Friedrich, Torben; Rahmann, Sven; Weigel, Wilfried; Rabsch, Wolfgang; Fruth, Angelika; Ron, Eliora; Gunzer, Florian; Dandekar, Thomas; Hacker, Jörg; Müller, Tobias; Dobrindt, Ulrich
2010-10-21
The Enterobacteriaceae comprise a large number of clinically relevant species with several individual subspecies. Overlapping virulence-associated gene pools and the high overall genome plasticity often interferes with correct enterobacterial strain typing and risk assessment. Array technology offers a fast, reproducible and standardisable means for bacterial typing and thus provides many advantages for bacterial diagnostics, risk assessment and surveillance. The development of highly discriminative broad-range microbial diagnostic microarrays remains a challenge, because of marked genome plasticity of many bacterial pathogens. We developed a DNA microarray for strain typing and detection of major antimicrobial resistance genes of clinically relevant enterobacteria. For this purpose, we applied a global genome-wide probe selection strategy on 32 available complete enterobacterial genomes combined with a regression model for pathogen classification. The discriminative power of the probe set was further tested in silico on 15 additional complete enterobacterial genome sequences. DNA microarrays based on the selected probes were used to type 92 clinical enterobacterial isolates. Phenotypic tests confirmed the array-based typing results and corroborate that the selected probes allowed correct typing and prediction of major antibiotic resistances of clinically relevant Enterobacteriaceae, including the subspecies level, e.g. the reliable distinction of different E. coli pathotypes. Our results demonstrate that the global probe selection approach based on longest common factor statistics as well as the design of a DNA microarray with a restricted set of discriminative probes enables robust discrimination of different enterobacterial variants and represents a proof of concept that can be adopted for diagnostics of a wide range of microbial pathogens. Our approach circumvents misclassifications arising from the application of virulence markers, which are highly affected by horizontal gene transfer. Moreover, a broad range of pathogens have been covered by an efficient probe set size enabling the design of high-throughput diagnostics.
Comparative isolation and genetic diversity of Arcobacter sp. from fish and the coastal environment.
Rathlavath, S; Kumar, S; Nayak, B B
2017-07-01
Arcobacter species are emerging food-borne and water-borne human pathogens associated mostly with food animals and their environment. The present study was aimed to isolate Arcobacter species from fish, shellfish and coastal water samples using two methods and to determine their genetic diversity. Of 201 samples of fish, shellfish and water samples analysed, 66 (32·8%) samples showed the presence of Arcobacter DNA from both Arcobacter enrichment broth and Bolton broth. Arcobacters were isolated from 58 (87·8%) and 38 (57·5%) of Arcobacter DNA-positive samples using Arcobacter blood agar and Preston blood agar, respectively. Arcobacter sp. identified by biochemical tests were further analysed by a genus-specific PCR, followed by a multiplex-PCR and 16S rRNA-RFLP. From both the methods, four different Arcobacter species namely Arcobacter butzleri, Arcobacter skirrowii, Arcobacter mytili and Arcobacter defluvii were isolated, of which A. butzleri was the predominant species. Enterobacterial repetitive intergenic consensus (ERIC)-PCR fingerprint analysis revealed that the arcobacters isolated in this study were genetically very diverse and no specific genotype was found associated with a specific source (seafood or water). Since pathogenic arcobacters are not known to be natural inhabitants of coastal marine environment, identifying the sources of contamination will be crucial for effective management of this problem. Arcobacter sp. are emerging food- and water-borne human pathogens. In this study, comparison of two selective media suggested Arcobacter blood agar to be more efficient in yielding Arcobacter sp. from seafood. Furthermore, the isolation of Arcobacter sp. such as Arcobacter butzleri, A. skirrowii, A. mytili and A. defluvii from seafood suggests diverse sources of contamination of seafood by Arcobacter sp. Analysis of enterobacterial repetitive intergenic consensus sequence-PCR patterns of A. butzleri showed high genetic diversity and lack of clonality among the isolates. Arcobacter contamination of seafood is an emerging issue both from seafood safety and seafood trade point of view. © 2017 The Society for Applied Microbiology.
USDA-ARS?s Scientific Manuscript database
Pectobacterium species are enterobacterial plant-pathogens that cause soft rot disease in diverse plant species. Unlike hemi-biotrophic plant pathogenic bacteria, the type III secretion system (T3SS) of Pectobacterium carotovorum subsp. carotovorum (P. carotovorum) appears to secrete only one effect...
Fire blight: applied genomic insights of the pathogen and host
USDA-ARS?s Scientific Manuscript database
The enterobacterial phytopathogen, Erwinia amylovora, causes fire blight, an invasive disease that threatens a wide range of commercial and ornamental Rosaceae host plants. The response elicited by E. amylovora in its host during disease development is similar to the hypersensitive reaction that ty...
Mechanisms of inflammation-driven bacterial dysbiosis in the gut
Zeng, MY; Inohara, N; Nuñez, G
2018-01-01
The gut microbiota has diverse and essential roles in host metabolism, development of the immune system and as resistance to pathogen colonization. Perturbations of the gut microbiota, termed gut dysbiosis, are commonly observed in diseases involving inflammation in the gut, including inflammatory bowel disease, infection, colorectal cancer and food allergies. Importantly, the inflamed microenvironment in the gut is particularly conducive to blooms of Enterobacteriaceae, which acquire fitness benefits while other families of symbiotic bacteria succumb to environmental changes inflicted by inflammation. Here we summarize studies that examined factors in the inflamed gut that contribute to blooms of Enterobacterieaceae, and highlight potential approaches to restrict Enterobacterial blooms in treating diseases that are otherwise complicated by overgrowth of virulent Enterobacterial species in the gut. PMID:27554295
Hussain, Arif; Shaik, Sabiha; Ranjan, Amit; Nandanwar, Nishant; Tiwari, Sumeet K.; Majid, Mohammad; Baddam, Ramani; Qureshi, Insaf A.; Semmler, Torsten; Wieler, Lothar H.; Islam, Mohammad A.; Chakravortty, Dipshikha; Ahmed, Niyaz
2017-01-01
Multidrug-resistant Escherichia coli infections are a growing public health concern. This study analyzed the possibility of contamination of commercial poultry meat (broiler and free-range) with pathogenic and or multi-resistant E. coli in retail chain poultry meat markets in India. We analyzed 168 E. coli isolates from broiler and free-range retail poultry (meat/ceca) sampled over a wide geographical area, for their antimicrobial sensitivity, phylogenetic groupings, virulence determinants, extended-spectrum-β-lactamase (ESBL) genotypes, fingerprinting by Enterobacterial Repetitive Intergenic Consensus (ERIC) PCR and genetic relatedness to human pathogenic E. coli using whole genome sequencing (WGS). The prevalence rates of ESBL producing E. coli among broiler chicken were: meat 46%; ceca 40%. Whereas, those for free range chicken were: meat 15%; ceca 30%. E. coli from broiler and free-range chicken exhibited varied prevalence rates for multi-drug resistance (meat 68%; ceca 64% and meat 8%; ceca 26%, respectively) and extraintestinal pathogenic E. coli (ExPEC) contamination (5 and 0%, respectively). WGS analysis confirmed two globally emergent human pathogenic lineages of E. coli, namely the ST131 (H30-Rx subclone) and ST117 among our poultry E. coli isolates. These results suggest that commercial poultry meat is not only an indirect public health risk by being a possible carrier of non-pathogenic multi-drug resistant (MDR)-E. coli, but could as well be the carrier of human E. coli pathotypes. Further, the free-range chicken appears to carry low risk of contamination with antimicrobial resistant and extraintestinal pathogenic E. coli (ExPEC). Overall, these observations reinforce the understanding that poultry meat in the retail chain could possibly be contaminated by MDR and/or pathogenic E. coli. PMID:29180984
Hussain, Arif; Shaik, Sabiha; Ranjan, Amit; Nandanwar, Nishant; Tiwari, Sumeet K; Majid, Mohammad; Baddam, Ramani; Qureshi, Insaf A; Semmler, Torsten; Wieler, Lothar H; Islam, Mohammad A; Chakravortty, Dipshikha; Ahmed, Niyaz
2017-01-01
Multidrug-resistant Escherichia coli infections are a growing public health concern. This study analyzed the possibility of contamination of commercial poultry meat (broiler and free-range) with pathogenic and or multi-resistant E. coli in retail chain poultry meat markets in India. We analyzed 168 E. coli isolates from broiler and free-range retail poultry (meat/ceca) sampled over a wide geographical area, for their antimicrobial sensitivity, phylogenetic groupings, virulence determinants, extended-spectrum-β-lactamase (ESBL) genotypes, fingerprinting by Enterobacterial Repetitive Intergenic Consensus (ERIC) PCR and genetic relatedness to human pathogenic E. coli using whole genome sequencing (WGS). The prevalence rates of ESBL producing E. coli among broiler chicken were: meat 46%; ceca 40%. Whereas, those for free range chicken were: meat 15%; ceca 30%. E. coli from broiler and free-range chicken exhibited varied prevalence rates for multi-drug resistance (meat 68%; ceca 64% and meat 8%; ceca 26%, respectively) and extraintestinal pathogenic E. coli (ExPEC) contamination (5 and 0%, respectively). WGS analysis confirmed two globally emergent human pathogenic lineages of E. coli , namely the ST131 ( H 30-Rx subclone) and ST117 among our poultry E. coli isolates. These results suggest that commercial poultry meat is not only an indirect public health risk by being a possible carrier of non-pathogenic multi-drug resistant (MDR)- E. coli , but could as well be the carrier of human E. coli pathotypes. Further, the free-range chicken appears to carry low risk of contamination with antimicrobial resistant and extraintestinal pathogenic E. coli (ExPEC). Overall, these observations reinforce the understanding that poultry meat in the retail chain could possibly be contaminated by MDR and/or pathogenic E. coli.
Ceuppens, Siele; De Coninck, Dieter; Bottledoorn, Nadine; Van Nieuwerburgh, Filip; Uyttendaele, Mieke
2017-09-18
Application of 16S rRNA (gene) amplicon sequencing on food samples is increasingly applied for assessing microbial diversity but may as unintended advantage also enable simultaneous detection of any human pathogens without a priori definition. In the present study high-throughput next-generation sequencing (NGS) of the V1-V2-V3 regions of the 16S rRNA gene was applied to identify the bacteria present on fresh basil leaves. However, results were strongly impacted by variations in the bioinformatics analysis pipelines (MEGAN, SILVAngs, QIIME and MG-RAST), including the database choice (Greengenes, RDP and M5RNA) and the annotation algorithm (best hit, representative hit and lowest common ancestor). The use of pipelines with default parameters will lead to discrepancies. The estimate of microbial diversity of fresh basil using 16S rRNA (gene) amplicon sequencing is thus indicative but subject to biases. Salmonella enterica was detected at low frequencies, between 0.1% and 0.4% of bacterial sequences, corresponding with 37 to 166 reads. However, this result was dependent upon the pipeline used: Salmonella was detected by MEGAN, SILVAngs and MG-RAST, but not by QIIME. Confirmation of Salmonella sequences by real-time PCR was unsuccessful. It was shown that taxonomic resolution obtained from the short (500bp) sequence reads of the 16S rRNA gene containing the hypervariable regions V1-V3 cannot allow distinction of Salmonella with closely related enterobacterial species. In conclusion 16S amplicon sequencing, getting the status of standard method in microbial ecology studies of foods, needs expertise on both bioinformatics and microbiology for analysis of results. It is a powerful tool to estimate bacterial diversity but amenable to biases. Limitations concerning taxonomic resolution for some bacterial species or its inability to detect sub-dominant (pathogenic) species should be acknowledged in order to avoid overinterpretation of results. Copyright © 2017 Elsevier B.V. All rights reserved.
Pooler, M R; Ritchie, D F; Hartung, J S
1996-01-01
Genetic relationships among 25 isolates of Xanthomonas fragariae from diverse geographic regions were determined by three PCR methods that rely on different amplification priming strategies: random amplified polymorphic DNA (RAPD) PCR, repetitive extragenic palindromic (REP) PCR, and enterobacterial repetitive intergenic consensus (ERIC) PCR. The results of these assays are mutually consistent and indicate that pathogenic strains are very closely related to each other. RAPD, ERIC, and REP PCR assays identified nine, four, and two genotypes, respectively, within X. fragariae isolates. A single nonpathogenic isolate of X. fragariae was not distinguishable by these methods. The results of the PCR assays were also fully confirmed by physiological tests. There was no correlation between DNA amplification product patterns and geographic sites of isolation, suggesting that this bacterium has spread largely through exchange of infected plant germ plasm. Sequences identified through the RAPD assays were used to develop three primer pairs for standard PCR assays to identify X. fragariae. In addition, we developed a stringent multiplexed PCR assay to identify X. fragariae by simultaneously using the three independently derived sets of primers specific for pathogenic strains of the bacteria. PMID:8795198
Paydar, Mohammadjavad; Thong, Kwai Lin
2013-10-01
Vibrio vulnificus is a highly invasive human pathogen that exists naturally in estuarine environment and coastal waters. In this study, we used different PCR assays to detect V. vulnificus in 260 seafood and 80 seawater samples. V. vulnificus was present in about 34 (13%) of the 260 seafood samples and 18 (23%) of the 80 seawater samples. Repetitive extragenic palindromic PCR (REP-PCR) and enterobacterial repetitive intergenic consensus PCR (ERIC-PCR) were applied to subtype the V. vulnificus isolates. Twenty-five REP profiles and 45 ERIC profiles were observed, and the isolates were categorized into 9 and 10 distinct clusters at the similarity of 80%, by REP-PCR and ERIC-PCR, respectively. ERIC-PCR is more discriminative than REP-PCR in subtyping V. vulnificus, demonstrating high genetic diversity among the isolates.
Twelve prophage-like T7 islands have been discovered in pathogenic bacterial genomes. These islands contain two or three tandem T7-like promoters that should be activated when a bacterial cell is infected by bacteriophage T7 or a related phage. The illustration shows genetic maps for four of the islands, Ty2, BS512, E22 and ECA, which are found in the genomes of S. enterica
Matilla, Miguel A.
2014-01-01
Members of the enterobacterial genus Serratia are ecologically widespread, and some strains are opportunistic human pathogens. Bacteriophage ϕMAM1 was isolated on Serratia plymuthica A153, a biocontrol rhizosphere strain that produces the potently bioactive antifungal and anticancer haterumalide oocydin A. The ϕMAM1 phage is a generalized transducing phage that infects multiple environmental and clinical isolates of Serratia spp. and a rhizosphere strain of Kluyvera cryocrescens. Electron microscopy allowed classification of ϕMAM1 in the family Myoviridae. Bacteriophage ϕMAM1 is virulent, uses capsular polysaccharides as a receptor, and can transduce chromosomal markers at frequencies of up to 7 × 10−6 transductants per PFU. We also demonstrated transduction of the complete 77-kb oocydin A gene cluster and heterogeneric transduction of a plasmid carrying a type III toxin-antitoxin system. These results support the notion of the potential ecological importance of transducing phages in the acquisition of genes by horizontal gene transfer. Phylogenetic analyses grouped ϕMAM1 within the ViI-like bacteriophages, and genomic analyses revealed that the major differences between ϕMAM1 and other ViI-like phages arise in a region encoding the host recognition determinants. Our results predict that the wider genus of ViI-like phages could be efficient transducing phages, and this possibility has obvious implications for the ecology of horizontal gene transfer, bacterial functional genomics, and synthetic biology. PMID:25107968
Genomic Diversity of Erwinia carotovora subsp. carotovora and Its Correlation with Virulence
Yap, Mee-Ngan; Barak, Jeri D.; Charkowski, Amy O.
2004-01-01
We used genetic and biochemical methods to examine the genomic diversity of the enterobacterial plant pathogen Erwinia carotovora subsp. carotovora. The results obtained with each method showed that E. carotovora subsp. carotovora strains isolated from one ecological niche, potato plants, are surprisingly diverse compared to related pathogens. A comparison of 23 partial mdh sequences revealed a maximum pairwise difference of 10.49% and an average pairwise difference of 2.13%, values which are much greater than the maximum variation (1.81%) and average variation (0.75%) previously reported for Escherichia coli. Pulsed-field gel electrophoresis analysis of I-CeuI-digested genomic DNA revealed seven rrn operons in all E. carotovora subsp. carotovora strains examined except strain WPP17, which had only six copies. We identified 26 I-CeuI restriction fragment length polymorphism patterns and observed significant polymorphism in fragment sizes ranging from 100 to 450 kb for all strains. We detected large plasmids in two strains, including the model strain E. carotovora subsp. carotovora 71. The two least virulent strains had an unusual chromosomal structure, suggesting that a particular pulsotype is correlated with virulence. To compare chromosomal organization of multiple enterobacterial genomes, several genes were mapped onto I-CeuI fragments. We identified portions of the genome that appear to be conserved across enterobacteria and portions that have undergone genome rearrangements. We found that the least virulent strain, WPP17, failed to oxidize cellobiose and was missing several hrp and hrc genes. The unexpected variability among isolates obtained from clonal hosts in one region and in one season suggests that factors other than the host plant, potato, drive the evolution of this common environmental bacterium and key plant pathogen. PMID:15128563
Rossmann, Bettina; Müller, Henry; Smalla, Kornelia; Mpiira, Samuel; Tumuhairwe, John Baptist; Staver, Charles
2012-01-01
Bananas are among the most widely consumed foods in the world. In Uganda, the country with the second largest banana production in the world, bananas are the most important staple food. The objective of this study was to analyze banana-associated microorganisms and to select efficient antagonists against fungal pathogens which are responsible for substantial yield losses. We studied the structure and function of microbial communities (endosphere, rhizosphere, and soil) obtained from three different traditional farms in Uganda by cultivation-independent (PCR-SSCP fingerprints of 16S rRNA/ITS genes, pyrosequencing of enterobacterial 16S rRNA gene fragments, quantitative PCR, fluorescence in situ hybridization coupled with confocal laser scanning microscopy, and PCR-based detection of broad-host-range plasmids and sulfonamide resistance genes) and cultivation-dependent methods. The results showed microhabitat-specific microbial communities that were significant across sites and treatments. Furthermore, all microhabitats contained a high number and broad spectrum of indigenous antagonists toward identified fungal pathogens. While bacterial antagonists were found to be enriched in banana plants, fungal antagonists were less abundant and mainly found in soil. The banana stem endosphere was the habitat with the highest bacterial counts (up to 109 gene copy numbers g−1). Here, enterics were found to be enhanced in abundance and diversity; they provided one-third of the bacteria and were identified by pyrosequencing with 14 genera, including not only potential human (Escherichia, Klebsiella, Salmonella, and Yersinia spp.) and plant (Pectobacterium spp.) pathogens but also disease-suppressive bacteria (Serratia spp.). The dominant role of enterics can be explained by the permanent nature and vegetative propagation of banana and the amendments of human, as well as animal, manure in these traditional cultivations. PMID:22562988
Gomez-De-Leon, Patricia; Santos, Jose I.; Caballero, Javier; Gomez, Demostenes; Espinosa, Luz E.; Moreno, Isabel; Piñero, Daniel; Cravioto, Alejandro
2000-01-01
Genomic fingerprints from 92 capsulated and noncapsulated strains of Haemophilus influenzae from Mexican children with different diseases and healthy carriers were generated by PCR using the enterobacterial repetitive intergenic consensus (ERIC) sequences. A cluster analysis by the unweighted pair-group method with arithmetic averages based on the overall similarity as estimated from the characteristics of the genomic fingerprints, was conducted to group the strains. A total of 69 fingerprint patterns were detected in the H. influenzae strains. Isolates from patients with different diseases were represented by a variety of patterns, which clustered into two major groups. Of the 37 strains isolated from cases of meningitis, 24 shared patterns and were clustered into five groups within a similarity level of 1.0. One fragment of 1.25 kb was common to all meningitis strains. H. influenzae strains from healthy carriers presented fingerprint patterns different from those found in strains from sick children. Isolates from healthy individuals were more variable and were distributed differently from those from patients. The results show that ERIC-PCR provides a powerful tool for the determination of the distinctive pathogenicity potentials of H. influenzae strains and encourage its use for molecular epidemiology investigations. PMID:10878033
Domínguez-López, M L; Ortega-Ortega, Y; Manríquez-Raya, J C; Burgos-Vargas, R; Vega-López, A; García-Latorre, E
2009-01-01
To study the association of HLA-B27 with IgG antibodies to different enterobacterial HSP60s in patients with ankylosing spondylitis (AS). IgG antibodies to 60 kDa enterobacterial HSPs were determined by ELISA in paired samples of sera and synovial fluid from 21 HLA-B27+ ankylosing spondylitis (AS) patients; and in sera from 32 HLA-B27+ AS patients, 35 HLA-B27+ healthy relatives of AS patients, and 60 HLA-B27- healthy individuals with no family members with AS. HLA-B27+ patients and healthy individuals showed significantly higher IgG antibody levels to recombinant enterobacterial HSP60s than HLA-B27- healthy controls. The levels of anti-HSP60Sf and anti-HSP60Ec antibodies correlated with disease activity and anti-HSP60Ec antibodies with male gender. No association between enterobacterial HSP60 antibody levels and disease duration was observed. All groups had lower levels of IgG antibodies to rHSP60 from Streptococcus pyogenes (rHSP60 Spy). In paired samples of sera and synovial fluid from B27+ patients, IgG antibodies to enterobacterial HSP60s were detected, but in significantly higher levels in sera than in synovial fluid. The anti-rHSPSpy IgG response in these samples was lower and similar in the three groups. A correlation was found between HLA-B27 and the response to recombinat enterobacterial HSP60s. This response could be associated with disease activitir and gender in some proteins and the presence eof IgG antibodies to these proteins in synovial fluid could be associated with the inflammatory process and initiation of AS.
Hollmén, Tuula E.; DebRoy, Chitrita; Flint, Paul L.; Safine, David E.; Schamber, Jason L.; Riddle, Ann E.; Trust, Kimberly A.
2011-01-01
In Alaska, sea ducks winter in coastal habitats at remote, non-industrialized areas, as well as in proximity to human communities and industrial activity. We evaluated prevalence and characteristics of Escherichia coli strains in faecal samples of Steller's eiders (Polysticta stelleri; n = 122) and harlequin ducks (Histrionicus histrionicus; n = 21) at an industrialized site and Steller's eiders (n = 48) at a reference site, and compared these strains with those isolated from water samples from near-shore habitats of ducks. The overall prevalence of E. coli was 16% and 67% in Steller's eiders and harlequin ducks, respectively, at the industrialized study site, and 2% in Steller's eiders at the reference site. Based on O and H antigen subtyping and genetic characterization by enterobacterial repetitive intergenic consensus polymerase chain reaction and pulsed-field gel electrophoresis, we found evidence of avian pathogenic E. coli (APEC) strains associated with both species and detected E. coli strains carrying virulence genes associated with mammals in harlequin ducks. Steller's eiders that carried APEC had lower serum total protein and albumin concentrations, providing further evidence of pathogenicity. The genetic profile of two E. coli strains from water matched an isolate from a Steller's eider providing evidence of transmission between near-shore habitats and birds.
Hollmén, Tuula E; Debroy, Chitrita; Flint, Paul L; Safine, David E; Schamber, Jason L; Riddle, Ann E; Trust, Kimberly A
2011-04-01
In Alaska, sea ducks winter in coastal habitats at remote, non-industrialized areas, as well as in proximity to human communities and industrial activity. We evaluated prevalence and characteristics of Escherichia coli strains in faecal samples of Steller's eiders (Polysticta stelleri; n = 122) and harlequin ducks (Histrionicus histrionicus; n = 21) at an industrialized site and Steller's eiders (n = 48) at a reference site, and compared these strains with those isolated from water samples from near-shore habitats of ducks. The overall prevalence of E. coli was 16% and 67% in Steller's eiders and harlequin ducks, respectively, at the industrialized study site, and 2% in Steller's eiders at the reference site. Based on O and H antigen subtyping and genetic characterization by enterobacterial repetitive intergenic consensus polymerase chain reaction and pulsed-field gel electrophoresis, we found evidence of avian pathogenic E. coli (APEC) strains associated with both species and detected E. coli strains carrying virulence genes associated with mammals in harlequin ducks. Steller's eiders that carried APEC had lower serum total protein and albumin concentrations, providing further evidence of pathogenicity. The genetic profile of two E. coli strains from water matched an isolate from a Steller's eider providing evidence of transmission between near-shore habitats and birds. © 2010 Society for Applied Microbiology and Blackwell Publishing Ltd.
Wei, Lei; Wu, Qingping; Zhang, Jumei; Guo, Weipeng; Chen, Moutong; Xue, Liang; Wang, Juan; Ma, Lianying
2017-01-01
Enterococcus faecalis is an important opportunistic pathogen which is frequently detected in mineral water and spring water for human consumption and causes human urinary tract infections, endocarditis and neonatal sepsis. The aim of this study was to determine the prevalence, virulence genes, antimicrobial resistance and genetic diversity of E. faecalis from mineral water and spring water in China. Of 314 water samples collected from January 2013 to January 2014, 48 samples (15.3%) were contaminated E. faecalis . The highest contamination rate occurred in activated carbon filtered water of spring water (34.5%), followed by source water of spring water (32.3%) and source water of mineral water (6.4%). The virulence gene test of 58 E. faecalis isolates showed that the detection rates of asa1 , ace , cylA , gelE and hyl were 79.3, 39.7, 0, 100, 0%, respectively. All 58 E. faecalis isolates were not resistant to 12 kinds of antibiotics (penicillin, ampicillin, linezolid, quinupristin/dalfopristin, vancomycin, gentamicin, streptomycin, ciprofloxacin, levofloxacin, norfloxacin, nitrofurantoin, and tetracycline). Enterobacterial repetitive intergenic consensus-PCR classified 58 isolates and three reference strains into nine clusters with a similarity of 75%. This study is the first to investigate the prevalence of E. faecalis in mineral water and spring water in China. The results of this study suggested that spring water could be potential vehicles for transmission of E. faecalis .
Stecher, Bärbel
2015-06-01
The healthy human intestine is colonized by as many as 1014 bacteria belonging to more than 500 different species forming a microbial ecosystem of unsurpassed diversity, termed the microbiota. The microbiota's various bacterial members engage in a physiological network of cooperation and competition within several layers of complexity. Within the last 10 years, technological progress in the field of next-generation sequencing technologies has tremendously advanced our understanding of the wide variety of physiological and pathological processes that are influenced by the commensal microbiota (1, 2). An increasing number of human disease conditions, such as inflammatory bowel diseases (IBD), type 2 diabetes, obesity, allergies and colorectal cancer are linked with altered microbiota composition (3). Moreover, a clearer picture is emerging of the composition of the human microbiota in healthy individuals, its variability over time and between different persons and how the microbiota is shaped by environmental factors (i.e., diet) and the host's genetic background (4). A general feature of a normal, healthy gut microbiota can generate conditions in the gut that disfavor colonization of enteric pathogens. This is termed colonization-resistance (CR). Upon disturbance of the microbiota, CR can be transiently disrupted, and pathogens can gain the opportunity to grow to high levels. This disruption can be caused by exposure to antibiotics (5, 6), changes in diet (7, 8), application of probiotics and drugs (9), and a variety of diseases (3). Breakdown of CR can boost colonization by intrinsic pathogens or increase susceptibility to infections (10). One consequence of pathogen expansion is the triggering of inflammatory host responses and pathogen-mediated disease. Interestingly, human enteric pathogens are part of a small group of bacterial families that belong to the Proteobacteria: the Enterobacteriaceae (E. coli, Yersinia spp., Salmonella spp., Shigella spp.), the Vibrionaceae (Vibrio cholerae) and the Campylobacteriaceae (Campylobacter spp.). In general, members of these families (be it commensals or pathogens) only constitute a minority of the intestinal microbiota. However, proteobacterial "blooms" are a characteristic trait of an abnormal microbiota such as in the course of antibiotic therapy, dietary changes or inflammation (11). It has become clear that the gut microbiota not only plays a major role in priming and regulating mucosal and systemic immunity, but that the immune system also contributes to host control over microbiota composition. These two ways of mutual communication between the microbiota and the immune system were coined as "outside-in" and "inside-out," respectively (12). The significance of those interactions for human health is particularly evident in Crohn's disease (CD) and Ulcerative Colitis (UC). The symptoms of these recurrent, chronic types of gut inflammation are caused by an excessive immune response against one's own commensal microbiota (13). It is assumed that deregulated immune responses can be caused by a genetic predisposition, leading to, for example, the impairment of intestinal barrier function or disruption of mucosal T-cell homeostasis. In CD or UC patients, an abnormally composed microbiota, referred to as "dysbiosis," is commonly observed (discussed later). This is often characterized by an increased relative abundance of facultative anaerobic bacteria (e.g., Enterobacteriaeceae, Bacilli) and, at the same time, depletion of obligate anaerobic bacteria of the classes Bacteroidia and Clostridia. So far, it is unclear whether dysbiosis is a cause or a consequence of inflammatory bowel disease (IBD). In fact, both scenarios are equally conceivable. Recent work suggests that inflammatory immune responses in the gut (both IBD and pathogen-induced) can alter the gut luminal milieu in a way that favors dysbiosis (14). In this chapter, I present a survey on our current state of understanding of the characteristics and mechanisms underlying gut inflammation-associated dysbiosis. The role of dysbiosis in enteric infections and human IBD is discussed. In addition, I will focus on competition of enteric pathogens and the gut microbiota in the inflamed gut and the role of dysbiotic microbiota alterations (e.g., "Enterobacterial blooms" (11)) for the evolution of pathogenicity.
Pathogen Presence in European Starlings Inhabiting Commercial Piggeries in South Australia.
Pearson, Hayley E; Lapidge, Steven J; Hernández-Jover, Marta; Toribio, Jenny-Ann L M L
2016-06-01
The majority of bacterial diarrhea-causing illnesses in domestic pigs result from infection with Escherichia coli, Salmonella spp., or Campylobacter spp. These bacterial enteropathogens also correspond with the most-common bacteria isolated from wild birds. Additionally, viral pathogens such as avian influenza virus (AIV), West Nile virus (WNV, including Kunjin disease), and Newcastle disease virus (NDV) may also be carried and transmitted by birds in Australia. Introduced European starlings (Sturnus vulgarus) are one of the most-frequently reported birds on piggeries in Australia. The presence of the three bacterial pathogens, Salmonella spp., Campylobacter spp., and Escherichia coli , as well as the three viral pathogens AIV, WNV, and NDV, were evaluated in starlings captured on four commercial piggeries in South Australia. A total of 473 starlings were captured on the four piggeries in 2008 and 2009. A cloacal swab was taken from each bird and cultured for bacterial identification, with follow-up serotyping of any positives, whilst fifty samples were analyzed by PCR for the three target viral pathogens. There was no AIV, WNV, or NDV detected in the 50 starlings sampled. Escherichia coli was found to be present in the starling populations on all four piggeries whilst Salmonella spp. and Campylobacter jejuni were found to be present only in the starling population sampled on one piggery. Serotyping identified pig-pathogenic strains of the bacteria. The prevalence of these production-limiting bacterial pathogens in starlings, coupled with the large starling populations often found inside piggeries during daylight hours in the summer months, presents a disease transmission risk and jeopardizes piggery disease management. Removal of starlings from agricultural enterprises (as shown by international studies), or prevention of starling access to animal feed and water, could substantially reduce the risk of transmission of enterobacterial pathogens from starlings to livestock.
Kabanova, Anastasia; Shneider, Mikhail; Bugaeva, Eugenia; Ha, Vo Thi Ngoc; Miroshnikov, Kirill; Korzhenkov, Aleksei; Kulikov, Eugene; Toschakov, Stepan; Ignatov, Alexander; Miroshnikov, Konstantin
2018-06-01
Bacteriophage vB_PpaP_PP74 (PP74) is a novel virulent phage that infects members of the species Pectobacterium parmentieri, a newly established species of soft-rot-causing bacteria in the family Pectobacteriaceae, derived from potato-specific Pectobacterium wasabiae. vB_PpaP_PP74 was identified as a member of the family Podoviridae by transmission electron microscopy. The phage has a 39,790-bp dsDNA genome containing 50 open reading frames (ORFs). Because of the absence of genes encoding toxins or lysogeny factors, PP74 may be considered a candidate phage for pathogen biocontrol applications. The genome layout is similar to genomes of T7-like phages within the subfamily Autographivirinae, and therefore, functions can be attributed to most of ORFs. However, the closest nucleotide sequence homologs of phage PP74 are unclassified Escherichia phages. Based on phylogenetic analysis, vB_PpaP_PP74 is a sensu lato T7-like phage, but it forms a distant subgenus group together with homologous enterobacterial phages.
Isogai, E; Isogai, H; Matuo, K; Hirose, K; Kowashi, Y; Okumuara, K; Hirata, M
2003-10-01
This paper reports the effect of the synthesized 27-amino acid sequence in the C-terminal domain of human CAP18 (hCAP18), a human cationic antibacterial protein or cathelicidin, on certain strains belonging to the genera Porophyromonas and Prevotella. The domain binds lipopolysaccharides (LPS) from Porophyromonas gingivalis and Porophyromonas circumdentaria as well as enterobacterial LPS. Two analogues of hCAP18, designated LL/CAP18 and FF/CAP18, were also tested to determine whether additional activity was obtained. The analogue peptides replaced with hydrophobic and cationic amino acid residues showed more potent bactericidal and LPS-binding activities than the original one.
Fünfhaus, Anne; Poppinga, Lena; Genersch, Elke
2013-11-01
Paenibacillus larvae is a Gram-positive bacterial pathogen causing the epizootic American foulbrood in honey bee larvae. Four so-called enterobacterial repetitive intergenic consensus (ERIC) genotypes of P. larvae exist with P. larvae genotypes ERIC I and ERIC II being responsible for disease outbreaks all over the world. Very few molecular data on the pathogen, on pathogenesis or on virulence factors exist. We now identified two genomic loci in P. larvae ERIC I coding for two binary AB toxins, Plx1 and Plx2. In silico analyses revealed that Plx1 is the third member of an enigmatic family of AB toxins so far only comprising MTX1 of Lysinibacillus sphaericus and pierisin-like toxins expressed by several butterflies. Plx2 is also remarkable because the A-domain is highly similar to C3 exoenzymes, which normally are single domain proteins, while the B-domain is homologous to B-domains of C2-toxins. We constructed P. larvae mutants lacking expression of Plx1, Plx2 or both toxins and demonstrated that these toxins are important virulence factors for P. larvae ERIC I. © 2013 Society for Applied Microbiology and John Wiley & Sons Ltd.
Sechi, Leonardo A.; Leori, Guido; Lollai, Stefano A.; Duprè, Ilaria; Molicotti, Paola; Fadda, Giovanni; Zanetti, Stefania
1999-01-01
Different genetic markers were used to analyze 22 Mycobacterium bovis strains isolated from cattle in Sardinia and one human isolate. IS6110 DNA fingerprinting differentiated the strains into six patterns, whereas with enterobacterial repetitive consensus sequence primers produced seven clusters. PCR ribotyping followed by digestion with HaeIII and PvuII produced five and seven patterns, respectively. PCR with the (GTG)5 oligonucleotide primer showed the best discriminatory power, generating eight clusters among the strains analyzed. PMID:10103282
Enterobacterial colonization in captive red-eared sliders (Trachemys scripta elegans).
Gioia-Di Chiacchio, Rosely; Penido Júnior, Gilberto Nogueira; De Souza, Claudia Almeida Igayara; Prioste, Fabiola Eloisa Setim; Prado, Miriam Siqueira; Knöbl, Terezinha; Menão, Marcia Cristina; Matushima, Eliana Reiko
2014-12-01
The handling of turtles and other reptiles can be associated with risk of pathogenic enterobacteria transmission, mainly Salmonella spp. The aim of this study was to identify the enterobacteria in cloacal swabs of 39 red-eared sliders (Trachemys scripta elegans). Cloacal swabs from 39 captive individuals were analyzed. After sample enrichment in brain-heart infusion broth and 1% peptone water, bacterial isolation was performed through cultivation in blood, MacConkey and xylose lysine desoxycholate agar. Bacterial identification was achieved through conventional tests and automated turbidity analysis. The results indicated the growth of Kluyvera ascorbata (38/39), Leclercia adecarboxylata (37/39), Raoultella planticola (30/39), Citrobacter freundii (20/39), Proteus spp. (15/39), and Escherichia coli (5/39). Salmonella spp. were not detected. The intestinal enterobacteria identified inthis study differed from that reported in the literature for other reptiles.
Vahjen, W; Cuisiniere, T; Zentek, J
2017-10-13
To investigate the inhibitory effect of indigenous enterobacteria on pathogenic Escherichia coli, a challenge trial with postweaning pigs was conducted. A pathogenic E. coli strain was administered to all animals and their health was closely monitored thereafter. Faecal samples were taken from three healthy and three diarrhoeic animals. Samples were cultivated on MacConkey agar and isolates were subcultured. A soft agar overlay assay was used to determine the inhibitory activity of the isolates. A total of 1,173 enterobacterial isolates were screened for their ability to inhibit the E. coli challenge strain. Colony forming units of enterobacteria on MacConkey agar were not different between healthy and diarrhoeic animals in the original samples. Furthermore, numbers of isolates per animal were also not significantly different between healthy (482 isolates) and diarrhoeic animals (691 isolates). A total of 43 isolates (3.7%) with inhibitory activity against the pathogenic E. coli challenge strain were detected. All inhibitory isolates were identified as E. coli via MALDI-TOF. The isolates belonged to the phylotypes A, C and E. Many isolates (67.4%) were commensal E. coli without relevant porcine pathogenic factors, but toxin- and fimbrial genes (stx2e, fae, estIb, elt1a, fas, fan) were detected in 14 inhibitory isolates. Healthy animals showed significantly (P=0.003) more inhibitory isolates (36 of 482 isolates; 7.5%) than diseased animals (7 of 691 isolates; 1.0%). There were no significant correlations regarding phylotype or pathogenic factors between healthy and diseased animals. This study has shown that a small proportion of indigenous E. coli is able to inhibit in vitro growth of a pathogenic E. coli strain in pigs. Furthermore, healthy animals possess significantly more inhibitory E. coli strains than diarrhoeic animals. The inhibition of pathogenic E. coli by specific indigenous E. coli strains may be an underlying principle for the containment of pathogenic E. coli in pigs.
NASA Astrophysics Data System (ADS)
Salvucci, A. E.; Elton, M.; Siler, J. D.; Zhang, W.; Richards, B. K.; Geohring, L. D.; Warnick, L. D.; Hay, A. G.; Steenhuis, T.
2010-12-01
The introduction of microbial pathogens into the environment from untreated manure represents a threat to water quality and human health. Thus, understanding the effect of manure management strategies is imperative to effectively mitigate the inadvertent release of pathogens, particularly in subsurface environments where they can be transported through macropores to the groundwater or through agricultural tile line to open water bodies. The production of cell-surface biomolecules is also suspected to play an important role in the environmental survival and transport of enterobacterial pathogens. This study collected Escherichia coli samples from three dairy farms with artificial tile drainage systems and active manure spreading in the Central New York region over a three-month period. Sampling targeted four potential source locations on each farm: (i) cow housing, (ii) manure storage facilities, (iii) field soil, and (iv) subsurface drainage effluent. Over 2800 E. coli isolates were recovered and consequently analyzed for the cell surface components, cellulose and curli, traits associated with increased environmental survival, altered transport and pathogenicity. The E. coli isolates from locations i-iii displayed highly variable curli and cellulose-producing communities, while isolates collected from subsurface runoff on each farm had stable curli and cellulose production communities over all sampling dates. Furthermore, the method of manure application to the fields influenced the population characteristics found in drainage effluent isolates. Incorporation of manure into the soil was correlated to isolate populations largely deficient of curli and cellulose; whereas farms that only surface-applied manure were correlated to isolate populations of high curli and cellulose production. The production of curli and cellulose has previously been shown to be a response to environmental stress on the cell. Therefore, incorporation of manure directly into the soil appears to minimize environmental stresses, like UV radiation, desiccation and temperature fluctuation, typically found on the soil surface. Our findings indicate that E. coli strains above the surface are largely diverse, until they enter subsurface environments where specific extracellular characteristics are likely advantageous for survival and/or transport.
Galal, Lamis; Abdel Aziz, Neveen A; Hassan, Walaa M
2018-05-11
Fluoroquinolones and aminoglycosides offer effective therapy for extended-spectrum beta-lactamase (ESBL)-producing enterobacterial infections, but their usefulness is threatened by increasing resistant strains. This study was conducted to demonstrate the phenotypic outcomes of the coexistence of genetic determinants mediating resistance to extended-spectrum cephalosporins and quinolones in enterobacterial isolates collected from patients with health-care-associated infections in Egypt. ESBL phenotype was determined using double-disk synergy test (DDST). The PCR technique was used to detect the presence of the genes mediating quinolone resistance (qnr and aac(6')-Ib-cr) and coexistence with ESBL genes. We also examined the association between the genetic makeup of the isolates and their resistance profiles including effect on MIC results. Phenotypically ESBLs were detected in 60-82% of the enterobacterial isolates. ESBL, qnr and aac(6')-Ib-cr genes were detected with the following percentages in Citrobacter isolates (69%, 69%, and 43%, respectively), E.coli isolates (65%, 70%, and 45%, respectively), Enterobacter isolates (56%, 67%, and 33%, respectively), and finally Klebsiella isolates (42%, 66%, and 25%, respectively). The coexistence of these multiresistant genetic elements significantly increased the MIC values of the tested antibiotics from different classes. We suggest using blaTEM, blaCTX-M-15, qnr, and aac(6')-Ib-cr genes for better and faster prediction of suitable antibiotic therapy with effective doses against ESBL-producing isolates harboring plasmid-mediated quinolone resistance (PMQR) determinants. Amikacin, meropenem, gentamicin, and imipenem seem to be better choices of treatment for such life-threatening infections, because of their remaining highest activity.
Effect of a Synbiotic Yogurt on Levels of Fecal Bifidobacteria, Clostridia, and Enterobacteria
Palaria, Amrita; Johnson-Kanda, Ivy
2012-01-01
While ingestion of synbiotic yogurts containing Bifidobacterium animalis subsp. lactis and inulin is increasing, their effect on certain microbial groups in the human intestine is unclear. To further investigate this, a large-scale, crossover-design, placebo-controlled study was utilized to evaluate the effect of a synbiotic yogurt containing B. animalis subsp. lactis Bb-12 and inulin on the human intestinal bifidobacteria, clostridia, and enterobacteria. Fecal samples were collected at 14 time points from 46 volunteers who completed the study, and changes in the intestinal bacterial levels were monitored using real-time PCR. Strain Bb-12 could not be detected in feces after 2 weeks of washout. A live/dead PCR procedure indicated that the Bb-12 strain detected in the fecal samples was alive. A significant increase (P < 0.001) in the total bifidobacterial numbers was seen in both groups of subjects during the final washout period compared to the prefeeding period. This increase in total bifidobacteria corresponded with a significant decrease (P < 0.05) in numbers of clostridia but not enterobacteria. No significant differences in numbers of bifidobacteria, clostridia, or enterobacteria were observed between the probiotic and placebo groups during any of the feeding periods. However, subgrouping subjects based on lower initial bifidobacterial numbers or higher initial clostridial numbers did show corresponding significant differences between the synbiotic yogurt and placebo groups. This was not observed for a subgroup with higher initial enterobacterial numbers. While this synbiotic yogurt can increase bifidobacterial numbers and decrease clostridial numbers (but not enterobacterial numbers) in some individuals, it cannot modulate these microbial groups in the majority of individuals. PMID:22101054
ISSR, ERIC and RAPD techniques to detect genetic diversity in the aphid pathogen Pandora neoaphidis.
Tymon, Anna M; Pell, Judith K
2005-03-01
The entomopathogenic fungus Pandora neoaphidis is an important natural enemy of aphids. ISSR, ERIC (Enterobacterial Repetitive Intergenic Consensus) and RAPD PCR-based DNA fingerprint analyses were undertaken to study intra-specific variation amongst 30 isolates of P. neoaphidis worldwide, together with six closely related species of Entomophthorales. All methods yielded scorable binary characters, and distance matrices were constructed from both individual and combined data sets. Neighbour-joining was used to construct consensus phylogenetic trees which showed that although P. neoaphidis isolates were highly polymorphic they separated into a monophyletic group compared with the other Entomophthorales tested. Three distinct subclades were found, with UK isolates occupying two of these. No specific correlation with aphid host species was established for any of the isolates apart from those in one cluster which contained isolates obtained from nettle aphid, Microlophium carnosum. ERIC, ISSR and RAPD analysis allowed the rapid genetic characterisation and differentiation of isolates with the generation of potential isolate- and cluster specific-diagnostic DNA markers.
Baudart, Julia; Coallier, Josée; Laurent, Patrick; Prévost, Michèle
2002-01-01
Water quality assessment involves the specific, sensitive, and rapid detection of bacterial indicators and pathogens in water samples, including viable but nonculturable (VBNC) cells. This work evaluates the specificity and sensitivity of a new method which combines a fluorescent in situ hybridization (FISH) approach with a physiological assay (direct viable count [DVC]) for the direct enumeration, at the single-cell level, of highly diluted viable cells of members of the family Enterobacteriaceae in freshwater and drinking water after membrane filtration. The approach (DVC-FISH) uses a new direct detection device, the laser scanning cytometer (Scan RDI). Combining the DVC-FISH method on a membrane with Scan RDI detection makes it possible to detect as few as one targeted cell in approximately 108 nontargeted cells spread over the membrane. The ability of this new approach to detect and enumerate VBNC enterobacterial cells in freshwater and drinking water distribution systems was investigated and is discussed. PMID:12324357
Diya Zhang; Lili Chen; Shenglai Li; Zhiyuan Gu; Jie Yan
2008-04-01
Lipopolysaccharide (LPS) derived from the periodontal pathogen Porphyromonas gingivalis has been shown to differ from enterobacterial LPS in structure and function; therefore, the Toll-like receptors (TLRs) and the intracellular inflammatory signaling pathways are accordingly different. To elucidate the signal transduction pathway of P. gingivalis, LPS-induced pro-inflammatory cytokine production in the human monocytic cell line THP-1 was measured by ELISA, and the TLRs were determined by the blocking test using anti-TLRs antibodies. In addition, specific inhibitors as well as Phospho-ELISA kits were used to analyze the intracellular signaling pathways. Escherichia coli LPS was used as the control. In this study, P. gingivalis LPS showed the ability to induce cytokine production in THP-1 cells and its induction was significantly (P < 0.05) suppressed by anti-TLR2 antibody or JNK inhibitor, and the phosphorylation level of JNK was significantly increased (P < 0.05). These results indicate that TLR2-JNK is the main signaling pathway of P. gingivalis LPS-induced cytokine production, while the cytokine induction by E. coli LPS was mainly via TLR4-NF-kappaB and TLR4-p38MAPK. This suggests that P. gingivalis LPS differs from E. coli LPS in its signaling pathway in THP-1 cells, and that the TLR2-JNK pathway might play a significant role in P. gingivalis LPS-induced chronic inflammatory periodontal disease.
Seth-Smith, Helena M B; Fookes, Maria C; Okoro, Chinyere K; Baker, Stephen; Harris, Simon R; Scott, Paul; Pickard, Derek; Quail, Michael A; Churcher, Carol; Sanders, Mandy; Harmse, Johan; Dougan, Gordon; Parkhill, Julian; Thomson, Nicholas R
2012-03-01
Integrative and conjugative elements (ICEs) are self-mobile genetic elements found in the genomes of some bacteria. These elements may confer a fitness advantage upon their host bacteria through the cargo genes that they carry. Salmonella pathogenicity island 7 (SPI-7), found within some pathogenic strains of Salmonella enterica, possesses features indicative of an ICE and carries genes implicated in virulence. We aimed to identify and fully analyze ICEs related to SPI-7 within the genus Salmonella and other Enterobacteriaceae. We report the sequence of two novel SPI-7-like elements, found within strains of Salmonella bongori, which share 97% nucleotide identity over conserved regions with SPI-7 and with each other. Although SPI-7 within Salmonella enterica serovar Typhi appears to be fixed within the chromosome, we present evidence that these novel elements are capable of excision and self-mobility. Phylogenetic analyses show that these Salmonella mobile elements share an ancestor which existed approximately 3.6 to 15.8 million years ago. Additionally, we identified more distantly related ICEs, with distinct cargo regions, within other strains of Salmonella as well as within Citrobacter, Erwinia, Escherichia, Photorhabdus, and Yersinia species. In total, we report on a collection of 17 SPI-7 related ICEs within enterobacterial species, of which six are novel. Using comparative and mutational studies, we have defined a core of 27 genes essential for conjugation. We present a growing family of SPI-7-related ICEs whose mobility, abundance, and cargo variability indicate that these elements may have had a large impact on the evolution of the Enterobacteriaceae.
Zothanpuia; Passari, Ajit K.; Gupta, Vijai K.
2016-01-01
Antimicrobial resistance poses a serious challenge to global public health. In this study, fifty bacterial strains were isolated from the sediments of a freshwater lake and were screened for antibiotic resistance. Out of fifty isolates, thirty-three isolates showed resistance against at least two of the selected antibiotics. Analysis of 16S rDNA sequencing revealed that the isolates belonged to ten different genera, namely Staphylococcus(n = 8), Bacillus(n = 7), Lysinibacillus(n = 4), Achromobacter(n=3), bacterium(n = 3), Methylobacterium(n = 2), Bosea(n = 2), Aneurinibacillus(n = 2), Azospirillum(n = 1), Novosphingobium(n = 1). Enterobacterial repetitive intergenic consensus (ERIC) and BOX-PCR markers were used to study the genetic relatedness among the antibiotic resistant isolates. Further, the isolates were screened for their antimicrobial activity against bacterial pathogens viz., Staphylococcus aureus(MTCC-96), Pseudomonas aeruginosa(MTCC-2453) and Escherichia coli(MTCC-739), and pathogenic fungi viz., Fusarium proliferatum (MTCC-286), Fusarium oxysporum (CABI-293942) and Fusarium oxy. ciceri (MTCC-2791). In addition, biosynthetic genes (polyketide synthase II (PKS-II) and non-ribosomal peptide synthetase (NRPS)) were detected in six and seven isolates, respectively. This is the first report for the multifunctional analysis of the bacterial isolates from a wetland with biosynthetic potential, which could serve as potential source of useful biologically active metabolites. PMID:27330861
New report of additional enterobacterial species causing wilt in West Bengal, India.
Sarkar, Shamayeeta; Chaudhuri, Sujata
2015-07-01
Ralstonia solanacearum is known to be the most prominent causal agent of bacterial wilt worldwide. It has a wide host range comprising solanaceous and nonsolanaceous plants. Typical symptoms of the disease are leaf wilt, browning of vascular tissues, and collapsing of the plant. With the objective of studying the diversity of pathogens causing bacterial wilt in West Bengal, we collected samples of diseased symptomatic crops and adjacent symptomatic and asymptomatic weeds from widespread locations in West Bengal. By means of a routine molecular identification test specific to "R. solanacearum species complex", the majority of these strains (68 out of 71) were found to not be R. solanacearum. Presumptive identification of these isolates with conventional biochemicals, extensive testing of pathogenicity of a subset involving greenhouse trials fulfilling Koch's postulate test, and scanning electron microscopic analysis for the presence of pathogen in diseased plants were done. 16S rDNA sequencing of a subset of these strains (GenBank accession Nos. JX880249-JX880251) and analysis of sequences with the nBLAST programme showed a high similarity (97%-99%) to sequences of the Enterobacteriaceae group available in GenBank. Molecular phylogeny further established the taxonomic position of the strains. The 3 bacterial strain cultures have been submitted to MTCC, Institute of Microbial Technology, Chandigarh, India, and were identified as Klebsiella oxytoca, Enterobacter cowanii, and Klebsiella oxytoca, respectively. Although Enterobacter sp. has previously been reported to cause wilt in many plants, susceptibility of most of the dedicated hosts of R. solanacearum to wilt caused by Enterobacter and other bacteria from Enterobacteriaceae is being reported for the first time in this work.
Sechi, Leonardo A.; Zanetti, Stefania; Dupré, Ilaria; Delogu, Giovanni; Fadda, Giovanni
1998-01-01
The presence of enterobacterial repetitive intergenic consensus (ERIC) sequences was demonstrated for the first time in the genome of Mycobacterium tuberculosis; these sequences have been found in transcribed regions of the chromosomes of gram-negative bacteria. In this study genetic diversity among clinical isolates of M. tuberculosis was determined by PCR with ERIC primers (ERIC-PCR). The study isolates comprised 71 clinical isolates collected from Sardinia, Italy. ERIC-PCR was able to identify 59 distinct profiles. The results obtained were compared with IS6110 and PCR-GTG fingerprinting. We found that the level of differentiation obtained by ERIC-PCR is greater than that obtained by IS6110 fingerprinting and comparable to that obtained by PCR-GTG. This method of fingerprinting is rapid and sensitive and can be applied to the study of the epidemiology of M. tuberculosis infections, especially when IS6110 fingerprinting is not of any help. PMID:9431935
Bahrani-Mougeot, Farah K; Buckles, Eric L; Lockatell, C V; Hebel, J R; Johnson, D E; Tang, C M; Donnenberg, M S
2002-08-01
Escherichia coli is the leading cause of urinary tract infections (UTIs). Despite the association of numerous bacterial factors with uropathogenic E. coli (UPEC), few such factors have been proved to be required for UTI in animal models. Previous investigations of urovirulence factors have relied on prior identification of phenotypic characteristics. We used signature-tagged mutagenesis (STM) in an unbiased effort to identify genes that are essential for UPEC survival within the murine urinary tract. A library of 2049 transposon mutants of the prototypic UPEC strain CFT073 was constructed using mini-Tn5km2 carrying 92 unique tags and screened in a murine model of ascending UTI. After initial screening followed by confirmation in co-infection experiments, 19 survival-defective mutants were identified. These mutants were recovered in numbers 101- to 106-fold less than the wild type in the bladder, kidneys or urine or at more than one site. The transposon junctions from each attenuated mutant were sequenced and analysed. Mutations were found in: (i) the type 1 fimbrial operon; (ii) genes involved in the biosyn-thesis of extracellular polysaccharides including group I capsule, group II capsule and enterobacterial common antigen; (iii) genes involved in metabolic pathways; and (iv) genes with unknown function. Five of the genes identified are absent from the genome of the E. coli K-12 strain. Mutations in type 1 fimbrial genes resulted in severely attenuated colonization, even in the case of a mutant with an insertion upstream of the fim operon that affected the rate of fimbrial switching from the 'off' to the 'on' phase. Three mutants had insertions in a new type II capsule biosynthesis locus on a pathogenicity island and were impaired in the production of capsule in vivo. An additional mutant with an insertion in wecE was unable to synthesize enterobacterial common antigen. These results confirm the pre-eminence of type 1 fimbriae, establish the importance of extracellular polysaccharides in the pathogenesis of UTI and identify new urovirulence determinants.
He, S Y; Lindeberg, M; Chatterjee, A K; Collmer, A
1991-02-01
The out genes of the enterobacterial plant pathogen Erwinia chrysanthemi are responsible for the efficient extracellular secretion of multiple plant cell wall-degrading enzymes, including four isozymes of pectate lyase, exo-poly-alpha-D-galacturonosidase, pectin methylesterase, and cellulase. Out- mutants of Er. chrysanthemi are unable to export any of these proteins beyond the periplasm and are severely reduced in virulence. We have cloned out genes from Er. chrysanthemi in the stable, low-copy-number cosmid pCPP19 by complementing several transposon-induced mutations. The cloned out genes were clustered in a 12-kilobase chromosomal DNA region, complemented all existing out mutations in Er. chrysanthemi EC16, and enabled Escherichia coli strains to efficiently secrete the extracellular pectic enzymes produced from cloned Er. chrysanthemi genes, while retaining the periplasmic marker protein beta-lactamase. DNA sequencing of a 2.4-kilobase EcoRI fragment within the out cluster revealed four genes arranged colinearly and sharing substantial similarity with the Klebsiella pneumoniae genes pulH, pulI, pulJ, and pulK, which are necessary for pullulanase secretion. However, K. pneumoniae cells harboring the cloned Er. chrysanthemi pelE gene were unable to secrete the Erwinia pectate lyase. Furthermore, the Er. chrysanthemi Out system was unable to secrete an extracellular pectate lyase encoded by a gene from a closely related plant pathogen. Erwinia carotovora ssp. carotovora. The results suggest that these enterobacteria secrete polysaccharidases by a conserved mechanism whose protein-recognition capacities have diverged.
Zarrouk, H; Karibian, D; Bodie, S; Perry, M B; Richards, J C; Caroff, M
1997-01-01
The structures of lipids A isolated from the lipopolysaccharides (LPSs; endotoxins) of three different pathogenic Bordetella bronchiseptica strains were investigated by chemical composition and methylation analysis, gas chromatography-mass spectrometry, nuclear magnetic resonance, and plasma desorption mass spectrometry (PDMS). The analyses revealed that the LPSs contain the classical lipid A bisphosphorylated beta-(1-->6)-linked D-glucosamine disaccharide with hydroxytetradecanoic acid in amide linkages. Their structures differ from that of the lipid A of Bordetella pertussis endotoxin by the replacement of hydroxydecanoic acid on the C-3 position with hydroxydodecanoic acid or dodecanoic acid and the presence of variable amounts of hexadecanoic acid. The dodecanoic acid is the first nonhydroxylated fatty acid to be found directly linked to a lipid A glucosamine. The lipids A were heterogeneous and composed of one to three major and several minor molecular species. The fatty acids in ester linkage were localized by PDMS of chemically modified lipids A. B. pertussis lipids A are usually hypoacylated with respect to those of enterobacterial lipids A. However, one of the three B. bronchiseptica strains had a major hexaacylated molecular species. C-4 and C-6' hydroxyl groups of the backbone disaccharide were unsubstituted, the latter being the proposed attachment site of the polysaccharide. The structural variability seen in these three lipids A was unusual for a single species and may have consequences for the pathogenicity of this Bordetella species. PMID:9171426
Zarrouk, H; Karibian, D; Bodie, S; Perry, M B; Richards, J C; Caroff, M
1997-06-01
The structures of lipids A isolated from the lipopolysaccharides (LPSs; endotoxins) of three different pathogenic Bordetella bronchiseptica strains were investigated by chemical composition and methylation analysis, gas chromatography-mass spectrometry, nuclear magnetic resonance, and plasma desorption mass spectrometry (PDMS). The analyses revealed that the LPSs contain the classical lipid A bisphosphorylated beta-(1-->6)-linked D-glucosamine disaccharide with hydroxytetradecanoic acid in amide linkages. Their structures differ from that of the lipid A of Bordetella pertussis endotoxin by the replacement of hydroxydecanoic acid on the C-3 position with hydroxydodecanoic acid or dodecanoic acid and the presence of variable amounts of hexadecanoic acid. The dodecanoic acid is the first nonhydroxylated fatty acid to be found directly linked to a lipid A glucosamine. The lipids A were heterogeneous and composed of one to three major and several minor molecular species. The fatty acids in ester linkage were localized by PDMS of chemically modified lipids A. B. pertussis lipids A are usually hypoacylated with respect to those of enterobacterial lipids A. However, one of the three B. bronchiseptica strains had a major hexaacylated molecular species. C-4 and C-6' hydroxyl groups of the backbone disaccharide were unsubstituted, the latter being the proposed attachment site of the polysaccharide. The structural variability seen in these three lipids A was unusual for a single species and may have consequences for the pathogenicity of this Bordetella species.
Jarząb, Anna; Witkowska, Danuta; Ziomek, Edmund; Dąbrowska, Anna; Szewczuk, Zbigniew; Gamian, Andrzej
2013-01-01
Shigella flexneri 3a is one of the five major strains of the Shigella genus responsible for dysentery, especially among children, in regions of high poverty and poor sanitation. The outer membrane proteins (OMP) of this bacterium elicit immunological responses and are considered a prime target for vaccine development. When injected into mice they elicit a protective immunological response against a lethal dose of the pathogen. The OMPs from S. flexneri 3a were isolated and resolved by two-dimension-SDS-PAGE. Two 38-kDa spots were of particular interest since in our earlier studies OMPs of such molecular mass were found to interact with umbilical cord sera. These two spots were identified as OmpC by ESI-MS/MS spectrometry. By DNA sequencing, the ompC gene from S. flexneri 3a was identical to ompC from S. flexneri 2a [Gene Bank: 24113600]. A 3D model of OmpC was built and used to predict B-cell type (discontinuous) antigenic epitopes. Six epitopes bearing the highest score were selected and the corresponding peptides were synthesized. Only the peptides representing loop V of OmpC reacted strongly with the umbilical cord serum immunoglobulins. To determine which amino acids are essential for the antigenic activity of the epitope, the loop V was scanned with a series of dodecapeptides. The peptide RYDERY was identified as a minimal sequence for the loop V epitope. Truncation at either the C- or N-terminus rendered this peptide inactive. Apart from C-terminal tyrosine, substitution of each of the remaining five amino acids with glycine, led to a precipitous loss of immunological activity. This peptide may serve as a ligand in affinity chromatography of OmpC-specific antibodies and as a component of a vaccine designed to boost human immune defenses against enterobacterial infections. PMID:23940590
du Plessis, Erika M; Duvenage, Francois; Korsten, Lise
2015-04-01
The potential transfer of human pathogenic bacteria present in irrigation water onto fresh produce was investigated, because surface water sources used for irrigation purposes in South Africa have increasingly been reported to be contaminated with enteric bacterial pathogens. A microbiological analysis was performed of a selected river in Limpopo Province, South Africa, that is often contaminated with raw sewage from municipal sewage works and overhead irrigated onions produced on a commercial farm. Counts of Escherichia coli, coliforms, aerobic bacteria, fungi, and yeasts and the prevalence of E. coli O157:H7, Salmonella, and Listeria monocytogenes were determined. Identities of bacterial isolates from irrigation water and onions were confirmed using matrix-assisted laser desorption ionization-time of flight mass spectrometry, PCR, and biochemical tests. To establish a potential link between the microbiological quality of the irrigation source and the onions, the E. coli isolates from both were subjected to antibiotic resistance, virulence gene, and enterobacterial repetitive intergenic consensus PCR analyses. River water E. coli counts exceeded South African Department of Water Affairs and World Health Organization irrigation water guidelines. Counts of aerobic bacteria, coliforms, fungi, and yeasts of onions from the market were acceptable according to Department of Health Directorate, Food Control, South Africa, microbiological guidelines for ready-to-eat fresh fruits and vegetables. E. coli O157:H7, Salmonella, and L. monocytogenes were not detected in onions, whereas only Salmonella was detected in 22% of water samples. Matrix-assisted laser desorption ionization-time of flight mass spectrometry and PCR identification of E. coli isolates from water and onions correlated. Of the 45 E. coli isolates from water and onions, 42.2% were resistant to multiple antibiotics. Virulence genes eae, stx1, and stx2 were detected in 2.2, 6.6, and 2.2% of the E. coli isolates, respectively. Phenotypic (antimicrobial) and genotypic (virulence gene prevalence, DNA fingerprinting) analyses showed a link between river, dam, irrigation pivot point, and onion E. coli isolates.
Zhang, Shuhong; Yang, Guangzhu; Ye, Qinghua; Wu, Qingping; Zhang, Jumei; Huang, Yuanbin
2018-01-01
Klebsiella pneumoniae is not only a major hospital-acquired pathogen but also an important food-borne pathogen that can cause septicaemia, liver abscesses, and diarrhea in humans. The phenotypic and genotypic characteristics of K. pneumoniae in retail foods have not been thoroughly investigated in China. The objective of this study was to characterize K. pneumoniae isolates through biotyping, serotyping, determination of virulence factors, antibiotic resistance testing, enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR), and (GTG) 5 -PCR molecular typing. From May 2013 to April 2014, a total of 61 K. pneumoniae isolates were collected from retail foods in China. Using API 20E test strips, five different biotype profiles were identified among these isolates. The majority of isolates belonged to biochemical profile "5215773" (50 isolates, 80.6%). The capsular serotypes of the 61 K. pneumoniae isolates and one reference strain were determined by PCR. Of the seven capsular serotypes tested, four different capsular serotypes were identified. Serotypes K1, K20, K57, and K2 were detected in two, three, two, and one isolates, respectively. Serotypes K3, K5, and K54 were not detected. The presence of 11 virulence genes was assessed by PCR. The most common virulence genes were fimH (85.5%), ureA (79.0%), wabG (77.4%), uge (56.5%), and kfuBC (29.0%). ERIC-PCR and (GTG) 5 -PCR molecular typing indicated high genetic diversity among K. pneumoniae isolates. We identified 60 different ERIC patterns and 56 distinct (GTG) 5 patterns. Genotypic results indicated that isolates carrying similar virulence factors were generally genetically related. Some isolates from the same geographic area have a closer relationship. The isolates showed high levels of resistance to ampicillin (51/62, 82.2%). Resistance to streptomycin (11/62, 17.7%) and piperacillin (10/62, 16.1%) was also common. The presence of virulent and antibiotic-resistant K. pneumoniae in foods poses a potential health hazard for consumers. Our findings highlight the importance of surveillance of K. pneumoniae in foods.
Zhang, Shuhong; Yang, Guangzhu; Ye, Qinghua; Wu, Qingping; Zhang, Jumei; Huang, Yuanbin
2018-01-01
Klebsiella pneumoniae is not only a major hospital-acquired pathogen but also an important food-borne pathogen that can cause septicaemia, liver abscesses, and diarrhea in humans. The phenotypic and genotypic characteristics of K. pneumoniae in retail foods have not been thoroughly investigated in China. The objective of this study was to characterize K. pneumoniae isolates through biotyping, serotyping, determination of virulence factors, antibiotic resistance testing, enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR), and (GTG)5-PCR molecular typing. From May 2013 to April 2014, a total of 61 K. pneumoniae isolates were collected from retail foods in China. Using API 20E test strips, five different biotype profiles were identified among these isolates. The majority of isolates belonged to biochemical profile “5215773” (50 isolates, 80.6%). The capsular serotypes of the 61 K. pneumoniae isolates and one reference strain were determined by PCR. Of the seven capsular serotypes tested, four different capsular serotypes were identified. Serotypes K1, K20, K57, and K2 were detected in two, three, two, and one isolates, respectively. Serotypes K3, K5, and K54 were not detected. The presence of 11 virulence genes was assessed by PCR. The most common virulence genes were fimH (85.5%), ureA (79.0%), wabG (77.4%), uge (56.5%), and kfuBC (29.0%). ERIC-PCR and (GTG)5-PCR molecular typing indicated high genetic diversity among K. pneumoniae isolates. We identified 60 different ERIC patterns and 56 distinct (GTG)5 patterns. Genotypic results indicated that isolates carrying similar virulence factors were generally genetically related. Some isolates from the same geographic area have a closer relationship. The isolates showed high levels of resistance to ampicillin (51/62, 82.2%). Resistance to streptomycin (11/62, 17.7%) and piperacillin (10/62, 16.1%) was also common. The presence of virulent and antibiotic-resistant K. pneumoniae in foods poses a potential health hazard for consumers. Our findings highlight the importance of surveillance of K. pneumoniae in foods. PMID:29545778
Elgroud, Rachid; Granier, Sophie A.; Marault, Muriel; Kerouanton, Annaëlle; Lezzar, Abdesslem; Bouzitouna-Bentchouala, Chafia; Brisabois, Anne; Millemann, Yves
2015-01-01
An epidemiological investigation was carried out on one hundred Salmonella isolates from broiler farms, slaughterhouses, and human patients in the Constantine region of Algeria, in order to explore the contribution of avian strains to human salmonellosis cases in this region over the same period of time. The isolates were characterized by phenotypic as well as genotypic methods. A large variety of antimicrobial resistance profiles was found among human isolates, while only seven profiles were found among avian isolates. Enterobacterial Repetitive Intergenic Consensus-PCR (ERIC-PCR), Insertion Sequence 200-PCR (IS200-PCR), and Pulsed Field Gel Electrophoresis (PFGE) resulted in the allocation of the isolates to 16, 20, and 34 different profiles, respectively. The 3 genotyping methods led to complementary results by underlining the clonality of some serovars with the diffusion and persistence of a single clone in the Constantine area as well as stressing the polymorphism present in isolates belonging to other serovars, indicating the diversity of potential reservoirs of nontyphoidal Salmonella. Altogether, our results seem to indicate that nontyphoidal avian Salmonella may play an important role in human salmonellosis in the Constantine region. PMID:26543858
Dias, Rubens Clayton da Silva; Borges-Neto, Armando Alves; Ferraiuoli, Giovanna Ianini D’Almeida; de-Oliveira, Márcia P.; Riley, Lee W.; Moreira, Beatriz Meurer
2010-01-01
Production of extended-spectrum β-lactamases (ESBL) has been reported in virtually all species of Enterobacteriaceae, which greatly complicates the therapy of infections caused by these organisms. However, the frequency of isolates producing AmpC β-lactamases, especially plasmid mediated AmpC (pAmpC), is largely unknown. These β-lactamases confer resistance to extended spectrum cephalosporins and aztreonam, a multidrug-resistant (MDR) profile. The aim of the present study was to determine the occurrence of ESBL and pAmpC β-lactamases in a hospital where MDR enterobacterial isolates recently emerged. A total of 123 consecutive enterobacterial isolates obtained from 112 patients at a university hospital in Rio de Janeiro, Brazil during March-June 2001 were included in the study. ESBL was detected by the addition of clavulanate to cephalosporin containing disks and by double diffusion. AmpC production was evaluated by a modified tridimensional test and a modified Hodge test. The presence of plasmid-mediated ampC β-lactamase genes was evaluated by multiplex-PCR. Sixty-five (53%) of 123 enterobacterial isolates were MDR, obtained from 56 patients. ESBL production was detected in 35 isolates; 5 clonal E. coli isolates exhibited high levels of chromosomal AmpC and ESBL production. However, no isolates contained pAmpC genes. Infection or colonization by MDR enterobacteria was not associated with any predominant resistant clones. A large proportion of hospital infections caused by ESBL-producing enterobacteria identified during the study period were due to sporadic infections rather than undetected outbreaks. This observation emphasizes the need to improve our detection methods for ESBL- and AmpC-producing organisms in hospitals where extended-spectrum cephalosporins are in wide use. PMID:17900845
Maharjan, Anjila; Bhetwal, Anjeela; Shakya, Shreena; Satyal, Deepa; Shah, Shashikala; Joshi, Govardhan; Khanal, Puspa Raj; Parajuli, Narayan Prasad
2018-01-01
Fecal carriage of multidrug-resistant and extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae is one of the important risk factors for infection with antibiotic-resistant bacteria. In this report, we examined the prevalence of multidrug-resistant and ESBL-producing common enterobacterial strains colonizing the intestinal tract of apparently healthy adults in Kathmandu, Nepal. During a 6-month period (February-July 2016), a total of 510 stool specimens were obtained from apparently healthy students of Manmohan Memorial Institute of Health Sciences, Kathmandu, Nepal. Stool specimens were cultured, and the most common enterobacterial isolates ( Escherichia coli and Klebsiella species) were subjected to antimicrobial susceptibility tests according to the standard microbiologic guidelines. Multidrug-resistant isolates were selected for ESBL confirmation by combined disk test and E-test methods. Molecular characterization of plasmid-borne ESBL genes was performed by using specific primers of cefotaximase Munich (CTX-M), sulfhydryl variant (SHV), and temoniera (TEM) by polymerase chain reaction. Among 510 bacterial strains, E. coli (432, 84.71%) was the predominant organism followed by Klebsiella oxytoca (48, 9.41%) and K. pneumoniae (30, 5.88%). ESBLs were isolated in 9.8% of the total isolates including K. oxytoca (29.17%), E. coli (7.87%), and K. pneumoniae (6.67%). Among ESBLs, bla -TEM was the predominant type (92%) followed by bla -CTX-M (60%) and bla -SHV (4%). Multidrug-resistant and ESBL-producing enterobacterial commensal strains among healthy individuals are of serious concern. Persistent carriage of ESBL organisms in healthy individuals suggests the possibility of sustained ESBL carriage among the diseased and hospitalized patients. We recommend similar types of epidemiologic surveys in larger communities and in hospital settings to ascertain the extent of ESBL resistance.
Molecular Diagnostic Analysis of Outbreak Scenarios
ERIC Educational Resources Information Center
Morsink, M. C.; Dekter, H. E.; Dirks-Mulder, A.; van Leeuwen, W. B.
2012-01-01
In the current laboratory assignment, technical aspects of the polymerase chain reaction (PCR) are integrated in the context of six different bacterial outbreak scenarios. The "Enterobacterial Repetitive Intergenic Consensus Sequence" (ERIC) PCR was used to analyze different outbreak scenarios. First, groups of 2-4 students determined optimal…
Potron, Anaïs; Bernabeu, Sandrine; Cuzon, Gaëlle; Pontiès, Valérie; Blanchard, Hervé; Seringe, Elise; Naas, Thierry; Nordmann, Patrice; Dortet, Laurent
2017-01-01
OXA-48-like beta-lactamase producing bacteria are now endemic in several European and Mediterranean countries. Among this carbapenemase family, the OXA-48 and OXA-181 variants predominate, whereas other variants such as OXA-204 are rarely reported. Here, we report the molecular epidemiology of a collection of OXA-204-positive enterobacterial isolates (n = 29) recovered in France between October 2012 and May 2014. This study describes the first outbreak of OXA-204-producing Enterobacteriaceae in Europe, involving 12 isolates of an ST90 Escherichia coli clone and nine isolates of an ST147 Klebsiella pneumoniae clone. All isolates co-produced the cephalosporinase CMY-4, and 60% of them co-produced the extended-spectrum beta-lactamase CTX-M-15. The bla OXA-204 gene was located on a 150-kb IncA/C plasmid, isolated from various enterobacterial species in the same patient, indicating a high conjugative ability of this genetic vehicle. PMID:29233256
Potron, Anaïs; Bernabeu, Sandrine; Cuzon, Gaëlle; Pontiès, Valérie; Blanchard, Hervé; Seringe, Elise; Naas, Thierry; Nordmann, Patrice; Dortet, Laurent
2017-12-01
OXA-48-like beta-lactamase producing bacteria are now endemic in several European and Mediterranean countries. Among this carbapenemase family, the OXA-48 and OXA-181 variants predominate, whereas other variants such as OXA-204 are rarely reported. Here, we report the molecular epidemiology of a collection of OXA-204-positive enterobacterial isolates (n = 29) recovered in France between October 2012 and May 2014. This study describes the first outbreak of OXA-204-producing Enterobacteriaceae in Europe, involving 12 isolates of an ST90 Escherichia coli clone and nine isolates of an ST147 Klebsiella pneumoniae clone. All isolates co-produced the cephalosporinase CMY-4, and 60% of them co-produced the extended-spectrum beta-lactamase CTX-M-15. The bla OXA-204 gene was located on a 150-kb IncA/C plasmid, isolated from various enterobacterial species in the same patient, indicating a high conjugative ability of this genetic vehicle.
CTX-M-type β-lactamases: a successful story of antibiotic resistance.
D'Andrea, Marco Maria; Arena, Fabio; Pallecchi, Lucia; Rossolini, Gian Maria
2013-08-01
Production of extended-spectrum β-lactamases (ESBLs) is the principal mechanism of resistance to oxyimino-cephalosporins evolved by members of the family Enterobacteriaceae. Among the several ESBLs emerged among clinical pathogens, the CTX-M-type enzymes have proved the most successful in terms of promiscuity and diffusion in different epidemiological settings, where they have largely replaced and outnumbered other types of ESBLs. Originated by the capture and mobilization of chromosomal β-lactamase genes of strains of Kluyvera species, the blaCTX-M genes have become associated with a variety of mobile genetic elements that have mediated rapid and efficient inter-replicon and cell-to-cell dissemination involving highly successful enterobacterial lineages (e.g. Escherichia coli ST131 and ST405, or Klebsiella pneumoniae CC11 and ST147) to yield high-risk multiresistant clones that have spread on a global scale. The CTX-Mβ-lactamase lineage exhibits a striking plasticity, with a large number of allelic variants belonging in several sublineages, which can be associated with functional heterogeneity of clinical relevance. This review article provides an update on CTX-M-type ESBLs, with focus on structural and functional diversity, epidemiology and clinical significance. Copyright © 2013 Elsevier GmbH. All rights reserved.
Valdés, I; Jaureguiberry, B; Romalde, J L; Toranzo, A E; Magariños, B; Avendaño-Herrera, R
2009-04-01
Streptococcus phocae is a beta-haemolytic bacterium frequently involved in disease outbreaks in seals causing pneumonia or respiratory infection. Since 1999, this pathogen has been isolated from diseased Atlantic salmon, Salmo salar, causing serious economic losses in the salmon industry in Chile. In this study, we used different molecular typing methods, such as pulsed-field gel electrophoresis (PFGE), randomly amplified polymorphic DNA (RAPD), enterobacterial repetitive intergenic consensus sequence PCR (ERIC-PCR), repetitive extragenic palindromic PCR (REP-PCR) and restriction of 16S-23S rDNA intergenic spacer regions to evaluate the genetic diversity in S. phocae. Thirty-four strains isolated in different years were analysed. The S. phocae type strain ATCC 51973(T) was included for comparative purposes. The results demonstrated genetic homogeneity within the S. phocae strains isolated in Chile over several years, suggesting the existence of clonal relationships among S. phocae isolated from Atlantic salmon. The type strain ATCC 51973(T) presented a different genetic pattern with the PFGE, RAPD, ERIC-PCR and REP-PCR methods. However, the fingerprint patterns of two seal isolates were distinct from those of the type strain.
He, S Y; Lindeberg, M; Chatterjee, A K; Collmer, A
1991-01-01
The out genes of the enterobacterial plant pathogen Erwinia chrysanthemi are responsible for the efficient extracellular secretion of multiple plant cell wall-degrading enzymes, including four isozymes of pectate lyase, exo-poly-alpha-D-galacturonosidase, pectin methylesterase, and cellulase. Out- mutants of Er. chrysanthemi are unable to export any of these proteins beyond the periplasm and are severely reduced in virulence. We have cloned out genes from Er. chrysanthemi in the stable, low-copy-number cosmid pCPP19 by complementing several transposon-induced mutations. The cloned out genes were clustered in a 12-kilobase chromosomal DNA region, complemented all existing out mutations in Er. chrysanthemi EC16, and enabled Escherichia coli strains to efficiently secrete the extracellular pectic enzymes produced from cloned Er. chrysanthemi genes, while retaining the periplasmic marker protein beta-lactamase. DNA sequencing of a 2.4-kilobase EcoRI fragment within the out cluster revealed four genes arranged colinearly and sharing substantial similarity with the Klebsiella pneumoniae genes pulH, pulI, pulJ, and pulK, which are necessary for pullulanase secretion. However, K. pneumoniae cells harboring the cloned Er. chrysanthemi pelE gene were unable to secrete the Erwinia pectate lyase. Furthermore, the Er. chrysanthemi Out system was unable to secrete an extracellular pectate lyase encoded by a gene from a closely related plant pathogen. Erwinia carotovora ssp. carotovora. The results suggest that these enterobacteria secrete polysaccharidases by a conserved mechanism whose protein-recognition capacities have diverged. Images PMID:1992458
Comparative genomics of the IncA/C multidrug resistance plasmid family
USDA-ARS?s Scientific Manuscript database
Multidrug resistance (MDR) plasmids belonging to the IncA/C plasmid family are widely distributed among Salmonella and other enterobacterial isolates from agricultural sources and have, at least once, also been identified in a drug resistant Yersinia pestis isolate (IP275) from Madagascar. Here, we...
Lee, Jae Hoon; Sundin, George W; Zhao, Youfu
2016-06-01
The type III secretion system (T3SS) is a key pathogenicity factor in Erwinia amylovora. Previous studies have demonstrated that the T3SS in E. amylovora is transcriptionally regulated by an RpoN-HrpL sigma factor cascade, which is activated by the bacterial alarmone (p)ppGpp. In this study, the binding site of HrpS, an enhancer binding protein, was identified for the first time in plant-pathogenic bacteria. Complementation of the hrpL mutant with promoter deletion constructs of the hrpL gene and promoter activity analyses using various lengths of the hrpL promoter fused to a promoter-less green fluorescent protein (gfp) reporter gene delineated the upstream region for HrpS binding. Sequence analysis revealed a dyad symmetry sequence between -138 and -125 nucleotides (TGCAA-N4-TTGCA) as the potential HrpS binding site, which is conserved in the promoter of the hrpL gene among plant enterobacterial pathogens. Results of quantitative real-time reverse transcription-polymerase chain reaction (qRT-PCR) and electrophoresis mobility shift assay coupled with site-directed mutagenesis (SDM) analysis showed that the intact dyad symmetry sequence was essential for HrpS binding, full activation of T3SS gene expression and virulence. In addition, the role of the GAYTGA motif (RpoN binding site) of HrpS in the regulation of T3SS gene expression in E. amylovora was characterized by complementation of the hrpS mutant using mutant variants generated by SDM. Results showed that a Y100F substitution of HrpS complemented the hrpS mutant, whereas Y100A and Y101A substitutions did not. These results suggest that tyrosine (Y) and phenylalanine (F) function interchangeably in the conserved GAYTGA motif of HrpS in E. amylovora. © 2015 BSPP AND JOHN WILEY & SONS LTD.
Evaluation of Etest® strips for detection of KPC and metallo-carbapenemases in Enterobacteriaceae.
Girlich, Delphine; Halimi, Diane; Zambardi, Gilles; Nordmann, Patrice
2013-11-01
The performance of Etest KPC and MBL strips (bioMérieux) was evaluated as compared to other phenotypic tests for detecting carbapenemases of the KPC-type and metallo-β-lactamases, respectively, on 133 well-characterized enterobacterial isolates. KPC and meropenem-containing MP/MPI Etest had high sensitivity (>92 %) and specificity (>97 %). © 2013.
Ateba, Collins Njie; Mbewe, Moses
2014-05-30
In many developing countries, proper hygiene is not strictly implemented when animals are slaughtered and meat products become contaminated. Contaminated meat may contain Escherichia coli (E. coli) O157:H7 that could cause diseases in humans if these food products are consumed undercooked. In the present study, a total of 94 confirmed E. coli O157:H7 isolates were subjected to the enterobacterial repetitive intergenic consensus (ERIC) polymerase chain reaction (PCR) typing to generate genetic fingerprints. The ERIC fragments were resolved by electrophoresis on 2% (w/v) agarose gels. The presence, absence and intensity of band data were obtained, exported to Microsoft Excel (Microsoft Office 2003) and used to generate a data matrix. The unweighted pair group method with arithmetic mean (UPGMA) and complete linkage algorithms were used to analyze the percentage of similarity and matrix data. Relationships between the various profiles and/or lanes were expressed as dendrograms. Data from groups of related lanes were compiled and reported on cluster tables. ERIC fragments ranged from one to 15 per isolate, and their sizes varied from 0.25 to 0.771 kb. A large proportion of the isolates produced an ERIC banding pattern with three duplets ranging in sizes from 0.408 to 0.628 kb. Eight major clusters (I-VIII) were identified. Overall, the remarkable similarities (72% to 91%) between the ERIC profiles for the isolate from animal species and their corresponding food products indicated some form of contamination, which may not exclude those at the level of the abattoirs. These results reveal that ERIC PCR analysis can be reliable in comparing the genetic profiles of E. coli O157:H7 from different sources in the North-West Province of South Africa.
Born, Yannick; Fieseler, Lars; Marazzi, Janine; Lurz, Rudi; Duffy, Brion; Loessner, Martin J.
2011-01-01
A diverse set of 24 novel phages infecting the fire blight pathogen Erwinia amylovora was isolated from fruit production environments in Switzerland. Based on initial screening, four phages (L1, M7, S6, and Y2) with broad host ranges were selected for detailed characterization and genome sequencing. Phage L1 is a member of the Podoviridae, with a 39.3-kbp genome featuring invariable genome ends with direct terminal repeats. Phage S6, another podovirus, was also found to possess direct terminal repeats but has a larger genome (74.7 kbp), and the virus particle exhibits a complex tail fiber structure. Phages M7 and Y2 both belong to the Myoviridae family and feature long, contractile tails and genomes of 84.7 kbp (M7) and 56.6 kbp (Y2), respectively, with direct terminal repeats. The architecture of all four phage genomes is typical for tailed phages, i.e., organized into function-specific gene clusters. All four phages completely lack genes or functions associated with lysogeny control, which correlates well with their broad host ranges and indicates strictly lytic (virulent) lifestyles without the possibility for host lysogenization. Comparative genomics revealed that M7 is similar to E. amylovora virus ΦEa21-4, whereas L1, S6, and Y2 are unrelated to any other E. amylovora phage. Instead, they feature similarities to enterobacterial viruses T7, N4, and ΦEcoM-GJ1. In a series of laboratory experiments, we provide proof of concept that specific two-phage cocktails offer the potential for biocontrol of the pathogen. PMID:21764969
Moleres, Javier; Santos-López, Alfonso; Lázaro, Isidro; Labairu, Javier; Prat, Cristina; Ardanuy, Carmen; González-Zorn, Bruno
2015-01-01
Haemophilus parasuis, the causative agent of Glässer's disease, is one of the early colonizers of the nasal mucosa of piglets. It is prevalent in swine herds, and lesions associated with disease are fibrinous polyserositis and bronchopneumonia. Antibiotics are commonly used in disease control, and resistance to several antibiotics has been described in H. parasuis. Prediction of H. parasuis virulence is currently limited by our scarce understanding of its pathogenicity. Some genes have been associated with H. parasuis virulence, such as lsgB and group 1 vtaA, while biofilm growth has been associated with nonvirulent strains. In this study, 86 H. parasuis nasal isolates from farms that had not had a case of disease for more than 10 years were obtained by sampling piglets at weaning. Isolates were studied by enterobacterial repetitive intergenic consensus PCR and determination of the presence of lsgB and group 1 vtaA, biofilm formation, inflammatory cell response, and resistance to antibiotics. As part of the diversity encountered, a novel 2,661-bp plasmid, named pJMA-1, bearing the blaROB-1 β-lactamase was detected in eight colonizing strains. pJMA-1 was shown to share a backbone with other small plasmids described in the Pasteurellaceae, to be 100% stable, and to have a lower biological cost than the previously described plasmid pB1000. pJMA-1 was also found in nine H. parasuis nasal strains from a separate collection, but it was not detected in isolates from the lesions of animals with Glässer's disease or in nontypeable Haemophilus influenzae isolates. Altogether, we show that commensal H. parasuis isolates represent a reservoir of β-lactam resistance genes which can be transferred to pathogens or other bacteria. PMID:25747001
Qin, X; Miranda, V S; Machado, M A; Lemos, E G; Hartung, J S
2001-06-01
ABSTRACT Strains of Xylella fastidiosa, isolated from sweet orange trees (Citrus sinensis) and coffee trees (Coffea arabica) with symptoms of citrus variegated chlorosis and Requeima do Café, respectively, were indistinguishable based on repetitive extragenic palindromic polymerase chain reaction (PCR) and enterobacterial repetitive intergenic consensus PCR assays. These strains were also indistinguishable with a previously described PCR assay that distinguished the citrus strains from all other strains of Xylella fastidiosa. Because we were not able to document any genomic diversity in our collection of Xylella fastidiosa strains isolated from diseased citrus, the observed gradient of increasing disease severity from southern to northern regions of São Paulo State is unlikely due to the presence of significantly different strains of the pathogen in the different regions. When comparisons were made to reference strains of Xylella fastidiosa isolated from other hosts using these methods, four groups were consistently identified consistent with the hosts and regions from which the strains originated: citrus and coffee, grapevine and almond, mulberry, and elm, plum, and oak. Independent results from random amplified polymorphic DNA (RAPD) PCR assays were also consistent with these results; however, two of the primers tested in RAPD-PCR were able to distinguish the coffee and citrus strains. Sequence comparisons of a PCR product amplified from all strains of Xylella fastidiosa confirmed the presence of a CfoI polymorphism that can be used to distinguish the citrus strains from all others. The ability to distinguish Xylella fastidiosa strains from citrus and coffee with a PCR-based assay will be useful in epidemiological and etiological studies of this pathogen.
Born, Yannick; Fieseler, Lars; Marazzi, Janine; Lurz, Rudi; Duffy, Brion; Loessner, Martin J
2011-09-01
A diverse set of 24 novel phages infecting the fire blight pathogen Erwinia amylovora was isolated from fruit production environments in Switzerland. Based on initial screening, four phages (L1, M7, S6, and Y2) with broad host ranges were selected for detailed characterization and genome sequencing. Phage L1 is a member of the Podoviridae, with a 39.3-kbp genome featuring invariable genome ends with direct terminal repeats. Phage S6, another podovirus, was also found to possess direct terminal repeats but has a larger genome (74.7 kbp), and the virus particle exhibits a complex tail fiber structure. Phages M7 and Y2 both belong to the Myoviridae family and feature long, contractile tails and genomes of 84.7 kbp (M7) and 56.6 kbp (Y2), respectively, with direct terminal repeats. The architecture of all four phage genomes is typical for tailed phages, i.e., organized into function-specific gene clusters. All four phages completely lack genes or functions associated with lysogeny control, which correlates well with their broad host ranges and indicates strictly lytic (virulent) lifestyles without the possibility for host lysogenization. Comparative genomics revealed that M7 is similar to E. amylovora virus ΦEa21-4, whereas L1, S6, and Y2 are unrelated to any other E. amylovora phage. Instead, they feature similarities to enterobacterial viruses T7, N4, and ΦEcoM-GJ1. In a series of laboratory experiments, we provide proof of concept that specific two-phage cocktails offer the potential for biocontrol of the pathogen.
2014-01-01
Background Autotransporter proteins represent a treasure trove for molecular engineers who modify Gram-negative bacteria for the export or secretion of foreign proteins across two membrane barriers. A particularly promising direction is the development of autotransporters as antigen display or secretion systems. Immunologists have been using ovalbumin as a reporter antigen for years and have developed sophisticated tools to detect specific T cells that respond to ovalbumin. Although ovalbumin-expressing bacteria are being used to trace T cell responses to colonizing or invading pathogens, current constructs for ovalbumin presentation have not been optimized. Results The activation of T helper cells in response to ovalbumin was improved by displaying the OVA-CD4 reporter epitope as a multimer on the surface of Salmonella and fused to the autotransporter MisL. Expression was optimized by including tandem in vivo promoters and two post-segregational killing systems for plasmid stabilization. Conclusions The use of an autotransporter protein to present relevant epitope repeats on the surface of bacteria, combined with additional techniques favoring stable and efficient in vivo transcription, optimizes antigen presentation to T cells. The technique of multimeric epitope surface display should also benefit the development of new Salmonella or other enterobacterial vaccines. PMID:24898796
Mammeri, H.; Laurans, G.; Eveillard, M.; Castelain, S.; Eb, F.
2001-01-01
In 1996, a monitoring program was initiated at the teaching hospital of Amiens, France, and carried out for 3 years. All extended-spectrum β-lactamase (ESBL)-producing Enterobacter aerogenes isolates recovered from clinical specimens were collected for investigation of their epidemiological relatedness by pulsed-field gel electrophoresis and enterobacterial repetitive intergenic consensus PCR (ERIC-PCR) and determination of the type of ESBL harbored by isoelectric focusing and DNA sequencing. Molecular typing revealed the endemic coexistence, during the first 2 years, of two clones expressing, respectively, SHV-4 and TEM-24 ESBLs, while an outbreak of the TEM-24-producing strain raged in the hospital during the third year, causing the infection or colonization of 165 patients. Furthermore, this strain was identified as the prevalent clone responsible for outbreaks in many French hospitals since 1996. This study shows that TEM-24-producing E. aerogenes is an epidemic clone that is well established in the hospital's ecology and able to spread throughout wards. The management of the outbreak at the teaching hospital of Amiens, which included the reinforcement of infection control measures, failed to obtain complete eradication of the clone, which has become an endemic pathogen. PMID:11376055
Corona, Erik; Wang, Liuyang; Ko, Dennis; Patel, Chirag J
2018-01-01
Infectious disease has shaped the natural genetic diversity of humans throughout the world. A new approach to capture positive selection driven by pathogens would provide information regarding pathogen exposure in distinct human populations and the constantly evolving arms race between host and disease-causing agents. We created a human pathogen interaction database and used the integrated haplotype score (iHS) to detect recent positive selection in genes that interact with proteins from 26 different pathogens. We used the Human Genome Diversity Panel to identify specific populations harboring pathogen-interacting genes that have undergone positive selection. We found that human genes that interact with 9 pathogen species show evidence of recent positive selection. These pathogens are Yersenia pestis, human immunodeficiency virus (HIV) 1, Zaire ebolavirus, Francisella tularensis, dengue virus, human respiratory syncytial virus, measles virus, Rubella virus, and Bacillus anthracis. For HIV-1, GWAS demonstrate that some naturally selected variants in the host-pathogen protein interaction networks continue to have functional consequences for susceptibility to these pathogens. We show that selected human genes were enriched for HIV susceptibility variants (identified through GWAS), providing further support for the hypothesis that ancient humans were exposed to lentivirus pandemics. Human genes in the Italian, Miao, and Biaka Pygmy populations that interact with Y. pestis show significant signs of selection. These results reveal some of the genetic footprints created by pathogens in the human genome that may have left lasting marks on susceptibility to infectious disease.
Phan, Minh-Duy; Peters, Kate M.; Sarkar, Sohinee; Lukowski, Samuel W.; Allsopp, Luke P.; Moriel, Danilo Gomes; Achard, Maud E. S.; Totsika, Makrina; Marshall, Vikki M.; Upton, Mathew; Beatson, Scott A.; Schembri, Mark A.
2013-01-01
Escherichia coli ST131 is a globally disseminated, multidrug resistant clone responsible for a high proportion of urinary tract and bloodstream infections. The rapid emergence and successful spread of E. coli ST131 is strongly associated with antibiotic resistance; however, this phenotype alone is unlikely to explain its dominance amongst multidrug resistant uropathogens circulating worldwide in hospitals and the community. Thus, a greater understanding of the molecular mechanisms that underpin the fitness of E. coli ST131 is required. In this study, we employed hyper-saturated transposon mutagenesis in combination with multiplexed transposon directed insertion-site sequencing to define the essential genes required for in vitro growth and the serum resistome (i.e. genes required for resistance to human serum) of E. coli EC958, a representative of the predominant E. coli ST131 clonal lineage. We identified 315 essential genes in E. coli EC958, 231 (73%) of which were also essential in E. coli K-12. The serum resistome comprised 56 genes, the majority of which encode membrane proteins or factors involved in lipopolysaccharide (LPS) biosynthesis. Targeted mutagenesis confirmed a role in serum resistance for 46 (82%) of these genes. The murein lipoprotein Lpp, along with two lipid A-core biosynthesis enzymes WaaP and WaaG, were most strongly associated with serum resistance. While LPS was the main resistance mechanism defined for E. coli EC958 in serum, the enterobacterial common antigen and colanic acid also impacted on this phenotype. Our analysis also identified a novel function for two genes, hyxA and hyxR, as minor regulators of O-antigen chain length. This study offers novel insight into the genetic make-up of E. coli ST131, and provides a framework for future research on E. coli and other Gram-negative pathogens to define their essential gene repertoire and to dissect the molecular mechanisms that enable them to survive in the bloodstream and cause disease. PMID:24098145
Phan, Minh-Duy; Peters, Kate M; Sarkar, Sohinee; Lukowski, Samuel W; Allsopp, Luke P; Gomes Moriel, Danilo; Achard, Maud E S; Totsika, Makrina; Marshall, Vikki M; Upton, Mathew; Beatson, Scott A; Schembri, Mark A
2013-01-01
Escherichia coli ST131 is a globally disseminated, multidrug resistant clone responsible for a high proportion of urinary tract and bloodstream infections. The rapid emergence and successful spread of E. coli ST131 is strongly associated with antibiotic resistance; however, this phenotype alone is unlikely to explain its dominance amongst multidrug resistant uropathogens circulating worldwide in hospitals and the community. Thus, a greater understanding of the molecular mechanisms that underpin the fitness of E. coli ST131 is required. In this study, we employed hyper-saturated transposon mutagenesis in combination with multiplexed transposon directed insertion-site sequencing to define the essential genes required for in vitro growth and the serum resistome (i.e. genes required for resistance to human serum) of E. coli EC958, a representative of the predominant E. coli ST131 clonal lineage. We identified 315 essential genes in E. coli EC958, 231 (73%) of which were also essential in E. coli K-12. The serum resistome comprised 56 genes, the majority of which encode membrane proteins or factors involved in lipopolysaccharide (LPS) biosynthesis. Targeted mutagenesis confirmed a role in serum resistance for 46 (82%) of these genes. The murein lipoprotein Lpp, along with two lipid A-core biosynthesis enzymes WaaP and WaaG, were most strongly associated with serum resistance. While LPS was the main resistance mechanism defined for E. coli EC958 in serum, the enterobacterial common antigen and colanic acid also impacted on this phenotype. Our analysis also identified a novel function for two genes, hyxA and hyxR, as minor regulators of O-antigen chain length. This study offers novel insight into the genetic make-up of E. coli ST131, and provides a framework for future research on E. coli and other Gram-negative pathogens to define their essential gene repertoire and to dissect the molecular mechanisms that enable them to survive in the bloodstream and cause disease.
A Quantitative Prioritisation of Human and Domestic Animal Pathogens in Europe
McIntyre, K. Marie; Setzkorn, Christian; Hepworth, Philip J.; Morand, Serge; Morse, Andrew P.; Baylis, Matthew
2014-01-01
Disease or pathogen risk prioritisations aid understanding of infectious agent impact within surveillance or mitigation and biosecurity work, but take significant development. Previous work has shown the H-(Hirsch-)index as an alternative proxy. We present a weighted risk analysis describing infectious pathogen impact for human health (human pathogens) and well-being (domestic animal pathogens) using an objective, evidence-based, repeatable approach; the H-index. This study established the highest H-index European pathogens. Commonalities amongst pathogens not included in previous surveillance or risk analyses were examined. Differences between host types (humans/animals/zoonotic) in pathogen H-indices were explored as a One Health impact indicator. Finally, the acceptability of the H-index proxy for animal pathogen impact was examined by comparison with other measures. 57 pathogens appeared solely in the top 100 highest H-indices (1) human or (2) animal pathogens list, and 43 occurred in both. Of human pathogens, 66 were zoonotic and 67 were emerging, compared to 67 and 57 for animals. There were statistically significant differences between H-indices for host types (humans, animal, zoonotic), and there was limited evidence that H-indices are a reasonable proxy for animal pathogen impact. This work addresses measures outlined by the European Commission to strengthen climate change resilience and biosecurity for infectious diseases. The results include a quantitative evaluation of infectious pathogen impact, and suggest greater impacts of human-only compared to zoonotic pathogens or scientific under-representation of zoonoses. The outputs separate high and low impact pathogens, and should be combined with other risk assessment methods relying on expert opinion or qualitative data for priority setting, or could be used to prioritise diseases for which formal risk assessments are not possible because of data gaps. PMID:25136810
Mishra, Mitali; Kumar, Satish; Majhi, Rakesh K.; Goswami, Luna; Goswami, Chandan; Mohapatra, Harapriya
2018-01-01
Antibacterial therapy is of paramount importance in treatment of several acute and chronic infectious diseases caused by pathogens. Over the years extensive use and misuse of antimicrobial agents has led to emergence of multidrug resistant (MDR) and extensive drug resistant (XDR) pathogens. This drastic escalation in resistant phenotype has limited the efficacy of available therapeutic options. Thus, the need of the hour is to look for alternative therapeutic approaches to mitigate healthcare concerns caused due to MDR bacterial infections. Nanoparticles have gathered much attention as potential candidates for antibacterial therapy. Equipped with advantages of, wide spectrum bactericidal activity at very low dosage, inhibitor of biofilm formation and ease of permeability, nanoparticles have been considered as leading therapeutic candidates to curtail infections resulting from MDR bacteria. However, substrate non-specificity of efflux pumps, particularly those belonging to resistance nodulation division super family, have been reported to reduce efficacy of many potent antibacterial therapeutic drugs. Previously, we had reported antibacterial activity of polysaccharide-capped silver nanoparticles (AgNPs) toward MDR bacteria. We showed that AgNPs inhibits biofilm formation and alters expression of cytoskeletal proteins FtsZ and FtsA, with minimal cytotoxicity toward mammalian cells. In the present study, we report no reduction in antibacterial efficacy of silver nanoparticles in presence of AcrAB-TolC efflux pump proteins. Antibacterial tests were performed according to CLSI macrobroth dilution method, which revealed that both silver nanoparticles exhibited bactericidal activity at very low concentrations. Further, immunoblotting results indicated that both the nanoparticles modulate the transporter AcrB protein expression. However, expression of the membrane fusion protein AcrA did show a significant increase after exposure to AgNPs. Our results indicate that both silver nanoparticles are effective in eliminating MDR Enterobacter cloacae isolates and their action was not inhibited by AcrAB-TolC efflux protein expression. As such, the above nanoparticles have strong potential to be used as effective and alternate therapeutic candidates to combat MDR gram-negative Enterobacterial pathogens.
Böttger, E C; Jürs, M; Barrett, T; Wachsmuth, K; Metzger, S; Bitter-Suermann, D
1987-01-01
The presence and quantity of the enterobacterial common antigen (ECA) in several species belonging to the family Enterobacteriaceae as well as to other gram-negative families were determined by a solid-phase enzyme-linked immunosorbent assay system and Western blotting by using mouse monoclonal antibodies specific for ECA. Except for Erwinia chrysanthemi, previously known to be an exception, all species known or presumed to belong to Enterobacteriaceae produced ECA (89 of 90 species). Most species not belonging to Enterobacteriaceae did not produce ECA (25 of 28 species), with one already known (Plesiomonas shigelloides) and two hitherto unknown (Actinobacillus equuli and Actinobacillus suis) exceptions. Interestingly, all strains of P. shigelloides produced ECA, regardless of the presence of the Shigella sonnei cross-reacting O antigen. Quantitation of the amount of ECA in members of the family Enterobacteriaceae revealed a remarkable heterogeneity among genera and species as well as within one species. We conclude that the rapid, sensitive, and reliable determination of ECA is a useful aid in taxonomic classification and may help to characterize the relatedness of the family Enterobacteriaceae to other families. However, a quantitative analysis of ECA appears to be without value for these purposes. Images PMID:3818929
Iwai, Tomohisa; Ichikawa, Takafumi; Kida, Mitsuhiro; Goso, Yukinobu; Kurihara, Makoto; Koizumi, Wasaburo; Ishihara, Kazuhiko
2011-02-10
Nonsteroidal anti-inflammatory drugs induce small intestinal ulcers but the preventive measures against it remain unknown. So we evaluated the effect of geranylgeranylacetone (GGA), a mucosal protectant, on both the mucus content and loxoprofen sodium-induced lesions in the rat small intestine. Normal male Wistar rats were given GGA (200 or 400mg/kg p.o.) and euthanized 3h later for measurement of mucin content and immunoreactivity. Other Wistar rats were given loxoprofen sodium (30mg/kg s.c.) and euthanized 24h later. GGA (30-400mg/kg p.o.) was administered twice: 30min before and 6h after loxoprofen sodium. The total mucin content of the small intestinal mucosa increased, especially the ratio of sialomucin, which increased approximately 20% more than the control level after a single dose of GGA. Loxoprofen sodium provoked linear ulcers along the mesenteric margin of the distal jejunum, accompanied by an increase in enterobacterial translocation. Treatment of the animals with GGA dose-dependently prevented the development of intestinal lesions, and bacterial translocation following loxoprofen sodium was also significantly decreased. GGA protects the small intestine against loxoprofen sodium-induced lesions, probably by inhibiting enterobacterial invasion of the mucosa as a result of the increase in the mucosal barrier. 2010 Elsevier B.V. All rights reserved.
Ture, M; Altinok, I; Capkin, E
2015-01-01
Biochemical test, pulsed-field gel electrophoresis (PFGE) and enterobacterial repetitive intergenic consensus sequence PCR (ERIC-PCR) were used to compare 42 strains of Lactococcus garvieae isolated from different regions of Turkey, Italy, France and Spain. Twenty biotypes of L. garvieae were formed based on 54 biochemical tests. ERIC-PCR of genomic DNA from different L. garvieae strains resulted in amplification of multiple fragments of DNA in sizes ranging between 200 and 5000 bp with various band intensities. After cutting DNA with ApaI restriction enzyme and running on the PFGE, 11–22 resolvable bands ranging from 2 to 194 kb were observed. Turkish isolates were grouped into two clusters, and only A58 (Italy) strain was connected with Turkish isolates. Similarities between Turkish, Spanish, Italian and French isolates were <50% except 216-6 Rize strain. In Turkey, first lactococcosis occurred in Mugla, and then, it has been spread all over the country. Based on ERIC-PCR, Spanish and Italian strains of L. garvieae were related to Mugla strains. Therefore, after comparing PFGE profiles, ERIC-PCR profiles and phenotypic characteristics of 42 strains of L. garvieae, there were no relationships found between these three typing methods. PFGE method was more discriminative than the other methods. © 2014 John Wiley & Sons Ltd.
A Novel High-Resolving Method for Genomic PCR-Fingerprinting of Enterobacteria
Isaeva, A.S.; Kulikov, E.E.; Tarasyan, K.K.
2010-01-01
We developed a novel PCR–fingerprinting system for differentiation of enterobacterial strains using a single oligonucleotide primer IS1tr that matches the inverted terminal repeats of the IS1 insertion element. Compared to widely used BOX–PCR and ribotyping methods, our system features higher resolution allowing differentiation of closely related isolates that appear identical in BOX–PCR and ribotyping but differ in their phage sensitivity. The IS1–profiling system is less sensitive to the quality of the material and equipment used. At the same time, BOX–PCR is more universal and suitable for bacterial strain grouping and reconstruction of the low–distance phylogeny. Thus, our system represents an important supplement to the existing set of tools for bacterial strain differentiation; it is particularly valuable for a detailed investigation of highly divergent and rapidly evolving natural bacterial populations and for studies on coliphage ecology. However, some isolates could not be reliably differentiated by IS1–PCR, because of the low number of bands in their patterns. For improvement of IS1–fingerprinting characteristics, we offer to modify the system by introducing the second primer TR8834 hybridizing to the sequence of a transposase gene that is widely spread in enterobacterial genomes. PMID:22649631
Charfi, Karama; Grami, Raoudha; Ben Jeddou, Abir; Messaoudi, Aziza; Mani, Yosra; Bouallegue, Olfa; Boujaafar, Noureddine; Aouni, Mahjoub; Mammeri, Hedi; Mansour, Wejdène
2017-09-01
This study was conducted to investigate extended-spectrum-β-lactamase (ESBL) producing Enterobacteriaceae isolates from the Center of Maternity and Neonatology of Monastir, Tunisia. Fourty-six strains out of 283 were found to produce ESBL: Klebsiella pneumoniae (n = 37), Escherichia coli (n = 6), Enterobacter cloacae (n = 2), and Citrobacter freundi (n = 1). Genotyping analysis, using ERIC2 and RAPD, showed that strains were clonally unrelated. PCR amplification followed by sequencing revealed that all strains produced CTX-M-15. This enzyme was co-produced with TEM and SHV determinants in 34 and 36 strains respectively. The bla CTXM-15 gene was bracked by ISEcp1 and/or IS26 in 42 out of the 46 ESBL positive strains. The quinolone resistance determinants were associated to the ESBL producing isolates: we identified the qnrB1 gene in six isolates and the aac(6')-Ib-cr gene in five isolates. This epidemiological study shows the widespread of CTX-M-15 and qnr determinants among enterobacterial isolates from neonates hospitalized at the center of Maternity and Neonatology of Monastir suggesting either mother portage or horizontal transmission. Copyright © 2017 Elsevier Ltd. All rights reserved.
Biogeography of Human Infectious Diseases: A Global Historical Analysis
Cashdan, Elizabeth
2014-01-01
Objectives Human pathogen richness and prevalence vary widely across the globe, yet we know little about whether global patterns found in other taxa also predict diversity in this important group of organisms. This study (a) assesses the relative importance of temperature, precipitation, habitat diversity, and population density on the global distributions of human pathogens and (b) evaluates the species-area predictions of island biogeography for human pathogen distributions on oceanic islands. Methods Historical data were used in order to minimize the influence of differential access to modern health care on pathogen prevalence. The database includes coded data (pathogen, environmental and cultural) for a worldwide sample of 186 non-industrial cultures, including 37 on islands. Prevalence levels for 10 pathogens were combined into a pathogen prevalence index, and OLS regression was used to model the environmental determinants of the prevalence index and number of pathogens. Results Pathogens (number and prevalence index) showed the expected latitudinal gradient, but predictors varied by latitude. Pathogens increased with temperature in high-latitude zones, while mean annual precipitation was a more important predictor in low-latitude zones. Other environmental factors associated with more pathogens included seasonal dry extremes, frost-free climates, and human population density outside the tropics. Islands showed the expected species-area relationship for all but the smallest islands, and the relationship was not mediated by habitat diversity. Although geographic distributions of free-living and parasitic taxa typically have different determinants, these data show that variables that influence the distribution of free-living organisms also shape the global distribution of human pathogens. Understanding the cause of these distributions is potentially important, since geographical variation in human pathogens has an important influence on global disparities in human welfare. PMID:25271730
Biogeography of human infectious diseases: a global historical analysis.
Cashdan, Elizabeth
2014-01-01
Human pathogen richness and prevalence vary widely across the globe, yet we know little about whether global patterns found in other taxa also predict diversity in this important group of organisms. This study (a) assesses the relative importance of temperature, precipitation, habitat diversity, and population density on the global distributions of human pathogens and (b) evaluates the species-area predictions of island biogeography for human pathogen distributions on oceanic islands. Historical data were used in order to minimize the influence of differential access to modern health care on pathogen prevalence. The database includes coded data (pathogen, environmental and cultural) for a worldwide sample of 186 non-industrial cultures, including 37 on islands. Prevalence levels for 10 pathogens were combined into a pathogen prevalence index, and OLS regression was used to model the environmental determinants of the prevalence index and number of pathogens. Pathogens (number and prevalence index) showed the expected latitudinal gradient, but predictors varied by latitude. Pathogens increased with temperature in high-latitude zones, while mean annual precipitation was a more important predictor in low-latitude zones. Other environmental factors associated with more pathogens included seasonal dry extremes, frost-free climates, and human population density outside the tropics. Islands showed the expected species-area relationship for all but the smallest islands, and the relationship was not mediated by habitat diversity. Although geographic distributions of free-living and parasitic taxa typically have different determinants, these data show that variables that influence the distribution of free-living organisms also shape the global distribution of human pathogens. Understanding the cause of these distributions is potentially important, since geographical variation in human pathogens has an important influence on global disparities in human welfare.
McMahon, Kenneth J; Castelli, Maria E; García Vescovi, Eleonora; Feldman, Mario F
2012-06-01
Outer membrane vesicles (OMVs) have been identified in a wide range of bacteria, yet little is known of their biogenesis. It has been proposed that OMVs can act as long-range toxin delivery vectors and as a novel stress response. We have found that the formation of OMVs in the gram-negative opportunistic pathogen Serratia marcescens is thermoregulated, with a significant amount of OMVs produced at 22 or 30°C and negligible quantities formed at 37°C under laboratory conditions. Inactivation of the synthesis of the enterobacterial common antigen (ECA) resulted in a hypervesiculation phenotype, supporting the hypothesis that OMVs are produced in response to stress. We demonstrate that the phenotype can be reversed to wild-type (WT) levels upon the loss of the Rcs phosphorelay response regulator RcsB, but not RcsA, suggesting a role for the Rcs phosphorelay in the production of OMVs. MS fingerprinting of the OMVs provided evidence of cargo selection within wild-type cells, suggesting a possible role for Serratia OMVs in toxin delivery. In addition, OMV-associated cargo proved toxic upon injection into the haemocoel of Galleria mellonella larvae. These experiments demonstrate that OMVs are the result of a regulated process in Serratia and suggest that OMVs could play a role in virulence.
Pathogen Transmission from Humans to Great Apes is a Growing Threat to Primate Conservation.
Dunay, Emily; Apakupakul, Kathleen; Leard, Stephen; Palmer, Jamie L; Deem, Sharon L
2018-01-23
All six great ape species are listed as endangered or critically endangered by the IUCN and experiencing decreasing population trends. One of the threats to these non-human primates is the transmission of pathogens from humans. We conducted a literature review on occurrences of pathogen transmission from humans to great apes to highlight this often underappreciated issue. In total, we found 33 individual occurrences of probable or confirmed pathogen transmission from humans to great apes: 23 involved both pathogen and disease transmission, 7 pathogen transmission only, 2 positive antibody titers to zoonotic pathogens, and 1 pathogen transmission with probable disease. Great ape populations were categorized into captive, semi-free-living, and free-living conditions. The majority of occurrences involved chimpanzees (Pan troglodytes) (n = 23) or mountain gorillas (Gorilla beringei beringei) (n = 8). These findings have implications for conservation efforts and management of endangered great ape populations. Future efforts should focus on monitoring and addressing zoonotic pathogen and disease transmission between humans, great ape species, and other taxa to ensure the health of humans, wild and domestic animals, and the ecosystems we share.
Interrelationships of food safety and plant pathology: the life cycle of human pathogens on plants.
Barak, Jeri D; Schroeder, Brenda K
2012-01-01
Bacterial food-borne pathogens use plants as vectors between animal hosts, all the while following the life cycle script of plant-associated bacteria. Similar to phytobacteria, Salmonella, pathogenic Escherichia coli, and cross-domain pathogens have a foothold in agricultural production areas. The commonality of environmental contamination translates to contact with plants. Because of the chronic absence of kill steps against human pathogens for fresh produce, arrival on plants leads to persistence and the risk of human illness. Significant research progress is revealing mechanisms used by human pathogens to colonize plants and important biological interactions between and among bacteria in planta. These findings articulate the difficulty of eliminating or reducing the pathogen from plants. The plant itself may be an untapped key to clean produce. This review highlights the life of human pathogens outside an animal host, focusing on the role of plants, and illustrates areas that are ripe for future investigation.
Risks Posed by Reston, the Forgotten Ebolavirus
Cantoni, Diego; Hamlet, Arran; Michaelis, Martin; Wass, Mark N.
2016-01-01
ABSTRACT Out of the five members of the Ebolavirus family, four cause life-threatening disease, whereas the fifth, Reston virus (RESTV), is nonpathogenic in humans. The reasons for this discrepancy remain unclear. In this review, we analyze the currently available information to provide a state-of-the-art summary of the factors that determine the human pathogenicity of Ebolaviruses. RESTV causes sporadic infections in cynomolgus monkeys and is found in domestic pigs throughout the Philippines and China. Phylogenetic analyses revealed that RESTV is most closely related to the Sudan virus, which causes a high mortality rate in humans. Amino acid sequence differences between RESTV and the other Ebolaviruses are found in all nine Ebolavirus proteins, though no one residue appears sufficient to confer pathogenicity. Changes in the glycoprotein contribute to differences in Ebolavirus pathogenicity but are not sufficient to confer pathogenicity on their own. Similarly, differences in VP24 and VP35 affect viral immune evasion and are associated with changes in human pathogenicity. A recent in silico analysis systematically determined the functional consequences of sequence variations between RESTV and human-pathogenic Ebolaviruses. Multiple positions in VP24 were differently conserved between RESTV and the other Ebolaviruses and may alter human pathogenicity. In conclusion, the factors that determine the pathogenicity of Ebolaviruses in humans remain insufficiently understood. An improved understanding of these pathogenicity-determining factors is of crucial importance for disease prevention and for the early detection of emergent and potentially human-pathogenic RESTVs. PMID:28066813
Contamination of produce with human pathogens: sources and solutions
USDA-ARS?s Scientific Manuscript database
Outbreaks of foodborne illnesses associated with the presence of human pathogens have led to increased concern about the prevalence of pathogens in the environment and the vulnerability of fresh produce to contamination by these pathogens. As the FDA strives to mandate treatments to reduce pathogen...
Li, Liping; Wang, Rui; Huang, Yan; Huang, Ting; Luo, Fuguang; Huang, Weiyi; Yang, Xiuying; Lei, Aiying; Chen, Ming; Gan, Xi
2018-01-01
Group B streptococcus (GBS) is the major pathogen causing diseases in neonates, pregnant/puerperal women, cows and fish. Recent studies have shown that GBS may be infectious across hosts and some fish GBS strain might originate from human. The purpose of this study is to investigate the genetic relationship of CC103 strains that recently emerged in cows and humans, and explore the pathogenicity of clinical GBS isolates from human to tilapia. Ninety-two pathogenic GBS isolates were identified from 19 patients with different diseases and their evolution and pathogenicity to tilapia were analyzed. The multilocus sequence typing revealed that clonal complex (CC) 103 strain was isolated from 21.74% (20/92) of patients and ST485 strain was from 14.13% (13/92) patients with multiple diseases including neonates. Genomic evolution analysis showed that both bovine and human CC103 strains alternately form independent evolutionary branches. Three CC67 isolates carried gbs2018-C gene and formed one evolutionary branch with ST61 and ST67 strains that specifically infect dairy cows. Studies of interspecies transmission to tilapia found that 21/92 (22.83%) isolates including all ST23 isolates were highly pathogenic to tilapia and demonstrated that streptococci could break through the blood-brain barrier into brain tissue. In conclusions, CC103 strains are highly prevalent among pathogenic GBS from humans and have evolved into the highly pathogenic ST485 strains specifically infecting humans. The CC67 strains isolated from cows are able to infect humans through evolutionary events of acquiring CC17-specific type C gbs2018 gene and others. Human-derived ST23 pathogenic GBS strains are highly pathogenic to tilapia. PMID:29467722
Assessment of sources of human pathogens and fecal contamination in a Florida freshwater lake.
Staley, Christopher; Reckhow, Kenneth H; Lukasik, Jerzy; Harwood, Valerie J
2012-11-01
We investigated the potential for a variety of environmental reservoirs to harbor or contribute fecal indicator bacteria (FIB), DNA markers of human fecal contamination, and human pathogens to a freshwater lake. We hypothesized that submerged aquatic vegetation (SAV), sediments, and stormwater act as reservoirs and/or provide inputs of FIB and human pathogens to this inland water. Analysis included microbial source tracking (MST) markers of sewage contamination (Enterococcus faecium esp gene, human-associated Bacteroides HF183, and human polyomaviruses), pathogens (Salmonella, Cryptosporidium, Giardia, and enteric viruses), and FIB (fecal coliforms, Escherichia coli, and enterococci). Bayesian analysis was used to assess relationships among microbial and physicochemical variables. FIB in the water were correlated with concentrations in SAV and sediment. Furthermore, the correlation of antecedent rainfall and major rain events with FIB concentrations and detection of human markers and pathogens points toward multiple reservoirs for microbial contaminants in this system. Although pathogens and human-source markers were detected in 55% and 21% of samples, respectively, markers rarely coincided with pathogen detection. Bayesian analysis revealed that low concentrations (<45 CFU × 100 ml(-1)) of fecal coliforms were associated with 93% probability that pathogens would not be detected; furthermore the Bayes net model showed associations between elevated temperature and rainfall with fecal coliform and enterococci concentrations, but not E. coli. These data indicate that many under-studied matrices (e.g. SAV, sediment, stormwater) are important reservoirs for FIB and potentially human pathogens and demonstrate the usefulness of Bayes net analysis for water quality assessment. Copyright © 2012 Elsevier Ltd. All rights reserved.
Modification of the lipid moiety of the enterobacterial common antigen by the "Pseudomonas factor".
Kuhn, H M; Neter, E; Mayer, H
1983-01-01
Pseudomonas aeruginosa produces a factor (PF) which affects the enterobacterial common antigen (ECA); resulting in failure of the antigen to modify erythrocytes for hemagglutination by ECA antibodies. In the present study the nature of PF was determined. Pronase treatment abolished its activity, indicating the protein nature of PF. PF-treated ECA no longer coated erythrocytes but still reacted with ECA antibodies in immunoelectrophoresis tests with monospecific antiserum to ECA, although differences were noted between the precipitation patterns of PF-treated and untreated ECA. Therefore, PF does not significantly affect the antigenic determinant of ECA but rather affects its lipid carrier, an L-glycerophosphatide. Accordingly, differences in the sugar chain could not be detected by high-voltage paper electrophoretic examinations of partial hydrolysates of PF-treated and untreated ECA. PF liberates all fatty acids from ECA, similarly to commercial lipases, as evidenced by the liberation of unsubstituted glycerol upon HF degradation at 0 degrees C of PF-treated ECA. The lipase activity of PF is indicated also by the observation that a strain of P. aeruginosa with reduced lipase production and an exolipase-negative strain affect ECA either less or not at all. We conclude that PF is a lipase acting on the lipid moiety of ECA, which is responsible for the coating of erythrocytes, but not significantly on the serological determinant, the amino sugar chain. Images PMID:6404831
Baumgartner, Andreas; Grand, Marius; Liniger, Marianne; Iversen, Carol
2009-12-31
Two hundred sixty eight samples of ready-to-eat foods from retail shops were screened for the presence of Cronobacter by selective enrichment followed by plating on three chromogenic agars (ESIA, ESPM and DFI). Cronobacter was isolated from 14/23 samples of sprouts and fresh herbs/salads (60.9%), 7/26 samples of spices and dried herbs (26.9%) and 3/42 confectionery samples (7.1%). In cases where repeat samples were available, foods positive for Cronobacter were retested twice. In total, 54 Cronobacter isolates from 24 foods were recovered and genetic fingerprint patterns generated using PFGE. Identical PFGE-profiles were generated for Cronobacter isolates from five samples of two confectionery products obtained from a particular bakery shop over a period of 11 months. This may indicate a persistent contamination of the production site. For all other isolates, no clustering by phylogenetic analysis of PFGE-profiles was observed, indicating the sporadic nature of Cronobacter in ready-to-eat foods. Enterobacterial counts varied from a maximum value of 2.9 x 10(7) CFU/g (in dill) to a minimum value of <10 CFU/g (in confectionery and dried herbs/spices). There was no correlation between Enterobacterial count and the presence of Cronobacter. Cronobacter may be regularly imported into private households via ready-to-eat foods.
Huang, Chengchen; Hu, Yue; Wang, Lin; Wang, Yuanfei; Li, Na; Guo, Yaqiong; Xiao, Lihua
2017-01-01
ABSTRACT The environmental transport of Cryptosporidium spp. through combined sewer overflow (CSO) and the occurrence of several emerging human-pathogenic Cryptosporidium species in developing countries remain unclear. In this study, we collected 40 CSO samples and 40 raw wastewater samples from Shanghai, China, and examined them by PCR and DNA sequencing for Cryptosporidium species (targeting the small subunit rRNA gene) and Giardia duodenalis (targeting the triosephosphate isomerase, β-giardin, and glutamate dehydrogenase genes) and Enterocytozoon bieneusi (targeting the ribosomal internal transcribed spacer) genotypes. Human-pathogenic Cryptosporidium species were further subtyped by sequence analysis of the 60-kDa glycoprotein gene, with additional multilocus sequence typing on the emerging zoonotic pathogen Cryptosporidium ubiquitum. Cryptosporidium spp., G. duodenalis, and E. bieneusi were detected in 12 and 15, 33 and 32, and 37 and 40 CSO and wastewater samples, respectively, including 10 Cryptosporidium species, 3 G. duodenalis assemblages, and 8 E. bieneusi genotypes. In addition to Cryptosporidium hominis and Cryptosporidium parvum, two new pathogens identified in industrialized nations, C. ubiquitum and Cryptosporidium viatorum, were frequently detected. The two novel C. ubiquitum subtype families identified appeared to be genetic recombinants of known subtype families. Similarly, the dominant group 1 E. bieneusi genotypes and G. duodenalis subassemblage AII are known human pathogens. The similar distribution of human-pathogenic Cryptosporidium species and E. bieneusi and G. duodenalis genotypes between wastewater and CSO samples reaffirms that storm overflow is potentially a significant contamination source of pathogens in surface water. The frequent identification of C. ubiquitum and C. viatorum in urban wastewater suggests that these newly identified human pathogens may be endemic in China. IMPORTANCE Cryptosporidium spp., Giardia duodenalis, and Enterocytozoon bieneusi are major waterborne pathogens. Their transport into surface water through combined sewer overflow, which remains largely untreated in developing countries, has not been examined. In addition, the identification of these pathogens to genotypes and subtypes in urban storm overflow and wastewater is necessary for rapid and accurate assessment of pathogen transmission in humans and transport in the environment. Data from this study suggest that, like untreated urban wastewater, combined sewer overflow is commonly contaminated with human-pathogenic Cryptosporidium, G. duodenalis, and E. bieneusi genotypes and subtypes, and urban storm overflow potentially plays a significant role in the contamination of drinking source water and recreational water with human pathogens. They also indicate that Cryptosporidium ubiquitum and Cryptosporidium viatorum, two newly identified human pathogens, may be common in China, and genetic recombination can lead to the emergence of novel C. ubiquitum subtype families. PMID:28600310
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-24
... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2001-D-0066] (Formerly Docket No. 2001D-0107) Expedited Review for New Animal Drug Applications for Human Pathogen... Review for New Animal Drug Applications for Human Pathogen Reduction Claims.'' The guidance predates the...
Lekshmi, Manjusha; Ammini, Parvathi; Kumar, Sanath; Varela, Manuel F
2017-03-14
Food-borne pathogens are a serious human health concern worldwide, and the emergence of antibiotic-resistant food pathogens has further confounded this problem. Once-highly-efficacious antibiotics are gradually becoming ineffective against many important pathogens, resulting in severe treatment crises. Among several reasons for the development and spread of antimicrobial resistance, their overuse in animal food production systems for purposes other than treatment of infections is prominent. Many pathogens of animals are zoonotic, and therefore any development of resistance in pathogens associated with food animals can spread to humans through the food chain. Human infections by antibiotic-resistant pathogens such as Campylobacter spp., Salmonella spp., Escherichia coli and Staphylococcus aureus are increasing. Considering the human health risk due to emerging antibiotic resistance in food animal-associated bacteria, many countries have banned the use of antibiotic growth promoters and the application in animals of antibiotics critically important in human medicine. Concerted global efforts are necessary to minimize the use of antimicrobials in food animals in order to control the development of antibiotic resistance in these systems and their spread to humans via food and water.
Ruiz-Fons, F
2017-02-01
Many wild swine populations in different parts of the World have experienced an unprecedented demographic explosion that may result in increased exposure of humans to wild swine zoonotic pathogens. Interactions between humans and wild swine leading to pathogen transmission could come from different ways, being hunters and game professionals the most exposed to acquiring infections from wild swine. However, increasing human settlements in semi-natural areas, outdoor activities, socio-economic changes and food habits may increase the rate of exposure to wild swine zoonotic pathogens and to potentially emerging pathogens from wild swine. Frequent and increasing contact rate between humans and wild swine points to an increasing chance of zoonotic pathogens arising from wild swine to be transmitted to humans. Whether this frequent contact could lead to new zoonotic pathogens emerging from wild swine to cause human epidemics or emerging disease outbreaks is difficult to predict, and assessment should be based on thorough epidemiologic surveillance. Additionally, several gaps in knowledge on wild swine global population dynamics trends and wild swine-zoonotic pathogen interactions should be addressed to correctly assess the potential role of wild swine in the emergence of diseases in humans. In this work, viruses such as hepatitis E virus, Japanese encephalitis virus, Influenza virus and Nipah virus, and bacteria such as Salmonella spp., Shiga toxin-producing Escherichia coli, Campylobacter spp. and Leptospira spp. have been identified as the most prone to be transmitted from wild swine to humans on the basis of geographic spread in wild swine populations worldwide, pathogen circulation rates in wild swine populations, wild swine population trends in endemic areas, susceptibility of humans to infection, transmissibility from wild swine to humans and existing evidence of wild swine-human transmission events. © 2015 Blackwell Verlag GmbH.
Biofilms in Water, Its role and impact in human disease transmission
2008-01-01
increasing realization of the importance of the world’s oceans as a source of potentially pathogenic microorganisms. Human bacterial pathogens...colorimetric microtitre model for the detection of Staphylococcus aureus biofilms. Lett Appl Microbiol 2008, 46:249-254. A new microplate model for...Polz M: Diversity, sources, and detection of human bacterial pathogens in the marine environment. In Oceans and Health: Pathogens in the Marine
Ståhle, Magnus U; Brandhorst, Daniel; Korsgren, Olle; Knutson, Folke
2011-01-01
Serum is regarded as an essential supplement to promote survival and growth of cells during culture. However, the potential risk of transmitting diseases disqualifies the use of serum for clinical cell therapy in most countries. Hence, most clinical cell therapy programs have replaced human serum with human serum albumin, which can result in inferior quality of released cell products. Photochemical treatment of different blood products utilizing Intercept® technology has been shown to inactivate a broad variety of pathogens of RNA and DNA origin. The present study assesses the feasibility of using pathogen-inactivated, blood group-compatible serum for use in human pancreatic islet culture. Isolated human islets were cultured at 37°C for 3-4 days in CMRL 1066 supplemented with 10% of either pathogen-inactivated or nontreated human serum. Islet quality assessment included glucose-stimulated insulin release (perifusion), ADP/ATP ratio, cytokine expression, and posttransplant function in diabetic nude mice. No differences were found between islets cultured in pathogen-inactivated or control serum regarding stimulated insulin release, intracellular insulin content, and ADP/ATP ratio. Whether media was supplemented with treated or nontreated serum, islet expression of IL-6, IL-8, MCP-1, or tissue factor was not affected. The final diabetes-reversal rate of mice receiving islets cultured in pathogen-inactivated or nontreated serum was 78% and 87%, respectively (NS). As reported here, pathogen-inactivated human serum does not affect viability or functional integrity of cultured human islets. The implementation of this technology for RNA- and DNA-based pathogen inactivation should enable reintroduction of human serum for clinical cell therapy.
PCR Methods for Rapid Identification and Characterization of Actinobacillus seminis Strains
Appuhamy, S.; Coote, J. G.; Low, J. C.; Parton, R.
1998-01-01
Twenty-four isolates of Actinobacillus seminis were typed by PCR ribotyping, repetitive extragenic palindromic element (REP)-based PCR, and enterobacterial repetitive intergenic consensus (ERIC)-based PCR. Five types were distinguished by REP-PCR, and nine types were distinguished by ERIC-PCR. PCR ribotyping produced the simplest pattern and could be useful for identification of A. seminis and for its differentiation from related species. REP- and ERIC-PCR could be used for strain differentiation in epidemiological studies of A. seminis. PMID:9508320
Airborne pathogens from dairy manure aerial irrigation and the human health risk
Borchardt, Mark A.; Burch, Tucker R
2016-01-01
Dairy manure, like the fecal excrement from any domesticated or wild animal, can contain pathogens capable of infecting humans and causing illness or even death. Pathogens in dairy manure can be broadly divided into categories of taxonomy or infectiousness. Dividing by taxonomy there are three pathogen groups in dairy manure: viruses (e.g., bovine rotavirus), bacteria (e.g., Salmonella species), and protozoa (e.g., Cryptosporidium parvum). There are two categories of infectiousness for pathogens found in animals: those that are zoonotic and those that are not. A zoonotic pathogen is one that can infect both human and animal hosts. Some zoonotic pathogens found in dairy manure cause illness in both hosts (e.g., Salmonella) while other zoonotic pathogens, like Escherichia coli O157:H7, (enterohemorrhagic E. coli (EHEC)) cause illness only in humans. As a general rule, the gastrointestinal viruses found in dairy manure are not zoonotic. While there are exceptions (e.g., rare reports of bovine rotavirus infecting children), for the most part the viruses in dairy manure are not a human health concern. The primary concerns are the zoonotic bacteria and protozoa in dairy manure.
Wuerges, Jochen; Caputi, Lorenzo; Cianci, Michele; Boivin, Stephane; Meijers, Rob; Benini, Stefano
2015-09-01
Levansucrases are members of the glycoside hydrolase family and catalyse both the hydrolysis of the substrate sucrose and the transfer of fructosyl units to acceptor molecules. In the presence of sufficient sucrose, this may either lead to the production of fructooligosaccharides or fructose polymers. Aim of this study is to rationalise the differences in the polymerisation properties of bacterial levansucrases and in particular to identify structural features that determine different product spectrum in the levansucrase of the Gram-negative bacterium Erwinia amylovora (Ea Lsc, EC 2.4.1.10) as compared to Gram-positive bacteria such as Bacillus subtilis levansucrase. Ea is an enterobacterial pathogen responsible for the Fire Blight disease in rosaceous plants (e.g., apple and pear) with considerable interest for the agricultural industry. The crystal structure of Ea Lsc was solved at 2.77 Å resolution and compared to those of other fructosyltransferases from Gram-positive and Gram-negative bacteria. We propose the structural features, determining the different reaction products, to reside in just a few loops at the rim of the active site funnel. Moreover we propose that loop 8 may have a role in product length determination in Gluconacetobacter diazotrophicus LsdA and Microbacterium saccharophilum FFase. The Ea Lsc structure shows for the first time the products of sucrose hydrolysis still bound in the active site. Copyright © 2015 Elsevier Inc. All rights reserved.
Cartelle Gestal, Monica; Zurita, Jeannete; Gualpa, Gabriela; Gonzalez, Cecibel; Paz Y Mino, Ariane
2016-12-30
Acinetobacter baumannii (ABA) is an important opportunistic pathogen associated with high mortality rates in intensive care units (ICUs). An outbreak in the ICU of a secondary-level hospital in Quito, Ecuador, occurred during April and May 2015 and was successfully controlled. Enterobacterial repetitive intergenic consensus polymerase chain reaction (ERIC-PCR) and repetitive element palindromic (REP)-PCR was conducted on all isolates recovered from patients, as well as environmental samples, to confirm the presence of an outbreak. A case-control study was conducted by comparing the clinical histories of the affected patients and of control patients present in the ICU during the outbreak period who did not present a positive culture for ABA. Five patients were infected and two were colonized with the same clonal strain of ABA, which was also identified on the stethoscope and a monitor associated with an isolation room. Statistical analysis of case histories did not identify any additional risk factors, but the outbreak was initiated by one patient in the isolation room of the ICU who was infected with the outbreak strain. All patients who ocupied that room after the index case tested positive for at least one culture of ABA. The outbreak strain was found on the stethoscope, and a subclone was found on the monitor of that room. Having access to basic equipment will enable well-trained professionals to rapidly detect and initiate the control process of an outbreak, saving lives and money spent on nosocomial infection treatments.
Hemocytes from Pediculus humanus humanus are hosts for human bacterial pathogens
Coulaud, Pierre-Julien; Lepolard, Catherine; Bechah, Yassina; Berenger, Jean-Michel; Raoult, Didier; Ghigo, Eric
2015-01-01
Pediculus humanus humanus is an human ectoparasite which represents a serious public health threat because it is vector for pathogenic bacteria. It is important to understand and identify where bacteria reside in human body lice to define new strategies to counterstroke the capacity of vectorization of the bacterial pathogens by body lice. It is known that phagocytes from vertebrates can be hosts or reservoirs for several microbes. Therefore, we wondered if Pediculus humanus humanus phagocytes could hide pathogens. In this study, we characterized the phagocytes from Pediculus humanus humanus and evaluated their contribution as hosts for human pathogens such as Rickettsia prowazekii, Bartonella Quintana, and Acinetobacter baumannii. PMID:25688336
Reduced Set of Virulence Genes Allows High Accuracy Prediction of Bacterial Pathogenicity in Humans
Iraola, Gregorio; Vazquez, Gustavo; Spangenberg, Lucía; Naya, Hugo
2012-01-01
Although there have been great advances in understanding bacterial pathogenesis, there is still a lack of integrative information about what makes a bacterium a human pathogen. The advent of high-throughput sequencing technologies has dramatically increased the amount of completed bacterial genomes, for both known human pathogenic and non-pathogenic strains; this information is now available to investigate genetic features that determine pathogenic phenotypes in bacteria. In this work we determined presence/absence patterns of different virulence-related genes among more than finished bacterial genomes from both human pathogenic and non-pathogenic strains, belonging to different taxonomic groups (i.e: Actinobacteria, Gammaproteobacteria, Firmicutes, etc.). An accuracy of 95% using a cross-fold validation scheme with in-fold feature selection is obtained when classifying human pathogens and non-pathogens. A reduced subset of highly informative genes () is presented and applied to an external validation set. The statistical model was implemented in the BacFier v1.0 software (freely available at ), that displays not only the prediction (pathogen/non-pathogen) and an associated probability for pathogenicity, but also the presence/absence vector for the analyzed genes, so it is possible to decipher the subset of virulence genes responsible for the classification on the analyzed genome. Furthermore, we discuss the biological relevance for bacterial pathogenesis of the core set of genes, corresponding to eight functional categories, all with evident and documented association with the phenotypes of interest. Also, we analyze which functional categories of virulence genes were more distinctive for pathogenicity in each taxonomic group, which seems to be a completely new kind of information and could lead to important evolutionary conclusions. PMID:22916122
Skelly, Chris; Weinstein, Phil
2003-01-01
Campylobacteriosis, like many human diseases, has its own ecology in which the propagation of human infection and disease depends on pathogen survival and finding new hosts in order to replicate and sustain the pathogen population. The complexity of this process, a process common to other enteric pathogens, has hampered control efforts. Many unknowns remain, resulting in a poorly understood disease ecology. To provide structure to these unknowns and help direct further research and intervention, we propose an eco-environmental modeling approach for campylobacteriosis. This modeling approach follows the pathogen population as it moves through the environments that define the physical structure of its ecology. In this paper, we term the ecologic processes and environments through which these populations move "pathogen survival trajectories." Although such a modeling approach could have veterinary applications, our emphasis is on human campylobacteriosis and focuses on human exposures to Campylobacter through feces, food, and aquatic environments. The pathogen survival trajectories that lead to human exposure include ecologic filters that limit population size, e.g., cooking food to kill Campylobacter. Environmental factors that influence the size of the pathogen reservoirs include temperature, nutrient availability, and moisture availability during the period of time the pathogen population is moving through the environment between infected and susceptible hosts. We anticipate that the modeling approach proposed here will work symbiotically with traditional epidemiologic and microbiologic research to help guide and evaluate the acquisition of new knowledge about the ecology, eventual intervention, and control of campylobacteriosis. PMID:12515674
Tick-borne pathogens in tick species infesting humans in Sibiu County, central Romania.
Andersson, Martin O; Marga, Georgeta; Banu, Teofilia; Dobler, Gerhard; Chitimia-Dobler, Lidia
2018-05-01
Romania has a highly diverse tick fauna. Consequently, a high diversity of tick-transmitted pathogens might be a potential threat to humans. However, only a limited number of tick species regularly infest humans, and pathogens present in such species are therefore of particular interest from a medical perspective. In this study, 297 ticks were collected from humans during 2013 and 2014. Ixodes ricinus was the predominant tick species, accounting for 272 specimens or 91.6% of the ticks in the study. Nevertheless, other tick species were also found to infest humans: Dermacentor marginatus constituted 7% of the ticks found on humans (21/297), Haemaphysalis punctata 1% (3/297), and Haemaphysalis concinna 0.3% (1/297). Ticks were tested by PCR for a wide range of tick-borne pathogens. In total, 11.8% of the ticks carried human pathogenic bacteria, while no viral or protozoan pathogens were detected. The most frequently detected pathogen was Rickettsia spp., occurring in 5.4% of the ticks (16/297) and comprising three species: Rickettsia (R.) raoultii, R. monacensis, and R. helvetica. Borrelia s.l. occurred in 3% (9/297) of the ticks. "Candidatus Neoehrlichia mikurensis" occurred in 1.7% (5/297) and Anaplasma phagocytophilum in 1.3% (4/297). Anaplasma bovis was detected in an H. punctata and Borrelia miyamotoi in an I. ricinus. These results point to the need for further studies on the medical importance of tick-borne pathogens in Romania.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-26
... ENVIRONMENTAL PROTECTION AGENCY [FRL-9311-4] Problem Formulation for Human Health Risk Assessments of Pathogens in Land-Applied Biosolids AGENCY: Environmental Protection Agency (EPA). ACTION: Notice... Formulation for Human Health Risk Assessments of Pathogens in Land-Applied Biosolids'' EPA/600/R-08/035F...
Migrating microbes: what pathogens can tell us about population movements and human evolution.
Houldcroft, Charlotte J; Ramond, Jean-Baptiste; Rifkin, Riaan F; Underdown, Simon J
2017-08-01
The biology of human migration can be observed from the co-evolutionary relationship with infectious diseases. While many pathogens are brief, unpleasant visitors to human bodies, others have the ability to become life-long human passengers. The story of a pathogen's genetic code may, therefore, provide insight into the history of its human host. The evolution and distribution of disease in Africa is of particular interest, because of the deep history of human evolution in Africa, the presence of a variety of non-human primates, and tropical reservoirs of emerging infectious diseases. This study explores which pathogens leave traces in the archaeological record, and whether there are realistic prospects that these pathogens can be recovered from sub-Saharan African archaeological contexts. Three stories are then presented of germs on a journey. The first is the story of HIV's spread on the back of colonialism and the railway networks over the last 150 years. The second involves the spread of Schistosoma mansoni, a parasite which shares its history with the trans-Atlantic slave trade and the origins of fresh-water fishing. Finally, we discuss the tantalising hints of hominin migration and interaction found in the genome of human herpes simplex virus 2. Evidence from modern African pathogen genomes can provide data on human behaviour and migration in deep time and contribute to the improvement of human quality-of-life and longevity.
Impacts of climate change on indirect human exposure to pathogens and chemicals from agriculture.
Boxall, Alistair B A; Hardy, Anthony; Beulke, Sabine; Boucard, Tatiana; Burgin, Laura; Falloon, Peter D; Haygarth, Philip M; Hutchinson, Thomas; Kovats, R Sari; Leonardi, Giovanni; Levy, Leonard S; Nichols, Gordon; Parsons, Simon A; Potts, Laura; Stone, David; Topp, Edward; Turley, David B; Walsh, Kerry; Wellington, Elizabeth M H; Williams, Richard J
2009-04-01
Climate change is likely to affect the nature of pathogens and chemicals in the environment and their fate and transport. Future risks of pathogens and chemicals could therefore be very different from those of today. In this review, we assess the implications of climate change for changes in human exposures to pathogens and chemicals in agricultural systems in the United Kingdom and discuss the subsequent effects on health impacts. In this review, we used expert input and considered literature on climate change; health effects resulting from exposure to pathogens and chemicals arising from agriculture; inputs of chemicals and pathogens to agricultural systems; and human exposure pathways for pathogens and chemicals in agricultural systems. We established the current evidence base for health effects of chemicals and pathogens in the agricultural environment; determined the potential implications of climate change on chemical and pathogen inputs in agricultural systems; and explored the effects of climate change on environmental transport and fate of different contaminant types. We combined these data to assess the implications of climate change in terms of indirect human exposure to pathogens and chemicals in agricultural systems. We then developed recommendations on future research and policy changes to manage any adverse increases in risks. Overall, climate change is likely to increase human exposures to agricultural contaminants. The magnitude of the increases will be highly dependent on the contaminant type. Risks from many pathogens and particulate and particle-associated contaminants could increase significantly. These increases in exposure can, however, be managed for the most part through targeted research and policy changes.
Genetic Recombination between Human and Animal Parasites Creates Novel Strains of Human Pathogen
Gibson, Wendy; Peacock, Lori; Ferris, Vanessa; Fischer, Katrin; Livingstone, Jennifer; Thomas, James; Bailey, Mick
2015-01-01
Genetic recombination between pathogens derived from humans and livestock has the potential to create novel pathogen strains, highlighted by the influenza pandemic H1N1/09, which was derived from a re-assortment of swine, avian and human influenza A viruses. Here we investigated whether genetic recombination between subspecies of the protozoan parasite, Trypanosoma brucei, from humans and animals can generate new strains of human pathogen, T. b. rhodesiense (Tbr) responsible for sleeping sickness (Human African Trypanosomiasis, HAT) in East Africa. The trait of human infectivity in Tbr is conferred by a single gene, SRA, which is potentially transferable to the animal pathogen Tbb by sexual reproduction. We tracked the inheritance of SRA in crosses of Tbr and Tbb set up by co-transmitting genetically-engineered fluorescent parental trypanosome lines through tsetse flies. SRA was readily transferred into new genetic backgrounds by sexual reproduction between Tbr and Tbb, thus creating new strains of the human pathogen, Tbr. There was no evidence of diminished growth or transmissibility of hybrid trypanosomes carrying SRA. Although expression of SRA is critical to survival of Tbr in the human host, we show that the gene exists as a single copy in a representative collection of Tbr strains. SRA was found on one homologue of chromosome IV in the majority of Tbr isolates examined, but some Ugandan Tbr had SRA on both homologues. The mobility of SRA by genetic recombination readily explains the observed genetic variability of Tbr in East Africa. We conclude that new strains of the human pathogen Tbr are being generated continuously by recombination with the much larger pool of animal-infective trypanosomes. Such novel recombinants present a risk for future outbreaks of HAT. PMID:25816228
Genetic recombination between human and animal parasites creates novel strains of human pathogen.
Gibson, Wendy; Peacock, Lori; Ferris, Vanessa; Fischer, Katrin; Livingstone, Jennifer; Thomas, James; Bailey, Mick
2015-03-01
Genetic recombination between pathogens derived from humans and livestock has the potential to create novel pathogen strains, highlighted by the influenza pandemic H1N1/09, which was derived from a re-assortment of swine, avian and human influenza A viruses. Here we investigated whether genetic recombination between subspecies of the protozoan parasite, Trypanosoma brucei, from humans and animals can generate new strains of human pathogen, T. b. rhodesiense (Tbr) responsible for sleeping sickness (Human African Trypanosomiasis, HAT) in East Africa. The trait of human infectivity in Tbr is conferred by a single gene, SRA, which is potentially transferable to the animal pathogen Tbb by sexual reproduction. We tracked the inheritance of SRA in crosses of Tbr and Tbb set up by co-transmitting genetically-engineered fluorescent parental trypanosome lines through tsetse flies. SRA was readily transferred into new genetic backgrounds by sexual reproduction between Tbr and Tbb, thus creating new strains of the human pathogen, Tbr. There was no evidence of diminished growth or transmissibility of hybrid trypanosomes carrying SRA. Although expression of SRA is critical to survival of Tbr in the human host, we show that the gene exists as a single copy in a representative collection of Tbr strains. SRA was found on one homologue of chromosome IV in the majority of Tbr isolates examined, but some Ugandan Tbr had SRA on both homologues. The mobility of SRA by genetic recombination readily explains the observed genetic variability of Tbr in East Africa. We conclude that new strains of the human pathogen Tbr are being generated continuously by recombination with the much larger pool of animal-infective trypanosomes. Such novel recombinants present a risk for future outbreaks of HAT.
Modelling of enterobacterial loads to the Baie des Veys (Normandy, France).
Lafforgue, Michel; Gerard, Laure; Vieillard, Celine; Breton, Marguerite
2018-06-01
The Baie des Veys (Normandy, France) has abundant stocks of shellfish (oyster and cockle farms). Water quality in the bay is affected by pollutant inputs from a 3500 km 2 watershed and notably occasional episodes of contamination by faecal coliforms. In order to characterise enterobacterial loads and develop a plan of action to improve the quality of seawater and shellfish in the bay, a two-stage modelling procedure was adopted. This focused on Escherichia coli and included a catchment model describing the E. coli releases, and the transport and die-off of this bacteria up to the coast. The output from this model then served as input for a marine model used to determine the concentration of E. coli in seawater. A total 60 scenarios were tested, including different wind, tidal, rainfall and temperature conditions and accidental pollution events, for both current situations and future scenarios. The modelling results highlighted the impact of rainfall on E. coli loadings to the sea, as well as the effects of sluice gates and tidal cycles, which dictated the use of an hourly timescale for the modelling process. The coupled models also made it possible to identify the origin of these enterobacteria as found in shellfish harvesting areas, both in terms of the contributing watercourses and the sources of contamination of those watercourses. The tool can accordingly be used to optimise remedial action. Copyright © 2018 Elsevier GmbH. All rights reserved.
Bado, Inés; Cordeiro, Nicolás F; Robino, Luciana; García-Fulgueiras, Virginia; Seija, Verónica; Bazet, Cristina; Gutkind, Gabriel; Ayala, Juan A; Vignoli, Rafael
2010-11-01
In this study, we searched for extended-spectrum β-lactamases (ESBLs), class 1 and 2 integrons, and qnrA, qnrB and qnrS genes in 56 oxyimino-cephalosporin and/or ciprofloxacin-resistant enterobacterial isolates obtained from the gastrointestinal tract of patients admitted in an Intensive Care Unit in Uruguay. ESBLs were detected in 11 isolates (6 CTX-M-2, 3 CTX-M-9, 1 CTX-M-15 and 1 PER-2). qnr genes and integrons were detected in 5 and 24 isolates, respectively. Eight different antibiotic resistance gene cassettes were found within six different genetic arrangements. Two types of complex class 1 integrons carrying insertion sequence ISCR1 were found, one showing bla(CTX-M-2)-orf3 and the other qnrA1-ampR. Ten of the thirteen isolates carrying class 2 integrons presented the element IS5 inserted between intI2 and dfrA1, whereas another class 2 integron lacked the internal stop codon usually present in intI2. This is the first report of the occurrence of qnrA, qnrB and bla(CTX-M-9) in Uruguay. Dissemination of the different groups of CTX-M enzymes (i.e. groups 1, 2 and 9) appears to be a recent phenomenon in South America. Copyright © 2010 Elsevier B.V. and the International Society of Chemotherapy. All rights reserved.
Fardsanei, F; Nikkhahi, F; Bakhshi, B; Salehi, T Z; Tamai, I A; Soltan Dallal, M M
2016-11-01
In recent years, Salmonella enterica serovar Enteritidis has been a primary cause of human salmonellosis in many countries. The major objective of this study was to investigate genetic diversity among Salmonella Enteritidis strains from different origins (food and human) by Enterobacterial Repetitive Intergenic Consensus (ERIC) -PCR, as well as to assess their plasmid profiling and antimicrobial resistance. A total of 30 Salmonella Enteritidis isolates, 15 from food samples (chicken, lamb, beef and duck meats) and 15 from clinical samples were collected in Tehran. Identification of isolates as Salmonella was confirmed by using conventional standard biochemical and serological tests. Multiplex-PCR was used for serotyping of isolates to identify Salmonella Enteritidis. Antimicrobial susceptibility testing to 16 agents founds drug resistance patterns among Salmonella Enteritidis isolates. No resistance was observed to cephalexin, ceftriaxone, ceftazidime and cefotaxime, ciprofloxacin, imipenem or meropenem, chloramphenicol and gentamicin. The highest resistance (96.7%) was observed to nitrofurantoin. Seven plasmid profiles (P1-P7) were detected, and a 68-kb plasmid was found in all isolates. Two different primers; ERIC and (GTG)5 were used for genotyping, which each produced four profiles. The majority of clinical and food isolates fell into two separate common types (CTs) with a similar percentage of 95% by ERIC-PCR. Using primer (GTG)5, 29 isolates incorporated in three CTs with 70% of isolates showing a single banding pattern. Limited genetic diversity among human and food isolates of Salmonella Enteritidis may indicate that contaminated foods were possibly the source of human salmonellosis. These results confirmed that ERIC-PCR genotyping has limited discriminatory power for Salmonella Enteritidis of different origin.
Pathogen Reduction in Human Plasma Using an Ultrashort Pulsed Laser
Tsen, Shaw-Wei D.; Kingsley, David H.; Kibler, Karen; Jacobs, Bert; Sizemore, Sara; Vaiana, Sara M.; Anderson, Jeanne; Tsen, Kong-Thon; Achilefu, Samuel
2014-01-01
Pathogen reduction is a viable approach to ensure the continued safety of the blood supply against emerging pathogens. However, the currently licensed pathogen reduction techniques are ineffective against non-enveloped viruses such as hepatitis A virus, and they introduce chemicals with concerns of side effects which prevent their widespread use. In this report, we demonstrate the inactivation of both enveloped and non-enveloped viruses in human plasma using a novel chemical-free method, a visible ultrashort pulsed laser. We found that laser treatment resulted in 2-log, 1-log, and 3-log reductions in human immunodeficiency virus, hepatitis A virus, and murine cytomegalovirus in human plasma, respectively. Laser-treated plasma showed ≥70% retention for most coagulation factors tested. Furthermore, laser treatment did not alter the structure of a model coagulation factor, fibrinogen. Ultrashort pulsed lasers are a promising new method for chemical-free, broad-spectrum pathogen reduction in human plasma. PMID:25372037
Impacts of Climate Change on Indirect Human Exposure to Pathogens and Chemicals from Agriculture
Boxall, Alistair B.A.; Hardy, Anthony; Beulke, Sabine; Boucard, Tatiana; Burgin, Laura; Falloon, Peter D.; Haygarth, Philip M.; Hutchinson, Thomas; Kovats, R. Sari; Leonardi, Giovanni; Levy, Leonard S.; Nichols, Gordon; Parsons, Simon A.; Potts, Laura; Stone, David; Topp, Edward; Turley, David B.; Walsh, Kerry; Wellington, Elizabeth M.H.; Williams, Richard J.
2009-01-01
Objective Climate change is likely to affect the nature of pathogens and chemicals in the environment and their fate and transport. Future risks of pathogens and chemicals could therefore be very different from those of today. In this review, we assess the implications of climate change for changes in human exposures to pathogens and chemicals in agricultural systems in the United Kingdom and discuss the subsequent effects on health impacts. Data sources In this review, we used expert input and considered literature on climate change; health effects resulting from exposure to pathogens and chemicals arising from agriculture; inputs of chemicals and pathogens to agricultural systems; and human exposure pathways for pathogens and chemicals in agricultural systems. Data synthesis We established the current evidence base for health effects of chemicals and pathogens in the agricultural environment; determined the potential implications of climate change on chemical and pathogen inputs in agricultural systems; and explored the effects of climate change on environmental transport and fate of different contaminant types. We combined these data to assess the implications of climate change in terms of indirect human exposure to pathogens and chemicals in agricultural systems. We then developed recommendations on future research and policy changes to manage any adverse increases in risks. Conclusions Overall, climate change is likely to increase human exposures to agricultural contaminants. The magnitude of the increases will be highly dependent on the contaminant type. Risks from many pathogens and particulate and particle-associated contaminants could increase significantly. These increases in exposure can, however, be managed for the most part through targeted research and policy changes. PMID:19440487
Iraola, Gregorio; Forster, Samuel C; Kumar, Nitin; Lehours, Philippe; Bekal, Sadjia; García-Peña, Francisco J; Paolicchi, Fernando; Morsella, Claudia; Hotzel, Helmut; Hsueh, Po-Ren; Vidal, Ana; Lévesque, Simon; Yamazaki, Wataru; Balzan, Claudia; Vargas, Agueda; Piccirillo, Alessandra; Chaban, Bonnie; Hill, Janet E; Betancor, Laura; Collado, Luis; Truyers, Isabelle; Midwinter, Anne C; Dagi, Hatice T; Mégraud, Francis; Calleros, Lucía; Pérez, Ruben; Naya, Hugo; Lawley, Trevor D
2017-11-08
Campylobacter fetus is a venereal pathogen of cattle and sheep, and an opportunistic human pathogen. It is often assumed that C. fetus infection occurs in humans as a zoonosis through food chain transmission. Here we show that mammalian C. fetus consists of distinct evolutionary lineages, primarily associated with either human or bovine hosts. We use whole-genome phylogenetics on 182 strains from 17 countries to provide evidence that C. fetus may have originated in humans around 10,500 years ago and may have "jumped" into cattle during the livestock domestication period. We detect C. fetus genomes in 8% of healthy human fecal metagenomes, where the human-associated lineages are the dominant type (78%). Thus, our work suggests that C. fetus is an unappreciated human intestinal pathobiont likely spread by human to human transmission. This genome-based evolutionary framework will facilitate C. fetus epidemiology research and the development of improved molecular diagnostics and prevention schemes for this neglected pathogen.
Potential in vitro antimicrobial efficacy of Holigarna arnottiana (Hook F).
Manilal, Aseer; Idhayadhulla, Akbar
2014-01-01
To explore the in vitro antimicrobial potential of Holigarna arnottiana (H. arnottiana) against human and shrimp pathogenic bacteria and use GC-MS analysis to elucidate its antimicrobial principles. In the present study, organic extract of H. arnottiana was examined for in vitro antimicrobial potency against five clinical human pathogens, seven species of human type culture pathogens, six pathogenic Vibrio strains isolated from moribund tiger shrimp (Penaeus monodon) and seven type cultures (Microbial Type Culture Collection, MTCC) of prominent shrimp pathogens. The extraction of H. arnottiana with ethyl acetate yielded bioactive crude extract that efficiently repressed the growth of all tested pathogens. Among the pathogens tested, shrimp pathogens were the most susceptible organisms while clinical pathogens were found to be a little resistant. The chemical constituents of the H. arnottiana were analysed by GC-MS which revealed the presence of major compounds such as 3,7,11,15-tetramethyl-2-hexadecen-1-o1 (42.1%), 1-lodo-2-methylundecane (34.5%) and squalene (11.1%) which might have a functional role in the chemical defence against microbial invasion. Based on the finding it could be inferred that H. arnottiana would be a reliable source for developing shrimp and human bio-therapeutics in future. Copyright © 2014 Asian Pacific Tropical Biomedical Magazine. Published by Elsevier B.V. All rights reserved.
Potential in vitro antimicrobial efficacy of Holigarna arnottiana (Hook F)
Manilal, Aseer; Idhayadhulla, Akbar
2014-01-01
Objective To explore the in vitro antimicrobial potential of Holigarna arnottiana (H. arnottiana) against human and shrimp pathogenic bacteria and use GC-MS analysis to elucidate its antimicrobial principles. Methods In the present study, organic extract of H. arnottiana was examined for in vitro antimicrobial potency against five clinical human pathogens, seven species of human type culture pathogens, six pathogenic Vibrio strains isolated from moribund tiger shrimp (Penaeus monodon) and seven type cultures (Microbial Type Culture Collection, MTCC) of prominent shrimp pathogens. Results The extraction of H. arnottiana with ethyl acetate yielded bioactive crude extract that efficiently repressed the growth of all tested pathogens. Among the pathogens tested, shrimp pathogens were the most susceptible organisms while clinical pathogens were found to be a little resistant. The chemical constituents of the H. arnottiana were analysed by GC-MS which revealed the presence of major compounds such as 3,7,11,15-tetramethyl-2-hexadecen-1-o1 (42.1%), 1-lodo-2-methylundecane (34.5%) and squalene (11.1%) which might have a functional role in the chemical defence against microbial invasion. Conclusions Based on the finding it could be inferred that H. arnottiana would be a reliable source for developing shrimp and human bio-therapeutics in future. PMID:24144126
Shared and distinct mechanisms of iron acquisition by bacterial and fungal pathogens of humans
Caza, Mélissa; Kronstad, James W.
2013-01-01
Iron is the most abundant transition metal in the human body and its bioavailability is stringently controlled. In particular, iron is tightly bound to host proteins such as transferrin to maintain homeostasis, to limit potential damage caused by iron toxicity under physiological conditions and to restrict access by pathogens. Therefore, iron acquisition during infection of a human host is a challenge that must be surmounted by every successful pathogenic microorganism. Iron is essential for bacterial and fungal physiological processes such as DNA replication, transcription, metabolism, and energy generation via respiration. Hence, pathogenic bacteria and fungi have developed sophisticated strategies to gain access to iron from host sources. Indeed, siderophore production and transport, iron acquisition from heme and host iron-containing proteins such as hemoglobin and transferrin, and reduction of ferric to ferrous iron with subsequent transport are all strategies found in bacterial and fungal pathogens of humans. This review focuses on a comparison of these strategies between bacterial and fungal pathogens in the context of virulence and the iron limitation that occurs in the human body as a mechanism of innate nutritional defense. PMID:24312900
Corsi, Steven R.; Borchardt, Mark A.; Carvin, Rebecca B.; Burch, Tucker R; Spencer, Susan K.; Lutz, Michelle A.; McDermott, Colleen M.; Busse, Kimberly M.; Kleinheinz, Gregory; Feng, Xiaoping; Zhu, Jun
2016-01-01
Waterborne pathogens were measured at three beaches in Lake Michigan, environmental factors for predicting pathogen concentrations were identified, and the risk of swimmer infection and illness was estimated. Waterborne pathogens were detected in 96% of samples collected at three Lake Michigan beaches in summer, 2010. Samples were quantified for 22 pathogens in four microbial categories (human viruses, bovine viruses, protozoa, and pathogenic bacteria). All beaches had detections of human and bovine viruses and pathogenic bacteria indicating influence of multiple contamination sources at these beaches. Occurrence ranged from 40 to 87% for human viruses, 65–87% for pathogenic bacteria, and 13–35% for bovine viruses. Enterovirus, adenovirus A, Salmonella spp., Campylobacter jejuni, bovine polyomavirus, and bovine rotavirus A were present most frequently. Variables selected in multiple regression models used to explore environmental factors that influence pathogens included wave direction, cloud cover, currents, and water temperature. Quantitative Microbial Risk Assessment was done for C. jejuni, Salmonella spp., and enteroviruses to estimate risk of infection and illness. Median infection risks for one-time swimming events were approximately 3 × 10–5, 7 × 10–9, and 3 × 10–7 for C. jejuni, Salmonella spp., and enteroviruses, respectively. Results highlight the importance of investigating multiple pathogens within multiple categories to avoid underestimating the prevalence and risk of waterborne pathogens.
Comparison of the h-Index Scores Among Pathogens Identified as Emerging Hazards in North America.
Cox, R; McIntyre, K M; Sanchez, J; Setzkorn, C; Baylis, M; Revie, C W
2016-02-01
Disease surveillance must assess the relative importance of pathogen hazards. Here, we use the Hirsch index (h-index) as a novel method to identify and rank infectious pathogens that are likely to be a hazard to human health in the North American region. This bibliometric index was developed to quantify an individual's scientific research output and was recently used as a proxy measure for pathogen impact. Analysis of more than 3000 infectious organisms indicated that 651 were human pathogen species that had been recorded in the North American region. The h-index of these pathogens ranged from 0 to 584. The h-index of emerging pathogens was greater than non-emerging pathogens as was the h-index of frequently pathogenic pathogens when compared to non-pathogenic pathogens. As expected, the h-index of pathogens varied over time between 1960 and 2011. We discuss how the h-index can contribute to pathogen prioritization and as an indicator of pathogen emergence. © 2014 Blackwell Verlag GmbH.
Walter, Katharine S.; Pepin, Kim M.; Webb, Colleen T.; Gaff, Holly D.; Krause, Peter J.; Pitzer, Virginia E.; Diuk-Wasser, Maria A.
2016-01-01
Modelling the spatial spread of vector-borne zoonotic pathogens maintained in enzootic transmission cycles remains a major challenge. The best available spatio-temporal data on pathogen spread often take the form of human disease surveillance data. By applying a classic ecological approach—occupancy modelling—to an epidemiological question of disease spread, we used surveillance data to examine the latent ecological invasion of tick-borne pathogens. Over the last half-century, previously undescribed tick-borne pathogens including the agents of Lyme disease and human babesiosis have rapidly spread across the northeast United States. Despite their epidemiological importance, the mechanisms of tick-borne pathogen invasion and drivers underlying the distinct invasion trajectories of the co-vectored pathogens remain unresolved. Our approach allowed us to estimate the unobserved ecological processes underlying pathogen spread while accounting for imperfect detection of human cases. Our model predicts that tick-borne diseases spread in a diffusion-like manner with occasional long-distance dispersal and that babesiosis spread exhibits strong dependence on Lyme disease. PMID:27252022
Pathogen prevalence predicts human cross-cultural variability in individualism/collectivism.
Fincher, Corey L; Thornhill, Randy; Murray, Damian R; Schaller, Mark
2008-06-07
Pathogenic diseases impose selection pressures on the social behaviour of host populations. In humans (Homo sapiens), many psychological phenomena appear to serve an antipathogen defence function. One broad implication is the existence of cross-cultural differences in human cognition and behaviour contingent upon the relative presence of pathogens in the local ecology. We focus specifically on one fundamental cultural variable: differences in individualistic versus collectivist values. We suggest that specific behavioural manifestations of collectivism (e.g. ethnocentrism, conformity) can inhibit the transmission of pathogens; and so we hypothesize that collectivism (compared with individualism) will more often characterize cultures in regions that have historically had higher prevalence of pathogens. Drawing on epidemiological data and the findings of worldwide cross-national surveys of individualism/collectivism, our results support this hypothesis: the regional prevalence of pathogens has a strong positive correlation with cultural indicators of collectivism and a strong negative correlation with individualism. The correlations remain significant even when controlling for potential confounding variables. These results help to explain the origin of a paradigmatic cross-cultural difference, and reveal previously undocumented consequences of pathogenic diseases on the variable nature of human societies.
Human soil-borne pathogens and risks associated with land use change
NASA Astrophysics Data System (ADS)
Pereg, Lily
2017-04-01
Soil is a source of pathogenic, neutral and beneficial microorganisms. Natural events and anthropogenic activity can affect soil biodiversity and influence the balance and distribution of soil-borne human pathogens. Important bacterial and fungal pathogens, such as Bacillus anthracis, Coxiella bernetii, Clostridium tetani, Escherichia coli 0157:H7, Listeria monocytogenes, Aspergillus fumigatus and Sporothrix schenckii will be discussed. This presentation will concentrate on soil pathogenic microorganisms and the effects of land use change on their prevalence and distribution. In particular, the potential of agricultural soil cultivation to enhance pathogen transmission to human through the release of soil microbes into the air attached to dust particles, contamination of waterways and infection of food plants and animal. Emerging solutions, such as biocontrol and probiotics, will be discussed.
Lopez-Joven, Carmen; de Blas, Ignacio; Furones, M. Dolores; Roque, Ana
2015-01-01
Vibrio parahaemolyticus is a well-recognized pathogen of humans. To better understand the ecology of the human-pathogenic variants of this bacterium in the environment, a study on the prevalence in bivalves of pathogenic variants (tlh+ and tdh+ and/or trh+) versus a non-pathogenic one (only tlh+ as species marker for V. parahaemolyticus), was performed in two bays in Catalonia, Spain. Environmental factors that might affect dynamics of both variants of V. parahaemolyticus were taken into account. The results showed that the global prevalence of total V. parahaemolyticus found in both bays was 14.2% (207/1459). It was, however, significantly dependent on sampling point, campaign (year) and bivalve species. Pathogenic variants of V. parahaemolyticus (tdh+ and/or trh+) were detected in 3.8% of the samples (56/1459), meaning that the proportion of bivalves who contained tlh gene were contaminated by pathogenic V. parahaemolyticus strains is 27.1% (56/207). Moreover, the presence of pathogenic V. parahaemolyticus (trh+) was significantly correlated with water salinity, thus the probability of finding pathogenic V. parahaemolyticus decreased 1.45 times with every salinity unit (ppt) increased. Additionally, data showed that V. parahaemolyticus could establish close associations with Ruditapes spp. (P-value < 0.001), which could enhance the transmission of illness to human by pathogenic variants, when clams were eaten raw or slightly cooked. This study provides information on the abundance, ecology and characteristics of total and human-pathogenic V. parahaemolyticus variants associated with bivalves cultured in the Spanish Mediterranean Coast. PMID:26284033
McIntyre, K M; Setzkorn, C; Wardeh, M; Hepworth, P J; Radford, A D; Baylis, M
2014-10-01
What are all the species of pathogen that affect our livestock? As 6 out of every 10 human pathogens came from animals, with a good number from livestock and pets, it seems likely that the majority that emerge in the future, and which could threaten or devastate human health, will come from animals. Only 10 years ago, the first comprehensive pathogen list was compiled for humans; we still have no equivalent for animals. Here we describe the creation of a novel pathogen database, and present outputs from the database that demonstrate its value. The ENHanCEd Infectious Diseases database (EID2) is open-access and evidence-based, and it describes the pathogens of humans and animals, their host and vector species, and also their global occurrence. The EID2 systematically collates information on pathogens into a single resource using evidence from the NCBI Taxonomy database, the NCBI Nucleotide database, the NCBI MeSH (Medical Subject Headings) library and PubMed. Information about pathogens is assigned using data-mining of meta-data and semi-automated literature searches. Here we focus on 47 mammalian and avian hosts, including humans and animals commonly used in Europe as food or kept as pets. Currently, the EID2 evidence suggests that: • Within these host species, 793 (30.5%) pathogens were bacteria species, 395 (15.2%) fungi, 705 (27.1%) helminths, 372 (14.3%) protozoa and 332 (12.8%) viruses. • The odds of pathogens being emerging compared to not emerging differed by taxonomic division, and increased when pathogens had greater numbers of host species associated with them, and were zoonotic rather than non-zoonotic. • The odds of pathogens being zoonotic compared to non-zoonotic differed by taxonomic division and also increased when associated with greater host numbers. • The pathogens affecting the greatest number of hosts included: Escherichia coli, Giardia intestinalis, Toxoplasma gondii, Anaplasma phagocytophilum, Cryptosporidium parvum, Rabies virus, Staphylococcus aureus, Neospora caninum and Echinococcus granulosus. • The pathogens of humans and domestic animal hosts are characterised by 4223 interactions between pathogen and host species, with the greatest number found in: humans, sheep/goats, cattle, small mammals, pigs, dogs and equids. • The number of pathogen species varied by European country. The odds of a pathogen being found in Europe compared to the rest of the world differed by taxonomic division, and increased if they were emerging compared to not emerging, or had a larger number of host species associated with them. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.
1993-03-18
malachite green, 2mg/ml; erythromycin, 2mg/ml; bacitracin, 20mg/ml; streptomycin, 50mg/ml; crystal violet, 100mg/ml; novobiocin, Smg/ml; rifamycin...cephalosporin C, ISug/ml; actinomycin D, 37Sug/ml; kanamycin, S.6ug/ml; chlorotetracycline, 3.8ug/ml; vancomycin, 900ug/ml; malachite green, 60ug...carbenicillin; Ceph, cephalosporin C; AcID, actinomycin D; ((an, kanamycin; Ctet, chlorotetracycline; Van, vancomycin; MalG, malachite green; Eryth
1978-01-01
The assertion that ingestion of human erythrocytes is restricted to invasive strains of Entamoeba histolytica has not been evaluated previously by comparative studies. In this report we describe the in vitro ingestion of human erythrocytes by pathogenic and nonpathogenic Entamoeba. Microscopic evaluation of erythrophagocytosis by eight different Entamoeba grown in culture revealed that strains of E. histolytica isolated from cases of human dysentery show a much higher rate of erythrocyte ingestion than nonpathogenic strains. However, all strains are able to phagocytize erythrocytes. The extremely high rate of phagocytic activity shown by pathogenic E. histolytica could be one of the properties related to the pathogenicity of this parasitic protozoan. PMID:722237
Gorham, T J; Lee, J
2016-05-01
Canada geese (Branta canadensis) faeces have been shown to contain pathogenic protozoa and bacteria in numerous studies over the past 15 years. Further, increases in both the Canada geese populations and their ideal habitat requirements in the United States (US) translate to a greater presence of these human pathogens in public areas, such as recreational freshwater beaches. Combining these factors, the potential health risk posed by Canada geese faeces at freshwater beaches presents an emerging public health issue that warrants further study. Here, literature concerning human pathogens in Canada geese faeces is reviewed and the potential impacts these pathogens may have on human health are discussed. Pathogens of potential concern include Campylobacter jejuni, Salmonella Typhimurium, Listeria monocytogenes, Helicobacter canadensis, Arcobacter spp., Enterohemorragic Escherichia coli pathogenic strains, Chlamydia psitacci, Cryptosporidium parvum and Giardia lamblia. Scenarios presenting potential exposure to pathogens eluted from faeces include bathers swimming in lakes, children playing with wet and dry sand impacted by geese droppings and other common recreational activities associated with public beaches. Recent recreational water-associated disease outbreaks in the US support the plausibility for some of these pathogens, including Cryptosporidium spp. and C. jejuni, to cause human illness in this setting. In view of these findings and the uncertainties associated with the real health risk posed by Canada geese faecal pathogens to users of freshwater lakes, it is recommended that beach managers use microbial source tracking and conduct a quantitative microbial risk assessment to analyse the local impact of Canada geese on microbial water quality during their decision-making process in beach and watershed management. © 2015 Blackwell Verlag GmbH.
Wallqvist, Anders; Wang, Hao; Zavaljevski, Nela; Memišević, Vesna; Kwon, Keehwan; Pieper, Rembert; Rajagopala, Seesandra V; Reifman, Jaques
2017-01-01
Coxiella burnetii is an obligate Gram-negative intracellular pathogen and the etiological agent of Q fever. Successful infection requires a functional Type IV secretion system, which translocates more than 100 effector proteins into the host cytosol to establish the infection, restructure the intracellular host environment, and create a parasitophorous vacuole where the replicating bacteria reside. We used yeast two-hybrid (Y2H) screening of 33 selected C. burnetii effectors against whole genome human and murine proteome libraries to generate a map of potential host-pathogen protein-protein interactions (PPIs). We detected 273 unique interactions between 20 pathogen and 247 human proteins, and 157 between 17 pathogen and 137 murine proteins. We used orthology to combine the data and create a single host-pathogen interaction network containing 415 unique interactions between 25 C. burnetii and 363 human proteins. We further performed complementary pairwise Y2H testing of 43 out of 91 C. burnetii-human interactions involving five pathogen proteins. We used the combined data to 1) perform enrichment analyses of target host cellular processes and pathways, 2) examine effectors with known infection phenotypes, and 3) infer potential mechanisms of action for four effectors with uncharacterized functions. The host-pathogen interaction profiles supported known Coxiella phenotypes, such as adapting cell morphology through cytoskeletal re-arrangements, protein processing and trafficking, organelle generation, cholesterol processing, innate immune modulation, and interactions with the ubiquitin and proteasome pathways. The generated dataset of PPIs-the largest collection of unbiased Coxiella host-pathogen interactions to date-represents a rich source of information with respect to secreted pathogen effector proteins and their interactions with human host proteins.
Investigation of pathogen infiltration into produce using Xradia Bio MicroCT
USDA-ARS?s Scientific Manuscript database
The internalization of human pathogens into plant tissues has received significant attention. Human pathogens can infiltrate plant tissue through stomata, cut edges, wounds on produce, or the plant vascular system. The nondestructive X-ray computed microtomography (MicroCT) technique is an X-ra...
Wang, Rui; Li, Liping; Huang, Yin; Huang, Ting; Tang, Jiayou; Xie, Ting; Lei, Aiying; Luo, Fuguang; Li, Jian; Huang, Yan; Shi, Yunliang; Wang, Dongying; Chen, Ming; Mi, Qiang; Huang, Weiyi
2017-01-01
Streptococcus agalactiae , or Group B Streptococcus (GBS), is a major pathogen causing neonatal sepsis and meningitis, bovine mastitis, and fish meningoencephalitis. CC23, including its namesake ST23, is not only the predominant GBS strain derived from human and cattle, but also can infect a variety of homeothermic and poikilothermic species. However, it has never been characterized in fish. This study aimed to determine the pathogenicity of ST23 GBS to fish and explore the mechanisms causing the difference in the pathogenicity of ST23 GBS based on the genome analysis. Infection of tilapia with 10 human-derived ST23 GBS isolates caused tissue damage and the distribution of pathogens within tissues. The mortality rate of infection was ranged from 76 to 100%, and it was shown that the mortality rate caused by only three human isolates had statistically significant difference compared with fish-derived ST7 strain ( P < 0.05), whereas the mortality caused by other seven human isolates did not show significant difference compared with fish-derived ST7 strain. The genome comparison and prophage analysis showed that the major genome difference between virulent and non-virulent ST23 GBS was attributed to the different prophage sequences. The prophage in the P1 region contained about 43% GC and encoded 28-39 proteins, which can mediate the acquisition of YafQ/DinJ structure for GBS by phage recombination. YafQ/DinJ belongs to one of the bacterial toxin-antitoxin (TA) systems and allows cells to cope with stress. The ST23 GBS strains carrying this prophage were not pathogenic to tilapia, but the strains without the prophage or carrying the pophage that had gene mutation or deletion, especially the deletion of YafQ/DinJ structure, were highly pathogenic to tilapia. In conclusion, human ST23 GBS is highly pathogenic to fish, which may be related to the phage recombination.
Wang, Rui; Li, Liping; Huang, Yin; Huang, Ting; Tang, Jiayou; Xie, Ting; Lei, Aiying; Luo, Fuguang; Li, Jian; Huang, Yan; Shi, Yunliang; Wang, Dongying; Chen, Ming; Mi, Qiang; Huang, Weiyi
2017-01-01
Streptococcus agalactiae, or Group B Streptococcus (GBS), is a major pathogen causing neonatal sepsis and meningitis, bovine mastitis, and fish meningoencephalitis. CC23, including its namesake ST23, is not only the predominant GBS strain derived from human and cattle, but also can infect a variety of homeothermic and poikilothermic species. However, it has never been characterized in fish. This study aimed to determine the pathogenicity of ST23 GBS to fish and explore the mechanisms causing the difference in the pathogenicity of ST23 GBS based on the genome analysis. Infection of tilapia with 10 human-derived ST23 GBS isolates caused tissue damage and the distribution of pathogens within tissues. The mortality rate of infection was ranged from 76 to 100%, and it was shown that the mortality rate caused by only three human isolates had statistically significant difference compared with fish-derived ST7 strain (P < 0.05), whereas the mortality caused by other seven human isolates did not show significant difference compared with fish-derived ST7 strain. The genome comparison and prophage analysis showed that the major genome difference between virulent and non-virulent ST23 GBS was attributed to the different prophage sequences. The prophage in the P1 region contained about 43% GC and encoded 28–39 proteins, which can mediate the acquisition of YafQ/DinJ structure for GBS by phage recombination. YafQ/DinJ belongs to one of the bacterial toxin–antitoxin (TA) systems and allows cells to cope with stress. The ST23 GBS strains carrying this prophage were not pathogenic to tilapia, but the strains without the prophage or carrying the pophage that had gene mutation or deletion, especially the deletion of YafQ/DinJ structure, were highly pathogenic to tilapia. In conclusion, human ST23 GBS is highly pathogenic to fish, which may be related to the phage recombination. PMID:29056932
March, Sandra; Ramanan, Vyas; Trehan, Kartik; Ng, Shengyong; Galstian, Ani; Gural, Nil; Scull, Margaret A; Shlomai, Amir; Mota, Maria M; Fleming, Heather E; Khetani, Salman R; Rice, Charles M; Bhatia, Sangeeta N
2015-12-01
The development of therapies and vaccines for human hepatropic pathogens requires robust model systems that enable the study of host-pathogen interactions. However, in vitro liver models of infection typically use either hepatoma cell lines that exhibit aberrant physiology or primary human hepatocytes in culture conditions in which they rapidly lose their hepatic phenotype. To achieve stable and robust in vitro primary human hepatocyte models, we developed micropatterned cocultures (MPCCs), which consist of primary human hepatocytes organized into 2D islands that are surrounded by supportive fibroblast cells. By using this system, which can be established over a period of days, and maintained over multiple weeks, we demonstrate how to recapitulate in vitro hepatic life cycles for the hepatitis B and C viruses and the Plasmodium pathogens P. falciparum and P. vivax. The MPCC platform can be used to uncover aspects of host-pathogen interactions, and it has the potential to be used for drug and vaccine development.
March, Sandra; Ramanan, Vyas; Trehan, Kartik; Ng, Shengyong; Galstian, Ani; Gural, Nil; Scull, Margaret A.; Shlomai, Amir; Mota, Maria; Fleming, Heather E.; Khetani, Salman R.; Rice, Charles M.; Bhatia, Sangeeta N.
2018-01-01
Studying human hepatotropic pathogens such as hepatitis B and C viruses and malaria will be necessary for understanding host-pathogen interactions, and developing therapy and prophylaxis. Unfortunately, existing in vitro liver models typically employ either cell lines that exhibit aberrant physiology, or primary human hepatocytes in culture configurations wherein they rapidly lose their hepatic functional phenotype. Stable, robust, and reliable in vitro primary human hepatocyte models are needed as platforms for infectious disease applications. For this purpose, we describe the application of micropatterned co-cultures (MPCCs), which consist of primary human hepatocytes organized into 2D islands that are surrounded by supportive cells. Using this system, we demonstrate how to recapitulate in vitro liver infection by the hepatitis B and C viruses and Plasmodium pathogens. In turn, the MPCC platform can be used to uncover aspects of host-pathogen interactions, and has the potential to be used for medium-throughput drug screening and vaccine development. PMID:26584444
Looking at protists as a source of pathogenic viruses.
La Scola, Bernard
2014-12-01
In the environment, protozoa are predators of bacteria and feed on them. The possibility that some protozoa could be a source of human pathogens is consistent with the discovery that free-living amoebae were the reservoir of Legionella pneumophila, the agent of Legionnaires' disease. Later, while searching for Legionella in the environment using amoeba co-culture, the first giant virus, Acanthamoeba polyphaga mimivirus, was discovered. Since then, many other giant viruses have been isolated, including Marseilleviridae, Pithovirus sibericum, Cafeteria roenbergensis virus and Pandoravirus spp. The methods used to isolate all of these viruses are herein reviewed. By analogy to Legionella, it was originally suspected that these viruses could be human pathogens. After showing by indirect evidence, such as sero-epidemiologic studies, that it was possible for these viruses to be human pathogens, the recent isolation of some of these viruses (belonging to the Mimiviridae and Marseilleviridae families) in humans in the context of pathologic conditions shows that they are opportunistic human pathogens in some instances. Copyright © 2014 Elsevier Ltd. All rights reserved.
Lectins in human pathogenic fungi.
Gallegos, Belém; Martínez, Ruth; Pérez, Laura; Del Socorro Pina, María; Perez, Eduardo; Hernández, Pedro
2014-01-01
Lectins are carbohydrate-binding proteins widely distributed in nature. They constitute a highly diverse group of proteins consisting of many different protein families that are, in general, structurally unrelated. In the last few years, mushroom and other fungal lectins have attracted wide attention due to their antitumour, antiproliferative and immunomodulatory activities. The present mini-review provides concise information about recent developments in understanding lectins from human pathogenic fungi. A bibliographic search was performed in the Science Direct and PubMed databases, using the following keywords "lectin", "fungi", "human" and "pathogenic". Lectins present in fungi have been classified; however, the role played by lectins derived from human pathogenic fungi in infectious processes remains uncertain; thus, this is a scientific field requiring more research. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.
The Battle for Iron between Humans and Microbes.
Carver, Peggy L
2018-01-01
Iron is an essential micronutrient for bacteria, fungi, and humans; as such, each has evolved specialized iron uptake systems to acquire iron from the extracellular environment. To describe complex 'tug of war' for iron that has evolved between human hosts and pathogenic microorganisms in the battle for this vital nutrient. A review of current literature was performed, to assess current approaches and controversies in iron therapy and chelation in humans. In humans, sequestration (hiding) of iron from invading pathogens is often successful; however, many pathogens have evolved mechanisms to circumvent this approach. Clinically, controversy continues whether iron overload or administration of iron results in an increased risk of infection. The administration of iron chelating agents and siderophore- conjugate drugs to infected hosts seems a biologically plausible approach as adjunctive therapy in the treatment of infections caused by pathogens dependent on host iron supply (e.g. tuberculosis, malaria, and many bacterial and fungal pathogens); however, thus far, studies in humans have proved unsuccessful. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.
Role of commercial probiotic strains against human pathogen adhesion to intestinal mucus.
Collado, M C; Meriluoto, J; Salminen, S
2007-10-01
The aims of this study present were to assess and to evaluate in vitro the abilities of commercial probiotic strains derived from fermented milk products and related sources currently marketed in European countries, to inhibit, compete and displace the adhesion of selected potential pathogens to immobilized human mucus. The adhesion was assessed by measuring the radioactivity of bacteria adhered to the human mucus. We tested 12 probiotic strains against eight selected pathogens. All strains tested were able to adhere to mucus. All probiotic strains tested were able to inhibit and displace (P<0.05) the adhesion of Bacteroides, Clostridium, Staphylococcus and Enterobacter. In addition, the abilities to inhibit and to displace adhered pathogens depended on both the probiotic and the pathogen strains tested suggesting that several complementary mechanisms are implied in the processes. Our results indicate the need for a case-by-case assessment in order to select strains with the ability to inhibit or displace a specific pathogen. Probiotics could be useful to correct deviations observed in intestinal microbiota associated with specific diseases and also, to prevent pathogen infections. The competitive exclusion properties of probiotics as well as their ability to displace and inhibit pathogens are the most importance for therapeutic manipulation of the enteric microbiota. The application of such strategies could contribute to expand the beneficial properties on human health against pathogen infection.
Miller, Ryan S.; Sweeney, Steven J.; Slootmaker, Chris; Grear, Daniel A.; DiSalvo, Paul A.; Kiser, Deborah; Shwiff, Stephanie A.
2017-01-01
Cross-species disease transmission between wildlife, domestic animals and humans is an increasing threat to public and veterinary health. Wild pigs are increasingly a potential veterinary and public health threat. Here we investigate 84 pathogens and the host species most at risk for transmission with wild pigs using a network approach. We assess the risk to agricultural and human health by evaluating the status of these pathogens and the co-occurrence of wild pigs, agriculture and humans. We identified 34 (87%) OIE listed swine pathogens that cause clinical disease in livestock, poultry, wildlife, and humans. On average 73% of bacterial, 39% of viral, and 63% of parasitic pathogens caused clinical disease in other species. Non-porcine livestock in the family Bovidae shared the most pathogens with swine (82%). Only 49% of currently listed OIE domestic swine diseases had published wild pig surveillance studies. The co-occurrence of wild pigs and farms increased annually at a rate of 1.2% with as much as 57% of all farms and 77% of all agricultural animals co-occurring with wild pigs. The increasing co-occurrence of wild pigs with livestock and humans along with the large number of pathogens shared is a growing risk for cross-species transmission.
Miller, Ryan S; Sweeney, Steven J; Slootmaker, Chris; Grear, Daniel A; Di Salvo, Paul A; Kiser, Deborah; Shwiff, Stephanie A
2017-08-10
Cross-species disease transmission between wildlife, domestic animals and humans is an increasing threat to public and veterinary health. Wild pigs are increasingly a potential veterinary and public health threat. Here we investigate 84 pathogens and the host species most at risk for transmission with wild pigs using a network approach. We assess the risk to agricultural and human health by evaluating the status of these pathogens and the co-occurrence of wild pigs, agriculture and humans. We identified 34 (87%) OIE listed swine pathogens that cause clinical disease in livestock, poultry, wildlife, and humans. On average 73% of bacterial, 39% of viral, and 63% of parasitic pathogens caused clinical disease in other species. Non-porcine livestock in the family Bovidae shared the most pathogens with swine (82%). Only 49% of currently listed OIE domestic swine diseases had published wild pig surveillance studies. The co-occurrence of wild pigs and farms increased annually at a rate of 1.2% with as much as 57% of all farms and 77% of all agricultural animals co-occurring with wild pigs. The increasing co-occurrence of wild pigs with livestock and humans along with the large number of pathogens shared is a growing risk for cross-species transmission.
Nithya, Angamuthu; Babu, Subramanian
2017-03-14
The study aimed at enumerating, identifying and categorizing the endophytic cultivable bacterial community in selected salad vegetables (carrot, cucumber, tomato and onion). Vegetable samples were collected from markets of two vegetable hot spot growing areas, during two different crop harvest seasons. Crude and diluted vegetable extracts were plated and the population of endophytic bacteria was assessed based on morphologically distinguishable colonies. The bacterial isolates were identified by growth in selective media, biochemical tests and 16S rRNA gene sequencing. The endophytic population was found to be comparably higher in cucumber and tomato in both of the sampling locations, whereas lower in carrot and onion. Bacterial isolates belonged to 5 classes covering 46 distinct species belonging to 19 genera. Human opportunistic pathogens were predominant in carrot and onion, whereas plant beneficial bacteria dominated in cucumber and tomato. Out of the 104 isolates, 16.25% are human pathogens and 26.5% are human opportunistic pathogens. Existence of a high population of plant beneficial bacteria was found to have suppressed the population of plant and human pathogens. There is a greater potential to study the native endophytic plant beneficial bacteria for developing them as biocontrol agents against human pathogens that are harboured by plants.
Graczyk, Thaddeus K.; Lucy, Frances E.; Tamang, Leena; Mashinski, Yessika; Broaders, Michael A.; Connolly, Michelle; Cheng, Hui-Wen A.
2009-01-01
Constructed subsurface flow (SSF) and free-surface flow (FSF) wetlands are being increasingly implemented worldwide into wastewater treatments in response to the growing need for microbiologically safe reclaimed waters, which is driven by an exponential increase in the human population and limited water resources. Wastewater samples from four SSF and FSF wetlands in northwestern Ireland were tested qualitatively and quantitatively for Cryptosporidium spp., Giardia duodenalis, and human-pathogenic microsporidia, with assessment of their viability. Overall, seven species of human enteropathogens were detected in wetland influents, vegetated areas, and effluents: Cryptosporidium parvum, C. hominis, C. meleagridis, C. muris, G. duodenalis, Encephalitozoon hellem, and Enterocytozoon bieneusi. SSF wetland had the highest pathogen removal rate (i.e., Cryptosporidium, 97.4%; G. duodenalis, 95.4%); however, most of these values for FSF were in the negative area (mean, −84.0%), meaning that more pathogens were discharged by FSF wetlands than were delivered to wetlands with incoming wastewater. We demonstrate here that (i) the composition of human enteropathogens in wastewater entering and leaving SSF and FSF wetlands is highly complex and dynamic, (ii) the removal and inactivation of human-pathogenic microorganisms were significantly higher at the SSF wetland, (iii) FSF wetlands may not always provide sufficient remediation for human enteropathogens, (iv) wildlife can contribute a substantial load of human zoonotic pathogens to wetlands, (v) most of the pathogens discharged by wetlands were viable, (vi) large volumes of wetland effluents can contribute to contamination of surface waters used for recreation and drinking water abstraction and therefore represent a serious public health threat, and (vii) even with the best pathogen removal rates achieved by SSF wetland, the reduction of pathogens was not enough for a safety reuse of the reclaimed water. To our knowledge, this is the first report of C. meleagridis from Ireland. PMID:19411413
Cold plasma inactivation of human pathogens on foods and regulatory status update
USDA-ARS?s Scientific Manuscript database
Contamination of foods with human pathogens such as Salmonella, Listeria monocytogenes, Escherichia coli O157:H7, norovirus, and other pathogens is an ongoing challenge for growers and processors. In recent years, cold plasma has emerged as a promising antimicrobial treatment for fresh and fresh-cut...
Abdel-Moein, Khaled A; Hamza, Dalia A
2016-01-01
The current study was conducted to investigate the occurrence of human pathogenic Clostridium botulinum in the feces of dairy animals. Fecal samples were collected from 203 apparently healthy dairy animals (50 cattle, 50 buffaloes, 52 sheep, 51 goats). Samples were cultured to recover C. botulinum while human pathogenic C. botulinum strains were identified after screening of all C. botulinum isolates for the presence of genes that encode toxins type A, B, E, F. The overall prevalence of C. botulinum was 18.7% whereas human pathogenic C. botulinum strains (only type A) were isolated from six animals at the rates of 2, 2, 5.8, and 2% for cattle, buffaloes, sheep, and goats, respectively. High fecal carriage rates of C. botulinum among apparently healthy dairy animals especially type A alarm both veterinary and public health communities for a potential role which may be played by dairy animals in the epidemiology of such pathogen.
Pathogens and host immunity in the ancient human oral cavity
Warinner, Christina; Matias Rodrigues, João F.; Vyas, Rounak; Trachsel, Christian; Shved, Natallia; Grossmann, Jonas; Radini, Anita; Hancock, Y.; Tito, Raul Y.; Fiddyment, Sarah; Speller, Camilla; Hendy, Jessica; Charlton, Sophy; Luder, Hans Ulrich; Salazar-García, Domingo C.; Eppler, Elisabeth; Seiler, Roger; Hansen, Lars; Samaniego Castruita, José Alfredo; Barkow-Oesterreicher, Simon; Teoh, Kai Yik; Kelstrup, Christian; Olsen, Jesper V.; Nanni, Paolo; Kawai, Toshihisa; Willerslev, Eske; von Mering, Christian; Lewis, Cecil M.; Collins, Matthew J.; Gilbert, M. Thomas P.; Rühli, Frank; Cappellini, Enrico
2014-01-01
Calcified dental plaque (dental calculus) preserves for millennia and entraps biomolecules from all domains of life and viruses. We report the first high-resolution taxonomic and protein functional characterization of the ancient oral microbiome and demonstrate that the oral cavity has long served as a reservoir for bacteria implicated in both local and systemic disease. We characterize: (i) the ancient oral microbiome in a diseased state, (ii) 40 opportunistic pathogens, (iii) the first evidence of ancient human-associated putative antibiotic resistance genes, (iv) a genome reconstruction of the periodontal pathogen Tannerella forsythia, (v) 239 bacterial and 43 human proteins, allowing confirmation of a long-term association between host immune factors, “red-complex” pathogens, and periodontal disease, and (vi) DNA sequences matching dietary sources. Directly datable and nearly ubiquitous, dental calculus permits the simultaneous investigation of pathogen activity, host immunity, and diet, thereby extending the direct investigation of common diseases into the human evolutionary past. PMID:24562188
Mining virulence genes using metagenomics.
Belda-Ferre, Pedro; Cabrera-Rubio, Raúl; Moya, Andrés; Mira, Alex
2011-01-01
When a bacterial genome is compared to the metagenome of an environment it inhabits, most genes recruit at high sequence identity. In free-living bacteria (for instance marine bacteria compared against the ocean metagenome) certain genomic regions are totally absent in recruitment plots, representing therefore genes unique to individual bacterial isolates. We show that these Metagenomic Islands (MIs) are also visible in bacteria living in human hosts when their genomes are compared to sequences from the human microbiome, despite the compartmentalized structure of human-related environments such as the gut. From an applied point of view, MIs of human pathogens (e.g. those identified in enterohaemorragic Escherichia coli against the gut metagenome or in pathogenic Neisseria meningitidis against the oral metagenome) include virulence genes that appear to be absent in related strains or species present in the microbiome of healthy individuals. We propose that this strategy (i.e. recruitment analysis of pathogenic bacteria against the metagenome of healthy subjects) can be used to detect pathogenicity regions in species where the genes involved in virulence are poorly characterized. Using this approach, we detect well-known pathogenicity islands and identify new potential virulence genes in several human pathogens.
Pathogen prevalence predicts human cross-cultural variability in individualism/collectivism
Fincher, Corey L; Thornhill, Randy; Murray, Damian R; Schaller, Mark
2008-01-01
Pathogenic diseases impose selection pressures on the social behaviour of host populations. In humans (Homo sapiens), many psychological phenomena appear to serve an antipathogen defence function. One broad implication is the existence of cross-cultural differences in human cognition and behaviour contingent upon the relative presence of pathogens in the local ecology. We focus specifically on one fundamental cultural variable: differences in individualistic versus collectivist values. We suggest that specific behavioural manifestations of collectivism (e.g. ethnocentrism, conformity) can inhibit the transmission of pathogens; and so we hypothesize that collectivism (compared with individualism) will more often characterize cultures in regions that have historically had higher prevalence of pathogens. Drawing on epidemiological data and the findings of worldwide cross-national surveys of individualism/collectivism, our results support this hypothesis: the regional prevalence of pathogens has a strong positive correlation with cultural indicators of collectivism and a strong negative correlation with individualism. The correlations remain significant even when controlling for potential confounding variables. These results help to explain the origin of a paradigmatic cross-cultural difference, and reveal previously undocumented consequences of pathogenic diseases on the variable nature of human societies. PMID:18302996
Poultry as reservoir for extraintestinal pathogenic Escherichia coli O45:K1:H7-B2-ST95 in humans.
Mora, Azucena; Viso, Susana; López, Cecilia; Alonso, María Pilar; García-Garrote, Fernando; Dabhi, Ghizlane; Mamani, Rosalía; Herrera, Alexandra; Marzoa, Juan; Blanco, Miguel; Blanco, Jesús E; Moulin-Schouleur, Maryvonne; Schouler, Catherine; Blanco, Jorge
2013-12-27
Escherichia coli strains O45:K1:H7 are implicated in severe human infections such as meningitis. Since an increasing prevalence of serogroup O45 among avian pathogenic (APEC) and human extraintestinal pathogenic (ExPEC) E. coli strains isolated in Spain have been noticed, the aims of the present study were to investigate similarities between poultry and human O45 isolates, and to investigate the evolutionary relationship of ST95 types. The genetic relatedness and virulence gene profiles of 55 O45 APEC obtained from an avian colibacillosis collection (1991-2011) and 19 human O45 ExPEC from a human septicemic/uropathogenic (UPEC) E. coli collection (1989-2010) were determined by multilocus sequence typing (MLST), pulsed-field-gel-electrophoresis (PFGE), ECOR phylogrouping, and PCR-based genotyping. Two main clonal groups were established. The most prevalent and highly pathogenic O45:K1:H7-B2-ST95 shows a successful persistence since the 90s to the present, with parallel evolution both in human and poultry, on the basis of their PFGE and virulence gene profile similarities (9 human strains and 15 avian strains showed ≥85% PFGE identity). Comparison of this group with other ST95 closely related members (O1:K1:H7 and O18:K1:H7 isolates from our collections) shows pathogenic specialization through conserved virulence genotypes. The other prevalent O45 clonal group characterized in this study, the O45:HNM/H19-D-ST371/ST2676 was only detected in APEC strains suggesting host specificity. In conclusion, poultry could be acting as a reservoir of O45:K1:H7-B2-ST95 and other pathogenic ST95 serotypes in humans. Further studies would be necessary to clarify if pathogenic mechanisms used by ST95 strains are the same in avian and human hosts. Copyright © 2013 Elsevier B.V. All rights reserved.
Paillot, Romain; Steward, Karen F.; Webb, Katy; Ainslie, Fern; Jourdan, Thibaud; Bason, Nathalie C.; Holroyd, Nancy E.; Mungall, Karen; Quail, Michael A.; Sanders, Mandy; Simmonds, Mark; Willey, David; Brooks, Karen; Aanensen, David M.; Spratt, Brian G.; Jolley, Keith A.; Maiden, Martin C. J.; Kehoe, Michael; Chanter, Neil; Bentley, Stephen D.; Robinson, Carl; Maskell, Duncan J.; Parkhill, Julian; Waller, Andrew S.
2009-01-01
The continued evolution of bacterial pathogens has major implications for both human and animal disease, but the exchange of genetic material between host-restricted pathogens is rarely considered. Streptococcus equi subspecies equi (S. equi) is a host-restricted pathogen of horses that has evolved from the zoonotic pathogen Streptococcus equi subspecies zooepidemicus (S. zooepidemicus). These pathogens share approximately 80% genome sequence identity with the important human pathogen Streptococcus pyogenes. We sequenced and compared the genomes of S. equi 4047 and S. zooepidemicus H70 and screened S. equi and S. zooepidemicus strains from around the world to uncover evidence of the genetic events that have shaped the evolution of the S. equi genome and led to its emergence as a host-restricted pathogen. Our analysis provides evidence of functional loss due to mutation and deletion, coupled with pathogenic specialization through the acquisition of bacteriophage encoding a phospholipase A2 toxin, and four superantigens, and an integrative conjugative element carrying a novel iron acquisition system with similarity to the high pathogenicity island of Yersinia pestis. We also highlight that S. equi, S. zooepidemicus, and S. pyogenes share a common phage pool that enhances cross-species pathogen evolution. We conclude that the complex interplay of functional loss, pathogenic specialization, and genetic exchange between S. equi, S. zooepidemicus, and S. pyogenes continues to influence the evolution of these important streptococci. PMID:19325880
Xu, Xiaoke; Cheng, Jianheng; Wu, Qingping; Zhang, Jumei; Xie, Tengfei
2016-03-09
Vibrio parahaemolyticus is a major foodborne pathogen, particularly in Asian countries. Increased occurrence of outbreaks of V. parahaemolyticus gastroenteritis in China indicates the need to evaluation of the prevalence of this pathogenic species. V. parahaemolyticus distribution in shellfish from the eastern coast of China has been reported previously. However, to date, the prevalence of V. parahaemolyticus in retail aquatic products in North China has not been determined. To investigate the prevalence of V. parahaemolyticus in aquatic products in North China, 260 aquatic product samples were obtained from retail markets in 6 provinces of North China from November to December in 2012 and July to August in 2013. V. parahaemolyticus was detected in 94 (36.2%) of the samples by the most probable number method. The density of V. parahaemolyticus ranged from 1.50 to 1100 MPN/g. V. parahaemolyticus was detected at a rate of 50.0% and 22.7% in summer and in winter, respectively. The density of V. parahaemolyticus was significantly higher in summer than in winter, with mean levels of 16.5 MPN/g and 5.0 MPN/g, respectively. Among 145 V. parahaemolyticus isolates examined, none of the isolates possessed tdh and trh. In multiplex PCR-based O-antigen serotyping of these 145 isolates, all serotypes, other than O6, O7, and O9, were detected, and serotype O2 was found to be the most prevalent (detected in 54 isolates). The 145 isolates were grouped into 7 clusters by enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR) at a similarity coefficient of 0.66. The antimicrobial resistance patterns of these 145 isolates to 12 antimicrobial agents revealed that most of the isolates were resistant to streptomycin (86.2%), while fewer were resistant to ampicillin (49.6%), cefazolin (43.5%), cephalothin (35.9%), and kanamycin (22.1%). All of the examined isolates were susceptible to azithromycin and chloramphenicol. The findings of this study will help in defining appropriate monitoring programs, understanding of the dissemination of antibiotic resistant strains, and providing information for the assessment of exposure to this microorganism at the consumption level.
Lee, Jae Hoon; Ancona, Veronica; Zhao, Youfu
2018-04-01
Lon, an ATP-dependent protease in bacteria, influences diverse cellular processes by degrading damaged, misfolded and short-lived regulatory proteins. In this study, we characterized the effects of lon mutation and determined the molecular mechanisms underlying Lon-mediated virulence regulation in Erwinia amylovora, an enterobacterial pathogen of apple. Erwinia amylovora depends on the type III secretion system (T3SS) and the exopolysaccharide (EPS) amylovoran to cause disease. Our results showed that mutation of the lon gene led to the overproduction of amylovoran, increased T3SS gene expression and the non-motile phenotype. Western blot analyses showed that mutation in lon directly affected the accumulation and stability of HrpS/HrpA and RcsA. Mutation in lon also indirectly influenced the expression of flhD, hrpS and csrB through the accumulation of the RcsA/RcsB proteins, which bind to the promoter of these genes. In addition, lon expression is under the control of CsrA, possibly at both the transcriptional and post-transcriptional levels. Although mutation in csrA abolished both T3SS and amylovoran production, deletion of the lon gene in the csrA mutant only rescued amylovoran production, but not T3SS. These results suggest that CsrA might positively control both T3SS and amylovoran production partly by suppressing Lon, whereas CsrA may also play a critical role in T3SS by affecting unknown targets. © 2017 BSPP AND JOHN WILEY & SONS LTD.
Wilf, Nabil M; Salmond, George P C
2012-03-01
Serratia sp. ATCC 39006 (S39006) is a Gram-negative bacterium that is virulent in plant (potato) and invertebrate animal (Caenorhabditis elegans) models. It produces two secondary metabolite antibiotics, a prodigiosin and a carbapenem, and the exoenzymes pectate lyase and cellulase. We showed previously that deletion of the RNA chaperone Hfq abolished antibiotic production and attenuated virulence in both animal and plant hosts. Hfq and dependent small RNAs (sRNAs) are known to regulate the post-transcriptional expression of rpoS, which encodes σ(S), the stationary phase sigma factor subunit of RNA polymerase. An S39006 hfq deletion mutant showed decreased transcript levels of rpoS. Therefore, in this study we investigated whether the phenotypes regulated by Hfq were mediated through its control of rpoS. Whereas loss of Hfq abolished prodigiosin and carbapenem production and attenuated virulence in both C. elegans and potato, characterization of an S39006 rpoS mutant showed unexpectedly elevated prodigiosin and carbapenem production. Furthermore, the rpoS mutant exhibited attenuated animal pathogenesis, but not plant pathogenesis. Additionally, a homologue of the Hfq-dependent sRNA, RprA, was identified and shown to regulate prodigiosin production in a manner consistent with its role in positively regulating translation of rpoS mRNA. Combined, these results demonstrate that Hfq regulation of secondary metabolism and plant pathogenesis is independent of RpoS and establishes RpoS and RprA as regulators of antibiotic production.
Amoeba provide insight into the origin of virulence in pathogenic fungi.
Casadevall, Arturo
2012-01-01
Why are some fungi pathogenic while the majority poses no threat to humans or other hosts? Of the more than 1.5 million fungal species only about 150-300 are pathogenic for humans, and of these, only 10-15 are relatively common pathogens. In contrast, fungi are major pathogens for plants and insects. These facts pose several fundamental questions including the mechanisms responsible for the origin of virulence among the few pathogenic species and the high resistance of mammals to fungal diseases. This essay explores the origin of virulences among environmental fungi with no obvious requirement for animal association and proposes that selection pressures by amoeboid predators led to the emergence of traits that can also promote survival in mammalian hosts. In this regard, analysis of the interactions between the human pathogenic funges Cryptococcus neoformans and amoeba have shown a remarkable similarity with the interaction of this fungus with macrophages. Hence the virulence of environmental pathogenic fungi is proposed to originate from a combination of selection by amoeboid predators and perhaps other soil organism with thermal tolerance sufficient to allow survival in mammalian hosts.
Evidence for Moonlighting Functions of the θ Subunit of Escherichia coli DNA Polymerase III
Dietrich, M.; Pedró, L.; García, J.; Pons, M.; Hüttener, M.; Paytubi, S.; Madrid, C.
2014-01-01
The holE gene is an enterobacterial ORFan gene (open reading frame [ORF] with no detectable homology to other ORFs in a database). It encodes the θ subunit of the DNA polymerase III core complex. The precise function of the θ subunit within this complex is not well established, and loss of holE does not result in a noticeable phenotype. Paralogs of holE are also present on many conjugative plasmids and on phage P1 (hot gene). In this study, we provide evidence indicating that θ (HolE) exhibits structural and functional similarities to a family of nucleoid-associated regulatory proteins, the Hha/YdgT-like proteins that are also encoded by enterobacterial ORFan genes. Microarray studies comparing the transcriptional profiles of Escherichia coli holE, hha, and ydgT mutants revealed highly similar expression patterns for strains harboring holE and ydgT alleles. Among the genes differentially regulated in both mutants were genes of the tryptophanase (tna) operon. The tna operon consists of a transcribed leader region, tnaL, and two structural genes, tnaA and tnaB. Further experiments with transcriptional lacZ fusions (tnaL::lacZ and tnaA::lacZ) indicate that HolE and YdgT downregulate expression of the tna operon by possibly increasing the level of Rho-dependent transcription termination at the tna operon's leader region. Thus, for the first time, a regulatory function can be attributed to HolE, in addition to its role as structural component of the DNA polymerase III complex. PMID:24375106
Xing, Junji; Ly, Hinh
2014-01-01
ABSTRACT Arenavirus pathogens cause a wide spectrum of diseases in humans ranging from central nervous system disease to lethal hemorrhagic fevers with few treatment options. The reason why some arenaviruses can cause severe human diseases while others cannot is unknown. We find that the Z proteins of all known pathogenic arenaviruses, lymphocytic choriomeningitis virus (LCMV) and Lassa, Junin, Machupo, Sabia, Guanarito, Chapare, Dandenong, and Lujo viruses, can inhibit retinoic acid-inducible gene 1 (RIG-i) and Melanoma Differentiation-Associated protein 5 (MDA5), in sharp contrast to those of 14 other nonpathogenic arenaviruses. Inhibition of the RIG-i-like receptors (RLRs) by pathogenic Z proteins is mediated by the protein-protein interactions of Z and RLRs, which lead to the disruption of the interactions between RLRs and mitochondrial antiviral signaling (MAVS). The Z-RLR interactive interfaces are located within the N-terminal domain (NTD) of the Z protein and the N-terminal CARD domains of RLRs. Swapping of the LCMV Z NTD into the nonpathogenic Pichinde virus (PICV) genome does not affect virus growth in Vero cells but significantly inhibits the type I interferon (IFN) responses and increases viral replication in human primary macrophages. In summary, our results show for the first time an innate immune-system-suppressive mechanism shared by the diverse pathogenic arenaviruses and thus shed important light on the pathogenic mechanism of human arenavirus pathogens. IMPORTANCE We show that all known human-pathogenic arenaviruses share an innate immune suppression mechanism that is based on viral Z protein-mediated RLR inhibition. Our report offers important insights into the potential mechanism of arenavirus pathogenesis, provides a convenient way to evaluate the pathogenic potential of known and/or emerging arenaviruses, and reveals a novel target for the development of broad-spectrum therapies to treat this group of diverse pathogens. More broadly, our report provides a better understanding of the mechanisms of viral immune suppression and host-pathogen interactions. PMID:25552708
We evaluate the influence of multiple sources of faecal indicator bacteria in recreational water bodies on potential human health risk by considering waters impacted by human and animal sources, human and non-pathogenic sources, and animal and non-pathogenic sources. We illustrat...
Human Pathogen Shown to Cause Disease in the Threatened Eklhorn Coral Acropora palmata
Sutherland, Kathryn Patterson; Shaban, Sameera; Joyner, Jessica L.; Porter, James W.; Lipp, Erin K.
2011-01-01
Coral reefs are in severe decline. Infections by the human pathogen Serratia marcescens have contributed to precipitous losses in the common Caribbean elkhorn coral, Acropora palmata, culminating in its listing under the United States Endangered Species Act. During a 2003 outbreak of this coral disease, called acroporid serratiosis (APS), a unique strain of the pathogen, Serratia marcescens strain PDR60, was identified from diseased A. palmata, human wastewater, the non-host coral Siderastrea siderea and the corallivorous snail Coralliophila abbreviata. In order to examine humans as a source and other marine invertebrates as vectors and/or reservoirs of the APS pathogen, challenge experiments were conducted with A. palmata maintained in closed aquaria to determine infectivity of strain PDR60 from reef and wastewater sources. Strain PDR60 from wastewater and diseased A. palmata caused disease signs in elkhorn coral in as little as four and five days, respectively, demonstrating that wastewater is a definitive source of APS and identifying human strain PDR60 as a coral pathogen through fulfillment of Koch's postulates. A. palmata inoculated with strain PDR60 from C. abbreviata showed limited virulence, with one of three inoculated fragments developing APS signs within 13 days. Strain PDR60 from non-host coral S. siderea showed a delayed pathogenic effect, with disease signs developing within an average of 20 days. These results suggest that C. abbreviata and non-host corals may function as reservoirs or vectors of the APS pathogen. Our results provide the first example of a marine “reverse zoonosis” involving the transmission of a human pathogen (S. marcescens) to a marine invertebrate (A. palmata). These findings underscore the interaction between public health practices and environmental health indices such as coral reef survival. PMID:21858132
Haack, Sheridan K.; Duris, Joseph W.
2013-01-01
Little information exists on the co-occurrence of fecal indicator bacteria (FIB), bacterial pathogens, and organic wastewater-associated chemicals (OWCs) within Great Lakes tributaries. Fifteen watershed sites and one beach site adjacent to the Little Calumet River–Portage Burns Waterway (LCRPBW) on Lake Michigan were tested on four dates for pH, dissolved oxygen, specific conductance, chloride, color, ammonia- and nitrate-nitrogen, soluble phosphorus, sulfate, turbidity, and atrazine; for concentrations of FIB; and for genes indicating the presence of human-pathogenic enterococci (ENT) and of Shiga-toxin producing Escherichia coli (EC) from various animal sources. Nineteen samples were also tested for 60 OWCs. Half of the watershed samples met EC recreational water quality standards; none met ENT standards. Human-wastewater-associated OWC detections were correlated with human-influence indicators such as population/km2, chloride concentrations, and the presence of WWTP effluents, but EC and ENT concentrations were not. Bacterial pathogen genes indicated rural human and several potential animal sources. OWCs of human or ecosystem health concern (musk fragrances AHTN and HHCB, alkylphenols, carbamazepine) and 3 bacterial pathogen genes were detected at the mouth of the LCRPBW, but no such OWCs and only 1 pathogen gene were detected at the beach. The LCRPBW has significant potential to deliver FIB, potential bacterial pathogens, and OWCs of human or ecosystem health concern to the nearshore of Lake Michigan, under conditions enhancing nearshore transport of the river plume. Nearshore mixing of lake and river water, and the lack of relationship between OWCs and FIB or pathogen genes, pose numerous challenges for watershed and nearshore assessment and remediation.
Detection of bacterial pathogens including potential new species in human head lice from Mali
Amanzougaghene, Nadia; Fenollar, Florence; Sangaré, Abdoul Karim; Sissoko, Mahamadou S.; Doumbo, Ogobara K.; Raoult, Didier
2017-01-01
In poor African countries, where no medical and biological facilities are available, the identification of potential emerging pathogens of concern at an early stage is challenging. Head lice, Pediculus humanus capitis, have a short life, feed only on human blood and do not transmit pathogens to their progeny. They are, therefore, a perfect tool for the xenodiagnosis of current or recent human infection. This study assessed the occurrence of bacterial pathogens from head lice collected in two rural villages from Mali, where a high frequency of head lice infestation had previously been reported, using molecular methods. Results show that all 600 head lice, collected from 117 individuals, belonged to clade E, specific to West Africa. Bartonella quintana, the causative agent of trench fever, was identified in three of the 600 (0.5%) head lice studied. Our study also shows, for the first time, the presence of the DNA of two pathogenic bacteria, namely Coxiella burnetii (5.1%) and Rickettsia aeschlimannii (0.6%), detected in human head lice, as well as the DNA of potential new species from the Anaplasma and Ehrlichia genera of unknown pathogenicity. The finding of several Malian head lice infected with B. quintana, C. burnetii, R. aeschlimannii, Anaplasma and Ehrlichia is alarming and highlights the need for active survey programs to define the public health consequences of the detection of these emerging bacterial pathogens in human head lice. PMID:28931077
Detection of bacterial pathogens including potential new species in human head lice from Mali.
Amanzougaghene, Nadia; Fenollar, Florence; Sangaré, Abdoul Karim; Sissoko, Mahamadou S; Doumbo, Ogobara K; Raoult, Didier; Mediannikov, Oleg
2017-01-01
In poor African countries, where no medical and biological facilities are available, the identification of potential emerging pathogens of concern at an early stage is challenging. Head lice, Pediculus humanus capitis, have a short life, feed only on human blood and do not transmit pathogens to their progeny. They are, therefore, a perfect tool for the xenodiagnosis of current or recent human infection. This study assessed the occurrence of bacterial pathogens from head lice collected in two rural villages from Mali, where a high frequency of head lice infestation had previously been reported, using molecular methods. Results show that all 600 head lice, collected from 117 individuals, belonged to clade E, specific to West Africa. Bartonella quintana, the causative agent of trench fever, was identified in three of the 600 (0.5%) head lice studied. Our study also shows, for the first time, the presence of the DNA of two pathogenic bacteria, namely Coxiella burnetii (5.1%) and Rickettsia aeschlimannii (0.6%), detected in human head lice, as well as the DNA of potential new species from the Anaplasma and Ehrlichia genera of unknown pathogenicity. The finding of several Malian head lice infected with B. quintana, C. burnetii, R. aeschlimannii, Anaplasma and Ehrlichia is alarming and highlights the need for active survey programs to define the public health consequences of the detection of these emerging bacterial pathogens in human head lice.
Evaluating the importance of faecal sources in human-impacted waters.
Schoen, Mary E; Soller, Jeffrey A; Ashbolt, Nicholas J
2011-04-01
Quantitative microbial risk assessment (QMRA) was used to evaluate the relative contribution of faecal indicators and pathogens when a mixture of human sources impacts a recreational waterbody. The waterbody was assumed to be impacted with a mixture of secondary-treated disinfected municipal wastewater and untreated (or poorly treated) sewage, using Norovirus as the reference pathogen and enterococci as the reference faecal indicator. The contribution made by each source to the total waterbody volume, indicator density, pathogen density, and illness risk was estimated for a number of scenarios that accounted for pathogen and indicator inactivation based on the age of the effluent (source-to-receptor), possible sedimentation of microorganisms, and the addition of a non-pathogenic source of faecal indicators (such as old sediments or an animal population with low occurrence of human-infectious pathogens). The waterbody indicator density was held constant at 35 CFU 100 mL(-1) enterococci to compare results across scenarios. For the combinations evaluated, either the untreated sewage or the non-pathogenic source of faecal indicators dominated the recreational waterbody enterococci density assuming a culture method. In contrast, indicator density assayed by qPCR, pathogen density, and bather gastrointestinal illness risks were largely dominated by secondary disinfected municipal wastewater, with untreated sewage being increasingly less important as the faecal indicator load increased from a non-pathogenic source. The results support the use of a calibrated qPCR total enterococci indicator, compared to a culture-based assay, to index infectious human enteric viruses released in treated human wastewater, and illustrate that the source contributing the majority of risk in a mixture may be overlooked when only assessing faecal indicators by a culture-based method. Published by Elsevier Ltd.
Pathogens transmitted in animal feces in low- and middle-income countries.
Delahoy, Miranda J; Wodnik, Breanna; McAliley, Lydia; Penakalapati, Gauthami; Swarthout, Jenna; Freeman, Matthew C; Levy, Karen
2018-05-01
Animals found in close proximity to humans in low-and middle-income countries (LMICs) harbor many pathogens capable of infecting humans, transmissible via their feces. Contact with animal feces poses a currently unquantified-though likely substantial-risk to human health. In LMIC settings, human exposure to animal feces may explain some of the limited success of recent water, sanitation, and hygiene interventions that have focused on limiting exposure to human excreta, with less attention to containing animal feces. We conducted a review to identify pathogens that may substantially contribute to the global burden of disease in humans through their spread in animal feces in the domestic environment in LMICs. Of the 65 potentially pathogenic organisms considered, 15 were deemed relevant, based on burden of disease and potential for zoonotic transmission. Of these, five were considered of highest concern based on a substantial burden of disease for which transmission in animal feces is potentially important: Campylobacter, non-typhoidal Salmonella (NTS), Lassa virus, Cryptosporidium, and Toxoplasma gondii. Most of these have a wide range of animal hosts, except Lassa virus, which is spread through the feces of rats indigenous to sub-Saharan Africa. Combined, these five pathogens cause close to one million deaths annually. More than half of these deaths are attributed to invasive NTS. We do not estimate an overall burden of disease from improperly managed animal feces in LMICs, because it is unknown what proportion of illnesses caused by these pathogens can be attributed to contact with animal feces. Typical water quantity, water quality, and handwashing interventions promoted in public health and development address transmission routes for both human and animal feces; however, sanitation interventions typically focus on containing human waste, often neglecting the residual burden of disease from pathogens transmitted via animal feces. This review compiles evidence on which pathogens may contribute to the burden of disease through transmission in animal feces; these data will help prioritize intervention types and regions that could most benefit from interventions aimed at reducing human contact with animal feces. Copyright © 2018 The Authors. Published by Elsevier GmbH.. All rights reserved.
Hostile takeover: Manipulation of HIF-1 signaling in pathogen-associated cancers (Review).
Zhu, Caixia; Zhu, Qing; Wang, Chong; Zhang, Liming; Wei, Fang; Cai, Qiliang
2016-10-01
Hypoxia-inducible factor (HIF)-1 is a central regulator in the adaptation process of cell response to hypoxia (low oxygen). Emerging evidence has demonstrated that HIF-1 plays an important role in the development and progression of many types of human diseases, including pathogen-associated cancers. In the present review, we summarize the recent understandings of how human pathogenic agents including viruses, bacteria and parasites deregulate cellular HIF-1 signaling pathway in their associated cancer cells, and highlight the common molecular mechanisms of HIF-1 signaling activated by these pathogenic infection, which could act as potential diagnostic markers and new therapeutic strategies against human infectious cancers.
Hydrologic, land cover, and seasonal patterns of waterborne pathogens in Great Lakes tributaries
Lenaker, Peter L.; Corsi, Steven; Borchardt, Mark A.; Spencer, Susan K.; Baldwin, Austin K.; Lutz, Michelle A.
2017-01-01
Great Lakes tributaries are known to deliver waterborne pathogens from a host of sources. To examine the hydrologic, land cover, and seasonal patterns of waterborne pathogens (i.e. protozoa (2), pathogenic bacteria (4) human viruses, (8) and bovine viruses (8)) eight rivers were monitored in the Great Lakes Basin over 29 months from February 2011 to June 2013. Sampling locations represented a wide variety of land cover classes from urban to agriculture to forest. A custom automated pathogen sampler was deployed at eight sampling locations which provided unattended, flow-weighted, large-volume (120–1630 L) sampling. Human and bovine viruses and pathogenic bacteria were detected by real-time qPCR in 16%, 14%, and 1.4% of 290 samples collected while protozoa were never detected. The most frequently detected pathogens were: bovine polyomavirus (11%), and human adenovirus C, D, F (9%). Human and bovine viruses were present in 16.9% and 14.8% of runoff-event samples (n = 189) resulting from precipitation and snowmelt, and 13.9% and 12.9% of low-flow samples (n = 101), respectively, indicating multiple delivery mechanisms could be influential. Data indicated human and bovine virus prevalence was different depending on land cover within the watershed. Occurrence, concentration, and flux of human viruses were greatest in samples from the three sampling locations with greater than 25% urban influence than those with less than 25% urban influence. Similarly, occurrence, concentration, and flux of bovine viruses were greatest in samples from the two sampling locations with greater than 50 cattle/km2 than those with less than 50 cattle/km2. In seasonal analysis, human and bovine viruses occurred more frequently in spring and winter seasons than during the fall and summer. Concentration, occurrence, and flux in the context of hydrologic condition, seasonality, and land use must be considered for each watershed individually to develop effective watershed management strategies for pathogen reduction.
Ma, Weilei; Cui, Yaya; Liu, Yang; Dumenyo, C. Korsi; Mukherjee, Asita; Chatterjee, Arun K.
2001-01-01
rsmBEcc specifies a nontranslatable RNA regulator that controls exoprotein production and pathogenicity in soft rot-causing Erwinia carotovora subsp. carotovora. This effect of rsmBEcc RNA is mediated mostly by neutralizing the function of RsmAEcc, an RNA-binding protein of E. carotovora subsp. carotovora, which acts as a global negative regulator. To determine the occurrence of functional homologs of rsmBEcc in non-soft-rot-causing Erwinia species, we cloned the rsmB genes of E. amylovora (rsmBEa) and E. herbicola pv. gypsophilae (rsmBEhg). We show that rsmBEa in E. amylovora positively regulates extracellular polysaccharide (EPS) production, motility, and pathogenicity. In E. herbicola pv. gypsophilae, rsmBEhg elevates the levels of transcripts of a cytokinin (etz) gene and stimulates the production of EPS and yellow pigment as well as motility. RsmAEa and RsmAEhg have more than 93% identity to RsmAEcc and, like the latter, function as negative regulators by affecting the transcript stability of the target gene. The rsmB genes reverse the negative effects of RsmAEa, RsmAEhg, and RsmAEcc, but the extent of reversal is highest with homologous combinations of rsm genes. These observations and findings that rsmBEa and rsmBEhg RNA bind RsmAEcc indicate that the rsmB effect is channeled via RsmA. Additional support for this conclusion comes from the observation that the rsmB genes are much more effective as positive regulators in a RsmA+ strain of E. carotovora subsp. carotovora than in its RsmA− derivative. E. herbicola pv. gypsophilae produces a 290-base rsmB transcript that is not subject to processing. By contrast, E. amylovora produces 430- and 300-base rsmB transcripts, the latter presumably derived by processing of the primary transcript as previously noted with the transcripts of rsmBEcc. Southern blot hybridizations revealed the presence of rsmB homologs in E. carotovora, E. chrysanthemi, E. amylovora, E. herbicola, E. stewartii and E. rhapontici, as well as in other enterobacteria such as Escherichia coli, Salmonella enterica serovar Typhimurium, Serratia marcescens, Shigella flexneri, Enterobacter aerogenes, Klebsiella pneumoniae, Yersinia enterocolitica, and Y. pseudotuberculosis. A comparison of rsmB sequences from several of these enterobacterial species revealed a highly conserved 34-mer region which is predicted to play a role in positive regulation by rsmB RNA. PMID:11222584
NASA Astrophysics Data System (ADS)
Bernstein, N.
2009-04-01
The use of wastewater for agricultural irrigation is steadily increasing world-wide and due to shortages of fresh water is common today in most arid regions of the world. The use of treated wastewater for agricultural irrigation may result in soil exposure to pathogens, creating potential public health problems. A variety of human pathogens are present in raw sewage water. Although their concentrations decrease during the wastewater reclamation process, the secondary treated effluents most commonly used for irrigation today still contain bacterial human pathogens. A range of bacterial pathogens, introduced through contaminated irrigation water or manure, are capable of surviving for long periods in soil and water where they have the potential to contaminate crops in the field. Therefore, there is a risk of direct contamination of crops by human pathogens from the treated effluents used for irrigation, as well as a risk of indirect contamination of the crops from contaminated soil at the agricultural site. Contradictory to previous notion, recent studies have demonstrated that human pathogens can enter plants through their roots and translocate and survive in edible, aerial plant tissues. The practical implications of these new findings for food safety are still not clear, but no doubt reflect the pathogenic microorganisms' ability to survive and multiply in the irrigated soil, water, and the harvested edible crop.
Wang, Wen-Li; Wang, Wei; Du, Ya-Min; Wu, Hong; Yu, Xiao-Bo; Ye, Ke-Ping; Li, Chun-Bao; Jung, Yong-Sam; Qian, Ying-Juan; Voglmeir, Josef; Liu, Li
2017-11-15
Health differences between breast- and formula-fed infants have long been apparent despite great efforts in improving the function of baby formula by adjusting the levels of various milk nutritional components. However, the N-glycome, a type of oligosaccharide decorating a diverse range of proteins, has not been extensively studied in milk regarding its biological function. In this study, the anti-pathogenic function of the enzymatically released human and bovine milk N-glycome against 5 food-borne pathogens was investigated. The human milk N-glycome showed significantly higher activity than bovine milk. After enzymatic defucosylation of human and bovine N-glycan pool, UHPLC peak shifts were observed in both suggesting heavy fucosylation of samples. Furthermore, the anti-pathogenic activity of the defulosylated N-glycome decreased significantly, and the significance of functional difference between the two almost disappeared. This result indicates the essential role of fucosylation for the anti-pathogenic function of the milk N-glycome, especially in human milk. Copyright © 2017 Elsevier Ltd. All rights reserved.
Fingerprints of resistant Escherichia coli O157:H7 from vegetables and environmental samples.
Abakpa, Grace Onyukwo; Umoh, Veronica J; Kamaruzaman, Sijam; Ibekwe, Mark
2018-01-01
Some routes of transmission of Escherichia coli O157:H7 to fresh produce include contaminated irrigation water and manure polluted soils. The aim of the present study was to determine the genetic relationships of E. coli O157:H7 isolated from some produce growing region in Nigeria using enterobacterial repetitive intergenic consensus (ERIC) DNA fingerprinting analysis. A total of 440 samples comprising leafy greens, irrigation water, manure and soil were obtained from vegetable producing regions in Kano and Plateau States, Nigeria. Genes coding for the quinolone resistance-determinant (gyrA) and plasmid (pCT) coding for multidrug resistance (MDR) were determined using polymerase chain reaction (PCR) in 16 isolates that showed MDR. Cluster analysis of the ERIC-PCR profiles based on band sizes revealed six main clusters from the sixteen isolates analysed. The largest cluster (cluster 3) grouped isolates from vegetables and manure at a similarity coefficient of 0.72. The present study provides data that support the potential transmission of resistant strains of E. coli O157:H7 from vegetables and environmental sources to humans with potential public health implications, especially in developing countries. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.
Isogai, H; Isogai, E; Fujii, N; Oguma, K; Kagota, W; Takano, K
1988-07-01
The biological activities of lipopolysaccharide from Bacteroides gingivalis 381 (B-LPS) were examined in vivo and in vitro. Intra-oral mucosal injection of B-LPS induced an acute inflammation at the injection site. Intravenous injection of B-LPS induced necrotic lesions with many thrombi in the liver and lymphocytic reduction in the spleen. By immunohistochemical examination, B-LPS was detected in macrophages in the liver, spleen and lymph nodes. In vitro analysis showed that B-LPS was a potent activator of both neutrophils and macrophages in luminol-dependent response and IL-1 secretion from macrophages and was mitogenic to the spleen cells not only from BALB/c mice but also from LPS-non-responder C3H/HeJ mice. Interferon production from human peripheral mononuclear leucocytes was induced, in vitro, by stimulation with B-LPS but not with the other enterobacterial LPS. These findings clarified the various biological activities of B-LPS affecting various cells and tissues, especially neutrophils, macrophages and lymphocytes. The potent inflammability of B-LPS shown in the present study indicates that it is one of the effective agents to induce periodontitis.
Burdet, Charles; Chachaty, Elisabeth; Andremont, Antoine
2013-01-01
SUMMARY In the last 10 years, extended-spectrum β-lactamase-producing enterobacteria (ESBL-E) have become one of the main challenges for antibiotic treatment of enterobacterial infections, largely because of the current CTX-M enzyme pandemic. However, most studies have focused on hospitalized patients, though today it appears that the community is strongly affected as well. We therefore decided to devote our investigation to trends in ESBL-E fecal carriage rates and comprehensively reviewed data from studies conducted on healthy populations in various parts of the world. We show that (i) community ESBL-E fecal carriage, which was unknown before the turn of the millennium, has since increased significantly everywhere, with developing countries being the most affected; (ii) intercontinental travel may have emphasized and globalized the issue; and (iii) CTX-M enzymes, especially CTX-M-15, are the dominant type of ESBL. Altogether, these results suggest that CTX-M carriage is evolving toward a global pandemic but is still insufficiently described. Only a better knowledge of its dynamics and biology will lead to further development of appropriate control measures. PMID:24092853
Shokryazdan, Parisa; Sieo, Chin Chin; Kalavathy, Ramasamy; Liang, Juan Boo; Alitheen, Noorjahan Banu; Faseleh Jahromi, Mohammad; Ho, Yin Wan
2014-01-01
The objective of this study was to isolate, identify, and characterize some lactic acid bacterial strains from human milk, infant feces, and fermented grapes and dates, as potential probiotics with antimicrobial activity against some human pathogenic strains. One hundred and forty bacterial strains were isolated and, after initial identification and a preliminary screening for acid and bile tolerance, nine of the best isolates were selected and further identified using 16 S rRNA gene sequences. The nine selected isolates were then characterized in vitro for their probiotic characteristics and their antimicrobial activities against some human pathogens. Results showed that all nine isolates belonged to the genus Lactobacillus. They were able to tolerate pH 3 for 3 h, 0.3% bile salts for 4 h, and 1.9 mg/mL pancreatic enzymes for 3 h. They exhibited good ability to attach to intestinal epithelial cells and were not resistant to the tested antibiotics. They also showed good antimicrobial activities against the tested pathogenic strains of humans, and most of them exhibited stronger antimicrobial activity than the reference strain L. casei Shirota. Thus, the nine Lactobacillus strains could be considered as potential antimicrobial probiotic strains against human pathogens and should be further studied for their human health benefits. PMID:25105147
Conserved differences in protein sequence determine the human pathogenicity of Ebolaviruses
Pappalardo, Morena; Juliá, Miguel; Howard, Mark J.; Rossman, Jeremy S.; Michaelis, Martin; Wass, Mark N.
2016-01-01
Reston viruses are the only Ebolaviruses that are not pathogenic in humans. We analyzed 196 Ebolavirus genomes and identified specificity determining positions (SDPs) in all nine Ebolavirus proteins that distinguish Reston viruses from the four human pathogenic Ebolaviruses. A subset of these SDPs will explain the differences in human pathogenicity between Reston and the other four ebolavirus species. Structural analysis was performed to identify those SDPs that are likely to have a functional effect. This analysis revealed novel functional insights in particular for Ebolavirus proteins VP40 and VP24. The VP40 SDP P85T interferes with VP40 function by altering octamer formation. The VP40 SDP Q245P affects the structure and hydrophobic core of the protein and consequently protein function. Three VP24 SDPs (T131S, M136L, Q139R) are likely to impair VP24 binding to human karyopherin alpha5 (KPNA5) and therefore inhibition of interferon signaling. Since VP24 is critical for Ebolavirus adaptation to novel hosts, and only a few SDPs distinguish Reston virus VP24 from VP24 of other Ebolaviruses, human pathogenic Reston viruses may emerge. This is of concern since Reston viruses circulate in domestic pigs and can infect humans, possibly via airborne transmission. PMID:27009368
Conserved differences in protein sequence determine the human pathogenicity of Ebolaviruses.
Pappalardo, Morena; Juliá, Miguel; Howard, Mark J; Rossman, Jeremy S; Michaelis, Martin; Wass, Mark N
2016-03-24
Reston viruses are the only Ebolaviruses that are not pathogenic in humans. We analyzed 196 Ebolavirus genomes and identified specificity determining positions (SDPs) in all nine Ebolavirus proteins that distinguish Reston viruses from the four human pathogenic Ebolaviruses. A subset of these SDPs will explain the differences in human pathogenicity between Reston and the other four ebolavirus species. Structural analysis was performed to identify those SDPs that are likely to have a functional effect. This analysis revealed novel functional insights in particular for Ebolavirus proteins VP40 and VP24. The VP40 SDP P85T interferes with VP40 function by altering octamer formation. The VP40 SDP Q245P affects the structure and hydrophobic core of the protein and consequently protein function. Three VP24 SDPs (T131S, M136L, Q139R) are likely to impair VP24 binding to human karyopherin alpha5 (KPNA5) and therefore inhibition of interferon signaling. Since VP24 is critical for Ebolavirus adaptation to novel hosts, and only a few SDPs distinguish Reston virus VP24 from VP24 of other Ebolaviruses, human pathogenic Reston viruses may emerge. This is of concern since Reston viruses circulate in domestic pigs and can infect humans, possibly via airborne transmission.
Inadequately Treated Wastewater as a Source of Human Enteric Viruses in the Environment
Okoh, Anthony I.; Sibanda, Thulani; Gusha, Siyabulela S.
2010-01-01
Human enteric viruses are causative agents in both developed and developing countries of many non-bacterial gastrointestinal tract infections, respiratory tract infections, conjunctivitis, hepatitis and other more serious infections with high morbidity and mortality in immunocompromised individuals such as meningitis, encephalitis and paralysis. Human enteric viruses infect and replicate in the gastrointestinal tract of their hosts and are released in large quantities in the stools of infected individuals. The discharge of inadequately treated sewage effluents is the most common source of enteric viral pathogens in aquatic environments. Due to the lack of correlation between the inactivation rates of bacterial indicators and viral pathogens, human adenoviruses have been proposed as a suitable index for the effective indication of viral contaminants in aquatic environments. This paper reviews the major genera of pathogenic human enteric viruses, their pathogenicity and epidemiology, as well as the role of wastewater effluents in their transmission. PMID:20644692
Schaumburg, Frieder; Mugisha, Lawrence; Peck, Bruce; Becker, Karsten; Gillespie, Thomas R; Peters, Georg; Leendertz, Fabian H
2012-12-01
Reintroduction of sanctuary apes to natural habitat is considered an important tool for conservation; however, reintroduction has the potential to endanger resident wild apes through the introduction of human pathogens. We found a high prevalence of drug-resistant, human-associated lineages of Staphylococcus aureus in sanctuary chimpanzees (Pan troglodytes) from Zambia and Uganda. This pathogen is associated with skin and soft tissue diseases and severe invasive infections (i.e. pneumonia and septicemia). Colonization by this bacterium is difficult to clear due to frequent recolonization. In addition to its pathogenic potential, human-related S. aureus can serve as an indicator organism for the transmission of other potential pathogens like pneumococci or mycobacteria. Plans to reintroduce sanctuary apes should be reevaluated in light of the high risk of introducing human-adapted S. aureus into wild ape populations where treatment is impossible. © 2012 Wiley Periodicals, Inc.
Microbial (Pathogen)/Recreational Water Quality Criteria
Documents pertaining to Recreational Human Health Ambient Water Quality Criteria for Microbial Organisms (Pathogens). These documents include safe levels for cyanotoxins microcystin and cylindrospermopsin, and Coliphage to protect human health.
McGinnis, Shannon; Spencer, Susan K.; Firnstahl, Aaron; Stokdyk, Joel; Borchardt, Mark A.; McCarthy, David; Murphy, Heather
2018-01-01
Combined sewer overflows (CSOs) are a known source of human fecal pollution and human pathogens in urban water bodies, which may present a significant public health threat. To monitor human fecal contamination in water, bacterial fecal indicator organisms (FIOs) are traditionally used. However, because FIOs are not specific to human sources and do not correlate with human pathogens, alternative fecal indicators detected using qPCR are becoming of interest to policymakers. For this reason, this study measured correlations between the number and duration of CSOs and mm of rainfall, concentrations of traditional FIOs and alternative indicators, and the presence of human pathogens in two urban creeks. Samples were collected May–July 2016 and analyzed for concentrations of FIOs (total coliforms and E. coli) using membrane filtration as well as for three alternative fecal indicators (human Bacteroides HF183 marker, human polyomavirus (HPoV), pepper mild mottle virus (PMMoV)) and nine human pathogens using qPCR. Four of the nine pathogens analyzed were detected at these sites including adenovirus, Enterohemorrhagic E. coli, norovirus, and Salmonella. Among all indicators studied, human Bacteroides and total coliforms were significantly correlated with recent CSO and rainfall events, while E. coli, PMMoV, and HPoV did not show consistent significant correlations. Further, human Bacteroides were a more specific indicator, while total coliforms were a more sensitive indicator of CSO and rainfall events. Results may have implications for the use and interpretation of these indicators in future policy or monitoring programs.
McGinnis, Shannon; Spencer, Susan; Firnstahl, Aaron; Stokdyk, Joel; Borchardt, Mark; McCarthy, David T; Murphy, Heather M
2018-07-15
Combined sewer overflows (CSOs) are a known source of human fecal pollution and human pathogens in urban water bodies, which may present a significant public health threat. To monitor human fecal contamination in water, bacterial fecal indicator organisms (FIOs) are traditionally used. However, because FIOs are not specific to human sources and do not correlate with human pathogens, alternative fecal indicators detected using qPCR are becoming of interest to policymakers. For this reason, this study measured correlations between the number and duration of CSOs and mm of rainfall, concentrations of traditional FIOs and alternative indicators, and the presence of human pathogens in two urban creeks. Samples were collected May-July 2016 and analyzed for concentrations of FIOs (total coliforms and E. coli) using membrane filtration as well as for three alternative fecal indicators (human Bacteroides HF183 marker, human polyomavirus (HPoV), pepper mild mottle virus (PMMoV)) and nine human pathogens using qPCR. Four of the nine pathogens analyzed were detected at these sites including adenovirus, Enterohemorrhagic E. coli, norovirus, and Salmonella. Among all indicators studied, human Bacteroides and total coliforms were significantly correlated with recent CSO and rainfall events, while E. coli, PMMoV, and HPoV did not show consistent significant correlations. Further, human Bacteroides were a more specific indicator, while total coliforms were a more sensitive indicator of CSO and rainfall events. Results may have implications for the use and interpretation of these indicators in future policy or monitoring programs. Copyright © 2018 Elsevier B.V. All rights reserved.
Bittar, Fadi; Keita, Mamadou B; Lagier, Jean-Christophe; Peeters, Martine; Delaporte, Eric; Raoult, Didier
2014-11-24
Wild apes are considered to be the most serious reservoir and source of zoonoses. However, little data are available about the gut microbiota and pathogenic bacteria in gorillas. For this propose, a total of 48 fecal samples obtained from 21 Gorilla gorilla gorilla individuals (as revealed via microsatellite analysis) were screened for human bacterial pathogens using culturomics and molecular techniques. By applying culturomics to one index gorilla and using specific media supplemented by plants, we tested 12,800 colonies and identified 147 different bacterial species, including 5 new species. Many opportunistic pathogens were isolated, including 8 frequently associated with human diseases; Mycobacterium bolletii, Proteus mirabilis, Acinetobacter baumannii, Klebsiella pneumoniae, Serratia marcescens, Escherichia coli, Staphylococcus aureus and Clostridium botulinum. The genus Treponema accounted for 27.4% of the total reads identified at the genus level via 454 pyrosequencing. Using specific real-time PCR on 48 gorilla fecal samples, in addition to classical human pathogens, we also observed the fastidious bacteria Bartonella spp. Borrelia spp., Coxiella burnetii and Tropheryma whipplei in the gorilla population. We estimated that the prevalence of these pathogens vary between 4.76% and 85.7%. Therefore, gorillas share many bacterial pathogens with humans suggesting that they could be a reservoir for their emergence.
Bittar, Fadi; Keita, Mamadou B.; Lagier, Jean-Christophe; Peeters, Martine; Delaporte, Eric; Raoult, Didier
2014-01-01
Wild apes are considered to be the most serious reservoir and source of zoonoses. However, little data are available about the gut microbiota and pathogenic bacteria in gorillas. For this propose, a total of 48 fecal samples obtained from 21 Gorilla gorilla gorilla individuals (as revealed via microsatellite analysis) were screened for human bacterial pathogens using culturomics and molecular techniques. By applying culturomics to one index gorilla and using specific media supplemented by plants, we tested 12,800 colonies and identified 147 different bacterial species, including 5 new species. Many opportunistic pathogens were isolated, including 8 frequently associated with human diseases; Mycobacterium bolletii, Proteus mirabilis, Acinetobacter baumannii, Klebsiella pneumoniae, Serratia marcescens, Escherichia coli, Staphylococcus aureus and Clostridium botulinum. The genus Treponema accounted for 27.4% of the total reads identified at the genus level via 454 pyrosequencing. Using specific real-time PCR on 48 gorilla fecal samples, in addition to classical human pathogens, we also observed the fastidious bacteria Bartonella spp. Borrelia spp., Coxiella burnetii and Tropheryma whipplei in the gorilla population. We estimated that the prevalence of these pathogens vary between 4.76% and 85.7%. Therefore, gorillas share many bacterial pathogens with humans suggesting that they could be a reservoir for their emergence. PMID:25417711
NASA Technical Reports Server (NTRS)
Warmflash, David; Larios-Sanz, Maia; Jones, Jeffrey; Fox, George E.; McKay, David S.
2007-01-01
Exploration Class missions to Mars will require precautions against potential contamination by any native microorganisms that may be incidentally pathogenic to humans. While the results of NASA's Viking biology experiments of 1976 have been generally interpreted as inconclusive for surface organisms, the possibility of native surface life has never been ruled out and more recent studies suggest that the case for biological interpretation of the Viking Labeled Release data may now be stronger than it was when the experiments were originally conducted. It is possible that, prior to the first human landing on Mars, robotic craft and sample return missions will provide enough data to know with certainty whether or not future human landing sites harbor extant life forms. However, if native life is confirmed, it will be problematic to determine whether any of its species may present a medical risk to astronauts. Therefore, it will become necessary to assess empirically the risk that the planet contains pathogens based on terrestrial examples of pathogenicity and to take a reasonably cautious approach to bio-hazard protection. A survey of terrestrial pathogens was conducted with special emphasis on those pathogens whose evolution has not depended on the presence of animal hosts. The history of the development and implementation of Apollo anticontamination protocol and recent recommendations of the NRC Space Studies Board regarding Mars were reviewed. Organisms can emerge in nature in the absence of indigenous animal hosts and both infectious and non-infectious human pathogens are theoretically possible on Mars. The prospect of Martian surface life, together with the existence of a diversity of routes by which pathogenicity has emerged on Earth, suggests that the possibility of human pathogens on Mars, while low, is not zero. Since the discovery and study of Martian life can have long-term benefits for humanity, the risk that Martian life might include pathogens should not be an obstacle to human exploration. As a precaution, however, it is recommended that EVA suits be decontaminated when astronauts enter surface habitats when returning from field activity and that biosafety protocol approximating laboratory BSL 2 be developed for astronauts working in laboratories on the Martian surface. Quarantine of astronauts and Martian materials arriving on Earth should also be part of a human Mars mission and this and the surface biosafety program should be integral to human expeditions from the earliest stages of the mission planning.
Qi, Wenbao; Jia, Weixin; Liu, Di; Li, Jing; Bi, Yuhai; Xie, Shumin; Li, Bo; Hu, Tao; Du, Yingying; Xing, Li; Zhang, Jiahao; Zhang, Fuchun; Wei, Xiaoman; Eden, John-Sebastian; Li, Huanan; Tian, Huaiyu; Li, Wei; Su, Guanming; Lao, Guangjie; Xu, Chenggang; Xu, Bing; Liu, Wenjun; Zhang, Guihong; Ren, Tao; Holmes, Edward C; Cui, Jie; Shi, Weifeng; Gao, George F; Liao, Ming
2018-01-15
Since its emergence in 2013, the H7N9 low-pathogenic avian influenza virus (LPAIV) has been circulating in domestic poultry in China, causing five waves of human infections. A novel H7N9 highly pathogenic avian influenza virus (HPAIV) variant possessing multiple basic amino acids at the cleavage site of the hemagglutinin (HA) protein was first reported in two cases of human infection in January 2017. More seriously, those novel H7N9 HPAIV variants have been transmitted and caused outbreaks on poultry farms in eight provinces in China. Herein, we demonstrate the presence of three different amino acid motifs at the cleavage sites of these HPAIV variants which were isolated from chickens and humans and likely evolved from the preexisting LPAIVs. Animal experiments showed that these novel H7N9 HPAIV variants are both highly pathogenic in chickens and lethal to mice. Notably, human-origin viruses were more pathogenic in mice than avian viruses, and the mutations in the PB2 gene associated with adaptation to mammals (E627K, A588V, and D701N) were identified by next-generation sequencing (NGS) and Sanger sequencing of the isolates from infected mice. No polymorphisms in the key amino acid substitutions of PB2 and HA in isolates from infected chicken lungs were detected by NGS. In sum, these results highlight the high degree of pathogenicity and the valid transmissibility of this new H7N9 variant in chickens and the quick adaptation of this new H7N9 variant to mammals, so the risk should be evaluated and more attention should be paid to this variant. IMPORTANCE Due to the recent increased numbers of zoonotic infections in poultry and persistent human infections in China, influenza A(H7N9) virus has remained a public health threat. Most of the influenza A(H7N9) viruses reported previously have been of low pathogenicity. Now, these novel H7N9 HPAIV variants have caused human infections in three provinces and outbreaks on poultry farms in eight provinces in China. We analyzed the molecular features and compared the relative characteristics of one H7N9 LPAIV and two H7N9 HPAIVs isolated from chickens and two human-origin H7N9 HPAIVs in chicken and mouse models. We found that all HPAIVs both are highly pathogenic and have valid transmissibility in chickens. Strikingly, the human-origin viruses were more highly pathogenic than the avian-origin viruses in mice, and dynamic mutations were confirmed by NGS and Sanger sequencing. Our findings offer important insight into the origin, adaptation, pathogenicity, and transmissibility of these viruses to both poultry and mammals. Copyright © 2018 American Society for Microbiology.
Gauthier, Gregory M; Keller, Nancy P
2013-12-01
The outbreak of fungal meningitis associated with contaminated methylprednisolone acetate has thrust the importance of fungal infections into the public consciousness. The predominant pathogen isolated from clinical specimens, Exserohilum rostratum (teleomorph: Setosphaeria rostrata), is a dematiaceous fungus that infects grasses and rarely humans. This outbreak highlights the potential for fungal pathogens to infect both plants and humans. Most crossover or trans-kingdom pathogens are soil saprophytes and include fungi in Ascomycota and Mucormycotina phyla. To establish infection, crossover fungi must overcome disparate, host-specific barriers, including protective surfaces (e.g. cuticle, skin), elevated temperature, and immune defenses. This review illuminates the underlying mechanisms used by crossover fungi to cause infection in plants and mammals, and highlights critical events that lead to human infection by these pathogens. Several genes including veA, laeA, and hapX are important in regulating biological processes in fungi important for both invasive plant and animal infections. Copyright © 2013 Elsevier Inc. All rights reserved.
Improvement of the Xpert Carba-R Kit for the Detection of Carbapenemase-Producing Enterobacteriaceae
Fusaro, Mathieu
2016-01-01
The Xpert Carba-R kit, version 2 (v2), which has been improved for the efficient detection of blaOXA-181 and blaOXA-232 genes, was tested on a collection of 150 well-characterized enterobacterial isolates that had a reduced susceptibility to carbapenems. The performance of the Xpert Carba-R v2 was high, as it was able to detect the five major carbapenemases (NDM, VIM, IMP, KPC, and OXA-48). Thus, it is now well adapted to the carbapenemase-producing Enterobacteriaceae epidemiology of many countries worldwide. PMID:27021332
Development of saliva-based exposure assays for detecting exposure to waterborne pathogens
Identifying which pathogens we are exposed to can be challenging because many types of pathogens can be found in water and many pathogens have similar symptoms. EPA scientists have developed a simple way to measure human exposure to waterborne pathogens.
Microbiome analysis reveals the abundance of bacterial pathogens in Rousettus leschenaultii guano
Banskar, Sunil; Bhute, Shrikant S.; Suryavanshi, Mangesh V.; Punekar, Sachin; Shouche, Yogesh S.
2016-01-01
Bats are crucial for proper functioning of an ecosystem. They provide various important services to ecosystem and environment. While, bats are well-known carrier of pathogenic viruses, their possible role as a potential carrier of pathogenic bacteria is under-explored. Here, using culture-based approach, employing multiple bacteriological media, over thousand bacteria were cultivated and identified from Rousettus leschenaultii (a frugivorous bat species), the majority of which were from the family Enterobacteriaceae and putative pathogens. Next, pathogenic potential of most frequently cultivated component of microbiome i.e. Escherichia coli was assessed to identify its known pathotypes which revealed the presence of virulent factors in many cultivated E. coli isolates. Applying in-depth bacterial community analysis using high-throughput 16 S rRNA gene sequencing, a high inter-individual variation was observed among the studied guano samples. Interestingly, a higher diversity of bacterial communities was observed in decaying guano representative. The search against human pathogenic bacteria database at 97% identity, a small proportion of sequences were found associated to well-known human pathogens. The present study thus indicates that this bat species may carry potential bacterial pathogens and advice to study the effect of these pathogens on bats itself and the probable mode of transmission to humans and other animals. PMID:27845426
Microbiome analysis reveals the abundance of bacterial pathogens in Rousettus leschenaultii guano.
Banskar, Sunil; Bhute, Shrikant S; Suryavanshi, Mangesh V; Punekar, Sachin; Shouche, Yogesh S
2016-11-15
Bats are crucial for proper functioning of an ecosystem. They provide various important services to ecosystem and environment. While, bats are well-known carrier of pathogenic viruses, their possible role as a potential carrier of pathogenic bacteria is under-explored. Here, using culture-based approach, employing multiple bacteriological media, over thousand bacteria were cultivated and identified from Rousettus leschenaultii (a frugivorous bat species), the majority of which were from the family Enterobacteriaceae and putative pathogens. Next, pathogenic potential of most frequently cultivated component of microbiome i.e. Escherichia coli was assessed to identify its known pathotypes which revealed the presence of virulent factors in many cultivated E. coli isolates. Applying in-depth bacterial community analysis using high-throughput 16 S rRNA gene sequencing, a high inter-individual variation was observed among the studied guano samples. Interestingly, a higher diversity of bacterial communities was observed in decaying guano representative. The search against human pathogenic bacteria database at 97% identity, a small proportion of sequences were found associated to well-known human pathogens. The present study thus indicates that this bat species may carry potential bacterial pathogens and advice to study the effect of these pathogens on bats itself and the probable mode of transmission to humans and other animals.
Sexual Reproduction of Human Fungal Pathogens
Heitman, Joseph; Carter, Dee A.; Dyer, Paul S.; Soll, David R.
2014-01-01
We review here recent advances in our understanding of sexual reproduction in fungal pathogens that commonly infect humans, including Candida albicans, Cryptococcus neoformans/gattii, and Aspergillus fumigatus. Where appropriate or relevant, we introduce findings on other species associated with human infections. In particular, we focus on rapid advances involving genetic, genomic, and population genetic approaches that have reshaped our view of how fungal pathogens evolve. Rather than being asexual, mitotic, and largely clonal, as was thought to be prevalent as recently as a decade ago, we now appreciate that the vast majority of pathogenic fungi have retained extant sexual, or parasexual, cycles. In some examples, sexual and parasexual unions of pathogenic fungi involve closely related individuals, generating diversity in the population but with more restricted recombination than expected from fertile, sexual, outcrossing and recombining populations. In other cases, species and isolates participate in global outcrossing populations with the capacity for considerable levels of gene flow. These findings illustrate general principles of eukaryotic pathogen emergence with relevance for other fungi, parasitic eukaryotic pathogens, and both unicellular and multicellular eukaryotic organisms. PMID:25085958
Grützmacher, Kim; Keil, Verena; Leinert, Vera; Leguillon, Floraine; Henlin, Arthur; Couacy-Hymann, Emmanuel; Köndgen, Sophie; Lang, Alexander; Deschner, Tobias; Wittig, Roman M; Leendertz, Fabian H
2018-01-01
Due to their genetic relatedness, great apes are highly susceptible to common human respiratory pathogens. Although most respiratory pathogens, such as human respiratory syncytial virus (HRSV) and human metapneumovirus (HMPV), rarely cause severe disease in healthy human adults, they are associated with considerable morbidity and mortality in wild great apes habituated to humans for research or tourism. To prevent pathogen transmission, most great ape projects have established a set of hygiene measures ranging from keeping a specific distance, to the use of surgical masks and establishment of quarantines. This study investigates the incidence of respiratory symptoms and human respiratory viruses in humans at a human-great ape interface, the Taï Chimpanzee Project (TCP) in Côte d'Ivoire, and consequently, the effectiveness of a 5-day quarantine designed to reduce the risk of potential exposure to human respiratory pathogens. To assess the impact of quarantine as a preventative measure, we monitored the quarantine process and tested 262 throat swabs for respiratory viruses, collected during quarantine over a period of 1 year. Although only 1 subject tested positive for a respiratory virus (HRSV), 17 subjects developed symptoms of infection while in quarantine and were subsequently kept from approaching the chimpanzees, preventing potential exposure in 18 cases. Our results suggest that quarantine-in combination with monitoring for symptoms-is effective in reducing the risk of potential pathogen exposure. This research contributes to our understanding of how endangered great apes can be protected from human-borne infectious disease. © 2017 Wiley Periodicals, Inc.
Human Milk Glycoproteins Protect Infants Against Human Pathogens
Liu, Bo
2013-01-01
Abstract Breastfeeding protects the neonate against pathogen infection. Major mechanisms of protection include human milk glycoconjugates functioning as soluble receptor mimetics that inhibit pathogen binding to the mucosal cell surface, prebiotic stimulation of gut colonization by favorable microbiota, immunomodulation, and as a substrate for bacterial fermentation products in the gut. Human milk proteins are predominantly glycosylated, and some biological functions of these human milk glycoproteins (HMGPs) have been reported. HMGPs range in size from 14 kDa to 2,000 kDa and include mucins, secretory immunoglobulin A, bile salt-stimulated lipase, lactoferrin, butyrophilin, lactadherin, leptin, and adiponectin. This review summarizes known biological roles of HMGPs that may contribute to the ability of human milk to protect neonates from disease. PMID:23697737
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rasley, A; Parsons, D A; El-Etr, S
2009-12-30
Francisella tularensis, Yersinia pestis and Brucellae species are highly infectious pathogens classified as select agents by the Centers for Disease Control and Prevention (CDC) with the potential for use in bioterrorism attacks. These organisms are known to be facultative intracellular pathogens that preferentially infect human monocytes. As such, understanding how the host responds to infection with these organisms is paramount in detecting and combating human disease. We have compared the ability of fully virulent strains of each pathogen and their non-pathogenic near neighbors to enter and survive inside the human monocytic cell line THP-1 and have quantified the cellular responsemore » to infection with the goal of identifying both unique and common host response patterns. We expanded the scope of these studies to include experiments with pathogenic and non-pathogenic strains of Y. pestis, the causative agent of plague. Nonpathogenic strains of each organism were impaired in their ability to survive intracellularly compared with their pathogenic counterparts. Furthermore, infection of THP-1 cells with pathogenic strains of Y. pestis and F. tularensis resulted in marked increases in the secretion of the inflammatory chemokines IL-8, RANTES, and MIP-1{beta}. In contrast, B. melitensis infection failed to elicit any significant increases in a panel of cytokines tested. These differences may underscore distinct strategies in pathogenic mechanisms employed by these pathogens.« less
Köhler, Julia R; Hube, Bernhard; Puccia, Rosana; Casadevall, Arturo; Perfect, John R
2017-06-01
Fungi must meet four criteria to infect humans: growth at human body temperatures, circumvention or penetration of surface barriers, lysis and absorption of tissue, and resistance to immune defenses, including elevated body temperatures. Morphogenesis between small round, detachable cells and long, connected cells is the mechanism by which fungi solve problems of locomotion around or through host barriers. Secretion of lytic enzymes, and uptake systems for the released nutrients, are necessary if a fungus is to nutritionally utilize human tissue. Last, the potent human immune system evolved in the interaction with potential fungal pathogens, so few fungi meet all four conditions for a healthy human host. Paradoxically, the advances of modern medicine have made millions of people newly susceptible to fungal infections by disrupting immune defenses. This article explores how different members of four fungal phyla use different strategies to fulfill the four criteria to infect humans: the Entomophthorales, the Mucorales, the Ascomycota, and the Basidiomycota. Unique traits confer human pathogenic potential on various important members of these phyla: pathogenic Onygenales comprising thermal dimorphs such as Histoplasma and Coccidioides ; the Cryptococcus spp. that infect immunocompromised as well as healthy humans; and important pathogens of immunocompromised patients- Candida , Pneumocystis , and Aspergillus spp. Also discussed are agents of neglected tropical diseases important in global health such as mycetoma and paracoccidiomycosis and common pathogens rarely implicated in serious illness such as dermatophytes. Commensalism is considered, as well as parasitism, in shaping genomes and physiological systems of hosts and fungi during evolution.
Wiedner, Susan D.; Burnum, Kristin E.; Pederson, LeeAnna M.; Anderson, Lindsey N.; Fortuin, Suereta; Chauvigné-Hines, Lacie M.; Shukla, Anil K.; Ansong, Charles; Panisko, Ellen A.; Smith, Richard D.; Wright, Aaron T.
2012-01-01
Environmental adaptability is critical for survival of the fungal human pathogen Aspergillus fumigatus in the immunocompromised host lung. We hypothesized that exposure of the fungal pathogen to human serum would lead to significant alterations to the organism's physiology, including metabolic activity and stress response. Shifts in functional pathway and corresponding enzyme reactivity of A. fumigatus upon exposure to the human host may represent much needed prognostic indicators of fungal infection. To address this, we employed a multiplexed activity-based protein profiling (ABPP) approach coupled to quantitative mass spectrometry-based proteomics to measure broad enzyme reactivity of the fungus cultured with and without human serum. ABPP showed a shift from aerobic respiration to ethanol fermentation and utilization over time in the presence of human serum, which was not observed in serum-free culture. Our approach provides direct insight into this pathogen's ability to survive, adapt, and proliferate. Additionally, our multiplexed ABPP approach captured a broad swath of enzyme reactivity and functional pathways and provides a method for rapid assessment of the A. fumigatus response to external stimuli. PMID:22865858
Wiedner, Susan D; Burnum, Kristin E; Pederson, LeeAnna M; Anderson, Lindsey N; Fortuin, Suereta; Chauvigné-Hines, Lacie M; Shukla, Anil K; Ansong, Charles; Panisko, Ellen A; Smith, Richard D; Wright, Aaron T
2012-09-28
Environmental adaptability is critical for survival of the fungal human pathogen Aspergillus fumigatus in the immunocompromised host lung. We hypothesized that exposure of the fungal pathogen to human serum would lead to significant alterations to the organism's physiology, including metabolic activity and stress response. Shifts in functional pathway and corresponding enzyme reactivity of A. fumigatus upon exposure to the human host may represent much needed prognostic indicators of fungal infection. To address this, we employed a multiplexed activity-based protein profiling (ABPP) approach coupled to quantitative mass spectrometry-based proteomics to measure broad enzyme reactivity of the fungus cultured with and without human serum. ABPP showed a shift from aerobic respiration to ethanol fermentation and utilization over time in the presence of human serum, which was not observed in serum-free culture. Our approach provides direct insight into this pathogen's ability to survive, adapt, and proliferate. Additionally, our multiplexed ABPP approach captured a broad swath of enzyme reactivity and functional pathways and provides a method for rapid assessment of the A. fumigatus response to external stimuli.
Sun, Honglei; Pu, Juan; Wei, Yandi; Sun, Yipeng; Hu, Jiao; Liu, Litao; Xu, Guanlong; Gao, Weihua; Li, Chong; Zhang, Xuxiao; Huang, Yinhua; Chang, Kin-Chow; Liu, Xiufan
2016-01-01
ABSTRACT Since May 2014, highly pathogenic avian influenza H5N6 virus has been reported to cause six severe human infections three of which were fatal. The biological properties of this subtype, in particular its relative pathogenicity and transmissibility in mammals, are not known. We characterized the virus receptor-binding affinity, pathogenicity, and transmissibility in mice and ferrets of four H5N6 isolates derived from waterfowl in China from 2013-2014. All four H5N6 viruses have acquired a binding affinity for human-like SAα2,6Gal-linked receptor to be able to attach to human tracheal epithelial and alveolar cells. The emergent H5N6 viruses, which share high sequence similarity with the human isolate A/Guangzhou/39715/2014 (H5N6), were fully infective and highly transmissible by direct contact in ferrets but showed less-severe pathogenicity than the parental H5N1 virus. The present results highlight the threat of emergent H5N6 viruses to poultry and human health and the need to closely track their continual adaptation in humans. IMPORTANCE Extended epizootics and panzootics of H5N1 viruses have led to the emergence of the novel 2.3.4.4 clade of H5 virus subtypes, including H5N2, H5N6, and H5N8 reassortants. Avian H5N6 viruses from this clade have caused three fatalities out of six severe human infections in China since the first case in 2014. However, the biological properties of this subtype, especially the pathogenicity and transmission in mammals, are not known. Here, we found that natural avian H5N6 viruses have acquired a high affinity for human-type virus receptor. Compared to the parental clade 2.3.4 H5N1 virus, emergent H5N6 isolates showed less severe pathogenicity in mice and ferrets but acquired efficient in-contact transmission in ferrets. These findings suggest that the threat of avian H5N6 viruses to humans should not be ignored. PMID:27122581
van Baarlen, Peter; van Belkum, Alex; Thomma, Bart P H J
2007-02-01
Relatively simple eukaryotic model organisms such as the genetic model weed plant Arabidopsis thaliana possess an innate immune system that shares important similarities with its mammalian counterpart. In fact, some human pathogens infect Arabidopsis and cause overt disease with human symptomology. In such cases, decisive elements of the plant's immune system are likely to be targeted by the same microbial factors that are necessary for causing disease in humans. These similarities can be exploited to identify elementary microbial pathogenicity factors and their corresponding targets in a green host. This circumvents important cost aspects that often frustrate studies in humans or animal models and, in addition, results in facile ethical clearance.
Natural selection and infectious disease in human populations
Karlsson, Elinor K.; Kwiatkowski, Dominic P.; Sabeti, Pardis C.
2015-01-01
The ancient biological 'arms race' between microbial pathogens and humans has shaped genetic variation in modern populations, and this has important implications for the growing field of medical genomics. As humans migrated throughout the world, populations encountered distinct pathogens, and natural selection increased the prevalence of alleles that are advantageous in the new ecosystems in both host and pathogens. This ancient history now influences human infectious disease susceptibility and microbiome homeostasis, and contributes to common diseases that show geographical disparities, such as autoimmune and metabolic disorders. Using new high-throughput technologies, analytical methods and expanding public data resources, the investigation of natural selection is leading to new insights into the function and dysfunction of human biology. PMID:24776769
Singh, B B; Gajadhar, A A
2014-10-01
Evolving land use practices have led to an increase in interactions at the human/wildlife interface. The presence and poor knowledge of zoonotic pathogens in India's wildlife and the occurrence of enormous human populations interfacing with, and critically linked to, forest ecosystems warrant attention. Factors such as diverse migratory bird populations, climate change, expanding human population and shrinking wildlife habitats play a significant role in the emergence and re-emergence of zoonotic pathogens from India's wildlife. The introduction of a novel Kyasanur forest disease virus (family flaviviridae) into human populations in 1957 and subsequent occurrence of seasonal outbreaks illustrate the key role that India's wild animals play in the emergence and reemergence of zoonotic pathogens. Other high priority zoonotic diseases of wildlife origin which could affect both livestock and humans include influenza, Nipah, Japanese encephalitis, rabies, plague, leptospirosis, anthrax and leishmaniasis. Continuous monitoring of India's extensively diverse and dispersed wildlife is challenging, but their use as indicators should facilitate efficient and rapid disease-outbreak response across the region and occasionally the globe. Defining and prioritizing research on zoonotic pathogens in wildlife are essential, particularly in a multidisciplinary one-world one-health approach which includes human and veterinary medical studies at the wildlife-livestock-human interfaces. This review indicates that wild animals play an important role in the emergence and re-emergence of zoonotic pathogens and provides brief summaries of the zoonotic diseases that have occurred in wild animals in India. Copyright © 2014 Elsevier B.V. All rights reserved.
Ma, Ying; Feng, Youjun; Liu, Di; Gao, George F
2009-09-27
The outbreak and spread of severe acute respiratory syndrome-associated coronavirus and the subsequent identification of its animal origin study have heightened the world's awareness of animal-borne or zoonotic pathogens. In addition to SARS, the highly pathogenic avian influenza virus (AIV), H5N1, and the lower pathogenicity H9N2 AIV have expanded their host ranges to infect human beings and other mammalian species as well as birds. Even the 'well-known' reservoir animals for influenza virus, migratory birds, became victims of the highly pathogenic H5N1 virus. Not only the viruses, but bacteria can also expand their host range: a new disease, streptococcal toxic shock syndrome, caused by human Streptococcus suis serotype 2 infection, has been observed in China with 52 human fatalities in two separate outbreaks (1998 and 2005, respectively). Additionally, enterohaemorrhagic Escherichia coli O157:H7 infection has increased worldwide with severe disease. Several outbreaks and sporadic isolations of this pathogen in China have made it an important target for disease control. A new highly pathogenic variant of porcine reproductive and respiratory syndrome virus (PRRSV) has been isolated in both China and Vietnam recently; although PRRSV is not a zoonotic human pathogen, its severe outbreaks have implications for food safety. All of these pathogens occur in Southeast Asia, including China, with severe consequences; therefore, we discuss the issues in this article by addressing the situation of the zoonotic threat in China.
Krüger, Thomas; Luo, Ting; Schmidt, Hella; Shopova, Iordana; Kniemeyer, Olaf
2015-12-14
Opportunistic human pathogenic fungi including the saprotrophic mold Aspergillus fumigatus and the human commensal Candida albicans can cause severe fungal infections in immunocompromised or critically ill patients. The first line of defense against opportunistic fungal pathogens is the innate immune system. Phagocytes such as macrophages, neutrophils and dendritic cells are an important pillar of the innate immune response and have evolved versatile defense strategies against microbial pathogens. On the other hand, human-pathogenic fungi have sophisticated virulence strategies to counteract the innate immune defense. In this context, proteomic approaches can provide deeper insights into the molecular mechanisms of the interaction of host immune cells with fungal pathogens. This is crucial for the identification of both diagnostic biomarkers for fungal infections and therapeutic targets. Studying host-fungal interactions at the protein level is a challenging endeavor, yet there are few studies that have been undertaken. This review draws attention to proteomic techniques and their application to fungal pathogens and to challenges, difficulties, and limitations that may arise in the course of simultaneous dual proteome analysis of host immune cells interacting with diverse morphotypes of fungal pathogens. On this basis, we discuss strategies to overcome these multifaceted experimental and analytical challenges including the viability of immune cells during co-cultivation, the increased and heterogeneous protein complexity of the host proteome dynamically interacting with the fungal proteome, and the demands on normalization strategies in terms of relative quantitative proteome analysis.
Foodborne pathogen detection using hyperspectral imaging
USDA-ARS?s Scientific Manuscript database
Foodborne pathogens can cause various diseases and even death when humans consume foods contaminated with microbial pathogens. Traditional culture-based direct plating methods are still the “gold standard” for presumptive-positive pathogen screening. Although considerable research has been devoted t...
Biohazard potential of putative Martian organisms during missions to Mars.
Warmflash, David; Larios-Sanz, Maia; Jones, Jeffrey; Fox, George E; McKay, David S
2007-04-01
Exploration Class missions to Mars will require precautions against potential contamination by any native microorganisms that may be incidentally pathogenic to humans. While the results of NASA's Viking biology experiments of the 1970s have been generally interpreted as inconclusive for surface organisms, and attributed to active but nonbiological chemistries, the possibility of native surface life has never been ruled out completely. It is possible that, prior to the first human landing on Mars, robotic craft and sample return missions will provide enough data to know with certainty whether future human landing sites harbor extant life forms. If native life were found to exist, it would be problematic to determine whether any of its species might present a medical danger to astronauts. Therefore, it will become necessary to assess empirically the risk that the planet contains pathogens based on terrestrial examples of pathogenicity and to take a reasonably cautious approach to biohazard protection. A survey of terrestrial pathogens was conducted with special emphasis on those whose evolution has not depended on the presence of animal hosts. The history of the development and implementation of Apollo anti-contamination protocol and recommendations of the National Research Council's Space Studies Board regarding Mars were reviewed. Organisms can emerge in Nature in the absence of indigenous animal hosts and both infectious and non-infectious human pathogens are therefore theoretically possible on Mars. Although remote, the prospect of Martian surface life, together with the existence of a diversity of routes by which pathogenicity has emerged on Earth, suggests that the probability of human pathogens on Mars, while low, is not zero. Still, since the discovery and study of Martian life can have long-term benefits for humanity, the risk that Martian life might include pathogens should not be an obstacle to human exploration. As a precaution, it is recommended that EVA (extravehicular activity) suits be decontaminated when astronauts enter surface habitats upon returning from field activity and that biosafety protocols approximating laboratory BSL 2 be developed for astronauts working in laboratories on the Martian surface. Quarantine of astronauts and Martian materials arriving on Earth should also be part of a human mission to Mars, and this and the surface biosafety program should be integral to human expeditions from the earliest stages of the mission planning.
Pathogenic features of heterotrophic plate count bacteria from drinking-water boreholes.
Horn, Suranie; Pieters, Rialet; Bezuidenhout, Carlos
2016-12-01
Evidence suggests that heterotrophic plate count (HPC) bacteria may be hazardous to humans with weakened health. We investigated the pathogenic potential of HPC bacteria from untreated borehole water, consumed by humans, for: their haemolytic properties, the production of extracellular enzymes such as DNase, proteinase, lipase, lecithinase, hyaluronidase and chondroitinase, the effect simulated gastric fluid has on their survival, as well as the bacteria's antibiotic-susceptible profile. HuTu-80 cells acted as model for the human intestine and were exposed to the HPC isolates to determine their effects on the viability of the cells. Several HPC isolates were α- or β-haemolytic, produced two or more extracellular enzymes, survived the SGF treatment, and showed resistance against selected antibiotics. The isolates were also harmful to the human intestinal cells to varying degrees. A novel pathogen score was calculated for each isolate. Bacillus cereus had the highest pathogen index: the pathogenicity of the other bacteria declined as follows: Aeromonas taiwanensis > Aeromonas hydrophila > Bacillus thuringiensis > Alcaligenes faecalis > Pseudomonas sp. > Bacillus pumilus > Brevibacillus sp. > Bacillus subtilis > Bacillus sp. These results demonstrated that the prevailing standards for HPCs in drinking water may expose humans with compromised immune systems to undue risk.
Dyble, Julianne; Bienfang, Paul; Dusek, Eva; Hitchcock, Gary; Holland, Fred; Laws, Ed; Lerczak, James; McGillicuddy, Dennis J; Minnett, Peter; Moore, Stephanie K; O'Kelly, Charles; Solo-Gabriele, Helena; Wang, John D
2008-11-07
Coupled physical-biological models are capable of linking the complex interactions between environmental factors and physical hydrodynamics to simulate the growth, toxicity and transport of infectious pathogens and harmful algal blooms (HABs). Such simulations can be used to assess and predict the impact of pathogens and HABs on human health. Given the widespread and increasing reliance of coastal communities on aquatic systems for drinking water, seafood and recreation, such predictions are critical for making informed resource management decisions. Here we identify three challenges to making this connection between pathogens/HABs and human health: predicting concentrations and toxicity; identifying the spatial and temporal scales of population and ecosystem interactions; and applying the understanding of population dynamics of pathogens/HABs to management strategies. We elaborate on the need to meet each of these challenges, describe how modeling approaches can be used and discuss strategies for moving forward in addressing these challenges.
Fuller, Trevon; Bensch, Staffan; Müller, Inge; Novembre, John; Pérez-Tris, Javier; Ricklefs, Robert E; Smith, Thomas B; Waldenström, Jonas
2012-03-01
Pathogens that are maintained by wild birds occasionally jump to human hosts, causing considerable loss of life and disruption to global commerce. Preliminary evidence suggests that climate change and human movements and commerce may have played a role in recent range expansions of avian pathogens. Since the magnitude of climate change in the coming decades is predicted to exceed climatic changes in the recent past, there is an urgent need to determine the extent to which climate change may drive the spread of disease by avian migrants. In this review, we recommend actions intended to mitigate the impact of emergent pathogens of migratory birds on biodiversity and public health. Increased surveillance that builds upon existing bird banding networks is required to conclusively establish a link between climate and avian pathogens and to prevent pathogens with migratory bird reservoirs from spilling over to humans.
Taylor-Mulneix, Dawn L; Hamidou Soumana, Illiassou; Linz, Bodo; Harvill, Eric T
2017-01-01
The genus Bordetella comprises several bacterial species that colonize the respiratory tract of mammals. It includes B. pertussis , a human-restricted pathogen that is the causative agent of Whooping Cough. In contrast, the closely related species B. bronchiseptica colonizes a broad range of animals as well as immunocompromised humans. Recent metagenomic studies have identified known and novel bordetellae isolated from different environmental sources, providing a new perspective on their natural history. Using phylogenetic analysis, we have shown that human and animal pathogenic bordetellae have most likely evolved from ancestors that originated from soil and water. Our recent study found that B. bronchiseptica can evade amoebic predation and utilize Dictyostelium discoideum as an expansion and transmission vector, which suggests that the evolutionary pressure to evade the amoebic predator enabled the rise of bordetellae as respiratory pathogens. Interactions with amoeba may represent the starting point for bacterial adaptation to eukaryotic cells. However, as bacteria evolve and adapt to a novel host, they can become specialized and restricted to a specific host. B. pertussis is known to colonize and cause infection only in humans, and this specialization to a closed human-to-human lifecycle has involved genome reduction and the loss of ability to utilize amoeba as an environmental reservoir. The discoveries from studying the interaction of Bordetella species with amoeba will elicit a better understanding of the evolutionary history of these and other important human pathogens.
The virulence of human pathogenic fungi: notes from the South of France.
Reedy, Jennifer L; Bastidas, Robert J; Heitman, Joseph
2007-08-16
The Second FEBS Advanced Lecture Course on Human Fungal Pathogens: Molecular Mechanisms of Host-Pathogen Interactions and Virulence, organized by Christophe d'Enfert (Institut Pasteur, France), Anita Sil (UCSF, USA), and Steffen Rupp (Fraunhofer, IGB, Germany), occurred May 2007 in La Colle sur Loup, France. Here we review the advances presented and the current state of knowledge in key areas of fungal pathogenesis.
Rivera, I G; Chowdhury, M A; Huq, A; Jacobs, D; Martins, M T; Colwell, R R
1995-08-01
Enterobacterial repetitive intergenic consensus (ERIC) sequence polymorphism was studied in Vibrio Cholerae strains isolated before and after the cholera epidemic in Brazil (in 1991), along with epidemic strains from Peru, Mexico, and India, by PCR. A total of 17 fingerprint patterns (FPs) were detected in the V. cholerae strains examined; 96.7% of the toxigenic V. cholerae O1 strains and 100% of the O139 serogroup strains were found to belong to the same FP group comprising four fragments (FP1). The nontoxigenic V. cholerae O1 also yielded four fragments but constituted a different FP group (FP2). A total of 15 different patterns were observed among the V. cholerae non-O1 strains. Two patterns were observed most frequently for V. cholerae non-01 strains, 25% of which have FP3, with five fragments, and 16.7% of which have FP4, with two fragments. Three fragments, 1.75, 0.79, and 0.5 kb, were found to be common to both toxigenic and nontoxigenic V. cholerae O1 strains as well as to group FP3, containing V. cholerae non-O1 strains. Two fragments of group FP3, 1.3 and 1.0 kb, were present in FP1 and FP2 respectively. The 0.5-kb fragment was common to all strains and serogroups of V. cholerae analyzed. It is concluded from the results of this study, based on DNA FPs of environmental isolates, that it is possible to detect an emerging virulent strain in a cholera-endemic region. ERIC-PCR constitutes a powerful tool for determination of the virulence potential of V. cholerae O1 strains isolated in surveillance programs and for molecular epidemiological investigations.
Functional Expression of Enterobacterial O-Polysaccharide Biosynthesis Enzymes in Bacillus subtilis
Schäffer, Christina; Wugeditsch, Thomas; Messner, Paul; Whitfield, Chris
2002-01-01
The expression of heterologous bacterial glycosyltransferases is of interest for potential application in the emerging field of carbohydrate engineering in gram-positive organisms. To assess the feasibility of using enzymes from gram-negative bacteria, the functional expression of the genes wbaP (formerly rfbP), wecA (formerly rfe), and wbbO (formerly rfbF) from enterobacterial lipopolysaccharide O-polysaccharide biosynthesis pathways was examined in Bacillus subtilis. WbaP and WecA are initiation enzymes for O-polysaccharide formation, catalyzing the transfer of galactosyl 1-phosphate from UDP-galactose and N-acetylglucosaminyl 1-phosphate from UDP-N-acetylglucosamine, respectively, to undecaprenylphosphate. The WecA product (undecaprenylpyrophosphoryl GlcNAc) is used as an acceptor to which the bifunctional wbbO gene product sequentially adds a galactopyranose and a galactofuranose residue from the corresponding UDP sugars to form a lipid-linked trisaccharide. Genes were cloned into the shuttle vectors pRB374 and pAW10. In B. subtilis hosts, the genes were effectively transcribed under the vegII promoter control of pRB374, but the plasmids were susceptible to rearrangements and deletion. In contrast, pAW10-based constructs, in which genes were cloned downstream of the tet resistance cassette, were stable but yielded lower levels of enzyme activity. In vitro glycosyltransferase assays were performed in Escherichia coli and B. subtilis, using membrane preparations as sources of enzymes and endogenous undecaprenylphosphate as an acceptor. Incorporation of radioactivity from UDP-α-d-14C-sugar into reaction products verified the functionality of WbaP, WecA, and WbbO in either host. Enzyme activities in B. subtilis varied between 20 and 75% of those measured in E. coli. PMID:12324313
Diversities and similarities in pH dependency among bacterial NhaB-like Na+/H+ antiporters.
Kiriyama, Wakako; Honma, Kei; Hiratsuka, Tomoaki; Takahashi, Itsuka; Nomizu, Takahiro; Takashima, Yuta; Ohtsuka, Masataka; Takahashi, Daiki; Moriyama, Kazuya; Mori, Sayoko; Nishiyama, Shiho; Fukuhara, Masahiro; Nakamura, Tatsunosuke; Shigematsu, Toru; Yamaguchi, Toshio
2013-10-01
NhaB-like antiporters were the second described class of Na(+)/H(+) antiporters, identified in bacteria more than 20 years ago. While nhaB-like gene sequences have been found in a number of bacterial genomes, only a few of the NhaB-like antiporters have been functionally characterized to date. Although earlier studies have identified a few pH-sensitive and -insensitive NhaB-like antiporters, the mechanisms that determine their pH responses still remain elusive. In this study, we sought to investigate the diversities and similarities among bacterial NhaB-like antiporters, with particular emphasis on their pH responsiveness. Our phylogenetic analysis of NhaB-like antiporters, combined with pH profile analyses of activities for representative members of several phylogenetic groups, demonstrated that NhaB-like antiporters could be classified into three distinct types according to the degree of their pH dependencies. Interestingly, pH-insensitive NhaB-like antiporters were only found in a limited proportion of enterobacterial species, which constitute a subcluster that appears to have diverged relatively recently among enterobacterial NhaB-like antiporters. Furthermore, kinetic property analyses of NhaB-like antiporters at different pH values revealed that the degree of pH sensitivity of antiport activities was strongly correlated with the magnitude of pH-dependent change in apparent Km values, suggesting that the dramatic pH sensitivities observed for several NhaB-like antiporters might be mainly due to the significant increases of apparent Km at lower pH. These results strongly suggested the possibility that the loss of pH sensitivity of NhaB-like antiporters had occurred relatively recently, probably via accumulation of the mutations that impair pH-dependent change of Km in the course of molecular evolution.
Blanch, A R; Galofré, B; Lucena, F; Terradillos, A; Vilanova, X; Ribas, F
2007-03-01
To compare the bacterial coliforms detected from occurrences in three zones of a water distribution system supplied by two separate water sources. Conventional and standardized protocols for identifying enterobacterial populations were applied. Additional tests to confirm isolates were included. Analyses of diversity and population similarity were performed using the Phene Plate System, a miniaturized biochemical phenotyping method. Isolates were identified by the API 20E system in tandem with biochemical phenotyping. A total of 16 576 samples were taken from the water distribution system, with 1416 isolates analysed. A low number of coliform occurrences were observed (2%). Escherichia coli was not detected in either water origin or in Zone 2 samples; however, in Zones 1 and 3 a low number of cases of E. coli were recorded. The percentages of E. coli depended on the identification criteria. Eight biochemical profiles for coliform populations were defined according to the results of the confirmative tests. There was a high diversity among these populations in the three zones studied, although no significant variations in their composition (associated with occurrences in the different zones) were observed. Klebsiella oxytoca was the most commonly detected species irrespective of zone, although seven other enterobacterial genera were also found. Analysis of the enzymatic activity of beta-glucuronidase or application of the criteria established in the norm ISO 9308-1, in tandem with thermotolerance was needed to evaluate the occurrence of E. coli in the distribution systems. Detected occurrences of bacterial coliforms could be associated with re-growth patterns for specific sampling points in the distribution system. Seasonal differences, independent of the studied zones, were observed. Biochemical phenotyping of bacterial coliforms was shown to be a useful method on the characterization of occurrences in water distribution systems.
Snipen, Lars; Nes, Ingolf F.; Brede, Dag A.
2010-01-01
Urinary tract infection (UTI) is the most common infection caused by enterococci, and Enterococcus faecalis accounts for the majority of enterococcal infections. Although a number of virulence related traits have been established, no comprehensive genomic or transcriptomic studies have been conducted to investigate how to distinguish pathogenic from non-pathogenic E. faecalis in their ability to cause UTI. In order to identify potential genetic traits or gene regulatory features that distinguish pathogenic from non-pathogenic E. faecalis with respect to UTI, we have performed comparative genomic analysis, and investigated growth capacity and transcriptome profiling in human urine in vitro. Six strains of different origins were cultivated and all grew readily in human urine. The three strains chosen for transcriptional analysis showed an overall similar response with respect to energy and nitrogen metabolism, stress mechanism, cell envelope modifications, and trace metal acquisition. Our results suggest that citrate and aspartate are significant for growth of E. faecalis in human urine, and manganese appear to be a limiting factor. The majority of virulence factors were either not differentially regulated or down-regulated. Notably, a significant up-regulation of genes involved in biofilm formation was observed. Strains from different origins have similar capacity to grow in human urine. The overall similar transcriptional responses between the two pathogenic and the probiotic strain suggest that the pathogenic potential of a certain E. faecalis strain may to a great extent be determined by presence of fitness and virulence factors, rather than the level of expression of such traits. PMID:20824220
Growth rate, transmission mode and virulence in human pathogens.
Leggett, Helen C; Cornwallis, Charlie K; Buckling, Angus; West, Stuart A
2017-05-05
The harm that pathogens cause to hosts during infection, termed virulence, varies across species from negligible to a high likelihood of rapid death. Classic theory for the evolution of virulence is based on a trade-off between pathogen growth, transmission and host survival, which predicts that higher within-host growth causes increased transmission and higher virulence. However, using data from 61 human pathogens, we found the opposite correlation to the expected positive correlation between pathogen growth rate and virulence. We found that (i) slower growing pathogens are significantly more virulent than faster growing pathogens, (ii) inhaled pathogens and pathogens that infect via skin wounds are significantly more virulent than pathogens that are ingested, but (iii) there is no correlation between symptoms of infection that aid transmission (such as diarrhoea and coughing) and virulence. Overall, our results emphasize how virulence can be influenced by mechanistic life-history details, especially transmission mode, that determine how parasites infect and exploit their hosts.This article is part of the themed issue 'Opening the black box: re-examining the ecology and evolution of parasite transmission'. © 2017 The Authors.
Carter, Chris
2011-01-01
Alzheimer's disease susceptibility genes, APP and gamma-secretase, are involved in the herpes simplex life cycle, and that of other suspect pathogens (C. pneumoniae, H. pylori, C. neoformans, B. burgdorferri, P. gingivalis) or immune defence. Such pathogens promote beta-amyloid deposition and tau phosphorylation and may thus be causative agents, whose effects are conditioned by genes. The antimicrobial effects of beta-amyloid, the localisation of APP/gamma-secretase in immunocompetent dendritic cells, and gamma secretase cleavage of numerous pathogen receptors suggest that this network is concerned with pathogen disposal, effects which may be abrogated by the presence of beta-amyloid autoantibodies in the elderly. These autoantibodies, as well as those to nerve growth factor and tau, also observed in Alzheimer's disease, may well be antibodies to pathogens, due to homology between human autoantigens and pathogen proteins. NGF or tau antibodies promote beta-amyloid deposition, neurofibrillary tangles, or cholinergic neuronal loss, and, with other autoantibodies, such as anti-ATPase, are potential agents of destruction, whose formation is dictated by sequence homology between pathogen and human proteins, and thus by pathogen strain and human genes. Pathogen elimination in the ageing population and removal of culpable autoantibodies might reduce the incidence and offer hope for a cure in this affliction. PMID:22254144
Novel Insights into Cell Entry of Emerging Human Pathogenic Arenaviruses.
Fedeli, Chiara; Moreno, Héctor; Kunz, Stefan
2018-06-22
Viral hemorrhagic fevers caused by emerging RNA viruses of the Arenavirus family are among the most devastating human diseases. Climate change, global trade, and increasing urbanization promote the emergence and re-emergence of these human pathogenic viruses. Emerging pathogenic arenaviruses are of zoonotic origin and reservoir-to-human transmission is crucial for spillover into human populations. Host cell attachment and entry are the first and most fundamental steps of every virus infection and represent major barriers for zoonotic transmission. During host cell invasion, viruses critically depend on cellular factors, including receptors, co-receptors, and regulatory proteins of endocytosis. An in-depth understanding of the complex interaction of a virus with cellular factors implicated in host cell entry is therefore crucial to predict the risk of zoonotic transmission, define the tissue tropism, and assess disease potential. Over the past years, investigation of the molecular and cellular mechanisms underlying host cell invasion of human pathogenic arenaviruses uncovered remarkable viral strategies and provided novel insights into viral adaptation and virus-host co-evolution that will be covered in the present review. Copyright © 2018. Published by Elsevier Ltd.
Alves-Barroco, Cinthia; Roma-Rodrigues, Catarina; Raposo, Luís R; Brás, Catarina; Diniz, Mário; Caço, João; Costa, Pedro M; Santos-Sanches, Ilda; Fernandes, Alexandra R
2018-03-25
Streptococcus dysgalactiae subsp. dysgalactiae (SDSD) is a major cause of bovine mastitis and has been regarded as an animal-restricted pathogen, although rare infections have been described in humans. Previous studies revealed the presence of virulence genes encoded by phages of the human pathogen Group A Streptococcus pyogenes (GAS) in SDSD isolated from the milk of bovine udder with mastitis. The isolates SDSD VSD5 and VSD13 could adhere and internalize human primary keratinocyte cells, suggesting a possible human infection potential of bovine isolates. In this work, the in vitro and in vivo potential of SDSD to internalize/adhere human cells of the respiratory track and zebrafish as biological models was evaluated. Our results showed that, in vitro, bovine SDSD strains could interact and internalize human respiratory cell lines and that this internalization was dependent on an active transport mechanism and that, in vivo, SDSD are able to cause invasive infections producing zebrafish morbidity and mortality. The infectious potential of these isolates showed to be isolate-specific and appeared to be independent of the presence or absence of GAS phage-encoded virulence genes. Although the infection ability of the bovine SDSD strains was not as strong as the human pathogenic S. pyogenes in the zebrafish model, results suggested that these SDSD isolates are able to interact with human cells and infect zebrafish, a vertebrate infectious model, emerging as pathogens with zoonotic capability. © 2018 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Effect of Intermediate Hosts on Emerging Zoonoses.
Cui, Jing-An; Chen, Fangyuan; Fan, Shengjie
2017-08-01
Most emerging zoonotic pathogens originate from animals. They can directly infect humans through natural reservoirs or indirectly through intermediate hosts. As a bridge, an intermediate host plays different roles in the transmission of zoonotic pathogens. In this study, we present three types of pathogen transmission to evaluate the effect of intermediate hosts on emerging zoonotic diseases in human epidemics. These types are identified as follows: TYPE 1, pathogen transmission without an intermediate host for comparison; TYPE 2, pathogen transmission with an intermediate host as an amplifier; and TYPE 3, pathogen transmission with an intermediate host as a vessel for genetic variation. In addition, we established three mathematical models to elucidate the mechanisms underlying zoonotic disease transmission according to these three types. Stability analysis indicated that the existence of intermediate hosts increased the difficulty of controlling zoonotic diseases because of more difficult conditions to satisfy for the disease to die out. The human epidemic would die out under the following conditions: TYPE 1: [Formula: see text] and [Formula: see text]; TYPE 2: [Formula: see text], [Formula: see text], and [Formula: see text]; and TYPE 3: [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] Simulation with similar parameters demonstrated that intermediate hosts could change the peak time and number of infected humans during a human epidemic; intermediate hosts also exerted different effects on controlling the prevalence of a human epidemic with natural reservoirs in different periods, which is important in addressing problems in public health. Monitoring and controlling the number of natural reservoirs and intermediate hosts at the right time would successfully manage and prevent the prevalence of emerging zoonoses in humans.
Augustine, Swinburne A. J.; Simmons, Kaneatra J.; Eason, Tarsha N.; Curioso, Clarissa L.; Griffin, Shannon M.; Wade, Timothy J.; Dufour, Alfred; Fout, G. Shay; Grimm, Ann C.; Oshima, Kevin H.; Sams, Elizabeth A.; See, Mary Jean; Wymer, Larry J.
2017-01-01
Waterborne infectious diseases are a major public health concern worldwide. Few methods have been established that are capable of measuring human exposure to multiple waterborne pathogens simultaneously using non-invasive samples such as saliva. Most current methods measure exposure to only one pathogen at a time, require large volumes of individual samples collected using invasive procedures, and are very labor intensive. In this article, we applied a multiplex bead-based immunoassay capable of measuring IgG antibody responses to six waterborne pathogens simultaneously in human saliva to estimate immunoprevalence in beachgoers at Boquerón Beach, Puerto Rico. Further, we present approaches for determining cutoff points to assess immunoprevalence to the pathogens in the assay. For the six pathogens studied, our results show that IgG antibodies against antigens from noroviruses GI.I and GII.4 were more prevalent (60 and 51.6%, respectively) than Helicobacter pylori (21.4%), hepatitis A virus (20.2%), Campylobacter jejuni (8.7%), and Toxoplasma gondii (8%) in the saliva of the study participants. The salivary antibody multiplex immunoassay can be used to examine immunoprevalence of specific pathogens in human populations. PMID:28507984
Chen, Zhao; Jiang, Xiuping
2017-03-01
Animal wastes have high nutritional value as biological soil amendments of animal origin for plant cultivation in sustainable agriculture; however, they can be sources of some human pathogens. Although composting is an effective way to reduce pathogen levels in animal wastes, pathogens may still survive under certain conditions and persist in the composted products, which potentially could lead to fresh produce contamination. According to the U.S. Food and Drug Administration Food Safety Modernization Act, alternative treatments are recommended for reducing or eliminating human pathogens in raw animal manure. Physical heat treatments can be considered an effective method to inactivate pathogens in animal wastes. However, microbial inactivation in animal wastes can be affected by many factors, such as composition of animal wastes, type and physiological stage of the tested microorganism, and heat source. Following some current processing guidelines for physical heat treatments may not be adequate for completely eliminating pathogens from animal wastes. Therefore, this article primarily reviews the microbiological safety and economic value of physically heat-treated animal wastes as biological soil amendments.
Emerging pathogens in the fish farming industry and sequencing-based pathogen discovery.
Tengs, Torstein; Rimstad, Espen
2017-10-01
The use of large scale DNA/RNA sequencing has become an integral part of biomedical research. Reduced sequencing costs and the availability of efficient computational resources has led to a revolution in how problems concerning genomics and transcriptomics are addressed. Sequencing-based pathogen discovery represents one example of how genetic data can now be used in ways that were previously considered infeasible. Emerging pathogens affect both human and animal health due to a multitude of factors, including globalization, a shifting environment and an increasing human population. Fish farming represents a relevant, interesting and challenging system to study emerging pathogens. This review summarizes recent progress in pathogen discovery using sequence data, with particular emphasis on viruses in Atlantic salmon (Salmo salar). Copyright © 2017 Elsevier Ltd. All rights reserved.
Kwan, Grace; Charkowski, Amy O; Barak, Jeri D
2013-02-12
Although enteric human pathogens are usually studied in the context of their animal hosts, a significant portion of their life cycle occurs on plants. Plant disease alters the phyllosphere, leading to enhanced growth of human pathogens; however, the impact of human pathogens on phytopathogen biology and plant health is largely unknown. To characterize the interaction between human pathogens and phytobacterial pathogens in the phyllosphere, we examined the interactions between Pectobacterium carotovorum subsp. carotovorum and Salmonella enterica or Escherichia coli O157:H7 with regard to bacterial populations, soft rot progression, and changes in local pH. The presence of P. carotovorum subsp. carotovorum enhanced the growth of both S. enterica and E. coli O157:H7 on leaves. However, in a microaerophilic environment, S. enterica reduced P. carotovorum subsp. carotovorum populations and soft rot progression by moderating local environmental pH. Reduced soft rot was not due to S. enterica proteolytic activity. Limitations on P. carotovorum subsp. carotovorum growth, disease progression, and pH elevation were not observed on leaves coinoculated with E. coli O157:H7 or when leaves were coinoculated with S. enterica in an aerobic environment. S. enterica also severely undermined the relationship between the phytobacterial population and disease progression of a P. carotovorum subsp. carotovorum budB mutant defective in the 2,3-butanediol pathway for acid neutralization. Our results show that S. enterica and E. coli O157:H7 interact differently with the enteric phytobacterial pathogen P. carotovorum subsp. carotovorum. S. enterica inhibition of soft rot progression may conceal a rapidly growing human pathogen population. Whereas soft rotted produce can alert consumers to the possibility of food-borne pathogens, healthy-looking produce may entice consumption of contaminated vegetables. Salmonella enterica and Escherichia coli O157:H7 may use plants to move between animal and human hosts. Their populations are higher on plants cocolonized with the common bacterial soft rot pathogen Pectobacterium carotovorum subsp. carotovorum, turning edible plants into a risk factor for human disease. We inoculated leaves with P. carotovorum subsp. carotovorum and S. enterica or E. coli O157:H7 to study the interactions between these bacteria. While P. carotovorum subsp. carotovorum enhanced the growth of both S. enterica and E. coli O157:H7, these human pathogens affected P. carotovorum subsp. carotovorum fundamentally differently. S. enterica reduced P. carotovorum subsp. carotovorum growth and acidified the environment, leading to less soft rot on leaves; E. coli O157:H7 had no such effects. As soft rot signals a food safety risk, the reduction of soft rot symptoms in the presence of S. enterica may lead consumers to eat healthy-looking but S. enterica-contaminated produce.
Colwell, Rita
2018-05-14
Rita Colwell on "Experimental Reservoirs of Human Pathogens: The Vibrio cholerae paradigm" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.
MICROBES, MONITORING AND HUMAN HEALTH
There are about 20,000 wastewater treatment plants in the United States. These plants discharge about 50 trillion gallons of wastewater daily into the nation's surface waters. Most wastewater contains human feces, which are a potential source of microbial pathogens. Pathogens ...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colwell, Rita
Rita Colwell on "Experimental Reservoirs of Human Pathogens: The Vibrio cholerae paradigm" at the 2012 Sequencing, Finishing, Analysis in the Future Meeting held June 5-7, 2012 in Santa Fe, New Mexico.
Setosphaeria rostrata: Insights from the sequenced genome of Setosphaeria turcica.
Wu, Dongliang; Turgeon, B Gillian
2013-12-01
Exserohilum rostratum, also known as Setosphaeria rostrata caused an outbreak of meningitis in 2012. S. rostrata is known as a minor pathogen of grasses and a member of the Dothideomycetes, a group that includes saprobes as well as mild to aggressive plant pathogens. A few taxa in this group, such as E. rostratum and Cochliobolus lunatus (Curvularia lunata) can be human pathogens, in favorable circumstances. Fortunately, human disease caused by E. rostratum is rare. However, the increasing number of formerly inconsequential fungi surfacing as significant pathogens demands efforts to identify determinants of crossover pathogenicity in general, and S. rostrata in particular. Very few genetic and molecular data are available for S. rostrata. The first genome sequence for any species in the genus Setosphaeria (Setosphaeria turcica) was published this year. The literature to date related to virulence determinants of S. rostrata and S. turcica to plants and a summary of S. turcica genome features that may inform future studies with the human pathogen, S. rostrata, are presented. Copyright © 2013 Elsevier Inc. All rights reserved.
Gondard, Mathilde; Cabezas-Cruz, Alejandro; Charles, Roxanne A; Vayssier-Taussat, Muriel; Albina, Emmanuel; Moutailler, Sara
2017-01-01
Ticks are obligate hematophagous arthropods of significant importance to human and veterinary medicine. They transmit a vast array of pathogens, including bacteria, viruses, protozoa, and helminths. Most epidemiological data on ticks and tick-borne pathogens (TBPs) in the West Indies are limited to common livestock pathogens such as Ehrlichia ruminantium, Babesia spp. (i.e., B. bovis and B. bigemina ), and Anaplasma marginale , and less information is available on companion animal pathogens. Of note, human tick-borne diseases (TBDs) remain almost completely uncharacterized in the West Indies. Information on TBP presence in wildlife is also missing. Herein, we provide a comprehensive review of the ticks and TBPs affecting human and animal health in the Caribbean, and introduce the challenges associated with understanding TBD epidemiology and implementing successful TBD management in this region. In particular, we stress the need for innovative and versatile surveillance tools using high-throughput pathogen detection (e.g., high-throughput real-time microfluidic PCR). The use of such tools in large epidemiological surveys will likely improve TBD prevention and control programs in the Caribbean.
Uddin Khan, Salah; Atanasova, Kalina R; Krueger, Whitney S; Ramirez, Alejandro; Gray, Gregory C
2013-01-01
We sought to review the epidemiology, international geographical distribution, and economic consequences of selected swine zoonoses. We performed literature searches in two stages. First, we identified the zoonotic pathogens associated with swine. Second, we identified specific swine-associated zoonotic pathogen reports for those pathogens from January 1980 to October 2012. Swine-associated emerging diseases were more prevalent in the countries of North America, South America, and Europe. Multiple factors were associated with the increase of swine zoonoses in humans including: the density of pigs, poor water sources and environmental conditions for swine husbandry, the transmissibility of the pathogen, occupational exposure to pigs, poor human sanitation, and personal hygiene. Swine zoonoses often lead to severe economic consequences related to the threat of novel pathogens to humans, drop in public demand for pork, forced culling of swine herds, and international trade sanctions. Due to the complexity of swine-associated pathogen ecology, designing effective interventions for early detection of disease, their prevention, and mitigation requires an interdisciplinary collaborative “One Health” approach from veterinarians, environmental and public health professionals, and the swine industry. PMID:26038451
Novel methods for pathogen control in livestock preharvest: An update
USDA-ARS?s Scientific Manuscript database
Pathogenic bacteria are found asymptomatically within and on food animals, which often results in pathogen entry into the food chain, causing human illnesses. Slaughter and processing plants do an outstanding job in reducing pathogen contamination through the use of intervention strategies after sl...
Pathogen reduction in human plasma using an ultrashort pulsed laser
USDA-ARS?s Scientific Manuscript database
Pathogen reduction is an ideal approach to ensure the continued safety of the blood supply against emerging pathogens. However, the currently licensed pathogen reduction techniques are ineffective against non-enveloped viruses, and they introduce chemicals with concerns of side effects which prevent...
Statistical Physics of T-Cell Development and Pathogen Specificity
NASA Astrophysics Data System (ADS)
Košmrlj, Andrej; Kardar, Mehran; Chakraborty, Arup K.
2013-04-01
In addition to an innate immune system that battles pathogens in a nonspecific fashion, higher organisms, such as humans, possess an adaptive immune system to combat diverse (and evolving) microbial pathogens. Remarkably, the adaptive immune system mounts pathogen-specific responses, which can be recalled upon reinfection with the same pathogen. It is difficult to see how the adaptive immune system can be preprogrammed to respond specifically to a vast and unknown set of pathogens. Although major advances have been made in understanding pertinent molecular and cellular phenomena, the precise principles that govern many aspects of an immune response are largely unknown. We discuss complementary approaches from statistical mechanics and cell biology that can shed light on how key components of the adaptive immune system, T cells, develop to enable pathogen-specific responses against many diverse pathogens. The mechanistic understanding that emerges has implications for how host genetics may influence the development of T cells with differing responses to the human immunodeficiency virus (HIV) infection.
Humans and Cattle: A Review of Bovine Zoonoses
Cardwell, Diana M.; Moeller, Robert B.; Gray, Gregory C.
2014-01-01
Abstract Infectious disease prevention and control has been among the top public health objectives during the last century. However, controlling disease due to pathogens that move between animals and humans has been challenging. Such zoonotic pathogens have been responsible for the majority of new human disease threats and a number of recent international epidemics. Currently, our surveillance systems often lack the ability to monitor the human–animal interface for emergent pathogens. Identifying and ultimately addressing emergent cross-species infections will require a “One Health” approach in which resources from public veterinary, environmental, and human health function as part of an integrative system. Here we review the epidemiology of bovine zoonoses from a public health perspective. PMID:24341911
Stratmann, Thomas; Madhusudan, S.; Schnetz, Karin
2008-01-01
The yjjQ and bglJ genes encode LuxR-type transcription factors conserved in several enterobacterial species. YjjQ is a potential virulence factor in avian pathogenic Escherichia coli. BglJ counteracts the silencing of the bgl (β-glucoside) operon by H-NS in E. coli K-12. Here we show that yjjQ and bglJ form an operon carried by E. coli K-12, whose expression is repressed by the histone-like nucleoid structuring (H-NS) protein. The LysR-type transcription factor LeuO counteracts this repression. Furthermore, the yjjP gene, encoding a membrane protein of unknown function and located upstream in divergent orientation to the yjjQ-bglJ operon, is likewise repressed by H-NS. Mapping of the promoters as well as the H-NS and LeuO binding sites within the 555-bp intergenic region revealed that H-NS binds to the center of the AT-rich regulatory region and distal to the divergent promoters. LeuO sites map to the center and to positions distal to the yjjQ promoters, while one LeuO binding site overlaps with the divergent yjjP promoter. This latter LeuO site is required for full derepression of the yjjQ promoters. The arrangement of regulatory sites suggests that LeuO restructures the nucleoprotein complex formed by H-NS. Furthermore, the data support the conclusion that LeuO, whose expression is likewise repressed by H-NS and which is a virulence factor in Salmonella enterica, is a master regulator that among other loci, also controls the yjjQ-bglJ operon and thus indirectly the presumptive targets of YjjQ and BglJ. PMID:18055596
Isolation and Characterization of Stenotrophomonas maltophilia Isolates from a Brazilian Hospital.
Gallo, Stephanie W; Figueiredo, Thomaz P; Bessa, Marjo C; Pagnussatti, Vany E; Ferreira, Carlos A S; Oliveira, Sílvia D
2016-12-01
Stenotrophomonas maltophilia is an emerging nosocomial pathogen responsible for several infections in immunocompromised patients. To characterize the antimicrobial resistance and virulence potential of this microorganism in a Brazilian hospital, a total of 936 samples were collected from a nosocomial environment and medical devices, and 100 isolates from clinical specimens were obtained in the same hospital. S. maltophilia was found in 3% of the samples collected, especially in bed rails from hospital rooms. The smf-1 gene was detected in 23% and 42% of the clinical and hospital environment isolates, respectively, and almost all (96.8%) isolates that harbored smf-1 were able to form biofilm. All isolates were susceptible to minocycline and chloramphenicol, and the majority of isolates were susceptible to levofloxacin. High resistance to ceftazidime was detected in both groups of isolates. Resistance to trimethoprim-sulfamethoxazole (TMP/SMX) was found in 14.8% of the isolates. All TMP/SMX-resistant isolates presented class 1 integron and sul1 gene, and 47.4% of them also harbored the sul2 gene, which was inserted into a 7.3 kb plasmid. Genetic relatedness among the isolates was evaluated by enterobacterial repetitive intergenic consensus-PCR, and eight genetic patterns were identified. One pattern comprised 54.7% of isolates and was spread among clinical and environmental (furniture and medical devices) sources. The presence of S. maltophilia in the hospital environment indicates that it can act as a reservoir of this microorganism. In addition, hospital isolates resistant to TMP/SMX showed that the genetic determinants were present in mobile elements, which can constitute great concern, as it may indicate a tendency to spread.
The avian chorioallantoic membrane in ovo--a useful model for bacterial invasion assays.
Adam, Rüdiger; Mussa, Shueb; Lindemann, Dirk; Oelschlaeger, Tobias A; Deadman, Mary; Ferguson, David J P; Moxon, Richard; Schroten, Horst
2002-09-01
The aim of this study was to evaluate the practicability of the chick embryo chorioallantoic membrane (CAM) with special regard to the 'natural air sac' technique (NAST) of preparation for in-vivo research on the invasive potential of bacterial strains of various enterobacterial species. It was sought to establish an experimental system more closely resembling in-vivo conditions than cell lines on one hand, and cheaper and easier to handle than established animal models on the other. Fertilized eggs of the domestic fowl were incubated. The CAM was prepared atraumatically at the natural air space of the egg, and a cannula was inserted for subsequent extraction of allantoic fluid (AF) below the CAM. The CAM was then inoculated with either one out of five strains of Klebsiella pneumoniae, an Escherichia coli K-12 strain or a Salmonella typhimurium strain, either alone or in combinations, respectively. AF samples were extracted at certain time points, and the presence of bacteria was determined by cultivation. Penetration and mortality ratios of the infected embryos were calculated. In addition, the mode of crossing the epithelial barrier was examined by electron microscopy. Differing rates of invasion through the CAM and rates of mortality of the chicken embryos demonstrated a clear dependency on the inoculated bacterial strain. Low invading bacteria could be distinguished from intermediate strains, and from strains exerting a strong capability of invasion and killing of the embryos. Simultaneous monotopical inoculation of Klebsiella and E. coli showed a permissive effect of co-incubated Klebsiella on the invasiveness of E. coli. The chick embryo CAM prepared by NAST has shown to be a useful model for in vivo studies on invasion capabilities, pathogenicity and interactions of inoculated bacteria.
Cortes-Hernandez, Paulina
2017-01-01
Periplasmic Binding Proteins (PBPs) trap nutrients for their internalization into bacteria by ABC transporters. Ligand binding triggers PBP closure by bringing its two domains together like a Venus flytrap. The atomic determinants that control PBP opening and closure for nutrient capture and release are not known, although it is proposed that opening and ligand release occur while in contact with the ABC transporter for concurrent substrate translocation. In this paper we evaluated the effect of the isomerization of a conserved proline, located near the binding site, on the propensity of PBPs to open and close. ArgT/LAO from Salmonella typhimurium and HisJ from Escherichia coli were studied through molecular mechanics at two different temperatures: 300 and 323 K. Eight microseconds were simulated per protein to analyze protein opening and closure in the absence of the ABC transporter. We show that when the studied proline is in trans, closed empty LAO and HisJ can open. In contrast, with the proline in cis, opening transitions were much less frequent and characterized by smaller changes. The proline in trans also renders the open trap prone to close over a ligand. Our data suggest that the isomerization of this conserved proline modulates the PBP mechanism: the proline in trans allows the exploration of conformational space to produce trap opening and closure, while in cis it restricts PBP movement and could limit ligand release until in productive contact with the ABC transporter. This is the first time that a proline isomerization has been related to the control of a large conformational change like the PBP flytrap mechanism. PMID:29190818
Brandenburg, Klaus; Heinbockel, Lena; Correa, Wilmar; Fukuoka, Satoshi; Gutsmann, Thomas; Zähringer, Ulrich; Koch, Michel H J
2016-04-01
Lipopolysaccharides (LPS) belong to the strongest immune-modulating compounds known in nature, and are often described as pathogen-associated molecular patterns (PAMPs). In particular, at higher concentrations they are responsible for sepsis and the septic shock syndrome associated with high lethality. Since most data are indicative that LPS aggregates are the bioactive units, their supramolecular structures are considered to be of outmost relevance for deciphering the molecular mechanisms of its bioactivity. So far, however, most of the data available addressing this issue, were published only for the lipid part (lipid A) and the core-oligosaccharide containing rough LPS, representing the bioactive unit. By contrast, it is well known that most of the LPS specimen identified in natural habitats contain the smooth-form (S-form) LPS, which carry additionally a high-molecular polysaccharide (O-chain). To fill this lacuna and going into a more natural system, here various wild-type (smooth form) LPS including also some LPS fractions were investigated by small-angle X-ray scattering with synchrotron radiation to analyze their aggregate structure. Furthermore, the influence of a recently designed synthetic anti-LPS peptide (SALP) Pep19-2.5 on the aggregate structure, on the binding thermodynamics, and on the cytokine-inducing activity of LPS were characterized, showing defined aggregate changes, high affinity binding and inhibition of cytokine secretion. The data obtained are suitable to refine our view on the preferences of LPS for non-lamellar structures, representing the highest bioactive forms which can be significantly influenced by the binding with neutralizing peptides such as Pep19-2.5. Copyright © 2016 Elsevier Inc. All rights reserved.
Population variability of the FimH type 1 fimbrial adhesin in Klebsiella pneumoniae.
Stahlhut, Steen G; Chattopadhyay, Sujay; Struve, Carsten; Weissman, Scott J; Aprikian, Pavel; Libby, Stephen J; Fang, Ferric C; Krogfelt, Karen Angeliki; Sokurenko, Evgeni V
2009-03-01
FimH is an adhesive subunit of type 1 fimbriae expressed by different enterobacterial species. The enteric bacterium Klebsiella pneumoniae is an environmental organism that is also a frequent cause of sepsis, urinary tract infection (UTI), and liver abscess. Type 1 fimbriae have been shown to be critical for the ability of K. pneumoniae to cause UTI in a murine model. We show here that the K. pneumoniae fimH gene is found in 90% of strains from various environmental and clinical sources. The fimH alleles exhibit relatively low nucleotide and structural diversity but are prone to frequent horizontal-transfer events between different bacterial clones. Addition of the fimH locus to multiple-locus sequence typing significantly improved the resolution of the clonal structure of pathogenic strains, including the K1 encapsulated liver isolates. In addition, the K. pneumoniae FimH protein is targeted by adaptive point mutations, though not to the same extent as FimH from uropathogenic Escherichia coli or TonB from the same K. pneumoniae strains. Such adaptive mutations include a single amino acid deletion from the signal peptide that might affect the length of the fimbrial rod by affecting FimH translocation into the periplasm. Another FimH mutation (S62A) occurred in the course of endemic circulation of a nosocomial uropathogenic clone of K. pneumoniae. This mutation is identical to one found in a highly virulent uropathogenic strain of E. coli, suggesting that the FimH mutations are pathoadaptive in nature. Considering the abundance of type 1 fimbriae in Enterobacteriaceae, our present finding that fimH genes are subject to adaptive microevolution substantiates the importance of type 1 fimbria-mediated adhesion in K. pneumoniae.
Fakoli, Lawrence S.; Bolay, Kpehe; Bolay, Fatorma K.; Diclaro, Joseph W.; Brackney, Doug E.; Stenglein, Mark D.; Ebel, Gregory D.
2018-01-01
Background Novel surveillance strategies are needed to detect the rapid and continuous emergence of infectious disease agents. Ideally, new sampling strategies should be simple to implement, technologically uncomplicated, and applicable to areas where emergence events are known to occur. To this end, xenosurveillance is a technique that makes use of blood collected by hematophagous arthropods to monitor and identify vertebrate pathogens. Mosquitoes are largely ubiquitous animals that often exist in sizable populations. As well, many domestic or peridomestic species of mosquitoes will preferentially take blood-meals from humans, making them a unique and largely untapped reservoir to collect human blood. Methodology/Principal findings We sought to take advantage of this phenomenon by systematically collecting blood-fed mosquitoes during a field trail in Northern Liberia to determine whether pathogen sequences from blood engorged mosquitoes accurately mirror those obtained directly from humans. Specifically, blood was collected from humans via finger-stick and by aspirating bloodfed mosquitoes from the inside of houses. Shotgun metagenomic sequencing of RNA and DNA derived from these specimens was performed to detect pathogen sequences. Samples obtained from xenosurveillance and from finger-stick blood collection produced a similar number and quality of reads aligning to two human viruses, GB virus C and hepatitis B virus. Conclusions/Significance This study represents the first systematic comparison between xenosurveillance and more traditional sampling methodologies, while also demonstrating the viability of xenosurveillance as a tool to sample human blood for circulating pathogens. PMID:29561834
Tripathi, Himanshu; Luqman, Suaib; Meena, Abha; Khan, Feroz
2014-01-01
Despite of modern antifungal therapy, the mortality rates of invasive infection with human fungal pathogen Candida albicans are up to 40%. Studies suggest that drug resistance in the three most common species of human fungal pathogens viz., C. albicans, Aspergillus fumigatus (causing mortality rate up to 90%) and Cryptococcus neoformans (causing mortality rate up to 70%) is due to mutations in the target enzymes or high expression of drug transporter genes. Drug resistance in human fungal pathogens has led to an imperative need for the identification of new targets unique to fungal pathogens. In the present study, we have used a comparative genomics approach to find out potential target proteins unique to C. albicans, an opportunistic fungus responsible for severe infection in immune-compromised human. Interestingly, many target proteins of existing antifungal agents showed orthologs in human cells. To identify unique proteins, we have compared proteome of C. albicans [SC5314] i.e., 14,633 total proteins retrieved from the RefSeq database of NCBI, USA with proteome of human and non-pathogenic yeast Saccharomyces cerevisiae. Results showed that 4,568 proteins were identified unique to C. albicans as compared to those of human and later when these unique proteins were compared with S. cerevisiae proteome, finally 2,161 proteins were identified as unique proteins and after removing repeats total 1,618 unique proteins (42 functionally known, 1,566 hypothetical and 10 unknown) were selected as potential antifungal drug targets unique to C. albicans.
Fauver, Joseph R; Weger-Lucarelli, James; Fakoli, Lawrence S; Bolay, Kpehe; Bolay, Fatorma K; Diclaro, Joseph W; Brackney, Doug E; Foy, Brian D; Stenglein, Mark D; Ebel, Gregory D
2018-03-01
Novel surveillance strategies are needed to detect the rapid and continuous emergence of infectious disease agents. Ideally, new sampling strategies should be simple to implement, technologically uncomplicated, and applicable to areas where emergence events are known to occur. To this end, xenosurveillance is a technique that makes use of blood collected by hematophagous arthropods to monitor and identify vertebrate pathogens. Mosquitoes are largely ubiquitous animals that often exist in sizable populations. As well, many domestic or peridomestic species of mosquitoes will preferentially take blood-meals from humans, making them a unique and largely untapped reservoir to collect human blood. We sought to take advantage of this phenomenon by systematically collecting blood-fed mosquitoes during a field trail in Northern Liberia to determine whether pathogen sequences from blood engorged mosquitoes accurately mirror those obtained directly from humans. Specifically, blood was collected from humans via finger-stick and by aspirating bloodfed mosquitoes from the inside of houses. Shotgun metagenomic sequencing of RNA and DNA derived from these specimens was performed to detect pathogen sequences. Samples obtained from xenosurveillance and from finger-stick blood collection produced a similar number and quality of reads aligning to two human viruses, GB virus C and hepatitis B virus. This study represents the first systematic comparison between xenosurveillance and more traditional sampling methodologies, while also demonstrating the viability of xenosurveillance as a tool to sample human blood for circulating pathogens.
Sun, Honglei; Pu, Juan; Wei, Yandi; Sun, Yipeng; Hu, Jiao; Liu, Litao; Xu, Guanlong; Gao, Weihua; Li, Chong; Zhang, Xuxiao; Huang, Yinhua; Chang, Kin-Chow; Liu, Xiufan; Liu, Jinhua
2016-07-15
Since May 2014, highly pathogenic avian influenza H5N6 virus has been reported to cause six severe human infections three of which were fatal. The biological properties of this subtype, in particular its relative pathogenicity and transmissibility in mammals, are not known. We characterized the virus receptor-binding affinity, pathogenicity, and transmissibility in mice and ferrets of four H5N6 isolates derived from waterfowl in China from 2013-2014. All four H5N6 viruses have acquired a binding affinity for human-like SAα2,6Gal-linked receptor to be able to attach to human tracheal epithelial and alveolar cells. The emergent H5N6 viruses, which share high sequence similarity with the human isolate A/Guangzhou/39715/2014 (H5N6), were fully infective and highly transmissible by direct contact in ferrets but showed less-severe pathogenicity than the parental H5N1 virus. The present results highlight the threat of emergent H5N6 viruses to poultry and human health and the need to closely track their continual adaptation in humans. Extended epizootics and panzootics of H5N1 viruses have led to the emergence of the novel 2.3.4.4 clade of H5 virus subtypes, including H5N2, H5N6, and H5N8 reassortants. Avian H5N6 viruses from this clade have caused three fatalities out of six severe human infections in China since the first case in 2014. However, the biological properties of this subtype, especially the pathogenicity and transmission in mammals, are not known. Here, we found that natural avian H5N6 viruses have acquired a high affinity for human-type virus receptor. Compared to the parental clade 2.3.4 H5N1 virus, emergent H5N6 isolates showed less severe pathogenicity in mice and ferrets but acquired efficient in-contact transmission in ferrets. These findings suggest that the threat of avian H5N6 viruses to humans should not be ignored. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Identification of potentially human-pathogenic Enterocytozoon bieneusi genotypes in various birds.
Lobo, Maria Luísa; Xiao, Lihua; Cama, Vitaliano; Magalhães, Nuno; Antunes, Francisco; Matos, Olga
2006-11-01
Enterocytozoon bieneusi was detected in 24 of 83 samples from birds of the orders Columbiformes, Passeriformes, and Psittaciformes. It was identical to or closely related to the Peru6 genotype, which was previously found in humans in Peru. Thus, various birds can be a significant source of environmental contamination by potentially human-pathogenic E. bieneusi.
From Exit to Entry: Long-term Survival and Transmission of Salmonella
Waldner, Landon L.; MacKenzie, Keith D.; Köster,, Wolfgang; White, Aaron P.
2012-01-01
Salmonella spp. are a leading cause of human infectious disease worldwide and pose a serious health concern. While we have an improving understanding of pathogenesis and the host-pathogen interactions underlying the infection process, comparatively little is known about the survival of pathogenic Salmonella outside their hosts. This review focuses on three areas: (1) in vitro evidence that Salmonella spp. can survive for long periods of time under harsh conditions; (2) observations and conclusions about Salmonella persistence obtained from human outbreaks; and (3) new information revealed by genomic- and population-based studies of Salmonella and related enteric pathogens. We highlight the mechanisms of Salmonella persistence and transmission as an essential part of their lifecycle and a prerequisite for their evolutionary success as human pathogens. PMID:25436767
Newcastle Disease Virus as a Vaccine Vector for Development of Human and Veterinary Vaccines
Kim, Shin-Hee; Samal, Siba K.
2016-01-01
Viral vaccine vectors have shown to be effective in inducing a robust immune response against the vaccine antigen. Newcastle disease virus (NDV), an avian paramyxovirus, is a promising vaccine vector against human and veterinary pathogens. Avirulent NDV strains LaSota and B1 have long track records of safety and efficacy. Therefore, use of these strains as vaccine vectors is highly safe in avian and non-avian species. NDV replicates efficiently in the respiratory track of the host and induces strong local and systemic immune responses against the foreign antigen. As a vaccine vector, NDV can accommodate foreign sequences with a good degree of stability and as a RNA virus, there is limited possibility for recombination with host cell DNA. Using NDV as a vaccine vector in humans offers several advantages over other viral vaccine vectors. NDV is safe in humans due to host range restriction and there is no pre-existing antibody to NDV in the human population. NDV is antigenically distinct from common human pathogens. NDV replicates to high titer in a cell line acceptable for human vaccine development. Therefore, NDV is an attractive vaccine vector for human pathogens for which vaccines are currently not available. NDV is also an attractive vaccine vector for animal pathogens. PMID:27384578
Newcastle Disease Virus as a Vaccine Vector for Development of Human and Veterinary Vaccines.
Kim, Shin-Hee; Samal, Siba K
2016-07-04
Viral vaccine vectors have shown to be effective in inducing a robust immune response against the vaccine antigen. Newcastle disease virus (NDV), an avian paramyxovirus, is a promising vaccine vector against human and veterinary pathogens. Avirulent NDV strains LaSota and B1 have long track records of safety and efficacy. Therefore, use of these strains as vaccine vectors is highly safe in avian and non-avian species. NDV replicates efficiently in the respiratory track of the host and induces strong local and systemic immune responses against the foreign antigen. As a vaccine vector, NDV can accommodate foreign sequences with a good degree of stability and as a RNA virus, there is limited possibility for recombination with host cell DNA. Using NDV as a vaccine vector in humans offers several advantages over other viral vaccine vectors. NDV is safe in humans due to host range restriction and there is no pre-existing antibody to NDV in the human population. NDV is antigenically distinct from common human pathogens. NDV replicates to high titer in a cell line acceptable for human vaccine development. Therefore, NDV is an attractive vaccine vector for human pathogens for which vaccines are currently not available. NDV is also an attractive vaccine vector for animal pathogens.
Microbe Profile: Mycobacterium tuberculosis: Humanity's deadly microbial foe.
Gordon, Stephen V; Parish, Tanya
2018-04-01
Mycobacterium tuberculosis is an expert and deadly pathogen, causing the disease tuberculosis (TB) in humans. It has several notable features: the ability to enter non-replicating states for long periods and cause latent infection; metabolic remodelling during chronic infection; a thick, waxy cell wall; slow growth rate in culture; and intrinsic drug resistance and antibiotic tolerance. As a pathogen, M. tuberculosis has a complex relationship with its host, is able to replicate inside macrophages, and expresses diverse immunomodulatory molecules. M. tuberculosis currently causes over 1.8 million deaths a year, making it the world's most deadly human pathogen.
Ijaz, M Khalid; Zargar, Bahram; Wright, Kathryn E; Rubino, Joseph R; Sattar, Syed A
2016-09-02
Indoor air can be an important vehicle for a variety of human pathogens. This review provides examples of airborne transmission of infectious agents from experimental and field studies and discusses how airborne pathogens can contaminate other parts of the environment to give rise to secondary vehicles leading air-surface-air nexus with possible transmission to susceptible hosts. The following groups of human pathogens are covered because of their known or potential airborne spread: vegetative bacteria (staphylococci and legionellae), fungi (Aspergillus, Penicillium, and Cladosporium spp and Stachybotrys chartarum), enteric viruses (noro- and rotaviruses), respiratory viruses (influenza and coronaviruses), mycobacteria (tuberculous and nontuberculous), and bacterial spore formers (Clostridium difficile and Bacillus anthracis). An overview of methods for experimentally generating and recovering airborne human pathogens is included, along with a discussion of factors that influence microbial survival in indoor air. Available guidelines from the U.S. Environmental Protection Agency and other global regulatory bodies for the study of airborne pathogens are critically reviewed with particular reference to microbial surrogates that are recommended. Recent developments in experimental facilities to contaminate indoor air with microbial aerosols are presented, along with emerging technologies to decontaminate indoor air under field-relevant conditions. Furthermore, the role that air decontamination may play in reducing the contamination of environmental surfaces and its combined impact on interrupting the risk of pathogen spread in both domestic and institutional settings is discussed. Copyright © 2016. Published by Elsevier Inc.
Machine learning for the meta-analyses of microbial pathogens' volatile signatures.
Palma, Susana I C J; Traguedo, Ana P; Porteira, Ana R; Frias, Maria J; Gamboa, Hugo; Roque, Ana C A
2018-02-20
Non-invasive and fast diagnostic tools based on volatolomics hold great promise in the control of infectious diseases. However, the tools to identify microbial volatile organic compounds (VOCs) discriminating between human pathogens are still missing. Artificial intelligence is increasingly recognised as an essential tool in health sciences. Machine learning algorithms based in support vector machines and features selection tools were here applied to find sets of microbial VOCs with pathogen-discrimination power. Studies reporting VOCs emitted by human microbial pathogens published between 1977 and 2016 were used as source data. A set of 18 VOCs is sufficient to predict the identity of 11 microbial pathogens with high accuracy (77%), and precision (62-100%). There is one set of VOCs associated with each of the 11 pathogens which can predict the presence of that pathogen in a sample with high accuracy and precision (86-90%). The implemented pathogen classification methodology supports future database updates to include new pathogen-VOC data, which will enrich the classifiers. The sets of VOCs identified potentiate the improvement of the selectivity of non-invasive infection diagnostics using artificial olfaction devices.
Lu, Shan; Jin, Dong; Wu, Shusheng; Yang, Jing; Lan, Ruiting; Bai, Xiangning; Liu, Sha; Meng, Qiong; Yuan, Xuejiao; Zhou, Juan; Pu, Ji; Chen, Qiang; Dai, Hang; Hu, Yuanyuan; Xiong, Yanwen; Ye, Changyun; Xu, Jianguo
2016-01-01
Escherichia coli is both of a widespread harmless gut commensal and a versatile pathogen of humans. Domestic animals are a well-known reservoir for pathogenic E. coli. However, studies of E. coli populations from wild animals that have been separated from human activities had been very limited. Here we obtained 580 isolates from intestinal contents of 116 wild Marmot Marmota himalayana from Qinghai–Tibet plateau, China, with five isolates per animal. We selected 125 (hereinafter referred to as strains) from the 580 isolates for genome sequencing, based on unique pulse field gel electrophoresis patterns and at least one isolate per animal. Whole genome sequence analysis revealed that all 125 strains carried at least one and the majority (79.2%) carried multiple virulence genes based on the analysis of 22 selected virulence genes. In particular, the majority of the strains carried virulence genes from different pathovars as potential 'hybrid pathogens'. The alleles of eight virulence genes from the Marmot E. coli were found to have diverged earlier than all known alleles from human and other animal E. coli. Phylogenetic analysis of the 125 Marmot E. coli genomes and 355 genomes selected from 1622 human and other E. coli strains identified two new phylogroups, G and H, both of which diverged earlier than the other phylogroups. Eight of the 12 well-known pathogenic E. coli lineages were found to share a most recent common ancestor with one or more Marmot E. coli strains. Our results suggested that the intestinal E. coli of the Marmots contained a diverse virulence gene pool and is potentially pathogenic to humans. These findings provided a new understanding of the evolutionary origin of pathogenic E. coli. PMID:27924811
Lu, Shan; Jin, Dong; Wu, Shusheng; Yang, Jing; Lan, Ruiting; Bai, Xiangning; Liu, Sha; Meng, Qiong; Yuan, Xuejiao; Zhou, Juan; Pu, Ji; Chen, Qiang; Dai, Hang; Hu, Yuanyuan; Xiong, Yanwen; Ye, Changyun; Xu, Jianguo
2016-12-07
Escherichia coli is both of a widespread harmless gut commensal and a versatile pathogen of humans. Domestic animals are a well-known reservoir for pathogenic E. coli. However, studies of E. coli populations from wild animals that have been separated from human activities had been very limited. Here we obtained 580 isolates from intestinal contents of 116 wild Marmot Marmota himalayana from Qinghai-Tibet plateau, China, with five isolates per animal. We selected 125 (hereinafter referred to as strains) from the 580 isolates for genome sequencing, based on unique pulse field gel electrophoresis patterns and at least one isolate per animal. Whole genome sequence analysis revealed that all 125 strains carried at least one and the majority (79.2%) carried multiple virulence genes based on the analysis of 22 selected virulence genes. In particular, the majority of the strains carried virulence genes from different pathovars as potential 'hybrid pathogens'. The alleles of eight virulence genes from the Marmot E. coli were found to have diverged earlier than all known alleles from human and other animal E. coli. Phylogenetic analysis of the 125 Marmot E. coli genomes and 355 genomes selected from 1622 human and other E. coli strains identified two new phylogroups, G and H, both of which diverged earlier than the other phylogroups. Eight of the 12 well-known pathogenic E. coli lineages were found to share a most recent common ancestor with one or more Marmot E. coli strains. Our results suggested that the intestinal E. coli of the Marmots contained a diverse virulence gene pool and is potentially pathogenic to humans. These findings provided a new understanding of the evolutionary origin of pathogenic E. coli.
Dortet, Laurent; Fusaro, Mathieu; Naas, Thierry
2016-06-01
The Xpert Carba-R kit, version 2 (v2), which has been improved for the efficient detection of blaOXA-181 and blaOXA-232 genes, was tested on a collection of 150 well-characterized enterobacterial isolates that had a reduced susceptibility to carbapenems. The performance of the Xpert Carba-R v2 was high, as it was able to detect the five major carbapenemases (NDM, VIM, IMP, KPC, and OXA-48). Thus, it is now well adapted to the carbapenemase-producing Enterobacteriaceae epidemiology of many countries worldwide. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Detection of hepatitis E virus and other livestock-related pathogens in Iowa streams
Givens, Carrie E.; Kolpin, Dana W.; Borchardt, Mark A.; Duris, Joseph W.; Moorman, Thomas B.; Spencer, Susan K.
2016-01-01
Manure application is a source of pathogens to the environment. Through overland runoff and tile drainage, zoonotic pathogens can contaminate surface water and streambed sediment and could affect both wildlife and human health. This study examined the environmental occurrence of gene markers for livestock-related bacterial, protozoan, and viral pathogens and antibiotic resistance in surface waters within the South Fork Iowa River basin before and after periods of swine manure application on agricultural land. Increased concentrations of indicator bacteria after manure application exceeding Iowa's state bacteria water quality standards suggest that swine manure contributes to diminished water quality and may pose a risk to human health. Additionally, the occurrence of HEV and numerous bacterial pathogen genes for Escherichia coli, Enterococcus spp., Salmonella sp., and Staphylococcus aureus in both manure samples and in corresponding surface water following periods of manure application suggests a potential role for swine in the spreading of zoonotic pathogens to the surrounding environment. During this study, several zoonotic pathogens were detected including Shiga-toxin producing E. coli, Campylobacter jejuni, pathogenic enterococci, and S. aureus; all of which can pose mild to serious health risks to swine, humans, and other wildlife. This research provides the foundational understanding required for future assessment of the risk to environmental health from livestock-related zoonotic pathogen exposures in this region. This information could also be important for maintaining swine herd biosecurity and protecting the health of wildlife near swine facilities.
Rato, Márcia G.; Nerlich, Andreas; Bergmann, René; Bexiga, Ricardo; Nunes, Sandro F.; Vilela, Cristina L.; Santos-Sanches, Ilda; Chhatwal, Gursharan S.
2011-01-01
A custom-designed microarray containing 220 virulence genes of Streptococcus pyogenes (group A Streptococcus [GAS]) was used to test group C Streptococcus dysgalactiae subsp. dysgalactiae (GCS) field strains causing bovine mastitis and group C or group G Streptococcus dysgalactiae subsp. equisimilis (GCS/GGS) isolates from human infections, with the latter being used for comparative purposes, for the presence of virulence genes. All bovine and all human isolates carried a fraction of the 220 genes (23% and 39%, respectively). The virulence genes encoding streptolysin S, glyceraldehyde-3-phosphate dehydrogenase, the plasminogen-binding M-like protein PAM, and the collagen-like protein SclB were detected in the majority of both bovine and human isolates (94 to 100%). Virulence factors, usually carried by human beta-hemolytic streptococcal pathogens, such as streptokinase, laminin-binding protein, and the C5a peptidase precursor, were detected in all human isolates but not in bovine isolates. Additionally, GAS bacteriophage-associated virulence genes encoding superantigens, DNase, and/or streptodornase were detected in bovine isolates (72%) but not in the human isolates. Determinants located in non-bacteriophage-related mobile elements, such as the gene encoding R28, were detected in all bovine and human isolates. Several virulence genes, including genes of bacteriophage origin, were shown to be expressed by reverse transcriptase PCR (RT-PCR). Phylogenetic analysis of superantigen gene sequences revealed a high level (>98%) of identity among genes of bovine GCS, of the horse pathogen Streptococcus equi subsp. equi, and of the human pathogen GAS. Our findings indicate that alpha-hemolytic bovine GCS, an important mastitis pathogen and considered to be a nonhuman pathogen, carries important virulence factors responsible for virulence and pathogenesis in humans. PMID:21525223
Orji, Frank Anayo; Ugbogu, Ositadinma Chinyere; Ugbogu, Eziuche Amadike; Barbabosa-Pliego, Alberto; Monroy, Jose Cedillo; Elghandour, Mona M M Y; Salem, Abdelfattah Z M
2018-05-05
Over 250 species of resident flora in the class of bacteria are known to be associated with humans. These conventional flora compositions is often determined by factors which may not be limited to genetics, age, sex, stress and nutrition of humans. Man is constantly in contact with bacteria through media such as air, water, soil and food. This paper reviews the concept of bacterial pathogenesis from the sequential point of colonization to tissue injury. The paper in addition to examination of the factors which enhance virulence in bacterial pathogens also x-rayed the concept of pathogenicity islands and the next generation approaches or rather current trends/methods used in the bacterial pathogenicity investigations. In terms of pathogenicity which of course is the capacity to cause disease in animals, requires that the attacking bacterial strain is virulent, and has ability to bypass the host immune defensive mechanisms. In order to achieve or exhibit pathogenicity, the virulence factors required by microorganisms include capsule, pigments, enzymes, iron acquisition through siderophores. Bacterial Pathogenicity Islands as a distinct concept in bacterial pathogenesis are just loci on the chromosome or extra chromosomal units which are acquired by horizontal gene transfer within pathogens in a microbial community or biofilm. In the area of laboratory investigations, bacterial pathogenesis was initially carried out using culture dependent approaches, which can only detect about 1% of human and veterinary-important pathogens. However, in the recent paradigms shift, the use of proteomics, metagenomics, phylogenetic tree analyses, spooligotyping, and finger printing etc. have made it possible that 100% of the bacterial pathogens in nature can be extensively studied. Copyright © 2018 Elsevier Ltd. All rights reserved.
Pathogen Specific, IRF3-Dependent Signaling and Innate Resistance to Human Kidney Infection
Fischer, Hans; Lutay, Nataliya; Ragnarsdóttir, Bryndís; Yadav, Manisha; Jönsson, Klas; Urbano, Alexander; Al Hadad, Ahmed; Rämisch, Sebastian; Storm, Petter; Dobrindt, Ulrich; Salvador, Ellaine; Karpman, Diana; Jodal, Ulf; Svanborg, Catharina
2010-01-01
The mucosal immune system identifies and fights invading pathogens, while allowing non-pathogenic organisms to persist. Mechanisms of pathogen/non-pathogen discrimination are poorly understood, as is the contribution of human genetic variation in disease susceptibility. We describe here a new, IRF3-dependent signaling pathway that is critical for distinguishing pathogens from normal flora at the mucosal barrier. Following uropathogenic E. coli infection, Irf3−/− mice showed a pathogen-specific increase in acute mortality, bacterial burden, abscess formation and renal damage compared to wild type mice. TLR4 signaling was initiated after ceramide release from glycosphingolipid receptors, through TRAM, CREB, Fos and Jun phosphorylation and p38 MAPK-dependent mechanisms, resulting in nuclear translocation of IRF3 and activation of IRF3/IFNβ-dependent antibacterial effector mechanisms. This TLR4/IRF3 pathway of pathogen discrimination was activated by ceramide and by P-fimbriated E. coli, which use ceramide-anchored glycosphingolipid receptors. Relevance of this pathway for human disease was supported by polymorphic IRF3 promoter sequences, differing between children with severe, symptomatic kidney infection and children who were asymptomatic bacterial carriers. IRF3 promoter activity was reduced by the disease-associated genotype, consistent with the pathology in Irf3−/− mice. Host susceptibility to common infections like UTI may thus be strongly influenced by single gene modifications affecting the innate immune response. PMID:20886096
Kwan, Grace; Charkowski, Amy O.; Barak, Jeri D.
2013-01-01
ABSTRACT Although enteric human pathogens are usually studied in the context of their animal hosts, a significant portion of their life cycle occurs on plants. Plant disease alters the phyllosphere, leading to enhanced growth of human pathogens; however, the impact of human pathogens on phytopathogen biology and plant health is largely unknown. To characterize the interaction between human pathogens and phytobacterial pathogens in the phyllosphere, we examined the interactions between Pectobacterium carotovorum subsp. carotovorum and Salmonella enterica or Escherichia coli O157:H7 with regard to bacterial populations, soft rot progression, and changes in local pH. The presence of P. carotovorum subsp. carotovorum enhanced the growth of both S. enterica and E. coli O157:H7 on leaves. However, in a microaerophilic environment, S. enterica reduced P. carotovorum subsp. carotovorum populations and soft rot progression by moderating local environmental pH. Reduced soft rot was not due to S. enterica proteolytic activity. Limitations on P. carotovorum subsp. carotovorum growth, disease progression, and pH elevation were not observed on leaves coinoculated with E. coli O157:H7 or when leaves were coinoculated with S. enterica in an aerobic environment. S. enterica also severely undermined the relationship between the phytobacterial population and disease progression of a P. carotovorum subsp. carotovorum budB mutant defective in the 2,3-butanediol pathway for acid neutralization. Our results show that S. enterica and E. coli O157:H7 interact differently with the enteric phytobacterial pathogen P. carotovorum subsp. carotovorum. S. enterica inhibition of soft rot progression may conceal a rapidly growing human pathogen population. Whereas soft rotted produce can alert consumers to the possibility of food-borne pathogens, healthy-looking produce may entice consumption of contaminated vegetables. PMID:23404399
Three microsporidial species from the genus Encephalitozoon, E. hellem, E. cuniculi and E. intestinalis, have emerged as important opportunistic pathogens of humans affecting organ transplant recipients, AIDS patients, and other immunocompromised patients. Even though these thre...
Heat Inactivation of Human Pathogens on Catfish
USDA-ARS?s Scientific Manuscript database
In the National Advisory Committee on Microbiological Criteria for Food (NACMCF) determined that the cooking (time/temperature) for finfish would be different than for meat products and identified a need for time/temperature requirements to assure the thermal inactivation of the human pathogens: Sa...
Meeting Regulatory Requirements And Moving To Class A (Presentation)
The United States' regulations for the management of sewage sludge were designed to protect human health from infectious disease causing organisms by minimizing the contact of humans with pathogenic microorganisms. This paper reviews the pathogens that may be found in sewage slu...
Meeting Regulatory Requirements And Moving To Class A
The United States' regulations for the management of sewage sludge were designed to protect human health from infectious disease causing organisms by minimizing the contact of humans with pathogenic microorganisms. This paper reviews the pathogens that may be found in sewage slu...
Hydrologic, land cover and seasonal patterns of waterborne pathogens in great lakes tributaries
USDA-ARS?s Scientific Manuscript database
Great Lakes tributaries deliver waterborne pathogens from a host of sources. To examine the hydrologic, land cover, and seasonal variability of waterborne pathogens, protozoa (2), pathogenic bacteria (4) and human (8) and bovine (8) viruses from eight rivers were monitored in the Great Lakes watersh...
Correlation between Tick Density and Pathogen Endemicity, New Hampshire
Walk, Seth T.; Xu, Guang; Stull, Jason W.
2009-01-01
To assess the endemicity of tick-borne pathogens in New Hampshire, we surveyed adult tick vectors. Pathogens were more prevalent in areas of high tick density, suggesting a correlation between tick establishment and pathogen endemicity. Infection rates in ticks correlated with disease frequency in humans. PMID:19331738
The bacterial microbiome of dermacentor andersoni ticks influences pathogen susceptibility
USDA-ARS?s Scientific Manuscript database
Ticks are of medical and veterinary importance due to their ability to transmit pathogens to humans and animals. The Rocky Mountain wood tick, Dermacentor andersoni, is a vector of a number of pathogens, including Anaplasma marginale, which is the most widespread tick-borne pathogen of livestock. Al...
Detection of hepatitis E virus and other livestock-related pathogens in Iowa streams
USDA-ARS?s Scientific Manuscript database
Manure application is a major source of pathogens to the environment. Through overland runoff and tile drainage, these pathogens contaminate surface water and stream bed sediment. Some of these pathogens are zoonotic that can potentially affect both animal and human health. This study examined the p...
Dyble, Julianne; Bienfang, Paul; Dusek, Eva; Hitchcock, Gary; Holland, Fred; Laws, Ed; Lerczak, James; McGillicuddy, Dennis J; Minnett, Peter; Moore, Stephanie K; O'Kelly, Charles; Solo-Gabriele, Helena; Wang, John D
2008-01-01
Coupled physical-biological models are capable of linking the complex interactions between environmental factors and physical hydrodynamics to simulate the growth, toxicity and transport of infectious pathogens and harmful algal blooms (HABs). Such simulations can be used to assess and predict the impact of pathogens and HABs on human health. Given the widespread and increasing reliance of coastal communities on aquatic systems for drinking water, seafood and recreation, such predictions are critical for making informed resource management decisions. Here we identify three challenges to making this connection between pathogens/HABs and human health: predicting concentrations and toxicity; identifying the spatial and temporal scales of population and ecosystem interactions; and applying the understanding of population dynamics of pathogens/HABs to management strategies. We elaborate on the need to meet each of these challenges, describe how modeling approaches can be used and discuss strategies for moving forward in addressing these challenges. PMID:19025676
Callaway, T R; Edrington, T S; Nisbet, D J
2014-04-01
Pathogenic bacteria can live asymptomatically within and on cattle and can enter the food chain but also can be transmitted to humans by fecal or direct animal contact. Reducing pathogenic bacterial incidence and populations within live cattle represents an important step in improving food safety. A broad range of preslaughter intervention strategies are being developed, which can be loosely classified as 1) directly antipathogen strategies, 2) competitive enhancement strategies (that use the microbiome's competitive nature against pathogens), and 3) animal management strategies. Included within these broad categories are such diverse methods as vaccination against foodborne pathogens, probiotics and prebiotics, bacterial viruses (i.e., bacteriophages), sodium chlorate feeding, and dietary and management changes that specifically alter the microbiome. The simultaneous application of 1 or more preharvest strategies has the potential to reduce human foodborne illnesses by erecting multiple hurdles preventing entry into humans. However, economic factors that govern producer profitability must be kept in mind while improving food safety.
Wang, Xin; Cui, Zhigang; Wang, Hua; Tang, Liuying; Yang, Jinchuan; Gu, Ling; Jin, Dong; Luo, Longze; Qiu, Haiyan; Xiao, Yuchun; Xiong, Haiping; Kan, Biao; Xu, Jianguo; Jing, Huaiqi
2010-05-01
We isolated 326 Yersinia enterocolitica strains from 5,919 specimens from patients with diarrhea at outpatient clinics, livestock, poultry, wild animals, insect vectors, food, and the environment in the cities of Nantong and Xuzhou in Jiangsu Province, China, from 2004 to 2008. The results showed that the 12 pathogenic strains were of the O:3 serotype. Six strains were isolated from domestic dogs (Canis familiaris) belonging to farmers and were found to be the primary carriers of pathogenic Y. enterocolitica strains, especially in Xuzhou. Pulsed-field gel electrophoresis analysis of the pathogenic strains from dogs belonging to farmers showed that they shared the same patterns as strains from diarrhea patients isolated in 1994. This indicates that the strains from domestic dogs have a close correlation with the strains causing human infections.
Wang, Xin; Cui, Zhigang; Wang, Hua; Tang, Liuying; Yang, Jinchuan; Gu, Ling; Jin, Dong; Luo, Longze; Qiu, Haiyan; Xiao, Yuchun; Xiong, Haiping; Kan, Biao; Xu, Jianguo; Jing, Huaiqi
2010-01-01
We isolated 326 Yersinia enterocolitica strains from 5,919 specimens from patients with diarrhea at outpatient clinics, livestock, poultry, wild animals, insect vectors, food, and the environment in the cities of Nantong and Xuzhou in Jiangsu Province, China, from 2004 to 2008. The results showed that the 12 pathogenic strains were of the O:3 serotype. Six strains were isolated from domestic dogs (Canis familiaris) belonging to farmers and were found to be the primary carriers of pathogenic Y. enterocolitica strains, especially in Xuzhou. Pulsed-field gel electrophoresis analysis of the pathogenic strains from dogs belonging to farmers showed that they shared the same patterns as strains from diarrhea patients isolated in 1994. This indicates that the strains from domestic dogs have a close correlation with the strains causing human infections. PMID:20181899
Stenland, Christopher J; Lee, Douglas C; Brown, Paul; Petteway, Stephen R; Rubenstein, Richard
2002-11-01
Therapeutic proteins derived from human plasma and other biologic sources have demonstrated an excellent safety record relative to the potential threat of transmissible spongiform encephalopathy (TSE) transmission. Previously, hamster-adapted scrapie was used as a model agent to assess TSE clearance in purification steps leading to the isolation of biopharmaceutical proteins. The current study investigated the validity of hamster scrapie as a model for human TSE clearance studies. The partitioning of the pathogenic forms of the prion protein associated with human variant CJD (PrP(vCJD)), human sporadic CJD (PrP(sCJD)) and Gerstmann-Sträussler-Scheinker (PrP(GSS)) syndrome was compared to the partitioning of hamster scrapie (PrP(Sc)) in three plasma protein purification steps. Sheep scrapie (PrP(Sc)) was similarly evaluated. The starting materials for three plasma protein purification steps, cryoseparation, 3 percent PEG separation, and 11.5 percent PEG separation, were spiked with brain homogenates containing human PrP(vCJD), human PrP(sCJD), human PrP(GSS), sheep PrP(Sc), and hamster 263K PrP(Sc). The partitioning of the pathogenic form of the PrP was analyzed. Clearance of the pathogenic form of the PrP was measured relative to the effluent fraction. Regardless of the source of the pathogenic prion, clearance was similar to hamster PrP(Sc). A nominal amount of clearance (approx., 1 log), an intermediate amount of clearance (approx., 2 log), and a substantial amount of clearance (> or = 3 log) were observed for the cryoseparation, 3 percent PEG separation, and 11.5 percent PEG separation steps, respectively. In the latter step, no PrP was detected in the effluents. These data demonstrate that human prions, including vCJD prions, can be removed during the purification of human therapeutic proteins and indicate that partitioning of human prions is similar to that observed in the hamster scrapie model.
Molecular Detection and Characterization of Tick-borne Pathogens in Dogs and Ticks from Nigeria
Kamani, Joshua; Baneth, Gad; Mumcuoglu, Kosta Y.; Waziri, Ndadilnasiya E.; Eyal, Osnat; Guthmann, Yifat; Harrus, Shimon
2013-01-01
Background Only limited information is currently available on the prevalence of vector borne and zoonotic pathogens in dogs and ticks in Nigeria. The aim of this study was to use molecular techniques to detect and characterize vector borne pathogens in dogs and ticks from Nigeria. Methodology/Principal Findings Blood samples and ticks (Rhipicephalus sanguineus, Rhipicephalus turanicus and Heamaphysalis leachi) collected from 181 dogs from Nigeria were molecularly screened for human and animal vector-borne pathogens by PCR and sequencing. DNA of Hepatozoon canis (41.4%), Ehrlichia canis (12.7%), Rickettsia spp. (8.8%), Babesia rossi (6.6%), Anaplasma platys (6.6%), Babesia vogeli (0.6%) and Theileria sp. (0.6%) was detected in the blood samples. DNA of E. canis (23.7%), H. canis (21.1%), Rickettsia spp. (10.5%), Candidatus Neoehrlichia mikurensis (5.3%) and A. platys (1.9%) was detected in 258 ticks collected from 42 of the 181 dogs. Co- infections with two pathogens were present in 37% of the dogs examined and one dog was co-infected with 3 pathogens. DNA of Rickettsia conorii israelensis was detected in one dog and Rhipicephalus sanguineus tick. DNA of another human pathogen, Candidatus N. mikurensis was detected in Rhipicephalus sanguineus and Heamaphysalis leachi ticks, and is the first description of Candidatus N. mikurensis in Africa. The Theileria sp. DNA detected in a local dog in this study had 98% sequence identity to Theileria ovis from sheep. Conclusions/Significance The results of this study indicate that human and animal pathogens are abundant in dogs and their ticks in Nigeria and portray the potential high risk of human exposure to infection with these agents. PMID:23505591
Avian influenza viruses in humans.
Malik Peiris, J S
2009-04-01
Past pandemics arose from low pathogenic avian influenza (LPAI) viruses. In more recent times, highly pathogenic avian influenza (HPAI) H5N1, LPAI H9N2 and both HPAI and LPAI H7 viruses have repeatedly caused zoonotic disease in humans. Such infections did not lead to sustained human-to-human transmission. Experimental infection of human volunteers and seroepidemiological studies suggest that avian influenza viruses of other subtypes may also infect humans. Viruses of the H7 subtype appear to have a predilection to cause conjunctivitis and influenza-like illness (ILI), although HPAI H7N7 virus has also caused fatal respiratory disease. Low pathogenic H9N2 viruses have caused mild ILI and its occurrence may be under-recognised for this reason. In contrast, contemporary HPAI H5N1 viruses are exceptional in their virulence for humans and differ from human seasonal influenza viruses in their pathogenesis. Patients have a primary viral pneumonia progressing to acute respiratory distress syndrome (ARDS) and multiple organ dysfunction syndrome. Over 380 human cases have been confirmed to date, with an overall case fatality of 63%. The zoonotic transmission of avian influenza is a rare occurrence, butthe greater public health concern is the adaptation of such viruses to efficient human transmission, which could lead to a pandemic. A better understanding of the ecology of avian influenza viruses and the biological determinants of transmissibility and pathogenicity in humans is important for pandemic preparedness.
Coinfections acquired from ixodes ticks.
Swanson, Stephen J; Neitzel, David; Reed, Kurt D; Belongia, Edward A
2006-10-01
The pathogens that cause Lyme disease (LD), human anaplasmosis, and babesiosis can coexist in Ixodes ticks and cause human coinfections. Although the risk of human coinfection differs by geographic location, the true prevalence of coinfecting pathogens among Ixodes ticks remains largely unknown for the majority of geographic locations. The prevalence of dually infected Ixodes ticks appears highest among ticks from regions of North America and Europe where LD is endemic, with reported prevalences of < or =28%. In North America and Europe, the majority of tick-borne coinfections occur among humans with diagnosed LD. Humans coinfected with LD and babesiosis appear to have more intense, prolonged symptoms than those with LD alone. Coinfected persons can also manifest diverse, influenza-like symptoms, and abnormal laboratory test results are frequently observed. Coinfecting pathogens might alter the efficiency of transmission, cause cooperative or competitive pathogen interactions, and alter disease severity among hosts. No prospective studies to assess the immunologic effects of coinfection among humans have been conducted, but animal models demonstrate that certain coinfections can modulate the immune response. Clinicians should consider the likelihood of coinfection when pursuing laboratory testing or selecting therapy for patients with tick-borne illness.
Comparative Review of Antimicrobial Resistance in Humans and Nonhuman Primates.
Kim, Jeffrey; Coble, Dondrae J; Salyards, Gregory W; Habing, Gregory G
2018-04-02
Antimicrobial resistance (AMR) presents serious threats to human and animal health. Although AMR of pathogens is often evaluated independently between humans and animals, comparative analysis of AMR between humans and animals is necessary for zoonotic pathogens. Major surveillance systems monitor AMR of zoonotic pathogens in humans and food animals, but comprehensive AMR data in veterinary medicine is not diligently monitored for most animal species with which humans commonly contact, including NHP. The objective of this review is to provide a complete report of the prevalences of AMR among zoonotic bacteria that present the greatest threats to NHP, occupational, and public health. High prevalences of AMR exist among Shigella, Campylobacter, and Yersinia, including resistance to antimicrobials important to public health, such as macrolides. Despite improvements in regulations, standards, policies, practices, and zoonotic awareness, occupational exposures to and illnesses due to zoonotic pathogens continue to be reported and, given the documented prevalences of AMR, constitute an occupational and public health risk. However, published literature is sparse, thus indicating the need for veterinarians to proactively monitor AMR in dangerous zoonotic bacteria, to enable veterinarians to make more informed decisions to maximize antimicrobial therapy and minimize occupational risk.
Comparative Review of Antimicrobial Resistance in Humans and Nonhuman Primates.
Kim, Jeffrey; Coble, Dondrae J; Salyards, Gregory W; Habing, Gregory G
2019-03-01
Antimicrobial resistance (AMR) presents serious threats to human and animal health. Although AMR of pathogens is often evaluated independently between humans and animals, comparative analysis of AMR between humans and animals is necessary for zoonotic pathogens. Major surveillance systems monitor AMR of zoonotic pathogens in humans and food animals, but comprehensive AMR data in veterinary medicine is not diligently monitored for most animal species with which humans commonly contact, including NHP. The objective of this review is to provide a complete report of the prevalences of AMR among zoonotic bacteria that present the greatest threats to NHP, occupational, and public health. High prevalences of AMR exist among Shigella, Campylobacter, and Yersinia, including resistance to antimicrobials important to public health, such as macrolides. Despite improvements in regulations, standards, policies, practices, and zoonotic awareness, occupational exposures to and illnesses due to zoonotic pathogens continue to be reported and, given the documented prevalences of AMR, constitute an occupational and public health risk. However, published literature is sparse, thus indicating the need for veterinarians to proactively monitor AMR in dangerous zoonotic bacteria, to enable veterinarians to make more informed decisions to maximize antimicrobial therapy and minimize occupational risk.
Tabachnick, W J
2010-03-15
Vector-borne pathogens cause enormous suffering to humans and animals. Many are expanding their range into new areas. Dengue, West Nile and Chikungunya have recently caused substantial human epidemics. Arthropod-borne animal diseases like Bluetongue, Rift Valley fever and African horse sickness pose substantial threats to livestock economies around the world. Climate change can impact the vector-borne disease epidemiology. Changes in climate will influence arthropod vectors, their life cycles and life histories, resulting in changes in both vector and pathogen distribution and changes in the ability of arthropods to transmit pathogens. Climate can affect the way pathogens interact with both the arthropod vector and the human or animal host. Predicting and mitigating the effects of future changes in the environment like climate change on the complex arthropod-pathogen-host epidemiological cycle requires understanding of a variety of complex mechanisms from the molecular to the population level. Although there has been substantial progress on many fronts the challenges to effectively understand and mitigate the impact of potential changes in the environment on vector-borne pathogens are formidable and at an early stage of development. The challenges will be explored using several arthropod-borne pathogen systems as illustration, and potential avenues to meet the challenges will be presented.
Bat–man disease transmission: zoonotic pathogens from wildlife reservoirs to human populations
Allocati, N; Petrucci, A G; Di Giovanni, P; Masulli, M; Di Ilio, C; De Laurenzi, V
2016-01-01
Bats are natural reservoir hosts and sources of infection of several microorganisms, many of which cause severe human diseases. Because of contact between bats and other animals, including humans, the possibility exists for additional interspecies transmissions and resulting disease outbreaks. The purpose of this article is to supply an overview on the main pathogens isolated from bats that have the potential to cause disease in humans. PMID:27551536
Pfliegler, Walter P; Boros, Enikő; Pázmándi, Kitti; Jakab, Ágnes; Zsuga, Imre; Kovács, Renátó; Urbán, Edit; Antunovics, Zsuzsa; Bácsi, Attila; Sipiczki, Matthias; Majoros, László; Pócsi, István
2017-11-01
Saccharomyces cerevisiae is one of the most important microbes in food industry, but there is growing evidence on its potential pathogenicity as well. Its status as a member of human mycobiome is still not fully understood. In this study, we characterize clinical S. cerevisiae isolates from Hungarian hospitals along with commercial baking and probiotic strains, and determine their phenotypic parameters, virulence factors, interactions with human macrophages, and pathogenicity. Four of the clinical isolates could be traced back to commercial strains based on genetic fingerprinting. Our observations indicate that the commercial-derived clinical isolates have evolved new phenotypes and show similar, or in two cases, significantly decreased pathogenicity. Furthermore, immunological experiments revealed that the variability in human primary macrophage activation after coincubation with yeasts is largely donor and not isolate dependent. Isolates in this study offer an interesting insight into the potential microevolution of probiotic and food strains in human hosts. These commensal yeasts display various changes in their phenotypes, indicating that the colonization of the host does not necessarily impose a selective pressure toward higher virulence/pathogenicity. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Luczo, Jasmina M.; Stambas, John; Durr, Peter A.; Michalski, Wojtek P.
2015-01-01
Summary The emergence of H5N1 highly pathogenic avian influenza has caused a heavy socio‐economic burden through culling of poultry to minimise human and livestock infection. Although human infections with H5N1 have to date been limited, concerns for the pandemic potential of this zoonotic virus have been greatly intensified following experimental evidence of aerosol transmission of H5N1 viruses in a mammalian infection model. In this review, we discuss the dominance of the haemagglutinin cleavage site motif as a pathogenicity determinant, the host‐pathogen molecular interactions driving cleavage activation, reverse genetics manipulations and identification of residues key to haemagglutinin cleavage site functionality and the mechanisms of cell and tissue damage during H5N1 infection. We specifically focus on the disease in chickens, as it is in this species that high pathogenicity frequently evolves and from which transmission to the human population occurs. With >75% of emerging infectious diseases being of zoonotic origin, it is necessary to understand pathogenesis in the primary host to explain spillover events into the human population. © 2015 The Authors. Reviews in Medical Virology published by John Wiley & Sons Ltd. PMID:26467906
Pathogenicity of Shigella in chickens.
Shi, Run; Yang, Xia; Chen, Lu; Chang, Hong-tao; Liu, Hong-ying; Zhao, Jun; Wang, Xin-wei; Wang, Chuan-qing
2014-01-01
Shigellosis in chickens was first reported in 2004. This study aimed to determine the pathogenicity of Shigella in chickens and the possibility of cross-infection between humans and chickens. The pathogenicity of Shigella in chickens was examined via infection of three-day-old SPF chickens with Shigella strain ZD02 isolated from a human patient. The virulence and invasiveness were examined by infection of the chicken intestines and primary chicken intestinal epithelial cells. The results showed Shigella can cause death via intraperitoneal injection in SPF chickens, but only induce depression via crop injection. Immunohistochemistry and transmission electron microscopy revealed the Shigella can invade the intestinal epithelia. Immunohistochemistry of the primary chicken intestinal epithelial cells infected with Shigella showed the bacteria were internalized into the epithelial cells. Electron microscopy also confirmed that Shigella invaded primary chicken intestinal epithelia and was encapsulated by phagosome-like membranes. Our data demonstrate that Shigella can invade primary chicken intestinal epithelial cells in vitro and chicken intestinal mucosa in vivo, resulting in pathogenicity and even death. The findings suggest Shigella isolated from human or chicken share similar pathogenicity as well as the possibility of human-poultry cross-infection, which is of public health significance.
Pathogenicity of Shigella in Chickens
Chen, Lu; Chang, Hong-tao; Liu, Hong-ying; Zhao, Jun; Wang, Xin-wei; Wang, Chuan-qing
2014-01-01
Shigellosis in chickens was first reported in 2004. This study aimed to determine the pathogenicity of Shigella in chickens and the possibility of cross-infection between humans and chickens. The pathogenicity of Shigella in chickens was examined via infection of three-day-old SPF chickens with Shigella strain ZD02 isolated from a human patient. The virulence and invasiveness were examined by infection of the chicken intestines and primary chicken intestinal epithelial cells. The results showed Shigella can cause death via intraperitoneal injection in SPF chickens, but only induce depression via crop injection. Immunohistochemistry and transmission electron microscopy revealed the Shigella can invade the intestinal epithelia. Immunohistochemistry of the primary chicken intestinal epithelial cells infected with Shigella showed the bacteria were internalized into the epithelial cells. Electron microscopy also confirmed that Shigella invaded primary chicken intestinal epithelia and was encapsulated by phagosome-like membranes. Our data demonstrate that Shigella can invade primary chicken intestinal epithelial cells in vitro and chicken intestinal mucosa in vivo, resulting in pathogenicity and even death. The findings suggest Shigella isolated from human or chicken share similar pathogenicity as well as the possibility of human-poultry cross-infection, which is of public health significance. PMID:24949637
Saravanan, Sellappan; Purushothaman, Venketaraman; Murthy, Thippichettypalayam Ramasamy Gopala Krishna; Sukumar, Kuppannan; Srinivasan, Palani; Gowthaman, Vasudevan; Balusamy, Mohan; Atterbury, Robert; Kuchipudi, Suresh V
2015-09-01
Human infections with non-typhoidal Salmonella (NTS) serovars are increasingly becoming a threat to human health globally. While all motile Salmonellae have zoonotic potential, Salmonella Enteritidis and Salmonella Typhimurium are most commonly associated with human disease, for which poultry are a major source. Despite the increasing number of human NTS infections, the epidemiology of NTS in poultry in India has not been fully understood. Hence, as a first step, we carried out epidemiological analysis to establish the incidence of NTS in poultry to evaluate the risk to human health. A total of 1215 samples (including poultry meat, tissues, egg and environmental samples) were collected from 154 commercial layer farms from southern India and screened for NTS. Following identification by cultural and biochemical methods, Salmonella isolates were further characterized by multiplex PCR, allele-specific PCR, enterobacterial repetitive intergenic consensus (ERIC) PCR and pulse field gel electrophoresis (PFGE). In the present study, 21/1215 (1.73 %) samples tested positive for NTS. We found 12/392 (3.06 %) of tissue samples, 7/460 (1.52 %) of poultry products, and 2/363 (0.55 %) of environmental samples tested positive for NTS. All the Salmonella isolates were resistant to oxytetracycline, which is routinely used as poultry feed additive. The multiplex PCR results allowed 16/21 isolates to be classified as S. Typhimurium, and five isolates as S. Enteritidis. Of the five S. Enteritidis isolates, four were identified as group D Salmonella by allele-specific PCR. All of the isolates produced different banding patterns in ERIC PCR. Of the thirteen macro restriction profiles (MRPs) obtained by PFGE, MRP 6 was predominant which included 6 (21 %) isolates. In conclusion, the findings of the study revealed higher incidence of contamination of NTS Salmonella in poultry tissue and animal protein sources used for poultry. The results of the study warrants further investigation on different type of animal feed sources, food market chains, processing plants, live bird markets etc., to evaluate the risk factors, transmission and effective control measures of human Salmonella infection from poultry products.
Behavior of Yersinian enteriocolitica in foods
USDA-ARS?s Scientific Manuscript database
Yersinia enterocolitica, a zoonotic pathogen that causes yersiniosis in humans and animals, is discussed. The prevalence in foods and infection of this pathogen to humans and animals was investigated, and most of the biochemical tests used to biogroup Y. enterocolitica stated. In this study, the pos...
Ferlaino, Michael; Rogers, Mark F.; Shihab, Hashem A.; Mort, Matthew; Cooper, David N.; Gaunt, Tom R.; Campbell, Colin
2018-01-01
Background Small insertions and deletions (indels) have a significant influence in human disease and, in terms of frequency, they are second only to single nucleotide variants as pathogenic mutations. As the majority of mutations associated with complex traits are located outside the exome, it is crucial to investigate the potential pathogenic impact of indels in non-coding regions of the human genome. Results We present FATHMM-indel, an integrative approach to predict the functional effect, pathogenic or neutral, of indels in non-coding regions of the human genome. Our method exploits various genomic annotations in addition to sequence data. When validated on benchmark data, FATHMM-indel significantly outperforms CADD and GAVIN, state of the art models in assessing the pathogenic impact of non-coding variants. FATHMM-indel is available via a web server at indels.biocompute.org.uk. Conclusions FATHMM-indel can accurately predict the functional impact and prioritise small indels throughout the whole non-coding genome. PMID:28985712
Ferlaino, Michael; Rogers, Mark F; Shihab, Hashem A; Mort, Matthew; Cooper, David N; Gaunt, Tom R; Campbell, Colin
2017-10-06
Small insertions and deletions (indels) have a significant influence in human disease and, in terms of frequency, they are second only to single nucleotide variants as pathogenic mutations. As the majority of mutations associated with complex traits are located outside the exome, it is crucial to investigate the potential pathogenic impact of indels in non-coding regions of the human genome. We present FATHMM-indel, an integrative approach to predict the functional effect, pathogenic or neutral, of indels in non-coding regions of the human genome. Our method exploits various genomic annotations in addition to sequence data. When validated on benchmark data, FATHMM-indel significantly outperforms CADD and GAVIN, state of the art models in assessing the pathogenic impact of non-coding variants. FATHMM-indel is available via a web server at indels.biocompute.org.uk. FATHMM-indel can accurately predict the functional impact and prioritise small indels throughout the whole non-coding genome.
Human milk inactivates pathogens individually, additively, and synergistically.
Isaacs, Charles E
2005-05-01
Breast-feeding can reduce the incidence and the severity of gastrointestinal and respiratory infections in the suckling neonate by providing additional protective factors to the infant's mucosal surfaces. Human milk provides protection against a broad array of infectious agents through redundancy. Protective factors in milk can target multiple early steps in pathogen replication and target each step with more than one antimicrobial compound. The antimicrobial activity in human milk results from protective factors working not only individually but also additively and synergistically. Lipid-dependent antimicrobial activity in milk results from the additive activity of all antimicrobial lipids and not necessarily the concentration of one particular lipid. Antimicrobial milk lipids and peptides can work synergistically to decrease both the concentrations of individual compounds required for protection and, as importantly, greatly reduce the time needed for pathogen inactivation. The more rapidly pathogens are inactivated the less likely they are to establish an infection. The total antimicrobial protection provided by human milk appears to be far more than can be elucidated by examining protective factors individually.
de la Fuente, José; Antunes, Sandra; Bonnet, Sarah; Cabezas-Cruz, Alejandro; Domingos, Ana G.; Estrada-Peña, Agustín; Johnson, Nicholas; Kocan, Katherine M.; Mansfield, Karen L.; Nijhof, Ard M.; Papa, Anna; Rudenko, Nataliia; Villar, Margarita; Alberdi, Pilar; Torina, Alessandra; Ayllón, Nieves; Vancova, Marie; Golovchenko, Maryna; Grubhoffer, Libor; Caracappa, Santo; Fooks, Anthony R.; Gortazar, Christian; Rego, Ryan O. M.
2017-01-01
Ticks and the pathogens they transmit constitute a growing burden for human and animal health worldwide. Vector competence is a component of vectorial capacity and depends on genetic determinants affecting the ability of a vector to transmit a pathogen. These determinants affect traits such as tick-host-pathogen and susceptibility to pathogen infection. Therefore, the elucidation of the mechanisms involved in tick-pathogen interactions that affect vector competence is essential for the identification of molecular drivers for tick-borne diseases. In this review, we provide a comprehensive overview of tick-pathogen molecular interactions for bacteria, viruses, and protozoa affecting human and animal health. Additionally, the impact of tick microbiome on these interactions was considered. Results show that different pathogens evolved similar strategies such as manipulation of the immune response to infect vectors and facilitate multiplication and transmission. Furthermore, some of these strategies may be used by pathogens to infect both tick and mammalian hosts. Identification of interactions that promote tick survival, spread, and pathogen transmission provides the opportunity to disrupt these interactions and lead to a reduction in tick burden and the prevalence of tick-borne diseases. Targeting some of the similar mechanisms used by the pathogens for infection and transmission by ticks may assist in development of preventative strategies against multiple tick-borne diseases. PMID:28439499
Hodgkinson, Alison J; Cakebread, Julie; Callaghan, Megan; Harris, Paul; Brunt, Rachel; Anderson, Rachel C; Armstrong, Kelly M; Haigh, Brendan
2017-03-01
Secretory IgA (SIgA) from milk contributes to early colonization and maintenance of commensal/symbiotic bacteria in the gut, as well as providing defence against pathogens. SIgA binds bacteria using specific antigenic sites or non-specifically via its glycans attached to α-heavy-chain and secretory component. In our study, we tested the hypothesis that human and bovine SIgA have similar innate-binding activity for bacteria. SIgAs, isolated from human and bovine milk, were incubated with a selection of commensal, pathogenic and probiotic bacteria. Using flow cytometry, we measured numbers of bacteria binding SIgA and their level of SIgA binding. The percentage of bacteria bound by human and bovine SIgA varied from 30 to 90% depending on bacterial species and strains, but was remarkably consistent between human and bovine SIgA. The level of SIgA binding per bacterial cell was lower for those bacteria that had a higher percentage of SIgA-bound bacteria, and higher for those bacteria that had lower percentage of SIgA-bound bacteria. Overall, human and bovine SIgA interacted with bacteria in a comparable way. This contributes to longer term research about the potential benefits of bovine SIgA for human consumers. Copyright © 2016 Elsevier Ltd. All rights reserved.
Allovahlkampfia spelaea Causing Keratitis in Humans
Tolba, Mohammed Essa Marghany; Huseein, Enas Abdelhameed Mahmoud; Farrag, Haiam Mohamed Mahmoud; Mohamed, Hanan El Deek; Kobayashi, Seiki; Suzuki, Jun; Ali, Tarek Ahmed Mohamed; Sugano, Sumio
2016-01-01
Background Free-living amoebae are present worldwide. They can survive in different environment causing human diseases in some instances. Acanthamoeba sp. is known for causing sight-threatening keratitis in humans. Free-living amoeba keratitis is more common in developing countries. Amoebae of family Vahlkampfiidae are rarely reported to cause such affections. A new genus, Allovahlkampfia spelaea was recently identified from caves with no data about pathogenicity in humans. We tried to identify the causative free-living amoeba in a case of keratitis in an Egyptian patient using morphological and molecular techniques. Methods Pathogenic amoebae were culture using monoxenic culture system. Identification through morphological features and 18S ribosomal RNA subunit DNA amplification and sequencing was done. Pathogenicity to laboratory rabbits and ability to produce keratitis were assessed experimentally. Results Allovahlkampfia spelaea was identified as a cause of human keratitis. Whole sequence of 18S ribosomal subunit DNA was sequenced and assembled. The Egyptian strain was closely related to SK1 strain isolated in Slovenia. The ability to induce keratitis was confirmed using animal model. Conclusions This the first time to report Allovahlkampfia spelaea as a human pathogen. Combining both molecular and morphological identification is critical to correctly diagnose amoebae causing keratitis in humans. Use of different pairs of primers and sequencing amplified DNA is needed to prevent misdiagnosis. PMID:27415799
Khan, Abdul Viqar; Ahmed, Qamar Uddin; Mir, M Ramzan; Shukla, Indu; Khan, Athar Ali
2011-01-01
Objective To investigate the antibacterial potential of the polar and non-polar extracts of the seeds of Melia azedarach (M. azedarach) L. (Meliaceae) against eighteen hospital isolated human pathogenic bacterial strains. Methods Petrol, benzene, ethyl acetate, methanol, and aqueous extracts at five different concentrations (1, 2, 5, 10 and 15 mg/mL) were evaluated. Disk diffusion method was followed to evaluate the antibacterial efficacy. Results All extracts of the seeds demonstrated significant antibacterial activity against tested pathogens. Among all extracts, ethyl acetate extract revealed the highest inhibition comparatively. The present study also favored the traditional uses reported earlier. Conclusions Results of this study strongly confirm that the seed extracts of M. azedarach could be effective antibiotics, both in controlling gram-positive and gram-negative human pathogenic infections. PMID:23569812
Gostic, Katelyn M; Kucharski, Adam J; Lloyd-Smith, James O
2015-01-01
During outbreaks of high-consequence pathogens, airport screening programs have been deployed to curtail geographic spread of infection. The effectiveness of screening depends on several factors, including pathogen natural history and epidemiology, human behavior, and characteristics of the source epidemic. We developed a mathematical model to understand how these factors combine to influence screening outcomes. We analyzed screening programs for six emerging pathogens in the early and late stages of an epidemic. We show that the effectiveness of different screening tools depends strongly on pathogen natural history and epidemiological features, as well as human factors in implementation and compliance. For pathogens with longer incubation periods, exposure risk detection dominates in growing epidemics, while fever becomes a better target in stable or declining epidemics. For pathogens with short incubation, fever screening drives detection in any epidemic stage. However, even in the most optimistic scenario arrival screening will miss the majority of cases. DOI: http://dx.doi.org/10.7554/eLife.05564.001 PMID:25695520
Aliouat-Denis, Cécile-Marie; Chabé, Magali; Delhaes, Laurence; Dei-Cas, Eduardo
2014-01-01
In the last few decades, aerially transmitted human fungal pathogens have been increasingly recognized to impact the clinical course of chronic pulmonary diseases, such as asthma, cystic fibrosis or chronic obstructive pulmonary disease. Thanks to recent development of culture-free high-throughput sequencing methods, the metagenomic approaches are now appropriate to detect, identify and even quantify prokaryotic or eukaryotic microorganism communities inhabiting human respiratory tract and to access the complexity of even low-burden microbe communities that are likely to play a role in chronic pulmonary diseases. In this review, we explore how metagenomics and comparative genomics studies can alleviate fungal culture bottlenecks, improve our knowledge about fungal biology, lift the veil on cross-talks between host lung and fungal microbiota, and gain insights into the pathogenic impact of these aerially transmitted fungi that affect human beings. We reviewed metagenomic studies and comparative genomic analyses of carefully chosen microorganisms, and confirmed the usefulness of such approaches to better delineate biology and pathogenesis of aerially transmitted human fungal pathogens. Efforts to generate and efficiently analyze the enormous amount of data produced by such novel approaches have to be pursued, and will potentially provide the patients suffering from chronic pulmonary diseases with a better management. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.
Biquand, Elise; Poirson, Juline; Karim, Marwah; Declercq, Marion; Malausse, Nicolas; Cassonnet, Patricia; Barbezange, Cyril; Straub, Marie-Laure; Jones, Louis; Munier, Sandie; Naffakh, Nadia; van der Werf, Sylvie; Jacob, Yves; Masson, Murielle; Demeret, Caroline
2017-01-01
The optimized exploitation of cell resources is one cornerstone of a successful infection. Differential mapping of host-pathogen protein-protein interactions (PPIs) on the basis of comparative interactomics of multiple strains is an effective strategy to highlight correlations between host proteome hijacking and biological or pathogenic traits. Here, we developed an interactomic pipeline to deliver high-confidence comparative maps of PPIs between a given pathogen and the human ubiquitin proteasome system (UPS). This subarray of the human proteome represents a range of essential cellular functions and promiscuous targets for many viruses. The screening pipeline was applied to the influenza A virus (IAV) PB2 polymerase proteins of five strains representing different levels of virulence in humans. An extensive PB2-UPS interplay has been detected that recapitulates the evolution of IAVs in humans. Functional validation with several IAV strains, including the seasonal H1N1 pdm09 and H3N2 viruses, confirmed the biological relevance of most identified UPS factors and revealed strain-independent and strain-specific effects of UPS factor invalidation on IAV infection. This strategy is applicable to proteins from any other virus or pathogen, providing a valuable resource with which to explore the UPS-pathogen interplay and its relationship with pathogenicity. IMPORTANCE Influenza A viruses (IAVs) are responsible for mild-to-severe seasonal respiratory illness of public health concern worldwide, and the risk of avian strain outbreaks in humans is a constant threat. Elucidating the requisites of IAV adaptation to humans is thus of prime importance. In this study, we explored how PB2 replication proteins of IAV strains with different levels of virulence in humans hijack a major protein modification pathway of the human host cell, the ubiquitin proteasome system (UPS). We found that the PB2 protein engages in an extended interplay with the UPS that evolved along with the virus's adaptation to humans. This suggests that UPS hijacking underlies the efficient infection of humans and can be used as an indicator for evaluation of the potential of avian IAVs to infect humans. Several UPS factors were found to be necessary for infection with circulating IAV strains, pointing to potential targets for therapeutic approaches.
Pacheco, M; Jurado-Sánchez, B; Escarpa, A
2018-02-20
Food poisoning caused by bacteria is a major cause of disease and death worldwide. Herein we describe the use of Janus micromotors as mobile sensors for the detection of toxins released by enterobacteria as indicators of food contamination. The micromotors are prepared by a Pickering emulsion approach and rely on the simultaneous encapsulation of platinum nanoparticles for enhanced bubble-propulsion and receptor-functionalized quantum dots (QDs) for selective binding with the 3-deoxy-d-manno-oct-2-ulosonic acid target in the endotoxin molecule. Lipopolysaccharides (LPS) from Salmonella enterica were used as target endotoxins, which upon interaction with the QDs induce a rapid quenching of the native fluorescence of the micromotors in a concentration-dependent manner. The micromotor assay can readily detect concentrations as low as 0.07 ng mL -1 of endotoxin, which is far below the level considered toxic to humans (275 μg mL -1 ). Micromotors have been successfully applied for the detection of Salmonella toxin in food samples in 15 min compared with several hours required by the existing Gold Standard method. Such ultrafast and reliable approach holds considerable promise for food contamination screening while awaiting the results of bacterial cultures in a myriad of food safety and security defense applications.
Cryptococcus: from environmental saprophyte to global pathogen
May, Robin C.; Stone, Neil R.H.; Wiesner, Darin L.; Bicanic, Tihana; Nielsen, Kirsten
2016-01-01
Cryptococcosis is a globally distributed invasive fungal infection that is caused by species within the genus Cryptococcus which presents substantial therapeutic challenges. Although natural human-to-human transmission has never been observed, recent work has identified multiple virulence mechanisms that enable cryptococci to infect, disseminate within and ultimately kill their human host. In this Review, we describe these recent discoveries that illustrate the intricacy of host-pathogen interactions and reveal new details about the host immune responses that either help to protect against disease or increase host susceptibility. In addition, we discuss how this improved understanding of both the host and the pathogen informs potential new avenues for therapeutic development. PMID:26685750
Cryptococcus: from environmental saprophyte to global pathogen.
May, Robin C; Stone, Neil R H; Wiesner, Darin L; Bicanic, Tihana; Nielsen, Kirsten
2016-02-01
Cryptococcosis is a globally distributed invasive fungal infection that is caused by species within the genus Cryptococcus which presents substantial therapeutic challenges. Although natural human-to-human transmission has never been observed, recent work has identified multiple virulence mechanisms that enable cryptococci to infect, disseminate within and ultimately kill their human host. In this Review, we describe these recent discoveries that illustrate the intricacy of host-pathogen interactions and reveal new details about the host immune responses that either help to protect against disease or increase host susceptibility. In addition, we discuss how this improved understanding of both the host and the pathogen informs potential new avenues for therapeutic development.
Global and local environmental changes as drivers of Buruli ulcer emergence.
Combe, Marine; Velvin, Camilla Jensen; Morris, Aaron; Garchitorena, Andres; Carolan, Kevin; Sanhueza, Daniel; Roche, Benjamin; Couppié, Pierre; Guégan, Jean-François; Gozlan, Rodolphe Elie
2017-04-26
Many emerging infectious diseases are caused by generalist pathogens that infect and transmit via multiple host species with multiple dissemination routes, thus confounding the understanding of pathogen transmission pathways from wildlife reservoirs to humans. The emergence of these pathogens in human populations has frequently been associated with global changes, such as socio-economic, climate or biodiversity modifications, by allowing generalist pathogens to invade and persist in new ecological niches, infect new host species, and thus change the nature of transmission pathways. Using the case of Buruli ulcer disease, we review how land-use changes, climatic patterns and biodiversity alterations contribute to disease emergence in many parts of the world. Here we clearly show that Mycobacterium ulcerans is an environmental pathogen characterized by multi-host transmission dynamics and that its infectious pathways to humans rely on the local effects of global environmental changes. We show that the interplay between habitat changes (for example, deforestation and agricultural land-use changes) and climatic patterns (for example, rainfall events), applied in a local context, can lead to abiotic environmental changes and functional changes in local biodiversity that favor the pathogen's prevalence in the environment and may explain disease emergence.
Airborne transmission of highly pathogenic influenza virus during processing of infected poultry
USDA-ARS?s Scientific Manuscript database
Human infections with H5N1 highly pathogenic avian influenza (HPAI) virus occur following exposure to virus-infected poultry, often during the slaughter processes. Infectious virus within bioaerosols was detected during laboratory-simulated processing of asymptomatic chickens infected with human- (c...
Bonnin, Rémy A; Girlich, Delphine; Imanci, Dilek; Dortet, Laurent; Naas, Thierry
2015-11-19
We provide here the first genome sequence of a Serratia rubidaea isolate, a human-opportunistic pathogen. This reference sequence will permit a comparison of this species with others of the Serratia genus. Copyright © 2015 Bonnin et al.
Ben Beard, C.
2011-01-01
Infections with vector-borne pathogens are a major source of emerging diseases. The ability of vectors to bridge spatial and ecologic gaps between animals and humans increases opportunities for emergence. Small adaptations of a pathogen to a vector can have profound effects on the rate of transmission to humans. PMID:21529382
The etiology and impacts of human exposure to environmental pathogens are of major concern worldwide and, thus, the ability to assess exposure and infections using cost effective, high-throughput approaches would be indispensable. The principal objective of this work is to devel...
Hoyer, Andrea B; Schladow, S Geoffrey; Rueda, Francisco J
2015-10-15
Pathogen contamination of drinking water lakes and reservoirs is a severe threat to human health worldwide. A major source of pathogens in surface sources of drinking waters is from body-contact recreation in the water body. However, dispersion pathways of human waterborne pathogens from recreational beaches, where body-contact recreation is known to occur to drinking water intakes, and the associated risk of pathogens entering the drinking water supply remain largely undocumented. A high spatial resolution, three-dimensional hydrodynamic and particle tracking modeling approach has been developed to analyze the risk and mechanisms presented by pathogen dispersion. The pathogen model represents the processes of particle release, transport and survival. Here survival is a function of both water temperature and cumulative exposure to ultraviolet (UV) radiation. Pathogen transport is simulated using a novel and computationally efficient technique of tracking particle trajectories backwards, from a drinking water intake toward their source areas. The model has been applied to a large, alpine lake - Lake Tahoe, CA-NV (USA). The dispersion model results reveal that for this particular lake (1) the risk of human waterborne pathogens to enter drinking water intakes is low, but significant; (2) this risk is strongly related to the depth of the thermocline in relation to the depth of the intake; (3) the risk increases with the seasonal deepening of the surface mixed layer; and (4) the risk increases at night when the surface mixed layer deepens through convective mixing and inactivation by UV radiation is eliminated. While these risk factors will quantitatively vary in different lakes, these same mechanisms will govern the process of transport of pathogens. Copyright © 2015 Elsevier Ltd. All rights reserved.
Goh, Swee Han; Driedger, David; Gillett, Sandra; Low, Donald E.; Hemmingsen, Sean M.; Amos, Mayben; Chan, David; Lovgren, Marguerite; Willey, Barbara M.; Shaw, Carol; Smith, John A.
1998-01-01
It was recently reported that Streptococcus iniae, a bacterial pathogen of aquatic animals, can cause serious disease in humans. Using the chaperonin 60 (Cpn60) gene identification method with reverse checkerboard hybridization and chemiluminescent detection, we identified correctly each of 12 S. iniae samples among 34 aerobic gram-positive isolates from animal and clinical human sources. PMID:9650992
[Animals as a potential source of human fungal infections].
Dworecka-Kaszak, Bozena
2008-01-01
Changing environment is a reason, that many saprotrophic fungi became opportunists and in the end also maybe a pathogenic. Host specific adaptation is not so strong among fungi, so there are many common fungal pathogens for people and for animals. Animals suffering from dermatomycosis are well recognize as source of human superficial mycoses. Breeding of different exotic animals such as parrots, various Reptiles and Amphibians, miniature Rodents and keeping them as a pets in the peoples houses, have become more and more popular in the recent years. This article is shortly presenting which animals maybe a potential source of fungal infections for humans. Looking for the other mycoses as systemic mycoses, especially candidiasis or aspergilosis there are no data, which allow excluding sick animals as a source of infection for human, even if those deep mycoses have endogenic reactivation mechanism. Immunocompromised people are in high-risk group when they take care of animals. Another important source of potentially pathogenic, mostly air-born fungi may be animal use in experimental laboratory work. During the experiments is possible that laboratory workers maybe hurt and these animals and their environment, food and house boxes could be the possible source of microorganisms, pathogenic for humans or other animals. Unusual way to inoculate these potentially pathogens into the skin of laboratory personnel may cause granulomatous, local lesions on their hands.
Integrated pest management and allocation of control efforts for vector-borne diseases
Ginsberg, H.S.
2001-01-01
Applications of various control methods were evaluated to determine how to integrate methods so as to minimize the number of human cases of vector-borne diseases. These diseases can be controlled by lowering the number of vector-human contacts (e.g., by pesticide applications or use of repellents), or by lowering the proportion of vectors infected with pathogens (e.g., by lowering or vaccinating reservoir host populations). Control methods should be combined in such a way as to most efficiently lower the probability of human encounter with an infected vector. Simulations using a simple probabilistic model of pathogen transmission suggest that the most efficient way to integrate different control methods is to combine methods that have the same effect (e.g., combine treatments that lower the vector population; or combine treatments that lower pathogen prevalence in vectors). Combining techniques that have different effects (e.g., a technique that lowers vector populations with a technique that lowers pathogen prevalence in vectors) will be less efficient than combining two techniques that both lower vector populations or combining two techniques that both lower pathogen prevalence, costs being the same. Costs of alternative control methods generally differ, so the efficiency of various combinations at lowering human contact with infected vectors should be estimated at available funding levels. Data should be collected from initial trials to improve the effects of subsequent interventions on the number of human cases.
Origin, Spread and Demography of the Mycobacterium tuberculosis Complex
Wirth, Thierry; Hildebrand, Falk; Allix-Béguec, Caroline; Wölbeling, Florian; Kubica, Tanja; Kremer, Kristin; van Soolingen, Dick; Rüsch-Gerdes, Sabine; Locht, Camille; Brisse, Sylvain; Meyer, Axel
2008-01-01
The evolutionary timing and spread of the Mycobacterium tuberculosis complex (MTBC), one of the most successful groups of bacterial pathogens, remains largely unknown. Here, using mycobacterial tandem repeat sequences as genetic markers, we show that the MTBC consists of two independent clades, one composed exclusively of M. tuberculosis lineages from humans and the other composed of both animal and human isolates. The latter also likely derived from a human pathogenic lineage, supporting the hypothesis of an original human host. Using Bayesian statistics and experimental data on the variability of the mycobacterial markers in infected patients, we estimated the age of the MTBC at 40,000 years, coinciding with the expansion of “modern” human populations out of Africa. Furthermore, coalescence analysis revealed a strong and recent demographic expansion in almost all M. tuberculosis lineages, which coincides with the human population explosion over the last two centuries. These findings thus unveil the dynamic dimension of the association between human host and pathogen populations. PMID:18802459
Identification of DNA Methyltransferase Genes in Human Pathogenic Bacteria by Comparative Genomics.
Brambila-Tapia, Aniel Jessica Leticia; Poot-Hernández, Augusto Cesar; Perez-Rueda, Ernesto; Rodríguez-Vázquez, Katya
2016-06-01
DNA methylation plays an important role in gene expression and virulence in some pathogenic bacteria. In this report, we describe DNA methyltransferases (MTases) present in human pathogenic bacteria and compared them with related species, which are not pathogenic or less pathogenic, based in comparative genomics. We performed a search in the KEGG database of the KEGG database orthology groups associated with adenine and cytosine DNA MTase activities (EC: 2.1.1.37, EC: 2.1.1.113 and EC: 2.1.1.72) in 37 human pathogenic species and 18 non/less pathogenic relatives and performed comparisons of the number of these MTases sequences according to their genome size, the DNA MTase type and with their non-less pathogenic relatives. We observed that Helicobacter pylori and Neisseria spp. presented the highest number of MTases while ten different species did not present a predicted DNA MTase. We also detected a significant increase of adenine MTases over cytosine MTases (2.19 vs. 1.06, respectively, p < 0.001). Adenine MTases were the only MTases associated with restriction modification systems and DNA MTases associated with type I restriction modification systems were more numerous than those associated with type III restriction modification systems (0.84 vs. 0.17, p < 0.001); additionally, there was no correlation with the genome size and the total number of DNA MTases, indicating that the number of DNA MTases is related to the particular evolution and lifestyle of specific species, regulating the expression of virulence genes in some pathogenic bacteria.
A bacterial siren song: intimate interactions between neutrophils and pathogenic Neisseria
Criss, Alison K.; Seifert, H. Steven
2012-01-01
Preface Neisseria gonorrhoeae and Neisseria meningitidis are Gram-negative bacterial pathogens that are exquisitely adapted for growth at human mucosal surfaces and for efficient transmission between hosts. One factor that is essential to neisserial pathogenesis is the interaction between the bacteria and neutrophils, which are recruited in high numbers during infection. Although this vigorous host response could simply reflect effective immune recognition of the bacteria, there is mounting evidence that in fact these obligate human pathogens manipulate the innate immune response to promote infectious processes. This Review summarizes the mechanisms used by pathogenic neisseriae to resist and modulate the antimicrobial activities of neutrophils. It also details some of the major outstanding questions about the Neisseria–neutrophil relationship and proposes potential benefits of this relationship for the pathogen. PMID:22290508
Fischer, Gregory J; Keller, Nancy P
2016-03-01
Oxylipins are a class of molecules derived from the incorporation of oxygen into polyunsaturated fatty acid substrates through the action of oxygenases. While extensively investigated in the context of mammalian immune responses, over the last decade it has become apparent that oxylipins are a common means of communication among and between plants, animals, and fungi to control development and alter host-microbe interactions. In fungi, some oxylipins are derived nonenzymatically while others are produced by lipoxygenases, cyclooxygenases, and monooxygenases with homology to plant and human enzymes. Recent investigations of numerous plant and human fungal pathogens have revealed oxylipins to be involved in the establishment and progression of disease. This review highlights oxylipin production by pathogenic fungi and their role in fungal development and pathogen/host interactions.
Hybrid selection for sequencing pathogen genomes from clinical samples
2011-01-01
We have adapted a solution hybrid selection protocol to enrich pathogen DNA in clinical samples dominated by human genetic material. Using mock mixtures of human and Plasmodium falciparum malaria parasite DNA as well as clinical samples from infected patients, we demonstrate an average of approximately 40-fold enrichment of parasite DNA after hybrid selection. This approach will enable efficient genome sequencing of pathogens from clinical samples, as well as sequencing of endosymbiotic organisms such as Wolbachia that live inside diverse metazoan phyla. PMID:21835008
Control of extraintestinal foodborne pathogens using intervention technologies
USDA-ARS?s Scientific Manuscript database
In recent years it has become apparent that emerging foodborne pathogens including Extraintestinal Pathogenic Escherichia coli (ExPEC), Staphylococcus saprophyticus, and Klebsiella pneumoniae are associated with human health conditions such as inflammatory bowel disease (IBD), ulcerative colitis (UC...
This describes fluorogenic 5' nuclease PCR assays suitable for rapid, sensitive, quantitative, high-throughput detection of the human-pathogenic microsporidial species Encephalitozoon hellem, E. cunicli and E. intestinalis. The assays utilize species-specific primer sets and a g...
USDA-ARS?s Scientific Manuscript database
Outbreaks of salmonellosis by Salmonella Poona and listeriosis by Listeria monocytogenes have been associated with the consumption of cantaloupes. Commercial washing processes for cantaloupes are limited in their ability to inactivate and/or remove this human pathogen. Our objective was to develop...
Laser system for identification, tracking, and control of flying insects
USDA-ARS?s Scientific Manuscript database
Flying insects are common vectors for transmission of pathogens and inflict significant harm on humans in large parts of the developing world. Besides the direct impact to humans, these pathogens also cause harm to crops and result in agricultural losses. Here, we present a laser-based system that c...
USDA-ARS?s Scientific Manuscript database
Worldwide, reports document the increasing frequency of methicillin resistant Staphylococcus aureus (MRSA) infections. Other human pathogens are recognized as unresponsive to antibiotics of last resort. These previously treatable infections now account for increased numbers of human disease and de...
Conservation of Erwinia amylovora pathogenicity-relevant genes among Erwinia genomes.
Borruso, Luigimaria; Salomone-Stagni, Marco; Polsinelli, Ivan; Schmitt, Armin Otto; Benini, Stefano
2017-12-01
The Erwinia genus comprises species that are plant pathogens, non-pathogen, epiphytes, and opportunistic human pathogens. Within the genus, Erwinia amylovora ranks among the top 10 plant pathogenic bacteria. It causes the fire blight disease and is a global threat to commercial apple and pear production. We analyzed the presence/absence of the E. amylovora genes reported to be important for pathogenicity towards Rosaceae within various Erwinia strains genomes. This simple bottom-up approach, allowed us to correlate the analyzed genes to pathogenicity, host specificity, and make useful considerations to drive targeted studies.
Microbial Vertical Transmission during Human Pregnancy.
Arora, Nitin; Sadovsky, Yoel; Dermody, Terence S; Coyne, Carolyn B
2017-05-10
Congenital infections with pathogens such as Zika virus, Toxoplasma gondii, Listeria monocytogenes, Treponema pallidium, parvovirus, HIV, varicella zoster virus, Rubella, Cytomegalovirus, and Herpesviruses are a major cause of morbidity and mortality worldwide. Despite the devastating impact of microbial infections on the developing fetus, relatively little is known about how pathogens associated with congenital disease breach the placental barrier to transit vertically during human pregnancy. In this Review, we focus on transplacental transmission of pathogens during human gestation. We introduce the structure of the human placenta and describe the innate mechanisms by which the placenta restricts microbial access to the intrauterine compartment. Based on current knowledge, we also discuss the potential pathways employed by microorganisms to overcome the placental barrier and prospects for the future. Copyright © 2017 Elsevier Inc. All rights reserved.
Detecting the emergence of novel, zoonotic viruses pathogenic to humans.
Rosenberg, Ronald
2015-03-01
RNA viruses, with their high potential for mutation and epidemic spread, are the most common class of pathogens found as new causes of human illness. Despite great advances made in diagnostic technology since the 1950s, the annual rate at which novel virulent viruses have been found has remained at 2-3. Most emerging viruses are zoonoses; they have jumped from mammal or bird hosts to humans. An analysis of virus discovery indicates that the small number of novel viruses discovered annually is an artifact of inadequate surveillance in tropical and subtropical countries, where even established endemic pathogens are often misdiagnosed. Many of the emerging viruses of the future are already infecting humans but remain to be uncovered by a strategy of disease surveillance in selected populations.
Antibacterial activity of some medicinal plants against selected human pathogenic bacteria
Khan, Usman Ali; Niaz, Zeeshan; Qasim, Muhammad; Khan, Jafar; Tayyaba; Rehman, Bushra
2013-01-01
Medicinal plants are traditionally used for the treatment of human infections. The present study was undertaken to investigate Bergenia ciliata, Jasminum officinale, and Santalum album for their potential activity against human bacterial pathogens. B. ciliata, J. officinale, and S. album extracts were prepared in cold and hot water. The activity of plant extracts and selected antibiotics was evaluated against five bacterial pathogens including Staphylococcus aureus, Bacillus subtilis, Proteus vulgaris, Pseudomonas aeruginosa, and Escherichia coli using agar well diffusion method. Among the three medicinal plants, B. ciliata extracts displayed potential activity against bacterial pathogens. Cold water extract of Bergenia ciliate showed the highest activity against B. subtilis, which is comparable with a zone of inhibition exhibited by ceftriaxone and erythromycin. J. officinale and S. album extracts demonstrated variable antibacterial activity. Further studies are needed to explore the novel antibacterial bioactive molecules. PMID:24294497
Chemical ecology of animal and human pathogen vectors in a changing global climate.
Pickett, John A; Birkett, Michael A; Dewhirst, Sarah Y; Logan, James G; Omolo, Maurice O; Torto, Baldwyn; Pelletier, Julien; Syed, Zainulabeuddin; Leal, Walter S
2010-01-01
Infectious diseases affecting livestock and human health that involve vector-borne pathogens are a global problem, unrestricted by borders or boundaries, which may be exacerbated by changing global climate. Thus, the availability of effective tools for control of pathogen vectors is of the utmost importance. The aim of this article is to review, selectively, current knowledge of the chemical ecology of pathogen vectors that affect livestock and human health in the developed and developing world, based on key note lectures presented in a symposium on "The Chemical Ecology of Disease Vectors" at the 25th Annual ISCE meeting in Neuchatel, Switzerland. The focus is on the deployment of semiochemicals for monitoring and control strategies, and discusses briefly future directions that such research should proceed along, bearing in mind the environmental challenges associated with climate change that we will face during the 21st century.
Tracing the role of human civilization in the globalization of plant pathogens
Alberto Santini; Andrew Liebhold; Duccio Migliorini; Steve Woodward
2018-01-01
Co-evolution between plants and parasites, including herbivores and pathogens, has arguably generated much of Earthâs biological diversity. Within an ecosystem, coevolution of plants and pathogens is a stepwise reciprocal evolutionary interaction: epidemics result in intense selection pressures on both host and pathogen populations, ultimately allowing long-term...
DEVELOPMENT OF HUMAN BIOMARKERS OF EXPOSURE TO WATERBORNE PATHOGENS
Contaminated drinking water is major source of waterborne diseases. EPA has published a drinking water contaminant candidate list (CCL) that contains a number of pathogens that potentially could be regulated in drinking water. Studies indicate that certain viral pathogens (adenov...
NATURAL ATYPICAL LISTERIA INNOCUA STRAINS WITH LISTERIA MONOCYTOGENES PATHOGENICITY ISLAND 1 GENES
The detection of the human foodborne pathogen, Listeria monocytogenes, in food, environmental samples and clinical specimens associated with cases of listeriosis, a rare but high mortality-rate disease, requires distinguishing the pathogen from other Listeria species. Speciation...
The behavioural immune system and the psychology of human sociality.
Schaller, Mark
2011-12-12
Because immunological defence against pathogens is costly and merely reactive, human anti-pathogen defence is also characterized by proactive behavioural mechanisms that inhibit contact with pathogens in the first place. This behavioural immune system comprises psychological processes that infer infection risk from perceptual cues, and that respond to these perceptual cues through the activation of aversive emotions, cognitions and behavioural impulses. These processes are engaged flexibly, producing context-contingent variation in the nature and magnitude of aversive responses. These processes have important implications for human social cognition and social behaviour-including implications for social gregariousness, person perception, intergroup prejudice, mate preferences, sexual behaviour and conformity. Empirical evidence bearing on these many implications is reviewed and discussed. This review also identifies important directions for future research on the human behavioural immune system--including the need for enquiry into underlying mechanisms, additional behavioural consequences and implications for human health and well-being.
The behavioural immune system and the psychology of human sociality
Schaller, Mark
2011-01-01
Because immunological defence against pathogens is costly and merely reactive, human anti-pathogen defence is also characterized by proactive behavioural mechanisms that inhibit contact with pathogens in the first place. This behavioural immune system comprises psychological processes that infer infection risk from perceptual cues, and that respond to these perceptual cues through the activation of aversive emotions, cognitions and behavioural impulses. These processes are engaged flexibly, producing context–contingent variation in the nature and magnitude of aversive responses. These processes have important implications for human social cognition and social behaviour—including implications for social gregariousness, person perception, intergroup prejudice, mate preferences, sexual behaviour and conformity. Empirical evidence bearing on these many implications is reviewed and discussed. This review also identifies important directions for future research on the human behavioural immune system—including the need for enquiry into underlying mechanisms, additional behavioural consequences and implications for human health and well-being. PMID:22042918
Natural soil reservoirs for human pathogenic and fecal indicator bacteria
Boschiroli, Maria L; Falkinham, Joseph; Favre-Bonte, Sabine; Nazaret, Sylvie; Piveteau, Pascal; Sadowsky, Michael J.; Byappanahalli, Muruleedhara; Delaquis, Pascal; Hartmann, Alain
2016-01-01
Soils receive inputs of human pathogenic and indicator bacteria through land application of animal manures or sewage sludge, and inputs by wildlife. Soil is an extremely heterogeneous substrate and contains meso- and macrofauna that may be reservoirs for bacteria of human health concern. The ability to detect and quantify bacteria of human health concern is important in risk assessments and in evaluating the efficacy of agricultural soil management practices that are protective of crop quality and protective of adjacent water resources. The present chapter describes the distribution of selected Gram-positive and Gram-negative bacteria in soils. Methods for detecting and quantifying soilborne bacteria including extraction, enrichment using immunomagnetic capture, culturing, molecular detection and deep sequencing of metagenomic DNA to detect pathogens are overviewed. Methods for strain phenotypic and genotypic characterization are presented, as well as how comparison with clinical isolates can inform the potential for human health risk.
Wyrsch, Ethan R; Roy Chowdhury, Piklu; Chapman, Toni A; Charles, Ian G; Hammond, Jeffrey M; Djordjevic, Steven P
2016-01-01
Contamination of waste effluent from hospitals and intensive food animal production with antimicrobial residues is an immense global problem. Antimicrobial residues exert selection pressures that influence the acquisition of antimicrobial resistance and virulence genes in diverse microbial populations. Despite these concerns there is only a limited understanding of how antimicrobial residues contribute to the global problem of antimicrobial resistance. Furthermore, rapid detection of emerging bacterial pathogens and strains with resistance to more than one antibiotic class remains a challenge. A comprehensive, sequence-based genomic epidemiological surveillance model that captures essential microbial metadata is needed, both to improve surveillance for antimicrobial resistance and to monitor pathogen evolution. Escherichia coli is an important pathogen causing both intestinal [intestinal pathogenic E. coli (IPEC)] and extraintestinal [extraintestinal pathogenic E. coli (ExPEC)] disease in humans and food animals. ExPEC are the most frequently isolated Gram negative pathogen affecting human health, linked to food production practices and are often resistant to multiple antibiotics. Cattle are a known reservoir of IPEC but they are not recognized as a source of ExPEC that impact human or animal health. In contrast, poultry are a recognized source of multiple antibiotic resistant ExPEC, while swine have received comparatively less attention in this regard. Here, we review what is known about ExPEC in swine and how pig production contributes to the problem of antibiotic resistance.
USDA-ARS?s Scientific Manuscript database
There is limited knowledge about the potential routes for H5N1 influenza virus transmission to and between humans, and it is not clear whether humans can be infected through inhalation of aerosolized H5N1 virus particles. Ferrets are often used as a surrogate for humans in influenza pathogenicity a...
Hart, Benjamin L.
2011-01-01
No other theme in animal biology seems to be more central than the concept of employing strategies to survive and successfully reproduce. In nature, controlling or avoiding pathogens and parasites is an essential fitness strategy because of the ever-present disease-causing organisms. The disease-control strategies discussed here are: physical avoidance and removal of pathogens and parasites; quarantine or peripheralization of conspecifics that could be carrying potential pathogens; herbal medicine, animal style, to prevent or treat an infection; potentiation of the immune system; and care of sick or injured group members. These strategies are seen as also encompassing the pillars of human medicine: (i) quarantine; (ii) immune-boosting vaccinations; (iii) use of medicinal products; and (iv) caring or nursing. In contrast to animals, in humans, the disease-control strategies have been consolidated into a consistent and extensive medical system. A hypothesis that explains some of this difference between animals and humans is that humans are sick more often than animals. This increase in sickness in humans leading to an extensive, cognitively driven medical system is attributed to an evolutionary dietary transition from mostly natural vegetation to a meat-based diet, with an increase in health-eroding free radicals and a dietary reduction of free-radical-scavenging antioxidants. PMID:22042917
Neumann, Wilma; Hadley, Rose C.; Nolan, Elizabeth M.
2017-01-01
Transition metals are essential nutrients for all organisms and important players in the host-microbe interaction. During bacterial infection, a tug-of-war between the host and microbe for nutrient metals occurs: the host innate immune system responds to the pathogen by reducing metal availability and the pathogen tries to outmaneuver this response. The outcome of this competition, which involves metal-sequestering host-defense proteins and microbial metal acquisition machinery, is an important variable for whether infection occurs. One strategy bacterial pathogens employ to overcome metal restriction involves hijacking abundant host metalloproteins. The obligate human pathogens Neisseria spp. express TonB-dependent transport systems that capture human metalloproteins, extract the bound metal ions, and deliver these nutrients into the bacterial cell. This Essay highlights structural and mechanistic investigations that provide insights into how Neisseria acquire iron from the Fe(III)-transport protein transferrin, the Fe(III)-chelating host-defense protein lactoferrin, and the oxygen-transport protein hemoglobin, and obtain zinc from the metal-sequestering antimicrobial protein calprotectin. PMID:28487398
Opportunistic pathogens enriched in showerhead biofilms
Feazel, Leah M.; Baumgartner, Laura K.; Peterson, Kristen L.; Frank, Daniel N.; Harris, J. Kirk; Pace, Norman R.
2009-01-01
The environments we humans encounter daily are sources of exposure to diverse microbial communities, some of potential concern to human health. In this study, we used culture-independent technology to investigate the microbial composition of biofilms inside showerheads as ecological assemblages in the human indoor environment. Showers are an important interface for human interaction with microbes through inhalation of aerosols, and showerhead waters have been implicated in disease. Although opportunistic pathogens commonly are cultured from shower facilities, there is little knowledge of either their prevalence or the nature of other microorganisms that may be delivered during shower usage. To determine the composition of showerhead biofilms and waters, we analyzed rRNA gene sequences from 45 showerhead sites around the United States. We find that variable and complex, but specific, microbial assemblages occur inside showerheads. Particularly striking was the finding that sequences representative of non-tuberculous mycobacteria (NTM) and other opportunistic human pathogens are enriched to high levels in many showerhead biofilms, >100-fold above background water contents. We conclude that showerheads may present a significant potential exposure to aerosolized microbes, including documented opportunistic pathogens. The health risk associated with showerhead microbiota needs investigation in persons with compromised immune or pulmonary systems. PMID:19805310
Pathogen-driven selection in the human genome.
Cagliani, Rachele; Sironi, Manuela
2013-01-01
Infectious diseases and epidemics have always accompanied and characterized human history, representing one of the main causes of death. Even today, despite progress in sanitation and medical research, infections are estimated to account for about 15% of deaths. The hypothesis whereby infectious diseases have been acting as a powerful selective pressure was formulated long ago, but it was not until the availability of large-scale genetic data and the development of novel methods to study molecular evolution that we could assess how pervasively infectious agents have shaped human genetic diversity. Indeed, recent evidences indicated that among the diverse environmental factors that acted as selective pressures during the evolution of our species, pathogen load had the strongest influence. Beside the textbook example of the major histocompatibility complex, selection signatures left by pathogen-exerted pressure can be identified at several human loci, including genes not directly involved in immune response. In the future, high-throughput technologies and the availability of genetic data from different populations are likely to provide novel insights into the evolutionary relationships between the human host and its pathogens. Hopefully, this will help identify the genetic determinants modulating the susceptibility to infectious diseases and will translate into new treatment strategies.
Prediction of molecular mimicry candidates in human pathogenic bacteria.
Doxey, Andrew C; McConkey, Brendan J
2013-08-15
Molecular mimicry of host proteins is a common strategy adopted by bacterial pathogens to interfere with and exploit host processes. Despite the availability of pathogen genomes, few studies have attempted to predict virulence-associated mimicry relationships directly from genomic sequences. Here, we analyzed the proteomes of 62 pathogenic and 66 non-pathogenic bacterial species, and screened for the top pathogen-specific or pathogen-enriched sequence similarities to human proteins. The screen identified approximately 100 potential mimicry relationships including well-characterized examples among the top-scoring hits (e.g., RalF, internalin, yopH, and others), with about 1/3 of predicted relationships supported by existing literature. Examination of homology to virulence factors, statistically enriched functions, and comparison with literature indicated that the detected mimics target key host structures (e.g., extracellular matrix, ECM) and pathways (e.g., cell adhesion, lipid metabolism, and immune signaling). The top-scoring and most widespread mimicry pattern detected among pathogens consisted of elevated sequence similarities to ECM proteins including collagens and leucine-rich repeat proteins. Unexpectedly, analysis of the pathogen counterparts of these proteins revealed that they have evolved independently in different species of bacterial pathogens from separate repeat amplifications. Thus, our analysis provides evidence for two classes of mimics: complex proteins such as enzymes that have been acquired by eukaryote-to-pathogen horizontal transfer, and simpler repeat proteins that have independently evolved to mimic the host ECM. Ultimately, computational detection of pathogen-specific and pathogen-enriched similarities to host proteins provides insights into potentially novel mimicry-mediated virulence mechanisms of pathogenic bacteria.
Prediction of molecular mimicry candidates in human pathogenic bacteria
Doxey, Andrew C; McConkey, Brendan J
2013-01-01
Molecular mimicry of host proteins is a common strategy adopted by bacterial pathogens to interfere with and exploit host processes. Despite the availability of pathogen genomes, few studies have attempted to predict virulence-associated mimicry relationships directly from genomic sequences. Here, we analyzed the proteomes of 62 pathogenic and 66 non-pathogenic bacterial species, and screened for the top pathogen-specific or pathogen-enriched sequence similarities to human proteins. The screen identified approximately 100 potential mimicry relationships including well-characterized examples among the top-scoring hits (e.g., RalF, internalin, yopH, and others), with about 1/3 of predicted relationships supported by existing literature. Examination of homology to virulence factors, statistically enriched functions, and comparison with literature indicated that the detected mimics target key host structures (e.g., extracellular matrix, ECM) and pathways (e.g., cell adhesion, lipid metabolism, and immune signaling). The top-scoring and most widespread mimicry pattern detected among pathogens consisted of elevated sequence similarities to ECM proteins including collagens and leucine-rich repeat proteins. Unexpectedly, analysis of the pathogen counterparts of these proteins revealed that they have evolved independently in different species of bacterial pathogens from separate repeat amplifications. Thus, our analysis provides evidence for two classes of mimics: complex proteins such as enzymes that have been acquired by eukaryote-to-pathogen horizontal transfer, and simpler repeat proteins that have independently evolved to mimic the host ECM. Ultimately, computational detection of pathogen-specific and pathogen-enriched similarities to host proteins provides insights into potentially novel mimicry-mediated virulence mechanisms of pathogenic bacteria. PMID:23715053
Kang, Min; Lau, Eric H Y; Guan, Wenda; Yang, Yuwei; Song, Tie; Cowling, Benjamin J; Wu, Jie; Peiris, Malik; He, Jianfeng; Mok, Chris Ka Pun
2017-07-06
We describe the epidemiology of highly pathogenic avian influenza (HPAI) A(H7N9) based on poultry market environmental surveillance and laboratory-confirmed human cases (n = 9) in Guangdong, China. We also compare the epidemiology between human cases of high- and low-pathogenic avian influenza A(H7N9) (n = 51) in Guangdong. Case fatality and severity were similar. Touching sick or dead poultry was the most important risk factor for HPAI A(H7N9) infections and should be highlighted for the control of future influenza A(H7N9) epidemics. This article is copyright of The Authors, 2017.
Food Safety Impacts from Post-Harvest Processing Procedures of Molluscan Shellfish.
Baker, George L
2016-04-18
Post-harvest Processing (PHP) methods are viable food processing methods employed to reduce human pathogens in molluscan shellfish that would normally be consumed raw, such as raw oysters on the half-shell. Efficacy of human pathogen reduction associated with PHP varies with respect to time, temperature, salinity, pressure, and process exposure. Regulatory requirements and PHP molluscan shellfish quality implications are major considerations for PHP usage. Food safety impacts associated with PHP of molluscan shellfish vary in their efficacy and may have synergistic outcomes when combined. Further research for many PHP methods are necessary and emerging PHP methods that result in minimal quality loss and effective human pathogen reduction should be explored.
Nieto, Amelia; Pozo, Francisco; Vidal-García, Matxalen; Omeñaca, Manuel; Casas, Inmaculada; Falcón, Ana
2017-01-01
Several amino acid changes have been previously implicated in adaptation of avian influenza viruses to human hosts, among them the D701N change in the PB2 polymerase subunit that also is the main determinant of avian virus pathogenesis in animal models. However, previous studies using recombinant viruses did not provide conclusive information of the contribution of this PB2 residue to pathogenicity in human influenza virus strains. We identified this mutation in an A(H1N1)pdm09-like human influenza virus isolated from an infected patient with pneumonia and acute respiratory failure, admitted to the intensive care unit. An exhaustive search has revealed PB2-D701 as a highly conserved position in all available H1N1 human virus sequences in NCBI database, showing a very low prevalence of PB2-D701N change. Presence of PB2-701N amino acid correlates with severe or fatal outcome in those scarce cases with known disease outcome of the infection. In these patients, the residue PB2-701N may contribute to pathogenicity as it was previously reported in humans infected with avian viruses. This study helps to clarify a debate that has arisen regarding the role of PB2-D701N in human influenza virus pathogenicity.
Nieto, Amelia; Pozo, Francisco; Vidal-García, Matxalen; Omeñaca, Manuel; Casas, Inmaculada; Falcón, Ana
2017-01-01
Several amino acid changes have been previously implicated in adaptation of avian influenza viruses to human hosts, among them the D701N change in the PB2 polymerase subunit that also is the main determinant of avian virus pathogenesis in animal models. However, previous studies using recombinant viruses did not provide conclusive information of the contribution of this PB2 residue to pathogenicity in human influenza virus strains. We identified this mutation in an A(H1N1)pdm09-like human influenza virus isolated from an infected patient with pneumonia and acute respiratory failure, admitted to the intensive care unit. An exhaustive search has revealed PB2-D701 as a highly conserved position in all available H1N1 human virus sequences in NCBI database, showing a very low prevalence of PB2-D701N change. Presence of PB2-701N amino acid correlates with severe or fatal outcome in those scarce cases with known disease outcome of the infection. In these patients, the residue PB2-701N may contribute to pathogenicity as it was previously reported in humans infected with avian viruses. This study helps to clarify a debate that has arisen regarding the role of PB2-D701N in human influenza virus pathogenicity. PMID:28421062
Rabaa, Maia A; Tue, Ngo Tri; Phuc, Tran My; Carrique-Mas, Juan; Saylors, Karen; Cotten, Matthew; Bryant, Juliet E; Nghia, Ho Dang Trung; Cuong, Nguyen Van; Pham, Hong Anh; Berto, Alessandra; Phat, Voong Vinh; Dung, Tran Thi Ngoc; Bao, Long Hoang; Hoa, Ngo Thi; Wertheim, Heiman; Nadjm, Behzad; Monagin, Corina; van Doorn, H Rogier; Rahman, Motiur; Tra, My Phan Vu; Campbell, James I; Boni, Maciej F; Tam, Pham Thi Thanh; van der Hoek, Lia; Simmonds, Peter; Rambaut, Andrew; Toan, Tran Khanh; Van Vinh Chau, Nguyen; Hien, Tran Tinh; Wolfe, Nathan; Farrar, Jeremy J; Thwaites, Guy; Kellam, Paul; Woolhouse, Mark E J; Baker, Stephen
2015-12-01
The effect of newly emerging or re-emerging infectious diseases of zoonotic origin in human populations can be potentially catastrophic, and large-scale investigations of such diseases are highly challenging. The monitoring of emergence events is subject to ascertainment bias, whether at the level of species discovery, emerging disease events, or disease outbreaks in human populations. Disease surveillance is generally performed post hoc, driven by a response to recent events and by the availability of detection and identification technologies. Additionally, the inventory of pathogens that exist in mammalian and other reservoirs is incomplete, and identifying those with the potential to cause disease in humans is rarely possible in advance. A major step in understanding the burden and diversity of zoonotic infections, the local behavioral and demographic risks of infection, and the risk of emergence of these pathogens in human populations is to establish surveillance networks in populations that maintain regular contact with diverse animal populations, and to simultaneously characterize pathogen diversity in human and animal populations. Vietnam has been an epicenter of disease emergence over the last decade, and practices at the human/animal interface may facilitate the likelihood of spillover of zoonotic pathogens into humans. To tackle the scientific issues surrounding the origins and emergence of zoonotic infections in Vietnam, we have established The Vietnam Initiative on Zoonotic Infections (VIZIONS). This countrywide project, in which several international institutions collaborate with Vietnamese organizations, is combining clinical data, epidemiology, high-throughput sequencing, and social sciences to address relevant one-health questions. Here, we describe the primary aims of the project, the infrastructure established to address our scientific questions, and the current status of the project. Our principal objective is to develop an integrated approach to the surveillance of pathogens circulating in both human and animal populations and assess how frequently they are exchanged. This infrastructure will facilitate systematic investigations of pathogen ecology and evolution, enhance understanding of viral cross-species transmission events, and identify relevant risk factors and drivers of zoonotic disease emergence.
Healthy plants: necessary for a balanced 'One Health' concept.
Fletcher, Jacqueline; Franz, David; Leclerc, J Eugene
2009-01-01
All life forms depend ultimately upon sunlight to create the energy 'currency' required for the functions of living. Green plants can make that conversion directly but the rest of us would perish without access to foods derived, directly or indirectly, from plants. We also require their fibre which we use for clothing, building and other purposes. However, plants, just as humans and animals, are attacked by pathogens that cause a myriad of symptoms that can lead to reduced yields, lower quality products and diminished nutritional value. Plant pathogens share many features with their human and animal counterparts. Some pathogens - whether of humans, animals, or plants - have nimble genomes or the ability to pirate genes from other organisms via mobile elements. Some have developed the ability to cross kingdoms in their host ranges. Many others share virulence factors, such as the type III secretion system (T3SS) or mechanisms for sensing population density, that work equally well in all kingdoms. Certain pathogens of hosts in all kingdoms rely upon insect vectors and use similar mechanisms to ensure dispersal (and sometimes survival) in this way. Plant-pathogen interactions have more direct consequence for humans when the microbes are human pathogens such as Escherichia coli 0157:H7 and Salmonella spp., which can contaminate fresh produce or when they produce metabolites, such as mycotoxins, which are harmful when consumed. Finally, national biosecurity concerns and the need for prevention, preparedness and forensic capabilities cross all kingdom barriers. Thus, our communities that focus on one of these kingdoms have much to learn from one another and a complete and balanced 'One Health' initiative must be tripartite, embracing the essential components of healthy plants, healthy animals and healthy people.
Awaisheh, Saddam S; Ibrahim, Salam A
2009-11-01
The objective of this work was to screen the antibacterial activity of lactic acid bacteria (LAB) isolated from different sources against different pathogens found in ready-to-eat vacuum-packaged meat products (RTE-VPMP). LAB were isolated from human, RTE-VPMP, fermented vegetables, and dairy samples. These isolates were assessed for their antibacterial activity against Escherichia coli O157:H7, Salmonella spp., Listeria monocytogenes, and Staphylococcus aureus using spot on lawn technique. Six LAB isolates-three from a human source, two from a RTE-VPMP source, and one from a fermented vegetable source-were found to be effective against all pathogenic strains. Antibacterial activities of cell-free neutral supernatant broths of these isolates were assessed against the different pathogenic strains to confirm bacteriocin production. All six isolates were effective against all pathogenic strains. LAB isolates from the human source had the highest antibacterial activity and were significantly more effective than other LAB isolates, with the inhibition zone ranging from 14 to 22 mm. Inhibition zones of RTE-VPMP LAB isolates were lower than those of human origin (inhibition zone range, 11-17 mm). The lowest activities were for the fermented vegetable isolate, for which inhibition zones ranged from 11 to 15 mm. The three isolates of human origin were identified as L. acidophilus, L. casei, and L. reuteri; the two isolates from RTE-VPMP source were both L. sake; and the one isolate of fermented vegetable origin was L. plantarum. Our results showed that nonmeat product-sourced LAB were effective against several foodborne pathogens, which suggests that they could be used as natural biopreservatives in many RTE-VPMP produced in Jordan.
Dalluge, Joseph J.; Welchlin, Cole W.; Hughes, John; Han, Wei; Blackwell, Timothy S.; Laguna, Theresa A.; Williams, Bryan J.
2014-01-01
The arginine decarboxylase pathway, which converts arginine to agmatine, is present in both humans and most bacterial pathogens. In humans agmatine is a neurotransmitter with affinities towards α2-adrenoreceptors, serotonin receptors, and may inhibit nitric oxide synthase. In bacteria agmatine serves as a precursor to polyamine synthesis and was recently shown to enhance biofilm development in some strains of the respiratory pathogen Pseudomonas aeruginosa. We determined agmatine is at the center of a competing metabolism in the human lung during airways infections and is influenced by the metabolic phenotypes of the infecting pathogens. Ultra performance liquid chromatography with mass spectrometry detection was used to measure agmatine in human sputum samples from patients with cystic fibrosis, spent supernatant from clinical sputum isolates, and from bronchoalvelolar lavage fluid from mice infected with P. aeruginosa agmatine mutants. Agmatine in human sputum peaks during illness, decreased with treatment and is positively correlated with inflammatory cytokines. Analysis of the agmatine metabolic phenotype in clinical sputum isolates revealed most deplete agmatine when grown in its presence; however a minority appeared to generate large amounts of agmatine presumably driving sputum agmatine to high levels. Agmatine exposure to inflammatory cells and in mice demonstrated its role as a direct immune activator with effects on TNF-α production, likely through NF-κB activation. P. aeruginosa mutants for agmatine detection and metabolism were constructed and show the real-time evolution of host-derived agmatine in the airways during acute lung infection. These experiments also demonstrated pathogen agmatine production can upregulate the inflammatory response. As some clinical isolates have adapted to hypersecrete agmatine, these combined data would suggest agmatine is a novel target for immune modulation in the host-pathogen dynamic. PMID:25350753
Paulson, Nick B; Gilbertsen, Adam J; Dalluge, Joseph J; Welchlin, Cole W; Hughes, John; Han, Wei; Blackwell, Timothy S; Laguna, Theresa A; Williams, Bryan J
2014-01-01
The arginine decarboxylase pathway, which converts arginine to agmatine, is present in both humans and most bacterial pathogens. In humans agmatine is a neurotransmitter with affinities towards α2-adrenoreceptors, serotonin receptors, and may inhibit nitric oxide synthase. In bacteria agmatine serves as a precursor to polyamine synthesis and was recently shown to enhance biofilm development in some strains of the respiratory pathogen Pseudomonas aeruginosa. We determined agmatine is at the center of a competing metabolism in the human lung during airways infections and is influenced by the metabolic phenotypes of the infecting pathogens. Ultra performance liquid chromatography with mass spectrometry detection was used to measure agmatine in human sputum samples from patients with cystic fibrosis, spent supernatant from clinical sputum isolates, and from bronchoalvelolar lavage fluid from mice infected with P. aeruginosa agmatine mutants. Agmatine in human sputum peaks during illness, decreased with treatment and is positively correlated with inflammatory cytokines. Analysis of the agmatine metabolic phenotype in clinical sputum isolates revealed most deplete agmatine when grown in its presence; however a minority appeared to generate large amounts of agmatine presumably driving sputum agmatine to high levels. Agmatine exposure to inflammatory cells and in mice demonstrated its role as a direct immune activator with effects on TNF-α production, likely through NF-κB activation. P. aeruginosa mutants for agmatine detection and metabolism were constructed and show the real-time evolution of host-derived agmatine in the airways during acute lung infection. These experiments also demonstrated pathogen agmatine production can upregulate the inflammatory response. As some clinical isolates have adapted to hypersecrete agmatine, these combined data would suggest agmatine is a novel target for immune modulation in the host-pathogen dynamic.
Okorie-Kanu, O. Josephine; Ezenduka, E. Vivienne; Okorie-Kanu, C. Onwuchokwe; Ugwu, L. Chinweokwu; Nnamani, U. John
2016-01-01
Aim: This study was conducted to investigate the occurrence of pathogenic Escherichia coli and Salmonella species in retail raw table eggs sold for human consumption in Enugu State and to determine the resistance of these pathogens to antimicrobials commonly used in human and veterinary practices in Nigeria. Materials and Methods: A total of 340 raw table eggs comprising 68 composite samples (5 eggs per composite sample) were collected from five selected farms (13 composite samples from the farms) and 10 retail outlets (55 composite samples from the retail outlets) in the study area over a period of 4-month (March-June, 2014). The eggs were screened for pathogenic E. coli and Salmonella species following standard procedures within 24 h of sample collection. Isolates obtained were subjected to in-vitro antimicrobial susceptibility test with 15 commonly used antimicrobials using the disk diffusion method. Results: About 37 (54.4%) and 7 (10.3%) of the 68 composite samples were positive for pathogenic E. coli and Salmonella species, respectively. The shells showed significantly higher (p<0.05) contaminations than the contents for both microorganisms. The eggs from the farms showed higher contamination with pathogenic E. coli than eggs from the retail outlets while the reverse was the case for Salmonella species even though they were not significant (p>0.05). The organisms obtained showed a multiple drug resistance. They were completely resistant to nitrofurantoin, sulfamethoxazole/trimethoprim, penicillin G and oxacillin. In addition to these, Salmonella spp. also showed 100% resistance to tetracycline. The pathogenic E. coli isolates obtained were 100% susceptible to gentamicin, neomycin, ciprofloxacin, and amoxicillin-clavulanic acid while Salmonella spp. showed 100% susceptibility to erythromycin, neomycin, and rifampicin. Both organisms showed varying degrees of resistance to streptomycin, amoxicillin, vancomycin, and doxycycline. Conclusion: From the results of the study, it can be concluded that the raw table eggs marketed for human consumption in Enugu State, Nigeria is contaminated with pathogenic E. coli and Salmonella species that showed multiple drug resistance to antimicrobial agents commonly used in veterinary and human practice. PMID:27956787
Hwang, Jusun; Lee, Kyunglee; Walsh, Daniel P.; Kim, SangWha; Sleeman, Jonathan M.; Lee, Hang
2018-01-01
Wildlife-associated diseases and pathogens have increased in importance; however, management of a large number of diseases and diversity of hosts is prohibitively expensive. Thus, the determination of priority wildlife pathogens and risk factors for disease emergence is warranted. We used an online questionnaire survey to assess release and exposure risks, and consequences of wildlife-associated diseases and pathogens in the Republic of Korea (ROK). We also surveyed opinions on pathways for disease exposure, and risk factors for disease emergence and spread. For the assessment of risk, we employed a two-tiered, statistical K-means clustering algorithm to group diseases into three levels (high, medium and low) of perceived risk based on release and exposure risks, societal consequences and the level of uncertainty of the experts’ opinions. To examine the experts’ perceived risk of routes of introduction of pathogens and disease amplification and spread, we used a Bayesian, multivariate normal order-statistics model. Six diseases or pathogens, including four livestock and two wildlife diseases, were identified as having high risk with low uncertainty. Similarly, 13 diseases were characterized as having high risk with medium uncertainty with three of these attributed to livestock, six associated with human disease, and the remainder having the potential to affect human, livestock and wildlife (i.e., One Health). Lastly, four diseases were described as high risk with high certainty, and were associated solely with fish diseases. Experts identified migration of wildlife, international human movement and illegal importation of wildlife as the three routes posing the greatest risk of pathogen introduction into ROK. Proximity of humans, livestock and wildlife was the most significant risk factor for promoting the spread of wildlife-associated diseases and pathogens, followed by high density of livestock populations, habitat loss and environmental degradation, and climate change. This study provides useful information to decision makers responsible for allocating resources to address disease risks. This approach provided a rapid, cost-effective method of risk assessment of wildlife-associated diseases and pathogens for which the published literature is sparse.
Okorie-Kanu, O Josephine; Ezenduka, E Vivienne; Okorie-Kanu, C Onwuchokwe; Ugwu, L Chinweokwu; Nnamani, U John
2016-11-01
This study was conducted to investigate the occurrence of pathogenic Escherichia coli and Salmonella species in retail raw table eggs sold for human consumption in Enugu State and to determine the resistance of these pathogens to antimicrobials commonly used in human and veterinary practices in Nigeria. A total of 340 raw table eggs comprising 68 composite samples (5 eggs per composite sample) were collected from five selected farms (13 composite samples from the farms) and 10 retail outlets (55 composite samples from the retail outlets) in the study area over a period of 4-month (March-June, 2014). The eggs were screened for pathogenic E. coli and Salmonella species following standard procedures within 24 h of sample collection. Isolates obtained were subjected to in-vitro antimicrobial susceptibility test with 15 commonly used antimicrobials using the disk diffusion method. About 37 (54.4%) and 7 (10.3%) of the 68 composite samples were positive for pathogenic E. coli and Salmonella species, respectively. The shells showed significantly higher (p<0.05) contaminations than the contents for both microorganisms. The eggs from the farms showed higher contamination with pathogenic E. coli than eggs from the retail outlets while the reverse was the case for Salmonella species even though they were not significant (p>0.05). The organisms obtained showed a multiple drug resistance. They were completely resistant to nitrofurantoin, sulfamethoxazole/trimethoprim, penicillin G and oxacillin. In addition to these, Salmonella spp. also showed 100% resistance to tetracycline. The pathogenic E. coli isolates obtained were 100% susceptible to gentamicin, neomycin, ciprofloxacin, and amoxicillin-clavulanic acid while Salmonella spp. showed 100% susceptibility to erythromycin, neomycin, and rifampicin. Both organisms showed varying degrees of resistance to streptomycin, amoxicillin, vancomycin, and doxycycline. From the results of the study, it can be concluded that the raw table eggs marketed for human consumption in Enugu State, Nigeria is contaminated with pathogenic E. coli and Salmonella species that showed multiple drug resistance to antimicrobial agents commonly used in veterinary and human practice.
Predicting the Pathogenicity of Aminoacyl-tRNA Synthetase Mutations
Oprescu, Stephanie N.; Griffin, Laurie B.; Beg, Asim A.; Antonellis, Anthony
2016-01-01
Aminoacyl-tRNA synthetases (ARSs) are ubiquitously expressed, essential enzymes responsible for charging tRNA with cognate amino acids—the first step in protein synthesis. ARSs are required for protein translation in the cytoplasm and mitochondria of all cells. Surprisingly, mutations in 28 of the 37 nuclear-encoded human ARS genes have been linked to a variety of recessive and dominant tissue-specific disorders. Current data sustains that impaired enzyme function is a robust predictor of the pathogenicity of ARS mutations. However, experimental model systems that distinguish between pathogenic and non-pathogenic ARS variants are required for implicating newly identified ARS mutations in disease. Here, we outline strategies to assist in predicting the pathogenicity of ARS variants and urge cautious evaluation of genetic and functional data prior to linking an ARS mutation to a human disease phenotype. PMID:27876679
Fischer, Gregory J.; Keller, Nancy P.
2016-01-01
Oxylipins are a class of molecules derived from the incorporation of oxygen into polyunsaturated fatty acid substrates through the action of oxygenases. While extensively investigated in the context of mammalian immune responses, over the last decade it has become apparent that oxylipins are a common means of communication among and between plants, animals, and fungi to control development and alter host-microbe interactions. In fungi, some oxylipins are derived non-enzymatically while others are produced by lipoxygenases, cyclooxygenases, and monooxygenases with homology to plant and human enzymes. Recent investigations of numerous plant and human fungal pathogens have revealed oxylipins to be involved in the establishment and progression of disease This review highlights oxylipin production by pathogenic fungi and their role in fungal development and pathogen/host interactions. PMID:26920885
Carvalho, Chris; Yang, Jiaqi; Vogan, Aaron; Maganti, Harinad; Yamamura, Deborah; Xu, Jianping
2014-05-01
Yeast are among the most frequent pathogens in humans. The dominant yeast causing human infections belong to the genus Candida and Candida albicans is the most frequently isolated species. However, several non-C. albicans species are becoming increasingly common in patients worldwide. The relationships between yeast in humans and the natural environments remain poorly understood. Furthermore, it is often difficult to identify or exclude the origins of disease-causing yeast from specific environmental reservoirs. In this study, we compared the yeast isolates from tree hollows and from clinics in Hamilton, Ontario, Canada. Our surveys and analyses showed significant differences in yeast species composition, in their temporal dynamics, and in yeast genotypes between isolates from tree hollows and hospitals. Our results are inconsistent with the hypothesis that yeast from trees constitute a significant source of pathogenic yeast in humans in this region. Similarly, the yeast in humans and clinics do not appear to contribute to yeast in tree hollows. © 2013 Blackwell Verlag GmbH.
Coquet, L.; Cosette, P.; Quillet, L.; Petit, F.; Junter, G.-A.; Jouenne, T.
2002-01-01
The presence of Yersinia ruckeri in a French fish farm was investigated. Y. ruckeri was isolated mainly from algae and sediment samples rather than from water. Twenty-two Y. ruckeri isolates were obtained, and three strains were distinguished by enterobacterial repetitive intergenic consensus PCR amplification. These strains were able to adhere to solid supports. This characteristic was correlated with flagellum-mediated motility. Killing experiments showed that sessile cells were more resistant to oxolinic acid than their planktonic counterparts. Our results demonstrate that surface colonization of fish farm tanks by Y. ruckeri biofilms is a potential source of recurrent infection for extended periods of time. PMID:11823180
Federal Register 2010, 2011, 2012, 2013, 2014
2010-08-30
... enhance the lab capabilities to handle human pathogenic bacteria in animal feed. DATES: Important dates... supplemental grant funds will enable analyses of human pathogenic bacteria found in animal feed, for samples... bacteria in animal feed. This additional program will be compatible with other FERN Cooperative Agreement...
Human pathogens in plant biofilms: Formation, physiology, and detection
USDA-ARS?s Scientific Manuscript database
Fresh produce, viewed as an essential part of a healthy life style is usually consumed in the form of raw or minimally processed fruits and vegetables, and is a potentially important source of food-borne human pathogenic bacteria and viruses. These are passed on to the consumer since the bacteria ca...
USDA-ARS?s Scientific Manuscript database
Filth flies have been implicated in the dispersal of human disease pathogens; however, fly transmission parameters of human pathogens to plants are largely undescribed. The capacity of the black blow fly, Phormia regina, to acquire and subsequently release bacteria onto baby lettuce leaves was comp...
Avian influenza virus (H5N1): a threat to human health.
Peiris, J S Malik; de Jong, Menno D; Guan, Yi
2007-04-01
Pandemic influenza virus has its origins in avian influenza viruses. The highly pathogenic avian influenza virus subtype H5N1 is already panzootic in poultry, with attendant economic consequences. It continues to cross species barriers to infect humans and other mammals, often with fatal outcomes. Therefore, H5N1 virus has rightly received attention as a potential pandemic threat. However, it is noted that the pandemics of 1957 and 1968 did not arise from highly pathogenic influenza viruses, and the next pandemic may well arise from a low-pathogenicity virus. The rationale for particular concern about an H5N1 pandemic is not its inevitability but its potential severity. An H5N1 pandemic is an event of low probability but one of high human health impact and poses a predicament for public health. Here, we review the ecology and evolution of highly pathogenic avian influenza H5N1 viruses, assess the pandemic risk, and address aspects of human H5N1 disease in relation to its epidemiology, clinical presentation, pathogenesis, diagnosis, and management.
Gerstein, Aleeza C; Nielsen, Kirsten
2017-04-01
Cryptococcus is predominantly an AIDS-related pathogen that causes significant morbidity and mortality in immunocompromised patients. Research studies have historically focused on understanding how the organism causes human disease through the use of in vivo and in vitro model systems to identify virulence factors. Cryptococcus is not an obligate pathogen, however, as human-human transmission is either absent or rare. Selection in the environment must thus be invoked to shape the evolution of this taxa, and directly influences genotypic and trait diversity. Importantly, the evolution and maintenance of pathogenicity must also stem directly from environmental selection. To that end, here we examine abiotic and biotic stresses in the environment, and discuss how they could shape the factors that are commonly identified as important virulence traits. We identify a number of important unanswered questions about Cryptococcus diversity and evolution that are critical for understanding this deadly pathogen, and discuss how implementation of modern sampling and genomic tools could be utilized to answer these questions. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.
Jones, Natalia R; Millman, Caroline; van der Es, Mike; Hukelova, Miroslava; Forbes, Ken J; Glover, Catherine; Haldenby, Sam; Hunter, Paul R; Jackson, Kathryn; O'Brien, Sarah J; Rigby, Dan; Strachan, Norval J C; Williams, Nicola; Lake, Iain R
2017-07-15
This paper introduces a novel method for sampling pathogens in natural environments. It uses fabric boot socks worn over walkers' shoes to allow the collection of composite samples over large areas. Wide-area sampling is better suited to studies focusing on human exposure to pathogens (e.g., recreational walking). This sampling method is implemented using a citizen science approach: groups of three walkers wearing boot socks undertook one of six routes, 40 times over 16 months in the North West (NW) and East Anglian (EA) regions of England. To validate this methodology, we report the successful implementation of this citizen science approach, the observation that Campylobacter bacteria were detected on 47% of boot socks, and the observation that multiple boot socks from individual walks produced consistent results. The findings indicate higher Campylobacter levels in the livestock-dominated NW than in EA (55.8% versus 38.6%). Seasonal differences in the presence of Campylobacter bacteria were found between the regions, with indications of winter peaks in both regions but a spring peak in the NW. The presence of Campylobacter bacteria on boot socks was negatively associated with ambient temperature ( P = 0.011) and positively associated with precipitation ( P < 0.001), results consistent with our understanding of Campylobacter survival and the probability of material adhering to boot socks. Campylobacter jejuni was the predominant species found; Campylobacter coli was largely restricted to the livestock-dominated NW. Source attribution analysis indicated that the potential source of C. jejuni was predominantly sheep in the NW and wild birds in EA but did not differ between peak and nonpeak periods of human incidence. IMPORTANCE There is debate in the literature on the pathways through which pathogens are transferred from the environment to humans. We report on the success of a novel method for sampling human-pathogen interactions using boot socks and citizen science techniques, which enable us to sample human-pathogen interactions that may occur through visits to natural environments. This contrasts with traditional environmental sampling, which is based on spot sampling techniques and does not sample human-pathogen interactions. Our methods are of practical value to scientists trying to understand the transmission of pathogens from the environment to people. Our findings provide insight into the risk of Campylobacter exposure from recreational visits and an understanding of seasonal differences in risk and the factors behind these patterns. We highlight the Campylobacter species predominantly encountered and the potential sources of C. jejuni . Copyright © 2017 Jones et al.
Millman, Caroline; van der Es, Mike; Hukelova, Miroslava; Forbes, Ken J.; Glover, Catherine; Haldenby, Sam; Hunter, Paul R.; Jackson, Kathryn; O'Brien, Sarah J.; Rigby, Dan; Strachan, Norval J. C.; Williams, Nicola; Lake, Iain R.
2017-01-01
ABSTRACT This paper introduces a novel method for sampling pathogens in natural environments. It uses fabric boot socks worn over walkers' shoes to allow the collection of composite samples over large areas. Wide-area sampling is better suited to studies focusing on human exposure to pathogens (e.g., recreational walking). This sampling method is implemented using a citizen science approach: groups of three walkers wearing boot socks undertook one of six routes, 40 times over 16 months in the North West (NW) and East Anglian (EA) regions of England. To validate this methodology, we report the successful implementation of this citizen science approach, the observation that Campylobacter bacteria were detected on 47% of boot socks, and the observation that multiple boot socks from individual walks produced consistent results. The findings indicate higher Campylobacter levels in the livestock-dominated NW than in EA (55.8% versus 38.6%). Seasonal differences in the presence of Campylobacter bacteria were found between the regions, with indications of winter peaks in both regions but a spring peak in the NW. The presence of Campylobacter bacteria on boot socks was negatively associated with ambient temperature (P = 0.011) and positively associated with precipitation (P < 0.001), results consistent with our understanding of Campylobacter survival and the probability of material adhering to boot socks. Campylobacter jejuni was the predominant species found; Campylobacter coli was largely restricted to the livestock-dominated NW. Source attribution analysis indicated that the potential source of C. jejuni was predominantly sheep in the NW and wild birds in EA but did not differ between peak and nonpeak periods of human incidence. IMPORTANCE There is debate in the literature on the pathways through which pathogens are transferred from the environment to humans. We report on the success of a novel method for sampling human-pathogen interactions using boot socks and citizen science techniques, which enable us to sample human-pathogen interactions that may occur through visits to natural environments. This contrasts with traditional environmental sampling, which is based on spot sampling techniques and does not sample human-pathogen interactions. Our methods are of practical value to scientists trying to understand the transmission of pathogens from the environment to people. Our findings provide insight into the risk of Campylobacter exposure from recreational visits and an understanding of seasonal differences in risk and the factors behind these patterns. We highlight the Campylobacter species predominantly encountered and the potential sources of C. jejuni. PMID:28500040
Chen, Y S; Lin, X H; Li, H R; Hua, Z D; Lin, M Q; Huang, W S; Yu, T; Lyu, H Y; Mao, W P; Liang, Y Q; Peng, X R; Chen, S J; Zheng, H; Lian, S Q; Hu, X L; Yao, X Q
2017-12-12
Objective: To analyze the pathogens of lower respiratory tract infection(LRTI) including bacterial, viral and mixed infection, and to establish a discriminant model based on clinical features in order to predict the pathogens. Methods: A total of 243 hospitalized patients with lower respiratory tract infections were enrolled in Fujian Provincial Hospital from April 2012 to September 2015. The clinical data and airway (sputum and/or bronchoalveolar lavage) samples were collected. Microbes were identified by traditional culture (for bacteria), loop-mediated isothermal amplification(LAMP) and gene sequencing (for bacteria and atypical pathogen), or Real-time quantitative polymerase chain reaction (Real-time PCR)for viruses. Finally, a discriminant model was established by using the discriminant analysis methods to help to predict bacterial, viral and mixed infections. Results: Pathogens were detected in 53.9% (131/243) of the 243 cases.Bacteria accounted for 23.5%(57/243, of which 17 cases with the virus, 1 case with Mycoplasma pneumoniae and virus), mainly Pseudomonas Aeruginosa and Klebsiella Pneumonia. Atypical pathogens for 4.9% (12/243, of which 3 cases with the virus, 1 case of bacteria and viruses), all were mycoplasma pneumonia. Viruses for 34.6% (84/243, of which 17 cases of bacteria, 3 cases with Mycoplasma pneumoniae, 1 case with Mycoplasma pneumoniae and bacteria) of the cases, mainly Influenza A virus and Human Cytomegalovirus, and other virus like adenovirus, human parainfluenza virus, respiratory syncytial virus, human metapneumovirus, human boca virus were also detected fewly. Seven parameters including mental status, using antibiotics prior to admission, complications, abnormal breath sounds, neutrophil alkaline phosphatase (NAP) score, pneumonia severity index (PSI) score and CRUB-65 score were enrolled after univariate analysis, and discriminant analysis was used to establish the discriminant model by applying the identified pathogens as the dependent variable. The total positive predictive value was 64.7%(77/119), with 66.7% for bacterial infection, 78.0% for viral infection and 33.3% for the mixed infection. Conclusions: The mostly detected pathogens were Pseudomonas aeruginosa, atypitcal pathogens, Klebsiella pneumoniae, influenza A virus and human cytomegalovirus in hospitalized patients with LRTI in this hospital. The discriminant diagnostic model established by clinical features may contribute to predict the pathogens of LRTI.
HOOSHYAR, Hossein; ROSTAMKHANI, Parvin; REZAEIAN, Mostafa
2015-01-01
Background: The number of valid of pathogen and non-pathogen species of Entamoeba has continuously increased in human and animals. This review is performed to provide an update list and some summarized information on Entamoeba species, which were identified up to the 2014. Methods: We evaluated the Entamoeba genus with a broad systematic review of the literature, books and electronic databases until February 2014. The synonyms, hosts, pathogenicity and geographical distribution of valid species were considered and recorded. Repeated and unrelated cases were excluded. Results: Totally 51 defined species of Entamoeba were found and arranged by the number of nuclei in mature cyst according to Levin’s grouping. Seven of these species within the 4 nucleate mature cysts group and 1 species with one nucleate mature cyst are pathogen. E. histolytica, E. invadence, E. rananrum and E. anatis causes lethal infection in human, reptiles, amphibians and brides respectively, four species causes non-lethal mild dysentery. The other species were non-pathogen and are important to differential diagnosis of amoebiasis. Conclusion: There are some unknown true species of Entamoeba that available information on the morphology, hosts, pathogenicity and distribution of them are still very limited and more considerable investigation will be needed in order to clarify the status of them. PMID:26246811
NASA Astrophysics Data System (ADS)
Haramoto, E.
2018-03-01
In this study, the prevalence of various waterborne pathogens in water samples collected in the Kathmandu Valley, Nepal, and the applicability of Escherichia coli as an indicator of pathogen contamination in groundwater were assessed. Fifty-three water samples, including shallow groundwater and river water, were analyzed to examine the presence of protozoan (oo)cysts via fluorescence microscopy and that of viral and bacterial genomes via quantitative PCR. At least one of the seven types of pathogens tested (i.e., Cryptosporidium, Giardia, human adenoviruses, noroviruses of genogroups I and II, group A rotaviruses, and Vibrio cholerae) was detected in 68% (15/22) of the shallow dug well water samples; groundwater in the shallow dug wells was more contaminated compared with that in shallow tube wells (8/15, 53%). River water and sewage samples were contaminated with extremely high concentrations of multiple pathogens, whereas a tap water sample supplied by a water tanker tested positive for human adenoviruses and V. cholerae. The detection of host-specific Bacteroidales genetic markers revealed the effects of human and animal feces on groundwater contamination. The tested pathogens were sometimes detected even in E. coli-negative groundwater samples, indicative of the limitations of using E. coli as an indicator for waterborne pathogens in groundwater.
Coiled Coil Rich Proteins (Ccrp) Influence Molecular Pathogenicity of Helicobacter pylori
Schätzle, Sarah; Specht, Mara; Waidner, Barbara
2015-01-01
Pathogenicity of the human pathogen Helicobacter pylori relies on its capacity to adapt to a hostile environment and to escape the host response. Although there have been great advances in our understanding of the bacterial cytoskeleton, major gaps remain in our knowledge of its contribution to virulence. In this study we have explored the influence of coiled coil rich proteins (Ccrp) cytoskeletal elements on pathogenicity factors of H. pylori. Deletion of any of the ccrp resulted in a strongly decreased activity of the main pathogenicity factor urease. We further investigated their role using in vitro co-culture experiments with the human gastric adenocarcinoma cell line AGS modeling H. pylori - host cell interactions. Intriguingly, host cell showed only a weak “scattering/hummingbird” phenotype, in which host cells are transformed from a uniform polygonal shape into a severely elongated state characterized by the formation of needle-like projections, after co-incubation with any ccrp deletion mutant. Furthermore, co-incubation with the ccrp59 mutant resulted in reduced type IV secretion system associated activities, e.g. IL-8 production and CagA translocation/phosphorylation. Thus, in addition to their role in maintaining the helical cell shape of H. pylori Ccrp proteins influence many cellular processes and are thereby crucial for the virulence of this human pathogen. PMID:25822999
Distinct evolutionary strategies of human leucocyte antigen loci in pathogen-rich environments
Sanchez-Mazas, Alicia; Lemaître, Jean-François; Currat, Mathias
2012-01-01
Human leucocyte antigen (HLA) loci have a complex evolution where both stochastic (e.g. genetic drift) and deterministic (natural selection) forces are involved. Owing to their extraordinary level of polymorphism, HLA genes are useful markers for reconstructing human settlement history. However, HLA variation often deviates significantly from neutral expectations towards an excess of genetic diversity. Because HLA molecules play a crucial role in immunity, this observation is generally explained by pathogen-driven-balancing selection (PDBS). In this study, we investigate the PDBS model by analysing HLA allelic diversity on a large database of 535 populations in relation to pathogen richness. Our results confirm that geographical distances are excellent predictors of HLA genetic differentiation worldwide. We also find a significant positive correlation between genetic diversity and pathogen richness at two HLA class I loci (HLA-A and -B), as predicted by PDBS, and a significant negative correlation at one HLA class II locus (HLA-DQB1). Although these effects are weak, as shown by a loss of significance when populations submitted to rapid genetic drift are removed from the analysis, the inverse relationship between genetic diversity and pathogen richness at different loci indicates that HLA genes have adopted distinct evolutionary strategies to provide immune protection in pathogen-rich environments. PMID:22312050
Collado, M Carmen; Surono, Ingrid S; Meriluoto, Jussi; Salminen, Seppo
2007-03-01
Traditional fermented buffalo milk in Indonesia (dadih) has been believed to have a beneficial impact on human health, which could be related to the properties of the lactic acid bacteria (LAB) involved in its fermentation process. In previous studies, it was discovered that strains of dadih lactic isolates possessed some beneficial properties in vitro. In the present study, the adhesion capacity of specific LAB isolates from dadih to intestinal mucus was analyzed. Further, the ability to inhibit model human pathogens and displace them from mucus was assessed. The adhesion of tested LAB strains was strain-dependent and varied from 1.4 to 9.8%. The most adhesive Lactobacillus plantarum strain was IS-10506, with 9.8% adhesion. The competition assay between dadih LAB isolates and pathogens showed that a 2-h preincubation with L. plantarum at 37 degrees C significantly reduced pathogen adhesion to mucus. All tested LAB strains displaced and inhibited pathogen adhesion, but the results were strain-specific and dependent on time and pathogen strains. In general, L. plantarum IS-10506 showed the best ability against pathogen adhesion.
Drivers, dynamics, and control of emerging vector-borne zoonotic diseases
Kilpatrick, A. Marm; Randolph, Sarah E.
2013-01-01
Emerging vector-borne diseases represent an important issue for global health. Many vector-borne pathogens have appeared in new regions in the past two decades, and many endemic diseases have increased in incidence. Although introductions and local emergence are frequently considered distinct processes, many emerging endemic pathogens are in fact invading at a local scale coincident with habitat change. We highlight key differences in the dynamics and disease burden that result from increased pathogen transmission following habitat change compared with the introduction of pathogens to new regions. Truly in situ emergence is commonly driven by changes in human factors as much as by enhanced enzootic cycles whereas pathogen invasion results from anthropogenic trade and travel and suitable conditions for a pathogen, including hosts, vectors, and climate. Once established, ecological factors related to vector characteristics shape the evolutionary selective pressure on pathogens that may result in increased use of humans as transmission hosts. We describe challenges inherent in the control of vector-borne zoonotic diseases and some emerging non-traditional strategies that may be more effective in the long term. PMID:23200503
Recent human-to-poultry host jump, adaptation, and pandemic spread of Staphylococcus aureus.
Lowder, Bethan V; Guinane, Caitriona M; Ben Zakour, Nouri L; Weinert, Lucy A; Conway-Morris, Andrew; Cartwright, Robyn A; Simpson, A John; Rambaut, Andrew; Nübel, Ulrich; Fitzgerald, J Ross
2009-11-17
The impact of globalization on the emergence and spread of pathogens is an important veterinary and public health issue. Staphylococcus aureus is a notorious human pathogen associated with serious nosocomial and community-acquired infections. In addition, S. aureus is a major cause of animal diseases including skeletal infections of poultry, which are a large economic burden on the global broiler chicken industry. Here, we provide evidence that the majority of S. aureus isolates from broiler chickens are the descendants of a single human-to-poultry host jump that occurred approximately 38 years ago (range, 30 to 63 years ago) by a subtype of the worldwide human ST5 clonal lineage unique to Poland. In contrast to human subtypes of the ST5 radiation, which demonstrate strong geographic clustering, the poultry ST5 clade was distributed in different continents, consistent with wide dissemination via the global poultry industry distribution network. The poultry ST5 clade has undergone genetic diversification from its human progenitor strain by acquisition of novel mobile genetic elements from an avian-specific accessory gene pool, and by the inactivation of several proteins important for human disease pathogenesis. These genetic events have resulted in enhanced resistance to killing by chicken heterophils, reflecting avian host-adaptive evolution. Taken together, we have determined the evolutionary history of a major new animal pathogen that has undergone rapid avian host adaptation and intercontinental dissemination. These data provide a new paradigm for the impact of human activities on the emergence of animal pathogens.
Human microbiomes and their roles in dysbiosis, common diseases, and novel therapeutic approaches.
Belizário, José E; Napolitano, Mauro
2015-01-01
The human body is the residence of a large number of commensal (non-pathogenic) and pathogenic microbial species that have co-evolved with the human genome, adaptive immune system, and diet. With recent advances in DNA-based technologies, we initiated the exploration of bacterial gene functions and their role in human health. The main goal of the human microbiome project is to characterize the abundance, diversity and functionality of the genes present in all microorganisms that permanently live in different sites of the human body. The gut microbiota expresses over 3.3 million bacterial genes, while the human genome expresses only 20 thousand genes. Microbe gene-products exert pivotal functions via the regulation of food digestion and immune system development. Studies are confirming that manipulation of non-pathogenic bacterial strains in the host can stimulate the recovery of the immune response to pathogenic bacteria causing diseases. Different approaches, including the use of nutraceutics (prebiotics and probiotics) as well as phages engineered with CRISPR/Cas systems and quorum sensing systems have been developed as new therapies for controlling dysbiosis (alterations in microbial community) and common diseases (e.g., diabetes and obesity). The designing and production of pharmaceuticals based on our own body's microbiome is an emerging field and is rapidly growing to be fully explored in the near future. This review provides an outlook on recent findings on the human microbiomes, their impact on health and diseases, and on the development of targeted therapies.
Human microbiomes and their roles in dysbiosis, common diseases, and novel therapeutic approaches
Belizário, José E.; Napolitano, Mauro
2015-01-01
The human body is the residence of a large number of commensal (non-pathogenic) and pathogenic microbial species that have co-evolved with the human genome, adaptive immune system, and diet. With recent advances in DNA-based technologies, we initiated the exploration of bacterial gene functions and their role in human health. The main goal of the human microbiome project is to characterize the abundance, diversity and functionality of the genes present in all microorganisms that permanently live in different sites of the human body. The gut microbiota expresses over 3.3 million bacterial genes, while the human genome expresses only 20 thousand genes. Microbe gene-products exert pivotal functions via the regulation of food digestion and immune system development. Studies are confirming that manipulation of non-pathogenic bacterial strains in the host can stimulate the recovery of the immune response to pathogenic bacteria causing diseases. Different approaches, including the use of nutraceutics (prebiotics and probiotics) as well as phages engineered with CRISPR/Cas systems and quorum sensing systems have been developed as new therapies for controlling dysbiosis (alterations in microbial community) and common diseases (e.g., diabetes and obesity). The designing and production of pharmaceuticals based on our own body’s microbiome is an emerging field and is rapidly growing to be fully explored in the near future. This review provides an outlook on recent findings on the human microbiomes, their impact on health and diseases, and on the development of targeted therapies. PMID:26500616
Rapoport, Basil; Aliesky, Holly A.; Banuelos, Bianca; Chen, Chun-Rong; McLachlan, Sandra M.
2015-01-01
Antibodies that stimulate the thyrotropin receptor (TSHR), the cause of Graves’ hyperthyroidism, only develop in humans. TSHR antibodies can be induced in mice by immunization but studying pathogenesis and therapeutic intervention requires a model without immunization. Spontaneous, iodine-accelerated, thyroid autoimmunity develops in NOD.H2h4 mice associated with thyroglobulin and thyroid-peroxidase, but not TSHR, antibodies. We hypothesized that transferring the human (h)TSHR A-subunit to NOD.H2h4 mice would result in loss of tolerance to this protein. BALB/c hTSHR A-subunit mice were bred to NOD.H2h4 mice and transgenic offspring were repeatedly backcrossed to NOD.H2h4 mice. All offspring developed antibodies to thyroglobulin and thyroid-peroxidase. However, only TSHR-transgenic NOD.H2h4 mice (TSHR/NOD.H2h4) developed pathogenic TSHR antibodies as detected using clinical Graves’ disease assays. As in humans, TSHR/NOD.H2h4 females were more prone than males to developing pathogenic TSHR antibodies. Fortunately, in view of the confounding effect of excess thyroid hormone on immune responses, spontaneously arising pathogenic (h)TSHR antibodies cross-react poorly with the mouse TSHR and do not cause thyrotoxicosis. In summary, the TSHR/NOD.H2h4 mouse strain develops spontaneous, iodine-accelerated, pathogenic TSHR antibodies in females, providing a unique model to investigate disease pathogenesis and test novel TSHR-antigen specific immunotherapies aimed at curing Graves’ disease in humans. PMID:25825442
Bhat, Meera; Firth, Matthew A.; Williams, Simon H.; Frye, Matthew J.; Simmonds, Peter; Conte, Juliette M.; Ng, James; Garcia, Joel; Bhuva, Nishit P.; Lee, Bohyun; Che, Xiaoyu; Quan, Phenix-Lan; Lipkin, W. Ian
2014-01-01
ABSTRACT Norway rats (Rattus norvegicus) are globally distributed and concentrate in urban environments, where they live and feed in closer proximity to human populations than most other mammals. Despite the potential role of rats as reservoirs of zoonotic diseases, the microbial diversity present in urban rat populations remains unexplored. In this study, we used targeted molecular assays to detect known bacterial, viral, and protozoan human pathogens and unbiased high-throughput sequencing to identify novel viruses related to agents of human disease in commensal Norway rats in New York City. We found that these rats are infected with bacterial pathogens known to cause acute or mild gastroenteritis in people, including atypical enteropathogenic Escherichia coli, Clostridium difficile, and Salmonella enterica, as well as infectious agents that have been associated with undifferentiated febrile illnesses, including Bartonella spp., Streptobacillus moniliformis, Leptospira interrogans, and Seoul hantavirus. We also identified a wide range of known and novel viruses from groups that contain important human pathogens, including sapoviruses, cardioviruses, kobuviruses, parechoviruses, rotaviruses, and hepaciviruses. The two novel hepaciviruses discovered in this study replicate in the liver of Norway rats and may have utility in establishing a small animal model of human hepatitis C virus infection. The results of this study demonstrate the diversity of microbes carried by commensal rodent species and highlight the need for improved pathogen surveillance and disease monitoring in urban environments. PMID:25316698
DOE Office of Scientific and Technical Information (OSTI.GOV)
McDermott, Jason E.; Braun, Pascal; Bonneau, Richard A.
Pathogenic infections are a major cause of both human disease and loss of crop yields and animal stocks and thus cause immense damage to the worldwide economy. The significance of infectious diseases is expected to increase in an ever more connected warming world, in which new viral, bacterial and fungal pathogens can find novel hosts and ecologic niches. At the same time, the complex and sophisticated mechanisms by which diverse pathogenic agents evade defense mechanisms and subvert their hosts networks to suit their lifestyle needs is still very incompletely understood especially from a systems perspective [1]. Thus, understanding host-pathogen interactionsmore » is both an important and a scientifically fascinating topic. Recently, technology has offered the opportunity to investigate host-pathogen interactions on a level of detail and scope that offers immense computational and analytical possibilities. Genome sequencing was pioneered on some of these pathogens, and the number of strains and variants of pathogens sequenced to date vastly outnumbers the number of host genomes available. At the same time, for both plant and human hosts more and more data on population level genomic variation becomes available and offers a rich field for analysis into the genetic interactions between host and pathogen.« less
Background/Question/Methods Bacterial pathogens in surface water present disease risks to aquatic communities and for human recreational activities. Sources of these pathogens include runoff from urban, suburban, and agricultural point and non-point sources, but hazardous micr...
Shattuck, Wendy M C; Dyer, Megan C; Desrosiers, Joe; Fast, Loren D; Terry, Frances E; Martin, William D; Moise, Leonard; De Groot, Anne S; Mather, Thomas N
2014-01-01
Ticks are notorious vectors of disease for humans, and many species of ticks transmit multiple pathogens, sometimes in the same tick bite. Accordingly, a broad-spectrum vaccine that targets vector ticks and pathogen transmission at the tick/host interface, rather than multiple vaccines against every possible tickborne pathogen, could become an important tool for resolving an emerging public health crisis. The concept for such a tick protective vaccine comes from observations of an acquired tick resistance (ATR) that can develop in non-natural hosts of ticks following sensitization to tick salivary components. Mice are commonly used as models to study immune responses to human pathogens but normal mice are natural hosts for many species of ticks and fail to develop ATR. We evaluated HLA DR3 transgenic (tg) "humanized" mice as a potential model of ATR and assessed the possibility of using this animal model for tick protective vaccine discovery studies. Serial tick infestations with pathogen-free Ixodes scapularis ticks were used to tick-bite sensitize HLA DR3 tg mice. Sensitization resulted in a cytokine skew favoring a Th2 bias as well as partial (57%) protection to infection with Lyme disease spirochetes (Borrelia burgdorferi) following infected tick challenge when compared to tick naïve counterparts. I. scapularis salivary gland homogenate (SGH) and a group of immunoinformatic-predicted T cell epitopes identified from the I. scapularis salivary transcriptome were used separately to vaccinate HLA DR3 tg mice, and these mice also were assessed for both pathogen protection and epitope recognition. Reduced pathogen transmission along with a Th2 skew resulted from SGH vaccination, while no significant protection and a possible T regulatory bias was seen in epitope-vaccinated mice. This study provides the first proof-of-concept for using HLA DR tg "humanized" mice for studying the potential tick protective effects of immunoinformatic- or otherwise-derived tick salivary components as tickborne disease vaccines.
Oliver, S P; Jayarao, B M; Almeida, R A
2005-01-01
Milk and products derived from milk of dairy cows can harbor a variety of microorganisms and can be important sources of foodborne pathogens. The presence of foodborne pathogens in milk is due to direct contact with contaminated sources in the dairy farm environment and to excretion from the udder of an infected animal. Most milk is pasteurized, so why should the dairy industry be concerned about the microbial quality of bulk tank milk? There are several valid reasons, including (1) outbreaks of disease in humans have been traced to the consumption of unpasteurized milk and have also been traced back to pasteurized milk, (2) unpasteurized milk is consumed directly by dairy producers, farm employees, and their families, neighbors, and raw milk advocates, (3) unpasteurized milk is consumed directly by a large segment of the population via consumption of several types of cheeses manufactured from unpasteurized milk, (4) entry of foodborne pathogens via contaminated raw milk into dairy food processing plants can lead to persistence of these pathogens in biofilms, and subsequent contamination of processed milk products and exposure of consumers to pathogenic bacteria, (5) pasteurization may not destroy all foodborne pathogens in milk, and (6) inadequate or faulty pasteurization will not destroy all foodborne pathogens. Furthermore, pathogens such as Listeria monocytogenes can survive and thrive in post-pasteurization processing environments, thus leading to recontamination of dairy products. These pathways pose a risk to the consumer from direct exposure to foodborne pathogens present in unpasteurized dairy products as well as dairy products that become re-contaminated after pasteurization. The purpose of this communication is to review literature published on the prevalence of bacterial foodborne pathogens in milk and in the dairy environment, and to discuss public health and food safety issues associated with foodborne pathogens found in the dairy environment. Information presented supports the model in which the presence of pathogens depends on ingestion of contaminated feed followed by amplification in bovine hosts and fecal dissemination in the farm environment. The final outcome of this cycle is a constantly maintained reservoir of foodborne pathogens that can reach humans by direct contact, ingestion of raw contaminated milk or cheese, or contamination during the processing of milk products. Isolation of bacterial pathogens with similar biotypes from dairy farms and from outbreaks of human disease substantiates this hypothesis.
Human pathogenic bacteria, fungi, and viruses in Drosophila
Panayidou, Stavria; Ioannidou, Eleni; Apidianakis, Yiorgos
2014-01-01
Drosophila has been the invertebrate model organism of choice for the study of innate immune responses during the past few decades. Many Drosophila–microbe interaction studies have helped to define innate immunity pathways, and significant effort has been made lately to decipher mechanisms of microbial pathogenesis. Here we catalog 68 bacterial, fungal, and viral species studied in flies, 43 of which are relevant to human health. We discuss studies of human pathogens in flies revealing not only the elicitation and avoidance of immune response but also mechanisms of tolerance, host tissue homeostasis, regeneration, and predisposition to cancer. Prominent among those is the emerging pattern of intestinal regeneration as a defense response induced by pathogenic and innocuous bacteria. Immunopathology mechanisms and many microbial virulence factors have been elucidated, but their relevance to human health conventionally necessitates validation in mammalian models of infection. PMID:24398387
Gray, Brian; Hall, Pamela; Gresham, Hattie
2013-01-01
Invasive infection by the Gram-positive pathogen Staphylococcus aureus is controlled by a four gene operon, agr that encodes a quorum sensing system for the regulation of virulence. While agr has been well studied in S. aureus, the contribution of agr homologues and analogues in other Gram-positive pathogens is just beginning to be understood. Intriguingly, other significant human pathogens, including Clostridium perfringens, Listeria monocytogenes, and Enterococcus faecalis contain agr or analogues linked to virulence. Moreover, other significant human Gram-positive pathogens use peptide based quorum sensing systems to establish or maintain infection. The potential for commonality in aspects of these signaling systems across different species raises the prospect of identifying therapeutics that could target multiple pathogens. Here, we review the status of research into these agr homologues, analogues, and other peptide based quorum sensing systems in Gram-positive pathogens as well as the potential for identifying common pathways and signaling mechanisms for therapeutic discovery. PMID:23598501
Monje, Lucas D; Nava, Santiago; Eberhardt, Ayelen T; Correa, Ana I; Guglielmone, Alberto A; Beldomenico, Pablo M
2015-02-01
To date, three tick-borne pathogenic Rickettsia species have been reported in different regions of Argentina, namely, R. rickettsii, R. parkeri, and R. massiliae. However, there are no reports available for the presence of tick-borne pathogens from the northeastern region of Argentina. This study evaluated the infection with Rickettsia species of Amblyomma dubitatum ticks collected from vegetation and feeding from capybaras (Hydrochoerus hydrochaeris) in northeastern Argentina. From a total of 374 A. dubitatum ticks collected and evaluated by PCR for the presence of rickettsial DNA, 19 were positive for the presence of Rickettsia bellii DNA, two were positive for Rickettsia sp. strain COOPERI, and one was positive for the pathogenic Rickettsia sp. strain Atlantic rainforest. To our knowledge, this study is the first report of the presence of the human pathogen Rickettsia sp. strain Atlantic rainforest and Rickettsia sp. strain COOPERI in Argentina. Moreover, our findings posit A. dubitatum as a potential vector for this pathogenic strain of Rickettsia.
Chaiwong, T; Srivoramas, T; Sueabsamran, P; Sukontason, K; Sanford, M R; Sukontason, K L
2014-06-01
The Oriental latrine fly, Chrysomya megacephala (Fabricius) (Diptera: Calliphoridae) and the house fly, Musca domestica L., (Diptera: Muscidae) are synanthropic flies which are adapted to live in close association with human habitations, thereby making them likely mechanical vectors of several pathogens to humans. There were two main aims of this study. The first aim was to determine the prevalence of these two fly species from five types of human habitations including: fresh-food markets, garbage piles, restaurants, school cafeterias and paddy fields, in the Muang Ubon Ratchathani and Warinchamrap districts of Ubon Ratchathani province of Northeast Thailand. Flies collection were conducted monthly from September 2010-October 2011 using a reconstructable funnel trap, containing 1 day-tainted beef offal as bait. A total of 7 750 flies (6 401 C. megacephala and 1 349 M.domestica) were collected. The second aim was to examine the potential of these flies to carry pathogenic bacteria. Bacteria were isolated from 994 individual flies collected using a sweep net (555 C. megacephala and 439 M. domestica). A total of 15 bacterial genera were isolated from the external surfaces, comprising ten genera of gram-negative bacteria and five gram-positive bacteria. The most common bacteria isolated from both species were coagulase-negative staphylococci, followed by Streptococcus group D non-enterococci. Human pathogenic enteric bacteria isolated were Salmonella sp., Shigella sp., Escherichia coli O157:H7, Salmonella typhi, Bacillus sp., and Enterococcus sp., of which S. typhi is the first report of isolation from these fly species. Other human pathogens included Staphylococcus aureus and Pseudomonas aeruginosa. Not only were the number of C. megacephala positive for bacteria significantly higher than for M. domestica, but they were also carrying ~11-12 times greater bacterial load than M. domestica. These data suggest that both fly species should be considered potential mechanical vectors of bacterial pathogens associated with human habitations year-round in this region of Northeast Thailand.
Barragan, Veronica; Nieto, Nathan; Keim, Paul; Pearson, Talima
2017-01-28
Leptospirosis is a major zoonotic disease with widespread distribution and a large impact on human health. Carrier animals excrete pathogenic Leptospira primarily in their urine. Infection occurs when the pathogen enters a host through mucosa or small skin abrasions. Humans and other animals are exposed to the pathogen by direct contact with urine, contaminated soil or water. While many factors influence environmental cycling and the transmission of Leptospira to humans, the load of pathogenic Leptospira in the environment is likely to play a major role. Peridomestic rats are often implicated as a potential source of human disease; however exposure to other animals is a risk factor as well. The aim of this report is to highlight the importance of various carrier animals in terms of the quantity of Leptospira shed into the environment. For this, we performed a systematic literature review and a meta-analysis of the amount of pathogen that various animal species shed in their urine. The quantity of pathogen has been reported for cows, deer, dogs, humans, mice, and rats, in a total of 14 research articles. We estimated the average Leptospira per unit volume shed by each animal species, and the daily environmental contribution by considering the total volume of urine excreted by each carrier animal. Rats excrete the highest quantity of Leptospira per millilitre of urine (median = 5.7 × 10 6 cells), but large mammals excrete much more urine and thus shed significantly more Leptospira per day (5.1 × 10 8 to 1.3 × 10 9 cells). Here we illustrate how, in a low-income rural Ecuadorian community, host population demographics, and prevalence of Leptospira infection can be integrated with estimates of shed Leptospira to suggest that peridomestic cattle may be more important than rats in environmental cycling and ultimately, transmission to humans.
Can Plant Viruses Cross the Kingdom Border and Be Pathogenic to Humans?
Balique, Fanny; Lecoq, Hervé; Raoult, Didier; Colson, Philippe
2015-01-01
Phytoviruses are highly prevalent in plants worldwide, including vegetables and fruits. Humans, and more generally animals, are exposed daily to these viruses, among which several are extremely stable. It is currently accepted that a strict separation exists between plant and vertebrate viruses regarding their host range and pathogenicity, and plant viruses are believed to infect only plants. Accordingly, plant viruses are not considered to present potential pathogenicity to humans and other vertebrates. Notwithstanding these beliefs, there are many examples where phytoviruses circulate and propagate in insect vectors. Several issues are raised here that question if plant viruses might further cross the kingdom barrier to cause diseases in humans. Indeed, there is close relatedness between some plant and animal viruses, and almost identical gene repertoires. Moreover, plant viruses can be detected in non-human mammals and humans samples, and there are evidence of immune responses to plant viruses in invertebrates, non-human vertebrates and humans, and of the entry of plant viruses or their genomes into non-human mammal cells and bodies after experimental exposure. Overall, the question raised here is unresolved, and several data prompt the additional extensive study of the interactions between phytoviruses and non-human mammals and humans, and the potential of these viruses to cause diseases in humans. PMID:25903834
Johnson, Timothy J; Kariyawasam, Subhashinie; Wannemuehler, Yvonne; Mangiamele, Paul; Johnson, Sara J; Doetkott, Curt; Skyberg, Jerod A; Lynne, Aaron M; Johnson, James R; Nolan, Lisa K
2007-04-01
Escherichia coli strains that cause disease outside the intestine are known as extraintestinal pathogenic E. coli (ExPEC) and include human uropathogenic E. coli (UPEC) and avian pathogenic E. coli (APEC). Regardless of host of origin, ExPEC strains share many traits. It has been suggested that these commonalities may enable APEC to cause disease in humans. Here, we begin to test the hypothesis that certain APEC strains possess potential to cause human urinary tract infection through virulence genotyping of 1,000 APEC and UPEC strains, generation of the first complete genomic sequence of an APEC (APEC O1:K1:H7) strain, and comparison of this genome to all available human ExPEC genomic sequences. The genomes of APEC O1 and three human UPEC strains were found to be remarkably similar, with only 4.5% of APEC O1's genome not found in other sequenced ExPEC genomes. Also, use of multilocus sequence typing showed that some of the sequenced human ExPEC strains were more like APEC O1 than other human ExPEC strains. This work provides evidence that at least some human and avian ExPEC strains are highly similar to one another, and it supports the possibility that a food-borne link between some APEC and UPEC strains exists. Future studies are necessary to assess the ability of APEC to overcome the hurdles necessary for such a food-borne transmission, and epidemiological studies are required to confirm that such a phenomenon actually occurs.
Newburg, D S
2009-04-01
This review discusses the role of human milk glycans in protecting infants, but the conclusion that the human milk glycans constitute an innate immune system whereby the mother protects her offspring may have general applicability in all mammals, including species of commercial importance. Infants that are not breastfed have a greater incidence of severe diarrhea and respiratory diseases than those who are breastfed. In the past, this had been attributed primarily to human milk secretory antibodies. However, the oligosaccharides are major components of human milk, and milk is also rich in other glycans, including glycoproteins, mucins, glycosaminoglycans, and glycolipids. These milk glycans, especially the oligosaccharides, are composed of thousands of components. The milk factor that promotes gut colonization by Bifidobacterium bifidum was found to be a glycan, and such prebiotic characteristics may contribute to protection against infectious agents. However, the ability of human milk glycans to protect the neonate seems primarily to be due to their inhibition of pathogen binding to their host cell target ligands. Many such examples include specific fucosylated oligosaccharides and glycans that inhibit specific pathogens. Most human milk oligosaccharides are fucosylated, and their production depends on fucosyltransferase enzymes; mutations in these fucosyltransferase genes are common and underlie the various Lewis blood types in humans. Variable expression of specific fucosylated oligosaccharides in milk, also a function of these genes (and maternal Lewis blood type), is significantly associated with the risk of infectious disease in breastfed infants. Human milk also contains major quantities and large numbers of sialylated oligosaccharides, many of which are also present in bovine colostrum. These could similarly inhibit several common viral pathogens. Moreover, human milk oligosaccharides strongly attenuate inflammatory processes in the intestinal mucosa. These results support the hypothesis that oligosaccharides and other glycans are the major constituents of an innate immune system of human milk whereby the mother protects her infant from enteric and other pathogens through breastfeeding. These protective glycans may prove useful as a basis for the development of novel prophylactic and therapeutic agents that inhibit disease by mucosal pathogens in many species.
USDA-ARS?s Scientific Manuscript database
Aneuploidy can result in significant phenotypic changes, which can sometimes be selectively advantageous. For example, aneuploidy confers resistance to antifungal drugs in human pathogenic fungi. Aneuploidy has also been observed in invasive fungal and oomycete plant pathogens in the field. Environm...
Genomic Islands in Pathogenic Filamentous Fungus Aspergillus fumigatus
USDA-ARS?s Scientific Manuscript database
We present the genome sequences of a new clinical isolate, CEA10, of an important human pathogen, Aspergillus fumigatus, and two closely related, but rarely pathogenic species, Neosartorya fischeri NRRL181 and Aspergillus clavatus NRRL1. Comparative genomic analysis of CEA10 with the recently sequen...
Irrigation waters as a source of pathogenic microorganisms in produce: a review
USDA-ARS?s Scientific Manuscript database
There is increasing evidence that consumption of raw fresh produce is a major factor contributing to human gastrointestinal illness. A wide variety of pathogens contribute to food-borne illnesses, including bacteria (e.g., Salmonella, pathogenic E. coli), protozoa (e.g., Cryptosporidium, Giardia), ...
Wyrsch, Ethan R.; Roy Chowdhury, Piklu; Chapman, Toni A.; Charles, Ian G.; Hammond, Jeffrey M.; Djordjevic, Steven P.
2016-01-01
Contamination of waste effluent from hospitals and intensive food animal production with antimicrobial residues is an immense global problem. Antimicrobial residues exert selection pressures that influence the acquisition of antimicrobial resistance and virulence genes in diverse microbial populations. Despite these concerns there is only a limited understanding of how antimicrobial residues contribute to the global problem of antimicrobial resistance. Furthermore, rapid detection of emerging bacterial pathogens and strains with resistance to more than one antibiotic class remains a challenge. A comprehensive, sequence-based genomic epidemiological surveillance model that captures essential microbial metadata is needed, both to improve surveillance for antimicrobial resistance and to monitor pathogen evolution. Escherichia coli is an important pathogen causing both intestinal [intestinal pathogenic E. coli (IPEC)] and extraintestinal [extraintestinal pathogenic E. coli (ExPEC)] disease in humans and food animals. ExPEC are the most frequently isolated Gram negative pathogen affecting human health, linked to food production practices and are often resistant to multiple antibiotics. Cattle are a known reservoir of IPEC but they are not recognized as a source of ExPEC that impact human or animal health. In contrast, poultry are a recognized source of multiple antibiotic resistant ExPEC, while swine have received comparatively less attention in this regard. Here, we review what is known about ExPEC in swine and how pig production contributes to the problem of antibiotic resistance. PMID:27379026
Computational prediction of host-pathogen protein-protein interactions.
Dyer, Matthew D; Murali, T M; Sobral, Bruno W
2007-07-01
Infectious diseases such as malaria result in millions of deaths each year. An important aspect of any host-pathogen system is the mechanism by which a pathogen can infect its host. One method of infection is via protein-protein interactions (PPIs) where pathogen proteins target host proteins. Developing computational methods that identify which PPIs enable a pathogen to infect a host has great implications in identifying potential targets for therapeutics. We present a method that integrates known intra-species PPIs with protein-domain profiles to predict PPIs between host and pathogen proteins. Given a set of intra-species PPIs, we identify the functional domains in each of the interacting proteins. For every pair of functional domains, we use Bayesian statistics to assess the probability that two proteins with that pair of domains will interact. We apply our method to the Homo sapiens-Plasmodium falciparum host-pathogen system. Our system predicts 516 PPIs between proteins from these two organisms. We show that pairs of human proteins we predict to interact with the same Plasmodium protein are close to each other in the human PPI network and that Plasmodium pairs predicted to interact with same human protein are co-expressed in DNA microarray datasets measured during various stages of the Plasmodium life cycle. Finally, we identify functionally enriched sub-networks spanned by the predicted interactions and discuss the plausibility of our predictions. Supplementary data are available at http://staff.vbi.vt.edu/dyermd/publications/dyer2007a.html. Supplementary data are available at Bioinformatics online.
Summer, Elizabeth J.; Gill, Jason J.; Upton, Chris; Gonzalez, Carlos F.; Young, Ry
2007-01-01
Summary Most bacteria of the genus Burkholderia are soil- and rhizosphere- associated, noted for their metabolic plasticity in the utilization of a wide range of organic compounds as carbon sources. Many Burkholderia species are also opportunistic human and plant pathogens and the distinction between environmental, plant, and human pathogens is not always clear. Burkholderia phages are not uncommon and multiple cryptic prophages are identifiable in the sequenced Burkholderia genomes. Phages have played a crucial role in the transmission of virulence factors among many important pathogens, however, the data does not yet support a significant correlation between phages and pathogenicity in the Burkholderia. This may be due to the role of Burkholderia as a “versaphile” such that selection is occurring in several niches, including roles as a pathogen and in the context of environmental survival. PMID:17719265
Pathogens in drinking water: Are there any new ones
DOE Office of Scientific and Technical Information (OSTI.GOV)
Reasoner, D.J.
1993-01-01
Since 1976 three newly recognized human pathogens have become familiar to the drinking water industry as waterborne disease agents. These are: the legionnaires disease agent, Legionella pneumophila and related species; and two protozoan pathogens, Giardia lamblia and Cryptosporidium parvum, both of which form highly disinfectant resistant cysts that are shed in the feces of infected individuals. The question frequently arises - are there other emerging waterborne pathogens that may pose a human health problem that the drinking water industry will have to deal with. The paper will review the current state of knowledge of the occurrence and incidence of pathogensmore » and opportunistic pathogens other than Legionella, Giardia and Cryptosporidium in treated and untreated drinking water. Bacterial agents that will be reviewed include Aeromonas, Pseudomonas, Campylobacter, Mycobacterium, Yersinia and Plesiomonas. Aspects of detection of these agents including detection methods and feasibility of monitoring will be addressed.« less
Sexual reproduction and the evolution of microbial pathogens.
Heitman, Joseph
2006-09-05
Three common systemic human fungal pathogens--Cryptococcus neoformans, Candida albicans and Aspergillus fumigatus--have retained all the machinery to engage in sexual reproduction, and yet their populations are often clonal with limited evidence for recombination. Striking parallels have emerged with four protozoan parasites that infect humans: Toxoplasma gondii, Trypanosoma brucei, Trypanosoma cruzi and Plasmodium falciparum. Limiting sexual reproduction appears to be a common virulence strategy, enabling generation of clonal populations well adapted to host and environmental niches, yet retaining the ability to engage in sexual or parasexual reproduction and respond to selective pressure. Continued investigation of the sexual nature of microbial pathogens should facilitate both laboratory investigation and an understanding of the complex interplay between pathogens, hosts, vectors, and their environments.
Image-based Analysis to Study Plant Infection with Human Pathogens
Schikora, Marek; Schikora, Adam
2014-01-01
Our growing awareness that contaminated plants, fresh fruits and vegetables are responsible for a significant proportion of food poisoning with pathogenic microorganisms indorses the demand to understand the interactions between plants and human pathogens. Today we understand that those pathogens do not merely survive on or within plants, they actively infect plant organisms by suppressing their immune system. Studies on the infection process and disease development used mainly physiological, genetic, and molecular approaches, and image-based analysis provides yet another method for this toolbox. Employed as an observational tool, it bears the potential for objective and high throughput approaches, and together with other methods it will be very likely a part of data fusion approaches in the near future. PMID:25505501
USDA-ARS?s Scientific Manuscript database
Calorie restriction (CR) inhibits inflammation and slows aging in many animal species, but in rodents housed in pathogen-free facilities, CR impairs immunity against certain pathogens. However, little is known about the effects of long-term moderate CR on immune function in humans. In this multi-cen...
Diuk-Wasser, Maria A.; Vannier, Edouard
2015-01-01
Ixodes ticks maintain a large and diverse array of human pathogens in the enzootic cycle, including Borrelia burgdorferi and Babesia microti. Despite the poor ecological fitness of B. microti, babesiosis has recently emerged in areas endemic for Lyme disease. Studies in ticks, reservoir hosts and humans indicate that coinfection with B. burgdorferi and B. microti is common, promotes transmission and emergence of B. microti in the enzootic cycle, and causes greater disease severity and duration in humans. These integrative studies may serve as a paradigm for the study of other vector-borne coinfections. Identifying ecological drivers of pathogen emergence and host factors that fuel disease severity will help guide the design of effective curative and prevention strategies. PMID:26613664
Hoppe, T; Kraus, D; Novak, N; Probstmeier, R; Frentzen, M; Wenghoefer, M; Jepsen, S; Winter, J
2016-10-01
The impact of oral pathogens onto the generation and variability of oral tumors has only recently been investigated. To get further insights, oral cancer cells were treated with pathogens and additionally, as a result of this bacterial cellular infection, with human defensins, which are as anti-microbial peptide members of the innate immune system. After cell stimulation, proliferation behavior, expression analysis of oncogenic relevant defensin genes, and effects on EGFR signaling were investigated. The expression of oncogenic relevant anti-microbial peptides was analyzed with real-time PCR and immunohistochemistry. Cell culture experiments were performed to examine cellular impacts caused by stimulation, i.e., altered gene expression, proliferation rate, and EGF receptor-dependent signaling. Incubation of oral tumor cells with an oral pathogen (Porphyromonas gingivalis) and human α-defensins led to an increase in cell proliferation. In contrast, another oral bacterium used, Aggregatibacter actinomycetemcomitans, enhanced cell death. The bacteria and anti-microbial peptides exhibited diverse effects on the transcript levels of oncogenic relevant defensin genes and epidermal growth factor receptor signaling. These two oral pathogens exhibited opposite primary effects on the proliferation behavior of oral tumor cells. Nevertheless, both microbe species led to similar secondary impacts on the proliferation rate by modifying expression levels of oncogenic relevant α-defensin genes. In this respect, oral pathogens exerted multiplying effects on tumor cell proliferation. Additionally, human defensins were shown to differently influence epidermal growth factor receptor signaling, supporting the hypothesis that these anti-microbial peptides serve as ligands of EGFR, thus modifying the proliferation behavior of oral tumor cells.
Nonribosomal peptide synthetase biosynthetic clusters of ESKAPE pathogens.
Gulick, Andrew M
2017-08-02
Covering: up to 2017.Natural products are important secondary metabolites produced by bacterial and fungal species that play important roles in cellular growth and signaling, nutrient acquisition, intra- and interspecies communication, and virulence. A subset of natural products is produced by nonribosomal peptide synthetases (NRPSs), a family of large, modular enzymes that function in an assembly line fashion. Because of the pharmaceutical activity of many NRPS products, much effort has gone into the exploration of their biosynthetic pathways and the diverse products they make. Many interesting NRPS pathways have been identified and characterized from both terrestrial and marine bacterial sources. Recently, several NRPS pathways in human commensal bacterial species have been identified that produce molecules with antibiotic activity, suggesting another source of interesting NRPS pathways may be the commensal and pathogenic bacteria that live on the human body. The ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) have been identified as a significant cause of human bacterial infections that are frequently multidrug resistant. The emerging resistance profile of these organisms has prompted calls from multiple international agencies to identify novel antibacterial targets and develop new approaches to treat infections from ESKAPE pathogens. Each of these species contains several NRPS biosynthetic gene clusters. While some have been well characterized and produce known natural products with important biological roles in microbial physiology, others have yet to be investigated. This review catalogs the NRPS pathways of ESKAPE pathogens. The exploration of novel NRPS products may lead to a better understanding of the chemical communication used by human pathogens and potentially to the discovery of novel therapeutic approaches.
Fernandes, Maria Cecilia; Dillon, Laura A L; Belew, Ashton Trey; Bravo, Hector Corrada; Mosser, David M; El-Sayed, Najib M
2016-05-10
Macrophages are mononuclear phagocytes that constitute a first line of defense against pathogens. While lethal to many microbes, they are the primary host cells of Leishmania spp. parasites, the obligate intracellular pathogens that cause leishmaniasis. We conducted transcriptomic profiling of two Leishmania species and the human macrophage over the course of intracellular infection by using high-throughput RNA sequencing to characterize the global gene expression changes and reprogramming events that underlie the interactions between the pathogen and its host. A systematic exclusion of the generic effects of large-particle phagocytosis revealed a vigorous, parasite-specific response of the human macrophage early in the infection that was greatly tempered at later time points. An analogous temporal expression pattern was observed with the parasite, suggesting that much of the reprogramming that occurs as parasites transform into intracellular forms generally stabilizes shortly after entry. Following that, the parasite establishes an intracellular niche within macrophages, with minimal communication between the parasite and the host cell later during the infection. No significant difference was observed between parasite species transcriptomes or in the transcriptional response of macrophages infected with each species. Our comparative analysis of gene expression changes that occur as mouse and human macrophages are infected by Leishmania spp. points toward a general signature of the Leishmania-macrophage infectome. Little is known about the transcriptional changes that occur within mammalian cells harboring intracellular pathogens. This study characterizes the gene expression signatures of Leishmania spp. parasites and the coordinated response of infected human macrophages as the pathogen enters and persists within them. After accounting for the generic effects of large-particle phagocytosis, we observed a parasite-specific response of the human macrophages early in infection that was reduced at later time points. A similar expression pattern was observed in the parasites. Our analyses provide specific insights into the interplay between human macrophages and Leishmania parasites and constitute an important general resource for the study of how pathogens evade host defenses and modulate the functions of the cell to survive intracellularly. Copyright © 2016 Fernandes et al.
2012-01-01
Background Francisella is a genus of gram-negative bacterium highly virulent in fishes and human where F. tularensis is causing the serious disease tularaemia in human. Recently Francisella species have been reported to cause mortality in aquaculture species like Atlantic cod and tilapia. We have completed the sequencing and draft assembly of the Francisella noatunensis subsp. orientalisToba04 strain isolated from farmed Tilapia. Compared to other available Francisella genomes, it is most similar to the genome of Francisella philomiragia subsp. philomiragia, a free-living bacterium not virulent to human. Results The genome is rearranged compared to the available Francisella genomes even though we found no IS-elements in the genome. Nearly 16% percent of the predicted ORFs are pseudogenes. Computational pathway analysis indicates that a number of the metabolic pathways are disrupted due to pseudogenes. Comparing the novel genome with other available Francisella genomes, we found around 2.5% of unique genes present in Francisella noatunensis subsp. orientalis Toba04 and a list of genes uniquely present in the human-pathogenic Francisella subspecies. Most of these genes might have transferred from bacterial species through horizontal gene transfer. Comparative analysis between human and fish pathogen also provide insights into genes responsible for pathogenecity. Our analysis of pseudogenes indicates that the evolution of Francisella subspecies’s pseudogenes from Tilapia is old with large number of pseudogenes having more than one inactivating mutation. Conclusions The fish pathogen has lost non-essential genes some time ago. Evolutionary analysis of the Francisella genomes, strongly suggests that human and fish pathogenic Francisella species have evolved independently from free-living metabolically competent Francisella species. These findings will contribute to understanding the evolution of Francisella species and pathogenesis. PMID:23131096
Zumla, Alimuddin; Dar, Osman; Kock, Richard; Muturi, Matthew; Ntoumi, Francine; Kaleebu, Pontiano; Eusebio, Macete; Mfinanga, Sayoki; Bates, Matthew; Mwaba, Peter; Ansumana, Rashid; Khan, Mishal; Alagaili, Abdulaziz N; Cotten, Matthew; Azhar, Esam I; Maeurer, Markus; Ippolito, Giuseppe; Petersen, Eskild
2016-06-01
The appearance of novel pathogens of humans with epidemic potential and high mortality rates have threatened global health security for centuries. Over the past few decades new zoonotic infectious diseases of humans caused by pathogens arising from animal reservoirs have included West Nile virus, Yellow fever virus, Ebola virus, Nipah virus, Lassa Fever virus, Hanta virus, Dengue fever virus, Rift Valley fever virus, Crimean-Congo haemorrhagic fever virus, severe acute respiratory syndrome coronavirus, highly pathogenic avian influenza viruses, Middle East Respiratory Syndrome Coronavirus, and Zika virus. The recent Ebola Virus Disease epidemic in West Africa and the ongoing Zika Virus outbreak in South America highlight the urgent need for local, regional and international public health systems to be be more coordinated and better prepared. The One Health concept focuses on the relationship and interconnectedness between Humans, Animals and the Environment, and recognizes that the health and wellbeing of humans is intimately connected to the health of animals and their environment (and vice versa). Critical to the establishment of a One Health platform is the creation of a multidisciplinary team with a range of expertise including public health officers, physicians, veterinarians, animal husbandry specialists, agriculturalists, ecologists, vector biologists, viral phylogeneticists, and researchers to co-operate, collaborate to learn more about zoonotic spread between animals, humans and the environment and to monitor, respond to and prevent major outbreaks. We discuss the unique opportunities for Middle Eastern and African stakeholders to take leadership in building equitable and effective partnerships with all stakeholders involved in human and health systems to take forward a 'One Health' approach to control such zoonotic pathogens with epidemic potential. Copyright © 2016 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Gabastou, J M; Kernéis, S; Bernet-Camard, M F; Barbat, A; Coconnier, M H; Kaper, J B; Servin, A L
1995-09-01
Pathogens and eucaryotic cells are active partners during the process of pathogenicity. To gain access to enterocytes and to cross the epithelial membrane, many enterovirulent microorganisms interact with the brush border membrane-associated components as receptors. Recent reports provide evidence that intestinal cell differentiation plays a role in microbial pathogenesis. Human enteropathogenic Escherichia coli (EPEC) develop their pathogenicity upon infecting enterocytes. To determine if intestinal epithelial cell differentiation influences EPEC pathogenicity, we examined the infection of human intestinal epithelial cells by JPN 15 (pMAR7) [EAF+ eae+] EPEC strain as a function of the cell differentiation. The human embryonic intestinal INT407 cells, the human colonic T84 cells, the human undifferentiated HT-29 cells (HT-29 Std) and two enterocytic cell lines, HT-29 glc-/+ and Caco-2 cells, were used as cellular models. Cells were infected apically with the EPEC strain and the cell-association and cell-entry were examined by quantitative determination using metabolically radiolabeled bacteria, as well as by light, scanning and transmission electron microscopy. [EAF+ eae+] EPEC bacteria efficiently colonized the cultured human intestinal cells. Diffuse bacterial adhesion occurred to undifferentiated HT-29 Std and INT407 cells, whereas characteristic EPEC cell clusters were observed on fully differentiated enterocytic HT-29 glc-/+ cells and on colonic crypt T84 cells. As shown using the Caco-2 cell line, which spontaneously differentiates in culture, the formation of EPEC clusters increased as a function of the epithelial cell differentiation. In contrast, efficient cell-entry of [EAF+ eae+] EPEC bacteria occurred in recently differentiated Caco-2 cells and decreased when the cells were fully differentiated.(ABSTRACT TRUNCATED AT 250 WORDS)
Moriconi, Martina; Rugna, Gianluca; Calzolari, Mattia; Bellini, Romeo; Albieri, Alessandro; Angelini, Paola; Cagarelli, Roberto; Landini, Maria P.
2017-01-01
Pathogens transmitted to humans by phlebotomine sand flies are neglected, as they cause infectious diseases that are not on the priority list of national and international public health systems. However, the infections caused by protozoa of the Leishmania genus and viruses belonging to the Phlebovirus genus (family Phenuiviridae)—the most significant group of viruses transmitted by sand flies—have a relevant role for human pathology. These infections are emerging in the Mediterranean region and will likely spread in forthcoming decades, posing a complex threat to human health. Four species and 2 hybrid strains of Leishmania are pathogenic for humans in the Mediterranean Basin, with an estimated annual incidence of 239,500–393,600 cases of cutaneous leishmaniasis and 1,200–2,000 cases of visceral leishmaniasis. Among the phleboviruses, Toscana virus can cause neuroinvasive infections, while other phleboviruses are responsible for a typical “3-day fever”; the actual incidence of Phlebovirus infections in the Mediterranean area is unknown, although at least 250 million people are exposed. Here, we reviewed the current literature on epidemiology of sand fly–borne infections in the Mediterranean Basin, with a focus on humans. Our analysis indicates the need for increased public health activities directed to determine the disease burden of these infections as well as to improve their surveillance. Among the emerging challenges concerning sand fly–borne pathogens, the relationships between sand fly–borne protozoa and viruses should be considered in future studies, including epidemiological links between Leishmania and phleboviruses as well as the conditional capacity for these pathogens to be involved in interactions that may evolve towards increased virulence. PMID:28796786
Molecular epidemiology of mastitis pathogens of dairy cattle and comparative relevance to humans.
Zadoks, Ruth N; Middleton, John R; McDougall, Scott; Katholm, Jorgen; Schukken, Ynte H
2011-12-01
Mastitis, inflammation of the mammary gland, can be caused by a wide range of organisms, including gram-negative and gram-positive bacteria, mycoplasmas and algae. Many microbial species that are common causes of bovine mastitis, such as Escherichia coli, Klebsiella pneumoniae, Streptococcus agalactiae and Staphylococcus aureus also occur as commensals or pathogens of humans whereas other causative species, such as Streptococcus uberis, Streptococcus dysgalactiae subsp. dysgalactiae or Staphylococcus chromogenes, are almost exclusively found in animals. A wide range of molecular typing methods have been used in the past two decades to investigate the epidemiology of bovine mastitis at the subspecies level. These include comparative typing methods that are based on electrophoretic banding patterns, library typing methods that are based on the sequence of selected genes, virulence gene arrays and whole genome sequencing projects. The strain distribution of mastitis pathogens has been investigated within individual animals and across animals, herds, countries and host species, with consideration of the mammary gland, other animal or human body sites, and environmental sources. Molecular epidemiological studies have contributed considerably to our understanding of sources, transmission routes, and prognosis for many bovine mastitis pathogens and to our understanding of mechanisms of host-adaptation and disease causation. In this review, we summarize knowledge gleaned from two decades of molecular epidemiological studies of mastitis pathogens in dairy cattle and discuss aspects of comparative relevance to human medicine.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hung,M.; Rangarajan, E.; Munger, C.
2006-01-01
Enterobacterial common antigen (ECA) is a polysaccharide found on the outer membrane of virtually all gram-negative enteric bacteria and consists of three sugars, N-acetyl-D-glucosamine, N-acetyl-D-mannosaminuronic acid, and 4-acetamido-4,6-dideoxy-D-galactose, organized into trisaccharide repeating units having the sequence {yields}(3)-{alpha}-D-Fuc4NAc-(1{yields}4)-{beta}-D-ManNAcA-(1{yields}4)-{alpha}-D-GlcNAc-(1{yields}). While the precise function of ECA is unknown, it has been linked to the resistance of Shiga-toxin-producing Escherichia coli (STEC) O157:H7 to organic acids and the resistance of Salmonella enterica to bile salts. The final step in the synthesis of 4-acetamido-4,6-dideoxy-D-galactose, the acetyl-coenzyme A (CoA)-dependent acetylation of the 4-amino group, is carried out by TDP-fucosamine acetyltransferase (WecD). We have determined the crystal structuremore » of WecD in apo form at a 1.95-Angstroms resolution and bound to acetyl-CoA at a 1.66-Angstroms resolution. WecD is a dimeric enzyme, with each monomer adopting the GNAT N-acetyltransferase fold, common to a number of enzymes involved in acetylation of histones, aminoglycoside antibiotics, serotonin, and sugars. The crystal structure of WecD, however, represents the first structure of a GNAT family member that acts on nucleotide sugars. Based on this cocrystal structure, we have used flexible docking to generate a WecD-bound model of the acetyl-CoA-TDP-fucosamine tetrahedral intermediate, representing the structure during acetyl transfer. Our structural data show that WecD does not possess a residue that directly functions as a catalytic base, although Tyr208 is well positioned to function as a general acid by protonating the thiolate anion of coenzyme A.« less
Ramazanzadeh, Rashid; Rouhi, Samaneh; Shakib, Pegah; Shahbazi, Babak; Bidarpour, Farzam; Karimi, Mohammad
2015-05-01
Vibrio cholerae causes diarrhoeal disease that afflicts thousands of people annually. V. cholerae is classified on the basis of somatic antigens into serovars or serogroups and there are at least 200 known serogroup. Two serogroups, O1 and O139 have been associated with epidemic diseases. Virulence genes of these bacteria are OmpW, ctxA and tcpA. Due to the importance of V. cholerae infection and developing molecular diagnostics of this organism in medical and microbiology sciences, this study aimed to describe molecular characterization of V. cholerae isolated from clinical samples using a molecular method. In this study, 48 samples were provided during summer 2013 (late August and early September) by reference laboratory. Samples were assessed using biochemical tests initially. The primer of OmpW, ctxA and tcpA genes was used in Polymerase Chain Reaction (PCR) protocols. Enterobacterial Repetitive Intergenic Consensus (ERIC)-PCR and Repetitive Extragenic Palindromic (REP)-PCR methods were used to subtype V. cholerae. In this study, from a total of 48 clinical stool samples 39 (81.2 %) were positive for V. cholerae in biochemical tests and bacteria culture tests. The PCR results showed that of 39 positive isolates 35 (89.7%), 34 (87.1%) and 37 (94.8%) were positive for ctxA, tcpA and OmpW gene, respectively. Also, in the REP-PCR method with ERIC primer strains were divided into 10 groups. In the REP-PCR method with REP primer, strains were divided into 13 groups. Polymerase chain reaction has specificity and accuracy for identification of the organism and is able to differentiate biotypes. Enterobacterial repetitive intergenic consensus sequence is one of the informative and discriminative methods for the analysis of V. cholerae diversity. The REP-PCR is a less informative and discriminative method compared to other methods for the analysis of V. cholerae diversity.
Gauthier, Lauraine; Dortet, Laurent; Naas, Thierry
2017-01-01
Background There is an urgent need for accurate and rapid diagnostic tests to identify carbapenemase producing enterobacteria (CPE). Here, we have evaluated the Carbapenem Inactivation Method (CIM) test to detect CPEs from cultured colonies. Methods A total of 256 enterobacterial isolates were used to evaluate the performance of the CIM in comparison to Carba NP test and molecular detection used a reference method. Ninety three well-characterized isolates (including 29 non-CPE and 63 CPEs of worldwide origin) with decreased susceptibility to at least one carbapenem were used to (i) evaluate the efficacy of CIM test and (ii) to compare it to the Carba NP test. We also tested different carbapenems to determine the best substrate for this test. Finally, the CIM test was then evaluated prospectively against 164 isolates referred to the French National Reference Center (NRC) for Antimicrobial Resistance from may 2016 to july 2016. Results Based on the results of this retrospective study, sensitivity and specificity of the CIM and the Carba NP test were 92.1% and 100%, respectively. We demonstrated that the meropenem was the best substrate to perform the CIM test since sensitivity and specificity were 81.1% and 100% using ertapenem disk, and 100% and 65,6% using imipenem disk, and respectively. Taking in account the results of retrospective and prospective studies, CIM and Carba NP tests have similar sensitivity, specificity, positive predictive value and negative predictive values being 96.3%, 98.9%, 99.0% and 98.4% for the CIM test versus 96.9%, 100%, 100% and 100% for the Carba NP test. Conclusions Our results confirm that the CIM test may be a useful tool for the reliable confirmation of carbapenemase-activity in enterobacterial isolates, especially in clinical microbiological laboratories with limited resources, no trained personnel, and no specialized equipment. PMID:28158310
Crémet, L; Caroff, N; Dauvergne, S; Reynaud, A; Lepelletier, D; Corvec, S
2011-06-01
The prevalence of plasmid-mediated quinolone resistance (PMQR) determinants (qnrA, qnrB, qnrS, aac(6')-Ib-cr, and qepA) was investigated in a collection of 47 extended-spectrum β-lactamase (ESBL) producing enterobacterial isolates with reduced susceptibility to fluoroquinolones, recovered at Nantes University hospital, in 2006. qnr, aac(6')-Ib-cr, and qepA genes were screened by PCR, and positive results were subsequently confirmed by sequencing. The epidemiological relationship between positive isolates was studied by pulsed-field gel electrophoresis (PFGE). qnr-positive isolates were analyzed for antimicrobial susceptibility and presence of mutations in the quinolone resistance-determining region (QRDR) of gyrA and parC genes. ESBL genes were characterized by PCR and sequencing. Conjugation experiments were performed to determine whether the qnr-carrying plasmids were self-transferable. Two Klebsiella pneumoniae isolates (4.3%), not clonally related, harboured a qnrS1 gene, whereas no qnrA- or qnrB-positive isolate was detected. The aac(6')-Ib-cr gene was detected in 11 Escherichia coli and one K. pneumoniae isolates. None of the 47 isolates carried the qepA gene. ESBLs associated with QnrS1 were CTX-M-14 and CTX-M-15. The CTX-M-15 producing isolate was highly resistant to fluoroquinolones and harboured three mutations in the QRDR and two PMQR determinants (qnrS1 and aac(6')-Ib-cr). The CTX-M-14-producing isolate exhibited reduced susceptibility or resistance to fluoroquinolones without resistance to nalidixic acid. This strain harboured only a qnr gene on a single 170 kb transferable plasmid, without any mutation in the QRDR. In conclusion, our study showed that aac(6')-Ib-cr gene had occurred in multiclonal ESBL-producing enterobacterial isolates collected at Nantes University hospital in 2006, with a higher prevalence than qnr genes. Copyright © 2009 Elsevier Masson SAS. All rights reserved.
Cunningham, Andrew A.; Langton, Tom E. S.
2016-01-01
There have been few reconstructions of wildlife disease emergences, despite their extensive impact on biodiversity and human health. This is in large part attributable to the lack of structured and robust spatio-temporal datasets. We overcame logistical problems of obtaining suitable information by using data from a citizen science project and formulating spatio-temporal models of the spread of a wildlife pathogen (genus Ranavirus, infecting amphibians). We evaluated three main hypotheses for the rapid increase in disease reports in the UK: that outbreaks were being reported more frequently, that climate change had altered the interaction between hosts and a previously widespread pathogen, and that disease was emerging due to spatial spread of a novel pathogen. Our analysis characterized localized spread from nearby ponds, consistent with amphibian dispersal, but also revealed a highly significant trend for elevated rates of additional outbreaks in localities with higher human population density—pointing to human activities in also spreading the virus. Phylogenetic analyses of pathogen genomes support the inference of at least two independent introductions into the UK. Together these results point strongly to humans repeatedly translocating ranaviruses into the UK from other countries and between UK ponds, and therefore suggest potential control measures. PMID:27683363
Rivera-Pérez, Jessica I.; González, Alfredo A.; Toranzos, Gary A.
2016-01-01
As the “human microbiome era” continues, there is an increasing awareness of our resident microbiota and its indispensable role in our increased fitness as holobionts. However, the host-microbe relationship is not so clearly defined for some human symbionts. Here we discuss examples of “accidental pathogens”, meaning previously non-pathogenic and/or environmental microbes thought to have inadvertently experienced an evolutionary shift towards pathogenicity. For instance, symbionts such as Helicobacter pylori and JC Polyomavirus have been shown to accompany humans since prehistoric times and are still abundant in extant populations as part of the microbiome. And yet, the relationship between a subgroup of these microbes and their human hosts seems to have changed with time, and they have recently gained notoriety as gastrointestinal and neuropathogens, respectively. On the other hand, environmental microbes such as Legionella spp. have recently experienced a shift in host range and are now a major problem in industrialized countries as a result of artificial ecosystems. Other variables involved in this accidental phenomenon could be the apparent change or reduction in the diversity of human-associated microbiota because of modern medicine and lifestyles. All of this could result in an increased prevalence of “accidental pathogens” in the form of emerging pathogens. PMID:28155809
Host-pathogen interplay of Haemophilus ducreyi.
Janowicz, Diane M; Li, Wei; Bauer, Margaret E
2010-02-01
Haemophilus ducreyi, the causative agent of the sexually transmitted infection chancroid, is primarily a pathogen of human skin. During infection, H. ducreyi thrives extracellularly in a milieu of professional phagocytes and other antibacterial components of the innate and adaptive immune responses. This review summarizes our understanding of the interplay between this pathogen and its host that leads to development and persistence of disease. H. ducreyi expresses key virulence mechanisms to resist host defenses. The secreted LspA proteins are tyrosine-phosphorylated by host kinases, which may contribute to their antiphagocytic effector function. The serum resistance and adherence functions of DsrA map to separate domains of this multifunctional virulence factor. An influx transporter protects H. ducreyi from killing by the antimicrobial peptide LL37. Regulatory genes have been identified that may coordinate virulence factor expression during disease. Dendritic cells and natural killer cells respond to H. ducreyi and may be involved in determining the differential outcomes of infection observed in humans. A human model of H. ducreyi infection has provided insights into virulence mechanisms that allow this human-specific pathogen to survive immune pressures. Components of the human innate immune system may also determine the ultimate fate of H. ducreyi infection by driving either clearance of the organism or an ineffective response that allows disease progression.
Porcine retinal cell line VIDO R1 and Chlamydia suis to modelize ocular chlamydiosis.
Käser, Tobias; Cnudde, Thomas; Hamonic, Glenn; Rieder, Meghanne; Pasternak, J Alex; Lai, Ken; Tikoo, Suresh K; Wilson, Heather L; Meurens, François
2015-08-15
Human ocular Chlamydia trachomatis infections can lead to trachoma, the major cause of infectious blindness worldwide. Trachoma control strategies are very helpful but logistically challenging, and a trachoma vaccine is needed but not available. Pigs are a valuable large animal model for various immunological questions and could facilitate the study of human ocular chlamydial infections. In addition, a recent study identified the zoonotic potential of Chlamydia suis, the natural pathogen of pigs. In terms of the One Health Initiative, understanding the host-pathogen-interactions and finding a vaccine for porcine chlamydia infections would also benefit human health. Thus, we infected the porcine retinal cell line VIDO R1 with C. suis and analyzed the chlamydial life cycle and the innate immune response of the infected cells. Our results indicate that C. suis completes its life cycle in VIDO R1 cells within 48 h, comparable to C. trachomatis in humans. C. suis infection of VIDO R1 cells led to increased levels of various innate immune mediators like pathogen recognition receptors, cytokines and chemokines including IL6, TNFα, and MMP9, also most relevant in human C. trachomatis infections. These results illustrate the first steps in the host-pathogen-interactions of ocular C. suis infections in pigs and show their similarity to C. trachomatis infections in humans, justifying further testing of pigs as an animal model for human trachoma. Copyright © 2015 Elsevier B.V. All rights reserved.
USDA-ARS?s Scientific Manuscript database
Tick-borne transmission of bacterial pathogens in the Order Rickettsiales is responsible for a diversity of infectious diseases, many of them severe, in both humans and animals. Transmission dynamics differ among these pathogens and are reflected in the pathogen-vector interaction. Anaplasma margina...
ESTIMATING THE RISK OF INFECTIOUS DISEASE ASSOCIATED WITH PATHOGENS IN DRINKING WATER
Most of the microorganisms present in aquatic environments seem to have no effect upon the health of humans. However, some clearly do represent a public health risk, and for this reason the latter are considered to be pathogenic in nature and referred to as being "pathogens". The...
USDA-ARS?s Scientific Manuscript database
Anaerobic digestion can inactivate zoonotic pathogens present in cattle manure, which reduces transmission of these pathogens from farms to humans through the environment. However, the variability in extent of inactivation across farms and over time is unknown because most studies have examined pat...
USDA-ARS?s Scientific Manuscript database
Waterborne pathogens were detected in 96% of samples collected at three Lake Michigan beaches during the summer of 2010. Linear regression models were developed to explore environmental factors that may be influential for pathogen prevalence. Simulation of pathogen concentration using these models, ...
Draft Genome Sequence of the Human-Pathogenic Fungus Scedosporium boydii
Duvaux, Ludovic; Shiller, Jason; Vandeputte, Patrick; Dugé de Bernonville, Thomas; Thornton, Christopher; Papon, Nicolas; Le Cam, Bruno; Bouchara, Jean-Philippe
2017-01-01
ABSTRACT The opportunistic fungal pathogen Scedosporium boydii is the most common Scedosporium species in French patients with cystic fibrosis. Here we present the first genome report for S. boydii, providing a resource which may enable the elucidation of the pathogenic mechanisms in this species. PMID:28912311
Field-applied manure is an important source of pathogenic exposure in surface water bodies for humans and ecological receptors. We analyzed the persistence and decay of fecal indicator bacteria and bacterial pathogens from three sources (cattle, poultry, swine) for agricultural f...
USDA-ARS?s Scientific Manuscript database
Salmonella Enteritidis (S. Enteritidis) is a human and animal pathogen that causes gastroenteritis characterized by inflammatory diarrhea and occasionally an invasive systemic infection. Salmonella pathogenicity islands (SPIs) are horizontally acquired genomic segments known to contribute to Salmone...
Martínez, Isidoro; Oliveros, Juan C.; Cuesta, Isabel; de la Barrera, Jorge; Ausina, Vicente; Casals, Cristina; de Lorenzo, Alba; García, Ernesto; García-Fojeda, Belén; Garmendia, Junkal; González-Nicolau, Mar; Lacoma, Alicia; Menéndez, Margarita; Moranta, David; Nieto, Amelia; Ortín, Juan; Pérez-González, Alicia; Prat, Cristina; Ramos-Sevillano, Elisa; Regueiro, Verónica; Rodriguez-Frandsen, Ariel; Solís, Dolores; Yuste, José; Bengoechea, José A.; Melero, José A.
2017-01-01
Lower respiratory tract infections are among the top five leading causes of human death. Fighting these infections is therefore a world health priority. Searching for induced alterations in host gene expression shared by several relevant respiratory pathogens represents an alternative to identify new targets for wide-range host-oriented therapeutics. With this aim, alveolar macrophages were independently infected with three unrelated bacterial (Streptococcus pneumoniae, Klebsiella pneumoniae, and Staphylococcus aureus) and two dissimilar viral (respiratory syncytial virus and influenza A virus) respiratory pathogens, all of them highly relevant for human health. Cells were also activated with bacterial lipopolysaccharide (LPS) as a prototypical pathogen-associated molecular pattern. Patterns of differentially expressed cellular genes shared by the indicated pathogens were searched by microarray analysis. Most of the commonly up-regulated host genes were related to the innate immune response and/or apoptosis, with Toll-like, RIG-I-like and NOD-like receptors among the top 10 signaling pathways with over-expressed genes. These results identify new potential broad-spectrum targets to fight the important human infections caused by the bacteria and viruses studied here. PMID:28298903
Human and Pathogen Factors Associated with Chlamydia trachomatis-Related Infertility in Women
Menon, S.; Timms, P.; Allan, J. A.; Alexander, K.; Rombauts, L.; Horner, P.; Keltz, M.; Hocking, J.
2015-01-01
SUMMARY Chlamydia trachomatis is the most common bacterial sexually transmitted pathogen worldwide. Infection can result in serious reproductive pathologies, including pelvic inflammatory disease, ectopic pregnancy, and infertility, in women. However, the processes that result in these reproductive pathologies have not been well defined. Here we review the evidence for the human disease burden of these chlamydial reproductive pathologies. We then review human-based evidence that links Chlamydia with reproductive pathologies in women. We present data supporting the idea that host, immunological, epidemiological, and pathogen factors may all contribute to the development of infertility. Specifically, we review the existing evidence that host and pathogen genotypes, host hormone status, age of sexual debut, sexual behavior, coinfections, and repeat infections are all likely to be contributory factors in development of infertility. Pathogen factors such as infectious burden, treatment failure, and tissue tropisms or ascension capacity are also potential contributory factors. We present four possible processes of pathology development and how these processes are supported by the published data. We highlight the limitations of the evidence and propose future studies that could improve our understanding of how chlamydial infertility in women occurs and possible future interventions to reduce this disease burden. PMID:26310245
Lin, Baochuan; Malanoski, Anthony P.; Wang, Zheng; Blaney, Kate M.; Long, Nina C.; Meador, Carolyn E.; Metzgar, David; Myers, Christopher A.; Yingst, Samuel L.; Monteville, Marshall R.; Saad, Magdi D.; Schnur, Joel M.; Tibbetts, Clark; Stenger, David A.
2009-01-01
Zoonotic microbes have historically been, and continue to emerge as, threats to human health. The recent outbreaks of highly pathogenic avian influenza virus in bird populations and the appearance of some human infections have increased the concern of a possible new influenza pandemic, which highlights the need for broad-spectrum detection methods for rapidly identifying the spread or outbreak of all variants of avian influenza virus. In this study, we demonstrate that high-density resequencing pathogen microarrays (RPM) can be such a tool. The results from 37 influenza virus isolates show that the RPM platform is an effective means for detecting and subtyping influenza virus, while simultaneously providing sequence information for strain resolution, pathogenicity, and drug resistance without additional analysis. This study establishes that the RPM platform is a broad-spectrum pathogen detection and surveillance tool for monitoring the circulation of prevalent influenza viruses in the poultry industry and in wild birds or incidental exposures and infections in humans. PMID:19279171
Recommended advanced techniques for waterborne pathogen detection in developing countries.
Alhamlan, Fatimah S; Al-Qahtani, Ahmed A; Al-Ahdal, Mohammed N
2015-02-19
The effect of human activities on water resources has expanded dramatically during the past few decades, leading to the spread of waterborne microbial pathogens. The total global health impact of human infectious diseases associated with pathogenic microorganisms from land-based wastewater pollution was estimated to be approximately three million disability-adjusted life years (DALY), with an estimated economic loss of nearly 12 billion US dollars per year. Although clean water is essential for healthy living, it is not equally granted to all humans. Indeed, people who live in developing countries are challenged every day by an inadequate supply of clean water. Polluted water can lead to health crises that in turn spread waterborne pathogens. Taking measures to assess the water quality can prevent these potential risks. Thus, a pressing need has emerged in developing countries for comprehensive and accurate assessments of water quality. This review presents current and emerging advanced techniques for assessing water quality that can be adopted by authorities in developing countries.
European bats as carriers of viruses with zoonotic potential.
Kohl, Claudia; Kurth, Andreas
2014-08-13
Bats are being increasingly recognized as reservoir hosts of highly pathogenic and zoonotic emerging viruses (Marburg virus, Nipah virus, Hendra virus, Rabies virus, and coronaviruses). While numerous studies have focused on the mentioned highly human-pathogenic bat viruses in tropical regions, little is known on similar human-pathogenic viruses that may be present in European bats. Although novel viruses are being detected, their zoonotic potential remains unclear unless further studies are conducted. At present, it is assumed that the risk posed by bats to the general public is rather low. In this review, selected viruses detected and isolated in Europe are discussed from our point of view in regard to their human-pathogenic potential. All European bat species and their roosts are legally protected and some European species are even endangered. Nevertheless, the increasing public fear of bats and their viruses is an obstacle to their protection. Educating the public regarding bat lyssaviruses might result in reduced threats to both the public and the bats.
Terry, Frances E; Moise, Leonard; Martin, Rebecca F; Torres, Melissa; Pilotte, Nils; Williams, Steven A; De Groot, Anne S
2015-01-01
Vaccines have been invaluable for global health, saving lives and reducing healthcare costs, while also raising the quality of human life. However, newly emerging infectious diseases (EID) and more well-established tropical disease pathogens present complex challenges to vaccine developers; in particular, neglected tropical diseases, which are most prevalent among the world’s poorest, include many pathogens with large sizes, multistage life cycles and a variety of nonhuman vectors. EID such as MERS-CoV and H7N9 are highly pathogenic for humans. For many of these pathogens, while their genomes are available, immune correlates of protection are currently unknown. These complexities make developing vaccines for EID and neglected tropical diseases all the more difficult. In this review, we describe the implementation of an immunoinformatics-driven approach to systematically search for key determinants of immunity in newly available genome sequence data and design vaccines. This approach holds promise for the development of 21st century vaccines, improving human health everywhere. PMID:25193104
Pahar, Bapi; Lackner, Andrew A; Piatak, Michael; Lifson, Jeffrey D; Wang, Xiaolei; Das, Arpita; Ling, Binhua; Montefiori, David C; Veazey, Ronald S
2009-05-10
Recent HIV vaccine failures have prompted calls for more preclinical vaccine testing in non-human primates. However, similar to HIV infection of humans, developing a vaccine that protects macaques from infection following pathogenic SIV(MAC251) challenge has proven difficult, and current vaccine candidates at best, only reduce viral loads after infection. Here we demonstrate that prior infection with a chimeric simian-human immunodeficiency virus (SHIV) containing an HIV envelope gene confers protection against intravenous infection with the heterologous, highly pathogenic SIV(MAC251) in rhesus macaques. Although definitive immune correlates of protection were not identified, preservation and/or restoration of intestinal CD4(+) memory T cells were associated with protection from challenge and control of viremia. These results suggest that protection against pathogenic lentiviral infection or disease progression is indeed possible, and may correlate with preservation of mucosal CD4(+) T cells.
Human Infection with Highly Pathogenic Avian Influenza A(H7N9) Virus, China.
Ke, Changwen; Mok, Chris Ka Pun; Zhu, Wenfei; Zhou, Haibo; He, Jianfeng; Guan, Wenda; Wu, Jie; Song, Wenjun; Wang, Dayan; Liu, Jiexiong; Lin, Qinhan; Chu, Daniel Ka Wing; Yang, Lei; Zhong, Nanshan; Yang, Zifeng; Shu, Yuelong; Peiris, Joseph Sriyal Malik
2017-07-01
The recent increase in zoonotic avian influenza A(H7N9) disease in China is a cause of public health concern. Most of the A(H7N9) viruses previously reported have been of low pathogenicity. We report the fatal case of a patient in China who was infected with an A(H7N9) virus having a polybasic amino acid sequence at its hemagglutinin cleavage site (PEVPKRKRTAR/GL), a sequence suggestive of high pathogenicity in birds. Its neuraminidase also had R292K, an amino acid change known to be associated with neuraminidase inhibitor resistance. Both of these molecular features might have contributed to the patient's adverse clinical outcome. The patient had a history of exposure to sick and dying poultry, and his close contacts had no evidence of A(H7N9) disease, suggesting human-to-human transmission did not occur. Enhanced surveillance is needed to determine whether this highly pathogenic avian influenza A(H7N9) virus will continue to spread.
Strayer, David R; Carter, William A; Stouch, Bruce C; Stittelaar, Koert J; Thoolen, Robert J M M; Osterhaus, Albert D M E; Mitchell, William M
2014-10-01
Using an established nonhuman primate model for H5N1 highly pathogenic influenza virus infection in humans, we have been able to demonstrate the prophylactic mitigation of the pulmonary damage characteristic of human fatal cases from primary influenza virus pneumonia with a low dose oral formulation of a commercially available parenteral natural human interferon alpha (Alferon N Injection®). At the highest oral dose (62.5IU/kg body weight) used there was a marked reduction in the alveolar inflammatory response with minor evidence of alveolar and interstitial edema in contrast to the hemorrhage and inflammatory response observed in the alveoli of control animals. The mitigation of severe damage to the lower pulmonary airway was observed without a parallel reduction in viral titers. Clinical trial data will be necessary to establish its prophylactic human efficacy for highly pathogenic influenza viruses. Copyright © 2014. Published by Elsevier B.V.
Epidemiological role of birds in the transmission and maintenance of zoonoses.
Contreras, A; Gómez-Martín, A; Paterna, A; Tatay-Dualde, J; Prats-Van Der Ham, M; Corrales, J C; De La Fe, C; Sánchez, A
2016-12-01
The risk of zoonoses spreading from birds to humans is lower, quantitatively speaking, than the risk of transmission between other host groups, because the two taxonomic groups share fewer pathogens. Nevertheless, birds have a number of epidemiological characteristics that make them extremely important hosts in the transmission and maintenance of zoonoses, including their susceptibility to pathogens that are extremely hazardous to humans (such as highly pathogenic avian influenza virus, West Nile virus and Chlamydia psittaci) and their ability to travel long distances, especially in the case of migratory birds. The fact that the human diet includes poultry products (meat, eggs and their by-products) also means that most human cases of foodborne zoonoses are infections of avian origin. Lastly, close contact between humans and pet birds or urban birds leads to interactions of public health concern. This article sets out to describe the main factors that determine the role of birds in the epidemiology of zoonotic infections. © OIE (World Organisation for Animal Health), 2016.
An In vitro Model for Bacterial Growth on Human Stratum Corneum.
van der Krieken, Danique A; Ederveen, Thomas H A; van Hijum, Sacha A F T; Jansen, Patrick A M; Melchers, Willem J G; Scheepers, Paul T J; Schalkwijk, Joost; Zeeuwen, Patrick L J M
2016-11-02
The diversity and dynamics of the skin microbiome in health and disease have been studied recently, but adequate model systems to study skin microbiotas in vitro are largely lacking. We developed an in vitro system that mimics human stratum corneum, using human callus as substrate and nutrient source for bacterial growth. The growth of several commensal and pathogenic bacterial strains was measured for up to one week by counting colony-forming units or by quantitative PCR with strain-specific primers. Human skin pathogens were found to survive amidst a minimal microbiome consisting of 2 major skin commensals: Staphylococcus epidermidis and Propionibacterium acnes. In addition, complete microbiomes, taken from the backs of healthy volunteers, were inoculated and maintained using this system. This model may enable the modulation of skin microbiomes in vitro and allow testing of pathogens, biological agents and antibiotics in a medium-throughput format.
Belser, Jessica A; Creager, Hannah M; Zeng, Hui; Maines, Taronna R; Tumpey, Terrence M
2017-09-15
H7 subtype influenza viruses represent a persistent public health threat because of their continued detection in poultry and ability to cause human infection. An outbreak of highly pathogenic avian influenza H7N7 virus in Italy during 2013 resulted in 3 cases of human conjunctivitis. We determined the pathogenicity and transmissibility of influenza A/Italy/3/2013 virus in mouse and ferret models and examined the replication kinetics of this virus in several human epithelial cell types. The moderate virulence observed in mammalian models and the capacity for transmission in a direct contact model underscore the need for continued study of H7 subtype viruses. Published by Oxford University Press for the Infectious Diseases Society of America 2017. This work is written by (a) US Government employee(s) and is in the public domain in the US.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiedner, Susan D.; Burnum, Kristin E.; Pederson, Leeanna M.
2012-08-03
Environmental and metabolic adaptability is critical for survival of the fungal human pathogen Aspergillus fumigatus in the immunocompromised lung. We employed an activity-based protein profiling (ABPP) approach utilizing a new aryl vinyl sulfonate probe and a serine hydrolase probe combined with quantitative LC-MS based accurate mass and time (AMT) tag proteomics for the identification of functional pathway adaptation of A. fumigatus to environmental variability relevant to pulmonary Invasive Aspergillosis. When the fungal pathogen was grown with human serum, metabolism and energy processes were markedly decreased compared to no serum culture. Additionally, functional pathways associated with amino acid and protein biosynthesismore » were limited as the fungus scavenged from the serum to obtain essential nutrients. Our approach revealed significant metabolic adaptation by A. fumigatus, and provides direct insight into this pathogen’s ability to survive and proliferate.« less
Plant immunity: towards an integrated view of plant-pathogen interactions.
Dodds, Peter N; Rathjen, John P
2010-08-01
Plants are engaged in a continuous co-evolutionary struggle for dominance with their pathogens. The outcomes of these interactions are of particular importance to human activities, as they can have dramatic effects on agricultural systems. The recent convergence of molecular studies of plant immunity and pathogen infection strategies is revealing an integrated picture of the plant-pathogen interaction from the perspective of both organisms. Plants have an amazing capacity to recognize pathogens through strategies involving both conserved and variable pathogen elicitors, and pathogens manipulate the defence response through secretion of virulence effector molecules. These insights suggest novel biotechnological approaches to crop protection.
Recent human-to-poultry host jump, adaptation, and pandemic spread of Staphylococcus aureus
Lowder, Bethan V.; Guinane, Caitriona M.; Ben Zakour, Nouri L.; Weinert, Lucy A.; Conway-Morris, Andrew; Cartwright, Robyn A.; Simpson, A. John; Rambaut, Andrew; Nübel, Ulrich; Fitzgerald, J. Ross
2009-01-01
The impact of globalization on the emergence and spread of pathogens is an important veterinary and public health issue. Staphylococcus aureus is a notorious human pathogen associated with serious nosocomial and community-acquired infections. In addition, S. aureus is a major cause of animal diseases including skeletal infections of poultry, which are a large economic burden on the global broiler chicken industry. Here, we provide evidence that the majority of S. aureus isolates from broiler chickens are the descendants of a single human-to-poultry host jump that occurred approximately 38 years ago (range, 30 to 63 years ago) by a subtype of the worldwide human ST5 clonal lineage unique to Poland. In contrast to human subtypes of the ST5 radiation, which demonstrate strong geographic clustering, the poultry ST5 clade was distributed in different continents, consistent with wide dissemination via the global poultry industry distribution network. The poultry ST5 clade has undergone genetic diversification from its human progenitor strain by acquisition of novel mobile genetic elements from an avian-specific accessory gene pool, and by the inactivation of several proteins important for human disease pathogenesis. These genetic events have resulted in enhanced resistance to killing by chicken heterophils, reflecting avian host-adaptive evolution. Taken together, we have determined the evolutionary history of a major new animal pathogen that has undergone rapid avian host adaptation and intercontinental dissemination. These data provide a new paradigm for the impact of human activities on the emergence of animal pathogens. PMID:19884497
Chen, Zhuo; Liu, Qin; Liu, Ji-Qi; Xu, Bian-Li; Lv, Shan; Xia, Shang; Zhou, Xiao-Nong
2014-05-22
Ticks can transmit a number of pathogens to humans and domestic animals. Tick borne diseases (TBDs), which may lead to organ failure and death have been recently reported in China. 98.75% of the total cases (>1000) in Henan provinces have been reported in Xinyang city. Therefore, the aims of this study were to investigate the fauna of ticks and detect the potential pathogens in ticks in Xinyang, the region of central China. Ticks were collected from 10 villages of Xinyang from April to December 2012, from domestic animals including sheep, cattle and dogs. Then identification of ticks and detection of tick-borne pathogens, including Babesia spp., Theileria spp., Anaplasma spp., Ehrlichia spp., Rickettsia spp., tick-borne encephalitis virus (TBEV), Borrelia burgdorferi sensu lato, Leishmania infantum, were undertaken by using polymerase chain reaction assay (PCR) and sequence analysis. Moreover, the co-infection patterns of various pathogens were compared among locations where ticks were collected. A total of 308 ticks were collected. Two species of Ixodidae were found, namely Haemaphysalis longicornis (96.75%) and Rhipicephalus microplus (3.25%). Five genera of pathogens, namely Theileria spp. (3.25%), Anaplasma spp. (2.92%), Babesia spp. (1.95%), Ehrlichia spp. (2.92%) and Rickettsia spp. (0.65%), were detected in 7 villages. Co-infections by two pathogens were diagnosed in 11.11% of all infected ticks. Both human and animal pathogens were abundant in ticks in the study areas. Humans and animals in these regions were at a high risk of exposure to piroplasmosis, since piroplasm had the highest rates of infection and co-infection in positive ticks.
The Pathogen-Host Interactions database (PHI-base): additions and future developments
Urban, Martin; Pant, Rashmi; Raghunath, Arathi; Irvine, Alistair G.; Pedro, Helder; Hammond-Kosack, Kim E.
2015-01-01
Rapidly evolving pathogens cause a diverse array of diseases and epidemics that threaten crop yield, food security as well as human, animal and ecosystem health. To combat infection greater comparative knowledge is required on the pathogenic process in multiple species. The Pathogen-Host Interactions database (PHI-base) catalogues experimentally verified pathogenicity, virulence and effector genes from bacterial, fungal and protist pathogens. Mutant phenotypes are associated with gene information. The included pathogens infect a wide range of hosts including humans, animals, plants, insects, fish and other fungi. The current version, PHI-base 3.6, available at http://www.phi-base.org, stores information on 2875 genes, 4102 interactions, 110 host species, 160 pathogenic species (103 plant, 3 fungal and 54 animal infecting species) and 181 diseases drawn from 1243 references. Phenotypic and gene function information has been obtained by manual curation of the peer-reviewed literature. A controlled vocabulary consisting of nine high-level phenotype terms permits comparisons and data analysis across the taxonomic space. PHI-base phenotypes were mapped via their associated gene information to reference genomes available in Ensembl Genomes. Virulence genes and hotspots can be visualized directly in genome browsers. Future plans for PHI-base include development of tools facilitating community-led curation and inclusion of the corresponding host target(s). PMID:25414340
Adhesins in Human Fungal Pathogens: Glue with Plenty of Stick
de Groot, Piet W. J.; Bader, Oliver; de Boer, Albert D.; Weig, Michael
2013-01-01
Understanding the pathogenesis of an infectious disease is critical for developing new methods to prevent infection and diagnose or cure disease. Adherence of microorganisms to host tissue is a prerequisite for tissue invasion and infection. Fungal cell wall adhesins involved in adherence to host tissue or abiotic medical devices are critical for colonization leading to invasion and damage of host tissue. Here, with a main focus on pathogenic Candida species, we summarize recent progress made in the field of adhesins in human fungal pathogens and underscore the importance of these proteins in establishment of fungal diseases. PMID:23397570
Genetic adaptation to historical pathogen burdens.
Fedderke, Johannes W; Klitgaard, Robert E; Napolioni, Valerio
2017-10-01
Historical pathogen burdens are examined as possible triggers for genetic adaptation. Evidence of adaptation emerges for the acid phosphatase locus 1 (ACP1), interleukin-6 (IL6), interleukin-10 (IL10 ), human leukocyte antigen (HLA) polymorphisms, along with a measure of heterozygosity over 783 alleles. Results are robust to controlling for the physical and historical environment humans faced, and to endogeneity of the historical pathogen burden measure. The present study represents a proof-of-concept which may pave the way to the analysis of future aggregate measures coming from whole-genome sequencing/genotyping data. Copyright © 2017 Elsevier B.V. All rights reserved.
Mycobacterium tuberculosis effectors interfering host apoptosis signaling.
Liu, Minqiang; Li, Wu; Xiang, Xiaohong; Xie, Jianping
2015-07-01
Tuberculosis remains a serious human public health concern. The coevolution between its pathogen Mycobacterium tuberculosis and human host complicated the way to prevent and cure TB. Apoptosis plays subtle role in this interaction. The pathogen endeavors to manipulate the apoptosis via diverse effectors targeting key signaling nodes. In this paper, we summarized the effectors pathogen used to subvert the apoptosis, such as LpqH, ESAT-6/CFP-10, LAMs. The interplay between different forms of cell deaths, such as apoptosis, autophagy, necrosis, is also discussed with a focus on the modes of action of effectors, and implications for better TB control.
Tick-borne pathogens and the vector potential of ticks in China.
Yu, Zhijun; Wang, Hui; Wang, Tianhong; Sun, Wenying; Yang, Xiaolong; Liu, Jingze
2015-01-14
Ticks, as obligate blood-sucking ectoparasites, attack a broad range of vertebrates and transmit a great diversity of pathogenic microorganisms. They are considered second only to mosquitoes as vectors of human disease, and the most important vector of pathogens of domestic and wild animals. Of the 117 described species in the Chinese tick fauna, 60 are known to transmit one or more diseases: 36 species isolated within China and 24 species isolated outside China. Moreover, 38 of these species carry multiple pathogens, indicating the potentially vast role of these vectors in transmitting pathogens. Spotted fever is the most common tick-borne disease, and is carried by at least 27 tick species, with Lyme disease and human granulocytic anaplasmosis ranked as the second and third most widespread tick-borne diseases, carried by 13 and 10 species, respectively. Such knowledge provides us with clues for the identification of tick-associated pathogens and suggests ideas for the control of tick-borne diseases in China. However, the numbers of tick-associated pathogens and tick-borne diseases in China are probably underestimated because of the complex distribution and great diversity of tick species in this country.
Ferguson, Christobel M; Croke, Barry F W; Beatson, Peter J; Ashbolt, Nicholas J; Deere, Daniel A
2007-06-01
In drinking water catchments, reduction of pathogen loads delivered to reservoirs is an important priority for the management of raw source water quality. To assist with the evaluation of management options, a process-based mathematical model (pathogen catchment budgets - PCB) is developed to predict Cryptosporidium, Giardia and E. coli loads generated within and exported from drinking water catchments. The model quantifies the key processes affecting the generation and transport of microorganisms from humans and animals using land use and flow data, and catchment specific information including point sources such as sewage treatment plants and on-site systems. The resultant pathogen catchment budgets (PCB) can be used to prioritize the implementation of control measures for the reduction of pathogen risks to drinking water. The model is applied in the Wingecarribee catchment and used to rank those sub-catchments that would contribute the highest pathogen loads in dry weather, and in intermediate and large wet weather events. A sensitivity analysis of the model identifies that pathogen excretion rates from animals and humans, and manure mobilization rates are significant factors determining the output of the model and thus warrant further investigation.
Bushmeat Hunting, Deforestation, and Prediction of Zoonotic Disease
Daszak, Peter; Kilpatrick, A. Marm; Burke, Donald S.
2005-01-01
Understanding the emergence of new zoonotic agents requires knowledge of pathogen biodiversity in wildlife, human-wildlife interactions, anthropogenic pressures on wildlife populations, and changes in society and human behavior. We discuss an interdisciplinary approach combining virology, wildlife biology, disease ecology, and anthropology that enables better understanding of how deforestation and associated hunting leads to the emergence of novel zoonotic pathogens. PMID:16485465
USDA-ARS?s Scientific Manuscript database
Pseudoalteromonas piscicida strain DE2-B is a halophilic bacterium which has broad inhibitory activity toward vibrios and other human and fish pathogens. We report the first closed genome sequence for this species which consists of two chromosomes (4,128,210 and 1,188,838 bp). Annotation revealed ...
Laboratory containment practices for arthropod vectors of human and animal pathogens.
Tabachnick, Walter J
2006-03-01
Arthropod-borne pathogens have an impact on the health and well-being of humans and animals throughout the world. Research involving arthropod vectors of disease is often dependent on the ability to maintain the specific arthropod species in laboratory colonies. The author reviews current arthropod containment practices and discusses their importance from public health and ecological perspectives.
Molecular Identification of Human Fungal Pathogens
2007-03-01
in mycology . Unfortunately, individuals with this training are in short supply in both civilian and military hospitals. The objective of this study...is to enable laboratory technicians to make proper identifications without experience in mycology by using standardized techniques developed in...regardless of mycological expertise, to identify any human fungal pathogen faster and more accurately than is presently possible, using a single
Toward a Genome-Wide Systems Biology Analysis of Host-Pathogen Interactions in Group A Streptococcus
Musser, James M.; DeLeo, Frank R.
2005-01-01
Genome-wide analysis of microbial pathogens and molecular pathogenesis processes has become an area of considerable activity in the last 5 years. These studies have been made possible by several advances, including completion of the human genome sequence, publication of genome sequences for many human pathogens, development of microarray technology and high-throughput proteomics, and maturation of bioinformatics. Despite these advances, relatively little effort has been expended in the bacterial pathogenesis arena to develop and use integrated research platforms in a systems biology approach to enhance our understanding of disease processes. This review discusses progress made in exploiting an integrated genome-wide research platform to gain new knowledge about how the human bacterial pathogen group A Streptococcus causes disease. Results of these studies have provided many new avenues for basic pathogenesis research and translational research focused on development of an efficacious human vaccine and novel therapeutics. One goal in summarizing this line of study is to bring exciting new findings to the attention of the investigative pathology community. In addition, we hope the review will stimulate investigators to consider using analogous approaches for analysis of the molecular pathogenesis of other microbes. PMID:16314461
Multidrug-resistant pathogenic Escherichia coli isolated from wild birds in a veterinary hospital.
Borges, C A; Beraldo, L G; Maluta, R P; Cardozo, M V; Barboza, K B; Guastalli, E A L; Kariyawasam, S; DebRoy, C; Ávila, F A
2017-02-01
Wild birds are carriers of Escherichia coli. However, little is known about their role as reservoirs for extra-intestinal pathogenic E. coli (ExPEC). In this work we investigated E. coli strains carrying virulence genes related to human and animal ExPEC isolated from free-living wild birds treated in a veterinary hospital. Multidrug resistance was found in 47.4% of the strains, but none of them were extended-spectrum beta-lactamase producers. Not only the virulence genes, but also the serogroups (e.g. O1 and O2) detected in the isolates of E. coli have already been implicated in human and bird diseases. The sequence types detected were also found in wild, companion and food animals, environmental and human clinical isolates in different countries. Furthermore, from the 19 isolates, 17 (89.5%) showed a degree of pathogenicity on an in vivo infection model. The isolates showed high heterogeneity by pulsed-field gel electrophoresis indicating that E. coli from these birds are clonally diverse. Overall, the results showed that wild birds can be reservoirs and/or vectors of highly pathogenic and multidrug-resistant E. coli that have the potential to cause disease in humans and poultry.
Kirsch, Petra; Jores, Jörg; Wieler, Lothar H
2004-01-01
Many bacterial virulence attributes, like toxins, adhesins, invasins, iron uptake systems, are encoded within specific regions of the bacterial genome. These in size varying regions are termed pathogenicity islands (PAIs) since they confer pathogenic properties to the respective micro-organism. Per definition PAIs are exclusively found in pathogenic strains and are often inserted near transfer-RNA genes. Nevertheless, non-pathogenic bacteria also possess foreign DNA elements that confer advantageous features, leading to improved fitness. These additional DNA elements as well as PAIs are termed genomic islands and were acquired during bacterial evolution. Significant G+C content deviation in pathogenicity islands with respect to the rest of the genome, the presence of direct repeat sequences at the flanking regions, the presence of integrase gene determinants as other mobility features,the particular insertion site (tRNA gene) as well as the observed genetic instability suggests that pathogenicity islands were acquired by horizontal gene transfer. PAIs are the fascinating proof of the plasticity of bacterial genomes. PAIs were originally described in human pathogenic Escherichia (E.) coli strains. In the meantime PAIs have been found in various pathogenic bacteria of humans, animals and even plants. The Locus of Enterocyte Effacement (LEE) is one particular widely distributed PAI of E coli. In addition, it also confers pathogenicity to the related species Citrobacter (C.) rodentium and Escherichia (E.) alvei. The LEE is an important virulence feature of several animal pathogens. It is an obligate PAI of all animal and human enteropathogenic E. coli (EPEC), and most enterohaemorrhegic E. coli (EHEC) also harbor the LEE. The LEE encodes a type III secretion system, an adhesion (intimin) that mediates the intimate contact between the bacterium and the epithelial cell, as well as various proteins which are secreted via the type III secretion system. The LEE encoded virulence features are responsible for the formation of so called attaching and effacing (AE) lesions in the intestinal epithelium. Due to its wide distribution in animal pathogens, LEE encoded antigens are suitable vaccine antigens. Acquisition and structure of the LEE pathogenicity island is the crucial point of numerous investigations. However, the evolution of the LEE, its origin and further spread in E. coli, are far from being resolved.
Specificity and Effector Functions of Human RSV-Specific IgG from Bovine Milk.
den Hartog, Gerco; Jacobino, Shamir; Bont, Louis; Cox, Linda; Ulfman, Laurien H; Leusen, Jeanette H W; van Neerven, R J Joost
2014-01-01
Respiratory syncytial virus (RSV) infection is the second most important cause of death in the first year of life, and early RSV infections are associated with the development of asthma. Breastfeeding and serum IgG have been shown to protect against RSV infection. Yet, many infants depend on bovine milk-based nutrition, which at present lacks intact immunoglobulins. To investigate whether IgG purified from bovine milk (bIgG) can modulate immune responses against human RSV. ELISAs were performed to analyse binding of bIgG to human respiratory pathogens. bIgG or hRSV was coated to plates to assess dose-dependent binding of bIgG to human Fcγ receptors (FcγR) or bIgG-mediated binding of myeloid cells to hRSV respectively. S. Epidermidis and RSV were used to test bIgG-mediated binding and internalisation of pathogens by myeloid cells. Finally, the ability of bIgG to neutralise infection of HEp2 cells by hRSV was evaluated. bIgG recognised human RSV, influenza haemagglutinin and Haemophilus influenza. bIgG bound to FcγRII on neutrophils, monocytes and macrophages, but not to FcγRI and FcγRIII, and could bind simultaneously to hRSV and human FcγRII on neutrophils. In addition, human neutrophils and dendritic cells internalised pathogens that were opsonised with bIgG. Finally, bIgG could prevent infection of HEp2 cells by hRSV. The data presented here show that bIgG binds to hRSV and other human respiratory pathogens and induces effector functions through binding to human FcγRII on phagocytes. Thus bovine IgG may contribute to immune protection against RSV.
Hwang, J; Lee, K; Walsh, D; Kim, S W; Sleeman, J M; Lee, H
2018-02-01
Wildlife-associated diseases and pathogens have increased in importance; however, management of a large number of diseases and diversity of hosts is prohibitively expensive. Thus, the determination of priority wildlife pathogens and risk factors for disease emergence is warranted. We used an online questionnaire survey to assess release and exposure risks, and consequences of wildlife-associated diseases and pathogens in the Republic of Korea (ROK). We also surveyed opinions on pathways for disease exposure, and risk factors for disease emergence and spread. For the assessment of risk, we employed a two-tiered, statistical K-means clustering algorithm to group diseases into three levels (high, medium and low) of perceived risk based on release and exposure risks, societal consequences and the level of uncertainty of the experts' opinions. To examine the experts' perceived risk of routes of introduction of pathogens and disease amplification and spread, we used a Bayesian, multivariate normal order-statistics model. Six diseases or pathogens, including four livestock and two wildlife diseases, were identified as having high risk with low uncertainty. Similarly, 13 diseases were characterized as having high risk with medium uncertainty with three of these attributed to livestock, six associated with human disease, and the remainder having the potential to affect human, livestock and wildlife (i.e., One Health). Lastly, four diseases were described as high risk with high certainty, and were associated solely with fish diseases. Experts identified migration of wildlife, international human movement and illegal importation of wildlife as the three routes posing the greatest risk of pathogen introduction into ROK. Proximity of humans, livestock and wildlife was the most significant risk factor for promoting the spread of wildlife-associated diseases and pathogens, followed by high density of livestock populations, habitat loss and environmental degradation, and climate change. This study provides useful information to decision makers responsible for allocating resources to address disease risks. This approach provided a rapid, cost-effective method of risk assessment of wildlife-associated diseases and pathogens for which the published literature is sparse. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.
Identification of Tick-Borne Pathogens in Ticks Feeding on Humans in Turkey
Orkun, Ömer; Karaer, Zafer; Çakmak, Ayşe; Nalbantoğlu, Serpil
2014-01-01
Background The importance of tick-borne diseases is increasing all over the world, including Turkey. The tick-borne disease outbreaks reported in recent years and the abundance of tick species and the existence of suitable habitats increase the importance of studies related to the epidemiology of ticks and tick-borne pathogens in Turkey. The aim of this study was to investigate the presence of and to determine the infection rates of some tick-borne pathogens, including Babesia spp., Borrelia burgdorferi sensu lato and spotted fever group rickettsiae in the ticks removed from humans in different parts of Ankara. Methodology/Principal Findings A total of 169 ticks belonging to the genus Haemaphysalis, Hyalomma, Ixodes and Rhipicephalus were collected by removing from humans in different parts of Ankara. Ticks were molecularly screened for Babesia spp., Borrelia burgdorferi sensu lato and spotted fever group rickettsiae by PCR and sequencing analysis. We detected 4 Babesia spp.; B. crassa, B. major, B. occultans and B. rossi, one Borrelia spp.; B. burgdorferi sensu stricto and 3 spotted fever group rickettsiae; R. aeschlimannii, R. slovaca and R. hoogstraalii in the tick specimens analyzed. This is the report showing the presence of B. rossi in a region that is out of Africa and in the host species Ha. parva. In addition, B. crassa, for which limited information is available on its distribution and vector species, and B. occultans, for which no conclusive information is available on its presence in Turkey, were identified in Ha. parva and H. marginatum, respectively. Two human pathogenic rickettsia species (R. aeschlimannii and R. slovaca) were detected with a high prevalence in ticks. Additionally, B. burgdorferi sensu stricto was detected in unusual tick species (H. marginatum, H. excavatum, Hyalomma spp. (nymph) and Ha. parva). Conclusions/Significance This study investigates both the distribution of several tick-borne pathogens affecting humans and animals, and the presence of new tick-borne pathogens in Turkey. More epidemiological studies are warranted for B. rossi, which is very pathogenic for dogs, because the presented results suggest that B. rossi might have a wide distribution in Turkey. Furthermore, we recommend that tick-borne pathogens, especially R. aeschlimannii, R. slovaca, and B. burgdorferi sensu stricto, should be taken into consideration in patients who had a tick bite in Turkey. PMID:25101999
Identification of tick-borne pathogens in ticks feeding on humans in Turkey.
Orkun, Ömer; Karaer, Zafer; Çakmak, Ayşe; Nalbantoğlu, Serpil
2014-08-01
The importance of tick-borne diseases is increasing all over the world, including Turkey. The tick-borne disease outbreaks reported in recent years and the abundance of tick species and the existence of suitable habitats increase the importance of studies related to the epidemiology of ticks and tick-borne pathogens in Turkey. The aim of this study was to investigate the presence of and to determine the infection rates of some tick-borne pathogens, including Babesia spp., Borrelia burgdorferi sensu lato and spotted fever group rickettsiae in the ticks removed from humans in different parts of Ankara. A total of 169 ticks belonging to the genus Haemaphysalis, Hyalomma, Ixodes and Rhipicephalus were collected by removing from humans in different parts of Ankara. Ticks were molecularly screened for Babesia spp., Borrelia burgdorferi sensu lato and spotted fever group rickettsiae by PCR and sequencing analysis. We detected 4 Babesia spp.; B. crassa, B. major, B. occultans and B. rossi, one Borrelia spp.; B. burgdorferi sensu stricto and 3 spotted fever group rickettsiae; R. aeschlimannii, R. slovaca and R. hoogstraalii in the tick specimens analyzed. This is the report showing the presence of B. rossi in a region that is out of Africa and in the host species Ha. parva. In addition, B. crassa, for which limited information is available on its distribution and vector species, and B. occultans, for which no conclusive information is available on its presence in Turkey, were identified in Ha. parva and H. marginatum, respectively. Two human pathogenic rickettsia species (R. aeschlimannii and R. slovaca) were detected with a high prevalence in ticks. Additionally, B. burgdorferi sensu stricto was detected in unusual tick species (H. marginatum, H. excavatum, Hyalomma spp. (nymph) and Ha. parva). This study investigates both the distribution of several tick-borne pathogens affecting humans and animals, and the presence of new tick-borne pathogens in Turkey. More epidemiological studies are warranted for B. rossi, which is very pathogenic for dogs, because the presented results suggest that B. rossi might have a wide distribution in Turkey. Furthermore, we recommend that tick-borne pathogens, especially R. aeschlimannii, R. slovaca, and B. burgdorferi sensu stricto, should be taken into consideration in patients who had a tick bite in Turkey.
A Novel Hybrid Iron Regulation Network Combines Features from Pathogenic and Nonpathogenic Yeasts.
Gerwien, Franziska; Safyan, Abu; Wisgott, Stephanie; Hille, Fabrice; Kaemmer, Philipp; Linde, Jörg; Brunke, Sascha; Kasper, Lydia; Hube, Bernhard
2016-10-18
Iron is an essential micronutrient for both pathogens and their hosts, which restrict iron availability during infections in an effort to prevent microbial growth. Successful human pathogens like the yeast Candida glabrata have thus developed effective iron acquisition strategies. Their regulation has been investigated well for some pathogenic fungi and in the model organism Saccharomyces cerevisiae, which employs an evolutionarily derived system. Here, we show that C. glabrata uses a regulation network largely consisting of components of the S. cerevisiae regulon but also of elements of other pathogenic fungi. Specifically, similarly to baker's yeast, Aft1 is the main positive regulator under iron starvation conditions, while Cth2 degrades mRNAs encoding iron-requiring enzymes. However, unlike the case with S. cerevisiae, a Sef1 ortholog is required for full growth under iron limitation conditions, making C. glabrata an evolutionary intermediate to SEF1-dependent fungal pathogens. Therefore, C. glabrata has evolved an iron homeostasis system which seems to be unique within the pathogenic fungi. The fungus Candida glabrata represents an evolutionarily close relative of the well-studied and benign baker's yeast and model organism Saccharomyces cerevisiae On the other hand, C. glabrata is an important opportunistic human pathogen causing both superficial and systemic infections. The ability to acquire trace metals, in particular, iron, and to tightly regulate this process during infection is considered an important virulence attribute of a variety of pathogens. Importantly, S. cerevisiae uses a highly derivative regulatory system distinct from those of other fungi. Until now, the regulatory mechanism of iron homeostasis in C. glabrata has been mostly unknown. Our study revealed a hybrid iron regulation network that is unique to C. glabrata and is placed at an evolutionary midpoint between those of S. cerevisiae and related fungal pathogens. We thereby show that, in the host, even a successful human pathogen can rely largely on a strategy normally found in nonpathogenic fungi from a terrestrial environment. Copyright © 2016 Gerwien et al.
Maurer-Stroh, Sebastian; Lee, Raphael T C; Gunalan, Vithiagaran; Eisenhaber, Frank
2013-05-01
A characteristic difference between highly and non-highly pathogenic avian influenza strains is the presence of an extended, often multibasic, cleavage motif insertion in the hemagglutinin protein. Such motif is found in H7N3 strains from chicken farm outbreaks in 2012 in Mexico. Through phylogenetic, sequence and structural analysis, we try to shed light on the role, prevalence, likelihood of appearance and origin of the inserted cleavage motifs in these H7N3 avian influenza strains. The H7N3 avian influenza strain which caused outbreaks in chicken farms in June/July 2012 in Mexico has a new extended cleavage site which is the likely reason for its high pathogenicity in these birds. This cleavage site appears to have been naturally acquired and was not present in the closest low pathogenic precursors. Structural modeling shows that insertion of a productive cleavage site is quite flexible to accept insertions of different length and with sequences from different possible origins. Different from recent cleavage site insertions, the origin of the insert here is not from the viral genome but from host 28S ribosomal RNA (rRNA) instead. This is a novelty for a natural acquisition as a similar insertion has so far only been observed in a laboratory strain before. Given the abundance of viral and host RNA in infected cells, the acquisition of a pathogenicity-enhancing extended cleavage site through a similar route by other low-pathogenic avian strains in future does not seem unlikely. Important for surveillance of these H7N3 strains, the structural sites known to enhance mammalian airborne transmission are dominated by the characteristic avian residues and the risk of human to human transmission should currently be low but should be monitored for future changes accordingly. This highly pathogenic H7N3 avian influenza strain acquired a novel extended cleavage site which likely originated from recombination with 28S rRNA from the avian host. Notably, this new virus can infect humans but currently lacks critical host receptor adaptations that would facilitate human to human transmission.
Toxin-Antitoxin Systems in Clinical Pathogens
Fernández-García, Laura; Blasco, Lucia; Lopez, Maria; Bou, German; García-Contreras, Rodolfo; Wood, Thomas; Tomas, María
2016-01-01
Toxin-antitoxin (TA) systems are prevalent in bacteria and archaea. Although not essential for normal cell growth, TA systems are implicated in multiple cellular functions associated with survival under stress conditions. Clinical strains of bacteria are currently causing major human health problems as a result of their multidrug resistance, persistence and strong pathogenicity. Here, we present a review of the TA systems described to date and their biological role in human pathogens belonging to the ESKAPE group (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa and Enterobacter spp.) and others of clinical relevance (Escherichia coli, Burkholderia spp., Streptococcus spp. and Mycobacterium tuberculosis). Better understanding of the mechanisms of action of TA systems will enable the development of new lines of treatment for infections caused by the above-mentioned pathogens. PMID:27447671
Conversations between kingdoms: small RNAs.
Weiberg, Arne; Bellinger, Marschal; Jin, Hailing
2015-04-01
Humans, animals, and plants are constantly under attack from pathogens and pests, resulting in severe consequences on global human health and crop production. Small RNA (sRNA)-mediated RNA interference (RNAi) is a conserved regulatory mechanism that is involved in almost all eukaryotic cellular processes, including host immunity and pathogen virulence. Recent evidence supports the significant contribution of sRNAs and RNAi to the communication between hosts and some eukaryotic pathogens, pests, parasites, or symbiotic microorganisms. Mobile silencing signals—most likely sRNAs—are capable of translocating from the host to its interacting organism, and vice versa. In this review, we will provide an overview of sRNA communications between different kingdoms, with a primary focus on the advances in plant-pathogen interaction systems. Copyright © 2015 Elsevier Ltd. All rights reserved.
Hyphal Growth in Human Fungal Pathogens and Its Role in Virulence
Brand, Alexandra
2012-01-01
Most of the fungal species that infect humans can grow in more than one morphological form but only a subset of pathogens produce filamentous hyphae during the infection process. This subset is phylogenetically unrelated and includes the commonly carried yeasts, Candida albicans, C. dubliniensis, and Malassezia spp., and the acquired pathogens, Aspergillus fumigatus and dermatophytes such as Trichophyton rubrum and T. mentagrophytes. The primary function of hypha formation in these opportunistic pathogens is to invade the substrate they are adhered to, whether biotic or abiotic, but other functions include the directional translocation between host environments, consolidation of the colony, nutrient acquisition and the formation of 3-dimensional matrices. To support these functions, polarised hyphal growth is co-regulated with other factors that are essential for normal hypha function in vivo. PMID:22121367
Productivity, biodiversity, and pathogens influence the global hunter-gatherer population density.
Tallavaara, Miikka; Eronen, Jussi T; Luoto, Miska
2018-02-06
The environmental drivers of species distributions and abundances are at the core of ecological research. However, the effects of these drivers on human abundance are not well-known. Here, we report how net primary productivity, biodiversity, and pathogen stress affect human population density using global ethnographic hunter-gatherer data. Our results show that productivity has significant effects on population density globally. The most important direct drivers, however, depend on environmental conditions: biodiversity influences population density exclusively in low-productivity regions, whereas pathogen stress does so in high-productivity regions. Our results also indicate that subtropical and temperate forest biomes provide the highest carrying capacity for hunter-gatherer populations. These findings document that environmental factors play a key role in shaping global population density patterns of preagricultural humans.
Rubin, Erica J; Trent, M Stephen
2013-01-01
Helicobacter pylori is an adapted gastric pathogen that colonizes the human stomach, causing severe gastritis and gastric cancer. A hallmark of infection is the ability of this organism to evade detection by the human immune system. H. pylori has evolved a number of features to achieve this, many of which involve glyco-conjugates including the lipopolysaccharide, peptidoglycan layer, glycoproteins, and glucosylated cholesterol. These major bacterial components possess unique features from those of other gram-negative organisms, including differences in structure, assembly, and modification. These defining characteristics of H. pylori glycobiology help the pathogen establish a long-lived infection by providing camouflage, modulating the host immune response, and promoting virulence mechanisms. In this way, glyco-conjugates are essential for H. pylori pathogenicity and survival, allowing it to carve out a niche in the formidable environment of the human stomach. PMID:23859890
Bonnet, Sarah I.; Binetruy, Florian; Hernández-Jarguín, Angelica M.; Duron, Olivier
2017-01-01
Ticks are among the most important vectors of pathogens affecting humans and other animals worldwide. They do not only carry pathogens however, as a diverse group of commensal and symbiotic microorganisms are also present in ticks. Unlike pathogens, their biology and their effect on ticks remain largely unexplored, and are in fact often neglected. Nonetheless, they can confer multiple detrimental, neutral, or beneficial effects to their tick hosts, and can play various roles in fitness, nutritional adaptation, development, reproduction, defense against environmental stress, and immunity. Non-pathogenic microorganisms may also play a role in driving transmission of tick-borne pathogens (TBP), with many potential implications for both human and animal health. In addition, the genetic proximity of some pathogens to mutualistic symbionts hosted by ticks is evident when studying phylogenies of several bacterial genera. The best examples are found within members of the Rickettsia, Francisella, and Coxiella genera: while in medical and veterinary research these bacteria are traditionally recognized as highly virulent vertebrate pathogens, it is now clear to evolutionary ecologists that many (if not most) Coxiella, Francisella, and Rickettsia bacteria are actually non-pathogenic microorganisms exhibiting alternative lifestyles as mutualistic ticks symbionts. Consequently, ticks represent a compelling yet challenging system in which to study microbiomes and microbial interactions, and to investigate the composition, functional, and ecological implications of bacterial communities. Ultimately, deciphering the relationships between tick microorganisms as well as tick symbiont interactions will garner invaluable information, which may aid in the future development of arthropod pest and vector-borne pathogen transmission control strategies. PMID:28642842
Bonnet, Sarah I; Binetruy, Florian; Hernández-Jarguín, Angelica M; Duron, Olivier
2017-01-01
Ticks are among the most important vectors of pathogens affecting humans and other animals worldwide. They do not only carry pathogens however, as a diverse group of commensal and symbiotic microorganisms are also present in ticks. Unlike pathogens, their biology and their effect on ticks remain largely unexplored, and are in fact often neglected. Nonetheless, they can confer multiple detrimental, neutral, or beneficial effects to their tick hosts, and can play various roles in fitness, nutritional adaptation, development, reproduction, defense against environmental stress, and immunity. Non-pathogenic microorganisms may also play a role in driving transmission of tick-borne pathogens (TBP), with many potential implications for both human and animal health. In addition, the genetic proximity of some pathogens to mutualistic symbionts hosted by ticks is evident when studying phylogenies of several bacterial genera. The best examples are found within members of the Rickettsia, Francisella , and Coxiella genera: while in medical and veterinary research these bacteria are traditionally recognized as highly virulent vertebrate pathogens, it is now clear to evolutionary ecologists that many (if not most) Coxiella, Francisella , and Rickettsia bacteria are actually non-pathogenic microorganisms exhibiting alternative lifestyles as mutualistic ticks symbionts. Consequently, ticks represent a compelling yet challenging system in which to study microbiomes and microbial interactions, and to investigate the composition, functional, and ecological implications of bacterial communities. Ultimately, deciphering the relationships between tick microorganisms as well as tick symbiont interactions will garner invaluable information, which may aid in the future development of arthropod pest and vector-borne pathogen transmission control strategies.
Prebiotics in food animals, a potential to reduce foodborne pathogens and disease
USDA-ARS?s Scientific Manuscript database
Animals can be seriously impacted by bacterial pathogens that affect their growth efficiency and overall health, as well as food safety of animal-derived products. Some pathogenic bacteria, such as Salmonella, can be a shared problem for both human and animal health and can be found in many animal ...
Prebiotics in food animals: A potential to reduce foodborne pathogens and disease
USDA-ARS?s Scientific Manuscript database
Animals can be seriously impacted by bacterial pathogens that affect their growth efficiency and overall health, as well as food safety of animal-derived products. Some pathogenic bacteria, such as Salmonella, can be a shared problem for both human and animal health and can be found in many animal ...
78 FR 66010 - Draft Risk Profile on Pathogens and Filth in Spices; Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2013-11-04
... about the frequency and levels of pathogen and/or filth contamination of spices throughout the food... DEPARTMENT OF HEALTH AND HUMAN SERVICES Food and Drug Administration [Docket No. FDA-2013-N-1204] Draft Risk Profile on Pathogens and Filth in Spices; Availability AGENCY: Food and Drug Administration...
USDA-ARS?s Scientific Manuscript database
Pseudomonas aeruginosa pathogenicity island 1 (PAPI-1) is one of the largest genomic islands of this important opportunistic human pathogen. Previous studies have shown that PAPI-1 encodes several putative virulence factors, a major regulator of biofilm formation, and antibiotic-resistance traits, a...
Land Application of Wastes: An Educational Program. Pathogens - Module 9.
ERIC Educational Resources Information Center
Clarkson, W. W.; And Others
This module is intended to help engineers evaluate the relative health risks from pathogens at land treatment sites versus conventional waste treatment systems. Among the topics considered are the following: (1) the relationship between survival time of pathogens and the chance of disease transmission to humans; (2) the factors that favor survival…
Van Pelt, Amelia E.; Quiñones, Beatriz; Lofgren, Hannah L.; Bartz, Faith E.; Newman, Kira L.; Leon, Juan S.
2018-01-01
Foodborne illness burdens individuals around the world and may be caused by consuming fresh produce contaminated with bacterial, parasite, and viral pathogens. Pathogen contamination on produce may originate at the farm and packing facility. This research aimed to determine the prevalence of human pathogens (bacteria, parasites, and viruses) on fresh produce (fruits, herbs, and vegetables) on farms and in packing facilities worldwide through a systematic review of 38 peer-reviewed articles. The median and range of the prevalence was calculated, and Kruskal–Wallis tests and logistic regression were performed to compare prevalence among pooled samples of produce groups, pathogen types, and sampling locations. Results indicated a low median percentage of fresh produce contaminated with pathogens (0%). Both viruses (p-value = 0.017) and parasites (p-value = 0.033), on fresh produce, exhibited higher prevalence than bacteria. No significant differences between fresh produce types or between farm and packing facility were observed. These results may help to better quantify produce contamination in the production environment and inform strategies to prevent future foodborne illness. PMID:29527522
Ye, Luona; Guo, Mengpei; Ren, Pengfei; Wang, Gangzheng; Bian, Yinbing; Xiao, Yang; Zhou, Yan
2018-03-01
Coprinus comatus is an edible mushroom widely cultivated in China as a delicious food. Various diseases have occurred on C. comatus with the cultivated area increasing. In this study, the pathogenic bacterium JTG-B1, identified as Achromobacter xylosoxidans by 16S rDNA and nrdA gene sequencing, was isolated from edible mushroom Coprinus comatus with serious rot disease on its stipe. A. xylosoxidans has been confirmed as an important opportunistic human pathogenic bacterium and has been isolated from respiratory samples from cystic fibrosis. It is widely distributed in the environment. Here, we first report that fungi can also serve as a host for A. xylosoxidans. We confirmed that it can cross-kingdom infect between animals (mice) and fungi (C. comatus). The results of pathogenicity tests, physiological, biochemical and genotyping analysis of A. xylosoxidans from different hosts suggested that different strain of A. xylosoxidans may have pathogenicity differentiation. A. xylosoxidans not only is pathogenic to C. comatus but also may threaten human health. Copyright © 2017 Elsevier GmbH. All rights reserved.
Yarham, John W.; Blakely, Emma L.; Alston, Charlotte L.; Roberts, Mark E.; Ealing, John; Pal, Piyali; Turnbull, Douglass M.; McFarland, Robert; Taylor, Robert W.
2013-01-01
Mitochondrial tRNA point mutations are important causes of human disease, and have been associated with a diverse range of clinical phenotypes. Definitively proving the pathogenicity of any given mt-tRNA mutation requires combined molecular, genetic and functional studies. Subsequent evaluation of the mutation using a pathogenicity scoring system is often very helpful in concluding whether or not the mutation is causing disease. Despite several independent reports linking the m.3291T>C mutation to disease in humans, albeit in association with several different phenotypes, its pathogenicity remains controversial. A lack of conclusive functional evidence and an over-emphasis on the poor evolutionary conservation of the affected nucleotide have contributed to this controversy. Here we describe an adult patient who presented with deafness and lipomas and evidence of mitochondrial abnormalities in his muscle biopsy, who harbours the m.3291T > C mutation, providing conclusive evidence of pathogenicity through analysis of mutation segregation with cytochrome c oxidase (COX) deficiency in single muscle fibres, underlining the importance of performing functional studies when assessing pathogenicity. PMID:23273904
Yeh, Ellen; Pinsky, Benjamin A; Banaei, Niaz; Baron, Ellen Jo
2009-07-03
Blood agar is used for the identification and antibiotic susceptibility testing of many bacterial pathogens. In the developing world, microbiologists use human blood agar because of the high cost and inhospitable conditions for raising wool sheep or horses to supply blood. Many pathogens either fail to grow entirely or exhibit morphologies and hemolytic patterns on human blood agar that confound colony recognition. Furthermore, human blood can be hazardous to handle due to HIV and hepatitis. This study investigated whether blood from hair sheep, a hardy, low-maintenance variety of sheep adapted for hot climates, was suitable for routine clinical microbiology studies. Hair sheep blood obtained by jugular venipuncture was anticoagulated by either manual defibrination or collection in human blood bank bags containing citrate-phosphate-dextrose. Trypticase soy 5% blood agar was made from both forms of hair sheep blood and commercial defibrinated wool sheep blood. Growth characteristics, colony morphologies, and hemolytic patterns of selected human pathogens, including several streptococcal species, were evaluated. Specialized identification tests, including CAMP test, reverse CAMP test, and satellite colony formation with Haemophilus influenzae and Abiotrophia defectiva were also performed. Mueller-Hinton blood agar plates prepared from the three blood types were compared in antibiotic susceptibility tests by disk diffusion and E-test. The results of all studies showed that blood agar prepared from citrated hair sheep blood is suitable for microbiological tests used in routine identification and susceptibility profiling of human pathogens. The validation of citrated hair sheep blood eliminates the labor-intensive and equipment-requiring process of manual defibrination. Use of hair sheep blood, in lieu of human blood currently used by many developing world laboratories and as an alternative to cost-prohibitive commercial sheep blood, offers the opportunity to dramatically improve the safety and accuracy of laboratory diagnosis of pathogenic bacteria in resource-poor countries.
Naik, Onkar A; Shashidhar, Ravindranath; Rath, Devashish; Bandekar, Jayant R; Rath, Archana
2018-03-01
Marine fish species were analyzed for culturable and total metagenomic microbial diversity, antibiotic resistance (AR) pattern, and horizontal gene transfer in culturable microorganisms. We observed a high AR microbial load of 3 to 4 log CFU g -1 . Many fish pathogens like Providencia, Staphylococcus, Klebsiella pneumoniae, Enterobacter, Vagococcus, and Aeromonas veronii were isolated. Photobacterium and Vibrio were two major fish and human pathogens which were identified in the fish metagenome. Other pathogens that were identified were Shewanella, Acinetobacter, Psychrobacter, and Flavobacterium. Most of these pathogens were resistant to multiple antibiotics such as erythromycin, kanamycin, neomycin, streptomycin, penicillin, cefotaxime, bacitracin, rifampicin, trimethoprim, ciprofloxacin, and doxycycline with a high multiple antibiotic resistance index of 0.54-0.77. The fish microflora showed high prevalence of AR genes like bla TEM , Class I integron, tetA, aph(3')-IIIa, ermB, aadA, and sul1. Nineteen of 26 AR isolates harbored Class I integrons showing high co-resistance to trimethoprim, kanamycin, doxycycline, and cefotaxime. Mobile R-plasmids from 6 of the 12 AR pathogens were transferred to recipient E. coli after conjugation. The transconjugants harbored the same R-plasmid carrying bla CTX-M , dfr1, tetA, bla TEM , and cat genes. This study confirms that fish is a potential carrier of AR pathogens which can enter the human gut via food chain. To the best of our knowledge, this is the first study in the Indian subcontinent reporting a direct evidence of spread of AR pathogens to humans from specific marine fish consumption.
Berk, S G; Gunderson, J H; Newsome, A L; Farone, A L; Hayes, B J; Redding, K S; Uddin, N; Williams, E L; Johnson, R A; Farsian, M; Reid, A; Skimmyhorn, J; Farone, M B
2006-12-01
Many species of bacteria pathogenic to humans, such as Legionella, are thought to have evolved in association with amoebal hosts. Several novel unculturable bacteria related to Legionella have also been found in amoebae, a few of which have been thought to be causes of nosocomial infections in humans. Because amoebae can be found in cooling towers, we wanted to know whether cooling tower environments might enhance the association between amoebae and bacterial pathogens of amoebae in order to identify potential "hot spots" for emerging human pathogens. To compare occurrence of infected amoebae in natural environments with those in cooling towers, 40 natural aquatic environments and 40 cooling tower samples were examined. Logistic regression analysis determined variables that were significant predictors of the occurrence of infected amoebae, which were found in 22 of 40 cooling tower samples but in only 3 of the 40 natural samples. An odds ratio showed that it is over 16 times more likely to encounter infected amoebae in cooling towers than in natural environments. Environmental data from cooling towers and natural habitats combined revealed dissolved organic carbon (DOC) and pH were predictors of the occurrence of the pathogens, however, when cooling tower data alone were analyzed, no variables accounted for the occurrence. Several bacteria have novel rRNA sequences, and most strains were not culturable outside of amoebae. Such pathogens of amoebae may spread to the environment via aerosols from cooling towers. Studies of emerging infectious diseases should strongly consider cooling towers as a source of amoeba-associated pathogens.
Immunoglobulin gene usage in the human anti-pathogen response.
Newkirk, M M; Rioux, J D
1995-09-01
The human antibody response to foreign pathogens is generated to a relatively small number of target surface proteins and carbohydrates that nonetheless have an extensive array of epitopes. The study of human monoclonal antibodies to different pathogens shows that there are a diversity of mechanisms used to generate a sufficient repertoire of antibodies to combat the invading pathogens. Although many different immunoglobulin gene elements are used to construct the anti-pathogen response, some elements are used more often than would be expected if all elements were used randomly. For example, the immune response to Haemophilus influenzae polysaccharide appears to be quite narrow, being restricted primarily to a specific heavy-chain gene, 3-15, and a lambda light-chain family II member, 4A. In contrast, for the immune response to cytomegalovirus proteins, a wider group of gene elements is needed. It is also surprising that despite an investigator bias for IgG- rather than IgM-secreting immortal B cells (because of their high affinity and neutralizing abilities), 26% of light chains and 13% of heavy chains showed a very low level of somatic mutation, equivalent to an IgM molecule that has not undergone affinity maturation. Although some highly mutated IgG molecules are present in the anti-pathogen response, most of the monoclonal antibodies specific for viruses or bacteria have a level of somatic hypermutation similar to that of the adult IgM repertoire. A number of studies have shown that there are similarities in the antibody responses to pathogens and to self (autoantibodies).(ABSTRACT TRUNCATED AT 250 WORDS)
Genome-wide phylogenetic analysis of the pathogenic potential of Vibrio furnissii
Lux, Thomas M.; Lee, Rob; Love, John
2014-01-01
We recently reported the genome sequence of a free-living strain of Vibrio furnissii (NCTC 11218) harvested from an estuarine environment. V. furnissii is a widespread, free-living proteobacterium and emerging pathogen that can cause acute gastroenteritis in humans and lethal zoonoses in aquatic invertebrates, including farmed crustaceans and molluscs. Here we present the analyses to assess the potential pathogenic impact of V. furnissii. We compared the complete genome of V. furnissii with 8 other emerging and pathogenic Vibrio species. We selected and analyzed more deeply 10 genomic regions based upon unique or common features, and used 3 of these regions to construct a phylogenetic tree. Thus, we positioned V. furnissii more accurately than before and revealed a closer relationship between V. furnissii and V. cholerae than previously thought. However, V. furnissii lacks several important features normally associated with virulence in the human pathogens V. cholera and V. vulnificus. A striking feature of the V. furnissii genome is the hugely increased Super Integron, compared to the other Vibrio. Analyses of predicted genomic islands resulted in the discovery of a protein sequence that is present only in Vibrio associated with diseases in aquatic animals. We also discovered evidence of high levels horizontal gene transfer in V. furnissii. V. furnissii seems therefore to have a dynamic and fluid genome that could quickly adapt to environmental perturbation or increase its pathogenicity. Taken together, these analyses confirm the potential of V. furnissii as an emerging marine and possible human pathogen, especially in the developing, tropical, coastal regions that are most at risk from climate change. PMID:25191313
Genome-wide phylogenetic analysis of the pathogenic potential of Vibrio furnissii.
Lux, Thomas M; Lee, Rob; Love, John
2014-01-01
We recently reported the genome sequence of a free-living strain of Vibrio furnissii (NCTC 11218) harvested from an estuarine environment. V. furnissii is a widespread, free-living proteobacterium and emerging pathogen that can cause acute gastroenteritis in humans and lethal zoonoses in aquatic invertebrates, including farmed crustaceans and molluscs. Here we present the analyses to assess the potential pathogenic impact of V. furnissii. We compared the complete genome of V. furnissii with 8 other emerging and pathogenic Vibrio species. We selected and analyzed more deeply 10 genomic regions based upon unique or common features, and used 3 of these regions to construct a phylogenetic tree. Thus, we positioned V. furnissii more accurately than before and revealed a closer relationship between V. furnissii and V. cholerae than previously thought. However, V. furnissii lacks several important features normally associated with virulence in the human pathogens V. cholera and V. vulnificus. A striking feature of the V. furnissii genome is the hugely increased Super Integron, compared to the other Vibrio. Analyses of predicted genomic islands resulted in the discovery of a protein sequence that is present only in Vibrio associated with diseases in aquatic animals. We also discovered evidence of high levels horizontal gene transfer in V. furnissii. V. furnissii seems therefore to have a dynamic and fluid genome that could quickly adapt to environmental perturbation or increase its pathogenicity. Taken together, these analyses confirm the potential of V. furnissii as an emerging marine and possible human pathogen, especially in the developing, tropical, coastal regions that are most at risk from climate change.
Host-pathogen-interaction reconstituted in 3-dimensional cocultures of mucosa and C. albicans.
Buchs, Romina; Lehner, Bruno; Meuwly, Phillippe; Schnyder, Bruno
2018-06-14
C. albicans frequently causes recurrent intimal infectious disease (ID). This demands the treatment of multiple phases of the infection. The objective of this study was to uncover the host-pathogen-interaction using 2D epithelium cell-barrier and 3D subepithelium tissue cells of human mucosa. The 2D cell cultures assessed C. albicans adhesion. Addition of the anti-fungal drug Fluconazol did not inhibit the adhesion, despite its pathogen growth inhibition (MIC value 0.08μg/mL). A 3D tissue was engineered in multi-transwells by placing human fibroblast cultures on a thick porous scaffold. This contained the yeast placed in the top compartment and prevented passive penetration. After 28h the pathogen transmigrated the barrier and was collected in the bottom compartment. A change in pathogen morphology was observed where hypha formed and grew to be 231μm long after 28h. The hypha was thus long enough to cross the 200μm thick 3D tissue. The 3D infection was inhibited by addition of Fluconazol (0.08μg/mL), confirming that penetration is dependent on pathogen growth. In conclusion, ID was reconstituted step-by-step on 2D epithelium surface and in 3D connective tissue of human mucosa. Fluconazol growth-inhibition of the pathogen C. albicans was confirmed in the 3D tissue. We thus propose that this ID in vitro test is suitable for the identification and characterization of new treatments against C. albicans..
Atassi, Fabrice; Servin, Alain L
2010-03-01
The mechanism underlying the killing activity of Lactobacillus strains against bacterial pathogens appears to be multifactorial. Here, we investigate the respective contributions of hydrogen peroxide and lactic acid in killing bacterial pathogens associated with the human vagina, urinary tract or intestine by two hydrogen peroxide-producing strains. In co-culture, the human intestinal strain Lactobacillus johnsonii NCC933 and human vaginal strain Lactobacillus gasseri KS120.1 strains killed enteric Salmonella enterica serovar Typhimurium SL1344, vaginal Gardnerella vaginalis DSM 4944 and urinary tract Escherichia coli CFT073 pathogens. The cell-free culture supernatants (CFCSs) produced the same reduction in SL1344, DSM 4944 and CFT073 viability, whereas isolated bacteria had no effect. The killing activity of CFCSs was heat-stable. In the presence of Dulbecco's modified Eagle's minimum essential medium inhibiting the lactic acid-dependent killing activity, CFCSs were less effective at killing of the pathogens. Catalase-treated CFCSs displayed a strong decreased activity. Tested alone, hydrogen peroxide triggered a concentration-dependent killing activity against all three pathogens. Lactic acid alone developed a killing activity only at concentrations higher than that present in CFCSs. In the presence of lactic acid at a concentration present in Lactobacillus CFCSs, hydrogen peroxide displayed enhanced killing activity. Collectively, these results demonstrate that for hydrogen peroxide-producing Lactobacillus strains, the main metabolites of Lactobacillus, lactic acid and hydrogen peroxide, act co-operatively to kill enteric, vaginosis-associated and uropathogenic pathogens.
Irinyi, Laszlo; Serena, Carolina; Garcia-Hermoso, Dea; Arabatzis, Michael; Desnos-Ollivier, Marie; Vu, Duong; Cardinali, Gianluigi; Arthur, Ian; Normand, Anne-Cécile; Giraldo, Alejandra; da Cunha, Keith Cassia; Sandoval-Denis, Marcelo; Hendrickx, Marijke; Nishikaku, Angela Satie; de Azevedo Melo, Analy Salles; Merseguel, Karina Bellinghausen; Khan, Aziza; Parente Rocha, Juliana Alves; Sampaio, Paula; da Silva Briones, Marcelo Ribeiro; e Ferreira, Renata Carmona; de Medeiros Muniz, Mauro; Castañón-Olivares, Laura Rosio; Estrada-Barcenas, Daniel; Cassagne, Carole; Mary, Charles; Duan, Shu Yao; Kong, Fanrong; Sun, Annie Ying; Zeng, Xianyu; Zhao, Zuotao; Gantois, Nausicaa; Botterel, Françoise; Robbertse, Barbara; Schoch, Conrad; Gams, Walter; Ellis, David; Halliday, Catriona; Chen, Sharon; Sorrell, Tania C; Piarroux, Renaud; Colombo, Arnaldo L; Pais, Célia; de Hoog, Sybren; Zancopé-Oliveira, Rosely Maria; Taylor, Maria Lucia; Toriello, Conchita; de Almeida Soares, Célia Maria; Delhaes, Laurence; Stubbe, Dirk; Dromer, Françoise; Ranque, Stéphane; Guarro, Josep; Cano-Lira, Jose F; Robert, Vincent; Velegraki, Aristea; Meyer, Wieland
2015-05-01
Human and animal fungal pathogens are a growing threat worldwide leading to emerging infections and creating new risks for established ones. There is a growing need for a rapid and accurate identification of pathogens to enable early diagnosis and targeted antifungal therapy. Morphological and biochemical identification methods are time-consuming and require trained experts. Alternatively, molecular methods, such as DNA barcoding, a powerful and easy tool for rapid monophasic identification, offer a practical approach for species identification and less demanding in terms of taxonomical expertise. However, its wide-spread use is still limited by a lack of quality-controlled reference databases and the evolving recognition and definition of new fungal species/complexes. An international consortium of medical mycology laboratories was formed aiming to establish a quality controlled ITS database under the umbrella of the ISHAM working group on "DNA barcoding of human and animal pathogenic fungi." A new database, containing 2800 ITS sequences representing 421 fungal species, providing the medical community with a freely accessible tool at http://www.isham.org/ and http://its.mycologylab.org/ to rapidly and reliably identify most agents of mycoses, was established. The generated sequences included in the new database were used to evaluate the variation and overall utility of the ITS region for the identification of pathogenic fungi at intra-and interspecies level. The average intraspecies variation ranged from 0 to 2.25%. This highlighted selected pathogenic fungal species, such as the dermatophytes and emerging yeast, for which additional molecular methods/genetic markers are required for their reliable identification from clinical and veterinary specimens. © The Author 2015. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Mallik, Dhriti; Pal, Shilpa; Ghosh, Anindya S
2018-04-01
AmpG permease is implicated both in beta-lactamase induction and peptidoglycan recycling in enterobacterial isolates. Here, physiological studies using molecular genetics show that deletion of AmpG permease dramatically increases beta-lactam susceptibility even in the presence of AmpC, TEM-1 and OXA beta-lactamases. Also, there is an appreciable decrease in the biofilm-forming ability of strains lacking this protein. Expression of this permease in excess probably compromises the integrity of the bacterial cells, leading to cell lysis. Based on these results, we propose that AmpG permease may be used as a potential antibiotic target and its suppression could efficiently inhibit both beta-lactamase induction and biofilm formation.
Pathogenic agents in freshwater resources
NASA Astrophysics Data System (ADS)
Geldreich, Edwin E.
1996-02-01
Numerous pathogenic agents have been found in freshwaters used as sources for water supplies, recreational bathing and irrigation. These agents include bacterial pathogens, enteric viruses, several protozoans and parasitic worms more common to tropical waters. Although infected humans are a major source of pathogens, farm animals (cattle, sheep, pigs), animal pets (dogs, cats) and wildlife serve as significant reservoirs and should not be ignored. The range of infected individuals within a given warm-blooded animal group (humans included) may range from 1 to 25%. Survival times for pathogens in the water environment may range from a few days to as much as a year (Ascaris, Taenia eggs), with infective dose levels varying from one viable cell for several primary pathogenic agents to many thousands of cells for a given opportunistic pathogen.As pathogen detection in water is complex and not readily incorporated into routine monitoring, a surrogate is necessary. In general, indicators of faecal contamination provide a positive correlation with intestinal pathogen occurrences only when appropriate sample volumes are examined by sensitive methodology.Pathways by which pathogens reach susceptible water users include ingestion of contaminated water, body contact with polluted recreational waters and consumption of salad crops irrigated by polluted freshwaters. Major contributors to the spread of various water-borne pathogens are sewage, polluted surface waters and stormwater runoff. All of these contributions are intensified during periods of major floods. Several water-borne case histories are cited as examples of breakdowns in public health protection related to water supply, recreational waters and the consumption of contaminated salad crops. In the long term, water resource management must focus on pollution prevention from point sources of waste discharges and the spread of pathogens in watershed stormwater runoff.
Kaur, Jasmine; Sharma, Anshul; Lee, Sulhee; Park, Young-Seo
2018-06-01
Lactobacillus brevis is a part of a large family of lactic acid bacteria that are present in cheese, sauerkraut, sourdough, silage, cow manure, feces, and the intestinal tract of humans and rats. It finds its use in food fermentation, and so is considered a "generally regarded as safe" organism. L. brevis strains are extensively used as probiotics and hence, there is a need for identifying and characterizing these strains. For identification and discrimination of the bacterial species at the subspecific level, repetitive element-polymerase chain reaction method is a reliable genomic fingerprinting tool. The objective of the present study was to characterize 13 strains of L. brevis isolated from various fermented foods using repetitive element-polymerase chain reaction. Repetitive element-polymerase chain reaction was performed using three primer sets, REP, Enterobacterial Repetitive Intergenic Consensus (ERIC), and (GTG) 5 , which produced different fingerprinting patterns that enable us to distinguish between the closely related strains. Fingerprinting patterns generated band range in between 150 and 5000 bp with REP, 200-7500 bp with ERIC, and 250-2000 bp with (GTG) 5 primers, respectively. The Jaccard's dissimilarity matrices were used to obtain dendrograms by the unweighted neighbor-joining method using genetic dissimilarities based on repetitive element-polymerase chain reaction fingerprinting data. Repetitive element-polymerase chain reaction proved to be a rapid and easy method that can produce reliable results in L. brevis species.
Tsai, Yu-Huan; Disson, Olivier; Bierne, Hélène; Lecuit, Marc
2013-01-01
Listeria monocytogenes (Lm) is an invasive foodborne pathogen that leads to severe central nervous system and maternal-fetal infections. Lm ability to actively cross the intestinal barrier is one of its key pathogenic properties. Lm crosses the intestinal epithelium upon the interaction of its surface protein internalin (InlA) with its host receptor E-cadherin (Ecad). InlA-Ecad interaction is species-specific, does not occur in wild-type mice, but does in transgenic mice expressing human Ecad and knock-in mice expressing humanized mouse Ecad. To study listeriosis in wild-type mice, InlA has been “murinized” to interact with mouse Ecad. Here, we demonstrate that, unexpectedly, murinized InlA (InlAm) mediates not only Ecad-dependent internalization, but also N-cadherin-dependent internalization. Consequently, InlAm-expressing Lm targets not only goblet cells expressing luminally-accessible Ecad, as does Lm in humanized mice, but also targets villous M cells, which express luminally-accessible N-cadherin. This aberrant Lm portal of entry results in enhanced innate immune responses and intestinal barrier damage, both of which are not observed in wild-type Lm-infected humanized mice. Murinization of InlA therefore not only extends the host range of Lm, but also broadens its receptor repertoire, providing Lm with artifactual pathogenic properties. These results challenge the relevance of using InlAm-expressing Lm to study human listeriosis and in vivo host responses to this human pathogen. PMID:23737746
Tsai, Yu-Huan; Disson, Olivier; Bierne, Hélène; Lecuit, Marc
2013-01-01
Listeria monocytogenes (Lm) is an invasive foodborne pathogen that leads to severe central nervous system and maternal-fetal infections. Lm ability to actively cross the intestinal barrier is one of its key pathogenic properties. Lm crosses the intestinal epithelium upon the interaction of its surface protein internalin (InlA) with its host receptor E-cadherin (Ecad). InlA-Ecad interaction is species-specific, does not occur in wild-type mice, but does in transgenic mice expressing human Ecad and knock-in mice expressing humanized mouse Ecad. To study listeriosis in wild-type mice, InlA has been "murinized" to interact with mouse Ecad. Here, we demonstrate that, unexpectedly, murinized InlA (InlA(m)) mediates not only Ecad-dependent internalization, but also N-cadherin-dependent internalization. Consequently, InlA(m)-expressing Lm targets not only goblet cells expressing luminally-accessible Ecad, as does Lm in humanized mice, but also targets villous M cells, which express luminally-accessible N-cadherin. This aberrant Lm portal of entry results in enhanced innate immune responses and intestinal barrier damage, both of which are not observed in wild-type Lm-infected humanized mice. Murinization of InlA therefore not only extends the host range of Lm, but also broadens its receptor repertoire, providing Lm with artifactual pathogenic properties. These results challenge the relevance of using InlA(m)-expressing Lm to study human listeriosis and in vivo host responses to this human pathogen.
Human Milk Blocks DC-SIGN–Pathogen Interaction via MUC1
Koning, Nathalie; Kessen, Sabine F. M.; Van Der Voorn, J. Patrick; Appelmelk, Ben J.; Jeurink, Prescilla V.; Knippels, Leon M. J.; Garssen, Johan; Van Kooyk, Yvette
2015-01-01
Beneficial effects of breastfeeding are well-recognized and include both immediate neonatal protection against pathogens and long-term protection against allergies and autoimmune diseases. Although several proteins have been identified to have anti-viral or anti-bacterial effects like secretory IgA or lactoferrin, the mechanisms of immune modulation are not fully understood. Recent studies identified important beneficial effects of glycans in human milk, such as those expressed in oligosaccharides or on glycoproteins. Glycans are recognized by the carbohydrate receptors C-type lectins on dendritic cell (DC) and specific tissue macrophages, which exert important functions in immune modulation and immune homeostasis. A well-characterized C-type lectin is dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN), which binds terminal fucose. The present study shows that in human milk, MUC1 is the major milk glycoprotein that binds to the lectin domain of DC-SIGN and prevents pathogen interaction through the presence of Lewis x-type oligosaccharides. Surprisingly, this was specific for human milk, as formula, bovine or camel milk did not show any presence of proteins that interacted with DC-SIGN. The expression of DC-SIGN is found in young infants along the entire gastrointestinal tract. Our data thus suggest the importance of human milk glycoproteins for blocking pathogen interaction to DC in young children. Moreover, a potential benefit of human milk later in life in shaping the infants immune system through DC-SIGN cannot be ruled out. PMID:25821450
Linking environmental nutrient enrichment and disease emergence in humans and wildlife
Johnson, Pieter T. J.; Townsend, Alan R.; Cleveland, Cory C.; Glibert, Patricia M.; Howarth, Robert W.; McKenzie, Valerie J.; Rejmankova, Eliska; Ward, Mary H.
2009-01-01
Worldwide increases in the numbers of human and wildlife diseases present ecologists with the challenge of understanding how large-scale environmental changes affect host-parasite interactions. One of the most profound changes to Earth’s ecosystems is the alteration of global nutrient cycles, including those of phosphorus (P) and especially nitrogen (N). Alongside the obvious direct benefits of nutrient application for food production, growing evidence suggests that anthropogenic inputs of N and P can indirectly affect the abundance of infectious and noninfectious pathogens, sometimes leading to epidemic conditions. However, the mechanisms underpinning observed correlations, and how such patterns vary with disease type, have long remained conjectural. Here, we discuss recent experimental advances in this area to critically evaluate the relationship between environmental nutrient enrichment and disease. Given the inter-related nature of human and wildlife disease emergence, we include a broad range of human and wildlife examples from terrestrial, marine and freshwater ecosystems. We examine the consequences of nutrient pollution on directly transmitted, vector-borne, complex life cycle, and noninfectious pathogens, including West Nile virus, malaria, harmful algal blooms, coral reef diseases and amphibian malformations. Our synthetic examination suggests that the effects of environmental nutrient enrichment on disease are complex and multifaceted, varying with the type of pathogen, host species and condition, attributes of the ecosystem and the degree of enrichment; some pathogens increase in abundance whereas others decline or disappear. Nevertheless, available evidence indicates that ecological changes associated with nutrient enrichment often exacerbate infection and disease caused by generalist parasites with direct or simple life cycles. Observed mechanisms include changes in host/vector density, host distribution, infection resistance, pathogen virulence or toxicity, or the direct supplementation of pathogens. Collectively, these pathogens may be particularly dangerous because they can continue to cause mortality even as their hosts decline, potentially leading to sustained epidemics or chronic pathology. We suggest that interactions between nutrient enrichment and disease will become increasingly important in tropical and subtropical regions, where forecasted increases in nutrient application will occur in an environment rich with infectious pathogens. We emphasize the importance of careful disease management in conjunction with continued intensification of global nutrient cycles. PMID:20349828
Westward Spread of Highly Pathogenic Avian Influenza A(H7N9) Virus among Humans, China.
Yang, Qiqi; Shi, Wei; Zhang, Lei; Xu, Yi; Xu, Jing; Li, Shen; Zhang, Junjun; Hu, Kan; Ma, Chaofeng; Zhao, Xiang; Li, Xiyan; Liu, Feng; Tong, Xin; Zhang, Guogang; Yu, Pengbo; Pybus, Oliver G; Tian, Huaiyu
2018-06-01
We report infection of humans with highly pathogenic avian influenza A(H7N9) virus in Shaanxi, China, in May 2017. We obtained complete genomes for samples from 5 patients and from live poultry markets or farms in 4 cities. Results indicate that H7N9 is spreading westward from southern and eastern China.
Mier-y-Teran-Romero, Luis; Tatem, Andrew J.
2017-01-01
Mosquito-borne diseases are increasingly being recognized as global threats, with increased air travel accelerating their occurrence in travelers and their spread to new locations. Since the early days of aviation, concern over the possible transportation of infected mosquitoes has led to recommendations to disinsect aircraft. Despite rare reports of mosquitoes, most likely transported on aircraft, infecting people far from endemics areas, it is unclear how important the role of incidentally transported mosquitoes is compared to the role of traveling humans. We used data for Plasmodium falciparum and dengue viruses to estimate the probability of introduction of these pathogens by mosquitoes and by humans via aircraft under ideal conditions. The probability of introduction of either pathogen by mosquitoes is low due to few mosquitoes being found on aircraft, low infection prevalence among mosquitoes, and high mortality. Even without disinsection, introduction via infected human travelers was far more likely than introduction by infected mosquitoes; more than 1000 times more likely for P. falciparum and more than 200 times more likely for dengue viruses. Even in the absence of disinsection and under the most favorable conditions, introduction of mosquito-borne pathogens via air travel is far more likely to occur as a result of an infected human travelling rather than the incidental transportation of infected mosquitoes. Thus, while disinsection may serve a role in preventing the spread of vector species and other invasive insects, it is unlikely to impact the spread of mosquito-borne pathogens. PMID:28672006
[New insight into bacterial zoonotic pathogens posing health hazards to humans].
Ciszewski, Marcin; Czekaj, Tomasz; Szewczyk, Eligia Maria
2014-01-01
This article presents the problem of evolutionary changes of zoonotic pathogens responsible for human diseases. Everyone is exposed to the risk of zoonotic infection, particularly employees having direct contact with animals, i.e. veterinarians, breeders, butchers and workers of animal products' processing industry. The article focuses on pathogens monitored by the European Centre for Disease Prevention and Control (ECDC), which has been collecting statistical data on zoonoses from all European Union countries for 19 years and publishing collected data in annual epidemiological reports. Currently, the most important 11 pathogens responsible for causing human zoonotic diseases are being monitored, of which seven are bacteria: Salmonella spp., Campylobacter spp., Listeria monocytogenes, Mycobacterium bovis, Brucella spp., Coxiella burnetti and Verotoxin-producing E. coli (VTEC)/Shiga-like toxin producing E. coli (STEC). As particularly important are considered foodborne pathogens. The article also includes new emerging zoonotic bacteria, which are not currently monitored by ECDC but might pose a serious epidemiological problem in a foreseeable future: Streptococcus iniae, S. suis, S. dysgalactiae and staphylococci: Staphylococcus intermedius, S. pseudintermedius. Those species have just crossed the animal-human interspecies barrier. The exact mechanism of this phenomenon remains unknown, it is connected, however, with genetic variability, capability to survive in changing environment. These abilities derive from DNA rearrangement and horizontal gene transfer between bacterial cells. Substantial increase in the number of scientific publications on this subject, observed over the last few years, illustrates the importance of the problem.
Vanantwerpen, Gerty; Berkvens, Dirk; De Zutter, Lieven; Houf, Kurt
2015-07-09
Pigs are the main reservoir of human pathogenic Y. enterocolitica, and the microbiological and serological prevalence of this pathogen differs between pig farms. The infection status of pig batches at moment of slaughter is unknown while it is a possibility to classify batches. A relation between the presence of human pathogenic Yersinia spp. and the presence of antibodies could help to predict the infection of the pigs prior to slaughter. Pigs from 100 different batches were sampled. Tonsils and pieces of diaphragm were collected from 7047 pigs (on average 70 pigs per batch). The tonsils were analyzed using a direct plating method and the meat juice collected from the pieces of diaphragm was analyzed by Enzyme Linked ImmunoSorbent Assay. The microbiological and serological results were compared using a mixed-effects logistic regression at pig and batch level. Yersinia spp. were found in 2031 (28.8%) pigs, antibodies were present in 4692 (66.6%) pigs. According to the logistic regression, there was no relation at pig level between the presence of Yersinia spp. in tonsils and the presence of antibodies. Contrarily, at batch level, a mean activity value of 37 Optical Density (OD)% indicated a Yersinia spp. positive farm and the microbiological prevalence in pig batches could be estimated before shipment to the slaughterhouse. This offers the opportunity to classify batches based on their potential risk to contaminate carcasses with human pathogenic Yersinia spp. Copyright © 2015 Elsevier B.V. All rights reserved.
Pathogens and pharmaceuticals in source-separated urine in eThekwini, South Africa.
Bischel, Heather N; Özel Duygan, Birge D; Strande, Linda; McArdell, Christa S; Udert, Kai M; Kohn, Tamar
2015-11-15
In eThekwini, South Africa, the production of agricultural fertilizers from human urine collected from urine-diverting dry toilets is being evaluated at a municipality scale as a way to help finance a decentralized, dry sanitation system. The present study aimed to assess a range of human and environmental health hazards in source-separated urine, which was presumed to be contaminated with feces, by evaluating the presence of human pathogens, pharmaceuticals, and an antibiotic resistance gene. Composite urine samples from households enrolled in a urine collection trial were obtained from urine storage tanks installed in three regions of eThekwini. Polymerase chain reaction (PCR) assays targeted 9 viral and 10 bacterial human pathogens transmitted by the fecal-oral route. The most frequently detected viral pathogens were JC polyomavirus, rotavirus, and human adenovirus in 100%, 34% and 31% of samples, respectively. Aeromonas spp. and Shigella spp. were frequently detected gram negative bacteria, in 94% and 61% of samples, respectively. The gram positive bacterium, Clostridium perfringens, which is known to survive for extended times in urine, was found in 72% of samples. A screening of 41 trace organic compounds in the urine facilitated selection of 12 priority pharmaceuticals for further evaluation. The antibiotics sulfamethoxazole and trimethoprim, which are frequently prescribed as prophylaxis for HIV-positive patients, were detected in 95% and 85% of samples, reaching maximum concentrations of 6800 μg/L and 1280 μg/L, respectively. The antiretroviral drug emtricitabine was also detected in 40% of urine samples. A sulfonamide antibiotic resistance gene (sul1) was detected in 100% of urine samples. By coupling analysis of pathogens and pharmaceuticals in geographically dispersed samples in eThekwini, this study reveals a range of human and environmental health hazards in urine intended for fertilizer production. Collection of urine offers the benefit of sequestering contaminants from environmental release and allows for targeted treatment of potential health hazards prior to agricultural application. The efficacy of pathogen and pharmaceutical inactivation, transformation or removal during urine nutrient recovery processes is thus briefly reviewed. Copyright © 2015 Elsevier Ltd. All rights reserved.
Species identification and molecular typing of human Brucella isolates from Kuwait.
Mustafa, Abu S; Habibi, Nazima; Osman, Amr; Shaheed, Faraz; Khan, Mohd W
2017-01-01
Brucellosis is a zoonotic disease of major concern in Kuwait and the Middle East. Human brucellosis can be caused by several Brucella species with varying degree of pathogenesis, and relapses are common after apparently successful therapy. The classical biochemical methods for identification of Brucella are time-consuming, cumbersome, and provide information limited to the species level only. In contrast, molecular methods are rapid and provide differentiation at intra-species level. In this study, four molecular methods [16S rRNA gene sequencing, real-time PCR, enterobacterial repetitive intergenic consensus (ERIC)-PCR and multilocus variable-number tandem-repeat analysis (MLVA)-8, MLVA-11 and MLVA-16 were evaluated for the identification and typing of 75 strains of Brucella isolated in Kuwait. 16S rRNA gene sequencing of all isolates showed 90-99% sequence identity with B. melitensis and real-time PCR with genus- and species- specific primers identified all isolates as B. melitensis. The results of ERIC-PCR suggested the existence of 75 ERIC genotypes of B. melitensis with a discriminatory index of 0.997. Cluster classification of these genotypes divided them into two clusters, A and B, diverging at ~25%. The maximum number of genotypes (n = 51) were found in cluster B5. MLVA-8 analysis identified all isolates as B. melitensis, and MLVA-8, MLVA-11 and MLVA-16 typing divided the isolates into 10, 32 and 71 MLVA types, respectively. Furthermore, the combined minimum spanning tree analysis demonstrated that, compared to MLVA types discovered all over the world, the Kuwaiti isolates were a distinct group of MLVA-11 and MLVA-16 types in the East Mediterranean Region.
Species identification and molecular typing of human Brucella isolates from Kuwait
Osman, Amr; Shaheed, Faraz; Khan, Mohd W.
2017-01-01
Brucellosis is a zoonotic disease of major concern in Kuwait and the Middle East. Human brucellosis can be caused by several Brucella species with varying degree of pathogenesis, and relapses are common after apparently successful therapy. The classical biochemical methods for identification of Brucella are time-consuming, cumbersome, and provide information limited to the species level only. In contrast, molecular methods are rapid and provide differentiation at intra-species level. In this study, four molecular methods [16S rRNA gene sequencing, real-time PCR, enterobacterial repetitive intergenic consensus (ERIC)-PCR and multilocus variable-number tandem-repeat analysis (MLVA)-8, MLVA-11 and MLVA-16 were evaluated for the identification and typing of 75 strains of Brucella isolated in Kuwait. 16S rRNA gene sequencing of all isolates showed 90–99% sequence identity with B. melitensis and real-time PCR with genus- and species- specific primers identified all isolates as B. melitensis. The results of ERIC-PCR suggested the existence of 75 ERIC genotypes of B. melitensis with a discriminatory index of 0.997. Cluster classification of these genotypes divided them into two clusters, A and B, diverging at ~25%. The maximum number of genotypes (n = 51) were found in cluster B5. MLVA-8 analysis identified all isolates as B. melitensis, and MLVA-8, MLVA-11 and MLVA-16 typing divided the isolates into 10, 32 and 71 MLVA types, respectively. Furthermore, the combined minimum spanning tree analysis demonstrated that, compared to MLVA types discovered all over the world, the Kuwaiti isolates were a distinct group of MLVA-11 and MLVA-16 types in the East Mediterranean Region. PMID:28800594
Ross, Colleen M.; Pleydell, Eve J.; Muirhead, Richard W.
2012-01-01
Dairy cows have been identified as common carriers of Campylobacter jejuni, which causes many of the human gastroenteritis cases reported worldwide. To design on-farm management practices that control the human infection sourced from dairy cows, the first step is to acquire an understanding of the excretion patterns of the cow reservoir. We monitored the same 35 cows from two dairy farms for C. jejuni excretion fortnightly for up to 12 months. The objective was to examine the concentration of C. jejuni and assess the genetic relationship of the C. jejuni populations excreted by individual cows. Significant differences (P < 0.01) in C. jejuni fecal concentration were observed among the 35 cows, with median concentrations that varied by up to 3.6 log10 · g−1 feces. A total of 36 different genotypes were identified from the 514 positive samples by using enterobacterial repetitive intergenic consensus (ERIC)-PCR. Although 22 of these genotypes were excreted by more than one cow, the analysis of frequencies and distribution of the genotypes by model-based statistics revealed a high degree of individuality in the C. jejuni population in each cow. The observed variation in the frequency of excretion of a genotype among cows and the analysis by multilocus sequence typing (MLST) of these genotypes suggest that excretion of C. jejuni in high numbers is due to a successful adaptation of a particular genotype to a particular cow's gut environment, but that animal-related factors render some individual cows resistant to colonization by particular genotypes. The reasons for differences in C. jejuni colonization of animals warrant further investigation. PMID:22904055
PATHOGENIC MICROORGANISMS AND THEIR FATE ON/IN THE ENVIRONMENT
Major sources of human and animal pathogens in the environment originate from animal feeding operations, decentralized wastewater treatment systems (e.g., septic tanks), wastewater treatment plants, and sewage sludges (biosolids).
Tabanca, Nurhayat; Demirci, Betul; Crockett, Sara L; Başer, Kemal Hüsnü Can; Wedge, David E
2007-10-17
Essential oils from three different Asteraceae obtained by hydrodistillation of aerial parts were analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC/MS). Main compounds obtained from each taxon were found as follows: Arnica longifolia carvacrol 37.3%, alpha-bisabolol 8.2%; Aster hesperius hexadecanoic acid 29.6%, carvacrol 15.2%; and Chrysothamnus nauseosus var. nauseosus beta-phellandrene 22.8% and beta-pinene 19.8%. Essential oils were also evaluated for their antimalarial and antimicrobial activity against human pathogens, and antifungal activities against plant pathogens. No antimalarial and antimicrobial activities against human pathogens were observed. Direct bioautography demonstrated antifungal activity of the essential oils obtained from three Asteraceae taxa and two pure compounds, carvacrol and beta-bisabolol, to the plant pathogens Colletotrichum acutatum, C. fragariae and C. gloeosporioides. Subsequent evaluation of antifungal compounds using a 96-well micro-dilution broth assay indicated that alpha-bisabolol showed weak growth inhibition of the plant pathogen Botrytis cinerea after 72 h.
Mahmoud, D.A.; Hassanein, N.M.; Youssef, K.A.; Abou Zeid, M.A.
2011-01-01
This study was conducted to evaluate the effect of aqueous, ethanolic and ethyl acetate extracts from neem leaves on growth of some human pathogens (Aspergillus flavus, Aspergillus fumigatus, Aspergillus niger, Aspergillus terreus, Candida albicans and Microsporum gypseum) in vitro. Different concentrations (5, 10, 15 and 20%) prepared from these extracts inhibited the growth of the test pathogens and the effect gradually increased with concentration. The 20% ethyl acetate extract gave the strongest inhibition compared with the activity obtained by the same concentration of the other extracts. High Performance Liquid Chromatography (HPLC) analysis of ethyl acetate extract showed the presence of a main component (nimonol) which was purified and chemically confirmed by Nuclear Magnetic Resonance (NMR) spectroscopic analysis. The 20% ethyl acetate extract lost a part of its antifungal effect after pooling out the nimonol and this loss in activity was variable on test pathogens. The purified nimonol as a separate compound did not show any antifungal activity when assayed against all the six fungal pathogens. PMID:24031718
Aarøe, Lene; Osmundsen, Mathias; Petersen, Michael Bang
2016-01-01
Throughout human evolutionary history, cooperative contact with others has been fundamental for human survival. At the same time, social contact has been a source of threats. In this article, we focus on one particular viable threat, communicable disease, and investigate how motivations to avoid pathogens influence people's propensity to interact and cooperate with others, as measured by individual differences in generalized social trust. While extant studies on pathogen avoidance have argued that such motivations should prompt people to avoid interactions with outgroups specifically, we argue that these motivations should prompt people to avoid others more broadly. Empirically, we utilize two convenience samples and a large nationally representative sample of US citizens to demonstrate the existence of a robust and replicable effect of individual differences in pathogen disgust sensitivity on generalized social trust. We furthermore compare the effects of pathogen disgust sensitivity on generalized social trust and outgroup prejudice and explore whether generalized social trust to some extent constitutes a pathway between pathogen avoidance motivations and prejudice.
2016-01-01
A wide range of medicinal and aromatic plants (MAPs) have been explored for their essential oils in the past few decades. Essential oils are complex volatile compounds, synthesized naturally in different plant parts during the process of secondary metabolism. Essential oils have great potential in the field of biomedicine as they effectively destroy several bacterial, fungal, and viral pathogens. The presence of different types of aldehydes, phenolics, terpenes, and other antimicrobial compounds means that the essential oils are effective against a diverse range of pathogens. The reactivity of essential oil depends upon the nature, composition, and orientation of its functional groups. The aim of this article is to review the antimicrobial potential of essential oils secreted from MAPs and their possible mechanisms of action against human pathogens. This comprehensive review will benefit researchers who wish to explore the potential of essential oils in the development of novel broad-spectrum key molecules against a broad range of drug-resistant pathogenic microbes. PMID:28090211
Specific pathogen-free macaques: definition, history, and current production.
Morton, William R; Agy, Michael B; Capuano, Saverio V; Grant, Richard F
2008-01-01
Specific pathogen-free (SPF) macaque colonies are now requested frequently as a resource for research. Such colonies were originally conceived as a means to cull diseased animals from research-dedicated colonies, with the goal of eliminating debilitating or fatal infectious agents from the colony to improve the reproductive capacity of captive research animals. The initial pathogen of concern was Mycobacterium tuberculosis (M.tb.), recognized for many years as a pathogen of nonhuman primates as well as a human health target. More recently attention has focused on four viral pathogens as the basis for an SPF colony: simian type D retrovirus (SRV), simian immunodeficiency virus (SIV), simian T cell lymphotropic/leukemia virus (STLV), and Cercopithecine herpesvirus 1 (CHV-1). New technologies, breeding, and maintenance schemes have emerged to develop and provide SPF primates for research. In this review we focus on the nonhuman primates (NHPs) most common to North American NHP research facilities, Asian macaques, and the most common current research application of these animals, modeling of human AIDS.
Himsworth, Chelsea G; Parsons, Kirbee L; Jardine, Claire; Patrick, David M
2013-06-01
Urban Norway and black rats (Rattus norvegicus and Rattus rattus) are the source of a number of pathogens responsible for significant human morbidity and mortality in cities around the world. These pathogens include zoonotic bacteria (Leptospira interrogans, Yersina pestis, Rickettsia typhi, Bartonella spp., Streptobacillus moniliformis), viruses (Seoul hantavirus), and parasites (Angiostrongylus cantonensis). A more complete understanding of the ecology of these pathogens in people and rats is critical for determining the public health risks associated with urban rats and for developing strategies to monitor and mitigate those risks. Although the ecology of rat-associated zoonoses is complex, due to the multiple ways in which rats, people, pathogens, vectors, and the environment may interact, common determinants of human disease can still be identified. This review summarizes the ecology of zoonoses associated with urban rats with a view to identifying similarities, critical differences, and avenues for further study.
Aarøe, Lene; Osmundsen, Mathias; Petersen, Michael Bang
2016-01-01
Throughout human evolutionary history, cooperative contact with others has been fundamental for human survival. At the same time, social contact has been a source of threats. In this article, we focus on one particular viable threat, communicable disease, and investigate how motivations to avoid pathogens influence people's propensity to interact and cooperate with others, as measured by individual differences in generalized social trust. While extant studies on pathogen avoidance have argued that such motivations should prompt people to avoid interactions with outgroups specifically, we argue that these motivations should prompt people to avoid others more broadly. Empirically, we utilize two convenience samples and a large nationally representative sample of US citizens to demonstrate the existence of a robust and replicable effect of individual differences in pathogen disgust sensitivity on generalized social trust. We furthermore compare the effects of pathogen disgust sensitivity on generalized social trust and outgroup prejudice and explore whether generalized social trust to some extent constitutes a pathway between pathogen avoidance motivations and prejudice. PMID:27516744
Parasitic, fungal and prion zoonoses: an expanding universe of candidates for human disease.
Akritidis, N
2011-03-01
Zoonotic infections have emerged as a burden for millions of people in recent years, owing to re-emerging or novel pathogens often causing outbreaks in the developing world in the presence of inadequate public health infrastructure. Among zoonotic infections, those caused by parasitic pathogens are the ones that affect millions of humans worldwide, who are also at risk of developing chronic disease. The present review discusses the global effect of protozoan pathogens such as Leishmania sp., Trypanosoma sp., and Toxoplasma sp., as well as helminthic pathogens such as Echinococcus sp., Fasciola sp., and Trichinella sp. The zoonotic aspects of agents that are not essentially zoonotic are also discussed. The review further focuses on the zoonotic dynamics of fungal pathogens and prion diseases as observed in recent years, in an evolving environment in which novel patient target groups have developed for agents that were previously considered to be obscure or of minimal significance. © 2011 The Author. Clinical Microbiology and Infection © 2011 European Society of Clinical Microbiology and Infectious Diseases.
Chu, Chishih; Huang, Pei-Yu; Chen, Hung-Ming; Wang, Ying-Hsiang; Tsai, I-An; Lu, Chih-Cheng; Chen, Che-Chun
2016-08-02
Streptococcus agalactiae (GBS) is a common pathogen to infect newborn, woman, the elderly, and immuno-compromised human and fish. 37 fish isolates and 554 human isolates of the GBS in 2007-2012 were investigated in serotypes, antibiotic susceptibility, genetic difference and pathogenicity to tilapia. PCR serotyping determined serotype Ia for all fish GBS isolates and only in 3.2 % (3-4.2 %) human isolates. For fish isolates, all consisted a plasmid less than 6 kb and belonged to ST7 type, which includes mainly pulsotypes I and Ia, with a difference in a deletion at the largest DNA fragment. These fish isolates were susceptible to all antimicrobials tested in 2007 and increased in non-susceptibility to penicillin, and resistance to clindamycin and ceftriaxone in 2011. Differing in pulsotype and lacking plasmid from fish isolates, human serotype Ia isolates were separated into eight pulsotypes II-IX. Main clone ST23 included pulsotypes II and IIa (50 %) and ST483 consisted of pulsotype III. Human serotype Ia isolates were all susceptible to ceftriaxone and penicillin and few were resistant to erythromycin, azithromycin, clindamycin, levofloxacin and moxifloxacine with the resistant rate of 20 % or less. Using tilapia to analyze the pathogenesis, fish isolates could cause more severe symptoms, including hemorrhage of the pectoral fin, hemorrhage of the gill, and viscous black and common scites, and mortality (>95 % for pulsotype I) than the human isolates (<30 %); however, the fish pulostype Ia isolate 912 with deletion caused less symptoms and the lowest mortality (<50 %) than pulsotype I isolates. Genetic, pathogenic, and antimicrobial differences demonstrate diverse origin of human and fish serotype Ia isolates. The pulsotype Ia of fish serotype Ia isolates may be used as vaccine strains to prevent the GBS infection in fish.
Tick-Borne Zoonoses in the United States: Persistent and Emerging Threats to Human Health
Eisen, Rebecca J.; Kugeler, Kiersten J.; Eisen, Lars; Beard, Charles B.; Paddock, Christopher D.
2017-01-01
In the United States, ticks transmit the greatest diversity of arthropod-borne pathogens and are responsible for the most cases of all vector-borne diseases. In recent decades, the number of reported cases of notifiable tick-borne diseases has steadily increased, geographic distributions of many ticks and tick-borne diseases have expanded, and new tick-borne disease agents have been recognized. In this review, we (1) describe the known disease agents associated with the most commonly human-biting ixodid ticks, (2) review the natural histories of these ticks and their associated pathogens, (3) highlight spatial and temporal changes in vector tick distributions and tick-borne disease occurrence in recent decades, and (4) identify knowledge gaps and barriers to more effective prevention of tick-borne diseases. We describe 12 major tick-borne diseases caused by 15 distinct disease agents that are transmitted by the 8 most commonly human-biting ixodid ticks in the United States. Notably, 40% of these pathogens were described within the last two decades. Our assessment highlights the importance of animal studies to elucidate how tick-borne pathogens are maintained in nature, as well as advances in molecular detection of pathogens which has led to the discovery of several new tick-borne disease agents. PMID:28369515
Chan, Agnes P; Choi, Yongwook; Brinkac, Lauren M; Krishnakumar, Radha; DePew, Jessica; Kim, Maria; Hinkle, Mary K; Lesho, Emil P; Fouts, Derrick E
2018-06-05
In light of the ongoing antimicrobial resistance crisis, there is a need to understand the role of co-pathogens, commensals, and the local microbiome in modulating virulence and antibiotic resistance. To identify possible interactions that influence the expression of virulence or survival mechanisms in both the multidrug-resistant organisms (MDROs) and human host cells, unique cohorts of clinical isolates were selected for whole genome sequencing with enhanced assembly and full annotation, pairwise co-culturing, and transcriptome profiling. The MDROs were co-cultured in pairwise combinations either with: (1) another MDRO, (2) skin commensals (Staphylococcus epidermidis and Corynebacterium jeikeium), (3) the common probiotic Lactobacillus reuteri, and (4) human fibroblasts. RNA-Seq analysis showed distinct regulation of virulence and antimicrobial resistance gene responses across different combinations of MDROs, commensals, and human cells. Co-culture assays demonstrated that microbial interactions can modulate gene responses of both the target and pathogen/commensal species, and that the responses are specific to the identity of the pathogen/commensal species. In summary, bacteria have mechanisms to distinguish between friends, foe and host cells. These results provide foundational data and insight into the possibility of manipulating the local microbiome when treating complicated polymicrobial wound, intra-abdominal, or respiratory infections.
Weidensdorfer, Marko; Chae, Ju Ik; Makobe, Celestine; Stahl, Julia; Averhoff, Beate; Müller, Volker; Schürmann, Christoph; Brandes, Ralf P.; Wilharm, Gottfried; Ballhorn, Wibke; Christ, Sara; Linke, Dirk; Fischer, Doris; Göttig, Stephan
2015-01-01
Bacterial adherence determines the virulence of many human-pathogenic bacteria. Experimental approaches elucidating this early infection event in greater detail have been performed using mainly methods of cellular microbiology. However, in vitro infections of cell monolayers reflect the in vivo situation only partially, and animal infection models are not available for many human-pathogenic bacteria. Therefore, ex vivo infection of human organs might represent an attractive method to overcome these limitations. We infected whole human umbilical cords ex vivo with Bartonella henselae or Acinetobacter baumannii under dynamic flow conditions mimicking the in vivo infection situation of human endothelium. For this purpose, methods for quantifying endothelium-adherent wild-type and trimeric autotransporter adhesin (TAA)-deficient bacteria were set up. Data revealed that (i) A. baumannii binds in a TAA-dependent manner to endothelial cells, (ii) this organ infection model led to highly reproducible adherence rates, and furthermore, (iii) this model allowed to dissect the biological function of TAAs in the natural course of human infections. These findings indicate that infection models using ex vivo human tissue samples (“organ microbiology”) might be a valuable tool in analyzing bacterial pathogenicity with the capacity to replace animal infection models at least partially. PMID:26712205
Rodrigues, Anderson Messias; Cruz Choappa, Rodrigo; Fernandes, Geisa Ferreira; de Hoog, G Sybren; de Camargo, Zoilo Pires
2016-02-01
A combination of phylogeny, evolution, morphologies and ecologies has enabled major advances in understanding the taxonomy of Sporothrix species, including members exhibiting distinct lifestyles such as saprobes, human/animal pathogens, and insect symbionts. Phylogenetic analyses of ITS1/2 + 5.8s sequences split Sporothrix genus in two well-defined groups with dissimilar ecologies. Species embedded in the Sporothrix schenckii complex are frequently agents of human and animal sporotrichosis, and some of these are responsible for large sapronoses and zoonoses around the warmer temperate regions of the world. At the other extreme, basal saprophytic species evolved in association with decaying wood and soil, and are rarely found to cause human disease. We propose to create a new taxa, Sporothrix chilensis sp. nov., to accommodate strains collected from a clinical case of onychomycosis as well as from environmental origins in Chile. Multigene analyses based on ITS1/2 + 5.8s region, beta-tubulin, calmodulin and translation elongation factor 1α revealed that S. chilensis is a member of the Sporothrix pallida complex, and the nearest taxon is Sporothrix mexicana, a rare soil-borne species, non-pathogenic to humans. The ITS region serves as a primary barcode marker, while each one of the protein-coding loci easily recognized species boundaries providing sufficient information for species identification. A disseminated model of murine sporotrichosis revealed a mild-pathogenic potential, with lung invasion. Although S. chilensis is not a primary pathogen, accidental infection may have an impact in the immunosuppressed population. With the introduction of distinct species with similar routes of transmission but different virulence, identification of Sporothrix agents at the species level is mandatory. Copyright © 2015 The British Mycological Society. Published by Elsevier Ltd. All rights reserved.
β-lactam resistance in gram-negative pathogens isolated from animals.
Trott, Darren
2013-01-01
Although β-lactams remain a cornerstone of veterinary therapeutics, only a restricted number are actually approved for use in food-producing livestock in comparison to companion animals and wildlife. Nevertheless, both registered and off-label use of third and fourth-generation cephalosporins in livestock may have influenced the emergence of plasmid-encoded AmpC β-lactamases (pAmpC) (mainly CMY-2) and CTX-M extended-spectrum β-lactamases (ESBLs) in both Gram-negative pathogens and commensals isolated from animals. This presents a public health concern due to the potential risk of transfer of β-lactam-resistant pathogens from livestock to humans through food. The recent detection of pAmpC and ESBLs in multidrug-resistant Enterobacteriaceae isolated from dogs has also confirmed the public health importance of β-lactam resistance in companion animals, though in this case, human-to-animal transmission may be equally as relevant as animal-to-human transmission. Identification of pAmpC and ESBLs in Enterobacteriaceae isolated from wildlife and aquaculture species may be evidence of environmental selection pressure arising from both human and veterinary use of β- lactams. Such selection pressure in animals could be reduced by the availability of reliable alternative control measures such as vaccines, bacteriophage treatments and/or competitive exclusion models for endemic production animal diseases such as colibacillosis. The global emergence and pandemic spread of extraintestinal pathogenic E. coli O25-ST131 strains expressing CTX-M-15 ESBL in humans and its recent detection in livestock, companion animals and wildlife is a major cause for concern and goes against the paradigm that Gramnegative pathogens do not necessarily have to lose virulence in compensation for acquiring resistance.
Tracking the establishment of local endemic populations of an emergent enteric pathogen
Holt, Kathryn E.; Thieu Nga, Tran Vu; Thanh, Duy Pham; Vinh, Ha; Kim, Dong Wook; Vu Tra, My Phan; Campbell, James I.; Hoang, Nguyen Van Minh; Vinh, Nguyen Thanh; Minh, Pham Van; Thuy, Cao Thu; Nga, Tran Thi Thu; Thompson, Corinne; Dung, Tran Thi Ngoc; Nhu, Nguyen Thi Khanh; Vinh, Phat Voong; Tuyet, Pham Thi Ngoc; Phuc, Hoang Le; Lien, Nguyen Thi Nam; Phu, Bui Duc; Ai, Nguyen Thi Thuy; Tien, Nguyen Manh; Dong, Nguyen; Parry, Christopher M.; Hien, Tran Tinh; Farrar, Jeremy J.; Parkhill, Julian; Dougan, Gordon; Thomson, Nicholas R.; Baker, Stephen
2013-01-01
Shigella sonnei is a human-adapted pathogen that is emerging globally as the dominant agent of bacterial dysentery. To investigate local establishment, we sequenced the genomes of 263 Vietnamese S. sonnei isolated over 15 y. Our data show that S. sonnei was introduced into Vietnam in the 1980s and has undergone localized clonal expansion, punctuated by genomic fixation events through periodic selective sweeps. We uncover geographical spread, spatially restricted frontier populations, and convergent evolution through local gene pool sampling. This work provides a unique, high-resolution insight into the microevolution of a pioneering human pathogen during its establishment in a new host population. PMID:24082120
Comparison of fecal indicators with pathogenic bacteria and rotavirus in groundwater.
Ferguson, Andrew S; Layton, Alice C; Mailloux, Brian J; Culligan, Patricia J; Williams, Daniel E; Smartt, Abby E; Sayler, Gary S; Feighery, John; McKay, Larry D; Knappett, Peter S K; Alexandrova, Ekaterina; Arbit, Talia; Emch, Michael; Escamilla, Veronica; Ahmed, Kazi Matin; Alam, Md Jahangir; Streatfield, P Kim; Yunus, Mohammad; van Geen, Alexander
2012-08-01
Groundwater is routinely analyzed for fecal indicators but direct comparisons of fecal indicators to the presence of bacterial and viral pathogens are rare. This study was conducted in rural Bangladesh where the human population density is high, sanitation is poor, and groundwater pumped from shallow tubewells is often contaminated with fecal bacteria. Five indicator microorganisms (E. coli, total coliform, F+RNA coliphage, Bacteroides and human-associated Bacteroides) and various environmental parameters were compared to the direct detection of waterborne pathogens by quantitative PCR in groundwater pumped from 50 tubewells. Rotavirus was detected in groundwater filtrate from the largest proportion of tubewells (40%), followed by Shigella (10%), Vibrio (10%), and pathogenic E. coli (8%). Spearman rank correlations and sensitivity-specificity calculations indicate that some, but not all, combinations of indicators and environmental parameters can predict the presence of pathogens. Culture-dependent fecal indicator bacteria measured on a single date did not predict total bacterial pathogens, but annually averaged monthly measurements of culturable E. coli did improve prediction for total bacterial pathogens. A qPCR-based E. coli assay was the best indicator for the bacterial pathogens. F+RNA coliphage were neither correlated nor sufficiently sensitive towards rotavirus, but were predictive of bacterial pathogens. Since groundwater cannot be excluded as a significant source of diarrheal disease in Bangladesh and neighboring countries with similar characteristics, the need to develop more effective methods for screening tubewells with respect to microbial contamination is necessary. Copyright © 2012 Elsevier B.V. All rights reserved.