Pettengill, James; Strain, Errol; Allard, Marc W.; Ahmed, Rafiq; Zhao, Shaohua; Brown, Eric W.
2014-01-01
Phage typing has been used for the epidemiological surveillance of Salmonella enterica serovar Enteritidis for over 2 decades. However, knowledge of the genetic and evolutionary relationships between phage types is very limited, making differences difficult to interpret. Here, single nucleotide polymorphisms (SNPs) identified from whole-genome comparisons were used to determine the relationships between some S. Enteritidis phage types (PTs) commonly associated with food-borne outbreaks in the United States. Emphasis was placed on the predominant phage types PT8, PT13a, and PT13 in North America. With >89,400 bp surveyed across 98 S. Enteritidis isolates representing 14 distinct phage types, 55 informative SNPs were discovered within 23 chromosomally anchored loci. To maximize the discriminatory and evolutionary partitioning of these highly homogeneous strains, sequences comprising informative SNPs were concatenated into a single combined data matrix and subjected to phylogenetic analysis. The resultant phylogeny allocated most S. Enteritidis isolates into two distinct clades (clades I and II) and four subclades. Synapomorphic (shared and derived) sets of SNPs capable of distinguishing individual clades/subclades were identified. However, individual phage types appeared to be evolutionarily disjunct when mapped to this phylogeny, suggesting that phage typing may not be valid for making phylogenetic inferences. Furthermore, the set of SNPs identified here represents useful genetic markers for strain differentiation of more clonal S. Enteritidis strains and provides core genotypic markers for future development of a SNP typing scheme with S. Enteritidis. PMID:24574287
[Serotype and phage type distribution of human Salmonella strains isolated in Spain, 1997-2001].
Echeita, María Aurora; Aladueña, Ana María; Díez, Rosa; Arroyo, Margarita; Cerdán, Francisca; Gutiérrez, Rafaela; de la Fuente, Manuela; González-Sanz, Rubén; Herrera-León, Silvia; Usera, Miguel Angel
2005-03-01
Salmonellosis is one of the most frequent causes of gastroenteritis in Spain. Serotyping is the gold standard epidemiological marker for subdividing Salmonella spp. strains. A small number of serotypes are very frequently isolated, reducing the discriminatory power of serotyping. Thus, to increase our knowledge of Salmonella spp. epidemiology, additional epidemiological markers, such as phage typing, should be used for this purpose. Salmonella spp. strains of human origin sent to the Laboratorio Nacional de Referencia de Salmonella y Shigella (LNRSSE, Spanish Reference Laboratory for Salmonella and Shigella) between 1997 and 2001 were serotyped using conventional agglutination methods, and Enteritidis, Typhimurium, Hadar, Virchow and Typhi serotypes were additionally phage typed according to internationally-developed schemes. A total of 30,856 Salmonella spp. strains, isolated in the majority of Spanish Autonomous Communities, were analyzed. Enteritidis (51%) and Typhimurium (24%) were the most frequently isolated serotypes. The following were the most frequent serotype/phage type combinations: Enteritidis/PT1 (18%), Enteritidis/PT4 (15%), Enteritidis/PT6a (5%), Typhimurium/DT104 (5%) and Enteritidis/PT6 (3%). The serotype Enteritidis/PT1 showed the greatest increase over the period studied, from 11.61% in 1997 to 24.74% in 2001. A hierarchical typing approach for Salmonella spp., using serotyping coupled with phage typing allowed a higher level of discrimination among Salmonella serotypes. Application of this approach in epidemiological studies could be highly useful for early characterization of related strains.
Stubbs, A D; Hickman-Brenner, F W; Cameron, D N; Farmer, J J
1994-01-01
Three additional phage typing systems for Salmonella enteritidis, plasmid analysis, biochemical tests, and antimicrobial susceptibility tests, were used in an attempt to subdivide 30 phage type 8 (phage typing system used by the WHO International Center for Enteric Phage Typing, London, England) isolates. These isolates represented 18 different egg-related outbreaks (21 strains) and 9 reference strains or strains that were not egg-associated. Only 7 of the 30 strains (28%) were subdivided by one or more of the methods used; this included 3 of the 21 strains from egg-related outbreaks. Twenty-seven strains contained a 55-kb plasmid that is associated with S. enteritidis. Of 65 additional phages tested, 2 from the phage typing system obtained from the Pasteur Institute, Paris, France, were useful in differentiating the three strains that lacked the 55-kb plasmid. Although the results obtained for the 21 strains from egg-related outbreaks showed that the strains had minor phenotypic differences, the overall results suggested that the strains may represent a single clone. Studies are planned to test additional phages and other typing methods to see whether strains of phage type 8 can be further differentiated. PMID:8126179
Varga, Csaba; Pearl, David L; McEwen, Scott A; Sargeant, Jan M; Pollari, Frank; Guerin, Michele T
2015-12-17
In Ontario and Canada, the incidence of human Salmonella enterica serotype Enteritidis (S. Enteritidis) infections have increased steadily during the last decade. Our study evaluated the spatial and temporal epidemiology of the major phage types (PTs) of S. Enteritidis infections to aid public health practitioners design effective prevention and control programs. Data on S. Enteritidis infections between January 1, 2008 and December 31, 2009 were obtained from Ontario's disease surveillance system. Salmonella Enteritidis infections with major phage types were classified by their annual health region-level incidence rates (IRs), monthly IRs, clinical symptoms, and exposure settings. A scan statistic was employed to detect retrospective phage type-specific spatial, temporal, and space-time clusters of S. Enteritidis infections. Space-time cluster cases' exposure settings were evaluated to identify common exposures. 1,336 cases were available for analysis. The six most frequently reported S. Enteritidis PTs were 8 (n = 398), 13a (n = 218), 13 (n = 198), 1 (n = 132), 5b (n = 83), and 4 (n = 76). Reported rates of S. Enteritidis infections with major phage types varied by health region and month. International travel and unknown exposure settings were the most frequently reported settings for PT 5b, 4, and 1 cases, whereas unknown exposure setting, private home, food premise, and international travel were the most frequently reported settings for PT 8, 13, and 13a cases. Diarrhea, abdominal pain, and fever were the most commonly reported clinical symptoms. A number of phage type-specific spatial, temporal, and space-time clusters were identified. Space-time clusters of PTs 1, 4, and 5b occurred mainly during the winter and spring months in the North West, North East, Eastern, Central East, and Central West regions. Space-time clusters of PTs 13 and 13a occurred at different times of the year in the Toronto region. Space-time clusters of PT 8 occurred at different times of the year in the North West and South West regions. Phage type-specific differences in exposure settings, and spatial-temporal clustering of S. Enteritidis infections were demonstrated that might guide public health surveillance of disease outbreaks. Our study methodology could be applied to other foodborne disease surveillance data to detect retrospective high disease rate clusters, which could aid public health authorities in developing effective prevention and control programs.
Nesbitt, A; Ravel, A; Murray, R; McCormick, R; Savelli, C; Finley, R; Parmley, J; Agunos, A; Majowicz, S E; Gilmour, M
2012-10-01
Salmonella enteritidis has emerged as the most prevalent cause of human salmonellosis in Canada. Recent trends of S. enteritidis subtypes and their potential sources were described by integrating Salmonella data from several Canadian surveillance and monitoring programmes. A threefold increase in S. enteritidis cases from 2003 to 2009 was identified to be primarily associated with phage types 13, 8 and 13a. Other common phage types (4, 1, 6a) showed winter seasonality and were more likely to be associated with cases linked to international travel. Conversely, phage types 13, 8 and 13a had summer seasonal peaks and were associated with cases of domestically acquired infections. During agri-food surveillance, S. enteritidis was detected in various commodities, most frequently in chicken (with PT13, PT8 and PT13a predominating). Antimicrobial resistance was low in human and non-human isolates. Continued integrated surveillance and collaborative prevention and control efforts are required to mitigate future illness.
NESBITT, A.; RAVEL, A.; MURRAY, R.; McCORMICK, R.; SAVELLI, C.; FINLEY, R.; PARMLEY, J.; AGUNOS, A.; MAJOWICZ, S. E.; GILMOUR, M.
2012-01-01
SUMMARY Salmonella Enteritidis has emerged as the most prevalent cause of human salmonellosis in Canada. Recent trends of S. Enteritidis subtypes and their potential sources were described by integrating Salmonella data from several Canadian surveillance and monitoring programmes. A threefold increase in S. Enteritidis cases from 2003 to 2009 was identified to be primarily associated with phage types 13, 8 and 13a. Other common phage types (4, 1, 6a) showed winter seasonality and were more likely to be associated with cases linked to international travel. Conversely, phage types 13, 8 and 13a had summer seasonal peaks and were associated with cases of domestically acquired infections. During agri-food surveillance, S. Enteritidis was detected in various commodities, most frequently in chicken (with PT13, PT8 and PT13a predominating). Antimicrobial resistance was low in human and non-human isolates. Continued integrated surveillance and collaborative prevention and control efforts are required to mitigate future illness. PMID:22166269
USDA-ARS?s Scientific Manuscript database
Background: Salmonella Enteritidis phage type 8 (PT8) is a major poultry-associated Salmonella strain implicated in foodborne outbreaks in the United States. We previously reported that two GRAS-status, plant-derived compounds, trans-cinnamaldehyde (TC) and eugenol (EG) significantly reduced S. Ent...
Kelly, Hilary; Dupras, Andrée Ann; Belanger, Sebastien; Devenish, John
2014-01-01
The lack of a sufficiently discriminatory molecular subtyping tool for Salmonella enterica serovar Enteritidis has hindered source attribution efforts and impeded regulatory actions required to disrupt its food-borne transmission. The underlying biological reason for the ineffectiveness of current molecular subtyping tools such as pulsed-field gel electrophoresis (PFGE) and phage typing appears to be related to the high degree of clonality of S. Enteritidis. By interrogating the organism's genome, we previously identified single nucleotide polymorphisms (SNP) distributed throughout the chromosome and have designed a highly discriminatory PCR-based SNP typing test based on 60 polymorphic loci. The application of the SNP-PCR method to DNA samples from S. Enteritidis strains (n = 55) obtained from a variety of sources has led to the differentiation and clustering of the S. Enteritidis isolates into 12 clades made up of 2 to 9 isolates per clade. Significantly, the SNP-PCR assay was able to further differentiate predominant PFGE types (e.g., XAI.0003) and phage types (e.g., phage type 8) into smaller subsets. The SNP-PCR subtyping test proved to be an accurate, precise, and quantitative tool for evaluating the relationships among the S. Enteritidis isolates tested in this study and should prove useful for clustering related S. Enteritidis isolates involved in outbreaks. PMID:25297333
Little, C L; Walsh, S; Hucklesby, L; Surman-Lee, S; Pathak, K; Gatty, Y; Greenwood, M; De Pinna, E; Threlfall, E J; Maund, A; Chan, C H
2007-10-01
This survey was prompted by a change in the epidemiology of Salmonella Enteritidis infections in England and Wales and elsewhere in Europe and, to our knowledge, is the first survey to provide information on Salmonella contamination of non-United Kingdom eggs on retail sale. Based on 10,464 non-United Kingdom eggs (1744 pooled samples of six eggs) purchased between March 2005 and July 2006, the total weighted prevalence estimate for all Salmonella detected in non-United Kingdom eggs was 3.3%. Of the eggs sampled, most were produced in Spain (66.3%), France (20.0%), or The Netherlands (7.4%). Salmonella was detected from 4.4 and 0.3% of eggs produced in Spain and France, respectively, with weighted prevalence estimates. Eight different Salmonella serotypes were recovered from non-United Kingdom eggs, of which Salmonella Enteritidis predominated, with an estimated prevalence of 2.6%. Salmonella Enteritidis was obtained only from Spanish eggs. Nine different phage types of Salmonella Enteritidis were identified, with phage type 1 found to be the predominant phage type. Most of the Salmonella Enteritidis isolates obtained from Spanish eggs in the survey were resistant to nalidixic acid with concomitant decreased susceptibility to ciprofloxacin (0.125 to 1.0 mg/liter) or ampicillin (8.0 mg/liter). Salmonella Enteritidis phage type 1 until now had not been detected in eggs examined as part of previous United Kingdom egg surveys but has been detected in eggs of Spanish origin examined during recent national outbreaks of Salmonella Enteritidis non-phage type 4 infections in England and Wales. Eggs are a commonly consumed food that may occasionally be contaminated with Salmonella. The rates of contamination may be linked to the origin of the eggs. Consumers and caterers need to be aware of this continuing hazard, adopt appropriate control measures, and follow advice provided by national food agencies in order to reduce the risk of infection.
Malorny, Burkhard; Junker, Ernst; Helmuth, Reiner
2008-01-01
Background Salmonella enterica subsp. enterica serotype Enteritidis is known as an important and pathogenic clonal group which continues to cause worldwide sporadic cases and outbreaks in humans. Here a new multiple-locus variable-number tandem repeat analysis (MLVA) method is reported for highly-discriminative subtyping of Salmonella Enteritidis. Emphasis was given on the most predominant phage types PT4 and PT8. The method comprises multiplex PCR specifically amplifying repeated sequences from nine different loci followed by an automatic fragment size analysis using a multicolor capillary electrophoresis instrument. A total of 240 human, animal, food and environmental isolates of S. Enteritidis including 23 definite phage types were used for development and validation. Furthermore, the MLVA types were compared to the phage types of several isolates from two recent outbreaks to determine the concordance between both methods and to estimate their in vivo stability. The in vitro stability of the two MLVA types specifically for PT4 and PT8 strains were determined by multiple freeze-thaw cycles. Results Seventy-nine different MLVA types were identified in 240 S. Enteritidis strains. The Simpson's diversity index for the MLVA method was 0.919 and Nei diversity values for the nine VNTR loci ranged from 0.07 to 0.65. Twenty-four MLVA types could be assigned to 62 PT4 strains and 21 types to 81 PT8 strains. All outbreak isolates had an indistinguishable outbreak specific MLVA type. The in vitro stability experiments showed no changes of the MLVA type compared to the original isolate. Conclusion This MLVA method is useful to discriminate S. Enteritidis strains even within a single phage type. It is easy in use, fast, and cheap compared to other high-resolution molecular methods and therefore an important tool for surveillance and outbreak studies for S. Enteritidis. PMID:18513386
2009-01-01
Background Salmonella enterica serovar Enteritidis (S. Enteritidis) has caused major epidemics of gastrointestinal infection in many different countries. In this study we investigate genome divergence and pathogenic potential in S. Enteritidis isolated before, during and after an epidemic in Uruguay. Results 266 S. Enteritidis isolates were genotyped using RAPD-PCR and a selection were subjected to PFGE analysis. From these, 29 isolates spanning different periods, genetic profiles and sources of isolation were assayed for their ability to infect human epithelial cells and subjected to comparative genomic hybridization using a Salmonella pan-array and the sequenced strain S. Enteritidis PT4 P125109 as reference. Six other isolates from distant countries were included as external comparators. Two hundred and thirty three chromosomal genes as well as the virulence plasmid were found as variable among S. Enteritidis isolates. Ten out of the 16 chromosomal regions that varied between different isolates correspond to phage-like regions. The 2 oldest pre-epidemic isolates lack phage SE20 and harbour other phage encoded genes that are absent in the sequenced strain. Besides variation in prophage, we found variation in genes involved in metabolism and bacterial fitness. Five epidemic strains lack the complete Salmonella virulence plasmid. Significantly, strains with indistinguishable genetic patterns still showed major differences in their ability to infect epithelial cells, indicating that the approach used was insufficient to detect the genetic basis of this differential behaviour. Conclusion The recent epidemic of S. Enteritidis infection in Uruguay has been driven by the introduction of closely related strains of phage type 4 lineage. Our results confirm previous reports demonstrating a high degree of genetic homogeneity among S. Enteritidis isolates. However, 10 of the regions of variability described here are for the first time reported as being variable in S. Enteritidis. In particular, the oldest pre-epidemic isolates carry phage-associated genetic regions not previously reported in S. Enteritidis. Overall, our results support the view that phages play a crucial role in the generation of genetic diversity in S. Enteritidis and that phage SE20 may be a key marker for the emergence of particular isolates capable of causing epidemics. PMID:19922635
COLLARD, J. M.; BERTRAND, S.; DIERICK, K.; GODARD, C.; WILDEMAUWE, C.; VERMEERSCH, K.; DUCULOT, J.; VAN IMMERSEEL, F.; PASMANS, F.; IMBERECHTS, H.; QUINET, C.
2008-01-01
SUMMARY In Belgium, non-typhoidal salmonellosis and campylobacteriosis are the two most frequently reported foodborne illnesses. During 2005, a 71% decrease of Salmonella Enteritidis infections compared with the average annual number cases in the period 2000–2004 was recorded by the Belgian National Reference Centre for Salmonella and Shigella. After the peak of 1999, the total number of salmonellosis cases decreased gradually, with the exception of 2003 when an increase was again recorded due to the rise of isolates belonging to the serotype Enteritidis. PT4, the predominant phage type of serotype Enteriditis over recent years (except in 2003), became the second most prevalent phage type in 2005 after PT21. We present in this paper the epidemiology (incidence and trends) of human salmonellosis in Belgium and assess the role of the vaccination programme in layer flocks on the decline of the incidence of human salmonellosis and foodborne outbreaks due to S. Enteritidis. PMID:17645812
Preisner, Ornella; Guiomar, Raquel; Machado, Jorge; Menezes, José Cardoso; Lopes, João Almeida
2010-06-01
Fourier transform infrared (FT-IR) spectroscopy and chemometric techniques were used to discriminate five closely related Salmonella enterica serotype Enteritidis phage types, phage type 1 (PT1), PT1b, PT4b, PT6, and PT6a. Intact cells and outer membrane protein (OMP) extracts from bacterial cell membranes were subjected to FT-IR analysis in transmittance mode. Spectra were collected over a wavenumber range from 4,000 to 600 cm(-1). Partial least-squares discriminant analysis (PLS-DA) was used to develop calibration models based on preprocessed FT-IR spectra. The analysis based on OMP extracts provided greater separation between the Salmonella Enteritidis PT1-PT1b, PT4b, and PT6-PT6a groups than the intact cell analysis. When these three phage type groups were considered, the method based on OMP extract FT-IR spectra was 100% accurate. Moreover, complementary local models that considered only the PT1-PT1b and PT6-PT6a groups were developed, and the level of discrimination increased. PT1 and PT1b isolates were differentiated successfully with the local model using the entire OMP extract spectrum (98.3% correct predictions), whereas the accuracy of discrimination between PT6 and PT6a isolates was 86.0%. Isolates belonging to different phage types (PT19, PT20, and PT21) were used with the model to test its robustness. For the first time it was demonstrated that FT-IR analysis of OMP extracts can be used for construction of robust models that allow fast and accurate discrimination of different Salmonella Enteritidis phage types.
Han, Han; Wei, Xiaoting; Wei, Yi; Zhang, Xiufeng; Li, Xuemin; Jiang, Jinzhong; Wang, Ran
2017-02-01
Salmonella Enteritidis remains a major threat for food safety. To take efforts to develop phage-based biocontrol for S. Enteritidis contamination in food, in this study, the phages against S. Enteritidis were isolated from sewage samples, characterized by host range assays, DNA restriction enzyme pattern analyses, and transmission electron microscope observations, and tested for antibacterial activity in food; some potent phages were further characterized by bioinformatic analyses. Results showed that based on the plaque quality and host range, seven lytic phages targeting S. Enteritidis were selected, considered as seven distinct phages through DNA physical maps, and classified as Myoviridae or Siphoviridae family by morphologic observations; the combined use of such seven strain phages as a "food additive" could succeed in controlling the artificial S. Enteritidis contamination in the different physical forms of food at a range of temperatures; by bioinformatic analyses, both selected phage BPS 11 Q 3 and BPS 15 Q 2 seemed to be newfound obligate lytic phage strains with no indications for any potentially harmful genes in their genomes. In conclusion, our results showed a potential of isolated phages as food additives for controlling S. Enteritidis contamination in some salmonellosis outbreak-associated food vehicles, and there could be minimized potential risk associated with using BPS 11 Q 3 and BPS 15 Q 2 in food.
Cho, Seongbeom; Boxrud, David J; Bartkus, Joanne M; Whittam, Thomas S; Saeed, Mahdi
2007-01-01
Simplified multiple-locus variable-number tandem repeat analysis (MLVA) was developed using one-shot multiplex PCR for seven variable-number tandem repeats (VNTR) markers with high diversity capacity. MLVA, phage typing, and PFGE methods were applied on 34 diverse Salmonella Enteritidis isolates from human and non-human sources. MLVA detected allelic variations that helped to classify the S. Enteritidis isolates into more evenly distributed subtypes than other methods. MLVA-based S. Enteritidis clonal groups were largely associated with sources of the isolates. Nei's diversity indices for polymorphism ranged from 0.25 to 0.70 for seven VNTR loci markers. Based on Simpson's and Shannon's diversity indices, MLVA had a higher discriminatory power than pulsed field gel electrophoresis (PFGE), phage typing, or multilocus enzyme electrophoresis. Therefore, MLVA may be used along with PFGE to enhance the effectiveness of the molecular epidemiologic investigation of S. Enteritidis infections. PMID:17692097
A large outbreak of Salmonella enteritidis phage type 4 associated with eggs from overseas.
Stevens, A.; Joseph, C.; Bruce, J.; Fenton, D.; O'Mahony, M.; Cunningham, D.; O'Connor, B.; Rowe, B.
1989-01-01
In February 1989 the largest reported outbreak to date in the United Kingdom of Salmonella enteritidis phage type 4 (PT4) infection occurred following a wedding reception at a hotel. One hundred and seventy-three people met the case definition of illness of whom 118 had the organism isolated from their stools. A further 17 were found to be S. enteritidis PT4 positive, but were asymptomatic. Lightly-cooked, egg-based sauces were the epidemiologically proven vehicles of infection. Investigations showed this outbreak to be the first to implicate imported European eggs as the source of infection. An unusual feature of this outbreak was a reported incubation period of less than 3 h for some of the confirmed cases of salmonellosis. PMID:2691263
Case-control study of infections with Salmonella enteritidis phage type 4 in England.
Cowden, J. M.; Lynch, D.; Joseph, C. A.; O'Mahony, M.; Mawer, S. L.; Rowe, B.; Bartlett, C. L.
1989-01-01
OBJECTIVE--To determine the source of indigenous sporadic infection with Salmonella enteritidis phage type 4. DESIGN--Case-control study of primary sporadic cases identified by the Public Health Laboratory Service between 1 August and 30 September 1988. SETTING--PHLS Communicable Disease Surveillance Centre, Division of Enteric Pathogens, 11 PHLS laboratories, and 42 local authority environmental health departments in England. SUBJECTS--232 Patients (cases) with confirmed primary sporadic infection, for 160 of whom (88 female) (median age 30 years, age range 4 months to 85 years) data were obtained by questionnaire about consumption of fresh eggs, egg products, precooked chicken, and minced meat in the three days and one week before onset of the symptoms. Up to three controls, matched for neighbourhood, age, and sex (if aged greater than 11 years), were asked the same questions for the same calendar period. MAIN OUTCOME MEASURE--Association of primary sporadic infection with consumption of suspected food items. RESULTS--Illness due to S enteritidis phage type 4 was significantly associated with consumption of raw shell egg products (homemade mayonnaise, ice cream, and milk drinks containing eggs) (matched p = 0.02) and shop bought sandwiches containing mayonnaise (matched p = 0.00004) or eggs (matched p = 0.02). Illness was also significantly associated with eating lightly cooked eggs (unmatched p = 0.02), but not soft boiled eggs, and precooked hot chicken (matched p = 0.006). Reported consumption of eggs was not appreciably different between cases and controls before or after the median date of interview. CONCLUSIONS--Fresh shell eggs, egg products, and precooked hot chicken are vehicles of S enteritidis phage type 4 infection in indigenous sporadic cases. Public health education and reduction in contamination of eggs and infection of poultry with S enteritidis are needed to reduce the incidence of human infection. PMID:2508916
Parker, Craig T.; Huynh, Steven; Quiñones, Beatriz; Harris, Linda J.; Mandrell, Robert E.
2010-01-01
In 2000 to 2001, 2003 to 2004, and 2005 to 2006, three outbreaks of Salmonella enterica serovar Enteritidis were linked with the consumption of raw almonds. The S. Enteritidis strains from these outbreaks had rare phage types (PT), PT30 and PT9c. Clinical and environmental S. Enteritidis strains were subjected to pulsed-field gel electrophoresis (PFGE), multilocus variable-number tandem repeat analysis (MLVA), and DNA microarray-based comparative genomic indexing (CGI) to evaluate their genetic relatedness. All three methods differentiated these S. Enteritidis strains in a manner that correlated with PT. The CGI analysis confirmed that the majority of the differences between the S. Enteritidis PT9c and PT30 strains corresponded to bacteriophage-related genes present in the sequenced genomes of S. Enteritidis PT4 and S. enterica serovar Typhimurium LT2. However, PFGE, MLVA, and CGI failed to discriminate between S. Enteritidis PT30 strains related to outbreaks from unrelated clinical strains or between strains separated by up to 5 years. However, metabolic fingerprinting demonstrated that S. Enteritidis PT4, PT8, PT13a, and clinical PT30 strains metabolized l-aspartic acid, l-glutamic acid, l-proline, l-alanine, and d-alanine amino acids more efficiently than S. Enteritidis PT30 strains isolated from orchards. These data indicate that S. Enteritidis PT9c and 30 strains are highly related genetically and that PT30 orchard strains differ from clinical PT30 strains metabolically, possibly due to fitness adaptations. PMID:20363782
Gast, Richard K; Guraya, Rupa; Jones, Deana R; Anderson, Kenneth E
2014-12-01
The majority of human illnesses caused by Salmonella Enteritidis are attributed to contaminated eggs, and the prevalence of this pathogen in commercial laying flocks has been identified as a leading epidemiologic risk factor. Flock housing and management systems can affect opportunities for the introduction, transmission, and persistence of foodborne pathogens in poultry. The animal welfare implications of different types of housing for laying hens have been widely discussed in recent years, but the food safety consequences of these production systems remain incompletely understood. The present study assessed the effects of 2 different housing systems (conventional cages and colony cages enriched with perching and nesting areas) on the horizontal transmission of experimentally introduced Salmonella Enteritidis infection within groups of laying hens. In each of 2 trials, 136 hens were distributed among cages of both housing systems and approximately one-third of the hens in each cage were orally inoculated with doses of 10(8) cfu of Salmonella Enteritidis (phage type 13a in one trial and phage type 4 in the other). At regular intervals through 23 d postinoculation, cloacal swabs were collected from all hens (inoculated and uninoculated) and cultured for Salmonella Enteritidis. Horizontal contact transmission of infection was observed for both Salmonella Enteritidis strains, reaching peak prevalence values of 27.1% of uninoculated hens in conventional cages and 22.7% in enriched cages. However, no significant differences (P > 0.05) in the overall frequencies of horizontal Salmonella Enteritidis transmission were evident between the 2 types of housing. These results suggest that opportunities for Salmonella Enteritidis infection to spread horizontally throughout laying flocks may be similar in conventional and enriched cage-based production systems. ©2014 Poultry Science Association Inc.
Comparison of Salmonella enteritidis phage types isolated from layers and humans in Belgium in 2005.
Welby, Sarah; Imberechts, Hein; Riocreux, Flavien; Bertrand, Sophie; Dierick, Katelijne; Wildemauwe, Christa; Hooyberghs, Jozef; Van der Stede, Yves
2011-08-01
The aim of this study was to investigate the available results for Belgium of the European Union coordinated monitoring program (2004/665 EC) on Salmonella in layers in 2005, as well as the results of the monthly outbreak reports of Salmonella Enteritidis in humans in 2005 to identify a possible statistical significant trend in both populations. Separate descriptive statistics and univariate analysis were carried out and the parametric and/or non-parametric hypothesis tests were conducted. A time cluster analysis was performed for all Salmonella Enteritidis phage types (PTs) isolated. The proportions of each Salmonella Enteritidis PT in layers and in humans were compared and the monthly distribution of the most common PT, isolated in both populations, was evaluated. The time cluster analysis revealed significant clusters during the months May and June for layers and May, July, August, and September for humans. PT21, the most frequently isolated PT in both populations in 2005, seemed to be responsible of these significant clusters. PT4 was the second most frequently isolated PT. No significant difference was found for the monthly trend evolution of both PT in both populations based on parametric and non-parametric methods. A similar monthly trend of PT distribution in humans and layers during the year 2005 was observed. The time cluster analysis and the statistical significance testing confirmed these results. Moreover, the time cluster analysis showed significant clusters during the summer time and slightly delayed in time (humans after layers). These results suggest a common link between the prevalence of Salmonella Enteritidis in layers and the occurrence of the pathogen in humans. Phage typing was confirmed to be a useful tool for identifying temporal trends.
Pang, Jen-Chieh; Chiu, Tsai-Hsin; Helmuth, Reiner; Schroeter, Andreas; Guerra, Beatriz; Tsen, Hau-Yang
2007-05-30
Since human infections by Salmonella enterica serovar Enteritidis (Salmonella Enteritidis) have been increasing world-wide over the past years and epidemiological studies have implicated the consumption of meat, poultry, eggs and egg products, elucidation of the predominant subtypes for this Salmonella spp. is important. In this study, 107 poultry and food isolates of Salmonella Enteritidis obtained from Germany were analyzed by pulsed field gel electrophoresis (PFGE), and the subtypes were compared with those of the 124 human isolates obtained in Taiwan. Results showed that for these 107 poultry and food isolates, when XbaI, SpeI and NotI were used for chromosomal DNA digestion followed by PFGE analysis, a total of 19, 20 and 19 PFGE patterns, respectively, were identified. Of them, 51 (47.7%), 52 (48.6%) and 42 (39.3%) strains belong to a single pattern of X3, S3 and N3, respectively, and 34 strains belong to a pattern combination of X3S3N3, which was the major subtype. When PFGE patterns of these 107 German isolates were compared with those of the 124 human isolates obtained in Taiwan, pattern combination of X3S3N3 was found as the most common pattern shared by isolates from both areas. PT4 is a major phage type for German and Taiwan isolates. Although most of the X3S3N3 strains are of this phage type, some strains of other PFGE patterns are also of this phage type. Since strains used in this study were unrelated, i.e., they were isolated from different origins in areas geographically far apart from each other, the PFGE study suggests a major world-wide clone of S. enterica serovar Enteritidis.
The major sources of Salmonella enteritidis in Thailand.
Sakai, T; Chalermchaikit, T
1996-08-01
The data of Salmonella serotypes during 1989-1993 from the World Health Organisation (WHO) National Salmonella and Shigella Center, Division of Clinical Pathology, Department of Medical Science, Ministry of Health, Thailand was analysed and found that the prevalence of Salmonella enteritidis had been dramatically increased since 1990. The average S. enteritidis isolates from human patient samples was 0.70% +/- 0.41% of the total reported Salmonella isolates during 1972-1989 and increased to 1.33%, 2.98%, 9.54%, and 16.98% in 1990, 1991, 1992, and 1993, respectively. The similar trend of S. enteritidis isolates from chicken meat samples were also observed. However, the conclusive epidemiological relationship between human and chicken S. enteritidis isolates needs to be proved by phage typing or other Salmonella typing methods.
Egg-related Salmonella enteritidis, Italy, 1991
Binkin, N.; Scuderi, G.; Novaco, F.; Giovanardi, G. L.; Paganelli, G.; Ferrari, G.; Cappelli, O.; Ravaglia, L.; Zilioli, F.; Amadei, V.; Magliani, W.; Viani, I.; Riccò, D.; Borrini, B.; Magri, M.; Alessandrini, A.; Bursi, G.; Barigazzi, G.; Fantasia, M.; Filetici, E.; Salmaso, S.
1993-01-01
In recent years, Salmonella enteritidis has become an increasingly important public health problem in Italy. In some parts of the country, the fraction of total human salmonella isolates accounted for by S. enteritidis has risen from 3-4% in the mid-1980s to more than 30% in 1990. Between 1990 and 1991, the number of reported S. enteritidis outbreaks increased more than sixfold. The 33 outbreaks reported in 1991 occurred in seven contiguous regions in northern and central Italy and were clustered in time between June and October; in the majority, products containing raw or undercooked shell eggs were implicated. Five of the egg-related outbreaks that occurred within a 30 kilometre radius over a 7-week period were investigated in detail. A phage type 1 strain containing a 38·9 MDa plasmid appeared responsible for three of the outbreaks, while in the remaining two a phage type 4 strain, also with a 38·9 MDa plasmid was isolated. Efforts are being made to enhance epidemiological surveillance and laboratory evaluation, and the use of pasteurized eggs has been recommended for high-risk populations. PMID:8472765
Seltmann, G.; Voigt, W.; Beer, W.
1994-01-01
Eighty-nine Salmonella enteritidis phage type 25/17 strains isolated from a localized outbreak in the German state Nordrhein-Westfalen (outbreak NWI) could not be further differentiated by biochemotyping and plasmid pattern analysis. They were submitted to a complex typing system consisting of modern physico-chemical analytical procedures. In lipopolysaccharide pattern analysis the strains proved to be homogeneous. In multilocus enzyme electrophoresis, outer membrane and whole cell protein pattern (WCPP) analysis, and Fourier-transform infrared (FT-IR) spectroscopy (increasing extent of differentiation in the given order) strains deviating from each basal pattern were found. The extent of correspondence in these deviations was satisfactory. Forty-six strains of the same sero- and phage type, however, obtained from different outbreaks, were additionally typed. The results obtained with them indicate that the data of the first group were not restricted to strains from outbreak NWI, but of general validity. It was found that both WCPP and FT-IR represent valuable methods for the sub-grouping of bacteria. Images Fig. 1 Fig. 2 Fig. 3 PMID:7995351
Kang, Hyun-Wol; Kim, Jae-Won; Jung, Tae-Sung
2013-01-01
Of the Salmonella enterica serovars, S. Enteritidis and S. Typhimurium are responsible for most of the Salmonella outbreaks implicated in the consumption of contaminated foods in the Republic of Korea. Because of the widespread occurrence of antimicrobial-resistant Salmonella in foods and food processing environments, bacteriophages have recently surfaced as an alternative biocontrol tool. In this study, we isolated a virulent bacteriophage (wksl3) that could specifically infect S. Enteritidis, S. Typhimurium, and several additional serovars. Transmission electron microscopy revealed that phage wksl3 belongs to the family Siphoviridae. Complete genome sequence analysis and bioinformatic analysis revealed that the DNA of phage wksl3 is composed of 42,766 bp with 64 open reading frames. Since it does not encode any phage lysogeny factors, toxins, pathogen-related genes, or food-borne allergens, phage wksl3 may be considered a virulent phage with no side effects. Analysis of genetic similarities between phage wksl3 and four of its relatives (SS3e, vB_SenS-Ent1, SE2, and SETP3) allowed wksl3 to be categorized as a SETP3-like phage. A single-dose test of oral toxicity with BALB/c mice resulted in no abnormal clinical observations. Moreover, phage application to chicken skin at 8°C resulted in an about 2.5-log reduction in the number of Salmonella bacteria during the test period. The strong, stable lytic activity, the significant reduction of the number of S. Enteritidis bacteria after application to food, and the lack of clinical symptoms of this phage suggest that wksl3 may be a useful agent for the protection of foods against S. Enteritidis and S. Typhimurium contamination. PMID:23335772
Kinde, Hailu; Goodluck, Helen A; Pitesky, Maurice; Friend, Tom D; Campbell, James A; Hill, Ashley E
2015-12-01
Single swabs (cultured individually) are currently used in the Food and Drug Administration (FDA) official method for sampling the environment of commercial laying hens for the detection of Salmonella enterica ssp. serovar Enteritidis (Salmonella Enteritidis). The FDA has also granted provisional acceptance of the National Poultry Improvement Plan's (NPIP) Salmonella isolation and identification methodology for samples taken from table-egg layer flock environments. The NPIP method, as with the FDA method, requires single-swab culturing for the environmental sampling of laying houses for Salmonella Enteritidis. The FDA culture protocol requires a multistep culture enrichment broth, and it is more labor intensive than the NPIP culture protocol, which requires a single enrichment broth. The main objective of this study was to compare the FDA single-swab culturing protocol with that of the NPIP culturing protocol but using a four-swab pool scheme. Single and multi-laboratory testing of replicate manure drag swab sets (n = 525 and 672, respectively) collected from a Salmonella Enteritidis-free commercial poultry flock was performed by artificially contaminating swabs with either Salmonella Enteritidis phage type 4, 8, or 13a at one of two inoculation levels: low, x¯ = 2.5 CFU (range 2.5-2.7), or medium, x¯ = 10.0 CFU (range 7.5-12). For each replicate, a single swab (inoculated), sets of two swabs (one inoculated and one uninoculated), and sets of four swabs (one inoculated and three uninoculated), testing was conducted using the FDA or NPIP culture method. For swabs inoculated with phage type 8, the NPIP method was more efficient (P < 0.05) for all swab sets at both inoculation levels than the reference method. The single swabs in the NPIP method were significantly (P < 0.05) better than four-pool swabs in detecting Salmonella Enteritidis at the lower inoculation level. In the collaborative study (n = 13 labs) using Salmonella Enteritidis phage type 13a inoculated swabs, there was no significant difference (P > 0.05) between the FDA method (single swabs) and the pooled NPIP method (four-pool swabs). The study concludes that the pooled NPIP method is not significantly different from the FDA method for the detection of Salmonella Enteritidis in drag swabs in commercial poultry laying houses. Consequently based on the FDA's Salmonella Enteritidis rule for equivalency of different methods, the pooled NPIP method should be considered equivalent. Furthermore, the pooled NPIP method was more efficient and cost effective.
Protracted outbreak of S. Enteritidis PT 21c in a large Hamburg nursing home
Frank, Christina; Buchholz, Udo; Maaß, Monika; Schröder, Arthur; Bracht, Karl-Hans; Domke, Paul-Gerhard; Rabsch, Wolfgang; Fell, Gerhard
2007-01-01
Background During August 2006, a protracted outbreak of Salmonella (S.) Enteritidis infections in a large Hamburg nursing home was investigated. Methods A site visit of the home was conducted and food suppliers' premises tested for Salmonella. Among nursing home residents a cohort study was carried out focusing on foods consumed in the three days before the first part of the outbreak. Instead of relying on residents' memory, data from the home's patient food ordering system was used as exposure data. S. Enteritidis isolates from patients and suspected food vehicles were phage typed and compared. Results Within a population of 822 nursing home residents, 94 case patients among residents (1 fatality) and 17 among staff members were counted 6 through 29 August. The outbreak peaked 7 through 9 August, two days after a spell of very warm summer weather. S. Enteritidis was consistently recovered from patients' stools throughout the outbreak. Among the food items served during 5 through 7 August, the cohort study pointed to afternoon cake on all three days as potential risk factors for disease. Investigation of the bakery supplying the cake yielded S. Enteritidis from cakes sampled 31 August. Comparison of the isolates by phage typing demonstrated both isolates from patients and the cake to be the exceedingly rare phage type 21c. Conclusion Cake (various types served on various days) contaminated with S. Enteritidis were the likely vehicle of the outbreak in the nursing home. While the cakes were probably contaminated with low pathogen dose throughout the outbreak period, high ambient summer temperatures and failure to keep the cake refrigerated led to high pathogen dose in cake on some days and in some of the housing units. This would explain the initial peak of cases, but also the drawn out nature of the outbreak with cases until the end of August. Suggestions are made to nursing homes, aiding in outbreak prevention. Early outbreak detection is crucial, such that counter measures can be swift and drawn-out outbreaks of nosocomial food-borne infections avoided. PMID:17854497
Pang, Jen-Chieh; Lin, Jer-Sheng; Tsai, Cheng-Chih; Tsen, Hau-Yang
2006-10-01
Seventy-seven animal isolates of Salmonella enterica serovar Enteritidis (S. Enteritidis) obtained from the United States were analyzed by phage typing and pulsed field gel electrophoresis (PFGE). Thirty-nine strains were found with phage types (PT) 4, 8, and 13a. When the chromosomal DNA of these 39 isolated strains with PT4, 8, and 13a were digested with XbaI, SpeI and NotI, followed by PFGE analysis, 28 strains were found with a pattern combination of X4S4N4, which was the major subtype. When PFGE patterns of the US isolates with PT 4 and 8 were compared with those of the Taiwanese and German isolates, pattern X3S3N3 was confirmed to be the world-wide subtype shared by PT 4 isolates, as previously reported, while pattern X4S4N4 was newly found to be the most common subtype shared by PT 8 strains. The presence of such major world-wide clones, however, does not necessarily mean that these clones are highly virulent, at least not according to the results of invasiveness assays using cultured human intestinal epithelium cell line Int-407 and living BALB/mice.
Hörmansdorfer, Stefan; Messelhäußer, Ute; Rampp, Albert; Schönberger, Katharina; Dallman, Tim; Allerberger, Franz; Kornschober, Christian; Sing, Andreas; Wallner, Peter; Zapf, Andreas
2017-01-01
A European multi-country outbreak of Salmonella Enteritidis phage type (PT) 14b occurred from March to November 2014 associated with the consumption of eggs. The outbreak involved more than 400 human cases from France, Luxembourg, Austria and the United Kingdom. In 2016–2017, it has been re-evaluated combining recent epidemiological results with latest molecular data. The outbreak was traced back to one large Bavarian egg producer with four distinct premises, three located in Bavaria, one in the Czech Republic. The outbreak isolates of S. Enteritidis PT 14b were grouped into three closely related clades by whole genome sequencing. Two of these clades could be referred to two Bavarian premises of the egg producer on the basis of epidemiological and molecular data, while epidemiological data presumably linked the third clade to another premises of the egg producer. Interestingly and in contrast to the situation in other European countries where several outbreaks were documented, all notified 91 laboratory-confirmed cases of S. Enteritidis PT 14b from Bavaria were sporadic, singular cases not belonging to any epidemiological outbreaks. In conclusion, as demonstrated here, the resolution of food-related outbreaks with such a high discriminatory power is rare in outbreak investigation. PMID:29258650
Hörmansdorfer, Stefan; Messelhäußer, Ute; Rampp, Albert; Schönberger, Katharina; Dallman, Tim; Allerberger, Franz; Kornschober, Christian; Sing, Andreas; Wallner, Peter; Zapf, Andreas
2017-12-01
A European multi-country outbreak of Salmonella Enteritidis phage type (PT) 14b occurred from March to November 2014 associated with the consumption of eggs. The outbreak involved more than 400 human cases from France, Luxembourg, Austria and the United Kingdom. In 2016-2017, it has been re-evaluated combining recent epidemiological results with latest molecular data. The outbreak was traced back to one large Bavarian egg producer with four distinct premises, three located in Bavaria, one in the Czech Republic. The outbreak isolates of S. Enteritidis PT 14b were grouped into three closely related clades by whole genome sequencing. Two of these clades could be referred to two Bavarian premises of the egg producer on the basis of epidemiological and molecular data, while epidemiological data presumably linked the third clade to another premises of the egg producer. Interestingly and in contrast to the situation in other European countries where several outbreaks were documented, all notified 91 laboratory-confirmed cases of S. Enteritidis PT 14b from Bavaria were sporadic, singular cases not belonging to any epidemiological outbreaks. In conclusion, as demonstrated here, the resolution of food-related outbreaks with such a high discriminatory power is rare in outbreak investigation.
Four linked outbreaks of Salmonella enteritidis phage type 4 infection--the continuing egg threat.
Ejidokun, O O; Killalea, D; Cooper, M; Holmyard, S; Cross, A; Kemp, C
2000-06-01
Four outbreaks of Salmonella enteritidis phage type (PT) 4 occurred among guests at functions for which a single commercial caterer supplied food. Retrospective cohort studies were used to describe the epidemiology of three of these outbreaks and identify the vehicle(s) responsible. Of 172 guests at these three events, 47 fitted the clinical case definition for illness and 24 cases were confirmed to have S. enteritidis PT4 infection. Food containing raw egg was identified epidemiologically as the likely vehicle of infection in two of the three outbreaks (odds ratios (OR) and 95% confidence intervals 9.1 (2.2-39.9) and 6.9 (1.2-46.4)). Logistic regression analysis yielded OR = 10.7 (p = 0.0022) and OR = 9.3 (p = 0.015) for egg consumption in two of the outbreaks. These outbreaks highlighted the continuing need to remind the public and commercial caterers of the potential high risks of contracting salmonella from shell eggs. Education of caterers includes advice to obtain eggs and other products from reputable and identifiable suppliers.
Public health investigations of Salmonella Enteritidis in catering raw shell eggs, 2002-2004.
Little, C L; Surman-Lee, S; Greenwood, M; Bolton, F J; Elson, R; Mitchell, R T; Nichols, G N; Sagoo, S K; Threlfall, E J; Ward, L R; Gillespie, I A; O'Brien, S
2007-06-01
In response to a dramatic change in the epidemiology of Salmonella Enteritidis in England and Wales thought to be associated with raw shell eggs, the Health Protection Agency initiated public health investigations to establish the incidence of Salmonella contamination and origin of eggs used by catering premises implicated in outbreaks of Salm. Enteritidis. Between October 2002 and November 2004, 16 971 eggs were sampled and Salmonella were recovered from 3.4%. Salmonella was isolated from 5.5% and 6.3% of Spanish and eggs of unknown origin, respectively, used in catering premises linked to outbreaks, a level significantly higher than that (1.1%) found in nonLion Quality UK eggs sampled. The small sample of UK Lion Quality eggs tested (reflecting their lack of use in premises visited) did not contain Salmonella. Several phage types of Salm. Enteritidis other than phage type 4 (PT 4) were identified with nonUK eggs. Eggs from Spain were implicated as a major source of infection. Eggs were contaminated more frequently with Salmonella when shells were dirty and/or cracked, and stored at above 8 degrees C. The use of Spanish eggs by the catering sector has been identified as a consistent significant factor in many of the outbreaks caused by Salm. Enteritidis nonPT4 in England and Wales during 2002-2004. Advice to caterers and hospitals that raw shell eggs should not be used in food that will either not be cooked or only lightly cooked should be reinforced.
Allard, Marc W.; Luo, Yan; Strain, Errol; Pettengill, James; Timme, Ruth; Wang, Charles; Li, Cong; Keys, Christine E.; Zheng, Jie; Stones, Robert; Wilson, Mark R.; Musser, Steven M.; Brown, Eric W.
2013-01-01
Facile laboratory tools are needed to augment identification in contamination events to trace the contamination back to the source (traceback) of Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis). Understanding the evolution and diversity within and among outbreak strains is the first step towards this goal. To this end, we collected 106 new S. Enteriditis isolates within S. Enteriditis Pulsed-Field Gel Electrophoresis (PFGE) pattern JEGX01.0004 and close relatives, and determined their genome sequences. Sources for these isolates spanned food, clinical and environmental farm sources collected during the 2010 S. Enteritidis shell egg outbreak in the United States along with closely related serovars, S. Dublin, S. Gallinarum biovar Pullorum and S. Gallinarum. Despite the highly homogeneous structure of this population, S. Enteritidis isolates examined in this study revealed thousands of SNP differences and numerous variable genes (n = 366). Twenty-one of these genes from the lineages leading to outbreak-associated samples had nonsynonymous (causing amino acid changes) changes and five genes are putatively involved in known Salmonella virulence pathways. While chromosome synteny and genome organization appeared to be stable among these isolates, genome size differences were observed due to variation in the presence or absence of several phages and plasmids, including phage RE-2010, phage P125109, plasmid pSEEE3072_19 (similar to pSENV), plasmid pOU1114 and two newly observed mobile plasmid elements pSEEE1729_15 and pSEEE0956_35. These differences produced modifications to the assembled bases for these draft genomes in the size range of approximately 4.6 to 4.8 mbp, with S. Dublin being larger (∼4.9 mbp) and S. Gallinarum smaller (4.55 mbp) when compared to S. Enteritidis. Finally, we identified variable S. Enteritidis genes associated with virulence pathways that may be useful markers for the development of rapid surveillance and typing methods, potentially aiding in traceback efforts during future outbreaks involving S. Enteritidis PFGE pattern JEGX01.0004. PMID:23383127
Janmohamed, K; Zenner, D; Little, C; Lane, C; Wain, J; Charlett, A; Adak, B; Morgan, D
2011-04-14
We conducted an unmatched retrospective case–control study to investigate an upsurge of non-travel-related sporadic cases of infection with Salmonella enterica subsp. enterica serotype Enteritidis phage type 14b with antimicrobial resistance to nalidixic acid and partial resistance to ciprofloxacin (S. Enteritidis PT 14b NxCp(L)) that was reported in England from 1 September to 31 December 2009. We analysed data from 63 cases and 108 controls to determine whether cases had the same sources of infection as those found through investigation of 16 concurrent local foodborne outbreaks in England and Wales. Multivariable logistic regression analysis adjusting for age and sex identified food consumption at restaurants serving Chinese or Thai cuisine (odds ratio (OR): 4.4; 95% CI: 1.3–14.8; p=0.02), egg consumed away from home (OR: 5.1; 95% CI: 1.3–21.2; p=0.02) and eating vegetarian foods away from home (OR: 14.6; 95% CI: 2.1–99; p=0.006) as significant risk factors for infection with S. Enteritidis PT 14b NxCp(L). These findings concurred with those from the investigation of the16 outbreaks, which identified the same Salmonella strain in eggs from a specified source outside the United Kingdom. The findings led to a prohibition of imports from this source, in order to control the outbreak.
Leffer, Andreia M; Kuttel, Javier; Martins, Lidiane M; Pedroso, Antonio Carlos; Astolfi-Ferreira, Claudete S; Ferreira, Fernando; Ferreira, Antonio J Piantino
2010-06-01
The ingestion of food products originating from poultry infected with Salmonella spp. is one of the major causes of food poisoning in humans. The control of poultry salmonellosis is particularly difficult since birds are asymptomatic and numerous factors may expedite the maintenance of bacteria in poultry production facilities. The aim of the study was to determine the vectorial capacity of adults and larvae of Alphitobius diaperinus (Coleoptera: Tenebrionidae) in the experimental transmission of Salmonella Enteritidis phage type 4 to 1-day-old specific pathogen-free White Leghorn chicks. Adult insects and larvae were starved for 1 day, fed for 24 h or 7 days on sterile ration that had been treated with Salmonella Enteritidis phage type 4, and the levels of bacterial infection were determined. Infected adult insects and larvae were fed to groups of day-old chicks, after which bacteria were recovered from cecum, liver, and spleen samples over a 7-day period. Infected larvae were more efficient than adult insects in transmitting Salmonella Enteritidis to chicks. Higher concentrations of bacteria could be reisolated from the cecum, liver, and spleen of chicks that had ingested infected larvae compared with those that had ingested infected adults. The control of A. diaperinus, and particularly of the larvae, represents a critical factor in the reduction of Salmonella spp. in poultry farms.
Dewaele, I; Heyndrickx, M; Rasschaert, G; Bertrand, S; Wildemauwe, C; Wattiau, P; Imberechts, H; Herman, L; Ducatelle, R; Van Weyenberg, S; De Reu, K
2014-09-01
The aim of the study was to characterize isolates of Salmonella enterica serovar Enteritidis (S. Enteritidis) obtained from humans and layer farms in Belgium collected during 2000-2010. Three periods were compared, namely (i) before implementation of vaccination (2000-2004), (ii) during voluntary vaccination (2005-2006) and (iii) during implementation of the national control program (NCP) for Salmonella including mandatory vaccination against S. Enteritidis (2007-2010). The characteristics compared across time periods were distributions of phage type and multiple-locus variable number tandem-repeat assay (MLVA). While PT4 and PT21 were predominantly isolated in Belgium in layers and humans before 2007, a significant reduction of those PTs was observed in both populations in the period 2007-2010. The relative proportion of PT4b, PT21c and PT6c was found to have increased considerably in the layer population since 2007. In the human population, PT8, PT1 and the group of 'other' PTs were more frequently isolated compared to the previous periods. When comparing the proportion of the predominant MLVA types Q2 and U2, no significant difference was found between the layer and human population in the three periods and between periods within each category (layer and human). A significant difference in isolate distribution among MLVA clusters I and II was found between human and layer isolates recovered during Period 3 and in the human population between Period 1 and 3. Results suggest that the association between S. Enteritidis in layers and the occurrence of the pathogen in humans changed since implementation of the NCP in 2007. © 2013 Blackwell Verlag GmbH.
Gast, Richard K; Guraya, Rupa; Jones, Deana R; Anderson, Kenneth E
2015-07-01
Salmonella Enteritidis can be deposited inside eggs laid by infected hens, so the prevalence of this pathogen in commercial egg-producing flocks is an important risk factor for human illness. Opportunities for the introduction, transmission, and persistence of salmonellae in poultry are potentially influenced by flock housing and management systems. Animal welfare concerns have spurred the development of alternatives to traditional cage-based housing. However, the consequences of poultry housing systems for food safety have not been fully resolved by prior research. The present study assessed the effects of two different housing systems (conventional cages and colony cages enriched with perching and nesting areas) on the persistence of fecal shedding of Salmonella Enteritidis by groups of experimentally infected laying hens. In each of two trials, 136 hens were distributed among cages of both housing systems and orally inoculated with doses of 10(8) cfu of Salmonella Enteritidis (phage type 13a in one trial and phage type 4 in the other). At weekly intervals, samples of voided feces were collected from beneath each cage and cultured to detect Salmonella Enteritidis. Fecal shedding of Salmonella Enteritidis was detected for up to 8 wk post-inoculation by hens housed in enriched colony cages and 10 wk by hens housed in conventional cages. For both trials combined, the frequency of positive fecal cultures was significantly (P < 0.05) greater for conventional cages than for enriched colony cages at 1 wk (84.7 vs. 71.5%), 2 wk (54.2 vs. 31.3%), 3 wk (21.5 vs. 7.6%), and 4 wk (9.7 vs. 2.8%) post-inoculation. These results demonstrate that the susceptibility of hens to intestinal colonization by Salmonella Enteritidis can differ between conventional and enriched cage-based production systems, although this effect does not necessarily translate into a corresponding difference in the longer-term persistence of fecal shedding. © 2015 Poultry Science Association Inc.
Philbey, A W; Mather, H A; Gibbons, J F; Thompson, H; Taylor, D J; Coia, J E
2014-01-25
Serovars and bacteriophage (phage) types were determined for 442 isolates of Salmonella enterica from dogs in the UK submitted to the Scottish Salmonella Reference Laboratory from 1954 to 2012. The most frequent serovars were Salmonella Typhimurium (196 isolates; 44.3 per cent), Dublin (40 isolates; 9.0 per cent), Enteritidis (28 isolates; 6.3 per cent), Montevideo (19 isolates; 4.3 per cent), Virchow (10 isolates; 2.3 per cent), Heidelberg (8 isolates; 1.8 per cent) and Derby (8 isolates; 1.8 per cent), along with 55 other recognised serovars among 127 other isolates, and six incompletely classified isolates. Serovars were frequently represented by strains commonly associated with poultry, cattle or pigs and their products. Among 196 Salmonella Typhimurium isolates from dogs, the most frequent phage types (definitive types) were the multiple antimicrobial-resistant strains DT104 (62 isolates), DT204c (18 isolates) and DT193 (8 isolates), along with antimicrobial sensitive wild finch strains DT40 (13 isolates) and DT56 variant (8 isolates). Eleven of 28 isolates of Salmonella Enteritidis were phage type 4. S enterica was frequently recovered from faecal or intestinal samples of dogs with diarrhoea, although many dogs had concurrent infection with other enteric pathogens. Salmonella Dublin was recovered from the brain and/or cerebrospinal fluid of two dogs with meningoencephalitis. Salmonella Kedougou was isolated from the joint fluid of a dog with septic arthritis. Salmonella Typhimurium and Salmonella Dublin were each recovered from the vaginas of bitches that had aborted. Isolates of Salmonella Enteritidis phage types 1, 4 and 8, Salmonella Typhimurium DT104, Salmonella Dublin and Salmonella Indiana were isolated from clinically healthy dogs in households where the same strains were recovered from human beings with diarrhoea. The pattern ampicillin-chloramphenicol-spectinomycin-streptomycin-sulfamethoxazole-tetracycline (ACSpSSuT) was the most frequent resistance phenotype and was observed in 44 (13.3 per cent) of 330 isolates. Dogs in the UK are exposed to a wide variety of serovars of S enterica, sometimes associated with clinical disease, and represent a zoonotic risk.
Inns, T; Lane, C; Peters, T; Dallman, T; Chatt, C; McFarland, N; Crook, P; Bishop, T; Edge, J; Hawker, J; Elson, R; Neal, K; Adak, G K; Cleary, P
2015-04-23
We report an outbreak of Salmonella Enteritidis phage type 14b (PT14b) in the United Kingdom (UK) between May and September 2014 where Public Health England launched an investigation to identify the source of infection and implement control measures. During the same period, outbreaks caused by a Salmonella Enteritidis strain with a specific multilocus variable-number tandem repeat analysis (MLVA) profile occurred in other European Union Member States. Isolates from a number of persons affected by the UK outbreak, who had initially been tested by MLVA also shared this particular profile. Cases were defined as any person infected with S. Enteritidis PT14b, resident in England or Wales and without history of travel outside of this geographical area during the incubation period, reported from 1 June 2014 onwards, with a MLVA profile of 2–11–9-7–4-3–2-8–9 or a single locus variant thereof. In total, 287 cases met the definition. Food traceback investigations in the UK and other affected European countries linked the outbreaks to chicken eggs from a German company. We undertook whole genome sequencing of isolates from UK and European cases, implicated UK premises, and German eggs: isolates were highly similar. Combined with food traceback information, this confirmed that the UK outbreak was also linked to a German producer.
Badrinath, Padmanabhan; Sundkvist, Torbjorn; Mahgoub, Hamid; Kent, Richard
2004-01-01
Background On 30th July 2002, the Suffolk Communicable Disease Control Team received notifications of gastrointestinal illness due to Salmonella Enteritidis in subjects who had eaten food from a Chinese restaurant on 27th July. An Outbreak Control Team was formed resulting in extensive epidemiological, microbiological and environmental investigations. Methods Attempts were made to contact everybody who ate food from the restaurant on 27th July and a standard case definition was adopted. Using a pre-designed proforma information was gathered from both sick and well subjects. Food specific attack rates were calculated and two-tailed Fisher's exact test was used to test the difference between type of food consumed and the health status. Using a retrospective cohort design univariate Relative Risks and 95% Confidence Intervals were calculated for specific food items. Results Data was gathered on 52 people of whom 38 developed gastrointestinal symptoms; 16 male and 22 female. The mean age was 27 years. The mean incubation period was 30 hours with a range of 6 to 90 hours. Food attack rates were significantly higher for egg, special and chicken fried rice. Relative risk and the Confidence interval for these food items were 1.97 (1.11–3.48), 1.56 (1.23–1.97) and 1.48 (1.20–1.83) respectively. Interviews with the chef revealed that many eggs were used in the preparation of egg-fried rice, which was left at room temperature for seven hours and was used in the preparation of the other two rice dishes. Of the 31 submitted stool specimens 28 tested positive for S Enteritidis phage type 34a and one for S Enteritidis phage type 4. Conclusion In the absence of left over food available for microbiological examination, epidemiological investigation strongly suggested the eggs used in the preparation of the egg-fried rice as the vehicle for this outbreak. This investigation highlights the importance of safe practices in cooking and handling of eggs in restaurants. PMID:15341665
Zielicka-Hardy, A; Zarowna, D; Szych, J; Madajczak, G; Sadkowska-Todys, M
2012-11-22
Implementation of control measures in line with European Commission regulations has led to a decrease in salmonellosis in the European Union since 2004. However, control programmes do not address laying hens whose eggs are produced for personal consumption or local sale. This article reports an investigatxion of a salmonellosis outbreak linked to home-produced eggs following a family event held in a farm in September 2011 near Warsaw, Poland. In the outbreak, 34 people developed gastroenteritis symptoms. Results from a cohort study indicated a cake, prepared from raw home-produced eggs, as the vehicle of the outbreak. Laboratory analysis identified Salmonella enterica serotype Enteritidis (S. Enteritidis) in stool samples or rectal swabs from 18 of 24 people and in two egg samples. As no food items remained, we used phage typing to link the source of the outbreak with the isolated strains. Seven S. Enteritidis strains analysed (five from attendees and two from eggs) were phage type 21c. Our findings resulted in culling of the infected laying hens and symptomatic pigeons housed next to the hens. Salmonella poses as a public health problem in Poland: control measures should not forget home-produced eggs, as there is a risk of infection from their consumption.
Comparative genomics identifies distinct lineages of S. Enteritidis from Queensland, Australia.
Graham, Rikki M A; Hiley, Lester; Rathnayake, Irani U; Jennison, Amy V
2018-01-01
Salmonella enterica is a major cause of gastroenteritis and foodborne illness in Australia where notification rates in the state of Queensland are the highest in the country. S. Enteritidis is among the five most common serotypes reported in Queensland and it is a priority for epidemiological surveillance due to concerns regarding its emergence in Australia. Using whole genome sequencing, we have analysed the genomic epidemiology of 217 S. Enteritidis isolates from Queensland, and observed that they fall into three distinct clades, which we have differentiated as Clades A, B and C. Phage types and MLST sequence types differed between the clades and comparative genomic analysis has shown that each has a unique profile of prophage and genomic islands. Several of the phage regions present in the S. Enteritidis reference strain P125109 were absent in Clades A and C, and these clades also had difference in the presence of pathogenicity islands, containing complete SPI-6 and SPI-19 regions, while P125109 does not. Antimicrobial resistance markers were found in 39 isolates, all but one of which belonged to Clade B. Phylogenetic analysis of the Queensland isolates in the context of 170 international strains showed that Queensland Clade B isolates group together with the previously identified global clade, while the other two clades are distinct and appear largely restricted to Australia. Locally sourced environmental isolates included in this analysis all belonged to Clades A and C, which is consistent with the theory that these clades are a source of locally acquired infection, while Clade B isolates are mostly travel related.
Indar-Harrinauth, L; Daniels, N; Prabhakar, P; Brown, C; Baccus-Taylor, G; Comissiong, E; Hospedales, J
2001-03-15
A prospective case-control study involving 46 case patients and 92 age- and neighborhood-matched control subjects was conducted in Trinidad and Tobago (T&T) between March 1998 and May 1999 to determine the etiology, sources, and risk factors for Salmonella enteritidis (SE) infection. SE infection in T&T was found to be associated with the consumption of shell eggs, and in particular raw or undercooked eggs. SE isolates from 30 (88%) of 34 patients and from 9 implicated egg or egg-containing food samples were phage type 4. Homemade eggnog and ice cream, cake batter, and egg-containing beverages were the main raw egg-containing foods, reflecting the cultural practices of the people of T&T. Public health education on the risks of eating raw or undercooked eggs, thorough cooking of all egg dishes, and refrigeration of shell eggs and egg dishes; studies tracing infected eggs to their sources; and testing of flocks of layer chickens for SE are needed to reduce the incidence of this infection.
Bucher, O; Holley, R A; Ahmed, R; Tabor, H; Nadon, C; Ng, L K; D'Aoust, J Y
2007-10-01
Raw, frozen chicken nuggets and strips have been identified as a significant risk factor in contracting foodborne salmonellosis. Cases of salmonellosis as a result of consuming partly cooked chicken nuggets may be due in part to Salmonella strains originating in broiler feed. This study was undertaken to determine the occurrence and characterize the strains of Salmonella contaminating chicken nuggets, strips, and pelleted feeds, in an attempt to demonstrate whether the same Salmonella strains present in broiler feed could be isolated from raw, frozen chicken nuggets and strips available for human consumption. Salmonellae were recovered using the Health Canada MFHPB-20 method for the isolation and identification of Salmonella from foods. Strains were characterized by serotyping, phage typing, antimicrobial resistance typing (R-typing), and by pulsed-field gel electrophoresis (PFGE). Salmonellae were isolated from 25-g samples in 27% (n=92) of nugget and strip samples, 95% (n=20) of chicken nugget meat samples, and from 9% (n=111) of pelleted feed samples. Salmonella Heidelberg, Salmonella Enteritidis, and Salmonella Orion were the most commonly isolated serovars from chicken nuggets and strips, nugget and strip meat, and pelleted broiler feeds, respectively. Salmonella Enteritidis phage type (PT) 13a with PFGE pattern SENXAI.0006 and R-type sensitive as well as Salmonella Enteritidis PT13a with PFGE pattern SENXAI.0068 and R-type sensitive were isolated from pelleted feed, and chicken nugget and strip meat in two separate instances. Data showed that Salmonella strains isolated from broiler feed were indistinguishable from strains isolated from packaged raw, frozen chicken nuggets and strips. However, results did not rule out the possibility that breeding stock or contamination during processing may have contributed to chicken meat contamination by Salmonella.
McNeil, M. M.; Sweat, L. B.; Carter, S. L.; Watson, C. B.; Holloway, J. T.; Manning, R.; Altekruse, S. F.; Blake, P. A.
1999-01-01
In May 1996, the Georgia Division of Public Health was notified about a cluster of persons with Salmonella Enteritidis (SE) infections in Waycross, Georgia. A matched pair case-control study to determine risk factors for illness found a statistically significant association of SE infection with a history of having eaten at Restaurant A during the 5 days before onset of illness (relative risk = 13 [95% confidence interval (CI) = 3-62, P < 0.01]). In a second case-control study, to determine specific food exposures, consumption of a deep-fried Mexican dish (chile relleno) (4 of 21 cases vs. 0 of 26 controls, odds ratio undefined, 95% CI > 1.46, P = 0.034) was found to be significantly associated with SE infection. An environmental investigation found evidence of suboptimal food storage and cooking temperatures at Restaurant A; cross contamination of foods may have contributed to the low attributable risk identified for chile rellenos. Five of 37 Restaurant A food and environment specimens yielded SE strains. All five positive specimens were from chiles rellenos. Of the seven outbreak-associated strains (six patient isolates and one food isolate from Restaurant A) for which phage typing was conducted, all were phage type 34. A FDA traceback investigation through Restaurant A's single-egg supplier identified the potential source as three interrelated farms in South Carolina. Environmental culture from one of these farms yielded SE phage type 34. As a result of this outbreak, FDA helped institute a statewide egg quality-assurance programme in South Carolina to minimize SE contamination of eggs. PMID:10355784
McNeil, M M; Sweat, L B; Carter, S L; Watson, C B; Holloway, J T; Manning, R; Altekruse, S F; Blake, P A
1999-04-01
In May 1996, the Georgia Division of Public Health was notified about a cluster of persons with Salmonella Enteritidis (SE) infections in Waycross, Georgia. A matched pair case-control study to determine risk factors for illness found a statistically significant association of SE infection with a history of having eaten at Restaurant A during the 5 days before onset of illness (relative risk = 13 [95% confidence interval (CI) = 3-62, P < 0.01]). In a second case-control study, to determine specific food exposures, consumption of a deep-fried Mexican dish (chile relleno) (4 of 21 cases vs. 0 of 26 controls, odds ratio undefined, 95% CI > 1.46, P = 0.034) was found to be significantly associated with SE infection. An environmental investigation found evidence of suboptimal food storage and cooking temperatures at Restaurant A; cross contamination of foods may have contributed to the low attributable risk identified for chile rellenos. Five of 37 Restaurant A food and environment specimens yielded SE strains. All five positive specimens were from chiles rellenos. Of the seven outbreak-associated strains (six patient isolates and one food isolate from Restaurant A) for which phage typing was conducted, all were phage type 34. A FDA traceback investigation through Restaurant A's single-egg supplier identified the potential source as three interrelated farms in South Carolina. Environmental culture from one of these farms yielded SE phage type 34. As a result of this outbreak, FDA helped institute a statewide egg quality-assurance programme in South Carolina to minimize SE contamination of eggs.
The "decline and fall" of nontyphoidal salmonella in the United kingdom.
O'Brien, Sarah J
2013-03-01
Remarkable changes in the epidemiology of human nontyphoidal salmonellosis have occurred in the United Kingdom over the last century. Between 1981 and 1991, the incidence of nontyphoidal salmonellosis in the United Kingdom rose by >170%, driven primarily by an epidemic of Salmonella enterica subspecies enterica serovar Enteritidis phage type (PT) 4, which peaked in 1993. Measures introduced to control this epidemic included legislation, food safety advice, and an industry-led vaccination program in broiler-breeder and laying poultry flocks. The incidence of Salmonella Enteritidis has been falling since 1997, and levels of Salmonella Enteritidis PT4 have fallen to preepidemic levels and have stayed low. The temporal relationship between vaccination programs and the reduction in human disease is compelling and suggests that these programs have made a major contribution to improving public health.
The “Decline and Fall” of Nontyphoidal Salmonella in the United Kingdom
O'Brien, Sarah J.
2013-01-01
Remarkable changes in the epidemiology of human nontyphoidal salmonellosis have occurred in the United Kingdom over the last century. Between 1981 and 1991, the incidence of nontyphoidal salmonellosis in the United Kingdom rose by >170%, driven primarily by an epidemic of Salmonella enterica subspecies enterica serovar Enteritidis phage type (PT) 4, which peaked in 1993. Measures introduced to control this epidemic included legislation, food safety advice, and an industry-led vaccination program in broiler-breeder and laying poultry flocks. The incidence of Salmonella Enteritidis has been falling since 1997, and levels of Salmonella Enteritidis PT4 have fallen to preepidemic levels and have stayed low. The temporal relationship between vaccination programs and the reduction in human disease is compelling and suggests that these programs have made a major contribution to improving public health. PMID:23166188
Giraudon, I; Cathcart, S; Blomqvist, S; Littleton, A; Surman-Lee, S; Mifsud, A; Anaraki, S; Fraser, G
2009-06-01
To describe the epidemiology of an outbreak of Salmonella enteritidis phage type 1 (PT1) infection associated with a fast food premises, and to identify the causative factors leading to an acute outbreak with high attack rate and severe illness including hospital admission. Integrated descriptive study of epidemiology, food and environmental microbiology, and professional environmental health assessment, supplemented by a case-case analytical study. Cases were identified through multiple sources and were interviewed to identify food items consumed. Descriptive epidemiology of all cases and a case-case analytical study of risk factors for severe illness were undertaken. Microbiological investigation included analysis and typing of pathogens from stools, blood and environmental surfaces. Professional environmental heath assessment of the premises was undertaken. S. enteritidis PT1 was recovered from two-thirds of faecal samples. Three cases had dual infection with enterotoxin-producing Clostridium perfringens. S. enteritidis PT1 was isolated from 14 of 40 food samples examined and C. perfringens was isolated from eight food samples. Environmental health inspection of the premises revealed multiple deficiencies, including deficits in food preparation and hygiene consistent with multiple cross-contamination, and time-temperature abuse of sauces widely used across menu items. Severe cases were associated with consumption of chips and salad. Outbreaks from fast food premises have been infrequently described. This outbreak demonstrates the potential for fast food premises, with multiple deficiencies in food preparation and hygiene, to produce large, intense community outbreaks with high attack rates and severe illness, highly confined in space and time.
Heyndrickx, M; Herman, L; Vlaes, L; Butzler, J P; Wildemauwe, C; Godard, C; De Zutter, L
2007-02-01
Eighteen Belgian broiler flocks were followed from the hatchery to the slaughterhouse by a multiple typing approach (sero-, geno-, and phage types) for the investigation of the transmission of Salmonella and its subtypes. For 12 of the 18 flocks, there was no correlation between the serotypes found preharvest and those isolated from the feces in the transport crates and on the carcasses in the slaughterhouse. Serotypes found in the crates were usually also found on the carcasses. In 5 of the 10 flocks with Salmonella-positive broilers, complex contamination patterns with the involvement of different serotypes, genotypes, or both were revealed. In two of these flocks (flocks 8 and 9), the Salmonella Enteritidis contamination of the broilers could be traced to the hatchery. In flock 9, evidence was found for the acquisition, during rearing, of a megaplasmid in the Salmonella Enteritidis strain. In the other three positive flocks (flocks 6, 7, and 10), the environment and movable material (e.g., footwear) played a determining role in the infection and shedding pattern of the broilers. For flocks 6 and 7, reared consecutively in the same broiler house, a persistent Salmonella Hadar geno/phage type predominated in the preharvest period, while another Salmonella Hadar geno/phage type was found in the house or the environment but never in the broilers. Only for the above-mentioned five flocks were the same strains that were found preharvest also recovered from the carcasses, although these strains were not predominant on the carcasses, with the exception of one flock (flock 10). In conclusion, it can be said that most of the time, Salmonella strains that contaminate Belgian broiler carcasses do not predominate in the preharvest environment.
Li, Qiuchun; Wang, Xin; Yin, Kequan; Hu, Yachen; Xu, Haiyan; Xie, Xiaolei; Xu, Lijuan; Fei, Xiao; Chen, Xiang; Jiao, Xinan
2018-02-02
Salmonella enterica serovar Enteritidis (S. Enteritidis) is one of the most prevalent serotypes in Salmonella isolated from poultry and the most commonly reported cause of human salmonellosis. In this study, we aimed to assess the genetic diversity of 329 S. Enteritidis strains isolated from different sources from 2009 to 2016 in China. Clustered regularly interspaced short palindromic repeat (CRISPR) typing was used to characterize these 262 chicken clinical isolates, 38 human isolates, 18 pig isolates, six duck isolates, three goose isolates and two isolates of unknown source. A total of 18 Enteritidis CRISPR types (ECTs) were identified, with ECT2, ECT8 and ECT4 as the top three ECTs. CRISPR typing identified ECT2 as the most prevalent ECT, which accounted for 41% of S. Enteritidis strains from all the sources except duck. ECT9 and ECT13 were identified in both pig and human isolates and revealed potential transmission from pig to human. A cluster analysis distributed 18 ECTs, including the top three ECTs, into four lineages with LI as the predominant lineage. Forty-eight out of 329 isolates were subjected to whole genome sequence typing, which divided them into four clusters, with Cluster I as the predominant cluster. Cluster I included 92% (34/37) of strains located in LI identified from the CRISPR typing, confirming the good correspondence between both typing methods. In addition, the CRISPR typing also revealed the close relationship between ECTs and isolated areas, confirming that CRISPR spacers might be obtained by bacteria from the unique phage or plasmid pools in the environment. However, further analysis is needed to determine the function of CRISPR-Cas systems in Salmonella and the relationship between spacers and the environment. Copyright © 2017 Elsevier B.V. All rights reserved.
Prophage Integrase Typing Is a Useful Indicator of Genomic Diversity in Salmonella enterica
Colavecchio, Anna; D’Souza, Yasmin; Tompkins, Elizabeth; Jeukens, Julie; Freschi, Luca; Emond-Rheault, Jean-Guillaume; Kukavica-Ibrulj, Irena; Boyle, Brian; Bekal, Sadjia; Tamber, Sandeep; Levesque, Roger C.; Goodridge, Lawrence D.
2017-01-01
Salmonella enterica is a bacterial species that is a major cause of illness in humans and food-producing animals. S. enterica exhibits considerable inter-serovar diversity, as evidenced by the large number of host adapted serovars that have been identified. The development of methods to assess genome diversity in S. enterica will help to further define the limits of diversity in this foodborne pathogen. Thus, we evaluated a PCR assay, which targets prophage integrase genes, as a rapid method to investigate S. enterica genome diversity. To evaluate the PCR prophage integrase assay, 49 isolates of S. enterica were selected, including 19 clinical isolates from clonal serovars (Enteritidis and Heidelberg) that commonly cause human illness, and 30 isolates from food-associated Salmonella serovars that rarely cause human illness. The number of integrase genes identified by the PCR assay was compared to the number of integrase genes within intact prophages identified by whole genome sequencing and phage finding program PHASTER. The PCR assay identified a total of 147 prophage integrase genes within the 49 S. enterica genomes (79 integrase genes in the food-associated Salmonella isolates, 50 integrase genes in S. Enteritidis, and 18 integrase genes in S. Heidelberg). In comparison, whole genome sequencing and PHASTER identified a total of 75 prophage integrase genes within 102 intact prophages in the 49 S. enterica genomes (44 integrase genes in the food-associated Salmonella isolates, 21 integrase genes in S. Enteritidis, and 9 integrase genes in S. Heidelberg). Collectively, both the PCR assay and PHASTER identified the presence of a large diversity of prophage integrase genes in the food-associated isolates compared to the clinical isolates, thus indicating a high degree of diversity in the food-associated isolates, and confirming the clonal nature of S. Enteritidis and S. Heidelberg. Moreover, PHASTER revealed a diversity of 29 different types of prophages and 23 different integrase genes within the food-associated isolates, but only identified four different phages and integrase genes within clonal isolates of S. Enteritidis and S. Heidelberg. These results demonstrate the potential usefulness of PCR based detection of prophage integrase genes as a rapid indicator of genome diversity in S. enterica. PMID:28740489
Prophage Integrase Typing Is a Useful Indicator of Genomic Diversity in Salmonella enterica.
Colavecchio, Anna; D'Souza, Yasmin; Tompkins, Elizabeth; Jeukens, Julie; Freschi, Luca; Emond-Rheault, Jean-Guillaume; Kukavica-Ibrulj, Irena; Boyle, Brian; Bekal, Sadjia; Tamber, Sandeep; Levesque, Roger C; Goodridge, Lawrence D
2017-01-01
Salmonella enterica is a bacterial species that is a major cause of illness in humans and food-producing animals. S. enterica exhibits considerable inter-serovar diversity, as evidenced by the large number of host adapted serovars that have been identified. The development of methods to assess genome diversity in S. enterica will help to further define the limits of diversity in this foodborne pathogen. Thus, we evaluated a PCR assay, which targets prophage integrase genes, as a rapid method to investigate S. enterica genome diversity. To evaluate the PCR prophage integrase assay, 49 isolates of S. enterica were selected, including 19 clinical isolates from clonal serovars (Enteritidis and Heidelberg) that commonly cause human illness, and 30 isolates from food-associated Salmonella serovars that rarely cause human illness. The number of integrase genes identified by the PCR assay was compared to the number of integrase genes within intact prophages identified by whole genome sequencing and phage finding program PHASTER. The PCR assay identified a total of 147 prophage integrase genes within the 49 S. enterica genomes (79 integrase genes in the food-associated Salmonella isolates, 50 integrase genes in S . Enteritidis, and 18 integrase genes in S . Heidelberg). In comparison, whole genome sequencing and PHASTER identified a total of 75 prophage integrase genes within 102 intact prophages in the 49 S. enterica genomes (44 integrase genes in the food-associated Salmonella isolates, 21 integrase genes in S . Enteritidis, and 9 integrase genes in S . Heidelberg). Collectively, both the PCR assay and PHASTER identified the presence of a large diversity of prophage integrase genes in the food-associated isolates compared to the clinical isolates, thus indicating a high degree of diversity in the food-associated isolates, and confirming the clonal nature of S . Enteritidis and S . Heidelberg. Moreover, PHASTER revealed a diversity of 29 different types of prophages and 23 different integrase genes within the food-associated isolates, but only identified four different phages and integrase genes within clonal isolates of S. Enteritidis and S. Heidelberg. These results demonstrate the potential usefulness of PCR based detection of prophage integrase genes as a rapid indicator of genome diversity in S. enterica .
Iron restriction and the growth of Salmonella enteritidis.
Chart, H.; Rowe, B.
1993-01-01
Strains of Salmonella enteritidis were examined for their ability to remove ferric-ions from the iron chelating agents ovotransferrin, Desferal and EDDA. Growth of S. enteritidis phage type (PT) 4 (SE4) in trypticase soy broth containing ovotransferrin resulted in the expression of iron regulated outer membrane proteins (OMPs) of 74, 78 and 81 kDa, and unexpectedly the repression of expression of OMP C. The 38 MDa 'mouse virulence' plasmid was not required for the expression of the iron-regulated OMPs (IROMPs). SE4 was able to obtain iron bound to the iron chelator Desferal and EDDA without expressing a high-affinity iron uptake system. Strains of S. enteritidis belonging to PTs 7, 8, 13a, 23, 24 and 30 were also able to remove ferric ions from Desferal and EDDA without expressing a high-affinity iron uptake system. We conclude that strains of SE4 possess a high-affinity iron sequestering mechanism that can readily remove iron from ovotransferrin. It is likely that iron limitation, and not iron restriction, is responsible for the bacteriostatic properties of fresh egg whites. Images Fig. 2 PMID:8432322
Addwebi, Tarek M; Call, Douglas R; Shah, Devendra H
2014-04-01
Salmonella enterica serovar Enteritidis is one of the most common serovars associated with poultry and poultry product contamination in the United States. We previously identified 14 mutant strains of Salmonella Enteritidis phage type 4 (PT4) with significantly reduced invasiveness in human intestinal epithelial cells (Caco-2), chicken macrophages (HD-11), and chicken hepatocellular epithelial cells (LMH). These included Salmonella Enteritidis mutants with transposon insertions in 6 newly identified Salmonella Enteritidis-specific genes (pegD and SEN1393), and genes or genomic islands common to most other Salmonella serovars (SEN0803, SEN0034, SEN2278, and SEN3503) along with 8 genes previously known to contribute to enteric infection (hilA, pipA, fliH, fljB, csgB, spvR, and rfbMN). We hypothesized that Salmonella Enteritidis employs both common Salmonella enterica colonization factors and Salmonella Enteritidis-specific traits to establish infection in chickens. Four Salmonella Enteritidis mutants (SEN0034::Tn5, fliH::Tn5, SEN1393::Tn5, and spvR::Tn5) were indistinguishable from the isogenic wild-type strain when orally inoculated in 1-d-old chickens, whereas 2 mutants (CsgB::Tn5 and PegD::Tn5) were defective for intestinal colonization (P < 0.05) and 8 mutants (hilA::Tn5, SEN3503::Tn5, SEN0803::Tn5, SEN2278::Tn5, fljB::Tn5, rfbM::Tn5, rfbN::Tn5, and pipA::Tn5) showed significant in vivo attenuation in more than one organ (P < 0.05). Complementation studies confirmed the role of rfbN and SEN3503 during infection. This study should contribute to a better understanding of the mechanisms involved in Salmonella Enteritidis pathogenesis, and the target genes identified here could potentially serve as targets for the development of live-attenuated or subunit vaccine.
Bacteriophage P22 to challenge Salmonella in foods.
Zinno, Paola; Devirgiliis, Chiara; Ercolini, Danilo; Ongeng, Duncan; Mauriello, Gianluigi
2014-11-17
In this study we considered the influence of phage addition on the fate of Salmonella enterica serovar Typhimurium in different foods. Phage P22 was applied to the following: liquid eggs, energy drinks, whole and skimmed milk, apple juice, chicken breast and chicken mince all spiked with its host, whose growth was monitored for 24 and 48 h at 4 °C. Appreciable host inactivation, generally in the order of 2 log cycles, was achieved compared to phage-free controls in all food matrices when 10(4) UFC/g host inoculum was used. Furthermore, wild food strains belonging to the serotypes Typhimurium, Enteritidis, Derby Give, Newport, Muenchen and Muenster were assayed towards phage P22. Only isolates of Salmonella Typhimurium as well as Salmonella Derby and Salmonella Enteritidis was inhibited by the presence of P22 phage. Additional challenge experiments were carried out by spiking liquid-eggs, chicken breast and chicken mince with mixes of wild Salmonella Typhimurium (at concentration of about 10(4) UFC/g) strains along with their relative phage P22. The results showed a reduction of 2-3 log cycles after 48 h at 4 °C depending on both mix of strains and the specific food. Overall, the results indicate that phages may be useful in the control of food-borne pathogens. The food matrices considered, the liquid more than the solid, do not seem to affect the phage ability of infection compared to similar tests performed in vitro. Copyright © 2014 Elsevier B.V. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guard-Petter, J.; Parker, C.T.; Asokan, K.
1999-05-01
Twelve human and chicken isolates of Salmonella enterica serovar Enteritidis belonging to phage types 4, 8, 13a, and 23 were characterized for variability in lipopolysaccharide (LPS) composition. Isolates were differentiated into two groups, i.e., those that lacked immunoreactive O-chain, termed rough isolates, and those that had immunoreactive O-chain, termed smooth isolates. Isolates within these groups could be further differentiated by LPS compositional differences as detected by gel electrophoresis and gas liquid chromatography of samples extracted with water, which yielded significantly more LPS in comparison to phenol-chloroform extraction. The rough isolates were of two types, the O-antigen synthesis mutants and themore » O-antigen polymerization (wzy) mutants. Smooth isolates were also of two types, one producing low-molecular-weight (LMW) LPS and the other producing high-molecular-weight (HMW) LPS. To determine the genetic basis for the O-chain variability of the smooth isolates, the authors analyzed the effects of a null mutation in the O-chain length determinant gene, wzz (cld) of serovar Typhimurium. This mutation results in a loss of HMW LPS; however, the LMW LPS of this mutant was longer and more glucosylated than that from clinical isolates of serovar Enteritidis. Cluster analysis of these data and of those from two previously characterized isogenic strains of serovar Enteritidis that had different virulence attributes indicated that glucosylation of HMW LPS (via oafR function) is variable and results in two types of HMW structures, one that is highly glucosylated and one that is minimally glucosylated. These results strongly indicate that naturally occurring variability in wzy, wzz, and oafR function can be used to subtype isolates of serovar Enteritidis during epidemiological investigations.« less
Morgan, D.; Mawer, S. L.; Harman, P. L.
1994-01-01
A family outbreak of Salmonella enteritidis PT4 infection is described in which home-made ice cream was identified as the vehicle of infection. The ice cream contained approximately 10(5) S. enteritidis PT4 organisms per gm and was probably contaminated by an infected shell egg containing between 10(5)-10(8) organisms. The continued relevance of the Chief Medical Officer's warning on the use of raw shell eggs is highlighted. Home-made ice cream using the same recipe as ice cream that had been incriminated as the cause of the family outbreak of S. enteritidis PT4 infection was used to study the growth of the organism that might have occurred in the 3-4 h it took to prepare the product. When the inoculum was in the stationary phase, as it would be from shell or other cross contamination, there was a lag phase of 3 h before growth occurred at room temperature. Even when actively multiplying organisms were introduced, as may be found in an infected egg, there was less than 3 log(10) increase in the salmonella count in 4 h at room temperature. It was, therefore, given the high S. enteritidis count, unlikely that the ice cream was cross-contaminated. By contrast, raspberry sorbet at pH 3.73 proved to be lethal to a large inoculum of S. enteritidis and may be a relatively safe raw egg containing product. PMID:8062876
Inns, Thomas; Jombart, Thibaut; Ashton, Philip; Loman, Nicolas; Chatt, Carol; Messelhaeusser, Ute; Rabsch, Wolfgang; Simon, Sandra; Nikisins, Sergejs; Bernard, Helen; le Hello, Simon; Jourdan da-Silva, Nathalie; Kornschober, Christian; Mossong, Joel; Hawkey, Peter; de Pinna, Elizabeth; Grant, Kathie; Cleary, Paul
2016-01-01
Outbreaks of Salmonella Enteritidis have long been associated with contaminated poultry and eggs. In the summer of 2014 a large multi-national outbreak of Salmonella Enteritidis phage type 14b occurred with over 350 cases reported in the United Kingdom, Germany, Austria, France and Luxembourg. Egg supply network investigation and microbiological sampling identified the source to be a Bavarian egg producer. As part of the international investigation into the outbreak, over 400 isolates were sequenced including isolates from cases, implicated UK premises and eggs from the suspected source producer. We were able to show a clear statistical correlation between the topology of the UK egg distribution network and the phylogenetic network of outbreak isolates. This correlation can most plausibly be explained by different parts of the egg distribution network being supplied by eggs solely from independent premises of the Bavarian egg producer (Company X). Microbiological sampling from the source premises, traceback information and information on the interventions carried out at the egg production premises all supported this conclusion. The level of insight into the outbreak epidemiology provided by whole-genome sequencing (WGS) would not have been possible using traditional microbial typing methods. PMID:28348865
Dallman, Tim; Inns, Thomas; Jombart, Thibaut; Ashton, Philip; Loman, Nicolas; Chatt, Carol; Messelhaeusser, Ute; Rabsch, Wolfgang; Simon, Sandra; Nikisins, Sergejs; Bernard, Helen; le Hello, Simon; Jourdan da-Silva, Nathalie; Kornschober, Christian; Mossong, Joel; Hawkey, Peter; de Pinna, Elizabeth; Grant, Kathie; Cleary, Paul
2016-08-01
Outbreaks of Salmonella Enteritidis have long been associated with contaminated poultry and eggs. In the summer of 2014 a large multi-national outbreak of Salmonella Enteritidis phage type 14b occurred with over 350 cases reported in the United Kingdom, Germany, Austria, France and Luxembourg. Egg supply network investigation and microbiological sampling identified the source to be a Bavarian egg producer. As part of the international investigation into the outbreak, over 400 isolates were sequenced including isolates from cases, implicated UK premises and eggs from the suspected source producer. We were able to show a clear statistical correlation between the topology of the UK egg distribution network and the phylogenetic network of outbreak isolates. This correlation can most plausibly be explained by different parts of the egg distribution network being supplied by eggs solely from independent premises of the Bavarian egg producer (Company X). Microbiological sampling from the source premises, traceback information and information on the interventions carried out at the egg production premises all supported this conclusion. The level of insight into the outbreak epidemiology provided by whole-genome sequencing (WGS) would not have been possible using traditional microbial typing methods.
Chatt, C; Nicholds-Trainor, D; Scrivener, A; Suleman, S; Harvey, M; Dallman, T; Hawker, J; Sibal, B
2017-10-01
To describe an outbreak of Salmonella enteritidis phage type (PT) 14b in people who had eaten at a restaurant, and the investigation and subsequent prosecution of the food business operator (FBO). The local health protection team and environmental health department formed an outbreak control team to investigate the outbreak. Epidemiological, microbiological, and environmental investigations were undertaken. Epidemiological investigations involved case finding and interviews. Microbiological investigation: stool samples from the suspected cases and environmental samples from the implicated food business were investigated. Salmonella isolates obtained were subjected to multiple locus variable-number tandem repeat analysis (MLVA) profiling and whole genome sequencing. In addition, adenosine triphosphate (ATP) hygiene swab tests were used to verify the quality of cleaning procedures and data loggers were used to determine the water temperature of the mechanical dishwasher. Fifteen cases of illness where the causative agent was shown to be S. enteritidis PT14b were identified, all of whom had eaten at the same restaurant. S. enteritidis PT14b was also identified from three of the 11 food and environmental samples taken at the restaurant and found to have the same MLVA profile as the cases. A case for prosecution was built and the FBO was successfully prosecuted in July 2015. This investigation highlighted that the use of molecular typing as part of thorough epidemiological, microbiological, and environmental investigations can present a robust case for prosecution against restaurants which pose a risk to public health. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.
Elson, R; Little, C L; Mitchell, R T
2005-02-01
This study was prompted by epidemiological investigations of the unusual number of Salmonella Enteritidis outbreaks associated with the use of eggs in catering premises in England and Wales during 2002. The aims of the study, performed between April and May 2003, were to establish the rate of Salmonella contamination in raw shell eggs from catering premises, investigate any correlation between the origin and type of eggs and the presence of particular serotypes or phage types (PTs) of Salmonella, and examine the use of raw shell eggs in catering premises in the United Kingdom. A total of 34,116 eggs (5,686 pooled samples of six eggs) were collected from 2,104 catering premises, most of which were eggs produced in the United Kingdom (88%). Salmonella was isolated from 17 pools (0.3%) of eggs. Of these, 15 were Salmonella Enteritidis, which were further characterized to PTs as follows: PT6 (0.1%), PT4 (0.07%), PT12 (0.04%), PT1 (0.04%), and PT14b (0.02%). Salmonella Livingstone and Salmonella Typhimurium definitive type 7 resistant to ampicillin, streptomycin, sulfonamides, and tetracycline were also isolated. The Salmonella contamination rate of eggs produced in the United Kingdom appears to have decreased significantly since 1995 and 1996. This trend is reflected in the decrease of Salmonella Enteritidis and, in particular, Salmonella Enteritidis PT4. The impact of the United Kingdom Food Standards Agency's advice on the use of eggs, issued in January 2003, is discussed.
Ha, Jae-Won
2015-01-01
The aim of this study was to investigate the efficacy of near-infrared radiation (NIR) heating combined with lactic acid (LA) sprays for inactivating Salmonella enterica serovar Enteritidis on almond and pine nut kernels and to elucidate the mechanisms of the lethal effect of the NIR-LA combined treatment. Also, the effect of the combination treatment on product quality was determined. Separately prepared S. Enteritidis phage type (PT) 30 and non-PT 30 S. Enteritidis cocktails were inoculated onto almond and pine nut kernels, respectively, followed by treatments with NIR or 2% LA spray alone, NIR with distilled water spray (NIR-DW), and NIR with 2% LA spray (NIR-LA). Although surface temperatures of nuts treated with NIR were higher than those subjected to NIR-DW or NIR-LA treatment, more S. Enteritidis survived after NIR treatment alone. The effectiveness of NIR-DW and NIR-LA was similar, but significantly more sublethally injured cells were recovered from NIR-DW-treated samples. We confirmed that the enhanced bactericidal effect of the NIR-LA combination may not be attributable to cell membrane damage per se. NIR heat treatment might allow S. Enteritidis cells to become permeable to applied LA solution. The NIR-LA treatment (5 min) did not significantly (P > 0.05) cause changes in the lipid peroxidation parameters, total phenolic contents, color values, moisture contents, and sensory attributes of nut kernels. Given the results of the present study, NIR-LA treatment may be a potential intervention for controlling food-borne pathogens on nut kernel products. PMID:25911473
Ziebell, Kim; Chui, Linda; King, Robin; Johnson, Suzanne; Boerlin, Patrick; Johnson, Roger P
2017-08-01
Salmonella enterica subspecies enterica serovar Enteritidis (SE) is one of the most common causes of human salmonellosis and in Canada currently accounts for over 40% of human cases. Reliable subtyping of isolates is required for outbreak detection and source attribution. However, Pulsed-Field Gel Electrophoresis (PFGE), the current standard subtyping method for Salmonella spp., is compromised by the high genetic homogeneity of SE. Multiple Locus Variable Number Tandem Repeat Analysis (MLVA) was introduced to supplement PFGE, although there is a lack of data on the ability of MLVA to subtype Canadian isolates of SE. Three subtyping methods, PFGE, MLVA and phage typing were compared for their discriminatory power when applied to three panels of Canadian SE isolates: Panel 1: 70 isolates representing the diversity of phage types (PTs) and PFGE subtypes within these PTs; Panel 2: 214 apparently unrelated SE isolates of the most common PTs; and Panel 3: 27 isolates from 10 groups of epidemiologically related strains. For Panel 2 isolates, four MLVA subtypes were shared among 74% of unrelated isolates and in Panel 3 isolates, one MLVA subtype accounted for 62% of the isolates. For all panels, combining results from PFGE, MLVA and PT gave the best discrimination, except in Panel 1, where the combination of PT and PFGE was equally as high, due to the selection criteria for this panel. However, none of these methods is sufficiently discriminatory alone for reliable outbreak detection or source attribution, and must be applied together to achieve sufficient discrimination for practical purposes. Even then, some large clusters were not differentiated adequately. More discriminatory methods are required for reliable subtyping of this genetically highly homogeneous serovar. This need will likely be met by whole genome sequence analysis given the recent promising reports and as more laboratories implement this tool for outbreak response and surveillance. Copyright © 2017 Elsevier B.V. All rights reserved.
2012-01-01
Background Identifying risk factors for Salmonella Enteritidis (SE) infections in Ontario will assist public health authorities to design effective control and prevention programs to reduce the burden of SE infections. Our research objective was to identify risk factors for acquiring SE infections with various phage types (PT) in Ontario, Canada. We hypothesized that certain PTs (e.g., PT8 and PT13a) have specific risk factors for infection. Methods Our study included endemic SE cases with various PTs whose isolates were submitted to the Public Health Laboratory-Toronto from January 20th to August 12th, 2011. Cases were interviewed using a standardized questionnaire that included questions pertaining to demographics, travel history, clinical symptoms, contact with animals, and food exposures. A multinomial logistic regression method using the Generalized Linear Latent and Mixed Model procedure and a case-case study design were used to identify risk factors for acquiring SE infections with various PTs in Ontario, Canada. In the multinomial logistic regression model, the outcome variable had three categories representing human infections caused by SE PT8, PT13a, and all other SE PTs (i.e., non-PT8/non-PT13a) as a referent category to which the other two categories were compared. Results In the multivariable model, SE PT8 was positively associated with contact with dogs (OR=2.17, 95% CI 1.01-4.68) and negatively associated with pepper consumption (OR=0.35, 95% CI 0.13-0.94), after adjusting for age categories and gender, and using exposure periods and health regions as random effects to account for clustering. Conclusions Our study findings offer interesting hypotheses about the role of phage type-specific risk factors. Multinomial logistic regression analysis and the case-case study approach are novel methodologies to evaluate associations among SE infections with different PTs and various risk factors. PMID:23057531
Silva, Cecilia A.; Blondel, Carlos J.; Quezada, Carolina P.; Porwollik, Steffen; Andrews-Polymenis, Helene L.; Toro, Cecilia S.; Zaldívar, Mercedes; Contreras, Inés
2012-01-01
Salmonella enterica serovar Enteritidis causes a systemic, typhoid-like infection in newly hatched poultry and mice. In the present study, a library of 54,000 transposon mutants of S. Enteritidis phage type 4 (PT4) strain P125109 was screened for mutants deficient in the in vivo colonization of the BALB/c mouse model using a microarray-based negative-selection screening. Mutants in genes known to contribute to systemic infection (e.g., Salmonella pathogenicity island 2 [SPI-2], aro, rfa, rfb, phoP, and phoQ) and enteric infection (e.g., SPI-1 and SPI-5) in this and other Salmonella serovars displayed colonization defects in our assay. In addition, a strong attenuation was observed for mutants in genes and genomic islands that are not present in S. Typhimurium or in most other Salmonella serovars. These genes include a type I restriction/modification system (SEN4290 to SEN4292), the peg fimbrial operon (SEN2144A to SEN2145B), a putative pathogenicity island (SEN1970 to SEN1999), and a type VI secretion system remnant SEN1001, encoding a hypothetical protein containing a lysin motif (LysM) domain associated with peptidoglycan binding. Proliferation defects for mutants in these individual genes and in exemplar genes for each of these clusters were confirmed in competitive infections with wild-type S. Enteritidis. A ΔSEN1001 mutant was defective for survival within RAW264.7 murine macrophages in vitro. Complementation assays directly linked the SEN1001 gene to phenotypes observed in vivo and in vitro. The genes identified here may perform novel virulence functions not characterized in previous Salmonella models. PMID:22083712
Ban, Ga-Hee; Kang, Dong-Hyun
2016-03-02
This study was undertaken to evaluate the effectiveness of superheated steam (SHS) on the inactivation of Escherichia coli O157:H7, Salmonella Typhimurium, Salmonella Enteritidis phage type (PT) 30 and Listeria monocytogenes on almonds and in-shell pistachios and to determine the effect of superheated steam heating on quality by measuring color and texture changes. Almonds and in-shell pistachios inoculated with four foodborne pathogens were treated with saturated steam (SS) at 100 °C and SHS at 125, 150, 175, and 200 °C for various times. Exposure of almonds and pistachios to SHS for 15 or 30s at 200 °C achieved >5l og reductions among all tested pathogens without causing significant changes in color values or texture parameters (P>0.05). For both almonds and pistachios, acid and peroxide values (PV) following SS and SHS treatment for up to 15s and 30s, respectively, were within the acceptable range (PV<1.0 meq/kg). These results show that thermal application of 200 °C SHS treatment for 15s and 30s did not affect the quality of almonds and pistachios, respectively. Therefore, SHS treatment is a very promising alternative technology for the tree nuts industry by improving inactivation of foodborne pathogens on almonds and pistachios while simultaneously reducing processing time. Copyright © 2016 Elsevier B.V. All rights reserved.
Large outbreak of Salmonella enteritidis PT8 in Portsmouth, UK, associated with a restaurant.
Severi, E; Booth, L; Johnson, S; Cleary, P; Rimington, M; Saunders, D; Cockcroft, P; Ihekweazu, C
2012-10-01
Seventy-five individuals with Salmonella infection were identified in the Portsmouth area during August and September 2009, predominantly Salmonella Enteritidis phage type 8. Five patients were admitted to hospital. A case-case comparison study showed that a local restaurant was the most likely source of the infection with a risk of illness among its customers 25-fold higher than that of those who did not attend the restaurant. A case-control study conducted to investigate specific risk factors for infection at the restaurant showed that eating salad was associated with a threefold increase in probability of illness. Changing from using ready washed lettuces to lettuces requiring washing and not adhering strictly to the 48 hours exclusion policy for food handlers with diarrhoea were likely to have contributed to the initiation and propagation of this outbreak. Possibilities for cross-contamination and environmental contamination were identified in the restaurant.
Denagamage, Thomas N; Patterson, Paul; Wallner-Pendleton, Eva; Trampel, Darrell; Shariat, Nikki; Dudley, Edward G; Jayarao, Bhushan M; Kariyawasam, Subhashinie
2016-11-01
The Pennsylvania Egg Quality Assurance Program (EQAP) provided the framework for Salmonella Enteritidis (SE) control programs, including the Food and Drug Administration (FDA) mandated Final Egg Rule, for commercial layer facilities throughout the United States. Although flocks with ≥3000 birds must comply with the FDA Final Egg Rule, smaller flocks are exempted from the rule. As a result, eggs produced by small layer flocks may pose a greater public health risk than those from larger flocks. It is also unknown if the EQAPs developed with large flocks in mind are suitable for small- and medium-sized flocks. Therefore, a study was performed to evaluate the effectiveness of best management practices included in EQAPs in reducing SE contamination of small- and medium-sized flocks by longitudinal monitoring of their environment and eggs. A total of 59 medium-sized (3000 to 50,000 birds) and small-sized (<3000 birds) flocks from two major layer production states of the United States were enrolled and monitored for SE by culturing different types of environmental samples and shell eggs for two consecutive flock cycles. Isolated SE was characterized by phage typing, pulsed-field gel electrophoresis (PFGE), and clustered regularly interspaced short palindromic repeats-multi-virulence-locus sequence typing (CRISPR-MVLST). Fifty-four Salmonella isolates belonging to 17 serovars, 22 of which were SE, were isolated from multiple sample types. Typing revealed that SE isolates belonged to three phage types (PTs), three PFGE fingerprint patterns, and three CRISPR-MVLST SE Sequence Types (ESTs). The PT8 and JEGX01.0004 PFGE pattern, the most predominant SE types associated with foodborne illness in the United States, were represented by a majority (91%) of SE. Of the three ESTs observed, 85% SE were typed as EST4. The proportion of SE-positive hen house environment during flock cycle 2 was significantly less than the flock cycle 1, demonstrating that current EQAP practices were effective in reducing SE contamination of medium and small layer flocks.
Huusko, S; Pihlajasaari, A; Salmenlinna, S; Sõgel, J; Dontšenko, I; DE Pinna, E; Lundström, H; Toikkanen, S; Rimhanen-Finne, R
2017-10-01
In August to October 2012, a nationwide outbreak of Salmonella enteritidis phase type (PT) 1B with 53 cases occurred in Finland. Hypothesis generating interviews pointed toward ready-to-eat chicken salad from a Finnish company and at the same time Estonian authorities informed of a S. enteritidis PT 1B outbreak linked to chicken wrap prepared at an Estonian restaurant. We found that chicken salad was associated with the infection (odds ratio (OR) 16·1, 95% confidence interval (CI) 1·7-148·7 for consumption and OR 17·5. 95% CI 4·0-76·0 for purchase). The frozen pre-cooked chicken cubes used in Finnish salad and in Estonian wraps were traced back to a production plant in China. Great Britain made two Rapid Alert Systems for Food and Feed notifications on chicken cubes imported to the UK from the same Chinese production plant. Microbiological investigation confirmed that the patient isolates in Estonia and in Finland were indistinguishable from the strains isolated from chicken cubes in Estonia and in the UK. We recommend that despite certificates for tested Salmonella, food items should be analyzed when Salmonella contamination in outbreak investigations is suspected. In outbreak investigations, electronically implemented case-case study saves time, effort, and money compared with case-control study.
Consecutive salmonella outbreaks traced to the same bakery.
Evans, M. R.; Tromans, J. P.; Dexter, E. L.; Ribeiro, C. D.; Gardner, D.
1996-01-01
Two consecutive community outbreaks of Salmonella enteritidis phage type 4 (PT4) traced to the same bakery occurred in Cardiff, Wales during August-September 1992. In the first outbreak, illness was associated with eating custard slices (odds ratio 23.8, 95% confidence interval 6.5-94.4, P < 0.0001), and in the second, with eating fresh cream cakes (odds ratio 15.8, 95% confidence interval 1.6-374, P = 0.004). Environmental investigations implicated cross-contamination during preparation of the cold-custard mix as the cause of the first outbreak, and inadequate cleaning and disinfection of nozzles used for piping cream in the second outbreak. S. enteritidis PT4 was isolated from fresh cream sponge cake retained by a case and from two fresh cream cakes and four environmental swabs obtained at the bakery. This incident illustrates the hazard of widespread environmental contamination with salmonella and the need for thorough environmental cleansing for any premises implicated in an outbreak of food poisoning. PMID:8620907
Osaka, K; Inouye, S; Okabe, N; Taniguchi, K; Izumiya, H; Watanabe, H; Matsumoto, Y; Yokota, T; Hashimoto, S; Sagara, H
1999-12-01
The Traveller's Diarrhoea Network, by which the Infectious Disease Surveillance Center is electronically connected with two major airport quarantine stations and three infectious disease hospitals, was launched in February 1988 in Japan. The data on travellers' diarrhoea detected is reported weekly by e-mail. Two clusters of infection among travellers returning from Italy were reported by two airport quarantine stations at the end of September 1998. A total of 12 salmonella isolates from 2 clusters were examined. All were identified as Salmonella enteritidis, phage type 4 and showed identical banding patterns on pulsed-field gel electrophoresis. A case-control study showed that the scrambled eggs served at the hotel restaurant in Rome were the likely source of this outbreak. This outbreak could not have been detected promptly and investigated easily without the e-mail network. International exchange of data on travellers' diarrhoea is important for preventing and controlling food-borne illnesses infected abroad.
Salmonella enteritidis outbreak in a restaurant chain: the continuing challenges of prevention.
Vugia, D. J.; Mishu, B.; Smith, M.; Tavris, D. R.; Hickman-Brenner, F. W.; Tauxe, R. V.
1993-01-01
In 1990, a Salmonella enteritidis (SE) outbreak occurred in a restaurant chain in Pennsylvania. To determine its cause(s), we conducted a case-control study and a cohort study at one restaurant, and a survey of restaurants. Egg dishes were associated with illness (P = 0.03). Guests from one hotel eating at the restaurant had a diarrhoeal attack rate of 14%, 4.7-fold higher than among those not eating there (P = 0.04). There were no differences in egg handling between affected and unaffected restaurants. Eggs supplied to affected restaurants were medium grade AA eggs from a single farm, and were reportedly refrigerated during distribution. Human and hen SE isolates were phage type 8 and had similar plasmid profiles and antibiograms. We estimate the prevalence of infected eggs during the outbreak to be as high as 1 in 12. Typical restaurant egg-handling practices and refrigeration during distribution appear to be insufficient by themselves to prevent similar outbreaks. PMID:8432323
Zenner, D; Zoellner, J; Charlett, A; Marmairis, W; Lane, C; Chow, J Y
2014-07-10
Selecting suitable controls for outbreak investigations is often difficult and if done inappropriately will lead to biased inferences. Till receipts and other sales records are frequently available on food premises, but their applicability has not been fully explored. Using data from an investigation into a Salmonella outbreak affecting 66 individuals exposed in a London takeaway restaurant, this study aimed to evaluate the use of till receipts to assess associations between sales and illness. Cases identified through local case-finding were subjected to a standardised exposure questionnaire. Till receipts over the time period when cases arose were analysed. Estimated food exposures from sales were compared to case reported exposures and till receipts analysis showed strong association between illness and consumption of rotisserie chicken (odds ratio (OR): 2.75; confidence interval (CI): 1.7-4.5). Chicken sales immediately prior to food consumption for cases were compared to two control periods in an ecological case-crossover design. On average there was an estimated increase of 3.7 (CI: 2.2-5.2) extra chickens sold in the hour immediately prior to the consumption in the cases (p<0.0001) and the risk of becoming ill at busy times increased by 5% with each additional chicken quarter sold per hour (OR: 1.05; CI: 1.03-1.08). Microbiological and environmental investigations revealed Salmonella Enteritidis phage type (PT)14b in all available cases' stool samples, two environmental samples and leftover chicken from the takeaway. The feasibility of this novel approach to obtain exposure information in the population at risk has been demonstrated, and its limitations are discussed. Further validation is required, comparing results with those in a concurrent classic case-control study.
Davies, A R; Ruggles, R; Young, Y; Clark, H; Reddell, P; Verlander, N Q; Arnold, A; Maguire, H
2013-05-01
In September 2009, an outbreak of Salmonella enterica serovar Enteritidis affected 327 of 1419 inmates at a London prison. We applied a cohort design using aggregated data from the kitchen about portions of food distributed, aligned this with individual food histories from 124 cases (18 confirmed, 106 probable) and deduced the exposures of those remaining well. Results showed that prisoners eating egg cress rolls were 26 times more likely to be ill [risk ratio 25.7, 95% confidence interval (CI) 15.5-42.8, P<0.001]. In a case/non-case multivariable analysis the adjusted odds ratio for egg cress rolls was 41.1 (95% CI 10.3-249.7, P<0.001). The epidemiological investigation was strengthened by environmental and microbiological investigations. This paper outlines an approach to investigations in large complex settings where aggregate data for exposures may be available, and led to the development of guidelines for the management of future gastrointestinal outbreaks in prison settings.
Si, Wei; Wang, Xiumei; Liu, Huifang; Yu, Shenye; Li, Zhaoli; Chen, Liping; Zhang, Wanjiang; Liu, Siguo
2015-01-01
To construct a novel live, attenuated Salmonella vaccine, the lon, cpxR and cpdB genes were deleted from a wild-type Salmonella enterica serovar Enteritidis-6 (SM-6) strain using the phage λ Red homologous recombination system, resulting in SM-△CpxR, SM-△C/Lon and SM-△C/L/CpdB. The growth curves of strain SM-△C/Lon grew more rapidly than the other strains and had OD 600 values higher than the other strains starting at the 4 h time point. The growth curves of strain SM-△C/L/CpdB were relatively flat. The colonization time of SM-△C/L/CpdB is about 8-10 days. Deleting the lon/cpxR/cpdB (SM-6) genes resulted in an approximate 10(3)-fold attenuation in virulence assessed by the analysis of the LD50 of specific pathogen-free (SPF) chicks. This result indicated that the deletion of the lon, cpxR and cpdB genes induced significant virulence attenuation. The protective effects of SM-△C/L/CpdB vaccination in SPF chicks against 5 × 10(9) colony forming units (CFU) of S. Enteritidis were resulted from the induction of an effective immune response. These findings demonstrate the potential of mutant SM-△C/L/CpdB to be used as an effective vaccine. Copyright © 2015 Elsevier Ltd. All rights reserved.
de Knegt, Leonardo V; Pires, Sara M; Löfström, Charlotta; Sørensen, Gitte; Pedersen, Karl; Torpdahl, Mia; Nielsen, Eva M; Hald, Tine
2016-03-01
Salmonella is an important cause of bacterial foodborne infections in Denmark. To identify the main animal-food sources of human salmonellosis, risk managers have relied on a routine application of a microbial subtyping-based source attribution model since 1995. In 2013, multiple locus variable number tandem repeat analysis (MLVA) substituted phage typing as the subtyping method for surveillance of S. Enteritidis and S. Typhimurium isolated from animals, food, and humans in Denmark. The purpose of this study was to develop a modeling approach applying a combination of serovars, MLVA types, and antibiotic resistance profiles for the Salmonella source attribution, and assess the utility of the results for the food safety decisionmakers. Full and simplified MLVA schemes from surveillance data were tested, and model fit and consistency of results were assessed using statistical measures. We conclude that loci schemes STTR5/STTR10/STTR3 for S. Typhimurium and SE9/SE5/SE2/SE1/SE3 for S. Enteritidis can be used in microbial subtyping-based source attribution models. Based on the results, we discuss that an adjustment of the discriminatory level of the subtyping method applied often will be required to fit the purpose of the study and the available data. The issues discussed are also considered highly relevant when applying, e.g., extended multi-locus sequence typing or next-generation sequencing techniques. © 2015 Society for Risk Analysis.
Kasarjian, Julie K. A.; Hidaka, Masumi; Horiuchi, Takashi; Iida, Masatake; Ryu, Junichi
2004-01-01
Using an in vivo plasmid transformation method, we have determined the DNA sequences recognized by the KpnAI, StySEAI, StySENI and StySGI R-M systems from Klebsiella oxytoca strain M5a1, Salmonella eastbourne, Salmonella enteritidis and Salmonella gelsenkirchen, respectively. These type I restriction-modification systems were originally identified using traditional phage assay, and described here is the plasmid transformation test and computer program used to determine their DNA recognition sequences. For this test, we constructed two sets of plasmids, pL and pE, that contain phage lambda and Escherichia coli K-12 chromosomal DNA fragments, respectively. Further, using the methylation sensitivities of various known type II restriction enzymes, we identified the target adenines for methylation (listed in bold italics below as A or T in case of the complementary strand). The recognition sequence and methylation sites are GAA(6N)TGCC (KpnAI), ACA(6N)TYCA (StySEAI), CGA(6N)TACC (StySENI) and TAAC(7N)RTCG (StySGI). These DNA recognition sequences all have a typical type I bipartite pattern and represent three novel specificities and one isoschizomer (StySENI). For confirmation, oligonucleotides containing each of the predicted sequences were synthesized, cloned into plasmid pMECA and transformed into each strain, resulting in a large reduction in efficiency of transformation (EOT). PMID:15199175
Duplantis, Barry N; Puckett, Stephanie M; Rosey, Everett L; Ameiss, Keith A; Hartman, Angela D; Pearce, Stephanie C; Nano, Francis E
2015-10-01
Synthetic genes based on deduced amino acid sequences of the NAD-dependent DNA ligase (ligA) and CTP synthetase (pyrG) of psychrophilic bacteria were substituted for their native homologues in the genome of Salmonella enterica serovar Enteritidis phage type 13a (PT13a). The resulting strains were rendered temperature sensitive (TS) and did not revert to temperature resistance at a detectable level. At permissive temperatures, TS strains grew like the parental strain in broth medium and in macrophage-like cells, but their growth was slowed or stopped when they were shifted to a restrictive temperature. When injected into BALB/c mice at the base of the tail, representing a cool site of the body, the strains with restrictive temperatures of 37, 38.5, and 39°C persisted for less than 1 day, 4 to 7 days, and 20 to 28 days, respectively. The wild-type strain persisted at the site of inoculation for at least 28 days. The wild-type strain, but not the TS strains, was also found in spleen-plus-liver homogenates within 1 day of inoculation of the tail and was detectable in these organs for at least 28 days. Intramuscular vaccination of White Leghorn chickens with the PT13a strain carrying the psychrophilic pyrG gene provided some protection against colonization of the reproductive tract and induced an anti-S. enterica antibody response. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Duplantis, Barry N.; Puckett, Stephanie M.; Rosey, Everett L.; Ameiss, Keith A.; Hartman, Angela D.; Pearce, Stephanie C.
2015-01-01
Synthetic genes based on deduced amino acid sequences of the NAD-dependent DNA ligase (ligA) and CTP synthetase (pyrG) of psychrophilic bacteria were substituted for their native homologues in the genome of Salmonella enterica serovar Enteritidis phage type 13a (PT13a). The resulting strains were rendered temperature sensitive (TS) and did not revert to temperature resistance at a detectable level. At permissive temperatures, TS strains grew like the parental strain in broth medium and in macrophage-like cells, but their growth was slowed or stopped when they were shifted to a restrictive temperature. When injected into BALB/c mice at the base of the tail, representing a cool site of the body, the strains with restrictive temperatures of 37, 38.5, and 39°C persisted for less than 1 day, 4 to 7 days, and 20 to 28 days, respectively. The wild-type strain persisted at the site of inoculation for at least 28 days. The wild-type strain, but not the TS strains, was also found in spleen-plus-liver homogenates within 1 day of inoculation of the tail and was detectable in these organs for at least 28 days. Intramuscular vaccination of White Leghorn chickens with the PT13a strain carrying the psychrophilic pyrG gene provided some protection against colonization of the reproductive tract and induced an anti-S. enterica antibody response. PMID:26187965
Gast, Richard K; Guraya, Rupa; Guard, Jean; Holt, Peter S
2011-06-01
Contamination of eggs by Salmonella Enteritidis has been a prominent cause of human illness for several decades and is the focus of a recently implemented national regulatory plan for egg-producing flocks in the United States. Salmonella Heidelberg has also been identified as an egg-transmitted pathogen. The deposition of Salmonella strains inside eggs is a consequence of reproductive tract colonization in infected laying hens, but prior research has not determined the relationship between the numbers of Salmonella that colonize reproductive organs and the associated frequency of egg contamination. In the present study, groups of laying hens in two trials were experimentally infected with large oral doses of strains of Salmonella Enteritidis (phage type 13a), Salmonella Heidelberg, or Salmonella Hadar. Reproductive tissues of selected hens were cultured to detect and enumerate Salmonella at 5 days postinoculation, and the interior contents of eggs laid between 6 and 25 days postinoculation were tested for contamination. Significantly more internally contaminated eggs were laid by hens infected with Salmonella Enteritidis (3.58%) than with strains of either Salmonella Heidelberg (0.47%) or Salmonella Hadar (0%). However, no significant differences were observed between Salmonella strains in either isolation frequency or the number of colony-forming units (CFU) isolated from ovaries or oviducts. Salmonella isolation frequencies ranged from 20.8% to 41.7% for ovaries and from 8.3% to 33.3% for oviducts. Mean Salmonella colonization levels ranged from 0.10 to 0.51 log CFU/g for ovaries and from 0.25 to 0.46 log CFU/g for oviducts. Although parallel rank-orders were observed for Salmonella enumeration (in both ovaries and oviducts) and egg contamination frequency, a statistically significant relationship could not be established between these two parameters of infection.
Code of Federal Regulations, 2010 CFR
2010-01-01
... the bacteriological examination of egg-type breeding flocks with salmonella enteritidis positive... examination of egg-type breeding flocks with salmonella enteritidis positive environments. Birds selected for bacteriological examination from egg-type breeding flocks positive for Salmonella enteritidis after environmental...
Morgan, O; Milne, L; Kumar, S; Murray, D; Man, W; Georgiou, M; Verlander, N Q; de Pinna, E; McEvoy, M
2007-07-01
Cases of illness were reported to Hertsmere Borough Council among attendees of a children's charity event in June 2006. Initial laboratory investigation identified Salmonella Enteritidis PT13a as a possible cause of the outbreak. We carried out an unmatched case-control investigation. The population at risk included all individuals who attended the event. Self-completion questionnaires were sent to 53 presumptive cases and 212 randomly selected potential controls. Information was available for 49 cases and 128 controls (overall response rate=75%). We calculated odds ratios from single and multivariable analysis and tested for all two-way interactions. Risk factors for diarrhoea were eating egg mayonnaise bagels (OR=34.1, 95%CI 10.5 - 111.3) and drinking apple juice (OR=16.1, 95% CI 3.5 - 74.2). There was weak statistical evidence to suggest that the risk of diarrhoea after eating egg mayonnaise bagels was greater in the afternoon. No food samples were available to confirm which food item might have caused this outbreak. Eggs from Spain were used by the caterer. The ecology of salmonella, experience from previous outbreaks and epidemiological findings from this case-control investigation suggest that the most likely cause of the outbreak was contaminated eggs.
Sukumaran, Anuraj T; Nannapaneni, Rama; Kiess, Aaron; Sharma, Chander Shekhar
2015-08-17
The effectiveness of recently approved Salmonella lytic bacteriophage preparation (SalmoFresh™) in reducing Salmonella in vitro and on chicken breast fillets was examined in combination with lauric arginate (LAE) or cetylpyridinium chloride (CPC). In another experiment, a sequential spray application of this bacteriophage (phage) solution on Salmonella inoculated chicken skin after a 20s dip in chemical antimicrobials (LAE, CPC, peracetic acid, or chlorine) was also examined in reducing Salmonella counts on chicken skin. The application of phage in combination with CPC or LAE reduced S. Typhimurium, S. Heidelberg, and S. Enteritidis up to 5 log units in vitro at 4 °C. On chicken breast fillets, phage in combination with CPC or LAE resulted in significant (p<0.05) reductions of Salmonella ranging from 0.5 to 1.3 log CFU/g as compared to control up to 7 days of refrigerated storage. When phage was applied sequentially with chemical antimicrobials, all the treatments resulted in significant reductions of Salmonella. The application of chlorine (30 ppm) and PAA (400 ppm) followed by phage spray (10(9)PFU/ml) resulted in highest Salmonella reductions of 1.6-1.7 and 2.2-2.5l og CFU/cm(2), respectively. In conclusion, the surface applications of phage in combination with LAE or CPC significantly reduced Salmonella counts on chicken breast fillets. However, higher reductions in Salmonella counts were achieved on chicken skin by the sequential application of chemical antimicrobials followed by phage spray. The sequential application of chlorine, PAA, and phage can provide additional hurdles to reduce Salmonella on fresh poultry carcasses or cut up parts. Copyright © 2015 Elsevier B.V. All rights reserved.
Mahmoud, Mayada; Askora, Ahmed; Barakat, Ahmed Barakat; Rabie, Omar El-Farouk; Hassan, Sayed Emam
2018-02-02
In this study, we isolated and characterized three phages named as Salmacey1, Salmacey2 and Salmacey3, infecting multi drug resistant Salmonella serovars isolated from broilers in Egypt. The most prevalent Salmonella serovars were S. typhimurium, S. enteritidis, and S. kentucky. All these Salmonella serovars were found to be resistant to more than two of the ten antimicrobial agents tested. Only S. kentucky was found to be resistant to seven antimicrobial agents. Examination of these phage particles by transmission electron microscopy (TEM), demonstrated that two phages (Salmacey1, Salmacey2) were found to belong to family Siphoviridae, and Salmacey3 was assigned to the family Myoviridae. The results of host range assay revealed that these bacteriophages were polyvalent and thus capable of infecting four strains of Salmonella serovars and Citrobacter freundii. Moreover, the two phages (Salmacey1, Salmacey2) had a lytic effect on Enterobacter cloacae and Salmacey3 was able to infect E. coli. All phages could not infect S. para Typhi, Staphylococus aureus and Bacillus cereus. One-step growth curves of bacteriophages revealed that siphovirus phages (Salmacey1, Salmacey2) have burst size (80 and 90pfu per infected cell with latent period 35min and 40min respectively), and for the myovirus Salmacey3 had a burst size 110pfu per infected cell with latent period 60min. Molecular analyses indicated that these phages contained double-stranded DNA genomes. The lytic activity of the phages against the most multidrug resistant serovars S. kentucky as host strain was evaluated. The result showed that these bacteriophages were able to completely stop the growth of S. kentucky in vitro. These results suggest that phages have a high potential for phage application to control Salmonella serovars isolated from broilers in Egypt. Copyright © 2017. Published by Elsevier B.V.
Liu, Yao; Shi, Xiaolu; Li, Yinghui; Chen, Qiongcheng; Jiang, Min; Li, Wanli; Qiu, Yaqun; Lin, Yiman; Jiang, Yixiang; Kan, Biao; Sun, Qun; Hu, Qinghua
2016-01-29
Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis) is one of the most prevalent Salmonella serotypes that cause gastroenteritis worldwide and the most prevalent serotype causing Salmonella infections in China. A rapid molecular typing method with high throughput and good epidemiological discrimination is urgently needed for detecting the outbreaks and finding the source for effective control of S. Enteritidis infections. In this study, 194 strains which included 47 from six outbreaks that were well-characterized epidemiologically were analyzed with pulse field gel electrophoresis (PFGE) and multilocus variable number tandem repeat analysis (MLVA). Seven VNTR loci published by the US Center for Disease Control and Prevention (CDC) were used to evaluate and develop MLVA scheme for S. Enteritidis molecular subtyping by comparing with PFGE, and then MLVA was applied to the suspected outbreaks detection. All S. Enteritidis isolates were analyzed with MLVA to establish a MLVA database in Shenzhen, Guangdong province, China to facilitate the detection of S. Enteritidis infection clusters. There were 33 MLVA types and 29 PFGE patterns among 147 sporadic isolates. These two measures had Simpson indices of 0.7701 and 0.8043, respectively, which did not differ significantly. Epidemiological concordance was evaluated by typing 47 isolates from six epidemiologically well-characterized outbreaks and it did not differ for PFGE and MLVA. We applied the well established MLVA method to detect two S. Enteritidis foodborne outbreaks and find their sources successfully in 2014. A MLVA database of 491 S. Enteritidis strains isolated from 2004 to 2014 was established for the surveillance of clusters in the future. MLVA typing of S. Enteritidis would be an effective tool for early warning and epidemiological surveillance of S. Enteritidis infections.
Wang, Changbao; Chen, Qiming; Zhang, Chong; Yang, Jie; Lu, Zhaoxin; Lu, Fengxia; Bie, Xiaomei
2017-05-15
The aim of this study was to find a virulent bacteriophage for the biocontrol of Salmonella in duck meat. A broad host-spectrum virulent phage, fmb-p1, was isolated and purified from an duck farm, and its host range was determined to include S. Typhimurium, S. Enteritidis, S. Saintpaul, S. Agona, S. Miami, S. Anatum, S. Heidelberg and S. Paratyphi-C. Electron microscopy and genome sequencing showed that fmb-p1 belongs to the family Siphoviridae. The genome of fmb-p1 is composed of a 43,327-bp double-stranded DNA molecule with 60 open reading frames and a total G+C content of 46.09%. There are no deleterious sequences or genes encoding known harmful products in the phage fmb-p1 genome. Phage fmb-p1 was stable under different temperature (40-75°C), pH (4-10) and NaCl solutions (1-11%). The phage treatment (9.9×10 9 PFU/cm 2 ) caused a peak reduction in S. Typhimurium of 4.52 log CFU/cm 2 in ready-to-eat (RTE) duck meat, whereas potassium sorbate treatment (PS, 2mg/cm 2 ) resulted in a 0.05-0.12 log reduction. Compared to PS treatment, there was significant difference in the S. Typhimurium reduction (P˂0.05) by phage treatment at both 4°C and 25°C. The results suggested that phage could be applied to reduce Salmonella, on commercial poultry products. Copyright © 2017 Elsevier B.V. All rights reserved.
De Cort, W; Haesebrouck, F; Ducatelle, R; van Immerseel, F
2015-01-01
Consumption of contaminated poultry meat is still an important cause of Salmonella infections in humans. Colonization inhibition (CI) occurs when a live Salmonella strain is administered to chickens and subsequently protects against challenge with another Salmonella strain belonging to the same serotype. A Salmonella Enteritidis hilAssrAfliG deletion mutant has previously been proven to reduce colonization and shedding of a wild-type Salmonella Enteritidis strain in newly hatched broilers after experimental infection. In this study, we compared two administration routes for this strain. Administering the Salmonella Enteritidis ΔhilAssrAfliG strain through drinking water on the first day of life resulted in decreased fecal shedding and cecal colonization of a wild-type Salmonella Enteritidis challenge strain administered 24 h later using a seeder-bird model. When administering the CI strain by coarse spray on newly hatched broiler chicks, an even more pronounced reduction of cecal colonization was observed, and fecal shedding of the Salmonella Enteritidis challenge strain ceased during the course of the experiment. These data suggest that administering a Salmonella Enteritidis ΔhilAssrAfliG strain to newly hatched chicks using a coarse spray is a useful and effective method that reduces colonization and shedding of a wild-type Salmonella Enteritidis strain after early challenge. © 2014 Poultry Science Association Inc.
Kuźmińska-Bajor, Marta; Grzymajło, Krzysztof; Ugorski, Maciej
2015-01-01
We have recently shown that Salmonella Gallinarum type 1 fimbriae with endogenous mannose-resistant (MR) variant of the FimH protein increase systemic dissemination of S. Gallinarum and colonization of internal organs in comparison to the S. Gallinarum fimH knockout strain or the mutant expressing mannose-sensitive (MS) FimH variant from S. Enteritidis. Elaborating from these studies, we proposed that MS variants of FimH are advantageous in gastrointestinal infections, in contrast to MR FimH variants which decrease intestinal colonization and promote their systemic spreading. To support our hypothesis, we carried out in vivo studies using mice infected with wild-type S. Enteritidis and its fimH knockout strain (S. Enteritidis), which was characterized by significantly lower adhesion and invasiveness of murine ICE-1 intestinal cells. Using bioluminescence imaging, we observed that the loss of MS FimH adhesin correlates well with the highly increased colonization of mice by these bacteria. The appearance of the mutant strain was observed much earlier than wild-type Salmonella, and mice infected with 104–107 S. Enteritidis fimH::kan CFUs had significantly (P < 0.05) shorter infection-free time than animals inoculated with wild-type S. Enteritidis. Infections caused by non-typhoid Salmonella, such as S. Enteritidis, are associated with massive inflammation of the lamina propria and lymph nodes in the intestinal tract. Therefore, we evaluated the role of MS type 1 fimbriae in the induction of cytokine expression and secretion, using murine ICE-1 intestinal cells. We showed that the expression, as well as secretion, of Il-1b, Il-6, Il-10, and Il-12b was significantly higher in cells infected with wild-type S. Enteritidis compared to cells infected with the mutant strain. Based on our results, we propose that type 1 fimbriae may play an important role in the pathogenicity of S. Enteritidis and may contribute to an intestinal inflammatory response. PMID:25914682
Liu, Qiong; Yi, Jie; Liang, Kang; Zhang, Xiangmin; Liu, Qing
2017-08-28
Foodborne contamination and salmonellosis caused by Salmonella Enteritidis ( S . Enteritidis) are a significant threat to human health and poultry enterprises. Outer membrane vesicles (OMVs), which are naturally secreted by gram-negative bacteria, could be a good vaccine option because they have many biologically active substances, including lipopolysaccharides (LPS), outer membrane proteins (OMPs), and phospholipids, as well as periplasmic components. In the present study, we purified OMVs derived from S . Enteritidis and analyzed their characteristics through silver staining and sodium dodecyl sulfate polyacrylamide gel electrophoresis. In total, 108 proteins were identified in S . Enteritidis OMVs through liquid chromatography tandem mass spectrometry analysis, and OMPs, periplasmic proteins, and extracellular proteins (49.9% of total proteins) were found to be enriched in the OMVs compared with bacterial cells. Furthermore, native OMVs used in immunizations by either the intranasal route or the intraperitoneal route could elicit significant humoral and mucosal immune responses and provide strong protective efficiency against a lethal dose (~100-fold LD 50 ) of the wild-type S . Enteritidis infection. These results indicated that S . Enteritidis OMVs might be an ideal vaccine strategy for preventing S . Enteritidis diseases.
Liu, Fenyun; Kariyawasam, Subhashinie; Jayarao, Bhushan M; Barrangou, Rodolphe; Gerner-Smidt, Peter; Ribot, Efrain M; Knabel, Stephen J; Dudley, Edward G
2011-07-01
Salmonella enterica subsp. enterica serovar Enteritidis is a major cause of food-borne salmonellosis in the United States. Two major food vehicles for S. Enteritidis are contaminated eggs and chicken meat. Improved subtyping methods are needed to accurately track specific strains of S. Enteritidis related to human salmonellosis throughout the chicken and egg food system. A sequence typing scheme based on virulence genes (fimH and sseL) and clustered regularly interspaced short palindromic repeats (CRISPRs)-CRISPR-including multi-virulence-locus sequence typing (designated CRISPR-MVLST)-was used to characterize 35 human clinical isolates, 46 chicken isolates, 24 egg isolates, and 63 hen house environment isolates of S. Enteritidis. A total of 27 sequence types (STs) were identified among the 167 isolates. CRISPR-MVLST identified three persistent and predominate STs circulating among U.S. human clinical isolates and chicken, egg, and hen house environmental isolates in Pennsylvania, and an ST that was found only in eggs and humans. It also identified a potential environment-specific sequence type. Moreover, cluster analysis based on fimH and sseL identified a number of clusters, of which several were found in more than one outbreak, as well as 11 singletons. Further research is needed to determine if CRISPR-MVLST might help identify the ecological origins of S. Enteritidis strains that contaminate chickens and eggs.
Brar, Pardeepinder K; Strawn, Laura K; Danyluk, Michelle D
2016-03-01
In-shell pecan samples (500 g) were collected over four harvest seasons (2010 to 2014) from seven pecan shelling facilities located in five U.S. states. Four varieties of pecans were analyzed: Mexican Improved, Native Seedlings, Southern Improved, and Western Improved. Pecan samples (100 g) were sent to a third party laboratory for initial Salmonella screening. When a sample was positive for Salmonella, the pathogen level was determined by the most-probable-number (MPN) method (25, 2.5, and 0.25 g). Two sample preparation strategies were used for the MPN analysis, and both strategies were combined for the reported MPN values. Forty-four (0.95%) of 4,641 in-shell pecan samples were positive for Salmonella during initial screening; prevalence by year was 0.47 to 1.4%. Prevalence was not significantly different between varieties: Mexican Improved, 1.2%; Native/Seedling, 0.99%; Southern Improved, 0.97%; and Western Improved, 0.75%. Salmonella was not isolated from 31 of 44 samples upon retesting during MPN analysis (<0.47 MPN/100 g). When Salmonella was detected, the levels were 0.47 to 39 MPN/100 g, with a mean of 2.4 MPN/100 g. Thirty-one Salmonella serotypes were obtained from 42 Salmonella-positive pecan samples; Enteritidis was the most common (12% of samples) followed by Javiana (9%) and Braenderup (7%). All Salmonella Enteritidis isolates were phage type 8. Pulsed-field gel electrophoresis analysis (XbaI) revealed within-serotype diversity, indicating introduction of contamination from a variety of sources. Most (64%) of the isolates were resistant to streptomycin or tetracycline, and 13% were resistant to three or more antibiotics. Salmonella prevalence and level on in-shell pecans is comparable to that on other nuts.
Forsman, Päivi; Alatossava, Tapani
1991-01-01
The genomes of four Lactobacillus delbrueckii subsp. lactis bacteriophages were characterized by restriction endonuclease mapping, Southern hybridization, and heteroduplex analysis. The phages were isolated from different cheese processing plants in Finland between 1950 and 1972. All four phages had a small isometric head and a long noncontractile tail. Two different types of genome (double-stranded DNA) organization existed among the different phages, the pac type and the cos type, corresponding to alternative types of phage DNA packaging. Three phages belonged to the pac type, and a fourth was a cos-type phage. The pac-type phages were genetically closely related. In the genomes of the pac-type phages, three putative insertion/deletions (0.7 to 0.8 kb, 1.0 kb, and 1.5 kb) and one other region (0.9 kb) containing clustered base substitutions were discovered and localized. At the phenotype level, three main differences were observed among the pac-type phages. These concerned two minor structural proteins and the efficiency of phage DNA packaging. The genomes of the pac-type phages showed only weak homology with that of the cos-type phage. Phage-related DNA, probably a defective prophage, was located in the chromosome of the host strain sensitive to the cos-type phage. This DNA exhibited homology under stringent conditions to the pac-type phages. Images PMID:16348513
Code of Federal Regulations, 2011 CFR
2011-01-01
... the bacteriological examination of egg-type breeding flocks with salmonella enteritidis positive environments. 147.10 Section 147.10 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... examination of egg-type breeding flocks with salmonella enteritidis positive environments. Birds selected for...
Comparison of four molecular methods to type Salmonella Enteritidis strains.
Campioni, Fábio; Pitondo-Silva, André; Bergamini, Alzira M M; Falcão, Juliana P
2015-05-01
This study compared the pulsed-field gel electrophoresis (PFGE), enterobacterial repetitive intergenic consensus-PCR (ERIC-PCR), multilocus variable-number of tanden-repeat analysis (MLVA), and multilocus sequence typing (MLST) methods for typing 188 Salmonella Enteritidis strains from different sources isolated over a 24-year period in Brazil. PFGE and ERIC-PCR were more efficient than MLVA for subtyping the strains. However, MLVA provided additional epidemiological information for those strains. In addition, MLST showed the Brazilian strains as belonging to the main clonal complex of S. Enteritidis, CC11, and provided the first report of two new STs in the S. enterica database but could not properly subtype the strains. Our results showed that the use of PFGE or ERIC-PCR together with MLVA is suitable to efficiently subtype S. Enteritidis strains and provide important epidemiological information. © 2015 APMIS. Published by John Wiley & Sons Ltd.
Analysis of whole genome sequencing for the Escherichia coli O157:H7 typing phages.
Cowley, Lauren A; Beckett, Stephen J; Chase-Topping, Margo; Perry, Neil; Dallman, Tim J; Gally, David L; Jenkins, Claire
2015-04-08
Shiga toxin producing Escherichia coli O157 can cause severe bloody diarrhea and haemolytic uraemic syndrome. Phage typing of E. coli O157 facilitates public health surveillance and outbreak investigations, certain phage types are more likely to occupy specific niches and are associated with specific age groups and disease severity. The aim of this study was to analyse the genome sequences of 16 (fourteen T4 and two T7) E. coli O157 typing phages and to determine the genes responsible for the subtle differences in phage type profiles. The typing phages were sequenced using paired-end Illumina sequencing at The Genome Analysis Centre and the Animal Health and Veterinary Laboratories Agency and bioinformatics programs including Velvet, Brig and Easyfig were used to analyse them. A two-way Euclidian cluster analysis highlighted the associations between groups of phage types and typing phages. The analysis showed that the T7 typing phages (9 and 10) differed by only three genes and that the T4 typing phages formed three distinct groups of similar genomic sequences: Group 1 (1, 8, 11, 12 and 15, 16), Group 2 (3, 6, 7 and 13) and Group 3 (2, 4, 5 and 14). The E. coli O157 phage typing scheme exhibited a significantly modular network linked to the genetic similarity of each group showing that these groups are specialised to infect a subset of phage types. Sequencing the typing phage has enabled us to identify the variable genes within each group and to determine how this corresponds to changes in phage type.
Zhou, Y; Zhou, J; Wang, D; Gao, Q; Mu, X; Gao, S; Liu, X
2016-12-01
Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis) is a major causative agent of gastroenteritis in humans. This important food-borne pathogen also colonises the intestinal tracts of poultry and can spread systemically, especially in chickens. To identify the S. Enteritidis virulence genes involved in infection and colonisation of chickens, chromosomal deletion mutants of the ompA and pgtE genes, which encode essential components of omptins, were constructed. There were no significant differences between the wild-type and ompA and pgtE mutants in a series of in vitro assays, including an intracellular survival assay, survival in specific-pathogen-free (SPF) chicken serum, and in vitro competition assays. In contrast, in vivo competition assays revealed that ompA and pgtE mutants underwent attenuated growth in liver, cardiac blood, spleen, lung, and kidney compared to a wild-type strain (CVCC3378). When tested in SPF chickens, ompA or pgtE gene inactivation substantially reduced organ colonisation and delayed systemic infection compared with the wild-type strain. Colonisation was restored in S. Enteritidis mutants by reintroduction of the whole ompA or pgtE gene with the native promoters. The results of this study demonstrate that ompA and pgtE play an important role in the pathogenesis of S. Enteritidis and its ability to infect chickens. Copyright © 2016 Elsevier Ltd. All rights reserved.
Nie, Yuanyang; Cao, Mei; Wu, Daoyan; Li, Ningzhe; Peng, Jingshan; Yi, Sijun; Yang, Xiaofan; Zhang, Mao; Hu, Guoku; Zhao, Jian
2018-05-04
Salmonella enteritidis infection occurs in enterogenous diseases, such as gastroenteritis and parenteral focal infection, which often involve inflammation of intestinal epithelial cells. The nuclear factor kappa B (NF-κB) pathway participates in the innate immune response to many gram-negative pathogenic bacteria and initiates inflammation in epithelial cells. KH-type splicing regulatory protein (KSRP) is a multi-domain RNA-binding protein that recruits the exosome-containing mRNA degradation complex to mRNAs coding for inflammatory response factors. However, it remains unclear whether KSRP is regulated by NF-κB signaling pathway in response to S. enteritidis infection and affects the development of inflammation. Accordingly, in this study, we investigated the role of KSRP in mediating the response to S. enteritidis in Caco-2 cells. The data revealed that S. enteritidis infection decreased KSRP expression, which was suppressed by blocking the NF-κB pathway. Additionally, S. enteritidis infection significantly increased the expression of inducible nitric oxide synthase and cyclooxygenase-2. Overexpression of KSRP reduced the expression levels of inflammatory factors in Caco-2 cells. KSRP was regulated by the NF-κB signaling pathway and participated in mediating the innate immune response to S. enteritidis infection in Caco-2 cells, and KSRP acted as a negative regulator of inflammatory gene expression.
Ten years experience of Salmonella infections in Cambridge, UK.
Matheson, Nicholas; Kingsley, Robert A; Sturgess, Katherine; Aliyu, Sani H; Wain, John; Dougan, Gordon; Cooke, Fiona J
2010-01-01
Review of all Salmonella infections diagnosed in the Cambridge area over 10 years. All Salmonella enterica isolated in the Clinical Microbiology Laboratory, Addenbrooke's Hospital between 1.1.1999 and 31.12.2008 were included. Patient demographics, serotype and additional relevant details (travel history, resistance-type, phage-type) were recorded. 1003 episodes of Salmonella gastroenteritis were confirmed by stool culture, representing 88 serotypes. Serotypes Enteritidis (59%), Typhimurium (4.7%), Virchow (2.6%), Newport (1.8%) and Braenderup (1.7%) were the 5 most common isolates. There were an additional 37 invasive Salmonella infections (32 blood cultures, 4 tissue samples, 1 CSF). 13/15 patients with Salmonella Typhi or Salmonella Paratyphi isolated from blood or faeces with an available travel history had returned from the Indian subcontinent. 8/10 S. Typhi or Paratyphi isolates tested had reduced susceptibility to fluoroquinolones (MIC > or = 0.125 mg/L). 7/21 patients with non-typhoidal Salmonella bacteraemia were known to be immunosuppressed. This study describes Salmonella serotypes circulating within a defined geographical area over a decade. Prospective molecular analysis of isolates of S. enterica by multi-locus sequence typing (MLST) and single nucleotide polymorphism (SNP) detection will determine the geo-phylogenetic relationship of isolates within our region. 2009 The British Infection Society. Published by Elsevier Ltd. All rights reserved.
Mora, Azucena; Blanco, Miguel; Blanco, Jesús E.; Alonso, M. Pilar; Dhabi, Ghizlane; Thomson-Carter, Fiona; Usera, Miguel A.; Bartolomé, Rosa; Prats, Guillermo; Blanco, Jorge
2004-01-01
Phage typing and DNA macrorestriction fragment analysis by pulsed-field electrophoresis (PFGE) were used for the epidemiological subtyping of a collection of Shiga toxin-producing Escherichia coli (STEC) O157:H7 strains isolated in Spain between 1980 and 1999. Phage typing distinguished a total of 18 phage types among 171 strains isolated from different sources (67 humans, 82 bovines, 12 ovines, and 10 beef products). However, five phage types, phage type 2 (PT2; 42 strains), PT8 (33 strains), PT14 (14 strains), PT21/28 (11 strains), and PT54 (16 strains), accounted for 68% of the study isolates. PT2 and PT8 were the most frequently found among strains from both humans (51%) and bovines (46%). Interestingly, we detected a significant association between PT2 and PT14 and the presence of acute pathologies. A group of 108 of the 171 strains were analyzed by PFGE, and 53 distinct XbaI macrorestriction patterns were identified, with 38 strains exhibiting unique PFGE patterns. In contrast, phage typing identified 15 different phage types. A total of 66 phage type-PFGE subtype combinations were identified among the 108 strains. PFGE subtyping differentiated between unrelated strains that exhibited the same phage type. The most common phage type-PFGE pattern combinations were PT2-PFGE type 1 (1 human and 11 bovine strains), PT8-PFGE type 8 (2 human, 6 bovine, and 1 beef product strains), PT2-PFGE subtype 4A (1 human, 3 bovine, and 1 beef product strains). Nine (29%) of 31 human strains showed phage type-PFGE pattern combinations that were detected among the bovine strains included in this study, and 26 (38%) of 68 bovine strains produced phage type-PFGE pattern combinations observed among human strains included in this study, confirming that cattle are a major reservoir of strains pathogenic for humans. PT2 and PT8 strains formed two groups which differed from each other in their motilities, stx genotypes, PFGE patterns, and the severity of the illnesses that they caused. PMID:15364983
Tangney, Mark; Fitzgerald, Gerald F
2002-04-23
Four lactococcal abortive infection mechanisms were introduced into strains which were sensitive hosts for P335 type phages and plaque assay experiments performed to assess their effect on five lactococcal bacteriophages from this family. Results indicate that AbiA inhibits all five P335 phages tested, while AbiG affects phiP335 itself and phiQ30 but not the other P335 species phages. AbiA was shown to retard phage Q30 DNA replication as previously reported for other phages. It was also demonstrated that AbiG, previously shown to act at a point after DNA replication in the cases of c2 type and 936 type phages, acts at the level of, or prior to phage Q30 DNA replication. AbiE and AbiF had no effect on the P335 type phages examined.
Phage typing or CRISPR typing for epidemiological surveillance of Salmonella Typhimurium?
Mohammed, Manal
2017-11-07
Salmonella Typhimurium is the most dominant Salmonella serovar around the world. It is associated with foodborne gastroenteritis outbreaks but has recently been associated with invasive illness and deaths. Characterization of S. Typhimurium is therefore very crucial for epidemiological surveillance. Phage typing has been used for decades for subtyping of S. Typhimurium to determine the epidemiological relation among isolates. Recent studies however have suggested that high throughput clustered regular interspaced short palindromic repeats (CRISPR) typing has the potential to replace phage typing. This study aimed to determine the efficacy of high-throughput CRISPR typing over conventional phage typing in epidemiological surveillance and outbreak investigation of S. Typhimurium. In silico analysis of whole genome sequences (WGS) of well-documented phage types of S. Typhimurium reveals the presence of different CRISPR type among strains belong to the same phage type. Furthermore, different phage types of S. Typhimurium share identical CRISPR type. Interestingly, identical spacers were detected among outbreak and non-outbreak associated DT8 strains of S. Typhimurium. Therefore, CRISPR typing is not useful for the epidemiological surveillance and outbreak investigation of S. Typhimurium and phage typing, until it is replaced by WGS, is still the gold standard method for epidemiological surveillance of S. Typhimurium.
Little, C L; Rhoades, J R; Hucklesby, L; Greenwood, M; Surman-Lee, S; Bolton, F J; Meldrum, R; Wilson, I; McDonald, C; de Pinna, E; Threlfall, E J; Chan, C H
2008-01-01
This survey was launched after an unusual number of Salmonella Enteritidis outbreaks associated with the use of eggs in food service premises in England and Wales. Between November 2005 and December 2006, 9,528 eggs (1,588 pooled samples of 6 eggs) were collected from 1,567 food service premises in the United Kingdom, most of which (89%) were produced in the United Kingdom. Salmonella was isolated from 6 (0.38%) pools of eggs. Of these, 5 (0.31%) were Salmonella Enteritidis, which were further characterized to phage types (PTs): PT 4 (0.19%), PT 8 (0.06%), and PT 12 (0.06%). Salmonella Mbandaka was also isolated (0.06%). Salmonella was detected from five and one of pooled eggs samples that were produced in the United Kingdom and Germany, respectively; these were from different producers. The study showed evidence of poor egg storage and handling practices in food service premises, in that 55% did not store eggs under refrigerated conditions; 20.7% of eggs had expired "best before" dates or were in use after 3 weeks of lay, indicating poor stock rotation; and 37.1% pooled eggs not intended for immediate service. Eggs are a commonly consumed food that may occasionally be contaminated with Salmonella at different rates, according to their country of origin. The food service sector needs to be aware of this continuing hazard, receive appropriate food safety and hygiene training on storage and usage of raw shell eggs, adopt appropriate control measures, and follow advice provided by national food agencies in order to reduce the risk of infection.
Sukumaran, Anuraj T; Nannapaneni, Rama; Kiess, Aaron; Sharma, Chander Shekhar
2016-03-01
The present study evaluated the efficacy of recently approved Salmonella lytic bacteriophage preparation (SalmoFresh™) in reducing Salmonella on chicken breast fillets, as a surface and dip application. The effectiveness of phage in combination with modified atmosphere packaging (MAP) and the ability of phage preparation in reducing Salmonella on chicken breast fillets at room temperature was also evaluated. Chicken breast fillets inoculated with a cocktail of Salmonella Typhimurium, S. Heidelberg, and S. Enteritidis were treated with bacteriophage (10(9) PFU/mL) as either a dip or surface treatment. The dip-treated samples were stored at 4°C aerobically and the surface-treated samples were stored under aerobic and MAP conditions (95% CO2/5% O2) at 4°C for 7 d. Immersion of Salmonella-inoculated chicken breast fillets in bacteriophage solution reduced Salmonella (P < 0.05) by 0.7 and 0.9 log CFU/g on d 0 and d 1 of storage, respectively. Surface treatment with phage significantly (P < 0.05) reduced Salmonella by 0.8, 0.8, and 1 log CFU/g on d 0, 1, and 7 of storage, respectively, under aerobic conditions. Higher reductions in Salmonella counts were achieved on chicken breast fillets when the samples were surface treated with phage and stored under MAP conditions. The Salmonella counts were reduced by 1.2, 1.1, and 1.2 log CFU/g on d 0, 1, and 7 of storage, respectively. Bacteriophage surface application on chicken breast fillets stored at room temperature reduced the Salmonella counts by 0.8, 0.9, and 0.4 log CFU/g after 0, 4, and 8 h, respectively, compared to the untreated positive control. These findings indicate that lytic phage preparation was effective in reducing Salmonella on chicken breast fillets stored under aerobic and modified atmosphere conditions. © 2015 Poultry Science Association Inc.
Murphy, James; Klumpp, Jochen; Mahony, Jennifer; O'Connell-Motherway, Mary; Nauta, Arjen; van Sinderen, Douwe
2014-10-01
So-called 936-type phages are among the most frequently isolated phages in dairy facilities utilising Lactococcus lactis starter cultures. Despite extensive efforts to control phage proliferation and decades of research, these phages continue to negatively impact cheese production in terms of the final product quality and consequently, monetary return. Whole genome sequencing and in silico analysis of three 936-type phage genomes identified several putative (orphan) methyltransferase (MTase)-encoding genes located within the packaging and replication regions of the genome. Utilising SMRT sequencing, methylome analysis was performed on all three phages, allowing the identification of adenine modifications consistent with N-6 methyladenine sequence methylation, which in some cases could be attributed to these phage-encoded MTases. Heterologous gene expression revealed that M.Phi145I/M.Phi93I and M.Phi93DAM, encoded by genes located within the packaging module, provide protection against the restriction enzymes HphI and DpnII, respectively, representing the first functional MTases identified in members of 936-type phages. SMRT sequencing technology enabled the identification of the target motifs of MTases encoded by the genomes of three lytic 936-type phages and these MTases represent the first functional MTases identified in this species of phage. The presence of these MTase-encoding genes on 936-type phage genomes is assumed to represent an adaptive response to circumvent host encoded restriction-modification systems thereby increasing the fitness of the phages in a dynamic dairy environment.
Aptamer-based impedimetric sensor for bacterial typing.
Labib, Mahmoud; Zamay, Anna S; Kolovskaya, Olga S; Reshetneva, Irina T; Zamay, Galina S; Kibbee, Richard J; Sattar, Syed A; Zamay, Tatiana N; Berezovski, Maxim V
2012-10-02
The development of an aptamer-based impedimetric sensor for typing of bacteria (AIST-B) is presented. Highly specific DNA aptamers to Salmonella enteritidis were selected via Cell-SELEX technique. Twelve rounds of selection were performed; each comprises a positive selection step against S. enteritidis and a negative selection step against a mixture of related pathogens, including Salmonella typhimurium, Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Citrobacter freundii, to ensure the species-specificity of the selected aptamers. After sequencing of the pool showing the highest binding affinity to S. enteritidis, a DNA sequence of high affinity to the bacteria was integrated into an impedimetric sensor via self-assembly onto a gold nanoparticles-modified screen-printed carbon electrode (GNPs-SPCE). Remarkably, this aptasensor is highly selective and can successfully detect S. enteritidis down to 600 CFU mL(-1) (equivalent to 18 CFU in 30 μL assay volume) in 10 min and distinguish it from other Salmonella species, including S. typhimurium and S. choleraesuis. This report is envisaged to open a new venue for the aptamer-based typing of a variety of microorganisms using a rapid, economic, and label-free electrochemical platform.
USDA-ARS?s Scientific Manuscript database
Salmonella enterica serovar, Enteritidis (SE) infection of chicken is a major contributing factor to non-typhoidal salmonellosis. The roles of the type three secretion systems (T3SS-1 and T3SS-2) in the pathogenesis of SE infection of chickens are poorly understood. In this study, the functions exer...
Shoeb, S; Khalifa, I; el Daly, O; Heiba, A; Farmer, J; Brenner, F; el Batawi, Y
1989-01-01
In this work a total of 82 strains of Salmonella typhi were isolated from Egyptian patients diagnosed as quiry enteric fever. These cases were from Ismalia, Suez and port Said Areas. The strains fell in 16 phage types. Phage types N, 40, E1, and degraded Vi were the commonest phage type in Ismailia, while phage types degraded Vi and C1 were the commonest in Port Said. Phage types Di-N, degraded Vi, A and C1 were the commonest in Suez. Chemotyping of Salmonella typhi showed that the majority of the strains belonged to chemotype I (82%), and the rest belonged to chemotype II (18%). Colicin production was negative and all the strains were susceptible to the currently used antibiotics.
Zhao, Jiayong; Zhang, Yukai; Xie, Zhiqiang; Pan, Jingjing; Su, Jia; Mu, Yujiao; Huang, Xueyong; Zhang, Baifan; Xia, Shengli
2016-03-01
To investigate the antimicrobial resistance status and pulsed field gel electrophoresis (PFGE) patterns of Salmonella Enteritidis (S.Enteritidis) strains in Henan province. S. Enteritidis strains were isolated from seven sentinel hospitals from March 2011 to December 2013. According to molecular typing and Salmonella (Kirby-Bauer, K-B) drug susceptibility testing method published by the international PulseNet bacterial infectious disease monitoring network and USA Clinical and Laboratory Standards Institute (CLSI), we analyzed drug sensitivity of 8 kinds antibiotics and PFGE molecule characteristics of 120 S. Enteritidis isolates from seven sentinel hospitals. Among 120 strains of S. Enteritidis, 77 were isolated from male patients, 43 from female patients. A total of 78 strains S. Enteritidis were isolated from young children ranged from 0 to 5 years old (65.0%), including 57 strains isolated from 6 months to 2 years old (47.5%). The isolated time mainly centralized on May to October of the year, 11 strains isolated in March-April (9.2%), 48 were in May-July (40.0%),54 in August-October (45.0%), 7 in other months, with a typical summer seasonal characteristics. The resistance rate of 120 strains S. Enteritidis to ampicillin was 50.0% (n=60); to ceftazidime was 14.2% (n=17), to cefotaxime was 18.3% (n=22); to cefepime was 5.8% (n=7); to nalidixic acid was 61.7% (n=74); to ciprofloxacin was 8.3% (n=10), to norfloxacin was 5.8% (n=7); to gentamicin was 42.5% (n=51); to streptomycin was 21.7% (n=26); to chloramphenicol was 30.0% (n=36); resistance to methicillin benzyl ammonium was 11.7% (n=14), compound sulfamethoxazole resistance rate was 71.7% (n=86); the tetracycline resistant rate was 47.5% (n=57). All 120 strains of S. Enteritidis had different levels of resistance to 8 kinds of antibiotics, all strains were multidrug resistant strains, 28 isolates were resistant to 3-4 kinds of antibiotics (23.3%), 38 isolates were resistant to 5-6 kinds of antibiotics (31.7%), 39 isolates were resistant to 7-8 kinds of antibiotics (32.5%). All 120 strains of S. Enteritidis were divided into 44 molecular patterns by digestion with XbaI and pulsed field gel electrophoresis. each pattern contained 1-35 strains with similarity ranged from 54.3%-100%. EN14 and EN19 were the main PFGE types, including 35 and 29 strains respectively. The status of drug resistance of clinical isolates of Salmonella in Henan province was rather serious, PFGE patterns showed advantages and partial strain's corresponding resistant spectrum have certain relevance and the same aggregation relationship.
Yang, Yadong; Yu, Chuan; Ding, Ke; Zhang, Chunjie; Liao, Chengshui; Jia, Yanyan; Li, Jing; Cheng, Xiangchao
2018-04-01
Salmonella enteritidis is a common food-borne pathogen associated with consumption of contaminated poultry meat and eggs, which frequently causes gastroenteritis in humans. Salmonella secreted effector K1 (SseK1), as a translocated and secreted protein has been identified to be essential for the virulence of Salmonella typhimurium in host cells. However, the role of the sseK1 gene in the pathogenicity of S. enteritidis remain unclear. In this study, a sseK1 deletion mutant of S. enteritidis was constructed and its biological characteristics were examined. It was found that the sseK1 deletion mutant did not affect the growth, adherence and invasion of Salmonella enteritidis when compared to the wild-type S. enteritidis. However, the mutant showed decreased formation of biofilm and significantly reduced intracellular survival of bacteria in activated mouse peritoneal macrophages, as well as showed reduced pathogenicity to a murine model by increasing the lethal dose 50% (LD 50 ) value and decreasing the proliferation ratio of bacteria in vivo. Taken together, this study determined an important role for SseK1 in the pathogenicity of S. enteritidis in vitro and in vivo. Copyright © 2018 Elsevier Ltd. All rights reserved.
Proroga, Yolande T.R.; Capuano, Federico; Capparelli, Rosanna; Bilei, Stefano; Bernardo, Mariano; Cocco, Maria Pia; Campagnuolo, Rosalba; Pasquale, Vincenzo
2018-01-01
Non-typhoidal Salmonella enterica infection is a significant public health problem worldwide. The aim of this study was to characterize Salmonella enterica strains isolated from human specimens in central and southern Italy, for epidemiological studies. One hundred and fifty S. enterica strains were serotyped. Isolates were tested for their antimicrobial susceptibility, by disk diffusion method. The molecular characterizations, based on PCR, were carried out for the detection of invA gene and other virulence elements and phage marker genes. Eighteen different Salmonella serotypes were identified. The most common serotypes detected were S. Typhimurium, S. Enteritidis, the monophasic variant of S. Typhimurium (S. 4,[5],12:i:-), and S. Napoli. High resistance rates were recorded for tetracycline (64%), streptomycin (62%), sulphonamide (57%), and ampicillin (56%). The ASSuT R-type, also associated to resistance to other antibiotics, was highly prevalent in S. 4,[5],12:i:- (97%) and S. Typhimurium (55%), while the ACSSuT R-type, also associated to other antibiotics, was observed prevalently in S. Typhimurium (20.4%). The genes of more common detection were invA (100%), sspH2 (86.6%), gtgB (84.6%), g8 (80%), sodC1 (77.3%), gipA (52.6%), sspH1 (52.6%). PMID:29732321
Northrop, John H.; Murphy, James S.
1956-01-01
1. Lysogenic B. megatherium 899a was adapted to growth in a minimal ammonium sulfate medium (ASCM). 2. Adaptation took place slowly and the following changes in the culture occurred: (a) The growth rate increased from 0.5 to 1.5–2.0/hr. (b) The culture changed from diffuse to mucoid. (c) The total phage titer, and the gelatinase concentration decreased to 1/100 or less. (d) The types of phage produced changed from >99 per cent T (wild type) to 30 to 60 per cent miscellaneous clear types. The original T phage was replaced by a different smaller t, never observed in the original 899a culture. (e) Several new colony types also appeared, but the colony morphology was not correlated with the phage types produced. None of the colony types was stable on repeated transfer either in peptone or ASCM, but continued to disassociate into different colony types (cf. Ivánovics, 1955). 3. Control experiments showed that these changes in phage production and colony types could not be brought about by growing sensitive B. megatherium in the presence of the various new phages, in ASCM. It is therefore unlikely that the changes observed in adapted culture were due to infection of a sensitive cell with phage. 4. Continued growth of the ASCM-adapted strain in peptone resulted in increasing the total phage titer, and also the gelatinase concentration. The growth rate returned to its original value and the ability to grow rapidly in ASCM was soon lost. The phage types, however, remained the same as in the ASCM. 5. An improved cell for steady state growth is described. PMID:13295557
Ktari, Sonia; Ksibi, Boutheina; Gharsallah, Houda; Mnif, Basma; Maalej, Sonda; Rhimi, Fouzia; Hammami, Adnene
2016-03-01
Enteritidis, Typhimurium and Livingstone are the main Salmonella enterica serovars recovered in Tunisia. Here, we aimed to assess the genetic diversity of fifty-seven Salmonella enterica strains from different sampling periods, origins and settings using pulsed-field gel electrophoresis (PFGE), multi-locus sequence typing (MLST) and multi-locus variable-number tandem repeat analysis (MLVA). Salmonella Enteritidis, isolated from human and food sources from two regions in Sfax in 2007, were grouped into one cluster using PFGE. However, using MLVA these strains were divided into two clusters. Salmonella Typhimurium strains, recovered in 2012 and represent sporadic cases of human clinical isolates, were included in one PFGE cluster. Nevertheless, the MLVA technique, divided Salmonella Typhimurium isolates into six clusters with diversity index reaching (DI = 0.757). For Salmonella Livingstone which was responsible of two nosocomial outbreaks during 2000-2003, the PFGE and MLVA methods showed that these strains were genetically closely related. Salmonella Enteritidis and Salmonella Livingstone populations showed a single ST lineage ST11 and ST543 respectively. For Salmonella Typhimurium, two MLST sequence types ST19 and ST328 were defined. Salmonella Enteritidis and Salmonella Typhimurium strains were clearly differentiated by MLVA which was not the case using PFGE. © 2015 APMIS. Published by John Wiley & Sons Ltd.
Bypassing bacterial infection in phage display by sequencing DNA released from phage particles.
Villequey, Camille; Kong, Xu-Dong; Heinis, Christian
2017-11-01
Phage display relies on a bacterial infection step in which the phage particles are replicated to perform multiple affinity selection rounds and to enable the identification of isolated clones by DNA sequencing. While this process is efficient for wild-type phage, the bacterial infection rate of phage with mutant or chemically modified coat proteins can be low. For example, a phage mutant with a disulfide-free p3 coat protein, used for the selection of bicyclic peptides, has a more than 100-fold reduced infection rate compared to the wild-type. A potential strategy for bypassing the bacterial infection step is to directly sequence DNA extracted from phage particles after a single round of phage panning using high-throughput sequencing. In this work, we have quantified the fraction of phage clones that can be identified by directly sequencing DNA from phage particles. The results show that the DNA of essentially all of the phage particles can be 'decoded', and that the sequence coverage for mutants equals that of amplified DNA extracted from cells infected with wild-type phage. This procedure is particularly attractive for selections with phage that have a compromised infection capacity, and it may allow phage display to be performed with particles that are not infective at all. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Chapman, P. A.; Rhodes, P.; Rylands, W.
1988-01-01
Food poisoning due to Salmonella typhimurium phage type 141 was unusual in the Sheffield area before 1984. The sudden increase in incidence of this phage type during 1984 and 1985, and its causative role in several small outbreaks in this period have been investigated. Epidemiological and laboratory investigations suggested that hens' eggs were the most likely source of S. typhimurium phage type 141. PMID:3042440
van Embden, J D; van Leeuwen, W J; Guinée, P A
1976-01-01
Samonella typhimurium bacteriophage type 505 is the most frequently encountered phage type in the Netherlands and its neighboring countries. Phage type 505 was analyzed with regard o the interference with propagation of the typing phages by the prophages and plasmids, present in the type strain S. typhimurium 505... Images PMID:783145
Toro, Magaly; Retamal, Patricio; Ayers, Sherry; Barreto, Marlen; Allard, Marc; Brown, Eric W; Gonzalez-Escalona, Narjol
2016-10-15
Salmonella enterica subsp. enterica serotype Enteritidis is a major cause of human salmonellosis worldwide; however, little is known about the genetic relationships between S Enteritidis clinical strains and S Enteritidis strains from other sources in Chile. We compared the whole genomes of 30 S Enteritidis strains isolated from gulls, domestic chicken eggs, and humans in Chile, to investigate their phylogenetic relationships and to establish their relatedness to international strains. Core genome multilocus sequence typing (cgMLST) analysis showed that only 246/4,065 shared loci differed among these Chilean strains, separating them into two clusters (I and II), with cluster II being further divided into five subclusters. One subcluster (subcluster 2) contained strains from all surveyed sources that differed at 1 to 18 loci (of 4,065 loci) with 1 to 18 single-nucleotide polymorphisms (SNPs), suggesting interspecies transmission of S Enteritidis in Chile. Moreover, clusters were formed by strains that were distant geographically, which could imply that gulls might be spreading the pathogen throughout the country. Our cgMLST analysis, using other S Enteritidis genomes available in the National Center for Biotechnology Information (NCBI) database, showed that S Enteritidis strains from Chile and the United States belonged to different lineages, which suggests that S Enteritidis regional markers might exist and could be used for trace-back investigations. This study highlights the importance of gulls in the spread of Salmonella Enteritidis in Chile. We revealed a close genetic relationship between some human and gull S Enteritidis strains (with as few as 2 of 4,065 genes being different), and we also found that gull strains were present in clusters formed by strains isolated from other sources or distant locations. Together with previously published evidence, this suggests that gulls might be spreading this pathogen between different regions in Chile and that some of those strains have been transmitted to humans. Moreover, we discovered that Chilean S Enteritidis strains clustered separately from most of S Enteritidis strains isolated throughout the world (in the GenBank database) and thus it might be possible to distinguish the geographical origins of strains based on specific genomic features. This could be useful for trace-back investigations of foodborne illnesses throughout the world. Copyright © 2016 Toro et al.
Ayers, Sherry; Barreto, Marlen; Allard, Marc; Brown, Eric W.
2016-01-01
ABSTRACT Salmonella enterica subsp. enterica serotype Enteritidis is a major cause of human salmonellosis worldwide; however, little is known about the genetic relationships between S. Enteritidis clinical strains and S. Enteritidis strains from other sources in Chile. We compared the whole genomes of 30 S. Enteritidis strains isolated from gulls, domestic chicken eggs, and humans in Chile, to investigate their phylogenetic relationships and to establish their relatedness to international strains. Core genome multilocus sequence typing (cgMLST) analysis showed that only 246/4,065 shared loci differed among these Chilean strains, separating them into two clusters (I and II), with cluster II being further divided into five subclusters. One subcluster (subcluster 2) contained strains from all surveyed sources that differed at 1 to 18 loci (of 4,065 loci) with 1 to 18 single-nucleotide polymorphisms (SNPs), suggesting interspecies transmission of S. Enteritidis in Chile. Moreover, clusters were formed by strains that were distant geographically, which could imply that gulls might be spreading the pathogen throughout the country. Our cgMLST analysis, using other S. Enteritidis genomes available in the National Center for Biotechnology Information (NCBI) database, showed that S. Enteritidis strains from Chile and the United States belonged to different lineages, which suggests that S. Enteritidis regional markers might exist and could be used for trace-back investigations. IMPORTANCE This study highlights the importance of gulls in the spread of Salmonella Enteritidis in Chile. We revealed a close genetic relationship between some human and gull S. Enteritidis strains (with as few as 2 of 4,065 genes being different), and we also found that gull strains were present in clusters formed by strains isolated from other sources or distant locations. Together with previously published evidence, this suggests that gulls might be spreading this pathogen between different regions in Chile and that some of those strains have been transmitted to humans. Moreover, we discovered that Chilean S. Enteritidis strains clustered separately from most of S. Enteritidis strains isolated throughout the world (in the GenBank database) and thus it might be possible to distinguish the geographical origins of strains based on specific genomic features. This could be useful for trace-back investigations of foodborne illnesses throughout the world. PMID:27520817
Hobbs, Zack; Abedon, Stephen T
2016-04-01
Bacteriophages, or phages, are viruses of members of domain Bacteria. These viruses play numerous roles in shaping the diversity of microbial communities, with impact differing depending on what infection strategies specific phages employ. From an applied perspective, these especially are communities containing undesired or pathogenic bacteria that can be modified through phage-mediated bacterial biocontrol, that is, through phage therapy. Here we seek to categorize phages in terms of their infection strategies as well as review or suggest more descriptive, accurate or distinguishing terminology. Categories can be differentiated in terms of (1) whether or not virion release occurs (productive infections versus lysogeny, pseudolysogeny and/or the phage carrier state), (2) the means of virion release (lytic versus chronic release) and (3) the degree to which phages are genetically equipped to display lysogenic cycles (temperate versus non-temperate phages). We address in particular the use or overuse of what can be a somewhat equivocal phrase, 'Lytic or lysogenic', especially when employed as a means of distinguishing among phages types. We suggest that the implied dichotomy is inconsistent with both modern as well as historical understanding of phage biology. We consider, therefore, less ambiguous terminology for distinguishing between 'Lytic' versus 'Lysogenic' phage types. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Sanchini, A; Del Grosso, M; Villa, L; Ammendolia, M G; Superti, F; Monaco, M; Pantosti, A
2014-11-01
Panton-Valentine leukocidin (PVL) is the hallmark of community-acquired methicillin-resistant Staphylococcus aureus (CA-MRSA) but can also be found in methicillin-susceptible S. aureus (MSSA) sharing pathogenic and epidemiological characteristics of CA-MRSA. PVL is encoded by two co-transcribed genes that are carried by different staphylococcal bacteriophages. We applied an extended PCR-based typing scheme for the identification of two morphological groups (elongated-head group and icosahedral-head group I phages) and specific PVL phage types in S. aureus isolates recovered in Italy. We examined 48 PVL-positive isolates (25 MSSA and 23 MRSA) collected from different hospital laboratories from April 2005 to May 2011. spa typing, multilocus sequence typing and staphylococcal cassette chromosome mec typing were applied to categorize the isolates. Phage typeability was 48.0% in MSSA and 91.3% in MRSA, highlighting the limitation of the PCR typing scheme when applied to PVL-positive MSSA. Five different PVL phages and two variants of a known phage were detected, the most prevalent being ΦSa2usa, recovered in 15 out of 48 (31.2%) isolates, and carried by both MSSA and MRSA belonging to CC8 and CC5. The recently described ΦTCH60 was recovered in four isolates. A PVL phage (ΦSa119) from an ST772 MRSA, that was not detected using the previous typing scheme, was sequenced, and new primers were designed for the identification of the icosahedral-head group II PVL phages present in ST772 and ST59 MRSA. A comprehensive PVL-phage typing can contribute to the understanding of the epidemiology and evolution of PVL-positive MSSA and MRSA. © 2014 The Authors Clinical Microbiology and Infection © 2014 European Society of Clinical Microbiology and Infectious Diseases.
Desai, Prerak T.; den Bakker, Henk C.; Mikoleit, Matthew; Tolar, Beth; Trees, Eija; Hendriksen, Rene S.; Frye, Jonathan G.; Porwollik, Steffen; Weimer, Bart C.; Wiedmann, Martin; Weinstock, George M.; Fields, Patricia I.; McClelland, Michael
2014-01-01
Salmonella enterica serotype Enteritidis is one of the most commonly reported causes of human salmonellosis. Its low genetic diversity, measured by fingerprinting methods, has made subtyping a challenge. We used whole-genome sequencing to characterize 125 S. enterica Enteritidis and 3 S. enterica serotype Nitra strains. Single-nucleotide polymorphisms were filtered to identify 4,887 reliable loci that distinguished all isolates from each other. Our whole-genome single-nucleotide polymorphism typing approach was robust for S. enterica Enteritidis subtyping with combined data for different strains from 2 different sequencing platforms. Five major genetic lineages were recognized, which revealed possible patterns of geographic and epidemiologic distribution. Analyses on the population dynamics and evolutionary history estimated that major lineages emerged during the 17th–18th centuries and diversified during the 1920s and 1950s. PMID:25147968
Comparative studies with tox plus and tox minus corynebacteriophages.
Holmes, R K; Barksdale, L
1970-06-01
The characteristics of nine inducible temperate corynebacteriophages designated alpha(tox+), beta(tox+), P(tox+), gamma(tox-), pi(tox+), K(tox-), rho(tox-), L(tox+), and delta(tox+) have been compared. Virion morphology and ability to recombine genetically with the well-studied phage beta(tox+) have been correlated with other properties of the phages, and the distribution of the genetic marker tox+ among related and relatively unrelated corynebacteriophages has been analyzed. The immunity specificity, host range, and plaque morphology of each phage were determined. The phages can be separated into five groups with different immunity specificities. Each type of host range previously recognized in mutants of phage beta(tox+) was present in one or more of the phages included in the present study, and the phages were found to produce plaques of several different morphological types. Representative phages with each of the five types of immunity specificity were further characterized with respect to virion morphology, ability to recombine with phage beta(tox+), latent period, average burst size, and neutralization by homologous and heterologous antiphage sera. All of these phages have polyhedral heads and long slender tails, but two distinct morphological types were distinguished by the sizes and proportions of the components of the virions. Only phages of the same morphological type as beta(tox+) were capable of genetic recombination with beta(tox+), but morphological similarity between phages was not sufficient to insure interfertility. The phages which recombined with beta(tox+) resembled one another in plaque morphology, latent period, and average burst size, whereas phages which failed to recombine with beta(tox+) differed in these characteristics. The phages capable of genetic recombination with beta(tox+) were found to differ from each other in immunity specificity, host range, neutralization by antiphage sera, and toxinogenicity. Thus, these latter characteristics are of limited value in establishing the extent of relatedness between corynebacteriophages. The genetic marker tox+ was not consistently correlated with any other property of the corynebacteriophages analyzed in this study. The most striking finding regarding the distribution of the tox+ marker is its presence both in beta(tox+) and delta(tox+), phages which fail to recombine genetically and which differ in virion morphology. The presence of the tox+ marker in genetically unrelated corynebacteriophages poses many questions concerning the origin(s) of tox+ and the evolution of the phage-host interactions which determine the ability of corynebacteria to synthesize diphtherial toxin.
Comparative Studies with tox+ and tox− Corynebacteriophages 1
Holmes, Randall K.; Barksdale, Lane
1970-01-01
The characteristics of nine inducible temperate corynebacteriophages designated αtox+, βtox+, Ptox+, γtox−, πtox+, Ktox−, ρtox−, Ltox+, and δtox+ have been compared. Virion morphology and ability to recombine genetically with the well-studied phage βtox+ have been correlated with other properties of the phages, and the distribution of the genetic marker tox+ among related and relatively unrelated corynebacteriophages has been analyzed. The immunity specificity, host range, and plaque morphology of each phage were determined. The phages can be separated into five groups with different immunity specificities. Each type of host range previously recognized in mutants of phage βtox+ was present in one or more of the phages included in the present study, and the phages were found to produce plaques of several different morphological types. Representative phages with each of the five types of immunity specificity were further characterized with respect to virion morphology, ability to recombine with phage βtox+, latent period, average burst size, and neutralization by homologous and heterologous antiphage sera. All of these phages have polyhedral heads and long slender tails, but two distinct morphological types were distinguished by the sizes and proportions of the components of the virions. Only phages of the same morphological type as βtox+ were capable of genetic recombination with βtox+, but morphological similarity between phages was not sufficient to insure interfertility. The phages which recombined with βtox+ resembled one another in plaque morphology, latent period, and average burst size, whereas phages which failed to recombine with βtox+ differed in these characteristics. The phages capable of genetic recombination with βtox+ were found to differ from each other in immunity specificity, host range, neutralization by antiphage sera, and toxinogenicity. Thus, these latter characteristics are of limited value in establishing the extent of relatedness between corynebacteriophages. The genetic marker tox+ was not consistently correlated with any other property of the corynebacteriophages analyzed in this study. The most striking finding regarding the distribution of the tox+ marker is its presence both in βtox+ and δtox+, phages which fail to recombine genetically and which differ in virion morphology. The presence of the tox+ marker in genetically unrelated corynebacteriophages poses many questions concerning the origin(s) of tox+ and the evolution of the phage-host interactions which determine the ability of corynebacteria to synthesize diphtherial toxin. Images PMID:4193835
Zhou, Xiaohui; Addwebi, Tarek; Davis, Margaret A.; Orfe, Lisa; Call, Douglas R.; Guard, Jean; Besser, Thomas E.
2011-01-01
Salmonella enterica serovar Enteritidis (S. Enteritidis) is a major cause of food-borne gastroenteritis in humans worldwide. Poultry and poultry products are considered the major vehicles of transmission to humans. Using cell invasiveness as a surrogate marker for pathogenicity, we tested the invasiveness of 53 poultry-associated isolates of S. Enteritidis in a well-differentiated intestinal epithelial cell model (Caco-2). The method allowed classification of the isolates into low (n = 7), medium (n = 18) and high (n = 30) invasiveness categories. Cell invasiveness of the isolates did not correlate with the presence of the virulence-associated gene spvB or the ability of the isolates to form biofilms. Testing of representative isolates with high and low invasiveness in a mouse model revealed that the former were more invasive in vivo and caused more and earlier mortalities, whereas the latter were significantly less invasive in vivo, causing few or no mortalities. Further characterization of representative isolates with low and high invasiveness showed that most of the isolates with low invasiveness had impaired motility and impaired secretion of either flagella-associated proteins (FlgK, FljB and FlgL) or type III secretion system (TTSS)-secreted proteins (SipA and SipD) encoded on Salmonella pathogenicity island-1. In addition, isolates with low invasiveness had impaired ability to invade and/or survive within chicken macrophages. These data suggest that not all isolates of S. Enteritidis recovered from poultry may be equally pathogenic, and that the pathogenicity of S. Enteritidis isolates is associated, in part, with both motility and secretion of TTSS effector proteins. PMID:21292746
Szymczak, Paula; Neves, Ana Rute; Kot, Witold; Hansen, Lars H.; Lametsch, René; Neve, Horst; Franz, Charles M. A. P.
2016-01-01
ABSTRACT Bacteriophages are the main cause of fermentation failures in dairy plants. The majority of Streptococcus thermophilus phages can be divided into either cos- or pac-type phages and are additionally characterized by examining the V2 region of their antireceptors. We screened a large number of S. thermophilus phages from the Chr. Hansen A/S collection, using PCR specific for the cos- or pac-type phages, as well as for the V2 antireceptor region. Three phages did not produce positive results with the assays. Analysis of phage morphologies indicated that two of these phages, CHPC577 and CHPC926, had shorter tails than the traditional S. thermophilus phages. The third phage, CHPC1151, had a tail size similar to those of the cos- or pac-type phages, but it displayed a different baseplate structure. Sequencing analysis revealed the genetic similarity of CHPC577 and CHPC926 with a subgroup of Lactococcus lactis P335 phages. Phage CHPC1151 was closely related to the atypical S. thermophilus phage 5093, homologous with a nondairy streptococcal prophage. By testing adsorption of the related streptococcal and lactococcal phages to the surface of S. thermophilus and L. lactis strains, we revealed the possibility of cross-interactions. Our data indicated that the use of S. thermophilus together with L. lactis, extensively applied for dairy fermentations, triggered the recombination between phages infecting different bacterial species. A notable diversity among S. thermophilus phage populations requires that a new classification of the group be proposed. IMPORTANCE Streptococcus thermophilus is a component of thermophilic starter cultures commonly used for cheese and yogurt production. Characterizing streptococcal phages, understanding their genetic relationships, and studying their interactions with various hosts are the necessary steps for preventing and controlling phage attacks that occur during dairy fermentations. PMID:28039135
Szymczak, Paula; Janzen, Thomas; Neves, Ana Rute; Kot, Witold; Hansen, Lars H; Lametsch, René; Neve, Horst; Franz, Charles M A P; Vogensen, Finn K
2017-03-01
Bacteriophages are the main cause of fermentation failures in dairy plants. The majority of Streptococcus thermophilus phages can be divided into either cos - or pac -type phages and are additionally characterized by examining the V2 region of their antireceptors. We screened a large number of S. thermophilus phages from the Chr. Hansen A/S collection, using PCR specific for the cos - or pac -type phages, as well as for the V2 antireceptor region. Three phages did not produce positive results with the assays. Analysis of phage morphologies indicated that two of these phages, CHPC577 and CHPC926, had shorter tails than the traditional S. thermophilus phages. The third phage, CHPC1151, had a tail size similar to those of the cos - or pac -type phages, but it displayed a different baseplate structure. Sequencing analysis revealed the genetic similarity of CHPC577 and CHPC926 with a subgroup of Lactococcus lactis P335 phages. Phage CHPC1151 was closely related to the atypical S. thermophilus phage 5093, homologous with a nondairy streptococcal prophage. By testing adsorption of the related streptococcal and lactococcal phages to the surface of S. thermophilus and L. lactis strains, we revealed the possibility of cross-interactions. Our data indicated that the use of S. thermophilus together with L. lactis , extensively applied for dairy fermentations, triggered the recombination between phages infecting different bacterial species. A notable diversity among S. thermophilus phage populations requires that a new classification of the group be proposed. IMPORTANCE Streptococcus thermophilus is a component of thermophilic starter cultures commonly used for cheese and yogurt production. Characterizing streptococcal phages, understanding their genetic relationships, and studying their interactions with various hosts are the necessary steps for preventing and controlling phage attacks that occur during dairy fermentations. Copyright © 2017 Szymczak et al.
Salmonella enteritidis Effector AvrA Stabilizes Intestinal Tight Junctions via the JNK Pathway.
Lin, Zhijie; Zhang, Yong-Guo; Xia, Yinglin; Xu, Xiulong; Jiao, Xinan; Sun, Jun
2016-12-23
Salmonella pathogenesis studies to date have focused on Salmonella typhimurium, and the pathogenesis of a second major serotype, Salmonella enteritidis, is poorly understood. Salmonella spp. possess effector proteins that display biochemical activities and modulate host functions. Here, we generated a deletion mutant of the effector AvrA, S.E-AvrA - , and a plasmid-mediated complementary strain, S.E-AvrA - /pAvrA + (S.E-AvrA + ), in S. Enteritidis. Using in vitro and in vivo infection models, we showed that AvrA stabilizes epithelial tight junction (TJ) proteins, such as ZO-1, in human intestinal epithelial cells. Transepithelial electrical resistance was significantly higher in cells infected with S.E-AvrA + than in cells infected with S.E-AvrA - Inhibition of the JNK pathway suppresses the disassembly of TJ proteins; we found that enteritidis AvrA inhibited JNK activity in cells infected with wild type or S.E-AvrA + strains. Therefore, Enteritidis AvrA-induced ZO-1 stability is achieved via suppression of the JNK pathway. Furthermore, the S.E-AvrA - strain led to enhanced bacterial invasion, both in vitro and in vivo Taken together, our data reveal a novel role for AvrA in S. Enteritidis: Enteritidis AvrA stabilizes intestinal TJs and attenuates bacterial invasion. The manipulation of JNK activity and TJs in microbial-epithelial interactions may be a novel therapeutic approach for the treatment of infectious diseases. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
Salmonella enteritidis Effector AvrA Stabilizes Intestinal Tight Junctions via the JNK Pathway*
Lin, Zhijie; Zhang, Yong-Guo; Xia, Yinglin; Xu, Xiulong; Jiao, Xinan
2016-01-01
Salmonella pathogenesis studies to date have focused on Salmonella typhimurium, and the pathogenesis of a second major serotype, Salmonella enteritidis, is poorly understood. Salmonella spp. possess effector proteins that display biochemical activities and modulate host functions. Here, we generated a deletion mutant of the effector AvrA, S.E-AvrA−, and a plasmid-mediated complementary strain, S.E-AvrA−/pAvrA+ (S.E-AvrA+), in S. Enteritidis. Using in vitro and in vivo infection models, we showed that AvrA stabilizes epithelial tight junction (TJ) proteins, such as ZO-1, in human intestinal epithelial cells. Transepithelial electrical resistance was significantly higher in cells infected with S.E-AvrA+ than in cells infected with S.E-AvrA−. Inhibition of the JNK pathway suppresses the disassembly of TJ proteins; we found that enteritidis AvrA inhibited JNK activity in cells infected with wild type or S.E-AvrA+ strains. Therefore, Enteritidis AvrA-induced ZO-1 stability is achieved via suppression of the JNK pathway. Furthermore, the S.E-AvrA− strain led to enhanced bacterial invasion, both in vitro and in vivo. Taken together, our data reveal a novel role for AvrA in S. Enteritidis: Enteritidis AvrA stabilizes intestinal TJs and attenuates bacterial invasion. The manipulation of JNK activity and TJs in microbial-epithelial interactions may be a novel therapeutic approach for the treatment of infectious diseases. PMID:27875307
Schmidlein, Patrick; Simon, Raphael; Pasetti, Marcela F.; Galen, James E.; Levine, Myron M.
2015-01-01
Invasive nontyphoidal Salmonella (NTS) infections constitute a major health problem among infants and toddlers in sub-Saharan Africa; these infections also occur in infants and the elderly in developed countries. We genetically engineered a Salmonella enterica serovar Typhimurium strain of multilocus sequence type 313, the predominant genotype circulating in sub-Saharan Africa. We evaluated the capacities of S. Typhimurium and Salmonella enterica serovar Enteritidis ΔguaBA ΔclpX live oral vaccines to protect mice against a highly lethal challenge dose of the homologous serovar and determined protection against other group B and D serovars circulating in sub-Saharan Africa. The vaccines S. Typhimurium CVD 1931 and S. Enteritidis CVD 1944 were immunogenic and protected BALB/c mice against 10,000 50% lethal doses (LD50) of S. Typhimurium or S. Enteritidis, respectively. S. Typhimurium CVD 1931 protected mice against the group B serovar Salmonella enterica serovar Stanleyville (91% vaccine efficacy), and S. Enteritidis CVD 1944 protected mice against the group D serovar Salmonella enterica serovar Dublin (85% vaccine efficacy). High rates of survival were observed when mice were infected 12 weeks postimmunization, indicating that the vaccines elicited long-lived protective immunity. Whereas CVD 1931 did not protect against S. Enteritidis R11, CVD 1944 did mediate protection against S. Typhimurium D65 (81% efficacy). These findings suggest that a bivalent (S. Typhimurium and S. Enteritidis) vaccine would provide broad protection against the majority of invasive NTS infections in sub-Saharan Africa. PMID:26351285
Morphological evidence for phages in Xylella fastidiosa
Chen, Jianchi; Civerolo, Edwin L
2008-01-01
Presumptive phage particles associated with Xylella fastidiosa strain Temecula-1 grown in PW broth were observed by transmission electron microscopy (TEM) in ultrathin sections of bacterial cell-containing low speed centrifugation pellets and in partially purified preparations from CsCl equilibrium centrifugation density gradients. Ultrathin-sectioned cell pellets contained icosahedral particles of about 45 nm in diameter. Samples collected from CsCl density gradients revealed mostly non-tailed icosahedral but also tailed particles. The icosahedral particles could be divided into two types: a large type (about 45 nm) and a small type (about 30 nm). Filamentous phage-like particles (17 × 120 to 6,300 nm) were also observed. The presence of different types of phage-like particles resembling to those in several bacteriophage families provides new physical evidence, in addition to X. fastidiosa genomic information, that X. fastidiosa possesses active phages. This is the first report of phage particles released in X. fastidiosa cultures. PMID:18538030
Fardsanei, F; Nikkhahi, F; Bakhshi, B; Salehi, T Z; Tamai, I A; Soltan Dallal, M M
2016-11-01
In recent years, Salmonella enterica serovar Enteritidis has been a primary cause of human salmonellosis in many countries. The major objective of this study was to investigate genetic diversity among Salmonella Enteritidis strains from different origins (food and human) by Enterobacterial Repetitive Intergenic Consensus (ERIC) -PCR, as well as to assess their plasmid profiling and antimicrobial resistance. A total of 30 Salmonella Enteritidis isolates, 15 from food samples (chicken, lamb, beef and duck meats) and 15 from clinical samples were collected in Tehran. Identification of isolates as Salmonella was confirmed by using conventional standard biochemical and serological tests. Multiplex-PCR was used for serotyping of isolates to identify Salmonella Enteritidis. Antimicrobial susceptibility testing to 16 agents founds drug resistance patterns among Salmonella Enteritidis isolates. No resistance was observed to cephalexin, ceftriaxone, ceftazidime and cefotaxime, ciprofloxacin, imipenem or meropenem, chloramphenicol and gentamicin. The highest resistance (96.7%) was observed to nitrofurantoin. Seven plasmid profiles (P1-P7) were detected, and a 68-kb plasmid was found in all isolates. Two different primers; ERIC and (GTG)5 were used for genotyping, which each produced four profiles. The majority of clinical and food isolates fell into two separate common types (CTs) with a similar percentage of 95% by ERIC-PCR. Using primer (GTG)5, 29 isolates incorporated in three CTs with 70% of isolates showing a single banding pattern. Limited genetic diversity among human and food isolates of Salmonella Enteritidis may indicate that contaminated foods were possibly the source of human salmonellosis. These results confirmed that ERIC-PCR genotyping has limited discriminatory power for Salmonella Enteritidis of different origin.
Lin, Zhijie; Tang, Peipei; Jiao, Yang; Kang, Xilong; Li, Qiuchun; Xu, Xiulong; Sun, Jun; Pan, Zhiming; Jiao, Xinan
2017-06-24
Salmonella enterica serovar Enteritidis (S. Enteritidis) is a highly adaptive pathogen in both humans and animals. As a Salmonella Type III secretion system (T3SS) effector, Salmonella protein tyrosine phosphatase (SptP) is critical for virulence in this genus. To investigate the feasibility of using C50336ΔsptP as a live attenuated oral vaccine in mice, we generated the sptP gene deletion mutant C50336ΔsptP in S. Enteritidis strain C50336 by λ-Red mediated recombination and evaluated the protective ability of the S. Enteritidis sptP mutant strain C50336ΔsptP against mice salmonellosis. We found that C50336ΔsptP was a highly immunogenic, effective, and safe vaccine in mice. Compared to wild-type C50336, C50336ΔsptP showed reduced virulence as confirmed by the 50% lethal dose (LD 50 ) in orally infected mice. C50336ΔsptP also showed decreased bacterial colonization both in vivo and in vitro. Immunization with C50336ΔsptP had no significant effect on body weight and did not result in obvious clinical symptoms relative to control animals treated with phosphate-buffered saline (PBS), but induced humoral and cellular immune responses at 12 and 26 days post inoculation. Immunization with 1 × 10 8 colony-forming units (CFU) C50336ΔsptP per mouse provided 100% protection against subsequent challenge with the wild-type C50336 strain, and immunized mice showed mild and temporary clinical symptoms as compared to those of control group. These results demonstrate that C50336ΔsptP can be a live attenuated oral vaccine for salmonellosis.
Efficient engineering of a bacteriophage genome using the type I-E CRISPR-Cas system.
Kiro, Ruth; Shitrit, Dror; Qimron, Udi
2014-01-01
The clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated (Cas) system has recently been used to engineer genomes of various organisms, but surprisingly, not those of bacteriophages (phages). Here we present a method to genetically engineer the Escherichia coli phage T7 using the type I-E CRISPR-Cas system. T7 phage genome is edited by homologous recombination with a DNA sequence flanked by sequences homologous to the desired location. Non-edited genomes are targeted by the CRISPR-Cas system, thus enabling isolation of the desired recombinant phages. This method broadens CRISPR Cas-based editing to phages and uses a CRISPR-Cas type other than type II. The method may be adjusted to genetically engineer any bacteriophage genome.
Characterization of novel virulent broad-host-range phages of Xylella fastidiosa and Xanthomonas.
Ahern, Stephen J; Das, Mayukh; Bhowmick, Tushar Suvra; Young, Ry; Gonzalez, Carlos F
2014-01-01
The xylem-limited bacterium Xylella fastidiosa is the causal agent of several plant diseases, most notably Pierce's disease of grape and citrus variegated chlorosis. We report the isolation and characterization of the first virulent phages for X. fastidiosa, siphophages Sano and Salvo and podophages Prado and Paz, with a host range that includes Xanthomonas spp. Phages propagated on homologous hosts had observed adsorption rate constants of ~4 × 10(-12) ml cell(-1) min(-1) for X. fastidiosa strain Temecula 1 and ~5 × 10(-10) to 7 × 10(-10) ml cell(-1) min(-1) for Xanthomonas strain EC-12. Sano and Salvo exhibit >80% nucleotide identity to each other in aligned regions and are syntenic to phage BcepNazgul. We propose that phage BcepNazgul is the founding member of a novel phage type, to which Sano and Salvo belong. The lysis genes of the Nazgul-like phage type include a gene that encodes an outer membrane lipoprotein endolysin and also spanin gene families that provide insight into the evolution of the lysis pathway for phages of Gram-negative hosts. Prado and Paz, although exhibiting no significant DNA homology to each other, are new members of the phiKMV-like phage type, based on the position of the single-subunit RNA polymerase gene. The four phages are type IV pilus dependent for infection of both X. fastidiosa and Xanthomonas. The phages may be useful as agents for an effective and environmentally responsible strategy for the control of diseases caused by X. fastidiosa.
Characterization of Novel Virulent Broad-Host-Range Phages of Xylella fastidiosa and Xanthomonas
Ahern, Stephen J.; Das, Mayukh; Bhowmick, Tushar Suvra; Young, Ry
2014-01-01
The xylem-limited bacterium Xylella fastidiosa is the causal agent of several plant diseases, most notably Pierce's disease of grape and citrus variegated chlorosis. We report the isolation and characterization of the first virulent phages for X. fastidiosa, siphophages Sano and Salvo and podophages Prado and Paz, with a host range that includes Xanthomonas spp. Phages propagated on homologous hosts had observed adsorption rate constants of ∼4 × 10−12 ml cell−1 min−1 for X. fastidiosa strain Temecula 1 and ∼5 × 10−10 to 7 × 10−10 ml cell−1 min−1 for Xanthomonas strain EC-12. Sano and Salvo exhibit >80% nucleotide identity to each other in aligned regions and are syntenic to phage BcepNazgul. We propose that phage BcepNazgul is the founding member of a novel phage type, to which Sano and Salvo belong. The lysis genes of the Nazgul-like phage type include a gene that encodes an outer membrane lipoprotein endolysin and also spanin gene families that provide insight into the evolution of the lysis pathway for phages of Gram-negative hosts. Prado and Paz, although exhibiting no significant DNA homology to each other, are new members of the phiKMV-like phage type, based on the position of the single-subunit RNA polymerase gene. The four phages are type IV pilus dependent for infection of both X. fastidiosa and Xanthomonas. The phages may be useful as agents for an effective and environmentally responsible strategy for the control of diseases caused by X. fastidiosa. PMID:24214944
McCallin, Shawna; Alam Sarker, Shafiqul; Barretto, Caroline; Sultana, Shamima; Berger, Bernard; Huq, Sayeda; Krause, Lutz; Bibiloni, Rodrigo; Schmitt, Bertrand; Reuteler, Gloria; Brüssow, Harald
2013-09-01
Phage therapy has a long tradition in Eastern Europe, where preparations are comprised of complex phage cocktails whose compositions have not been described. We investigated the composition of a phage cocktail from the Russian pharmaceutical company Microgen targeting Escherichia coli/Proteus infections. Electron microscopy identified six phage types, with numerically T7-like phages dominating over T4-like phages. A metagenomic approach using taxonomical classification, reference mapping and de novo assembly identified 18 distinct phage types, including 7 genera of Podoviridae, 2 established and 2 proposed genera of Myoviridae, and 2 genera of Siphoviridae. De novo assembly yielded 7 contigs greater than 30 kb, including a 147-kb Myovirus genome and a 42-kb genome of a potentially new phage. Bioinformatic analysis did not reveal undesired genes and a small human volunteer trial did not associate adverse effects with oral phage exposure. Copyright © 2013 Elsevier Inc. All rights reserved.
Characterization of Two Virulent Phages of Lactobacillus plantarum
Briggiler Marcó, Mariángeles; Garneau, Josiane E.; Tremblay, Denise; Quiberoni, Andrea
2012-01-01
We characterized two Lactobacillus plantarum virulent siphophages, ATCC 8014-B1 (B1) and ATCC 8014-B2 (B2), previously isolated from corn silage and anaerobic sewage sludge, respectively. Phage B2 infected two of the eight L. plantarum strains tested, while phage B1 infected three. Phage adsorption was highly variable depending on the strain used. Phage defense systems were found in at least two L. plantarum strains, LMG9211 and WCSF1. The linear double-stranded DNA genome of the pac-type phage B1 had 38,002 bp, a G+C content of 47.6%, and 60 open reading frames (ORFs). Surprisingly, the phage B1 genome has 97% identity with that of Pediococcus damnosus phage clP1 and 77% identity with that of L. plantarum phage JL-1; these phages were isolated from sewage and cucumber fermentation, respectively. The double-stranded DNA (dsDNA) genome of the cos-type phage B2 had 80,618 bp, a G+C content of 36.9%, and 127 ORFs with similarities to those of Bacillus and Lactobacillus strains as well as phages. Some phage B2 genes were similar to ORFs from L. plantarum phage LP65 of the Myoviridae family. Additionally, 6 tRNAs were found in the phage B2 genome. Protein analysis revealed 13 (phage B1) and 9 (phage B2) structural proteins. To our knowledge, this is the first report describing such high identity between phage genomes infecting different genera of lactic acid bacteria. PMID:23042172
Detection of E. coli O157:H7 with a reporter phage containing the luxCDABE cassette
USDA-ARS?s Scientific Manuscript database
Bacteriophage and reporter phage are used for typing and/or detection of pathogens. The temperate tailed phage fV10 has been utilized for phage-typing E. coli O157:H7. By modifying fV10 to transduce kanamycin resistance and the a luxCDABE cassette, we developed a reporter bacteriophage (fV10-lux) p...
Rampling, A; Whitby, J L; Wildy, P
1975-11-01
A method for pyocin-sensitivity typing by means of "phage-free" preparations of pyocin is described. The method was tested on 227 isolates of P. aeruginosa, collected from 34 different foci of infection in hospitals in the British Isles and the results were compared with those for combined serological and phage typing of all strains and pyocin production of 105 of the isolates. It is concluded that pyocin-sensitivity typing is a simple and reliable method giving a high degree of discrimination, comparable to that of combined serological and phage typing, and it is suitable for use in routine hospital laboratories.
DOE Office of Scientific and Technical Information (OSTI.GOV)
McCallin, Shawna, E-mail: semccallin@yahoo.com; Alam Sarker, Shafiqul, E-mail: sasarker@icddrb.org; Barretto, Caroline, E-mail: Caroline.Barretto@rdls.nestle.com
Phage therapy has a long tradition in Eastern Europe, where preparations are comprised of complex phage cocktails whose compositions have not been described. We investigated the composition of a phage cocktail from the Russian pharmaceutical company Microgen targeting Escherichia coli/Proteus infections. Electron microscopy identified six phage types, with numerically T7-like phages dominating over T4-like phages. A metagenomic approach using taxonomical classification, reference mapping and de novo assembly identified 18 distinct phage types, including 7 genera of Podoviridae, 2 established and 2 proposed genera of Myoviridae, and 2 genera of Siphoviridae. De novo assembly yielded 7 contigs greater than 30 kb,more » including a 147-kb Myovirus genome and a 42-kb genome of a potentially new phage. Bioinformatic analysis did not reveal undesired genes and a small human volunteer trial did not associate adverse effects with oral phage exposure. - Highlights: • We analyzed the composition of a commercial Russian phage cocktail. • The cocktail consists of at least 10 different phage genera. • No undesired genes were detected. • No adverse effects were seen upon oral application in a small human clinical trial.« less
Tennant, Sharon M; Schmidlein, Patrick; Simon, Raphael; Pasetti, Marcela F; Galen, James E; Levine, Myron M
2015-12-01
Invasive nontyphoidal Salmonella (NTS) infections constitute a major health problem among infants and toddlers in sub-Saharan Africa; these infections also occur in infants and the elderly in developed countries. We genetically engineered a Salmonella enterica serovar Typhimurium strain of multilocus sequence type 313, the predominant genotype circulating in sub-Saharan Africa. We evaluated the capacities of S. Typhimurium and Salmonella enterica serovar Enteritidis ΔguaBA ΔclpX live oral vaccines to protect mice against a highly lethal challenge dose of the homologous serovar and determined protection against other group B and D serovars circulating in sub-Saharan Africa. The vaccines S. Typhimurium CVD 1931 and S. Enteritidis CVD 1944 were immunogenic and protected BALB/c mice against 10,000 50% lethal doses (LD50) of S. Typhimurium or S. Enteritidis, respectively. S. Typhimurium CVD 1931 protected mice against the group B serovar Salmonella enterica serovar Stanleyville (91% vaccine efficacy), and S. Enteritidis CVD 1944 protected mice against the group D serovar Salmonella enterica serovar Dublin (85% vaccine efficacy). High rates of survival were observed when mice were infected 12 weeks postimmunization, indicating that the vaccines elicited long-lived protective immunity. Whereas CVD 1931 did not protect against S. Enteritidis R11, CVD 1944 did mediate protection against S. Typhimurium D65 (81% efficacy). These findings suggest that a bivalent (S. Typhimurium and S. Enteritidis) vaccine would provide broad protection against the majority of invasive NTS infections in sub-Saharan Africa. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
2009-09-01
binding ETS domain) and five type II (without ETS domain). Fusion-positive type I– and type II–containing phages were amplified with T3 and T7 primers...will be performed to identify the authentic 3’ UTRs from the mRNA pool from CaP patient specimens. Using phage excision strategy, we will use to... phage DNA sequences plasmids (cDNA) clones were generated by using phage excision strategy. Figure 1. ERG splice variants in prostate cancer
Characterization of non-typable strains of Staphylococcus aureus from cases of hospital infection.
Vindel, A.; Martín-Bourgon, C.; Saez-Nieto, J. A.
1987-01-01
A high percentage of non-typable (NT) Staphylococcus aureus strains was isolated in Spanish hospitals during 1984 and 1985. Several alternative methods of typing were employed to study these isolates. These were: phage-typing at 1000 X RTD, phage-typing after heat-treatment (48 degrees C), thermal shock (56 degrees C), reverse-typing and induction of additional phages. Using these methods the number of NT isolates was reduced by 60%. Best results were obtained with heat-treatment. Additional phages and reverse-typing were also useful. A scheme for the study of outbreaks and sporadic cases caused by NT strains is proposed using the methods described. PMID:3609172
Identification of chondrocyte-binding peptides by phage display.
Cheung, Crystal S F; Lui, Julian C; Baron, Jeffrey
2013-07-01
As an initial step toward targeting cartilage tissue for potential therapeutic applications, we sought cartilage-binding peptides using phage display, a powerful technology for selection of peptides that bind to molecules of interest. A library of phage displaying random 12-amino acid peptides was iteratively incubated with cultured chondrocytes to select phage that bind cartilage. The resulting phage clones demonstrated increased affinity to chondrocytes by ELISA, when compared to a wild-type, insertless phage. Furthermore, the selected phage showed little preferential binding to other cell types, including primary skin fibroblast, myocyte and hepatocyte cultures, suggesting a tissue-specific interaction. Immunohistochemical staining revealed that the selected phage bound chondrocytes themselves and the surrounding extracellular matrix. FITC-tagged peptides were synthesized based on the sequence of cartilage-binding phage clones. These peptides, but not a random peptide, bound cultured chondrocytes, and extracelluar matrix. In conclusion, using phage display, we identified peptide sequences that specifically target chondrocytes. We anticipate that such peptides may be coupled to therapeutic molecules to provide targeted treatment for cartilage disorders. Copyright © 2013 Orthopaedic Research Society.
Zhao, Huanqiang; Hu, Fupin; Jin, Shu; Xu, Xiaogang; Zou, Yuhan; Ding, Baixing; He, Chunyan; Gong, Fang; Liu, Qingzhong
2016-01-01
Panton-Valentine leukocidin (PVL, encoded by lukSF-PV genes), a bi-component and pore-forming toxin, is carried by different staphylococcal bacteriophages. The prevalence of PVL in Staphylococcus aureus has been reported around the globe. However, the data on PVL-encoding phage types, lukSF-PV gene variation and chromosomal phage insertion sites for PVL-positive S. aureus are limited, especially in China. In order to obtain a more complete understanding of the molecular epidemiology of PVL-positive S. aureus, an integrated and modified PCR-based scheme was applied to detect the PVL-encoding phage types. Phage insertion locus and the lukSF-PV variant were determined by PCR and sequencing. Meanwhile, the genetic background was characterized by staphylococcal cassette chromosome mec (SCCmec) typing, staphylococcal protein A (spa) gene polymorphisms typing, pulsed-field gel electrophoresis (PFGE) typing, accessory gene regulator (agr) locus typing and multilocus sequence typing (MLST). Seventy eight (78/1175, 6.6%) isolates possessed the lukSF-PV genes and 59.0% (46/78) of PVL-positive strains belonged to CC59 lineage. Eight known different PVL-encoding phage types were detected, and Φ7247PVL/ΦST5967PVL (n = 13) and ΦPVL (n = 12) were the most prevalent among them. While 25 (25/78, 32.1%) isolates, belonging to ST30, and ST59 clones, were unable to be typed by the modified PCR-based scheme. Single nucleotide polymorphisms (SNPs) were identified at five locations in the lukSF-PV genes, two of which were non-synonymous. Maximum-likelihood tree analysis of attachment sites sequences detected six SNP profiles for attR and eight for attL, respectively. In conclusion, the PVL-positive S. aureus mainly harbored Φ7247PVL/ΦST5967PVL and ΦPVL in the regions studied. lukSF-PV gene sequences, PVL-encoding phages, and phage insertion locus generally varied with lineages. Moreover, PVL-positive clones that have emerged worldwide likely carry distinct phages.
Lévesque, Céline; Duplessis, Martin; Labonté, Jessica; Labrie, Steve; Fremaux, Christophe; Tremblay, Denise; Moineau, Sylvain
2005-01-01
The Streptococcus thermophilus virulent pac-type phage 2972 was isolated from a yogurt made in France in 1999. It is a representative of several phages that have emerged with the industrial use of the exopolysaccharide-producing S. thermophilus strain RD534. The genome of phage 2972 has 34,704 bp with an overall G+C content of 40.15%, making it the shortest S. thermophilus phage genome analyzed so far. Forty-four open reading frames (ORFs) encoding putative proteins of 40 or more amino acids were identified, and bioinformatic analyses led to the assignment of putative functions to 23 ORFs. Comparative genomic analysis of phage 2972 with the six other sequenced S. thermophilus phage genomes confirmed that the replication module is conserved and that cos- and pac-type phages have distinct structural and packaging genes. Two group I introns were identified in the genome of 2972. They interrupted the genes coding for the putative endolysin and the terminase large subunit. Phage mRNA splicing was demonstrated for both introns, and the secondary structures were predicted. Eight structural proteins were also identified by N-terminal sequencing and/or matrix-assisted laser desorption ionization—time-of-flight mass spectrometry. Detailed analysis of the putative minor tail proteins ORF19 and ORF21 as well as the putative receptor-binding protein ORF20 showed the following interesting features: (i) ORF19 is a hybrid protein, because it displays significant identity with both pac- and cos-type phages; (ii) ORF20 is unique; and (iii) a protein similar to ORF21 of 2972 was also found in the structure of the cos-type phage DT1, indicating that this structural protein is present in both S. thermophilus phage groups. The implications of these findings for phage classification are discussed. PMID:16000821
Papadopoulos, T; Petridou, E; Zdragas, A; Mandilara, G; Nair, S; Peters, T; Chattaway, M; de Pinna, E; Passiotou, M; Vatopoulos, A
2016-05-01
The aim of the present work was to study the epidemiology of Salmonella enterica serovar Enteritidis (S. Enteritidis) in Greece, comparing all the food and food animal isolates during a 3-year period with clinical isolates. Submission of the generated data to the PulseNet Europe database was carried out in order to study the population structure of this particular serovar and indicate possible connections with European strains. One hundred and sixty-eight (168) S. Enteritidis strains of human, animal, and food origin, isolated during the period 2008-2010 in Greece, were studied. Strains were characterized by phenotypic (antibiotic resistance) and molecular [pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST)] methods. PFGE revealed 39 XbaI, 48 BlnI, and 80 XbaI-BlnI distinct pulsotypes, suggesting several clones circulating through the food chain and multiple sources of transmission. Submission to the PulseNet Europe database indicated that PFGE profile SENTXB.0001, the most common PFGE profile in Europe, was also predominant in Greece (33.3 %). MLST showed that all the strains studied shared the same sequence type (ST11), representing the most common ST in Europe. High rates of resistance to nalidixic acid were observed among human and poultry isolates (~25 %), indicating the potential fluoroquinolone treatment failure. Our data suggest that strains originating from multiple reservoirs circulated in Greece through the food chain during the study period. Predominant profiles in Greece were common to PulseNet Europe profiles, indicating similarities between the S. Enteritidis populations in Greece and Europe.
Peters, Tansy; Bertrand, Sophie; Björkman, Jonas T; Brandal, Lin T; Brown, Derek J; Erdõsi, Tímea; Heck, Max; Ibrahem, Salha; Johansson, Karin; Kornschober, Christian; Kotila, Saara M; Le Hello, Simon; Lienemann, Taru; Mattheus, Wesley; Nielsen, Eva Møller; Ragimbeau, Catherine; Rumore, Jillian; Sabol, Ashley; Torpdahl, Mia; Trees, Eija; Tuohy, Alma; de Pinna, Elizabeth
2017-01-01
Multilocus variable-number tandem repeat analysis (MLVA) is a rapid and reproducible typing method that is an important tool for investigation, as well as detection, of national and multinational outbreaks of a range of food-borne pathogens. Salmonella enterica serovar Enteritidis is the most common Salmonella serovar associated with human salmonellosis in the European Union/European Economic Area and North America. Fourteen laboratories from 13 countries in Europe and North America participated in a validation study for MLVA of S. Enteritidis targeting five loci. Following normalisation of fragment sizes using a set of reference strains, a blinded set of 24 strains with known allele sizes was analysed by each participant. The S. Enteritidis 5-loci MLVA protocol was shown to produce internationally comparable results as more than 90% of the participants reported less than 5% discrepant MLVA profiles. All 14 participating laboratories performed well, even those where experience with this typing method was limited. The raw fragment length data were consistent throughout, and the inter-laboratory validation helped to standardise the conversion of raw data to repeat numbers with at least two countries updating their internal procedures. However, differences in assigned MLVA profiles remain between well-established protocols and should be taken into account when exchanging data. PMID:28277220
DNA aptamer-based colorimetric detection platform for Salmonella Enteritidis.
Bayraç, Ceren; Eyidoğan, Füsun; Avni Öktem, Hüseyin
2017-12-15
Food safety is a major issue to protect public health and a key challenge is to find detection methods for identification of hazards in food. Food borne infections affects millions of people each year and among pathogens, Salmonella Enteritidis is most widely found bacteria causing food borne diseases. Therefore, simple, rapid, and specific detection methods are needed for food safety. In this study, we demonstrated the selection of DNA aptamers with high affinity and specificity against S. Enteritidis via Cell Systematic Evolution of Ligands by Exponential Enrichment (Cell-SELEX) and development of sandwich type aptamer-based colorimetric platforms for its detection. Two highly specific aptamers, crn-1 and crn-2, were developed through 12 rounds of selection with K d of 0.971µM and 0.309µM, respectively. Both aptamers were used to construct sandwich type capillary detection platforms. With the detection limit of 10 3 CFU/mL, crn-1 and crn-2 based platforms detected target bacteria specifically based on color change. This platform is also suitable for detection of S. Enteritidis in complex food matrix. Thus, this is the first to demonstrate use of Salmonella aptamers for development of the colorimetric aptamer-based detection platform in its identification and detection with naked eye in point-of-care. Copyright © 2017 Elsevier B.V. All rights reserved.
Prado-Rebolledo, Omar F; Delgado-Machuca, Jaime de Jesus; Macedo-Barragan, Rafael J; Garcia-Márquez, Luis J; Morales-Barrera, Jesus E; Latorre, Juan D; Hernandez-Velasco, Xochitl; Tellez, Guillermo
2017-02-01
Two experiments were conducted to evaluate the effect of a lactic acid bacteria-based probiotic (FloraMax-B11 ® ) against Salmonella enterica serovar Enteritidis intestinal colonization and intestinal permeability in broiler chickens. Experiment 1 consisted of two independent trials. In each trial, day-old broiler chicks were assigned to one of two groups: control + S. Enteritidis or probiotic + S. Enteritidis. At 72 h post-S. Enteritidis challenge, haematology and caecal content were evaluated for S. Enteritidis colonization. In Experiment 2, day-old broiler chicks were assigned to one of four groups: negative control; probiotic; control + S. Enteritidis; or probiotic + S. Enteritidis. At 72 h post-S. Enteritidis challenge, chickens in all groups were given an oral gavage dose of fluorescein isothiocyanate dextran (FITC-d). In both trials of Experiment 1, a significant reduction (P < 0.05) in colony-forming units/gram of S. Enteritidis in caecal content and a reduction in the incidence of S. Enteritidis enriched caecal samples were observed in probiotic + S. Enteritidis chickens. In addition, significant heterophilia and lymphopaenia were observed in control + S. Enteritidis chickens. In Experiment 2, a decrease in numbers of S. Enteritidis in caeca were observed in probiotic + S. Enteritidis chickens when compared to control + S. Enteritidis. Also, an increase in serum FITC-d concentration was detected in control + S. Enteritidis. These results suggest that early infection with S. Enteritidis can increase intestinal permeability, but the adverse effects can be prevented by the administration of the probiotic tested.
Schwartz, Daniel A; Lindell, Debbie
2017-01-01
Phages and hosts coexist in nature with a high degree of population diversity. This is often explained through coevolutionary models, such as the arms race or density-dependent fluctuating selection, which differ in assumptions regarding the emergence of phage mutants that overcome host resistance. Previously, resistance in the abundant marine cyanobacterium, Prochlorococcus, was found to occur frequently. However, little is known about the ability of phages to overcome this resistance. Here we report that, in some cases, T7-like cyanophage mutants emerge to infect resistant Prochlorococcus strains. These resistance-breaking phages retained the ability to infect the wild-type host. However, fitness of the mutant phages differed on the two hosts. Furthermore, in one case, resistance-breaking was accompanied by costs of decreased fitness on the wild-type host and decreased adsorption specificity, relative to the wild-type phage. In two other cases, fitness on the wild-type host increased. Whole-genome sequencing revealed mutations in probable tail-related genes. These were highly diverse in isolates and natural populations of T7-like cyanophages, suggesting that antagonistic coevolution enhances phage genome diversity. Intriguingly, most interactions did not yield resistance-breaking phages. Thus, resistance mutations raise genetic barriers to continuous arms race cycles and are indicative of an inherent asymmetry in coevolutionary capacity, with hosts having the advantage. Nevertheless, phages coexist with hosts, which we propose relies on combined, parallel action of a limited arms race, fluctuating selection and passive host-switching within diverse communities. Together, these processes generate a constantly changing network of interactions, enabling stable coexistence between hosts and phages in nature. PMID:28440802
Schwartz, Daniel A; Lindell, Debbie
2017-08-01
Phages and hosts coexist in nature with a high degree of population diversity. This is often explained through coevolutionary models, such as the arms race or density-dependent fluctuating selection, which differ in assumptions regarding the emergence of phage mutants that overcome host resistance. Previously, resistance in the abundant marine cyanobacterium, Prochlorococcus, was found to occur frequently. However, little is known about the ability of phages to overcome this resistance. Here we report that, in some cases, T7-like cyanophage mutants emerge to infect resistant Prochlorococcus strains. These resistance-breaking phages retained the ability to infect the wild-type host. However, fitness of the mutant phages differed on the two hosts. Furthermore, in one case, resistance-breaking was accompanied by costs of decreased fitness on the wild-type host and decreased adsorption specificity, relative to the wild-type phage. In two other cases, fitness on the wild-type host increased. Whole-genome sequencing revealed mutations in probable tail-related genes. These were highly diverse in isolates and natural populations of T7-like cyanophages, suggesting that antagonistic coevolution enhances phage genome diversity. Intriguingly, most interactions did not yield resistance-breaking phages. Thus, resistance mutations raise genetic barriers to continuous arms race cycles and are indicative of an inherent asymmetry in coevolutionary capacity, with hosts having the advantage. Nevertheless, phages coexist with hosts, which we propose relies on combined, parallel action of a limited arms race, fluctuating selection and passive host-switching within diverse communities. Together, these processes generate a constantly changing network of interactions, enabling stable coexistence between hosts and phages in nature.
Allué-Guardia, Anna; Jofre, Juan; Muniesa, Maite
2012-08-01
Two cytolethal distending toxin (Cdt) type V-encoding bacteriophages (Φ62 and Φ125) were induced spontaneously from their wild-type Escherichia coli strains and from the lysogens generated in Shigella sonnei. The stability of Cdt phages was determined at various temperatures and pH values after 1 month of storage by means of infectivity tests using a plaque blot assay and analysis of phage genomes using real-time quantitative PCR (qPCR): both were highly stable. We assessed the inactivation of Cdt phages by thermal treatment, chlorination, UV radiation, and in a mesocosm in both summer and winter. The results for the two Cdt phages showed similar trends and were also similar to the phage SOM23 used for reference, but they showed a much higher persistence than Cdt-producing E. coli. Cdt phages showed maximal inactivation after 1 h at 70°C, 30 min of UV radiation, and 30 min of contact with a 10-ppm chlorine treatment. Inactivation in a mesocosm was higher in summer than in winter, probably because of solar radiation. The treatments reduced the number of infectious phages but did not have a significant effect on the Cdt phage particles detected by qPCR. Cdt phages were quantified by qPCR in 73% of river samples, and these results suggest that Cdt phages are a genetic vehicle and the natural reservoir for cdt in the environment.
Engineering T7 bacteriophage as a potential DNA vaccine targeting delivery vector.
Xu, Hai; Bao, Xi; Wang, Yiwei; Xu, Yue; Deng, Bihua; Lu, Yu; Hou, Jibo
2018-03-20
DNA delivery with bacteriophage by surface-displayed mammalian cell penetrating peptides has been reported. Although, various phages have been used to facilitate DNA transfer by surface displaying the protein transduction domain of human immunodeficiency virus type 1 Tat protein (Tat peptide), no similar study has been conducted using T7 phage. In this study, we engineeredT7 phage as a DNA targeting delivery vector to facilitate cellular internalization. We constructed recombinant T7 phages that displayed Tat peptide on their surface and carried eukaryotic expression box (EEB) as a part of their genomes (T7-EEB-Tat). We demonstrated that T7 phage harboring foreign gene insertion had packaged into infective progeny phage particles. Moreover, when mammalian cells that were briefly exposed to T7-EEB-Tat, expressed a significant higher level of the marker gene with the control cells infected with the wide type phage without displaying Tat peptides. These data suggested that the potential of T7 phage as an effective delivery vector for DNA vaccine transfer.
Demczuk, W H B; Finley, R; Nadon, C; Spencer, A; Gilmour, M; Ng, L-K
2010-10-01
Isolation rates in Canada of Salmonella enterica serovar Typhi increased from 0.29 to 0.55 isolations/100,000 population during 2000-2006. Although no ciprofloxacin resistance was detected, nalidixic acid resistance increased from 41% to 80%. Multidrug-resistant S. Typhi represented 18% of the strains tested. Pulsed-field gel electrophoresis (PFGE) analysis of 222 isolates resulted in 91 distinct patterns clustering into four major genetic similarity groups. The five most frequently occurring PFGE patterns accounted for 46% of the isolates. Drug-resistant isolates predominantly occurred in one PFGE similarity group. There were 39 phage types identified in 826 isolates analysed with 60% described by five phage types; 134 were untypable. The phage types associated with multidrug resistance were phage types 53, B1, D1, E1, E9, G3 and M1. Improved integration of epidemiological and laboratory case data will facilitate the protection of public health in Canada during an era of increasing travel and globalization.
Jakočiūnė, Džiuginta; Herrero-Fresno, Ana; Jelsbak, Lotte; Olsen, John Elmerdahl
2016-05-02
Salmonella enterica serovar Enteritidis (S. Enteritidis) is the most common cause of egg borne salmonellosis in many parts of the world. This study analyzed gene expression of this bacterium during growth in whole egg, and whether highly expressed genes were essential for the growth. High quality RNA was extracted from S. Enteritidis using a modified RNA-extraction protocol. Global gene expression during growth in whole egg was compared to growth in LB-medium using DNA array method. Twenty-six genes were significantly upregulated during growth in egg; these belonged to amino acid biosynthesis, di/oligopeptide transport system, biotin synthesis, ferrous iron transport system, and type III secretion system. Significant downregulation of 15 genes related to formate hydrogenlyase (FHL) and trehalose metabolism was observed. The results suggested that S. Enteritidis is starved for amino-acids, biotin and iron when growing in egg. However, site specific mutation of amino acid biosynthesis genes asnA (17.3 fold upregulated), asnB (18.6 fold upregulated), asnA/asnB and, serA (12.0 fold upregulated) and gdhA (3.7 fold upregulated), did not result in growth attenuation, suggesting that biosynthesis using the enzymes encoded from these genes may represent the first choice for S. Enteritidis when growing in egg, but when absent, the bacterium could use alternative ways to obtain the amino acids. Copyright © 2016 Elsevier B.V. All rights reserved.
McKelvey, Jessica A.; Yang, Ming; Jiang, Yanhua
2014-01-01
Salmonella enterica serovar Enteritidis (S. Enteritidis) is a major etiologic agent of nontyphoid salmonellosis in the United States. S. Enteritidis persistently and silently colonizes the intestinal and reproductive tract of laying hens, resulting in contaminated poultry products. The consumption of contaminated poultry products has been identified as a significant risk factor for human salmonellosis. To understand the mechanisms S. Enteritidis utilizes to colonize and persist in laying hens, we used selective capture of transcribed sequences to identify genes overexpressed in the HD11 chicken macrophage cell line and in primary chicken oviduct epithelial cells. From the 15 genes found to be overexpressed in both cell types, we characterized the antimicrobial peptide resistance (AMPR) genes, virK and ybjX, in vitro and in vivo. In vitro, AMPR genes were required for natural morphology, motility, secretion, defense against detergents such as EDTA and bile salts, and resistance to antimicrobial peptides polymyxin B and avian β-defensins. From this, we inferred the AMPR genes play a role in outer membrane stability and/or modulation. In the intestinal tract, AMPR genes were involved in early intestinal colonization and fecal shedding. In the reproductive tract, virK was required in early colonization whereas a deletion of ybjX caused prolonged ovary colonization and egg deposition. Data from the present study indicate that AMPR genes are differentially utilized in various host environments, which may ultimately assist S. Enteritidis in persistent and silent colonization of chickens. PMID:25267840
Solovieva, Ekaterina V; Myakinina, Vera P; Kislichkina, Angelina A; Krasilnikova, Valentina M; Verevkin, Vladimir V; Mochalov, Vladimir V; Lev, Anastasia I; Fursova, Nadezhda K; Volozhantsev, Nikolay V
2018-01-02
Hypermucoviscous (HV) strains of capsular types K1, K2 and K57 are the most virulent representatives of the Klebsiella pneumoniae species. Eight novel bacteriophages lytic for HV K. pneumoniae were isolated and characterized. Three bacteriophages, KpV41, KpV475, and KpV71 were found to have a lytic activity against mainly K. pneumoniae of capsular type K1. Two phages, KpV74, and KpV763 were lytic for K2 capsular type K. pneumoniae, and the phage KpV767 was specific to K57-type K. pneumoniae only. Two more phages, KpV766, and KpV48 had no capsular specificity. The phage genomes consist of a linear double-stranded DNA of 40,395-44,623bp including direct terminal repeats of 180-246 bp. The G + C contents are 52.3-54.2 % that is slightly lower than that of genomes of K. pneumoniae strains being used for phage propagation. According to the genome structures, sequence similarity and phylogenetic data, the phages are classified within the genus Kp32virus and Kp34virus of subfamily Autographivirinae, family Podoviridae. In the phage genomes, genes encoding proteins with putative motifs of polysaccharide depolymerase were identified. Depolymerase genes of phages KpV71 and KpV74 lytic for hypermucoviscous K. pneumoniae of K1 and K2 capsular type, respectively, were cloned and expressed in Escherichia coli, and the recombinant gene products were purified. The specificity and polysaccharide-degrading activity of the recombinant depolymerases were demonstrated. Copyright © 2017 Elsevier B.V. All rights reserved.
Mezal, Ezat H; Sabol, Ashley; Khan, Mariam A; Ali, Nawab; Stefanova, Rossina; Khan, Ashraf A
2014-04-01
A total of 60 Salmonella enterica serovar (ser.) Enteritidis isolates, 28 from poultry houses and 32 from clinical samples, were isolated during 2010. These isolates were subjected to testing and analyzed for antibiotic resistance, virulence genes, plasmids and plasmid replicon types. To assess genetic diversity, pulsed-field gel electrophoresis (PFGE) fingerprinting, using the XbaI restriction enzyme, Multiple-Locus Variable-Number Tandem Repeat Analysis (MLVA) and plasmid profiles were performed. All isolates from poultry, and 10 out of 32 clinical isolates were sensitive to ampicillin, chloramphenicol, gentamicin, kanamycin, nalidixic acid, sulfisoxazole, streptomycin, and tetracycline. Twenty-one of thirty-two clinical isolates were resistant to ampicillin and tetracycline, and one isolate was resistant to nalidixic acid. PFGE typing of sixty ser. Enteritidis isolates by XbaI resulted in 10-12 bands and grouped into six clusters each with similarity from 95% to 81%. The MLVA analysis of sixty isolates gave 18 allele profiles with the majority of isolates displayed in three groups, and two clinical isolates found to be new in the PulseNet national MLVA database. All isolates were positive for 12 or more of the 17 virulence genes mostly found in S. enterica (spvB, spiA, pagC, msgA, invA, sipB, prgH, spaN, orgA, tolC, iroN, sitC, IpfC, sifA, sopB, and pefA) and negative for one gene (cdtB). All isolates carried a typical 58 kb plasmid, type Inc/FIIA. Three poultry isolates and one clinical isolate carried small plasmids with 3.8, 6, 7.6 and 11.5 kb. Ten of the clinical isolates carried plasmids, with sizes 36 and 38 kb, types IncL/M and IncN, and one isolate carried an 81 kb plasmid, type IncI. Southern hybridization of a plasmid with an Inc/FIIA gene probe hybridized one large 58 kb plasmid in all isolates. Several large and small plasmids from poultry isolates were not typed by our PCR-based method. These results confirmed that PFGE fingerprinting has limited discriminatory power for ser. Enteritidis in both poultry and clinical sources. However, the plasmid and MLVA allele profiles were a useful and important epidemiology tool to discriminate outbreak strains of ser. Enteritidis from poultry and clinical samples. Published by Elsevier Ltd.
Iveson, J B; Shellam, G R; Bradshaw, S D; Smith, D W; Mackenzie, J S; Mofflin, R G
2009-06-01
Salmonella infections in Antarctic wildlife were first reported in 1970 and in a search for evidence linking isolations with exposure to human activities, a comparison was made of serovars reported from marine fauna in the Antarctic region from 1982-2004 with those from marine mammals in the Northern hemisphere. This revealed that 10 (83%) Salmonella enterica serovars isolated from Antarctic penguins and seals were classifiable in high-frequency (HF) quotients for serovars prevalent in humans and domesticated animals. In Australia, 16 (90%) HF serovars were isolated from marine birds and mammals compared with 12 (86%) HF serovars reported from marine mammals in the Northern hemisphere. In Western Australia, HF serovars from marine species were also recorded in humans, livestock, mussels, effluents and island populations of wildlife in urban coastal areas. Low-frequency S. enterica serovars were rarely detected in humans and not detected in seagulls or marine species. The isolation of S. Enteritidis phage type 4 (PT4), PT8 and PT23 strains from Adélie penguins and a diversity of HF serovars reported from marine fauna in the Antarctic region and coastal areas of Australia, signal the possibility of transient serovars and endemic Salmonella strains recycling back to humans from southern latitudes in marine foodstuffs and feed ingredients.
Evidence for the presence of restriction/modification systems in Lactobacillus delbrueckii.
Suárez, Viviana; Zago, Miriam; Giraffa, Giorgio; Reinheimer, Jorge; Quiberoni, Andrea
2009-11-01
The bacteriophages Cb1/204 and Cb1/342 were obtained by induction from the commercial strain Lactobacillus delbrueckii subsp. lactis Cb1, and propagated on Lactobacillus delbrueckii subsp. lactis 204 (Lb.l 204) and Lactobacillus delbrueckii subsp. bulgaricus 342 (Lb.b 342), respectively. By cross sensitivity, it was possible to detect a delay in the lysis of Lb.l 204 with Cb1/342 phage, while the adsorption rate was high (99.5%). Modified and unmodified phages were isolated using phage Cb1/342 and strain Lb.l 204. The EOP (Efficiency of Plaquing) values for the four phages (Cb1/204, Cb1/342, Cb1/342modified and Cb1/342unmodified) suggested that an R/M system modified the original temperate phage, and the BglII-DNA restriction patterns of these phages might point out the presence of a Type II R/M system. Also, the existence of a Type I R/M system was demonstrated by PCR and nucleotide sequence, being the percentages of alignment homology with Type I R/M systems reported previously higher than 95%. In this study it was possible to demonstrate that the native phage resistant mechanisms and the occurrence of prophages in commercial host strains, contribute strongly to diversify the phage population in a factory environment.
Type III CRISPR-Cas systems can provide redundancy to counteract viral escape from type I systems.
Silas, Sukrit; Lucas-Elio, Patricia; Jackson, Simon A; Aroca-Crevillén, Alejandra; Hansen, Loren L; Fineran, Peter C; Fire, Andrew Z; Sánchez-Amat, Antonio
2017-08-17
CRISPR-Cas-mediated defense utilizes information stored as spacers in CRISPR arrays to defend against genetic invaders. We define the mode of target interference and role in antiviral defense for two CRISPR-Cas systems in Marinomonas mediterranea . One system (type I-F) targets DNA. A second system (type III-B) is broadly capable of acquiring spacers in either orientation from RNA and DNA, and exhibits transcription-dependent DNA interference. Examining resistance to phages isolated from Mediterranean seagrass meadows, we found that the type III-B machinery co-opts type I-F CRISPR-RNAs. Sequencing and infectivity assessments of related bacterial and phage strains suggests an 'arms race' in which phage escape from the type I-F system can be overcome through use of type I-F spacers by a horizontally-acquired type III-B system. We propose that the phage-host arms race can drive selection for horizontal uptake and maintenance of promiscuous type III interference modules that supplement existing host type I CRISPR-Cas systems.
Barbosa, Fernanda de Oliveira; Freitas Neto, Oliveiro Caetano de; Batista, Diego Felipe Alves; Almeida, Adriana Maria de; Rubio, Marcela da Silva; Alves, Lucas Bocchini Rodrigues; Vasconcelos, Rosemeire de Oliveira; Barrow, Paul Andrew; Berchieri Junior, Angelo
Salmonella Enteritidis causes fowl paratyphoid in poultry and is frequently associated to outbreaks of food-borne diseases in humans. The role of flagella and flagella-mediated motility into host-pathogen interplay is not fully understood and requires further investigation. In this study, one-day-old chickens were challenged orally with a wild-type strain Salmonella Enteritidis, a non-motile but fully flagellated (SE ΔmotB) or non-flagellated (SE ΔfliC) strain to evaluate their ability to colonise the intestine and spread systemically and also of eliciting gross and histopathological changes. SE ΔmotB and SE ΔfliC were recovered in significantly lower numbers from caecal contents in comparison with Salmonella Enteritidis at early stages of infection (3 and 5dpi). The SE ΔmotB strain, which synthesises paralysed flagella, showed poorer intestinal colonisation ability than the non-flagellated SE ΔfliC. Histopathological analyses demonstrated that the flagellated strains induced more intense lymphoid reactivity in liver, ileum and caeca. Thus, in the present study the flagellar structure and motility seemed to play a role in the early stages of the intestinal colonisation by Salmonella Enteritidis in the chicken. Copyright © 2017 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.
Wu, Daichao; Teng, Da; Wang, Xiumin; Dai, Changsong; Wang, Jianhua
2014-10-01
Salmonella enterica subsp. enterica serovar Enteritidis (Salmonella Enteritidis) is the predominant cause of serovar-associated food-borne outbreaks in many countries and causes significant clinical symptoms of liver injury, enteritis, and diarrheal diseases. Saccharomyces boulardii is used in clinical application for prophylaxis and the treatment of a variety of diseases caused by bacterial infection. We used a mouse model of Salmonella Enteritidis infection, which included pretreatment with S. boulardii, to reveal the protection mechanisms of S. boulardii against Salmonella Enteritidis infection, including the translocation of Salmonella Enteritidis to the liver 10 days after Salmonella Enteritidis challenge, and the colonisation of Salmonella Enteritidis and the formation of hepatic tissue lesions in mice after Salmonella Enteritidis challenge on the 10th day. Compared with Salmonella Enteritidis infection in mice, S. boulardii decreased Salmonella Enteritidis translocation to the liver by 96%, and 99% of Salmonella Enteritidis colonised the cecum on the 10th day. Saccharomyces boulardii also abated hepatic tissue injury caused by the infiltration of neutrophilic granulocytes, lymphocytes, and plasmocytes by decreasing the translocation of Salmonella to the liver. These findings demonstrated that S. boulardii is an effective agent in the prevention of the hepatic injury induced by Salmonella Enteritidis infection in a mouse model.
Cheng, Lucy; Marinelli, Laura J; Grosset, Noël; Fitz-Gibbon, Sorel T; Bowman, Charles A; Dang, Brian Q; Russell, Daniel A; Jacobs-Sera, Deborah; Shi, Baochen; Pellegrini, Matteo; Miller, Jeff F; Gautier, Michel; Hatfull, Graham F; Modlin, Robert L
2018-03-01
A remarkable exception to the large genetic diversity often observed for bacteriophages infecting a specific bacterial host was found for the Cutibacterium acnes (formerly Propionibacterium acnes) phages, which are highly homogeneous. Phages infecting the related species, which is also a member of the Propionibacteriaceae family, Propionibacterium freudenreichii, a bacterium used in production of Swiss-type cheeses, have also been described and are common contaminants of the cheese manufacturing process. However, little is known about their genetic composition and diversity. We obtained seven independently isolated bacteriophages that infect P. freudenreichii from Swiss-type cheese samples, and determined their complete genome sequences. These data revealed that all seven phage isolates are of similar genomic length and GC% content, but their genomes are highly diverse, including genes encoding the capsid, tape measure, and tail proteins. In contrast to C. acnes phages, all P. freudenreichii phage genomes encode a putative integrase protein, suggesting they are capable of lysogenic growth. This is supported by the finding of related prophages in some P. freudenreichii strains. The seven phages could further be distinguished as belonging to two distinct genomic types, or 'clusters', based on nucleotide sequences, and host range analyses conducted on a collection of P. freudenreichii strains show a higher degree of host specificity than is observed for the C. acnes phages. Overall, our data demonstrate P. freudenreichii bacteriophages are distinct from C. acnes phages, as evidenced by their higher genetic diversity, potential for lysogenic growth, and more restricted host ranges. This suggests substantial differences in the evolution of these related species from the Propionibacteriaceae family and their phages, which is potentially related to their distinct environmental niches.
Analysis of Bacteriophage Motion Through a Non-Static Medium
NASA Astrophysics Data System (ADS)
Dickey, Samuel A.
In this work, I investigated the motion of bacteriophages (phages) through their mucosal environment. Recently, biologists here at San Diego State University have proposed a model in which phages move sub-diffusively through mucosal fibers in their hunt for bacteria to prey upon. Through a Hoc protein located upon the capsid of the wild type phages, these phages are allowed to bind to mucosal fibers, and extend the amount of time spent in a single location hunting for bacteria. Contrarily, the delta hoc phages are unable to. The ability of the wild type phages to attach itself to mucosal fibers is what enables its subdiffusive behavior. This study investigates the diffusive behavior of these phages in different mucus concentrations. It expands on previous studies in which only short tracks could be observed. In the study at hand, phages are imaged in a highly doped optical fiber with varying concentrations of mucus present in solution. Through rigorous image processing techniques, trajectories of these phages are created with a minimized noise level. We developed code that created position-versus-time files for each phage present in the experimental data. These files were then further analyzed. The sub-diffusive behavior is investigated via mean squared displacement versus time. The diffusive exponent can be obtained from fits to these data. For large enough time intervals, I always obtained an exponent of one for space and time averaged data. This indicates that the diffusion is normal, or sub-diffusive of the CTRW type. CTRW sub-diffusive motion is characterized by waiting times that resemble a power law distribution and have long tails. I investigate these stuck time distributions, however am unable to determine if a power law or exponential fits the data best. Moreover, the distribution gives the same power law exponent for phages moving through water, or mucus, for wild type and delta hoc phages. These exponents would predict super-diffusive instead of sub-diffusive behavior. We conclude that many of these problems result from the small amount of data available to us and the still primitive conditions of the setup at the time the data were collected.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gerasimov, V.A.; Yanenko, A.S.; Akhverdyan, V.Z.
1986-04-01
Bacteriophage D3112 forms two types of PA01 (D3112) lysogens: those that partially, or completely, limit the growth of the related heteroimmune phage B39. DNA/DNA hybridization has shown that the lysogens of the first type always contain one copy of prophage D3112 (monolysogens), and the lysogens of the second type contain two or more copies of prophage D3112. Limitation of the growth of phage B39 on PA01 (D3112) lysogens is associated with the functioning of the locus of prophage D3112, designated as cip (control of interaction of phages). Using deletion derivatives of plasmid RP4::D3112, the cip locus was mapped at anmore » interval of 1.3-2.45 kb of the D3112 genome. The expression of the cip locus occurs only if the D3112 genome is at the prophage state. The function of the Cip prophage of D3112 exerts an influence on early stages of development of phage B39, decreasing the efficiency of the integration and transposition processes of phage B39.« less
Ceglarek, Izabela; Piotrowicz, Agnieszka; Lecion, Dorota; Miernikiewicz, Paulina; Owczarek, Barbara; Hodyra, Katarzyna; Harhala, Marek; Górski, Andrzej; Dąbrowska, Krystyna
2013-11-14
Practical applications of bacteriophages in medicine and biotechnology induce a great need for technologies of phage purification. None of the popular methods offer solutions for separation of a phage from another similar phage. We used affinity chromatography combined with competitive phage display (i) to purify T4 bacteriophage from bacterial debris and (ii) to separate T4 from other contaminating bacteriophages. In 'competitive phage display' bacterial cells produced both wild types of the proteins (expression from the phage genome) and the protein fusions with affinity tags (expression from the expression vectors). Fusion proteins were competitively incorporated into the phage capsid. It allowed effective separation of T4 from a contaminating phage on standard affinity resins.
Ceglarek, Izabela; Piotrowicz, Agnieszka; Lecion, Dorota; Miernikiewicz, Paulina; Owczarek, Barbara; Hodyra, Katarzyna; Harhala, Marek; Górski, Andrzej; Dąbrowska, Krystyna
2013-01-01
Practical applications of bacteriophages in medicine and biotechnology induce a great need for technologies of phage purification. None of the popular methods offer solutions for separation of a phage from another similar phage. We used affinity chromatography combined with competitive phage display (i) to purify T4 bacteriophage from bacterial debris and (ii) to separate T4 from other contaminating bacteriophages. In ‘competitive phage display’ bacterial cells produced both wild types of the proteins (expression from the phage genome) and the protein fusions with affinity tags (expression from the expression vectors). Fusion proteins were competitively incorporated into the phage capsid. It allowed effective separation of T4 from a contaminating phage on standard affinity resins. PMID:24225840
A comparison of the survival of F+RNA and F+DNA coliphages in lake water microcosms.
Long, Sharon C; Sobsey, Mark D
2004-03-01
The survival of seven F+RNA phages (MS2 Group I ATCC type strain, two Group I environmental isolates, a Group II environmental isolate, a Group III environmental isolate, and two Group IV environmental isolates) and six F+DNA phages (M13, fd, f1, and ZJ/2 ATCC type strains, and two environmental isolates) were examined in microcosms using a surface drinking water source. Phages were spiked into replicate aliquots of a source water at about 20,000 pfu/ml. Replicate spikes were incubated at 4 and 20 degrees C and monitored for 110 days. At 4 degrees C, Groups I and II F+ RNA phages were detectable through 110 days, with reductions of about 1 and 3 log10, respectively. The Group III F+RNA phage demonstrated 5 log10 reduction after 3 weeks, and the Group IV F+RNA phages were reduced to detection limits (5 log10 reduction) within 10 days. Of the F+DNA phages, all four type strains were detectable with about 2.5 log10 reduction after 110 days at 4 degrees C. The F+DNA environmental isolates were detectable with about a 4 log10 reduction after 110 days at 4 degrees C. All phages demonstrated faster decay at 20 degrees C. These results suggest that differences in F+ phage survival may influence their prevalence in environmental waters and the ability to attribute their prevalence to specific human and animal sources of faecal contamination.
Antimicrobial Activity of Kefir against Various Food Pathogens and Spoilage Bacteria
Kim, Hyunsook
2016-01-01
Kefir is a unique fermented dairy product produced by a mixture of lactic acid bacteria, acetic acid bacteria, and yeast. Here, we compared the antimicrobial spectra of four types of kefirs (A, L, M, and S) fermented for 24, 36, 48, or 72 h against eight food-borne pathogens. Bacillus cereus, Staphylococcus aureus, Listeria monocytogenes, Enterococcus faecalis, Escherichia coli, Salmonella Enteritidis, Pseudomonas aeruginosa, and Cronobacter sakazakii were used as test strains, and antibacterial activity was investigated by the spot on lawn method. The spectra, potencies, and onsets of activity varied according to the type of kefir and the fermentation time. The broadest and strongest antimicrobial spectrum was obtained after at least 36-48 h of fermentation for all kefirs, although the traditional fermentation method of kefir is for 18-24 h at 25℃. For kefir A, B. cereus, E. coli, S. Enteritidis, P. aeruginosa, and C. sakazakii were inhibited, while B. cereus, S. aureus, E. coli, S. Enteritidis, P. aeruginosa, and C. sakazakii were inhibited to different extents by kefirs L, M, and S. Remarkably, S. aureus, S. Enteritidis, and C. sakazakii were only inhibited by kefirs L, M, and S, and L. monocytogenes by kefir M after fermentation for specific times, suggesting that the antimicrobial activity is attributable not only to a low pH but also to antimicrobial substances secreted during the fermentation. PMID:28115890
Peters, Tansy; Bertrand, Sophie; Björkman, Jonas T; Brandal, Lin T; Brown, Derek J; Erdõsi, Tímea; Heck, Max; Ibrahem, Salha; Johansson, Karin; Kornschober, Christian; Kotila, Saara M; Le Hello, Simon; Lienemann, Taru; Mattheus, Wesley; Nielsen, Eva Møller; Ragimbeau, Catherine; Rumore, Jillian; Sabol, Ashley; Torpdahl, Mia; Trees, Eija; Tuohy, Alma; de Pinna, Elizabeth
2017-03-02
Multilocus variable-number tandem repeat analysis (MLVA) is a rapid and reproducible typing method that is an important tool for investigation, as well as detection, of national and multinational outbreaks of a range of food-borne pathogens. Salmonella enterica serovar Enteritidis is the most common Salmonella serovar associated with human salmonellosis in the European Union/European Economic Area and North America. Fourteen laboratories from 13 countries in Europe and North America participated in a validation study for MLVA of S. Enteritidis targeting five loci. Following normalisation of fragment sizes using a set of reference strains, a blinded set of 24 strains with known allele sizes was analysed by each participant. The S. Enteritidis 5-loci MLVA protocol was shown to produce internationally comparable results as more than 90% of the participants reported less than 5% discrepant MLVA profiles. All 14 participating laboratories performed well, even those where experience with this typing method was limited. The raw fragment length data were consistent throughout, and the inter-laboratory validation helped to standardise the conversion of raw data to repeat numbers with at least two countries updating their internal procedures. However, differences in assigned MLVA profiles remain between well-established protocols and should be taken into account when exchanging data. This article is copyright of The Authors, 2017.
Antimicrobial Activity of Kefir against Various Food Pathogens and Spoilage Bacteria.
Kim, Dong-Hyeon; Jeong, Dana; Kim, Hyunsook; Kang, Il-Byeong; Chon, Jung-Whan; Song, Kwang-Young; Seo, Kun-Ho
2016-01-01
Kefir is a unique fermented dairy product produced by a mixture of lactic acid bacteria, acetic acid bacteria, and yeast. Here, we compared the antimicrobial spectra of four types of kefirs (A, L, M, and S) fermented for 24, 36, 48, or 72 h against eight food-borne pathogens. Bacillus cereus , Staphylococcus aureus , Listeria monocytogenes , Enterococcus faecalis , Escherichia coli , Salmonella Enteritidis , Pseudomonas aeruginosa , and Cronobacter sakazakii were used as test strains, and antibacterial activity was investigated by the spot on lawn method. The spectra, potencies, and onsets of activity varied according to the type of kefir and the fermentation time. The broadest and strongest antimicrobial spectrum was obtained after at least 36-48 h of fermentation for all kefirs, although the traditional fermentation method of kefir is for 18-24 h at 25℃. For kefir A, B. cereus , E. coli , S . Enteritidis, P. aeruginosa , and C. sakazakii were inhibited, while B. cereus , S. aureus , E. coli , S . Enteritidis, P. aeruginosa , and C. sakazakii were inhibited to different extents by kefirs L, M, and S. Remarkably, S. aureus , S . Enteritidis, and C. sakazakii were only inhibited by kefirs L, M, and S, and L. monocytogenes by kefir M after fermentation for specific times, suggesting that the antimicrobial activity is attributable not only to a low pH but also to antimicrobial substances secreted during the fermentation.
Varmuzova, Karolina; Matulova, Marta Elsheimer; Sebkova, Alena; Sekelova, Zuzana; Havlickova, Hana; Sisak, Frantisek; Babak, Vladimir; Rychlik, Ivan
2014-01-01
Salmonella vaccines used in poultry in the EU are based on attenuated strains of either Salmonella serovar Enteritidis or Typhimurium which results in a decrease in S. Enteritidis and S. Typhimurium but may allow other Salmonella serovars to fill an empty ecological niche. In this study we were therefore interested in the early interactions of chicken immune system with S. Infantis compared to S. Enteritidis and S. Typhimurium, and a role of O-antigen in these interactions. To reach this aim, we orally infected newly hatched chickens with 7 wild type strains of Salmonella serovars Enteritidis, Typhimurium and Infantis as well as with their rfaL mutants and characterized the early Salmonella-chicken interactions. Inflammation was characterized in the cecum 4 days post-infection by measuring expression of 43 different genes. All wild type strains stimulated a greater inflammatory response than any of the rfaL mutants. However, there were large differences in chicken responses to different wild type strains not reflecting their serovar classification. The initial interaction between newly-hatched chickens and Salmonella was found to be dependent on the presence of O-antigen but not on its structure, i.e. not on serovar classification. In addition, we observed that the expression of calbindin or aquaporin 8 in the cecum did not change if inflammatory gene expression remained within a 10 fold fluctuation, indicating the buffering capacity of the cecum, preserving normal gut functions even in the presence of minor inflammatory stimuli. PMID:24763249
NASA Astrophysics Data System (ADS)
Moebus, K.
1983-12-01
The results of phage-host cross-reaction tests reported by Moebus & Nattkemper (1981) were re-examined using serially diluted bacteriophage suspensions to elicit the actual type of reaction between the bacteria and phage lysates tested. More than 1450 phage-host systems were studied at 25 °C incubation temperature. Among the nearly 300 phage strains used, 29 were identified as temperate ones. In about 65 % of the phage-host systems bacteriophage propagation was indicated by plaque formation. The remaining systems were characterized by the “inhibition” reaction of bacteria to phage lysates indicated by homogenously reduced bacterial growth within the test area without production of progeny phages. Since crude phage lysates had to be used, it remains obscure whether agents other than infective phage particles (defective ones or bacteriocins) caused this reaction. Among 269 systems of the inhibition type which were also tested at 5° and 15 °C, 54 were observed to propagate phages at one of or both the lower temperatures. Plaques produced at 15 °C with several phage-host systems were found to yield only few progeny phages which generally could not be propagated to produce high-titer phage stocks. With one system temperature-sensitive phage mutants were isolated. The probability of inhibition reactions occurring was found to be higher with phage-host systems isolated east of the Azores than with systems derived from the western Atlantic. With systems from the last mentioned area the proportion of inhibition versus lytic responses of bacteria to phages was observed to increase with the distance between the stations where both parts of the systems were derived. The latter findings are discussed in view of the assumption that bacterial and bacteriophage populations undergo genetic changes while being transported from west to east.
Utrarachkij, Fuangfa; Nakajima, Chie; Siripanichgon, Kanokrat; Changkaew, Kanjana; Thongpanich, Yuwanda; Pornraungwong, Srirat; Suthienkul, Orasa; Suzuki, Yasuhiko
2016-04-01
To trace the history of antimicrobial resistance in Salmonella enterica serovar Enteritidis (S. Enteritidis, SE) circulating in Thailand, we characterised clinical isolates obtained during 2004-2007. Antimicrobial resistance profiles, multi-locus variable number tandem repeat analysis (MLVA) types and 3 representative virulence determinants (spvA, sodCI and sopE) were established from SE isolates (n = 192) collected from stool and blood of patients throughout Thailand during the period 2004-2007. Resistance was found in SE against 10 out of 11 antimicrobials studied. The highest resistance ratios were observed for nalidixic acid (83.2%), ciprofloxacin (51.1%) and ampicillin (50.5%), and 25.5% were multidrug resistant. Based on five polymorphic tandem repeat loci analysis, MLVA identified 20 distinct types with three closely related predominant types. A significant increase of AMP resistance from 2004 to 2006 was strongly correlated with that of a MLVA type, 5-5-11-7-3. The usage of antimicrobials in human medicine or farm settings might act as selective pressures and cause the spread of resistant strains. Hence, a strict policy on antimicrobial usage needs to be implemented to achieve the control of resistant SE in Thailand. Copyright © 2015 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Das, Susmita; Ray, Shilpa; Ryan, Daniel; Sahu, Bikash; Suar, Mrutyunjay
2018-01-01
Salmonella enterica subsp. I serovar Enteritidis (S. Enteritidis), one of the causative agents for non-typhoidal gastrointestinal diseases in humans is an intracellular bacterium and mechanism for its invasion into host cells is critical to cause infection. The virulence of the pathogen is explained by the expression of genes located on its pathogenicity islands, mostly encoded under SPI-1 and SPI-2. However, S. Typhimurium SL1344, despite sharing ∼98% of its genome with S. Enteritidis P125109, lacks few regions of differences (ROD) that are hypothesized to impart virulence potential to S. Enteritidis. In this study, we created different mutants in the ROD9 island of S. Enteritidis, also referred as SPI-19 and identified a novel locus, SEN1005, encoding a hypothetical protein that is involved in its pathogenesis. ΔSEN1005 displayed significantly reduced entry into cultured epithelial cells as well as uptake by macrophages and failed to cause acute colitis in C57BL/6 mice at day 3 post-infection (p.i.). Additionally, the global transcriptome analysis revealed a highly repressed SPI-1 and other down-regulated genes responsible for flagellar assembly, chemotaxis and motility in the mutant which correlated with decreased invasion and abated inflammation as compared to the wild-type. Therefore, our findings revealed that ΔSEN1005 was attenuated in vitro as well as in vivo and we propose this hypothetical protein to play a role in altering the expression of genes involved in Salmonella virulence.
An electron microscopic study of bacteriophages from marine waters
NASA Astrophysics Data System (ADS)
Frank, Hermann; Moebus, Karlheinz
1987-12-01
The morphology of 75 bacteriophage strains isolated from water samples collected in the North Sea or in the northern Atlantic was studied by electron microscopy. Only tailed phages were observed (bradley groups A, B, and C). According to structural similarities, the strains are ascribed to 12 groups, 5 of which comprise types of marine phages not reported before. Four of these 5 groups include phage types that have not been detected from any other source. Among the phages isolated from northern Atlantic water a high incidence was observed of strains the particles of which have long appendages. Certain types of the northern Atlantic phages investigated were derived only from samples collected either east or west of the Azores. This finding agrees with former observations pointing to the existence of different populations of closely related bacteria east and west, respectively, of the northern Mid-Atlantic Ridge.
Hsieh, Pei-Fang; Lin, Hsiao-Hsuan; Lin, Tzu-Lung; Chen, Yi-Yin; Wang, Jin-Town
2017-07-04
Two Klebsiella bacteriophages K5-2 and K5-4, which are able to infect and grow on either capsular types K30/K69 and K5 or K8 and K5 of Klebsiella strains, were isolated and characterized. Each phage contained two open reading frames (ORFs), which encoded two putative capsule depolymerases, respectively. The first ORF encoded tail fiber proteins, which have K30/K69 depolymerase and K8 depolymerase activities. The second ORF encoded hypothetical proteins, which are almost identical in amino acid sequences, and have K5 depolymerase activity. Alcian blue staining of enzyme-treated capsular polysaccharides (CPS) showed that purified depolymerases can cleave purified Klebsiella CPS in vitro and liberate monosaccharaides. Capsule K5 deletion mutants were not lysed by either phage, suggesting that the capsule was essential for phage infection. Bacterial killing was observed when incubated Klebsiella strains with phages but not with purified depolymerases. Treatment with the K5-4 phage significantly increased the survival of mice infected with a K. pneumoniae K5 strain. In conclusion, two dual host-specific Klebsiella phages and their tailspikes exhibit capsule depolymerase activity were characterized. Each phage and phage-encoded depolymerase has specificity for capsular type K30/K69, K8 or K5, and could be used for the typing and treatment of K. pneumoniae infection.
Su, Quan-Ping; Wen, De-Zhong; Yang, Qiong; Zhang, Yan-Hui; Liu, Chong; Wang, Li
2007-01-22
We have demonstrated that phage display Candida albicans (C. albicans) LKVIRK epitope was protective in systemically infected C57BL/6J mice. The different development from precursor Ths, Th1 or Th2, will result in a protective or nonprotective immune response. To compare the types of cytokines induced by biologically and chemically synthesized vectors, C57BL/6J mice were immunized with hybrid phage displaying the epitope of LKVIRK and by synthesized peptide epitope LKVIRKNIVKKMIE conjugated through cysteine to keyhole limpet haemocyanin (KLH). The production of cytokines in spleens of immunized mice and in splenocytes culture supernatants stimulated by homologous immunogen in vitro was studied by RT-PCR and quantitative sandwich ELISA. The results showed that, compared to Tris-EDTA buffer (TE, 1 mM Tris, 0.1 mM EDTA, pH 8.0) injected mice, the expressions of Th1 type cytokine IFN-gamma, IL-2 and IL-12 were increased in hybrid phage, KLH-C, and wild phage immunized mice, and there were no differences between mice immunized with hybrid phage and KLH-C. While the expression of Th2 type cytokine IL-10 was similar in all mice, IL-4 was not detected. We obtained the same results in mRNA and protein level. These findings indicated that as carriers, phage and KLH were similar in inducing the Th1 type cytokines expression. Comparing to peptide synthesis couple with a carrier protein for injection, phage may be an inexpensive and simple route to the production of effective vaccines.
Salmonella Enteritidis flagellar mutants have a colonization benefit in the chicken oviduct.
Kilroy, Sofie; Raspoet, Ruth; Martel, An; Bosseler, Leslie; Appia-Ayme, Corinne; Thompson, Arthur; Haesebrouck, Freddy; Ducatelle, Richard; Van Immerseel, Filip
2017-02-01
Egg borne Salmonella Enteritidis is still a major cause of human food poisoning. Eggs can become internally contaminated following colonization of the hen's oviduct. In this paper we aimed to analyze the role of flagella of Salmonella Enteritidis in colonization of the hen's oviduct. Using a transposon library screen we showed that mutants lacking functional flagella are significantly more efficient in colonizing the hen's oviduct in vivo. A micro-array analysis proved that transcription of a number of flagellar genes is down-regulated inside chicken oviduct cells. Flagella contain flagellin, a pathogen associated molecular pattern known to bind to Toll-like receptor 5, activating a pro-inflammatory cascade. In vitro tests using primary oviduct cells showed that flagellin is not involved in invasion. Using a ligated loop model, a diminished inflammatory reaction was seen in the oviduct resulting from injection of an aflagellated mutant compared to the wild-type. It is hypothesized that Salmonella Enteritidis downregulates flagellar gene expression in the oviduct and consequently prevents a flagellin-induced inflammatory response, thereby increasing its oviduct colonization efficiency. Copyright © 2016 Elsevier Ltd. All rights reserved.
Pearce, Madison E; Alikhan, Nabil-Fareed; Dallman, Timothy J; Zhou, Zhemin; Grant, Kathie; Maiden, Martin C J
2018-06-02
Multi-country outbreaks of foodborne bacterial disease present challenges in their detection, tracking, and notification. As food is increasingly distributed across borders, such outbreaks are becoming more common. This increases the need for high-resolution, accessible, and replicable isolate typing schemes. Here we evaluate a core genome multilocus typing (cgMLST) scheme for the high-resolution reproducible typing of Salmonella enterica (S. enterica) isolates, by its application to a large European outbreak of S. enterica serovar Enteritidis. This outbreak had been extensively characterised using single nucleotide polymorphism (SNP)-based approaches. The cgMLST analysis was congruent with the original SNP-based analysis, the epidemiological data, and whole genome MLST (wgMLST) analysis. Combination of the cgMLST and epidemiological data confirmed that the genetic diversity among the isolates predated the outbreak, and was likely present at the infection source. There was consequently no link between country of isolation and genetic diversity, but the cgMLST clusters were congruent with date of isolation. Furthermore, comparison with publicly available Enteritidis isolate data demonstrated that the cgMLST scheme presented is highly scalable, enabling outbreaks to be contextualised within the Salmonella genus. The cgMLST scheme is therefore shown to be a standardised and scalable typing method, which allows Salmonella outbreaks to be analysed and compared across laboratories and jurisdictions. Copyright © 2018. Published by Elsevier B.V.
Type III CRISPR-Cas systems can provide redundancy to counteract viral escape from type I systems
Silas, Sukrit; Lucas-Elio, Patricia; Jackson, Simon A; Aroca-Crevillén, Alejandra; Hansen, Loren L; Fineran, Peter C
2017-01-01
CRISPR-Cas-mediated defense utilizes information stored as spacers in CRISPR arrays to defend against genetic invaders. We define the mode of target interference and role in antiviral defense for two CRISPR-Cas systems in Marinomonas mediterranea. One system (type I-F) targets DNA. A second system (type III-B) is broadly capable of acquiring spacers in either orientation from RNA and DNA, and exhibits transcription-dependent DNA interference. Examining resistance to phages isolated from Mediterranean seagrass meadows, we found that the type III-B machinery co-opts type I-F CRISPR-RNAs. Sequencing and infectivity assessments of related bacterial and phage strains suggests an ‘arms race’ in which phage escape from the type I-F system can be overcome through use of type I-F spacers by a horizontally-acquired type III-B system. We propose that the phage-host arms race can drive selection for horizontal uptake and maintenance of promiscuous type III interference modules that supplement existing host type I CRISPR-Cas systems. PMID:28826484
Pawluk, April; Bondy-Denomy, Joseph; Cheung, Vivian H. W.; Maxwell, Karen L.; Davidson, Alan R.
2014-01-01
ABSTRACT CRISPR-Cas systems are one of the most widespread phage resistance mechanisms in prokaryotes. Our lab recently identified the first examples of phage-borne anti-CRISPR genes that encode protein inhibitors of the type I-F CRISPR-Cas system of Pseudomonas aeruginosa. A key question arising from this work was whether there are other types of anti-CRISPR genes. In the current work, we address this question by demonstrating that some of the same phages carrying type I-F anti-CRISPR genes also possess genes that mediate inhibition of the type I-E CRISPR-Cas system of P. aeruginosa. We have discovered four distinct families of these type I-E anti-CRISPR genes. These genes do not inhibit the type I-F CRISPR-Cas system of P. aeruginosa or the type I-E system of Escherichia coli. Type I-E and I-F anti-CRISPR genes are located at the same position in the genomes of a large group of related P. aeruginosa phages, yet they are found in a variety of combinations and arrangements. We have also identified functional anti-CRISPR genes within nonprophage Pseudomonas genomic regions that are likely mobile genetic elements. This work emphasizes the potential importance of anti-CRISPR genes in phage evolution and lateral gene transfer and supports the hypothesis that more undiscovered families of anti-CRISPR genes exist. Finally, we provide the first demonstration that the type I-E CRISPR-Cas system of P. aeruginosa is naturally active without genetic manipulation, which contrasts with E. coli and other previously characterized I-E systems. PMID:24736222
Thioredoxin is required for filamentous phage assembly.
Russel, M; Model, P
1985-01-01
Sequence comparisons show that the fip gene product of Escherichia coli, which is required for filamentous phage assembly, is thioredoxin. Thioredoxin serves as a cofactor for reductive processes in many cell types and is a constituent of phage T7 DNA polymerase. The fip-1 mutation makes filamentous phage and T7 growth temperature sensitive in cells that carry it. The lesion lies within a highly conserved thioredoxin active site. Thioredoxin reductase (NADPH), as well as thioredoxin, is required for efficient filamentous phage production. Mutant phages defective in phage gene I are particularly sensitive to perturbations in the fip-thioredoxin system. A speculative model is presented in which thioredoxin reductase, thioredoxin, and the gene I protein interact to drive an engine for filamentous phage assembly. Images PMID:3881756
Advance in phage display technology for bioanalysis.
Tan, Yuyu; Tian, Tian; Liu, Wenli; Zhu, Zhi; J Yang, Chaoyong
2016-06-01
Phage display technology has emerged as a powerful tool for target gene expression and target-specific ligand selection. It is widely used to screen peptides, proteins and antibodies with the advantages of simplicity, high efficiency and low cost. A variety of targets, including ions, small molecules, inorganic materials, natural and biological polymers, nanostructures, cells, bacteria, and even tissues, have been demonstrated to generate specific binding ligands by phage display. Phages and target-specific ligands screened by phage display have been widely used as affinity reagents in therapeutics, diagnostics and biosensors. In this review, comparisons of different types of phage display systems are first presented. Particularly, microfluidic-based phage display, which enables screening with high throughput, high efficiency and integration, is highlighted. More importantly, we emphasize the advances in biosensors based on phages or phage-derived probes, including nonlytic phages, lytic phages, peptides or proteins screened by phage display, phage assemblies and phage-nanomaterial complexes. However, more efficient and higher throughput phage display methods are still needed to meet an explosion in demand for bioanalysis. Furthermore, screening of cyclic peptides and functional peptides will be the hotspot in bioanalysis. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Comparative analysis of multiple inducible phages from Mannheimia haemolytica.
Niu, Yan D; Cook, Shaun R; Wang, Jiaying; Klima, Cassidy L; Hsu, Yu-hung; Kropinski, Andrew M; Turner, Dann; McAllister, Tim A
2015-08-30
Mannheimia haemolytica is a commensal bacterium that resides in the upper respiratory tract of cattle that can play a role in bovine respiratory disease. Prophages are common in the M. haemolytica genome and contribute significantly to host diversity. The objective of this research was to undertake comparative genomic analysis of phages induced from strains of M. haemolytica serotype A1 (535A and 2256A), A2 (587A and 1127A) and A6 (1152A and 3927A). Overall, four P2-like (535AP1, 587AP1, 1127AP1 and 2256AP1; genomes: 34.9-35.7 kb; G+C content: 41.5-42.1 %; genes: 51-53 coding sequences, CDSs), four λ-like (535AP2, 587AP2, 1152AP2 and 3927AP1; genomes: 48.6-52.1 kb; 41.1-41.4 % mol G+C; genes: 77-83 CDSs and 2 tRNAs) and one Mu-like (3927AP2; genome: 33.8 kb; 43.1 % mol G+C; encoding 50 CDSs) phages were identified. All P2-like phages are collinear with the temperate phage φMhaA1-PHL101 with 535AP1, 2256AP1 and 1152AP1 being most closely related, followed by 587AP1 and 1127AP1. Lambdoid phages are not collinear with any other known λ-type phages, with 587AP2 being distinct from 535AP2, 3927AP1 and 1152AP2. All λ-like phages contain genes encoding a toxin-antitoxin (TA) system and cell-associated haemolysin XhlA. The Mu-like phage induced from 3927A is closely related to the phage remnant φMhaMu2 from M. haemolytica PHL21, with similar Mu-like phages existing in the genomes of M. haemolytica 535A and 587A. This is among the first reports of both λ- and Mu-type phages being induced from M. haemolytica. Compared to phages induced from commensal strains of M. haemolytica serotype A2, those induced from the more virulent A1 and A6 serotypes are more closely related. Moreover, when P2-, λ- and Mu-like phages co-existed in the M. haemolytica genome, only P2- and λ-like phages were detected upon induction, suggesting that Mu-type phages may be more resistant to induction. Toxin-antitoxin gene cassettes in λ-like phages may contribute to their genomic persistence or the establishment of persister subpopulations of M. haemolytica. Further work is required to determine if the cell-associated haemolysin XhlA encoded by λ-like phages contributes to the pathogenicity and ecological fitness of M. haemolytica.
Wang, Jiaying; Niu, Yan D; Chen, Jinding; Anany, Hany; Ackermann, Hans-W; Johnson, Roger P; Ateba, Collins N; Stanford, Kim; McAllister, Tim A
2015-07-01
This study aimed to isolate and characterize bacteriophages that lyse non-O157 Shiga toxin-producing Escherichia coli (STEC) from cattle feces. Of 37 non-O157 STEC-infecting phages isolated, those targeting O26 (AXO26A, AYO26A, AYO26B), O103 (AXO103A, AYO103A), O111 (AXO111A, AYO111A), O121 (AXO121A, AXO121B), and O145 (AYO145A, AYO145B) were further characterized. Transmission electron microscopy showed that the 11 isolates belonged to 3 families and 6 genera: the families Myoviridae (types rV5, T4, ViI, O1), Siphoviridae (type T5), and Podoviridae (type T7). Genome size of the phages as determined by pulsed-field gel electrophoresis ranged from 38 to 177 kb. Excluding phages AXO26A, AYO103A, AYO145A, and AYO145B, all other phages were capable of lysing more than 1 clinically important strain from serogroups of O26, O91, O103, O111, O113, O121, and O128, but none exhibited infectivity across all serogroups. Moreover, phages AYO26A, AXO121A, and AXO121B were also able to lyse 4 common phage types of STEC O157:H7. Our findings show that a diversity of non-O157 STEC-infecting phages are harbored in bovine feces. Phages AYO26A, AYO26B, AXO103A, AXO111A, AYO111A, AXO121A, and AXO121B exhibited a broad host range against a number of serogroups of STEC and have potential for the biocontrol of STEC in the environment.
Thomas, M E; Klinkenberg, D; Ejeta, G; Van Knapen, F; Bergwerff, A A; Stegeman, J A; Bouma, A
2009-10-01
An important source of human salmonellosis is the consumption of table eggs contaminated with Salmonella enterica serovar Enteritidis. Optimization of the various surveillance programs currently implemented to reduce human exposure requires knowledge of the dynamics of S. Enteritidis infection within flocks. The aim of this study was to provide parameter estimates for a transmission model of S. Enteritidis in laying-type chicken flocks. An experiment was carried out with 60 pairs of laying hens. Per pair, one hen was inoculated with S. Enteritidis and the other was contact exposed. After inoculation, cloacal swab samples from all hens were collected over 18 days and tested for the presence of S. Enteritidis. On the basis of this test, it was determined if and when each contact-exposed hen became colonized. A transmission model including a latency period of 1 day and a slowly declining infectivity level was fitted. The mean initial transmission rate was estimated to be 0.47 (95% confidence interval [CI], 0.30 to 0.72) per day. The reproduction number R(0), the average number of hens infected by one colonized hen in a susceptible population, was estimated to be 2.8 (95% CI, 1.9 to 4.2). The generation time, the average time between colonization of a "primary" hen and colonization of contact-exposed hens, was estimated to be 7.0 days (95% CI, 5.0 to 11.6 days). Simulations using these parameters showed that a flock of 20,000 hens would reach a maximum colonization level of 92% within 80 days after colonization of the first hen. These results can be used, for example, to evaluate the effectiveness of control and surveillance programs and to optimize these programs in a cost-benefit analysis.
Jiao, Yang; Guo, Rongxian; Tang, Peipei; Kang, Xilong; Yin, Junlei; Wu, Kaiyue; Geng, Shizhong; Li, Qiuchun; Sun, Jun; Xu, Xiulong; Zhou, Xiaohui; Gan, Junji; Jiao, Xinan; Liu, Xiufan; Pan, Zhiming
2017-03-03
Salmonella enterica serovar Enteritidis (S. Enteritidis) has emerged as one of the most important food-borne pathogens for humans. Lipopolysaccharide (LPS), as a component of the outer membrane, is responsible for the virulence and smooth-to-rough transition in S. Enteritidis. In this study, we screened S. Enteritidis signature-tagged transposon mutant library using monoclonal antibody against somatic O 9 antigen (O 9 MAb) and O 9 factor rabbit antiserum to identify novel genes that are involved in smooth-to-rough transition. A total of 480 mutants were screened and one mutant with transposon insertion in rfbG gene had smooth-to-rough transition phenotype. In order to verify the role of rfbG gene, an rfbG insertion or deletion mutant was constructed using λ-Red recombination system. Phenotypic and biological analysis revealed that rfbG insertion or deletion mutants were similar to the wild-type strain in growth rate and biochemical properties, but the swimming motility was reduced. SE Slide Agglutination test and ELISA test showed that rfbG mutants do not stimulate animals to produce agglutinating antibody. In addition, the half-lethal dose (LD 50 ) of the rfbG deletion mutant strain was 10 6.6 -fold higher than that of the parent strain in a mouse model when injected intraperitoneally. These data indicate that the rfbG gene is involved in smooth-to-rough transition, swimming motility and virulence of S. Enteritidis. Furthermore, somatic O-antigen antibody-based approach to screen signature-tagged transposon mutants is feasible to clarify LPS biosynthesis and to find suitable markers in DIVA-vaccine research.
Narrow-Host-Range Bacteriophages That Infect Rhizobium etli Associate with Distinct Genomic Types
Santamaría, Rosa Isela; Bustos, Patricia; Sepúlveda-Robles, Omar; Lozano, Luis; Rodríguez, César; Fernández, José Luis; Juárez, Soledad; Kameyama, Luis; Guarneros, Gabriel; Dávila, Guillermo
2014-01-01
In this work, we isolated and characterized 14 bacteriophages that infect Rhizobium etli. They were obtained from rhizosphere soil of bean plants from agricultural lands in Mexico using an enrichment method. The host range of these phages was narrow but variable within a collection of 48 R. etli strains. We obtained the complete genome sequence of nine phages. Four phages were resistant to several restriction enzymes and in vivo cloning, probably due to nucleotide modifications. The genome size of the sequenced phages varied from 43 kb to 115 kb, with a median size of ∼45 to 50 kb. A large proportion of open reading frames of these phage genomes (65 to 70%) consisted of hypothetical and orphan genes. The remainder encoded proteins needed for phage morphogenesis and DNA synthesis and processing, among other functions, and a minor percentage represented genes of bacterial origin. We classified these phages into four genomic types on the basis of their genomic similarity, gene content, and host range. Since there are no reports of similar sequences, we propose that these bacteriophages correspond to novel species. PMID:24185856
The epidemiology of travel-related Salmonella Enteritidis in Ontario, Canada, 2010–2011
2012-01-01
Background Increases in the number of salmonellosis cases due to Salmonella Enteritidis (SE) in 2010 and 2011 prompted a public health investigation in Ontario, Canada. In this report, we describe the current epidemiology of travel-related (TR) SE, compare demographics, symptoms and phage types (PTs) of TR and domestically-acquired (DA) cases, and estimate the odds of acquiring SE by region of the world visited. Methods All incident cases of culture confirmed SE in Ontario obtained from isolates and specimens submitted to public health laboratories were included in this study. Demographic and illness characteristics of TR and DA cases were compared. A national travel survey was used to provide estimates for the number of travellers to various destinations to approximate rates of SE in travellers. Multivariate logistic regression was used to estimate the odds of acquiring SE when travelling to various world regions. Results Overall, 51.9% of SE cases were TR during the study period. This ranged from 35.7% TR cases in the summer travel period to 65.1% TR cases in the winter travel period. Compared to DA cases, TR cases were older and were less likely to seek hospital care. For Ontario travellers, the adjusted odds of acquiring SE was the highest for the Caribbean (OR 37.29, 95% CI 17.87-77.82) when compared to Europe. Certain PTs were more commonly associated with travel (e.g., 1, 4, 5b, 7a, Atypical) than with domestic infection. Of the TR cases, 88.9% were associated with travel to the Caribbean and Mexico region, of whom 90.1% reported staying on a resort. Within this region, there were distinct associations between PTs and countries. Conclusions There is a large burden of TR illness from SE in Ontario. Accurate classification of cases by travel history is important to better understand the source of infections. The findings emphasize the need to make travellers, especially to the Caribbean, and health professionals who provide advice to travellers, aware of this risk. The findings may be generalized to other jurisdictions with travel behaviours in their residents similar to Ontario residents. PMID:22537320
Zhang, Guodong; Thau, Eve; Brown, Eric W; Hammack, Thomas S
2013-12-01
The current FDA Bacteriological Analytical Manual (BAM) method for the detection of Salmonella in eggs requires 2 wk to complete. The objective of this project was to improve the BAM method for the detection and isolation of Salmonella in whole shell eggs. A novel protocol, using 1,000 g of liquid eggs for direct preenrichment with 2 L of tryptic soy broth (TSB) followed by enrichment using Rappaport-Vassiliadis and Tetrathionate broths, was compared with the standard BAM method, which requires 96 h room temperature incubation of whole shell egg samples followed by preenrichment in TSB supplemented with FeSO4. Four Salmonella ser. Enteritidis (4 phage types) and one Salmonella ser. Heidelberg isolates were used in the study. Bulk inoculated pooled liquid eggs, weighing 52 or 56 kg (approximately 1,100 eggs) were used in each trial. Twenty 1,000-g test portions were withdrawn from the pooled eggs for both the alternative and the reference methods. Test portions were inoculated with Salmonella at 1 to 5 cfu/1,000 g eggs. Two replicates were performed for each isolate. In the 8 trials conducted with Salmonella ser. Enteritidis, the alternative method was significantly (P < 0.05) more productive than the reference method in 3 trials, and significantly (P < 0.05) less productive than the reference method in 1 trial. There were no significant (P < 0.05) differences between the 2 methods for the other 4 trials. For Salmonella ser. Heidelberg, combined data from 2 trials showed the alternative method was significantly (P < 0.05) more efficient than the BAM method. We have concluded that the alternative method, described herein, has the potential to replace the current BAM culture method for detection and isolation of Salmonella from shell eggs based on the following factors: 1) the alternative method is 4 d shorter than the reference method; 2) it uses regular TSB instead of the more complicated TSB supplemented with FeSO4; and 3) it was equivalent or superior to the reference method in 9 out of 10 trials for the detection of Salmonella in shell eggs.
Asif, Muhammad; Rahman, Hazir; Qasim, Muhammad; Khan, Taj Ali; Ullah, Waheed; Jie, Yan
2017-05-01
Salmonella enteritidis infection is a frequently encountered zoonotic problem, occurring with concerning regularity in recent years on a worldwide basis. The study that we undertook for the first time detected S. enteritidis and associated antimicrobial resistance pattern in broiler chickens. A total of 150 different poultry samples were first enriched and grown on selective media, and then processed for molecular detection of S. enteritidis by amplification of the spvb gene. The overall detection rate of S. enteritidis was 23.3% (n=35), while an increased detection rate of S. enteritidis was found in the chicken breast tissue (n=9; 30%). When antibiogram was tested for S. enteritidis against common antibiotics, increased resistance to ampicillin (n=29; 82.2%), tetracycline (n=28; 80%), augmentin (n=27; 77.14%), and chloramphenicol (n=19; 54.2%) was observed. Multidrug resistance was reported in 54.8% (n=19) of the S. enteritidis isolates, while 20% (n=07) of isolates were extensively drug resistant. The present study for the first time reports S. enteritidis on the basis of spvb gene detection. The increased drug resistance in S. enteritidis is an emerging problem that could negatively impact efforts to prevent and treat broiler-transmitted S. enteritidis. Copyright © 2017. Published by Elsevier Taiwan LLC.
Khan Mirzaei, Mohammadali; Haileselassie, Yeneneh; Navis, Marit; Cooper, Callum; Sverremark-Ekström, Eva; Nilsson, Anders S
2016-01-01
Due to a global increase in the range and number of infections caused by multi-resistant bacteria, phage therapy is currently experiencing a resurgence of interest. However, there are a number of well-known concerns over the use of phages to treat bacterial infections. In order to address concerns over safety and the poorly understood pharmacokinetics of phages and their associated cocktails, immunological characterization is required. In the current investigation, the immunogenicity of four distinct phages (taken from the main families that comprise the Caudovirales order) and their interaction with donor derived peripheral blood mononuclear cells and immortalized cell lines (HT-29 and Caco-2 intestinal epithelial cells) were investigated using standard immunological techniques. When exposed to high phage concentrations (10(9) PFU/well), cytokine driven inflammatory responses were induced from all cell types. Although phages appeared to inhibit the growth of intestinal epithelial cell lines, they also appear to be non-cytotoxic. Despite co-incubation with different cell types, phages maintained a high killing efficiency, reducing extended-spectrum beta-lactamase-producing Escherichia coli numbers by 1-4 log10 compared to untreated controls. When provided with a suitable bacterial host, phages were also able to actively reproduce in the presence of human cells resulting in an approximately 2 log10 increase in phage titer compared to the initial inoculum. Through an increased understanding of the complex pharmacokinetics of phages, it may be possible to address some of the safety concerns surrounding phage preparations prior to creating new therapeutic strategies.
In vivo growth rates are poorly correlated with phage therapy success in a mouse infection model.
Bull, J J; Otto, G; Molineux, I J
2012-02-01
Two classes of phages yield profoundly different levels of recovery in mice experimentally infected with an Escherichia coli O18:K1:H7 strain. Phages requiring the K1 capsule for infection (K1-dep) rescue virtually all infected mice, whereas phages not requiring the capsule (K1-ind) rescue modest numbers (∼30%). To rescue infected mice, K1-ind phages require at least a 10(6)-fold-higher inoculum than K1-dep phages. Yet their in vivo growth dynamics are only modestly inferior to those of K1-dep phages, and competition between the two phage types in the same mouse reveals only a slight growth advantage for the K1-dep phage. The in vivo growth rate seems unlikely to be the primary determinant of phage therapy success. An alternative explanation is that the success of K1-dep phages is due substantially to their proteomic composition. They encode an enzyme that degrades the K1 capsule, which has been shown in other work to be sufficient to cure infection in the complete absence of phages.
Betancor, Laura; García, Coralith; Astocondor, Lizeth; Hinostroza, Noemí; Bisio, Julieta; Rivera, Javier; Perezgasga, Lucía; Pérez Escanda, Victoria; Yim, Lucía; Jacobs, Jan; García-del Portillo, Francisco; Chabalgoity, José A.; Puente, José L.
2017-01-01
In this study, different molecular typing tools were applied to characterize 95 Salmonella enterica blood isolates collected between 2008 and 2013 from patients at nine public hospitals in Lima, Peru. Combined results of multiplex PCR serotyping, two- and seven-loci multilocus sequence typing (MLST) schemes, serotyping, IS200 amplification and RAPD fingerprints, showed that these infections were caused by eight different serovars: Enteritidis, Typhimurium, Typhi, Choleraesuis, Dublin, Paratyphi A, Paratyphi B and Infantis. Among these, Enteritidis, Typhimurium and Typhi were the most prevalent, representing 45, 36 and 11% of the isolates, respectively. Most isolates (74%) were not resistant to ten primarily used antimicrobial drugs; however, 37% of the strains showed intermediate susceptibility to ciprofloxacin (ISC). Antimicrobial resistance integrons were carried by one Dublin (dfra1 and aadA1) and two Infantis (aadA1) isolates. The two Infantis isolates were multidrug resistant and harbored a large megaplasmid. Amplification of spvC and spvRA regions showed that all Enteritidis (n = 42), Typhimurium (n = 34), Choleraesuis (n = 3) and Dublin (n = 1) isolates carried the Salmonella virulence plasmid (pSV). We conclude that the classic serotyping method can be substituted by the multiplex PCR and, when necessary, sequencing of only one or two loci of the MLST scheme is a valuable tool to confirm the results. The effectiveness and feasibility of different typing tools is discussed. PMID:29267322
Abedon, Stephen T; Katsaounis, Tena I
2018-01-01
Basic mathematical descriptions are useful in phage ecology, applied phage ecology such as in the course of phage therapy, and also toward keeping track of expected phage-bacterial interactions as seen during laboratory manipulation of phages. The most basic mathematical descriptor of phages is their titer, that is, their concentration within stocks, experimental vessels, or other environments. Various phenomena can serve to modify phage titers, and indeed phage titers can vary as a function of how they are measured. An important aspect of how changes in titers can occur results from phage interactions with bacteria. These changes tend to vary in degree as a function of bacterial densities within environments, and particularly densities of those bacteria that are susceptible to or at least adsorbable by a given phage type. Using simple mathematical models one can describe phage-bacterial interactions that give rise particularly to phage adsorption events. With elaboration one can consider changes in both phage and bacterial densities as a function of both time and these interactions. In addition, phages along with their impact on bacteria can be considered as spatially constrained processes. In this chapter we consider the simpler of these concepts, providing in particular detailed verbal explanations toward facile mathematical insight. The primary goal is to stimulate a more informed use and manipulation of phages and phage populations within the laboratory as well as toward more effective phage application outside of the laboratory, such as during phage therapy. More generally, numerous issues and approaches to the quantification of phages are considered along with the quantification of individual, ecological, and applied properties of phages.
Costantini, Antonella; Doria, Francesca; Saiz, Juan-Carlos; Garcia-Moruno, Emilia
2017-04-04
Nowadays, only few phages infecting Oenococcus oeni, the principal lactic acid bacteria (LAB) species responsible for malolactic fermentation (MLF) in wine, have been characterized. In the present study, to better understanding the factors affecting the lytic activity of Oenococcus phages, fifteen O. oeni bacteriophages have been studied in detail, both with molecular and microbiological methods. No correlations were found between genome sizes, type of integrase genes, or morphology and the lytic activity of the 15 tested phages. Interestingly, though phage attack in a wine at the end of alcoholic fermentation seems not to be a problem, it can indeed represent a risk factor for MLF when the alcohol content is low, feature that may be a key point for choosing the appropriate time for malolactic starter inoculation. Additionally, it was observed that some phages genomes bear 2 or 3 types of integrase genes, which point to horizontal gene transfer between O. oeni bacteriophages. Copyright © 2017. Published by Elsevier B.V.
Complete genomic sequence of the Lactobacillus temperate phage LF1.
Yoon, Bo Hyun; Chang, Hyo Ihl
2011-10-01
Bacteriophage LF1, a newly isolated temperate phage from a mitomycin-C-induced lysate of wild type Lactobacillus fermentum, was found to contain a double-strand DNA of 42,606 base pairs (bp) with a G+C content of 45%. Bioinformatic analysis of the phage genome revealed 57 putative open reading frames (ORFs). The predicted protein products of ORFs were determined and described. According to morphological analysis by transmission electron microscopy (TEM), LF1 has an isometric head and a non-contractile tail, indicating that it belongs to the family Siphoviridae. The temperate phage LF1 has a good genetic mosaic relationship with ΦPYB5 in the packaging module. To our knowledge, this is first report of genomic sequencing and characterization of temperate phage LF1 from wild-type L. fermentum isolated from Kimchi in Korea.
Nguyen, Kieu T H; Adamkiewicz, Marta A; Hebert, Lauren E; Zygiel, Emily M; Boyle, Holly R; Martone, Christina M; Meléndez-Ríos, Carola B; Noren, Karen A; Noren, Christopher J; Hall, Marilena Fitzsimons
2014-10-01
A target-unrelated peptide (TUP) can arise in phage display selection experiments as a result of a propagation advantage exhibited by the phage clone displaying the peptide. We previously characterized HAIYPRH, from the M13-based Ph.D.-7 phage display library, as a propagation-related TUP resulting from a G→A mutation in the Shine-Dalgarno sequence of gene II. This mutant was shown to propagate in Escherichia coli at a dramatically faster rate than phage bearing the wild-type Shine-Dalgarno sequence. We now report 27 additional fast-propagating clones displaying 24 different peptides and carrying 14 unique mutations. Most of these mutations are found either in or upstream of the gene II Shine-Dalgarno sequence, but still within the mRNA transcript of gene II. All 27 clones propagate at significantly higher rates than normal library phage, most within experimental error of wild-type M13 propagation, suggesting that mutations arise to compensate for the reduced virulence caused by the insertion of a lacZα cassette proximal to the replication origin of the phage used to construct the library. We also describe an efficient and convenient assay to diagnose propagation-related TUPS among peptide sequences selected by phage display. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
A general insert label for peptide display on chimeric filamentous bacteriophages.
Kaplan, Gilad; Gershoni, Jonathan M
2012-01-01
The foreign insert intended to be displayed via recombinant phage proteins can have a negative effect on protein expression and phage assembly. A typical example is the case of display of peptides longer than 6 amino acid residues on the major coat protein, protein VIII of the filamentous bacteriophages M13 and fd. A solution to this problem has been the use of "two-gene systems" generating chimeric phages that concomitantly express wild-type protein VIII along with recombinant protein VIII. Although the two-gene systems are much more permissive in regard to insert length and composition, some cases can still adversely affect phage assembly. Although these phages genotypically contain the desired DNA of the insert, they appear to be phenotypically wild type. To avoid false-negative results when using chimeric phages in binding studies, it is necessary to confirm that the observed lack of phage recognition is not due to faulty assembly and display of the intended insert. Here we describe a strategy for generating antibodies that specifically recognize recombinant protein VIII regardless of the nature of its foreign insert. These antibodies can be used as a general monitor of the display of recombinant protein VIII into phage particles. Copyright © 2011 Elsevier Inc. All rights reserved.
Palomo, Gonzalo; Campos, Maria Jorge; Ugarte, María; Porrero, María Concepción; Alonso, Juan Manuel; Borge, Carmen; Vadillo, Santiago; Domínguez, Lucas; Quesada, Alberto; Píriz, Segundo
2013-02-01
Non-typhoidal salmonellosis is an important zoonotic disease caused by Salmonella enterica. This work focuses on the identification of Salmonella enterica clonal strains which, presenting a wide distribution potential, express resistance determinants that compromise effectiveness of the antimicrobial therapy. The screening was performed on 506 Salmonella enterica isolates from animals and humans, which were characterized by serovar and phage typing, genome macrorestriction and pulsed-field gel electrophoresis, and detection of phenotypic and genotypic traits for antimicrobial resistance. A Salmonella Enteritidis strain with strong quinolone resistance is spread on three host environments carrying one of the four variants found for the GyrA protein: (1) Asp87Tyr, the major polymorphism found in 39 Salmonella isolates from human origin and six from poultry; (2) Ser83Phe, with four isolates from human origin and one from white stork (Ciconia ciconia); and (3) Asp87Asn or (4) Asp87Gly, with two isolates each from human origins. Several Salmonella Typhimurium strains that presented int1 elements and the classically associated pentaresistance (ACSSuT) phenotype were found distributed between two host environments: domestic animals and humans, domestics and wild animals, or wild fauna plus humans. This study points out the importance of monitoring gut microbiota and its antimicrobial resistance from wildlife, in parallel to livestock animals and humans, especially for animal species that are in close contact with people.
Carramiñana, Juan J; Rota, Carmina; Agustín, I; Herrera, Antonio
2004-11-30
Salmonellosis is a major foodborne infection in Spain, and strains that are resistant to a great variety of antibiotics have become a major public health concern. The aim of this study was to determine the level of antibiotic resistance in 133 Salmonella isolates obtained from a poultry slaughterhouse in Zaragoza (NE Spain). Antimicrobial resistance testing was performed by disk diffusion method using 19 antibiotics. Results were interpreted following the NCCLS criteria. Overall, the highest percentage of resistance was found to the following antimicrobial agents: sulfadiazine (96.2%), neomycin (53.4%), tetracycline (21.8%), and streptomycin (11.3%). All isolates were found to be resistant to one or more of the antibiotics tested. Multiple resistance was observed in 87 strains (65.4%). We found 23 different patterns of resistance in Salmonella Enteritidis. Resistance to sulfadiazine was the most common single resistance. The most frequent patterns of multiresistant strains were neomycin+sulfadiazine and neomycin+tetracycline+sulfadiazine. S. 4,5,12:b: showed the highest percentages of resistance to the tested drugs, with five different resistance patterns found. Ampicillin+chloramphenicol+streptomycin+sulphonamides+tetracycline (ACSSuT) resistance pattern, commonly associated with S. Typhimurium DT 104, was not detected in strains of the same phage type from broilers. The appearance of substantial multiresistance in foodborne Salmonella isolates suggests the need for more prudent use of antibiotics by farmers, veterinarians, and physicians.
Fu, Qiang; Li, Shiyu; Wang, Zhaofei; Shan, Wenya; Ma, Jingjiao; Cheng, Yuqiang; Wang, Hengan; Yan, Yaxian; Sun, Jianhe
2017-01-01
Shiga toxin-converting bacteriophages (Stx phages) carry the stx gene and convert nonpathogenic bacterial strains into Shiga toxin-producing bacteria. There is limited understanding of the effect that an Escherichia coli ( E. coli ) clustered regularly interspaced short palindromic repeats (CRISPR)-Cas adaptive immune system has on Stx phage lysogen. We investigated heat-stable nucleoid-structuring (H-NS) mutation-mediated CRISPR-Cas activation and its effect on E. coli Stx2 phage lysogen. The Δ hns mutant (MG1655Δ hns ) of the E. coli K-12 strain MG1655 was obtained. The Δ hns mutant lysogen that was generated after Stx phage lysogenic infection had a repressed growth status and showed subdued group behavior, including biofilm formation and swarming motility, in comparison to the wild-type strain. The de-repression effect of the H-NS mutation on CRISPR-Cas activity was then verified. The results showed that cas gene expression was upregulated and the transformation efficiency of the wild-type CRISPR plasmids was decreased, which may indicate activation of the CRISPR-Cas system. Furthermore, the function of CRISPR-Cas on Stx2 phage lysogen was investigated by activating the CRISPR-Cas system, which contains an insertion of the protospacer regions of the Stx2 phage Min27. The phage release and toxin production of four lysogens harboring the engineered CRISPRs were investigated. Notably, in the supernatant of the Δ hns mutant lysogen harboring the Min27 spacer, both the progeny phage release and the toxin production were inhibited after mitomycin C induction. These observations demonstrate that the H-NS mutation-activated CRISPR-Cas system plays a role in modifying the effects of the Stx2 phage lysogen. Our findings indicated that H-NS mutation-mediated CRISPR-Cas activation in E. coli protects bacteria against Stx2 phage lysogeny by inhibiting the phage release and toxin production of the lysogen.
Landscape Phage: Evolution from Phage Display to Nanobiotechnology.
Petrenko, Valery A
2018-06-07
The development of phage engineering technology has led to the construction of a novel type of phage display library-a collection of nanofiber materials with diverse molecular landscapes accommodated on the surface of phage particles. These new nanomaterials, called the "landscape phage", serve as a huge resource of diagnostic/detection probes and versatile construction materials for the preparation of phage-functionalized biosensors and phage-targeted nanomedicines. Landscape-phage-derived probes interact with biological threat agents and generate detectable signals as a part of robust and inexpensive molecular recognition interfaces introduced in mobile detection devices. The use of landscape-phage-based interfaces may greatly improve the sensitivity, selectivity, robustness, and longevity of these devices. In another area of bioengineering, landscape-phage technology has facilitated the development and testing of targeted nanomedicines. The development of high-throughput phage selection methods resulted in the discovery of a variety of cancer cell-associated phages and phage proteins demonstrating natural proficiency to self-assemble into various drug- and gene-targeting nanovehicles. The application of this new "phage-programmed-nanomedicines" concept led to the development of a number of cancer cell-targeting nanomedicine platforms, which demonstrated anticancer efficacy in both in vitro and in vivo experiments. This review was prepared to attract the attention of chemical scientists and bioengineers seeking to develop functionalized nanomaterials and use them in different areas of bioscience, medicine, and engineering.
Phage display as a technology delivering on the promise of peptide drug discovery.
Hamzeh-Mivehroud, Maryam; Alizadeh, Ali Akbar; Morris, Michael B; Church, W Bret; Dastmalchi, Siavoush
2013-12-01
Phage display represents an important approach in the development pipeline for producing peptides and peptidomimetics therapeutics. Using randomly generated DNA sequences and molecular biology techniques, large diverse peptide libraries can be displayed on the phage surface. The phage library can be incubated with a target of interest and the phage which bind can be isolated and sequenced to reveal the displayed peptides' primary structure. In this review, we focus on the 'mechanics' of the phage display process, whilst highlighting many diverse and subtle ways it has been used to further the drug-development process, including the potential for the phage particle itself to be used as a drug carrier targeted to a particular pathogen or cell type in the body. Copyright © 2013 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2013 CFR
2013-01-01
... environments. 147.10 Section 147.10 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... examination of egg-type breeding flocks with salmonella enteritidis positive environments. Birds selected for...
Code of Federal Regulations, 2012 CFR
2012-01-01
... environments. 147.10 Section 147.10 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE... examination of egg-type breeding flocks with salmonella enteritidis positive environments. Birds selected for...
Construction of a filamentous phage display peptide library.
Fagerlund, Annette; Myrset, Astrid Hilde; Kulseth, Mari Ann
2014-01-01
The concept of phage display is based on insertion of random oligonucleotides at an appropriate location within a structural gene of a bacteriophage. The resulting phage will constitute a library of random peptides displayed on the surface of the bacteriophages, with the encoding genotype packaged within each phage particle. Using a phagemid/helper phage system, the random peptides are interspersed between wild-type coat proteins. Libraries of phage-expressed peptides may be used to search for novel peptide ligands to target proteins. The success of finding a peptide with a desired property in a given library is highly dependent on the diversity and quality of the library. The protocols in this chapter describe the construction of a high-diversity library of phagemid vector encoding fusions of the phage coat protein pVIII with random peptides, from which a phage library displaying random peptides can be prepared.
φX-174 Bacteriophage Structural Mutants Which Affect Deoxyribonucleic Acid Synthesis
Siegel, Jeff E. D.; Hayashi, Masaki
1969-01-01
Seven cistrons in φX-174 were identified and one in particular was studied intensively: cistron A, which is assigned a protein in the mature phage. Amber mutants in this cistron synthesize a new deoxyribonucleic acid (DNA) form in addition to circular phage DNA upon infection of the restrictive host. This DNA is linear, non-infectious, and single-stranded; it is formed from the phage strand of replicative form φX-174 DNA. These mutants produce two different defective particles in the restrictive host. One particle contains circular phage DNA but is not infectious; the other contains the new DNA form and is similar to the 70S particles found in wild-type phage lysates. The mutant A gene product acts independently of normal A protein upon mixed infection of the restrictive host with an A mutant and a mutant from any other cistron or wild type. PMID:5823229
Bacteriophages of methanotrophic bacteria.
Tyutikov, F M; Bespalova, I A; Rebentish, B A; Aleksandrushkina, N N; Krivisky, A S
1980-01-01
Bacteriophages of methanotrophic bacteria have been found in 16 out of 88 studied samples (underground waters, pond water, soil, gas and oil installation waters, fermentor cultural fluids, bacterial paste, and rumen of cattle) taken in different geographic zones of the Soviet Union. Altogether, 23 phage strains were isolated: 10 strains that specifically lysed only Methylosinus sporium strains, 2 strains that each lysed 1 of 5 Methylosinus trichosporium strains studied, and 11 strains that lysed Flavobacterium gasotypicum and, at the same time, 1 M. sporium strain. By fine structure, the phages were divided into two types (with very short or long noncontractile tails); by host range and serological properties, they fell into three types. One-step growth characteristics of the phages differed only slightly; the latent period varied from 6 to 8 h, the rise period varied from 4 to 6 h, and the average burst size was 100. All phages had guanine- and cytosine-rich double-stranded deoxyribonucleic acid consisting of common nitrogen bases. The molecular mass of the deoxyribonucleic acid as determined by restriction endonuclease analysis was 29.4 X 10(6) for M. sporium phages and 44 X 10(6) for F. gasotypicum phages. By all of the above-mentioned properties, all phages within each of the groups were completely identical to one another, but differed from phages of other groups. Bacteriophages lysing M. sporium and M. trichosporium GB2 were identical to phages M1 and M4, respectively, which were isolated earlier in the German Democratic Republic on the same methanotrophic species. Images PMID:6774962
Upadhyaya, Indu; Upadhyay, Abhinav; Kollanoor-Johny, Anup; Mooyottu, Shankumar; Baskaran, Sangeetha A.; Yin, Hsin-Bai; Schreiber, David T.; Khan, Mazhar I.; Darre, Michael J.; Curtis, Patricia A.
2015-01-01
Salmonella enterica serovar Enteritidis is a major foodborne pathogen in the United States, causing gastroenteritis in humans, primarily through consumption of contaminated eggs. Chickens are the reservoir host of S. Enteritidis. In layer hens, S. Enteritidis colonizes the intestine and migrates to various organs, including the oviduct, leading to egg contamination. This study investigated the efficacy of in-feed supplementation with trans-cinnamaldehyde (TC), a generally recognized as safe (GRAS) plant compound obtained from cinnamon, in reducing S. Enteritidis cecal colonization and systemic spread in layers. Additionally, the effect of TC on S. Enteritidis virulence factors critical for macrophage survival and oviduct colonization was investigated in vitro. The consumer acceptability of eggs was also determined by a triangle test. Supplementation of TC in feed for 66 days at 1 or 1.5% (vol/wt) for 40- or 25-week-old layer chickens decreased the amounts of S. Enteritidis on eggshell and in yolk (P < 0.001). Additionally, S. Enteritidis persistence in the cecum, liver, and oviduct in TC-supplemented birds was decreased compared to that in controls (P < 0.001). No significant differences in feed intake, body weight, or egg production in birds or in consumer acceptability of eggs were observed (P > 0.05). In vitro cell culture assays revealed that TC reduced S. Enteritidis adhesion to and invasion of primary chicken oviduct epithelial cells and reduced S. Enteritidis survival in chicken macrophages (P < 0.001). Follow-up gene expression analysis using real-time quantitative PCR (qPCR) showed that TC downregulated the expression of S. Enteritidis virulence genes critical for chicken oviduct colonization (P < 0.001). The results suggest that TC may potentially be used as a feed additive to reduce egg-borne transmission of S. Enteritidis. PMID:25710365
Aya Castañeda, María del Rosario; Sarnacki, Sebastián Hernán; Noto Llana, Mariángeles; López Guerra, Adriana Gabriela; Giacomodonato, Mónica Nancy; Cerquetti, María Cristina
2015-01-16
The ecological success of Salmonella enterica to survive in different environments is due, in part, to the ability to form biofilms, something which is especially important for food industry. The aim of the current study was to evaluate the involvement of Dam methylation in biofilm production in S. Enteritidis strains. The ability to generate biofilms was analyzed in wild type and dam mutant strains. In S. Enteritidis, the absence of Dam affected the capacity to develop pellicles at the air-liquid interface and reduced the ability to form biofilm on polystyrene surfaces. Curli and cellulose production, determined by Congo red and calcofluor assays, were affected in dam mutant strains. Relative quantitative real-time PCR experiments showed that the expression of csgD and csgA genes is reduced in mutants lacking dam gene with respect to the wild type strains, whereas transcript levels of bcsA are not affected in the absence of Dam. To our knowledge, this is the first report on the participation of Dam methylation on biofilm production in Enteritidis or any other serovar of S. enterica. Results presented here suggest that changes in gene expression required for biofilm production are finely regulated by Dam methylation. Thus, Dam methylation could modulate csgD expression and upregulate the expression of factors related with biofilm production, including curli and cellulose. This study contributes to the understanding of biofilm regulation in Salmonella spp. and to the design of new strategies to prevent food contamination and humans and animals infections. Copyright © 2014. Published by Elsevier B.V.
Xu, Xuefang; McAteer, Sean P.; Tree, Jai J.; Shaw, Darren J.; Wolfson, Eliza B. K.; Beatson, Scott A.; Roe, Andrew J.; Allison, Lesley J.; Chase-Topping, Margo E.; Mahajan, Arvind; Tozzoli, Rosangela; Woolhouse, Mark E. J.; Morabito, Stefano; Gally, David L.
2012-01-01
Lytic or lysogenic infections by bacteriophages drive the evolution of enteric bacteria. Enterohemorrhagic Escherichia coli (EHEC) have recently emerged as a significant zoonotic infection of humans with the main serotypes carried by ruminants. Typical EHEC strains are defined by the expression of a type III secretion (T3S) system, the production of Shiga toxins (Stx) and association with specific clinical symptoms. The genes for Stx are present on lambdoid bacteriophages integrated into the E. coli genome. Phage type (PT) 21/28 is the most prevalent strain type linked with human EHEC infections in the United Kingdom and is more likely to be associated with cattle shedding high levels of the organism than PT32 strains. In this study we have demonstrated that the majority (90%) of PT 21/28 strains contain both Stx2 and Stx2c phages, irrespective of source. This is in contrast to PT 32 strains for which only a minority of strains contain both Stx2 and 2c phages (28%). PT21/28 strains had a lower median level of T3S compared to PT32 strains and so the relationship between Stx phage lysogeny and T3S was investigated. Deletion of Stx2 phages from EHEC strains increased the level of T3S whereas lysogeny decreased T3S. This regulation was confirmed in an E. coli K12 background transduced with a marked Stx2 phage followed by measurement of a T3S reporter controlled by induced levels of the LEE-encoded regulator (Ler). The presence of an integrated Stx2 phage was shown to repress Ler induction of LEE1 and this regulation involved the CII phage regulator. This repression could be relieved by ectopic expression of a cognate CI regulator. A model is proposed in which Stx2-encoding bacteriophages regulate T3S to co-ordinate epithelial cell colonisation that is promoted by Stx and secreted effector proteins. PMID:22615557
Barrett, T J; Lior, H; Green, J H; Khakhria, R; Wells, J G; Bell, B P; Greene, K D; Lewis, J; Griffin, P M
1994-01-01
Two hundred thirty-three isolates of Escherichia coli O157:H7 were analyzed by both pulsed-field gel electrophoresis (PFGE) and bacteriophage typing. All 26 isolates from persons whose illness was associated with a recent multistate outbreak of E. coli O157:H7 infections linked to the consumption of undercooked hamburgers and all 27 isolates from incriminated lots of hamburger meat had the same phage type and the same PFGE pattern. Twenty-five of 74 E. coli O157:H7 isolates from Washington State and 10 of 27 isolates from other states obtained during the 6 months before the outbreak had the same phage type as the outbreak strain, but only 1 isolate had the same PFGE pattern. PFGE thus appeared to be a more sensitive method than bacteriophage typing for distinguishing outbreak and non-outbreak-related strains. The PFGE patterns of seven preoutbreak sporadic isolates and five sporadic isolates from the outbreak period differed from that of the outbreak strain by a single band, making it difficult to identify these isolates as outbreak or non-outbreak related. Phage typing and PFGE with additional enzymes were helpful in resolving this problem. While not as sensitive as PFGE, phage typing was helpful in interpreting PFGE data and could have been used as a simple, rapid screen to eliminate the need for performing PFGE on unrelated isolates. Images PMID:7883892
Federal Register 2010, 2011, 2012, 2013, 2014
2010-04-13
...] Small Entity Compliance Guide: Prevention of Salmonella Enteritidis in Shell Eggs During Production... ``Prevention of Salmonella Enteritidis in Shell Eggs During Production, Storage, and Transportation--Small... requiring shell egg producers to implement measures to prevent Salmonella Enteritidis (SE) from...
The Inheritance of the Glucose Component of the Phage Nucleic Acids
Jesaitis, Margeris A.
1961-01-01
The wild type strains of T2 and T6 bacteriophages differ in their host range specificity, efficiency of plating on E. coli K12, and in glucose content. A study of the inheritance of these three differentiating characteristics has revealed that they are transmitted both upon serial passage of the viruses and when the two phages are crossed. It has been found, furthermore, that an extensive recombination takes place upon crossing. Four types of hybrid phages have been isolated from the progeny of crosses, which had a glucose content of one of the parental phages, and either the host range specificity or efficiency of plating or both of the other. The characteristics of each hybrid were found to be hereditarily stable. It has been concluded that the transmission of the characteristics under consideration is determined genetically and that the genes which control them are not closely linked. Since the glucose content of a phage is determined by the degree of glucosylation of its nucleic acid, the T2 and T6 phages apparently contain genes which control certain chemical properties of their nucleic acid. PMID:13789984
Munsch-Alatossava, Patricia; Alatossava, Tapani
2013-01-01
The complete genome sequence of Lactobacillus bacteriophage LL-H was determined in 1996. Accordingly, LL-H has been used as a model phage for the infection of dairy Lactobacillus, specifically for thermophilic Lactobacillus delbrueckii ssp. lactis host strains, such as ATCC 15808. One of the major goals of phage LL-H research consisted of the characterization of the first phage-host interactions at the level of phage adsorption and phage DNA injection steps to determine effective and practical methods to minimize the risks associated with the appearance and attack of phages in the manufacture of yogurt, and Swiss or Italian hard type cheeses, which typically use thermophilic lactic acid bacteria starter cultures containing L. delbrueckii strains among others. This mini review article summarizes the present data concerning (i) the special features, particle structure, and components of phage LL-H and (ii) the structure and properties of lipoteichoic acids (LTAs), which are the phage LL-H receptor components of L. delbrueckii ssp. lactis host strains. Moreover, a model of the first, extracellular, phage-host interactions for the infection of L. delbrueckii ssp. lactis ATCC 15808 by phage LL-H is presented and further discussed. PMID:24400001
Munsch-Alatossava, Patricia; Alatossava, Tapani
2013-12-24
The complete genome sequence of Lactobacillus bacteriophage LL-H was determined in 1996. Accordingly, LL-H has been used as a model phage for the infection of dairy Lactobacillus, specifically for thermophilic Lactobacillus delbrueckii ssp. lactis host strains, such as ATCC 15808. One of the major goals of phage LL-H research consisted of the characterization of the first phage-host interactions at the level of phage adsorption and phage DNA injection steps to determine effective and practical methods to minimize the risks associated with the appearance and attack of phages in the manufacture of yogurt, and Swiss or Italian hard type cheeses, which typically use thermophilic lactic acid bacteria starter cultures containing L. delbrueckii strains among others. This mini review article summarizes the present data concerning (i) the special features, particle structure, and components of phage LL-H and (ii) the structure and properties of lipoteichoic acids (LTAs), which are the phage LL-H receptor components of L. delbrueckii ssp. lactis host strains. Moreover, a model of the first, extracellular, phage-host interactions for the infection of L. delbrueckii ssp. lactis ATCC 15808 by phage LL-H is presented and further discussed.
Regulation of Bacteriophage T5 Development by ColI Factors
Moyer, R. W.; Fu, A. S.; Szabo, C.
1972-01-01
The I-type colicinogenic factor ColIb transforms Escherichia coli from a permissive to a nonpermissive host for bacteriophage T5 reproduction by preventing complete expression of the phage genome. T5-infected ColIb+ cells synthesize only class I (early) phage protein and ribonucleic acid (RNA). Neither phage-specific class II proteins [associated with viral deoxyribonucleic acid (DNA) replication] nor class III proteins (phage structural components) are formed due to the failure of the infected ColIb+ cells to synthesize class II or class III phage-specific messenger RNA. Comparable studies with T5-infected cells colicinogenic for the related ColIa factor revealed no decrease in the yield of progeny phage although the presence of the ColIa factor leads to a significant reduction in the amount of phage-directed class III protein synthesis. Images PMID:4554465
Genome-wide characterization of vibrio phage ϕpp2 with unique arrangements of the mob-like genes
2012-01-01
Background Vibrio parahaemolyticus is associated with gastroenteritis, wound infections, and septicemia in human and animals. Phages can control the population of the pathogen. So far, the only one reported genome among giant vibriophages is KVP40: 244,835 bp with 26% coding regions that have T4 homologs. Putative homing endonucleases (HE) were found in Vibrio phage KVP40 bearing one segD and Vibrio cholerae phage ICP1 carrying one mobC/E and one segG. Results A newly isolated Vibrio phage ϕpp2, which was specific to the hosts of V. parahaemolyticus and V. alginolyticus, featured a long nonenveloped head of ~90 × 150 nm and tail of ~110 nm. The phage can survive at 50°C for more than one hour. The genome of the phage ϕpp2 was sequenced to be 246,421 bp, which is 1587 bp larger than KVP40. 383 protein-encoding genes (PEGs) and 30 tRNAs were found in the phage ϕpp2. Between the genomes of ϕpp2 and KVP40, 254 genes including 29 PEGs for viral structure were of high similarity, whereas 17 PEGs of KVP40 and 21 PEGs of ϕpp2 were unmatched. In both genomes, the capsid and tail genes have been identified, as well as the extensive representation of the DNA replication, recombination, and repair enzymes. In addition to the three giant indels of 1098, 1143 and 3330 nt, ϕpp2 possessed unique proteins involved in potassium channel, gp2 (DNA end protector), tRNA nucleotidyltransferase, and mob-type HEs, which were not reported in KVP40. The ϕpp2 PEG274, with strong promoters and translational initiation, was identified to be a mobE type, flanked by NrdA and NrdB/C homologs. Coincidently, several pairs of HE-flanking homologs with empty center were found in the phages of Vibrio phages ϕpp2 and KVP40, as well as in Aeromonas phages (Aeh1 and Ae65), and cyanophage P-SSM2. Conclusions Vibrio phage ϕpp2 was characterized by morphology, growth, and genomics with three giant indels and different types of HEs. The gene analysis on the required elements for transcription and translation suggested that the ϕpp2 PEG274 was an active mobE gene. The phage was signified to be a new species of T4-related, differing from KVP40. PMID:22676552
Protist predation can select for bacteria with lowered susceptibility to infection by lytic phages.
Örmälä-Odegrip, Anni-Maria; Ojala, Ville; Hiltunen, Teppo; Zhang, Ji; Bamford, Jaana K H; Laakso, Jouni
2015-05-07
Consumer-resource interactions constitute one of the most common types of interspecific antagonistic interaction. In natural communities, complex species interactions are likely to affect the outcomes of reciprocal co-evolution between consumers and their resource species. Individuals face multiple enemies simultaneously, and consequently they need to adapt to several different types of enemy pressures. In this study, we assessed how protist predation affects the susceptibility of bacterial populations to infection by viral parasites, and whether there is an associated cost of defence on the competitive ability of the bacteria. As a study system we used Serratia marcescens and its lytic bacteriophage, along with two bacteriovorous protists with distinct feeding modes: Tetrahymena thermophila (particle feeder) and Acanthamoeba castellanii (surface feeder). The results were further confirmed with another study system with Pseudomonas and Tetrahymena thermophila. We found that selection by protist predators lowered the susceptibility to infections by lytic phages in Serratia and Pseudomonas. In Serratia, concurrent selection by phages and protists led to lowered susceptibility to phage infections and this effect was independent from whether the bacteria shared a co-evolutionary history with the phage population or not. Bacteria that had evolved with phages were overall more susceptible to phage infection (compared to bacteria with history with multiple enemies) but they were less vulnerable to the phages they had co-evolved with than ancestral phages. Selection by bacterial enemies was costly in general and was seen as a lowered fitness in absence of phages, measured as a biomass yield. Our results show the significance of multiple species interactions on pairwise consumer-resource interaction, and suggest potential overlap in defending against predatory and parasitic enemies in microbial consumer-resource communities. Ultimately, our results could have larger scale effects on eco-evolutionary community dynamics.
The scope of phage display for membrane proteins.
Vithayathil, Rosemarie; Hooy, Richard M; Cocco, Melanie J; Weiss, Gregory A
2011-12-09
Numerous examples of phage display applied to soluble proteins demonstrate the power of the technique for protein engineering, affinity reagent discovery and structure-function studies. Recent reports have expanded phage display to include membrane proteins (MPs). The scope and limitations of MP display remain undefined. Therefore, we report data from the phage display of representative types of membrane-associated proteins including plasma, nuclear, peripheral, single and multipass. The peripheral MP neuromodulin displays robustly with packaging by conventional M13-KO7 helper phage. The monotopic MP Nogo-66 can also display on the phage surface, if packaged by the modified M13-KO7(+) helper phage. The modified phage coat of KO7(+) can better mimic the zwitterionic character of the plasma membrane. Four examples of putatively α-helical, integral MPs failed to express as fusions to an anchoring phage coat protein and therefore did not display on the phage surface. However, the β-barrel MPs ShuA (Shigella heme uptake A) and MOMP (major outer membrane protein), which pass through the membrane 22 and 16 times, respectively, can display surprisingly well on the surfaces of both conventional and KO7(+) phages. The results provide a guide for protein engineering and large-scale mutagenesis enabled by the phage display of MPs. Copyright © 2011 Elsevier Ltd. All rights reserved.
Liu, Mei; Gill, Jason J; Young, Ry; Summer, Elizabeth J
2015-09-09
Filamentous bacteria are a normal and necessary component of the activated sludge wastewater treatment process, but the overgrowth of filamentous bacteria results in foaming and bulking associated disruptions. Bacteriophages, or phages, were investigated for their potential to reduce the titer of foaming bacteria in a mixed-microbial activated sludge matrix. Foaming-associated filamentous bacteria were isolated from activated sludge of a commercial wastewater treatment plan and identified as Gordonia species by 16S rDNA sequencing. Four representative phages were isolated that target G. malaquae and two un-named Gordonia species isolates. Electron microscopy revealed the phages to be siphophages with long tails. Three of the phages--GordTnk2, Gmala1, and GordDuk1--had very similar ~76 kb genomes, with >93% DNA identity. These genomes shared limited synteny with Rhodococcus equi phage ReqiDocB7 and Gordonia phage GTE7. In contrast, the genome of phage Gsput1 was smaller (43 kb) and was not similar enough to any known phage to be placed within an established phage type. Application of these four phages at MOIs of 5-15 significantly reduced Gordonia host levels in a wastewater sludge model by approximately 10-fold as compared to non-phage treated reactors. Phage control was observed for nine days after treatment.
Chicken innate immune response to oral infection with Salmonella enterica serovar Enteritidis
2013-01-01
The characterization of the immune response of chickens to Salmonella infection is usually limited to the quantification of expression of genes coding for cytokines, chemokines or antimicrobial peptides. However, processes occurring in the cecum of infected chickens are likely to be much more diverse. In this study we have therefore characterized the transcriptome and proteome in the chicken cecum after infection with Salmonella Enteritidis. Using a combination of 454 pyrosequencing, protein mass spectrometry and quantitative real-time PCR, we identified 48 down- and 56 up-regulated chicken genes after Salmonella Enteritidis infection. The most inducible gene was that coding for MMP7, exhibiting a 5952 fold induction 9 days post-infection. An induction of greater than 100 fold was observed for IgG, IRG1, SAA, ExFABP, IL-22, TRAP6, MRP126, IFNγ, iNOS, ES1, IL-1β, LYG2, IFIT5, IL-17, AVD, AH221 and SERPIN B. Since prostaglandin D2 synthase was upregulated and degrading hydroxyprostaglandin dehydrogenase was downregulated after the infection, prostaglandin must accumulate in the cecum of chickens infected with Salmonella Enteritidis. Finally, above mentioned signaling was dependent on the presence of a SPI1-encoded type III secretion system in Salmonella Enteritidis. The inflammation lasted for 2 weeks after which time the expression of the “inflammatory” genes returned back to basal levels and, instead, the expression of IgA and IgG increased. This points to an important role for immunoglobulins in the restoration of homeostasis in the cecum after infection. PMID:23687968
Rossi, Omar; Caboni, Mariaelena; Negrea, Aurel; Necchi, Francesca; Alfini, Renzo; Micoli, Francesca; Saul, Allan; MacLennan, Calman A; Rondini, Simona; Gerke, Christiane
2016-04-01
Invasive nontyphoidal Salmonella (iNTS) disease is a neglected disease with high mortality in children and HIV-positive individuals in sub-Saharan Africa, caused primarily by Africa-specific strains of Salmonella enterica serovars Typhimurium and Enteritidis. A vaccine using GMMA (generalized modules for membrane antigens) fromS.Typhimurium andS.Enteritidis containing lipid A modifications to reduce potential in vivo reactogenicity is under development. GMMA with penta-acylated lipid A showed the greatest reduction in the level of cytokine release from human peripheral blood monocytes from that for GMMA with wild-type lipid A. Deletion of the lipid A modification genes msbB and pagP was required to achieve pure penta-acylation. Interestingly, ΔmsbBΔ pagP GMMA from S. Enteritidis had a slightly higher stimulatory potential than those from S. Typhimurium, a finding consistent with the higher lipopolysaccharide (LPS) content and Toll-like receptor 2 (TLR2) stimulatory potential of the former. Also, TLR5 ligand flagellin was found in Salmonella GMMA. No relevant contribution to the stimulatory potential of GMMA was detected even when the flagellin protein FliC from S. Typhimurium was added at a concentration as high as 10% of total protein, suggesting that flagellin impurities are not a major factor for GMMA-mediated immune stimulation. Overall, the stimulatory potential of S. Typhimurium and S. Enteritidis ΔmsbB ΔpagP GMMA was close to that of Shigella sonnei GMMA, which are currently in phase I clinical trials. Copyright © 2016 Rossi et al.
Simon, Raphael; Tennant, Sharon M.; Wang, Jin Y.; Schmidlein, Patrick J.; Lees, Andrew; Ernst, Robert K.; Pasetti, Marcela F.; Galen, James E.; Levine, Myron M.
2011-01-01
Nontyphoidal Salmonella enterica serovars Enteritidis and Typhimurium are a common cause of gastroenteritis but also cause invasive infections and enteric fever in certain hosts (young children in sub-Saharan Africa, the elderly, and immunocompromised individuals). Salmonella O polysaccharides (OPS) and flagellar proteins are virulence factors and protective antigens. The surface polysaccharides of Salmonella are poorly immunogenic and do not confer immunologic memory, limitations overcome by covalently attaching them to carrier proteins. We conjugated core polysaccharide-OPS (COPS) of Salmonella Enteritidis lipopolysaccharide (LPS) to flagellin protein from the homologous strain. COPS and flagellin were purified from a genetically attenuated (ΔguaBA) “reagent strain” (derived from an isolate from a patient with clinical bacteremia) engineered for increased flagellin production (ΔclpPX). Conjugates were constructed by linking flagellin monomers or polymers at random COPS hydroxyls with various polysaccharide/protein ratios by 1-cyano-4-dimethylaminopyridinium tetrafluoroborate (CDAP) or at the 3-deoxy-d-manno-octulosonic acid (KDO) terminus by thioether chemistry. Mice immunized on days 0, 28, and 56 with COPS-flagellin conjugates mounted higher anti-LPS IgG levels than mice receiving unconjugated COPS and exhibited high antiflagellin IgG; anti-LPS and antiflagellin IgG levels increased following booster doses. Antibodies generated by COPS-flagellin conjugates mediated opsonophagocytosis of S. Enteritidis cells into mouse macrophages. Mice immunized with flagellin alone, COPS-CRM197, or COPS-flagellin conjugates were significantly protected from lethal challenge with wild-type S. Enteritidis (80 to 100% vaccine efficacy). PMID:21807909
Dantas, Stéfani T A; Rossi, Bruna F; Bonsaglia, Erika C R; Castilho, Ivana G; Hernandes, Rodrigo T; Fernandes, Ary; Rall, Vera L M
2018-02-01
Cross-contamination is one of the main factors related to foodborne outbreaks. This study aimed to analyze the cross-contamination process of Salmonella enterica serovar Enteritidis from poultry to cucumbers, on various cutting board surfaces (plastic, wood, and glass) before and after washing and in the presence and absence of biofilm. Thus, 10 strains of Salmonella Enteritidis were used to test cross-contamination from poultry to the cutting boards and from thereon to cucumbers. Moreover, these strains were evaluated as to their capacity to form biofilm on hydrophobic (wood and plastic) and hydrophilic materials (glass). We recovered the 10 isolates from all unwashed boards and from all cucumbers that had contacted them. After washing, the recovery ranged from 10% to 100%, depending on the board material. In the presence of biofilm, the recovery of salmonellae was 100%, even after washing. Biofilm formation occurred more on wood (60%) and plastic (40%) than glass (10%) boards, demonstrating that bacteria adhered more to a hydrophobic material. It was concluded that the cutting boards represent a critical point in cross-contamination, particularly in the presence of biofilm. Salmonella Enteritidis was able to form a biofilm on these three types of cutting boards but glass showed the least formation.
Houhoula, Dimitra; Papaparaskevas, Joseph; Zatsou, Katerina; Nikolaras, Nikolaos; Malkawi, Hanan I; Mingenot-Leclercq, Marie-Paule; Konteles, Spyros; Koussisis, Stamatis; Tsakris, Athanassios; Charvalos, Ekatherina
2017-07-01
This paper evaluated magnetic nanoparticle-enhanced PCR for the detection and identification of Staphylococcus aureus and Salmonella enteritidis. Two different types of magnetic nanoparticles designated MPIO (iron concentration 2.5 mg/ml, size 1 µm) and NP (iron concentration 8.7 mg/ml, size 60 nm), both conjugated with S. aureus or S. enteritidis antibodies were evaluated as an enrichment procedure for PCR-detection of the pathogens in Trypticase Soy Broth, milk, blood and meat broth. Bacterial suspensions (1.5x108 cfu/ml) were prepared and serial diluted 10-1. The MPIO and NP nanoparticles were added, followed by incubation for 1 hour at room temperature, magnetic separation of the pellet, DNA extraction and PCR, targeting the femA and invA sequences. The nanoparticle-free and the NP-supplemented dilutions were positive down to the 1.5x102 cfu/ml concentration for both bacteria. The MPIO-supplemented dilutions were positive down to approx. 2x100 cfu/ml concentration, respectively. Bacteria-free TSB was negative by PCR. MPIO nanoparticles (size 1 µm) enhanced the detection of S. aureus and S. enteritidis by PCR, whilst NP nanoparticles (size 60 nm) did not, thus indicating that the size of the magnetic nanoparticles play a significant role in the enrichment procedure.
Enshell-Seijffers, D; Smelyanski, L; Gershoni, J M
2001-05-15
Filamentous bacteriophages are particularly efficient for the expression and display of combinatorial random peptides. Two phage proteins are often employed for peptide display: the infectivity protein, PIII, and the major coat protein, PVIII. The use of PVIII typically requires the expression of two pVIII genes: the wild-type and the recombinant pVIII gene, to generate mosaic phages. 'Type 88' vectors contain two pVIII genes in one phage genome. In this study a novel 'type 88' expression vector has been rationally designed and constructed. Two factors were taken into account: the insertion site and the genetic stability of the second pVIII gene. It was found that selective deletion of recombinant genes was encountered when inserts were cloned into either of the two non-coding regions of the phage genome. The deletions were independent of recA yet required a functional F-episome. Transcription was also found to be a positive factor for deletion. Taking the above into account led to the generation of a novel vector, designated fth1, which can be used to express recombinant peptides as pVIII chimeric proteins in mosaic bacteriophages. The fth1 vector is not only genetically stable but also of high copy number and produces high titers of recombinant phages.
Jawale, Chetan V.
2014-01-01
The Escherichia coli heat-labile enterotoxin B subunit (LTB) is a potent vaccine adjuvant. Salmonella enterica serovar Enteritidis ghosts carrying LTB (S. Enteritidis-LTB ghosts) were genetically constructed using a novel plasmid, pJHL187-LTB, designed for the coexpression of the LTB and E lysis proteins. S. Enteritidis-LTB ghosts were characterized using scanning electron microscopy to visualize their transmembrane tunnel structures. The expression of LTB in S. Enteritidis-LTB ghost preparations was confirmed by immunoblot and enzyme-linked immunosorbent assays. The parenteral adjuvant activity of LTB was demonstrated by immunizing chickens with either S. Enteritidis-LTB ghosts or S. Enteritidis ghosts. Chickens were intramuscularly primed at 5 weeks of age and subsequently boosted at 8 weeks of age. In total, 60 chickens were equally divided into three groups (n = 20 for each): group A, nonvaccinated control; group B, immunized with S. Enteritidis-LTB ghosts; and group C, immunized with S. Enteritidis ghosts. Compared with the nonimmunized chickens (group A), the immunized chickens (groups B and C) exhibited increased titers of plasma IgG and intestinal secretory IgA antibodies. The CD3+ CD4+ subpopulation of T cells was also significantly increased in both immunized groups. Among the immunized chickens, those in group B exhibited significantly increased titers of specific plasma IgG and intestinal secretory IgA (sIgA) antibodies compared with those in group C, indicating the immunomodulatory effects of the LTB adjuvant. Furthermore, both immunized groups exhibited decreased bacterial loads in their feces and internal organs. These results indicate that parenteral immunization with S. Enteritidis-LTB ghosts can stimulate superior induction of systemic and mucosal immune responses compared to immunization with S. Enteritidis ghosts alone, thus conferring efficient protection against salmonellosis. PMID:24671556
de Freitas Neto, Oliveiro Caetano; Mesquita, Aline Lopes; de Paiva, Jaqueline Boldrin; Zotesso, Fábio; Berchieri Júnior, Angelo
2008-01-01
Salmonella Enteritidis is one of the agents that is responsible for outbreaks of human foodborne salmonellosis caused by Salmonella Enteritidis and is generally associated with the consumption of poultry products. Inactivated Salmonella Enteritidis cell vaccine is one of the available methods to control Salmonella Enteritidis in breeders and laying hens, however results in terms of efficacy vary. This vaccine has never been tested in Brazil, therefore, the present work was carried out to assess three commercial inactivated Salmonella Enteritidis vaccines allowed in Brazil. Four hundred white light variety commercial laying hens were obtained at one-day-of age. At eight weeks old, the birds were divided into four groups with one hundred animals each. Birds from three groups (V1, V2 and V3) received different intramuscular vaccines, followed by a booster dose at 16 weeks of age. Birds from another group (CG) were not vaccinated. When the laying hens were 20, 25 and 31 weeks old, 13 from each group were transferred to another room and were challenged by inoculating 2 mL neat culture of Salmonella Enteritidis. On the second day after each challenge, the caecal contents, spleen, liver and ovary of three birds from each group were analyzed for the presence of Salmonella Enteritidis. Twice a week a cloacal swab of each bird was taken and all eggs laid were examined for the presence of Salmonella Enteritidis. After four consecutive negative cloacal swabs in all the groups, the birds were sacrificed so as to examine the liver, caecal contents and ovaries. Overall, the inactivated vaccine used in group V3 reduced Salmonella Enteritidis in the feces and eggs. A very small amount of Salmonella was found in the spleen, liver, ovary and caeca of the birds in the four groups during the whole experiment. In general, inactivated Salmonella Enteritidis vaccines was able to decrease the presence of Salmonella Enteritidis in the birds and in the eggs as well. Nevertheless, they must be associated with general hygiene and disinfection practices in poultry husbandry. PMID:24031235
Bacteriophage-Based Pathogen Detection
NASA Astrophysics Data System (ADS)
Ripp, Steven
Considered the most abundant organism on Earth, at a population approaching 1031, bacteriophage, or phage for short, mediate interactions with myriad bacterial hosts that has for decades been exploited in phage typing schemes for signature identification of clinical, food-borne, and water-borne pathogens. With over 5,000 phage being morphologically characterized and grouped as to susceptible host, there exists an enormous cache of bacterial-specific sensors that has more recently been incorporated into novel bio-recognition assays with heightened sensitivity, specificity, and speed. These assays take many forms, ranging from straightforward visualization of labeled phage as they attach to their specific bacterial hosts to reporter phage that genetically deposit trackable signals within their bacterial hosts to the detection of progeny phage or other uniquely identifiable elements released from infected host cells. A comprehensive review of these and other phage-based detection assays, as directed towards the detection and monitoring of bacterial pathogens, will be provided in this chapter.
Kang, Yao-Xia; Li, Xu-Ming; Piao, Dong-Ri; Tian, Guo-Zhong; Jiang, Hai; Jia, En-Hou; Lin, Liang; Cui, Bu-Yun; Chang, Yung-Fu; Guo, Xiao-Kui; Zhu, Yong-Zhang
2015-01-01
A newly isolated smooth colony morphology phage-resistant strain 8416 isolated from a 45-year-old cattle farm cleaner with clinical features of brucellosis in China was reported. The most unusual phenotype was its resistance to two Brucella phages Tbilisi and Weybridge, but sensitive to Berkeley 2, a pattern similar to that of Brucella melitensis biovar 1. VITEK 2 biochemical identification system found that both strain 8416 and B. melitensis strains shared positive ILATk, but negative in other B. abortus strains. However, routine biochemical and phenotypic characteristics of strain 8416 were most similar to that of B. abortus biovar 9 except CO2 requirement. In addition, multiple PCR molecular typing assays including AMOS-PCR, B. abortus special PCR (B-ab PCR) and a novel sub-biovar typing PCR, indicated that strain 8416 may belong to either biovar 3b or 9 of B. abortus. Surprisingly, further MLVA typing results showed that strain 8416 was most closely related to B. abortus biovar 3 in the Brucella MLVA database, primarily differing in 4 out of 16 screened loci. Therefore, due to the unusual discrepancy between phenotypic (biochemical reactions and particular phage lysis profile) and molecular typing characteristics, strain 8416 could not be exactly classified to any of the existing B. abortus biovars and might be a new variant of B. abortus biovar 9. The present study also indicates that the present phage typing scheme for Brucella sp. is subject to variation and the routine Brucella biovar typing needs further studies.
Twelve previously unknown phage genera are ubiquitous in global oceans
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holmfeldt, Karin; Solonenko, Natalie; Shah, Manesh B
Viruses are fundamental to ecosystems ranging from oceans to humans, yet our ability to study them is bottlenecked by the lack of ecologically relevant isolates, resulting in unknowns dominating culture-independent surveys. Here we present genomes from 31 phages infecting multiple strains of the aquatic bacterium Cellulophaga baltica (Bacteroidetes) to provide data for an underrepresented and environmentally abundant bacterial lineage. Comparative genomics delineated 12 phage groups that (i) each represent a new genus, and (ii) represent one novel and four wellknown viral families. This diversity contrasts the few well-studied marine phage systems, but parallels the diversity of phages infecting human-associated bacteria.more » Although all 12 Cellulophaga phages represent new genera, the podoviruses and icosahedral, nontailed ssDNA phages were exceptional, with genomes up to twice as large as those previously observed for each phage type. Structural novelty was also substantial, requiring experimental phage proteomics to identify 83% of the structural proteins. The presence of uncommon nucleotide metabolism genes in four genera likely underscores the importance of scavenging nutrient-rich molecules as previously seen for phages in marine environments. Metagenomic recruitment analyses suggest that these particular Cellulophaga phages are rare and may represent a first glimpse into the phage side of the rare biosphere. However, these analyses also revealed that these phage genera are widespread, occurring in 94% of 137 investigated metagenomes. Together, this diverse and novel collection of phages identifies a small but ubiquitous fraction of unknown marine viral diversity and provides numerous environmentally relevant phage host systems for experimental hypothesis testing.« less
Twelve previously unknown phage genera are ubiquitous in global oceans.
Holmfeldt, Karin; Solonenko, Natalie; Shah, Manesh; Corrier, Kristen; Riemann, Lasse; Verberkmoes, Nathan C; Sullivan, Matthew B
2013-07-30
Viruses are fundamental to ecosystems ranging from oceans to humans, yet our ability to study them is bottlenecked by the lack of ecologically relevant isolates, resulting in "unknowns" dominating culture-independent surveys. Here we present genomes from 31 phages infecting multiple strains of the aquatic bacterium Cellulophaga baltica (Bacteroidetes) to provide data for an underrepresented and environmentally abundant bacterial lineage. Comparative genomics delineated 12 phage groups that (i) each represent a new genus, and (ii) represent one novel and four well-known viral families. This diversity contrasts the few well-studied marine phage systems, but parallels the diversity of phages infecting human-associated bacteria. Although all 12 Cellulophaga phages represent new genera, the podoviruses and icosahedral, nontailed ssDNA phages were exceptional, with genomes up to twice as large as those previously observed for each phage type. Structural novelty was also substantial, requiring experimental phage proteomics to identify 83% of the structural proteins. The presence of uncommon nucleotide metabolism genes in four genera likely underscores the importance of scavenging nutrient-rich molecules as previously seen for phages in marine environments. Metagenomic recruitment analyses suggest that these particular Cellulophaga phages are rare and may represent a first glimpse into the phage side of the rare biosphere. However, these analyses also revealed that these phage genera are widespread, occurring in 94% of 137 investigated metagenomes. Together, this diverse and novel collection of phages identifies a small but ubiquitous fraction of unknown marine viral diversity and provides numerous environmentally relevant phage-host systems for experimental hypothesis testing.
21 CFR 118.6 - Egg testing for Salmonella Enteritidis (SE).
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Egg testing for Salmonella Enteritidis (SE). 118.6... testing for Salmonella Enteritidis (SE). (a)(1) If the environmental test for pullets at 14 to 16 weeks of... requires that these eggs must be treated to achieve at least a 5-log destruction of Salmonella Enteritidis...
21 CFR 118.6 - Egg testing for Salmonella Enteritidis (SE).
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Egg testing for Salmonella Enteritidis (SE). 118.6... testing for Salmonella Enteritidis (SE). (a)(1) If the environmental test for pullets at 14 to 16 weeks of... requires that these eggs must be treated to achieve at least a 5-log destruction of Salmonella Enteritidis...
21 CFR 118.6 - Egg testing for Salmonella Enteritidis (SE).
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Egg testing for Salmonella Enteritidis (SE). 118.6... testing for Salmonella Enteritidis (SE). (a)(1) If the environmental test for pullets at 14 to 16 weeks of... requires that these eggs must be treated to achieve at least a 5-log destruction of Salmonella Enteritidis...
National surveillance of Salmonella Enteritidis in commercial eggs in Japan.
Esaki, H; Shimura, K; Yamazaki, Y; Eguchi, M; Nakamura, M
2013-05-01
A total of 105 033 eggs were collected across Japan from June 2010 to January 2011 and tested for Salmonella Enteritidis to provide data for the risk profiling of S. Enteritidis in eggs by the Food Safety Commission of Japan. S. Enteritidis isolates were recovered from three samples (20 eggs/sample) and these samples were different in regard to sampling period, grading and packaging centre and farm. The prevalence of S. Enteritidis in commercial eggs in Japan is estimated at ~0.003% which was a tenfold decrease in prevalence compared to similar surveillance in the mid 1990s. The decrease in the contamination in commercial eggs is considered a contributory factor in the decrease of foodborne diseases associated with S. Enteritidis in this period.
Hayes, Stephen; Murphy, James; Mahony, Jennifer; Lugli, Gabriele A.; Ventura, Marco; Noben, Jean-Paul; Franz, Charles M. A. P.; Neve, Horst; Nauta, Arjen; Van Sinderen, Douwe
2017-01-01
Lactococcus lactis strains, being intensely used in the dairy industry, are particularly vulnerable to members of the so-called 936 group of phages. Sanitization and disinfection using purpose-made biocidal solutions is a critical step in controlling phage contamination in such dairy processing plants. The susceptibility of 36 936 group phages to biocidal treatments was examined using 14 biocides and commercially available sanitizers. The targets of a number of these biocides were investigated by means of electron microscopic and proteomic analyses. The results from this study highlight significant variations in phage resistance to biocides among 936 phages. Furthermore, rather than possessing resistance to specific biocides or biocide types, biocide-resistant phages tend to possess a broad tolerance to multiple classes of antimicrobial compounds. PMID:28210242
NASA Astrophysics Data System (ADS)
Kim, G.; Morgan, M.; Hahm, B. K.; Bhunia, A.; Mun, J. H.; Om, A. S.
2008-03-01
Salmonella enteritidis outbreaks continue to occur, and S. enteritidis-related outbreaks from various food sources have increased public awareness of this pathogen. Conventional methods for pathogens detection and identification are labor-intensive and take days to complete. Some immunological rapid assays are developed, but these assays still require prolonged enrichment steps. Recently developed biosensors have shown great potential for the rapid detection of foodborne pathogens. To develop the biosensor, an interdigitated microelectrode (IME) was fabricated by using semiconductor fabrication process. Anti-Salmonella antibodies were immobilized based on avidin-biotin binding on the surface of the IME to form an active sensing layer. To increase the sensitivity of the sensor, three types of sensors that have different electrode gap sizes (2 μm, 5 μm, 10 μm) were fabricated and tested. The impedimetric biosensor could detect 103 CFU/mL of Salmonella in pork meat extract with an incubation time of 5 minutes. This method may provide a simple, rapid and sensitive method to detect foodborne pathogens.
Elsheimer-Matulova, Marta; Varmuzova, Karolina; Kyrova, Kamila; Havlickova, Hana; Sisak, Frantisek; Rahman, Masudur; Rychlik, Ivan
2015-09-17
Poultry is the most frequent reservoir of non-typhoid Salmonella enterica for humans. Understanding the interactions between chickens and S. enterica is therefore important for vaccine design and subsequent decrease in the incidence of human salmonellosis. In this study we therefore characterized the interactions between chickens and phoP, aroA, SPI1 and SPI2 mutants of S. Enteritidis. First we tested the response of HD11 chicken macrophage-like cell line to S. Enteritidis infection monitoring the transcription of 36 genes related to immune response. All the mutants and the wild type strain induced inflammatory signaling in the HD11 cell line though the response to SPI1 mutant infection was different from the rest of the mutants. When newly hatched chickens were inoculated, the phoP as well as the SPI1 mutant did not induce an expression of any of the tested genes in the cecum. Despite this, such chickens were protected against challenge with wild-type S. Enteritidis. On the other hand, inoculation of chickens with the aroA or SPI2 mutant induced expression of 27 and 18 genes, respectively, including genes encoding immunoglobulins. Challenge of chickens inoculated with these two mutants resulted in repeated induction of 11 and 13 tested genes, respectively, including the genes encoding immunoglobulins. In conclusion, SPI1 and phoP mutants induced protective immunity without inducing an inflammatory response and antibody production. Inoculation of chickens with the SPI2 and aroA mutants also led to protective immunity but was associated with inflammation and antibody production. The differences in interaction between the mutants and chicken host can be used for a more detailed understanding of the chicken immune system.
Host exopolysaccharide quantity and composition impact Erwinia amylovora bacteriophage pathogenesis.
Roach, Dwayne R; Sjaarda, David R; Castle, Alan J; Svircev, Antonet M
2013-05-01
Erwinia amylovora bacteriophages (phages) belonging to the Myoviridae and Podoviridae families demonstrated a preference for either high-exopolysaccharide-producing (HEP) or low-exopolysaccharide-producing (LEP) bacterial hosts when grown on artificial medium without or with sugar supplementation. Myoviridae phages produced clear plaques on LEP hosts and turbid plaques on HEP hosts. The reverse preference was demonstrated by most Podoviridae phages, where clear plaques were seen on HEP hosts. Efficiency of plating (EOP) was determined by comparing phage growth on the original isolation host to the that on the LEP or HEP host. Nine of 10 Myoviridae phages showed highest EOPs on LEP hosts, and 8 of 11 Podoviridae phages had highest EOPs on HEP hosts. Increasing the production of EPS on sugar-supplemented medium or decreasing production by knocking out the synthesis of amylovoran or levan, the two EPSs produced by E. amylovora, indicated that these components play crucial roles in phage infection. Amylovoran was virtually essential for proliferation of most Podoviridae phages when phage population growth was compared to the wild type. Decreased levan production resulted in a significant reduction of progeny from phages in the Myoviridae family. Thus, Podoviridae phages are adapted to hosts that produce high levels of exopolysaccharides and are dependent on host-produced amylovoran for pathogenesis. Myoviridae phages are adapted to hosts that produce lower levels of exopolysaccharides and host-produced levan.
Host Exopolysaccharide Quantity and Composition Impact Erwinia amylovora Bacteriophage Pathogenesis
Roach, Dwayne R.; Sjaarda, David R.; Svircev, Antonet M.
2013-01-01
Erwinia amylovora bacteriophages (phages) belonging to the Myoviridae and Podoviridae families demonstrated a preference for either high-exopolysaccharide-producing (HEP) or low-exopolysaccharide-producing (LEP) bacterial hosts when grown on artificial medium without or with sugar supplementation. Myoviridae phages produced clear plaques on LEP hosts and turbid plaques on HEP hosts. The reverse preference was demonstrated by most Podoviridae phages, where clear plaques were seen on HEP hosts. Efficiency of plating (EOP) was determined by comparing phage growth on the original isolation host to the that on the LEP or HEP host. Nine of 10 Myoviridae phages showed highest EOPs on LEP hosts, and 8 of 11 Podoviridae phages had highest EOPs on HEP hosts. Increasing the production of EPS on sugar-supplemented medium or decreasing production by knocking out the synthesis of amylovoran or levan, the two EPSs produced by E. amylovora, indicated that these components play crucial roles in phage infection. Amylovoran was virtually essential for proliferation of most Podoviridae phages when phage population growth was compared to the wild type. Decreased levan production resulted in a significant reduction of progeny from phages in the Myoviridae family. Thus, Podoviridae phages are adapted to hosts that produce high levels of exopolysaccharides and are dependent on host-produced amylovoran for pathogenesis. Myoviridae phages are adapted to hosts that produce lower levels of exopolysaccharides and host-produced levan. PMID:23503310
Liu, Mei; Gill, Jason J.; Young, Ry; Summer, Elizabeth J.
2015-01-01
Filamentous bacteria are a normal and necessary component of the activated sludge wastewater treatment process, but the overgrowth of filamentous bacteria results in foaming and bulking associated disruptions. Bacteriophages, or phages, were investigated for their potential to reduce the titer of foaming bacteria in a mixed-microbial activated sludge matrix. Foaming-associated filamentous bacteria were isolated from activated sludge of a commercial wastewater treatment plan and identified as Gordonia species by 16S rDNA sequencing. Four representative phages were isolated that target G. malaquae and two un-named Gordonia species isolates. Electron microscopy revealed the phages to be siphophages with long tails. Three of the phages - GordTnk2, Gmala1, and GordDuk1 - had very similar ~76 kb genomes, with >93% DNA identity. These genomes shared limited synteny with Rhodococcus equi phage ReqiDocB7 and Gordonia phage GTE7. In contrast, the genome of phage Gsput1 was smaller (43 kb) and was not similar enough to any known phage to be placed within an established phage type. Application of these four phages at MOIs of 5–15 significantly reduced Gordonia host levels in a wastewater sludge model by approximately 10-fold as compared to non-phage treated reactors. Phage control was observed for nine days after treatment. PMID:26349678
Kim, Hyeryen; Choi, Younho; Heu, Sunggi; Ryu, Sangryeol
2012-01-01
Background Salmonella enterica subspecies enterica serovar Typhimurium is a Gram-negative pathogen causing salmonellosis. Salmonella Typhimurium-targeting bacteriophages have been proposed as an alternative biocontrol agent to antibiotics. To further understand infection and interaction mechanisms between the host strains and the bacteriophages, the receptor diversity of these phages needs to be elucidated. Methodology/Principal Findings Twenty-five Salmonella phages were isolated and their receptors were identified by screening a Tn5 random mutant library of S. Typhimurium SL1344. Among them, three types of receptors were identified flagella (11 phages), vitamin B12 uptake outer membrane protein, BtuB (7 phages) and lipopolysaccharide-related O-antigen (7 phages). TEM observation revealed that the phages using flagella (group F) or BtuB (group B) as a receptor belong to Siphoviridae family, and the phages using O-antigen of LPS as a receptor (group L) belong to Podoviridae family. Interestingly, while some of group F phages (F-I) target FliC host receptor, others (F-II) target both FliC and FljB receptors, suggesting that two subgroups are present in group F phages. Cross-resistance assay of group B and L revealed that group L phages could not infect group B phage-resistant strains and reversely group B phages could not infect group L SPN9TCW-resistant strain. Conclusions/Significance In this report, three receptor groups of 25 newly isolated S. Typhimurium-targeting phages were determined. Among them, two subgroups of group F phages interact with their host receptors in different manner. In addition, the host receptors of group B or group L SPN9TCW phages hinder other group phage infection, probably due to interaction between receptors of their groups. This study provides novel insights into phage-host receptor interaction for Salmonella phages and will inform development of optimal phage therapy for protection against Salmonella. PMID:22927964
Complete Genome Sequences of 44 Arthrobacter Phages.
Klyczek, Karen K; Jacobs-Sera, Deborah; Adair, Tamarah L; Adams, Sandra D; Ball, Sarah L; Benjamin, Robert C; Bonilla, J Alfred; Breitenberger, Caroline A; Daniels, Charles J; Gaffney, Bobby L; Harrison, Melinda; Hughes, Lee E; King, Rodney A; Krukonis, Gregory P; Lopez, A Javier; Monsen-Collar, Kirsten; Pizzorno, Marie C; Rinehart, Claire A; Staples, Amanda K; Stowe, Emily L; Garlena, Rebecca A; Russell, Daniel A; Cresawn, Steven G; Pope, Welkin H; Hatfull, Graham F
2018-02-01
We report here the complete genome sequences of 44 phages infecting Arthrobacter sp. strain ATCC 21022. These phages have double-stranded DNA genomes with sizes ranging from 15,680 to 70,707 bp and G+C contents from 45.1% to 68.5%. All three tail types (belonging to the families Siphoviridae , Myoviridae , and Podoviridae ) are represented. Copyright © 2018 Klyczek et al.
Complete Genome Sequences of 44 Arthrobacter Phages
Klyczek, Karen K.; Adair, Tamarah L.; Adams, Sandra D.; Ball, Sarah L.; Benjamin, Robert C.; Bonilla, J. Alfred; Breitenberger, Caroline A.; Daniels, Charles J.; Gaffney, Bobby L.; Harrison, Melinda; Hughes, Lee E.; King, Rodney A.; Krukonis, Gregory P.; Lopez, A. Javier; Monsen-Collar, Kirsten; Pizzorno, Marie C.; Staples, Amanda K.; Stowe, Emily L.; Garlena, Rebecca A.; Russell, Daniel A.
2018-01-01
ABSTRACT We report here the complete genome sequences of 44 phages infecting Arthrobacter sp. strain ATCC 21022. These phages have double-stranded DNA genomes with sizes ranging from 15,680 to 70,707 bp and G+C contents from 45.1% to 68.5%. All three tail types (belonging to the families Siphoviridae, Myoviridae, and Podoviridae) are represented. PMID:29437090
He, S; Zhou, X; Shi, C; Shi, X
2016-03-01
Salmonella enterica serovar Enteritidis (Salm. Enteritidis) encounters mild ethanol stress during its life cycle. However, adaptation to a stressful condition may affect bacterial resistance to subsequent stresses. Hence, this work was undertaken to investigate the influences of ethanol adaptation on stress tolerance of Salm. Enteritidis. Salmonella Enteritidis was subjected to different ethanol adaptation treatments (2·5-10% ethanol for 1 h). Cellular morphology and tolerance to subsequent environmental stresses (15% ethanol, -20°C, 4°C, 50°C and 10% NaCl) were evaluated. It was found that 10% was the maximum ethanol concentration that allowed growth of the target bacteria. Ethanol adaptation did not cause cell-surface damage in Salm. Enteritidis as revealed by membrane permeability measurements and electron micrograph analysis. Salmonella Enteritidis adapted with 2·5-10% ethanol displayed an enhanced resistance to a 15%-ethanol challenge compared with an unchallenged control. The maximum ethanol resistance was observed when ethanol concentration used for ethanol adaptation was increased to 5·0%. Additionally, pre-adaptation to 5·0% ethanol cross-protected Salm. Enteritidis against -20°C, but not against 4°C, 50°C or 10% NaCl. Ethanol adaptation provided Salm. Enteritidis direct protection from a high level ethanol challenge and cross-protection from freezing, but not other stresses tested (low temperature, high salinity or high temperature). The results are valuable in developing adequate and efficient control measures for Salm. Enteritidis in foods. © 2016 The Society for Applied Microbiology.
Lu, Po-Liang; Hwang, In-Jane; Tung, Ya-Lina; Hwang, Shang-Jyh; Lin, Chun-Lu; Siu, LK
2004-01-01
Background An increase in the number of attendees due to acute gastroenteritis and fever was noted at one hospital emergency room in Taiwan over a seven-day period from July to August, 2001. Molecular and epidemiological surveys were performed to trace the possible source of infection. Methods An epidemiological investigation was undertaken to determine the cause of the outbreak. Stool and blood samples were collected according to standard protocols per Center for Disease Control, Taiwan. Typing of the Salmonella isolates from stool, blood, and food samples was performed with serotyping, antibiotypes, and pulsed field gel electrophoresis (PFGE) following XbaI restriction enzyme digestion. Results Comparison of the number of patients with and without acute gastroenteritis (506 and 4467, respectively) during the six weeks before the outbreak week revealed a significant increase in the number of patients during the outbreak week (162 and 942, respectively) (relative risk (RR): 1.44, 95% confidence interval (CI): 1.22–1.70, P value < 0.001). During the week of the outbreak, 34 of 162 patients with gastroenteritis were positive for Salmonella, and 28 of these 34 cases reported eating the same kind of bread. In total, 28 of 34 patients who ate this bread were positive for salmonella compared to only 6 of 128 people who did not eat this bread (RR: 17.6, 95%CI 7.9–39.0, P < 0.001). These breads were produced by the same bakery and were distributed to six different traditional Chinese markets., Salmonella enterica subsp. enterica serovar Enteritidis (S. Enteritidis) was isolated from the stool samples of 28 of 32 individuals and from a recalled bread sample. All S. Enteritidis isolates were of the same antibiogram. PFGE typing revealed that all except two of the clinical isolates and the bread isolates were of the same DNA macrorestriction pattern. Conclusions The egg-covered bread contaminated with S. Enteritidis was confirmed as the vehicle of infection. Alertness in the emergency room, surveillance by the microbiology laboratory, prompt and thorough investigation to trace the source of outbreaks, and institution of appropriate control measures provide effective control of community outbreaks. PMID:15541186
Holt, Peter S; Geden, Christopher J; Moore, Randle W; Gast, Richard K
2007-10-01
Houseflies (Musca domestica) released into rooms containing hens challenged with Salmonella enterica serovar Enteritidis (Salmonella serovar Enteritidis) rapidly became contaminated with Salmonella serovar Enteritidis. Forty to 50% of the flies were contaminated at 48 h, and the percentage increased to 50 to 70% at 4 and 7 days postexposure and then decreased to 30% at day 15. Initial attempts at recovering surface organisms for culture using an aqueous rinse were largely unsuccessful, while cultures of internal contents readily recovered Salmonella serovar Enteritidis. However, when 0.5% detergent was incorporated into the rinse, high recovery levels of bacteria were observed from both external and internal culture regimens, indicating equal distribution of the organism on and in the fly and a tighter interaction of the organism with the host than previously thought. Salmonella serovar Enteritidis was isolated routinely from the fly gut, on rare occasions from the crop, and never from the salivary gland. Feeding contaminated flies to hens resulted in gut colonization of a third of the birds, but release of contaminated flies in a room containing previously unchallenged hens failed to result in colonization of any of the subject birds. These results indicate that flies exposed to an environment containing Salmonella serovar Enteritidis can become colonized with the organism and might serve as a source for transmission of Salmonella serovar Enteritidis within a flock situation.
Holt, Peter S.; Geden, Christopher J.; Moore, Randle W.; Gast, Richard K.
2007-01-01
Houseflies (Musca domestica) released into rooms containing hens challenged with Salmonella enterica serovar Enteritidis (Salmonella serovar Enteritidis) rapidly became contaminated with Salmonella serovar Enteritidis. Forty to 50% of the flies were contaminated at 48 h, and the percentage increased to 50 to 70% at 4 and 7 days postexposure and then decreased to 30% at day 15. Initial attempts at recovering surface organisms for culture using an aqueous rinse were largely unsuccessful, while cultures of internal contents readily recovered Salmonella serovar Enteritidis. However, when 0.5% detergent was incorporated into the rinse, high recovery levels of bacteria were observed from both external and internal culture regimens, indicating equal distribution of the organism on and in the fly and a tighter interaction of the organism with the host than previously thought. Salmonella serovar Enteritidis was isolated routinely from the fly gut, on rare occasions from the crop, and never from the salivary gland. Feeding contaminated flies to hens resulted in gut colonization of a third of the birds, but release of contaminated flies in a room containing previously unchallenged hens failed to result in colonization of any of the subject birds. These results indicate that flies exposed to an environment containing Salmonella serovar Enteritidis can become colonized with the organism and might serve as a source for transmission of Salmonella serovar Enteritidis within a flock situation. PMID:17675422
Kamble, N M; Jawale, C V; Lee, J H
2016-10-01
Bacterial Ghost-based vaccine development has been applied to a variety of gram-negative bacteria. Developed Salmonella Enteritidis (S. Enteritidis) ghost are promising vaccine candidates because of their immunogenic and enhanced biosafety potential. In this study, we aimed to evaluate the immunostimulatory effect of a S. Enteritidis ghost vaccine on the maturation of chicken bone marrow-derived dendritic cells (chBM-DCs) in vitro The immature chBM-DCs were stimulated with S. Enteritidis ghost vaccine candidate. The vaccine efficiently stimulated maturation events in chBM-DCs, indicated by up-regulated expression of CD40, CD80, and MHC-II molecules. Immature BM-DCs responded to stimulation with S. Enteritidis ghost by increased expression of IL-6 and IL-12p40 cytokines. Also, S. Enteritidis ghost stimulated chBM-DCs induced the significant expression of IFN-γ and IL-2 in co-cultured autologous CD4+ T cells. In conclusion, our data suggest that S. Enteritidis ghost vaccine candidate is capable of activating and interacting with chBM-DCs. The results from current study may help for rational designing of Salmonella ghost based heterologous antigen delivery platforms to dendritic cells. © 2016 Poultry Science Association Inc.
Wang, Gaoling; Shi, Bingtian; Li, Tao; Zuo, Teng; Wang, Bin; Si, Wei; Xin, Jiuqing; Yang, Kongbin; Shi, Xuanlin; Liu, Siguo; Liu, Henggui
2016-02-29
Salmonella enterica serovar Enteritidis (S. Enteritidis) is a major cause of food-borne illness around the world and can have significant health implications in humans, poultry and other animals. Flagellin (FliC) is the primary component of bacterial flagella. It has been shown that the FliC of S. Enteritidis is a significant antigenic structure and can elicit strong humoral responses against S. Enteritidis infection in chickens. Here, we constructed a FliC antigen library using a yeast surface expression system. Yeast cells expressing FliC peptide antigens were labeled with chicken sera against S. Enteritidis and sorted using FACS. The analyses of FliC peptides revealed that the FliC linear antigenicity in chickens resided on three domains which were able to elicit strong humoral responses in vivo. Animal experiments further revealed that the antibodies elicited by these antigenic domains were able to significantly inhibit the invasion of S. Enteritidis into the liver and spleen of chickens. These findings will facilitate our better understanding of the humoral responses elicited by FliC in chickens upon infection by S. Enteritidis. Copyright © 2016 Elsevier B.V. All rights reserved.
Cirone, K.; Huberman, Y.; Morsella, C.; Méndez, L.; Jorge, M.; Paolicchi, F.
2013-01-01
The purpose of this study was to determine the viability of Mycobacterium avium subsp. paratuberculosis (MAP), Escherichia coli (E. coli), and Salmonella Enteritidis (S. Enteritidis) during preparation and refrigerated storage of yogurt. Three yogurts were prepared using pasteurized commercial milk. Each yogurt was artificially contaminated with (1) MAP, (2) E. coli + S. Enteritidis, and (3) MAP + E. coli + S. Enteritidis. Samples were taken during and after the fermentation process until day 20 after inoculation. MAP was not detected during their preparation and short-term storage but was recuperated after starting at 180 min after inoculation storage. Live bacterial counts of E. coli, and S. Enteritidis increased during the first 24 hours, followed by a slight decrease towards the end of the study. In this study it was shown how MAP, E. coli, and S. Enteritidis resisted the acidic conditions generated during the preparation of yogurt and low storage temperatures. This work contributes to current knowledge regarding survival of MAP, E. coli, and S. Enteritidis during preparation and refrigerated storage of yogurt and emphasizes the need to improve hygiene measures to ensure the absence of these pathogenic microorganisms in dairy products. PMID:24455399
Method for producing capsular polysaccharides
NASA Technical Reports Server (NTRS)
Richards, Gil F. (Inventor); Kern, Roger G. (Inventor); Petersen, Gene R. (Inventor)
1994-01-01
Structurally altered capsular polysaccharides are produced by mutant bacteria. These polysaccharides are isolated by selecting a wild type bacterial strain and a phage producing degradative enzymes that have substrate specificity for the capsular polysaccharides produced by the wild type bacteria. Phage-resistant mutants producing capsular polysaccharides are selected and the structurally altered capsular polysaccharide is isolated therefrom.
de Toro, María; Sáenz, Yolanda; Cercenado, Emilia; Rojo-Bezares, Beatriz; García-Campello, Marta; Undabeitia, Esther; Torres, Carmen
2011-09-01
The mechanisms of antimicrobial resistance were characterized in 90 Salmonella enterica isolates either resistant or with intermediate resistance to amoxicillin/clavulanate (AMC(R/I)) or resistant to third-generation cephalosporins (C3G(R)). These isolates were recovered in three Spanish hospitals during 2007-2009. The C3G(R) phenotype was expressed by three isolates that carried the following extended-spectrum β-lactamase genes: phage-associated bla(CTX M-10) in S. Virchow, bla(CTX-M-14a) surrounded by ISEcp1 and IS903 in S. Enteritidis, and bla(CTX-M-15) linked to ISEcp1 and orf477 in S. Gnesta (first description in this serotype). The AMC(R/I) phenotype was found in 87 isolates (79 S. Typhimurim, 7 S. Enteritidis, and one S. Thompson). The bla(PSE-1) gene, followed by bla(OXA-1) was mostly found among S. Typhimurim, and the bla(TEM-1) gene among S. Enteritidis. Three different gene combinations [bla(PSE-1) +floR+aadA2+sul+tet(G); bla(OXA-1) +catA+aadA1/strA-strB+sul+tet(B) and bla(TEM-1) + cmlA1+aadA/strA-strB+sul+tet(A)/tet(B) genes] were associated with the ampicillin-chloramphenicol-streptomycin-sulfonamides-tetracycline phenotype in 68 AMC(R/I) S. enterica isolates. Class 1 integrons were observed in 79% of the isolates and in most of them (45 isolates) two integrons including the aadA2 and bla(PSE-1) gene cassettes, respectively, were detected. The bla(OXA-1) +aadA1 arrangement was detected in 23 isolates, and the aac(6')-Ib-cr+bla(OXA-1) +catB3+arr3 in another one. Non-classic class 1 integrons were found in three isolates: dfrA12+orfF+aadA2+cmlA1+aadA1 (1 isolate), dfrA12+orfF+aadA2+ cmlA1+aadA1+qacH+IS440+sul3 (1 isolate) and dfrA12+orfF+aadA2+cmlA1+aadA1+qacH+IS440+ sul3+orf1+mef(B)Δ-IS26 (1 isolate). Taken together, these results underline the need for clinical concern regarding β-lactam resistance in Salmonella and thus for continuous monitoring.
A human gut phage catalog correlates the gut phageome with type 2 diabetes.
Ma, Yingfei; You, Xiaoyan; Mai, Guoqin; Tokuyasu, Taku; Liu, Chenli
2018-02-01
Substantial efforts have been made to link the gut bacterial community to many complex human diseases. Nevertheless, the gut phages are often neglected. In this study, we used multiple bioinformatic methods to catalog gut phages from whole-community metagenomic sequencing data of fecal samples collected from both type II diabetes (T2D) patients (n = 71) and normal Chinese adults (n = 74). The definition of phage operational taxonomic units (pOTUs) and identification of large phage scaffolds (n = 2567, ≥ 10 k) revealed a comprehensive human gut phageome with a substantial number of novel sequences encoding genes that were unrelated to those in known phages. Interestingly, we observed a significant increase in the number of gut phages in the T2D group and, in particular, identified 7 pOTUs specific to T2D. This finding was further validated in an independent dataset of 116 T2D and 109 control samples. Co-occurrence/exclusion analysis of the bacterial genera and pOTUs identified a complex core interaction between bacteria and phages in the human gut ecosystem, suggesting that the significant alterations of the gut phageome cannot be explained simply by co-variation with the altered bacterial hosts. Alterations in the gut bacterial community have been linked to the chronic disease T2D, but the role of gut phages therein is not well understood. This is the first study to identify a T2D-specific gut phageome, indicating the existence of other mechanisms that might govern the gut phageome in T2D patients. These findings suggest the importance of the phageome in T2D risk, which warrants further investigation.
Nguyen, Huong Minh
2014-01-01
ABSTRACT Bacteriophage T7 terminator Tφ is a class I intrinsic terminator coding for an RNA hairpin structure immediately followed by oligo(U), which has been extensively studied in terms of its transcription termination mechanism, but little is known about its physiological or regulatory functions. In this study, using a T7 mutant phage, where a 31-bp segment of Tφ was deleted from the genome, we discovered that deletion of Tφ from T7 reduces the phage burst size but delays lysis timing, both of which are disadvantageous for the phage. The burst downsizing could directly result from Tφ deletion-caused upregulation of gene 17.5, coding for holin, among other Tφ downstream genes, because infection of gp17.5-overproducing Escherichia coli by wild-type T7 phage showed similar burst downsizing. However, the lysis delay was not associated with cellular levels of holin or lysozyme or with rates of phage adsorption. Instead, when allowed to evolve spontaneously in five independent adaptation experiments, the Tφ-lacking mutant phage, after 27 or 29 passages, recovered both burst size and lysis time reproducibly by deleting early genes 0.5, 0.6, and 0.7 of class I, among other mutations. Deletion of genes 0.5 to 0.7 from the Tφ-lacking mutant phage decreased expression of several Tφ downstream genes to levels similar to that of the wild-type phage. Accordingly, phage T7 lysis timing is associated with cellular levels of Tφ downstream gene products. This suggests the involvement of unknown factor(s) besides the known lysis proteins, lysozyme and holin, and that Tφ plays a role of optimizing burst size and lysis time during T7 infection. IMPORTANCE E. coli PMID:24335287
Arunima, Aryashree; Yelamanchi, Soujanya D; Padhi, Chandrashekhar; Jaiswal, Sangeeta; Ryan, Daniel; Gupta, Bhawna; Sathe, Gajanan; Advani, Jayshree; Gowda, Harsha; Prasad, T S Keshava; Suar, Mrutyunjay
2017-10-01
Salmonella Enteritidis causes food-borne gastroenteritis by the two type three secretion systems (TTSS). TTSS-1 mediates invasion through intestinal lining, and TTSS-2 facilitates phagocytic survival. The pathogens' ability to infect effectively under TTSS-1-deficient background in host's phagocytes is poorly understood. Therefore, pathobiological understanding of TTSS-1-defective nontyphoidal Salmonellosis is highly important. We performed a comparative global proteomic analysis of the isogenic TTSS-1 mutant of Salmonella Enteritidis (M1511) and its wild-type isolate P125109. Our results showed 43 proteins were differentially expressed. Functional annotation further revealed that differentially expressed proteins belong to pathogenesis, tRNA and ncRNA metabolic processes. Three proteins, tryptophan subunit alpha chain, citrate lyase subunit alpha, and hypothetical protein 3202, were selected for in vitro analysis based on their functional annotations. Deletion mutants generated for the above proteins in the M1511 strain showed reduced intracellular survival inside macrophages in vitro. In sum, this study provides mass spectrometry-based evidence for seven hypothetical proteins, which will be subject of future investigations. Our study identifies proteins influencing virulence of Salmonella in the host. The study complements and further strengthens previously published research on proteins involved in enteropathogenesis of Salmonella and extends their role in noninvasive Salmonellosis.
Binetti, Ana G.; Del Río, Beatriz; Martín, M. Cruz; Álvarez, Miguel A.
2005-01-01
In the dairy industry, the characterization of Streptococcus thermophilus phage types is very important for the selection and use of efficient starter cultures. The aim of this study was to develop a characterization system useful in phage control programs in dairy plants. A comparative study of phages of different origins was initially performed based on their morphology, DNA restriction profiles, DNA homology, structural proteins, packaging mechanisms, and lifestyles and on the presence of a highly conserved DNA fragment of the replication module. However, these traditional criteria were of limited industrial value, mainly because there appeared to be no correlation between these variables and host ranges. We therefore developed a PCR method to amplify VR2, a variable region of the antireceptor gene, which allowed rapid detection of S. thermophilus phages and classification of these phages. This method has a significant advantage over other grouping criteria since our results suggest that there is a correlation between typing profiles and host ranges. This association could be valuable for the dairy industry by allowing a rational starter rotation system to be established and by helping in the selection of more suitable starter culture resistance mechanisms. The method described here is also a useful tool for phage detection, since specific PCR amplification was possible when phage-contaminated milk was used as a template (detection limit, 105 PFU ml−1). PMID:16204526
Arnedo-Pena, Alberto; Sabater-Vidal, Susana; Herrera-León, Silvia; Bellido-Blasco, Juan B; Silvestre-Silvestre, Esther; Meseguer-Ferrer, Noemi; Yague-Muñoz, Alberto; Gil-Fortuño, Maria; Romeu-García, Angeles; Moreno-Muñoz, Rosario
2016-11-01
An outbreak of S.Typhimurium occurred in several towns and cities in the province of Castellon (Spain) between 23 February and 27 May 2011. On April 5, the microbiology laboratory of a hospital in Castellon alerted the health authorities to the increase in S.Typhimurium isolated in fecal culture of children with gastroenteritis. The serotype and phage-type of 83 positive cases of S.Typhimurium isolated in these period included 49 monophasic/biphasic S.Typhimurium phage type 138, phage type 193, S.Derby, and 34 other S.Typhimurium phage-types. The median of age of patients was 4 years with a range of 0.6-80 years, and the 18% of patients were hospitalised. Two incident matched case-control studies were carried out; the first with S.Typhimurium phage type 138, 193, and S.Derby cases and the second with the other cases. The two studies found that the consumption of brand X dried pork sausage, purchased in a supermarket chain A, was associated with the disease (matched Odds Ratio [mOR]=13.74 95% Confidence Interval [CI] 4.84-39.06 and mOR=8.20 95% CI 2.32-28.89), respectively). S.Typhimurium phage type 193 and S.Derby were isolated in the food taken from the household of two patients and from the supermarket chain's A central warehouse. The pulsed-field gel electrophoresis study confirmed the similarity of the strains from the patients and the food. On May 25 2011, a national food alert led to the withdrawal of the food from the chain A and the outbreak ended. Copyright © 2015 Elsevier España, S.L.U. and Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica. All rights reserved.
Shearer, A E; Strapp, C M; Joerger, R D
2001-06-01
A polymerase chain reaction (PCR)-based detection system, BAX, was evaluated for its sensitivity in detecting Salmonella Enteritidis, Escherichia coli O157:H7, Listeria sp., and Listeria monocytogenes on fresh produce. Fifteen different types of produce (alfalfa sprouts, green peppers, parsley, white cabbage, radishes, onions, carrots, mushrooms, leaf lettuce, tomatoes, strawberries, cantaloupe, mango, apples, and oranges) were inoculated, in separate studies, with Salmonella Enteritidis, E. coli O157:H7, and L. monocytogenes down to the predicted level of 1 CFU per 25-g sample. Detection by BAX was compared to recovery of the inoculated bacteria by culture methods according to the Food and Drug Administration's (FDA) Bacteriological Analytical Manual (BAM). BAX was essentially as sensitive as the culture-based method in detecting Salmonella Enteritidis and L. monocytogenes and more sensitive than the culture-based method for the detection of E. coli O157:H7 on green pepper, carrot, radish, and sprout samples. Detection of the pathogenic bacteria in samples spiked with a predicted number of less than 10 CFU was possible for most produce samples, but both methods failed to detect L. monocytogenes on carrot samples and one of two mushroom and onion samples spiked with less than 100 CFU. Both BAX and the culture method were also unable to consistently recover low numbers of E. coli O157:H7 from alfalfa sprouts. The PCR method allowed detection of Salmonella Enteritidis, E. coli O157:H7, and L. monocytogenes at least 2 days earlier than the conventional culture methods.
Dehghani, Behzad; Rasooli, Iraj; Gargari, Seyed Latif Mousavi; Nadooshan, Mohammad Reza Jalali; Owlia, Parviz; Nazarian, Shahram
2013-02-22
Acellular vaccines containing bacterial immunodominant components such as surface proteins may be potent alternatives to live attenuated vaccines in order to reduce salmonellosis risk to human health. invH gene, an important part of needle complex in type three secretion system (TTSS) plays important role in efficient bacterial adherence and entry into epithelial cells. In this work we hypothesize that use of a 15 kDa recombinant InvH as Salmonella enterica serovar Enteritidis surface protein could provoke antibody production in mouse and would help us study feasibility of its potential for diagnosis and/or a recombinant vaccine. The purified InvH provoked significant rise of IgG in mice. Active protection induced by immunization with InvH against variable doses of S. enterica serovar Enteritidis, indicated that the immunized mice were completely protected against challenge with 10(4) LD(50). The immunoreaction of sera from immunized mice with other Salmonella strains or cross reaction with sera of Salmonella strains inoculated mice is indicative of possessing by Salmonella strains of the surface protein, InvH, that can be employed in both prophylactic and diagnostic measures against S. enterica. Bacteria free spleen and ileum of the immunized mice in this study indicate that the invH gene affects bacterial invasion. Efficacy of the virulence protein, InvH, in shuttling into host cells in injectisome of S. enterica serovar Enteritidis and inhibition of this phenomenon by active immunization was shown in this study. In conclusion immunization with InvH protein can develop protection against S. enterica serovar Enteritidis infections. InvH in Salmonella strains can be exploited in protective measures as well as a diagnostic tool in Salmonella infections. Copyright © 2012 Elsevier GmbH. All rights reserved.
R-factor cointegrate formation in Salmonella typhimurium bacteriophage type 201 strains.
Helmuth, R; Stephan, R; Bulling, E; van Leeuwen, W J; van Embden, J D; Guinée, P A; Portnoy, D; Falkow, S
1981-01-01
The genetic and molecular properties of the plasmids in Salmonella typhimurium phase type 201 isolated are described. Such strains are resistant to streptomycin, tetracycline, chloramphenicol, ampicillin, kanamycin, and several other antimicrobial drugs, and are highly pathogenic for calves. These strains have been encountered with increasing frequency since 1972 in West Germany and The Netherlands. We show that isolates of this phage type constitute a very homogeneous group with regard to their extrachromosomal elements. These bacteria carry three small plasmids: pRQ3, a 4.2-megadalton (Md) colicinogenic plasmid; pRQ4, 3.4-Md plasmid that interferes with the propagation of phages; and pRQ5, a 3.2-Md cryptic plasmid. Tetracycline resistance resides on a conjugative 120-MD plasmid pRQ1, belonging to the incompatibility class H2. Other antibiotic resistance determinants are encoded by a nonconjugative 108-Md plasmid pRQ2. Transfer of multiple-antibiotic resistance to appropriate recipient strains was associated with the appearance of a 230-Md plasmid, pRQ6. It appears that pRQ6 is a stable cointegrate of pRQ1 and pRQ2. This cointegrate plasmid was transferable with the same efficiency as pRQ1. Other conjugative plasmids could mobilize pRQ2, but stable cointegrates were not detected in the transconjugants. Phase type 201 strains carry a prophage, and we show that phage pattern 201 reflects the interference with propagation of typing phages effected by this prophage and plasmid pRQ4 in strains of phage type 201. Images PMID:7012128
Kulshreshtha, Garima; Rathgeber, Bruce; MacIsaac, Janice; Boulianne, Martine; Brigitte, Lehoux; Stratton, Glenn; Thomas, Nikhil A.; Critchley, Alan T.; Hafting, Jeff; Prithiviraj, Balakrishnan
2017-01-01
Salmonella Enteritidis is vertically transmitted to eggs from laying hens through infected ovaries and oviducts. S. Enteritidis can also penetrate the eggshell from contaminated feces. Reducing S. Enteritidis in laying hens is vital to provide safer eggs and minimize the spread of salmonellosis to humans. Antibiotics have been widely used to control bacterial diseases in broilers and laying hens. However, there is a major concern that the use of antibiotics leads to the development of antibiotic resistance and adverse effects on microbiota of the treated birds. Thus, there is an interest in developing alternatives to antibiotics, such as dietary prebiotics. In the present study, feed supplemented with the red seaweeds: Chondrus crispus (CC) or Sarcodiotheca gaudichaudii (SG), was offered to laying hens late in production to control S. Enteritidis. Diets contained one of the following; 2% or 4% Chondrus crispus (CC2, and CC4, respectively) or Sarcodiotheca gaudichaudii (SG2 and SG4, respectively). Chlortetracycline was used in the positive control diet. During week-4, 48 birds were orally challenged with 2 × 109 CFU/mL of S. Enteritidis. Eggs and fecal samples were collected 1, 3, 5, and 7 days’ post inoculation. Birds were euthanized and organs (ceca, ovary, liver, and spleen) were sampled and analyzed for the presence of S. Enteritidis, 7 days’ post inoculation. Results showed that seaweed reduced the negative effect on body weight and egg production in S. Enteritidis-challenged laying hens. Analysis of fecal samples showed that the antibiotic (CTC) reduced S. Enteritidis in the intestinal tract and fecal samples, 3 days’ post inoculation. Fecal samples from Chlortetracycline and CC4 supplemented birds tested negative for S. Enteritidis on days 5 and 7 post inoculation (lowest detection limit = 10-1). S. Enteritidis colonization in the ceca was also significantly reduced in birds fed CC (4%) and Chlortetracycline. Blood serum profiles revealed that there were no significant differences in serum aspartate aminotransferase (AST) and sodium. However, the level of serum immunoglobulin (IgA) was higher in the CC4 treatment. The relative abundance of Lactobacillus acidophilus was significantly higher in CC4 while, the abundance of the pathogenic bacteria, Clostridium perfringens and Salmonella Enteritidis were reduced compared to control. Results indicate that feed supplemented with 4% CC is effective in providing protection against Salmonella Enteritidis colonization in laying hens. PMID:28443073
Gill, Jason J.; Summer, Elizabeth J.; Russell, William K.; Cologna, Stephanie M.; Carlile, Thomas M.; Fuller, Alicia C.; Kitsopoulos, Kate; Mebane, Leslie M.; Parkinson, Brandi N.; Sullivan, David; Carmody, Lisa A.; Gonzalez, Carlos F.; LiPuma, John J.; Young, Ry
2011-01-01
Within the Burkholderia cepacia complex, B. cenocepacia is the most common species associated with aggressive infections in the lungs of cystic fibrosis patients, causing disease that is often refractive to treatment by antibiotics. Phage therapy may be a potential alternative form of treatment for these infections. Here we describe the genome of the previously described therapeutic B. cenocepacia podophage BcepIL02 and its close relative, Bcep22. Phage Bcep22 was found to contain a circularly permuted genome of 63,882 bp containing 77 genes; BcepIL02 was found to be 62,714 bp and contains 76 predicted genes. Major virion-associated proteins were identified by proteomic analysis. We propose that these phages comprise the founding members of a novel podophage lineage, the Bcep22-like phages. Among the interesting features of these phages are a series of tandemly repeated putative tail fiber genes that are similar to each other and also to one or more such genes in the other phages. Both phages also contain an extremely large (ca. 4,600-amino-acid), virion-associated, multidomain protein that accounts for over 20% of the phages' coding capacity, is widely distributed among other bacterial and phage genomes, and may be involved in facilitating DNA entry in both phage and other mobile DNA elements. The phages, which were previously presumed to be virulent, show evidence of a temperate lifestyle but are apparently unable to form stable lysogens in their hosts. This ambiguity complicates determination of a phage lifestyle, a key consideration in the selection of therapeutic phages. PMID:21804006
Biodiversity of Lactobacillus helveticus bacteriophages isolated from cheese whey starters.
Zago, Miriam; Bonvini, Barbara; Rossetti, Lia; Meucci, Aurora; Giraffa, Giorgio; Carminati, Domenico
2015-05-01
Twenty-one Lactobacillus helveticus bacteriophages, 18 isolated from different cheese whey starters and three from CNRZ collection, were phenotypically and genetically characterised. A biodiversity between phages was evidenced both by host range and molecular (RAPD-PCR) typing. A more detailed characterisation of six phages showed similar structural protein profiles and a relevant genetic biodiversity, as shown by restriction enzyme analysis of total DNA. Latent period, burst time and burst size data evidenced that phages were active and virulent. Overall, data highlighted the biodiversity of Lb. helveticus phages isolated from cheese whey starters, which were confirmed to be one of the most common phage contamination source in dairy factories. More research is required to further unravel the ecological role of Lb. helveticus phages and to evaluate their impact on the dairy fermentation processes where whey starter cultures are used.
Li, Xiaocheng; Zhang, Peng; Jiang, Xiaosong; Du, Huarui; Yang, Chaowu; Zhang, Zengrong; Men, Shuai; Zhang, Zhikun; Jiang, Wei; Wang, Hongning
2017-07-01
Salmonella enterica serovar (S. enteritidis) is a pathogenic bacterium that can cause symptoms of food poisoning, leading to death of poultry, resulting in serious economic losses. The MyD88 and TRIF signalling pathways play important roles in activating innate and adaptive immunity in chickens infected with S. enteritidis. The objective of the present study was to characterize in vivo mRNA expressions, protein levels and methylation levels of genes in the above two pathways in both Tibetan chickens and DaHeng S03 chickens infected with S. enteritidis. MyD88-dependent and TRIF-dependent signalling pathway were activated by infection, and the MyD88 signalling pathway induced cytokines LITAF and IL-8 played important roles in fighting against the S. enteritidis infection in vivo. The TLR4 methylation might alter expression of genes involved in the MyD88 signalling pathway, and thus different breeds of chickens might show differences in susceptibility to the S. enteritidis. The increased expression of INF β was activated by S. enteritidis, but its expressions were different in levels of mRNA and protein in Tibetan chickens and DaHeng chickens, suggesting its functions on the resistance to S. enteritidis infection in chickens. This study contributes to the understanding of two pathways activated in response to S. enteritidis infection, and gives indications on the mechanisms underlying resistance of Tibetan chickens and DaHeng chickens to S. enteritidis. Copyright © 2017 Elsevier B.V. All rights reserved.
Varmuzova, Karolina; Kubasova, Tereza; Davidova-Gerzova, Lenka; Sisak, Frantisek; Havlickova, Hana; Sebkova, Alena; Faldynova, Marcela; Rychlik, Ivan
2016-01-01
Since poultry is a very common source of non-typhoid Salmonella for humans, different interventions aimed at decreasing the prevalence of Salmonella in chickens are understood as an effective measure for decreasing the incidence of human salmonellosis. One such intervention is the use of probiotic or competitive exclusion products. In this study we tested whether microbiota from donor hens of different age will equally protect chickens against Salmonella Enteritidis infection. Newly hatched chickens were therefore orally inoculated with cecal extracts from 1-, 3-, 16-, 28-, and 42-week-old donors and 7 days later, the chickens were infected with S. Enteritidis. The experiment was terminated 4 days later. In the second experiment, groups of newly hatched chickens were inoculated with cecal extracts of 35-week-old hens either on day 1 of life followed by S. Enteritidis infection on day 2 or were infected with S. Enteritidis infection on day 1 followed by therapeutic administration of the cecal extract on day 2 or were inoculated on day 1 of life with a mixture of the cecal extract and S. Enteritidis. This experiment was terminated when the chickens were 5 days old. Both Salmonella culture and chicken gene expression confirmed that inoculation of newly hatched chickens with microbiota from 3-week-old or older chickens protected them against S. Enteritidis challenge. On the other hand, microbiota from 1-week-old donors failed to protect chickens against S. Enteritidis challenge. Microbiota from 35-week-old hens protected chickens even 24 h after administration. However, simultaneous or therapeutic microbiota administration failed to protect chickens against S. Enteritidis infection. Gut microbiota can be used as a preventive measure against S. Enteritidis infection but its composition and early administration is critical for its efficacy. PMID:27379083
Competitive and noncompetitive phage immunoassays for the determination of benzothiostrobin.
Hua, Xiude; Zhou, Liangliang; Feng, Lu; Ding, Yuan; Shi, Haiyan; Wang, Limin; Gee, Shirley J; Hammock, Bruce D; Wang, Minghua
2015-08-26
Twenty-three phage-displayed peptides that specifically bind to an anti-benzothiostrobin monoclonal antibody (mAb) in the absence or presence of benzothiostrobin were isolated from a cyclic 8-residue peptide phage library. Competitive and noncompetitive phage enzyme linked immunosorbent assays (ELISAs) for benzothiostrobin were developed by using a clone C3-3 specific to the benzothiostrobin-free mAb and a clone N6-18 specific to the benzothiostrobin immunocomplex, respectively. Under the optimal conditions, the half maximal inhibition concentration (IC50) of the competitive phage ELISA and the concentration of analyte producing 50% saturation of the signal (SC50) of the noncompetitive phage ELISA for benzothiostrobin were 0.94 and 2.27 ng mL(-1), respectively. The noncompetitive phage ELISA showed higher selectivity compared to the competitive. Recoveries of the competitive and the noncompetitive phage ELISAs for benzothiostrobin in cucumber, tomato, pear and rice samples were 67.6-119.6% and 70.4-125.0%, respectively. The amounts of benzothiostrobin in the containing incurred residues samples detected by the two types of phage ELISAs were significantly correlated with that detected by high-performance liquid chromatography (HPLC). Copyright © 2015 Elsevier B.V. All rights reserved.
Improvement and Optimization of Two Engineered Phage Resistance Mechanisms in Lactococcus lactis
McGrath, Stephen; Fitzgerald, Gerald F.; van Sinderen, Douwe
2001-01-01
Homologous replication module genes were identified for four P335 type phages. DNA sequence analysis revealed that all four phages exhibited more than 90% DNA homology for at least two genes, designated rep2009 and orf17. One of these genes, rep2009, codes for a putative replisome organizer protein and contains an assumed origin of phage DNA replication (ori2009), which was identical for all four phages. DNA fragments representing the ori2009 sequence confer a phage-encoded resistance (Per) phenotype on lactococcal hosts when they are supplied on a high-copy-number vector. Furthermore, cloning multiple copies of the ori2009 sequence was found to increase the effectiveness of the Per phenotype conferred. A number of antisense plasmids targeting specific genes of the replication module were constructed. Two separate plasmids targeting rep2009 and orf17 were found to efficiently inhibit proliferation of all four phages by interfering with intracellular phage DNA replication. These results represent two highly effective strategies for inhibiting bacteriophage proliferation, and they also identify a novel gene, orf17, which appears to be important for phage DNA replication. Furthermore, these results indicate that although the actual mechanisms of DNA replication are very similar, if not identical, for all four phages, expression of the replication genes is significantly different in each case. PMID:11157223
The diversity and host interactions of Propionibacterium acnes bacteriophages on human skin
Liu, Jared; Yan, Riceley; Zhong, Qiao; Ngo, Sam; Bangayan, Nathanael J; Nguyen, Lin; Lui, Timothy; Liu, Minghsun; Erfe, Marie C; Craft, Noah; Tomida, Shuta; Li, Huiying
2015-01-01
The viral population, including bacteriophages, is an important component of the human microbiota, yet is poorly understood. We aim to determine whether bacteriophages modulate the composition of the bacterial populations, thus potentially playing a role in health or disease. We investigated the diversity and host interactions of the bacteriophages of Propionibacterium acnes, a major human skin commensal implicated in acne pathogenesis. By sequencing 48 P. acnes phages isolated from acne patients and healthy individuals and by analyzing the P. acnes phage populations in healthy skin metagenomes, we revealed that P. acnes phage populations in the skin microbial community are often dominated by one strain. We also found phage strains shared among both related and unrelated individuals, suggesting that a pool of common phages exists in the human population and that transmission of phages may occur between individuals. To better understand the bacterium–phage interactions in the skin microbiota, we determined the outcomes of 74 genetically defined Propionibacterium strains challenged by 15 sequenced phages. Depending on the Propionibacterium lineage, phage infection can result in lysis, pseudolysogeny, or resistance. In type II P. acnes strains, we found that encoding matching clustered regularly interspaced short palindromic repeat spacers is insufficient to confer phage resistance. Overall, our findings suggest that the prey–predator relationship between bacteria and phages may have a role in modulating the composition of the microbiota. Our study also suggests that the microbiome structure of an individual may be an important factor in the design of phage-based therapy. PMID:25848871
The diversity and host interactions of Propionibacterium acnes bacteriophages on human skin.
Liu, Jared; Yan, Riceley; Zhong, Qiao; Ngo, Sam; Bangayan, Nathanael J; Nguyen, Lin; Lui, Timothy; Liu, Minghsun; Erfe, Marie C; Craft, Noah; Tomida, Shuta; Li, Huiying
2015-09-01
The viral population, including bacteriophages, is an important component of the human microbiota, yet is poorly understood. We aim to determine whether bacteriophages modulate the composition of the bacterial populations, thus potentially playing a role in health or disease. We investigated the diversity and host interactions of the bacteriophages of Propionibacterium acnes, a major human skin commensal implicated in acne pathogenesis. By sequencing 48 P. acnes phages isolated from acne patients and healthy individuals and by analyzing the P. acnes phage populations in healthy skin metagenomes, we revealed that P. acnes phage populations in the skin microbial community are often dominated by one strain. We also found phage strains shared among both related and unrelated individuals, suggesting that a pool of common phages exists in the human population and that transmission of phages may occur between individuals. To better understand the bacterium-phage interactions in the skin microbiota, we determined the outcomes of 74 genetically defined Propionibacterium strains challenged by 15 sequenced phages. Depending on the Propionibacterium lineage, phage infection can result in lysis, pseudolysogeny, or resistance. In type II P. acnes strains, we found that encoding matching clustered regularly interspaced short palindromic repeat spacers is insufficient to confer phage resistance. Overall, our findings suggest that the prey-predator relationship between bacteria and phages may have a role in modulating the composition of the microbiota. Our study also suggests that the microbiome structure of an individual may be an important factor in the design of phage-based therapy.
EFFECT OF SODIUM CHLORIDE ON STAPHYLOCOCCUS-PHAGE RELATIONSHIPS
West, B.; Kelly, Florene C.; Shields, Doris A.
1963-01-01
West, B. (University of Oklahoma Medical Center, Oklahoma City), Florene C. Kelly, and Doris A. Shields. Effect of sodium chloride on staphylococcus-phage relationships. J. Bacteriol. 86:773–780. 1963.—Phage patterns of 21 phage-propagating strains of staphylococci on medium with high NaCl content appeared to be an expression of the staphylococcal cells, as well as of the salt tolerance of the phages. Serological group A phages, previously found to be NaCl-tolerant in the free state, were capable of lysing susceptible staphylococci on 3, 7.5, and 10% NaCl Trypticase Soy Agar. None of the other phages tested was active when the medium contained 7.5 and 10% NaCl. Increasing the NaCl content of the medium rarely resulted in nonspecific reactions; rather the effect was, generally, a narrowing of the phage spectrum of the cells, with persistence in the phage pattern of the phage, or phages, which were propagated on the cells being tested. Although NaCl tolerance of the phages was the chief limiting factor of phage activity in the presence of 7.5 and 10% NaCl, reactions on salt medium also depended on the degree of susceptibility of cells to phage on routine typing medium and to certain other unexplained factors. In some instances, under the influence of increased NaCl, significant lysis at 1000 RTD was replaced by thinning of growth (inhibition), with or without the presence of plaques. Conversely, certain phage-cell combinations, which gave inhibition at 1000 RTD on standard medium produced some degree of lysis when the NaCl concentration was increased. Studies of phage 81 and its propagating strain showed that replication of phage occurred in 10% NaCl medium, although adsorption diminished as salt concentration was increased, and the time required to reach maximal lytic activity was delayed. PMID:14066474
Structurally altered capsular polysaccharides produced by mutant bacteria
NASA Technical Reports Server (NTRS)
Petersen, Gene R. (Inventor); Kern, Roger G. (Inventor); Richards, Gil F. (Inventor)
1995-01-01
Structurally altered capsular polysaccharides are produced by mutant bacteria. These polysaccharides are isolated by selecting a wild type bacterial strain and a phage producing degradative enzymes that have substrate specificity for the capsular polysaccharides produced by the wild type bacteria. Phage-resistant mutants producing capsular polysaccharides are selected and the structurally altered capsular polysaccharide is isolated therefrom.
Janowska, Beata; Komisarski, Marek; Prorok, Paulina; Sokołowska, Beata; Kuśmierek, Jarosław; Janion, Celina; Tudek, Barbara
2009-09-23
One of the major products of lipid peroxidation is trans-4-hydroxy-2-nonenal (HNE). HNE forms highly mutagenic and genotoxic adducts to all DNA bases. Using M13 phage lacZ system, we studied the mutagenesis and repair of HNE treated phage DNA in E. coli wild-type or uvrA, recA, and mutL mutants. These studies revealed that: (i) nucleotide excision and recombination, but not mismatch repair, are engaged in repair of HNE adducts when present in phage DNA replicating in E. coli strains; (ii) in the single uvrA mutant, phage survival was drastically decreased while mutation frequency increased, and recombination events constituted 48% of all mutations; (iii) in the single recA mutant, the survival and mutation frequency of HNE-modified M13 phage was slightly elevated in comparison to that in the wild-type bacteria. The majority of mutations in recA(-) strain were G:C --> T:A transversions, occurring within the sequence which in recA(+) strains underwent RecA-mediated recombination, and the entire sequence was deleted; (iv) in the double uvrA recA mutant, phage survival was the same as in the wild-type although the mutation frequency was higher than in the wild-type and recA single mutant, but lower than in the single uvrA mutant. The majority of mutations found in the latter strain were base substitutions, with G:C --> A:T transitions prevailing. These transitions could have resulted from high reactivity of HNE with G and C, and induction of SOS-independent mutations.
Janowska, Beata; Komisarski, Marek; Prorok, Paulina; Sokołowska, Beata; Kuśmierek, Jarosław; Janion, Celina; Tudek, Barbara
2009-01-01
One of the major products of lipid peroxidation is trans-4-hydroxy-2-nonenal (HNE). HNE forms highly mutagenic and genotoxic adducts to all DNA bases. Using M13 phage lacZ system, we studied the mutagenesis and repair of HNE treated phage DNA in E. coli wild-type or uvrA, recA, and mutL mutants. These studies revealed that: (i) nucleotide excision and recombination, but not mismatch repair, are engaged in repair of HNE adducts when present in phage DNA replicating in E. coli strains; (ii) in the single uvrA mutant, phage survival was drastically decreased while mutation frequency increased, and recombination events constituted 48 % of all mutations; (iii) in the single recA mutant, the survival and mutation frequency of HNE-modified M13 phage was slightly elevated in comparison to that in the wild-type bacteria. The majority of mutations in recA- strain were G:C → T:A transversions, occurring within the sequence which in recA+ strains underwent RecA-mediated recombination, and the entire sequence was deleted; (iv) in the double uvrA recA mutant, phage survival was the same as in the wild-type although the mutation frequency was higher than in the wild-type and recA single mutant, but lower than in the single uvrA mutant. The majority of mutations found in the latter strain were base substitutions, with G:C → A:T transitions prevailing. These transitions could have resulted from high reactivity of HNE with G and C, and induction of SOS-independent mutations. PMID:19834545
Kwon, Hyuk-Joon; Cho, Sun-Hee; Kim, Tae-Eun; Won, Yong-Jin; Jeong, Jihye; Park, Se Chang; Kim, Jae-Hong; Yoo, Han-Sang; Park, Yong-Ho; Kim, Sun-Joong
2008-11-01
PhiSG-JL2 is a newly discovered lytic bacteriophage infecting Salmonella enterica serovar Gallinarum biovar Gallinarum but is nonlytic to a rough vaccine strain of serovar Gallinarum biovar Gallinarum (SG-9R), S. enterica serovar Enteritidis, S. enterica serovar Typhimurium, and S. enterica serovar Gallinarum biovar Pullorum. The phiSG-JL2 genome is 38,815 bp in length (GC content, 50.9%; 230-bp-long direct terminal repeats), and 55 putative genes may be transcribed from the same strand. Functions were assigned to 30 genes based on high amino acid similarity to known proteins. Most of the expected proteins except tail fiber (31.9%) and the overall organization of the genomes were similar to those of yersiniophage phiYeO3-12. phiSG-JL2 could be classified as a new T7-like virus and represents the first serovar Gallinarum biovar Gallinarum phage genome to be sequenced. On the basis of intraspecific ratios of nonsynonymous to synonymous nucleotide changes (Pi[a]/Pi[s]), gene 2 encoding the host RNA polymerase inhibitor displayed Darwinian positive selection. Pretreatment of chickens with phiSG-JL2 before intratracheal challenge with wild-type serovar Gallinarum biovar Gallinarum protected most birds from fowl typhoid. Therefore, phiSG-JL2 may be useful for the differentiation of serovar Gallinarum biovar Gallinarum from other Salmonella serotypes, prophylactic application in fowl typhoid control, and understanding of the vertical evolution of T7-like viruses.
Vojkovská, Hana; Myšková, Petra; Gelbíčová, Tereza; Skočková, Alena; Koláčková, Ivana; Karpíšková, Renáta
2017-05-01
Food of non-animal origin is a major component of the human diet and has been considered to pose a low risk from the point of view of bacteriological safety. However, an increase in the number of outbreaks of illness caused by such pathogens and linked to the consumption of fresh fruit and vegetables have been reported from around the world recently. Salmonella spp., STEC (Shiga toxin producing Escherichia coli) and Listeria monocytogenes are among the most frequently identified agents. Additionally, the transmission of antibiotic resistant strains including also the methicillin resistant S. aureus (MRSA) to humans via the food chain is one of the greatest public health problems being confronted today. Therefore, we focused on the bacterial safety of fruit, vegetables and sprouts on sale in the Czech Republic. One strain (0.3%) of Salmonella Enteritidis phage type PT8, one strain (0.3%) of MRSA and 17 strains (5.0%) of L. monocytogenes were isolated from a total of 339 collected samples. The most problematic commodities were frozen fruit and vegetables (packed and unpacked) and fresh-cut vegetables. Our findings indicate deficiencies in hygiene practices during harvesting, processing and distribution of these commodities. Although sprouts and berries are the most likely to be contaminated by human pathogens, only two samples were positive for the presence of L. monocytogenes. Copyright © 2016 Elsevier Ltd. All rights reserved.
Rossi, Eliandra M.; Beilke, Luniele; Kochhann, Marília; Sarzi, Diana H.; Tondo, Eduardo C.
2016-01-01
Salmonella Enteritidis SE86 is an important foodborne pathogen in Southern Brazil and it is able to produce a biosurfactant. However, the importance of this compound for the microorganism is still unknown. This study aimed to investigate the influence of the biosurfactant produced by S. Enteritidis SE86 on adherence to slices of lettuce leaves and on resistance to sanitizers. First, lettuce leaves were inoculated with S. Enteritidis SE86 in order to determine the amount of biosurfactant produced. Subsequently, lettuce leaves were inoculated with S. Enteritidis SE86 with and without the biosurfactant, and the adherence and bacterial resistance to different sanitization methods were evaluated. S. Enteritidis SE86 produced biosurfactant after 16 h (emulsification index of 11 to 52.15 percent, P < 0.05) and showed greater adherence capability and resistance to sanitization methods when the compound was present. The scanning electron microscopy demonstrated that S. Enteritidis was able to adhere, form lumps, and invade the lettuce leaves’ stomata in the presence of the biosurfactant. Results indicated that the biosurfactant produced by S. Enteritidis SE86 contributed to adherence and increased resistance to sanitizers when the microorganism was present on lettuce leaves. PMID:26834727
Eeckhaut, Venessa; Haesebrouck, Freddy; Ducatelle, Richard; Van Immerseel, Filip
2018-05-01
Salmonella is an important zoonotic agent, and poultry products remain one of the main sources of infection for humans. Salmonella Infantis is an emerging serotype in poultry worldwide, reflected by an increased prevalence in poultry flocks, on broiler meat and in human foodborne illness cases. In the current study, the efficacy of oral administration of a live monovalent Salmonella Enteritidis and a live bivalent Salmonella Enteritidis/Typhimurium vaccine, against a Salmonella Enteritidis and Infantis infection, was determined. Oral administration of the live vaccines to day-old chickens caused a decrease in caecal colonization by Salmonella Enteritidis, but not Infantis, at day 7, when challenged at day 2. Vaccination with the bivalent vaccine at day 1 resulted in a decreased spleen colonization by both Salmonella Infantis and Enteritidis. Twice (at day 1 and week 6) and thrice vaccination (at day 1, week 6 and 16) of laying hens with the bivalent vaccine resulted in a decreased caecal colonization by Salmonella Enteritidis and Infantis, and significantly lower oviduct colonization levels by Salmonella Enteritidis. These data show cross-protection against Salmonella Infantis by oral administration of live vaccine strains belonging to other serogroups. Copyright © 2018 Elsevier B.V. All rights reserved.
Fardsanei, Fatemeh; Soltan Dallal, Mohammad Mehdi; Douraghi, Masoumeh; Zahraei Salehi, Taghi; Mahmoodi, Mahmood; Memariani, Hamed; Nikkhahi, Farhad
2017-06-01
Salmonella enterica subspecies enterica serotype Enteritidis (S. Enteritidis) is one of the leading causes of food-borne gastroenteritis associated with the consumption of contaminated food products of animal origin. Little is known about the genetic diversity and virulence content of S. Enteritidis isolated from poultry meats and eggs in Iran. A total of 34 S. Enteritidis strains were collected from different food sources of animal origin in Tehran from May 2015 to July 2016. All of the S. Enteritidis strains were serotyped, antimicrobial susceptibility tested, and characterized for virulence genes. Pulsed-field gel electrophoresis (PFGE) was also applied for comparison of genetic relatedness. All of the strains harbored invA, hilA, ssrA, sefA, spvC, and sipA genes. A high prevalence of resistance against certain antibiotics such as cefuroxime (79.4%), nalidixic acid (47%), and ciprofloxacin (44.2%) was also observed. Regarding PFGE, S. Enteritidis strains from different sources showed considerable overlap, suggesting the lack of diversity among these isolates. Moreover, no correlation between virulence profiles or antibiotypes and PFGE clusters was observed. In conclusion, our study provided valuable information on virulence gene content, antibiotic resistance, and genetic diversity of S. Enteritidis isolated from food sources. Copyright © 2017 Elsevier Ltd. All rights reserved.
Code of Federal Regulations, 2014 CFR
2014-01-01
... environments. 147.10 Section 147.10 Animals and Animal Products ANIMAL AND PLANT HEALTH INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE LIVESTOCK IMPROVEMENT AUXILIARY PROVISIONS ON NATIONAL POULTRY IMPROVEMENT PLAN... examination of egg-type breeding flocks with salmonella enteritidis positive environments. Birds selected for...
Pope, Welkin H; Bowman, Charles A; Russell, Daniel A; Jacobs-Sera, Deborah; Asai, David J; Cresawn, Steven G; Jacobs, William R; Hendrix, Roger W; Lawrence, Jeffrey G; Hatfull, Graham F; Abbazia, Patrick; Ababio, Amma; Adam, Naazneen
2015-01-01
The bacteriophage population is large, dynamic, ancient, and genetically diverse. Limited genomic information shows that phage genomes are mosaic, and the genetic architecture of phage populations remains ill-defined. To understand the population structure of phages infecting a single host strain, we isolated, sequenced, and compared 627 phages of Mycobacterium smegmatis. Their genetic diversity is considerable, and there are 28 distinct genomic types (clusters) with related nucleotide sequences. However, amino acid sequence comparisons show pervasive genomic mosaicism, and quantification of inter-cluster and intra-cluster relatedness reveals a continuum of genetic diversity, albeit with uneven representation of different phages. Furthermore, rarefaction analysis shows that the mycobacteriophage population is not closed, and there is a constant influx of genes from other sources. Phage isolation and analysis was performed by a large consortium of academic institutions, illustrating the substantial benefits of a disseminated, structured program involving large numbers of freshman undergraduates in scientific discovery. DOI: http://dx.doi.org/10.7554/eLife.06416.001 PMID:25919952
Pope, Welkin H; Bowman, Charles A; Russell, Daniel A; Jacobs-Sera, Deborah; Asai, David J; Cresawn, Steven G; Jacobs, William R; Hendrix, Roger W; Lawrence, Jeffrey G; Hatfull, Graham F
2015-04-28
The bacteriophage population is large, dynamic, ancient, and genetically diverse. Limited genomic information shows that phage genomes are mosaic, and the genetic architecture of phage populations remains ill-defined. To understand the population structure of phages infecting a single host strain, we isolated, sequenced, and compared 627 phages of Mycobacterium smegmatis. Their genetic diversity is considerable, and there are 28 distinct genomic types (clusters) with related nucleotide sequences. However, amino acid sequence comparisons show pervasive genomic mosaicism, and quantification of inter-cluster and intra-cluster relatedness reveals a continuum of genetic diversity, albeit with uneven representation of different phages. Furthermore, rarefaction analysis shows that the mycobacteriophage population is not closed, and there is a constant influx of genes from other sources. Phage isolation and analysis was performed by a large consortium of academic institutions, illustrating the substantial benefits of a disseminated, structured program involving large numbers of freshman undergraduates in scientific discovery.
Hybrid Nanomaterial Complexes for Advanced Phage-guided Gene Delivery
Yata, Teerapong; Lee, Koon-Yang; Dharakul, Tararaj; Songsivilai, Sirirurg; Bismarck, Alexander; Mintz, Paul J; Hajitou, Amin
2014-01-01
Developing nanomaterials that are effective, safe, and selective for gene transfer applications is challenging. Bacteriophages (phage), viruses that infect bacteria only, have shown promise for targeted gene transfer applications. Unfortunately, limited progress has been achieved in improving their potential to overcome mammalian cellular barriers. We hypothesized that chemical modification of the bacteriophage capsid could be applied to improve targeted gene delivery by phage vectors into mammalian cells. Here, we introduce a novel hybrid system consisting of two classes of nanomaterial systems, cationic polymers and M13 bacteriophage virus particles genetically engineered to display a tumor-targeting ligand and carry a transgene cassette. We demonstrate that the phage complex with cationic polymers generates positively charged phage and large aggregates that show enhanced cell surface attachment, buffering capacity, and improved transgene expression while retaining cell type specificity. Moreover, phage/polymer complexes carrying a therapeutic gene achieve greater cancer cell killing than phage alone. This new class of hybrid nanomaterial platform can advance targeted gene delivery applications by bacteriophage. PMID:25118171
The genome of the Lactobacillus sanfranciscensis temperate phage EV3
2013-01-01
Background Bacteriophages infection modulates microbial consortia and transduction is one of the most important mechanism involved in the bacterial evolution. However, phage contamination brings food fermentations to a halt causing economic setbacks. The number of phage genome sequences of lactic acid bacteria especially of lactobacilli is still limited. We analysed the genome of a temperate phage active on Lactobacillus sanfranciscensis, the predominant strain in type I sourdough fermentations. Results Sequencing of the DNA of EV3 phage revealed a genome of 34,834 bp and a G + C content of 36.45%. Of the 43 open reading frames (ORFs) identified, all but eight shared homology with other phages of lactobacilli. A similar genomic organization and mosaic pattern of identities align EV3 with the closely related Lactobacillus vaginalis ATCC 49540 prophage. Four unknown ORFs that had no homologies in the databases or predicted functions were identified. Notably, EV3 encodes a putative dextranase. Conclusions EV3 is the first L. sanfranciscensis phage that has been completely sequenced so far. PMID:24308641
Boquete, T; Vindel, A; Martin-Bourgon, C; Azañedo, L; Sáez-Nieto, J A
1996-12-01
The distribution of epidemiological markers (serotyping and phage-typing) of Serratia marcescens isolates from nosocomial episodes (63 nosocomial cutbreaks with 475 isolates, and 1208 sporadic cases) received in our laboratory during the period 1981-1991 was studied. The records for 1683 isolates from Spanish hospitals have been analyzed. In relation with the sporadic cases, the predominant types were serotype O6 (13.4%) and serotype O14 (11.4%); polyagglutinable strains accounted for 15.6%; in outbreaks, type O14 is clearly predominant (27.4%). Phage-typing was a good secondary marker, with a 87.9% of typability; the number of lytic patterns was very high, extended patterns (six or more phages) being the most frequent. We have studied the characteristics of S. marcescens isolates causing infections in the nosocomial environment in Spain.
Corruption of phage display libraries by target-unrelated clones: diagnosis and countermeasures.
Thomas, William D; Golomb, Miriam; Smith, George P
2010-12-15
Phage display is used to discover peptides or proteins with a desired target property-most often, affinity for a target selector molecule. Libraries of phage clones displaying diverse surface peptides are subject to a selection process designed to enrich for the target behavior and subsequently propagated to restore phage numbers. A recurrent problem is enrichment of clones, called target-unrelated phages or peptides (TUPs), that lack the target behavior. Many TUPs are propagation related; they have mutations conferring a growth advantage and are enriched during the propagations accompanying selection. Unlike other filamentous phage libraries, fd-tet-based libraries are relatively resistant to propagation-related TUP corruption. Their minus-strand origin is disrupted by a large cassette that simultaneously confers resistance to tetracycline and imposes a rate-limiting growth defect that cannot be bypassed with simple mutations. Nonetheless, a new type of propagation-related TUP emerged in the output of in vivo selections from an fd-tet library. The founding clone had a complex rearrangement that restored the minus-strand origin while retaining tetracycline resistance. The rearrangement involved two recombination events, one with a contaminant having a wild-type minus-strand origin. The founder's infectivity advantage spread by simple recombination to clones displaying different peptides. We propose measures for minimizing TUP corruption. Copyright © 2010 Elsevier Inc. All rights reserved.
Corruption of phage-display libraries by target-unrelated clones: Diagnosis and countermeasures
Thomas, William D.; Golomb, Miriam; Smith, George P.
2010-01-01
Phage display is used to discover peptides or proteins with a desired target property—most often, affinity for a target selector molecule. Libraries of phage clones displaying diverse surface peptides are subject to a selection process designed to enrich for the target behavior, and subsequently propagated to restore phage numbers. A recurrent problem is enrichment of clones, called target-unrelated phage (TUPs), that lack the target behavior. Many TUPs are propagation-related; they have mutations conferring a growth advantage, and are enriched during the propagations accompanying selection. Unlike other filamentous phage libraries, fd-tet-based libraries are relatively resistant to propagation-related TUP corruption. Their minus strand origin is disrupted by a large cassette that simultaneously confers resistance to tetracycline and imposes a rate-limiting growth defect that cannot be bypassed with simple mutations. Nonetheless, a new type of propagation-related TUP emerged in the output of in vivo selections from an fd-tet library. The founding clone had a complex rearrangement that restored the minus strand origin while retaining tetracycline resistance. The rearrangement involved two recombination events, one with a contaminant having a wild-type minus strand origin. The founder’s infectivity advantage spread by simple recombination to clones displaying different peptides. We propose measures for minimizing TUP corruption. PMID:20692225
Immunological basis of M13 phage vaccine: Regulation under MyD88 and TLR9 signaling.
Hashiguchi, Shuhei; Yamaguchi, Yuya; Takeuchi, Osamu; Akira, Shizuo; Sugimura, Kazuhisa
2010-11-05
Peptide-displaying bacteriophages induce mimotope-specific antibody responses, suggesting a novel application of phage-display library as bacteriophage vaccine. We examined the antibody response against M13 phage in mice induced by an i.p. administration of M13 phage in phosphate-buffered saline. We showed here that firstly, mice showed strong IgG antibody responses, particularly, in IgG2b, IgG2c, and IgG3 subclasses even in primary responses. Secondly, IgG production in primary response is totally dependent on MyD88 signaling. These responses were almost comparable, but slightly weaker, in TLR2-, TLR4- and TLR7-deficient mice relative to wild-type mice, suggesting that this enhancing effect is not due to plausible LPS contamination. Thirdly, although primary IgG1 response was not detected in wild-type mice, remarkable IgG1 response was induced in TLR9-deficient mice, suggesting that TLR9 pathway functions as regulatory, but not a simple augmenting signaling cascade, and furthermore, the enhanced IgG1 response was not due to adjuvant effect of single-stranded DNA derived from M13 phage. Thus, innate immunity including TLR regulation is crucial for M13 phage vaccine design. Copyright © 2010 Elsevier Inc. All rights reserved.
Raspoet, R; Shearer, N; Appia-Ayme, C; Haesebrouck, F; Ducatelle, R; Thompson, A; Van Immerseel, F
2014-05-01
Eggs contaminated with Salmonella Enteritidis are an important source of human foodborne Salmonella infections. Salmonella Enteritidis is able to contaminate egg white during formation of the egg within the chicken oviduct, and it has developed strategies to withstand the antimicrobial properties of egg white to survive in this hostile environment. The mechanisms involved in the persistence of Salmonella Enteritidis in egg white are likely to be complex. To address this issue, a microarray-based transposon library screen was performed to identify genes necessary for survival of Salmonella Enteritidis in egg white at chicken body temperature. The majority of identified genes belonged to the lipopolysaccharide biosynthesis pathway. Additionally, we provide evidence that the serine protease/heat shock protein (HtrA) appears essential for the survival of Salmonella Enteritidis in egg white at chicken body temperature.
Samoylov, Alexandre; Cochran, Anna; Schemera, Bettina; Kutzler, Michelle; Donovan, Caitlin; Petrenko, Valery; Bartol, Frank; Samoylova, Tatiana
2015-12-20
Phage display is based on genetic engineering of phage coat proteins resulting in fusion peptides displayed on the surface of phage particles. The technology is widely used for generation of phages with novel characteristics for numerous applications in biomedicine and far beyond. The focus of this study was on development of phage-peptide constructs that stimulate production of antibodies against gonadotropin releasing hormone (GnRH). Phage-peptide constructs that elicit production of neutralizing GnRH antibodies can be used for anti-fertility and anti-cancer applications. Phage-GnRH constructs were generated via selection from a phage display library using several types of GnRH antibodies as selection targets. Such phage constructs were characterized for sequence similarities to GnRH peptide and frequency of their occurrence in the selection rounds. Five of the constructs with suitable characteristics were tested in mice as a single dose 5×10(11) virions (vir) vaccine and were found to be able to stimulate production of GnRH-specific antibodies, but not to suppress testosterone (indirect indicator of GnRH antibody neutralizing properties). Next, one of the constructs was tested at a higher dose of 2×10(12) vir per mouse in combination with a poly(lactide-co-glycolide) (PLGA)-based adjuvant. This resulted in multifold increase in GnRH antibody production and significant reduction of serum testosterone, indicating that antibodies produced in response to the phage-GnRH immunization possess neutralizing properties. To achieve optimal immune responses for desired applications, phage-GnRH constructs can be modified with respect to flanking sequences of GnRH-like peptides displayed on phage. Anticipated therapeutic effects also might be attained using optimized phage doses, a combination of several constructs in a single treatment, or application of adjuvants and advanced phage delivery systems. Copyright © 2015 Elsevier B.V. All rights reserved.
Potential use of caprylic acid in broiler chickens: effect on Salmonella enteritidis.
Skřivanová, Eva; Hovorková, Petra; Čermák, Ladislav; Marounek, Milan
2015-01-01
The effect of dietary caprylic acid (CA) on Salmonella Enteritidis, as well as the surface treatment of chicken skin contaminated with Salmonella Enteritidis was evaluated. To evaluate the dietary effect of CA on Salmonella Enteritidis, the individually housed broiler chickens (n=48) were divided into 4 groups (positive control, negative control, 2.5 g/kg of CA in the feed, and 5 g/kg of CA in the feed). The feed of all groups, except the negative control, was artificially contaminated with Salmonella Enteritidis ATCC 13076 (10(7) colony-forming units/100 g of feed). Both concentrations of dietary CA significantly decreased counts of Salmonella Enteritidis in the crop and cecum of experimental chickens (p<0.05). The effect of CA in the crop contents was more pronounced than in the cecum. Surface treatment of chilled chicken halves with CA at 1.25 and 2.5 mg/mL significantly decreased Salmonella Enteritidis contamination of chicken skin (p<0.05). The sensory evaluation of the skin and meat showed that treatment of the skin with 1.25 mg/mL of CA worsened odor and appearance of the chicken skin, while sensory traits of chicken meat were not significantly affected. Taste and overall acceptability was not influenced by CA in both meat and skin. Treatment of the skin with 2.5 mg/mL of CA resulted in more pronounced changes of the skin odor and appearance. In conclusion, dietary CA reduced carriage of Salmonella Enteritidis in chickens, whereas surface-treatment reduced or eliminated Salmonella Enteritidis contamination in the processed bird.
Zhang, Peng; Liu, Hui; Ma, Suzhen; Men, Shuai; Li, Qingzhou; Yang, Xin; Wang, Hongning; Zhang, Anyun
2016-06-15
The harm of Salmonella enteritidis (S. enteritidis ) to public health mainly by contaminating fresh food and water emphasizes the urgent need for rapid detection techniques to help control the spread of the pathogen. In this assay, an newly designed capture probe complex that contained specific S. enteritidis-aptamer and hybridized signal target sequence was used for viable S. enteritidis recognition directly. In the presence of the target S. enteritidis, single-stranded target sequences were liberated and initiated the replication-cleavage reaction, producing numerous G-quadruplex structures with a linker on the 3'-end. And then, the sensing system took innovative advantage of quadratic linker-induced strand-displacement for the first time to release target sequence in succession, leading to the cyclic reuse of the target sequences and cascade signal amplification, thereby achieving the successive production of G-quadruplex structures. The fluorescent dye, N-Methyl mesoporphyrin IX, binded to these G-quadruplex structures and generated significantly enhanced fluorescent signals to achieve highly sensitive detection of S. enteritidis down to 60 CFU/mL with a linear range from 10(2) to 10(7)CFU/mL. By coupling the cascade two-stage target sequences-recyclable toehold strand-displacement with aptamer-based target recognition successfully, it is the first report on a novel non-label, modification-free and DNA extraction-free ultrasensitive fluorescence biosensor for detecting viable S. enteritidis directly, which can discriminate from dead S. enteritidis. Copyright © 2016 Elsevier B.V. All rights reserved.
Characterization of Salmonella Typhimurium isolates associated with septicemia in swine.
Bergeron, Nadia; Corriveau, Jonathan; Letellier, Ann; Daigle, France; Quessy, Sylvain
2010-01-01
Salmonella Typhimurium is frequently isolated from pigs and may also cause enteric disease in humans. In this study, 33 isolates of S. Typhimurium associated with septicemia in swine (CS) were compared to 33 isolates recovered from healthy animals at slaughter (WCS). The isolates were characterized using phenotyping and genotyping methods. For each isolate, the phage type, antimicrobial resistance, and pulsed-field gel electrophoresis (PFGE) DNA profiles were determined. In addition, the protein profiles of each isolate grown in different conditions were studied by Coomassie Blue-stained sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblot. Various phage types were identified. The phage type PT 104 represented 36.4% of all isolates from septicemic pigs. Resistance to as many as 12 antimicrobial agents, including some natural resistances, was found in isolates from CS and WCS. Many genetic profiles were identified among the PT 104 phage types. Although it was not possible to associate one particular protein with septicemic isolates, several highly immunogenic proteins, present in all virulent isolates and in most isolates from clinically healthy animals, were identified. These results indicated that strains associated with septicemia belong to various genetic lineages that can also be recovered from asymptomatic animals at the time of slaughter.
Titov, Leonid; Kolodkina, Valentina; Dronina, Alina; Grimont, Francine; Grimont, Patrick A. D.; Lejay-Collin, Monique; de Zoysa, Aruni; Andronescu, Constantin; Diaconescu, Angela; Marin, Byanca; Efstratiou, Androulla
2003-01-01
One hundred two Corynebacterium diphtheriae strains (93 of the gravis biotype and nine of the mitis biotype) isolated from clinical cases during the Belarus diphtheria epidemic were characterized by biotyping, toxigenicity testing by the Elek test and an indirect hemagglutination assay, phage typing, and ribotyping. The gravis biotype strains were characterized as high and medium toxin producers, and strains of biotype mitis were characterized as low and medium toxin producers. Most strains (82 of 102) were distributed among five phage types. Seventy-two strains (64 of the gravis biotype and 8 of the mitis biotype) belonged to phage type VI ls5,34add. Hybridization of genomic DNA digested with BstEII and PvuII revealed five ribotype patterns, namely, D1, D4, D6, D7, and D13. The majority of gravis biotype strains belonged to ribotypes D1 (49 of 93) and D4 (33 of 93) and included one clonal group of C. diphtheriae. This clone predominated in all regions in Belarus. There was a statistical association between ribotypes and phage types but not between ribotypes and levels of toxin production. PMID:12624069
NASA Astrophysics Data System (ADS)
Mueller, Michael; Baik, Seungyun; Jeon, Hojeong; Kim, Yuchan; Kim, Jungtae; Kim, Young Jun
2015-05-01
The growth of crystalline vanadium oxide using a filamentous bacteriophage template was investigated using sequential incubation in a V2O5 precursor. Using the genetic modification of the bacteriophage, we displayed two cysteines that constrained the RSTB-1 peptide on the major coat protein P8, resulting in vanadium oxide crystallization. The phage-driven vanadium oxide crystals with different topologies, microstructures, photodegradation and vanadium oxide composites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), quartz microbalance and dissipation (QCM-D) and X-ray photoelectron spectroscopy (XPS). Non-specific electrostatic attraction between a wild-type phage (wt-phage) and vanadium cations in the V2O5 precursor caused phage agglomeration and fiber formation along the length of the viral scaffold. As a result, the addition of recombinant phage (re-phage) in V2O5 precursors formed heterogeneous structures, which led to efficient condensation of vanadium oxide crystal formation in lines, shown by QCM-D analysis. Furthermore, re-phage/VxOx composites showed significantly enhanced photodegradation activities compared with the synthesized wt-phage-V2O5 composite under illumination. This study demonstrates that peptide-mediated vanadium oxide mineralization is governed by a complicated interplay of peptide sequence, local structure, kinetics and the presence of a mineralizing aid, such as the two cysteine-constrained peptides on the phage surface, and has potential for use in nanotechnology applications.
Sulakvelidze, Alexander
2013-10-01
Bacteriophages (also called 'phages') are viruses that kill bacteria. They are arguably the oldest (3 billion years old, by some estimates) and most ubiquitous (total number estimated to be 10(30) -10(32) ) known organisms on Earth. Phages play a key role in maintaining microbial balance in every ecosystem where bacteria exist, and they are part of the normal microflora of all fresh, unprocessed foods. Interest in various practical applications of bacteriophages has been gaining momentum recently, with perhaps the most attention focused on using them to improve food safety. That approach, called 'phage biocontrol', typically includes three main types of applications: (i) using phages to treat domesticated livestock in order to reduce their intestinal colonization with, and shedding of, specific bacterial pathogens; (ii) treatments for decontaminating inanimate surfaces in food-processing facilities and other food establishments, so that foods processed on those surfaces are not cross-contaminated with the targeted pathogens; and (iii) post-harvest treatments involving direct applications of phages onto the harvested foods. This mini-review primarily focuses on the last type of intervention, which has been gaining the most momentum recently. Indeed, the results of recent studies dealing with improving food safety, and several recent regulatory approvals of various commercial phage preparations developed for post-harvest food safety applications, strongly support the idea that lytic phages may provide a safe, environmentally-friendly, and effective approach for significantly reducing contamination of various foods with foodborne bacterial pathogens. However, some important technical and nontechnical problems may need to be addressed before phage biocontrol protocols can become an integral part of routine food safety intervention strategies implemented by food industries in the USA. © 2013 Society of Chemical Industry.
Genome of a SAR116 bacteriophage shows the prevalence of this phage type in the oceans.
Kang, Ilnam; Oh, Hyun-Myung; Kang, Dongmin; Cho, Jang-Cheon
2013-07-23
The abundance, genetic diversity, and crucial ecological and evolutionary roles of marine phages have prompted a large number of metagenomic studies. However, obtaining a thorough understanding of marine phages has been hampered by the low number of phage isolates infecting major bacterial groups other than cyanophages and pelagiphages. Therefore, there is an urgent requirement for the isolation of phages that infect abundant marine bacterial groups. In this study, we isolated and characterized HMO-2011, a phage infecting a bacterium of the SAR116 clade, one of the most abundant marine bacterial lineages. HMO-2011, which infects "Candidatus Puniceispirillum marinum" strain IMCC1322, has an ~55-kb dsDNA genome that harbors many genes with novel features rarely found in cultured organisms, including genes encoding a DNA polymerase with a partial DnaJ central domain and an atypical methanesulfonate monooxygenase. Furthermore, homologs of nearly all HMO-2011 genes were predominantly found in marine metagenomes rather than cultured organisms, suggesting the novelty of HMO-2011 and the prevalence of this phage type in the oceans. A significant number of the viral metagenome sequences obtained from the ocean surface were best assigned to the HMO-2011 genome. The number of reads assigned to HMO-2011 accounted for 10.3%-25.3% of the total reads assigned to viruses in seven viromes from the Pacific and Indian Oceans, making the HMO-2011 genome the most or second-most frequently assigned viral genome. Given its ability to infect the abundant SAR116 clade and its widespread distribution, Puniceispirillum phage HMO-2011 could be an important resource for marine virus research.
Survey on the phage resistance mechanisms displayed by a dairy Lactobacillus helveticus strain.
Zago, Miriam; Orrù, Luigi; Rossetti, Lia; Lamontanara, Antonella; Fornasari, Maria Emanuela; Bonvini, Barbara; Meucci, Aurora; Carminati, Domenico; Cattivelli, Luigi; Giraffa, Giorgio
2017-09-01
In this study the presence and functionality of phage defence mechanisms in Lactobacillus helveticus ATCC 10386, a strain of dairy origin which is sensitive to ΦLh56, were investigated. After exposure of ATCC 10386 to ΦLh56, the whole-genome sequences of ATCC 10386 and of a phage-resistant derivative (LhM3) were compared. LhM3 showed deletions in the S-layer protein and a higher expression of the genes involved in the restriction/modification (R/M) system. Genetic data were substantiated by measurements of bacteriophage adsorption rates, efficiency of plaquing, cell wall protein size and by gene expression analysis. In LhM3 two phage resistance mechanisms, the inhibition of phage adsorption and the upregulation of Type I R/M genes, take place and explain its resistance to ΦLh56. Although present in both ATCC 10386 and LhM3 genomes, the CRISPR machinery did not seem to play a role in the phage resistance of LhM3. Overall, the natural selection of phage resistant strains resulted successful in detecting variants carrying multiple phage defence mechanisms in L. helveticus. The concurrent presence of multiple phage-resistance systems should provide starter strains with increased fitness and robustness in dairy ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.
Gundogdu, Aycan; Bolkvadze, Darajen; Kilic, Huseyin
2016-01-01
The objective of this study is to determine the in vitro susceptibility of Georgian bacteriophage cocktails on multidrug resistant (MDR) extended-spectrum beta-lactamase producing Escherichia coli (ESBL-EC) isolated from patients' blood and urine cultures. A total of 615 E. coli isolates were included in this study. Phene Plate (PhP)-typing and phylogenetic grouping were used for the typing. Antimicrobial resistance profiles and ESBL production of all isolates were confirmed according to Clinical and Laboratory Standards Institute (CLSI) criteria. The activities of four bacteriophage cocktails (Enko-phage, SES-bacteriophage, Pyo-bacteriophage, and Intesti-bacteriophage) were determined against 142 ESBL-EC using in vitro spot tests. According to this, Enko-phage were active against 87.3% of the tested strains while that ratio was 81.7% for Intesti-bacteriophage, 81.7% for Pyo-bacteriophage, and 59.2% for SES-bacteriophage cocktails. Based on the contingency tests, the phage cocktails were observed to be statistically significantly ( p < 0.001) more effective on ESBL-EC strains belonging to phylogenetic groups D and B2. The employed phage cocktails were found to be affective against all tested resistant types. These results are promising especially for the infections that are caused by MDR pathogens that are difficult to treat. As this is a preliminary step to the potential clinical trials to be designed for the country, in vitro confirmation of their success on a MDR ESBL-EC collection should be accepted as an initial action, which is encouraging to consider clinical trials of phage therapy especially in countries which are not introduce phage therapy.
Targeted binding of the M13 bacteriophage to thiamethoxam organic crystals.
Cho, Whirang; Fowler, Jeffrey D; Furst, Eric M
2012-04-10
Phage display screening with a combinatorial library was used to identify M13-type bacteriophages that express peptides with selective binding to organic crystals of thiamethoxam. The six most strongly binding phages exhibit at least 1000 times the binding affinity of wild-type M13 and express heptapeptide sequences that are rich in hydrophobic, hydrogen-bonding amino acids and proline. Among the peptide sequences identified, M13 displaying the pIII domain heptapeptide ASTLPKA exhibits the strongest binding to thiamethoxam in competitive binding assays. Electron and confocal microscopy confirm the specific binding affinity of ASTLPKA to thiamethoxam. Using atomic force microscope (AFM) probes functionalized with ASTLPKA expressing phage, we found that the average adhesion force between the bacteriophage and a thiamethoxam surface is 1.47 ± 0.80 nN whereas the adhesion force of wild-type M13KE phage is 0.18 ± 0.07 nN. Such a strongly binding bacteriophage could be used to modify the surface chemistry of thiamethoxam crystals and other organic solids with a high degree of specificity. © 2012 American Chemical Society
Uptake and processing of modified bacteriophage M13 in mice: implications for phage display.
Molenaar, Tom J M; Michon, Ingrid; de Haas, Sonja A M; van Berkel, Theo J C; Kuiper, Johan; Biessen, Erik A L
2002-02-01
Internalization and degradation of filamentous bacteriophage M13 by a specific target cell may have major consequences for the recovery of phage in in vivo biopanning of phage libraries. Therefore, we investigated the pharmacokinetics and processing of native and receptor-targeted phage in mice. (35)S-radiolabeled M13 was chemically modified by conjugation of either galactose (lacM13) or succinic acid groups (sucM13) to the coat protein of the phage to stimulate uptake by galactose recognizing hepatic receptors and scavenger receptors, respectively. Receptor-mediated endocytosis of modified phage reduced the plasma half-life of native M13 (t(1/2) = 4.5 h) to 18 min for lactosylated and 1.5 min for succinylated bacterophage. Internalization of sucM13 was complete within 30 min after injection and resulted in up to 5000-fold reduction of bioactive phage within 90 min. In conclusion, these data provide information on the in vivo behavior of wild-type and receptor-targeted M13, which has important implications for future in vivo phage display experiments and for the potential use of M13 as a viral gene delivery vehicle.
He, G Z; Tian, W Y; Qian, N; Cheng, A C; Deng, S X
2010-12-01
This research was undertaken to identify and understand the regular distribution pattern for Salmonella Enteritidis (S. enteritidis) in the internal organs of chicken after oral challenge over a 3 wk period. We used a real-time, fluorescence-based quantitative polymerase chain reaction (FQ-PCR) to detect genomic DNA of S. enteritidis in the blood and the internal organs, including heart, liver, spleen, kidney, pancreas, and gallbladder, from chicken after oral challenge at different time points. The results showed that the spleen was positive at 12 h post inoculation (PI), and the blood was at 14 h PI. The organism was detected in the liver and heart at 16 h PI, pancrea was positive at 20 h PI, and the final organ to show a positive results were the kidney and gallbladder at 22 h PI. The copy number of S. enteritidis DNA in each tissue reached a peak at 24 h-36 h PI, with the liver and spleen containing high concentrations of S. enteritidis, whereas the blood, heart, kidney, pancreas, and gallbladder had low concentrations. S. enteritidis populations began to decrease and were not detectable at 3 d PI, but were still present up to 12 d PI in the gallbladder, 2 wk for the liver, and 3 wk for the spleen without causing apparent symptoms. The results showed that the liver and spleen may be the primary sites for S. enteritidis setting itself up as a commensa over a long time after oral challenge. Interestingly, it may be the first time reported that the gallbladder is a site of carriage for S. enteritidis over a 12 d period. This study will help to understand the mechanisms of action of S. enteritidis infection in vivo.
Federal Register 2010, 2011, 2012, 2013, 2014
2010-05-03
... the NPIP program. Tentative topics for discussion at the upcoming meetings include: 1. Salmonella enteritidis in meat-type chickens. 2. Salmonella isolation and identification protocol. 3. Notifiable avian...
Lee, E N; Sunwoo, H H; Menninen, K; Sim, J S
2002-05-01
Chicken egg yolk antibody (IgY) raised against Salmonella enteritidis or Salmonella typhimurium was found in highly specific activity levels by ELISA. S. enteritidis- and S. typhimurium-specific IgY powder, prepared by freeze-drying the egg yolk water-soluble fraction, contained 15.5 and 10.0% of specific IgY, respectively. Anti-S. enteritidis IgY cross-reacted 55.3% with S. typhimurium. The cross-reactivity of anti-S. typhimurium IgY with S. enteritidis was 42.4%. Salmonella-specific IgY was demonstrated to inhibit Salmonella growth in liquid medium. The growth rate of S. enteritidis incubated with S. enteritidis-specific IgY was fourfold less than that of the control group during a 4-to-6-h incubation. Cell counts of S. typhimurium incubated with S. typhimurium-specific IgY were reduced by 1.6 log cfu/mL in comparison to that of the control group after 6 h of incubation. The specific binding activity of IgY was further evaluated by using immunofluorescence and immunoelectron microscopy. It was found that Salmonella-specific IgY could bind to the antigens expressed on the Salmonella surface, resulting in structural alterations of the bacterial surface.
Bidlingmaier, Scott; Su, Yang; Liu, Bin
2015-01-01
Using phage antibody display, large libraries can be generated and screened to identify monoclonal antibodies with affinity for target antigens. However, while library size and diversity is an advantage of the phage display method, there is limited ability to quantitatively enrich for specific binding properties such as affinity. One way of overcoming this limitation is to combine the scale of phage display selections with the flexibility and quantitativeness of FACS-based yeast surface display selections. In this chapter we describe protocols for generating yeast surface antibody display libraries using phage antibody display selection outputs as starting material and FACS-based enrichment of target antigen-binding clones from these libraries. These methods should be widely applicable for the identification of monoclonal antibodies with specific binding properties.
Yu, X J; Liang, X; Bai, L; Li, W W; Yan, J; Wang, K L; Li, X
2016-12-10
Objective: To study the PFGE type of Salmonella ( S. ) strains isolated from poultry production chains (hatching, breeding, slaughter, distribution and retail) of four cities in Heilongjiang province. Methods: DNA collected from S . strains in 2012 was digested by Xba Ⅰ according to the standard PFGE protocol of US CDC. The PFGE patterns were then analyzed by BioNumerics software. Results: The contamination of S . appeared most serious during the process of slaughtering (13.84%). PFGE was used to determine the genetic relationships between these isolates from poultry production chains, 89 pulsotypes from 150 S. enteritidis isolates and 55 pulsotypes from 65 S. indiana isolates showed considerable diversity. The same pulsotypes of S. enteritidis can be found between different food chains and cities. In contrast, no identical pulsotypes of S. indiana were found between different food chain and cities. In these four cities, the above said two kinds of S. were from different sources. The source of S. contamination in HLJ2 city had been traced back to the chain of poultry hatching. Conclusions: The distribution of pulsetypes of the S. enteritidis and S. indiana isolates was from different regions and the dominant bands were also different between the chains of poultry production. Cross contamination existed in slaughterhouses and contamination can be traced back to the poultry hatching.
Plaut, Roger D; Beaber, John W; Zemansky, Jason; Kaur, Ajinder P; George, Matroner; Biswas, Biswajit; Henry, Matthew; Bishop-Lilly, Kimberly A; Mokashi, Vishwesh; Hannah, Ryan M; Pope, Robert K; Read, Timothy D; Stibitz, Scott; Calendar, Richard; Sozhamannan, Shanmuga
2014-03-01
In order to better characterize the Bacillus anthracis typing phage AP50c, we designed a genetic screen to identify its bacterial receptor. Insertions of the transposon mariner or targeted deletions of the structural gene for the S-layer protein Sap and the sporulation genes spo0A, spo0B, and spo0F in B. anthracis Sterne resulted in phage resistance with concomitant defects in phage adsorption and infectivity. Electron microscopy of bacteria incubated with AP50c revealed phage particles associated with the surface of bacilli of the Sterne strain but not with the surfaces of Δsap, Δspo0A, Δspo0B, or Δspo0F mutants. The amount of Sap in the S layer of each of the spo0 mutant strains was substantially reduced compared to that of the parent strain, and incubation of AP50c with purified recombinant Sap led to a substantial reduction in phage activity. Phylogenetic analysis based on whole-genome sequences of B. cereus sensu lato strains revealed several closely related B. cereus and B. thuringiensis strains that carry sap genes with very high similarities to the sap gene of B. anthracis. Complementation of the Δsap mutant in trans with the wild-type B. anthracis sap or the sap gene from either of two different B. cereus strains that are sensitive to AP50c infection restored phage sensitivity, and electron microscopy confirmed attachment of phage particles to the surface of each of the complemented strains. Based on these data, we postulate that Sap is involved in AP50c infectivity, most likely acting as the phage receptor, and that the spo0 genes may regulate synthesis of Sap and/or formation of the S layer.
Beaber, John W.; Zemansky, Jason; Kaur, Ajinder P.; George, Matroner; Biswas, Biswajit; Henry, Matthew; Bishop-Lilly, Kimberly A.; Mokashi, Vishwesh; Hannah, Ryan M.; Pope, Robert K.; Read, Timothy D.; Stibitz, Scott; Calendar, Richard; Sozhamannan, Shanmuga
2014-01-01
In order to better characterize the Bacillus anthracis typing phage AP50c, we designed a genetic screen to identify its bacterial receptor. Insertions of the transposon mariner or targeted deletions of the structural gene for the S-layer protein Sap and the sporulation genes spo0A, spo0B, and spo0F in B. anthracis Sterne resulted in phage resistance with concomitant defects in phage adsorption and infectivity. Electron microscopy of bacteria incubated with AP50c revealed phage particles associated with the surface of bacilli of the Sterne strain but not with the surfaces of Δsap, Δspo0A, Δspo0B, or Δspo0F mutants. The amount of Sap in the S layer of each of the spo0 mutant strains was substantially reduced compared to that of the parent strain, and incubation of AP50c with purified recombinant Sap led to a substantial reduction in phage activity. Phylogenetic analysis based on whole-genome sequences of B. cereus sensu lato strains revealed several closely related B. cereus and B. thuringiensis strains that carry sap genes with very high similarities to the sap gene of B. anthracis. Complementation of the Δsap mutant in trans with the wild-type B. anthracis sap or the sap gene from either of two different B. cereus strains that are sensitive to AP50c infection restored phage sensitivity, and electron microscopy confirmed attachment of phage particles to the surface of each of the complemented strains. Based on these data, we postulate that Sap is involved in AP50c infectivity, most likely acting as the phage receptor, and that the spo0 genes may regulate synthesis of Sap and/or formation of the S layer. PMID:24363347
Muhammed, Musemma K.; Kot, Witold; Neve, Horst; Mahony, Jennifer; Castro-Mejía, Josué L.; Krych, Lukasz; Hansen, Lars H.; Nielsen, Dennis S.; Sørensen, Søren J.; Heller, Knut J.; van Sinderen, Douwe
2017-01-01
ABSTRACT Despite being potentially highly useful for characterizing the biodiversity of phages, metagenomic studies are currently not available for dairy bacteriophages, partly due to the lack of a standard procedure for phage extraction. We optimized an extraction method that allows the removal of the bulk protein from whey and milk samples with losses of less than 50% of spiked phages. The protocol was applied to extract phages from whey in order to test the notion that members of Lactococcus lactis 936 (now Sk1virus), P335, c2 (now C2virus) and Leuconostoc phage groups are the most frequently encountered in the dairy environment. The relative abundance and diversity of phages in eight and four whey mixtures from dairies using undefined mesophilic mixed-strain cultures containing Lactococcus lactis subsp. lactis biovar diacetylactis and Leuconostoc species (i.e., DL starter cultures) and defined cultures, respectively, were assessed. Results obtained from transmission electron microscopy and high-throughput sequence analyses revealed the dominance of Lc. lactis 936 phages (order Caudovirales, family Siphoviridae) in dairies using undefined DL starter cultures and Lc. lactis c2 phages (order Caudovirales, family Siphoviridae) in dairies using defined cultures. The 936 and Leuconostoc phages demonstrated limited diversity. Possible coinduction of temperate P335 prophages and satellite phages in one of the whey mixtures was also observed. IMPORTANCE The method optimized in this study could provide an important basis for understanding the dynamics of the phage community (abundance, development, diversity, evolution, etc.) in dairies with different sizes, locations, and production strategies. It may also enable the discovery of previously unknown phages, which is crucial for the development of rapid molecular biology-based methods for phage burden surveillance systems. The dominance of only a few phage groups in the dairy environment signifies the depth of knowledge gained over the past decades, which served as the basis for designing current phage control strategies. The presence of a correlation between phages and the type of starter cultures being used in dairies might help to improve the selection and/or design of suitable, custom, and cost-efficient phage control strategies. PMID:28754704
Tohidi, Reza; Idris, Ismail Bin; Panandam, Jothi Malar; Bejo, Mohd Hair
2012-12-01
Salmonella Enteritidis is a major cause of food poisoning worldwide, and poultry products are the main source of S. Enteritidis contamination for humans. Among the numerous strategies for disease control, improving genetic resistance to S. Enteritidis has been the most effective approach. We investigated the association between S. Enteritidis burden in the caecum, spleen, and liver of young indigenous chickens and seven candidate genes, selected on the basis of their critical roles in immunological functions. The genes included those encoding interleukin 2 (IL-2), interferon-γ (IFN-γ), transforming growth factor β2 (TGF-β2), immunoglobulin light chain (IgL), toll-like receptor 4 (TLR-4), myeloid differentiation protein 2 (MD-2), and inducible nitric oxide synthase (iNOS). Two Malaysian indigenous chicken breeds were used as sustainable genetic sources of alleles that are resistant to salmonellosis. The polymerase chain reaction restriction fragment-length polymorphism technique was used to genotype the candidate genes. Three different genotypes were observed in all of the candidate genes, except for MD-2. All of the candidate genes showed the Hardy-Weinberg equilibrium for the two populations. The IL-2-MnlI polymorphism was associated with S. Enteritidis burden in the caecum and spleen. The TGF-β2-RsaI, TLR-4-Sau 96I, and iNOS-AluI polymorphisms were associated with the caecum S. Enteritidis load. The other candidate genes were not associated with S. Enteritidis load in any organ. The results indicate that the IL-2, TGF-β2, TLR-4, and iNOS genes are potential candidates for use in selection programmes for increasing genetic resistance against S. Enteritidis in Malaysian indigenous chickens.
Noviyanti, Fia; Hosotani, Yukie; Koseki, Shigenobu; Inatsu, Yasuhiro; Kawasaki, Susumu
2018-04-02
The goals of this study were to monitor the growth kinetics of Salmonella Enteritidis in chicken juice using real-time polymerase chain reaction (PCR) and to evaluate its efficacy by comparing the results with an experimental database. Salmonella Enteritidis was inoculated in chicken juice samples at an initial inoculum of 10 4 CFU/mL with inoculated samples incubated at six different temperatures (10, 15, 20, 25, 30, and 35°C). Sampling was carried out for 36 h to observe the growth of Salmonella Enteritidis. The total DNA was extracted from the samples, and the copy number of the Salmonella invasion gene (invA) was quantified by real-time PCR and converted to Salmonella Enteritidis cell concentration. Growth kinetics data were analyzed by the Baranyi and Roberts model to obtain growth parameters, whereas the Ratkowsky's square-root model was used to describe the effect of the interactions between growth parameters and temperature on the growth of Salmonella Enteritidis. The growth parameters of Salmonella Enteritidis obtained from an experiment conducted at a constant temperature were validated with growth data from chicken juice samples that were incubated under fluctuating temperature conditions between 5°C and 30°C for 30-min periods. A high correlation was observed between maximum growth rate (μ max ) and storage temperature, indicating that the real-time PCR-monitoring method provides a precise estimation of Salmonella Enteritidis growth in food material with a microbial flora. Moreover, the μ max data reflected data from microbial responses viewer database and ComBase. The results of this study suggested that real-time PCR monitoring provides a precise estimation of Salmonella Enteritidis growth in food materials with a background microbial flora.
Kim, Tae-Hoon; Hwang, Hyun Jin; Kim, Jeong Hee
2017-10-01
Salmonella enterica serovars Enteritidis and Typhimurium are the most common causative agents of human nontyphoidal salmonellosis. The rapid detection and timely treatment of salmonellosis are important to increase the curative ratio and prevent spreading of the disease. In this study, we developed a rapid multiplex convection polymerase chain reaction (PCR) method to detect Salmonella spp. and differentiate Salmonella Enteritidis and Salmonella Typhimurium. We used the invA gene for Salmonella spp. detection. Salmonella Enteritidis-specific primers and Salmonella Typhimurium-specific primers were designed using the insertion element (IE) and spy genes, respectively. The primer set for Salmonella spp. detection clearly detected both Salmonella Enteritidis and Salmonella Typhimurium after a 21-min amplification reaction. Serovar-specific primer sets for Salmonella Enteritidis and Salmonella Typhimurium specifically detected each target species in a 21-min amplification reaction. We were able to detect Salmonella spp. at a single copy level in the singleplex mode. The limits of detection for Salmonella Enteritidis and Salmonella Typhimurium were 30 copies in both the singleplex and multiplex modes. The PCR run time could be reduced to 10.5 min/15 cycles. The multiplex convection PCR method developed in this study could detect the Salmonella spp. Salmonella Enteritidis and Salmonella Typhimurium in artificially contaminated milk with as few as 10 0 colony-forming unit/mL after 4-h enrichment. The PCR assay developed in this study provides a rapid, specific, and sensitive method for the detection of Salmonella spp. and the differentiation of Salmonella Enteritidis and Salmonella Typhimurium.
Genetic and Immunological Studies of Bacteriophage T4 Thymidylate Synthetase
Krauss, S. W.; Stollar, B. D.; Friedkin, M.
1973-01-01
Thymidylate synthetase, which appears after infection of Escherichia coli with bacteriophage T4, has been partially purified. The phage enzyme is immunologically distinct from the host enzyme and has a molecular weight of 50,000 in comparison to 68,000 for the host enzyme. A system has been developed to characterize T4 td mutants previously known to have impaired expression of phage thymidylate synthetase. For this system, an E. coli host lacking thymidylate synthetase was isolated. Known genetic suppressors were transduced into this host. The resulting isogenic hosts were infected with phage T4 td mutants. The specific activities and amounts of cross-reacting material induced by several different types of phage mutants under conditions of suppression or non-suppression have been examined. The results show that the phage carries the structural gene specifying the thymidylate synthetase which appears after phage infection, and that the combination of plaque morphology, enzyme activity assays, and an assay for immunologically cross-reacting material provides a means for identifying true amber mutants of the phage gene. Images PMID:4575286
Water-borne typhoid fever caused by an unusual Vi-phage type in Edinburgh
Conn, Nancy K.; Heymann, C. S.; Jamieson, A.; McWilliam, Joan M.; Scott, T. G.
1972-01-01
Investigation of a small series of cases of typhoid fever infected in a river between 1963 and 1970 revealed that all were caused by a single source, a carrier of a rare phage type of Salmonella typhi. The contamination of the river resulted from an incorrect sewage connexion with a surface water drain outfall into the river. ImagesPlate 1 PMID:4555889
Breast abscess in a man due to Salmonella enterica serotype Enteritidis.
Brncic, Nada; Gorup, Lari; Strcic, Miroslav; Abram, Maja; Mustac, Elvira
2012-01-01
Nontyphoidal salmonellae can cause breast infection only exceptionally. A case of breast abscess in a 70-year-old man due to Salmonella enterica serotype Enteritidis (Salmonella Enteritidis) is reported. The infection was successfully treated with a combination of surgical and antibiotic treatment.
Thomas, Ekelijn; Bouma, Annemarie; van Eerden, Ellen; Landman, Wil J M; van Knapen, Frans; Stegeman, Arjan; Bergwerff, Aldert A
2006-08-31
A surface plasmon resonance (SPR) biosensor assay was developed on the basis of a lipopolysaccharide antigen of Salmonella enterica serovar enteritidis (S. enterica serovar enteritidis) to detect egg yolk antibodies against S. enterica serovar enteritidis. This biosensor assay was compared to two commercial ELISA kits based on LPS antigen and flagellar antigen. A number of 163 egg yolk and combined egg white and yolk samples from chickens experimentally infected with S. enterica serovar enteritidis and 90 egg yolk and combined egg white and yolk samples from uninfected chickens were analyzed. Receiver operating characteristic analysis of the data calculated a diagnostic sensitivity of 82% and a diagnostic specificity of 100%. The within-day coefficient of variation of a positive internal-control egg yolk was 1%. The SPR biosensor assay was able to detect antibodies in a significantly higher percentage of known positive samples than the commercial ELISA's. The anticipated use of the SPR biosensor assay is to determine the S. enterica serovar enteritidis serostatus of non-vaccinated layer hens.
Szmolka, Ama; Wiener, Zoltán; Matulova, Marta Elsheimer; Varmuzova, Karolina; Rychlik, Ivan
2015-01-01
The response of chicken to non-typhoidal Salmonella infection is becoming well characterised but the role of particular cell types in this response is still far from being understood. Therefore, in this study we characterised the response of chicken embryo fibroblasts (CEFs) to infection with two different S. Enteritidis strains by microarray analysis. The expression of chicken genes identified as significantly up- or down-regulated (≥3-fold) by microarray analysis was verified by real-time PCR followed by functional classification of the genes and prediction of interactions between the proteins using Gene Ontology and STRING Database. Finally the expression of the newly identified genes was tested in HD11 macrophages and in vivo in chickens. Altogether 19 genes were induced in CEFs after S. Enteritidis infection. Twelve of them were also induced in HD11 macrophages and thirteen in the caecum of orally infected chickens. The majority of these genes were assigned different functions in the immune response, however five of them (LOC101750351, K123, BU460569, MOBKL2C and G0S2) have not been associated with the response of chicken to Salmonella infection so far. K123 and G0S2 were the only ’non-immune’ genes inducible by S. Enteritidis in fibroblasts, HD11 macrophages and in the caecum after oral infection. The function of K123 is unknown but G0S2 is involved in lipid metabolism and in β-oxidation of fatty acids in mitochondria. PMID:26046914
Szmolka, Ama; Wiener, Zoltán; Matulova, Marta Elsheimer; Varmuzova, Karolina; Rychlik, Ivan
2015-01-01
The response of chicken to non-typhoidal Salmonella infection is becoming well characterised but the role of particular cell types in this response is still far from being understood. Therefore, in this study we characterised the response of chicken embryo fibroblasts (CEFs) to infection with two different S. Enteritidis strains by microarray analysis. The expression of chicken genes identified as significantly up- or down-regulated (≥3-fold) by microarray analysis was verified by real-time PCR followed by functional classification of the genes and prediction of interactions between the proteins using Gene Ontology and STRING Database. Finally the expression of the newly identified genes was tested in HD11 macrophages and in vivo in chickens. Altogether 19 genes were induced in CEFs after S. Enteritidis infection. Twelve of them were also induced in HD11 macrophages and thirteen in the caecum of orally infected chickens. The majority of these genes were assigned different functions in the immune response, however five of them (LOC101750351, K123, BU460569, MOBKL2C and G0S2) have not been associated with the response of chicken to Salmonella infection so far. K123 and G0S2 were the only 'non-immune' genes inducible by S. Enteritidis in fibroblasts, HD11 macrophages and in the caecum after oral infection. The function of K123 is unknown but G0S2 is involved in lipid metabolism and in β-oxidation of fatty acids in mitochondria.
Quinolone Resistance Determinants of Clinical Salmonella Enteritidis in Thailand.
Utrarachkij, Fuangfa; Nakajima, Chie; Changkwanyeun, Ruchirada; Siripanichgon, Kanokrat; Kongsoi, Siriporn; Pornruangwong, Srirat; Changkaew, Kanjana; Tsunoda, Risa; Tamura, Yutaka; Suthienkul, Orasa; Suzuki, Yasuhiko
2017-10-01
Salmonella Enteritidis has emerged as a global concern regarding quinolone resistance and invasive potential. Although quinolone-resistant S. Enteritidis has been observed with high frequency in Thailand, information on the mechanism of resistance acquisition is limited. To elucidate the mechanism, a total of 158 clinical isolates of nalidixic acid (NAL)-resistant S. Enteritidis were collected throughout Thailand, and the quinolone resistance determinants were investigated in the context of resistance levels to NAL, norfloxacin (NOR), and ciprofloxacin (CIP). The analysis of point mutations in type II topoisomerase genes and the detection of plasmid-mediated quinolone resistance genes showed that all but two harbored a gyrA mutation, the qnrS1 gene, or both. The most commonly affected codon in mutant gyrA was 87, followed by 83. Double codon mutation in gyrA was found in an isolate with high-level resistance to NAL, NOR, and CIP. A new mutation causing serine to isoleucine substitution at codon 83 was identified in eight isolates. In addition to eighteen qnrS1-carrying isolates showing nontypical quinolone resistance, one carrying both the qnrS1 gene and a gyrA mutation also showed a high level of resistance. Genotyping by multilocus variable number of tandem repeat analysis suggested a possible clonal expansion of NAL-resistant strains nationwide. Our data suggested that NAL-resistant isolates with single quinolone resistance determinant may potentially become fluoroquinolone resistant by acquiring secondary determinants. Restricted therapeutic and farming usage of quinolones is strongly recommended to prevent the emergence of fluoroquinolone-resistant isolates.
Kusumaningrum, H D; Paltinaite, R; Koomen, A J; Hazeleger, W C; Rombouts, F M; Beumer, R R
2003-12-01
Effective cleaning and sanitizing of food preparation sites is important because pathogens are readily spread to food contact surfaces after preparation of contaminated raw products. Tolerance of Salmonella Enteritidis and Staphylococcus aureus to surface cleaning by wiping with regular, microfiber, and antibacterial-treated cloths was investigated. Wiping with cleaning cloths resulted in a considerable reduction of microorganisms from surfaces, despite the greater difficulty in removing S. aureus than Salmonella Enteritidis. Depending on the cloth type, S. aureus were reduced on surfaces from initial numbers of approximately 10(5) CFU/100 cm2 to numbers from less than 4 CFU/100 cm2 (below the detection limit) to 100 CFU/100 cm2. Directly after the cloths were used to clean the contaminated surfaces, they contained high numbers of bacteria (10(4) to 10(5) CFU/100 cm2), except for the disposable antibacterial-treated cloths, in which no bacteria could be detected. The tolerance of these pathogens to sodium hypochlorite was studied in the suspension test and in cloths. S. aureus showed a better tolerance for sodium hypochlorite than Salmonella Enteritidis. Inactivation of microorganisms in cloths required a higher concentration of sodium hypochlorite than was needed in the suspension test. Repeated exposure to sodium hypochlorite, however, resulted in an increase in susceptibility to this compound. This study provides essential information about the transfer of bacteria when wiping surfaces and highlights the need for a hygiene procedure with cleaning cloths that sufficiently avoids cross-contamination in the household environment.
Musa, Hassan-Hussein; Zhang, Wei-Juan; Lv, Jing; Duan, Xiao-Li; Yang, Yang; Zhu, Chun-Hong; Li, Hui-Fang; Chen, Kuan-Wei; Meng, Xia; Zhu, Guo-Qiang
2014-02-01
The fimbriae of Salmonella enterica serovar Enteritidis are used for colonization and invasion into host cells, and have drawn considerable interest because fimbriae can serve as potential immunogens against many pathogenic bacteria that colonize on epithelial surfaces. The purpose of the study is to use a molecular adjuvant, C3d, to enhance the immunogenicity of FimA proteins against Salmonella enterica serovar Enteritidis. FimA of type I fimbriae from Salmonella enteritidis and FimA with one copy of mC3d, two copies of mC3d2 and three copies of mC3d3 were cloned into the expression vector pCold-TF. Soluble fusion proteins of FimA with different copy of mC3d were induced by IPTG and expressed into Escherichia coli BL21 (DE3). Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) showed that the recombinant proteins from pCold-TF-fimA, TF-fimA-mC3d, TF-fimA-mC3d2, TF-fimA-mC3d3 were 70 kDa, 100 kDa, 130 kDa and 160 kDa, respectively. The fusion protein was recognized by rabbit anti-fimbriae polyclonal antibodies, and then visualized by goat anti-rabbit polyclonal antibodies with a chrome appearance by enzyme-subtract interaction. The recombinant proteins were purified by Ni-TED (tris-carboxymethyl ethylene diamine), immobilized metal ion affinity chromatography (IMAC). Balb/c mice were subcutaneously immunized with the purified proteins and the immune response was monitored by an enzyme-linked immunosorbent assay (ELISA) for FimA-specific antibody. The immunized mice were challenged with a 10-fold LD50 dose (i.e., 100 CFU) of Salmonella enterica serovar Enteritidis standard strain (SD-2) 1 week after the second immunization. The immunized mice with the fusion proteins FimA-mC3d2 and FimA-mC3d3 had increased levels of ELISA titer of antibody that were 2 and 4 logs, respectively, more immunogenic than the TF-FimA protein alone. The challenge results showed that immune protection rate in the mice immunized with 10 μg of FimA, FimA-mC3d2, and FimA-mC3d3 were 50%, 75% and 100%, respectively. We conclude that mC3d can be expressed in a prokaryotic vector and enhance the immune response of the recombinant protein. FimA-mC3d3 is potentially a subunit vaccine against S. enterica serovar Enteritidis infection. Copyright © 2012. Published by Elsevier B.V.
Cheesecake: a potential vehicle for salmonellosis?
Hao, Y Y; Scouten, A J; Brackett, R E
1999-01-01
This study was conducted to investigate the potential hazard of Salmonella Enteritidis surviving during the preparation and baking of cheesecake. Batters prepared with standard- and reduced-fat ingredients were inoculated with a 5-strain cocktail of S. Enteritidis (10 and 10(6) CFU/g) and were then baked according to a typical cheesecake recipe. After baking, the cheesecakes were refrigerated overnight before the survival of S. Enteritidis was determined either by direct plating or after enrichment. Samples (approximately 25 g each) were aseptically cut from the center, mid (6.35 cm from edge), and side (2.54 cm from edge) area of each cake for microbiological analysis. Proximate compositions (fat, moisture, protein, ash, pH, and water activity) of both raw batter and final baked cheesecakes were also determined. S. Enteritidis was able to survive baking of cheesecake when batter was inoculated with a high population (10(6) CFU/g) of S. Enteritidis regardless of whether standard-or reduced-fat ingredients were used. Three of nine standard- and four of nine reduced-fat cheesecake samples contained viable S. Enteritidis. In addition, one sample contained viable S. Enteritidis population detectable by direct plating (approximately 10 CFU per g of cake). This sample was taken from the center of a standard-fat cheesecake that was inoculated with a high population (10(6) CFU/g) of S. Enteritidis. Results of this study suggest that cheesecake prepared with eggs of low microbiological quality or cheesecake improperly handled or stored could serve as a vehicle for salmonellosis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Harm, W.
1973-12-01
The survival of uv-irradiated phage Tl is much lower in excision repair- deficient than in excision repair-proficient E.coli cells, due to lack of host ceH reactivation (HCR). sn additional decrease in phage survival occurs when repair-deficient (HCR-) host cells have been exposed to uv doses from 3000 to 10,000 erg mm/-sup 2/ of 254 nm uv radiation prior to infection. The observed effect is attributed to loss of a minor phage recovery process, which requires neither the bacterial excision repair nor the bacterial REC repair system. This type of recovery is little affected by caffeine or acriflavine at concentrations thatmore » preclude HCR completely. Its full inhibition by uv-irradiation of the cells requires on approximately 8 times larger dose than complete inhibition of HCR. In heavily preirradiated cells, the TI burst size is extremely small and multiplicity reactivation is considerably less extensive than in unirradiated cells. Presumably the survival of singly infecting Tl in these cells reflects absence of any type of repair. The observed phage sensitivity and shape of the curve are compatible with the expectation for completely repairless conditions. The mechanism underlying the minor recovery is not known; theoretical considerations make a phage REC repair mechanism seem likely. (auth)« less
Clostridium difficile phages: still difficult?
Hargreaves, Katherine R.; Clokie, Martha R. J.
2014-01-01
Phages that infect Clostridium difficile were first isolated for typing purposes in the 1980s, but their use was short lived. However, the rise of C. difficile epidemics over the last decade has triggered a resurgence of interest in using phages to combat this pathogen. Phage therapy is an attractive treatment option for C. difficile infection, however, developing suitable phages is challenging. In this review we summarize the difficulties faced by researchers in this field, and we discuss the solutions and strategies used for the development of C. difficile phages for use as novel therapeutics. Epidemiological data has highlighted the diversity and distribution of C. difficile, and shown that novel strains continue to emerge in clinical settings. In parallel with epidemiological studies, advances in molecular biology have bolstered our understanding of C. difficile biology, and our knowledge of phage–host interactions in other bacterial species. These three fields of biology have therefore paved the way for future work on C. difficile phages to progress and develop. Benefits of using C. difficile phages as therapeutic agents include the fact that they have highly specific interactions with their bacterial hosts. Studies also show that they can reduce bacterial numbers in both in vitro and in vivo systems. Genetic analysis has revealed the genomic diversity among these phages and provided an insight into their taxonomy and evolution. No strictly virulent C. difficile phages have been reported and this contributes to the difficulties with their therapeutic exploitation. Although treatment approaches using the phage-encoded endolysin protein have been explored, the benefits of using “whole-phages” are such that they remain a major research focus. Whilst we don’t envisage working with C. difficile phages will be problem-free, sufficient study should inform future strategies to facilitate their development to combat this problematic pathogen. PMID:24808893
Lettini, A A; Saccardin, C; Ramon, E; Longo, A; Cortini, E; Dalla Pozza, M C; Barco, L; Guerra, B; Luzzi, I; Ricci, A
2014-10-17
Salmonella enterica subsp. enterica serovar 4,[5],12,i:- is a monophasic variant of Salmonella Typhimurium and its occurrence has markedly increased in several European countries in the last ten years. In June 2011, an outbreak of Salmonella 4,[5],12,i:- was reported among attendees of a wedding reception in the North-East of Italy. The source of this outbreak was identified as a cooked pork product served during the wedding reception. All Salmonella isolates from humans and the contaminated pork products were identified as Salmonella 4,[5],12,i:- and phage typed as DT7a. Afterwards, the farm where the pigs were raised was identified and sampled, and Salmonella Typhimurium was isolated from swine fecal samples. Despite the difference in serovar, these Salmonella Typhimurium isolates were also phage typed as DT7a. In the present study, Salmonella isolates from animals, humans and pork products during the outbreak investigation were subtyped by pulsed-field gel electrophoresis (PFGE), Multiple-Locus Variable number tandem repeats Analysis (MLVA), and resistance patterns, aiming to identify the most suitable subtyping methods to characterize isolates associated with this outbreak. In addition, a collection of epidemiologically unrelated strains of Salmonella 4,[5],12,i:- and Salmonella Typhimurium sharing the same phage type (DT7a) was similarly characterized in order to investigate their genetic relationship. This study provides a first snapshot of a rare Salmonella phage type, DT7a, associated with both Salmonella 4,[5],12,i:- and Salmonella Typhimurium. Moreover, the study demonstrated that in this specific context MLVA could be a reliable tool to support outbreak investigations as well as to assess the genetic relatedness among Salmonella isolates. Copyright © 2014 Elsevier B.V. All rights reserved.
Fong, Stephanie A.; Drilling, Amanda; Morales, Sandra; Cornet, Marjolein E.; Woodworth, Bradford A.; Fokkens, Wytske J.; Psaltis, Alkis J.; Vreugde, Sarah; Wormald, Peter-John
2017-01-01
Introduction: Pseudomonas aeruginosa infections are prevalent amongst chronic rhinosinusitis (CRS) sufferers. Many P. aeruginosa strains form biofilms, leading to treatment failure. Lytic bacteriophages (phages) are viruses that infect, replicate within, and lyse bacteria, causing bacterial death. Aim: To assess the activity of a phage cocktail in eradicating biofilms of ex vivo P.aeruginosa isolates from CRS patients. Methods: P. aeruginosa isolates from CRS patients with and without cystic fibrosis (CF) across three continents were multi-locus sequence typed and tested for antibiotic resistance. Biofilms grown in vitro were treated with a cocktail of four phages (CT-PA). Biofilm biomass was measured after 24 and 48 h, using a crystal violet assay. Phage titrations were performed to confirm replication of the phages. A linear mixed effects model was applied to assess the effects of treatment, time, CF status, and multidrug resistance on the biomass of the biofilm. Results: The isolates included 44 strain types. CT-PA treatment significantly reduced biofilm biomass at both 24 and 48 h post-treatment (p < 0.0001), regardless of CF status or antibiotic resistance. Biomass was decreased by a median of 76% at 48 h. Decrease in biofilm was accompanied by a rise in phage titres for all except one strain. Conclusion: A single dose of phages is able to significantly reduce biofilms formed in vitro by a range of P.aeruginosa isolates from CRS patients. This represents an exciting potential and novel targeted treatment for P. aeruginosa biofilm infections and multidrug resistant bacteria. PMID:29018773
Federal Register 2010, 2011, 2012, 2013, 2014
2013-09-06
...; Prevention of Salmonella Enteritidis in Shell Eggs During Production--Recordkeeping and Registration AGENCY... announcing that a collection of information entitled, ``Prevention of Salmonella Enteritidis in Shell Eggs... collection of information entitled ``Prevention of Salmonella Enteritidis in Shell Eggs During Production...
Breast Abscess in a Man Due to Salmonella enterica Serotype Enteritidis
Brnčić, Nada; Strčić, Miroslav; Abram, Maja; Mustač, Elvira
2012-01-01
Nontyphoidal salmonellae can cause breast infection only exceptionally. A case of breast abscess in a 70-year-old man due to Salmonella enterica serotype Enteritidis (Salmonella Enteritidis) is reported. The infection was successfully treated with a combination of surgical and antibiotic treatment. PMID:22031702
Improving Food Safety by Understanding the Evolution of Egg-contaminating Salmonella Enteritidis
USDA-ARS?s Scientific Manuscript database
Improving Food Safety by Understanding the Evolution of Egg-contaminating Salmonella Enteritidis Jean Guard, Veterinary Medical Officer U. S. Department of Agriculture, Athens, GA USA (jean.guard@ars.usda.gov) The curious case of egg contamination by Salmonella enterica serovar Enteritidis S. ...
Energy-efficient growth of phage Q Beta in Escherichia coli.
Kim, Hwijin; Yin, John
2004-10-20
The role of natural selection in the optimal design of organisms is controversial. Optimal forms, functions, or behaviors of organisms have long been claimed without knowledge of how genotype contributes to phenotype, delineation of design constraints, or reference to alternative designs. Moreover, arguments for optimal designs have been often based on models that were difficult, if not impossible, to test. Here, we begin to address these issues by developing and probing a kinetic model for the intracellular growth of bacteriophage Q beta in Escherichia coli. The model accounts for the energetic costs of all template-dependent polymerization reactions, in ATP equivalents, including RNA-dependent RNA elongation by the phage replicase and synthesis of all phage proteins by the translation machinery of the E. coli host cell. We found that translation dominated phage growth, requiring 85% of the total energy expenditure. Only 10% of the total energy was applied to activities other than the direct synthesis of progeny phage components, reflecting primarily the cost of making the negative-strand RNA template that is needed for replication of phage genomic RNA. Further, we defined an energy efficiency of phage growth and showed its direct relationship to the yield of phage progeny. Finally, we performed a sensitivity analysis and found that the growth of wild-type phage was optimized for progeny yield or energy efficiency, suggesting that phage Q beta has evolved to optimally utilize the finite resources of its host cells.
A bioinformatic analysis of ribonucleotide reductase genes in phage genomes and metagenomes
2013-01-01
Background Ribonucleotide reductase (RNR), the enzyme responsible for the formation of deoxyribonucleotides from ribonucleotides, is found in all domains of life and many viral genomes. RNRs are also amongst the most abundant genes identified in environmental metagenomes. This study focused on understanding the distribution, diversity, and evolution of RNRs in phages (viruses that infect bacteria). Hidden Markov Model profiles were used to analyze the proteins encoded by 685 completely sequenced double-stranded DNA phages and 22 environmental viral metagenomes to identify RNR homologs in cultured phages and uncultured viral communities, respectively. Results RNRs were identified in 128 phage genomes, nearly tripling the number of phages known to encode RNRs. Class I RNR was the most common RNR class observed in phages (70%), followed by class II (29%) and class III (28%). Twenty-eight percent of the phages contained genes belonging to multiple RNR classes. RNR class distribution varied according to phage type, isolation environment, and the host’s ability to utilize oxygen. The majority of the phages containing RNRs are Myoviridae (65%), followed by Siphoviridae (30%) and Podoviridae (3%). The phylogeny and genomic organization of phage and host RNRs reveal several distinct evolutionary scenarios involving horizontal gene transfer, co-evolution, and differential selection pressure. Several putative split RNR genes interrupted by self-splicing introns or inteins were identified, providing further evidence for the role of frequent genetic exchange. Finally, viral metagenomic data indicate that RNRs are prevalent and highly dynamic in uncultured viral communities, necessitating future research to determine the environmental conditions under which RNRs provide a selective advantage. Conclusions This comprehensive study describes the distribution, diversity, and evolution of RNRs in phage genomes and environmental viral metagenomes. The distinct distributions of specific RNR classes amongst phages, combined with the various evolutionary scenarios predicted from RNR phylogenies suggest multiple inheritance sources and different selective forces for RNRs in phages. This study significantly improves our understanding of phage RNRs, providing insight into the diversity and evolution of this important auxiliary metabolic gene as well as the evolution of phages in response to their bacterial hosts and environments. PMID:23391036
Engineering filamentous phage carriers to improve focusing of antibody responses against peptides.
van Houten, Nienke E; Henry, Kevin A; Smith, George P; Scott, Jamie K
2010-03-02
The filamentous bacteriophage are highly immunogenic particles that can be used as carrier proteins for peptides and presumably other haptens and antigens. Our previous work demonstrated that the antibody response was better focused against a synthetic peptide if it was conjugated to phage as compared to the classical carrier, ovalbumin. We speculated that this was due, in part, to the relatively low surface complexity of the phage. Here, we further investigate the phage as an immunogenic carrier, and the effect reducing its surface complexity has on the antibody response against peptides that are either displayed as recombinant fusions to the phage coat or are chemically conjugated to it. Immunodominant regions of the minor coat protein, pIII, were removed from the phage surface by excising its N1 and N2 domains (Delta3 phage variant), whereas immunodominant epitopes of the major coat protein, pVIII, were altered by reducing the charge of its surface-exposed N-terminal residues (Delta8 phage variant). Immunization of mice revealed that the Delta3 variant was less immunogenic than wild-type (WT) phage, whereas the Delta8 variant was more immunogenic. The immunogenicity of two different peptides was tested in the context of the WT and Delta3 phage in two different forms: (i) as recombinant peptides fused to pVIII, and (ii) as synthetic peptides conjugated to the phage surface. One peptide (MD10) in its recombinant form produced a stronger anti-peptide antibody response fused to the WT carrier compared to the Delta3 phage carrier, and did not elicit a detectable anti-peptide response in its synthetic form conjugated to either phage carrier. This trend was reversed for a different peptide (4E10(L)), which did not produce a detectable anti-peptide antibody response as a recombinant fusion; yet, as a chemical conjugate to Delta3 phage, but not WT phage, it elicited a highly focused anti-peptide antibody response that exceeded the anti-carrier response by approximately 65-fold. The results suggest that focusing of the antibody response against synthetic peptides can be improved by decreasing the antigenic complexity of the phage surface. Copyright 2010 Elsevier Ltd. All rights reserved.
Lytic phages obscure the cost of antibiotic resistance in Escherichia coli.
Tazzyman, Samuel J; Hall, Alex R
2015-03-17
The long-term persistence of antibiotic-resistant bacteria depends on their fitness relative to other genotypes in the absence of drugs. Outside the laboratory, viruses that parasitize bacteria (phages) are ubiquitous, but costs of antibiotic resistance are typically studied in phage-free experimental conditions. We used a mathematical model and experiments with Escherichia coli to show that lytic phages strongly affect the incidence of antibiotic resistance in drug-free conditions. Under phage parasitism, the likelihood that antibiotic-resistant genetic backgrounds spread depends on their initial frequency, mutation rate and intrinsic growth rate relative to drug-susceptible genotypes, because these parameters determine relative rates of phage-resistance evolution on different genetic backgrounds. Moreover, the average cost of antibiotic resistance in terms of intrinsic growth in the antibiotic-free experimental environment was small relative to the benefits of an increased mutation rate in the presence of phages. This is consistent with our theoretical work indicating that, under phage selection, typical costs of antibiotic resistance can be outweighed by realistic increases in mutability if drug resistance and hypermutability are genetically linked, as is frequently observed in clinical isolates. This suggests the long-term distribution of antibiotic resistance depends on the relative rates at which different lineages adapt to other types of selection, which in the case of phage parasitism is probably extremely common, as well as costs of resistance inferred by classical in vitro methods.
Lytic phages obscure the cost of antibiotic resistance in Escherichia coli
Tazzyman, Samuel J; Hall, Alex R
2015-01-01
The long-term persistence of antibiotic-resistant bacteria depends on their fitness relative to other genotypes in the absence of drugs. Outside the laboratory, viruses that parasitize bacteria (phages) are ubiquitous, but costs of antibiotic resistance are typically studied in phage-free experimental conditions. We used a mathematical model and experiments with Escherichia coli to show that lytic phages strongly affect the incidence of antibiotic resistance in drug-free conditions. Under phage parasitism, the likelihood that antibiotic-resistant genetic backgrounds spread depends on their initial frequency, mutation rate and intrinsic growth rate relative to drug-susceptible genotypes, because these parameters determine relative rates of phage-resistance evolution on different genetic backgrounds. Moreover, the average cost of antibiotic resistance in terms of intrinsic growth in the antibiotic-free experimental environment was small relative to the benefits of an increased mutation rate in the presence of phages. This is consistent with our theoretical work indicating that, under phage selection, typical costs of antibiotic resistance can be outweighed by realistic increases in mutability if drug resistance and hypermutability are genetically linked, as is frequently observed in clinical isolates. This suggests the long-term distribution of antibiotic resistance depends on the relative rates at which different lineages adapt to other types of selection, which in the case of phage parasitism is probably extremely common, as well as costs of resistance inferred by classical in vitro methods. PMID:25268496
Federal Register 2010, 2011, 2012, 2013, 2014
2013-05-30
... Request; Prevention of Salmonella Enteritidis in Shell Eggs During Production--Recordkeeping and... information to OMB for review and clearance. Prevention of Salmonella Enteritidis in Shell Eggs During...-0660)--Extension Shell eggs contaminated with Salmonella Enteritidis (SE) are responsible for more than...
21 CFR 118.7 - Sampling methodology for Salmonella Enteritidis (SE).
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Sampling methodology for Salmonella Enteritidis (SE). 118.7 Section 118.7 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....7 Sampling methodology for Salmonella Enteritidis (SE). (a) Environmental sampling. An environmental...
21 CFR 118.7 - Sampling methodology for Salmonella Enteritidis (SE).
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Sampling methodology for Salmonella Enteritidis (SE). 118.7 Section 118.7 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....7 Sampling methodology for Salmonella Enteritidis (SE). (a) Environmental sampling. An environmental...
21 CFR 118.7 - Sampling methodology for Salmonella Enteritidis (SE).
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Sampling methodology for Salmonella Enteritidis (SE). 118.7 Section 118.7 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....7 Sampling methodology for Salmonella Enteritidis (SE). (a) Environmental sampling. An environmental...
21 CFR 118.5 - Environmental testing for Salmonella Enteritidis (SE).
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Environmental testing for Salmonella Enteritidis (SE). 118.5 Section 118.5 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....5 Environmental testing for Salmonella Enteritidis (SE). (a) Environmental testing when laying hens...
21 CFR 118.5 - Environmental testing for Salmonella Enteritidis (SE).
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Environmental testing for Salmonella Enteritidis (SE). 118.5 Section 118.5 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....5 Environmental testing for Salmonella Enteritidis (SE). (a) Environmental testing when laying hens...
21 CFR 118.5 - Environmental testing for Salmonella Enteritidis (SE).
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Environmental testing for Salmonella Enteritidis (SE). 118.5 Section 118.5 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....5 Environmental testing for Salmonella Enteritidis (SE). (a) Environmental testing when laying hens...
21 CFR 118.7 - Sampling methodology for Salmonella Enteritidis (SE).
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Sampling methodology for Salmonella Enteritidis (SE). 118.7 Section 118.7 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....7 Sampling methodology for Salmonella Enteritidis (SE). (a) Environmental sampling. An environmental...
21 CFR 118.7 - Sampling methodology for Salmonella Enteritidis (SE).
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Sampling methodology for Salmonella Enteritidis (SE). 118.7 Section 118.7 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....7 Sampling methodology for Salmonella Enteritidis (SE). (a) Environmental sampling. An environmental...
21 CFR 118.5 - Environmental testing for Salmonella Enteritidis (SE).
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Environmental testing for Salmonella Enteritidis (SE). 118.5 Section 118.5 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....5 Environmental testing for Salmonella Enteritidis (SE). (a) Environmental testing when laying hens...
21 CFR 118.5 - Environmental testing for Salmonella Enteritidis (SE).
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Environmental testing for Salmonella Enteritidis (SE). 118.5 Section 118.5 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN....5 Environmental testing for Salmonella Enteritidis (SE). (a) Environmental testing when laying hens...
USDA-ARS?s Scientific Manuscript database
Salmonella enterica serovar Enteritidis are facultative intracellular bacteria that cause disease in numerous species. Salmonella-related infections originating from poultry and/or poultry products are a major cause of human foodborne illness, and S. Enteritidis is the leading cause worldwide. Des...
Whole Genome Sequence Analysis of Salmonella Enteritidis Isolated from Wild Mice
USDA-ARS?s Scientific Manuscript database
Salmonella Enteritidis is a foodborne pathogen of global concern because of the high frequency isolated from foods and patients. Draft genomes of 64 S. Enteritidis strains from intestines and spleens of mice were reported. The availability of these genomes provides useful information on genomic dive...
2013-01-01
Background Salmonella enterica serovar Enteritidis infections are known to exhibit worldwide prevalence with increased morbidity and mortality. The conventional strategies like antibiotic therapy and vaccination have not only proved to be of sub-optimal efficacy but also led to the development of multidrug resistant strains of Salmonella. Antimicrobial activities of probiotics against various enteropathogens and other health promoting effects have assumed greater significance in recent years. The present study aims to evaluate the efficacy of a Lactobacillus plantarum strain (KSBT 56, isolated from a traditional food product of India), in preventing Salmonella enterica serovar Enteritidis growth and pathogenicity in vitro. Methods and results The cell free culture supernatant (CFCS) of KSBT 56 strain notably inhibited the growth of Salmonella Enteritidis without affecting the growth of other gram-positive lactic acid bacteria. The isolated KSBT 56 strain produces lactic acid similar to other standard probiotic strains like Lactobacillus plantarum MTCC 1407. The free radical production by KSBT 56 strain was studied by using sodC mutant of S. Enteritidis, which exhibited reduced growth in the presence of CFCS of the KSBT 56 strain, indicating the inhibitory activity of free radicals on the growth of S. Enteritidis. Our results also showed a significant reduction in the biofilm forming ability of Salmonella Enteritidis in the presence of the KSBT 56 strain (2 log cfu/ml, p = 0.01). Further, the anti-infective characteristics of KSBT 56 strain was validated by gentamicin protection assay which revealed 80% reduction in the invasion of Salmonella Enteritidis to HCT-116 cell line (Salmonella Enteritidis and KSBT 56 in a 1:1 ratio) and delayed addition of Salmonella Enteritidis by 1 h. Similarly, the reduced adhesion of Salmonella to the HCT-116 cells was observed along with the down regulation of hilA gene of Salmonella Pathogenicity Island 1 (SPI1) indicating that they might have acted synergistically to decrease the invasion of the pathogen into the cell line. Conclusions KSBT 56 strain effectively inhibited the growth, invasion and the biofilm forming ability of Salmonella Enteritidis without inhibiting the growth of other Lactobacillus strains. Overall, our result suggested that KSBT 56 can be used as a potential probiotic strain with considerable beneficial effects on the host. PMID:23668384
Gundogdu, Aycan; Bolkvadze, Darajen; Kilic, Huseyin
2016-01-01
The objective of this study is to determine the in vitro susceptibility of Georgian bacteriophage cocktails on multidrug resistant (MDR) extended-spectrum beta-lactamase producing Escherichia coli (ESBL-EC) isolated from patients’ blood and urine cultures. A total of 615 E. coli isolates were included in this study. Phene Plate (PhP)-typing and phylogenetic grouping were used for the typing. Antimicrobial resistance profiles and ESBL production of all isolates were confirmed according to Clinical and Laboratory Standards Institute (CLSI) criteria. The activities of four bacteriophage cocktails (Enko-phage, SES-bacteriophage, Pyo-bacteriophage, and Intesti-bacteriophage) were determined against 142 ESBL-EC using in vitro spot tests. According to this, Enko-phage were active against 87.3% of the tested strains while that ratio was 81.7% for Intesti-bacteriophage, 81.7% for Pyo-bacteriophage, and 59.2% for SES-bacteriophage cocktails. Based on the contingency tests, the phage cocktails were observed to be statistically significantly (p < 0.001) more effective on ESBL-EC strains belonging to phylogenetic groups D and B2. The employed phage cocktails were found to be affective against all tested resistant types. These results are promising especially for the infections that are caused by MDR pathogens that are difficult to treat. As this is a preliminary step to the potential clinical trials to be designed for the country, in vitro confirmation of their success on a MDR ESBL-EC collection should be accepted as an initial action, which is encouraging to consider clinical trials of phage therapy especially in countries which are not introduce phage therapy. PMID:27857711
Phage inactivation of Staphylococcus aureus in fresh and hard-type cheeses.
Bueno, Edita; García, Pilar; Martínez, Beatriz; Rodríguez, Ana
2012-08-01
Bacteriophages are regarded as natural antibacterial agents in food since they are able to specifically infect and lyse food-borne pathogenic bacteria without disturbing the indigenous microbiota. Two Staphylococcus aureus obligately lytic bacteriophages (vB_SauS-phi-IPLA35 and vB_SauS-phi-SauS-IPLA88), previously isolated from the dairy environment, were evaluated for their potential as biocontrol agents against this pathogenic microorganism in both fresh and hard-type cheeses. Pasteurized milk was contaminated with S. aureus Sa9 (about 10(6) CFU/mL) and a cocktail of the two lytic phages (about 10(6) PFU/mL) was also added. For control purposes, cheeses were manufactured without addition of phages. In both types of cheeses, the presence of phages resulted in a notorious decrease of S. aureus viable counts during curdling. In test fresh cheeses, a reduction of 3.83 log CFU/g of S. aureus occurred in 3h compared with control cheese, and viable counts were under the detection limits after 6h. The staphylococcal strain was undetected in both test and control cheeses at the end of the curdling process (24 h) and, of note, no re-growth occurred during cold storage. In hard cheeses, the presence of phages resulted in a continuous reduction of staphylococcal counts. In curd, viable counts of S. aureus were reduced by 4.64 log CFU/g compared with the control cheeses. At the end of ripening, 1.24 log CFU/g of the staphylococcal strain was still detected in test cheeses whereas 6.73log CFU/g was present in control cheeses. Starter strains were not affected by the presence of phages in the cheese making processes and cheeses maintained their expected physico-chemical properties. Copyright © 2012 Elsevier B.V. All rights reserved.
Characterization of Salmonella Typhimurium isolates associated with septicemia in swine
Bergeron, Nadia; Corriveau, Jonathan; Letellier, Ann; Daigle, France; Quessy, Sylvain
2010-01-01
Salmonella Typhimurium is frequently isolated from pigs and may also cause enteric disease in humans. In this study, 33 isolates of S. Typhimurium associated with septicemia in swine (CS) were compared to 33 isolates recovered from healthy animals at slaughter (WCS). The isolates were characterized using phenotyping and genotyping methods. For each isolate, the phage type, antimicrobial resistance, and pulsed-field gel electrophoresis (PFGE) DNA profiles were determined. In addition, the protein profiles of each isolate grown in different conditions were studied by Coomassie Blue-stained sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and immunoblot. Various phage types were identified. The phage type PT 104 represented 36.4% of all isolates from septicemic pigs. Resistance to as many as 12 antimicrobial agents, including some natural resistances, was found in isolates from CS and WCS. Many genetic profiles were identified among the PT 104 phage types. Although it was not possible to associate one particular protein with septicemic isolates, several highly immunogenic proteins, present in all virulent isolates and in most isolates from clinically healthy animals, were identified. These results indicated that strains associated with septicemia belong to various genetic lineages that can also be recovered from asymptomatic animals at the time of slaughter. PMID:20357952
Vibrio cholerae typing phage N4: genome sequence and its relatedness to T7 viral supergroup.
Das, Mayukh; Nandy, R K; Bhowmick, Tushar Suvra; Yamasaki, S; Ghosh, A; Nair, G B; Sarkar, B L
2012-01-01
In countries where cholera is endemic, Vibrio cholerae O1 bacteriophages have been detected in sewage water. These have been used to serve not only as strain markers, but also for the typing of V. cholerae strains. Vibriophage N4 (ATCC 51352-B1) occupies a unique position in the new phage-typing scheme and can infect a larger number of V. cholerae O1 biotype El Tor strains. Here we characterized the complete genome sequence of this typing vibriophage. The complete DNA sequence of the N4 genome was determined by using a shotgun sequencing approach. Complete genome sequence explored that phage N4 is comprised of one circular, double-stranded chromosome of 38,497 bp with an overall GC content of 42.8%. A total of 47 open reading frames were identified and functions could be assigned to 30 of them. Further, a close relationship with another vibriophage, VP4, and the enterobacteriophage T7 could be established. DNA-DNA hybridization among V. cholerae O1 and O139 phages revealed homology among O1 vibriophages at their genomic level. This study indicates two evolutionary distinctive branches of the possible phylogenetic origin of O1 and O139 vibriophages and provides an unveiled collection of information on viral gene products of typing vibriophages. Copyright © 2011 S. Karger AG, Basel.
Brammer, Leighanne A; Bolduc, Benjamin; Kass, Jessica L; Felice, Kristin M; Noren, Christopher J; Hall, Marilena Fitzsimons
2008-02-01
Screening of the commercially available Ph.D.-7 phage-displayed heptapeptide library for peptides that bind immobilized Zn2+ resulted in the repeated selection of the peptide HAIYPRH, although binding assays indicated that HAIYPRH is not a zinc-binding peptide. HAIYPRH has also been selected in several other laboratories using completely different targets, and its ubiquity suggests that it is a target-unrelated peptide. We demonstrated that phage displaying HAIYPRH are enriched after serial amplification of the library without exposure to target. The amplification of phage displaying HAIYPRH was found to be dramatically faster than that of the library itself. DNA sequencing uncovered a mutation in the Shine-Dalgarno (SD) sequence for gIIp, a protein involved in phage replication, imparting to the SD sequence better complementarity to the 16S ribosomal RNA (rRNA). Introducing this mutation into phage lacking a displayed peptide resulted in accelerated propagation, whereas phage displaying HAIYPRH with a wild-type SD sequence were found to amplify normally. The SD mutation may alter gIIp expression and, consequently, the rate of propagation of phage. In the Ph.D.-7 library, the mutation is coincident with the displayed peptide HAIYPRH, accounting for the target-unrelated selection of this peptide in multiple reported panning experiments.
Sørensen, Morten Dræby; Agerholm, Inge Errebo; Christensen, Britta; Kølvraa, Steen; Kristensen, Peter
2010-01-01
Abstract Rare cells not normally present in the peripheral bloodstream, such as circulating tumour cells, have potential applications for development of non-invasive methods for diagnostics or follow up. Obtaining these cells however require some means of discrimination, achievable by cell type specific antibodies. Here we have generated a microselection method allowing antibody selection, by phage display, targeting a single cell in a heterogeneous population. One K562 cell (female origin) was positioned on glass slide among millions of lymphocytes from male donor, identifying the K562 cell by FISH (XX). Several single cell selections were performed on such individual slides. The phage particles bound to the target cell is protected by a minute disc, while inactivating all remaining phage by UV-irradiation; leaving only the phage bound to the target cell viable. We hereby retrieved up to eight antibodies per single cell selection, including three highly K562 cell type specific. PMID:20726925
Kulshreshtha, Garima; Borza, Tudor; Rathgeber, Bruce; Stratton, Glenn S; Thomas, Nikhil A; Critchley, Alan; Hafting, Jeff; Prithiviraj, Balakrishnan
2016-01-01
Red seaweeds are a rich source of unique bioactive compounds and secondary metabolites that are known to improve human and animal health. S. Enteritidis is a broad range host pathogen, which contaminates chicken and poultry products that end into the human food chain. Worldwide, Salmonella outbreaks have become an important economic and public health concern. Moreover, the development of resistance in Salmonella serovars toward multiple drugs highlights the need for alternative control strategies. This study evaluated the antimicrobial property of red seaweeds extracts against Salmonella Enteritidis using the Caenorhabditis elegans infection model. Six red seaweed species were tested for their antimicrobial activity against S. Enteritidis and two, Sarcodiotheca gaudichaudii (SG) and Chondrus crispus (CC), were found to exhibit such properties. Spread plate assay revealed that SG and CC (1%, w/v) significantly reduced the growth of S. Enteritidis. Seaweed water extracts (SWE) of SG and CC, at concentrations from 0.4 to 2 mg/ml, significantly reduced the growth of S. Enteritidis (log CFU 4.5-5.3 and log 5.7-6.0, respectively). However, methanolic extracts of CC and SG did not affect the growth of S. Enteritidis. Addition of SWE (0.2 mg/ml, CC and SG) significantly decreased biofilm formation and reduced the motility of S. Enteritidis. Quantitative real-time PCR analyses showed that SWE (CC and SG) suppressed the expression of quorum sensing gene sdiA and of Salmonella Pathogenesis Island-1 (SPI-1) associated genes sipA and invF, indicating that SWE might reduce the invasion of S. Enteritidis in the host by attenuating virulence factors. Furthermore, CC and SG water extracts significantly improved the survival of infected C. elegans by impairing the ability of S. Enteritidis to colonize the digestive tract of the nematode and by enhancing the expression of C. elegans immune responsive genes. As the innate immune response pathways of C. elegans and mammals show a high degree of conservation, these results suggest that these SWE may also impart beneficial effects on animal and human health.
Kulshreshtha, Garima; Borza, Tudor; Rathgeber, Bruce; Stratton, Glenn S.; Thomas, Nikhil A.; Critchley, Alan; Hafting, Jeff; Prithiviraj, Balakrishnan
2016-01-01
Red seaweeds are a rich source of unique bioactive compounds and secondary metabolites that are known to improve human and animal health. S. Enteritidis is a broad range host pathogen, which contaminates chicken and poultry products that end into the human food chain. Worldwide, Salmonella outbreaks have become an important economic and public health concern. Moreover, the development of resistance in Salmonella serovars toward multiple drugs highlights the need for alternative control strategies. This study evaluated the antimicrobial property of red seaweeds extracts against Salmonella Enteritidis using the Caenorhabditis elegans infection model. Six red seaweed species were tested for their antimicrobial activity against S. Enteritidis and two, Sarcodiotheca gaudichaudii (SG) and Chondrus crispus (CC), were found to exhibit such properties. Spread plate assay revealed that SG and CC (1%, w/v) significantly reduced the growth of S. Enteritidis. Seaweed water extracts (SWE) of SG and CC, at concentrations from 0.4 to 2 mg/ml, significantly reduced the growth of S. Enteritidis (log CFU 4.5–5.3 and log 5.7–6.0, respectively). However, methanolic extracts of CC and SG did not affect the growth of S. Enteritidis. Addition of SWE (0.2 mg/ml, CC and SG) significantly decreased biofilm formation and reduced the motility of S. Enteritidis. Quantitative real-time PCR analyses showed that SWE (CC and SG) suppressed the expression of quorum sensing gene sdiA and of Salmonella Pathogenesis Island-1 (SPI-1) associated genes sipA and invF, indicating that SWE might reduce the invasion of S. Enteritidis in the host by attenuating virulence factors. Furthermore, CC and SG water extracts significantly improved the survival of infected C. elegans by impairing the ability of S. Enteritidis to colonize the digestive tract of the nematode and by enhancing the expression of C. elegans immune responsive genes. As the innate immune response pathways of C. elegans and mammals show a high degree of conservation, these results suggest that these SWE may also impart beneficial effects on animal and human health. PMID:27065981
Genetic diversity of human isolates of Salmonella enterica serovar Enteritidis in Malaysia.
Bakeri, S A; Yasin, R M; Koh, Y T; Puthucheary, S D; Thong, K L
2003-01-01
The study was undertaken to determine clonal relationship and genetic diversity of the human strains of Salmonella enterica serovar Enteritidis isolated from 1995 to 2002 from different parts of Malaysia. Antimicrobial susceptibility test, plasmid profiling and pulsed-field gel electrophoresis were applied to analyse 65 human isolates of S. Enteritidis obtained over an eight year period from different parts of Malaysia. Four nonhuman isolates were included for comparison. A total of 14 distinct XbaI-pulsed-field profiles (PFPs) were observed, although a single PFP X1 was predominant and this particular clone was found to be endemic in Malaysia. The incidence of drug resistant S. Enteritidis remained relatively low with only 37% of the strains analysed being resistant to one or more antimicrobial agents. All except one resistant strain carried at least one plasmid ranging in size from 3.7 to 62 MDa giving nine plasmid profiles. The three isolates from raw milk and one from well-water had similar PFPs to that of the human isolates. Salmonella Enteritidis strains were more diverse than was previously thought. Fourteen subtypes were noted although one predominant clone persisted in Malaysia. The combination of pulsed-field gel electrophoresis, plasmid profiling and antibiograms provided additional discrimination to the highly clonal strains of S. Enteritidis. This is the first report to assess the genotypes of the predominant clinical S. Enteritidis in different parts of the country. As S. Enteritidis is highly endemic in Malaysia, the data generated would be useful for tracing the source during outbreaks of gastroenteritis in the study area.
Muhammed, Musemma K; Kot, Witold; Neve, Horst; Mahony, Jennifer; Castro-Mejía, Josué L; Krych, Lukasz; Hansen, Lars H; Nielsen, Dennis S; Sørensen, Søren J; Heller, Knut J; van Sinderen, Douwe; Vogensen, Finn K
2017-10-01
Despite being potentially highly useful for characterizing the biodiversity of phages, metagenomic studies are currently not available for dairy bacteriophages, partly due to the lack of a standard procedure for phage extraction. We optimized an extraction method that allows the removal of the bulk protein from whey and milk samples with losses of less than 50% of spiked phages. The protocol was applied to extract phages from whey in order to test the notion that members of Lactococcus lactis 936 (now Sk1virus ), P335, c2 (now C2virus ) and Leuconostoc phage groups are the most frequently encountered in the dairy environment. The relative abundance and diversity of phages in eight and four whey mixtures from dairies using undefined mesophilic mixed-strain cultures containing Lactococcus lactis subsp. lactis biovar diacetylactis and Leuconostoc species (i.e., DL starter cultures) and defined cultures, respectively, were assessed. Results obtained from transmission electron microscopy and high-throughput sequence analyses revealed the dominance of Lc. lactis 936 phages (order Caudovirales , family Siphoviridae ) in dairies using undefined DL starter cultures and Lc. lactis c2 phages (order Caudovirales , family Siphoviridae ) in dairies using defined cultures. The 936 and Leuconostoc phages demonstrated limited diversity. Possible coinduction of temperate P335 prophages and satellite phages in one of the whey mixtures was also observed. IMPORTANCE The method optimized in this study could provide an important basis for understanding the dynamics of the phage community (abundance, development, diversity, evolution, etc.) in dairies with different sizes, locations, and production strategies. It may also enable the discovery of previously unknown phages, which is crucial for the development of rapid molecular biology-based methods for phage burden surveillance systems. The dominance of only a few phage groups in the dairy environment signifies the depth of knowledge gained over the past decades, which served as the basis for designing current phage control strategies. The presence of a correlation between phages and the type of starter cultures being used in dairies might help to improve the selection and/or design of suitable, custom, and cost-efficient phage control strategies. Copyright © 2017 American Society for Microbiology.
USDA-ARS?s Scientific Manuscript database
Aims: Salmonella enterica serovar Enteritidis (S. Enteritidis) can encounter mild ethanol stress during its life cycle. However, adaptation to a stressful condition may affect bacterial resistance to subsequent stresses. Hence, this work was undertaken to investigate the influences of ethanol adapta...
USDA-ARS?s Scientific Manuscript database
Chicken eggs are one of the main sources of human salmonellosis, with Salmonella enterica serovar Enteritidis the most frequent cause of human non-typhoid salmonellosis. Laying hens colonized with S. Enteritidis generally do not show clinical signs. The bacteria colonize and invade the intestinal ...
21 CFR 118.10 - Recordkeeping requirements for the Salmonella Enteritidis (SE) prevention plan.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Recordkeeping requirements for the Salmonella Enteritidis (SE) prevention plan. 118.10 Section 118.10 Food and Drugs FOOD AND DRUG ADMINISTRATION... TRANSPORTATION OF SHELL EGGS § 118.10 Recordkeeping requirements for the Salmonella Enteritidis (SE) prevention...
21 CFR 118.10 - Recordkeeping requirements for the Salmonella Enteritidis (SE) prevention plan.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Recordkeeping requirements for the Salmonella Enteritidis (SE) prevention plan. 118.10 Section 118.10 Food and Drugs FOOD AND DRUG ADMINISTRATION... TRANSPORTATION OF SHELL EGGS § 118.10 Recordkeeping requirements for the Salmonella Enteritidis (SE) prevention...
21 CFR 118.10 - Recordkeeping requirements for the Salmonella Enteritidis (SE) prevention plan.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Recordkeeping requirements for the Salmonella Enteritidis (SE) prevention plan. 118.10 Section 118.10 Food and Drugs FOOD AND DRUG ADMINISTRATION... TRANSPORTATION OF SHELL EGGS § 118.10 Recordkeeping requirements for the Salmonella Enteritidis (SE) prevention...
21 CFR 118.10 - Recordkeeping requirements for the Salmonella Enteritidis (SE) prevention plan.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Recordkeeping requirements for the Salmonella Enteritidis (SE) prevention plan. 118.10 Section 118.10 Food and Drugs FOOD AND DRUG ADMINISTRATION... TRANSPORTATION OF SHELL EGGS § 118.10 Recordkeeping requirements for the Salmonella Enteritidis (SE) prevention...
21 CFR 118.10 - Recordkeeping requirements for the Salmonella Enteritidis (SE) prevention plan.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Recordkeeping requirements for the Salmonella Enteritidis (SE) prevention plan. 118.10 Section 118.10 Food and Drugs FOOD AND DRUG ADMINISTRATION... TRANSPORTATION OF SHELL EGGS § 118.10 Recordkeeping requirements for the Salmonella Enteritidis (SE) prevention...
Delgado, R; Latorre, J D; Vicuña, E; Hernandez-Velasco, X; Vicente, J L; Menconi, A; Kallapura, G; Layton, S; Hargis, B M; Téllez, G
2014-09-01
Two independent trials were conducted in the present study to evaluate the effect of 5% glycerol supplementation combined with dietary FloraMax-B11 (FM) against Salmonella Enteritidis colonization in neonate broiler chickens. In each trial, 60 chicks were randomly assigned into 4 groups. Group 1 received a control diet. Group 2 received a control diet supplemented with 5% glycerol. Group 3 received a control diet supplemented with FM, and group 4 received a control diet supplemented with 5% glycerol and FM. At placement, chickens were challenged with Salmonella Enteritidis at 10(4) cfu/bird. In each trial, 12 chicks were humanely killed 72 h postchallenge, respectively, for Salmonella Enteritidis colonization. Supplementation of 5% glycerol or FM by themselves, showed no significant effect on Salmonella Enteritidis recovery or incidence when compared with control nontreated chickens in both trials. However, no detectable Salmonella Enteritidis was observed in the chickens that received the supplementation of 5% glycerol combined with FM in both trials. Further studies are in progress in older birds to substantiate these findings. © 2014 Poultry Science Association Inc.
Wan, Zhenmao; Goddard, Noel L
2012-10-01
Inter- and intraspecies horizontal gene transfer enabled by bacterial secretion systems is a powerful mechanism for bacterial genome plasticity. The type IV secretion system of Escherichia coli, encoded by the F plasmid, enables cell-to-cell contact and subsequent DNA transfer known as conjugation. Conjugation is compromised by phage infection that specifically targets the secretion machinery. Hence, the use of phages to regulate the spread of genes, such as acquired antibiotic resistance or as general biosanitation agents, has gained interest. To predict the potential efficacy, the competition kinetics must first be understood. Using quantitative PCR to enumerate genomic loci in a resource-limited batch culture, we quantify the infection kinetics of the nonlytic phage M13 and its impact on conjugation in the absence of selection pressure (isogenic set). Modeling the resulting experimental data reveals the cellular growth rate to be reduced to 60% upon phage infection. We also find a maximum phage infection rate of 3×10(-11) mL phage(-1) min(-1) which is only 1 order of magnitude slower than the maximum conjugation rate (3×10(-10) mL cell(-1) min(-1)), suggesting phages must be in significant abundance to be effective antagonists to horizontal gene transfer. In the regime where the number of susceptible cells (F(+)) and phages are equal upon initial infection, we observe the spread of the conjugative plasmid throughout the cell population despite phage infection, but only at 10% of the uninfected rate. This has interesting evolutionary implications, as even in the absence of selection pressure, cells maintain the ability to conjugate despite phage vulnerability and the associated growth consequences.
Biology and Genomics of an Historic Therapeutic Escherichia coli Bacteriophage Collection.
Baig, Abiyad; Colom, Joan; Barrow, Paul; Schouler, Catherine; Moodley, Arshnee; Lavigne, Rob; Atterbury, Robert
2017-01-01
We have performed microbiological and genomic characterization of an historic collection of nine bacteriophages, specifically infecting a K1 E. coli O18:K1:H7 ColV + strain. These phages were isolated from sewage and tested for their efficacy in vivo for the treatment of systemic E. coli infection in a mouse infection model by Smith and Huggins (1982). The aim of the study was to identify common microbiological and genomic characteristics, which co-relate to the performance of these phages in in vivo study. These features will allow an informed selection of phages for use as therapeutic agents. Transmission electron microscopy showed that six of the nine phages were Podoviridae and the remaining three were Siphoviridae . The four best performing phages in vivo belonged to the Podoviridae family. In vitro , these phages exhibited very short latent and rise periods in our study. In agreement with their microbiological profiles, characterization by genome sequencing showed that all six podoviruses belong to the Autographivirinae subfamily. Of these, four were isolates of the same species (99% identity), whereas two had divergent genomes compared to other podoviruses. The Siphoviridae phages, which were moderate to poor performers in vivo , exhibited longer latent and rise periods in vitro . Two of the three siphoviruses were closely related to each other (99% identity), but all can be associated with the Guernseyvirinae subfamily. Genome sequence comparison of both types of phages showed that a gene encoding for DNA-dependent RNA polymerase was only present in phages with faster replication cycle, which may account for their better performance in vivo . These data define a combination of microbiological, genomic and in vivo characteristics which allow a more rational evaluation of the original in vivo data and pave the way for the selection of phages for future phage therapy trails.
Purulent pericarditis with Salmonella enteritidis in a patient with CD4/CD8 depression.
Takamiya, Yosuke; Shirai, Kazuyuki; Fujino, Masahiro; Miller, Nathan; Tsuchiya, Yoshihiro; Okabe, Masanori; Saku, Keijiro
2008-06-01
A 65-year-old man was admitted for high-grade fever with a shaking chill and general fatigue. Chest X-ray showed cardiomegaly, and echocardiography revealed a large amount of pericardial effusion. Emergency pericardiocentesis was performed, and Salmonella enteritidis was found in pericardial fluids. We diagnosed purulent pericarditis with S. enteritidis, and administered antibiotics. While high-grade fever resolved 10 days after beginning of treatment, effusive-constrictive pericarditis (ECP) without definite symptoms persisted for 2 months. Because of the improvement of his hemodynamic states on cardiac catheterization after 1 year, an operative procedure was not required. He was diagnosed as having CD4/CD8 depression without apparent diseases. There are few reports of pericarditis with S. enteritidis, and we believe this case might be only the second recorded case of ECP with S. enteritidis.
Nguyen, Huong Minh; Kang, Changwon
2014-02-01
Bacteriophage T7 terminator Tϕ is a class I intrinsic terminator coding for an RNA hairpin structure immediately followed by oligo(U), which has been extensively studied in terms of its transcription termination mechanism, but little is known about its physiological or regulatory functions. In this study, using a T7 mutant phage, where a 31-bp segment of Tϕ was deleted from the genome, we discovered that deletion of Tϕ from T7 reduces the phage burst size but delays lysis timing, both of which are disadvantageous for the phage. The burst downsizing could directly result from Tϕ deletion-caused upregulation of gene 17.5, coding for holin, among other Tϕ downstream genes, because infection of gp17.5-overproducing Escherichia coli by wild-type T7 phage showed similar burst downsizing. However, the lysis delay was not associated with cellular levels of holin or lysozyme or with rates of phage adsorption. Instead, when allowed to evolve spontaneously in five independent adaptation experiments, the Tϕ-lacking mutant phage, after 27 or 29 passages, recovered both burst size and lysis time reproducibly by deleting early genes 0.5, 0.6, and 0.7 of class I, among other mutations. Deletion of genes 0.5 to 0.7 from the Tϕ-lacking mutant phage decreased expression of several Tϕ downstream genes to levels similar to that of the wild-type phage. Accordingly, phage T7 lysis timing is associated with cellular levels of Tϕ downstream gene products. This suggests the involvement of unknown factor(s) besides the known lysis proteins, lysozyme and holin, and that Tϕ plays a role of optimizing burst size and lysis time during T7 infection. IMPORTANCE Bacteriophages are bacterium-infecting viruses. After producing numerous progenies inside bacteria, phages lyse bacteria using their lysis protein(s) to get out and start a new infection cycle. Normally, lysis is tightly controlled to ensure phage progenies are maximally produced and released at an optimal time. Here, we have discovered that phage T7, besides employing its known lysis proteins, additionally uses its transcription terminator Tϕ to guarantee the optimal lysis of the E. coli host. Tϕ, positioned in the middle of the T7 genome, must be inactivated at least partially to allow for transcription-driven translocation of T7 DNA into hosts and expression of Tϕ downstream but promoter-lacking genes. What role is played by Tϕ before inactivation? Without Tϕ, not only was lysis time delayed but also the number of progenies was reduced in this study. Furthermore, T7 can overcome Tϕ deletion by further deleting some genes, highlighting that a phage has multiple strategies for optimizing lysis.
The Impact of Prophage on the Equilibria and Stability of Phage and Host
NASA Astrophysics Data System (ADS)
Yu, Pei; Nadeem, Alina; Wahl, Lindi M.
2017-06-01
In this paper, we present a bacteriophage model that includes prophage, that is, phage genomes that are incorporated into the host cell genome. The general model is described by an 18-dimensional system of ordinary differential equations. This study focuses on asymptotic behaviour of the model, and thus the system is reduced to a simple six-dimensional model, involving uninfected host cells, infected host cells and phage. We use dynamical system theory to explore the dynamic behaviour of the model, studying in particular the impact of prophage on the equilibria and stability of phage and host. We employ bifurcation and stability theory, centre manifold and normal form theory to show that the system has multiple equilibrium solutions which undergo a series of bifurcations, finally leading to oscillating motions. Numerical simulations are presented to illustrate and confirm the analytical predictions. The results of this study indicate that in some parameter regimes, the host cell population may drive the phage to extinction through diversification, that is, if multiple types of host emerge; this prediction holds even if the phage population is likewise diverse. This parameter regime is restricted, however, if infecting phage are able to recombine with prophage sequences in the host cell genome.
Phage idiotype vaccination: first phase I/II clinical trial in patients with multiple myeloma
2014-01-01
Background Multiple myeloma is characterized by clonal expansion of B cells producing monoclonal immunoglobulins or fragments thereof, which can be detected in the serum and/or urine and are ideal target antigens for patient-specific immunotherapies. Methods Using phage particles as immunological carriers, we employed a novel chemically linked idiotype vaccine in a clinical phase I/II trial including 15 patients with advanced multiple myeloma. Vaccines composed of purified paraproteins linked to phage were manufactured successfully for each patient. Patients received six intradermal immunizations with phage idiotype vaccines in three different dose groups. Results Phage idiotype was well tolerated by all study participants. A subset of patients (80% in the middle dose group) displayed a clinical response indicated by decrease or stabilization of paraprotein levels. Patients exhibiting a clinical response to phage vaccines also raised idiotype-specific immunoglobulins. Induction of a cellular immune response was demonstrated by a cytotoxicity assay and delayed type hypersensitivity tests. Conclusion We present a simple, time- and cost-efficient phage idiotype vaccination strategy, which represents a safe and feasible patient-specific therapy for patients with advanced multiple myeloma and produced promising anti-tumor activity in a subset of patients. PMID:24885819
Bacteriophages and phage-inspired nanocarriers for targeted delivery of therapeutic cargos.
Karimi, Mahdi; Mirshekari, Hamed; Moosavi Basri, Seyed Masoud; Bahrami, Sajad; Moghoofei, Mohsen; Hamblin, Michael R
2016-11-15
The main goal of drug delivery systems is to target therapeutic cargoes to desired cells and to ensure their efficient uptake. Recently a number of studies have focused on designing bio-inspired nanocarriers, such as bacteriophages, and synthetic carriers based on the bacteriophage structure. Bacteriophages are viruses that specifically recognize their bacterial hosts. They can replicate only inside their host cell and can act as natural gene carriers. Each type of phage has a particular shape, a different capacity for loading cargo, a specific production time, and their own mechanisms of supramolecular assembly, that have enabled them to act as tunable carriers. New phage-based technologies have led to the construction of different peptide libraries, and recognition abilities provided by novel targeting ligands. Phage hybridization with non-organic compounds introduces new properties to phages and could be a suitable strategy for construction of bio-inorganic carriers. In this review we try to cover the major phage species that have been used in drug and gene delivery systems, and the biological application of phages as novel targeting ligands and targeted therapeutics. Copyright © 2016 Elsevier B.V. All rights reserved.
Suárez, Viviana B; Maciel, Natalia; Guglielmotti, Daniela; Zago, Miriam; Giraffa, Giorgio; Reinheimer, Jorge
2008-12-10
The aim of this work was to study the relationship between the cell morphological heterogeneity and the phage-resistance in the commercial strain Lactobacillus delbrueckii subsp. lactis Ab1. Two morphological variants (named C and T) were isolated from this strain. Phage-resistant derivatives were isolated from them and the percentage of occurrence of confirmed phage-resistant cells was 0.001% of the total cellular population. Within these phage-resistant cell derivatives there were T (3 out of 4 total isolates) and C (1 out of 4 total isolates) variants. The study of some technological properties (e.g. proteolytic and acidifying activities) demonstrated that most of phage-resistant derivatives were not as good as the parental strain. However, for one derivative (a T variant), the technological properties were better than those of the parental strain. On the other hand, it was possible to determinate that the system of phage-resistance in the T variants was interference in adsorption step, with adsorption rates <15%. For the C variant derivative it was possible to demonstrate the presence of a restriction/modification system and, moreover, to determinate that this system could be Type I R/M.
Dying for Good: Virus-Bacterium Biofilm Co-evolution Enhances Environmental Fitness
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jin, Hongjun; Squier, Thomas C.; Long, Philip E.
Commonly used in biotechnology applications, filamentous M13 phage are non-lytic viruses that infect E. coli and other bacteria, with the potential to promote horizontal gene transfer in natural populations with synthetic biology implications for engineering community systems. Using the E. coli strain TG1, we have investigated how a selective pressure involving elevated levels of toxic chromate, mimicking that found in some superfund sites, alters population dynamics following infection with either wild-type M13 phage or an M13-phage encoding a chromate reductase (Gh-ChrR) capable of the reductive immobilization of chromate (ie, M13-phageGh-ChrR). In the absence of a selective pressure, M13-phage infection resultsmore » in a reduction in bacterial growth rate; in comparison, in the presence of chromate there are substantial increases in both cellular killing and biomass formation following infection of E. coli strain TG1with M13-phageGh-ChrR that is dependent on chromate-reductase activity. These results are discussed in terms of community structures that facilitate lateral gene transfer of beneficial traits that enhance phage replication, infectivity, and stability against environmental change.« less
Targeted delivery of siRNA into breast cancer cells via phage fusion proteins.
Bedi, Deepa; Gillespie, James W; Petrenko, Vasily A; Ebner, Andreas; Leitner, Michael; Hinterdorfer, Peter; Petrenko, Valery A
2013-02-04
Nucleic acids, including antisense oligonucleotides, small interfering RNA (siRNA), aptamers, and rybozymes, emerged as versatile therapeutics due to their ability to interfere in a well-planned manner with the flow of genetic information from DNA to protein. However, a systemic use of NAs is hindered by their instability in physiological liquids and inability of intracellular accumulation in the site of action. We first evaluated the potential of cancer specific phage fusion proteins as targeting ligands that provide encapsulation, protection, and navigation of siRNA to the target cell. The tumor-specific proteins were isolated from phages that were affinity selected from a landscape phage library against target breast cancer cells. It was found that fusion phage coat protein fpVIII displaying cancer-targeting peptides can effectively encapsulate siRNAs and deliver them into the cells leading to specific silencing of the model gene GAPDH. Complexes of siRNA and phage protein form nanoparticles (nanophages), which were characterized by atomic force microscopy and ELISA, and their stability was demonstrated by resistance of encapsulated siRNA to degradation by serum nucleases. The phage protein/siRNA complexes can make a new type of highly selective, stable, active, and physiologically acceptable cancer nanomedicine.
Li, Baolian; Zhang, Si; Long, Lijuan; Huang, Sijun
2016-09-01
Three bacteriophages (RD-1410W1-01, RD-1410Ws-07, and DS-1410Ws-06) were isolated from the surface water of Sanya Bay, northern South China Sea, on two marine bacteria type strains of the Roseobacter lineage. These phages have an isometric head and a short tail, morphologically belonging to the Podoviridae family. Two of these phages can infect four of seven marine roseobacter strains tested and the other one can infect three of them, showing relatively broader host ranges compared to known N4-like roseophages. One-step growth curves showed that these phages have similar short latent periods (1-2 h) but highly variable burst sizes (27-341 pfu cell(-1)). Their complete genomes show high level of similarities to known N4-like roseophages in terms of genome size, G + C content, gene content, and arrangement. The morphological and genomic features of these phages indicate that they belong to the N4likevirus genus. Moreover, comparative genomic analysis based on 43 N4-like phages (10 roseobacter phages and 33 phages infecting other lineages of bacteria) revealed a core genome of 18 genes shared by all the 43 phages and 38 genes shared by all the ten roseophages. The 38 core genes of N4-like roseophages nearly make up 70 % of each genome in length. Phylogenetic analysis based on the concatenated core gene products showed that our phage isolates represent two new phyletic branches, suggesting the broad genetic diversity of marine N4-like roseophages remains.
The genome and structural proteome of YuA, a new Pseudomonas aeruginosa phage resembling M6.
Ceyssens, Pieter-Jan; Mesyanzhinov, Vadim; Sykilinda, Nina; Briers, Yves; Roucourt, Bart; Lavigne, Rob; Robben, Johan; Domashin, Artem; Miroshnikov, Konstantin; Volckaert, Guido; Hertveldt, Kirsten
2008-02-01
Pseudomonas aeruginosa phage YuA (Siphoviridae) was isolated from a pond near Moscow, Russia. It has an elongated head, encapsulating a circularly permuted genome of 58,663 bp, and a flexible, noncontractile tail, which is terminally and subterminally decorated with short fibers. The YuA genome is neither Mu- nor lambda-like and encodes 78 gene products that cluster in three major regions involved in (i) DNA metabolism and replication, (ii) host interaction, and (iii) phage particle formation and host lysis. At the protein level, YuA displays significant homology with phages M6, phiJL001, 73, B3, DMS3, and D3112. Eighteen YuA proteins were identified as part of the phage particle by mass spectrometry analysis. Five different bacterial promoters were experimentally identified using a promoter trap assay, three of which have a sigma54-specific binding site and regulate transcription in the genome region involved in phage particle formation and host lysis. The dependency of these promoters on the host sigma54 factor was confirmed by analysis of an rpoN mutant strain of P. aeruginosa PAO1. At the DNA level, YuA is 91% identical to the recently (July 2007) annotated phage M6 of the Lindberg typing set. Despite this level of DNA homology throughout the genome, both phages combined have 15 unique genes that do not occur in the other phage. The genome organization of both phages differs substantially from those of the other known Pseudomonas-infecting Siphoviridae, delineating them as a distinct genus within this family.
Golomidova, Alla K; Kulikov, Eugene E; Prokhorov, Nikolai S; Guerrero-Ferreira, Ricardo С; Knirel, Yuriy A; Kostryukova, Elena S; Tarasyan, Karina K; Letarov, Andrey V
2016-01-21
The T5-like siphoviruses DT57C and DT571/2, isolated from horse feces, are very closely related to each other, and most of their structural proteins are also nearly identical to T5 phage. Their LTFs (L-shaped tail fibers), however, are composed of two proteins, LtfA and LtfB, instead of the single Ltf of bacteriophage T5. In silico and mutant analysis suggests a possible branched structure of DT57C and DT571/2 LTFs, where the LtfB protein is connected to the phage tail via the LtfA protein and with both proteins carrying receptor recognition domains. Such adhesin arrangement has not been previously recognized in siphoviruses. The LtfA proteins of our phages are found to recognize different host O-antigen types: E. coli O22-like for DT57C phage and E. coli O87 for DT571/2. LtfB proteins are identical in both phages and recognize another host receptor, most probably lipopolysaccharide (LPS) of E. coli O81 type. In these two bacteriophages, LTF function is essential to penetrate the shield of the host's O-antigens. We also demonstrate that LTF-mediated adsorption becomes superfluous when the non-specific cell protection by O-antigen is missing, allowing the phages to bind directly to their common secondary receptor, the outer membrane protein BtuB. The LTF independent adsorption was also demonstrated on an O22-like host mutant missing O-antigen O-acetylation, thus showing the biological value of this O-antigen modification for cell protection against phages.
Boakes, E.; Kearns, A. M.; Ganner, M.; Perry, C.; Hill, R. L.; Ellington, M. J.
2011-01-01
Genetically diverse community-associated methicillin resistant Staphylococcus aureus (CA-MRSA) can harbor a bacteriophage encoding Panton-Valentine leukocidin (PVL) lysogenized into its chromosome (prophage). Six PVL phages (ΦPVL, Φ108PVL, ΦSLT, ΦSa2MW, ΦSa2USA, and ΦSa2958) are known, and single-nucleotide polymorphisms (SNPs) in the PVL genes have been reported. We sought to determine the distribution of lysogenized PVL phages among MRSA strains with PVL (PVL-MRSA strains), the PVL gene sequences, and the chromosomal phage insertion sites in 114 isolates comprising nine clones of PVL-MRSA that were selected for maximal underlying genetic diversity. The six PVL phages were identified by PCR; ΦSa2USA was present in the highest number of different lineages (multilocus sequence type clonal complex 1 [CC1], CC5, CC8, and sequence type 93 [ST93]) (n = 37 isolates). Analysis of 92 isolates confirmed that PVL phages inserted into the same chromosomal insertion locus in CC22, -30, and -80 but in a different locus in isolates of CC1, -5, -8, -59, and -88 and ST93 (and CC22 in two isolates). Within the two different loci, specific attachment motifs were found in all cases, although some limited inter- and intralineage sequence variation occurred. Overall, lineage-specific relationships between the PVL phage, the genes that encode the toxin, and the position at which the phage inserts into the host chromosome were identified. These analyses provide important insights into the microepidemiology of PVL-MRSA, will prove a valuable adjunct in outbreak investigation, and may help predict the emergence of new strains. PMID:21106787
Golomidova, Alla K.; Kulikov, Eugene E.; Prokhorov, Nikolai S.; Guerrero-Ferreira, Ricardo С.; Knirel, Yuriy A.; Kostryukova, Elena S.; Tarasyan, Karina K.; Letarov, Andrey V.
2016-01-01
The T5-like siphoviruses DT57C and DT571/2, isolated from horse feces, are very closely related to each other, and most of their structural proteins are also nearly identical to T5 phage. Their LTFs (L-shaped tail fibers), however, are composed of two proteins, LtfA and LtfB, instead of the single Ltf of bacteriophage T5. In silico and mutant analysis suggests a possible branched structure of DT57C and DT571/2 LTFs, where the LtfB protein is connected to the phage tail via the LtfA protein and with both proteins carrying receptor recognition domains. Such adhesin arrangement has not been previously recognized in siphoviruses. The LtfA proteins of our phages are found to recognize different host O-antigen types: E. coli O22-like for DT57C phage and E. coli O87 for DT571/2. LtfB proteins are identical in both phages and recognize another host receptor, most probably lipopolysaccharide (LPS) of E. coli O81 type. In these two bacteriophages, LTF function is essential to penetrate the shield of the host’s O-antigens. We also demonstrate that LTF-mediated adsorption becomes superfluous when the non-specific cell protection by O-antigen is missing, allowing the phages to bind directly to their common secondary receptor, the outer membrane protein BtuB. The LTF independent adsorption was also demonstrated on an O22-like host mutant missing O-antigen O-acetylation, thus showing the biological value of this O-antigen modification for cell protection against phages. PMID:26805872
Effect of protein properties on display efficiency using the M13 phage display system.
Imai, S; Mukai, Y; Takeda, T; Abe, Y; Nagano, K; Kamada, H; Nakagawa, S; Tsunoda, S; Tsutsumi, Y
2008-10-01
The M13 phage display system is a powerful technology for engineering proteins such as functional mutant proteins and peptides. In this system, it is necessary that the protein is displayed on the phage surface. Therefore, its application is often limited when a protein is poorly displayed. In this study, we attempted to understand the relationship between a protein's properties and its display efficiency using the well-known pIII and pVIII type phage display system. The display of positively charged SV40 NLS and HIV-1 Tat peptides on pill was less efficient than that of the neutrally charged RGDS peptide. When different molecular weight proteins (1.5-58 kDa) were displayed on pIII and pVIII, their display efficiencies were directly influenced by their molecular weights. These results indicate the usefulness in predicting a desired protein's compatibility with protein and peptide engineering using the phage display system.
Molecular Insights Into the Evolutionary Pathway of Vibrio cholerae O1 Atypical El Tor Variants
Kim, Eun Jin; Lee, Dokyung; Moon, Se Hoon; Lee, Chan Hee; Kim, Sang Jun; Lee, Jae Hyun; Kim, Jae Ouk; Song, Manki; Das, Bhabatosh; Clemens, John D.; Pape, Jean William; Nair, G. Balakrish; Kim, Dong Wook
2014-01-01
Pandemic V. cholerae strains in the O1 serogroup have 2 biotypes: classical and El Tor. The classical biotype strains of the sixth pandemic, which encode the classical type cholera toxin (CT), have been replaced by El Tor biotype strains of the seventh pandemic. The prototype El Tor strains that produce biotype-specific cholera toxin are being replaced by atypical El Tor variants that harbor classical cholera toxin. Atypical El Tor strains are categorized into 2 groups, Wave 2 and Wave 3 strains, based on genomic variations and the CTX phage that they harbor. Whole-genome analysis of V. cholerae strains in the seventh cholera pandemic has demonstrated gradual changes in the genome of prototype and atypical El Tor strains, indicating that atypical strains arose from the prototype strains by replacing the CTX phages. We examined the molecular mechanisms that effected the emergence of El Tor strains with classical cholera toxin-carrying phage. We isolated an intermediary V. cholerae strain that carried two different CTX phages that encode El Tor and classical cholera toxin, respectively. We show here that the intermediary strain can be converted into various Wave 2 strains and can act as the source of the novel mosaic CTX phages. These results imply that the Wave 2 and Wave 3 strains may have been generated from such intermediary strains in nature. Prototype El Tor strains can become Wave 3 strains by excision of CTX-1 and re-equipping with the new CTX phages. Our data suggest that inter-chromosomal recombination between 2 types of CTX phages is possible when a host bacterial cell is infected by multiple CTX phages. Our study also provides molecular insights into population changes in V. cholerae in the absence of significant changes to the genome but by replacement of the CTX prophage that they harbor. PMID:25233006
Xu, Hai; Wang, Yi-Wei; Tang, Ying-Hua; Zheng, Qi-Sheng; Hou, Ji-Bo
2013-06-01
To construct a recombinant T7 phage expressing matrix protein 2 ectodomain (M2e) peptides of avian influenza A virus and test immunological and protective efficacy in the immunized SPF chickens. M2e gene sequence was obtained from Genbank and two copies of M2e gene were artificially synthesised, the M2e gene was then cloned into the T7 select 415-1b phage in the multiple cloning sites to construct the recombinant phage T7-M2e. The positive recombinant phage was identified by PCR and sequencing, and the expression of surface fusion protein was confirmed by SDS-PAGE and Western-blot. SPF chickens were subcutaneously injected with 1 X 10(10) pfu phage T7-M2e, sera samples were collected pre- and post-vaccination, and were tested for anti-M2e antibody by ELISA. The binding capacity of serum to virus was also examined by indirect immunofluorescence assay in virus- infected CEF. The immunized chickens were challenged with 200 EID50 of H9 type avian influenza virus and viral isolation rate was calculated to evaluate the immune protective efficacy. A recombinant T7 phage was obtained displaying M2e peptides of avian influenza A virus, and the fusion protein had favorable immunoreactivity. All chickens developed a certain amount of anti-M2e antibody which could specially bind to the viral particles. In addition, the protection efficacy of phage T7-M2e vaccine against H9 type avian influenza viruses was 4/5 (80%). These results indicate that the recombinant T7 phage displaying M2e peptides of avian influenza A virus has a great potential to be developed into a novel vaccine for the prevention of avian influenza infection.
Tubulin homolog TubZ in a phage-encoded partition system
Oliva, María A.; Martin-Galiano, Antonio J.; Sakaguchi, Yoshihiko; Andreu, José M.
2012-01-01
Partition systems are responsible for the process whereby large and essential plasmids are accurately positioned to daughter cells during bacterial division. They are typically made of three components: a centromere-like DNA zone, an adaptor protein, and an assembling protein that is either a Walker-box ATPase (type I) or an actin-like ATPase (type II). A recently described type III segregation system has a tubulin/FtsZ-like protein, called TubZ, for plasmid movement. Here, we present the 2.3 Å structure and dynamic assembly of a TubZ tubulin homolog from a bacteriophage and unravel the Clostridium botulinum phage c-st type III partition system. Using biochemical and biophysical approaches, we prove that a gene upstream from tubZ encodes the partner TubR and localize the centromeric region (tubS), both of which are essential for anchoring phage DNA to the motile TubZ filaments. Finally, we describe a conserved fourth component, TubY, which modulates the TubZ-R-S complex interaction. PMID:22538818
Sawosz, Ewa; Chwalibog, André; Szeliga, Jacek; Sawosz, Filip; Grodzik, Marta; Rupiewicz, Marlena; Niemiec, Tomasz; Kacprzyk, Katarzyna
2010-01-01
Purpose Rapid development of nanotechnology has recently brought significant attention to the extraordinary biological features of nanomaterials. The objective of the present investigation was to evaluate morphological characteristics of the assembles of gold and platinum nanoparticles (nano-Au and nano-Pt respectively), with Salmonella Enteritidis (Gram-negative) and Listeria monocytogenes (Gram-positive), to reveal possibilities of constructing bacteria-nanoparticle vehicles. Methods Hydrocolloids of nano-Au or nano-Pt were added to two bacteria suspensions in the following order: nano-Au + Salmonella Enteritidis; nano-Au + Listeria monocytogenes; nano-Pt + Salmonella Enteritidis; nano-Pt + Listeria monocytogenes. Samples were inspected by transmission electron microscope. Results Visualization of morphological interaction between nano-Au and Salmonella Enteritidis and Listeria monocytogenes, showed that nano-Au were aggregated within flagella or biofilm network and did not penetrate the bacterial cell. The analysis of morphological effects of interaction of nano-Pt with bacteria revealed that nano-Pt entered cells of Listeria monocytogenes and were removed from the cells. In the case of Salmonella Enteritidis, nano-Pt were seen inside bacteria cells, probably bound to DNA and partly left bacterial cells. After washing and centrifugation, some of the nano-Pt-DNA complexes were observed within Salmonella Enteritidis. Conclusion The results indicate that the bacteria could be used as a vehicle to deliver nano-Pt to specific points in the body. PMID:20856838
Kiang, W-S; Bhat, R; Rosma, A; Cheng, L-H
2013-04-01
In this study, the effects of thermosonication and thermal treatment on Escherichia coli O157:H7 and Salmonella Enteritidis in mango juice were investigated at 50 and 60°C. Besides, nonlethal injury of Salm. Enteritidis after both treatments was also examined. The highest inactivation was attained with thermosonication at 60°C. The inactivation rate was different for both pathogens, and Salm. Enteritidis was found to be more sensitive to thermosonication than E. coli O157:H7. Salmonella Enteritidis was recovered in all treated samples, except those subjected to more than 5-min thermosonication at 60°C. It was found that the introduction of high-intensity ultrasound enhanced the inactivation of pathogens compared to thermal treatment alone. On the other hand, Salm. Enteritidis was detected in a number of samples following incubation in universal pre-enrichment broth, but no growth was detected after incubation in mango juice. Fruit juices are commonly heat treated to inactivate micro-organisms and enzymes. However, excessive heat treatments may result in undesirable changes in juice quality. Treatment by power ultrasound, a nonthermal technology, may be an alternative processing technique to pasteurize fruit juices. This study highlights the effectiveness of thermosonication in inactivating Escherichia coli O157:H7 and Salmonella Enteritidis in mango juice. © 2012 The Society for Applied Microbiology.
Gong, Jiansen; Zhuang, Linlin; Zhu, Chunhong; Shi, Shourong; Zhang, Di; Zhang, Linji; Yu, Yan; Dou, Xinhong; Xu, Bu; Wang, Chengming
2016-04-01
Salmonella spp. pose a threat to both human and animal health, with more than 2600 serovars having been reported to date. Salmonella serovars are usually identified by slide agglutination tests, which are labor intensive and time consuming. In an attempt to develop a more rapid screening method for the major poultry Salmonella serovars, we developed a loop-mediated isothermal amplification (LAMP) assay, which directly detected the sefA gene, a fimbrial operon gene existing in several specific serovars of Salmonella enterica including the major poultry serovars, namely Salmonella enterica serovar Enteritidis (Salmonella Enteritidis) and Salmonella enterica serovar Gallinarum (Salmonella Gallinarum). With the 177 bacterial strains we tested, positive reactions were only observed with 85 strains of serovar Salmonella Enteritidis and Salmonella Gallinarum. The detection limit of the LAMP assay was 4 CFU/reaction with genomic DNAs of Salmonella Enteritidis (ATCC 13076) from pure culture and 400 CFU/ reaction with DNA extracted from spiked chicken feces. The LAMP assay was more sensitive than conventional culture, especially without enrichment, in detecting Salmonella Enteritidis (CMCC 50041) in the spiked fecal samples. The results show the sefA LAMP method is a rapid, sensitive, specific, and practical method for directly detection of Salmonella Enteritidis and Salmonella Gallinarum in chickens. The sefA LAMP assay can potentially serve as new on-site diagnostics in the poultry industry.
Shomer, Inna; Avisar, Alon; Desai, Prerak; Azriel, Shalhevet; Smollan, Gill; Belausov, Natasha; Keller, Nathan; Glikman, Daniel; Maor, Yasmin; Peretz, Avi; McClelland, Michael; Rahav, Galia; Gal-Mor, Ohad
2016-01-01
Salmonella enterica serovar Enteritidis (S. Enteritidis) is one of the ubiquitous Salmonella serovars worldwide and a major cause of food-born outbreaks, which are often associated with poultry and poultry derivatives. Here we report a nation-wide S. Enteritidis clonal outbreak that occurred in Israel during the last third of 2015. Pulsed field gel electrophoresis and whole genome sequencing identified genetically related strains that were circulating in Israel as early as 2008. Global comparison linked this outbreak strain to several clinical and marine environmental isolates that were previously isolated in California and Canada, indicating that similar strains are prevalent outside of Israel. Phenotypic comparison between the 2015 outbreak strain and other clinical and reference S. Enteritidis strains showed only limited intra-serovar phenotypic variation in growth in rich medium, invasion into Caco-2 cells, uptake by J774.1A macrophages, and host cell cytotoxicity. In contrast, significant phenotypic variation was shown among different S. Enteritidis isolates when biofilm-formation, motility, invasion into HeLa cells and uptake by THP-1 human macrophages were studied. Interestingly, the 2015 outbreak clone was found to possess superior intra-macrophage replication ability within both murine and human macrophages in comparison to the other S. Enteritidis strains studied. This phenotype is likely to play a role in the virulence and host-pathogen interactions of this emerging clone. PMID:27695450
Muvhali, Munyadziwa; Smith, Anthony Marius; Rakgantso, Andronica Moipone; Keddy, Karen Helena
2017-10-02
Salmonella enterica serovar Enteritidis (Salmonella Enteritidis) has become a significant pathogen in South Africa, and the need for improved molecular surveillance of this pathogen has become important. Over the years, multi-locus variable-number tandem-repeats analysis (MLVA) has become a valuable molecular subtyping technique for Salmonella, particularly for highly homogenic serotypes such as Salmonella Enteritidis. This study describes the use of MLVA in the molecular epidemiological investigation of outbreak isolates in South Africa. Between the years 2013 and 2015, the Centre for Enteric Diseases (CED) received 39 Salmonella Enteritidis isolates from seven foodborne illness outbreaks, which occurred in six provinces. MLVA was performed on all isolates. Three MLVA profiles (MLVA profiles 21, 22 and 28) were identified among the 39 isolates. MLVA profile 28 accounted for 77% (30/39) of the isolates. Isolates from a single outbreak were grouped into a single MLVA profile. A minimum spanning tree (MST) created from the MLVA data showed a close relationship between MLVA profiles 21, 22 and 28, with a single VNTR locus difference between them. MLVA has proven to be a reliable method for the molecular epidemiological investigation of Salmonella Enteritidis outbreaks in South Africa. These foodborne outbreaks emphasize the importance of the One Health approach as an essential component for combating the spread of zoonotic pathogens such as Salmonella Enteritidis.
USDA-ARS?s Scientific Manuscript database
Differences in membrane damage including leakage of intracellular UV-materials and loss of viability of Salmonella Enteritidis (ATCC13076) in liquid whole egg (LWE) following thermal-death-time (TDT) disk and high hydrostatic pressure treatments were examined. Salmonella enteritidis was inoculated ...
21 CFR 118.9 - Administration of the Salmonella Enteritidis (SE) prevention plan.
Code of Federal Regulations, 2012 CFR
2012-04-01
... 21 Food and Drugs 2 2012-04-01 2012-04-01 false Administration of the Salmonella Enteritidis (SE) prevention plan. 118.9 Section 118.9 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... EGGS § 118.9 Administration of the Salmonella Enteritidis (SE) prevention plan. You must have one or...
21 CFR 118.9 - Administration of the Salmonella Enteritidis (SE) prevention plan.
Code of Federal Regulations, 2014 CFR
2014-04-01
... 21 Food and Drugs 2 2014-04-01 2014-04-01 false Administration of the Salmonella Enteritidis (SE) prevention plan. 118.9 Section 118.9 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... EGGS § 118.9 Administration of the Salmonella Enteritidis (SE) prevention plan. You must have one or...
21 CFR 118.9 - Administration of the Salmonella Enteritidis (SE) prevention plan.
Code of Federal Regulations, 2013 CFR
2013-04-01
... 21 Food and Drugs 2 2013-04-01 2013-04-01 false Administration of the Salmonella Enteritidis (SE) prevention plan. 118.9 Section 118.9 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... EGGS § 118.9 Administration of the Salmonella Enteritidis (SE) prevention plan. You must have one or...
USDA-ARS?s Scientific Manuscript database
Prompt refrigeration to restrict bacterial growth is a widely acknowledged practice for reducing the risk of egg-borne transmission of Salmonella Enteritidis to consumers. A recently published federal regulation for S. Enteritidis control requires eggs to be refrigerated within 36 after they are la...
21 CFR 118.9 - Administration of the Salmonella Enteritidis (SE) prevention plan.
Code of Federal Regulations, 2011 CFR
2011-04-01
... 21 Food and Drugs 2 2011-04-01 2011-04-01 false Administration of the Salmonella Enteritidis (SE) prevention plan. 118.9 Section 118.9 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... EGGS § 118.9 Administration of the Salmonella Enteritidis (SE) prevention plan. You must have one or...
21 CFR 118.9 - Administration of the Salmonella Enteritidis (SE) prevention plan.
Code of Federal Regulations, 2010 CFR
2010-04-01
... 21 Food and Drugs 2 2010-04-01 2010-04-01 false Administration of the Salmonella Enteritidis (SE) prevention plan. 118.9 Section 118.9 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND... EGGS § 118.9 Administration of the Salmonella Enteritidis (SE) prevention plan. You must have one or...
USDA-ARS?s Scientific Manuscript database
Salmonella Enteritidis is the world’s leading cause of food borne salmonellosis and illness in people is linked strongly to its contamination of eggs produced by otherwise healthy appearing hens. Salmonella Enteritidis is noted for generating exceptional strain heterogeneity despite having a clonal ...
Automatic identification of bacterial types using statistical imaging methods
NASA Astrophysics Data System (ADS)
Trattner, Sigal; Greenspan, Hayit; Tepper, Gapi; Abboud, Shimon
2003-05-01
The objective of the current study is to develop an automatic tool to identify bacterial types using computer-vision and statistical modeling techniques. Bacteriophage (phage)-typing methods are used to identify and extract representative profiles of bacterial types, such as the Staphylococcus Aureus. Current systems rely on the subjective reading of plaque profiles by human expert. This process is time-consuming and prone to errors, especially as technology is enabling the increase in the number of phages used for typing. The statistical methodology presented in this work, provides for an automated, objective and robust analysis of visual data, along with the ability to cope with increasing data volumes.
Al-Gallas, Nazek; Abbassi, Mohamed Salah; Gharbi, Becher; Manai, Molka; Ben Fayala, Mohamed N; Bichihi, Raghda; Al-Gallas, Amna; Ben Aissa, Ridha
2013-09-01
Four hundred and thirty Salmonella isolates, recovered from various food-animal products, were tested for nalidixic acid resistance, plasmid-mediated quinolone resistance, and genetic relationship. One hundred fifteen isolates (113 Salmonella serovar Enteritidis and two Salmonella serovar Typhimurium isolates) of 430 (26.7%) Salmonella isolates exhibited nalidixic acid resistance. Polymerase chain reaction screening for qnrA, qnrB, qnrS, qepA (encoding fluoroquinolones resistance) and rmtB (encoding aminoglycosides resistance) showed that 5 (1.16%) isolates were positive for qnr- and qepA-type genes, and the aac(6')-Ib-cr gene was observed in two (1.7%) Enteritidis isolates concomitantly with qnrA or qnrB. The co-occurrence of qepA and rmtB in one Typhimurium isolate is noteworthy. Pulsed-field gel electrophoresis revealed a high genetic homogeneity of nalidixic-resistant isolates and the persistence of clonal clusters over 4 years in different regions in Tunisia and from various food-animal products. To the best of our knowledge, this is the first report of co-occurrence of qepA and rmtB in a Salmonella strain.
Clemente, Lurdes; Correia, Ivone; Themudo, Patrícia; Neto, Isabel; Caniça, Manuela; Bernardo, Fernando
2014-05-01
Three hundred and thirty-three isolates representing 40 different serotypes of Salmonella enterica, recovered from environmental and faecal samples of breeder and broiler flocks from 2009 to 2011, were studied. Antimicrobial susceptibility was determined by measuring the minimal inhibitory concentration of 11 antimicrobials using the agar dilution method. Salmonella Havana, S. Enteritidis and S. Mbandaka were the most common serotypes isolated from broiler flocks, while S. Enteritidis was the common isolate from breeder flocks. The frequency of non-wild-type Salmonella isolates (those with decreased susceptibility to the different antimicrobials) varied according to serotype. S. Mbandaka in broilers and S. Enteritidis in both breeders and broilers showed higher frequencies of reduced susceptibility to quinolones, but clinical resistance towards ciprofloxacin was not observed. Reduced susceptibility to sulfamethoxazole, tetracycline, ampicillin and streptomycin were common in Salmonella Typhimurium isolates. Two isolates of S. Havana from broilers were resistant to cefotaxime and phenotypically categorised as extended-spectrum β-lactamase producers. The results presented in this study provide useful data on the antimicrobial susceptibility of different Salmonella serotypes and highlight the high diversity of multi-drug resistance patterns present. Copyright © 2014 Elsevier Ltd. All rights reserved.
Torane, V; Kuyare, S; Nataraj, G; Mehta, P; Dutta, S; Sarkar, B
2016-01-01
Objectives Cholera is a major gastroenteric disease with reports on fluctuation and resistance. Hence, the objective is to determine the trend in seasonality, resistance pattern, prevalent biotypes, serotypes and phage types between 2004 and 2013 among Vibrio cholerae isolates. Design A retrospective cross-sectional study. Settings A single-centre study was carried out at a tertiary care hospital in a metropolitan city (Mumbai) of a developing country (India). Methods Records of stool specimen cultures of patients with suspected cholera from January 2004 to December 2013 were analysed. The organisms were identified as per standard protocol. Antimicrobial susceptibility testing was performed as per Clinical Laboratory Standard Institute. Biotyping, serotyping and phage typing were carried out. From the confirmed cases of cholera, demographic and laboratory details were noted. Descriptive analysis was used and the data were presented in the form of percentages. Results Vibrio cholerae was predominant in males and was isolated from 9.41% (439/4664) of stool specimens. Variability was found in terms of the gross appearance of stool specimens, seasonal trend and antibiotic resistance pattern. The antimicrobial susceptibility showed a waxing and waning pattern for most of the antibiotics (ampicillin, cefuroxime, chloramphenicol, tetracycline) tested, while for a few others the strains were either uniformly sensitive (gentamicin, norfloxacin) or resistant (trimethoprim-sulfamethoxazole, nalidixic acid). All isolates belonged to subgroup O1 and biotype El Tor. The most common serotype was Ogawa. The predominant phage type was T2 (old scheme) and T27 (new scheme). Conclusions The predominant biotype, serotype and phage type were El Tor, Ogawa and T27 phage, respectively. The changing trends in antimicrobial resistance pattern over the years necessitate continued epidemiological and microbiological surveillance of the disease. PMID:27888174
A national outbreak of Salmonella enteritidis infections from ice cream. The Investigation Team.
Hennessy, T W; Hedberg, C W; Slutsker, L; White, K E; Besser-Wiek, J M; Moen, M E; Feldman, J; Coleman, W W; Edmonson, L M; MacDonald, K L; Osterholm, M T
1996-05-16
In September 1994, the Minnesota Department of Health detected an increase in the number of reports of Salmonella enteritidis infections. After a case-control study implicated a nationally distributed brand of ice cream (Schwan's) in the outbreak, the product was recalled and further epidemiologic and microbiologic investigations were conducted. We defined an outbreak-associated case of S. enteritidis infection as one in which S. enteritidis was cultured from a person who became ill in September or October 1994. We established national surveillance and surveyed customers of the implicated manufacturer. The steps involved in the manufacture of ice cream associated with cases of S. enteritidis infection were compared with those of products not known to be associated with infection matched for the date of manufacture. Cultures for bacteria were obtained from ice cream samples, the ice cream plant, and tanker trailers that had transported the ice cream base (premix) to the plant. We estimate that S. enteritidis gastroenteritis developed in 224,000 persons in the United States after they ate Schwan's ice cream. The attack rate for consumers was 6.6 percent. Ice cream associated with infection contained a higher percentage of premix that had been transported by tanker that had carried nonpasteurized eggs immediately before (P = 0.02). S. enteritidis was isolated from 8 of 226 ice cream products (3 percent), but not from environmental samples obtained from the ice cream plant (n = 157) or tanker trailers (n = 204). This nationwide outbreak of salmonellosis was most likely the result of contamination of pasteurized ice cream premix during transport in tanker trailers that had previously carried nonpasteurized liquid eggs containing S. enteritidis. To prevent further outbreaks, food products not destined for repasteurization should be transported in dedicated containers.
Effect of infectious bursal disease (IBD) vaccine on Salmonella Enteritidis infected chickens.
Arafat, Nagah; Eladl, Abdelfattah H; Mahgoub, Hebatallah; El-Shafei, Reham A
2017-06-22
Chickens infected with both infectious bursal disease virus (IBDV) and Salmonella had higher mortality. In this work, we investigated the effect of IBDV vaccine (modified live-virus bursal disease vaccine, Nobilis strain 228E®) on experimentally infected chickens with Salmonella Enteritidis (SE). Four experimental groups were included in this study, negative control group, 228E®group, 228E®+SE infected group, and SE infected group. Chickens were ocularly administrated 228E® at 12days of age and orally infected with S. Enteritidis at 13days of age. Sera, intestinal fluid, blood, cloacal swabs and tissue samples were collected at 1, 2 and 3weeks post vaccination (PV). The recorded mortalities were higher in the 228E®+SE infected group, compared to the SE infected group. The anti-S. Enteritidis serum antibody titer and the intestinal mucosal IgA level were higher in the SE infected group at 2 and 3weeks PV, compared to 228E®+SE infected group. S. Enteritidis fecal shedding and organ colonization were significantly higher in the 228E®+SE infected group than the SE infected group at 2 and 3weeks PV. The 228E®+SE group had significantly lower bursa to body weight ratios at 2 and 3weeks PV, as well as had higher bursal lesion scores than the SE infected group. IBDV vaccine depressed the specific-SE systemic and mucosal antibody responses, but did not affect the specific-SE cellular immune responses. Chickens administrated IBDV vaccine, followed by S. Enteritidis infection, could cause a significant effect on the bursa of Fabricius, resulting in failure of systemic and mucosal antibody responses to the S. Enteritidis and reduce the elimination and the clearance of S. Enteritidis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tohidi, R; Idris, I B; Malar Panandam, J; Hair Bejo, M
2013-04-01
Salmonella enterica serovar Enteritidis infection is a common concern in poultry production for its negative effects on growth as well as food safety for humans. Identification of molecular markers that are linked to resistance to Salmonella Enteritidis may lead to appropriate solutions to control Salmonella infection in chickens. This study investigated the association of candidate genes with resistance to Salmonella Enteritidis in young chickens. Two native breeds of Malaysian chickens, namely, Village Chickens and Red Junglefowl, were evaluated for bacterial colonization after Salmonella Enteritidis inoculation. Seven candidate genes were selected on the basis of their physiological role in immune response, as determined by prior studies in other genetic lines: natural resistance-associated protein 1 (NRAMP1), transforming growth factor β3 (TGFβ3), transforming growth factor β4 (TGFβ4), inhibitor of apoptosis protein 1 (IAP1), caspase 1 (CASP1), lipopolysaccharide-induced tumor necrosis factor (TNF) α factor (LITAF), and TNF-related apoptosis-inducing ligand (TRAIL). Polymerase chain reaction-RFLP was used to identify polymorphisms in the candidate genes; all genes exhibited polymorphisms in at least one breed. The NRAMP1-SacI polymorphism correlated with the differences in Salmonella Enteritidis load in the cecum (P = 0.002) and spleen (P = 0.01) of Village Chickens. Polymorphisms in the restriction sites of TGFβ3-BsrI, TGFβ4-MboII, and TRAIL-StyI were associated with Salmonella Enteritidis burden in the cecum, spleen, and liver of Village Chickens and Red Junglefowl (P < 0.05). These results indicate that the NRAMP1, TGFβ3, TGFβ4, and TRAIL genes are potential candidates for use in selection programs for increasing genetic resistance against Salmonella Enteritidis in native Malaysian chickens.
He, Haiqi; Genovese, Kenneth J.; Swaggerty, Christina L.; Nisbet, David J.; Kogut, Michael H.
2013-01-01
Salmonella enterica serovar Enteritidis is one of the most prevalent Salmonella serovars in poultry and is often associated with human salmonellosis. S. Enteritidis is known to suppress nitric oxide (NO) production in infected chicken macrophage HD11 cells, while dead S. Enteritidis stimulates a high level of NO production, suggesting a bacterial inhibitory effect on NO production. Based on these observations, the present study was conducted to evaluate whether NO production in S. Enteritidis-infected HD11 cells can be used as a biomarker to identify molecules that kill intracellular Salmonella. Since Salmonella are known to manipulate the host cell kinase network to facilitate intracellular survival, we screened a group of pharmaceutical inhibitors of various kinases to test our hypothesis. A protein kinase A inhibitor, H-89, was found to reverse the suppression of NO production in S. Enteritidis-infected HD11 cells. Production of NO in S. Enteritidis-infected HD11 cells increased significantly following treatment with H-89 at or above 20 µM. Inversely, the number of viable intracellular Salmonella decreased significantly in cells treated with H-89 at or above 30 µM. Furthermore, the growth rate of S. Enteritidis in culture was significantly inhibited by H-89 at concentrations from 20 to 100 µM. Our results demonstrate that NO-based screening using S. Enteritidis-infected HD11 cells is a viable tool to identify chemicals with anti-intracellular Salmonella activity. Using this method, we have shown H-89 has bacteriostatic activity against Salmonella, independent of host cell protein kinase A or Akt1 activity. PMID:23554945
Kilroy, Sofie; Raspoet, Ruth; Haesebrouck, Freddy; Ducatelle, Richard; Van Immerseel, Filip
2016-08-12
Vaccination of laying hens has been successfully used to reduce egg contamination by Salmonella Enteritidis, decreasing human salmonellosis cases worldwide. Currently used vaccines for layers are either inactivated vaccines or live attenuated strains produced by mutagenesis. Targeted gene deletion mutants hold promise for future vaccines, because specific bacterial functions can be removed that may improve safety and allow differentiation from field strains. In this study, the efficacy of Salmonella Enteritidis ΔtolC and ΔacrABacrEFmdtABC strains in laying hens as live vaccines was evaluated. The mutants are deficient in either the membrane channel TolC (ΔtolC) or the multi-drug efflux systems acrAB, acrEF and mdtABC (ΔacrABacrEFmdtABC). These strains have a decreased ability for gut and tissue colonization and are unable to survive in egg white, the latter preventing transmission of the vaccine strains to humans. Two groups of 30 laying hens were orally inoculated at day 1, 6 weeks and 16 weeks of age with 10(8) cfu of either vaccine strain, while a third group was left unvaccinated. At 24 weeks of age, the birds were intravenously challenged with 5 × 10(7) cfu Salmonella Enteritidis PT4 S1400/94. The vaccine strains were not shed or detected in the gut, internal organs or eggs, 2 weeks after the third vaccination. The strains significantly protected against gut and internal organ colonization, and completely prevented egg contamination by Salmonella Enteritidis under the conditions of this study. This indicates that Salmonella Enteritidis ΔtolC and ΔacrABacrEFmdtABC strains might be valuable strains for vaccination of layers against Salmonella Enteritidis.
Jaiswal, Sangeeta; Sahoo, Prakash Kumar; Ryan, Daniel; Das, Jugal Kishore; Chakraborty, Eesha; Mohakud, Nirmal Kumar; Suar, Mrutyunjay
2016-08-02
Salmonella enterica serovars Enteritidis (S. Enteritidis) is one of the most common causes of food borne illness. Bacterial growth environment plays an important role in regulating gene expression thereby affecting the virulence profile of the bacteria. Different foods present diverse growth conditions which may affect the pathogenic potential of the bacteria. In the present study, the effect of food environments on the pathogenic potential of S. Enteritidis has been evaluated. S. Enteritidis was grown in different foods e.g. egg white, peanut butter and milk, and virulent phenotypes were compared to those grown in Luria Bertani broth. In-vivo experiments in C57BL/6 mice revealed S. Enteritidis grown in egg white did not induce significant (p<0.001) production of proinflammatory cytokines in mice and were unable to cause colitis despite efficient colonization in cecum, mesenteric lymph node, spleen and liver. Further studies revealed that bacteria grown in LB activated MAP Kinase and NFκB pathways efficiently, while those grown in egg white poorly activated the above pathways which can account for the decreased production of proinflammatory cytokines. qRT PCR analysis revealed SPI-1 effectors were downregulated in bacteria grown in egg white. Interestingly, bacteria grown in egg white showed reversal of phenotype upon change in growth media to LB. Additionally, bacteria grown in milk and peanut butter showed different degrees of virulence in mice as compared to those grown in LB media. Thus, the present study demonstrates that, S. Enteritidis grown in egg white colonizes systemic sites without causing colitis in a mouse model, while bacteria grown in milk and peanut butter show different pathogenicity profiles suggesting that food environments significantly affect the pathogenicity of S. Enteritidis. Copyright © 2016 Elsevier B.V. All rights reserved.
He, Haiqi; Genovese, Kenneth J; Swaggerty, Christina L; Nisbet, David J; Kogut, Michael H
2013-01-01
Salmonella enterica serovar Enteritidis is one of the most prevalent Salmonella serovars in poultry and is often associated with human salmonellosis. S. Enteritidis is known to suppress nitric oxide (NO) production in infected chicken macrophage HD11 cells, while dead S. Enteritidis stimulates a high level of NO production, suggesting a bacterial inhibitory effect on NO production. Based on these observations, the present study was conducted to evaluate whether NO production in S. Enteritidis-infected HD11 cells can be used as a biomarker to identify molecules that kill intracellular Salmonella. Since Salmonella are known to manipulate the host cell kinase network to facilitate intracellular survival, we screened a group of pharmaceutical inhibitors of various kinases to test our hypothesis. A protein kinase A inhibitor, H-89, was found to reverse the suppression of NO production in S. Enteritidis-infected HD11 cells. Production of NO in S. Enteritidis-infected HD11 cells increased significantly following treatment with H-89 at or above 20 µM. Inversely, the number of viable intracellular Salmonella decreased significantly in cells treated with H-89 at or above 30 µM. Furthermore, the growth rate of S. Enteritidis in culture was significantly inhibited by H-89 at concentrations from 20 to 100 µM. Our results demonstrate that NO-based screening using S. Enteritidis-infected HD11 cells is a viable tool to identify chemicals with anti-intracellular Salmonella activity. Using this method, we have shown H-89 has bacteriostatic activity against Salmonella, independent of host cell protein kinase A or Akt1 activity.
Woolston, Joelle; Li, Manrong; Das, Chythanya; Sulakvelidze, Alexander
2017-01-01
ShigaShield™ is a phage preparation composed of five lytic bacteriophages that specifically target pathogenic Shigella species found in contaminated waters and foods. In this study, we examined the efficacy of various doses (9x105-9x107 PFU/g) of ShigaShield™ in removing experimentally added Shigella on deli meat, smoked salmon, pre-cooked chicken, lettuce, melon and yogurt. The highest dose (2x107 or 9x107 PFU/g) of ShigaShield™ applied to each food type resulted in at least 1 log (90%) reduction of Shigella in all the food types. There was significant (P<0.01) reduction in the Shigella levels in all phage treated foods compared to controls, except for the lowest phage dose (9x105 PFU/g) on melon where reduction was only ca. 45% (0.25 log). The genomes of each component phage in the cocktail were fully sequenced and analyzed, and they were found not to contain any “undesirable genes” including those listed in the US Code for Federal Regulations (40 CFR Ch1). Our data suggest that ShigaShield™ (and similar phage preparations with potent lytic activity against Shigella spp.) may offer a safe and effective approach for reducing the levels of Shigella in various foods that may be contaminated with the bacterium. PMID:28362863
Wu, Qian; Wang, Xiaodong; Gu, Yong; Zhang, Xiao; Qin, Yao; Chen, Heng; Xu, Xinyu; Yang, Tao; Zhang, Mei
2016-07-01
Zinc transporter 8 (ZnT8) is a major autoantigen and a predictive marker in type 1 diabetes (T1D). To investigate ZnT8-specific antibodies, a phage display library from T1D was constructed and single-chain antibodies against ZnT8 were screened and identified. Human T1D single-chain variable fragment (scFv) phage display library consists of approximately 1×10(8) clones. After four rounds of bio-panning, seven unique clones were positive by phage ELISA. Among them, C27 and C22, which demonstrated the highest affinity to ZnT8, were expressed in Escherichia coli Top10F' and then purified by affinity chromatography. C27 and C22 specifically bound ZnT8 N/C fusion protein and ZnT8 C terminal dimer with one Arg325Trp mutation. The specificity to human islet cells of these scFvs were further confirmed by immunohistochemistry. In conclusion, we have successfully constructed a T1D phage display antibody library and identified two ZnT8-specific scFv clones, C27 and C22. These ZnT8-specific scFvs are potential agents in immunodiagnostic and immunotherapy of T1D.
Feasey, Nicholas A.; Hadfield, James; Keddy, Karen H.; Dallman, Timothy J; Jacobs, Jan; Deng, Xiangyu; Wigley, Paul; Barquist, Lars; Langridge, Gemma C.; Feltwell, Theresa; Harris, Simon R.; Mather, Alison E.; Fookes, Maria; Aslett, Martin; Msefula, Chisomo; Kariuki, Samuel; Maclennan, Calman A.; Onsare, Robert S.; Weill, François-Xavier; Le Hello, Simon; Smith, Anthony M.; McClelland, Michael; Desai, Prerak; Parry, Christopher M.; Cheesbrough, John; French, Neil; Campos, Josefina; Chabalgoity, Jose A.; Betancor, Laura; Hopkins, Katie L.; Nair, Satheesh; Humphrey, Tom J.; Lunguya, Octavie; Cogan, Tristan A.; Tapia, Milagritos D.; Sow, Samba O.; Tennant, Sharon M.; Bornstein, Kristin; Levine, Myron M.; Lacharme-Lora, Lizeth; Everett, Dean B.; Kingsley, Robert A.; Parkhill, Julian; Heyderman, Robert S.; Dougan, Gordon
2016-01-01
An epidemiological paradox surrounds Salmonella enterica serovar Enteritidis. In high-income settings, it has been responsible for an epidemic of poultry-associated, self-limiting enterocolitis, whilst in sub-Saharan Africa it is a major cause of invasive nontyphoidal Salmonella disease, associated with high case-fatality. Whole-genome sequence analysis of 675 isolates of S. Enteritidis from 45 countries reveals the existence of a global epidemic clade and two novel clades of S. Enteritidis that are each geographically restricted to distinct regions of Africa. The African isolates display genomic degradation, a novel prophage repertoire and have an expanded, multidrug resistance plasmid. S. Enteritidis is a further example of a Salmonella serotype that displays niche plasticity, with distinct clades that enable it to become a prominent cause of gastroenteritis in association with the industrial production of eggs, and of multidrug resistant, bloodstream invasive infection in Africa. PMID:27548315
Feasey, Nicholas A; Hadfield, James; Keddy, Karen H; Dallman, Timothy J; Jacobs, Jan; Deng, Xiangyu; Wigley, Paul; Barquist, Lars; Langridge, Gemma C; Feltwell, Theresa; Harris, Simon R; Mather, Alison E; Fookes, Maria; Aslett, Martin; Msefula, Chisomo; Kariuki, Samuel; Maclennan, Calman A; Onsare, Robert S; Weill, François-Xavier; Le Hello, Simon; Smith, Anthony M; McClelland, Michael; Desai, Prerak; Parry, Christopher M; Cheesbrough, John; French, Neil; Campos, Josefina; Chabalgoity, Jose A; Betancor, Laura; Hopkins, Katie L; Nair, Satheesh; Humphrey, Tom J; Lunguya, Octavie; Cogan, Tristan A; Tapia, Milagritos D; Sow, Samba O; Tennant, Sharon M; Bornstein, Kristin; Levine, Myron M; Lacharme-Lora, Lizeth; Everett, Dean B; Kingsley, Robert A; Parkhill, Julian; Heyderman, Robert S; Dougan, Gordon; Gordon, Melita A; Thomson, Nicholas R
2016-10-01
An epidemiological paradox surrounds Salmonella enterica serovar Enteritidis. In high-income settings, it has been responsible for an epidemic of poultry-associated, self-limiting enterocolitis, whereas in sub-Saharan Africa it is a major cause of invasive nontyphoidal Salmonella disease, associated with high case fatality. By whole-genome sequence analysis of 675 isolates of S. Enteritidis from 45 countries, we show the existence of a global epidemic clade and two new clades of S. Enteritidis that are geographically restricted to distinct regions of Africa. The African isolates display genomic degradation, a novel prophage repertoire, and an expanded multidrug resistance plasmid. S. Enteritidis is a further example of a Salmonella serotype that displays niche plasticity, with distinct clades that enable it to become a prominent cause of gastroenteritis in association with the industrial production of eggs and of multidrug-resistant, bloodstream-invasive infection in Africa.
New Deoxyribonucleic Acid Polymerase Induced by Bacillus subtilis Bacteriophage PBS2
Price, Alan R.; Cook, Sandra J.
1972-01-01
The deoxyribonucleic acid (DNA) of Bacillus subtilis phage PBS2 has been confirmed to contain uracil instead of thymine. PBS2 phage infection of wild-type cells or DNA polymerase-deficient cells results in an increase in the specific activity of DNA polymerase. This induction of DNA polymerase activity is prevented by actinomycin D and chloramphenicol. In contrast to the major B. subtilis DNA polymerase, which prefers deoxythymidine triphosphate (dTTP) to deoxyuridine triphosphate (dUTP), the DNA polymerase in crude extracts of PBS2-infected cells is equally active whether dTTP or dUTP is employed. This phage-induced polymerase may be responsible for the synthesis of uracil-containing DNA during PBS2 phage infection. PMID:4623224
Strotskaya, Alexandra; Savitskaya, Ekaterina; Metlitskaya, Anastasia; Morozova, Natalia; Datsenko, Kirill A.; Semenova, Ekaterina
2017-01-01
Abstract CRISPR–Cas systems provide prokaryotes with adaptive defense against bacteriophage infections. Given an enormous variety of strategies used by phages to overcome their hosts, one can expect that the efficiency of protective action of CRISPR–Cas systems against different viruses should vary. Here, we created a collection of Escherichia coli strains with type I-E CRISPR–Cas system targeting various positions in the genomes of bacteriophages λ, T5, T7, T4 and R1-37 and investigated the ability of these strains to resist the infection and acquire additional CRISPR spacers from the infecting phage. We find that the efficiency of CRISPR–Cas targeting by the host is determined by phage life style, the positions of the targeted protospacer within the genome, and the state of phage DNA. The results also suggest that during infection by lytic phages that are susceptible to CRISPR interference, CRISPR–Cas does not act as a true immunity system that saves the infected cell but rather enforces an abortive infection pathway leading to infected cell death with no phage progeny release. PMID:28130424
Phage Conversion for β-Lactam Antibiotic Resistance of Staphylococcus aureus from Foods.
Lee, Young-Duck; Park, Jong-Hyun
2016-02-01
Temperate phages have been suggested to carry virulence factors and other lysogenic conversion genes that play important roles in pathogenicity. In this study, phage TEM123 in wild-type Staphylococcus aureus from food sources was analyzed with respect to its morphology, genome sequence, and antibiotic resistance conversion ability. Phage TEM123 from a mitomycin C-induced lysate of S. aureus was isolated from foods. Morphological analysis under a transmission electron microscope revealed that it belonged to the family Siphoviridae. The genome of phage TEM123 consisted of a double-stranded DNA of 43,786 bp with a G+C content of 34.06%. A bioinformatics analysis of the phage genome identified 43 putative open reading frames (ORFs). ORF1 encoded a protein that was nearly identical to the metallo-β-lactamase enzymes that degrade β-lactam antibiotics. After transduction to S. aureus with phage TEM123, the metallo-β-lactamase gene was confirmed in the transductant by PCR and sequencing analyses. In a β-lactam antibiotic susceptibility test, the transductant was more highly resistant to β-lactam antibiotics than S. aureus S133. Phage TEM123 might play a role in the transfer of β-lactam antibiotic resistance determinants in S. aureus. Therefore, we suggest that the prophage of S. aureus with its exotoxin is a risk factor for food safety in the food chain through lateral gene transfer.
Hargreaves, Katherine R.; Flores, Cesar O.; Lawley, Trevor D.
2014-01-01
ABSTRACT Clostridium difficile is an important human-pathogenic bacterium causing antibiotic-associated nosocomial infections worldwide. Mobile genetic elements and bacteriophages have helped shape C. difficile genome evolution. In many bacteria, phage infection may be controlled by a form of bacterial immunity called the clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas) system. This uses acquired short nucleotide sequences (spacers) to target homologous sequences (protospacers) in phage genomes. C. difficile carries multiple CRISPR arrays, and in this paper we examine the relationships between the host- and phage-carried elements of the system. We detected multiple matches between spacers and regions in 31 C. difficile phage and prophage genomes. A subset of the spacers was located in prophage-carried CRISPR arrays. The CRISPR spacer profiles generated suggest that related phages would have similar host ranges. Furthermore, we show that C. difficile strains of the same ribotype could either have similar or divergent CRISPR contents. Both synonymous and nonsynonymous mutations in the protospacer sequences were identified, as well as differences in the protospacer adjacent motif (PAM), which could explain how phages escape this system. This paper illustrates how the distribution and diversity of CRISPR spacers in C. difficile, and its prophages, could modulate phage predation for this pathogen and impact upon its evolution and pathogenicity. PMID:25161187
DeltaPhage--a novel helper phage for high-valence pIX phagemid display.
Nilssen, Nicolay R; Frigstad, Terje; Pollmann, Sylvie; Roos, Norbert; Bogen, Bjarne; Sandlie, Inger; Løset, Geir Å
2012-09-01
Phage display has been instrumental in discovery of novel binding peptides and folded domains for the past two decades. We recently reported a novel pIX phagemid display system that is characterized by a strong preference for phagemid packaging combined with low display levels, two key features that support highly efficient affinity selection. However, high diversity in selected repertoires are intimately coupled to high display levels during initial selection rounds. To incorporate this additional feature into the pIX display system, we have developed a novel helper phage termed DeltaPhage that allows for high-valence display on pIX. This was obtained by inserting two amber mutations close to the pIX start codon, but after the pVII translational stop, conditionally inactivating the helper phage encoded pIX. Until now, the general notion has been that display on pIX is dependent on wild-type complementation, making high-valence display unachievable. However, we found that DeltaPhage does facilitate high-valence pIX display when used with a non-suppressor host. Here, we report a side-by-side comparison with pIII display, and we find that this novel helper phage complements existing pIX phagemid display systems to allow both low and high-valence display, making pIX display a complete and efficient alternative to existing pIII phagemid display systems.
Štveráková, Dana; Šedo, Ondrej; Benešík, Martin; Zdráhal, Zbyněk; Doškař, Jiří; Pantůček, Roman
2018-04-04
Staphylococcus aureus is a major causative agent of infections associated with hospital environments, where antibiotic-resistant strains have emerged as a significant threat. Phage therapy could offer a safe and effective alternative to antibiotics. Phage preparations should comply with quality and safety requirements; therefore, it is important to develop efficient production control technologies. This study was conducted to develop and evaluate a rapid and reliable method for identifying staphylococcal bacteriophages, based on detecting their specific proteins using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling that is among the suggested methods for meeting the regulations of pharmaceutical authorities. Five different phage purification techniques were tested in combination with two MALDI-TOF MS matrices. Phages, either purified by CsCl density gradient centrifugation or as resuspended phage pellets, yielded mass spectra with the highest information value if ferulic acid was used as the MALDI matrix. Phage tail and capsid proteins yielded the strongest signals whereas the culture conditions had no effect on mass spectral quality. Thirty-seven phages from Myoviridae , Siphoviridae or Podoviridae families were analysed, including 23 siphophages belonging to the International Typing Set for human strains of S. aureus , as well as phages in preparations produced by Microgen, Bohemia Pharmaceuticals and MB Pharma. The data obtained demonstrate that MALDI-TOF MS can be used to effectively distinguish between Staphylococcus -specific bacteriophages.
Štveráková, Dana; Šedo, Ondrej; Benešík, Martin; Zdráhal, Zbyněk; Doškař, Jiří
2018-01-01
Staphylococcus aureus is a major causative agent of infections associated with hospital environments, where antibiotic-resistant strains have emerged as a significant threat. Phage therapy could offer a safe and effective alternative to antibiotics. Phage preparations should comply with quality and safety requirements; therefore, it is important to develop efficient production control technologies. This study was conducted to develop and evaluate a rapid and reliable method for identifying staphylococcal bacteriophages, based on detecting their specific proteins using matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) profiling that is among the suggested methods for meeting the regulations of pharmaceutical authorities. Five different phage purification techniques were tested in combination with two MALDI-TOF MS matrices. Phages, either purified by CsCl density gradient centrifugation or as resuspended phage pellets, yielded mass spectra with the highest information value if ferulic acid was used as the MALDI matrix. Phage tail and capsid proteins yielded the strongest signals whereas the culture conditions had no effect on mass spectral quality. Thirty-seven phages from Myoviridae, Siphoviridae or Podoviridae families were analysed, including 23 siphophages belonging to the International Typing Set for human strains of S. aureus, as well as phages in preparations produced by Microgen, Bohemia Pharmaceuticals and MB Pharma. The data obtained demonstrate that MALDI-TOF MS can be used to effectively distinguish between Staphylococcus-specific bacteriophages. PMID:29617332
Direct cloning of the trxB gene that encodes thioredoxin reductase.
Russel, M; Model, P
1985-01-01
A strain was constructed which contains mutations in the genes encoding thioredoxin (trxA) and thioredoxin reductase (trxB) such that filamentous phage f1 cannot grow. The complementation of either mutation with its wild-type allele permits phage growth. We used this strain to select f1 phage which contain a cloned trxB gene. The location of the gene on the cloned fragment was determined, and its protein product was identified. Plasmid subclones that contain this gene overproduce thioredoxin reductase. Images PMID:2989245
Phylogenetic Diversity of T4-Type Phages in Sediments from the Subtropical Pearl River Estuary
He, Maoqiu; Cai, Lanlan; Zhang, Chuanlun; Jiao, Nianzhi; Zhang, Rui
2017-01-01
Viruses are an abundant and active component of marine sediments and play a significant role in microbial ecology and biogeochemical cycling at local and global scales. To obtain a better understanding of the ecological characteristics of the viriobenthos, the abundance and morphology of viruses and the diversity and community structure of T4-type phages were systematically investigated in the surface sediments of the subtropical Pearl River Estuary (PRE). Viral abundances ranged from 4.49 × 108 to 11.7 × 108 viruses/g and prokaryotic abundances ranged from 2.63 × 108 to 9.55 × 108 cells/g, and both decreased from freshwater to saltwater. Diverse viral morphotypes, including tailed, spherical, filamentous, and rod-shaped viruses, were observed using transmission electron microscopy. Analysis of the major capsid gene (g23) indicated that the sediment T4-type phages were highly diverse and, similar to the trend in viral abundances, their diversity decreased as the salinity increased. Phylogenetic analysis suggested that most of the g23 operational taxonomic units were affiliated with marine, paddy soil, and lake groups. The T4-type phage communities in freshwater and saltwater sediments showed obvious differences, which were related to changes in the Pearl River discharge. The results of this study demonstrated both allochthonous and autochthonous sources of the viral community in the PRE sediments and the movement of certain T4-type viral groups between the freshwater and saline water biomes. PMID:28572798
USDA-ARS?s Scientific Manuscript database
Gene sefD is part of operon sefABCD, and it is required for production of the SEF14 fimbria by Salmonella Enteritidis. We compared strains that varied in SefD content for their ability to reduce recovery of Salmonella Enteritidis from the spleens of hens infected by parenteral challenge. The two bac...
Thung, T Y; Mahyudin, N A; Basri, D F; Wan Mohamed Radzi, C W J; Nakaguchi, Y; Nishibuchi, M; Radu, S
2016-08-01
Salmonellosis is one of the major food-borne diseases in many countries. This study was carried out to determine the occurrence of Salmonella spp., Salmonella Enteritidis, and Salmonella Typhimurium in raw chicken meat from wet markets and hypermarkets in Selangor, as well as to determine the antibiotic susceptibility profile of S. Enteritidis and S. Typhimurium. The most probable number (MPN) in combination with multiplex polymerase chain reaction (mPCR) method was used to quantify the Salmonella spp., S. Enteritidis, and S. Typhimurium in the samples. The occurrence of Salmonella spp., S. Enteritidis, and S. Typhimurium in 120 chicken meat samples were 20.80%, 6.70%, and 2.50%, respectively with estimated quantity varying from <3 to 15 MPN/g. The antibiogram testing revealed differential multi-drug resistance among S. Enteritidis and S. Typhimurium isolates. All the isolates were resistance to erythromycin, penicillin, and vancomycin whereas sensitivity was recorded for Amoxicillin/Clavulanic acid, Gentamicin, Tetracycline, and Trimethoprim. Our findings demonstrated that the retail chicken meat could be a source of multiple antimicrobial-resistance Salmonella and may constitute a public health concern in Malaysia. © 2016 Poultry Science Association Inc.
Sayre, M H; Geiduschek, E P
1988-09-01
The lytic Bacillus subtilis bacteriophage SPO1 encodes an abundant, 99-amino-acid type II DNA-binding protein, transcription factor 1 (TF1). TF1 is special in this family of procaryotic chromatin-forming proteins in its preference for hydroxymethyluracil-containing DNA, such as SPO1 DNA, and in binding with high affinity to specific sites in the SPO1 chromosome. We constructed recessive null alleles of the TF1 gene and introduced them into SPO1 chromosomes. Segregation analysis with partially diploid phage heterozygous for TF1 showed that phage bearing only these null alleles was inviable. Deletion of the nine C-proximal amino acids of TF1 prohibited phage multiplication in vivo and abolished its site-specific DNA-binding activity in vitro.
Fatehi Hassanabad, Mostafa; Chang, Tom; Pirani, Nawaz; Bona, Diane; Edwards, Aled M.
2013-01-01
A variety of bacterial pathogenicity determinants, including the type VI secretion system and the virulence cassettes from Photorhabdus and Serratia, share an evolutionary origin with contractile-tailed myophages. The well-characterized Escherichia coli phage P2 provides an excellent system for studies related to these systems, as its protein composition appears to represent the “minimal” myophage tail. In this study, we used nuclear magnetic resonance (NMR) spectroscopy to determine the solution structure of gpX, a 68-residue tail baseplate protein. Although the sequence and structure of gpX are similar to those of LysM domains, which are a large family associated with peptidoglycan binding, we did not detect a peptidoglycan-binding activity for gpX. However, bioinformatic analysis revealed that half of all myophages, including all that possess phage T4-like baseplates, encode a tail protein with a LysM-like domain, emphasizing a widespread role for this domain in baseplate function. While phage P2 gpX comprises only a single LysM domain, many myophages display LysM domain fusions with other tail proteins, such as the DNA circulation protein found in Mu-like phages and gp53 of T4-like phages. Electron microscopy of P2 phage particles with an incorporated gpX-maltose binding protein fusion revealed that gpX is located at the top of the baseplate, near the junction of the baseplate and tail tube. gpW, the orthologue of phage T4 gp25, was also found to localize to this region. A general colocalization of LysM-like domains and gpW homologues in diverse phages is supported by our bioinformatic analysis. PMID:24097944
Bonanno, Ludivine; Petit, Marie-Agnès; Loukiadis, Estelle; Michel, Valérie
2016-01-01
Shiga toxin (Stx)-producing Escherichia coli (STEC) bacteria are foodborne pathogens responsible for diarrhea and hemolytic-uremic syndrome (HUS). Shiga toxin, the main STEC virulence factor, is encoded by the stx gene located in the genome of a bacteriophage inserted into the bacterial chromosome. The O26:H11 serotype is considered to be the second-most-significant HUS-causing serotype worldwide after O157:H7. STEC O26:H11 bacteria and their stx-negative counterparts have been detected in dairy products. They may convert from the one form to the other by loss or acquisition of Stx phages, potentially confounding food microbiological diagnostic methods based on stx gene detection. Here we investigated the diversity and mobility of Stx phages from human and dairy STEC O26:H11 strains. Evaluation of their rate of in vitro induction, occurring either spontaneously or in the presence of mitomycin C, showed that the Stx2 phages were more inducible overall than Stx1 phages. However, no correlation was found between the Stx phage levels produced and the origin of the strains tested or the phage insertion sites. Morphological analysis by electron microscopy showed that Stx phages from STEC O26:H11 displayed various shapes that were unrelated to Stx1 or Stx2 types. Finally, the levels of sensitivity of stx-negative E. coli O26:H11 to six Stx phages differed among the 17 strains tested and our attempts to convert them into STEC were unsuccessful, indicating that their lysogenization was a rare event. PMID:26826235
He, Shoukui; Cui, Yan; Qin, Xiaojie; Zhang, Fen; Shi, Chunlei; Paoli, George C; Shi, Xianming
2018-06-01
Cross-protection to environmental stresses by ethanol adaptation in Salmonella poses a great threat to food safety because it can undermine food processing interventions. The ability of Salmonella enterica serovar Enteritidis (S. Enteritidis) to develop acid resistance following ethanol adaptation (5% ethanol for 1 h) was evaluated in this study. Ethanol-adapted S. Enteritidis mounted cross-tolerance to malic acid (a two-fold increase in minimum bactericidal concentration), but not to acetic, ascorbic, lactic, citric and hydrochloric acids. The population of S. Enteritidis in orange juice (pH 3.77) over a 48-h period was not significantly (p > 0.05) influenced by ethanol adaptation. However, an increased survival by 0.09-1.02 log CFU/ml was noted with ethanol-adapted cells of S. Enteritidis compared to non-adapted cells in apple juice (pH 3.57) stored at 25 °C (p < 0.05), but not at 4 °C. RT-qPCR revealed upregulation of two acid tolerance-related genes, rpoS (encoding σ S ) and SEN1564A (encoding an acid shock protein), following ethanol adaptation. The relative expression level of the acid resistance gene hdeB did not change. The resistance phenotypes and transcriptional profiles of S. Enteritidis suggest some involvement of rpoS and SEN1564A in the ethanol-induced acid tolerance mechanism. Copyright © 2017. Published by Elsevier Ltd.
Carter, Alun; Adams, Martin; La Ragione, Roberto M; Woodward, Martin J
2017-02-01
Salmonella Enteritidis remains a significant issue within the poultry industry and one potential solution is to use probiotic bacteria to prevent Salmonella colonisation through competitive exclusion (CE). We demonstrate that combined administration of Lactobacillus salivarius 59 and Enterococcus faecium PXN33 were effective competitive excluders of Salmonella Enteritidis S1400 in poultry. Two models were developed to evaluate the efficacy of probiotic where birds received Salmonella Enteritidis S1400 by a) oral gavage and b) sentinel bird to bird transmission. A statistically significant (p<0.001) 2 log reduction of Salmonella Enteritidis S1400 colonisation was observed in the ileum, caecum and colon at day 43 using combined administration of the two probiotic bacteria. However, no Salmonella Enteritidis S1400 colonisation reduction was observed when either probiotic was administered individually. In the sentinel bird model the combined probiotic administered at days 12 and 20 was more effective than one-off or double administrations at age 1 and 12days. In vitro cell free culture supernatant studies suggest the mechanism of Salmonella Enteritidis S1400 inhibition was due to a reduction in pH by the probiotic bacteria. Our current study provides further evidence that probiotics can significantly reduce pathogenic bacterial colonisation in poultry and that mixed preparation of probiotics provide superior performance when compared to individual bacterial preparations. Copyright © 2016 Elsevier B.V. All rights reserved.
Engineering bacteriophage for a pragmatic low-resource setting bacterial diagnostic platform.
Talbert, Joey N; Alcaine, Samuel D; Nugen, Sam R
2016-04-01
Bacteriophages represent multifaceted building blocks that can be incorporated as substitutes for, or in unison with other detection methods, to create powerful new diagnostics for the detection of bacteria. The ease of phage manipulation, production, and detection speed clearly highlights that there remains unrealized opportunities to leverage these phage-based components in diagnostics amenable to resource-limited settings. The passage of regulations like the Food Safety Modernization act, and the ever increasing extent of global trade and travel, will create further demand for these types of diagnostics. While phage-based diagnostics have begun to entering the market place, further research is needed to ensure the potential benefits of phage-based technologies for public health are fully realized. We are just beginning to explore the possibilities that phage-based detection can offer us in the future. The combination of engineered phages as well as engineered enzymes could result in ultrasensitive detection systems for low-resource settings. Because the reporter enzyme is synthesized in vivo, we need to consider the options outside of normal enzyme reporters. In this case, common enzyme issues such as purification and long-term stability are less important. Phage-based diagnostics were conceptualized from out-of-the box thinking and the evolution of these systems should be as well.
Yu, Zi-Chao; Chen, Xiu-Lan; Shen, Qing-Tao; Zhao, Dian-Li; Tang, Bai-Lu; Su, Hai-Nan; Wu, Zhao-Yu; Qin, Qi-Long; Xie, Bin-Bin; Zhang, Xi-Ying; Yu, Yong; Zhou, Bai-Cheng; Chen, Bo; Zhang, Yu-Zhong
2015-01-01
Sea ice is one of the most frigid environments for marine microbes. In contrast to other ocean ecosystems, microbes in permanent sea ice are space confined and subject to many extreme conditions, which change on a seasonal basis. How these microbial communities are regulated to survive the extreme sea ice environment is largely unknown. Here, we show that filamentous phages regulate the host bacterial community to improve survival of the host in permanent Arctic sea ice. We isolated a filamentous phage, f327, from an Arctic sea ice Pseudoalteromonas strain, and we demonstrated that this type of phage is widely distributed in Arctic sea ice. Growth experiments and transcriptome analysis indicated that this phage decreases the host growth rate, cell density and tolerance to NaCl and H2O2, but enhances its motility and chemotaxis. Our results suggest that the presence of the filamentous phage may be beneficial for survival of the host community in sea ice in winter, which is characterized by polar night, nutrient deficiency and high salinity, and that the filamentous phage may help avoid over blooming of the host in sea ice in summer, which is characterized by polar day, rich nutrient availability, intense radiation and high concentration of H2O2. Thus, while they cannot kill the host cells by lysing them, filamentous phages confer properties advantageous to host survival in the Arctic sea ice environment. Our study provides a foremost insight into the ecological role of filamentous phages in the Arctic sea ice ecosystem. PMID:25303713
Kaplan, M H; Chmel, H; Hsieh, H C; Stephens, A; Brinsko, V
1986-01-01
Clustered epidemics of pustulosis due to Staphylococcus aureus occurred in two geographically distant newborn nurseries. In nurseries A and B an attack rate of pustulosis of 0.8 and 2.0 cases per 100 live births occurred, respectively. Experimental phage type 1046/1116 belonging to phage group II dominated clustered epidemics in nursery A, while group II phage type 3A/3C/55/71 and 3A/3C/55 occurred in nursery B. Other group II strains also occasionally produced clustered epidemics. These epidemic strains were found to be making heat-stable dermal exfoliatin toxin A (ETA) which had a pI of 6.8 and a molecular weight of 32,000 and 33,000. ETA-bearing strains did not make bacteriocin. Children infected with ETA-producing strains developed extensive bullous pustulosis. Surveillance cultures of personnel revealed an ETA-bearing strain in only one person. This strain was not the same phage type as the epidemic cluster. In contrast, ETA-bearing epidemic strains were found in the inanimate environment of both nurseries. ETA protein acts as an important virulence factor in the production of neonatal pustulosis infection and appears to be linked with the ability of S. aureus organisms to stick to the inanimate environment. Images PMID:3700612
McLaughlin, M.R.; Rose, J.B.
2006-01-01
Traditional fecal coliform bacterial indicators have been found to be severely limited in determining the significance and sources of fecal contamination in ambient waters of tropical and subtropical regions. The bacteriophages that infect Bacteroides fragilis have been suggested as better fecal indicators and at least one type may be human specific. In this study, the phages that infect B. fragilis host RYC2056 (RYC), including phage B56-3, and host ATCC 51477-HSP40 (HSP), including the human specific phage B40-8, were evaluated in the drainage basins of Tampa Bay, 7 samples (n = 62), or 11%, tested positive for the presence of phages infecting the host HSP, whereas 28 samples, or 45%, tested positive using the host RYC. A survival study was also done to compare the persistence of phages B56-3 and B40-8 to MS2 coliphage in seawater at various temperatures. The decay rates for MS2 were 0.239 log 10 d-1 at 10??C, but increased to 0.896 at 20??C and 2.62 log10 d-1 at 30??C. The two B. fragilis phages persisted much longer in the seawater compared to the coliphage and showed little variation between the temperatures. All sewage influents sampled from area wastewater treatment plants contained phages that infected the two B. fragilis hosts at levels from 1.2 ?? 104 to 1.11 ?? 10 5 pfu 100 ml-1 for host RYC and 67 to 350 pfu 100 ml -1 for host HSP. Of the 7 chlorinated effluent samples tested, 3 were positive for the presence of the phage using the host RYC and the phage enrichment method, with levels estimated to be <10 pfu 100 ml-1. No phages were detected using the host HSP in the treated sewage effluent. Coliphages were found in 3 of the 7 effluent samples at a range of 30 to 1.2 ?? 103 pfu 100 ml-1. ?? 2006 Estuarine Research Federation.
Stevens, Audrey
1972-01-01
Four new small polypeptides are associated with DNA-dependent RNA polymerase from E. coli after infection with T4 phage. The new polypeptides are easily detected in RNA polymerase from E. coli cells labeled with amino acids after phage infection. Their molecular weights range from 10,000 to 22,000, as detected by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. All four polypeptides are found after infection with either wild-type T4 phage or T4 early amber mutants in genes 44, 42, 47, and 46. None of the polypeptides is labeled significantly before 5 min after infection at 30°. When two maturation-defective amber mutants in gene 55 of T4 phage are used for infection, a polypeptide with a molecular weight of 22,000 is absent. When a maturation-defective amber mutant in gene 33 of T4 phage is used, another small protein is absent. PMID:4551978
Frameshifting in the p6 cDNA phage display system.
Govarts, Cindy; Somers, Klaartje; Stinissen, Piet; Somers, Veerle
2010-12-20
Phage display is a powerful technique that enables easy identification of targets for any type of ligand. Targets are displayed at the phage surface as a fusion protein to one of the phage coat proteins. By means of a repeated process of affinity selection on a ligand, specific enrichment of displayed targets will occur. In our studies using C-terminal display of cDNA fragments to phage coat protein p6, we noticed the occasional enrichment of targets that do not contain an open reading frame. This event has previously been described in other phage display studies using N-terminal display of targets to phage coat proteins and was due to uncommon translational events like frameshifting. The aim of this study was to examine if C-terminal display of targets to p6 is also subjected to frameshifting. To this end, an enriched target not containing an open reading frame was selected and an E-tag was coupled at the C-terminus in order to measure target display at the surface of the phage. The tagged construct was subsequently expressed in 3 different reading frames and display of both target and E-tag measured to detect the occurrence of frameshifting. As a result, we were able to demonstrate display of the target both in the 0 and in the +1 reading frame indicating that frameshifting can also take place when C-terminal fusion to minor coat protein p6 is applied.
Divergence and Mosaicism among Virulent Soil Phages of the Burkholderia cepacia Complex‡
Summer, Elizabeth J.; Gonzalez, Carlos F.; Bomer, Morgan; Carlile, Thomas; Embry, Addie; Kucherka, Amalie M.; Lee, Jonte; Mebane, Leslie; Morrison, William C.; Mark, Louise; King, Maria D.; LiPuma, John J.; Vidaver, Anne K.; Young, Ry
2006-01-01
We have determined the genomic sequences of four virulent myophages, Bcep1, Bcep43, BcepB1A, and Bcep781, whose hosts are soil isolates of the Burkholderia cepacia complex. Despite temporal and spatial separations between initial isolations, three of the phages (Bcep1, Bcep43, and Bcep781, designated the Bcep781 group) exhibit 87% to 99% sequence identity to one another and most coding region differences are due to synonymous nucleotide substitutions, a hallmark of neutral genetic drift. Phage BcepB1A has a very different genome organization but is clearly a mosaic with respect to many of the genes of the Bcep781 group, as is a defective prophage element in Photorhabdus luminescens. Functions were assigned to 27 out of 71 predicted genes of Bcep1 despite extreme sequence divergence. Using a lambda repressor fusion technique, 10 Bcep781-encoded proteins were identified for their ability to support homotypic interactions. While head and tail morphogenesis genes have retained canonical gene order despite extreme sequence divergence, genes involved in DNA metabolism and host lysis are not organized as in other phages. This unusual genome arrangement may contribute to the ability of the Bcep781-like phages to maintain a unified genomic type. However, the Bcep781 group phages can also engage in lateral gene transfer events with otherwise unrelated phages, a process that contributes to the broader-scale genomic mosaicism prevalent among the tailed phages. PMID:16352842
A novel lineage of myoviruses infecting cyanobacteria is widespread in the oceans.
Sabehi, Gazalah; Shaulov, Lihi; Silver, David H; Yanai, Itai; Harel, Amnon; Lindell, Debbie
2012-02-07
Viruses infecting bacteria (phages) are thought to greatly impact microbial population dynamics as well as the genome diversity and evolution of their hosts. Here we report on the discovery of a novel lineage of tailed dsDNA phages belonging to the family Myoviridae and describe its first representative, S-TIM5, that infects the ubiquitous marine cyanobacterium, Synechococcus. The genome of this phage encodes an entirely unique set of structural proteins not found in any currently known phage, indicating that it uses lineage-specific genes for virion morphogenesis and represents a previously unknown lineage of myoviruses. Furthermore, among its distinctive collection of replication and DNA metabolism genes, it carries a mitochondrial-like DNA polymerase gene, providing strong evidence for the bacteriophage origin of the mitochondrial DNA polymerase. S-TIM5 also encodes an array of bacterial-like metabolism genes commonly found in phages infecting cyanobacteria including photosynthesis, carbon metabolism and phosphorus acquisition genes. This suggests a common gene pool and gene swapping of cyanophage-specific genes among different phage lineages despite distinct sets of structural and replication genes. All cytosines following purine nucleotides are methylated in the S-TIM5 genome, constituting a unique methylation pattern that likely protects the genome from nuclease degradation. This phage is abundant in the Red Sea and S-TIM5 gene homologs are widespread in the oceans. This unusual phage type is thus likely to be an important player in the oceans, impacting the population dynamics and evolution of their primary producing cyanobacterial hosts.
Lin, F Y; Morris, J G; Trump, D; Tilghman, D; Wood, P K; Jackman, N; Israel, E; Libonati, J P
1988-10-01
Salmonella enteritidis ser. enteritidis was isolated from patrons and employees of three restaurants in a restaurant chain in Maryland during August and September 1985. Isolates from all three restaurants had identical plasmid profiles; this profile was present in 13 of 40 randomly selected S. enteritidis isolates received by the Maryland state health department laboratory during a comparable time period. The outbreak in one restaurant resulted in at least 71 illnesses, with 17 persons known to have been hospitalized. Scrambled eggs served on a "breakfast bar" were implicated as the vehicle of transmission in this restaurant, with eggs a possible vehicle in another of the three restaurants. The data point out the risks associated with improper handling of eggs in food service establishments, provide further evidence for the observed association between S. enteritidis and eggs in the northeastern United States, and demonstrate the utility of plasmid analysis in investigation of outbreaks involving common Salmonella serotypes.
Raspoet, R; Appia-Ayme, C; Shearer, N; Martel, A; Pasmans, F; Haesebrouck, F; Ducatelle, R; Thompson, A; Van Immerseel, F
2014-12-01
Salmonella enterica serovar Enteritidis has developed the potential to contaminate table eggs internally, by colonization of the chicken reproductive tract and internalization in the forming egg. The serotype Enteritidis has developed mechanisms to colonize the chicken oviduct more successfully than other serotypes. Until now, the strategies exploited by Salmonella Enteritidis to do so have remained largely unknown. For that reason, a microarray-based transposon library screen was used to identify genes that are essential for the persistence of Salmonella Enteritidis inside primary chicken oviduct gland cells in vitro and inside the reproductive tract in vivo. A total of 81 genes with a potential role in persistence in both the oviduct cells and the oviduct tissue were identified. Major groups of importance include the Salmonella pathogenicity islands 1 and 2, genes involved in stress responses, cell wall, and lipopolysaccharide structure, and the region-of-difference genomic islands 9, 21, and 40. Copyright © 2014, American Society for Microbiology. All Rights Reserved.
The Caulobacter crescentus phage phiCbK: genomics of a canonical phage
2012-01-01
Background The bacterium Caulobacter crescentus is a popular model for the study of cell cycle regulation and senescence. The large prolate siphophage phiCbK has been an important tool in C. crescentus biology, and has been studied in its own right as a model for viral morphogenesis. Although a system of some interest, to date little genomic information is available on phiCbK or its relatives. Results Five novel phiCbK-like C. crescentus bacteriophages, CcrMagneto, CcrSwift, CcrKarma, CcrRogue and CcrColossus, were isolated from the environment. The genomes of phage phiCbK and these five environmental phage isolates were obtained by 454 pyrosequencing. The phiCbK-like phage genomes range in size from 205 kb encoding 318 proteins (phiCbK) to 280 kb encoding 448 proteins (CcrColossus), and were found to contain nonpermuted terminal redundancies of 10 to 17 kb. A novel method of terminal ligation was developed to map genomic termini, which confirmed termini predicted by coverage analysis. This suggests that sequence coverage discontinuities may be useable as predictors of genomic termini in phage genomes. Genomic modules encoding virion morphogenesis, lysis and DNA replication proteins were identified. The phiCbK-like phages were also found to encode a number of intriguing proteins; all contain a clearly T7-like DNA polymerase, and five of the six encode a possible homolog of the C. crescentus cell cycle regulator GcrA, which may allow the phage to alter the host cell’s replicative state. The structural proteome of phage phiCbK was determined, identifying the portal, major and minor capsid proteins, the tail tape measure and possible tail fiber proteins. All six phage genomes are clearly related; phiCbK, CcrMagneto, CcrSwift, CcrKarma and CcrRogue form a group related at the DNA level, while CcrColossus is more diverged but retains significant similarity at the protein level. Conclusions Due to their lack of any apparent relationship to other described phages, this group is proposed as the founding cohort of a new phage type, the phiCbK-like phages. This work will serve as a foundation for future studies on morphogenesis, infection and phage-host interactions in C. crescentus. PMID:23050599
Kantama, L; Jayanetra, P
1996-03-01
An outbreak of Salmonella enteritidis in Thailand was reported in 1990. The majority of isolates were found in chicken and human throughout the country. The continuation of a high rate of spreading which is presently continuing prompted us to investigate possible clonal involvement in the outbreak. One hundred and twenty five isolates of S. enteritidis which were isolated between 1990-1993 were clonally identified by the technique of Random Amplified Polymorphic DNA (RAPD) analysis. Eight profiles were found indicating the presence of 8 clones, designated no. 1-8. The predominant clone was profile no. 4 which was encountered in 93.6% of tested isolates while the rest of the profile comprised only 0.8-1.6%. The predominant clone was distributed mainly in isolates from chickens and humans which is suggestive that the profile no. 4 is the major clone involved in this outbreak and that chickens were the source of S. enteritidis infection. The information from the Microbiology Laboratory at Ramathibodi Hospital revealed that nearly 40% of S. enteritidis were isolated from blood specimens. This may reflect the invasiveness of S. enteritidis in Thailand. We concluded that the outbreak involved the single clone, RAPD profile no. 4 which may disperse dominantly during the epidemic.
Thomas, Ekelijn; Bouma, Annemarie; Klinkenberg, Don
2011-02-23
Human cases of bacterial gastro-enteritis are often caused by the consumption of eggs contaminated with Salmonella species, mainly Salmonella enterica serovar Enteriditis (Salmonella Enteritidis). To reduce human exposure, in several countries worldwide surveillance programmes are implemented to detect colonized layer flocks. The sampling schemes are based on the within-flock prevalence, and, as this changes over time, knowledge of the within-flock dynamics of Salmonella Enteritidis is required. Transmission of Salmonella Enteritidis has been quantified in pairs of layers, but the question is whether the dynamics in pairs is comparable to transmission in large groups, which are more representative for commercial layer flocks. The aim of this study was to compare results of transmission experiments between pairs and groups of laying hens. Experimental groups of either 2 or 200 hens were housed at similar densities, and 1 or 4 hens were inoculated with Salmonella Enteritidis, respectively. Excretion was monitored by regularly testing of fecal samples for the presence of Salmonella Enteritidis. Using mathematical modeling, the group experiments were simulated with transmission parameter estimates from the pairwise experiments. Transmission of the bacteria did not differ significantly between pairs or groups. This finding suggests that the transmission parameter estimates from small-scale experiments might be extrapolated to the field situation.
Sanchez-Ingunza, Roxana; Guard, Jean; Morales, Cesar A; Icard, Alan H
2015-10-01
The objective of this research was to determine whether variation in the presence of fimbrial protein SefD would impact efficacy of bacterins as measured by recovery of Salmonella enterica serovar Enteritidis (Salmonella Enteritidis) from the spleens of hens. Two bacterins were prepared that varied in SefD content. Also, two adjuvants were tested, namely, water-in-oil and aluminum hydroxide gel (alum). Control groups for both adjuvant preparations included infected nonvaccinated hens and uninfected nonvaccinated hens. At 21 days postinfection, Salmonella Enteritidis was recovered from 69.7%, 53.1%, and 86.0% from the spleens of all hens vaccinated with bacterins lacking SefD, bacterins that included SefD, and infected nonvaccinated control hens, respectively. No Salmonella was recovered from uninfected nonvaccinates. Results from individual trials showed that both bacterins reduced positive spleens, but that the one with SefD was more efficacious. Alum adjuvant had fewer side effects on hens and egg production as compared to water-in-oil. However, adjuvant did not change the relative recovery of Salmonella Enteritidis from spleens. These results suggest that SefD is a promising target antigen for improving the efficacy of immunotherapy in hens, and is intended to reduce Salmonella Enteritidis in the food supply.
Varmuzova, Karolina; Matulova, Marta Elsheimer; Gerzova, Lenka; Cejkova, Darina; Gardan-Salmon, Delphine; Panhéleux, Marina; Robert, Fabrice; Sisak, Frantisek; Havlickova, Hana; Rychlik, Ivan
2015-09-01
After a ban on the use of antibiotics as growth promoters in farm animals in the European Union in 2006, an interest in alternative products with antibacterial or anti-inflammatory properties has increased. In this study, we therefore tested the effects of extracts from Curcuma longa and Scutellaria baicalensis used as feed additives against cecal inflammation induced by heat stress or Salmonella Enteritidis (S. Enteritidis) infection in chickens. Curcuma extract alone was not enough to decrease gut inflammation induced by heat stress. However, a mixture of Curcuma and Scutellaria extracts used as feed additives decreased gut inflammation induced by heat or S. Enteritidis, decreased S. Enteritidis counts in the cecum but was of no negative effect on BW or humoral immune response. Using next-generation sequencing of 16S rRNA we found out that supplementation of feed with the 2 plant extracts had no effect on microbiota diversity. However, if the plant extract supplementation was provided to the chickens infected with S. Enteritidis, Faecalibacterium, and Lactobacillus, both bacterial genera with known positive effects on gut health were positively selected. The supplementation of chicken feed with extracts from Curcuma and Scutelleria thus may be used in poultry production to effectively decrease gut inflammation and increase chicken performance. © 2015 Poultry Science Association Inc.
Dasa, Siva Sai Krishna; Kelly, Kimberly A.
2016-01-01
Next-generation sequencing has enhanced the phage display process, allowing for the quantification of millions of sequences resulting from the biopanning process. In response, many valuable analysis programs focused on specificity and finding targeted motifs or consensus sequences were developed. For targeted drug delivery and molecular imaging, it is also necessary to find peptides that are selective—targeting only the cell type or tissue of interest. We present a new analysis strategy and accompanying software, PHage Analysis for Selective Targeted PEPtides (PHASTpep), which identifies highly specific and selective peptides. Using this process, we discovered and validated, both in vitro and in vivo in mice, two sequences (HTTIPKV and APPIMSV) targeted to pancreatic cancer-associated fibroblasts that escaped identification using previously existing software. Our selectivity analysis makes it possible to discover peptides that target a specific cell type and avoid other cell types, enhancing clinical translatability by circumventing complications with systemic use. PMID:27186887
INACTIVATION AND REACTIVATION OF B. MEGATHERIUM PHAGE
Northrop, John H.
1955-01-01
Preparation of Reversibly Inactivated (R.I.) Phage.— If B. megatherium phage (of any type, or in any stage of purification) is suspended in dilute salt solutions at pH 5–6, it is completely inactivated; i.e., it does not form plaques, or give rise to more phage when mixed with a sensitive organism (Northrop, 1954). The inactivation occurs when the phage is added to the dilute salt solution. If a suspension of the inactive phage in pH 7 peptone is titrated to pH 5 and allowed to stand, the activity gradually returns. The inactivation is therefore reversible. Properties of R.I. Phage.— The R.I. phage is adsorbed by sensitive cells at about the same rate as the active phage. It kills the cells, but no active phage is produced. The R.I. phage therefore has the properties of phage "ghosts" (Herriott, 1951) or of colicines (Gratia, 1925), or phage inactivated by ultraviolet light (Luria, 1947). The R.I. phage is sedimented in the centrifuge at the same rate as active phage. It is therefore about the same size as the active phage. The R.I. phage is most stable in pH 7, 5 per cent peptone, and may be kept in this solution for weeks at 0°C. The rate of digestion of R.I. phage by trypsin, chymotrypsin, or desoxyribonuclease is about the same as that of active phage (Northrop, 1955 a). Effect of Various Substances on the Formation of R.I. Phage.— There is an equilibrium between R.I. phage and active phage. The R.I. form is the stable one in dilute salt solution, pH 5 to 6.5 and at low temperature (<20°C.). At pH >6.5, in dilute salt solution, the R.I. phage changes to the active form. The cycle, active ⇌ inactive phage, may be repeated many times at 0°C. by changing the pH of the solution back and forth between pH 7 and pH 6. Irreversible inactivation is caused by distilled water, some heavy metals, concentrated urea or quanidine solutions, and by l-arginine. Reversible inactivation is prevented by all salts tested (except those causing irreversible inactivation, above). The concentration required to prevent R.I. is lower, the higher the valency of either the anion or cation. There are great differences, however, between salts of the same valency, so that the chemical nature as well as the valency is important. Peptone, urea, and the amino acids, tryptophan, leucine, isoleucine, methionine, asparagine, dl-cystine, valine, and phenylalanine, stabilize the system at pH 7, so that no change occurs if a mixture of R.I. and active phage is added to such solutions. The active phage remains active and the R.I. phage remains inactive. The R.I. phage in pH 7 peptone becomes active if the pH is changed to 5.0. This does not occur in solutions of urea or the amino acids which stabilize at pH 7.0. Kinetics of Reversible Inactivation.— The inactivation is too rapid, even at 0° to allow the determination of an accurate time-inactivation curve. The rate is independent of the phage concentration and is complete in a few seconds, even in very dilute suspensions containing <1 x 104 particles/ml. This result rules out any type of bimolecular reaction, or any precipitation or agglutination mechanism, since the minimum theoretical time for precipitation (or agglutination) of a suspension of particles in a concentration of only 1 x 104 per ml. would be about 300 days even though every collision were effective. Mechanism of Salt Reactivation.— Addition of varying concentrations of MgSO4 (or many other salts) to a suspension of either active or R.I. phage in 0.01 M, pH 6 acetate buffer results in the establishment of an equilibrium ratio for active/R.I. phage. The higher the concentration of salt, the larger proportion of the phage is active. The results, with MgSO4, are in quantitative agreement with the following reaction: See PDF for Equation Effect of Temperature.— The rate of inactivation is too rapid to be measured with any accuracy, even at 0°C. The rate of reactivation in pH 5 peptone, at 0 and 10°, was measured and found to have a temperature coefficient Q 10 = 1.5 corresponding to a value of E (Arrhenius' constant) of 6500 cal. mole–1. This agrees very well with the temperature coefficient for the reactivation of denatured soy bean trypsin inhibitor (Kunitz, 1948). The equilibrium between R.I. and active phage is shifted toward the active side by lowering the temperature. The ratio R.I.P./AP is 4.7 at 15° and 2.8 at 2°. This corresponds to a change in free energy of –600 cal. mole–1 and a heat of reaction of 11,000. These values are much lower than the comparative one for trypsin (Anson and Mirsky, 1934 a) or soy bean trypsin inhibitor (Kunitz, 1948). Neither the inactivation nor the reactivation reactions are affected by light. The results in general indicate that there is an equilibrium between active and R.I. phage. The R.I. phage is probably an intermediate step in the formation of inactive phage. The equilibrium is shifted to the active side by lowering the temperature, adjusting the pH to 7–8 (except in the presence of high concentrations of peptone), raising the salt concentration, or increasing the valency of the ions present. The reaction may be represented by the following: See PDF for Equation The assumption that the active/R.I. phage equilibrium represents an example of native/denatured protein equilibrium predicts all the results qualitatively. Quantitatively, however, it fails to predict the relative rate of digestion of the two forms by trypsin or chymotrypsin, and also the effect of temperature on the equilibrium. PMID:13271723
9 CFR 147.11 - Laboratory procedure recommended for the bacteriological examination of salmonella.
Code of Federal Regulations, 2014 CFR
2014-01-01
... procedure recommended for the bacteriological examination of salmonella. (a) For egg- and meat-type chickens... the bacteriological examination of salmonella. 147.11 Section 147.11 Animals and Animal Products... 25 birds, and birds from Salmonella enteritidis (SE) positive environments should be cultured in...
9 CFR 147.11 - Laboratory procedure recommended for the bacteriological examination of salmonella.
Code of Federal Regulations, 2012 CFR
2012-01-01
... procedure recommended for the bacteriological examination of salmonella. (a) For egg- and meat-type chickens... the bacteriological examination of salmonella. 147.11 Section 147.11 Animals and Animal Products... 25 birds, and birds from Salmonella enteritidis (SE) positive environments should be cultured in...
9 CFR 147.11 - Laboratory procedure recommended for the bacteriological examination of salmonella.
Code of Federal Regulations, 2011 CFR
2011-01-01
... procedure recommended for the bacteriological examination of salmonella. (a) For egg- and meat-type chickens... the bacteriological examination of salmonella. 147.11 Section 147.11 Animals and Animal Products... 25 birds, and birds from Salmonella enteritidis (SE) positive environments should be cultured in...
9 CFR 147.11 - Laboratory procedure recommended for the bacteriological examination of salmonella.
Code of Federal Regulations, 2013 CFR
2013-01-01
... procedure recommended for the bacteriological examination of salmonella. (a) For egg- and meat-type chickens... the bacteriological examination of salmonella. 147.11 Section 147.11 Animals and Animal Products... 25 birds, and birds from Salmonella enteritidis (SE) positive environments should be cultured in...
9 CFR 147.11 - Laboratory procedure recommended for the bacteriological examination of salmonella.
Code of Federal Regulations, 2010 CFR
2010-01-01
... procedure recommended for the bacteriological examination of salmonella. (a) For egg- and meat-type chickens... the bacteriological examination of salmonella. 147.11 Section 147.11 Animals and Animal Products... 25 birds, and birds from Salmonella enteritidis (SE) positive environments should be cultured in...
Jain, Shalini; Yadav, Hariom; Sinha, P R
2009-06-01
In the present study, effect of dahi containing probiotic Lactobacillus casei (probiotic dahi) was evaluated to modulate immune response against Salmonella enteritidis infection in mice. Animals were fed with milk products along with standard diet for 2 and 7 days prior to the S. enteritidis challenge and continued on the respective dairy food-supplemented diets during the postchallenge period. Translocation of S. enteritidis in spleen and liver, beta-galactosidase and beta-glucuronidase enzymatic activities and secretory IgA (sIgA) in intestinal fluid, lymphocyte proliferation, and cytokine (interleukin [IL]-2, IL-4, IL-6, and interferon-gamma [IFN-gamma]) production in cultured splenocytes were assessed on day 2, 5, and 8 of the postchallenge period. Colonization of S. enteritidis in liver and spleen was remarkably low in probiotic dahi-fed mice than mice fed milk and control dahi. The beta-galactosidase and beta-glucuronidase activities in intestinal fluid collected from mice prefed for 7 days with probiotic dahi were significantly lower at day 5 and 8 postchallenge than in mice fed milk and control dahi. Levels of sIgA and lymphocyte proliferation rate were also significantly increased in probiotic dahi-fed mice compared with the other groups. Production of IL-2, IL-6, and IFN-gamma increased, whereas IL-4 decreased in splenic lymphocytes collected from probiotic dahi-fed mice. Data showed that dahi prefed for 7 days before S. enteritidis challenge was more effective than when mice were prefed for 2 days with dahi. Moreover, probiotic dahi was more efficacious in protecting against S. enteritidis infection by enhancing innate and adaptive immunity than fermented milk and normal dahi. Results of the present study suggest that prefeeding of probiotic dahi may strengthen the consumer's immune system and may protect infectious agents like S. enteritidis.
Virucidal Influence of Ionic Liquids on Phages P100 and MS2
Fister, Susanne; Mester, Patrick; Sommer, Julia; Witte, Anna K.; Kalb, Roland; Wagner, Martin; Rossmanith, Peter
2017-01-01
An increasing number of publications describe the potential of ionic liquids (ILs) as novel antimicrobials, antibacterial coatings and even as active pharmaceutical ingredients. Nevertheless, a major research area, notably their impact on viruses, has so far been neglected. Consequently the aim of this study was to examine the effects of ILs on the infectivity of viruses. A systematic analysis to investigate the effects of defined structural elements of ILs on virus activity was performed using 55 ILs. All structure activity relationships (SARs) were tested on the human norovirus surrogate phage MS2 and phage P100 representing non-enveloped DNA viruses. Results demonstrate that IL SAR conclusions, established for prokaryotes and eukaryotes, are not readily applicable to the examined phages. A virus-type-dependent IL influence was also apparent. Overall, four ILs, covering different structural elements, were found to reduce phage P100 infectivity by ≥4 log10 units, indicating a virucidal effect, whereas the highest reduction for phage MS2 was about 3 log10 units. Results indicate that future applications of ILs as virucidal agents will require development of novel SARs and the obtained results serve as a good starting point for future studies. PMID:28883814
Ishi, Kazutomo; Sugawara, Fumio
2008-05-01
Protein-protein interactions are essential in many biological processes including cell cycle and apoptosis. It is currently of great medical interest to inhibit specific protein-protein interactions in order to treat a variety of disease states. Here, we describe a facile multiwell plate assay method using T7 phage display to screen for candidate inhibitors of protein-protein interactions. Because T7 phage display is an effective method for detecting protein-protein interactions, we aimed to utilize this technique to screen for small-molecule inhibitors that disrupt these types of interaction. We used the well-characterized interaction between p53 and MDM2 and an inhibitor of this interaction, nutlin 3, as a model system to establish a new screening method. Phage particles displaying p53 interacted with GST-MDM2 immobilized on 96-well plates, and the interaction was inhibited by nutlin 3. Multiwell plate assay was then performed using a natural product library, which identified dehydroaltenusin as a candidate inhibitor of the p53-MDM2 interaction. We discuss the potential applications of this novel T7 phage display methodology, which we propose to call 'reverse phage display'.
Strotskaya, Alexandra; Savitskaya, Ekaterina; Metlitskaya, Anastasia; Morozova, Natalia; Datsenko, Kirill A; Semenova, Ekaterina; Severinov, Konstantin
2017-02-28
CRISPR-Cas systems provide prokaryotes with adaptive defense against bacteriophage infections. Given an enormous variety of strategies used by phages to overcome their hosts, one can expect that the efficiency of protective action of CRISPR-Cas systems against different viruses should vary. Here, we created a collection of Escherichia coli strains with type I-E CRISPR-Cas system targeting various positions in the genomes of bacteriophages λ, T5, T7, T4 and R1-37 and investigated the ability of these strains to resist the infection and acquire additional CRISPR spacers from the infecting phage. We find that the efficiency of CRISPR-Cas targeting by the host is determined by phage life style, the positions of the targeted protospacer within the genome, and the state of phage DNA. The results also suggest that during infection by lytic phages that are susceptible to CRISPR interference, CRISPR-Cas does not act as a true immunity system that saves the infected cell but rather enforces an abortive infection pathway leading to infected cell death with no phage progeny release. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.
Costa, Lourena Emanuele; Goulart, Luiz Ricardo; Pereira, Nathália Cristina de Jesus; Lima, Mayara Ingrid Sousa; Duarte, Mariana Costa; Martins, Vivian Tamietti; Lage, Paula Sousa; Menezes-Souza, Daniel; Ribeiro, Tatiana Gomes; Melo, Maria Norma; Fernandes, Ana Paula; Soto, Manuel; Tavares, Carlos Alberto Pereira; Chávez-Fumagalli, Miguel Angel; Coelho, Eduardo Antonio Ferraz
2014-01-01
The development of cost-effective prophylactic strategies to prevent leishmaniasis has become a high-priority. The present study has used the phage display technology to identify new immunogens, which were evaluated as vaccines in the murine model of visceral leishmaniasis (VL). Epitope-based immunogens, represented by phage-fused peptides that mimic Leishmania infantum antigens, were selected according to their affinity to antibodies from asymptomatic and symptomatic VL dogs' sera. Twenty phage clones were selected after three selection cycles, and were evaluated by means of in vitro assays of the immune stimulation of spleen cells derived from naive and chronically infected with L. infantum BALB/c mice. Clones that were able to induce specific Th1 immune response, represented by high levels of IFN-γ and low levels of IL-4 were selected, and based on their selectivity and specificity, two clones, namely B10 and C01, were further employed in the vaccination protocols. BALB/c mice vaccinated with clones plus saponin showed both a high and specific production of IFN-γ, IL-12, and GM-CSF after in vitro stimulation with individual clones or L. infantum extracts. Additionally, these animals, when compared to control groups (saline, saponin, wild-type phage plus saponin, or non-relevant phage clone plus saponin), showed significant reductions in the parasite burden in the liver, spleen, bone marrow, and paws' draining lymph nodes. Protection was associated with an IL-12-dependent production of IFN-γ, mainly by CD8+ T cells, against parasite proteins. These animals also presented decreased parasite-mediated IL-4 and IL-10 responses, and increased levels of parasite-specific IgG2a antibodies. This study describes two phage clones that mimic L. infantum antigens, which were directly used as immunogens in vaccines and presented Th1-type immune responses, and that significantly reduced the parasite burden. This is the first study that describes phage-displayed peptides as successful immunogens in vaccine formulations against VL.
Regulation of infection efficiency in a globally abundant marine Bacteriodetes virus
Howard-Varona, Cristina; Roux, Simon; Dore, Hugo; ...
2016-05-17
Microbes impact human health and disease, industrial processes and natural ecosystems, but do so under the influence of viruses. Problematically, knowledge of viral infection efficiencies and outcomes (e.g. lysis, lysogeny) derives from few model systems that over-represent efficient, lytic infections and under-represent virus-host natural diversity. Here we sought to understand how infection efficiency is regulated in an environmental Bacteroidetes virus that represents a globally abundant viral group and has drastically different infection efficiencies when infecting two nearly identical bacterial strains. To this end, we quantified bacterial virus (phage) and host DNA, transcripts and phage particles throughout the infection of bothmore » bacterial hosts. While the phage transcriptome was similar during both infections, host transcriptional differences appeared to have altered infection efficiency. Specifically, host transcriptomes suggested that the phage failed to repress early host expression in the inefficient nfection, thereby allowing the host to respond against infection by delaying phage DNA replication and protein translation. Further measurements showed that phage DNA and particle production were delayed (by >30 minutes) and reduced (by >50%) in the inefficient versus efficient infection as the host over-expressed DNA degradation genes and under-expressed translation genes, respectively. Together these results suggest that multiple levels of regulation can impact infection efficiencies as failure to repress host transcription allowed the host to defend against both phage DNA and protein production. Given that this phage type is ubiquitous and abundant in the global oceans and that variably efficient viral infections are likely common in any ecosystem with varying phage-host abundances and physiological states, these data provide a critically needed foundation for understanding and modeling viral infection efficiency in nature.« less
2011-01-01
Background Because biotechnological uses of bacteriophage gene products as alternatives to conventional antibiotics will require a thorough understanding of their genomic context, we sequenced and analyzed the genomes of four closely related phages isolated from Clostridium perfringens, an important agricultural and human pathogen. Results Phage whole-genome tetra-nucleotide signatures and proteomic tree topologies correlated closely with host phylogeny. Comparisons of our phage genomes to 26 others revealed three shared COGs; of particular interest within this core genome was an endolysin (PF01520, an N-acetylmuramoyl-L-alanine amidase) and a holin (PF04531). Comparative analyses of the evolutionary history and genomic context of these common phage proteins revealed two important results: 1) strongly significant host-specific sequence variation within the endolysin, and 2) a protein domain architecture apparently unique to our phage genomes in which the endolysin is located upstream of its associated holin. Endolysin sequences from our phages were one of two very distinct genotypes distinguished by variability within the putative enzymatically-active domain. The shared or core genome was comprised of genes with multiple sequence types belonging to five pfam families, and genes belonging to 12 pfam families, including the holin genes, which were nearly identical. Conclusions Significant genomic diversity exists even among closely-related bacteriophages. Holins and endolysins represent conserved functions across divergent phage genomes and, as we demonstrate here, endolysins can have significant variability and host-specificity even among closely-related genomes. Endolysins in our phage genomes may be subject to different selective pressures than the rest of the genome. These findings may have important implications for potential biotechnological applications of phage gene products. PMID:21631945
Labrie, Simon J.; Tremblay, Denise M.; Moisan, Maxim; Villion, Manuela; Magadán, Alfonso H.; Campanacci, Valérie; Cambillau, Christian
2012-01-01
The dairy industry uses the mesophilic, Gram-positive, lactic acid bacterium (LAB) Lactococcus lactis to produce an array of fermented milk products. Milk fermentation processes are susceptible to contamination by virulent phages, but a plethora of phage control strategies are available. One of the most efficient is to use LAB strains carrying phage resistance systems such as abortive infection (Abi) mechanisms. Yet, the mode of action of most Abi systems remains poorly documented. Here, we shed further light on the antiviral activity of the lactococcal AbiT system. Twenty-eight AbiT-resistant phage mutants derived from the wild-type AbiT-sensitive lactococcal phages p2, bIL170, and P008 were isolated and characterized. Comparative genomic analyses identified three different genes that were mutated in these virulent AbiT-insensitive phage derivatives: e14 (bIL170 [e14bIL170]), orf41 (P008 [orf41P008]), and orf6 (p2 [orf6p2] and P008 [orf6P008]). The genes e14bIL170 and orf41P008 are part of the early-expressed genomic region, but bioinformatic analyses did not identify their putative function. orf6 is found in the phage morphogenesis module. Antibodies were raised against purified recombinant ORF6, and immunoelectron microscopy revealed that it is the major capsid protein (MCP). Coexpression in L. lactis of ORF6p2 and ORF5p2, a protease, led to the formation of procapsids. To our knowledge, AbiT is the first Abi system involving distinct phage genes. PMID:22820334
Regulation of infection efficiency in a globally abundant marine Bacteriodetes virus
DOE Office of Scientific and Technical Information (OSTI.GOV)
Howard-Varona, Cristina; Roux, Simon; Dore, Hugo
Microbes impact human health and disease, industrial processes and natural ecosystems, but do so under the influence of viruses. Problematically, knowledge of viral infection efficiencies and outcomes (e.g. lysis, lysogeny) derives from few model systems that over-represent efficient, lytic infections and under-represent virus-host natural diversity. Here we sought to understand how infection efficiency is regulated in an environmental Bacteroidetes virus that represents a globally abundant viral group and has drastically different infection efficiencies when infecting two nearly identical bacterial strains. To this end, we quantified bacterial virus (phage) and host DNA, transcripts and phage particles throughout the infection of bothmore » bacterial hosts. While the phage transcriptome was similar during both infections, host transcriptional differences appeared to have altered infection efficiency. Specifically, host transcriptomes suggested that the phage failed to repress early host expression in the inefficient nfection, thereby allowing the host to respond against infection by delaying phage DNA replication and protein translation. Further measurements showed that phage DNA and particle production were delayed (by >30 minutes) and reduced (by >50%) in the inefficient versus efficient infection as the host over-expressed DNA degradation genes and under-expressed translation genes, respectively. Together these results suggest that multiple levels of regulation can impact infection efficiencies as failure to repress host transcription allowed the host to defend against both phage DNA and protein production. Given that this phage type is ubiquitous and abundant in the global oceans and that variably efficient viral infections are likely common in any ecosystem with varying phage-host abundances and physiological states, these data provide a critically needed foundation for understanding and modeling viral infection efficiency in nature.« less
Killing cancer cells by targeted drug-carrying phage nanomedicines
Bar, Hagit; Yacoby, Iftach; Benhar, Itai
2008-01-01
Background Systemic administration of chemotherapeutic agents, in addition to its anti-tumor benefits, results in indiscriminate drug distribution and severe toxicity. This shortcoming may be overcome by targeted drug-carrying platforms that ferry the drug to the tumor site while limiting exposure to non-target tissues and organs. Results We present a new form of targeted anti-cancer therapy in the form of targeted drug-carrying phage nanoparticles. Our approach is based on genetically-modified and chemically manipulated filamentous bacteriophages. The genetic manipulation endows the phages with the ability to display a host-specificity-conferring ligand. The phages are loaded with a large payload of a cytotoxic drug by chemical conjugation. In the presented examples we used anti ErbB2 and anti ERGR antibodies as targeting moieties, the drug hygromycin conjugated to the phages by a covalent amide bond, or the drug doxorubicin conjugated to genetically-engineered cathepsin-B sites on the phage coat. We show that targeting of phage nanomedicines via specific antibodies to receptors on cancer cell membranes results in endocytosis, intracellular degradation, and drug release, resulting in growth inhibition of the target cells in vitro with a potentiation factor of >1000 over the corresponding free drugs. Conclusion The results of the proof-of concept study presented here reveal important features regarding the potential of filamentous phages to serve as drug-delivery platform, on the affect of drug solubility or hydrophobicity on the target specificity of the platform and on the effect of drug release mechanism on the potency of the platform. These results define targeted drug-carrying filamentous phage nanoparticles as a unique type of antibody-drug conjugates. PMID:18387177
Chen, Mianmian; Xu, Juntian; Yao, Huochun; Lu, Chengping; Zhang, Wei
2016-05-10
Avian pathogenic Escherichia coli (APEC) causes colibacillosis, which results in significant economic losses to the poultry industry worldwide. Due to the drug residues and increased antibiotic resistance caused by antibiotic use, bacteriophages and other alternative therapeutic agents are expected to control APEC infection in poultry. Two APEC phages, named P483 and P694, were isolated from the feces from the farmers market in China. We then studied their biological properties, and carried out high-throughput genome sequencing and homology analyses of these phages. Assembly results of high-throughput sequencing showed that the structures of both P483 and P694 genomes consist of linear and double-stranded DNA. Results of the electron microscopy and homology analysis revealed that both P483 and P694 belong to T7-like virus which is a member of the Podoviridae family of the Caudovirales order. Comparative genomic analysis showed that most of the predicted proteins of these two phages showed strongest sequence similarity to the Enterobacteria phages BA14 and 285P, Erwinia phage FE44, and Kluyvera phage Kvp1; however, some proteins such as gp0.6a, gp1.7 and gp17 showed lower similarity (<85%) with the homologs of other phages in the T7 subgroup. We also found some unique characteristics of P483 and P694, such as the two types of the genes of P694 and no lytic activity of P694 against its host bacteria in liquid medium. Our results serve to further our understanding of phage evolution of T7-like coliphages and provide the potential application of the phages as therapeutic agents for the treatment of diseases. Copyright © 2016 Elsevier B.V. All rights reserved.
Varmuzova, Karolina; Faldynova, Marcela; Elsheimer-Matulova, Marta; Sebkova, Alena; Polansky, Ondrej; Havlickova, Hana; Sisak, Frantisek; Rychlik, Ivan
2016-10-15
The colonization of poultry with different Salmonella enterica serovars poses an issue throughout the world. In this study we therefore tested the efficacy of a vaccine consisting of attenuated strains of Salmonella enterica serovars Enteritidis, Typhimurium and Infantis against challenge with the same serovars and with S. Agona, Dublin and Hadar. We tested oral and aerosol administration of the vaccine, with or without co-administration of cecal microbiota from adult hens. The protective effect was determined by bacterial counts of the challenge strains up to week 18 of life and by characterizing the immune response using real-time PCR specific for 16 different genes. We have shown that a vaccine consisting of attenuated S. Enteritidis, S. Typhimurium and S. Infantis protected chickens against challenge with the wild type strains of the same serovars and partially protected chickens also against challenge with isolates belonging to serovars Dublin or Hadar. Aerosol vaccination was more effective at inducing systemic immunity whilst oral vaccination stimulated a local immune response in the gut. Co-administration of cecal microbiota increased the protectiveness in the intestinal tract but slightly decreased the systemic immune response. Adjusting the vaccine composition and changing the administration route therefore affects vaccine efficacy.
Turki, Yousra; Mehr, Ines; Ouzari, Hadda; Khessairi, Amel; Hassen, Abdennaceur
2014-01-01
Salmonella enterica isolates representing commonly isolated serotypes in Tunisia were analyzed using genotyping and phenotyping methods. ERIC and ITS-PCR applied to 48 Salmonella spp. isolates revealed the presence of 12 and 10 different profiles, respectively. The distribution of profiles among serotypes demonstrated the presence of strains showing an identical fingerprinting pattern. All Salmonella strains used in this study were positive for the sdiA gene. Three Salmonella isolates belonging to serotypes Anatum, Enteritidis and Amsterdam were negative for the invA gene. The spvC gene was detected in thirteen isolates belonging to serotypes Anatum, Typhimurium, Enteritidis, Gallinarum and Montevideo. Antibiotic resistance was frequent among the recovered Salmonella isolates belonging to serotypes Anatum, Typhimurium, Enteritidis, Zanzibar and Derby. The majority of these isolates exhibited resistance to at least two antibiotic families. Four multidrug-resistant isolates were recovered from food animals and poultry products. These isolates exhibited not only resistance to tetracycline, sulphonamides, and ampicillin, but also have shown resistance to fluoroquinolones. Common resistance to nalidixic acid, ciprofloxacin and ofloxacin in two S. Anatum and S. Zanzibar strains isolated from raw meat and poultry was also obtained. Furthermore, wastewater and human isolates exhibited frequent resistance to nalidixic acid and tetracycline. Of all isolates, 33.5% were able to form biofilm.
DeltaPhage—a novel helper phage for high-valence pIX phagemid display
Nilssen, Nicolay R.; Frigstad, Terje; Pollmann, Sylvie; Roos, Norbert; Bogen, Bjarne; Sandlie, Inger; Løset, Geir Å.
2012-01-01
Phage display has been instrumental in discovery of novel binding peptides and folded domains for the past two decades. We recently reported a novel pIX phagemid display system that is characterized by a strong preference for phagemid packaging combined with low display levels, two key features that support highly efficient affinity selection. However, high diversity in selected repertoires are intimately coupled to high display levels during initial selection rounds. To incorporate this additional feature into the pIX display system, we have developed a novel helper phage termed DeltaPhage that allows for high-valence display on pIX. This was obtained by inserting two amber mutations close to the pIX start codon, but after the pVII translational stop, conditionally inactivating the helper phage encoded pIX. Until now, the general notion has been that display on pIX is dependent on wild-type complementation, making high-valence display unachievable. However, we found that DeltaPhage does facilitate high-valence pIX display when used with a non-suppressor host. Here, we report a side-by-side comparison with pIII display, and we find that this novel helper phage complements existing pIX phagemid display systems to allow both low and high-valence display, making pIX display a complete and efficient alternative to existing pIII phagemid display systems. PMID:22539265
Shin, Yong Cheol; Lee, Jong Ho; Jin, Linhua; Kim, Min Jeong; Oh, Jin-Woo; Kim, Tai Wan; Han, Dong-Wook
2014-01-01
M13 bacteriophages can be readily fabricated as nanofibers due to non-toxic bacterial virus with a nanofiber-like shape. In the present study, we prepared hybrid nanofiber matrices composed of poly(lactic-co-glycolic acid, PLGA) and M13 bacteriophages which were genetically modified to display the RGD peptide on their surface (RGD-M13 phage). The surface morphology and chemical composition of hybrid nanofiber matrices were characterized by scanning electron microscopy (SEM) and Raman spectroscopy, respectively. Immunofluorescence staining was conducted to investigate the existence of M13 bacteriophages in RGD-M13 phage/PLGA hybrid nanofibers. In addition, the attachment and proliferation of three different types of fibroblasts on RGD-M13 phage/PLGA nanofiber matrices were evaluated to explore how fibroblasts interact with these matrices. SEM images showed that RGD-M13 phage/PLGA hybrid matrices had the non-woven porous structure, quite similar to that of natural extracellular matrices, having an average fiber diameter of about 190 nm. Immunofluorescence images and Raman spectra revealed that RGD-M13 phages were homogeneously distributed in entire matrices. Moreover, the attachment and proliferation of fibroblasts cultured on RGD-M13 phage/PLGA matrices were significantly enhanced due to enriched RGD moieties on hybrid matrices. These results suggest that RGD-M13 phage/PLGA matrices can be efficiently used as biomimetic scaffolds for tissue engineering applications.
An integrated vector system for cellular studies of phage display-derived peptides.
Voss, Stephan D; DeGrand, Alec M; Romeo, Giulio R; Cantley, Lewis C; Frangioni, John V
2002-09-15
Peptide phage display is a method by which large numbers of diverse peptides can be screened for binding to a target of interest. Even when successful, the rate-limiting step is usually validation of peptide bioactivity using living cells. In this paper, we describe an integrated system of vectors that expedites both the screening and the characterization processes. Library construction and screening is performed using an optimized type 3 phage display vector, mJ(1), which is shown to accept peptide libraries of at least 23 amino acids in length. Peptide coding sequences are shuttled from mJ(1) into one of three families of mammalian expression vectors for cell physiological studies. The vector pAL(1) expresses phage display-derived peptides as Gal4 DNA binding domain fusion proteins for transcriptional activation studies. The vectors pG(1), pG(1)N, and pG(1)C express phage display-derived peptides as green fluorescent protein fusions targeted to the entire cell, nucleus, or cytoplasm, respectively. The vector pAP(1) expresses phage display-derived peptides as fusions to secreted placental alkaline phosphatase. Such enzyme fusions can be used as highly sensitive affinity reagents for high-throughput assays and for cloning of peptide-binding cell surface receptors. Taken together, this system of vectors should facilitate the development of phage display-derived peptides into useful biomolecules.
Sohrab, Sayed S; Karim, Sajjad; Kamal, Mohammad A; Abuzenadah, Adel M; Chaudhary, Adeel G; Al-Qahtani, Mohammed H; Mirza, Zeenat
2014-04-01
Alzheimer's disease, the most important neurodegenerative disorder, is an irreversible, age-dependent disease of the brain characterized by problems in progressive impairments in memory, language, reasoning, behavior and visuospatial skills. It is characterized by the deposition of amyloid beta peptide, forming compact fibrillar plaques and neurofibrillary tau tangles. Another major and much more prevalent cause of morbidity and mortality in world is diabetes especially type 2 diabetes mellitus. It is caused by a combination of resistance to insulin action and an inadequate compensatory insulin secretory response. Chronic wounds caused by antibiotic resistant bacterial infections that fail to heal are a common complication of diabetes mellitus and the most frequent reason for nontraumatic lower limb amputation. Holistically, these two diseases are linked at molecular level but the exact mechanism is a topic of debate. Bacteriophages are viruses infecting bacteria and lack ability to infect mammalian cells. They are neither causative agent for Alzheimer's disease or type 2 diabetes mellitus nor involved in their pathogenicity but promises for a novel divergent therapeutic approach. The great versatility of the phage system has led to the development of improved phage delivery vectors, as well as immunomodulation of anti-amyloid beta peptide response. Phages could also constitute valuable prophylaxis against bacterial infections, especially in immunocompromised patients like in the case of diabetes. Patients having diabetes have a high risk of developing foot ulcers which are difficult to be treated by antibiotics alone due to ever increasing antibiotic resistance strains. Combination therapy based on multiple phage and broad spectrum antibiotics holds great promise. The potential therapeutic phage therapy arises from its lack of natural tropism for mammalian cells, resulting in no adverse effects.
Zygiel, Emily M.; Noren, Karen A.; Adamkiewicz, Marta A.; Aprile, Richard J.; Bowditch, Heather K.; Carroll, Christine L.; Cerezo, Maria Abigail S.; Dagher, Adelle M.; Hebert, Courtney R.; Hebert, Lauren E.; Mahame, Gloria M.; Milne, Stephanie C.; Silvestri, Kelly M.; Sutherland, Sara E.; Sylvia, Alexandria M.; Taveira, Caitlyn N.; VanValkenburgh, David J.; Noren, Christopher J.
2017-01-01
M13 and other members of the Ff class of filamentous bacteriophages have been extensively employed in myriad applications. The Ph.D. series of phage-displayed peptide libraries were constructed from the M13-based vector M13KE. As a direct descendent of M13mp19, M13KE contains the lacZα insert in the intergenic region between genes IV and II, where it interrupts the replication enhancer of the (+) strand origin. Phage carrying this 816-nucleotide insert are viable, but propagate in E. coli at a reduced rate compared to wild-type M13 phage, presumably due to a replication defect caused by the insert. We have previously reported thirteen compensatory mutations in the 5’-untranslated region of gene II, which encodes the replication initiator protein gIIp. Here we report several additional mutations in M13KE that restore a wild-type propagation rate. Several clones from constrained-loop variable peptide libraries were found to have ejected the majority of lacZα gene in order to reconstruct the replication enhancer, albeit with a small scar. In addition, new point mutations in the gene II 5’-untranslated region or the gene IV coding sequence have been spontaneously observed or synthetically engineered. Through phage propagation assays, we demonstrate that all these genetic modifications compensate for the replication defect in M13KE and restore the wild-type propagation rate. We discuss the mechanisms by which the insertion and ejection of the lacZα gene, as well as the mutations in the regulatory region of gene II, influence the efficiency of replication initiation at the (+) strand origin. We also examine the presence and relevance of fast-propagating mutants in phage-displayed peptide libraries. PMID:28445507
Zygiel, Emily M; Noren, Karen A; Adamkiewicz, Marta A; Aprile, Richard J; Bowditch, Heather K; Carroll, Christine L; Cerezo, Maria Abigail S; Dagher, Adelle M; Hebert, Courtney R; Hebert, Lauren E; Mahame, Gloria M; Milne, Stephanie C; Silvestri, Kelly M; Sutherland, Sara E; Sylvia, Alexandria M; Taveira, Caitlyn N; VanValkenburgh, David J; Noren, Christopher J; Hall, Marilena Fitzsimons
2017-01-01
M13 and other members of the Ff class of filamentous bacteriophages have been extensively employed in myriad applications. The Ph.D. series of phage-displayed peptide libraries were constructed from the M13-based vector M13KE. As a direct descendent of M13mp19, M13KE contains the lacZα insert in the intergenic region between genes IV and II, where it interrupts the replication enhancer of the (+) strand origin. Phage carrying this 816-nucleotide insert are viable, but propagate in E. coli at a reduced rate compared to wild-type M13 phage, presumably due to a replication defect caused by the insert. We have previously reported thirteen compensatory mutations in the 5'-untranslated region of gene II, which encodes the replication initiator protein gIIp. Here we report several additional mutations in M13KE that restore a wild-type propagation rate. Several clones from constrained-loop variable peptide libraries were found to have ejected the majority of lacZα gene in order to reconstruct the replication enhancer, albeit with a small scar. In addition, new point mutations in the gene II 5'-untranslated region or the gene IV coding sequence have been spontaneously observed or synthetically engineered. Through phage propagation assays, we demonstrate that all these genetic modifications compensate for the replication defect in M13KE and restore the wild-type propagation rate. We discuss the mechanisms by which the insertion and ejection of the lacZα gene, as well as the mutations in the regulatory region of gene II, influence the efficiency of replication initiation at the (+) strand origin. We also examine the presence and relevance of fast-propagating mutants in phage-displayed peptide libraries.
1989-02-21
type 4 since the poisoning scare. "Figures since Dec 9, when egg consumption fell by half, show that cases of salmonella enteritidis type 4 fell from...Epidemics Reported in Wales [Michael Fleet; THE DAILY TELEGRAPH, 10 Dec 88] • ••••• - 23 Government Gives Statistics on Salmonella Deaths [David...difficult to estimate the size of an outbreak. Government Gives Statistics on Salmonella Deaths 54500048 London THE DAILY TELEGRAPH in English 20 Dec
Ahmad, Abdelmonim Ali; Ogawa, Megumi; Kawasaki, Takeru; Fujie, Makoto; Yamada, Takashi
2014-01-01
The strains of Xanthomonas axonopodis pv. citri, the causative agent of citrus canker, are historically classified based on bacteriophage (phage) sensitivity. Nearly all X. axonopodis pv. citri strains isolated from different regions in Japan are lysed by either phage Cp1 or Cp2; Cp1-sensitive (Cp1(s)) strains have been observed to be resistant to Cp2 (Cp2(r)) and vice versa. In this study, genomic and molecular characterization was performed for the typing agents Cp1 and Cp2. Morphologically, Cp1 belongs to the Siphoviridae. Genomic analysis revealed that its genome comprises 43,870-bp double-stranded DNA (dsDNA), with 10-bp 3'-extruding cohesive ends, and contains 48 open reading frames. The genomic organization was similar to that of Xanthomonas phage phiL7, but it lacked a group I intron in the DNA polymerase gene. Cp2 resembles morphologically Escherichia coli T7-like phages of Podoviridae. The 42,963-bp linear dsDNA genome of Cp2 contained terminal repeats. The Cp2 genomic sequence has 40 open reading frames, many of which did not show detectable homologs in the current databases. By proteomic analysis, a gene cluster encoding structural proteins corresponding to the class III module of T7-like phages was identified on the Cp2 genome. Therefore, Cp1 and Cp2 were found to belong to completely different virus groups. In addition, we found that Cp1 and Cp2 use different molecules on the host cell surface as phage receptors and that host selection of X. axonopodis pv. citri strains by Cp1 and Cp2 is not determined at the initial stage by binding to receptors.
Torane, V; Kuyare, S; Nataraj, G; Mehta, P; Dutta, S; Sarkar, B
2016-11-25
Cholera is a major gastroenteric disease with reports on fluctuation and resistance. Hence, the objective is to determine the trend in seasonality, resistance pattern, prevalent biotypes, serotypes and phage types between 2004 and 2013 among Vibrio cholerae isolates. A retrospective cross-sectional study. A single-centre study was carried out at a tertiary care hospital in a metropolitan city (Mumbai) of a developing country (India). Records of stool specimen cultures of patients with suspected cholera from January 2004 to December 2013 were analysed. The organisms were identified as per standard protocol. Antimicrobial susceptibility testing was performed as per Clinical Laboratory Standard Institute. Biotyping, serotyping and phage typing were carried out. From the confirmed cases of cholera, demographic and laboratory details were noted. Descriptive analysis was used and the data were presented in the form of percentages. Vibrio cholerae was predominant in males and was isolated from 9.41% (439/4664) of stool specimens. Variability was found in terms of the gross appearance of stool specimens, seasonal trend and antibiotic resistance pattern. The antimicrobial susceptibility showed a waxing and waning pattern for most of the antibiotics (ampicillin, cefuroxime, chloramphenicol, tetracycline) tested, while for a few others the strains were either uniformly sensitive (gentamicin, norfloxacin) or resistant (trimethoprim-sulfamethoxazole, nalidixic acid). All isolates belonged to subgroup O1 and biotype El Tor. The most common serotype was Ogawa. The predominant phage type was T2 (old scheme) and T27 (new scheme). The predominant biotype, serotype and phage type were El Tor, Ogawa and T27 phage, respectively. The changing trends in antimicrobial resistance pattern over the years necessitate continued epidemiological and microbiological surveillance of the disease. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.
Baliban, Scott M; Curtis, Brittany; Toema, Deanna; Tennant, Sharon M; Levine, Myron M; Pasetti, Marcela F; Simon, Raphael
2018-05-23
In sub-Saharan Africa, invasive nontyphoidal Salmonella (iNTS) infections with serovars S. Enteritidis, S. Typhimurium and I 4,[5],12:i:- are widespread in children < 5 years old. Development of an efficacious vaccine would provide an important public health tool to prevent iNTS disease in this population. Glycoconjugates of S. Enteritidis core and O-polysaccharide (COPS) coupled to the homologous serovar phase 1 flagellin protein (FliC) were previously shown to be immunogenic and protected adult mice against death following challenge with a virulent Malian S. Enteritidis blood isolate. This study extends these observations to immunization of mice in early life and also assesses protection with partial and full regimens. Anti-COPS and anti-FliC serum IgG titers were assessed in infant and adult mice after immunization with 1, 2 or 3 doses of S. Enteritidis COPS:FliC alone or co-formulated with aluminum hydroxide or monophosphoryl lipid A (MPL) adjuvants. S. Enteritidis COPS:FliC was immunogenic in both age groups, although the immune responses were quantitatively lower in infants. Kinetics of antibody production were similar for the native and adjuvanted formulations after three doses; conjugates formulated with MPL elicited significantly increased anti-COPS IgG titers in adult but not infant mice. Nevertheless, robust protection against S. Enteritidis challenge was seen for all three formulations when three doses were given either during infancy or as adults. We further found that significant protection could be achieved with two COPS:FliC doses, despite elicitation of modest serum anti-COPS IgG antibody titers. These findings guide potential immunization strategies that may be translated to develop a human pediatric iNTS vaccine for sub-Saharan Africa.
Borges, Karen Apellanis; Furian, Thales Quedi; de Souza, Sara Neves; Menezes, Rafaela; de Lima, Diane Alves; Fortes, Flávia Bornancini Borges; Salle, Carlos Tadeu Pippi; Moraes, Hamilton Luiz Souza; Nascimento, Vladimir Pinheiro
2018-03-22
Salmonella Enteritidis and Salmonella Typhimurium are among the most prevalent serotypes isolated from salmonellosis outbreaks and poultry. Salmonella spp. have the capacity to form biofilms on several surfaces, which can favour survival in hostile environments, such as slaughterhouses. Salmonella strains present differences in pathogenicity. However, there is little information regarding the pathogenicity of S. Enteritidis and S. Typhimurium isolated from avian sources and their relationship to biofilm production. The aim of this study was to use a novel pathogenicity index and a biofilm production assay to evaluate their relationships within these serotypes. In addition, we detected the presence of the spiA and agfA genes in these strains. Biofilm formation was investigated at two temperatures (37 °C and 28 °C) using microtiter plate assay, and the results were compared with the individual pathogenicity index of each strain. PCR was used to detect spiA and agfA, virulence genes associated with biofilm production. S. Enteritidis and S. Typhimurium strains were capable of producing biofilm at 37 °C and 28 °C. Sixty-two percent and 59.5% of S. Enteritidis and 73.8% and 46.2% of S. Typhimurium produced biofilm at 37 °C and 28 °C, respectively. Biofilm production at 37 °C was significantly higher in both serotypes. Only S. Enteritidis was capable of adhering strongly at both temperatures. Biofilm production was related to pathogenicity index only at 28 °C for S. Enteritidis. spiA and agfA were found in almost all strains and were not statistically associated with biofilm production. Copyright © 2018 Elsevier Ltd. All rights reserved.
2014-01-01
Salmonella enterica serovar Enteritidis is one of the important causes of bacterial food-borne gastroenteritis worldwide. Field strains of S. Enteritidis are relatively genetically homogeneous; however, they show extensive phenotypic diversity and differences in virulence potential. RNA sequencing (RNA-Seq) was used to characterize differences in the global transcriptome between several genetically similar but phenotypically diverse poultry-associated field strains of S. Enteritidis grown in laboratory medium at avian body temperature (42°C). These S. Enteritidis strains were previously characterized as high-pathogenicity (HP; n = 3) and low-pathogenicity (LP; n = 3) strains based on both in vitro and in vivo virulence assays. Using the negative binomial distribution-based statistical tools edgeR and DESeq, 252 genes were identified as differentially expressed in LP strains compared with their expression in the HP strains (P < 0.05). A majority of genes (235, or 93.2%) showed significantly reduced expression, whereas a few genes (17, or 6.8%) showed increased expression in all LP strains compared with HP strains. LP strains showed a unique transcriptional profile that is characterized by significantly reduced expression of several transcriptional regulators and reduced expression of genes involved in virulence (e.g., Salmonella pathogenicity island 1 [SPI-1], SPI-5, and fimbrial and motility genes) and protection against osmotic, oxidative, and other stresses, such as iron-limiting conditions commonly encountered within the host. Several functionally uncharacterized genes also showed reduced expression. This study provides a first concise view of the global transcriptional differences between field strains of S. Enteritidis with various levels of pathogenicity, providing the basis for future functional characterization of several genes with potential roles in virulence or stress regulation of S. Enteritidis. PMID:24271167
Satellite phage TLCφ enables toxigenic conversion by CTX phage through dif site alteration.
Hassan, Faizule; Kamruzzaman, M; Mekalanos, John J; Faruque, Shah M
2010-10-21
Bacterial chromosomes often carry integrated genetic elements (for example plasmids, transposons, prophages and islands) whose precise function and contribution to the evolutionary fitness of the host bacterium are unknown. The CTXφ prophage, which encodes cholera toxin in Vibrio cholerae, is known to be adjacent to a chromosomally integrated element of unknown function termed the toxin-linked cryptic (TLC). Here we report the characterization of a TLC-related element that corresponds to the genome of a satellite filamentous phage (TLC-Knφ1), which uses the morphogenesis genes of another filamentous phage (fs2φ) to form infectious TLC-Knφ1 phage particles. The TLC-Knφ1 phage genome carries a sequence similar to the dif recombination sequence, which functions in chromosome dimer resolution using XerC and XerD recombinases. The dif sequence is also exploited by lysogenic filamentous phages (for example CTXφ) for chromosomal integration of their genomes. Bacterial cells defective in the dimer resolution often show an aberrant filamentous cell morphology. We found that acquisition and chromosomal integration of the TLC-Knφ1 genome restored a perfect dif site and normal morphology to V. cholerae wild-type and mutant strains with dif(-) filamentation phenotypes. Furthermore, lysogeny of a dif(-) non-toxigenic V. cholerae with TLC-Knφ1 promoted its subsequent toxigenic conversion through integration of CTXφ into the restored dif site. These results reveal a remarkable level of cooperative interactions between multiple filamentous phages in the emergence of the bacterial pathogen that causes cholera.
NASA Astrophysics Data System (ADS)
Danis-Wlodarczyk, Katarzyna; Vandenheuvel, Dieter; Jang, Ho Bin; Briers, Yves; Olszak, Tomasz; Arabski, Michal; Wasik, Slawomir; Drabik, Marcin; Higgins, Gerard; Tyrrell, Jean; Harvey, Brian J.; Noben, Jean-Paul; Lavigne, Rob; Drulis-Kawa, Zuzanna
2016-06-01
Bacteriophage therapy is currently resurging as a potential complement/alternative to antibiotic treatment. However, preclinical evaluation lacks streamlined approaches. We here focus on preclinical approaches which have been implemented to assess bacteriophage efficacy against Pseudomonas biofilms and infections. Laser interferometry and profilometry were applied to measure biofilm matrix permeability and surface geometry changes, respectively. These biophysical approaches were combined with an advanced Airway Surface Liquid infection model, which mimics in vitro the normal and CF lung environments, and an in vivo Galleria larvae model. These assays have been implemented to analyze KTN4 (279,593 bp dsDNA genome), a type-IV pili dependent, giant phage resembling phiKZ. Upon contact, KTN4 immediately disrupts the P. aeruginosa PAO1 biofilm and reduces pyocyanin and siderophore production. The gentamicin exclusion assay on NuLi-1 and CuFi-1 cell lines revealed the decrease of extracellular bacterial load between 4 and 7 logs and successfully prevents wild-type Pseudomonas internalization into CF epithelial cells. These properties and the significant rescue of Galleria larvae indicate that giant KTN4 phage is a suitable candidate for in vivo phage therapy evaluation for lung infection applications.
O'Donnell, Allison T; Vieira, Antonio R; Huang, Jennifer Y; Whichard, Jean; Cole, Dana; Karp, Beth E
2014-11-01
We found a strong association between nalidixic acid-resistant Salmonella enterica serotype Enteritidis infections in the United States and recent international travel by linking Salmonella Enteritidis data from the National Antimicrobial Resistance Monitoring System and the Foodborne Diseases Active Surveillance Network. Published by Oxford University Press on behalf of the Infectious Diseases Society of America 2014. This work is written by (a) US Government employee(s) and is in the public domain in the US.
Gast, Richard K; Guard-Bouldin, Jean; Holt, Peter S
2004-12-01
Internal contamination of eggs laid by hens infected with Salmonella enteritidis has been a prominent international public health issue since the mid-1980s. Considerable resources have been committed to detecting and controlling S. enteritidis infections in commercial laying flocks. Recently, the Centers for Disease Control and Prevention also reported a significant association between eggs or egg-containing foods and S. heidelberg infections in humans. The present study sought to determine whether several S. heidelberg isolates obtained from egg-associated human disease outbreaks were able to colonize reproductive tissues and be deposited inside eggs laid by experimentally infected hens in a manner similar to the previously documented behavior of S. enteritidis. In two trials, groups of laying hens were orally inoculated with large doses of four S. heidelberg strains and an S. enteritidis strain that consistently caused egg contamination in previous studies. All five Salmonella strains (of both serotypes) colonized the intestinal tracts and invaded the livers, spleens, ovaries, and oviducts of inoculated hens, with no significant differences observed between the strains for any of these parameters. All four S. heidelberg strains were recovered from the interior liquid contents of eggs laid by infected hens, although at lower frequencies (between 1.1% and 4.5%) than the S. enteritidis strain (7.0%).
Taylor, Angela J; Lappi, Victoria; Wolfgang, William J; Lapierre, Pascal; Palumbo, Michael J; Medus, Carlota; Boxrud, David
2015-10-01
Salmonella enterica serovar Enteritidis is a significant cause of gastrointestinal illness in the United States; however, current molecular subtyping methods lack resolution for this highly clonal serovar. Advances in next-generation sequencing technologies have made it possible to examine whole-genome sequencing (WGS) as a potential molecular subtyping tool for outbreak detection and source trace back. Here, we conducted a retrospective analysis of S. Enteritidis isolates from seven epidemiologically confirmed foodborne outbreaks and sporadic isolates (not epidemiologically linked) to determine the utility of WGS to identify outbreaks. A collection of 55 epidemiologically characterized clinical and environmental S. Enteritidis isolates were sequenced. Single nucleotide polymorphism (SNP)-based cluster analysis of the S. Enteritidis genomes revealed well supported clades, with less than four-SNP pairwise diversity, that were concordant with epidemiologically defined outbreaks. Sporadic isolates were an average of 42.5 SNPs distant from the outbreak clusters. Isolates collected from the same patient over several weeks differed by only two SNPs. Our findings show that WGS provided greater resolution between outbreak, sporadic, and suspect isolates than the current gold standard subtyping method, pulsed-field gel electrophoresis (PFGE). Furthermore, results could be obtained in a time frame suitable for surveillance activities, supporting the use of WGS as an outbreak detection and characterization method for S. Enteritidis. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Donato, T C; Baptista, A A S; Garcia, K C O D; Smaniotto, B D; Okamoto, A S; Sequeira, J L; Andreatti Filho, R L
2015-09-01
This study investigates the effects of different doses of serotonin, its precursor 5-hydroxytry-ptophan (5HTP), and m-hydroxybenzylhydrazine inhibitor (NSD1015), administered via intraperitoneal for 5 consecutive days, on behavior and average body weight of broilers. We also measured the humoral immune response and quantification of Salmonella Enteritidis in broilers chickens that received the drugs evaluated and a Lactobacillus pool. The study was divided into 3 experiments: Experiment 1--administration of pharmaceuticals with choice of dosage; Experiment 2--administration of pharmaceuticals and a Lactobacillus pool in birds that were not challenged with S. Enteritidis, and Experiment 3--administration of pharmaceuticals and a Lactobacillus pool in birds challenged with S. Enteritidis. The ELISA was used to scan dosages of intestinal IgA and serum IgY. We used colony-forming units to quantify S. Enteritidis. The concentrations of IgA and IgY did not show significant differences (P>0.05) in Experiment 2. In Experiment 3, NSD1015 associated with Lactobacillus determined higher IgA concentrations, promoting greater stimulus to the immune system than 5HTP. Regarding quantification of S. Enteritidis in the cecal content of birds, 5HTP associated to Lactobacillus determined the smallest number of bacteria, showing possible interaction of 5-hydroxytryptophan and Lactobacillus spp. with the immune system of broiler chickens. © 2015 Poultry Science Association Inc.
Soleimani, A F; Zulkifli, I; Hair-Bejo, M; Ebrahimi, M; Jazayeri, S D; Hashemi, S R; Meimandipour, A; Goh, Y M
2012-01-01
Stressors may influence chicken susceptibility to pathogens such as Salmonella enterica. Feed withdrawal stress can cause changes in normal intestinal epithelial structure and may lead to increased attachment and colonization of Salmonella. This study aimed to investigate modulatory effects of epigenetic modification by feed restriction on S. enterica serovar Enteritidis colonization in broiler chickens subjected to feed withdrawal stress. Chicks were divided into four groups: ad libitum feeding; ad libitum feeding with 24-h feed withdrawal on day 42; 60% feed restriction on days 4, 5, and 6; and 60% feed restriction on days 4, 5, and 6 with 24-h feed withdrawal on day 42. Attachment of S. Enteritidis to ileal tissue was determined using an ex vivo ileal loop assay, and heat shock protein 70 (Hsp70) expression was evaluated using sodium dodecyl sulphate-polyacrylamide gel electrophoresis and western blotting. Feed withdrawal stress increased S. Enteritidis attachment to ileal tissue. However, following feed withdrawal the epigenetically modified chickens had significantly lower attachment of S. Enteritidis than their control counterparts. A similar trend with a very positive correlation was observed for Hsp70 expression. It appears that epigenetic modification can enhance resistance to S. Enteritidis colonization later in life in chickens under stress conditions. The underlying mechanism could be associated with the lower Hsp70 expression in the epigenetically modified chickens.
Characteristics of invasion-reduced hilA gene mutant of Salmonella Enteritidis in vitro and in vivo.
Lv, Shuang; Si, Wei; Yu, Shenye; Li, Zhaoli; Wang, Xiumei; Chen, Liping; Zhang, Wanjiang; Liu, Siguo
2015-08-01
Salmonella enterica serovar Enteritidis (Salmonella Enteritidis) is a facultative intracellular pathogen that causes huge losses in poultry industry and also food poisoning in humans due to its being a food-borne pathogen. Functions of Invasion-related genes need to be explored, as invasion is a key step for Salmonella infection. In this study, a transposon mutant library of Salmonella Enteritidis isolate SM6 was constructed and screened for the invasion-related genes via incubation with Caco-2 cells. Three stably attenuated mutants were identified for significantly reduced invasion with insertions all in hilA (hyperinvasive locus A) gene. We constructed and evaluated the hilA deletion mutant in vivo and in vitro. SM6△hilA showed significantly reduced ability to invade Caco-2 cells and decreased pathogenicity in chicks. However, the bacterial load and pathological damage in the cecum were significantly higher than those in the SM6 in vivo. Present results provide new evidences for pathogenicity research on Salmonella Enteritidis. Copyright © 2015 Elsevier B.V. All rights reserved.
CRISPR-Cas-Mediated Phage Resistance Enhances Horizontal Gene Transfer by Transduction.
Watson, Bridget N J; Staals, Raymond H J; Fineran, Peter C
2018-02-13
A powerful contributor to prokaryotic evolution is horizontal gene transfer (HGT) through transformation, conjugation, and transduction, which can be advantageous, neutral, or detrimental to fitness. Bacteria and archaea control HGT and phage infection through CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins) adaptive immunity. Although the benefits of resisting phage infection are evident, this can come at a cost of inhibiting the acquisition of other beneficial genes through HGT. Despite the ability of CRISPR-Cas to limit HGT through conjugation and transformation, its role in transduction is largely overlooked. Transduction is the phage-mediated transfer of bacterial DNA between cells and arguably has the greatest impact on HGT. We demonstrate that in Pectobacterium atrosepticum , CRISPR-Cas can inhibit the transduction of plasmids and chromosomal loci. In addition, we detected phage-mediated transfer of a large plant pathogenicity genomic island and show that CRISPR-Cas can inhibit its transduction. Despite these inhibitory effects of CRISPR-Cas on transduction, its more common role in phage resistance promotes rather than diminishes HGT via transduction by protecting bacteria from phage infection. This protective effect can also increase transduction of phage-sensitive members of mixed populations. CRISPR-Cas systems themselves display evidence of HGT, but little is known about their lateral dissemination between bacteria and whether transduction can contribute. We show that, through transduction, bacteria can acquire an entire chromosomal CRISPR-Cas system, including cas genes and phage-targeting spacers. We propose that the positive effect of CRISPR-Cas phage immunity on enhancing transduction surpasses the rarer cases where gene flow by transduction is restricted. IMPORTANCE The generation of genetic diversity through acquisition of DNA is a powerful contributor to microbial evolution and occurs through transformation, conjugation, and transduction. Of these, transduction, the phage-mediated transfer of bacterial DNA, is arguably the major route for genetic exchange. CRISPR-Cas adaptive immune systems control gene transfer by conjugation and transformation, but transduction has been mostly overlooked. Our results indicate that CRISPR-Cas can impede, but typically enhances the transduction of plasmids, chromosomal genes, and pathogenicity islands. By limiting wild-type phage replication, CRISPR-Cas immunity increases transduction in both phage-resistant and -sensitive members of mixed populations. Furthermore, we demonstrate mobilization of a chromosomal CRISPR-Cas system containing phage-targeting spacers by generalized transduction, which might partly account for the uneven distribution of these systems in nature. Overall, the ability of CRISPR-Cas to promote transduction reveals an unexpected impact of adaptive immunity on horizontal gene transfer, with broader implications for microbial evolution. Copyright © 2018 Watson et al.
USDA-ARS?s Scientific Manuscript database
Current data does not exist sufficient for predicting thermal inactivation kinetics of Salmonella spp. for many types of liquid egg products, including salted liquid whole egg, for use in updating pasteurization guidelines. This is, in part, due to variations in Salmonella strains and changes in th...
Luzar, Jernej; Molek, Peter; Šilar, Mira; Korošec, Peter; Košnik, Mitja; Štrukelj, Borut; Lunder, Mojca
2016-03-01
Cat allergy is one of the most prevalent allergies worldwide and can lead to the development of rhinitis and asthma. Thus far, only allergen extracts from natural sources have been used for allergen-specific immunotherapy. However, extracts and whole allergens in immunotherapy present an anaphylaxis risk. Identification of allergen epitopes or mimotopes has an important role in development of safe and effective allergen-specific immunotherapy. Moreover, with a suitable immunogenic carrier, the absence of sufficient immune response elicited by short peptides could be surmounted. In this study, we identified five structural mimotopes of the major cat allergen Fel d 1 by immunoscreening with random peptide phage libraries. The mimotopes were computationally mapped to the allergen surface, and their IgE reactivity was confirmed using sera from cat-allergic patients. Importantly, the mimotopes showed no basophil activation of the corresponding cat-allergic patients, which makes them good candidates for the development of hypoallergenic vaccine. As bacteriophage particles are becoming increasingly recognized as immunogenic carriers, we constructed bacteriophage particles displaying multiple copies of each selected mimotope on major phage coat protein. These constructed phages elicited T cell-mediated immune response, which was predominated by the type 1 T cell response. Mimotopes alone contributed to the type 1 T cell response by promoting IL-2 production. Fel d 1 mimotopes, as well as their filamentous phage immunogenic carriers, represent promising candidates in the development of hypoallergenic vaccine against cat allergy. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hargreaves, Katherine R; Flores, Cesar O; Lawley, Trevor D; Clokie, Martha R J
2014-08-26
Clostridium difficile is an important human-pathogenic bacterium causing antibiotic-associated nosocomial infections worldwide. Mobile genetic elements and bacteriophages have helped shape C. difficile genome evolution. In many bacteria, phage infection may be controlled by a form of bacterial immunity called the clustered regularly interspaced short palindromic repeats/CRISPR-associated (CRISPR/Cas) system. This uses acquired short nucleotide sequences (spacers) to target homologous sequences (protospacers) in phage genomes. C. difficile carries multiple CRISPR arrays, and in this paper we examine the relationships between the host- and phage-carried elements of the system. We detected multiple matches between spacers and regions in 31 C. difficile phage and prophage genomes. A subset of the spacers was located in prophage-carried CRISPR arrays. The CRISPR spacer profiles generated suggest that related phages would have similar host ranges. Furthermore, we show that C. difficile strains of the same ribotype could either have similar or divergent CRISPR contents. Both synonymous and nonsynonymous mutations in the protospacer sequences were identified, as well as differences in the protospacer adjacent motif (PAM), which could explain how phages escape this system. This paper illustrates how the distribution and diversity of CRISPR spacers in C. difficile, and its prophages, could modulate phage predation for this pathogen and impact upon its evolution and pathogenicity. Clostridium difficile is a significant bacterial human pathogen which undergoes continual genome evolution, resulting in the emergence of new virulent strains. Phages are major facilitators of genome evolution in other bacterial species, and we use sequence analysis-based approaches in order to examine whether the CRISPR/Cas system could control these interactions across divergent C. difficile strains. The presence of spacer sequences in prophages that are homologous to phage genomes raises an extra level of complexity in this predator-prey microbial system. Our results demonstrate that the impact of phage infection in this system is widespread and that the CRISPR/Cas system is likely to be an important aspect of the evolutionary dynamics in C. difficile. Copyright © 2014 Hargreaves et al.
The Small Viral Membrane-Associated Protein P32 Is Involved in Bacteriophage PRD1 DNA Entry
Grahn, A. Marika; Daugelavičius, Rimantas; Bamford, Dennis H.
2002-01-01
The lipid-containing bacteriophage PRD1 infects a variety of gram-negative cells by injecting its linear double-stranded DNA genome into the host cell cytoplasm, while the protein capsid is left outside. The virus membrane and several structural proteins are involved in phage DNA entry. In this work we identified a new infectivity protein of PRD1. Disruption of gene XXXII resulted in a mutant phenotype defective in phage reproduction. The absence of the protein P32 did not compromise the particle assembly but led to a defect in phage DNA injection. In P32-deficient particles the phage membrane is unable to undergo a structural transformation from a spherical to a tubular form. Since P32− particles are able to increase the permeability of the host cell envelope to a degree comparable to that found with wild-type particles, we suggest that the tail-tube formation is needed to eject the DNA from the phage particle rather than to reach the host cell interior. PMID:11967303
Chorianopoulos, Nikos G; Giaouris, Efstathios D; Kourkoutas, Yiannis; Nychas, George-John E
2010-03-01
Compounds present in Hafnia alvei cell-free culture supernatant cumulatively negatively influence the early stage of biofilm development by Salmonella enterica serovar Enteritidis on stainless steel while they also reduce the overall metabolic activity of S. Enteritidis planktonic cells. Although acylhomoserine lactones (AHLs) were detected among these compounds, the use of several synthetic AHLs was not able to affect the initial stage of biofilm formation by this pathogen.
1984-07-20
Carter and Collins, 1974a; Collins and Carter, 1978; O’Brien, 1982a). S. typhimurium and certain strains of Salmonella enteritidis are facultative...tested by S. enteritidis challenge of mice chronically infected with an antigenically dissimilar Salmonella species, S. montevideo. These mice were...given 5 X lO"’’ S. enteritidis . Crosses of resistant and susceptible strains resulted in Fl progeny of a Salmonella resistant phenotype. Backcross
Friman, Ville-Petri; Buckling, Angus
2014-01-01
The coincidental theory of virulence predicts that bacterial pathogenicity could be a by-product of selection by natural enemies in environmental reservoirs. However, current results are ambiguous and the simultaneous impact of multiple ubiquitous enemies, protists and phages on virulence evolution has not been investigated previously. Here we tested experimentally how Tetrahymena thermophila protist predation and PNM phage parasitism (bacteria-specific virus) alone and together affect the evolution of Pseudomonas aeruginosa PAO1 virulence, measured in wax moth larvae. Protist predation selected for small colony types, both in the absence and presence of phage, which showed decreased edibility to protists, reduced growth in the absence of enemies and attenuated virulence. Although phage selection alone did not affect the bacterial phenotype, it weakened protist-driven antipredatory defence (biofilm formation), its associated pleiotropic growth cost and the correlated reduction in virulence. These results suggest that protist selection can be a strong coincidental driver of attenuated bacterial virulence, and that phages can constrain this effect owing to effects on population dynamics and conflicting selection pressures. Attempting to define causal links such as these might help us to predict the cold and hot spots of coincidental virulence evolution on the basis of microbial community composition of environmental reservoirs. PMID:24671085
Brüssow, Harald
2007-08-01
Bacteriophages and protists are major causes of bacterial mortality. Genomics suggests that phages evolved well before eukaryotic protists. Bacteria were thus initially only confronted with phage predators. When protists evolved, bacteria were caught between two types of predators. One successful antigrazing strategy of bacteria was the elaboration of toxins that would kill the grazer. The released cell content would feed bystander bacteria. I suggest here that, to fight grazing protists, bacteria teamed up with those phage predators that concluded at least a temporary truce with them in the form of lysogeny. Lysogeny was perhaps initially a resource management strategy of phages that could not maintain infection chains. Subsequently, lysogeny might have evolved into a bacterium-prophage coalition attacking protists, which became a food source for them. When protists evolved into multicellular animals, the lysogenic bacteria tracked their evolving food source. This hypothesis could explain why a frequent scheme of bacterial pathogenicity is the survival in phagocytes, why a significant fraction of bacterial pathogens have prophage-encoded virulence genes, and why some virulence factors of animal pathogens are active against unicellular eukaryotes. Bacterial pathogenicity might thus be one playing option of the stone-scissor-paper game played between phages-bacteria-protists, with humans getting into the crossfire.
NASA Astrophysics Data System (ADS)
De Plano, Laura M.; Scibilia, Santi; Rizzo, Maria Giovanna; Crea, Sara; Franco, Domenico; Mezzasalma, Angela M.; Guglielmino, Salvatore P. P.
2018-03-01
Silicon nanoparticles (SiNPs) are widely used as promising nanoplatform owing to their high specific surface area, optical properties and biocompatibility. Silicon nanoparticles find possible application in biomedical environment for their potential quantum effects and the functionalization with biomaterials, too. In this work, we propose a new approach for bio-functionalization of SiNPs and M13-engineered bacteriophage, displaying specific peptides that selectively recognize peripheral blood mononuclear cells (PBMC). The "one-step" functionalization is conducted during the laser ablation of silicon plate in buffer solution with engineered bacteriophages, to obtain SiNPs binding bacteriophages (phage-SiNPs). The interaction between SiNPs and bacteriophage is investigated. Particularly, the optical and morphological characterizations of phage-SiNPs are performed by UV-Vis spectroscopy, scanning electron microscopy operating in transmission mode (STEM) and X-ray spectroscopy (EDX). The functionality of phage-SiNPs is investigated through the photoemissive properties in recognition test on PBMC. Our results showed that phage-SiNPs maintain the capability and the activity to bind PBMC within 30 min. The fluorescence of phage-SiNPs allowed to obtain an optical signal on cell type targets. Finally, the proposed strategy demonstrated its potential use in in vitro applications and could be exploited to realize an optical biosensor to detect a specific target.