil columns. Independent variables included soil type (river sand or sandy loam) and infiltration rate. Removal of coliphage was in all cases less than removal of poliovirus type 1 (strain LSc-2ab), supporting contentions that indigenous coliphage can act as a conservative indicator of groundwater contamination by viral pathogens of human origin. Coliphage retention was significantly more efficient (p<0.001) in the finer-grained sandy loam (93%) than in sand (76%). Increasing reactor detention time from 5 to 20 h increased coliphage attenuation from 70% to 99% in a 1-m sand column. There was a significant linear correlation (p=0.012) between log-transformed (fractional) coliphage concentration [log(C/C(0))] and reactor detention time. Re-mobilization of attached coliphage occurred during simulated rainfall using low-ionic-strength water. Inhibition of aerobic respiration resulted in significantly less efficient coliphage attenuation (p=0.033), suggesting the involvement of aerobic microorganisms in the survival/retention of this virus.

  9. Molecular investigations on the prevalence and viral load of enteric viruses in pigs from five European countries.

    PubMed

    Zhou, Weiguang; Ullman, Karin; Chowdry, Vinay; Reining, Márta; Benyeda, Zsófia; Baule, Claudia; Juremalm, Mikael; Wallgren, Per; Schwarz, Lukas; Zhou, Enmin; Pedrero, Sonia Pina; Hennig-Pauka, Isabel; Segales, Joaquim; Liu, Lihong

    2016-01-01

    Enteric viral infections in pigs may cause diarrhea resulting in ill-thrift and substantial economic losses. This study reports the enteric infections with porcine astrovirus type 4 (PAstV4), porcine group A rotavirus (GARV), porcine group C rotavirus (GCRV), porcine circovirus type 2 (PCV2) and porcine kobuvirus (PKoV) in 419 pigs, comprising both healthy and diarrheic animals, from 49 farms in five European countries (Austria, Germany, Hungary, Spain and Sweden). Real-time RT-PCR assays were developed to test fecal samples and to compare the prevalence and viral load in relation to health status, farms of origin and age groups. The results showed that PAstV4 (70.4%) was the dominant virus species, followed by PKoV (56.7%), PCV2 (42.2%), GCRV (3%) and GARV (0.9%). Diarrheic pigs had a higher viral load of PAstV4 in the nursery and growing-finishing groups. Rotaviruses were mainly detected in diarrheic pigs, whereas PCV2 was more often detected in clinically healthy than in diarrheic pigs, suggesting that most PCV2 infections were subclinical. PAstV4, PCV2 and PKoV were considered ubiquitous in the European pig livestock and co-infections among them were frequent, independently of the disease status, in contrast to a low prevalence of classical rotavirus infections. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Specificity of coliphages in evaluating marker efficacy: a new insight for water quality indicators.

    PubMed

    Mookerjee, Subham; Batabyal, Prasenjit; Halder, Madhumanti; Palit, Anup

    2014-11-01

    Conventional procedures for qualitative assessment of coliphage are time consuming multiple step approach for achieving results. A modified and rapid technique has been introduced for determination of coliphage contamination among potable water sources during water borne outbreaks. During December 2013, 40 water samples from different potable water sources, were received for water quality analyses, from a jaundice affected Municipality of West Bengal, India. Altogether, 30% water samples were contaminated with coliform (1-20 cfu/ml) and 5% with E. coli (2-5 cfu/ml). Among post-outbreak samples, preponderance of coliform has decreased (1-4 cfu/ml) with total absence of E. coli. While standard technique has detected 55% outbreak samples with coliphage contamination, modified technique revealed that 80%, double than that of bacteriological identification rate, were contaminated with coliphages (4-20 pfu/10 ml). However, post-outbreak samples were detected with 1-5 pfu/10 ml coliphages among 20% samples. Coliphage detection rate through modified technique was nearly double (50%) than that of standard technique (27.5%). In few samples (with coliform load of 10-100 cfu/ml), while modified technique could detect coliphages among six samples (10-20 pfu/10 ml), standard protocol failed to detect coliphage in any of them. An easy, rapid and accurate modified technique has thereby been implemented for coliphage assessment from water samples. Coliform free water does not always signify pathogen free potable water and it is demonstrated that coliphage is a more reliable 'biomarker' to ascertain contamination level in potable water.

  11. Trypsin-treated Ma-104: a sensitive cell line for isolating enteric viruses from environmental samples.

    PubMed Central

    Agbalika, F; Hartemann, P; Foliguet, J M

    1984-01-01

    During a 1-year survey of enteroviruses in wastewater samples from the Lorraine area, three widely used continuous monkey kidney cell lines were tested: BGM, Vero, and trypsin-treated Ma-104. Decontaminated samples from secondary wastewater treatment plants (influent or effluent) were directly inoculated onto cells, and viruses were revealed after two passages with a liquid medium technique. Out of the total percentage of positive isolates with the three systems (32.7) 24.7% were found with Ma-104, 14.1% with BGM, and only 1.7% with Vero cells. Poliovirus was recovered more frequently with Ma-104 (12.3%) than with BGM (1.7%). Reovirus (3.5%) and echovirus (1.7%) were only found with Ma-104 cells; however, BGM cells allowed the isolation of a few group B coxsackieviruses (5.9%). It must be pointed out that 7.0% of samples with an unconfirmed cytopathic effect were found with BGM against 3.4% found with Ma-104, but they did not have significant differences. Because of its large spectrum of sensitivity, easy maintenance, and resistance to toxic effects, trypsin-treated Ma-104 may be recommended in conjunction with other cell lines for the detection of viruses from environmental samples, especially with the use of a liquid method. PMID:6324675

  12. Comparison of the prevalence of enteric viruses in healthy dogs and those with acute haemorrhagic diarrhoea by electron microscopy.

    PubMed

    Schulz, B S; Strauch, C; Mueller, R S; Eichhorn, W; Hartmann, K

    2008-02-01

    To evaluate prevalence of enteric viruses in healthy dogs and to compare it with prevalences in dogs with acute haemorrhagic diarrhoea. Faecal samples were collected from 200 healthy dogs and examined by electron microscopy for presence of viral particles. Data were compared with viral prevalences that had been determined retrospectively by electron microscopy for 936 dogs with acute haemorrhagic diarrhoea. There were significantly more negative faecal samples among the healthy dogs (82.0 per cent) compared with 55.8 per cent in dogs with acute haemorrhagic diarrhoea (P<0.001). With a prevalence of 17.5 per cent, significantly more healthy dogs were shedding coronavirus compared with 11.6 per cent in dogs with acute haemorrhagic diarrhoea (P=0.034). Parvovirus was only detected in one healthy dog (0.5 per cent), thus with a prevalence that was significantly lower than 16.0 per cent detected in the dogs with acute haemorrhagic diarrhoea (P<0.001). Paramyxovirus was not found in any of the healthy dogs but was found in 9.3 per cent of dogs with acute haemorrhagic diarrhoea (P<0.001). Results suggest that shedding of parvovirus and paramyxovirus is strongly associated with acute haemorrhagic diarrhoea. However, coronavirus seems to be even more prevalent among healthy dogs, raising the need for further studies to investigate the strain-associated pathogenicity of this virus.

  13. Attenuated Salmonella Typhimurium delivery of a novel DNA vaccine induces immune responses and provides protection against duck enteritis virus.

    PubMed

    Liu, Xueyan; Liu, Qing; Xiao, Kangpeng; Li, Pei; Liu, Qiong; Zhao, Xinxin; Kong, Qingke

    2016-04-15

    DNA vaccines are widely used to prevent and treat infectious diseases, cancer and autoimmune diseases; however, their relatively low immunogenicity is an obstacle to their use. In this study, we constructed a novel and universal DNA vaccine vector (pSS898) that can be used to build DNA vaccines against duck enteritis virus (DEV) and other viruses that require DNA vaccines to provide protection. This vaccine vector has many advantages, including innate immunogenicity, efficient nuclear trafficking and resistance to attack from nucleases. UL24 and tgB from DEV were chosen as the antigens, and the heat labile enterotoxin B subunit (LTB) from Escherichia coli and the IL-2 gene (DuIL-2) from duck were used as adjuvants for the construction of DNA vaccine plasmids. Ducklings that were orally immunized with S739 (Salmonella Typhimurium Δasd-66 Δcrp-24 Δcya-25) and harboring these DEV DNA vaccines produced strong mucosal and systemic immune responses, and they resisted an otherwise lethal DEV challenge. More importantly, S739 (UL24-LTB) provided 90% protection after a priming-boost immunization. This study shows that our novel and universal DNA vaccine vector can be used efficiently in practical applications and may provide a promising method of orally inoculating ducks with a DEV DNA vaccine delivered by attenuated Salmonella Typhimurium for prevention of DVE.

  14. Use of dual priming oligonucleotide system-based multiplex RT-PCR combined with high performance liquid chromatography assay for simultaneous detection of five enteric viruses associated with acute enteritis.

    PubMed

    Fan, Wen-Lu; Wang, Zi-Wei; Qin, Yue; Sun, Chao; Liu, Zhong-Mei; Jiang, Yan-Ping; Qiao, Xin-Yuan; Tang, Li-Jie; Li, Yi-Jing; Xu, Yi-Gang

    2017-05-01

    In this study, a specific and sensitive method for simultaneous detection of human astrovirus, human rotavirus, norovirus, sapovirus and enteric adenovirus associated with acute enteritis was developed, based on the specific dual priming oligonucleotide (DPO) system and the sensitive high-performance liquid chromatography (HPLC) analysis. The DPO system-based multiplex reverse transcription-polymerase chain reaction (RT-PCR) combined with HPLC assay was more sensitive than agarose gel electrophoresis analysis and real-time SYBR Green PCR assay, and showed a specificity of 100% and sensitivity of 96%-100%. The high sensitivity and specificity of the assay indicates its great potential to be a useful tool for the accurate diagnosis of enteric virus infections.

  15. Leaching of viruses and other microorganisms naturally occurring in pig slurry to tile drains on a well-structured loamy field in Denmark

    NASA Astrophysics Data System (ADS)

    Krog, Jesper S.; Forslund, Anita; Larsen, Lars E.; Dalsgaard, Anders; Kjaer, Jeanne; Olsen, Preben; Schultz, Anna Charlotte

    2017-02-01

    The amount of animal manure used in modern agriculture is increasing due to the increase in global animal production. Pig slurry is known to contain zoonotic bacteria such as E. coli, Salmonella spp. and Campylobacter spp., and viruses such as hepatitis E virus and group A rotavirus. Coliform bacteria, present in manure, have previously been shown to leach into tile drains. This poses a potential threat to aquatic environments and may also influence the quality of drinking water. As knowledge is especially scarce about the fate of viruses when applied to fields in natural settings, this project sets out to investigate the leaching potential of six different microorganisms: E. coli and Enterococcus spp. (detected by colony assay), somatic coliphages (using plaque assays), and hepatitis E virus, porcine circovirus type 2, and group A rotavirus (by real-time polymerase chain reaction). All six microorganisms leached through the soil entering the tile drains situated at 1-m depth the first day following pig slurry application. The leaching pattern of group A rotavirus differed substantially from the pattern for somatic coliphages, which are otherwise used as indicators for virus contamination. Furthermore, group A rotavirus was detected in monitoring wells at 3.5-m depth up to 2 months after pig slurry application. The detection of viral genomic material in drainage water and shallow groundwater signifies a potential hazard to human health that needs to be investigated further, as water reservoirs used for recreational use and drinking water are potentially contaminated with zoonotic pathogens.

  16. Leaching of viruses and other microorganisms naturally occurring in pig slurry to tile drains on a well-structured loamy field in Denmark

    NASA Astrophysics Data System (ADS)

    Krog, Jesper S.; Forslund, Anita; Larsen, Lars E.; Dalsgaard, Anders; Kjaer, Jeanne; Olsen, Preben; Schultz, Anna Charlotte

    2017-06-01

    The amount of animal manure used in modern agriculture is increasing due to the increase in global animal production. Pig slurry is known to contain zoonotic bacteria such as E. coli, Salmonella spp. and Campylobacter spp., and viruses such as hepatitis E virus and group A rotavirus. Coliform bacteria, present in manure, have previously been shown to leach into tile drains. This poses a potential threat to aquatic environments and may also influence the quality of drinking water. As knowledge is especially scarce about the fate of viruses when applied to fields in natural settings, this project sets out to investigate the leaching potential of six different microorganisms: E. coli and Enterococcus spp. (detected by colony assay), somatic coliphages (using plaque assays), and hepatitis E virus, porcine circovirus type 2, and group A rotavirus (by real-time polymerase chain reaction). All six microorganisms leached through the soil entering the tile drains situated at 1-m depth the first day following pig slurry application. The leaching pattern of group A rotavirus differed substantially from the pattern for somatic coliphages, which are otherwise used as indicators for virus contamination. Furthermore, group A rotavirus was detected in monitoring wells at 3.5-m depth up to 2 months after pig slurry application. The detection of viral genomic material in drainage water and shallow groundwater signifies a potential hazard to human health that needs to be investigated further, as water reservoirs used for recreational use and drinking water are potentially contaminated with zoonotic pathogens.

  17. Molecular Surveillance of Enterovirus and Norwalk-Like Virus in Oysters Relocated to a Municipal-Sewage-Impacted Gulf Estuary

    PubMed Central

    Carol Shieh, Y.; Baric, Ralph S.; Woods, Jacquelina W.; Calci, Kevin R.

    2003-01-01

    An 18-month survey was conducted to examine the prevalence of enteric viruses and their relationship to indicators in environmentally polluted shellfish. Groups of oysters, one group per 4 weeks, were relocated to a coastal water area in the Gulf of Mexico that is impacted by municipal sewage and were analyzed for enteroviruses, Norwalk-like viruses (NLV), and indicator microorganisms (fecal coliform, Escherichia coli, and male-specific coliphages). The levels of indicator microorganisms were consistent with the expected continuous pollution of the area. Fourteen of the 18 oyster samples were found by reverse transcription (RT)-PCR to harbor NLV and/or enterovirus sequences. Of the four virus-negative oysters, three had exposure to water temperatures of >29°C. Concomitant with these findings, two of these four oysters also accumulated the lowest levels of coliphages. PCR primers targeting pan-enteroviruses and the NLV 95/96-US common subset were utilized; NLV sequences were detected more frequently than those of enteroviruses. Within the 12-month sampling period, NLV and enterovirus sequences were detected in 58 and 42%, respectively, of the oysters (67% of the oysters tested were positive for at least one virus) from a prohibited shellfish-growing area approximately 30 m away from a sewage discharge site. Eight (4.6%) of the 175 NLV capsid nucleotide sequences were heterogeneous among the clones derived from naturally polluted oysters. Overall, enteric viral sequences were found in the contaminated oysters throughout all seasons except hot summer, with a higher prevalence of NLV than enterovirus. Although a high percentage of the oysters harbored enteric viruses, the virus levels were usually less than or equal to 2 logs of RT-PCR-detectable units per gram of oyster meat. PMID:14660358

  18. Duck Enteritis Virus Glycoprotein D and B DNA Vaccines Induce Immune Responses and Immunoprotection in Pekin Ducks

    PubMed Central

    Zhao, Yan; Cao, Yongsheng; Cui, Lihong; Ma, Bo; Mu, Xiaoyu; Li, Yanwei; Zhang, Zhihui; Li, Dan; Wei, Wei; Gao, Mingchun; Wang, Junwei

    2014-01-01

    DNA vaccine is a promising strategy for protection against virus infection. However, little is known on the efficacy of vaccination with two plasmids for expressing the glycoprotein D (gD) and glycoprotein B (gB) of duck enteritis virus (DEV) in inducing immune response and immunoprotection against virulent virus infection in Pekin ducks. In this study, two eukaryotic expressing plasmids of pcDNA3.1-gB and pcDNA3.1-gD were constructed. Following transfection, the gB and gD expressions in DF1 cells were detected. Groups of ducks were vaccinated with pcDNA3.1-gB and/or pcDNA3.1-gD, and boosted with the same vaccine on day 14 post primary vaccination. We found that intramuscular vaccinations with pcDNA3.1-gB and/or pcDNA3.1-gD, but not control plasmid, stimulated a high frequency of CD4+ and CD8+ T cells in Pekin ducks, particularly with both plasmids. Similarly, vaccination with these plasmids, particularly with both plasmids, promoted higher levels of neutralization antibodies against DEV in Pekin ducks. More importantly, vaccination with both plasmids significantly reduced the virulent DEV-induced mortality in Pekin ducks. Our data indicated that vaccination with plasmids for expressing both gB and gD induced potent cellular and humoral immunity against DEV in Pekin ducks. Therefore, this vaccination strategy may be used for the prevention of DEV infection in Pekin ducks. PMID:24736466

  19. Prevalence of protective antibody titers for canine distemper virus and canine parvovirus in dogs entering a Florida animal shelter.

    PubMed

    Lechner, Elizabeth S; Crawford, P Cynda; Levy, Julie K; Edinboro, Charlotte H; Dubovi, Edward J; Caligiuri, Randy

    2010-06-15

    To determine the proportion of dogs entering an animal shelter with protective antibody titers (PATs) for canine distemper virus (CDV) and canine parvovirus (CPV) and identify factors associated with having a PAT. Cross-sectional study. 431 dogs admitted to an open-admission municipal animal shelter in north central Florida with a history of infectious disease outbreaks. Blood was collected from dogs on the day of admission to the shelter. Antibody titers for CDV and CPV were measured by virus neutralization and hemagglutination inhibition, respectively. Age, sex, neuter status, address of origin, source (stray or previously owned), health status (healthy or not healthy), and outcome (adoption, euthanasia, or reclaimed by owner) data were also collected. Overall, 64.5% (278/431) of dogs had insufficient titers for antibodies against CDV, CPV, or both. A total of 153 (35.5%) dogs had PATs for both CDV and CPV, 33 (7.7%) had PATs for CDV but not CPV, 136 (31.5%) had PATs for CPV but not CDV, and 109 (25.3%) did not have PATs for either virus. Older dogs were more likely to have PATs for CDV and CPV. Neutered dogs were more likely to have PATs for CDV. Factors not associated with having a PAT included source, health status, and type of community from which the dog originated. Most dogs had insufficient antibody titers for CDV, CPV, or both at the time of admission to the animal shelter. Findings support current guidelines recommending vaccination of all dogs immediately upon admission to shelters, regardless of source or physical condition.

  20. Duck enteritis virus glycoprotein D and B DNA vaccines induce immune responses and immunoprotection in Pekin ducks.

    PubMed

    Zhao, Yan; Cao, Yongsheng; Cui, Lihong; Ma, Bo; Mu, Xiaoyu; Li, Yanwei; Zhang, Zhihui; Li, Dan; Wei, Wei; Gao, Mingchun; Wang, Junwei

    2014-01-01

    DNA vaccine is a promising strategy for protection against virus infection. However, little is known on the efficacy of vaccination with two plasmids for expressing the glycoprotein D (gD) and glycoprotein B (gB) of duck enteritis virus (DEV) in inducing immune response and immunoprotection against virulent virus infection in Pekin ducks. In this study, two eukaryotic expressing plasmids of pcDNA3.1-gB and pcDNA3.1-gD were constructed. Following transfection, the gB and gD expressions in DF1 cells were detected. Groups of ducks were vaccinated with pcDNA3.1-gB and/or pcDNA3.1-gD, and boosted with the same vaccine on day 14 post primary vaccination. We found that intramuscular vaccinations with pcDNA3.1-gB and/or pcDNA3.1-gD, but not control plasmid, stimulated a high frequency of CD4+ and CD8+ T cells in Pekin ducks, particularly with both plasmids. Similarly, vaccination with these plasmids, particularly with both plasmids, promoted higher levels of neutralization antibodies against DEV in Pekin ducks. More importantly, vaccination with both plasmids significantly reduced the virulent DEV-induced mortality in Pekin ducks. Our data indicated that vaccination with plasmids for expressing both gB and gD induced potent cellular and humoral immunity against DEV in Pekin ducks. Therefore, this vaccination strategy may be used for the prevention of DEV infection in Pekin ducks.

  1. Acute diarrhea in West African children: diverse enteric viruses and a novel parvovirus genus.

    PubMed

    Phan, Tung G; Vo, Nguyen P; Bonkoungou, Isidore J O; Kapoor, Amit; Barro, Nicolas; O'Ryan, Miguel; Kapusinszky, Beatrix; Wang, Chunling; Delwart, Eric

    2012-10-01

    Parvoviruses cause a variety of mild to severe symptoms or asymptomatic infections in humans and animals. During a viral metagenomic analysis of feces from children with acute diarrhea in Burkina Faso, we identified in decreasing prevalence nucleic acids from anelloviruses, dependoviruses, sapoviruses, enteroviruses, bocaviruses, noroviruses, adenoviruses, parechoviruses, rotaviruses, cosavirus, astroviruses, and hepatitis B virus. Sequences from a highly divergent parvovirus, provisionally called bufavirus, were also detected whose NS1 and VP1 proteins showed <39% and <31% identities to those of previously known parvoviruses. Four percent of the fecal samples were PCR positive for this new parvovirus, including a related bufavirus species showing only 72% identity in VP1. The high degree of genetic divergence of these related genomes from those of other parvoviruses indicates the presence of a proposed new Parvoviridae genus containing at least two species. Studies of the tropism and pathogenicity of these novel parvoviruses will be facilitated by the availability of their genome sequences.

  2. Acute Diarrhea in West African Children: Diverse Enteric Viruses and a Novel Parvovirus Genus

    PubMed Central

    Phan, Tung G.; Vo, Nguyen P.; Bonkoungou, Isidore J. O.; Kapoor, Amit; Barro, Nicolas; O'Ryan, Miguel; Kapusinszky, Beatrix; Wang, Chunling

    2012-01-01

    Parvoviruses cause a variety of mild to severe symptoms or asymptomatic infections in humans and animals. During a viral metagenomic analysis of feces from children with acute diarrhea in Burkina Faso, we identified in decreasing prevalence nucleic acids from anelloviruses, dependoviruses, sapoviruses, enteroviruses, bocaviruses, noroviruses, adenoviruses, parechoviruses, rotaviruses, cosavirus, astroviruses, and hepatitis B virus. Sequences from a highly divergent parvovirus, provisionally called bufavirus, were also detected whose NS1 and VP1 proteins showed <39% and <31% identities to those of previously known parvoviruses. Four percent of the fecal samples were PCR positive for this new parvovirus, including a related bufavirus species showing only 72% identity in VP1. The high degree of genetic divergence of these related genomes from those of other parvoviruses indicates the presence of a proposed new Parvoviridae genus containing at least two species. Studies of the tropism and pathogenicity of these novel parvoviruses will be facilitated by the availability of their genome sequences. PMID:22855485

  3. Rift Valley fever virus strain MP-12 enters mammalian host cells via caveola-mediated endocytosis.

    PubMed

    Harmon, Brooke; Schudel, Benjamin R; Maar, Dianna; Kozina, Carol; Ikegami, Tetsuro; Tseng, Chien-Te Kent; Negrete, Oscar A

    2012-12-01

    Rift Valley fever virus (RVFV) is a zoonotic pathogen capable of causing serious morbidity and mortality in both humans and livestock. The lack of efficient countermeasure strategies, the potential for dispersion into new regions, and the pathogenesis in humans and livestock make RVFV a serious public health concern. The receptors, cellular factors, and entry pathways used by RVFV and other members of the family Bunyaviridae remain largely uncharacterized. Here we provide evidence that RVFV strain MP-12 uses dynamin-dependent caveola-mediated endocytosis for cell entry. Caveolae are lipid raft domains composed of caveolin (the main structural component), cholesterol, and sphingolipids. Caveola-mediated endocytosis is responsible for the uptake of a wide variety of host ligands, as well as bacteria, bacterial toxins, and a number of viruses. To determine the cellular entry mechanism of RVFV, we used small-molecule inhibitors, RNA interference (RNAi), and dominant negative (DN) protein expression to inhibit the major mammalian cell endocytic pathways. Inhibitors and RNAi specific for macropinocytosis and clathrin-mediated endocytosis had no effect on RVFV infection. In contrast, inhibitors of caveola-mediated endocytosis, and RNAi targeted to caveolin-1 and dynamin, drastically reduced RVFV infection in multiple cell lines. Expression of DN caveolin-1 also reduced RVFV infection significantly, while expression of DN EPS15, a protein required for the assembly of clathrin-coated pits, and DN PAK-1, an obligate mediator of macropinocytosis, had no significant impact on RVFV infection. These results together suggest that the primary mechanism of RVFV MP-12 uptake is dynamin-dependent, caveolin-1-mediated endocytosis.

  4. Human and animal enteric virus in groundwater from deep wells, and recreational and network water.

    PubMed

    Fongaro, Gislaine; Padilha, J; Schissi, C D; Nascimento, M A; Bampi, G B; Viancelli, A; Barardi, C R M

    2015-12-01

    This study was designed to assess the presence of human adenovirus (HAdV), rotavirus-A (RVA), hepatitis A virus (HAV), and porcine circovirus-2 (PCV2) in groundwater from deep wells, and recreational and network waters. The water samples were collected and concentrated and the virus genomes were assessed and quantified by quantitative PCR (qPCR). Infectious HAdV was evaluated in groundwater and network water samples by integrated cell culture using transcribed messenger RNA (mRNA) (ICC-RT-qPCR). In recreational water samples, HAdV was detected in 100 % (6/6), HAV in 66.6 % (4/6), and RVA in 66.6 % (4/6). In network water, HAdV was detected in 100 % (6/6) of the samples (these 83 % contained infectious HAdV), although HAV and RVA were not detected and PCV2 was not evaluated. In groundwater from deep wells, during rainy period, HAdV and RVA were detected in 80 % (4/5) of the samples, and HAV and PCV2 were not detected; however, during dry period, HAdV and RVA were detected in 60 % (3/5), HAV in only one sample, and PCV2 in 60 % (4/5). In groundwater, all samples contained infectious HAdV. PCV2 presence in groundwater is indicative of contamination caused by swine manure in Concórdia, Santa Catarina, Brazil. The disinfection of human and animal wastes is urgent, since they can contaminate surface and groundwater, being a potential threat for public and animal health.

  5. Occurrence and distribution of enteric viruses in shallow ground water and factors affecting well vulnerability to microbiological contamination in Worcester and Wicomico counties, Maryland

    USGS Publications Warehouse

    Banks, William S.L.; Klohe, Cheryl A.; Battigelli, David A.

    2001-01-01

    The U.S. Geological Survey, in cooperation with the Maryland Department of the Environment and the Wisconsin State Laboratory of Hygiene, conducted a study to characterize the occurrence and distribution of viral contamination in small (withdrawing less than 10,000 gallons per day) public water-supply wells screened in the water-table aquifer in the Coastal Plain in Worcester and Wicomico Counties, Maryland.Two hundred seventy-eight well sites were evaluated with regard to simulated ground-water flow paths, land use, natural soils groups, and well characteristics, such as well depth and well age. Flow and transport simulations of the water-table aquifer indicated that wells screened less than about 50 feet below land surface (shallow wells) were most vulnerable to surface contamination, which in some cases could originate from as far as 2,000 feet upgradient of the well. Animal-feeding and agricultural-storage operations were considered among the most likely sources for viral contamination; therefore, sites close to these activities were considered most vulnerable. Soil groups were evaluated with regard to depth to water and moisture-holding capacity. Wells with shallow depths to water or in very sandy soils were considered more vulnerable to contamination than deep wells (greater than 50 feet) and those completed in finer-grained soils. Older wells and wells where coliform bacteria had been detected in the past were classified as highly vulnerable. On the basis of this evaluation, 27 sites considered to be susceptible were sampled.Samples were collected by pumping up to 400 gallons of untreated well water through an electropositive filter. Water concentrates were subjected to cell-culture assay for the detection of culturable viruses and reverse-transcription polymerase chain reaction/gene probe assays to detect nonculturable viruses; grab samples were analyzed for somatic and male-specific coliphages, Bacteroides fragilis, Clostridium perfringens, enterococci

  6. A case study of enteric virus removal and insights into the associated risk of water reuse for two wastewater treatment pond systems in Bolivia.

    PubMed

    Symonds, E M; Verbyla, M E; Lukasik, J O; Kafle, R C; Breitbart, M; Mihelcic, J R

    2014-11-15

    Wastewater treatment ponds (WTP) are one of the most widespread treatment technologies in the world; however, the mechanisms and extent of enteric virus removal in these systems are poorly understood. Two WTP systems in Bolivia, with similar overall hydraulic retention times but different first stages of treatment, were analyzed for enteric virus removal. One system consisted of a facultative pond followed by two maturation ponds (three-pond system) and the other consisted of an upflow anaerobic sludge blanket (UASB) reactor followed by two maturation (polishing) ponds (UASB-pond system). Quantitative polymerase chain reaction with reverse transcription (RT-qPCR) was used to measure concentrations of norovirus, rotavirus, and pepper mild mottle virus, while cell culture methods were used to measure concentrations of culturable enteroviruses (EV). Limited virus removal was observed with RT-qPCR in either system; however, the three-pond system removed culturable EV with greater efficiency than the UASB-pond system. The majority of viruses were not associated with particles and only a small proportion was associated with particles larger than 180 μm; thus, it is unlikely that sedimentation is a major mechanism of virus removal. High concentrations of viruses were associated with particles between 0.45 and 180 μm in the UASB reactor effluent, but not in the facultative pond effluent. The association of viruses with this size class of particles may explain why only minimal virus removal was observed in the UASB-pond system. Quantitative microbial risk assessment of the treated effluent for reuse for restricted irrigation indicated that the three-pond system effluent requires an additional 1- to 2-log10 reduction of viruses to achieve the WHO health target of <10(-4) disability-adjusted life years (DALYs) lost per person per year; however, the UASB-pond system effluent may require an additional 2.5- to 4.5-log10 reduction of viruses.

  7. The failure of an inactivated mink enteritis virus vaccine in four preparations to provide protection to dogs against challenge with canine parvovirus-2.

    PubMed Central

    Carman, S; Povey, C

    1982-01-01

    Four experimental vaccine preparations comprising a strain of mink enteritis virus inactivated by either formalin or beta-propiolactone, and either adjuvanted or nonadjuvanted, failed to stimulate a consistent serum antibody response in 20 vaccinated dogs and failed to protect all but one of these dogs against oral challenge with canine parvovirus-2. PMID:6280820

  8. Endocytic Pathways Used by Andes Virus to Enter Primary Human Lung Endothelial Cells

    PubMed Central

    Flint, Mike; Lin, Jin-Mann S.; Spiropoulou, Christina F.

    2016-01-01

    Andes virus (ANDV) is the major cause of hantavirus pulmonary syndrome (HPS) in South America. Despite a high fatality rate (up to 40%), no vaccines or antiviral therapies are approved to treat ANDV infection. To understand the role of endocytic pathways in ANDV infection, we used 3 complementary approaches to identify cellular factors required for ANDV entry into human lung microvascular endothelial cells. We screened an siRNA library targeting 140 genes involved in membrane trafficking, and identified 55 genes required for ANDV infection. These genes control the major endocytic pathways, endosomal transport, cell signaling, and cytoskeleton rearrangement. We then used infectious ANDV and retroviral pseudovirions to further characterize the possible involvement of 9 of these genes in the early steps of ANDV entry. In addition, we used markers of cellular endocytosis along with chemical inhibitors of known endocytic pathways to show that ANDV uses multiple routes of entry to infect target cells. These entry mechanisms are mainly clathrin-, dynamin-, and cholesterol-dependent, but can also occur via a clathrin-independent manner. PMID:27780263

  9. Recombinant adeno-associated virus utilizes host cell nuclear import machinery to enter the nucleus.

    PubMed

    Nicolson, Sarah C; Samulski, R Jude

    2014-04-01

    Recombinant adeno-associated viral (rAAV) vectors have garnered much promise in gene therapy applications. However, widespread clinical use has been limited by transduction efficiency. Previous studies suggested that the majority of rAAV accumulates in the perinuclear region of cells, presumably unable to traffic into the nucleus. rAAV nuclear translocation remains ill-defined; therefore, we performed microscopy, genetic, and biochemical analyses in vitro in order to understand this mechanism. Lectin blockade of the nuclear pore complex (NPC) resulted in inhibition of nuclear rAAV2. Visualization of fluorescently labeled particles revealed that rAAV2 localized to importin-β-dense regions of cells in late trafficking steps. Additionally, small interfering RNA (siRNA) knockdown of importin-β partially inhibited rAAV2 nuclear translocation and inhibited transduction by 50 to 70%. Furthermore, coimmunopreciptation (co-IP) analysis revealed that capsid proteins from rAAV2 could interact with importin-β and that this interaction was sensitive to the small GTPase Ran. More importantly, mutations to key basic regions in the rAAV2 capsid severely inhibited interactions with importin-β. We tested several other serotypes and found that the extent of importin-β interaction varied, suggesting that different serotypes may utilize alternative import proteins for nuclear translocation. Co-IP and siRNA analyses were used to investigate the role of other karyopherins, and the results suggested that rAAV2 may utilize multiple import proteins for nuclear entry. Taken together, our results suggest that rAAV2 interacts with importin-β alone or in complex with other karyopherins and enters the nucleus via the NPC. These results may lend insight into the design of novel AAV vectors that have an enhanced nuclear entry capability and transduction potential. Use of recombinant adeno-associated viral (rAAV) vectors for gene therapy applications is limited by relatively low transduction

  10. Quantification of Enteric Viruses, Pathogen Indicators, and Salmonella Bacteria in Class B Anaerobically Digested Biosolids by Culture and Molecular Methods ▿

    PubMed Central

    Wong, Kelvin; Onan, Brandon M.; Xagoraraki, Irene

    2010-01-01

    The most common class B biosolids in the United States are generated by mesophilic anaerobic digestion (MAD), and MAD biosolids have been used for land application. However, the pathogen levels in MAD biosolids are still unclear, especially with respect to enteric viruses. In this study, we determined the occurrence and the quantitative levels of enteric viruses and indicators in 12 MAD biosolid samples and of Salmonella enterica in 6 MAD biosolid samples. Three dewatered biosolid samples were also included in this study for purposes of comparison. Human adenoviruses (HAdV) had the highest gene levels and were detected more frequently than other enteric viruses. The gene levels of noroviruses (NV) reported were comparable to those of enteroviruses (EV) and human polyomaviruses (HPyV). The occurrence percentages of HAdV, HAdV species F, EV, NV GI, NV GII, and HPyV in MAD samples were 83, 83, 42, 50, 75, and 58%, respectively. No hepatitis A virus was detected. Infectious HAdV was detected more frequently than infectious EV, and all infectious HAdV were detected when samples were propagated in A549 cells. Based on most-probable-number (MPN) analysis, A549 cells were more susceptible to biosolid-associated viruses than BGM cells. All indicator levels in MAD biosolids were approximately 104 MPN or PFU per gram (dry), and the dewatered biosolids had significantly higher indicator levels than the MAD biosolids. Only two MAD samples tested positive for Salmonella enterica, where the concentration was below 1.0 MPN/4 g. This study provides a broad comparison of the prevalence of different enteric viruses in MAD biosolids and reports the first detection of noroviruses in class B biosolids. The observed high quantitative and infectivity levels of adenoviruses in MAD biosolids indicate that adenovirus is a good indicator for the evaluation of sludge treatment efficiency. PMID:20693452

  11. Detection of Enteric Viruses in Fecal Specimens from Nonbacterial Foodborne Gastroenteritis Outbreaks in Tokyo, Japan between 1966 and 1983.

    PubMed

    Mori, Kohji; Nagano, Miyuki; Kimoto, Kana; Somura, Yoshiko; Akiba, Tetsuya; Hayashi, Yukinao; Sadamasu, Kenji; Kai, Akemi

    2017-03-24

    We investigated the prevalence of 5 enteric viruses (norovirus [NoV], sapovirus, rotavirus, astrovirus, and adenovirus) in archived stool specimens collected from 70 foodborne gastroenteritis outbreaks in Tokyo, Japan, which occurred from 1966 to 1983, and genetically characterized these viruses. NoV was detected in 48 (68.6%) outbreaks, while SaV, group C rotavirus (RVC), and astrovirus were detected in 1 (1.4%) outbreak each. Based on the partial capsid sequences, the detected NoVs were classified into the following genotypes: 9 in genogroup I (GI; GI.1-6, GI.8, GI.9, and GI.NA), 13 GII (GII.1-9, GII.13, GII.16, GII.17, and GII.22), and one in GIV. The oldest NoV outbreaks occurred in 1966. No predominant genotype was found. One strain, classified as GI. NA based on the N/S region sequence, was subsequently classified as GI.8 based on the complete VP1 sequence. Nine types of recombinant NoV sequences, including 7 unreported combinations, were identified. Further genetic characterization of NoV GII.17 and GII.4 demonstrated that the NoV GII.17 strains detected from 1970 to 1982 clustered independently from previously reported NoV GII.17 strains. Phylogenetic analysis, using the complete VP1 region and the P2 domain, demonstrated that NoV GII.4 strains collected between 1975 and 1980 clustered with archival strains collected in the USA in the mid-1970s. In contrast, a NoV GII.4 strain collected in 1983 formed an independent branch from reference strains collected in the mid-1970s to 2012.

  12. Efficacy study and field application of an inactivated new type gosling viral enteritis virus vaccine for domestic geese.

    PubMed

    Chen, S; Ma, G P; Wang, M S; Cheng, A C; Zhu, D K; Luo, Q H; Jia, R Y; Liu, F; Chen, X Y; Han, X F; Bo, Y; Zhou, D C

    2011-04-01

    New type gosling viral enteritis virus (NGVEV) caused a serious disease in naive juvenile goslings. In the described studies the performance of 2 vaccines was analyzed: a vaccine containing adjuvanted inactivated NGVEV and a vaccine containing adjuvanted inactivated NGVEV and recombinant goose IL-2. Breeder geese were subcutaneously vaccinated at the beginning of the egg production period with the vaccines. Breeder geese sham vaccinated with PBS served as control. The cellular and humoral immune responses of the vaccinated breeder geese, as well as the presence of maternally derived antibody to NGVEV, were investigated by ELISA, virus neutralization test, and lymphocyte proliferation assay, respectively. A significantly higher immunogenicity (P < 0.05) was induced by the inactivated NGVEV-recombinant goose IL-2 adjuvant vaccine compared with the inactivated NGVEV vaccine. The offspring of the vaccinated birds were challenged with virulent NGVEV (100 50% lethal dose) and the protective efficacy of the vaccines was determined. Furthermore, in a field trial the efficacy of the inactivated NGVEV vaccine was recorded from years 2003 to 2007. No clinical signs or abnormal health status were observed in the vaccinated breeder geese and the progeny. After a single application, >80% protection was shown in the progeny of geese vaccinated against NGVEV challenge for approximately 5 mo. The extensive field trials further demonstrated that vaccination of breeder geese with the inactivated NGVEV vaccine could be a safe and efficacious means to control NGVE disease. Moreover, the level of maternally derived NGVEV antibody titer in the egg yolk reflected the level of NGVEV antibodies in the breeder geese, suggesting that the egg yolk could be used to monitor the vaccination efficacy in commercial goose breeder flocks.

  13. The transcription analysis of duck enteritis virus UL49.5 gene using real-time quantitative reverse transcription PCR.

    PubMed

    Lin, Meng; Jia, Renyong; Wang, Mingshu; Gao, Xinghong; Zhu, Dekang; Chen, Shun; Yin, Zhongqiong; Wang, Yin; Chen, Xiaoyue; Cheng, Anchun

    2013-10-01

    Duck enteritis virus (DEV) UL49.5 encoding glycoprotein N was a conserved gene. The transcription dynamic process of UL49.5 homologous genes in herpesviruses was reported. However, the transcription dynamic process of DEV UL49.5 gene has not yet been established. In this study, a real-time quantitative reverse transcription PCR (real-time qRT-PCR) assay was established to test the transcription dynamic process of DEV UL49.5 gene, and the recombinant plasmid pUCm-T/UL49.5 was constructed as the standard DNA. The samples prepared from DEV-infected (at different time points) and uninfected cell were detected and calculated. The results demonstrated that the real-time qRT-PCR assay was successfully established. The transcription product of DEV UL49.5 gene was first detected at 0.5 h post infection (p.i.), increased at 8 h p.i. and reached a peak at 60 h p.i. Our results illustrated that DEV UL49.5 gene could be regarded as a late gene. The transcription dynamic process of DEV UL49.5 gene may provide a significant clue for further studies of DEV UL49.5 gene.

  14. Real-time PCR detection of enteric viruses in source water and treated drinking water in Wuhan, China.

    PubMed

    Ye, Xiao Yan; Ming, Xing; Zhang, Yong Lu; Xiao, Wen Qing; Huang, Xia Ning; Cao, Yu Guang; Gu, Kang Ding

    2012-09-01

    A total of 48 water samples were collected from six water treatment plants in Wuhan and analyzed by real-time PCR assay for viral identification of enterovirus (EV), rotavirus group A (RVA), human adenovirus (HAdV) as well as human adenovirus subgroup F (HAdVF) during the period from December 2010 to October 2011. HAdV, HAdVF, and RVA were all positively detected in the samples of source water and treated drinking water. EV could be found in 46 % (11/24) of all the source water samples, but only 21 % (5/24) positive in treated drinking water. The concentrations of these three kinds of enteric viruses detected were as follows: HAdV > RVA > EV. The highest removal rate was EV (97 %), followed by RVA (82 %), HAdV (73 %), and HAdVF (72 %). HAdV and RVA have been abundant in untreated river water and finished water after conventional processes of water treatment plants, while bacterial indicators could not be detected in tap water, which met the standard of China for drinking water bacterial quality. Some factors that could affect the accuracy of qPCR detection are also discussed in this study.

  15. Frequency of hepatitis E virus, rotavirus and porcine enteric calicivirus at various stages of pork carcass processing in two pork processing plants.

    PubMed

    Jones, Tineke H; Muehlhauser, Victoria

    2017-10-16

    Hepatitis E virus (HEV), rotavirus (RV), and porcine enteric calicivirus (PEC) infections are common in swine and raises concerns about the potential for zoonotic transmission through undercooked meat products. Enteric viruses can potentially contaminate carcasses during meat processing operations. There is a lack of information on the prevalence and control of enteric viruses in the pork processing chain. This study compared the incidence and levels of contamination of hog carcasses with HEV, RV and PEC at different stages of the dressing process. A total of 1000 swabs were collected from 2 pork processing plants on 10 separate occasions over the span of a year. The samples were obtained from random sites on hog carcasses at 4 dressing stages (plant A: bleeding, dehairing, pasteurization, and evisceration; plant B: bleeding, skinning, evisceration, and washing) and from meat cuts. Numbers of genome copies (gc) of HEV, RV and PEC were determined by RT-qPCR. RV and PEC were detected in 100%, and 18% of samples, respectively, after bleeding for plant A and in 98%, and 36% of samples, respectively, after bleeding for plant B. After evisceration, RV and PEC were detected in 21% and 3% of samples, respectively, for plant A and in 1%, and 0% of samples, respectively for plant B. RV and PEC were detected on 1%, and 5% of pork cuts, respectively, for plant A and on 0%, and 0% of pork cuts, respectively, for plant B. HEV was not detected in any pork carcass or retail pork samples from plants A or B. The frequency of PEC and RV on pork is progressively reduced along the pork processing chain but the viruses were not completely eliminated. The findings suggest that consumers could be at risk when consuming undercooked meat contaminated with pathogenic enteric viruses. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  16. Prevalence and risk factors for cats testing positive for feline immunodeficiency virus and feline leukaemia virus infection in cats entering an animal shelter in New Zealand.

    PubMed

    Gates, M C; Vigeant, S; Dale, A

    2017-11-01

    AIMS To estimate the prevalence of cats testing positive for antibodies to feline immunodeficiency virus (FIV) and feline leukaemia virus (FeLV) antigens in domestic cats entering a New Zealand animal shelter, based on a commercial point-of-care ELISA, to identify risk factors associated with cats testing positive, and to compare the results obtained from the ELISA with those obtained using PCR-based testing. METHOD A cross-sectional study was performed on 388 cats entering the Royal New Zealand Society for the Prevention of Cruelty to Animals animal shelter in Auckland, New Zealand between 7 February 2014 and 30 May 2014. Whole blood samples were collected from each cat and tested for FIV antibody and FeLV antigen using a commercial point-of-care ELISA. Information on the signalment and health status of the cat at the time of entry was also recorded. Blood and saliva samples from a subset of cats were tested for FIV and FeLV proviral DNA using a real-time PCR assay. RESULTS Of the 388 cats in the study sample, 146 (37.6%) had been relinquished by owners, 237 (62.4%) were strays, and 5 (1.3%) were of unknown origin. Overall, 53/388 (13.7%) cats tested positive for FIV antibodies and 4/388 (1.0%) were positive for FeLV antigen. Stray cats had a higher FIV seroprevalence than relinquished cats (42/237 (17.8%) vs. 11/146 (7.5%); p=0.008). Of 53 cats that were FIV-seropositive, 51 (96%) tested positive for FIV proviral DNA using PCR testing of blood. Of these 51 cats, 28 (55%) were positive by PCR testing of saliva. Of the four cats that were FeLV antigen-positive by ELISA, two (50%) were positive for FeLV proviral DNA by PCR testing of blood. The odds of a cat being seropositive for FIV were greater for intact compared to desexed cats (OR=3.3; 95% CI=1.6-7.4) and for male compared to female cats (OR=6.5; 95% CI=3.2-14.0). CONCLUSIONS AND CLINICAL RELEVANCE The seroprevalence for FIV was 14% among cats entering an animal shelter in Auckland, whereas the prevalence of

  17. Somatic coliphages as surrogates for enteroviruses in sludge hygienization treatments.

    PubMed

    Martín-Díaz, Julia; Casas-Mangas, Raquel; García-Aljaro, Cristina; Blanch, Anicet R; Lucena, Francisco

    2016-01-01

    Conventional bacterial indicators present serious drawbacks giving information about viral pathogens persistence during sludge hygienization treatments. This calls for the search of alternative viral indicators. Somatic coliphages' (SOMCPH) ability for acting as surrogates for enteroviruses was assessed in 47 sludge samples subjected to novel treatment processes. SOMCPH, infectious enteroviruses and genome copies of enteroviruses were monitored. Only one of these groups, the bacteriophages, was present in the sludge at concentrations that allowed the evaluation of treatment's performance. An indicator/pathogen relationship of 4 log10 (PFU/g dw) was found between SOMCPH and infective enteroviruses and their detection accuracy was assessed. The obtained results and the existence of rapid and standardized methods encourage the inclusion of SOMCPH quantification in future sludge directives. In addition, an existing real-time quantitative polymerase chain reaction (RT-qPCR) for enteroviruses was adapted and applied.

  18. Coliphages and bacteria in ground water from Tehran, Iran

    SciTech Connect

    Shariatpanahi, M.; Anderson, A.C.

    1987-07-01

    The purpose of this study was to examine the microbial quality of Tehran's ground water and selected springs, using coliphages and selected bacteria as indicator organisms. The water table in Tehran varies from approximately 160 meters in the north to approximately 5 meters in the south. Individual wells and subterranean man-made aqueducts (qanate) tap the ground water. Since Tehran lacks municipal sewage facilities, waste disposal is by means of seepage pits, privies and leaching cesspools. There is potential for waste from these sites to leach into the ground water, particularly in the south where the water table is near the surface and the clay content of the soil holds moisture during periods of heavy rainfall.

  19. Acquisition of a determinant for chloramphenicol resistance by coliphage lambda.

    PubMed Central

    Gottesman, M M; Rosner, J L

    1975-01-01

    A determinanat for chloramphenicol resistance, cam, initially detected on a resistance transfer factor (RTF) and since transferred to phage P1, may be acquired from P1 by coliphage lambda. Lambdapcam are obtained when a lambda prophage is induced in bacteria which also harbor P1 cam prophage. Lambdacam formation is not dependent upon host Rec or lambda Red recombination functions. Electron microscopic heteroduplex analysis shows that the cam locus in two lambdapcams is a 5% addition of DNA in the b2 region of lambda, not contiguous with att. The extent and nucloetide sequence of the DNA insertion in the two independent lambdapcam isolates appear to be the same though they are located at different sites within the b2 region. We conclude that the determinant for chloramphenicol resistance is contained on a unique piece of DNA which facilitates its insertion into a number of unrelated genomes. Images PMID:1061090

  20. Coherent soft X-ray diffraction imaging of coliphage PR772 at the Linac coherent light source.

    PubMed

    Reddy, Hemanth K N; Yoon, Chun Hong; Aquila, Andrew; Awel, Salah; Ayyer, Kartik; Barty, Anton; Berntsen, Peter; Bielecki, Johan; Bobkov, Sergey; Bucher, Maximilian; Carini, Gabriella A; Carron, Sebastian; Chapman, Henry; Daurer, Benedikt; DeMirci, Hasan; Ekeberg, Tomas; Fromme, Petra; Hajdu, Janos; Hanke, Max Felix; Hart, Philip; Hogue, Brenda G; Hosseinizadeh, Ahmad; Kim, Yoonhee; Kirian, Richard A; Kurta, Ruslan P; Larsson, Daniel S D; Duane Loh, N; Maia, Filipe R N C; Mancuso, Adrian P; Mühlig, Kerstin; Munke, Anna; Nam, Daewoong; Nettelblad, Carl; Ourmazd, Abbas; Rose, Max; Schwander, Peter; Seibert, Marvin; Sellberg, Jonas A; Song, Changyong; Spence, John C H; Svenda, Martin; Van der Schot, Gijs; Vartanyants, Ivan A; Williams, Garth J; Xavier, P Lourdu

    2017-06-27

    Single-particle diffraction from X-ray Free Electron Lasers offers the potential for molecular structure determination without the need for crystallization. In an effort to further develop the technique, we present a dataset of coherent soft X-ray diffraction images of Coliphage PR772 virus, collected at the Atomic Molecular Optics (AMO) beamline with pnCCD detectors in the LAMP instrument at the Linac Coherent Light Source. The diameter of PR772 ranges from 65-70 nm, which is considerably smaller than the previously reported ~600 nm diameter Mimivirus. This reflects continued progress in XFEL-based single-particle imaging towards the single molecular imaging regime. The data set contains significantly more single particle hits than collected in previous experiments, enabling the development of improved statistical analysis, reconstruction algorithms, and quantitative metrics to determine resolution and self-consistency.

  1. Coherent soft X-ray diffraction imaging of coliphage PR772 at the Linac coherent light source

    PubMed Central

    Reddy, Hemanth K.N.; Yoon, Chun Hong; Aquila, Andrew; Awel, Salah; Ayyer, Kartik; Barty, Anton; Berntsen, Peter; Bielecki, Johan; Bobkov, Sergey; Bucher, Maximilian; Carini, Gabriella A.; Carron, Sebastian; Chapman, Henry; Daurer, Benedikt; DeMirci, Hasan; Ekeberg, Tomas; Fromme, Petra; Hajdu, Janos; Hanke, Max Felix; Hart, Philip; Hogue, Brenda G.; Hosseinizadeh, Ahmad; Kim, Yoonhee; Kirian, Richard A.; Kurta, Ruslan P.; Larsson, Daniel S.D.; Duane Loh, N.; Maia, Filipe R.N.C.; Mancuso, Adrian P.; Mühlig, Kerstin; Munke, Anna; Nam, Daewoong; Nettelblad, Carl; Ourmazd, Abbas; Rose, Max; Schwander, Peter; Seibert, Marvin; Sellberg, Jonas A.; Song, Changyong; Spence, John C.H.; Svenda, Martin; Van der Schot, Gijs; Vartanyants, Ivan A.; Williams, Garth J.; Xavier, P. Lourdu

    2017-01-01

    Single-particle diffraction from X-ray Free Electron Lasers offers the potential for molecular structure determination without the need for crystallization. In an effort to further develop the technique, we present a dataset of coherent soft X-ray diffraction images of Coliphage PR772 virus, collected at the Atomic Molecular Optics (AMO) beamline with pnCCD detectors in the LAMP instrument at the Linac Coherent Light Source. The diameter of PR772 ranges from 65–70 nm, which is considerably smaller than the previously reported ~600 nm diameter Mimivirus. This reflects continued progress in XFEL-based single-particle imaging towards the single molecular imaging regime. The data set contains significantly more single particle hits than collected in previous experiments, enabling the development of improved statistical analysis, reconstruction algorithms, and quantitative metrics to determine resolution and self-consistency. PMID:28654088

  2. Coherent soft X-ray diffraction imaging of coliphage PR772 at the Linac coherent light source

    DOE PAGES

    Reddy, Hemanth K. N.; Yoon, Chun Hong; Aquila, Andrew; ...

    2017-06-27

    Single-particle diffraction from X-ray Free Electron Lasers offers the potential for molecular structure determination without the need for crystallization. In an effort to further develop the technique, we present a dataset of coherent soft X-ray diffraction images of Coliphage PR772 virus, collected at the Atomic Molecular Optics (AMO) beamline with pnCCD detectors in the LAMP instrument at the Linac Coherent Light Source. The diameter of PR772 ranges from 65–70 nm, which is considerably smaller than the previously reported ~600 nm diameter Mimivirus. This reflects continued progress in XFEL-based single-particle imaging towards the single molecular imaging regime. As a result, themore » data set contains significantly more single particle hits than collected in previous experiments, enabling the development of improved statistical analysis, reconstruction algorithms, and quantitative metrics to determine resolution and self-consistency.« less

  3. Development of a feasible method to extract somatic coliphages from sludge, soil and treated biowaste.

    PubMed

    Guzmán, Carolina; Jofre, Juan; Blanch, Anicet R; Lucena, Francisco

    2007-09-01

    Extraction of viruses and bacteriophages from sludge, soil and treated biowaste requires homogenization, elution, clarification and detoxification-decontamination steps. Seeding these matrixes with bacteriophages does not reproduce what happens in nature. Therefore, naturally occurring matrixes, raw sludge, digested and dewatered sludge and compost, containing high numbers of somatic coliphages, and soils contaminated with wastewater or raw sludge were used in the extraction assays. Based on eluting the bacteriophages with beef extract, a feasible method in which the different steps had been optimized has been established. The method is feasible, repeatable, robust and applicable in routine laboratories. Digested and dewatered sludge has been probed to be useful as a reference material for validation studies and for "in lab" quality control. The established method includes homogenization by magnetic stirring, elution (which is performed at the same time that homogenization) with 10% beef extract at neutral pH, clarification by centrifuging at 4000 x g and decontamination by filtration through low protein binding 0.22 microm diameter pore size membrane filters.

  4. Inactivation of MS2 coliphage by UV and hydrogen peroxide: comparison by cultural and molecular methodologies.

    PubMed

    Sherchan, Samendra P; Snyder, Shane A; Gerba, Charles P; Pepper, Ian L

    2014-01-01

    The use of advanced oxidation processes (AOP) are expected to increase for removal of emerging contaminants and pathogens from drinking water. In this study, the performance of a small community ultraviolet light reactor in combination with hydrogen peroxide (H2O2) for MS2 coliphage inactivation with two different flow rate conditions of 1 gal/min (gpm) and 2 gpm was evaluated. Following UV radiation, MS2 showed a reduction of 5.3-5.8 log10 when quantified with cultural plaque counts, whereas corresponding quantitative polymerase chain reaction (qPCR) data showed only a 1.7-2.8 log10 reduction in viral RNA copy number. When H2O2 was added at either 2.5 or 5 ppm with UV at both flow rate conditions, enhanced MS2 inactivation occurred with a more than 7 log10 reduction observed via plaque counts, indicating that all added MS2 had been inactivated, since no plaques were formed after incubation at 37 °C for 24 h. In contrast, qPCR only showed a corresponding 3-4 log10 reduction in viral RNA copy number. This research also sheds light on the inactivation of MS2 with ultraviolet light and in the presence of hydroxyl radicals and provides a practical use of qPCR to detect MS2 concentration following advanced oxidation relative to traditional plaque methodology; however qPCR detection overestimates the true number of infective virus.

  5. Investigation of enteric adenovirus and poliovirus removal by coagulation processes and suitability of bacteriophages MS2 and φX174 as surrogates for those viruses.

    PubMed

    Shirasaki, N; Matsushita, T; Matsui, Y; Marubayashi, T; Murai, K

    2016-09-01

    We evaluated the removal of enteric adenovirus (AdV) type 40 and poliovirus (PV) type 1 by coagulation, using water samples from 13 water sources for drinking water treatment plants in Japan. The behaviors of two widely accepted enteric virus surrogates, bacteriophages MS2 and φX174, were compared with the behaviors of AdV and PV. Coagulation with polyaluminum chloride (PACl, basicity 1.5) removed AdV and PV from virus-spiked source waters: the infectious AdV and PV removal ratios evaluated by means of a plaque-forming-unit method were 0.1-1.4-log10 and 0.5-2.4-log10, respectively. A nonsulfated high-basicity PACl (basicity 2.1) removed infectious AdV and PV more efficiently than did other commercially available PACls (basicity 1.5-2.1), alum, and ferric chloride. The MS2 removal ratios tended to be larger than those of AdV and PV, partly because of differences in the hydrophobicities of the virus particles and the sensitivity of the virus to the virucidal activity of PACl; the differences in removal ratios were not due to differences in the surface charges of the virus particles. MS2, which was more hydrophobic than the other viruses, was inactivated during coagulation with PACl. Therefore, MS2 does not appear to be an appropriate surrogate for AdV and PV during coagulation. In contrast, because φX174, like AdV and PV, was not inactivated during coagulation, and because the hydrophobicity of φX174 was similar to or somewhat lower than the hydrophobicities of AdV and PV, the φX174 removal ratios tended to be similar to or somewhat smaller than those of the enteric viruses. Therefore, φX174 is a potential conservative surrogate for AdV and PV during coagulation. In summary, the surface hydrophobicity of virus particles and the sensitivity of the virus to the virucidal activity of the coagulant are probably important determinants of the efficiency of virus removal during coagulation.

  6. Genotyping male-specific RNA coliphages by hybridization with oligonucleotide probes.

    PubMed Central

    Hsu, F C; Shieh, Y S; van Duin, J; Beekwilder, M J; Sobsey, M D

    1995-01-01

    F-specific (F+) RNA coliphages are prevalent in sewage and other fecal wastes of humans and animals. There are four antigenically distinct serogroups of F+ RNA coliphages, and those predominating in humans (groups II and III) differ from those predominating in animals (groups I and IV). Hence, it may be possible to distinguish between human and animal wastes by serotyping F+ RNA coliphage isolates. Because serotyping is laborious and requires scarce antiserum reagents, we investigated genotyping using synthetic oligonucleotide probes as an alternative approach to distinguishing the four groups of F+ RNA coliphages. Oligoprobes I, II, III, IV, A, and B were selected to detect group I, II, III, IV, I plus II, and III plus IV phages, respectively. Methods for phage transfer from zones of lysis on a host cell lawn to candidate membrane filters and fixation of genomic nucleic acid on the membranes were optimized. The oligoprobes, which were end labeled with digoxigenin, were applied in DNA-RNA hybridization, and hybrids were observed by colorimetric, immunoenzymatic detection. Of 203 isolates of F+ RNA coliphages from environmental samples of water, wastes, and shellfish, 99.5 and 96.6% could be classified into each group by serotyping and genotyping, respectively. Probes A and B correctly identified 100% of the isolates. On the basis of these results, this method for genotyping F+ RNA coliphages appears to be practical and reliable for typing isolates in field samples. PMID:8526509

  7. [The experimental evaluation of the possibility of the penetration of enteric viruses from the surface into the pulp of contaminated fruits and vegetables].

    PubMed

    Sergevnin, V I; Ladeyshchikova, Yu I; Sarmometov, E V; Podgorunskaya, I L; Kudrevatykh, E V

    2014-01-01

    According to the results of complex microbiological examination of samples of vegetables, fruits and grapes there was established significant contamination of them with opportunistic bacteria, antigens of intestinal viruses and cysts of intestinal Protozoa, that confirms the epidemiological role of these products as factors in transmission of acute intestinal infections. There was revealed ribonucleic acid of enteric viruses in experimentally infected pulp from the surface of tomatoes and apples, that indicates to the possibility of penetration of these pathogens into the fruits and vegetables through intact (having no visible damages) surface.

  8. Virulence Factors and Stability of Coliphages Specific to Escherichia coli O157:H7 and to Various E. coli Infection.

    PubMed

    Kim, Eun-Jin; Chang, Hyun-Joo; Kwak, Soojin; Park, Jong-Hyun

    2016-12-28

    Characteristics of E. coli O157:H7-specific infection bacteriophages (O157 coliphages) and broad-host-range bacteriophages for other E. coli serotypes (broad-host coliphages) were compared. The burst sizes of the two groups ranged from 40 to 176 PFU/infected cell. Distributions of the virulence factors stx1, stx2, ehxA, and saa between the two groups were not differentiated. Broad-host-range coliphages showed lower stability at 70°C, in relation to O157 coliphages. However, O157 coliphages showed high acid and ethanol tolerance by reduction of only 22% and 11% phages, respectively, under pH 3 and 70% ethanol for 1 h exposure. Therefore, these results revealed that the O157 coliphages might be more stable under harsh environments, which might explain their effective infection of the acid-tolerant E. coli O157:H7.

  9. Virus and Bacteria Removal from Wastewater by Rapid Infiltration Through Soil

    PubMed Central

    Schaub, Stephen A.; Sorber, Charles A.

    1977-01-01

    A rapid infiltration land wastewater application site, composed of unconsolidated silty sand and gravel, which has been in continuous operation for over 30 years was examined for the accumulation and/or migration of a tracer virus (coliphage f2), indigenous enteroviruses, and enteric indicator bacteria in the soils and underlying groundwater. Tracer f2 penetrated into groundwater together with the front of percolating primary effluent and was not observed to concentrate on the upper soil layers. The tracer virus concentration in a 60-foot (about 18.3-m)-deep observation well directly beneath the wastewater application area began to increase within 48 h after application to the soil. The tracer level in this well stabilized after 72 h at a level of approximately 47% of the average applied concentration. Indigenous enteroviruses and tracer f2 were sporadically detected in the groundwater at horizontal distances of 600 feet (about 183 m) from the application zone. Laboratory soil adsorption studies confirmed the poor virus adsorption observed at the site. This was especially true on surface soils when contained in wastewater. Enteric indicator bacteria were readily concentrated on the soil surface by filtration on the soil surface mat. However, during tracer f2 virus tests, comparison studies with fecal Streptococcus revealed that bacteria capable of penetrating the surface were able to migrate into the groundwater. They were detected at the same locations as tracer and enteric viruses. PMID:16345215

  10. Enhanced enteric virus detection in sporadic gastroenteritis using a multi-target real-time PCR panel: a one-year study.

    PubMed

    Pang, Xiaoli L; Preiksaitis, Jutta K; Lee, Bonita E

    2014-09-01

    Viral gastroenteritis causes significant mortality and morbidity worldwide. Identifying the etiology of viral gastroenteritis is a challenge as most enteric viruses (EVs) are non-culturable. This study is to develop an EV testing panel using real-time PCR (EVPrtPCR) to simultaneously detect rotavirus, norovirus, sapovirus, astrovirus, and enteric adenovirus in stool samples. EVPrtPCR using universal amplification conditions was run in a single instrument run. EVPrtPCR was used to test 2,486 sporadic gastroenteritis samples submitted for EV testing using electron microscopy (EM) between July 2008 and July 2009. Retesting spiked negative stool samples and Salmon DNA as internal control were used to evaluate inhibition. EVPrtPCR detected viruses in significantly more samples: 748 (34%) as compared to 94 (3.8%) by EM. EM did not detect any norovirus, sapovirus, and mixed infection, and detected only 39% of rotavirus and 38.2% of enteric adenovirus positive samples. Four samples that tested positive for rotavirus and two for adenovirus and for small-round-structured viruses by EM were negative by EVPrtPCR. Norovirus was the most common virus detected (17.6%) with 92.4% as genogroup II, followed by rotavirus (6.8%), sapovirus (4.2%), astrovirus (2.0%), and enteric adenovirus (1.4%) with 9% samples positive for mixed infection. Overall, EV identification followed a U-shaped age distribution; positive samples were more common in children ≤5 years old and adults >60 years old. Norovirus, sapovirus and astrovirus showed winter predominance and rotavirus peaked in the spring. No inhibition was observed. Molecular technology significantly enhanced the identification of EV causing sporadic gastroenteritis in Alberta.

  11. Bioaerosol Dispersion in Relation with Wastewater Reuse for Crop Irrigation. (Experiments to understand emission processes with enteric virus and risks modeling).

    NASA Astrophysics Data System (ADS)

    Courault, D.; Girardin, G.; Capowiez, L.; Albert, I.; Krawczyk, C.; Ball, C.; Salemkour, A.; Bon, F.; Perelle, S.; Fraisse, A.; Renault, P.; Amato, P.

    2014-12-01

    Bio-aerosols consist of microorganisms or biological particles that become airborne depending on various environmental factors. Recycling of wastewater (WW) for irrigation can cope with the issues of water availability, and it can also threaten Human health if the pathogens present in WW are aerosolized during sprinkling irrigation or wind events. Among the variety of micro-organisms found in WW, enteric viruses can reach significant amounts, because most of the WW treatments are not completely efficient. These viruses are particularly resistant in the environment and responsibles of numerous digestive diseases (gastroenteritis, hepatitis…). Few quantities are enough to make people sick (102 pfu). Several knowledge gaps exist to better estimate the risks for Human exposure, and on the virus transfer from irrigation up to the respiratory track. A research program funded by the French government (INSU), gathering multi disciplinary teams aims at better understanding virus fate in air and health risks from WW reuse. Experiments were conducted under controlled conditions in order to prioritize the main factors impacting virus aerosolization. Irrigation with water loaded with safe surrogates of Hepatitis A virus (Murine Mengo Virus) was applied on small plots covered by channels in which the wind speed varied. Various situations have been investigated (wet/dry surfaces, strong/mild winds, clean/waste water). Air samples were collected above plots using impingers and filters after irrigation for several days. Viruses were quantified by RT-qPCR. The results showed that impingers were more efficient in airborne virus recovering than filters. Among environmental factors, Wind speed was the main factor explaining virus concentration in the air after irrigation. A Quantitative Microbial Risk Assessment approach has been chosen to assess the health effects on the population. The main modeling steps will be presented, including a simplified dispersion model coupled with a

  12. Response of mink, skunk, red fox and raccoon to inoculation with mink virus enteritis, feline panleukopenia and canine parvovirus and prevalence of antibody to parvovirus in wild carnivores in Ontario.

    PubMed Central

    Barker, I K; Povey, R C; Voigt, D R

    1983-01-01

    Mink virus enteritis, feline panleukopenia and canine parvovirus-2 were inoculated separately into groups of raccoon, mink, red fox and striped skunk. Raccoons were highly susceptible to mink virus enteritis and feline panleukopenia, with animals developing clinical illness, and several dying within six to ten days of inoculation with lesions typical of parvovirus infection. Both viruses were shed in high titre in the feces of infected raccoons, and high antibody titres were stimulated. Raccoons inoculated with canine parvovirus-2 showed no signs; shedding of virus was sporadic though moderate titres of antibody developed. Mink inoculated with mink virus enteritis and feline panleukopenia developed signs and lesions of early parvovirus infection. No signs or significant lesions followed canine parvovirus-2 inoculation. Shedding of virus was heavy (mink virus enteritis) or sporadic (feline panleukopenia and canine parvovirus-2), though good serological responses were elicited to all three viruses. Red fox showed no signs of infection, shed all three viruses only sporadically, and the serological response was strong only to feline panleukopenia. Skunks developed low antibody titres, but no signs, and did not shed virus. Antibody to parvovirus was found in 79.2% of 144 wild red foxes; 22.3% of 112 wild raccoons; 1.3% of 157 wild skunks and 6/7 coyotes in southern Ontario. The likely significance of these viruses to wild and captive individuals and populations of these carnivores is discussed. Images Fig. 1. Fig. 2. Fig. 3. Fig. 4. Fig. 5. Fig. 6. PMID:6309349

  13. Occurrence of water-borne enteric viruses in two settlements based in Eastern Chad: analysis of hepatitis E virus, hepatitis A virus and human adenovirus in water sources.

    PubMed

    Guerrero-Latorre, Laura; Carratala, Anna; Rodriguez-Manzano, Jesus; Calgua, Byron; Hundesa, Ayalkibet; Girones, Rosina

    2011-09-01

    Hepatitis E virus (HEV) is a common cause of water-borne acute hepatitis in areas with poor sanitation. In 2004 an outbreak of HEV infection affected around 2,000 people in Eastern Chad (Dar Sila). This paper describes the decrease in the incidence of acute jaundice syndrome (AJS) from 2004 until 2009 when a mean incidence of 0.48 cases/1,000 people/year was recorded in the region. Outbreaks of AJS were identified in some of the camps in 2007 and 2008. Moreover, water samples from drinking water sources were screened for human adenoviruses considered as viral indicators and for hepatitis A virus and HEV. Screening of faecal samples from donkeys for HEV gave negative results. Some of the samples were also analysed for faecal coliforms showing values before disinfection treatment between 3 and >50 colony forming units per 100 mL. All water samples tested were negative for HEV and HAV; however, the presence of low levels of human adenoviruses in 4 out of 16 samples analysed indicates possible human faecal contamination of groundwater. Consequently, breakdowns in the treatment of drinking water and/or increased excretion of hepatitis viruses, which could be related to the arrival of a new population, could spread future outbreaks through drinking water.

  14. Organic Wastewater Compounds, Pharmaceuticals, andColiphage in Ground Water Receiving Discharge from OnsiteWastewater Treatment Systems near La Pine, Oregon:Occurrence and Implications for Transport

    USGS Publications Warehouse

    Hinkle, Stephen J.; Weick, Rodney J.; Johnson, Jill M.; Cahill, Jeffery D.; Smith, Steven G.; Rich, Barbara J.

    2005-01-01

    The occurrence of organic wastewater compounds (components of 'personal care products' and other common household chemicals), pharmaceuticals (human prescription and nonprescription medical drugs), and coliphage (viruses that infect coliform bacteria, and found in high concentrations in municipal wastewater) in onsite wastewater (septic tank effluent) and in a shallow, unconfined, sandy aquifer that serves as the primary source of drinking water for most residents near La Pine, Oregon, was documented. Samples from two types of observation networks provided basic occurrence data for onsite wastewater and downgradient ground water. One observation network was a group of 28 traditional and innovative (advanced treatment) onsite wastewater treatment systems and associated downgradient drainfield monitoring wells, referred to as the 'innovative systems network'. The drainfield monitoring wells were located adjacent to or under onsite wastewater treatment system drainfield lines. Another observation network, termed the 'transect network', consisted of 31 wells distributed among three transects of temporary, stainless-steel-screened, direct-push monitoring wells installed along three plumes of onsite wastewater. The transect network, by virtue of its design, also provided a basis for increased understanding of the transport of analytes in natural systems. Coliphage were frequently detected in onsite wastewater. Coliphage concentrations in onsite wastewater were highly variable, ranging from less than 1 to 3,000,000 plaque forming units per 100 milliliters. Coliphage were occasionally detected (eight occurrences) at low concentrations in samples from wells located downgradient from onsite wastewater treatment system drainfield lines. However, coliphage concentrations were below method detection limits in replicate or repeat samples collected from the eight sites. The consistent absence of coliphage detections in the replicate or repeat samples is interpreted to indicate

  15. Genetic, Structural, and Phenotypic Properties of MS2 Coliphage with Resistance to ClO2 Disinfection.

    PubMed

    Zhong, Qingxia; Carratalà, Anna; Nazarov, Sergey; Guerrero-Ferreira, Ricardo Cesar; Piccinini, Laura; Bachmann, Virginie; Leiman, Petr G; Kohn, Tamar

    2016-12-20

    Common water disinfectants like chlorine have been reported to select for resistant viruses, yet little attention has been devoted to characterizing disinfection resistance. Here, we investigated the resistance of MS2 coliphage to inactivation by chlorine dioxide (ClO2). ClO2 inactivates MS2 by degrading its structural proteins, thereby disrupting the ability of MS2 to attach to and infect its host. ClO2-resistant virus populations emerged not only after repeated cycles of ClO2 disinfection followed by regrowth but also after dilution-regrowth cycles in the absence of ClO2. The resistant populations exhibited several fixed mutations which caused the substitution of ClO2-labile by ClO2-stable amino acids. On a phenotypic level, these mutations resulted in a more stable host binding during inactivation compared to the wild-type, thus resulting in a greater ability to maintain infectivity. This conclusion was supported by cryo-electron microscopy reconstruction of the virus particle, which demonstrated that most structural modification occurred in the putative A protein, an important binding factor. Resistance was specific to the inactivation mechanism of ClO2 and did not result in significant cross-resistance to genome-damaging disinfectants. Overall, our data indicate that resistant viruses may emerge even in the absence of ClO2 pressure but that they can be inactivated by other common disinfectants.

  16. Detection of somatic phages, infectious enteroviruses and enterovirus genomes as indicators of human enteric viral pollution in surface water.

    PubMed

    Hot, D; Legeay, O; Jacques, J; Gantzer, C; Caudrelier, Y; Guyard, K; Lange, M; Andréoletti, L

    2003-11-01

    In the present study, we aimed to determine whether the concentrations of somatic coliphages, infectious enteroviruses or the detection of enterovirus genomes were associated with the detection of human pathogenic viruses in surface water. Four French rivers were sampled monthly or semimonthly for the quantitative detection of somatic coliphages, infectious enteroviruses and the qualitative RT-PCR detection of enterovirus, hepatitis A virus, Norwalk I viruses, Norwalk II viruses, astrovirus and rotavirus genomes over 12 months. All the 68 water samples tested were positive for the quantitative detection of somatic coliphages (range of concentrations: 4 x 10(2) to 1.6 x10(5) FUl(-1)). Infectious enteroviruses were isolated by a cell culture system in only two (3%) of the 68 concentrated water samples tested, whereas enterovirus genomes were detectable in 60 (88%) of the same samples. A positive RT-PCR detection of the genome of hepatitis A virus, Norwalk-like virus genogroup II, astrovirus, rotavirus and Norwalk-like virus genogroup I was demonstrated, respectively, in 1.5% (1/68), 1.5% (1/68), 3% (2/68), 0% and 0% of the 68 concentrated water samples tested. All of these four water samples were positive for the detection of enterovirus genomes, whereas only one of them was positive for the isolation of enteroviruses on cell culture. Moreover, the genomic detection of human pathogenic viruses appeared not to be statistically associated with the concentration levels of somatic coliphages in the 68 concentrated water samples tested (Wilcoxon rank test; P=0.14). Taken together, our findings indicate that the quantitative detection of somatic coliphages and the isolation of enteroviruses on cell culture are not suitable parameters for the control of the viral contamination in surface water, whereas the detection of enterovirus genomes may be useful for predicting the presence of waterborne viruses.

  17. Transport of Bromide, Simazine, and MS-2 Coliphage in a Lysimeter Containing Undisturbed, Unsaturated Soil

    NASA Astrophysics Data System (ADS)

    Poletika, Nicholas N.; Jury, William A.; Yates, Marylynn V.

    1995-04-01

    The effect of rate-limited adsorption on transport of environmental contaminants is difficult to characterize at the field scale. This study investigated transport, during unsaturated water flow, of pulse inputs of bromide, simazine (2-chloro-4,6- bis(ethylamino)-s-triazine), and MS-2 coliphage in a field lysimeter (0.8 m × 0.8 m square) containing undisturbed Tujunga loamy sand (mixed, thermic, Typic Xeropsamment). Sixty-four fiberglass wick soil solution samplers collected drainage fractions from the exit surface (30 cm depth) following daily 2-cm water inputs applied at 0.5 cm h-1. After 19.7 cm of cumulative drainage, the soil above 10 of the 64 locations was sampled to determine final depth distributions of simazine and virus. Most of the bromide was leached from the transport volume, while the sorbing pesticide and virus remained in the soil. Variance analysis indicated that local dispersion processes contributed more to the observed bromide spreading than did differences in local water velocities. A linear, first-order, kinetic adsorption submodel was incorporated into a generalized linear transport model relating the bromide flux concentrations to the simazine and virus final resident concentrations. Least squares fitting showed that area-averaged bromide transport could be described reasonably well by the two-parameter convection-dispersion model (CDM), although the mobile-immobile water model provided a slightly better representation of effluent tailing. The CDM parameters fitted to the bromide data were then held constant while the two parameters of the adsorption submodel were varied to fit the pesticide soil concentrations at the end of the experiment at 10 days. A good fit was obtained for simazine, and the fitted value 0.54 d-1 of the rate coefficient was in the range characterizing nonequilibrium adsorption. A batch adsorption/desorption experiment produced Freundlich isotherms describing nonlinear adsorption (exponent m = 0.85) and hysteresis in

  18. Etiological study of enteric viruses and the genetic diversity of norovirus, sapovirus, adenovirus, and astrovirus in children with diarrhea in Chongqing, China.

    PubMed

    Ren, Zengzhi; Kong, Yuanmei; Wang, Jun; Wang, Qianqian; Huang, Ailong; Xu, Hongmei

    2013-09-03

    Enteric viruses are a major cause of diarrhea in children, especially those <5 years old. Identifying the viral agents is critical to the development of effective preventive measures. This study aimed to determine the prevalence of common enteric viruses in children <5 years old presented with diarrhea to the Children's Hospital of Chongqing Medical University. Five hundred fecal samples were collected between August and November 2010 from children <5 years of age who presented with acute diarrhea at the Children's Hospital of Chongqing Medical University. All samples were tested for rotaviruses A, B, and C, noroviruses GI and GII, adenovirus, sapovirus, and astrovirus using enzyme-linked immunosorbent assay, reverse transcription-polymerase chain reaction (RT-PCR), or PCR. Partial sequences of norovirus, sapovirus, adenovirus, and astrovirus were phylogenetically analyzed to determine the genotype. Enteric viruses were detected in 302 of the 500 children who presented with acute diarrhea (277/477; 58.07%) and persistent diarrhea (5/23; 21.74%). In 277 samples from children with acute diarrhea in whom at least one viral agent was found, rotavirus A was the most frequent virus identified (132 cases; 27.67%), followed by norovirus GII in 130 cases (27.25%), adenovirus in 30 cases (6.29%), sapovirus in 9 cases (1.89%) and astrovirus in one case (0.21%). Twenty-two of the norovirus GII-positive cases were randomly selected for genotyping. GII/4 was the predominant strain, followed by GII/6, GII/2, GII/3, and GII/7. Sapovirus was classified into four genotypes: GI/1 was predominant, followed by GI/2, GII/1, and GIV. The predominant adenovirus was type 41. Mixed infections were found in 25 cases, all of which presented with acute diarrhea (25/477; 5.24%). Viruses were positive in 5/23 (21.74%) cases with persistent diarrhea. Neither rotavirus B, rotavirus C, nor norovirus GI were found in any of the samples. Enteric viruses are a major cause of diarrhea in children <5

  19. Metagenomics and the poultry gut: using the next generation of nucleic acid sequencing to identify enteric viruses

    USDA-ARS?s Scientific Manuscript database

    Enteric disease syndromes such as Poult Enteritis Complex (PEC) in young turkeys and Runting-Stunting Syndrome (RSS) in chickens are a continual economic burden for poultry producers. The only reliable method to reproduce these syndromes in experimental birds is oral inoculation with crude preparat...

  20. Optimization of a Reusable Hollow-Fiber Ultrafilter for Simultaneous Concentration of Enteric Bacteria, Protozoa, and Viruses from Water

    PubMed Central

    Morales-Morales, Hugo A.; Vidal, Guadalupe; Olszewski, John; Rock, Channah M.; Dasgupta, Debanjana; Oshima, Kevin H.; Smith, Geoffrey B.

    2003-01-01

    The detection and identification of pathogens from water samples remain challenging due to variations in recovery rates and the cost of procedures. Ultrafiltration offers the possibility to concentrate viral, bacterial, and protozoan organisms in a single process by using size-exclusion-based filtration. In this study, two hollow-fiber ultrafilters with 50,000-molecular-weight cutoffs were evaluated to concentrate microorganisms from 2- and 10-liter water samples. When known quantities (105 to 106 CFU/liter) of two species of enteric bacteria were introduced and concentrated from 2 liters of sterile water, the addition of 0.1% Tween 80 increased Escherichia coli strain K-12 recoveries from 70 to 84% and Salmonella enterica serovar Enteritidis recoveries from 36 to 72%. An E. coli antibiotic-resistant strain, XL1-Blue, was recovered at a level (87%) similar to that for strain K-12 (96%) from 10 liters of sterile water. When E. coli XL1-Blue was introduced into 10 liters of nonsterile Rio Grande water with higher turbidity levels (23 to 29 nephelometric turbidity units) at two inoculum levels (9 × 105 and 2.4 × 103 per liter), the recovery efficiencies were 89 and 92%, respectively. The simultaneous addition of E. coli XL1-Blue (9 × 105 CFU/liter), Cryptosporidium parvum oocysts (10 oocysts/liter), phage T1 (105 PFU/liter), and phage PP7 (105 PFU/liter) to 10 liters of Rio Grande surface water resulted in mean recoveries of 96, 54, 59, and 46%, respectively. Using a variety of surface waters from around the United States, we obtained recovery efficiencies for bacteria and viruses that were similar to those observed with the Rio Grande samples, but recovery of Cryptosporidium oocysts was decreased, averaging 32% (the site of collection of these samples had previously been identified as problematic for oocyst recovery). Results indicate that the use of ultrafiltration for simultaneous recovery of bacterial, viral, and protozoan pathogens from variable surface waters

  1. Immunohistochemical detection and localization of new type gosling viral enteritis virus in paraformaldehyde-fixed paraffin-embedded tissue.

    PubMed

    Chen, Shun; Cheng, Anchun; Wang, Mingshu; Zhu, Dekang; Luo, Qihui; Liu, Fei; Chen, Xiaoyue

    2009-08-15

    To determine the distribution and localization of new type gosling viral enteritis virus (NGVEV) in paraformaldehyde-fixed paraffin-embedded tissues of experimentally infected goslings, for the first time, an immunohistochemical (IHC) staining method was reported. Anti-NGVEV polyclonal serum was obtained from the rabbits immunized with purified NGVEV antigen, which was extracted by caprylic-ammonium sulphate method and purified through High-Q columns anion exchange chromatography. Three-day-old NGVEV-free goslings were orally inoculated with NGVEV-CN strain suspension as infection group and phosphate buffered saline solution (PBS) as control group, respectively. The tissues were collected at sequential time points between 0.5 and 720h post inoculation (PI), and prepared for IHC staining and ultra-structural observation. The positive immunoreactivity could be readily detected in the lymphoid and gastrointestinal organs of infected goslings as early as 48 h PI, in the liver, kidney, pancreas and myocardium from 72 h, and in the cerebrum and cerebellum from 96 h, while it was hardly detected in the respiratory organs at any time. The positive staining reaction could be detected in NGVEV-infected goslings until 600 h PI, and no positive staining cell could be observed in the controls. The highest levels of viral antigen were found in the bursa of Fabricius (BF), thymus, proventriculus, gizzard and intestine tract, moreover, the liver, kidney, spleen, myocardium and pancreas were intensively and widely stained. The target cells had a ubiquitous distribution, especially included the epithelial cells, endothelial cells, superficial and crypt mucosal cells, glandular cells, fibrocytes, macrophages and lymphocytes, which served as the principal sites for antigen localization. The ultra-structural observation by transmission electron microscope (TEM) further indicated that NGVEV particles could be widely detected in the lymphoid and digestive organs of infected goslings from

  2. Coliphage HK022 Nun protein inhibits RNA polymerase translocation

    PubMed Central

    Vitiello, Christal L.; Kireeva, Maria L.; Lubkowska, Lucyna; Kashlev, Mikhail; Gottesman, Max

    2014-01-01

    The Nun protein of coliphage HK022 arrests RNA polymerase (RNAP) in vivo and in vitro at pause sites distal to phage λ N-Utilization (nut) site RNA sequences. We tested the activity of Nun on ternary elongation complexes (TECs) assembled with templates lacking the λ nut sequence. We report that Nun stabilizes both translocation states of RNAP by restricting lateral movement of TEC along the DNA register. When Nun stabilized TEC in a pretranslocated register, immediately after NMP incorporation, it prevented binding of the next NTP and stimulated pyrophosphorolysis of the nascent transcript. In contrast, stabilization of TEC by Nun in a posttranslocated register allowed NTP binding and nucleotidyl transfer but inhibited pyrophosphorolysis and the next round of forward translocation. Nun binding to and action on the TEC requires a 9-bp RNA–DNA hybrid. We observed a Nun-dependent toe print upstream to the TEC. In addition, mutations in the RNAP β′ subunit near the upstream end of the transcription bubble suppress Nun binding and arrest. These results suggest that Nun interacts with RNAP near the 5′ edge of the RNA–DNA hybrid. By stabilizing translocation states through restriction of TEC lateral mobility, Nun represents a novel class of transcription arrest factors. PMID:24853501

  3. Evaluation of public health risks at recreational beaches in Lake Michigan via detection of enteric viruses and a human-specific bacteriological marker.

    PubMed

    Wong, Mark; Kumar, Lekha; Jenkins, Tracie M; Xagoraraki, Irene; Phanikumar, Mantha S; Rose, Joan B

    2009-03-01

    Each year the National Resource Defense Council addresses the quality of US beaches by routine bacterial indicators. In the Great Lakes region the indicator used is Escherichia coli and for 2007 more beaches were closed and impacted than ever before. In this study, water quality was addressed at two Lake Michigan Beaches over the 2004 swimming season by monitoring infectious enteric viruses by cell culture and integrated PCR and for a human sewage marker based on the Enterococcal Surface Protein (esp). Our goals for this study were to 1) examine the occurrence and variety of human enteric viruses present during peak usage of the beaches 2) determine key variables for development of predictive models for viruses; and 3) use quantitative risk assessment to estimate the potential health impact. Our results demonstrate that for both beaches predictive models of virus pollution were best described utilizing physical parameters like wind speed, wind direction and water temperature. The esp marker was not predictive of human viruses. The daily risk of acquiring a viral infection at either of the beaches ranged from 0.2 to 2.4/1000 swimmers using a quantitative microbial risk assessment model, with three swims during a day at the beach for children and over the season, the risk was 9-15/1000 swimmers using adenovirus as the model. Lake Michigan recreational beaches are being adversely impacted by human fecal pollution. Monitoring for the traditional indicators of water quality does not address viral risks and models can be developed and potentially used as real-time water quality forecasting tools.

  4. Real-time PCR-based infectivity assay for the titration of turkey hemorrhagic enteritis virus, an adenovirus, in live vaccines.

    PubMed

    Mahsoub, Hassan M; Evans, Nicholas P; Beach, Nathan M; Yuan, Lijuan; Zimmerman, Kurt; Pierson, Frank W

    2017-01-01

    The current in vitro titration method for turkey hemorrhagic enteritis virus (THEV) is the end-point dilution assay (EPD) in suspension cell culture (CC). This assay is subjective and results in high variability among vaccine lots. In this study, a new in vitro infectivity method combining a SYBR Green I-based qPCR assay and CC was developed for titration of live hemorrhagic enteritis (HE) CC vaccines. The qPCR was used to determine the virus genome copy number (vGCN) of the internalized virus particles following inoculation of susceptible RP19 cells with 1 vaccine label dose. The measured vGCN represents the number of infectious viral particles (IVP) per 1 dose. This method was used to compare 9 vaccine lots from 3 companies in the United States. Significant lot-to-lot variations within the same company and among the various companies were found in genomic and qPCR-based infectious titer per label dose. A positive linear relationship was found between qPCR infectious titer and genomic titer. Further, considerable variations in CCID50 titers were found among tested vaccine lots, indicating the high variability of the current titration methods. The new method provides an alternative to classical titration assays and can help reduce variation among HE vaccine products.

  5. Heparan Sulfate-Binding Foot-and-Mouth Disease Virus Enters Cells Via Caveolae-Mediated Endocytosis

    USDA-ARS?s Scientific Manuscript database

    Foot-and-mouth disease virus (FMDV) utilizes different cell surface macromolecules to facilitate infection of cultured cells. Virus which is virulent for susceptible animals infects cells via four members of the alpha V subclass of cellular integrins. In contrast, tissue culture adaptation of some...

  6. Emergence of a New Lineage of Dengue Virus Type 2 Identified in Travelers Entering Western Australia from Indonesia, 2010-2012

    PubMed Central

    Ernst, Timo; McCarthy, Suzi; Chidlow, Glenys; Luang-Suarkia, Dagwin; Holmes, Edward C.; Smith, David W.; Imrie, Allison

    2015-01-01

    Dengue virus (DENV) transmission is ubiquitous throughout the tropics. More than 70% of the current global dengue disease burden is borne by people who live in the Asia-Pacific region. We sequenced the E gene of DENV isolated from travellers entering Western Australia between 2010–2012, most of whom visited Indonesia, and identified a diverse array of DENV1-4, including multiple co-circulating viral lineages. Most viruses were closely related to lineages known to have circulated in Indonesia for some time, indicating that this geographic region serves as a major hub for dengue genetic diversity. Most notably, we identified a new lineage of DENV-2 (Cosmopolitan genotype) that emerged in Bali in 2011–2012. The spread of this lineage should clearly be monitored. Surveillance of symptomatic returned travellers provides important and timely information on circulating DENV serotypes and genotypes, and can reveal the herald wave of dengue and other emerging infectious diseases. PMID:25635775

  7. Comparison of RNA extraction kits for the purification and detection of an enteric virus surrogate on green onions via RT-PCR.

    PubMed

    Xu, Ruoyang; Shieh, Y Carol; Stewart, Diana S

    2017-01-01

    Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) offers a rapid and sensitive molecular method for detection of enteric viruses. Unfortunately, these assays are often hampered by the low virus titre found in foods and PCR inhibition due to matrix carryover during RNA extraction. Four commercial RNA extraction kits (Qiagen's QIAamp Viral RNA Mini and UltraSens Virus kits, MoBio UltraClean Tissue & Cells RNA Isolation kit, and Ambion MagMAX Viral RNA Isolation kit) were evaluated for their ability to extract and purify MS2 bacteriophage RNA, an enteric virus surrogate, from inoculated green onions, a food which has been associated with viral gastroenteritis outbreaks. Inoculated green onion wash concentrates and green onion pieces with and without Qiagen QIAshredder homogenization were assayed in the kit comparison. MS2 detection and PCR inhibition were evaluated using a duplex real-time RT-PCR for MS2 and an exogenous internal amplification control (IAC) assay. Without homogenization, MS2 inoculated at 40pfu/g was detected in at least 4 lots of green onion wash concentrates using the silica-membrane spin-column kits. Inhibition was a factor for the magnetic silica-based MagMAX kit, which resulted in detection of MS2 in 1 of 5. Addition of QIAshredder homogenization prior to extraction did not adversely affect the silica-membrane kit results but improved the MS2 detection by MagMAX to 5 of 5 lots. Use of a 1:10 dilution of primary RNA extracts also improved detection. The QIAamp Viral RNA Mini and MagMAX kits were further compared for detection of MS2 from green onion pieces inoculated at 20 and 5pfu/g. Using homogenization, the MagMAX kit detected 20pfu/g in only 1 of 2 green onion lots, whereas the QIAamp Viral RNA kit detected 2 of 2 lots at 5 pfu/g without homogenization.

  8. Molecular assays for targeting human and bovine enteric viruses in coastal waters and their application for library-independent source tracking

    USGS Publications Warehouse

    Fong, T.-T.; Griffin, Dale W.; Lipp, E.K.

    2005-01-01

    Rapid population growth and urban development along waterways and coastal areas have led to decreasing water quality. To examine the effects of upstream anthropogenic activities on microbiological water quality, methods for source-specific testing are required. In this study, molecular assays targeting human enteroviruses (HEV), bovine enteroviruses (BEV), and human adenoviruses (HAdV) were developed and used to identify major sources of fecal contamination in the lower Altamaha River, Georgia. Two-liter grab samples were collected monthly from five tidally influenced stations between July and December 2002. Samples were analyzed by reverse transcription- and nested-PCR. PCR results were confirmed by dot blot hybridization. Eleven and 17 of the 30 surface water samples tested positive for HAdV and HEV, respectively. Two-thirds of the samples tested positive for either HEV or HAdV, and the viruses occurred simultaneously in 26% of samples. BEV were detected in 11 of 30 surface water samples. Binary logistic regression analysis showed that the presence of both human and bovine enteric viruses was not significantly related to either fecal coliform or total coliform levels. The presence of these viruses was directly related to dissolved oxygen and streamflow but inversely related to water temperature, rainfall in the 30 days preceding sampling, and chlorophyll-?? concentrations. The stringent host specificity of enteric viruses makes them good library-independent indicators for identification of water pollution sources. Viral pathogen detection by PCR is a highly sensitive and easy-to-use tool for rapid assessment of water quality and fecal contamination when public health risk characterization is not necessary. Copyright ?? 2005, American Society for Microbiology. All Rights Reserved.

  9. Molecular Assays for Targeting Human and Bovine Enteric Viruses in Coastal Waters and Their Application for Library-Independent Source Tracking

    PubMed Central

    Fong, Theng-Theng; Griffin, Dale W.; Lipp, Erin K.

    2005-01-01

    Rapid population growth and urban development along waterways and coastal areas have led to decreasing water quality. To examine the effects of upstream anthropogenic activities on microbiological water quality, methods for source-specific testing are required. In this study, molecular assays targeting human enteroviruses (HEV), bovine enteroviruses (BEV), and human adenoviruses (HAdV) were developed and used to identify major sources of fecal contamination in the lower Altamaha River, Georgia. Two-liter grab samples were collected monthly from five tidally influenced stations between July and December 2002. Samples were analyzed by reverse transcription- and nested-PCR. PCR results were confirmed by dot blot hybridization. Eleven and 17 of the 30 surface water samples tested positive for HAdV and HEV, respectively. Two-thirds of the samples tested positive for either HEV or HAdV, and the viruses occurred simultaneously in 26% of samples. BEV were detected in 11 of 30 surface water samples. Binary logistic regression analysis showed that the presence of both human and bovine enteric viruses was not significantly related to either fecal coliform or total coliform levels. The presence of these viruses was directly related to dissolved oxygen and streamflow but inversely related to water temperature, rainfall in the 30 days preceding sampling, and chlorophyll-a concentrations. The stringent host specificity of enteric viruses makes them good library-independent indicators for identification of water pollution sources. Viral pathogen detection by PCR is a highly sensitive and easy-to-use tool for rapid assessment of water quality and fecal contamination when public health risk characterization is not necessary. PMID:15812040

  10. Field-based evaluation of a male-specific (F+) RNA coliphage concentration method

    EPA Science Inventory

    Fecal contamination of water poses a significant risk to public health due to the potential presence of pathogens, including enteric viruses. Thus, sensitive, reliable and easy to use methods for the detection of microorganisms are needed to evaluate water quality. In this stud...

  11. Field-based evaluation of a male-specific (F+) RNA coliphage concentration method

    EPA Science Inventory

    Fecal contamination of water poses a significant risk to public health due to the potential presence of pathogens, including enteric viruses. Thus, sensitive, reliable and easy to use methods for the detection of microorganisms are needed to evaluate water quality. In this stud...

  12. Comparison of the virucidal efficiency of peracetic acid, potassium monopersulfate and sodium hypochlorite on hepatitis A and enteric cytopathogenic bovine orphan virus.

    PubMed

    Martin, H; Soumet, C; Fresnel, R; Morin, T; Lamaudière, S; Le Sauvage, A L; Deleurme, K; Maris, P

    2013-10-01

    The virucidal activity of peroxy-products was evaluated and compared with sodium hypochlorite using the EN 14675 European suspension test and a surface test developed in our laboratory. The classical approach on infectivity of viruses was complemented with a prospective approach on virus genomes. Both infectivity tests were adapted and/or developed to determine the activity of disinfectants against reference bovine enterovirus type 1 [enteric cytopathogenic bovine orphan virus (ECBO)] and resistant hepatitis A virus (HAV) in conditions simulating practical use. Similar concentrations of active chlorine were virucidal against both viruses, either at 0·062% using the suspension test or at 0·50-1% using the surface test. However, for potassium monopersulfate and peracetic acid products, concentrations of approximately three times (3%) to 72 times (9%) higher were necessary against HAV than ECBO when determined with the suspension test. With the surface test, 4-8% peroxy-products were virucidal against HAV, either 16 times more peroxy-products concentrations than against ECBO. No significant impact on the targeted area of the viral genome measured by real-time RT-PCRs was obtained for ECBO and HAV suspensions treated with disinfectants, even with doses higher than the minimal virucidal concentrations. Sodium hypochlorite, but not peroxy-products, had similar activity against ECBO and HAV. No relation could be established between infectivity tests and genome destruction. This is the first comparative study that investigates with novel suspension and surface tests the reduction of infectivity and genome destruction of two resistant viruses by peroxy-compounds. The results and conclusions collected with European standards are discussed. © 2013 The Society for Applied Microbiology.

  13. Methods for recovery of hepatitis A virus (HAV) and other viruses from processed foods and detection of HAV by nested RT-PCR and TaqMan RT-PCR.

    PubMed

    Love, David C; Casteel, Michael J; Meschke, John S; Sobsey, Mark D

    2008-08-15

    Enteric viruses are important agents of foodborne disease. Unfortunately, robust, quantitative methods for sampling and analysis of enteric and other viruses in processed or complex foods are not well-established. As a result, epidemiologically determined etiologies or pathogen sources in foodborne outbreaks are rarely confirmed by virological analysis. In this study, an acid-adsorption elution concentration (AEC) method previously used to monitor virus occurrence and investigate enteric virus outbreaks in shellfish was adapted for examination of processed food items, namely tomato sauce and blended strawberries. Hepatitis A virus (HAV), poliovirus, and coliphage MS2 (MS2) were seeded in 10 or 30 g samples of tomato sauce or blended strawberries, recovered by AEC, and quantified by cell culture infectivity assay. In addition, nested reverse transcription-polymerase chain reaction (RT-PCR) and TaqMan RT-PCR assays were used to detect HAV RNA. Viruses were efficiently adsorbed to foods as an initial concentration step, with infectious HAV and MS2 adsorption of 67% and 93%, respectively, to tomato sauce, and 89% and 99%, respectively, to blended strawberries. Forty-three to 65% of HAV and poliovirus were subsequently eluted and recovered from tomato sauce using 0.5 M threonine, pH 7.2. The lower limits of HAV detection were at initial seeding levels of 14 PFU/g of tomato sauce and 33 PFU/g of blended strawberries. Unlike TaqMan RT-PCR, nested RT-PCR was not inhibited by undiluted final RNA extracts of tomato sauce or blended strawberries. The successful adaptation of the AEC method for enteric and other virus recovery, quantitation and detection in processed foods demonstrates its potential for use in the investigation of foodborne outbreaks of viral etiology and for validation of virus disinfection and sanitary processing procedures used by the food industry.

  14. Solar water disinfection (SODIS) of Escherichia coli, Enterococcus spp., and MS2 coliphage: effects of additives and alternative container materials.

    PubMed

    Fisher, Michael B; Iriarte, Mercedes; Nelson, Kara L

    2012-04-15

    The use of alternative container materials and added oxidants accelerated the inactivation of MS2 coliphage and Escherichia coli and Enterococcus spp. bacteria during solar water disinfection (SODIS) trials. Specifically, bottles made from polypropylene copolymer (PPCO), a partially UVB-transparent plastic, resulted in three-log inactivation of these organisms in approximately half the time required for disinfection in bottles made from PET, polycarbonate, or Tritan(®), which absorb most UVB light. Furthermore, the addition of 125 mg/L sodium percarbonate in combination with either citric acid or copper plus ascorbate tended to accelerate inactivation by factors of 1.4-19. Finally, it was observed that the inactivation of E. coli and enterococci derived from local wastewater was far slower than the inactivation of laboratory-cultured E. coli and Enterococcus spp., while the inactivation of MS2 was slowest of all. These results highlight the importance of UVB in SODIS under certain conditions, and also the greater sunlight resistance of some viruses and of bacteria of fecal origin, as compared to the laboratory-cultured bacteria commonly used to model their inactivation. Furthermore, this study illustrates promising new avenues for accelerating the inactivation of bacteria and viruses by solar disinfection. Copyright © 2011 Elsevier Ltd. All rights reserved.

  15. Enteric virus status of turkey flocks over time: molecular diagnostic studies beginning on the day of placement.

    USDA-ARS?s Scientific Manuscript database

    Poultry enteric disease is often associated with numerous viral and/or bacterial infections, including avian reoviruses, rotaviruses, astroviruses, parvoviruses, and Escherichia coli. These potential etiologic agents are often present in combination in a flock or individual birds, but in general it ...

  16. DETECTION OF FRNA COLIPHAGES IN GROUNDWATER: INTERFERENCE WITH THE ASSAY BY SOMATIC SALMONELLA BACTERIOPHAGES

    EPA Science Inventory

    Groundwater samples from two sites in Alabama, USA were plaque assayed for F-specific RNA (FRNA) coliphages using Salmonella typhimurium WG49 as the host bacterium. While numerous plaques were detected with WG49 (a strain possessing Escherichia coli F pili), plaques were also obs...

  17. DETECTION OF FRNA COLIPHAGES IN GROUNDWATER: INTERFERENCE WITH THE ASSAY BY SOMATIC SALMONELLA BACTERIOPHAGES

    EPA Science Inventory

    Groundwater samples from two sites in Alabama, USA were plaque assayed for F-specific RNA (FRNA) coliphages using Salmonella typhimurium WG49 as the host bacterium. While numerous plaques were detected with WG49 (a strain possessing Escherichia coli F pili), plaques were also obs...

  18. Properties of the Deoxyribonucleic Acid Contained in the Defective Particle Coliphage 15 1

    PubMed Central

    Frampton, E. W.; Mandel, M.

    1970-01-01

    Escherichia coli strain 15 TAU, which requires thymine, arginine, and uracil for growth and harbors an apparently defective prophage, was induced by exposure to ultraviolet light (580 ergs/mm2) or to mitomycin C (5 μg/ml). Phage particles (coliphage 15) were recovered from the resulting lysate by treatment with deoxyribonuclease, filtration, and several cycles of differential centrifugation. Analysis of the phage particles obtained by using cesium chloride density gradient centrifugation in a preparative ultracentrifuge resulted in the resolution of three components. The major component had a peak density of 1.52 to 1.53 g/cm3 followed by components with densities of 1.5 and 1.49 g/cm3. The guanine plus cytosine content of coliphage 15 deoxyribonucleic acid (DNA) was determined by both analytical ultracentrifugation in cesium chloride and by thermal denaturation in standard saline citrate buffer. Respective values of 46.4 ± 1% and 46.6 ± 1% guanine plus cytosine content were obtained. Coliphage 15 DNA formed molecular hybrids with messenger ribonucleic acid (RNA) from both uninduced and ultraviolet-induced cultures of E. coli 15 TAU, but did not hybridize with E. coli ribosomal RNA. The molecular weight of coliphage 15 DNA was determined by constant velocity sucrose density gradient centrifugation to be about 33 × 106 daltons. PMID:4909911

  19. Transport of enterococci and F+ coliphage through the saturated zone of the beach aquifer.

    PubMed

    de Sieyes, Nicholas R; Russell, Todd L; Brown, Kendra I; Mohanty, Sanjay K; Boehm, Alexandria B

    2016-02-01

    Coastal groundwater has been implicated as a source of microbial pollution to recreational beaches. However, there is little work investigating the transport of fecal microbes through beach aquifers where waters of variable salinity are present. In this study, the potential for fecal indicator organisms enterococci (ENT) and F+ coliphage to be transported through marine beach aquifers was investigated. Native sediment and groundwaters were collected from the fresh and saline sections of the subterranean estuary at three beaches along the California coast where coastal communities utilize septic systems for wastewater treatment. Groundwaters were seeded with sewage and removal of F+ coliphage and ENT by the sediments during saturated flow was tested in laboratory column experiments. Removal varied significantly between beach and organism. F+ coliphage was removed to a greater extent than ENT, and removal was greater in saline sediments and groundwater than fresh. At one of the three beaches, a field experiment was conducted to investigate the attenuation of F+ coliphage and ENT down gradient of a septic leach field. ENT were detected up to 24 m from the leach field. The column study and field observations together suggest ENT can be mobile within native aquifer sediments and groundwater under certain conditions.

  20. Molecular and serological surveillance of canine enteric viruses in stray dogs from Vila do Maio, Cape Verde

    PubMed Central

    2014-01-01

    Background Infections caused by canine parvovirus, canine distemper virus and canine coronavirus are an important cause of mortality and morbidity in dogs worldwide. Prior to this study, no information was available concerning the incidence and prevalence of these viruses in Cape Verde archipelago. Results To provide information regarding the health status of the canine population in Vila do Maio, Maio Island, Cape Verde, 53 rectal swabs were collected from 53 stray dogs during 2010 and 93 rectal swabs and 88 blood samples were collected from 125 stray dogs in 2011. All rectal swabs (2010 n = 53; 2011 n = 93) were analysed for the presence of canine parvovirus, canine distemper virus and canine coronavirus nucleic acids by quantitative PCR methods. Specific antibodies against canine distemper virus and canine parvovirus were also assessed (2011 n = 88). From the 2010 sampling, 43.3% (23/53) were positive for canine parvovirus DNA, 11.3% (6/53) for canine distemper virus RNA and 1.9% (1/53) for canine coronavirus RNA. In 2011, the prevalence values for canine parvovirus and canine coronavirus were quite similar to those from the previous year, respectively 44.1% (41/93), and 1.1% (1/93), but canine distemper virus was not detected in any of the samples analysed (0%, 0/93). Antibodies against canine parvovirus were detected in 71.6% (63/88) blood samples and the seroprevalence found for canine distemper virus was 51.1% (45/88). Conclusions This study discloses the data obtained in a molecular and serological epidemiological surveillance carried out in urban populations of stray and domestic animals. Virus transmission and spreading occurs easily in large dog populations leading to high mortality rates particularly in unvaccinated susceptible animals. In addition, these animals can act as disease reservoirs for wild animal populations by occasional contact. Identification of susceptible wildlife of Maio Island is of upmost importance to evaluate the risk

  1. Molecular and serological surveillance of canine enteric viruses in stray dogs from Vila do Maio, Cape Verde.

    PubMed

    Castanheira, Pedro; Duarte, Ana; Gil, Solange; Cartaxeiro, Clara; Malta, Manuel; Vieira, Sara; Tavares, Luis

    2014-04-23

    Infections caused by canine parvovirus, canine distemper virus and canine coronavirus are an important cause of mortality and morbidity in dogs worldwide. Prior to this study, no information was available concerning the incidence and prevalence of these viruses in Cape Verde archipelago. To provide information regarding the health status of the canine population in Vila do Maio, Maio Island, Cape Verde, 53 rectal swabs were collected from 53 stray dogs during 2010 and 93 rectal swabs and 88 blood samples were collected from 125 stray dogs in 2011. All rectal swabs (2010 n = 53; 2011 n = 93) were analysed for the presence of canine parvovirus, canine distemper virus and canine coronavirus nucleic acids by quantitative PCR methods. Specific antibodies against canine distemper virus and canine parvovirus were also assessed (2011 n = 88).From the 2010 sampling, 43.3% (23/53) were positive for canine parvovirus DNA, 11.3% (6/53) for canine distemper virus RNA and 1.9% (1/53) for canine coronavirus RNA. In 2011, the prevalence values for canine parvovirus and canine coronavirus were quite similar to those from the previous year, respectively 44.1% (41/93), and 1.1% (1/93), but canine distemper virus was not detected in any of the samples analysed (0%, 0/93). Antibodies against canine parvovirus were detected in 71.6% (63/88) blood samples and the seroprevalence found for canine distemper virus was 51.1% (45/88). This study discloses the data obtained in a molecular and serological epidemiological surveillance carried out in urban populations of stray and domestic animals. Virus transmission and spreading occurs easily in large dog populations leading to high mortality rates particularly in unvaccinated susceptible animals. In addition, these animals can act as disease reservoirs for wild animal populations by occasional contact. Identification of susceptible wildlife of Maio Island is of upmost importance to evaluate the risk of pathogen spill over from

  2. Different Behavior of Enteric Bacteria and Viruses in Clay and Sandy Soils after Biofertilization with Swine Digestate.

    PubMed

    Fongaro, Gislaine; García-González, María C; Hernández, Marta; Kunz, Airton; Barardi, Célia R M; Rodríguez-Lázaro, David

    2017-01-01

    Enteric pathogens from biofertilizer can accumulate in the soil, subsequently contaminating water and crops. We evaluated the survival, percolation and leaching of model enteric pathogens in clay and sandy soils after biofertilization with swine digestate: PhiX-174, mengovirus (vMC0), Salmonella enterica Typhimurium and Escherichia coli O157:H7 were used as biomarkers. The survival of vMC0 and PhiX-174 in clay soil was significantly lower than in sandy soil (iT90 values of 10.520 ± 0.600 vs. 21.270 ± 1.100 and 12.040 ± 0.010 vs. 43.470 ± 1.300, respectively) and PhiX-174 showed faster percolation and leaching in sandy soil than clay soil (iT90 values of 0.46 and 2.43, respectively). S. enterica Typhimurium was percolated and inactivated more slowly than E. coli O157:H7 (iT90 values of 9.340 ± 0.200 vs. 6.620 ± 0.500 and 11.900 ± 0.900 vs. 10.750 ± 0.900 in clay and sandy soils, respectively), such that E. coli O157:H7 was transferred more quickly to the deeper layers of both soils evaluated (percolation). Our findings suggest that E. coli O157:H7 may serve as a useful microbial biomarker of depth contamination and leaching in clay and sandy soil and that bacteriophage could be used as an indicator of enteric pathogen persistence. Our study contributes to development of predictive models for enteric pathogen behavior in soils, and for potential water and food contamination associated with biofertilization, useful for risk management and mitigation in swine digestate recycling.

  3. Different Behavior of Enteric Bacteria and Viruses in Clay and Sandy Soils after Biofertilization with Swine Digestate

    PubMed Central

    Fongaro, Gislaine; García-González, María C.; Hernández, Marta; Kunz, Airton; Barardi, Célia R. M.; Rodríguez-Lázaro, David

    2017-01-01

    Enteric pathogens from biofertilizer can accumulate in the soil, subsequently contaminating water and crops. We evaluated the survival, percolation and leaching of model enteric pathogens in clay and sandy soils after biofertilization with swine digestate: PhiX-174, mengovirus (vMC0), Salmonella enterica Typhimurium and Escherichia coli O157:H7 were used as biomarkers. The survival of vMC0 and PhiX-174 in clay soil was significantly lower than in sandy soil (iT90 values of 10.520 ± 0.600 vs. 21.270 ± 1.100 and 12.040 ± 0.010 vs. 43.470 ± 1.300, respectively) and PhiX-174 showed faster percolation and leaching in sandy soil than clay soil (iT90 values of 0.46 and 2.43, respectively). S. enterica Typhimurium was percolated and inactivated more slowly than E. coli O157:H7 (iT90 values of 9.340 ± 0.200 vs. 6.620 ± 0.500 and 11.900 ± 0.900 vs. 10.750 ± 0.900 in clay and sandy soils, respectively), such that E. coli O157:H7 was transferred more quickly to the deeper layers of both soils evaluated (percolation). Our findings suggest that E. coli O157:H7 may serve as a useful microbial biomarker of depth contamination and leaching in clay and sandy soil and that bacteriophage could be used as an indicator of enteric pathogen persistence. Our study contributes to development of predictive models for enteric pathogen behavior in soils, and for potential water and food contamination associated with biofertilization, useful for risk management and mitigation in swine digestate recycling. PMID:28197137

  4. Enhanced detection of pathogenic enteric viruses in coastal marine environment by concentration using methacrylate monolithic chromatographic supports paired with quantitative PCR.

    PubMed

    Balasubramanian, Mukundh N; Rački, Nejc; Gonçalves, José; Kovač, Katarina; Žnidarič, Magda T; Turk, Valentina; Ravnikar, Maja; Gutiérrez-Aguirre, Ion

    2016-12-01

    Currently, around 50% of the world's population lives in towns and cities within 100 km of the coast. Monitoring of viruses that are frequently present in contaminated coastal environments, such as rotavirus (RoV) and norovirus (NoV), which are also the major cause of human viral gastroenteritis, is essential to ensure the safe use of these water bodies. Since exposure to as few as 10-100 particles of RoV or NoV may induce gastrointestinal disease, there is a need to develop a rapid and sensitive diagnostic method for their detection in coastal water samples. In this study, we evaluate the application of methacrylate monolithic chromatographic columns, commercially available as convective interaction media (CIM(®)), to concentrate pathogenic enteric viruses from saline water samples prior to virus quantification by one-step reverse transcription quantitative PCR (RT-qPCR). Using RoV and NoV as model enteric viruses, we present our results on the most effective viral concentration conditions from saline water matrices using butyl (C4) hydrophobic interaction monolithic support (CIM(®) C4). C4 monolithic columns exhibit a good capacity to bind both RoV and NoV and both viruses can be eluted in a single step. Our protocol using a 1 ml C4 column enables processing of 400 ml saline water samples in less than 60 min and increases the sensitivity of RoV and NoV detection by approximately 50-fold and 10-fold respectively. The protocol was also scaled up using larger capacity 8 ml C4 columns to process 4000 ml of seawater samples with concentration factors of 300-fold for RoV and 40-fold for NoV, without any significant increase in processing time. Furthermore, C4 monolithic columns were adapted for field use in an on-site application of RoV concentration from seawater samples with performance equivalent to that of the reference laboratory setup. Overall, the results from successful deployment of CIM C4 columns for concentration of rotavirus and norovirus in

  5. Enteric Viruses Ameliorate Gut Inflammation via Toll-like Receptor 3 and Toll-like Receptor 7-Mediated Interferon-β Production.

    PubMed

    Yang, Jin-Young; Kim, Min-Soo; Kim, Eugene; Cheon, Jae Hee; Lee, Yong-Soo; Kim, Yeji; Lee, Su-Hyun; Seo, Sang-Uk; Shin, Seung-Ho; Choi, Sun Shim; Kim, Bumseok; Chang, Sun-Young; Ko, Hyun-Jeong; Bae, Jin-Woo; Kweon, Mi-Na

    2016-04-19

    Metagenomic studies show that diverse resident viruses inhabit the healthy gut; however, little is known about the role of these viruses in the maintenance of gut homeostasis. We found that mice treated with antiviral cocktail displayed more severe dextran sulfate sodium (DSS)-induced colitis compared with untreated mice. DSS-induced colitis was associated with altered enteric viral abundance and composition. When wild-type mice were reconstituted with Toll-like receptor 3 (TLR3) or TLR7 agonists or inactivated rotavirus, colitis symptoms were significantly ameliorated. Mice deficient in both TLR3 and TLR7 were more susceptible to DSS-induced experimental colitis. In humans, combined TLR3 and TLR7 genetic variations significantly influenced the severity of ulcerative colitis. Plasmacytoid dendritic cells isolated from inflamed mouse colon produced interferon-β in a TLR3 and TLR7-dependent manner. These results imply that recognition of resident viruses by TLR3 and TLR7 is required for protective immunity during gut inflammation.

  6. Farm-level prevalence and risk factors for detection of hepatitis E virus, porcine enteric calicivirus, and rotavirus in Canadian finisher pigs.

    PubMed

    Wilhelm, Barbara; Leblanc, Danielle; Leger, David; Gow, Sheryl; Deckert, Anne; Pearl, David L; Friendship, Robert; Rajić, Andrijana; Houde, Alain; McEwen, Scott

    2016-04-01

    Hepatitis E virus (HEV), norovirus (NoV), and rotavirus (RV) are all hypothesized to infect humans zoonotically via exposure through swine and pork. Our study objectives were to estimate Canadian farm-level prevalence of HEV, NoV [specifically porcine enteric calicivirus (PEC)], and RV in finisher pigs, and to study risk factors for farm level viral detection. Farms were recruited using the Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS) and FoodNet Canada on-farm sampling platforms. Six pooled groups of fecal samples were collected from participating farms, and a questionnaire capturing farm management and biosecurity practices was completed. Samples were assayed using validated real-time polymerase chain reaction (RT-PCR). We modeled predictors for farm level viral RNA detection using logistic and exact logistic regression. Seventy-two herds were sampled: 51 CIPARS herds (15 sampled twice) and 21 FoodNet Canada herds (one sampled twice). Hepatitis E virus was detected in 30/88 farms [34.1% (95% CI 25.0%, 44.5%)]; PEC in 18 [20.5% (95% CI: 13.4%, 30.0%)], and RV in 6 farms [6.8% (95% CI: 3.2%, 14.1%)]. Farm-level prevalence of viruses varied with province and sampling platform. Requiring shower-in and providing boots for visitors were significant predictors (P < 0.05) in single fixed effect mixed logistic regression analysis for detection of HEV and PEC, respectively. In contrast, all RV positive farms provided boots and coveralls, and 5 of 6 farms required shower-in. We hypothesized that these biosecurity measures delayed the mean age of RV infection, resulting in an association with RV detection in finishers. Obtaining feeder pigs from multiple sources was consistently associated with greater odds of detecting each virus.

  7. Farm-level prevalence and risk factors for detection of hepatitis E virus, porcine enteric calicivirus, and rotavirus in Canadian finisher pigs

    PubMed Central

    Wilhelm, Barbara; Leblanc, Danielle; Leger, David; Gow, Sheryl; Deckert, Anne; Pearl, David L.; Friendship, Robert; Rajić, Andrijana; Houde, Alain; McEwen, Scott

    2016-01-01

    Hepatitis E virus (HEV), norovirus (NoV), and rotavirus (RV) are all hypothesized to infect humans zoonotically via exposure through swine and pork. Our study objectives were to estimate Canadian farm-level prevalence of HEV, NoV [specifically porcine enteric calicivirus (PEC)], and RV in finisher pigs, and to study risk factors for farm level viral detection. Farms were recruited using the Canadian Integrated Program for Antimicrobial Resistance Surveillance (CIPARS) and FoodNet Canada on-farm sampling platforms. Six pooled groups of fecal samples were collected from participating farms, and a questionnaire capturing farm management and biosecurity practices was completed. Samples were assayed using validated real-time polymerase chain reaction (RT-PCR). We modeled predictors for farm level viral RNA detection using logistic and exact logistic regression. Seventy-two herds were sampled: 51 CIPARS herds (15 sampled twice) and 21 FoodNet Canada herds (one sampled twice). Hepatitis E virus was detected in 30/88 farms [34.1% (95% CI 25.0%, 44.5%)]; PEC in 18 [20.5% (95% CI: 13.4%, 30.0%)], and RV in 6 farms [6.8% (95% CI: 3.2%, 14.1%)]. Farm-level prevalence of viruses varied with province and sampling platform. Requiring shower-in and providing boots for visitors were significant predictors (P < 0.05) in single fixed effect mixed logistic regression analysis for detection of HEV and PEC, respectively. In contrast, all RV positive farms provided boots and coveralls, and 5 of 6 farms required shower-in. We hypothesized that these biosecurity measures delayed the mean age of RV infection, resulting in an association with RV detection in finishers. Obtaining feeder pigs from multiple sources was consistently associated with greater odds of detecting each virus. PMID:27127336

  8. Recovery rate of multiple enteric viruses artificially seeded in water and concentrated by adsorption-elution with negatively charged membranes: interaction and interference between different virus species.

    PubMed

    Vecchia, Andréia Dalla; Rigotto, Caroline; Soliman, Mayra Cristina; Souza, Fernanda Gil de; Giehl, Isabel Cristina; Spilki, Fernando Rosado

    2015-01-01

    Viral concentration method by adsorption-elution with negative membranes has been widely employed for concentrating viruses from environmental samples. In order to provide an adequate assessment of its recovery efficiency, this study was conducted to assess viral recovery rates for viral species commonly found in water (HAdV-5, EV, RV, BAdV and CAV-2), quantifying viral genomes at the end of the five different steps of the process. Recovery rates were analyzed for several viruses combined in a single water sample and for each virus assayed separately. Ultrapure water samples were artificially contaminated and analyzed by real-time quantitative polymerase chain reaction (qPCR). High recovery rates were found after the final stage when assessed individually (89 to 125%) and combined in the same sample (23 to > 164%). HAdV-5 exhibited >100% recovery when assayed with human viruses and other AdVs, whereas BAdV and CAV-2 were not detected. These data suggest that recovery efficiency could be related to viral structural characteristics, their electric charges and other interactions, so that they are retained with greater or lesser efficiency when coupled. This protocol could be applied to environmental samples, since high recovery rates were observed and infectious viruses were detected at the end of the concentration process.

  9. Cellular microRNA miR-181b inhibits replication of mink enteritis virus by repression of non-structural protein 1 translation.

    PubMed

    Sun, Jia-zeng; Wang, Jigui; Yuan, Daoli; Wang, Shuang; Li, Zhili; Yi, Bao; Mao, Yaping; Hou, Qiang; Liu, Weiquan

    2013-01-01

    Mink enteritis virus (MEV) is one of the most important viral pathogens in the mink industry. Recent studies have showed that microRNAs (miRNAs), small noncoding RNAs of length ranging from 18-23 nucleotides (nt) participate in host-pathogen interaction networks; however, whether or not miRNAs are involved in MEV infection has not been reported. Our study revealed that miRNA miR-181b inhibited replication of MEV in the feline kidney (F81) cell line by targeting the MEV non-structural protein 1 (NS1) messenger RNA (mRNA) coding region, resulting in NS1 translational repression, while MEV infection reduced miR-181b expression. This is the first description of cellular miRNAs modulating MEV infection in F81 cells, providing further insight into the mechanisms of viral infection, and may be useful in development of naturally-occurring miRNAs antiviral strategies.

  10. Cellular microRNA miR-181b Inhibits Replication of Mink Enteritis Virus by Repression of Non-Structural Protein 1 Translation

    PubMed Central

    Sun, Jia-zeng; Wang, Jigui; Yuan, Daoli; Wang, Shuang; Li, Zhili; Yi, Bao; Mao, Yaping; Hou, Qiang; Liu, Weiquan

    2013-01-01

    Mink enteritis virus (MEV) is one of the most important viral pathogens in the mink industry. Recent studies have showed that microRNAs (miRNAs), small noncoding RNAs of length ranging from 18–23 nucleotides (nt) participate in host-pathogen interaction networks; however, whether or not miRNAs are involved in MEV infection has not been reported. Our study revealed that miRNA miR-181b inhibited replication of MEV in the feline kidney (F81) cell line by targeting the MEV non-structural protein 1 (NS1) messenger RNA (mRNA) coding region, resulting in NS1 translational repression, while MEV infection reduced miR-181b expression. This is the first description of cellular miRNAs modulating MEV infection in F81 cells, providing further insight into the mechanisms of viral infection, and may be useful in development of naturally-occurring miRNAs antiviral strategies. PMID:24349084

  11. Antiviral activity of proanthocyanidin against feline calicivirus used as a surrogate for noroviruses, and coxsackievirus used as a representative enteric virus.

    PubMed

    Iwasawa, Atsuo; Niwano, Yoshimi; Mokudai, Takayuki; Kohno, Masahiro

    2009-09-01

    Proanthocyanidin, which consists of (+) catechin, (-) epicatechin and their gallates (15%), (-) epicatechin gallate-dimers, -trimers, and -tetramers (80%), and (-) epicatechin gallate-pentamers, -hexamers, and -heptamers (5%), was evaluated for its antiviral activity against feline calicivirus F9 strain (FCV/F9), which is thought to be a surrogate for noroviruses, and coxsackievirus A7 strain (Cox.A7), which was selected as a representative enteric virus. To achieve a viral inactivation rate of 99% or greater after contact for 10 sec., at least 1 mg/ml and 10 mg/ml of proanthocyanidin were required against FCV/F9 and Cox.A7, respectively. Although the antiviral mechanism of proanthocyanidin is not clear at present, proanthocyanidin may be an effective disinfectant against enteroviruses such as noroviruses.

  12. Histopathology, immunohistochemistry, in situ apoptosis, and ultrastructure characterization of the digestive and lymphoid organs of new type gosling viral enteritis virus experimentally infected gosling.

    PubMed

    Chen, S; Cheng, A C; Wang, M S; Zhu, D K; Jia, R Y; Luo, Q H; Cui, H M; Zhou, Y; Wang, Y; Xu, Z W; Chen, Z L; Chen, X Y; Wang, X Y

    2010-04-01

    Here, for the first time, to colocalize new type gosling viral enteritis virus (NGVEV) with histological lesions and in situ apoptosis in the digestive organs (esophagus, proventriculus, gizzard, small intestine, cecum, rectum, liver, and pancreas) and the lymphoid organs (bursa of Fabricius, thymus, Harderian gland, and spleen) of experimentally infected goslings, portions of tissues were collected at sequential infection time points and examined by histopathology for histological lesions, immunohistochemical staining for viral antigens, ultrastructural observation by transmission electron microscope (TEM) for virus particles and apoptotic cells, and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling assay for in situ apoptosis. The hyperemia, hemorrhage, infiltration of lymphocytes, progressive lymphoid depletion, apoptosis, and necrosis were readily observed in the lymphoid organs and intestine tract by histopathological examination. The NGVEV particles and viral antigens widely appeared in the small intestine and bursa of Fabricius as early as 2 d postinfection (PI) by TEM and immunohistochemical staining, and the presence and quantity of it reached a maximum during 6 to 12 d PI. The principal sites for NGVEV were endothelial cells, epithelia, mucosal cells, glandular cells, fibrocytes, macrophages, and lymphocytes. A series of apoptotic morphological changes including chromatin condensation and margination, cytoplasmic shrinkage, and formation of apoptotic body were observed by TEM, and the number of apoptotic cells was largely increased from 4 d PI and peaked at 9 d PI by terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate nick end labeling analysis. The histological organ lesions and apoptosis in vivo were generally associated with sites of NGVEV localization, which can be regarded as the cause of death. This work may shed light on the pathogenesis of new type gosling viral enteritis and put new

  13. Enteral feedings.

    PubMed

    Chernoff, R

    1980-01-01

    The benefits, equipment used, commercially available sources, and the indications and techniques for administration of enteral nutrients are reviewed. In many malabsorption states, enteral feeding is preferable and parenteral nutrients are seldom indicated. Transitional enteral nutrient support usually is indicated after parenteral nutrient therapy. Enteral tube-feeding formulas should be matched to the patient's needs; formulas using blenderized natural foods or intact isolated nutrients are appropriate for patients with intact gastrointestinal tracts. Patients should be monitored for glucosuria and hyperglycemia, bloating, nausea, dehydration, and renal, hepatic and hematologic status. Formula dilution, and a reduced flow rate or use of continuous-drip feeding, will reduce the incidence of osmotic diarrhea. The effectiveness, low cost and low potential for serious complications make enteral feeding preferable to parenteral nutrient therapy for many patients.

  14. Prevalence of antibodies to bluetongue virus and Anaplasma marginale in Montana yearling cattle entering Alberta feedlots: Fall 2001.

    PubMed

    Van Donkersgoed, Joyce; Gertonson, Arnold; Bridges, Marc; Raths, Dick; Dargatz, David; Wagner, Bruce; Boughton, Alice; Knoop, Doug; Walton, Thomas E

    2004-06-01

    A serologic survey was conducted in yearling cattle imported into Alberta feedlots from Montana during October 2001 to estimate the prevalence of antibodies to bluetongue virus (BTV) and Anaplasma marginale in Montana yearling cattle. The apparent prevalence of antibodies to BTV when the competitive enzyme-linked immunosorbent assay (cELISA) was used was 0.37% (21/5608). Test positive cELISA samples were also all positive when tested by virus neutralization (VN) and they reacted to 1 or more BTV serotypes, including 2, 10, 11, 13, and 17. The apparent prevalence of antibodies to A. marginale when a recombinant cELISA (rcELISA) was used with a positive cutoff at 30% inhibition was 1.93% (108/5608). When the rcELISA positive cutoff was at 42% inhibition, the apparent prevalence was 0.73% (41/5608). After the reported sensitivity and specificity of the test had been accounted for, the A. marginale antibody results were consistent with a population that was either free of exposure or had a very low prevalence for A. marginale.

  15. Validation of Internal Controls for Extraction and Amplification of Nucleic Acids from Enteric Viruses in Water Samples ▿ †

    PubMed Central

    Hata, Akihiko; Katayama, Hiroyuki; Kitajima, Masaaki; Visvanathan, Chettiyappan; Nol, Chea; Furumai, Hiroaki

    2011-01-01

    Inhibitors that reduce viral nucleic acid extraction efficiency and interfere with cDNA synthesis and/or polymerase activity affect the molecular detection of viruses in aquatic environments. To overcome these significant problems, we developed a methodology for assessing nucleic acid yields and DNA amplification efficiencies for environmental water samples. This involved adding particles of adenovirus type 5 and murine norovirus and newly developed primer-sharing controls, which are amplified with the same primer pairs and result in the same amplicon sizes as the targets, to these samples. We found that nucleic acid loss during the extraction process, rather than reverse transcription-PCR (RT-PCR) inhibition, more significantly attributed to underestimation of the presence of viral genomes in the environmental water samples tested in this study. Our success rate for satisfactorily amplifying viral RNAs and DNAs by RT-PCR was higher than that for obtaining adequate nucleic acid preparations. We found that inhibitory properties were greatest when we used larger sample volumes. A magnetic silica bead-based RNA extraction method effectively removed inhibitors that interfere with viral nucleic acid extraction and RT-PCR. To our knowledge, this is the first study to assess the inhibitory properties of environmental water samples by using both control virus particles and primer-sharing controls. PMID:21602369

  16. Validation of internal controls for extraction and amplification of nucleic acids from enteric viruses in water samples.

    PubMed

    Hata, Akihiko; Katayama, Hiroyuki; Kitajima, Masaaki; Visvanathan, Chettiyappan; Nol, Chea; Furumai, Hiroaki

    2011-07-01

    Inhibitors that reduce viral nucleic acid extraction efficiency and interfere with cDNA synthesis and/or polymerase activity affect the molecular detection of viruses in aquatic environments. To overcome these significant problems, we developed a methodology for assessing nucleic acid yields and DNA amplification efficiencies for environmental water samples. This involved adding particles of adenovirus type 5 and murine norovirus and newly developed primer-sharing controls, which are amplified with the same primer pairs and result in the same amplicon sizes as the targets, to these samples. We found that nucleic acid loss during the extraction process, rather than reverse transcription-PCR (RT-PCR) inhibition, more significantly attributed to underestimation of the presence of viral genomes in the environmental water samples tested in this study. Our success rate for satisfactorily amplifying viral RNAs and DNAs by RT-PCR was higher than that for obtaining adequate nucleic acid preparations. We found that inhibitory properties were greatest when we used larger sample volumes. A magnetic silica bead-based RNA extraction method effectively removed inhibitors that interfere with viral nucleic acid extraction and RT-PCR. To our knowledge, this is the first study to assess the inhibitory properties of environmental water samples by using both control virus particles and primer-sharing controls.

  17. A probe-free four-tube real-time PCR assay for simultaneous detection of twelve enteric viruses and bacteria.

    PubMed

    Zhang, Chen; Niu, Peihua; Hong, Yanying; Wang, Ji; Zhang, Jingyun; Ma, Xuejun

    2015-11-01

    We aim to develop a multiplex real-time PCR assay to detect the most common pathogens causing community outbreaks of diarrhea. Four reaction systems of fluorescence dye-based real-time PCR assay were performed to amplify genes of norovirus, sapovirus, rotavirus, astrovirus, adenovirus, Campylobacter jejuni, Yersinia enterocolitica, Vibrio parahaemolyticus, Salmonella spp., Escherichia coli, and Shigella spp. PCR products of each pathogen were identified by characteristic peaks in melting curves. The assay was able to achieve detection limit of 50 copies/reaction for each individual virus target, and 140-500CFU/mL for each individual bacterium target. A total of 122 clinical specimens from hospitalized children with acute diarrhea were used to evaluate the assay. The clinical sensitivity was very similar to that of reference methods. Norovirus genogroup II revealed the highest detectable rate (45/122, 36.9%). Coinfection was found in 28 out of 122 (23%) clinical specimens. This assay proved to be a cost-effective, sensitive and reliable method for simultaneous detection of enteric viruses and bacteria. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Prevalence of serum antibody titers against feline panleukopenia virus, feline herpesvirus 1, and feline calicivirus in cats entering a Florida animal shelter.

    PubMed

    DiGangi, Brian A; Levy, Julie K; Griffin, Brenda; McGorray, Susan P; Dubovi, Edward J; Dingman, Patricia A; Tucker, Sylvia J

    2012-11-15

    To determine the proportion of cats entering a Florida animal shelter with serum antibody titers against feline panleukopenia virus (FPV), feline herpesvirus 1 (FHV1), and feline calicivirus (FCV) and to identify factors associated with seropositivity. Cross-sectional study. 347 cats admitted to a Florida animal shelter. Within 24 hours after admission to the animal shelter, blood samples were collected from all cats ≥ 8 weeks of age. Serum antibody titers against FPV were determined via a hemagglutination inhibition assay, and those against FHV1 and FCV were determined via virus neutralization assays. Age, sex, environment (urban or rural), source (stray or previously owned), evidence of previous caregiving, health status (healthy or not healthy), and outcome (adoption, transfer, return to owner, or euthanasia) were evaluated as potential factors associated with antibody seropositivity. Of 347 cats, 138 (39.8%), 38 (11.0%), and 127 (36.6%) had antibody titers ≥ 40, ≥ 8, and ≥ 32 (ie, seropositive) against FPV, FHV1, and FCV, respectively. Factors associated with seropositivity included being neutered, age ≥ 6 months, and being relinquished by an owner. On multivariable analysis, health status at shelter admission, environment, vaccination at shelter admission, and outcome were not associated with seropositivity. Most cats were seronegative for antibodies against FPV, FHV1, and FCV at the time of admission to an animal shelter. These findings supported current guidelines that recommend vaccination of all cats immediately after admission to animal shelters, regardless of the source or physical condition.

  19. From Lab to Lake – Evaluation of Current Molecular Methods for the Detection of Infectious Enteric Viruses in Complex Water Matrices in an Urban Area

    PubMed Central

    Hamza, Ibrahim Ahmed; Krieger, Marion; Wilhelm, Michael; Mackowiak, Martin; Jurzik, Lars

    2016-01-01

    Quantitative PCR methods are commonly used to monitor enteric viruses in the aquatic environment because of their high sensitivity, short reaction times and relatively low operational cost. However, conclusions for public health drawn from results of such molecular techniques are limited due to their inability to determine viral infectivity. Ethidium monoazide (EMA) and propidium monoazide (PMA) are capable to penetrate the damaged or compromised capsid of the inactivated viruses and bind to the viral nucleic acids. We assessed whether dye treatment is a suitable approach to improve the ability of qPCR to distinguish between infectious and non-infectious human adenovirus, enterovirus and rotavirus A in surface water of an urban river and sewage before and after UV disinfection. Like the gold standard of cell culture assays, pretreatment EMA-/PMA-qPCR succeeded in removing false positive results which would lead to an overestimation of the viral load if only qPCR of the environmental samples was considered. A dye pretreatment could therefore provide a rapid and relatively inexpensive tool to improve the efficacy of molecular quantification methods in regards to viral infectivity. PMID:27880820

  20. Alternative fecal indicators and their empirical relationships with enteric viruses, Salmonella enterica, and Pseudomonas aeruginosa in surface waters of a tropical urban catchment.

    PubMed

    Liang, L; Goh, S G; Vergara, G G R V; Fang, H M; Rezaeinejad, S; Chang, S Y; Bayen, S; Lee, W A; Sobsey, M D; Rose, J B; Gin, K Y H

    2015-02-01

    The suitability of traditional microbial indicators (i.e., Escherichia coli and enterococci) has been challenged due to the lack of correlation with pathogens and evidence of possible regrowth in the natural environment. In this study, the relationships between alternative microbial indicators of potential human fecal contamination (Bacteroides thetaiotaomicron, Methanobrevibacter smithii, human polyomaviruses [HPyVs], and F+ and somatic coliphages) and pathogens (Salmonella spp., Pseudomonas aeruginosa, rotavirus, astrovirus, norovirus GI, norovirus GII, and adenovirus) were compared with those of traditional microbial indicators, as well as environmental parameters (temperature, conductivity, salinity, pH, dissolved oxygen, total organic carbon, total suspended solids, turbidity, total nitrogen, and total phosphorus). Water samples were collected from surface waters of urban catchments in Singapore. Salmonella and P. aeruginosa had significant positive correlations with most of the microbial indicators, especially E. coli and enterococci. Norovirus GII showed moderately strong positive correlations with most of the microbial indicators, except for HPyVs and coliphages. In general, high geometric means and significant correlations between human-specific markers and pathogens suggest the possibility of sewage contamination in some areas. The simultaneous detection of human-specific markers (i.e., B. thetaiotaomicron, M. smithii, and HPyVs) with E. coli and enterococcus supports the likelihood of recent fecal contamination, since the human-specific markers are unable to regrow in natural surface waters. Multiple-linear-regression results further confirm that the inclusion of M. smithii and HPyVs, together with traditional indicators, would better predict the occurrence of pathogens. Further study is needed to determine the applicability of such models to different geographical locations and environmental conditions. Copyright © 2015, American Society for

  1. Alternative Fecal Indicators and Their Empirical Relationships with Enteric Viruses, Salmonella enterica, and Pseudomonas aeruginosa in Surface Waters of a Tropical Urban Catchment

    PubMed Central

    Liang, L.; Goh, S. G.; Vergara, G. G. R. V.; Fang, H. M.; Rezaeinejad, S.; Chang, S. Y.; Bayen, S.; Lee, W. A.; Sobsey, M. D.; Rose, J. B.

    2014-01-01

    The suitability of traditional microbial indicators (i.e., Escherichia coli and enterococci) has been challenged due to the lack of correlation with pathogens and evidence of possible regrowth in the natural environment. In this study, the relationships between alternative microbial indicators of potential human fecal contamination (Bacteroides thetaiotaomicron, Methanobrevibacter smithii, human polyomaviruses [HPyVs], and F+ and somatic coliphages) and pathogens (Salmonella spp., Pseudomonas aeruginosa, rotavirus, astrovirus, norovirus GI, norovirus GII, and adenovirus) were compared with those of traditional microbial indicators, as well as environmental parameters (temperature, conductivity, salinity, pH, dissolved oxygen, total organic carbon, total suspended solids, turbidity, total nitrogen, and total phosphorus). Water samples were collected from surface waters of urban catchments in Singapore. Salmonella and P. aeruginosa had significant positive correlations with most of the microbial indicators, especially E. coli and enterococci. Norovirus GII showed moderately strong positive correlations with most of the microbial indicators, except for HPyVs and coliphages. In general, high geometric means and significant correlations between human-specific markers and pathogens suggest the possibility of sewage contamination in some areas. The simultaneous detection of human-specific markers (i.e., B. thetaiotaomicron, M. smithii, and HPyVs) with E. coli and enterococcus supports the likelihood of recent fecal contamination, since the human-specific markers are unable to regrow in natural surface waters. Multiple-linear-regression results further confirm that the inclusion of M. smithii and HPyVs, together with traditional indicators, would better predict the occurrence of pathogens. Further study is needed to determine the applicability of such models to different geographical locations and environmental conditions. PMID:25416765

  2. Lactic acid bacteria efficiently protect human and animal intestinal epithelial and immune cells from enteric virus infection.

    PubMed

    Maragkoudakis, Petros A; Chingwaru, Walter; Gradisnik, Lidija; Tsakalidou, Effie; Cencic, Avrelija

    2010-07-31

    This study aimed to examine the potential antiviral activity of lactic acid bacteria (LAB) using animal and human intestinal and macrophage cell line models of non tumor origin. To this end, LAB strains selected on the basis of previous in vitro trials were co-incubated with cell line monolayers, which were subsequently challenged with rotavirus (RV) and transmissible gastroenteritis virus (TGEV). In order to elucidate the possible mechanism responsible for the antiviral activity, the induction of reactive oxygen species (ROS) release as well as the attachment ability of LAB on the cell lines was investigated. Various strains were found to exhibit moderate to complete monolayer protection against viral RV or TGEV disruption. Highest protection effects were recorded with the known probiotics Lactobacillus rhamnosus GG and Lactobacillus casei Shirota against both RV and TGEV, while notable antiviral activity was also attributed to Enterococcus faecium PCK38, Lactobacillus fermentum ACA-DC179, Lactobacillus pentosus PCA227 and Lactobacillus plantarum PCA236 and PCS22, depending on the cell line and virus combination used. A variable increase (of up to 50%) on the release of NO(-) and H(2)O(2) (ROS) was obtained when LAB strains were co-incubated with the cell lines, but the results were found to be LAB strain and cell line specific, apart from a small number of strains which were able to induce strong ROS release in more than one cell line. In contrast, the ability of the examined LAB strains to attach to the cell line monolayers was LAB strain but not cell line specific. Highest attachment ability was observed with L. plantarum ACA-DC 146, L. paracasei subsp. tolerans ACA-DC 4037 and E. faecium PCD71. Clear indications on the nature of the antiviral effect were evident only in the case of the L. casei Shirota against TGEV and with L. plantarum PCA236 against both RV and TGEV. In the rest of the cases, each interaction was LAB-cell line-virus specific, barring general

  3. Disinfection of human enteric viruses in water by copper and silver in combination with low levels of chlorine.

    PubMed Central

    Abad, F X; Pintó, R M; Diez, J M; Bosch, A

    1994-01-01

    The efficacy of copper and silver ions, in combination with low levels of free chlorine (FC), was evaluated for the disinfection of hepatitis A virus (HAV), human rotavirus (HRV), human adenovirus, and poliovirus (PV) in water. HAV and HRV showed little inactivation in all conditions. PV showed more than a 4 log10 titer reduction in the presence of copper and silver combined with 0.5 mg of FC per liter or in the presence of 1 mg of FC per liter alone. Human adenovirus persisted longer than PV with the same treatments, although it persisted significantly less than HRV or HAV. The addition of 700 micrograms of copper and 70 micrograms of silver per liter did not enhance the inactivation rates after the exposure to 0.5 or 0.2 mg of FC per liter, although on some occasions it produced a level of inactivation similar to that induced by a higher dose of FC alone. Virus aggregates were observed in the presence of copper and silver ions, although not in the presence of FC alone. Our data indicate that the use of copper and silver ions in water systems may not provide a reliable alternative to high levels of FC for the disinfection of viral pathogens. Gene probe-based procedures were not adequate to monitor the presence of infectious HAV after disinfection. PV does not appear to be an adequate model viral strain to be used in disinfection studies. Bacteroides fragilis bacteriophages were consistently more resistant to disinfection than PV, suggesting that they would be more suitable indicators, although they survived significantly less than HAV or HRV. Images PMID:8074518

  4. Efficacy of Cinnamaldehyde Against Enteric Viruses and Its Activity After Incorporation Into Biodegradable Multilayer Systems of Interest in Food Packaging.

    PubMed

    Fabra, M J; Castro-Mayorga, J L; Randazzo, W; Lagarón, J M; López-Rubio, A; Aznar, R; Sánchez, G

    2016-06-01

    Cinnamaldehyde (CNMA), an organic compound that gives cinnamon its flavor and odor, was investigated for its virucidal activity on norovirus surrogates, murine norovirus (MNV) and feline calicivirus (FCV), and hepatitis A virus (HAV). Initially, different concentrations of CNMA (0.1, 0.5 and 1 %) were individually mixed with each virus at titers of ca. 6-7 log10 TCID50/ml and incubated 2 h at 4 and 37 °C. CNMA was effective in reducing the titers of norovirus surrogates in a dose-dependent manner after 2 h at 37 °C, while HAV titers were reduced by 1 log10 after treatment with 1 % of CNMA. When incubation time was extended, HAV titers were reduced by 3.4 and 2.7 log10 after overnight incubation at 37 °C with 1 and 0.5 % of CNMA, respectively. Moreover, this paper analyzed, for the first time, the antiviral activity of adding an active electrospun interlayer based on zein and CNMA to a polyhydroxybutyrate packaging material (PHB) in a multilayer form. Biodegradable multilayer systems prepared with 2.60 mg/cm(2) (~9.7 %) of CNMA completely inactivated FCV according to ISO 22196:2011, while MNV titers were reduced by 2.75 log10. When the developed multilayer films were evaluated after one month of preparation or at 25 °C, the antiviral activity was reduced as compared to freshly prepared multilayer films evaluated at 37 °C. The results show the excellent potential of this system for food contact applications as well as for active packaging technologies in order to maintain or extend food quality and safety.

  5. UV induction of coliphage 186: Prophage induction as an SOS function

    SciTech Connect

    Lamont, I.; Brumby, A.M.; Egan, J.B.

    1989-07-01

    Our results show that UV induction of the 186 prophage depends upon the phage function Tum, with the mutant phenotype of turbid plaques on mitomycin plates and the expression of which is controlled by the host LexA protein. Tum function, encoded near the right-hand end of the coliphage 186 chromosome, is under the control of promoter p95. This promoter is overlapped by a sequence closely related to the consensus sequence of the LexA-binding site. It is proposed that inactivation of LexA after UV irradiation (or by genetic means) leads to prophage induction by permitting expression of Tum which, by unknown means, induces prophage. This mechanism is basically different from that seen with the UV-inducible lambdoid coliphages, which are not regulated by LexA.

  6. Radiation enteritis

    MedlinePlus

    Radiation enteropathy; Radiation-induced small bowel injury; Post-radiation enteritis ... Radiation therapy uses high-powered x-rays, particles, or radioactive seeds to kill cancer cells. The therapy ...

  7. Differential MS2 Interaction with Food Contact Surfaces Determined by Atomic Force Microscopy and Virus Recovery.

    PubMed

    Shim, J; Stewart, D S; Nikolov, A D; Wasan, D T; Wang, R; Yan, R; Shieh, Y C

    2017-10-06

    Enteric viruses are recognized as a major etiology for U.S. foodborne infections. These viruses are easily transmitted via food contact surfaces. Understanding virus interactions with surfaces may facilitate developing improved means for their removal thus reducing transmission. Using MS2 coliphage as a virus surrogate, the strength of virus adhesion onto common food processing and preparation surfaces of polyvinyl chloride (PVC) and glass were assessed by atomic force microscopy (AFM) and virus recovery assays. The interaction forces of MS2 to various surfaces were measured from adhesion peaks in force-distance curves registered using a spherical bead probe pre-conjugated with MS2 particles. MS2 in PBS demonstrated approximately 5 times less adhesion force to glass [0.54 nano Newton (nN)] than to PVC (2.87 nN), P < 0.0001. This is consistent with the virus recovery assay, which shows 1.4-fold fewer virus plaque-forming units (PFU) recovered from PVC than from glass after identical inoculation and 24 hr-cold storage. The difference in adhesion was ascribed to both the intrinsic chemical characteristics and the substrate surface porosity, smooth glass vs. porous PVC. Incorporating a surfactant micellar solution of sodium dodecyl sulfate (SDS) into the PBS medium reduced the adhesion force of PVC (∼ 0 nN), and consistently increased virus recovery by 19%. With direct and indirect evidence of virus adhesion, this study illustrated a two-way assessment of virus adhesion for the initial evaluation of a potential means in mitigating virus adhesion to food contact surfaces.IMPORTANCE Spread of foodborne viruses is likely associated with their adhesive nature. Virus attachment on food contact surfaces has been evaluated by quantitating their recoveries from inoculated surfaces. This study aims to evaluate the microenvironment where nano-sized viruses interact with food contact surfaces, and to compare the virus adhesion differences using atomic force microscopy (AFM

  8. ECHO virus

    MedlinePlus

    ... page: //medlineplus.gov/ency/article/001340.htm ECHO virus To use the sharing features on this page, please enable JavaScript. Enteric cytopathic human orphan (ECHO) viruses are a group of viruses that can lead ...

  9. Moving beyond classical markers of water quality: detection of enteric viruses and genotoxicity in water of the Sinos River.

    PubMed

    Bergamaschi, B; Rodrigues, M T; Silva, J V S; Kluge, M; Luz, R B; Fleck, J D; Bianchi, E; Silva, L B; Spilki, F R

    2015-05-01

    It is well recognized that the classical biological and chemical markers of environmental pollution do not necessarily indicate the presence or absence of emerging threats to public health, such as waterborne viruses and genotoxicants. The purpose of this preliminary study was to evaluate the presence of material of enteroviruses (EV), rotavirus (RV) and adenovirus (AdV) and genotoxicity in water samples from points of routine monitoring of water quality in the main course of the Sinos River. The points are classified into different levels of pollution in accordance to the Brazilian federal regulations. Viral genomes from EV, AdV were detected in two of the 4 collection points regardless of the level of urbanisation of the surrounding areas. In contrast, genotoxicity was not observed in piava (Leporinus obtusidens) fingerlings cultivated on these same water samples. Results were compared with classical physical, chemical and microbiological parameters. There was no clear evidence of association between any of the classical markers and the presence of viral genomes in the water samples tested.

  10. Simple and Rapid F+ Coliphage Culture, Latex Agglutination, and Typing Assay To Detect and Source Track Fecal Contamination▿

    PubMed Central

    Love, David C.; Sobsey, Mark D.

    2007-01-01

    Simple, rapid, and reliable fecal indicator tests are needed to better monitor and manage ambient waters and treated waters and wastes. Antibody-coated polymeric bead agglutination assays can fulfill these needs and are inexpensive and portable for nonlaboratory settings, and their reagents can be stored at ambient temperatures for months. The goal of this study was to develop, optimize, and validate a rapid microbial water quality monitoring assay using F+ coliphage culture, latex agglutination, and typing (CLAT) to detect F+ coliphage groups with antibody-coated particles. Rapid (180 min) F+ coliphage culture gave comparable results to those with the 16- to 24-h culture time used in EPA method 1601 and was amenable to CLAT assay detection. CLAT was performed on a cardboard card by mixing a drop of coliphage enrichment culture with a drop of antibody-coated polymeric beads as the detection reagent. Visual agglutination or clumping of positive samples occurred in <60 seconds. The CLAT assay had sensitivities of 96.4% (185/192 samples) and 98.2% (161/164 samples) and specificities of 100% (34/34 samples) and 97.7% (129/132 samples) for F+ RNA and DNA coliphages, respectively. CLAT successfully classified F+ RNA coliphages into serogroups typically obtained from human (groups II and III) and animal (groups I and IV) fecal sources, in similar proportions to those obtained with a nucleic acid hybridization assay. This novel group-specific antibody-based particle agglutination technique for rapid and simple detection and grouping of F+ coliphages provides a new and improved tool for monitoring the microbiological quality of drinking, recreational, shellfishing, and other waters. PMID:17483282

  11. Enteric Campylobacteria and RNA Viruses Associated with Healthy and Diarrheic Humans in the Chinook Health Region of Southwestern Alberta, Canada ▿

    PubMed Central

    Inglis, G. Douglas; Boras, Valerie F.; Houde, Alain

    2011-01-01

    The presence of Campylobacter species and enteric RNA viruses in stools from diarrheic (n = 442) and healthy (n = 58) humans living in southwestern Alberta was examined (May to October 2005). A large number of diarrheic individuals who were culture negative for C. jejuni (n = 54) or C. coli (n = 19) were PCR positive for these taxa. Overall detection rates for C. jejuni and C. coli in diarrheic stools were 29% and 5%, respectively. In contrast, 3% and 0% of stools from healthy humans were positive for these taxa, respectively. Infection with C. jejuni was endemic over the study period. However, there was no difference in infection rates between individuals living in urban or rural locations. Stools from a large number of diarrheic (74%) and healthy (88%) individuals were positive for Campylobacter DNA. The prevalence rates of C. concisus, C. curvus, C. fetus, C. gracilis, C. helveticus, C. hominis, C. hyointestinalis, C. mucosalis, C. showae, C. sputorum, and C. upsaliensis DNA were either not significantly different or were significantly lower in stools from diarrheic than from healthy individuals. No C. lanienae or C. lari DNA was detected. Stools from 4% and 0% of diarrheic and healthy humans, respectively, were positive for rotavirus, sapovirus, or norovirus (GI/GII). Our results showed a high prevalence of diarrheic individuals living in southwestern Alberta who were infected by C. jejuni and, to a lesser extent, by C. coli. However, other Campylobacter species, norovirus, rotavirus, sapovirus, and bovine enteric calicivirus were either inconsequential pathogens during the study period or are not pathogens at all. PMID:21106791

  12. Complete genome sequence of virulent duck enteritis virus (DEV) strain 2085 and comparison with genome sequences of virulent and attenuated DEV strains.

    PubMed

    Wang, Jichun; Höper, Dirk; Beer, Martin; Osterrieder, Nikolaus

    2011-09-01

    We here report the complete genome sequence of the duck enteritis virus (DEV) wild-type strain 2085, an avian herpesvirus (GenBank ID: JF999965). The nucleotide sequence was derived from the 2085 genome cloned as an infectious bacterial artificial chromosome (BAC) clone. The DEV 2085 genome is 160,649-bp in length and encodes 78 predicted open reading frames (ORFs), a number identical to that identified for the attenuated DEV VAC strain (GenBank ID: EU082088.2). Comparison of the genome sequences DEV 2085 and VAC with partial sequences of the virulent CHv strain and the attenuated strain Clone-03 was carried out to identify nucleotide or amino acid polymorphisms that potentially contribute to DEV virulence. No amino acid changes were identified in 24 of the 78 ORFs, a result indicating high conservation in DEV independently of strain origin or virulence. In addition, 39 ORFs contain non-synonymous nucleotide substitutions, while 15 ORFs had nucleotide insertions or deletions, frame-shift mutations and/or non-synonymous nucleotide substitutions with an effect on ORF initiation or termination. In 7 of the 15 ORFs with high and 27 of the 39 ORFs with low variability, polymorphisms were exclusively found in DEV 2085, a finding that likely is a result of a different origin of 2085 (Europe) or VAC, Clone-03 and CHv (Eastern Asia). Five ORFs (UL2, UL12, US10, UL47 and UL41) with polymorphisms were identical between the virulent DEV 2085 and CHv but different from VAC or Clone-03. They, individually or in combination, may therefore represent DEV virulence factors. Our comparative analysis of four DEV sequences provides a comprehensive overview of DEV genome structure and identifies ORFs that are changed during serial virus passage.

  13. Radiation enteritis.

    PubMed

    Harb, Ali H; Abou Fadel, Carla; Sharara, Ala I

    2014-01-01

    Radiation enteritis continues to be a major health concern in recipients of radiation therapy. The incidence of radiation enteritis is expected to continue to rise during the coming years paralleling the unprecedented use of radiotherapy in pelvic cancers. Radiation enteritis can present as either an acute or chronic syndrome. The acute form presents within hours to days of radiation exposure and typically resolves within few weeks. The chronic form may present as early as 2 months or as long as 30 years after exposure. Risk factors can be divided into patient and treatment-related factors. Chronic radiation enteritis is characterized by progressive obliterative endarteritis with exaggerated submucosal fibrosis and can manifest by stricturing, formation of fistulae, local abscesses, perforation, and bleeding. In the right clinical context, diagnosis can be confirmed by cross-sectional imaging, flexible or video capsule endoscopy. Present treatment strategies are directed primarily towards symptom relief and management of emerging complications. Recently, however, there has been a shift towards rational drug design based on improved understanding of the molecular basis of disease in an effort to limit the fibrotic process and prevent organ damage.

  14. Development and evaluation of an immunochromatographic strip test based on the recombinant UL51 protein for detecting antibody against duck enteritis virus

    PubMed Central

    2010-01-01

    Background Duck enteritis virus (DEV) infection causes substantial economic losses to the worldwide duck-producing areas. The monitoring of DEV-specific antibodies is a key to evaluate the effect of DEV vaccine and develop rational immunization programs. Thus, in this study, an immunochromatographic strip (ICS) test was developed for detecting DEV serum antibodies. Results The ICS test is based on membrane chromatography, and uses both the purified recombinant UL51 protein conjugated with colloidal gold and goat anti-rabbit IgG conjugated with colloidal gold as tracers, the purified recombinant UL51 protein as the capture reagent at the test line, and rabbit IgG as the capture reagent at the control line. The specificity of the ICS was evaluated by sera against DEV, Duck hepatitis virus (DHV), Riemerella anatipestifer (RA), Duck E. coli, Muscovy duck parvovirus (MPV), or Duck Influenza viruses (DIV). Only sera against DEV showed the strong positive results. In order to determine the sensitivity of the ICS, anti-DEV serum diluted serially was tested, and the minimum detection limit of 1:128 was obtained. The ICS components, which are provided in a sealed package, require no refrigeration and are stable for 12 months. To evaluate the effect of the ICS, 110 duck serum samples collected from several non-immune duck flocks were simultaneously tested by the ICS test, enzyme-linked immunosorbent assay (ELISA) and neutralization test (NT). The results showed that the sensitivity of the ICS test was almost consistent with ELISA and much higher than NT, has low cost, and is rapid (15 min) and easy to perform with no requirement of specialized equipment, reagent or technicians. Conclusions In this work, we successfully developed a simple and rapid ICS test for detecting DEV serum antibodies for the first time. The ICS test was high specific and sensitive for the rapid detection of anti-DEV antibodies, and has great potential to be used for the serological surveillance of DEV

  15. Enhanced Inactivation of Escherichia coli and MS2 Coliphage by Cupric Ion in the Presence of Hydroxylamine: Dual Microbicidal Effects.

    PubMed

    Kim, Hyung-Eun; Nguyen, Thuy T M; Lee, Hongshin; Lee, Changha

    2015-12-15

    The inactivation of Escherichia coli and MS2 coliphage by Cu(II) is found to be significantly enhanced in the presence of hydroxylamine (HA). The addition of a small amount of HA (i.e., 5-20 μM) increased the inactivation efficacies of E. coli and MS2 coliphage by 5- to 100-fold, depending on the conditions. Dual effects were anticipated to enhance the biocidal activity of Cu(II) by the addition of HA, viz. (i) the accelerated reduction of Cu(II) into Cu(I) (a stronger biocide) and (ii) the production of reactive oxidants from the reaction of Cu(I) with dissolved oxygen (evidenced by the oxidative transformation of methanol into formaldehyde). Deaeration enhanced the inactivation of E. coli but slightly decreased the inactivation efficacy of MS2 coliphage. The addition of 10 μM hydrogen peroxide (H2O2) greatly enhanced the MS2 inactivation, whereas the same concentration of H2O2 did not significantly affect the inactivation efficacy of E. coli Observations collectively indicate that different biocidal actions lead to the inactivation of E. coli and MS2 coliphage. The toxicity of Cu(I) is dominantly responsible for the E. coli inactivation. However, for the MS2 coliphage inactivation, the oxidative damage induced by reactive oxidants is as important as the effect of Cu(I).

  16. Distribution of coliphages against four e. Coli virotypes in hospital originated sewage sample and a sewage treatment plant in bangladesh.

    PubMed

    Alam, Muntasir; Farzana, Tasmia; Ahsan, Chowdhury Rafiqul; Yasmin, Mahmuda; Nessa, Jamalun

    2011-06-01

    The distribution of coliphages infecting different Escherichia coli virotypes (EHEC, EIEC, EPEC, ETEC) and an avirulent strain (K-12) in sewage system of a hospital and a sewage treatment plant (STP) was investigated by culture-based agar overlay methods. Coliphages were found in all the samples except stool dumping site in the sewage system of the hospital and lagoon of the STP. Bacteriophage count (pfu/ml) infecting E. coli strains showed the following ascending pattern (EHEC < EIEC < EPEC < ETEC < E coli K-12) in all the collected samples except one. Phages capable of infecting avirulent E. coli K-12 strains were present in the highest number among all the examined locations. Phages specific for E. coli K-12 presented high diversity in plaque size on the bacterial lawn. Virulent E. coli specific coliphages rarely produced plaques with diameter of 1-2 mm or over. Conventional agar overlay method was found to be not satisfactory for phage community analysis from primary stool dumping site of the hospital, probably due to the presence of high concentration of antimicrobial substances. The gradual decrease seen in the five groups of coliphage quantity with the ongoing treatment process and then the absolute absence of coliphages in the outlet of the examined treatment plant is indicative of the usefulness of the treatment processes practiced there.

  17. Chapter A7. Section 7.2. Fecal Indicator Viruses

    USGS Publications Warehouse

    Bushon, Rebecca N.

    2003-01-01

    More than 100 types of human pathogenic viruses may be present in fecal-contaminated waters. Coliphages are used as indicators of virus-related fecal contamination and of the microbiological quality of waters. This report provides information on the equipment, sampling protocols, and laboratory methods that are in standard use by U.S. Geological Survey (USGS) personnel for the collection of data on fecal indicator viruses.

  18. Campylobacter enteritis.

    PubMed Central

    Karmali, M A; Fleming, P C

    1979-01-01

    Campylobacter jejuni/coli has recently become recognized as a common bacterial cause of diarrhea. Infection can occur at any age. The usual incubation period of campylobacter enteritis is 2 to 5 days. Fever, diarrhea and abdominal pain are the most common clinical features. The stools frequently contain mucus and, a few days after the onset of symptoms, frank blood. Significant vomiting and dehydration are uncommon. A rapid presumptive laboratory diagnosis may be made during the acute phase of the illness by direct phase-contrast microscopy of stools. Isolation of the organism from stools requires culture in a selective medium containing antibiotics and incubation under reduced oxygen tension at 42 degrees C. The organism persists in the stools of untreated patients for up to 7 weeks following the onset of symptoms. Erythromycin may produce a rapid clinical and bacteriologic cure, and should be used to treat moderately to severely ill patients as well as patients with compromised host defences. The emergence of erythromycin-resistant strains requires close monitoring. The epidemiologic aspects of campylobacter enteritis will be fully understood only when methods become available for differentiating strains of C. jejuni/coli. The historical background and current knowledge of campylobacter enteritis are reviewed in this paper. Images FIG. 1 PMID:455209

  19. Detection of somatic coliphages through a bioluminescence assay measuring phage mediated release of adenylate kinase and adenosine 5'-triphosphate.

    PubMed

    Guzmán Luna, Carolina; Costán-Longares, Ana; Lucena, Francisco; Jofre, Joan

    2009-10-01

    The feasibility of detecting somatic coliphages by phage infection of Escherichia coli WG5 and measurement of phage propagation by the lysis mediated release of the bacterial host adenylate kinase (AK) and adenosine 5'-triphosphate (ATP) detected by a bioluminescent signal was evaluated. After 2h of incubation, all cultures infected with reference bacteriophage phiX174 showed a significant increase in the bioluminescent signal, even with number of phages as low as less of 10 plaque forming units (PFU). Naturally occurring somatic coliphages ensured a significant bioluminescent signal after 3h of infection when >10 PFU were inoculated. These results indicate that an easy and reliable method to detect low numbers of coliphages in less than 3h is feasible.

  20. Transduction of Gal+ by Coliphage T1 III. Requirement for Transcription and Translation in Recipient Cells

    PubMed Central

    Drexler, Henry

    1973-01-01

    A 10- to 15-min derepression of a λ prophage in a Gal− recipient during early infection with a transducing lysate of coliphage T1am will cause an increase in the efficiency of transduction of Gal+. An increase in the efficiency of transduction occurs when the donor is either nonlysogenic or lysogenic for λ; the increase is blocked by rifampin or chloramphenicol. With strain R901 it has been shown that efficient transduction can be blocked by treatment with rifampin after all chloramphenicol-sensitive steps have occurred. PMID:4587757

  1. Proteins responsible for lysogenic conversion caused by coliphages N15 and phi80 are highly homologous.

    PubMed Central

    Vostrov, A A; Vostrukhina, O A; Svarchevsky, A N; Rybchin, V N

    1996-01-01

    Lysogenic conversion caused by lambdoid bacteriophage phi80 and that caused by coliphage N15 have similar characteristics, suggesting that similarities in their cor genes and Cor proteins are responsible for this effect. Here we present the nucleotide sequence of the N15 cor gene. The N15 cor gene homolog was found in the phi80 cor region, but in the opposite direction of that of the open reading frame to which the phi80 cor gene had previously been assigned (M. Matsumoto, N. Ichikawa, S. Tanaka, T. Morita, and A. Matsushiro, Jpn. J. Genet. 60:475-483, 1985). PMID:8631731

  2. Molecular testing for viral and bacterial enteric pathogens: gold standard for viruses, but don't let culture go just yet?

    PubMed

    Bloomfield, Maxim G; Balm, Michelle N D; Blackmore, Timothy K

    2015-04-01

    Contemporary diagnostic microbiology is increasingly adopting molecular methods as front line tests for a variety of samples. This trend holds true for detection of enteric pathogens (EP), where nucleic acid amplification tests (NAAT) for viruses are well established as the gold standard, and an increasing number of commercial multi-target assays are now available for bacteria and parasites. NAAT have significant sensitivity and turnaround time advantages over traditional methods, potentially returning same-day results. Multiplex panels offer an attractive 'one-stop shop' that may provide workflow and cost advantages to laboratories processing large sample volumes. However, there are a number of issues which need consideration. Reflex culture is required for antibiotic susceptibility testing and strain typing when needed for food safety and other epidemiological investigations. Surveillance systems will need to allow for differences in disease incidence due to the enhanced sensitivity of NAAT. Laboratories should be mindful of local epidemiology when selecting which pathogens to include in multiplex panels, and be thoughtful regarding which pathogens will not be detected. Multiplex panels may not be appropriate in certain situations, such as hospital-onset diarrhoea, where Clostridium difficile testing might be all that is required, and laboratories may wish to retain the flexibility to run single tests in such situations. The clinical impact of rapid results is also likely to be relatively minor, as infective diarrhoea is a self-limiting illness in the majority of cases. Laboratories will require strategies to assist users in the interpretation of the results produced by NAAT, particularly where pathogens are detected at low levels with uncertain clinical significance. These caveats aside, faecal NAAT are increasingly being used and introduce a new era of diagnosis of gastrointestinal infection.

  3. Enteric diseases.

    PubMed

    William, D C

    1981-03-01

    This paper focuses on the growing incidence of the "new" sexually transmitted parasitic enteric diseases: amebiasis and giardiasis. Two major behavioral factors influence transmission of these diseases in the gay community: 1) oral-rectal and oral-genital sexual contact and 2) multiple sexual partners. Pathogenesis, clinical signs and symptoms and complications associated with these diseases are also discussed. Although many patients present with severe symptoms, approximately 50 percent of infected patients are asymptomatic. The diagnostic procedures include a fresh purged stool examination, nonpurged warm stool examinations, and/or cold stool specimens. The serologic tests (serum precipitin and hemagglutination) are of value only in severely symptomatic invasive disease. Different treatment regimens and their side effects are discussed. Drugs used in the treatment of the enteric diseases include diiodohydroxyquin, metronidazole, furamide, and paromomycin. Only 60 to 70 percent of patients with the disease are cured, and 30 to 40 percent of patients require multiple courses of therapy. Test-of-cure examinations, ideally consisting of one or two purged stool specimens, are necessary in follow-up management.

  4. Application of microbial risk assessment to the development of standards for enteric pathogens in water used to irrigate fresh produce.

    PubMed

    Stine, Scott W; Song, Inhong; Choi, Christopher Y; Gerba, Charles P

    2005-05-01

    Microbial contamination of the surfaces of cantaloupe, iceberg lettuce, and bell peppers via contact with irrigation water was investigated to aid in the development of irrigation water quality standards for enteric bacteria and viruses. Furrow and subsurface drip irrigation methods were evaluated with the use of nonpathogenic surrogates, coliphage PRD1, and Escherichia coli ATCC 25922. The concentrations of hepatitis A virus (HAV) and Salmonella in irrigation water necessary to achieve a 1:10,000 annual risk of infection, the acceptable level of risk used for drinking water by the U.S. Environmental Protection Agency, were calculated with a quantitative microbial risk assessment approach. These calculations were based on the transfer of the selected nonpathogenic surrogates to fresh produce via irrigation water, as well as previously determined preharvest inactivation rates of pathogenic microorganisms on the surfaces of fresh produce. The risk of infection was found to be variable depending on type of crop, irrigation method, and days between last irrigation event and harvest. The worst-case scenario, in which produce is harvested and consumed the day after the last irrigation event and maximum exposure is assumed, indicated that concentrations of 2.5 CFU/100 ml of Salmonella and 2.5 x 10(-5) most probable number per 100 ml of HAV in irrigation water would result in an annual risk of 1:10,000 when the crop was consumed. If 14 days elapsed before harvest, allowing for die-off of the pathogens, the concentrations were increased to 5.7 x 10(3) Salmonella per 100 ml and 9.9 x 10(-3) HAV per 100 ml.

  5. Toxicity of zinc to fungi, bacteria, and coliphages: influence of chloride ions.

    PubMed Central

    Babich, H; Stotzky, G

    1978-01-01

    A 10 mM concentration of Zn2+ decreased the survival of Escherichia coli; enhanced the survival of Bacillus cereus; did not significantly affect the survival of Pseudomonas aeruginosa, Norcardia corallina, and T1, T7, P1, and phi80 coliphages; completely inhibited mycelial growth of Rhizoctonia solani; and reduced mycelial growth of Fusarium solani, Cunninghamella echinulata, Aspergillus niger, and Trichoderma viride. The toxicity of zinc to the fungi, bacteria, and coliphages was unaffected, lessened, or increased by the addition of high concentrations of NaCl. The increased toxicity of zinc in the presence of high concentrations of NaCl was not a result of a synergistic interaction between Zn2+ and elevated osmotic pressures but of the formation of complex anionic ZnCl species that exerted greater toxicities than did cationic Zn2+. Conversely, the decrease in zinc toxicity with increasing concentrations of NaCl probably reflected the decrease in the levels of Zn2+ due to the formation of Zn-Cl species, which was less inhibitory to these microbes than was Zn2+. A. niger tolerated higher concentrations of zinc in the presence of NaCl at 37 than at 25 degrees C. PMID:736544

  6. Enteric Fever.

    PubMed

    Kumar, Praveen; Kumar, Ruchika

    2017-03-01

    Enteric fever is an important public-health problem in India. The clinical presentation of typhoid fever is very variable, ranging from fever with little other morbidities to marked toxemia and associated multisystem complications. Fever is present in majority of patients (>90 %) irrespective of their age group. Mortality is higher in younger children. Blood culture remains gold standard for diagnosis. Widal test has low sensitivity and specificity but may be used in second week to support the diagnosis. Emerging resistance to several antibiotics should be kept in mind when selecting antibiotics or revising the treatment. The key preventive strategies are safe water, safe food, personal hygiene, and appropriate sanitation. Vaccination is an additional effective tool for prevention.

  7. Accumulation of enteric bacteriophage in fresh water sediments.

    PubMed

    Skraber, Sylvain; Schijven, Jack; Italiaander, Ronald; de Roda Husman, Ana Maria

    2009-09-01

    Our study aimed to assess the accumulation of bacteriophages in sandy and clayey fresh water sediments. All of the 24 natural fresh water sediments were positive for somatic and F-specific phages, though their concentrations in the overlying water were undetectable in 1 and 11 samples, respectively, out of 24, corresponding to 4 and 46% for somatic and F-specific phages, respectively. Based on the sediment-to-water ratios, F-specific phages accumulate over 100 times more than the somatic coliphages in clayey sediments. Inactivation of bacteriophages in clayey and sandy sediments over a 1-month period at 15 degrees C was negligible. Our data suggest that persistence of deposited viruses in fresh water sediments leads to accumulation and the findings call for additional investigations on the fate of entrapped pathogenic viruses.

  8. Evaluation of a simple and cost effective filter paper-based shipping and storage medium for environmental sampling of F-RNA coliphages.

    PubMed

    Pérez-Méndez, A; Chandler, J C; Bisha, B; Coleman, S M; Zhanqiang, S; Gang, Y; Goodridge, L D

    2013-12-01

    Male specific RNA (F-RNA) coliphages are used as indicators of fecal contamination and for source tracking. However, collecting fecal samples for analysis from remote sites is problematic due to the need for an uninterrupted cold chain to guarantee sample suitability for downstream molecular detection of these coliphages. Here, we investigated the feasibility of using filter paper as a collection and storage vehicle for F-RNA coliphages. Various concentrations (10(1) to 10(4)pfu) of two F-RNA coliphages, MS2 and Qβ, were prepared in lambda buffer or a 10% bovine manure slurry, spotted onto filter paper disks, dried, and maintained at 37 °C for up to 37 days. Nucleic acids were extracted from the spotted filter paper disks at 0, 6, 13, and 37 days post inoculation and analyzed by real time RT-PCR. F-RNA coliphages at concentrations of 10(2)pfu/filter paper unit were readily detected, and only a slight decrease in nucleic acid detection was observed over time. Furthermore, the sensitivity of real time RT-PCR detection of the F-RNA coliphage RNA was similar between the developed filter paper sampling methodology and traditional cold storage. These results indicate that filter paper is a suitable storage and transport medium for F-RNA coliphages when refrigeration is not possible.

  9. Sequential concentration of bacteria and viruses from marine waters using a dual membrane system.

    PubMed

    Abdelzaher, A M; Solo-Gabriele, H M; Wright, M E; Palmer, C J

    2008-01-01

    The ability to rapidly and effectively concentrate diverse microbes is an essential component for monitoring water quality at recreational beaches. The purpose of this study was to develop a 0.45 microm pore size dual membrane system, which can sequentially concentrate both viruses and bacteria. The top PVDF membrane was used to filter bacteria by physical straining while the bottom HA membrane retained viruses through adsorption. The recovery of this system was assessed using test organisms: enterococci and somatic coliphage. Volumes of 100 to 400 mL of unspiked and sewage-spiked beach water were filtered through both types of membranes. The PVDF membrane recovered statistically equivalent amounts of enterococci when compared to traditional membranes. All of the coliphage passed through the PVDF membrane, while 22% passed through the HA membrane. Increasing the volume from 100 to 400 mL did not significantly influence recoveries. Up to 35% of coliphage was eluted from the bottom membrane using beef extract solution. Rinsing bottom membranes with 0.5 mmol L(-1) H(2)S0(4) was found to deactivate somatic coliphage. This research demonstrates the potential of using a dual membrane adsorption system for the concentration of both bacteria and viruses from recreational beaches. A proposed bi-layer filtration system can be designed for simultaneous bacteria and virus filtration. Future experiments should focus on measurements utilizing additional bacteria and viruses.

  10. Modeling the infection dynamics of bacteriophages in enteric Escherichia coli: estimating the contribution of transduction to antimicrobial gene spread.

    PubMed

    Volkova, Victoriya V; Lu, Zhao; Besser, Thomas; Gröhn, Yrjö T

    2014-07-01

    Animal-associated bacterial communities are infected by bacteriophages, although the dynamics of these infections are poorly understood. Transduction by bacteriophages may contribute to transfer of antimicrobial resistance genes, but the relative importance of transduction among other gene transfer mechanisms is unknown. We therefore developed a candidate deterministic mathematical model of the infection dynamics of enteric coliphages in commensal Escherichia coli in the large intestine of cattle. We assumed the phages were associated with the intestine and were predominantly temperate. Model simulations demonstrated how, given the bacterial ecology and infection dynamics, most (>90%) commensal enteric E. coli bacteria may become lysogens of enteric coliphages during intestinal transit. Using the model and the most liberal assumptions about transduction efficiency and resistance gene frequency, we approximated the upper numerical limits ("worst-case scenario") of gene transfer through specialized and generalized transduction in E. coli by enteric coliphages when the transduced genetic segment is picked at random. The estimates were consistent with a relatively small contribution of transduction to lateral gene spread; for example, generalized transduction delivered the chromosomal resistance gene to up to 8 E. coli bacteria/hour within the population of 1.47 × 10(8) E. coli bacteria/liter luminal contents. In comparison, the plasmidic blaCMY-2 gene carried by ~2% of enteric E. coli was transferred by conjugation at a rate at least 1.4 × 10(3) times greater than our generalized transduction estimate. The estimated numbers of transductants varied nonlinearly depending on the ecology of bacteria available for phages to infect, that is, on the assumed rates of turnover and replication of enteric E. coli.

  11. Modeling the Infection Dynamics of Bacteriophages in Enteric Escherichia coli: Estimating the Contribution of Transduction to Antimicrobial Gene Spread

    PubMed Central

    Lu, Zhao; Besser, Thomas; Gröhn, Yrjö T.

    2014-01-01

    Animal-associated bacterial communities are infected by bacteriophages, although the dynamics of these infections are poorly understood. Transduction by bacteriophages may contribute to transfer of antimicrobial resistance genes, but the relative importance of transduction among other gene transfer mechanisms is unknown. We therefore developed a candidate deterministic mathematical model of the infection dynamics of enteric coliphages in commensal Escherichia coli in the large intestine of cattle. We assumed the phages were associated with the intestine and were predominantly temperate. Model simulations demonstrated how, given the bacterial ecology and infection dynamics, most (>90%) commensal enteric E. coli bacteria may become lysogens of enteric coliphages during intestinal transit. Using the model and the most liberal assumptions about transduction efficiency and resistance gene frequency, we approximated the upper numerical limits (“worst-case scenario”) of gene transfer through specialized and generalized transduction in E. coli by enteric coliphages when the transduced genetic segment is picked at random. The estimates were consistent with a relatively small contribution of transduction to lateral gene spread; for example, generalized transduction delivered the chromosomal resistance gene to up to 8 E. coli bacteria/hour within the population of 1.47 × 108 E. coli bacteria/liter luminal contents. In comparison, the plasmidic blaCMY-2 gene carried by ∼2% of enteric E. coli was transferred by conjugation at a rate at least 1.4 × 103 times greater than our generalized transduction estimate. The estimated numbers of transductants varied nonlinearly depending on the ecology of bacteria available for phages to infect, that is, on the assumed rates of turnover and replication of enteric E. coli. PMID:24814786

  12. Hand-mouth transfer and potential for exposure to E. coli and F+ coliphage in beach sand, Chicago, Illinois

    USGS Publications Warehouse

    Whitman, R.L.; Przybyla-Kelly, K.; Shively, D.A.; Nevers, M.B.; Byappanahalli, M.N.

    2009-01-01

    Beach sand contains fecal indicator bacteria, often in densities greatly exceeding the adjacent swimming waters. We examined the transferability of Escherichia coli and F+ coliphage (MS2) from beach sand to hands in order to estimate the potential subsequent health risk. Sand with high initial E. coli concentrations was collected from a Chicago beach. Individuals manipulated the sand for 60 seconds, and rinse water was analysed for E. coli and coliphage. E. coli densities transferred were correlated with density in sand rather than surface area of an individual's hand, and the amount of coliphage transferred from seeded sand was different among individuals. In sequential rinsing, percentage reduction was 92% for E. coli and 98% for coliphage. Using dose-response estimates developed for swimming water, it was determined that the number of individuals per thousand that would develop gastrointestinal symptoms would be 11 if all E. coli on the fingertip were ingested or 33 if all E. coli on the hand were ingested. These results suggest that beach sand may be an important medium for microbial exposure; bacteria transfer is related to initial concentration in the sand; and rinsing may be effective in limiting oral exposure to sand-borne microbes of human concern.

  13. A Reverse Transcription-PCR Assay to Distinguish the Four Genogroups of Male-Specific (F+) RNA Coliphages

    EPA Science Inventory

    Goals of reducing fecal contamination in recreational, drinking, shellfishing and other waters and accurately assessing risk from exposure can best be attained if tools to distinguish between sources of pollution are available. The male-specific RNA coliphage (FRNA) genogroups h...

  14. A Reverse Transcription-PCR Assay to Distinguish the Four Genogroups of Male-Specific (F+) RNA Coliphages

    EPA Science Inventory

    Goals of reducing fecal contamination in recreational, drinking, shellfishing and other waters and accurately assessing risk from exposure can best be attained if tools to distinguish between sources of pollution are available. The male-specific RNA coliphage (FRNA) genogroups h...

  15. Persistence of somatic and F-specific coliphages, potential indicators of fecal contamination, on spinach foliar tissue

    USDA-ARS?s Scientific Manuscript database

    Recent outbreaks of foodborne illness have been linked to consumption of fresh leafy greens. E. coli is commonly used as the indicator microorganism for fecal contamination on leafy greens. However, alternative microorganisms, such as coliphages, may deserve consideration as indicators of fecal cont...

  16. Persistence of somatic and F-specific coliphages, potential indicators of fecal contamination, on spinach foliar tissue

    USDA-ARS?s Scientific Manuscript database

    Introduction: Recent outbreaks of foodborne illness have been linked to consumption of fresh leafy greens. E. coli is commonly used as the indicator microorganism for fecal contamination on growing leafy greens. However, alternative microorganisms, such as coliphages, may be an alternative indicat...

  17. Construction of recombinant Newcastle disease virus expressing the S1 protein of Turkey enteric coronavirus for use as a bivalent vaccine

    USDA-ARS?s Scientific Manuscript database

    Turkey enteric coronavirus (TCoV) causes a contagious form of enteritis in turkeys, generally recognized in the field by outward signs including diarrhea and decreased weight gain, resulting in severe economic losses for the poultry industry in the US. To date there is no commercial vaccine availab...

  18. A single amino acid change and truncated TM are sufficient for simian immunodeficiency virus to enter cells using CCR5 in a CD4-independent pathway

    PubMed Central

    Bonavia, A.; Bullock, B.T.; Gisselman, K.M.; Margulies, B.J.; Clements, J.E.

    2009-01-01

    Entry of HIV and SIV into susceptible cells is mediated by CD4 and chemokine receptors, which act as coreceptors. To study cell entry of SIV, we constructed a cell line, xKLuSIV, derived from non-susceptible human K562 cells, that express the firefly luciferase reporter gene under control of a minimal SIV long terminal repeat (LTR). Using these susceptible cells, we studied the entry of a well-characterized molecularly cloned macrophage-tropic SIV. xKLuSIV cells that express rhesus macaque CD4 and/or the rhesus chemokine receptor CCR5 are susceptible to infection with the macrophage-tropic, neurovirulent strain SIV/17E-Fr, but only xKLuSIV cells expressing both CCR5 and CD4 were susceptible to infection by the macrophage-tropic, non-neurovirulent strain SIV/17E-Cl. CCR5-dependent, CD4-independent infection by SIV/17E-Fr was abrogated by pre-incubation of the cells with AOP-RANTES, a ligand for CCR5. In addition to viral entry occurring by a CD4-independent mechanism, neutralization of SIV/17E-Fr with rhesus mAbs from 3 different neutralization groups blocked entry into xKLuSIV cells by both CD4-dependent and -independent mechanisms. Triggering the env glycoprotein of SIV-17EFr with soluble CD4 had no significant effect in infectivity, but triggering of the same glycoprotein of SIV/17E-Cl allowed it to enter cells in a CD4-independent fashion. Using mutant molecular clones, we studied the determinants for CD4 independence, all of which are confined to the env gene. We report here that truncation of the TM at amino acid 764 and changing a single amino acid (R751G) in the SIV envelope transmembrane protein (TM) conferred the observed CD4-independent phenotype. Our data suggest that the envelope from the neurovirulent SIV/17E-Fr interacts with CCR5 in a CD4-independent manner, and changes in the TM protein of this virus are important components that contribute to neurovirulence in SIV. PMID:16061266

  19. Prevalence and Correlates of Genital Infections Among Newly Diagnosed Human Immunodeficiency Virus–Infected Adults Entering Human Immunodeficiency Virus Care in Windhoek, Namibia

    PubMed Central

    Djomand, Gaston; Schlefer, Madeleine; Gutreuter, Steve; Tobias, Sarah; Patel, Roopal; DeLuca, Nickolas; Hood, Julia; Sawadogo, Souleymane; Chen, Cheng; Muadinohamba, Alexinah; Lowrance, David W.; Bock, Naomi

    2016-01-01

    Background Identifying and treating genital infections, including sexually transmitted infections (STI), among newly diagnosed human immunodeficiency virus (HIV)-infected individuals may benefit both public and individual health. We assessed prevalence of genital infections and their correlates among newly diagnosed HIV-infected individuals enrolling in HIV care services in Namibia. Methods Newly diagnosed HIV-infected adults entering HIV care at 2 health facilities in Windhoek, Namibia, were recruited from December 2012 to March 2014. Participants provided behavioral and clinical data including CD4+ T lymphocyte counts. Genital and blood specimens were tested for gonorrhea, Chlamydia, trichomoniasis, Mycoplasma genitalium, syphilis, bacterial vaginosis, and vulvovaginal candidiasis. Results Among 599 adults, 56% were women and 15% reported consistent use of condoms in the past 6 months. The most common infections were bacterial vaginosis (37.2%), trichomoniasis (34.6%) and Chlamydia (14.6%) in women and M. genitalium (11.4%) in men. Correlates for trichomoniasis included being female (adjusted relative risk, [aRR], 7.18; 95% confidence interval [CI], 4.07–12.65), higher education (aRR, 0.58; 95% CI, 0.38–0.89), and lower CD4 cell count (aRR, 1.61; 95% CI, 1.08–2.40). Being female (aRR, 2.39; 95% CI, 1.27–4.50), nonmarried (aRR, 2.30; (95% CI, 1.28–4.14), and having condomless sex (aRR, 2.72; 95% CI, 1.06–7.00) were independently associated with chlamydial infection. Across all infections, female (aRR, 2.31; 95% CI, 1.79–2.98), nonmarried participants (aRR, 1.29; 95% CI, 1.06–1.59), had higher risk to present with any STI, whereas pregnant women (aRR, 1.16, 95% CI 1.03–1.31) were at increased risk of any STI or reproductive tract infection. PMID:27893600

  20. Foodborne viruses

    USDA-ARS?s Scientific Manuscript database

    Testing for human pathogenic viruses in foods represents a formidable task requiring the extraction, concentration, and assay of a host of viruses from a wide range of food matrices. The enteric viruses, particularly genogroup I and II (GI and GII) noroviruses and hepatitis A virus, are the princip...

  1. Process Relationships for Evaluating the Role of Light-induced Inactivation of Coliphages at Selected Beaches and Nearby Tributaries of the Great Lakes

    EPA Science Inventory

    Past studies have indicated that sunlight plays an important role in altering densities of coliphages, other indicator microorganisms and pathogens in aquatic environments. Fate and transport modeling of bacteriophage requires mathematical relationships that describe the waveleng...

  2. Process Relationships for Evaluating the Role of Light-induced Inactivation of Coliphages at Selected Beaches and Nearby Tributaries of the Great Lakes

    EPA Science Inventory

    Past studies have indicated that sunlight plays an important role in altering densities of coliphages, other indicator microorganisms and pathogens in aquatic environments. Fate and transport modeling of bacteriophage requires mathematical relationships that describe the waveleng...

  3. Structural basis of transcription arrest by coliphage HK022 nun in an Escherichia coli RNA polymerase elongation complex.

    PubMed

    Kang, Jin Young; Olinares, Paul Dominic B; Chen, James; Campbell, Elizabeth A; Mustaev, Arkady; Chait, Brian T; Gottesman, Max E; Darst, Seth A

    2017-03-20

    Coliphage HK022 Nun blocks superinfection by coliphage λ by stalling RNA polymerase (RNAP) translocation specifically on λΔNA.To provide a structural framework to understand how Nun blocks RNAP translocation, we determined structures of Escherichia coli RNAP ternary elongation complexes (TECs) with and without Nun by single-particle cryo-electron microscopy. Nun fits tightly into the TEC by taking advantage of gaps between the RNAP and the nucleic acids. The C-terminal segment of Nun interacts with the RNAP β and β' subunits inside the RNAP active site cleft as well as with nearly every element of the nucleic-acid scaffold, essentially crosslinking the RNAP and the nucleic acids to prevent translocation, a mechanism supported by the effects of Nun amino acid substitutions. The nature of Nun interactions inside the RNAP active site cleft suggests that RNAP clamp opening is required for Nun to establish its interactions, explaining why Nun acts on paused TECs.

  4. Comparative reduction of Giardia cysts, F+ coliphages, sulphite reducing clostridia and fecal coliforms by wastewater treatment processes.

    PubMed

    Nasser, Abidelfatah M; Benisti, Neta-Lee; Ofer, Naomi; Hovers, Sivan; Nitzan, Yeshayahu

    2017-01-28

    Advanced wastewater treatment processes are applied to prevent the environmental dissemination of pathogenic microorganisms. Giardia lamblia causes a severe disease called giardiasis, and is highly prevalent in untreated wastewater worldwide. Monitoring the microbial quality of wastewater effluents is usually based on testing for the levels of indicator microorganisms in the effluents. This study was conducted to compare the suitability of fecal coliforms, F+ coliphages and sulfide reducing clostridia (SRC) as indicators for the reduction of Giardia cysts in two full-scale wastewater treatment plants. The treatment process cons