Characterization of enterococci populations collected from a subsurface flow constructed wetland.
Graves, A K; Weaver, R W
2010-04-01
The aim of this study was to identify and characterize the population of Enterococcus sp. in domestic wastewater as it flows through a constructed wetland. Four hundred and eighty-four Enterococcus isolates were collected from the inlet, various sites within and from the outlet of a plastic lined constructed wetland in College Station, TX. The wetland treated septic tank effluent that passed sequentially through two 1.89 m(3) septic tanks and a 1.89 m(3) pump tank allowing 48 l doses at a 24 l min(-1) rate. The Enterococcus isolates were identified to species using the commercial Biolog system. The 484 Enterococcus isolates were comprised of ten different species, including Enterococcus faecalis (30.6%), Enterococcus pseudoavium (24.0%), Enterococcus casseliflavus (12.8%), Enterococcus faecium (11.2%), Enterococcus mundtii (7.9%), Enterococcus gallinarum (6.2%), Enterococcus dispar (3.7%), Enterococcus hirae (2.1%), Enterococcus durans and Enterococcus flavescens both 0.8%. Of the 88 isolates collected from the inlet, only 9.1% of the isolates were identified as Ent. faecalis and Ent. pseudoavium (36.4%) was identified as the predominant species. Whereas of the 74 isolates collected from the outlet, the predominant species were identified as Ent. faecalis (29.7%). Species identification varied among sites within the wetland, but often Ent. faecalis was the predominant species. Our data suggest that while Ent. faecalis is the predominant species of Enterococcus found in domestic wastewater, the populations may shift during treatment as the wastewater flows through the constructed wetland. We found that shifts in Enterococcus species composition occurred during domestic wastewater treatment. This has implications for the identification of faecal pollution based on the presence of specific bacterial types associated with domestic wastewater.
Jahić, Mahira; Nurkić, Mahmud; Fatusić, Zlatan
2006-01-01
Normal pH value of vagina from 3.8 to 4.2 has regulatory and protectors mechanisms of vaginal environment. The change in the pH value indicates to presence of disbalance in the ecosystem of vaginal environment. The value of pH above 4.0 is indicator of the decreased number of lactobacillus bacteria and the increased number of other microorganisms in the vaginal environment. This situation is present in the case of developing of bacterial vaginosis. One of the bacteria which is often isolated from vaginal swabs is Enterococcus faecalis. Aims of this study are to examine presence o f Enterococcus faecalis in vagina in healthy women and womenwith signs of bacterial vaginosis, the most often present signs in patients with bacterial vaginosis and isolated Enterococcus faecalis from vaginal swabs, and to determine whether the change of the pH value of vaginal environment could be indicator for bacterial vaginosis associated with Enterococcus faecalis. In this study there were included 90 patients. To all patients there were done: gynecological survey, determined pH of vaginal environment and color of vaginal secret, amino odor test, and taken vaginal swabs for microbiological examination. Enterococcus faecalis was found in the patients with pH 4.0 in 24.05 % cases, but in the patients with signs of bacterial vaginosis it was found in 52.78 %. Positive findings of Enterococcus faecalis was the most often associated with presence of all tree signs of bacterial vaginosis (pH>4.0, changed color of vaginal secret and positive amino odor test) it is in 60.78 6% cases. With two signs of bacterial vaginosis (pH>4.0, changed color of vaginal secret) Enterococcus faecalis was present in 60 % cases. The only presence of change in the pH>4.0 was associated with Enterococcus faecalis in 52.78 %. This study showed that pH change of vaginal environment was associated with Enterococcus faecalis in bacterial vaginosis in high percentage but it can not be used as the sure sign of presence of Enterococcus faecalis in vaginal discharge. Therefore it is necessary to make microbiology examination vaginal discharge.
Maasjost, J; Mühldorfer, K; Cortez de Jäckel S; Hafez, H M
2015-03-01
Between 2010 and 2011, 145 Enterococcus isolates (Enterococcus faecalis, n = 127; Enterococcus faecium, n = 18) were collected during routine bacteriologic diagnostics from broilers, layers, and fattening turkeys in Germany showing various clinical signs. The susceptibility to 24 antimicrobial agents was investigated by broth microdilution test to determine minimum inhibitory concentrations (MICs). All E. faecalis isolates (n = 127) were susceptible to the beta-lactam antibiotics ampicillin, amoxicillin-clavulanic acid, and penicillin. Corresponding MIC with 50% inhibition (MIC50) and MIC with 90% inhibition (MIC90) values of these antimicrobial agents were at the lower end of the test range (≤ 4 μg/ml). In addition, no vancomycin-resistant enterococci (VRE) were found. High resistance rates were identified in both Enterococcus species for lincomycin (72%-99%) and tetracycline (67%-82%). Half or more than half of Enterococcus isolates were resistant to gentamicin (54%-72%) and the macrolide antibiotics erythromycin (44%-61%) and tylosin-tartate (44%-56%). Enterococcus faecalis isolated from fattening turkeys showed the highest prevalence of antimicrobial resistance compared to other poultry production systems. Eighty-nine out of 145 Enterococcus isolates were resistant to three or more antimicrobial classes. Again, turkeys stood out with 42 (8 1%) multiresistant isolates. The most-frequent resistance patterns of E. faecalis were gentamicin, lincomycin, and tetracycline in all poultry production systems.
Using Phage Lytic Enzymes to Destroy Pathogenic and BW Bacteria
2005-07-14
against antibiotic resistant Enterococcus faecalis and Enterococcus faecium . J Bacteriol. 186:4808-12. Cheng, Q., D. Nelson, S. Zhu, and V.A...Lysins from Enterococcus faecalis RU-654 3. Fischetti, Vincent A. Schuch, Raymond Lytic Enzymes and spore surface antigens for detection and
Micallef, Shirley A; Goldstein, Rachel E Rosenberg; George, Ashish; Ewing, Laura; Tall, Ben D; Boyer, Marc S; Joseph, Sam W; Sapkota, Amy R
2013-12-01
Antibiotic-resistant enterococci are important opportunistic pathogens and have been recovered from retail tomatoes. However, it is unclear where and how tomatoes are contaminated along the farm-to-fork continuum. Specifically, the degree of pre-harvest contamination with enterococci is unknown. We evaluated the prevalence, diversity and antimicrobial susceptibilities of enterococci collected from tomato farms in the Mid-Atlantic United States. Tomatoes, leaves, groundwater, pond water, irrigation ditch water, and soil were sampled and tested for enterococci using standard methods. Antimicrobial susceptibility testing was performed using the Sensititre microbroth dilution system. Enterococcus faecalis isolates were characterized using amplified fragment length polymorphism to assess dispersal potential. Enterococci (n = 307) occurred in all habitats and colonization of tomatoes was common. Seven species were identified: Enterococcus casseliflavus, E. faecalis, Enterococcus gallinarum, Enterococcus faecium, Enterococcus avis, Enterococcus hirae and Enterococcus raffinosus. E. casseliflavus predominated in soil and on tomatoes and leaves, and E. faecalis predominated in pond water. On plants, distance from the ground influenced presence of enterococci. E. faecalis from samples within a farm were more closely related than those from samples between farms. Resistance to rifampicin, quinupristin/dalfopristin, ciprofloxacin and levofloxacin was prevalent. Consumption of raw tomatoes as a potential exposure risk for antibiotic-resistant Enterococcus spp. deserves further attention. Copyright © 2013 Elsevier Ltd. All rights reserved.
Sidhu, J P S; Skelly, E; Hodgers, L; Ahmed, W; Li, Y; Toze, S
2014-01-01
Enterococcus spp. isolates (n = 286) collected from six surface water bodies in subtropical Brisbane, Australia, prior to and after storm events, were identified to species level and tested for the presence of seven clinically important virulence genes (VGs). Enterococcus faecalis (48%), Enterococcus faecium (14%), Enterococcus mundtii (13%), and Enterococcus casseliflavus (13%) were frequently detected at all sites. The frequency of E. faecium occurrence increased from 6% in the dry period to 18% after the wet period. The endocarditis antigen (efaA), gelatinase (gelE), collagen-binding protein (ace), and aggregation substance (asa1) were detected in 61%, 43%, 43%, and 23% of Enterococcus isolates, respectively. The chances of occurrence of ace, gelE, efaA, and asa1 genes in E. faecalis were found to be much higher compared to the other Enterococcus spp. The observed odds ratio of occurrence of ace and gelE genes in E. faecalis was much higher at 7.96 and 6.40 times, respectively. The hyl gene was 3.84 times more likely to be detected in E. casseliflavus. The presence of multiple VGs in most of the E. faecalis isolates underscores the importance of E. faecalis as a reservoir of VGs in the fresh water aquatic environment. Consequently, if contaminated surface water is to be used for production of potable and nonpotable water some degree of treatment depending upon intended use such as detention in basins prior to use or chlorination is required.
Joosten, H M; Nunez, M; Devreese, B; Van Beeumen, J; Marugg, J D
1996-01-01
A simple two-step procedure was developed to obtain pure enterocin 4, a bacteriocin produced by Enterococcus faecalis INIA 4. Chemical and genetic characterization revealed that the primary structure of enterocin 4 is identical to that of peptide antibiotic AS-48 from Enterococcus faecalis S-48. In contrast to the reported inhibitory spectrum of AS-48, enterocin 4 displayed no activity against gram-negative bacteria. PMID:8900014
Strateva, Tanya; Atanasova, Daniela; Savov, Encho; Petrova, Guergana; Mitov, Ivan
2016-01-01
To evaluate the prevalence of some virulence genes among 510 clinical Enterococcus spp. isolates and to assess the association of those genes with the species, infection site, and patient group (inpatients/outpatients). Adhesins genes (aggregation substances agg and asa1 of Enterococcus faecalis and Enterococcus faecium, respectively), enterococcal surface protein (esp), endocarditis-specific antigen A (efaA), collagen-binding proteins (ace/acm)); invasins (hyaluronidase (hyl) and gelatinase (gelE)); cytotoxines (activation of cytolysin (cylA) in E. faecalis); and modulators of the host immunity and inflammation (enhanced expression pheromone (eep) in E. faecalis) were detected by polymerase chain reaction. The overall prevalence was: esp - 44.3%, agg/asa1 - 38.4%, ace/acm - 64.3%, efaA - 85.9%, eep - 69.4%, gelE - 64.3%, hyl - 25.1%, and cylA - 47.1%. E. faecalis isolates had significantly higher frequency of adhesin genes (esp and agg/asa1) and gelatinase in comparison to E. faecium. Multiple virulence genes in E. faecalis were significantly more prevalent than in E. faecium isolates. Domination of E. faecium with or without only one gene compared to the isolates of E. faecalis were found. Enterococcus spp. isolates obtained from outpatients compared to inpatients isolates had significantly higher frequency of agg/asa1, eep, gelE and cylA. Some adhesins genes (esp, agg/asa1 and efaA) had higher prevalence among the non-invasive Enterococcus spp. isolates compared to those causing invasive bacteremia, while ace/acm revealed higher dissemination in isolates causing invasive infections compared to non-invasive isolates. Most E. faecalis attaches to abiotic surfaces in hospital environment, which correlates with higher prevalence of gene encoding for virulence factors involved in biofilm formation, such as enterococcal surface protein, aggregation substance, and gelatinase. The intestinal tract is an important reservoir for opportunistic enterococcal pathogens and allows them to access infectious sites through different virulence factors, demonstrated in outpatient isolates in this study. Copyright © 2016 Elsevier Editora Ltda. All rights reserved.
Fernandes, Meg da Silva; Fujimoto, Graciela; de Souza, Leandro Pio; Kabuki, Dirce Yorika; da Silva, Márcio José; Kuaye, Arnaldo Yoshiteru
2015-04-01
In this work, the sources of contamination by Enterococcus spp. in a ricotta processing line were evaluated. The isolated strains were tested for virulence genes (gelE, cylA,B, M, esp, agg, ace, efaA, vanB), expression of virulence factors (hemolysin and gelatinase), and the resistance to 10 different antibiotics. Enterococcus faecium and Enterococcus faecalis were subjected to discriminatory identification by intergenic spacer region (ITS)-polymerase chain reaction and sequencing of the ITS region. The results showed that Enterococcus spp. was detected in the raw materials, environment samples and the final product. None of the 107 Enterococcus isolates were completely free from all virulence genes considered. A fraction of 21.5% of the isolates containing all of the genes of the cylA, B, M operon also expressed β-hemolysis. Most of the isolates showed the gelE gene, but only 9.3% were able to hydrolyze gelatin. In addition, 23.5% of the observed Enterococcus isolates had the vanB gene but were susceptible to vancomycin in vitro. The dissemination of antibiotic-resistant enterococci was revealed in this study: 19.3% of the E. faecium samples and 78.0% of the E. faecalis samples were resistant to at least one of the antibiotics tested. Sequencing of region discriminated 5 and 7 distinct groups among E. faecalis and E. faecium, respectively. Although some similarity was observed among some of the isolates, all E. faecalis and E. faecium isolates had genetic differences both in the ITS region and in the virulence profile, which makes them different from each other. © 2015 Institute of Food Technologists®
Soheili, Sara; Ghafourian, Sobhan; Sekawi, Zamberi; Neela, Vasanthakumari; Sadeghifard, Nourkhoda; Ramli, Ramliza; Hamat, Rukman Awang
2014-01-01
Enterococcus, a Gram-positive facultative anaerobic cocci belonging to the lactic acid bacteria of the phylum Firmicutes, is known to be able to resist a wide range of hostile conditions such as different pH levels, high concentration of NaCl (6.5%), and the extended temperatures between 5(°)C and 65(°)C. Despite being the third most common nosocomial pathogen, our understanding on its virulence factors is still poorly understood. The current study was aimed to determine the prevalence of different virulence genes in Enterococcus faecalis and Enterococcus faecium. For this purpose, 79 clinical isolates of Malaysian enterococci were evaluated for the presence of virulence genes. pilB, fms8, efaAfm, and sgrA genes are prevalent in all clinical isolates. In conclusion, the pathogenicity of E. faecalis and E. faecium could be associated with different virulence factors and these genes are widely distributed among the enterococcal species.
Soheili, Sara; Ghafourian, Sobhan; Sekawi, Zamberi; Neela, Vasanthakumari; Sadeghifard, Nourkhoda; Ramli, Ramliza; Hamat, Rukman Awang
2014-01-01
Enterococcus, a Gram-positive facultative anaerobic cocci belonging to the lactic acid bacteria of the phylum Firmicutes, is known to be able to resist a wide range of hostile conditions such as different pH levels, high concentration of NaCl (6.5%), and the extended temperatures between 5°C and 65°C. Despite being the third most common nosocomial pathogen, our understanding on its virulence factors is still poorly understood. The current study was aimed to determine the prevalence of different virulence genes in Enterococcus faecalis and Enterococcus faecium. For this purpose, 79 clinical isolates of Malaysian enterococci were evaluated for the presence of virulence genes. pilB, fms8, efaAfm, and sgrA genes are prevalent in all clinical isolates. In conclusion, the pathogenicity of E. faecalis and E. faecium could be associated with different virulence factors and these genes are widely distributed among the enterococcal species. PMID:25147855
Holmberg, Anna; Rasmussen, Magnus
2016-01-01
Enterococcus faecalis and Enterococcus faecium are important nosocomial pathogens that form biofilms on implanted materials. We compare the antibiotic sensitivity of bacteria in new (established during 24 hours) and mature (established during 120 hours) enterococcal biofilms. Mature biofilms contained more bacteria and were much more tolerant to antibiotics, including rifampicin-containing combinations, as judged by determination of minimal biofilm eradication concentrations and by time-kill experiments of bacteria in biofilms formed on beads of bone cement. Copyright © 2016 Elsevier Inc. All rights reserved.
Bang, Kiman; An, Jae-Uk; Kim, Woohyun; Dong, Hee-Jin; Kim, Junhyung; Cho, Seongbeom
2017-06-30
Enterococcus spp. are normally present in the gastrointestinal tracts of animals and humans, but can cause opportunistic infections that can be transmitted to other animals or humans with integrated antibiotic resistance. To investigate if this is a potential risk in military working dogs (MWDs), we analyzed antibiotic resistance patterns and genetic relatedness of Enterococcus spp. isolated from fecal samples of MWDs of four different age groups. Isolation rates of Enterococcus spp., Enterococcus ( E. ) faecalis , and E. faecium , were 87.7% (57/65), 59.6% (34/57), and 56.1% (32/57), respectively, as determined by bacterial culture and multiplex PCR. The isolation rate of E. faecalis gradually decreased with age (puppy, 100%; adolescent, 91.7%; adult, 36.4%; and senior, 14.3%). Rates of resistance to the antibiotics ciprofloxacin, gentamicin, streptomycin, sulfamethoxazole/trimethoprim, imipenem, and kanamycin among Enterococcus spp. increased in adolescents and adults and decreased in senior dogs, with some isolates having three different antibiotic resistance patterns. There were indistinguishable pulsed-field gel electrophoresis patterns among the age groups. The results suggest that Enterococcus is horizontally transferred, regardless of age. As such, periodic surveillance studies should be undertaken to monitor changes in antibiotic resistance, which may necessitate modification of antibiotic regimens to manage antibiotic resistance transmission.
Enterococcus faecalis and Candida albicans in the dental root canal and periapical infections.
Kovac, J; Kovac, D; Slobodnikova, L; Kotulova, D
2013-01-01
The aim of the present study was to examine the prevalence of Enterococcus faecalis and Candida albicans in endodontic infections. Samples for microbiological examination were collected from 32 patients with deep dental caries, infected dental root canal, or periapical infection. Cultivation of the dental samples yielded four strains of Enterococcus faecalis (12.5 %), and three strains of Candida albicans (9.4 %). All Enterococcus faecalis isolates were susceptible to ampicillin, one isolate was resistant to tetracycline, two to erythromycin and azithromycin (additional 2 had intermediate susceptibility), and one strain had intermediate susceptibility to ciprofloxacin and moxifloxacin. We conclude that Enterococcus faecalis and Candida albicans can participate in the dental root canal and periapical infections, and the use of effective irrigant solutions and intracanal medicaments active against these microbes is important in order to prevent endodontic therapy failures. Unexpected was the isolation of C. albicans from a nine-year-old child with periodontitis apicalis. This finding must draw attention to the possibility that even at such a young age, this microorganism could be a potential etiological agent in endodontic infections (Tab. 2, Ref. 34). Text in PDF www.elis.sk.
Antimicrobial resistance profile of Enterococcus spp isolated from food in Southern Brazil
Riboldi, Gustavo Pelicioli; Frazzon, Jeverson; d’Azevedo, Pedro Alves; Frazzon, Ana Paula Guedes
2009-01-01
Fifty-six Enterococcus spp. strains were isolated from foods in Southern Brazil, confirmed by PCR and classified as Enterococcus faecalis (27), Enterococcus faecium (23) and Enterococcus spp (6). Antimicrobial susceptibility tests showed resistance phenotypes to a range of antibiotics widely administrated in humans such as gentamycin, streptomycin, ampicillin and vancomycin. PMID:24031330
Alves, Denise Ramos Silveira; Cunha, Rodrigo Sanches; da Silveira Bueno, Carlos Eduardo; de Alencar, Ana Helena Gonçalves; de Araújo Estrela, Cyntia Rodrigues; dos Santos, Tatiane Oliveira; Estrela, Carlos
2015-05-01
The aim of this study was to evaluate the effect of irrigation methods on antibacterial potential of 2.5% NaOCl on Enterococcus faecalis biofilm. Enterococcus faecalis biofilms were prepared during 60 days on 48 human root canals and randomized into control and experimental groups using positive and negative pressure irrigation. Bacterial growth was analyzed using turbidity of culture medium followed by UV spectrophotometry, and scanning electron microscopy (SEM) analyses were performed. Mean and standard deviations were used for evaluate the mean optical densities associated to the number of bacteria present culture, and Scheirer-Ray-Hare (an extension of the Kruskal-Wallis test) and Tamhane test to analyze the SEM images in the groups and thirds. Significance was set at 5%. Enterococcus faecalis was still present after root canal cleaning regardless of irrigation methods or bacterial identification methods. Positive and negative pressure irrigation protocols using 2.5% NaOCl show a similar capacity to reduce E. faecalis in infected root canals.
TRAUTNER, BARBARA W.; DAROUICHE, RABIH O.; HULL, RICHARD A.; HULL, SHEILA; THORNBY, JOHN I.
2010-01-01
Purpose The capacity of a preexisting coating of Escherichia coli 83972 to reduce catheter colonization by Enterococcus faecalis 210 was investigated. Enterococcus was chosen for these trials since it is a common urinary pathogen in patients with an indwelling urinary catheter. Materials and Methods Each experiment tested 3 growth conditions. Group 1 or E. coli plus Enterococcus catheters were exposed to E. coli 83972 for 24 hours and then to Enterococcus for 30 minutes. Group 2 or E. coli alone catheters were incubated in E. coli for 24 hours and then in sterile broth for 30 minutes. Group 3 or Enterococcus alone catheters did not undergo the initial incubation with E. coli before the 30-minute incubation with Enterococcus: All catheters were then incubated in sterile human urine for 24 hours. Catheters were washed with saline and cut into 5, 1 cm. segments. Each segment was sonicated and the sonication fluid was diluted and plated. The results of each of the 5 segments were averaged and the set of experiments was repeated 7 times. Results A preexisting coating of E. coli 83972 reduced catheter colonization by E. faecalis 210 more than 10-fold. Enterococcus alone catheters had a median of 9.7 × 105 enterococci per cm., whereas E. coli plus Enterococcus catheters had a median of 0.38 × 105 enterococci per cm. (p = 0.016). Conclusions Pre-inoculating urinary catheters with E. coli 83972 significantly impedes catheter colonization by Enterococcus: These promising in vitro results prompt the clinical investigation of this particular application of bacterial interference. PMID:11743359
Significance and survival of Enterococci during the house fly development.
Ghosh, Anuradha; Akhtar, Mastura; Holderman, Chris; Zurek, Ludek
2014-01-01
House flies are among the most important nonbiting insect pests of medical and veterinary importance. Larvae develop in decaying organic substrates and their survival strictly depends on an active microbial community. House flies have been implicated in the ecology and transmission of enterococci, including multi-antibiotic-resistant and virulent strains of Enterococcus faecalis. In this study, eight American Type Culture Collection type strains of enterococci including Enterococcus avium, Enterococcus casseliflavus, Enterococcus durans, Enterococcus hirae, Enterococcus mundtii, Enterococcus gallinarum, Enterococcusfaecalis, and Enterococcusfaecium were evaluated for their significance in the development of house flies from eggs to adults in bacterial feeding assays. Furthermore, the bacterial colonization of the gut of teneral flies as well as the importance of several virulence traits of E. faecalis in larval mortality was assessed. Overall survival of house flies (egg to adult) was significantly higher when grown with typically nonpathogenic enterococcal species such as E. hirae (76.0% survival), E. durans (64.0%), and E. avium (64.0%) compared with that with clinically important species E. faecalis (24.0%) and E. faecium (36.0%). However, no significant differences in survival of house fly larvae were detected when grown with E. faecalis strains carrying various virulence traits, including isogenic mutants of the human clinical isolate E. faecalis V583 with in-frame deletions of gelatinase, serine protease, and capsular polysaccharide serotype C. Enterococci were commonly detected in fly puparia (range: 75-100%; concentration: 103-105 CFU/puparium);however, the prevalence of enterococci in teneral flies varied greatly: from 25.0 (E. casseliflavus) to 89.5% (E. hirae). In conclusion, depending on the species, enterococci variably support house fly larval development and colonize the gut of teneral adults. The human pathogenic species, E. faecalis and E. faecium, poorly support larval development and are likely acquired in nature by adult flies during feeding. House fly larvae do not appear to be a suitable model organism for assessment of enterococcal virulence traits.
Complete Genome Sequence of Enterococcus faecalis Strain W11 Isolated from an Algal Food Product
Takizawa, Noboru
2016-01-01
Here, we report the complete genome sequence of Enterococcus faecalis strain W11 isolated from an algal food product in Japan. This study should facilitate the identification of a novel mechanism of glycerol metabolic control in lactic acid bacteria. PMID:27688337
Fatal Enterococcus durans aortic valve endocarditis: a case report and review of the literature
Vijayakrishnan, Rajakrishnan; Rapose, Alwyn
2012-01-01
Most enterococcal endocarditis is caused by Enterococcus faecalis and Enterococcus faecium. Enterococcus durans is a rare member of non-faecalis, non-faecium enterococcal species and is found in the intestines of animals. E durans endocarditis is a very rare infection—only two cases of endocarditis in humans have been reported in the literature—and usually associated with good outcomes when treated with appropriate antibiotics. We report the first case of fatal E durans endocarditis. This patient had end-stage liver disease with associated compromised immune status that likely contributed to the progression of disease in spite of appropriate antibiotic coverage and clearance of bacteraemia. PMID:22684831
Sánchez Valenzuela, Antonio; Lavilla Lerma, Leyre; Benomar, Nabil; Gálvez, Antonio; Pérez Pulido, Rubén; Abriouel, Hikmate
2013-02-01
A collection of 55 enterococci (41 Enterococcus faecium and 14 E. faecalis strains) isolated from various traditional fermented foodstuffs of both animal and vegetable origins, and water was evaluated for resistance against 15 antibiotics. Lower incidence of resistance was observed with gentamicin, ampicillin, penicillin and teicoplanin. However, a high incidence of antibiotic resistance was detected for rifampicin (12 out of 14 of isolates), ciprofloxacin (9/14), and quinupristin/dalfopristin (8/14) in E. faecalis strains. Enterococcus faecium isolates were resistant to rifampicin (25/41), ciprofloxacin (23/41), erythromycin (18/41), levofloxacin (16/41), and nitrofurantoin (15/41). One Enterococcus faecalis and two E. faecium strains were resistant to vancomycin (MIC>16 μg/mL). Among 55 isolates, 27 (19 E. faecium and eight E. faecalis) were resistant to at least three antibiotics. High level of multidrug resistance to clinically important antibiotics was detected in E. faecalis strains (57% of E. faecalis versus 46% of E. faecium), which showed resistance to six to seven antibiotics, especially those isolated from foods of animal origin. So, it is necessary to re-evaluate the use of therapeutic antibiotics in stock farms at both regional and international levels due to the high number of multiple resistant (MR) bacteria. Fifty-six MR E. faecalis and E. faecium strains selected from this and previous studies (Valenzuela et al., 2008, 2010) were screened by polymerase chain reaction for antibiotic resistance genes, revealing the presence of tet(L), tet(M), ermB, cat, efrA, efrB, mphA, or msrA/B genes. The ABC Multidrug Efflux Pump EfrAB was detected in 96% of E. faecalis strains and also in 13% of E. faecium strains; this is the first report describing EfrAB in this enterococcal species. The efflux pump-associated msrA/B gene was detected in 66.66% of E. faecium strains, but not in E. faecalis strains.
Adesida, Solayide A; Ezenta, Cynthia C; Adagbada, Ajoke O; Aladesokan, Amudat A; Coker, Akitoye O
2017-01-01
Enterococci are indigenous flora of the gastro-intestinal tracts of animals and humans. Recently, interest in two major species, E. faecium and E. faecalis , has heightened because of their ability to cause serious infections and their intrinsic resistance to antimicrobials. This study was aimed at determining the prevalence of E . faecium and E . faecalis in human faecal samples and evaluating the susceptibility of the isolates to antibiotics. One hundred faecal samples were collected from apparently healthy individuals and analysed using conventionalbacteriological methods. The susceptibility profile of the isolates to nine antibiotics were determined using disk diffusion method. Seventy-three (73) Enterococcus were phenotypically identified and 65 of the isolates were differentiated into 36 (55.4%) E. faecium and 29 (44.6%) E. faecalis . Eight (8) isolates could not be identified by the conventional biochemical methods employed. No dual colonization by the E. faecalis and E. faecium was observed and isolation rate was not dependent on sex of the participants. All the isolates were resistant to ceftriaxone, cefuroxime and ceftizoxime. Enterococcus faecium exhibited resistance toerythromycin (88.9%), gentamicin (77.8%), amoxicillin-clavulanate (63.9%), ofloxacin (44.4%), teicoplanin (19.4%) and vancomycin (16.7%). Enterococcus faecalis showed the least resistance to vancomycin (13.8%) and teicoplanin (27.7%). Remarkable multiple antibiotic resistances to the classes of antibiotic tested were observed among the two species. The high carriage rate of antibiotic resistant E. faecium and E. faecalis in this study provides information on the local antibiotic patterns of our enterococci isolates thereby suggesting that they could present as important reservoir and vehicle for dissemination of resistant genes in our community.
Lagori, Giuseppe; Fornaini, Carlo; Rocca, Jean-Paul; Merigo, Elisabetta
2017-06-01
One of the biggest challenges in endodontics is the complete disinfection of root canals. In addition to mechanical preparation, the technique traditionally also involves channel disinfection with other agents such as sodium hypochlorite, hydrogen peroxide, chlorhexidine, or a combination of these. Some bacterial species are particularly resistant to eradication. Using Enterococcus faecalis in this preliminary study, we tested the bactericidal effectiveness of the Fenton reaction and the photo-Fenton reaction using an LED light with a 400-nm wavelength. Discs of hydroxyapatite were incubated in brain-heart broth contaminated with Enterococcus faecalis. After 4days, they were decontaminated with different bactericidal agents, including some with proven and well-known efficacy (5% sodium hypochlorite and 3% hydrogen peroxide) and other treatments using solutions of 1.5% hydrogen peroxide and 0.15% iron gluconate (Fenton reaction) plus LED light at a Fluence of 4.0J/cm 2 (photo-Fenton reaction). The photo-Fenton reaction demonstrated comparable performance to that of sodium hypochlorite in eliminating Enterococcus faecalis. Copyright © 2017. Published by Elsevier B.V.
Liu, Fang; Liu, Mei; Du, Lihui; Wang, Daoying; Geng, Zhiming; Zhang, Muhan; Sun, Chong; Xu, Xiaoxi; Zhu, Yongzhi; Xu, Weimin
2015-12-01
This study evaluated the antibacterial effect of the combination of ε-polylysine (ε-PL) and nisin against Enterococcus faecalis strains. The combination of ε-PL and nisin showed synergistic antibacterial activity against three Enterococcus strains. Scanning electron microscopy and a membrane permeability assay revealed that the combined treatment with ε-PL and nisin synergistically damaged the cell morphology of E. faecalis strain R612Z1 cells. Both ε-PL and nisin can dissipate the transmembrane electric potential of E. faecalis R612Z1 cells, but these peptides did not affect the transmembrane pH gradient. The combination of ε-PL and nisin can produce a high reactive oxygen species level in E. faecalis R612Z1 cells. The results indicated that the uptake of ε-PL into cells was promoted through nisin and that the combination of ε-PL and nisin could produce a high reactive oxygen species level in E. faecalis R612Z1 cells, leading to cell growth inhibition.
Kim, Min-Chan; Woo, Gun-Jo
2017-07-01
The emergence of fluoroquinolone-resistant enterococci is worldwide. Antimicrobial resistance was characterized and the effect of quinolone-resistance factors was analyzed in high-level ciprofloxacin-resistant (HLCR) Enterococcus faecalis and Enterococcus faecium isolated from fresh produce and fecal samples of patients. Among the 81 ciprofloxacin-resistant Enterococcus isolates, 46 showed high levels of ciprofloxacin resistance, resistance to other quinolone antibiotics, and multidrug resistance profiles. The virulence factors esp and hyl were identified in 27 (58.7%) and 25 (54.3%) of isolates, respectively. Sequence type analysis showed that 35 strains of HLCR E. faecium were clonal complex 17. Eleven strains of HLCR E. faecalis were confirmed as sequence type (ST) 28, ST 64 and ST 125. Quinolone resistance-determining region mutation was identified in HLCR Enterococcus isolates; with serine being changed in gyrA83, gyrA87 and parC80. This result shows that gyrA and parC mutations could be important factors for high-level resistance to fluoroquinolones. No significant differences were observed in antimicrobial resistance patterns and genetic characteristics among the isolates from fresh produce and fecal samples. Therefore, good agricultural practices in farming and continuous monitoring of patients, food and the environment for Enterococcus spp. should be performed to prevent antimicrobial resistance and enable reduction of resistance rates. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.
Avcı, Mine; Özden Tuncer, Banu
2017-07-06
The purpose of this study was to determine the antimicrobial activity and occurrence of bacteriocin structural genes in Enterococcus spp. isolated from different cheeses and also investigate some of their virulence factors. Enterococcus strains were isolated from 33 different cheeses. Enterococcus faecium (6 strains) and Enterococcus faecalis (5 strains) enterocin-producing strains were identified by 16S rDNA analyses. Structural genes entA, entB, entP and entX were detected in some isolates. Multiple enterocin structural genes were found in 7 strains. None of the tested enterococci demonstrated anyβ-haemolytic activity and only one strain had gelatinase activity. Six strains showed multiple antibiotic resistance patterns and in addition, vanA and several virulence genes were detected in many strains. Only E. faecalis MBE1-9 showed tyrosine decarboxylase activity and tdc gene was detected only in this strain.
Tripathi, A; Shukla, S K; Singh, A; Prasad, K N
2016-01-01
To determine the prevalence, genotype, risk factors and mortality in patients having vancomycin-resistant Enterococcus faecalis (VR E. faecalis) and Enterococcus faecium (VR E. faecium) infection or colonisation. A total of 1488 clinical isolates of E. faecalis and E. faecium were tested for vancomycin resistance by phenotypic (disk diffusion, E-test and broth micro-dilution test) and genotypic polymerase chain reaction methods. Records of all 1488 patients who had E. faecalis or E. faecium infection or colonisation were reviewed for the identification of host, hospital and medication related risk factors associated with VR E. faecalis and VR E. faecium. Of 1488 isolates, 118 (7.9%) were vancomycin-resistant and their distributions were as follows: E. faecalis=72 (61%) and E. faecium=46 (39%). All 118 vancomycin-resistant isolates were vanA genotype (minimum inhibitory concentration [MIC] to vancomycin ≥64 μg/ml and MIC to teicoplanin≥32 μg/ml) and none of the isolates was vanB genotype. Multivariate logistic regression analysis identified ventilator support and hospital stay for ≥48 h as independent risk factors associated with VR E. faecalis and VR E. faecium infection or colonisation. Hospital stay≥48 h was the only independent risk factor for mortality in patients infected with vancomycin-resistant enterococci. Strategies to limit the nosocomial infection especially in patients on ventilator support can reduce VRE incidence and related mortality.
Prichula, Janira; Campos, Fabricio Souza; Pereira, Rebeca Inhoque; Cardoso, Leonardo Almansa; Wachholz, Guilherme Raffo; Pieta, Luiza; Mariot, Roberta Fogliatto; de Moura, Tiane Martin; Tavares, Maurício; d’Azevedo, Pedro Alves; Frazzon, Ana Paula Guedes
2016-01-01
Enterococcus faecalis strains have a ubiquitous nature that allows them to survive in different niches. Studies involving enterococci isolated from marine animals are scarce. Therefore, in this study, we report the complete genome sequence of E. faecalis strain P8-1 isolated from feces of a Magellanic penguin on the south coast of Brazil. PMID:26769928
Getachew, Yitbarek; Zakaria, Zunita; Abdul Aziz, Saleha
2013-01-01
Vancomycin-resistant enterococci (VRE) have been reported to be present in humans, chickens, and pigs in Malaysia. In the present study, representative samples of VRE isolated from these populations were examined for similarities and differences by using the multilocus sequence typing (MLST) method. Housekeeping genes of Enterococcus faecium (n = 14) and Enterococcus faecalis (n = 11) isolates were sequenced and analyzed using the MLST databases eBURST and goeBURST. We found five sequence types (STs) of E. faecium and six STs of E. faecalis existing in Malaysia. Enterococcus faecium isolates belonging to ST203, ST17, ST55, ST79, and ST29 were identified, and E. faecium ST203 was the most common among humans. The MLST profiles of E. faecium from humans in this study were similar to the globally reported nosocomial-related strain lineage belonging to clonal complex 17 (CC17). Isolates from chickens and pigs have few similarities to those from humans, except for one isolate from a chicken, which was identified as ST203. E. faecalis isolates were more diverse and were identified as ST4, ST6, ST87, ST108, ST274, and ST244, which were grouped as specific to the three hosts. E. faecalis, belonging to the high-risk CC2 and CC87, were detected among isolates from humans. In conclusion, even though one isolate from a chicken was found clonal to that of humans, the MLST analysis of E. faecium and E. faecalis supports the findings of others who suggest VRE to be predominantly host specific and that clinically important strains are found mainly among humans. The infrequent detection of a human VRE clone in a chicken may in fact suggest a reverse transmission of VRE from humans to animals. PMID:23666337
Comparative genomics of Enterococcus spp. isolated from bovine feces.
Beukers, Alicia G; Zaheer, Rahat; Goji, Noriko; Amoako, Kingsley K; Chaves, Alexandre V; Ward, Michael P; McAllister, Tim A
2017-03-08
Enterococcus is ubiquitous in nature and is a commensal of both the bovine and human gastrointestinal (GI) tract. It is also associated with clinical infections in humans. Subtherapeutic administration of antibiotics to cattle selects for antibiotic resistant enterococci in the bovine GI tract. Antibiotic resistance genes (ARGs) may be present in enterococci following antibiotic use in cattle. If located on mobile genetic elements (MGEs) their dissemination between Enterococcus species and to pathogenic bacteria may be promoted, reducing the efficacy of antibiotics. We present a comparative genomic analysis of twenty-one Enterococcus spp. isolated from bovine feces including Enterococcus hirae (n = 10), Enterococcus faecium (n = 3), Enterococcus villorum (n = 2), Enterococcus casseliflavus (n = 2), Enterococcus faecalis (n = 1), Enterococcus durans (n = 1), Enterococcus gallinarum (n = 1) and Enterococcus thailandicus (n = 1). The analysis revealed E. faecium and E. faecalis from bovine feces share features with human clinical isolates, including virulence factors. The Tn917 transposon conferring macrolide-lincosamide-streptogramin B resistance was identified in both E. faecium and E. hirae, suggesting dissemination of ARGs on MGEs may occur in the bovine GI tract. An E. faecium isolate was also identified with two integrative conjugative elements (ICEs) belonging to the Tn916 family of ICE, Tn916 and Tn5801, both conferring tetracycline resistance. This study confirms the presence of enterococci in the bovine GI tract possessing ARGs on MGEs, but the predominant species in cattle, E. hirae is not commonly associated with infections in humans. Analysis using additional complete genomes of E. faecium from the NCBI database demonstrated differential clustering of commensal and clinical isolates, suggesting that these strains may be specifically adapted to their respective environments.
Fang, H; Ohlsson, A-K; Ullberg, M; Ozenci, V
2012-11-01
The purpose of this investigation was to compare the performance of species-specific polymerase chain reaction (PCR), matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) and phenotypic identification systems for the identification of Enterococcus species. A total of 132 clinical isolates were investigated by the following: (1) a multiplex real-time PCR assay targeting ddl Enterococcus faecium, ddl Enterococcus faecalis, vanC1 and vanC2/C3 genes, and a high-resolution melting (HRM) analysis of the groESL gene for the differentiation of Enterococcus casseliflavus and Enterococcus gallinarum; (2) Bruker MS; (3) VITEK MS; and (4) the VITEK 2 system. 16S rRNA gene sequencing was used as a reference method in the study. The 132 isolates were identified as 32 E. faecalis, 63 E. faecium, 16 E. casseliflavus and 21 E. gallinarum. The multiplex PCR, Bruker MS and VITEK MS were able to identify all the isolates correctly at the species level. The VITEK 2 system could identify 131/132 (99.2 %) and 121/132 (91.7 %) of the isolates at the genus and species levels, respectively. The HRM-groESL assay identified all (21/21) E. gallinarum isolates and 81.3 % (13/16) of the E. casseliflavus isolates. The PCR methods described in the present study are effective in identifying the enterococcal species. MALDI-TOF MS is a rapid, reliable and cost-effective identification technique for enterococci. The VITEK 2 system is less efficient at detecting non-faecalis and non-faecium Enterococcus species.
Bravetti, Anne-Lise; Mesnage, Stéphane; Lefort, Agnès; Chau, Françoise; Eckert, Catherine; Garry, Louis; Arthur, Michel; Fantin, Bruno
2009-04-01
The bactericidal activity of amoxicillin was investigated against Enterococcus faecalis JH2-2 and against an isogenic mutant deficient in the production of the N-acetylglucosaminidase AtlA. Comparison of the two strains indicated that this autolysin contributes to killing by amoxicillin both in vitro and in a rabbit model of experimental endocarditis.
Antimicrobial Effect of Ozone Made by KP Syringe of High-Frequency Ozone Generator
Prebeg, Domagoj; Katunarić, Marina; Budimir, Ana; Šegović, Sanja; Anić, Ivica
2016-01-01
Aim The aim of this study was to evaluate in vitro the antibacterial effect of ozone on suspension of three different bacteria inoculated in prepared canals of extracted human teeth. Material and methods Ozone was produced by special KP syringe of high frequency ozone generator Ozonytron (Biozonix, München, Germany) from aspirated atmospheric air by dielectric barrier discharge and applied through the tip of the syringe to the prepared root canal. The microorganisms used were Enterococcus faecalis, Staphylococcus aureus and Staphylococcus epidermidis. Results However, none of the methods was 100% effective against the three bacterial types in suspension. Application of ozone significantly decreased the absolute count of microorganisms (89.3%), as well as the count of each type of bacteria separately (Staphylococcus aureus 94.0%; Staphylococcus epidermidis 88.6% and Enterococcus faecalis 79.7%). Ozone generated by KP syringe was statistically more effective compared to NaOCl as positive control, for Staphylococcus aureus and Staphylococcus epidermidis. Conclusion The absolute count of Enterococcus faecalis was statistically decreased without a statistically significant difference between the tested group and positive control, respectively. Among the three types of bacteria in suspension, KP probe had the lowest antimicrobial effect against Enterococcus faecalis. PMID:27789911
Wang, Yang; Lv, Yuan; Cai, Jiachang; Schwarz, Stefan; Cui, Lanqing; Hu, Zhidong; Zhang, Rong; Li, Jun; Zhao, Qin; He, Tao; Wang, Dacheng; Wang, Zheng; Shen, Yingbo; Li, Yun; Feßler, Andrea T; Wu, Congming; Yu, Hao; Deng, Xuming; Xia, Xi; Shen, Jianzhong
2015-08-01
The oxazolidinone-resistant Enterococcus faecalis E349 from a human patient tested negative for the cfr gene and 23S rRNA mutations. Here we report the identification of a novel oxazolidinone resistance gene, optrA, and a first investigation of the extent to which this gene was present in E. faecalis and Enterococcus faecium from humans and food-producing animals. The resistance gene optrA was identified by whole-plasmid sequencing and subsequent cloning and expression in a susceptible Enterococcus host. Transformation and conjugation assays served to investigate the transferability of optrA. All optrA-positive E. faecalis and E. faecium isolates of human and animal origin were analysed for their MICs and their genotype, as well as the location of optrA. The novel plasmid-borne ABC transporter gene optrA from E. faecalis E349 conferred combined resistance or elevated MICs (when no clinical breakpoints were available) to oxazolidinones (linezolid and tedizolid) and phenicols (chloramphenicol and florfenicol). The corresponding conjugative plasmid pE349, on which optrA was located, had a size of 36 331 bp and also carried the phenicol exporter gene fexA. The optrA gene was functionally expressed in E. faecalis, E. faecium and Staphylococcus aureus. It was detected more frequently in E. faecalis and E. faecium from food-producing animals (20.3% and 5.7%, respectively) than from humans (4.2% and 0.6%, respectively). Enterococci with elevated MICs of linezolid and tedizolid should be tested not only for 23S rRNA mutations and the gene cfr, but also for the novel resistance gene optrA. © The Author 2015. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Sanciu, G; Marogna, G; Paglietti, B; Cappuccinelli, P; Leori, G; Rappelli, P
2013-03-01
An outbreak of infective mastitis due to Enterococcus faecalis occurred in an intensive sheep farm in north Sardinia (Italy). E. faecalis, which is only rarely isolated from sheep milk, was unexpectedly found in 22·3% of positive samples at microbiological examination. Forty-five out of the 48 E. faecalis isolates showed the same multi-drug resistance pattern (cloxacillin, streptomycin, kanamycin, clindamycin, oxytetracycline). E. faecalis isolates were analysed by pulsed-field gel electrophoresis, and all 45 multi-drug resistant strains showed an indistinguishable macrorestiction profile, indicating their clonal origin. To our knowledge, this is the first report of an outbreak of mastitis in sheep caused by E. faecalis.
Sawa, Naruhiko; Wilaipun, Pongtep; Kinoshita, Seisuke; Zendo, Takeshi; Leelawatcharamas, Vichien; Nakayama, Jiro; Sonomoto, Kenji
2012-02-01
Enterococcus faecalis NKR-4-1 isolated from pla-ra produces a novel two-peptide lantibiotic, termed enterocin W, comprising Wα and Wβ. The structure of enterocin W exhibited similarity with that of plantaricin W. The two peptides acted synergistically, and their order of binding to the cell membrane was important for their inhibitory activity.
Sawa, Naruhiko; Wilaipun, Pongtep; Kinoshita, Seisuke; Zendo, Takeshi; Leelawatcharamas, Vichien; Nakayama, Jiro
2012-01-01
Enterococcus faecalis NKR-4-1 isolated from pla-ra produces a novel two-peptide lantibiotic, termed enterocin W, comprising Wα and Wβ. The structure of enterocin W exhibited similarity with that of plantaricin W. The two peptides acted synergistically, and their order of binding to the cell membrane was important for their inhibitory activity. PMID:22138996
Pesavento, G; Calonico, C; Ducci, B; Magnanini, A; Lo Nostro, A
2014-08-01
Food specimens were analyzed in order to research Enterococcus spp.: 636 samples of raw meat (227 beef, 238 poultry, and 171 pork), 278 samples of cheese (110 fresh soft cheese and 168 mozzarella cheese), 214 samples of ready-to-eat salads, and 187 samples of ham. 312 strains of Enterococcus spp samples were isolated, then identified and submitted to susceptibility tests against 11 antimicrobial agents. The predominant species were Enterococcus faecalis in raw meat and Enterococcus faecium in retail products. Low percentages of microorganisms were resistant to vancomycin (3.53%), teicoplanin (2.24%), linezolid (0.32%), and amoxicillin in combination with clavulanic acid (0.32%). A high percentage of resistance was noted in E. faecalis at high level gentamicin (21.9%) and tetracycline (60.6%). In general, strains of E. faecalis were more resistant than E. faecium. Enterococci should be considered not only potential pathogens, but also a reservoir of genes encoding antibiotic resistance which can be transferred to other microorganisms. Continuous monitoring of their incidence and emerging resistance is important in order to identify foods which potentially represent a real risk to the population, and to ensure effective treatment of human enterococcal infections. Copyright © 2014 Elsevier Ltd. All rights reserved.
Osuka, Hanako; Nakajima, Jun; Oishi, Tsuyoshi; Funayama, Yasunori; Ebihara, Tsugio; Ishikawa, Hiroichi; Saito, Kazuto; Koganemaru, Hiroshi; Hitomi, Shigemi
2016-01-01
We examined prevalence of high-level aminoglycoside resistance (HLAR) in Enterococcus faecalis and Enterococcus faecium causing invasive infection in the Minami Ibaraki Area. Ten strains of both species each, recovered from the blood or the cerebrospinal fluid between 2003 and 2014, were randomly selected every year. High-level resistance to gentamicin (HLR-GM) and streptomycin (HLR-SM) was detected in 34% (41 of 120 strains) and 18% (21) of E. faecalis and 9% (11) and 39% (48) of E. faecium, respectively. In comparisons of the proportions among three four-year periods, HLR-SM among E. faecium was significantly lower in the 2011-2014 period. All strains with HLR-GM were positive for the aac(6')-Ie-aph(2″)-Ia gene. The ant(6')-Ia gene was detected in all with HLR-SM except for one E. faecalis strain. The present study showed that prevalence of HLR-GM among E. faecalis and E. faecium causing invasive infection in this area was nearly equivalent to that described in previous studies in Japan and that proportions of strains with HLAR did not vary during the study period except for that of HLR-SM among E. faecium. Copyright © 2015 Japanese Society of Chemotherapy and The Japanese Association for Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Antimicrobial Resistance of Enterococcus Species Isolated from Chicken in Turkey
Sanlibaba, Pınar; Tezel, Basar Uymaz; Senturk, Esra
2018-01-01
Abstract The aim of the present work was to provide information about Enterococcus strains isolated from pre-packaged chicken samples in Ankara (Turkey), focusing on their prevalence, phenotypic and genotypic characteristics, and antibiotic resistance. We report the first study on the occurrence of antibiotic resistant enterococci in pre-packaged chicken samples in Ankara. A total of 97 suspicious enterococcal isolates were identified from 122 chicken samples. All isolates were identified to species level by phenotypic and molecular methods. In the 16S rDNA sequence analysis, Enterococcus faecium (61.85%) and Enterococcus faecalis (38.15%) were found to be the most frequently detected Enterococcus spp. Of the 97 isolates tested for hemolytic activity, 12.37% enterococcal strains were β-hemolytic. β-Hemolysin was most prevalent among E. faecium (58.33%) compared to E. faecalis (41.66%). Disk diffusion method was used for determining of antibiotic resistance. The analysis of the antimicrobial resistance of the 97 Enterococcus isolates revealed that the resistance to kanamycin (98.96%), rifampicin (80.41%) and ampicillin (60.82%) was most frequent. Furthermore, resistance to erythromycin (38.14%) and ciprofloxacin (34.02%) was also observed. The frequencies of resistance to tetracycline (9.27%), penicillin G (8.24%), and chloramphenicol (3.09%), gentamicin (2.06%) and streptomycin (1.03%) were low. None of the isolates was resistant to vancomycin. Multi-drug resistance was found in 97.93% of Enterococcus strains. E. faecium strains showed a more resistant phenotype than E. faecalis strains according to the antibiotic resistance levels. The results of this study indicated that chicken meat is a potential reservoir for the transmission of antibiotic resistance from animals to humans. PMID:29805287
Naserpour Farivar, Taghi; Najafipour, Reza; Johari, Pouran; Aslanimehr, Masoumeh; Peymani, Amir; Jahani Hashemi, Hoasan; Mirzaui, Baman
2014-10-01
We developed and evaluated the utility of a quadruplex Taqman real-time PCR assay that allows simultaneous identification of vancomycin-resistant genotypes and clinically relevant enterococci. The specificity of the assay was tested using reference strains of vancomycin-resistant and susceptible enterococci. In total, 193 clinical isolates were identified and subsequently genotyped using a Quadruplex Taqman real-time PCR assay and melting curve analysis. Representative Quadruplex Taqman real-time PCR amplification curve were obtained for Enterococcus faecium, Enterococcus faecalis, vanA-containing E. faecium, vanB-containing E. faecalis. Phenotypic and genotypic analysis of the isolates gave same results for 82 enterococcal isolates, while in 5 isolates, they were inconsistent. We had three mixed strains, which were detected by the TaqMan real-time PCR assay and could not be identified correctly using phenotypic methods. Vancomycin resistant enterococci (VRE) genotyping and identification of clinically relevant enterococci were rapidly and correctly performed using TaqMan real-time multiplex real-time PCR assay.
2010-04-01
range of gram positive and gram negative organisms, including methicillin resistant Staphylococcus aureus ATCC33591 (MRSA), Enterococcus faecalis...range of gram positive and gram negative organisms, including methicillin resistant Staphylococcus aureus ATCC33591 (MRSA), Enterococcus faecalis...control with less blood loss than Combat Gauze in this model. Report Documentation Page Form ApprovedOMB No. 0704-0188 Public reporting burden for
Belguesmia, Y.; Choiset, Y.; Prévost, H.; Dalgalarrondo, M.; Chobert, J.-M.; Drider, D.
2010-01-01
The aim of this research was to purify and characterize the mode of action of enterocin S37, a bacteriocin produced by Enterococcus faecalis S37, a strain recently isolated from the chicken feces. Enterocin S37 has a molecular weight comprised between 4 and 5 kDa. It remained active after 1 h at 80oC and at pH values ranging from 4.0 to 9.0. Furthermore, cell-free supernatant of Enterococcus faecalis S37 and purified enterocin S37 were active against Gram-positive bacteria including Listeria monocytogenes EGDe, L. innocua F, Enterococcus faecalis JH2-2, and Lactobacillus brevis F145. The purification of enterocin S37 was performed by ammonium sulfate precipitation followed up by hydrophobic-interaction chromatography procedures. Treatment of enterocin S37 with proteinase K, α-chymotrypsin, and papain confirmed its proteinaceous nature, while its treatment with lysozyme and lipase resulted in no alteration of activity. Enterocin S37 is hydrophobic, anti-Listeria and likely acting by depletion of intracellular K+ ions upon action on KATP channels. This study contributed to gain more insights into the mode of action of enterocins. PMID:20811593
Belguesmia, Y; Choiset, Y; Prévost, H; Dalgalarrondo, M; Chobert, J-M; Drider, D
2010-01-01
The aim of this research was to purify and characterize the mode of action of enterocin S37, a bacteriocin produced by Enterococcus faecalis S37, a strain recently isolated from the chicken feces. Enterocin S37 has a molecular weight comprised between 4 and 5 kDa. It remained active after 1 h at 80(o)C and at pH values ranging from 4.0 to 9.0. Furthermore, cell-free supernatant of Enterococcus faecalis S37 and purified enterocin S37 were active against Gram-positive bacteria including Listeria monocytogenes EGDe, L. innocua F, Enterococcus faecalis JH2-2, and Lactobacillus brevis F145. The purification of enterocin S37 was performed by ammonium sulfate precipitation followed up by hydrophobic-interaction chromatography procedures. Treatment of enterocin S37 with proteinase K, alpha-chymotrypsin, and papain confirmed its proteinaceous nature, while its treatment with lysozyme and lipase resulted in no alteration of activity. Enterocin S37 is hydrophobic, anti-Listeria and likely acting by depletion of intracellular K(+) ions upon action on K(ATP) channels. This study contributed to gain more insights into the mode of action of enterocins.
Coelho Abrantes, Marta; Lopes, Maria de Fátima; Kok, Jan
2011-01-01
Mechanisms that enable Enterococcus to cope with different environmental stresses and their contribution to the switch from commensalism to pathogenicity of this organism are still poorly understood. Maintenance of intracellular homeostasis of metal ions is crucial for survival of these bacteria. In particular Zn2+, Mn2+ and Cu2+ are very important metal ions as they are co-factors of many enzymes, are involved in oxidative stress defense and have a role in the immune system of the host. Their concentrations inside the human body vary hugely, which makes it imperative for Enterococcus to fine-tune metal ion homeostasis in order to survive inside the host and colonize it. Little is known about metal regulation in Enterococcus faecalis. Here we present the first genome-wide description of gene expression of E. faecalis V583 growing in the presence of high concentrations of zinc, manganese or copper ions. The DNA microarray experiments revealed that mostly transporters are involved in the responses of E. faecalis to prolonged exposure to high metal concentrations although genes involved in cellular processes, in energy and amino acid metabolisms and genes related to the cell envelope also seem to play important roles. PMID:22053193
Delpech, Gastón; Pourcel, Gisela; Schell, Celia; De Luca, María; Basualdo, Juan; Bernstein, Judith; Grenovero, Silvia; Sparo, Mónica
2012-10-01
Enterococci are part of the indigenous microbiota of human gastrointestinal tract and food of animal origin. Enterococci inhabiting non-human reservoirs play a critical role in the acquisition and dissemination of antimicrobial resistance determinants. The aim of this work was to investigate the antimicrobial resistance in Enterococcus faecalis and Enterococcus faecium strains recovered from artisanal food of animal origin. Samples of goat cheese (n = 42), cow cheese (n = 40), artisanal salami (n = 30), and minced meat for the manufacture of hamburgers (n = 60) were analyzed. Phenotypic and genotypic tests for species-level identification of the recovered isolates were carried out. Minimum inhibitory concentration (MIC) study for in vitro quantitative antimicrobial resistance assessment was performed, and 71 E. faecalis and 22 E. faecium were isolated. The recovered enterococci showed different multi-drug resistance patterns that included tretracycline, erythromycin, ciprofloxacin, linezolid, penicillin, ampicillin, vancomycin, teicoplanin, gentamicin (high-level resistance), and streptomycin (high-level resistance). VanA-type E. faecium were detected. β-lactamase activity was not observed. Artisanal foods of animal origin act as a non-human reservoir of E. faecalis and E. faecuim strains, expressing multi-resistance to antimicrobials. In conclusion, the implementation of a continuous antimicrobial resistance surveillance in enterococci isolated from artisanal food of animal origin is important.
Enterococcus faecium small colony variant endocarditis in an immunocompetent patient.
Egido, S Hernández; Ruiz, M Siller; Inés Revuelta, S; García, I García; Bellido, J L Muñoz
2016-01-01
Small colony variants (SCV) are slow-growing subpopulations of bacteria usually associated with auxotrophism, causing persistent or recurrent infections. Enterococcus faecalis SCV have been seldom described, and only one case of Enterococcus faecium SCV has been reported, associated with sepsis in a leukaemia patient. Here we report the first case described of bacteraemia and endocarditis by SCV E. faecium in an immunocompetent patient.
Rathnayake, I U; Hargreaves, M; Huygens, F
2012-07-01
This study compared virulence and antibiotic resistance traits in clinical and environmental Enterococcus faecalis and Enterococcus faecium isolates. E. faecalis isolates harboured a broader spectrum of virulence determinants compared to E. faecium isolates. The virulence traits Cyl-A, Cyl-B, Cyl-M, gel-E, esp and acm were tested and environmental isolates predominantly harboured gel-E (80% of E. faecalis and 31.9% of E. faecium) whereas esp was more prevalent in clinical isolates (67.8% of E. faecalis and 70.4% of E. faecium). E. faecalis and E. faecium isolated from water had different antibiotic resistance patterns compared to those isolated from clinical samples. Linezolid resistance was not observed in any isolates tested and vancomycin resistance was observed only in clinical isolates. Resistance to other antibiotics (tetracycline, gentamicin, ciprofloxacin and ampicillin) was detected in both clinical and water isolates. Clinical isolates were more resistant to all the antibiotics tested compared to water isolates. Multi-drug resistance was more prevalent in clinical isolates (71.2% of E. faecalis and 70.3% of E. faecium) compared to water isolates (only 5.7% E. faecium). tet L and tet M genes were predominantly identified in tetracycline-resistant isolates. All water and clinical isolates resistant to ciprofloxacin and ampicillin contained mutations in the gyrA, parC and pbp5 genes. A significant correlation was found between the presence of virulence determinants and antibiotic resistance in all the isolates tested in this study (p<0.05). The presence of antibiotic resistant enterococci, together with associated virulence traits, in surface recreational water could be a public health risk. Copyright © 2012 Elsevier GmbH. All rights reserved.
Biodiversity of lactic acid bacteria in Moroccan soft white cheese (Jben).
Ouadghiri, Mouna; Amar, Mohamed; Vancanneyt, Marc; Swings, Jean
2005-10-15
The bacterial diversity occurring in traditional Moroccan soft white cheese, produced in eight different regions in Morocco, was studied. A total of 164 lactic acid bacteria were isolated, purified and identified by whole-cell protein fingerprinting and rep-PCR genomic fingerprinting. The majority of the strains belonged to the genera Lactobacillus, Lactococcus, Leuconostoc and Enterococcus. Sixteen species were identified: Lactobacillus plantarum, Lactobacillus rhamnosus, Lactobacillus paracasei, Lactobacillus brevis, Lactobacillus buchneri, Lactococcus lactis, Lactococcus garvieae, Lactococcus raffinolactis, Leuconostoc pseudomesenteroides, Leuconostoc mesenteroides, Leuconostoc citreum, Eterococcus durans, Enterococcus faecalis, Enterococcus faecium, Enterococcus saccharominimus and Streptococcus sp.
Kim, Eun Bae
2014-01-01
Certain strains of Enterococcus faecium and Enterococcus faecalis contribute beneficially to animal health and food production, while others are associated with nosocomial infections. To determine whether there are structural and functional genomic features that are distinct between nonclinical (NC) and clinical (CL) strains of those species, we analyzed the genomes of 31 E. faecium and 38 E. faecalis strains. Hierarchical clustering of 7,017 orthologs found in the E. faecium pangenome revealed that NC strains clustered into two clades and are distinct from CL strains. NC E. faecium genomes are significantly smaller than CL genomes, and this difference was partly explained by significantly fewer mobile genetic elements (ME), virulence factors (VF), and antibiotic resistance (AR) genes. E. faecium ortholog comparisons identified 68 and 153 genes that are enriched for NC and CL strains, respectively. Proximity analysis showed that CL-enriched loci, and not NC-enriched loci, are more frequently colocalized on the genome with ME. In CL genomes, AR genes are also colocalized with ME, and VF are more frequently associated with CL-enriched loci. Genes in 23 functional groups are also differentially enriched between NC and CL E. faecium genomes. In contrast, differences were not observed between NC and CL E. faecalis genomes despite their having larger genomes than E. faecium. Our findings show that unlike E. faecalis, NC and CL E. faecium strains are equipped with distinct structural and functional genomic features indicative of adaptation to different environments. PMID:24141120
Dumani, Aysin; Guvenmez, Hatice Korkmaz; Yilmaz, Sehnaz; Yoldas, Oguz; Kurklu, Zeliha Gonca Bek
2016-01-01
Aim. The purpose of this study was to compare the in vitro efficacy of calcium hypochlorite (Ca[OCl]2) and sodium hypochlorite (NaOCl) associated with sonic (Vibringe) irrigation system in root canals which were contaminated with Enterococcus faecalis. Material and Methods. The root canals of 84 single-rooted premolars were enlarged up to a file 40, autoclaved, inoculated with Enterococcus faecalis, and incubated for 21 days. The samples were divided into 7 groups according to the irrigation protocol: G0: no treatment; G1: distilled water; G2: 2.5% NaOCl; G3: 2.5% Ca(OCl)2; G4: distilled water with sonic activation; G5: 2.5% NaOCl with sonic activation; and G6: 2.5% Ca(OCl)2 with sonic activation. Before and after decontamination procedures microbiological samples were collected and the colony-forming units were counted and the percentages of reduction were calculated. Results. Distilled water with syringe irrigation and sonic activation groups demonstrated poor antibacterial effect on Enterococcus faecalis compared to other experimental groups (p < 0.05). There was no statistically significant difference between syringe and sonic irrigation systems with Ca(OCl)2 and NaOCl. Conclusion. The antimicrobial property of Ca(OCl)2 has been investigated and compared with that of NaOCl. Both conventional syringe irrigation and sonic irrigation were found effective at removing E. faecalis from the root canal of extracted human teeth. PMID:27218106
Soheili, Sara; Ghafourian, Sobhan; Sekawi, Zamberi; Neela, Vasantha Kumari; Sadeghifard, Nourkhoda; Taherikalani, Morovat; Khosravi, Afra; Ramli, Ramliza; Hamat, Rukman Awang
2015-01-01
The toxin-antitoxin (TA) system is a regulatory system where two sets of genes encode the toxin and its corresponding antitoxin. In this study, the prevalence of TA systems in independently isolated clinical isolates of Enterococcus faecium and Enterococcus faecalis was determined, the dominant TA system was identified, different virulence genes in E. faecium and E. faecalis were surveyed, the level of expression of the virulence and TA genes in normal and stress conditions was determined, and finally their associations with the TA genes were defined. Remarkably, the analysis demonstrated higBA and mazEF in all clinical isolates, and their locations were on chromosomes and plasmids, respectively. On the other hand, a quantitative analysis of TA and virulence genes revealed that the expression level in both genes is different under normal and stress conditions. The results obtained by anti-mazF peptide nucleic acids demonstrated that the expression level of virulence genes had decreased. These findings demonstrate an association between TA systems and virulence factors. The mazEF on the plasmids and the higBA TA genes on the chromosomes of all E. faecium and E. faecalis strains were dominant. Additionally, there was a decrease in the expression of virulence genes in the presence of anti-mazF peptide nucleic acids. Therefore, it is suggested that mazEF TA systems are potent and sensitive targets in all E. faecium and E. faecalis strains.
Soheili, Sara; Ghafourian, Sobhan; Sekawi, Zamberi; Neela, Vasantha Kumari; Sadeghifard, Nourkhoda; Taherikalani, Morovat; Khosravi, Afra; Ramli, Ramliza; Hamat, Rukman Awang
2015-01-01
The toxin–antitoxin (TA) system is a regulatory system where two sets of genes encode the toxin and its corresponding antitoxin. In this study, the prevalence of TA systems in independently isolated clinical isolates of Enterococcus faecium and Enterococcus faecalis was determined, the dominant TA system was identified, different virulence genes in E. faecium and E. faecalis were surveyed, the level of expression of the virulence and TA genes in normal and stress conditions was determined, and finally their associations with the TA genes were defined. Remarkably, the analysis demonstrated higBA and mazEF in all clinical isolates, and their locations were on chromosomes and plasmids, respectively. On the other hand, a quantitative analysis of TA and virulence genes revealed that the expression level in both genes is different under normal and stress conditions. The results obtained by anti-mazF peptide nucleic acids demonstrated that the expression level of virulence genes had decreased. These findings demonstrate an association between TA systems and virulence factors. The mazEF on the plasmids and the higBA TA genes on the chromosomes of all E. faecium and E. faecalis strains were dominant. Additionally, there was a decrease in the expression of virulence genes in the presence of anti-mazF peptide nucleic acids. Therefore, it is suggested that mazEF TA systems are potent and sensitive targets in all E. faecium and E. faecalis strains. PMID:26005332
Pilot Study of Antimicrobial Resistance in Northern Bobwhites (Colinus virginianus).
Zhang, Michael; Shen, Zhenyu; Rollins, Dale; Fales, William; Zhang, Shuping
2017-09-01
Antimicrobial resistance (AMR) is an important issue for both wildlife conservation and public health. The purpose of this study was to screen for AMR in fecal bacteria isolated from northern bobwhite (Colinus virginianus), a species that is an ecologically and economically important natural resource in the southern United States. The antimicrobial susceptibility profiles of 45 Escherichia coli isolates, 20 Enterococcus faecalis isolates, and 10 Enterococcus faecium isolates were determined using the Sensititer TM microbroth dilution minimum inhibitory concentration (MIC) plate, AVIAN1F. Overall, E. coli isolates had high MIC values for the following classes of antimicrobials: aminocoumarins, beta-lactams, lincosamides, macrolides, florfenicol, and sulfonamides. Enterococcus faecalis and E. faecium isolates had high MICs for aminocyclitols, aminoglycosides, beta-lactams, lincosamides, and sulfonamides. Enterococcus faecalis isolates also showed high MICs for aminocoumarins, while E. faecium isolates had high MICs for trimethoprim/sulfamethoxazole and tetracycline. Based on available veterinary interpretive criteria, 15% and 33% of E. coli isolates were resistant to sulphathiazole and sulphadimethoxine, respectively. Intermediate susceptibility to florfenicol was seen with 17.8% of E. coli isolates. Twenty percent of E. faecalis and 80% of E. faecium isolates were resistant to high-concentration streptomycin. One third of E. faecalis and 70% of E. faecium isolates were intermediately susceptible to erythromycin. Ten percent of E. faecium isolates were resistant to tetracycline and oxytetracycline. A comparison of available MIC suggests that AMR in wild bobwhite is less severe than in domestic poultry. Further investigation is needed to determine the source of AMR in wild bobwhite.
Hassan, Reem Mostafa; Ghaith, Doaa Mohammad; Ismail, Dalia Kadry; Zafer, Mai Mahmoud
2018-03-01
The incidence of reduced susceptibility to tigecycline (TIG) is increasing. This study aimed to analyse the in vitro activity of TIG against Enterococcus spp. isolates recovered from hospitalised patients and to evaluate the effect of omeprazole on the in vitro antimicrobial activity of TIG against several enterococcal species. A total of 67 Enterococcus clinical isolates were identified by MALDI-TOF/MS and multiplex PCR. Minimum inhibitory concentrations (MICs) of TIG alone and in combination with omeprazole (10, 30 and 60mg/L) were determined by broth microdilution. Antibiotic susceptibility to other antibiotics was determined by disk diffusion. The presence of van, tet(X) and tet(X1) genes was tested by multiplex PCR. Of the 67 Enterococcus isolates, 2 (3.0%) were resistant to TIG and 13 (19.4%) were intermediate-resistant according to EUCAST. The frequencies of resistance to norfloxacin (80.6%), doxycycline (80.6%), levofloxacin (74.6%) and ciprofloxacin (71.6%) were highest, whilst that of vancomycin (25.4%) was lowest. The vanA gene was detected in 11 Enterococcus isolates (8 Enterococcus faecalis, 3 Enterococcus faecium), vanB in 3 Enterococcus isolates (2 E. faecium, 1 E. faecalis) and vanC-2/3 in 3 Enterococcus casseliflavus. Nine isolates (13.4%) were positive for tet(X1). TIG resistance occurred both in patients receiving or not TIG and/or omeprazole. Omeprazole increased TIG MICs by 4-128-fold. The possibility of selection of TIG-non-susceptible Enterococcus in the gut may occur with long-term use of omeprazole. Omeprazole influenced TIG activity in a concentration-dependent manner. To our knowledge; this is the first report of TIG-non-susceptible Enterococcus spp. in Egypt. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.
Enterococcus faecium small colony variant endocarditis in an immunocompetent patient
Egido, S. Hernández; Ruiz, M. Siller; Inés Revuelta, S.; García, I. García; Bellido, J.L. Muñoz
2015-01-01
Small colony variants (SCV) are slow-growing subpopulations of bacteria usually associated with auxotrophism, causing persistent or recurrent infections. Enterococcus faecalis SCV have been seldom described, and only one case of Enterococcus faecium SCV has been reported, associated with sepsis in a leukaemia patient. Here we report the first case described of bacteraemia and endocarditis by SCV E. faecium in an immunocompetent patient. PMID:26862434
Enterococcus faecalis lipoteichoic acid regulates macrophages autophagy via PI3K/Akt/mTOR pathway.
Lin, Dongjia; Gao, Yan; Zhao, Luodan; Chen, Yanhuo; An, Shaofeng; Peng, Zhixiang
2018-04-15
Enterococcus faecalis (E. faecalis) infection is considered an important etiological factor for the development of persistent apical periodontitis (PAP), but the exact mechanisms of autophagy between E. faecalis and immune cells remain unknown. In this study, we elucidated how E. faecalis lipoteichoic acid (LTA) is associated with macrophages autophagy. We found that E. faecalis LTA apparently activated macrophage autophagy with significant increase of autophagosomes and autophagy relative protein. Meanwhile, we noticed significantly decreasing expression of p-Akt and p-mTOR. However, these effect were absent in macrophages knockdown of Beclin1. In summary, these findings suggested E. faecalis LTA may increased macrophages autophagy via inhibiting PI3K/Akt/mTOR pathway and this process was Beclin1 dependent. Copyright © 2018 Elsevier Inc. All rights reserved.
Song, Shao-Na; Zhang, Bi-Li; Wang, Wen-Hong; Zhang, Xuan
2012-09-01
To investigate the spectrum and drug sensitivity of pathogenic bacteria in children with nephrotic syndrome (NS) complicated by urinary tract infection (UTI). A retrospective analysis was performed on the spectrum and drug sensitivity of pathogenic bacteria in 97 children with NS complicated by UTI, who hospitalized from January to December, 2011. The incidence of UTI in children with NS was 36.5%. It was significantly more common in children with recurrent NS than in those with primary NS (44.0% vs 31.9%; P<0.05). These cases mainly presented with asymptomatic bacteriuria. Enterococcus was the most common pathogenic bacteria (50.5%), including Enterococcus faecium (29.4%) and Enterococcus faecalis (21.1%), followed by Gram-negative bacteria, such as Escherichia coli (15.6%) and Klebsiella pneumoniae (14.7%). Enterococcus was highly sensitive to nitrofurantoin, vacomycin and linezolid, but was highly resistant to tetracycline and moxifloxacin. More multi-resistant strains were detected in Enterococcus faecium than in Enterococcus faecalis (72% vs 17%; P<0.05). Escherichia coli and Klebsiella pneumoniae were highly sensitive to amikacin, imipenem and piperacillin/tazobactam. Of the Gram-negative bacteria, 25% produced extended spectrum β-lactamases (ESBLs). ESBLs-producing bacteria had 100% sensitivity to imipenem, amikacin and piperacillin/tazobactam but were highly resistant to ampicillin, cefazolin and ceftriaxone. Children with recurrent NS are more susceptible to UTI than those with primary NS. Enterococcus is becoming major pathogenic bacteria for UTI in children with NS and has relatively high drug resistance, and most strains of Enterococcus faecium are multi-resistant.
Flahaut, S; Hartke, A; Giard, J C; Auffray, Y
1997-01-01
The alkaline shock response in Enterococcus faecalis was studied in this work. Cells adapted to an optimum pH of 10.5 were tolerate to pH 11.9 conditions but acquired sensitivity to acid damage. An analysis of stress proteins revealed that 37 polypeptides were amplified. Two of these are DnaK and GroEL. The combined results show that bile salts and alkaline stress responses are closely related. PMID:9023964
Tewari, Rajendra K; Ali, Sajid; Mishra, Surendra K; Kumar, Ashok; Andrabi, Syed Mukhtar-Un-Nisar; Zoya, Asma; Alam, Sharique
2016-05-01
In the present study, the effectiveness of three rotary and two manual nickel titanium instrument systems on mechanical reduction of the intracanal Enterococcus faecalis population was evaluated. Mandibular premolars with straight roots were selected. Teeth were decoronated and instrumented until 20 K file and irrigated with physiological saline. After sterilization by ethylene oxide gas, root canals were inoculated with Enterococcus faecalis. The specimens were randomly divided into five groups for canal instrumentation: Manual Nitiflex and Hero Shaper nickel titanium files, and rotary Hyflex CM, ProTaper Next, and K3XF nickel titanium files. Intracanal bacterial sampling was done before and after instrumentation. After serial dilution, samples were plated onto the Mitis Salivarius agar. The c.f.u. grown were counted, and log10 transformation was calculated. All instrumentation systems significantly reduced the intracanal bacterial population after root canal preparation. ProTaper Next was found to be significantly more effective than Hyflex CM and manual Nitiflex and Hero Shaper. However, ProTaper Next showed no significant difference with K3XF. Canal instrumentation by all the file systems significantly reduced the intracanal Enterococcus faecalis counts. ProTaper Next was found to be most effective in reducing the number of bacteria than other rotary or hand instruments. © 2014 Wiley Publishing Asia Pty Ltd.
da Silva Fernandes, Meg; Kabuki, Dirce Yorika; Kuaye, Arnaldo Yoshiteru
2015-05-04
The biofilm formation of Enterococcus faecalis and Enterococcus faecium isolated from the processing of ricotta on stainless steel coupons was evaluated, and the effect of cleaning and sanitization procedures in the control of these biofilms was determined. The formation of biofilms was observed while varying the incubation temperature (7, 25 and 39°C) and time (0, 1, 2, 4, 6 and 8 days). At 7°C, the counts of E. faecalis and E. faecium were below 2 log10 CFU/cm(2). For the temperatures of 25 and 39°C, after 1 day, the counts of E. faecalis and E. faecium were 5.75 and 6.07 log10 CFU/cm(2), respectively, which is characteristic of biofilm formation. The tested sanitation procedures a) acid-anionic tensioactive cleaning, b) anionic tensioactive cleaning+sanitizer and c) acid-anionic tensioactive cleaning+sanitizer were effective in removing the biofilms, reducing the counts to levels below 0.4 log10 CFU/cm(2). The sanitizer biguanide was the least effective, and peracetic acid was the most effective. These studies revealed the ability of enterococci to form biofilms and the importance of the cleaning step and the type of sanitizer used in sanitation processes for the effective removal of biofilms. Copyright © 2015 Elsevier B.V. All rights reserved.
[Bacterial flora and mycosis of the vagina in women with symptoms of vaginal inflammation].
Dybaś, Irena; Sidor-Wójtowicz, Anna; Kozioł-Montewka, Maria
2005-05-01
To estimate the microbiological profile of vaginal flora in 30 women with gynecologic problems and 20 pregnant women complaining about pathological symptoms {pruritus, burning, vaginal discharge}. The discharge from posterior vaginal vault was examined microbiologically on the Columbia Agar with sheep blood, MacConkey and Sabourand cultures incubated of 48 hours in the temperature of 37 degrees C. Bacterial infections were detected in 33 cases (66%), 12 of these women (24%) lived in urban, 21 (42%) in rural environment. From bacteria isolated from the vagina, most often because at 14 women stepped out Streptococcus agalactiae, at 11 Enterococcus faecalis at 8 Escherichia coli. In 5 cases bacterial inflammation was caused by two kinds of bacterium. At two women stepped out both Enterococcus faecalis and Escherichia coli. In single cases it was Klebsiella pneumoniae and Proteus vulgaris, Escherichia coli and Streptococcus agalactiae. In all cases of inflammation mycosis was called out by from Candida albicans. One ascertained it at 14 among all given an examination women. Mixed inflammations called out both by mycosis and bacterial stepped out in 3 cases in age of 21-30. At two women it was Candida albicans and Streptococcus agalactiae, at one inflammation mycosis accompanied Enterococcus faecalis. The common reason of vaginitis are bacterial infections caused by Streptococcus agalactiae, Enterococcus faecalis, E coli. Both, place of living and women' s age influence the type of etiological factor.
Estrela, Carlos; Silva, Julio Almeida; de Alencar, Ana Helena Gonçalves; Leles, Claudio Rodrigues; Decurcio, Daniel Almeida
2008-01-01
The efficacy of the sodium hypochlorite (NaOCl) and chlorhexidine (CHX) on Enterococcus faecalis was evaluated by systematic review and meta-analysis. The search strategies included search in electronic biomedical journal databases (MEDLINE, EMBASE, CENTRAL) and handsearching records, using different matches of keywords for NaOCl, CHX and Enterococcus faecalis. From 41 in vivo studies, 5 studies met the inclusion criteria. In a sample containing 159 teeth, E. faecalis was detected initially in 16 (10%) teeth by polymerase chain reaction (PCR) and 42 (26.4%) teeth by microbial culture techniques. After root canal disinfection, this species was observed in 11 (6.9%) teeth by PCR and 12 (7.5%) teeth by culture. Risk differences of included studies were combined as generic inverse variance data type (Review Manager Version 5.0 – Cochrane Collaboration, http://www.cc-ims.net, accessed 15 May 2008), taking into account the separate tracking of positive and negative cultures/PCR. The level of statistical significance was set at p<0.05. In conclusion, NaOCl or CHX showed low ability to eliminate E. faecalis when evaluated by either PCR or culture techniques. PMID:19082392
Jahan, Musarrat; Zhanel, George G; Sparling, Richard; Holley, Richard A
2015-04-16
Enterococcus species are part of the normal intestinal flora of a large number of mammals including humans and consequently, they can be used as indicators of faecal contamination in food and water for human consumption. Their presence in large numbers in foods may indicate a lapse in sanitation and their ability to serve as a genetic reservoir of transferable antibiotic resistance is of concern. In the present study, Enterococcus spp., isolated from commercially fermented meat and human clinical specimen were studied to determine genetic relationships. SmaI pulsed-field gel electrophoresis (PFGE) patterns exhibited genomic heterogeneity within and between both groups of isolates. However, in spite of this heterogeneity there were still substantial phenotypic similarities which suggested that food might be a potential vehicle for distribution of resistant bacteria among humans. In vitro conjugation experiments demonstrated transfer of the tetracycline resistant determinant, tet(M), from Enterococcus faecium S27 isolated from fermented sausage to clinical isolates of both E. faecium and Enterococcus faecalis. The streptomycin resistance of E. faecium S27 was also transferred to a clinical strain, E. faecalis 82916, which was confirmed by the presence of the streptomycin resistance gene, aadA, in the donor and transconjugant strains. Since the aadA gene is associated with a class 1 integron, results also suggested that resistance transfer might have occurred via an integron. It appears this is the first identification of a class 1 integron in E. faecium isolated from food. The importance of food enterococci as a reservoir of antibiotic resistance genes and the potential for their genetic transfer to human strains following consumption of uncooked or undercooked contaminated meat is underlined by this work. Copyright © 2015 Elsevier B.V. All rights reserved.
2014-03-01
Micrococcus sp., Enterococcus faecalis, Enterococcus faecium, Vancomycin resistant Enterococcus, and Escherichia coli). During the second Quarter of...mm) 803 D10 Rhinoptera bonasus MRSA (9.5) MSSA (4.5) Bacillus cereus (6) Listeria monocytogenes (6) MRSA (2) Micrococcus sp (7) VRE (2) 803...E6 Rhinoptera bonasus MRSA (7.5) MSSA (8.5) VRE (4.5) Bacillus subtilis (10) MRSA (10) MRSA (10) Micrococcus (16) Listeria monocytogenes (13
Taneja, Sonali; Kumari, Manju; Barua, Madhumita; Dudeja, Chetna; Malik, Meeta
2015-01-01
To compare the apical extrusion of Enterococcus faecalis after instrumentation with three different Ni-Ti rotary instruments- An in vitro study. In vitro study Methods and Material: Forty freshly extracted mandibular premolars were mounted in bacteria collection apparatus and root canals were contaminated with a suspension of Enterococcus faecalis. The contaminated teeth were divided into 4 groups of 10 teeth each according to rotary system used for instrumentation: Group1: Hyflex files, Group 2: GTX files, Group 3: Protaper files and Group 4: control group (no instrumentation). Bacteria extruded after preparations were collected into vials and microbiological samples were incubated in BHI broth for 24 hrs. The colony forming units were determined for each sample. Statistical analysis was done using one way ANOVA followed by post hoc independent " t" test. GTX files extruded least amount of bacteria followed by Hyflex files. Maximum extrusion of E. faecalis was seen in rotary Protaper group. Least amount of extrusion was seen with GTX files followed by Hyflex files and then rotary Protaper system.
S, Hajimaghsoodi; H, Zandi; M, Bahrami; R, Hakimian
2016-12-01
It is necessary to use irrigation solutions during cleaning and shaping of root canals to efficiently reduce the number of micro organisms. Sodium hypochlorite is used as an effective antibacterial endodontic irrigants. However, the extract of pennyroyal plant has also shown anti-bacterial characteristics comparable with antibacterial drugs. To compare the anti-bacterial effect of spearmint extract on Enterococcus faecalis bacteria with that of sodium hypochlorite 5.25%. In this experimental study, Muller Hinton medium, including 5% sheep blood was prepared. The two solutions used including sodium hypochlorite 5.25% and spearmint extracts were put adjacent to Enterococcus faecalis bacteria after preparing. Two groups, each containing 10 samples, with the total of 20 samples were used. The disks, including each solution were placed 2 cm apart on a plate containing Muller Hinton medium and the bacteria. The plate was subsequently incubated at 37°C for 48 hours. After incubation, the mean diameter of the halo around each disk, which represents the lack of bacterial growth, was measured and compared using a ruler. Penicillin disk was used for positive control and a sterile blank disk containing physiologic serum was utilized as the negative control. This process was repeated 10 times for each solution. Data were analyzed in SPSS 17 statistical software using t -test. The results showed that the mean diameter of halo in the spearmint extract group was zero and in the sodium hypochlorite group it was 23.7 ± 1.49 mm. There was a significant difference between the mean diameter of the lack of growth halo of the spearmint extract and that of hypochlorite sodium 5.25% on Enterococcus faecalis bacteria ( p ≤ 0.001). Considering the limitations of an experimental study, it seems that spearmint extract does not have any anti-bacterial effect against Enterococcus faecalis bacteria, in contrast to hypochlorite sodium 5.25%.
Martín, B; Corominas, L; Garriga, M; Aymerich, T
2009-01-01
Four local small-scale factories were studied to determine the sources of enterococci in traditional fermented sausages. Different points during the production of a traditional fermented sausage type (fuet) were evaluated. Randomly amplified polymorphic DNA (RAPD)-PCR was used to type 596 Enterococcus isolates from the final products, the initial meat batter, the casing, the workers' hands and the equipment. Species-specific PCR-multiplex and the partial sequencing of atpA gene and 16S rRNA gene sequencing allowed the identification of the isolates: Enterococcus faecalis (31.4%), Enterococcus faecium (30.7%), Enterococcus sanguinicola (14.9%), Enterococcus devriesei (9.7%), Enterococcus malodoratus (7.2%), Enterococcus gilvus (1.0%), Enterococcus gallinarum (1.3%), Enterococcus casseliflavus (3.4%), Enterococcus hermanniensis (0.2%), and Enterococcus durans (0.2%). A total of 92 different RAPD-PCR profiles were distributed among the different factories and samples evaluated. Most of the genotypes found in fuet samples were traced back to their source. The major sources of enterococci in the traditional fermented sausages studied were mainly the equipment followed by the raw ingredients, although a low proportion was traced back to human origin. This work contributes to determine the source of enterococcal contamination in fermented sausages and also to the knowledge of the meat environment.
Boyd, David A.; Willey, Barbara M.; Fawcett, Darlene; Gillani, Nazira; Mulvey, Michael R.
2008-01-01
Enterococcus faecalis N06-0364, exhibiting a vancomycin MIC of 8 μg/ml, was found to harbor a novel d-Ala-d-Ser gene cluster, designated vanL. The vanL gene cluster was similar in organization to the vanC operon, but the VanT serine racemase was encoded by two separate genes, vanTmL (membrane binding) and vanTrL (racemase). PMID:18458129
Pinheiro, Sérgio Luiz; Pessoa, Carolina; da Silva, Josianne Neres; Gonçalves, Rafael Orro; Duarte, Danilo Antonio; da Silveira Bueno, Carlos Eduardo
2016-01-01
To assess, in vitro, the ability of the ProTaper(™) and WaveOne(™) systems to reduce Enterococcus faecalis contamination in primary molars. Sixty roots of primary molars were contaminated with E. faecalis. Roots were randomly allocated to one of four groups (n=20): ProTaper(™), WaveOne(™), control A, or control B. The files used were S1 and S2/F1 and F2 (ProTaper(™) system) and 25.08 (WaveOne(™) system). In control group A, the root canal was left uninstrumented, whereas in control group B, the root canal was irrigated with NaCl 0.9%. E. faecalis was sampled from the root canal system before and after instrumentation and the Wilcoxon test and Mann-Whitney U were used. There were no differences in E. faecalis counts between pre-instrumentation counts in the ProTaper™ and WaveOne(™) (p>0.05). The ProTaper(™) system led to an 89.36% reduction in E. faecalis burden, versus 78.10% with the WaveOne(™) system (p>0.05). Instrumentation time was shorter with WaveOne(™) (p<0.0001). The ProTaper(™) and WaveOne™ systems were equally effective in reducing Enterococcus faecalis in primary molars. The WaveOne(™) system was associated with shorter instrumentation time.
AN EFFICIENT IMMUNOMAGNETIC CAPTURE SYSTEM FOR ENTEROCOCCUS FAECALIS AND ENTEROCOCCUS FAECIUM
Enterococci detection is one of the two approved procedures by the US Environmental Protection Agency (EPA) used for the assessment of the microbiological quality of recreational waters. The action levels established by the EPA for enterococci are 35 pr 100 ml in marine recreati...
Firmesse, Olivier; Rabot, Sylvie; Bermúdez-Humarán, Luis G; Corthier, Gérard; Furet, Jean-Pierre
2007-11-01
Enterococci are natural inhabitants of the human gastrointestinal tract and the main Gram-positive and facultative anaerobic cocci recovered in human faeces. They are also present in a variety of fermented dairy and meat products, and some rare isolates are responsible for severe infections such as endocarditis and meningitis. The aim of the present study was to evaluate the effect of Camembert cheese consumption by healthy human volunteers on the faecal enterococcal population. A highly specific real-time quantitative PCR approach was designed and used to type enterococcal species in human faeces. Two species were found, Enterococcus faecalis and Enterococcus faecium, and only the Enterococcus faecalis population was significantly enhanced after Camembert cheese consumption, whereas Escherichia coli population and the dominant microbiota remained unaffected throughout the trial.
Biological contamination of aquatic environments by pathogenic microorganisms is often assessed using fecal indicator bacteria such as enterococci. The concentrations of enterococci are commonly determined by culturing techniques, but there has been recent interest in using molec...
Vignaroli, Carla; Zandri, Giada; Aquilanti, Lucia; Pasquaroli, Sonia; Biavasco, Francesca
2011-05-01
Forty-eight isolates resistant to at least two antibiotics were selected from 53 antibiotic-resistant enterococci from chicken and pig meat and faeces and analysed for specific resistance determinants. Of the 48 multidrug-resistant (MDR) strains, 31 were resistant to two antibiotics (29 to erythromycin and tetracycline, 1 to erythromycin and vancomycin, 1 to vancomycin and tetracycline), 14 to three (erythromycin, tetracycline and vancomycin or ampicillin) and 3 to four (erythromycin, vancomycin, ampicillin and gentamicin). erm(B), tet(M), vanA and aac (6')-Ie aph (2'')-Ia were the antibiotic resistance genes most frequently detected. All 48 MDR enterococci were susceptible to linezolid and daptomycin. Enterococcus faecalis (16), Enterococcus faecium (8), Enterococcus mundtii (2) and Enterococcus gallinarum (1) were identified in meat, and E. faecium (13) and Enterococcus durans (13) in faeces. Clonal spread was not detected, suggesting a large role of gene transfer in the dissemination of antibiotic resistance. Conjugative transfer of resistance genes was more successful when donors were enterococcal strains isolated from faeces; co-transfer of vanA and erm(B) to a human E. faecium occurred from both E. faecium and E. durans pig faecal strains. These data show that multidrug resistance can be found in food and animal species other than E. faecium and E. faecalis, and that these species can efficiently transfer antibiotic resistance to human strains in inter-specific matings. In particular, the occurrence of MDR E. durans in the animal reservoir could have a role in the emergence of human enterococcal infections difficult to eradicate with antibiotics.
Converse, Reagan R; Blackwood, A Denene; Kirs, Marek; Griffith, John F; Noble, Rachel T
2009-11-01
Concentrations of fecal indicator bacteria (FIB; e.g. Escherichia coli, and Enterococcus sp.) can only be used in limited ways for determining the source of fecal contamination in recreational waters because they cannot distinguish human from non-human fecal contamination. Several Bacteroides spp. have been suggested as potential alternative indicators. We have developed a rapid, culture-independent method for quantifying fecal Bacteroides spp. using quantitative PCR (QPCR) targeting the 16S rRNA gene. The assay specifically targets and quantifies the most common human Bacteroides spp. The details of the method are presented, including analyses of a wide range of fecal samples from different organisms. Specificity and performance of the QPCR assay were also tested via a laboratory experiment where human sewage and gull guano were inoculated into a range of environmental water samples. Concentrations of fecal Bacteroides spp., total Enterococcus sp., Enterococcus faecium, Enterococcus faecalis, and Enterococcus casseliflavus were measured using QPCR, and total Enterococcus sp. and E. coli were quantified by membrane filtration (MF). Samples spiked with gull guano were highly concentrated with total Enterococcus sp., E. coli, E. faecalis, and E. casseliflavus, demonstrating that these indicators are prominent in animal feces. On the other hand, fecal Bacteroides spp. concentrations were high in samples containing sewage and were relatively low in samples spiked with gull guano. Sensitivity and specificity results suggest that the rapid fecal Bacteroides spp. QPCR assay may be a useful tool to effectively predict the presence and concentration of human-specific fecal pollution.
Schwaiger, Karin; Bauer, Johann; Hörmansdorfer, Stefan; Mölle, Gabriele; Preikschat, Petra; Kämpf, Peter; Bauer-Unkauf, Ilse; Bischoff, Meike; Hölzel, Christina
2012-08-01
Ampicillin and vancomycin are important antibiotics for the therapy of Enterococcus faecalis infections. The ampicillin resistance gene pbp5 is intrinsic in Enterococcus faecium. The vanC1 gene confers resistance to vancomycin and serves as a species marker for Enterococcus gallinarum. Both genes are chromosomally located. Resistance to ampicillin and vancomycin was determined in 484 E. faecalis of human and porcine origin by microdilution. Since E. faecalis are highly skilled to acquire resistance genes, all strains were investigated for the presence of pbp5 (and, in positive strains, for the penicillin-binding protein synthesis repressor gene psr) and vanC1 (and, in positive strains, for vanXYc and vanT) by using polymerase chain reaction (PCR). One porcine and one human isolate were phenotypically resistant to ampicillin; no strain was vancomycin resistant. Four E. faecalis (3/1 of porcine/human origin) carried pbp5 (MIC=1 mg/L), and four porcine strains were vanC1 positive (minimum inhibitory concentration [MIC]=1 mg/L). Real-time reverse transcriptase (RT)-PCR revealed that the genes were not expressed. The psr gene was absent in the four pbp5-positive strains; the vanXYc gene was absent in the four vanC1-positive strains. However, vanT of the vanC gene cluster was detected in two vanC1-positive strains. To our knowledge, this is the first report on the presence of pbp5, identical with the "E. faecium pbp5 gene," and of vanC1/vanT in E. faecalis. Even if resistance is not expressed in these strains, this study shows that E. faecalis have a strong ability to acquire resistance genes-and potentially to spread them to other bacteria. Therefore, close monitoring of this species should be continued.
NASA Astrophysics Data System (ADS)
Xu, Jiancheng; Wang, Liqiang; Wang, Kai; Zhou, Qi
This study was to investigate the antimicrobial resistance of Enterococcus spp. isolated in 8 consecutive years in the First Bethune Hospital. Disk diffusion test was used to study the antimicrobial resistance. The data were analyzed by WHONET 5 software according to Clinical and Laboratory Standards Institute (CLSI). Most of 1446 strains of Enterococcus spp. were collected from urine 640 (44.3%), sputum 315 (21.8%), secretions and pus 265 (18.3%) during the past 8 years. The rates of high-level aminoglycoside resistance in Enterococcus faecalis and Enterococcus faecium were 57.4%∼75.9% and 69.0%∼93.8% during the past 8 years, respectively. No Enterococcus spp. was resistant to vancomycin. The antimicrobial resistance of Enterococcus spp. had increased in recent 8 years. The change of the antimicrobial resistance should be investigated in order to direct rational drug usage in the clinic and prevent bacterial strain of drug resistance from being transmitted.
López-Jiménez, Lidia; Viñas, Miguel; Vinuesa, Teresa
2015-01-01
Aim: To visualize by Atomic Force Microscopy the alterations induced on Enterococcus. faecalis surface after treatment with 2 types of laser: Erbium chromium:yttrium-scandium-gallium-garnet (Er,Cr:YSGG) laser and Diode laser. Material and Methods: Bacterial suspensions from overnight cultures of E. faecalis were irradiated during 30 seconds with the laser-lights at 1 W and 2 W of power, leaving one untreated sample as control. Surface alterations on treated E. faecalis were visualized by Atomic Force Microscopy (AFM) and its surface roughness determined. Results: AFM imaging showed that at high potency of laser both cell morphology and surface roughness resulted altered, and that several cell lysis signs were easily visualized. Surface roughness clearly increase after the treatment with Er,Cr:YSGG at 2W of power, while the other treatments gave similar values of surface roughness. The effect of lasers on bacterial surfaces visualized by AFM revealed drastic alterations. Conclusions: AFM is a good tool to evaluate surface injuries after laser treatment; and could constitute a measure of antimicrobial effect that can complete data obtained by determination of microbial viability. Key words:Atomic force microscopy, Er,Cr:YSGG laser, diode laser, Enterococcus faecalis, surface roughness. PMID:25475770
Venigalla, Bhuvan Shome; Surakanti, Jayaprada Reddy; Thumu, Jayaprakash; Chennamaneni, Krishna Chaitanya; Kalluru, Rama S.
2016-01-01
Introduction One of the main goals of endodontic treatment is root canal disinfection and to prevent subsequent chances of reinfection. Adjuvant to instrumentation, root canal irrigants are required to eliminate the bacteria found on the root canal walls and lateral canals within the dentinal tubules. Aim To measure and compare the antibacterial efficacy of two antibiotics as experimental root canal irrigating solutions against Enterococcus faecalis (E. faecalis). Materials and Methods Fifteen Brain Heart Infusion agar plates were inoculated with Enterococcus faecalis-American Type Culture Collection (ATCC) 29212. 5 micrograms (mcg) Sparfloxacin discs, 30mcg Augmentin discs, and sterile paper test discs saturated with 2% Chlorhexidine (CHX), 3% Sodium Hypochlorite (NaOCl) and 5% NaOCl solutions were placed on agar plates. Sodium Chloride 0.9% (NaCl) paper discs were used as controls. Fifteen plates were incubated aerobically at 37°C. Results were expressed as per the terms of the diameter of the inhibition zone. Results Results suggested a statistically significant difference in the zones of inhibition between five irrigating solutions (p < 0.001). Conclusion Although, zones of inhibition were found in all the groups, 5mcg Sparfloxacin and 30mcg Augmentin showed maximum antimicrobial activity against E.faecalis. PMID:27135003
Stenhouse, M; Zilm, P; Ratnayake, J; Cathro, P
2018-01-11
Calcium hydroxide is a common endodontic medicament and has an antimicrobial effect by increasing the localized pH within the root canal. However, Enterococcus faecalis has shown some resistance to calcium hydroxide. A flow cell apparatus was used to grow an E. faecalis biofilm on dentine discs. Following 4 weeks growth in Todd Hewitt Broth, flow cells were exposed to either a rapid or slow increase to pH 11.5 or 12.5. Cellular viability was determined using serial plating and the number of colony-forming units was normalized against the cellular protein content. Scanning electron microscopy was carried out to qualitatively observe the effects of the different rates of pH increase. A significant difference in viability between the pH rapid and slow groups was not shown in this study. Compared with pH 11.5 solutions, pH 12.5 solutions were more effective at killing bacteria although some E. faecalis still survived. Enterococcus faecalis did not adapt and develop a greater resistance to high pH following a slow rise in pH compared with a rapid rise in pH. As expected, pH 12.5 was more effective in reducing bacterial numbers compared with pH 11.5 although E. faecalis was not completely eliminated. © 2018 Australian Dental Association.
Khalkhali, Soodabeh; Mojgani, Naheed
2017-01-01
Background and Objectives: Human milk is a continuous supply of Lactic Acid bacteria (LAB), including enterococci with probiotic potentials. The aim of this study was to analyze two Enterococcus species, isolated from human milk for their probiotic potential, bacteriocin producing ability and virulence traits. Materials and Methods: Enterococcus faecium TA0033 and E. faecalis TA102 were tested for acid and bile tolerance, survival in simulated gastric and intestinal conditions. The antibacterial spectrum of the isolates was tested by agar well diffusion assay. The antagonistic agent was characterized by physico-chemical methods. The enterocin structural genes, virulence determinants, vancomycin resistance and biogenic amine genes, such as hdc1, hdc2, tdc, ldc and odc were also determined. Results: The tested isolates survived acidic conditions, high bile salt (1%), simulated gastric and intestinal conditions. The culture supernatant fluids of the two isolates inhibited the growth of Escherichia coli, Listeria monocytogenes, Salmonella typhi, Staphylococcus aureus, Shigella dysenteriae and Streptococcus agalactiae. The antagonistic activity was lost in the presence of proteolytic enzymes but tolerated the action of catalase, lysozyme and lipase. In contrast to enterocin TA102, enterocin TA0033 possessed bactericidal mode of action. Bacteriocin structural genes, entA and entB were present in the genome of the two isolates, while E. faecalis TA102 additionally harboured entP and bac31 genes. The phenotypic and genotypic virulence assessment studies indicated hyaluronidase (hyl) production and vancomycin resistance in E. faecalis TA102 while, none of the isolates harboured the biogenic amine genes. Conclusion: The presence of virulence genes in E. faecalis TA102 calls for careful monitoring of Enterococcus isolates for their safety parameters. PMID:29238458
Hugar, Shivayogi; M Patel, Punit; Nagmoti, Jyoti; Uppin, Chaitanya; Mistry, Laresh; Dhariwal, Neha
2017-01-01
To comparatively evaluate the efficacy of disinfecting ability of garlic oil, neem oil, clove oil, and tulsi oil with autoclaving on endodontic K files tested against Enterococcus faecalis. Fifty endodontic K files were exposed to the test micro-organism and checked for its disinfecting ability using three different methods. Garlic oil, clove oil, tulsi oil and autoclave showed considerable effectiveness against E. faecalis except neem oil. Garlic oil, clove oil and tulsi oil are an effective disinfectant and can be used as an alternative to autoclaving against the test micro-organism. Herbs and herbal extracts are a natural and harmless way of controlling infection. These products are readily available and comparable to gold standard, thus can have its applications in rural India. Hugar S, Patel PM, Nagmoti J, Uppin C, Mistry L, Dhariwal N. An in vitro Comparative Evaluation of Efficacy of Disinfecting Ability of Garlic Oil, Neem Oil, Clove Oil, and Tulsi Oil with autoclaving on Endodontic K Files tested against Enterococcus faecalis. Int J Clin Pediatr Dent 2017;10(3):283-288.
Ronald, Allan R; Pattullo, Andrew LS
1990-01-01
A case of Enterococcus faecalis endocarditis followed endoscopic retrograde cholangiopancreatography and percutaneous extraction of a biliary calculus is reported. The most likely cause of endocarditis, though unproven, is the latter procedure, as the bile is often infected during biliary tract obstruction, and bacteremia is frequent during percutaneous manipulations. Initial therapy with vancomycin was unsuccessful in clearing the bacteremia, possibly due to vancomycin tolerance of the isolate and lack of an aminoglycoside in the initial regimen. Cure was obtained when therapy with ampicillin and gentamicin was undertaken. PMID:22553458
USDA-ARS?s Scientific Manuscript database
E.coli and Enterococcus serve as important water quality indicator organisms. Rainfall action on manured fields and pastures releases these organisms into soil with infiltrating water. They can then be released back to runoff during subsequent rainfall or irrigation events as soil solution interacts...
The current U. S. Environmental Protection Agency-approved method for Enterococci (Method 1600) in recreational water is a membrane filter (MF) method that takes 24 hours to obtain results. If the recreational water is not in compliance with the standard, the risk of exposure to...
2013-01-01
Background Recent studies have shown that mammalian milk represents a continuous supply of commensal bacteria, including enterococci. The objectives of this study were to evaluate the presence of enterococci in milk of different species and to screen them for several genetic and phenotypic traits of clinical significance among enterococci. Results Samples were obtained from, at least, nine porcine, canine, ovine, feline and human healthy hosts. Enterococci could be isolated, at a concentration of 1.00 × 102 -1.16 × 103 CFU/ml, from all the porcine samples and, also from 85, 50, 25 and 25% of the human, canine, feline and ovine ones, respectively. They were identified as Enterococcus faecalis, Enterococcus faecium, Enterococcus hirae, Enterococcus casseliflavus and Enterococcus durans. Among the 120 initial enterococcal isolates, 36 were selected on the basis of their different PFGE profiles and further characterized. MLST analysis revealed a wide diversity of STs among the E. faecalis and E. faecium strains, including some frequently associated to hospital infections and novel STs. All the E. faecalis strains possessed some of the potential virulence determinants (cad, ccf, cob, cpd, efaAfs, agg2, gelE, cylA, espfs) assayed while the E. faecium ones only harboured the efaAfm gene. All the tested strains were susceptible to tigecycline, linezolid and vancomycin, and produced tyramine. Their susceptibility to the rest of the antimicrobials and their ability to produce other biogenic amines varied depending on the strain. Enterococci strains isolated from porcine samples showed the widest spectrum of antibiotic resistance. Conclusions Enterococci isolated from milk of different mammals showed a great genetic diversity. The wide distribution of virulence genes and/or antibiotic resistance among the E. faecalis and E. faecium isolates indicates that they can constitute a reservoir of such traits and a risk to animal and human health. PMID:24325647
Santos, Barbara A; Oliveira, Jéssica S; Cardoso, Nayara T; Barbosa, André V; Superti, Silvana V; Teixeira, Lúcia M; Neves, Felipe P G
2017-11-01
Cancer and hematological malignancies constitute major comorbidities in enterococcal infections, but little is known about the characteristics of enterococci affecting cancer patients. The aim of this study was to characterize 132 enterococcal clinical isolates obtained from cancer patients attending a Cancer Reference Center in Brazil between April 2013 and March 2014. Susceptibility to 17 antimicrobial agents was assessed by disk diffusion method. Resistance and virulence genes were investigated by PCR. Multilocus sequence typing (MLST) was performed for selected Enterococcus faecalis and Enterococcus faecium isolates. The predominant species was E. faecalis (108 isolates), followed by E. faecium (18), Enterococcus gallinarum (3), Enterococcus avium (2) and Enterococcus durans (1). Multidrug-resistant (MDR) isolates made up 44.7%, but all isolates were susceptible to fosfomycin, linezolid and glycopeptides. The most prevalent genes associated with erythromycin- and tetracycline-non susceptible isolates were erm(B) (47/71; 66.2%) and tet(M) (24/68; 35.3%), respectively. High-level resistance (HLR) to gentamicin was found in 22 (16.7%) isolates and 13 (59.1%) of them carried the aac(6')-Ie-aph(2″)-Ia gene. HLR to streptomycin was detected in 34 (25.8%) isolates, of which 15 (44.1%) isolates had the ant(6')-Ia gene. The most common virulence genes were gelE (48.9%), esp (30.5%) and asa1 (29.8%). MLST performed for 26 E. faecalis isolates revealed 18 different sequence-types (STs), with seven corresponding to novel STs (625, 626, 627, 628, 629, 630, and 635). On the other hand, nine of 10 E. faecium isolates analyzed by MLST belonged to a single clonal complex, comprised of mostly ST412, which emerged worldwide after mid-2000s, but also two novel STs (963 and 964). We detected major globally disseminated E. faecalis and E. faecium clonal complexes along with novel closely related STs, indicating the fitness and continuous evolution of these hospital-adapted lineages. Copyright © 2017 Elsevier B.V. All rights reserved.
Vancomycin tolerance in enterococci.
Saribas, Suat; Bagdatli, Yasar
2004-11-01
Tolerance can be defined as the ability of bacteria to grow in the presence of high concentrations of bactericide antimicrobics, so that the killing action of the drug is avoided but the minimal inhibitory concentration (MIC) remains the same. We investigated vancomycin tolerance in the Enterococcus faecium and Enterococcus faecalis strains isolated from different clinical specimens. Vancomycin was obtained from Sigma Chemical Co. We studied 100 enterococci strains. Fifty-six and 44 of Enterococcus strains were idendified as E. feacalis and E. faecium, respectively. To determine MICs and minimal bactericidal concentration (MBC), we inoculated strains from an overnight agar culture to Muller-Hinton broth and incubated them for 4-6 h at 37 degrees C with shaking to obtain a logarithmic phase culture. The inoculum was controlled by performing a colony count for each test. We determined MBC values and MBC/MIC ratios to study tolerance to vancomycin. Vancomycin tolerance was defined as a high MBC value and an MBC/MIC ratio > or =32. Fifty-six and 44 of the Enterococcus strains were identified as E. faecium and E. faecalis, respectively. Thirty-one E. faecium and 48 E. faecalis were found to be susceptible to vancomycin and these susceptible strains were included in this study. The MICs of susceptible strains ranged from < or =1 to 4 mg/l, the MBCs were > or =512 mg/l. Tolerance was detected in all E. faecalis and E. faecium strains. The standard E. faecalis 21913 strain also exhibited tolerance according to the high MBC value and the MBC/MIC ratio. We defined the tolerant strains as having no bactericidal effect and MBC/MIC > or =32. We found that a 100% tolerance was present in susceptible strains. One of the hypotheses for tolerance is that tolerant cells fail to mobilize or create the autolysins needed for enlargement and division. Our data suggests that tolerance may compromise glycopeptide therapy of serious enterococci infections. To add an aminoglycoside to the glycopeptide therapy unless MBCs are unavailable can be useful in the effective treatment of serious Enterococcus infections.
Exploiting CRISPR-Cas to manipulate Enterococcus faecalis populations.
Hullahalli, Karthik; Rodrigues, Marinelle; Palmer, Kelli L
2017-06-23
CRISPR-Cas provides a barrier to horizontal gene transfer in prokaryotes. It was previously observed that functional CRISPR-Cas systems are absent from multidrug-resistant (MDR) Enterococcus faecalis , which only possess an orphan CRISPR locus, termed CRISPR2, lacking cas genes. Here, we investigate how the interplay between CRISPR-Cas genome defense and antibiotic selection for mobile genetic elements shapes in vitro E. faecalis populations. We demonstrate that CRISPR2 can be reactivated for genome defense in MDR strains. Interestingly, we observe that E. faecalis transiently maintains CRISPR targets despite active CRISPR-Cas systems. Subsequently, if selection for the CRISPR target is present, toxic CRISPR spacers are lost over time, while in the absence of selection, CRISPR targets are lost over time. We find that forced maintenance of CRISPR targets induces a fitness cost that can be exploited to alter heterogeneous E. faecalis populations.
Fitness costs of various mobile genetic elements in Enterococcus faecium and Enterococcus faecalis
Starikova, Irina; Al-Haroni, Mohammed; Werner, Guido; Roberts, Adam P.; Sørum, Vidar; Nielsen, Kaare M.; Johnsen, Pål J.
2013-01-01
Objectives To determine the fitness effects of various mobile genetic elements (MGEs) in Enterococcus faecium and Enterococcus faecalis when newly acquired. We also tested the hypothesis that the biological cost of vancomycin resistance plasmids could be mitigated during continuous growth in the laboratory. Methods Different MGEs, including two conjugative transposons (CTns) of the Tn916 family (18 and 33 kb), a pathogenicity island (PAI) of 200 kb and vancomycin-resistance (vanA) plasmids (80–200 kb) of various origins and classes, were transferred into common ancestral E. faecium and E. faecalis strains by conjugation assays and experimentally evolved (vanA plasmids only). Transconjugants were characterized by PFGE, S1 nuclease assays and Southern blotting hybridization analyses. Single specific primer PCR was performed to determine the target sites for the insertion of the CTns. The fitness costs of various MGEs in E. faecium and E. faecalis were estimated in head-to-head competition experiments, and evolved populations were generated in serial transfer assays. Results The biological cost of a newly acquired PAI and two CTns were both host- and insertion-locus-dependent. Newly acquired vanA plasmids may severely reduce host fitness (25%–27%), but these costs were rapidly mitigated after only 400 generations of continuous growth in the absence of antibiotic selection. Conclusions Newly acquired MGEs may impose an immediate biological cost in E. faecium. However, as demonstrated for vanA plasmids, the initial costs of MGE carriage may be mitigated during growth and beneficial plasmid–host association can rapidly emerge. PMID:23833178
Getachew, Y; Hassan, L; Zakaria, Z; Zaid, C Z M; Yardi, A; Shukor, R A; Marawin, L T; Embong, F; Aziz, S A
2012-11-01
This study determined the risk factors and characteristics of vancomycin-resistant Enterococci (VRE) among individuals working with animals in Malaysia. Targeted cross-sectional studies accompanied with laboratory analysis for the identification and characterization of resistance and virulence genes and with genotype of VRE were performed. VRE were detected in 9·4% (95% CI: 6·46-13·12) of the sampled populations. Enterococcus faecium, Enterococcus faecalis and Enterococcus gallinarum were isolated, and vanA was detected in 70% of the isolates. Enterococcus faecalis with vanB was obtained from one foreign poultry worker. At least one virulence gene was detected in >50% of Ent. faecium and Ent. faecalis isolates. The esp and gelE genes were common among Ent. faecium (58·3%) and Ent. faecalis (78%), respectively. The VRE species showed diverse RAPD profiles with some clustering of strains based on the individual's background. However, the risk factors found to be significantly associated with the prevalence of VRE were age (OR: 5·39, 95% CI: 1·98-14·61) and previous hospitalization (OR: 4·06, 95% CI: 1·33-12·35). VRE species isolated from individuals in this study have high level of vancomycin resistance, were genetically diverse and possessed the virulence traits. Age of individuals and history of hospitalization rather than occupational background determined VRE colonization. This study provides comprehensive findings on the epidemiological and molecular features of VRE among healthy individuals working with animals. © 2012 The Authors Journal of Applied Microbiology © 2012 The Society for Applied Microbiology.
Sharma, Deepak; Grover, Rohit; Pinnameneni, Prasanth Sai; Dey, Subhra; Raju, P Ramakrishnam
2014-01-01
Background: To evaluate and compare in vitro the antibacterial efficacy of five antibiotics when added individually to five endodontic sealers against Enterococcus faecalis (EF). Materials & Methods: This controlled trial with systematic allocation method was carried out to detect the combined antibacterial activity of five endodontic sealers (Kerr sealer EWT, Endomethasone, AH26, AH Plus, Roekoseal) with five antibiotics regularly used (Amoxicillin, metronidazole, azithromyacin, gatifloxacin, doxycycline) on EF. For each sealerantibiotic combinations, thirty BHI agar plates (15 aerobic and 15 anaerobic) were inoculated with EF, containing five sterile paper discs- three of various sealer- antibiotic combinations, one of sealer alone (positive control) & plain disc as negative control were incubated at 370C for 48 hrs and the zone of inhibition was measured. Data analysis was done by ANOVA and Tukey’s post- hoc test using SPSS( version 17). Results: The findings of this study revealed that sealer-antibiotic combination containing amoxicillin had the significant difference (p<0.001) in the mean zone of inhibition compared to other combinations. Metronidazole showed the minimum zone of inhibition among used antibiotics. The sealers in the decreasing order according to their effectiveness on EF were Kerr sealer endomethasone, AH26, Rockseal, AH plus. Conclusion: Addition of antibiotics to endodontic sealers enhances their antibacterial activity against Enterococcus faecalis. How to cite the article: Sharma D, Grover R, Pinnameneni PS, Dey S, Raju PR. Evaluation of efficacy of combinations of five endodontic sealers with five antibiotics against Enterococcus Faecalis – An in-vitro study. J Int Oral Health 2014;6(2):90-5. PMID:24876708
Misba, Lama; Zaidi, Sahar; Khan, Asad U
2017-06-01
Antimicrobial photodynamic therapy (APDT) is a process that generates reactive oxygen species (ROS) in presence of photosensitizer, visible light and oxygen which destroys the bacterial cells. We investigated the photoinactivation efficiency of phenothiazinium dyes and the effect of ROS generation on Gram positive and Gram negative bacterial cell as well as on biofilm. Enterococcus faecalis and Klebsiella pneumonia were incubated with all the three phenothiazinium dyes and exposed to 630nm of light. After PDT, colony forming unit (CFU) were performed to estimate the cell survival fraction. Intracellular reactive oxygen species (ROS) was detected by DCFH-DA. Crystal violet (CV) assay and extracellular polysaccharides (EPS) reduction assay were performed to analyze antibiofilm effect. Confocal laser electron microscope (CLSM) scanning electron microscope (SEM) was performed to assess the disruption of biofilm. 8log 10 reduction in bacterial count was observed in Enterococcus faecalis while 3log 10 in Klebsiella pneumoniae. CV and EPS reduction assay revealed that photodynamic inhibition was more pronounced in Enterococcus faecalis. In addition to this CLSM and SEM study showed an increase in cell permeability of propidium iodide and leakage of cellular constituents in treated preformed biofilm which reflects the antibiofilm action of photodynamic therapy. We conclude that Gram-positive bacteria (Enterococcus faecalis) are more susceptible to APDT due to increased level of ROS generation inside the cell, higher photosensitizer binding efficiency and DNA degradation. Phenothiazinium dyes are proved to be highly efficient against both planktonic and biofilm state of cells. Copyright © 2017 Elsevier B.V. All rights reserved.
Bender, Eduardo André; de Freitas, Ana Lúcia Peixoto; Reiter, Keli Cristine; Lutz, Larissa; Barth, Afonso Luís
2009-01-01
In the past two decades the members of the genus Enterococcus have emerged as important nosocomial pathogens worldwide. In the present study, we evaluated the antimicrobial resistance and genotypic characteristics of 203 Enterococcus spp. recovered from different clinical sources from two hospitals in Porto Alegre, Rio Grande do Sul, Brazil. The species were identified by conventional biochemical tests and by an automated system. The genetic diversity of E. faecalis presenting high-level aminoglycoside resistance (HLAR) was assessed by pulsed-field gel electrophoresis of chromosomal DNA after SmaI digestion. The E. faecalis was the most frequent specie (93.6%), followed by E. faecium (4.4%). The antimicrobial resistance profile was: 2.5% to ampicillin, 0.5% to vancomycin, 0.5% teicoplanin, 33% to chloramphenicol, 2% to nitrofurantoin, 66.1% to erythromycin, 66.5% to tetracycline, 24.6% to rifampicin, 30% to ciprofloxacin and 87.2% to quinupristin-dalfopristin. A total of 10.3% of the isolates proved to be HLAR to both gentamicin and streptomycin (HLR-ST/GE), with 23.6% resistant only to gentamicin (HLR-GE) and 37.4% only to streptomycin (HLR-ST). One predominant clonal group was found among E. faecalis HLR-GE/ST. The prevalence of resistance among beta-lactam antibiotics and glycopeptides was very low. However, in this study there was an increased number of HLR Enterococcus which may be spreading intra and inter-hospital. PMID:24031416
Root Canal Irrigation: Chemical Agents and Plant Extracts Against Enterococcus faecalis
Borzini, Letizia; Condò, Roberta; De Dominicis, Paolo; Casaglia, Adriano; Cerroni, Loredana
2016-01-01
Background: There are various microorganisms related to intra and extra-radicular infections and many of these are involved in persistent infections. Bacterial elimination from the root canal is achieved by means of the mechanical action of instruments and irrigation as well as the antibacterial effects of the irrigating solutions. Enterococcus faecalis can frequently be isolated from root canals in cases of failed root canal treatments. Antimicrobial agents have often been developed and optimized for their activity against endodontic bacteria. An ideal root canal irrigant should be biocompatible, because of its close contact with the periodontal tissues during endodontic treatment. Sodium hypoclorite (NaOCl) is one of the most widely recommended and used endodontic irrigants but it is highly toxic to periapical tissues. Objectives: To analyze the literature on the chemotherapeutic agent and plant extracts studied as root canal irrigants. In particularly, the study is focused on their effect on Enterococcus faecalis. Method: Literature search was performed electronically in PubMed (PubMed Central, MEDLINE) for articles published in English from 1982 to April 2015. The searched keywords were “endodontic irrigants” and “Enterococcus faecalis” and “essential oil” and “plant extracts”. Results: Many of the studied chemotherapeutic agents and plant extracts have shown promising results in vitro. Conclusion: Some of the considered phytotherapic substances, could be a potential alternative to NaOCl for the biomechanical treatment of the endodontic space. PMID:28217184
Soares, Janir Alves; Soares, Suelleng Maria Cunha Santos; de Jesus Tavarez, Rudys Rodolfo; de Castro Rizzi, Claudia; Vaz Rodrigues, Silvana Cristina Gama; Maia Filho, Etevaldo Matos; Brito-Júnior, Manoel; Pereira, Rodrigo Dantas; Magalhães, Paula Prazeres; de Macêdo Farias, Luiz
2018-06-01
The failure of endodontic treatment is linked to the presence of Enterococcus faecalis in the root canals. The scope of this study was to evaluate the influence of the energy dose and frequency of photodynamic therapy (PDT cycles), as well as the volume of bacterial suspensions (BS) in the elimination of Enterococcus faecalis in planktonic form. In four successive assays BS of Enterococcus faecalis ATCC 19433 were irradiated with a diode laser (40 mW) using the photosensitizer (PS) methylene blue (MB) (0.005 μg/mL). Group 1 - Effect of energy dose: 100 μ L of BS and 100 μ L of PS were irradiated by 1, 2.5, 5, 7.5 and 10 minute s. Group 2 - Effect of PDT cycles: The BS received 1, 2, 3 or 4 PDT cycles (in each cycle 100 m L of PS was added and irradiated by 2.5 minutes). Group 3 - Effect of energy dose and bacterial suspension volume: 10 μ L of BS and 10 μ L of PS were irradiated similar to group 1. Group 4 - Effect of energy dose, bacterial suspension volume and PDT cycles: 10 μ L of BS and 10 μL of PS were irradiated according to group 2. The laser source and MB isolated represented the controls. The mean log reduction after separate applying laser light and MB were 0.01 and 0.07, respectively. It was found that wells with 100 μ L of BS irradiated with 2.4 to 24 J of energy did not cause significant bacterial elimination (p > 0.05), on the other hand PDT cycles above 12 J increased significantly bacterial elimination (p < 0.05). In 10 μ L wells irradiation from 12 J of energy provided higher bacterial elimination (p < 0.05) which combined with PDT cycle resulted in the logarithmic elimination of E. faecalis (p < 0.05). The energy dose, the volume of the bacterial suspension and, especially, the PDT cycles optimized the bacterial elimination of Enterococcus faecalis in planktonic form. Copyright © 2018 Elsevier B.V. All rights reserved.
2011-01-01
Background Enterococcus faecalis and Enterococcus faecium are associated with faecal pollution of water, linked to swimmer-associated gastroenteritis and demonstrate a wide range of antibiotic resistance. The Coomera River is a main water source for the Pimpama-Coomera watershed and is located in South East Queensland, Australia, which is used intensively for agriculture and recreational purposes. This study investigated the diversity of E. faecalis and E. faecium using Single Nucleotide Polymorphisms (SNPs) and associated antibiotic resistance profiles. Results Total enterococcal counts (cfu/ml) for three/six sampling sites were above the United States Environmental Protection Agency (USEPA) recommended level during rainfall periods and fall into categories B and C of the Australian National Health and Medical Research Council (NHMRC) guidelines (with a 1-10% gastrointestinal illness risk). E. faecalis and E. faecium isolates were grouped into 29 and 23 SNP profiles (validated by MLST analysis) respectively. This study showed the high diversity of E. faecalis and E. faecium over a period of two years and both human-related and human-specific SNP profiles were identified. 81.8% of E. faecalis and 70.21% of E. faecium SNP profiles were associated with genotypic and phenotypic antibiotic resistance. Gentamicin resistance was higher in E. faecalis (47% resistant) and harboured the aac(6')-aph(2') gene. Ciprofloxacin resistance was more common in E. faecium (12.7% resistant) and gyrA gene mutations were detected in these isolates. Tetracycline resistance was less common in both species while tet(L) and tet(M) genes were more prevalent. Ampicillin resistance was only found in E. faecium isolates with mutations in the pbp5 gene. Vancomycin resistance was not detected in any of the isolates. We found that antibiotic resistance profiles further sub-divided the SNP profiles of both E. faecalis and E. faecium. Conclusions The distribution of E. faecalis and E. faecium genotypes is highly diverse in the Coomera River. The SNP genotyping method is rapid and robust and can be applied to study the diversity of E. faecalis and E. faecium in waterways. It can also be used to test for human-related and human-specific enterococci in water. The resolving power can be increased by including antibiotic-resistant profiles which can be used as a possible source tracking tool. This warrants further investigation. PMID:21910889
Analysis of etiology and drug resistance of biliary infections.
Wang, Xin; Li, Qiu; Zou, Shengquan; Sun, Ziyong; Zhu, Feng
2004-01-01
The bile was collected from fro patients with biliary infections, with the bacterium isolated to study the sensitivity of each kind of the bacterium to several antibiotics in common use. Except G- bacterium, we also found some kinds of G+ bacterium in infection bile. G- bacterium were not sensitive to Clindamycin, G+ bacterium were sensitive to Ciprofloxacin. Escherichia coli, Xanthomonas maltophilia, Enterobacter cloacae, Pseudomonas aeruginosa were sensitive to Ampicillin. G+ bacterium were not sensitive to Azactam. Enterococcus faecalis, Enterococcus faecium, Enterobacter cloacae were not sensitive to Ceftazidime. Enterococcus faecalis, Staphylococcus coagulase negative, Staphylococcus epidermidis, Pseudomonas aeruginosa were not sensitive to Ceftriaxone Sodium. We didn't found any bacterium resistance Imipenem. The possibility of the existence of G+ bacterium as well as drug resistance should be considered n patients with biliary infections. The value of susceptibility test should be respected to avoid drug abuse of antibiotics.
Sadeghifard, Nourkhoda; Soheili, Sara; Sekawi, Zamberi; Ghafourian, Sobhan
2014-01-01
The current study was conducted to investigate the relationship between vancomycin-resistant Enterococcus faecalis (VRE) and the presence of mazEF toxin-antitoxin (TA) system, which may be useful as target for novel antimicrobial therapy concepts. The susceptibility of E. faecalis was determined by MIC, and the presence of the mazEF TA system was evaluated by PCR. Among 200 E. faecalis isolates 39.5% showed resistance to vancomycin (VRE), while 60.5% were susceptible strains (VSE). The mazEF TA system was positive in all VRE isolates (100%), but less prevalent (38/121, 31.4%) among the 121 VSE strains. In conclusion, our study demonstrated a positive relationship between the presence of vancomycin resistance and mazEF TA system. This observation may introduce therapeutic options against a novel antimicrobial target in enterococci.
Halkai, Rahul S; Hegde, Mithra N; Halkai, Kiran R
2016-01-01
To ascertain the role of Enterococcus faecalis in persistent infection and a possible method to prevent the penetration of E. faecalis into root cementum. One hundred and twenty human single-rooted extracted teeth divided into five groups. Group I (control): intact teeth, Group II: no apical treatment done, Group III divided into two subgroups. In Groups IIIa and IIIb, root apex treated with lactic acid of acidic and neutral pH, respectively. Group IV: apical root cementum exposed to lactic acid and roughened to mimic the apical resorption. Group V: apical treatment done same as Group IV and root-end filling done using mineral trioxide aggregate (MTA). Apical one-third of all samples immersed in E. faecalis broth for 8 weeks followed by bone morphogenetic protein and obturation and again immersed into broth for 8 weeks. Teeth split into two halves and observed under confocal laser scanning microscope and scanning electron microscope, organism identified by culture and polymerase chain reaction techniques. Adhesion and penetration was observed in Group IIIa and Group IV. Only adhesion in Group II and IIIB and no adhesion and penetration in Group I and V. Adhesion and penetration of E. faecalis into root cementum providing a long-term nidus for subsequent infection are the possible reason for persistent infection and root-end filling with MTA prevents the adhesion and penetration.
Stępień-Pyśniak, Dagmara; Hauschild, Tomasz; Różański, Paweł; Marek, Agnieszka
2017-06-28
The aim of this study was to explore the accuracy and feasibility of matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) in identifying bacteria from environmental sources, as compared with rpoA gene sequencing, and to evaluate the occurrence of bacteria of the genus Enterococcus in wild birds. In addition, a phyloproteomic analysis of certain Enterococcus species with spectral relationships was performed. The enterococci were isolated from 25 species of wild birds in central Europe (Poland). Proteomic (MALDI-TOF MS) and genomic ( rpoA gene sequencing) methods were used to identify all the isolates. Using MALDI-TOF MS, all 54 (100%) isolates were identified as Enterococcus spp. Among these, 51 (94.4%) isolates were identified to the species level (log(score) > or =2.0), and three isolates (5.6%) were identified at a level of probable genus identification (log(score) 1.88-1.927). Phylogenetic analysis based on rpoA sequences confirmed that all enterococci had been correctly identified. Enterococcus faecalis was the most prevalent enterococcal species (50%) and Enterococcus faecium (33.3%) the second most frequent species, followed by Enterococcus hirae (9.3%), Enterococcus durans (3.7%), and Enterococcus casseliflavus (3.7%). The phyloproteomic analysis of the spectral profiles of the isolates showed that MALDI-TOF MS is able to differentiate among similar species of the genus Enterococcus .
Norimura, Daisuke; Takeshima, Fuminao; Satou, Yoshiaki; Nakagoe, Tohru; Ohnita, Ken; Isomoto, Hajime; Nakao, Kazuhiko
2014-06-01
A 72-year-old woman with diabetes mellitus was admitted with fever and general fatigue. Blood biochemistry showed elevated hepatic and biliary enzyme levels, abdominal computed tomography showed multiple liver abscesses with portal and superior mesenteric vein thrombosis, and total colonoscopy revealed a submucosal bacterial abscess in the ascending colon. The abscesses were determined to be associated with Enterococcus faecalis infection. The patient was treated conservatively with antibiotics (meropenem) and anticoagulants (warfarin), which led to a gradual amelioration of symptoms and resolution of thrombosis.
Emirian, Aurélie; Fromentin, Sophie; Eckert, Catherine; Chau, Françoise; Dubost, Lionel; Delepierre, Muriel; Gutmann, Laurent; Arthur, Michel; Mesnage, Stéphane
2009-09-17
Autolysins are potentially lethal enzymes that partially hydrolyze peptidoglycan for incorporation of new precursors and septum cleavage after cell division. Here, we explored the impact of peptidoglycan O-acetylation on the enzymatic activities of Enterococcus faecalis major autolysins, the N-acetylglucosaminidase AtlA and the N-acetylmuramidase AtlB. We constructed isogenic strains with various O-acetylation levels and used them as substrates to assay E. faecalis autolysin activities. Peptidoglycan O-acetylation had a marginal inhibitory impact on the activities of these enzymes. In contrast, removal of cell wall glycopolymers increased the AtlB activity (37-fold), suggesting that these polymers negatively control the activity of this enzyme.
Ngbede, Emmanuel Ochefije; Raji, Mashood Abiola; Kwanashie, Clara Nna; Kwaga, Jacob Kwada Paghi
2017-03-01
This study investigated the occurrence, antimicrobial resistance and virulence of Enterococcus from poultry and cattle farms. Three hundred and ninety samples: cloacal/rectal swabs (n = 260) and manure (n = 130] were processed for recovery of Enterococcus species. Standard bacteriological methods were used to isolate, identify and characterize Enterococcus species for antimicrobial susceptibility and expression of virulence traits. Detection of antibiotic resistance and virulence genes was carried out by polymerase chain reaction. Enterococcus was recovered from 167 (42.8%) of the 390 samples tested with a predominance of Enterococcus faecium (27.7%). Other species detected were Enterococcus gallinarum, Enterococcus faecalis, Enterococcus hirae, Enterococcus raffinosus, Enterococcus avium, Enterococcus casseliflavus, Enterococcus mundtii and Enterococcus durans. All the isolates tested were susceptible to vancomycin, but resistance to tetracycline, erythromycin, ampicillin and gentamicin was also observed among 61.0, 61.0, 45.1 and 32.7% of the isolates, respectively. Sixty (53.1%) of the isolates were multidrug resistant presenting as 24 different resistance patterns with resistance to gentamicin-erythromycin-streptomycin-tetracycline (CN-ERY-STR-TET) being the most common (n = 11) pattern. In addition to expression of virulence traits (haemolysin, gelatinase, biofilm production), antibiotic resistance (tetK, tetL, tetM, tetO and ermB) and virulence (asa1, gelE, cylA) genes were detected among the isolates. Also, in vitro transfer of resistance determinants was observed among 75% of the isolates tested. Our data revealed poultry, cattle and manure in this area are hosts to varying Enterococcus species harbouring virulence and resistance determinants that can be transferred to other organisms and also are important for causing nosocomial infection.
Ling, Junqi; Mao, Xueli; Ning, Yang; Deng, Dongmei
2014-01-01
Exposure to antibiotics is considered to be the major driver in the selection of antibiotic-resistant bacteria and may induce diverse biological responses in bacteria. MTAD is a common intracanal irrigant, but its bactericidal activity remains to be improved. Previous studies have indicated that the antimicrobial peptide nisin can significantly improve the bactericidal activity of MTAD against Enterococcus faecalis. However, the effects of MTAD and its modification at sub-minimum inhibitory concentration (sub-MIC) levels on Enterococcus faecalis growth and the expression of pathogenic genes still need to be explored. In this study, the results of post-antibiotic effects (PAE) and post-antibiotic sub-MIC effects (PASME) showed that MTADN (nisin in combination with MTAD) had the best post-antibiotic effect. E. faecalis after challenge with MTAD was less sensitive to alkaline solutions compared with MTAN (nisin in place of doxycycline in MTAD) and MTADN. E. faecalis induced with sub-MIC of MTAD generated resistance to the higher concentration, but induction of E. faecalis with MTAN did not cause resistance to higher concentrations. Furthermore, real-time polymerase chain reaction (RT-PCR) showed that the stress caused by sub-MIC exposure to MTAD, MTAN, or MTADN resulted in up- or down-regulation of nine stress genes and four virulence-associated genes in E. faecalis and resulted in different stress states. These findings suggested that nisin improved the post-antibacterial effect of MTAD at sub-MIC levels and has considerable potential for use as a modification of MTAD. PMID:24603760
Evidence for Horizontal Gene Transfer in Evolution of Elongation Factor Tu in Enterococci
Ke, Danbing; Boissinot, Maurice; Huletsky, Ann; Picard, François J.; Frenette, Johanne; Ouellette, Marc; Roy, Paul H.; Bergeron, Michel G.
2000-01-01
The elongation factor Tu, encoded by tuf genes, is a GTP binding protein that plays a central role in protein synthesis. One to three tuf genes per genome are present, depending on the bacterial species. Most low-G+C-content gram-positive bacteria carry only one tuf gene. We have designed degenerate PCR primers derived from consensus sequences of the tuf gene to amplify partial tuf sequences from 17 enterococcal species and other phylogenetically related species. The amplified DNA fragments were sequenced either by direct sequencing or by sequencing cloned inserts containing putative amplicons. Two different tuf genes (tufA and tufB) were found in 11 enterococcal species, including Enterococcus avium, Enterococcus casseliflavus, Enterococcus dispar, Enterococcus durans, Enterococcus faecium, Enterococcus gallinarum, Enterococcus hirae, Enterococcus malodoratus, Enterococcus mundtii, Enterococcus pseudoavium, and Enterococcus raffinosus. For the other six enterococcal species (Enterococcus cecorum, Enterococcus columbae, Enterococcus faecalis, Enterococcus sulfureus, Enterococcus saccharolyticus, and Enterococcus solitarius), only the tufA gene was present. Based on 16S rRNA gene sequence analysis, the 11 species having two tuf genes all have a common ancestor, while the six species having only one copy diverged from the enterococcal lineage before that common ancestor. The presence of one or two copies of the tuf gene in enterococci was confirmed by Southern hybridization. Phylogenetic analysis of tuf sequences demonstrated that the enterococcal tufA gene branches with the Bacillus, Listeria, and Staphylococcus genera, while the enterococcal tufB gene clusters with the genera Streptococcus and Lactococcus. Primary structure analysis showed that four amino acid residues encoded within the sequenced regions are conserved and unique to the enterococcal tufB genes and the tuf genes of streptococci and Lactococcus lactis. The data suggest that an ancestral streptococcus or a streptococcus-related species may have horizontally transferred a tuf gene to the common ancestor of the 11 enterococcal species which now carry two tuf genes. PMID:11092850
Hugar, Shivayogi; Nagmoti, Jyoti; Uppin, Chaitanya; Mistry, Laresh; Dhariwal, Neha
2017-01-01
Aim To comparatively evaluate the efficacy of disinfecting ability of garlic oil, neem oil, clove oil, and tulsi oil with autoclaving on endodontic K files tested against Enterococcus faecalis. Materials and methods Fifty endodontic K files were exposed to the test micro-organism and checked for its disinfecting ability using three different methods. Result Garlic oil, clove oil, tulsi oil and autoclave showed considerable effectiveness against E. faecalis except neem oil. Conclusion Garlic oil, clove oil and tulsi oil are an effective disinfectant and can be used as an alternative to autoclaving against the test micro-organism. Clinical Significance Herbs and herbal extracts are a natural and harmless way of controlling infection. These products are readily available and comparable to gold standard, thus can have its applications in rural India. How to cite this article Hugar S, Patel PM, Nagmoti J, Uppin C, Mistry L, Dhariwal N. An in vitro Comparative Evaluation of Efficacy of Disinfecting Ability of Garlic Oil, Neem Oil, Clove Oil, and Tulsi Oil with autoclaving on Endodontic K Files tested against Enterococcus faecalis. Int J Clin Pediatr Dent 2017;10(3):283-288. PMID:29104390
Acharya, A; Khanal, A; Kanungo, R; Mohapatra, T
2007-12-01
Life threatening infections caused by enterococcus species with multidrug resistance has emerged as a threat to medical care in the present era. This study was conducted to characterize enterococcus species isolated from different clinical samples and to detect the pattern of susceptibility to some of the commonly used antibiotics in B.P Koirala Institute of Health Sciences (BPKIHS), a tertiary care hospital in eastern Nepal. Clinical samples submitted to the microbiology unit of Central Laboratory Service (CLS) for culture and sensitivity during March 2002 - February 2003 was analyzed. Enterococcus species were identified by colony characteristics, gram staining and relevant biochemical tests. Antibiotic susceptibility test was done by the Kirby Bauer disc diffusion technique. Of 50 Enterococcus species isolated, E. faecalis was the predominant isolate (48.0%) followed by E. faecium (32.0%) and E. avium (20.0%). Eighty-eight percent of E. faecalis showed sensitivity to cephotaxime and 87.0% to vancomycin. Multiple drug resistance was observed most commonly in E. faecium. Seventeen percent of E. faecium were resistant to vancomycin and 63.0% to ciprofloxacin and 44.0% to ampicillin. On the contrary E. avium rarely showed resistance to the antimicrobials tested including vancomycin. Enterococcal infections are common nowadays specially in hospitalized patients. Inappropriate use of antibiotics in clinical practice and poultry should be discouraged to prevent the emergence of multidrug resistant species.
Fan, Wei; Huang, Zhuo; Fan, Bing
2018-02-01
Static magnetic field (SMF) has been shown to biologically affect various microorganisms, but its effects on Enterococcus faecalis, which is associated with multiple dental infections, have not been reported yet. Besides, Enterococcus faecalis was found to be resistant to the alkaline environment provided by a major dental antimicrobial, calcium hydroxide. Therefore, the antibacterial activity of prolonged exposure to moderate SMF (170 mT) and its possible synergistic activity with alkaline pH (pH = 9) were evaluated in the study. The ability to form a biofilm under these conditions was examined by crystal violet assay. Real-time quantitative PCR was performed to evaluate the relative expression of stress (dnaK and groEL) and virulence (efaA, ace, gelE and fsrC) related genes. As the results indicated, cell proliferation was inhibited after 120 h of SMF exposure. What's more, the combined treatment of SMF and alkaline pH showed significantly improved antimicrobial action when compared to single SMF and alkaline pH treatment for more than 24 h and 72 h respectively. However, the ability to form a biofilm was also enhanced under SMF and alkaline pH treatments. SMF can induce stress response by up-regulating the expression of dnaK and elevate virulence gene expression (efaA and ace). These responses were more significant and more genes were up-regulated including groEL, gelE and fsrC when exposed to SMF and alkaline pH simultaneously. Hence, combination of SMF and alkaline pH could be a promising disinfection strategy in dental area and other areas associated with Enterococcus faecalis infections. Copyright © 2017 Elsevier Ltd. All rights reserved.
Jahansepas, Ali; Ahangarzadeh Rezaee, Mohammad; Hasani, Alka; Sharifi, Yaeghob; Rahnamaye Farzami, Marjan; Dolatyar, Alireza; Aghazadeh, Mohammad
2018-04-30
This study was conducted to investigate the phenotypic and genotypic characteristics of vancomycin-resistant Enterococcus faecalis and Enterococcus faecium. Antibiotic resistance and virulence genes in the aforementioned resistant isolates were studied using the epsilometer (E)-test and polymerase chain reaction (PCR). These isolates were subjected to typing by pulsed-field gel electrophoresis (PFGE). Thirty vancomycin-resistant enterococci (VRE; 18.75%) were isolated from a total of 160 various clinical specimens cultured for any bacterial growth. Of these, 11 (36.7%) isolates were identified as E. faecalis and 19 (63.3%) as E. faecium. Minimum inhibitory concentrations (MICs) of vancomycin, teicoplanin, and three alternative therapeutic options (linezolid, daptomycin, and quinupristin/dalfopristin) were determined using the E-test. Multiplex PCR was done for confirming species, identification of the resistant genotypes, and the detection of the virulence genes. Finally, the clonal relationship of all VRE strains was studied by PFGE. All VRE strains showed vancomycin MIC ≥256 μg/mL, and 27 (90%) isolates carried the vanA gene, whereas none of the isolates carried vanB. The most common resistance antibiotic pattern observed was toward rifampicin (n = 30 [100%]). Among all virulence genes studied, gelE (n = 28 [93.33%]) was found as the most prevalent virulent gene. VRE isolates exhibited 90%, 46.67%, 100%, and 66.67% resistance to teicoplanin, linezolid, quinupristin/dalfopristin, and daptomycin, respectively. Molecular typing demonstrated 16 PFGE types of VRE isolates (A-P). Although vanA was carried by most of the isolates, PFGE displayed small clonal dissemination among VR E. faecium and VR E. faecalis species.
Nagayoshi, Masato; Nishihara, Tatsuji; Nakashima, Keisuke; Iwaki, Shigetsugu; Chen, Ker-Kong; Terashita, Masamichi; Kitamura, Chiaki
2011-01-01
Objective. Photodynamic therapy has been expanded for use in endodontic treatment. The aim of this study was to investigate the antimicrobial effects of diode laser irradiation on endodontic pathogens in periapical lesions using an in vitro apical lesion model. Study Design. Enterococcus faecalis in 0.5% semisolid agar with a photosensitizer was injected into apical lesion area of in vitro apical lesion model. The direct effects of irradiation with a diode laser as well as heat produced by irradiation on the viability of microorganisms in the lesions were analyzed. Results. The viability of E. faecalis was significantly reduced by the combination of a photosensitizer and laser irradiation. The temperature caused by irradiation rose, however, there were no cytotoxic effects of heat on the viability of E. faecalis. Conclusion. Our results suggest that utilization of a diode laser in combination with a photosensitizer may be useful for clinical treatment of periapical lesions. PMID:21991489
Sadeghifard, Nourkhoda; Soheili, Sara; Sekawi, Zamberi; Ghafourian, Sobhan
2014-01-01
The current study was conducted to investigate the relationship between vancomycin-resistant Enterococcus faecalis (VRE) and the presence of mazEF toxin-antitoxin (TA) system, which may be useful as target for novel antimicrobial therapy concepts. The susceptibility of E. faecalis was determined by MIC, and the presence of the mazEF TA system was evaluated by PCR. Among 200 E. faecalis isolates 39.5% showed resistance to vancomycin (VRE), while 60.5% were susceptible strains (VSE). The mazEF TA system was positive in all VRE isolates (100%), but less prevalent (38/121, 31.4%) among the 121 VSE strains. In conclusion, our study demonstrated a positive relationship between the presence of vancomycin resistance and mazEF TA system. This observation may introduce therapeutic options against a novel antimicrobial target in enterococci. PMID:24653969
Marrow, Judilee; Whittington, Julia K; Mitchell, Mark; Hoyer, Lois L; Maddox, Carol
2009-04-01
Due to their predatory nature, raptor species may serve as important indicators of environmental contamination with antimicrobial-resistant bacteria. Raptors prey on small rodents and birds that have diverse habitat ranges, including urban and rural environments, and their intestinal microflora can reflect that of the animals on which they feed. Enterococcus spp. were selected as target organisms because they have been isolated from the avian gastrointestinal tract, can be conferred by prey items, and because they are capable of multiple resistance patterns. They are also a concerning source of human antimicrobial resistance. In this study fecal cultures were obtained from 15 May 2004 to 31 August 2004, from 21 free-living raptors and four captive raptors. Enterococcus was isolated from 21 (84%) of the 25 birds, and 54 isolates were chosen for further study based upon unique colony morphology. The most common isolate recovered was Enterococcus faecalis (95%, 95% confidence interval [CI]: 89-100). One bird in the study was determined to have Enterococcus gallinarum. Two distinct ribotypes of E. faecalis were identified, one with unique bands at 11 and 13 kb and the other with unique bands at 14 and 20 kb. Both ribotypes were found in free-living and captive birds. The Enterococcus isolates in this study demonstrated a variety of antimicrobial-resistance characteristics, including almost complete resistance to amikacin, first-generation cephalosporins, spectinomycin, and sulphadimethoxime. Isolates demonstrated variable resistance to chloramphenicol, gentamicin, enrofloxacin, erythromycin, and ticarcillin. No phenotypically vancomycin-resistant E. faecalis isolates were recovered from any of the raptors; three isolates had intermediate level susceptibility. A significantly higher number of isolates collected from captive birds demonstrated resistance to chloramphenicol than those obtained from free-living birds. This trend was not duplicated with any of the remaining 18 antimicrobial drugs tested. The results of this study suggest that raptors in central Illinois are coming into contact with antimicrobials, prey exposed to antimicrobials, or bacteria that are capable of transferring resistance genes. Further study is needed to determine the source of antimicrobial-resistant Enterococcus in free-living raptors but the limited data reflecting few differences between birds with and without antimicrobial exposure suggests that treatment and release of treated wild raptors is not contributing significantly to antimicrobial resistance in the environment.
Kellogg, Stephanie L; Little, Jaime L; Hoff, Jessica S; Kristich, Christopher J
2017-05-01
Enterococci are serious opportunistic pathogens that are resistant to many cell wall-targeting antibiotics. The CroRS two-component signaling system responds to antibiotic-mediated cell wall stress and is critical for resistance to cell wall-targeting antibiotics in Enterococcus faecalis Here, we identify and characterize an orthologous two-component system found in Enterococcus faecium that is functionally equivalent to the CroRS system of E. faecalis Deletion of croRS in E. faecium resulted in marked susceptibility to cell wall-targeting agents including cephalosporins and bacitracin, as well as moderate susceptibility to ampicillin and vancomycin. As in E. faecalis , exposure to bacitracin and vancomycin stimulates signaling through the CroRS system in E. faecium Moreover, the CroRS system is critical in E. faecium for enhanced beta-lactam resistance mediated by overexpression of Pbp5. Expression of a Pbp5 variant that confers enhanced beta-lactam resistance cannot overcome the requirement for CroRS function. Thus, the CroRS system is a conserved signaling system that responds to cell wall stress to promote intrinsic resistance to important cell wall-targeting antibiotics in clinically relevant enterococci. Copyright © 2017 American Society for Microbiology.
Kellogg, Stephanie L.; Little, Jaime L.; Hoff, Jessica S.
2017-01-01
ABSTRACT Enterococci are serious opportunistic pathogens that are resistant to many cell wall-targeting antibiotics. The CroRS two-component signaling system responds to antibiotic-mediated cell wall stress and is critical for resistance to cell wall-targeting antibiotics in Enterococcus faecalis. Here, we identify and characterize an orthologous two-component system found in Enterococcus faecium that is functionally equivalent to the CroRS system of E. faecalis. Deletion of croRS in E. faecium resulted in marked susceptibility to cell wall-targeting agents including cephalosporins and bacitracin, as well as moderate susceptibility to ampicillin and vancomycin. As in E. faecalis, exposure to bacitracin and vancomycin stimulates signaling through the CroRS system in E. faecium. Moreover, the CroRS system is critical in E. faecium for enhanced beta-lactam resistance mediated by overexpression of Pbp5. Expression of a Pbp5 variant that confers enhanced beta-lactam resistance cannot overcome the requirement for CroRS function. Thus, the CroRS system is a conserved signaling system that responds to cell wall stress to promote intrinsic resistance to important cell wall-targeting antibiotics in clinically relevant enterococci. PMID:28223383
Biscola, V; Choiset, Y; Rabesona, H; Chobert, J-M; Haertlé, T; Franco, B D G M
2018-04-13
The objective was to obtain lactic acid bacteria (LAB) capable of hydrolysing immunoreactive proteins in milk, to optimize the hydrolysis, to determine the proteolysis kinetics and to test the safety of the best hydrolytic strain. Brazilian cheese was used as source of LAB capable of hydrolysing main milk allergens. Proteolytic isolates were submitted to RAPD-PCR for the characterization of clonal diversity. Optimized hydrolysis was strain and protein fraction dependent. 16S rDNA sequencing identified three proteolytic strains: Enterococcus faecalis VB43, that hydrolysed α S1 -, α S2 - and β-caseins, α-lactalbumin and β-lactoglobulin (partial hydrolysis), and Pediococcus acidilactici VB90 and Weissella viridescens VB111, that caused partial hydrolysis of α S1 - and α S2 -caseins. Enterococcus faecalis VB43 tested negative for virulence genes asa1, agg, efaA, hyl, esp, cylL L and cylL S but positive for genes ace and gelE. Ethylenediamine tetra-acetic acid inhibited the proteolysis, indicating that the main proteases of E. faecalis VB43 are metalloproteases. Brazilian artisanal cheese is a good source of LAB capable of hydrolysing allergenic proteins in milk. One isolate (E. faecalis VB43) presented outstanding activity against these proteins and lacked most of the tested virulence genes. Enterococcus faecalis VB43 presents good potential for the manufacture of hypoallergenic dairy products. © 2018 The Society for Applied Microbiology.
Antibiotic susceptibility of enterococci isolated from traditional fermented meat products.
Barbosa, J; Ferreira, V; Teixeira, P
2009-08-01
Antibiotic susceptibility was evaluated for 182 Enterococcus spp. isolated from Alheira, Chouriça de Vinhais and Salpicão de Vinhais, fermented meat products produced in the North of Portugal. Previously, a choice was made from a group of 1060 isolates, using phenotypic and genotypic tests. From these, 76 were previously identified as Enterococcus faecalis, 44 as Enterococcus faecium, one as Enterococcus casseliflavus and 61 as Enteroccocus spp. In order to encompass several of the known chemical and functional classes of antibiotics, resistance to ampicillin, penicillin G, ciprofloxacin, chloramphenicol, erythromycin, nitrofurantoin, rifampicin, tetracycline and vancomycin was evaluated. All the isolates were sensitive to antibiotics of clinical importance, such as penicillins and vancomycin. Some differences in Minimal Inhibitory Concentrations (MICs) of antibiotics, could be associated with the enterococcal species.
Kellogg, Stephanie L; Kristich, Christopher J
2016-04-01
Bacteria use two-component signal transduction systems (TCSs) to sense and respond to environmental changes via a conserved phosphorelay between a sensor histidine kinase and its cognate response regulator. The opportunistic pathogen Enterococcus faecalis utilizes a TCS comprised of the histidine kinase CroS and the response regulator CroR to mediate resistance to cell wall stresses such as cephalosporin antibiotics, but the molecular details by which CroRS promotes cephalosporin resistance have not been elucidated. Here, we analyzed mutants of E. faecalis carrying substitutions in CroR and CroS to demonstrate that phosphorylated CroR drives resistance to cephalosporins, and that CroS exhibits kinase and phosphatase activities to control the level of CroR phosphorylation in vivo. Deletion of croS in various lineages of E. faecalis revealed a CroS-independent mechanism for CroR phosphorylation and led to the identification of a noncognate histidine kinase capable of influencing CroR (encoded by OG1RF_12162; here called cisS). Further analysis of this TCS network revealed that both systems respond to cell wall stress. TCSs allow bacteria to sense and respond to many different environmental conditions. The opportunistic pathogen Enterococcus faecalis utilizes the CroRS TCS to mediate resistance to cell wall stresses, including clinically relevant antibiotics such as cephalosporins and glycopeptides. In this study, we use genetic and biochemical means to investigate the relationship between CroRS signaling and cephalosporin resistance in E. faecalis cells. Through this, we uncovered a signaling network formed between the CroRS TCS and a previously uncharacterized TCS that also responds to cell wall stress. This study provides mechanistic insights into CroRS signaling and cephalosporin resistance in E. faecalis. Copyright © 2016, American Society for Microbiology. All Rights Reserved.
Global Emergence and Dissemination of Enterococci as Nosocomial Pathogens: Attack of the Clones?
Guzman Prieto, Ana M.; van Schaik, Willem; Rogers, Malbert R. C.; Coque, Teresa M.; Baquero, Fernando; Corander, Jukka; Willems, Rob J. L.
2016-01-01
Enterococci are Gram-positive bacteria that are found in plants, soil and as commensals of the gastrointestinal tract of humans, mammals, and insects. Despite their commensal nature, they have also become globally important nosocomial pathogens. Within the genus Enterococcus, Enterococcus faecium, and Enterococcus faecalis are clinically most relevant. In this review, we will discuss how E. faecium and E. faecalis have evolved to become a globally disseminated nosocomial pathogen. E. faecium has a defined sub-population that is associated with hospitalized patients and is rarely encountered in community settings. These hospital-associated clones are characterized by the acquisition of adaptive genetic elements, including genes involved in metabolism, biofilm formation, and antibiotic resistance. In contrast to E. faecium, clones of E. faecalis isolated from hospitalized patients, including strains causing clinical infections, are not exclusively found in hospitals but are also present in healthy individuals and animals. This observation suggests that the division between commensals and hospital-adapted lineages is less clear for E. faecalis than for E. faecium. In addition, genes that are reported to be associated with virulence of E. faecalis are often not unique to clinical isolates, but are also found in strains that originate from commensal niches. As a reflection of more ancient association of E. faecalis with different hosts, these determinants Thus, they may not represent genuine virulence genes but may act as host-adaptive functions that are useful in a variety of intestinal environments. The scope of the review is to summarize recent trends in the emergence of antibiotic resistance and explore recent developments in the molecular epidemiology, population structure and mechanisms of adaptation of E. faecium and E. faecalis. PMID:27303380
Freitas, Andréa de Andrade Rangel de; Faria, Adriana Rocha; Pinto, Tatiana de Castro Abreu; Merquior, Vânia Lúcia Carreira; Neves, Daniel Marchesi; Costa, Rodrigo de Cerqueira da; Teixeira, Lúcia Martins
2018-02-15
Enterococcal strains recovered from fecal samples of captive blue-fronted parrots (Amazona aestiva) assisted at two wild animal screening centers in Rio de Janeiro, Brazil, were identified as Enterococcus hirae (the predominant species; 75.3%), followed by Enterococcus faecalis (17.3%), Enterococcus casseliflavus (4.8%), Enterococcus gallinarum (1.7%), and Enterococcus hermanniensis (0.9%). All strains were susceptible to linezolid and teicoplanin. Rates of nonsusceptibility (including resistant and intermediate categories) to other 16 antimicrobials tested varied from 69.3% to 0.4%, A considerable proportion (48.0%) of the strains was multidrug-resistant and diverse genetic determinants associated with antimicrobial resistance were identified. Tetracycline-resistant strains carried the tet(M) and/or tet(L) genes. Macrolides resistance was associated with the erm(B), erm(A) and mefA genes, while 43.2% of the isolates were negative for the investigated genes. High-level resistance to gentamicin associated with the aac(6')-le-aph(2″)-la gene was detected in one E. faecalis strain. The two strains presenting high-level resistance to streptomycin were negative for the ant(6')-Ia, ant(3')-Ia, ant(9')-Ia and ant(9')-Ib genes. The vat(D) gene was found in all the 47 quinupristin/dalfopristin resistant strains identified as non-E. faecalis. Analysis of PFGE profiles of E. hirae strains after restriction with SmaI demonstrated the occurrence of five clonal groups. The predominant E. hirae clone was distributed among birds in the two institutions, suggesting that this clone was well adapted to the host and environments investigated. The four clonal groups identified among E. faecalis were composed by small numbers of strains and, generally, restricted to birds in the same sector. The occurrence of enterococcal strains exhibiting antimicrobial resistance traits and carrying genetic determinants that represent potential threats to the health of both humans and animals, in the intestinal microbiota of A. aestiva, highlights the need for additional monitoring studies to elucidate the population structure and the dynamics of transmission of these microorganisms among animals, humans and the environment. Copyright © 2017 Elsevier B.V. All rights reserved.
Hulet, R. Michael; Zhang, Guangyu; McDermott, Patrick; Kinney, Erinna L.; Schwab, Kellogg J.; Joseph, Sam W.
2011-01-01
Background: In U.S. conventional poultry production, antimicrobials are used for therapeutic, prophylactic, and nontherapeutic purposes. Researchers have shown that this can select for antibiotic-resistant commensal and pathogenic bacteria on poultry farms and in poultry-derived products. However, no U.S. studies have investigated on-farm changes in resistance as conventional poultry farms transition to organic practices and cease using antibiotics. Objective: We investigated the prevalence of antibiotic-resistant Enterococcus on U.S. conventional poultry farms that transitioned to organic practices. Methods: Poultry litter, feed, and water samples were collected from 10 conventional and 10 newly organic poultry houses in 2008 and tested for Enterococcus. Enterococcus (n = 259) was identified using the Vitek® 2 Compact System and tested for susceptibility to 17 antimicrobials using the Sensititre™ microbroth dilution system. Data were analyzed using SAS software (version 9.2), and statistical associations were derived based on generalized linear mixed models. Results: Litter, feed, and water samples were Enterococcus positive. The percentages of resistant Enterococcus faecalis and resistant Enterococcus faecium were significantly lower (p < 0.05) among isolates from newly organic versus conventional poultry houses for two (erythromycin and tylosin) and five (ciprofloxacin, gentamicin, nitrofurantoin, penicillin, and tetracycline) antimicrobials, respectively. Forty-two percent of E. faecalis isolates from conventional poultry houses were multidrug resistant (MDR; resistant to three or more antimicrobial classes), compared with 10% of isolates from newly organic poultry houses (p = 0.02); 84% of E. faecium isolates from conventional poultry houses were MDR, compared with 17% of isolates from newly organic poultry houses (p < 0.001). Conclusions: Our findings suggest that the voluntary removal of antibiotics from large-scale U.S. poultry farms that transition to organic practices is associated with a lower prevalence of antibiotic-resistant and MDR Enterococcus. PMID:21827979
Schwaiger, K; Schmied, E-M V; Bauer, J
2010-05-01
By investigating the prevalence and antimicrobial resistance characteristics of Gram-positive bacteria from organic and conventional keeping systems of laying hens, it was to be determined to what extent these properties are influenced by the different systems. For this purpose, a total of 799 cloacal swabs and 800 egg samples were examined. Prevalences for all selected bacteria from cloacal swabs were much the same for both organic and caged birds: Listeria spp.1.3%[org] versus 1.6%[con]; Enterococcus spp. 95.5%[org] versus 97.5%[con]. Egg contents and eggshells were generally contaminated to a lesser extent, primarily with Enterococcus spp. Listeria isolates were susceptible to almost all tested antibiotics, only three Listeria innocua from conventional keepings were resistant to clindamycin; one isolate additionally to imipenem. High percentages of Enterococcus faecalis were resistant to doxycycline and macrolides. Enterococcus faecium proved to have high resistance rates to clindamycin, fosfomycin and erythromycin; 9.1% were even resistant to the reserve antibiotic synercid. Further, Enterococcus spp. showed higher resistance rates to doxycycline, erythromycin, fosfomycin and rifampicin. No glycopeptide resistant enterococci were detected. A correlation between keeping system and resistance/susceptibility rates could be demonstrated. In detail, E. faecalis from organic laying hen husbandries showed significant lower resistance prevalences to tylosin, streptomycin and doxycycline; susceptibility rates were higher for enrofloxacin and ciprofloxacin. Rifampicin and imipenem were more effective in isolates from conventional keepings (P < 0.05). The amounts of resistant isolates of the Enterococcus raffinosus from organic farms were significantly lower, the amounts of sensitive isolates were significantly higher than from conventional farms concerning eight antibiotics (P < 0.05). When comparing the susceptibility/resistance rates, as well as the mean minimum inhibitory concentrations values, the consistent tendency is that bacteria from organic layer flocks are more susceptible to antimicrobials. These results show that organic livestock farming plays a part in contributing to reduced antibiotic resistance.
Bobenchik, April M.; Hindler, Janet A.; Giltner, Carmen L.; Saeki, Sandra
2014-01-01
Vitek 2 (bioMérieux, Inc., Durham, NC) is a widely used commercial antimicrobial susceptibility testing system. We compared MIC results obtained by Vitek 2 to those obtained by the Clinical and Laboratory Standards Institute (CLSI) broth microdilution (BMD) reference method for 134 staphylococcal and 84 enterococcal clinical isolates. Nineteen agents were evaluated, including all those available on Vitek 2 for testing staphylococci and enterococci. The resistance phenotypes tested included methicillin-resistant Staphylococcus aureus (MRSA) (n = 58), S. aureus with inducible clindamycin resistance (ICR) (n = 30), trimethoprim-sulfamethoxazole-resistant MRSA (n = 10), vancomycin-resistant Enterococcus (n = 37), high-level gentamicin-resistant Enterococcus (n = 15), linezolid-resistant Enterococcus (n = 5), and daptomycin-nonsusceptible Enterococcus faecalis (n = 6). For the staphylococci, there was 98.9% categorical agreement (CA). There was one very major error (VME) for gentamicin in a Staphylococcus hominis isolate, six VMEs for inducible clindamycin in S. aureus isolates, and two major errors (ME) for daptomycin in an S. aureus and a Staphylococcus epidermidis isolate. For enterococci, there was 97.3% CA. Two VMEs were observed for daptomycin in isolates of E. faecalis and 2 ME, 1 for high-level gentamicin resistance and 1 for nitrofurantoin, in E. faecium isolates. Overall, there was 98.3% CA and 99% essential agreement for the testing of staphylococci and enterococci by the Vitek 2. With the exception of detecting ICR in S. aureus, Vitek 2 performed reliably for antimicrobial susceptibility testing of staphylococci and enterococci. PMID:24478467
Benbelaïd, Fethi; Khadir, Abdelmounaïm; Abdoune, Mohamed Amine; Bendahou, Mourad; Muselli, Alain; Costa, Jean
2014-01-01
Objective To evaluate some essential oils in treatment of intractable oral infections, principally caused by biofilm of multidrug-resistant Enterococcus faecalis (E. faecalis), such as persistent endodontic infections in which their treatment exhibits a real challenge for dentists. Methods Ten chemically analyzed essential oils by gas chromatography-mass spectrometry were evaluated for antimicrobial activity against sensitive and resistant clinical strains of E. faecalis in both planktonic and biofilm state using two methods, disk diffusion and broth micro-dilution. Results Studied essential oils showed a good antimicrobial activity and high ability in E. faecalis biofilm eradication, whether for sensitive or multidrug-resistant strains, especially those of Origanum glandulosum and Thymbra capitata with interesting minimum inhibitory concentration, biofilm inhibitory concentration, and biofilm eradication concentration values which doesn't exceed 0.063%, 0.75%, and 1.5%, respectively. Conclusions Findings of this study indicate that essential oils extracted from aromatic plants can be used in treatment of intractable oral infections, especially caused by biofilm of multidrug-resistant E. faecalis. PMID:25182948
Buwchitin: a ruminal peptide with antimicrobial potential against Enterococcus faecalis
NASA Astrophysics Data System (ADS)
Oyama, Linda B.; Crochet, Jean-Adrien; Edwards, Joan E.; Girdwood, Susan E.; Cookson, Alan R.; Fernandez-Fuentes, Narcis; Hilpert, Kai; Golyshin, Peter N.; Golyshina, Olga V.; Privé, Florence; Hess, Matthias; Mantovani, Hilario C.; Creevey, Christopher J.; Huws, Sharon A.
2017-07-01
Antimicrobial peptides (AMPs) are gaining popularity as alternatives for treatment of bacterial infections and recent advances in omics technologies provide new platforms for AMP discovery. We sought to determine the antibacterial activity of a novel antimicrobial peptide, buwchitin, against Enterococcus faecalis. Buwchitin was identified from a rumen bacterial metagenome library, cloned, expressed and purified. The antimicrobial activity of the recombinant peptide was assessed using a broth microdilution susceptibility assay to determine the peptide's killing kinetics against selected bacterial strains. The killing mechanism of buwchitin was investigated further by monitoring its ability to cause membrane depolarization (diSC3(5) method) and morphological changes in E. faecalis cells. Transmission electron micrographs of buwchitin treated E. faecalis cells showed intact outer membranes with blebbing, but no major damaging effects and cell morphology changes. Buwchitin had negligible cytotoxicity against defibrinated sheep erythrocytes. Although no significant membrane leakage and depolarization was observed, buwchitin at minimum inhibitory concentration (MIC) was bacteriostatic against E. faecalis cells and inhibited growth in vitro by 70% when compared to untreated cells. These findings suggest that buwchitin, a rumen derived peptide, has potential for antimicrobial activity against E. faecalis.
Yap, Benlee; Zilm, Peter S; Briggs, Nancy; Rogers, Anthony H; Cathro, Peter C
2014-12-01
Enterococcus faecalis is often involved in the aetiology of apical periodontitis after endodontic treatment. This project aimed to establish, on dentine in vitro, a multi-species biofilm containing E. faecalis, and to determine if the organism had an increased resistance to sodium hypochlorite compared with an axenic biofilm. Biofilms were established on dentine discs in flow cells with either E. faecalis alone (axenic) or together with Fusobacterium nucleatum and Streptococcus sanguinis. Following treatment with either 0.9% sodium hypochlorite or saline, the viability of E. faecalis was determined by serial plating and qualitative analysis was performed by scanning electron microscopy and confocal laser scanning microscopy. Viable counts indicated that 0.9% NaOCl is highly effective against E. faecalis grown alone and as part of a multi-species biofilm (P = 0.0005 and P = 0.001, respectively). No significant difference in its survival in the two biofilm types was found (P = 0.8276). © 2014 Australian Society of Endodontology.
Liu, Fang; Du, Lihui; Wu, Haihong; Wang, Daoying; Zhu, Yongzhi; Geng, Zhiming; Zhang, Muhan; Xu, Weimin
2014-10-01
Tyramine production by Enterococcus faecalis R612Z1 in water-boiled salted ducks was evaluated during storage at different temperatures. The results showed that E. faecalis R612Z1 could produce tyramine in meat samples when the storage temperature was no less than 4°C. The E. faecalis R612Z1 counts of the meat samples reached 10(8) CFU/g on day 7 at 4°C and on day 4 at 10°C. However, the tyramine content of the meat samples stored at 10°C increased to 23.73 μg/g (on day 10), which was greater than the level in the samples stored at 4°C (7.56 μg/g). Reverse transcription quantitative PCR detection of the expression level of the tyrDC gene in E. faecalis R612Z1 in the meat samples revealed no significant changes at different storage temperatures. Thus, the changes in tyramine production of E. faecalis R612Z1 may be due to the different enzymatic activities at different storage temperatures.
Candida albicans and Enterococcus faecalis in the gut: synergy in commensalism?
Garsin, Danielle A; Lorenz, Michael C
2013-01-01
The fungus Candida albicans and the gram-positive bacterium Enterococcus faecalis are both normal residents of the human gut microbiome and cause opportunistic disseminated infections in immunocompromised individuals. Using a nematode infection model, we recently showed that co-infection resulted in less pathology and less mortality than infection with either species alone and this was partly explained by an interkingdom signaling event in which a bacterial-derived product inhibits hyphal morphogenesis of C. albicans. In this addendum we discuss these findings in the contest of other described bacterial-fungal interactions and recent data suggesting a potentially synergistic relationship between these two species in the mouse gut as well. We suggest that E. faecalis and C. albicans promote a mutually beneficial association with the host, in effect choosing a commensal lifestyle over a pathogenic one.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meining, Winfried, E-mail: wim@csb.ki.se; Scheuring, Johannes; Fischer, Markus
2006-06-01
SecA ATPase from E. faecalis has been cloned, overexpressed, purified and crystallized. Crystals belong to space group C2 and diffract to 2.4 Å resolution. The gene coding for SecA from Enterococcus faecalis was cloned and overexpressed in Escherichia coli. In this protein, the lysine at position 6 was replaced by an asparagine in order to reduce sensitivity towards proteases. The modified protein was purified and crystallized. Crystals diffracting to 2.4 Å resolution were obtained using the vapour-diffusion technique. The crystals belong to the monoclinic space group C2, with unit-cell parameters a = 203.4, b = 49.8, c = 100.8 Å,more » α = γ = 90.0, β = 119.1°. A selenomethionine derivative was prepared and is currently being tested in crystallization trials.« less
Candida albicans and Enterococcus faecalis in the gut
Garsin, Danielle A; Lorenz, Michael C
2013-01-01
The fungus Candida albicans and the gram-positive bacterium Enterococcus faecalis are both normal residents of the human gut microbiome and cause opportunistic disseminated infections in immunocompromised individuals. Using a nematode infection model, we recently showed that co-infection resulted in less pathology and less mortality than infection with either species alone and this was partly explained by an interkingdom signaling event in which a bacterial-derived product inhibits hyphal morphogenesis of C. albicans. In this addendum we discuss these findings in the contest of other described bacterial-fungal interactions and recent data suggesting a potentially synergistic relationship between these two species in the mouse gut as well. We suggest that E. faecalis and C. albicans promote a mutually beneficial association with the host, in effect choosing a commensal lifestyle over a pathogenic one. PMID:23941906
Rizzotti, Lucia; Rossi, Franca; Torriani, Sandra
2016-12-01
In this study nine strains of Enterococcus faecalis and 12 strains of Enterococcus faecium, isolated from different sample types in the swine meat chain and previously characterized for the presence of antibiotic resistance genes, were examined for phenotypic tolerance to seven biocides (chlorexidine, benzalkonium chloride, triclosan, sodium hypochlorite, 2-propanol, formaldehyde and hydrogen peroxide) and resistance to nine antibiotics (ampicillin, vancomycin, gentamicin, kanamycin, streptomycin, erythromycin, clindamycin, tetracycline and chloramphenicol). Moreover, the presence of efflux system encoding genes qacA/B, qacC, qacE, qacEΔ1, emeA, and stress response genes, sigV and gsp65, involved in the tolerance to biocides, was analysed. Most strains were not tolerant to the biocides, but showed minimum inhibitory concentrations (MICs) higher than the recommended cut-off values for all the antibiotics tested, except for vancomycin and chloramphenicol. Only weak correlations, if any, were found between biocide and antibiotic resistance data. One E. faecalis strain was tolerant to triclosan and one E. faecium strain, with higher tolerance to chlorexidine than the other strains tested, was found to carry a qacA/B gene. Our results indicated that phenotypic resistance to antibiotics is very frequent in enterococcal isolates from the swine meat chain, but phenotypic tolerance to biocides is not common. On the other hand, the gene qacA/B was found for the first time in the species E. faecium, an indication of the necessity to adopt measures suitable to control the spread of biocide resistance determinants among enterococci. Copyright © 2016 Elsevier Ltd. All rights reserved.
Heat resistance of thermoduric enterococci isolated from milk.
McAuley, Catherine M; Gobius, Kari S; Britz, Margaret L; Craven, Heather M
2012-03-15
Enterococci are reported to survive pasteurisation but the extent of their survival is unclear. Sixty-one thermoduric enterococci isolates were selected from laboratory pasteurised milk obtained from silos in six dairy factories. The isolates were screened to determine log(10) reductions incurred after pasteurisation (63°C/30 min) and ranked from highest to lowest log(10) reduction. Two isolates each of Enterococcus faecalis, Enterococcus faecium, Enterococcus durans and Enterococcus hirae, exhibiting the median and the greatest heat resistance, as well as E. faecalis ATCC 19433, were selected for further heat resistance determinations using an immersed coil apparatus. D values were calculated from survival curves plotted from viable counts obtained after heating isolates in Brain Heart Infusion Broth at 63, 69, 72, 75 and 78°C followed by rapid cooling. At 72°C, the temperature employed for High Temperature Short Time (HTST) pasteurisation (72°C/15s), the D values extended from 0.3 min to 5.1 min, depending on the isolate and species. These data were used to calculate z values, which ranged from 5.0 to 9.8°C. The most heat sensitive isolates were E. faecalis (z values 5.0, 5.7 and 7.5°C), while the most heat resistant isolates were E. durans (z values 8.7 and 8.8°C), E. faecium (z value 9.0°C) and E. hirae (z values 8.5 and 9.8°C). The data show that heat resistance in enterococci is highly variable. Copyright © 2011 Elsevier B.V. All rights reserved.
Ferguson, Donna M.; Griffith, John F.; McGee, Charles D.; Weisberg, Stephen B.; Hagedorn, Charles
2013-01-01
EPA Method 1600 and Enterolert are used interchangeably to measure Enterococcus for fecal contamination of public beaches, but the methods occasionally produce different results. Here we assess whether these differences are attributable to the selectivity for certain species within the Enterococcus group. Both methods were used to obtain 1279 isolates from 17 environmental samples, including influent and effluent of four wastewater treatment plants, ambient marine water from seven different beaches, and freshwater urban runoff from two stream systems. The isolates were identified to species level. Detection of non-Enterococcus species was slightly higher using Enterolert (8.4%) than for EPA Method 1600 (5.1%). E. faecalis and E. faecium, commonly associated with human fecal waste, were predominant in wastewater; however, Enterolert had greater selectivity for E. faecalis, which was also shown using a laboratory-created sample. The same species selectivity was not observed for most beach water and urban runoff samples. These samples had relatively higher proportions of plant associated species, E. casseliflavus (18.5%) and E. mundtii (5.7%), compared to wastewater, suggesting environmental inputs to beaches and runoff. The potential for species selectivity among water testing methods should be considered when assessing the sanitary quality of beaches so that public health warnings are based on indicators representative of fecal sources. PMID:23840233
21 CFR 520.1618 - Orbifloxacin suspension.
Code of Federal Regulations, 2011 CFR
2011-04-01
... spp., Klebsiella pneumoniae, E. coli, Enterobacter spp., Citrobacter spp., E. faecalis, β-hemolytic...) in cats caused by susceptible strains of S. aureus, E. coli, and P. multocida. [75 FR 26646, May 12... pseudintermedius, Proteus mirabilis, Escherichia coli, and Enterococcus faecalis and skin and soft tissue...
Antimicrobial resistance of Enterococcus isolates in Turkey: A meta-analysis of current studies.
Kilbas, Imdat; Ciftci, Ihsan Hakki
2018-03-01
In this study, a meta-analysis of Enterococcus isolates collected in 2000-2015 in Turkey and their susceptibility/resistance to antibiotics, clinical indications for initial drug treatment, and identification of alternative treatments was conducted. The meta-analysis examined antibiotic susceptibility/resistance in Enterococcus spp. isolates. The study was planned and conducted in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). Statements on antimicrobial resistance were grouped according to the antimicrobial stewardship programme (ASP). The mean resistance rates of Enterococcus faecalis to vancomycin (VAN) and linezolid (LNZ) were 1.0±2.2% and 1.9±2.6%, respectively, whereas the mean resistance rates of Enterococcus faecium to VAN and LNZ were 10.3±11.3% and 2.4±0%, respectively. This study is the first meta-analysis of the resistance of clinical Enterococcus isolates in Turkey to antimicrobial agents, which is a major problem stemming from the excessive usage of antibiotics. The development of antibiotic resistance in Turkey has changed over time. To support the practice of evidence-based medicine, more notifications about Enterococcus resistance status are needed, especially notifications following ASP rules. Copyright © 2017 International Society for Chemotherapy of Infection and Cancer. Published by Elsevier Ltd. All rights reserved.
Thompson, Mickala M; Hassoun, Ali
2017-07-01
Infective endocarditis (IE) one-year mortality rates approach 40%. Here, we report two native valve Enterococcus faecalis IE cases in patients successfully treated with telavancin. An 88-year-old with mitral valve endocarditis and a penicillin allergy, initially treated with intravenous vancomycin, was switched to telavancin. A 69-year-old, who previously received amoxicillin and intravenous vancomycin for presumed enterococcal bacteraemia, was diagnosed with dual valve endocarditis for which he received telavancin. Both received six weeks of telavancin. Neither had telavancin-related adverse events, evidence of infection at six months, nor required telavancin dosing adjustments. Documented use of novel treatments for serious enterococcal infections is needed.
Padmavathy, Kesavaram; Madhavan, Radha; Krithika, Nagarajan; Kiruthiga, Alexander
2015-01-01
Prolonged hospitalization and exposure to third generation cephalosporins are reported to facilitate the acquisition and colonization of Vancomycin Resistant Enterococci (VRE). Though VRE is not uncommon in India, urinary tract infection with a vanA genotype is a cause of serious concern as VRE co-exhibit resistance to aminoglycosides. In India, majority of the VRE isolates recovered from hospitalized patients include Enterococcus faecium. We report a case of catheter associated urinary tract infection by an endogenous, multidrug resistant E. faecalis of vanA genotype following prolonged hospitalization, ICU stay, catheterisation and exposure to 3G cephalosporin and metronidazole. The patient responded to linezolid therapy. PMID:26435949
Nami, Y; Abdullah, N; Haghshenas, B; Radiah, D; Rosli, R; Yari Khosroushahi, A
2014-08-01
This study aimed to describe probiotic properties and bio-therapeutic effects of newly isolated Enterococcus faecalis from the human vaginal tract. The Enterococcus faecalis strain was originally isolated from the vaginal microbiota of Iranian women and was molecularly identified using 16SrDNA gene sequencing. Some biochemical methodologies were preliminarily used to characterize the probiotic potential of Ent. faecalis, including antibiotic susceptibility, antimicrobial activity, as well as acid and bile resistance. The bio-therapeutic effects of this strain's secreted metabolites on four human cancer cell lines (AGS, HeLa, MCF-7 and HT-29) and one normal cell line (HUVEC) were evaluated by cytotoxicity assay and apoptosis scrutiny. The characterization results demonstrated into the isolated bacteria strain revealed probiotic properties, such as antibiotic susceptibility, antimicrobial activity and resistance under conditions similar to those in the gastrointestinal tract. Results of bio-therapeutic efficacy assessments illustrated acceptable apoptotic effects on four human cancer cell lines and negligible side effects on assayed normal cell line. Our findings revealed that the apoptotic effect of secreted metabolites mainly depended on proteins secreted by Ent. faecalis on different cancer cells. These proteins can induce the apoptosis of cancer cells. The metabolites produced by this vaginal Ent. faecalis strain can be used as alternative pharmaceutical compounds with promising therapeutic indices because they are not cytotoxic to normal mammalian cells. Accordingly, the physicochemical, structural and functional properties of the secreted anticancer substances should be further investigated before using them as anticancer therapeutics. This study aim to screen total bacterial secreted metabolites as a wealthy source to find the new active compounds to introduce as anticancer therapeutics in the future. © 2014 The Society for Applied Microbiology.
Li, Weilan; Liu, Hongyan; Xu, Qiong
2012-07-01
Enterococcus faecalis is frequently recovered from root-filled teeth with refractory apical periodontitis. The ability of E. faecalis to form a matrix-encased biofilm contributes to its pathogenicity; however, the role of extracellular dextran and DNA in biofilm formation and its effect on the susceptibility of the biofilm to chlorhexidine remains poorly understood. E. faecalis biofilms were incubated on dentin blocks. The effect of a dextran-degrading enzyme (dextranase) and DNase I on the adhesion of E. faecalis to dentin was measured using the colony-forming unit (CFU) counting method. CFU assays and confocal laser scanning microscopy were used to investigate the influence of dextranase and DNase I on the antimicrobial activity of 2% chlorhexidine. The CFU count assays indicated that the formation of biofilms by E. faecalis was reduced in cells treated with dextranase or DNase I compared with that in untreated cells (P < .05). In addition, we found that treating E. faecalis biofilms with dextranase or DNase I effectively sensitized the biofilms to 2% chlorhexidine (P < .05). Both dextranase and DNase I decrease the adhesion of E. faecalis to dentin and sensitized E. faecalis biofilms to 2% chlorhexidine. Copyright © 2012 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Wang, Qian-Qian; Zhang, Cheng-Fei; Chu, Chun-Hung; Zhu, Xiao-Fei
2012-01-01
To investigate the prevalence of Enterococcus faecalis in saliva and filled root canals of patients requiring endodontic retreatment for apical periodontitis. Patients with apical periodontitis who were referred for endodontic retreatment were examined. The type and quality of the restoration, symptoms, quality of obturation were recorded. During retreatment, an oral rinse sample and root canal sample were cultured using brain-heart infusion agar and bile esculinazide agar to select for E. faecalis. The 16S rRNA technique was used to identify E. faecalis. A total of 32 women and 22 men (mean age: 38 years; s.d.: 11 years) and 58 teeth were studied. The prevalence of E. faecalis was 19% in the saliva and 38% in the root canals. The odds that root canals harbored E. faecalis were increased if the saliva habored this bacterium (odds ratio=9.7; 95% confidence interval=1.8–51.6; P<0.05). Teeth with unsatisfactory root obturation had more cultivable bacterial species in root canals than teeth with satisfactory root obturation (P<0.05). E. faecalis is more common in root canals of teeth with apical periodontitis than in saliva. The prevalence of E. faecalis in root canals is associated with the presence of E. faecalis in saliva. PMID:22422085
Abbaszadegan, Abbas; Sahebi, Safoora; Gholami, Ahmad; Delroba, Alireza; Kiani, Amin; Iraji, Aida; Abbott, Paul Vincent
2016-02-01
In the present in vitro study, we investigated the time-related antimicrobial efficacy of Aloe vera and Zataria multiflora (Z. multiflora) plant essential oils compared to calcium hydroxide ([Ca[OH]2 ) to eliminate Enterococcus faecalis (E. faecalis) from root canals. A new strain of E. faecalis (Enterococcus spp. AGH04) was isolated from a previously root-filled tooth with persistent apical periodontitis. The 16S rRNA sequence was analyzed and deposited in GeneBank under accession number KF465681. A total of 108 extracted human single-rooted teeth were contaminated with this bacterial strain and treated with Aloe vera essential oil, Z. multiflora essential oil, and Ca(OH)2 for 1, 7, and 14 days. Gas chromatography-mass spectrometry (GC-MS) was used to determine the chemical composition of the oils. The percentage reduction from initial c.f.u./mL counts were calculated and analyzed. Carvacrol, thymol, and linalool were the main constituents of both essential oils. The c.f.u./mL count reductions significantly increased for all three medicaments when the contact time was extended. A statistically-significant difference was observed between the medicaments after 1 and 7 days, but there was no significant difference after 14 days. Both medicinal herbs showed equal antimicrobial efficiency against E. faecalis, comparable to Ca(OH)2 for the prolonged contact time of 14 days. © 2014 Wiley Publishing Asia Pty Ltd.
Leanti La Rosa, Sabina; Camila Montealegre, Maria; Singh, Kavindra V.
2016-01-01
Enterococcus faecalis is an opportunistic pathogen that ranks among the leading causes of biofilm-associated infections. We previously demonstrated that the endocarditis- and biofilm-associated pili (Ebp) of E. faecalis play a major role in biofilm formation, adherence to abiotic surfaces and experimental infections. In this study, derivatives of E. faecalis strain OG1 were engineered to further characterize functions of Ebp pili. Loss of pili resulted in a 36-fold decrease in the number of closely associated cells when OG1RFΔebpABC was mixed with OG1SSpΔebpABC, compared with mixing the Ebp+ parental strains. In addition, using the Ebp+ parental strains as donor and recipient, we found a statistically significant increase (280–360 %, P < 0.05) in the frequency of plasmid transfer versus using Ebp− mutants in the conjugation experiments. These results demonstrate a previously unrecognized role of Ebp pili, namely, as important contributors to microscale cell aggregation and horizontal spread of genetic material. PMID:26967674
Characterization of veterinary hospital-associated isolates of Enterococcus species in Korea.
Chung, Yeon Soo; Kwon, Ka Hee; Shin, Sook; Kim, Jae Hong; Park, Yong Ho; Yoon, Jang Won
2014-03-28
Possible cross-transmission of hospital-associated enterococci between human patients, medical staff, and hospital environments has been extensively studied. However, limited information is available for veterinary hospital-associated Enterococcus isolates. This study investigated the possibility of cross-transmission of antibiotic-resistant enterococci between dog patients, their owners, veterinary staff, and hospital environments. Swab samples (n =46 5) were obtained from five veterinary hospitals in Seoul, Korea, during 2011. Forty-three Enterococcus strains were isolated, representing seven enterococcal species. E. faecalis and E. faecium were the most dominant species (16 isolates each, 37.2%). Although slight differences in the antibiotic resistance profiles were observed between the phenotypic and the genotypic data, our antibiogram analysis demonstrated high prevalence of the multiple drug-resistant (MDR) isolates of E. faecalis (10/16 isolates, 62.5%) and E. faecium (12/16 isolates, 75.0%). Pulsed-field gel electrophoretic comparison of the MDR isolates revealed three different clonal sets of E. faecalis and a single set of E. faecium, which were isolated from different sample groups or dog patients at the same or two separate veterinary hospitals. These results imply a strong possibility of cross-transmission of the antibiotic-resistant enterococcal species between animal patients, owners, veterinary staff, and hospital environments.
Antibacterial and antifungal activity of endodontic intracanal medications
TONEA, ANDRADA; BADEA, MANDRA; OANA, LIVIU; SAVA, SORINA; VODNAR, DAN
2017-01-01
Background and aims The sterilization of the entire root canal system represents the main goal of every endodontist, given the fact that the control of the microbial flora is the key point of every root canal treatment. The diversity of microorganisms found inside the root canal and also the resistance of some bacterial species to intracanal medications led to a continuous development of new endodontic products. The present study focuses on the comparison of the antibacterial and antifungal properties of different endodontic products, two commercially available, one experimental plant based extract, and two control substances. Methods The disc diffusion assay was used to determine the antibacterial and antifungal properties of chlorhexidine, calcium hydroxide, a mix extract between Arctium lappa root powder and Aloe barbadensis Miller gel, Amoxicillin with clavulanic acid and Fluconazole (as control substances). Two of the most common microorganisms found in endodontic infections were chosen: Enterococcus faecalis (ATCC 29212) and Candida albicans ATCC(10231). Results All tested substances showed inhibition zones around the discs, for Enterococcus faecalis and Candida albicans, including the experimental mix extract of Arctium lappa root powder with Aloe vera gel. Conclusion The experimental mix extract of Arctium lappa root powder and Aloe vera gel is able to inhibit very resistant microorganisms, like Enterococcus faecalis and Candida albicans. PMID:28781531
Quantification of carious pathogens in the interdental microbiota of young caries-free adults.
Bourgeois, Denis; David, Alexandra; Inquimbert, Camille; Tramini, Paul; Molinari, Nicolas; Carrouel, Florence
2017-01-01
The majority of caries lesions in adults occur on the proximal tooth surfaces of the posterior teeth. A comprehensive study of the composition of the oral microbiota is fundamental for a better understanding of the etiology of interdental caries. Twenty-five caries-free subjects (20-35 years old) were enrolled in the study. The interdental biofilm of four interdental sites were collected. The real-time polymerase chain reaction (PCR) methodology were used to quantify (i) the following bacteria: Streptococcus spp., Streptococcus mutans, Lactobacillus spp., Enterococcus spp., and Enterococcus faecalis; (ii) the fungus Candida albicans; and (iii) total bacteria. Streptococcus spp. was the most abundant species, followed by Lactobacillus spp. and Enterococcus spp. Streptococcus spp. and Lactobacillus spp. were detected at all tested sites and Enterococcus spp. at 99% of sites. S. mutans was detected at only 28% of the tested sites and C. albicans was detected at 11% of sites. E. faecalis was never detected. In 54.5% of the biofilm inhabited by C. albicans, S. mutans was present. Moreover, 28% of the ID sites co-expressed S. mutans and Lactobacillus spp. The studied pathogens were organized into two correlated groups of species. Strikingly, the fungus C. albicans and the bacteria Enterococcus spp. cluster together, whereas Streptococcus spp., S. mutans and Lactobacillus spp. form one distinct cluster. The interdental biofilm of young caries-free adults is comprised of pathogens that are able to induce interproximal caries. That several of these pathogens are implicated in heart disease or other systemic diseases is an argument for the disruption of interdental biofilms using daily oral hygiene.
Influence of irrigation regimens on the adherence of Enterococcus faecalis to root canal dentin.
Kishen, Anil; Sum, Chee-Peng; Mathew, Shibi; Lim, Chwee-Teck
2008-07-01
Enterococcus faecalis is frequently associated with post-treatment endodontic infections. Because adherence of bacteria to a substrate is the earliest stage in biofilm formation, eliciting the factors that links adherence of this bacterium to dentin would help in understanding its association with treatment-failed root canals. This investigation aimed to study the effects of endodontic irrigants on the adherence of E. faecalis to dentin. The bacteria adherence assay was conducted by using fluorescence microscopy, and the adhesion force was measured by using atomic force microscopy. There were significant increases in adherence and adhesion force after irrigation of dentin with ethylenediaminetetraacetic acid (EDTA), whereas sodium hypochlorite (NaOCl) reduced it. With the use of chlorhexidine (CHX), the force of adhesion increased, but the adherence assay showed a reduction in the number of adhering bacteria. The irrigation regimen of EDTA, NaOCl, and CHX resulted in the least number of adhering E. faecalis cells. This study highlighted that chemicals that alter the physicochemical properties of dentin will influence the nature of adherence, adhesion force, and subsequent biofilm formation of E. faecalis to dentin.
Joy Sinha, Dakshita; D S Nandha, Kanwar; Jaiswal, Natasha; Vasudeva, Agrima; Prabha Tyagi, Shashi; Pratap Singh, Udai
2017-01-01
The purpose of this study was to compare the antibacterial properties of Azadirachta indica (neem) or Curcuma longa (turmeric) against Enterococcus faecalis with those of 5% sodium hypochlorite or 2% chlorhexidine as root canal irrigants in vitro. The activity of neem, chlorhexidine, sodium hypochlorite, or turmeric against E. faecalis was measured on agar plates using the agar diffusion method. The tube dilution method was used to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of the irrigants used. Chlorhexidine or neem exhibited the greatest antibacterial activity when used as endodontic irrigants against E. faecalis, followed by sodium hypochlorite. No statistically significant difference was observed between neem, sodium hypochlorite, or chlorhexidine. The MIC of neem was 1: 128, which was similar to that of chlorhexidine. The MBC for each of these irrigants was 1: 16. Neem yielded antibacterial activity equivalent to 2% chlorhexidine or sodium hypochlorite against E. faecalis, suggesting that it offers a promising alternative to the other root canal irrigants tested.
Subbiya, Arunajatesan; Mahalakshmi, Krishnan; Pushpangadan, Sivan; Padmavathy, Kesavaram; Vivekanandan, Paramasivam; Sukumaran, Vridhachalam Ganapathy
2013-01-01
Introduction: The Enterococcus faecalis biofilm in the root canal makes it difficult to be eradicated by the conventional irrigants with no toxicity to the tissues. Hence, plant products with least side effects are explored for their use as irrigants in the root canal therapy. Aim: To evaluate and compare the antibacterial efficacy of Mangifera indica L. kernel (mango kernel) and Ocimum sanctum L. leaves (tulsi) extracts with conventional irrigants (5% sodium hypochlorite (NaOCl) and 2% chlorhexidine) against E. faecalis dentinal biofilm. Materials and Methods: Agar diffusion and broth microdilution assay was performed with the herbal extracts and conventional irrigants (2% chlorhexidine and 5% NaOCl) against E. faecalis planktonic cells. The assay was extended onto 3 week E. faecalis dentinal biofilm. Results: Significant reduction of colony forming units (CFU)/mL was observed for the herbal groups and the antibacterial activity of the herbal groups was at par with 5% NaOCl. Conclusions: The antibacterial activity of these herbal extracts is found to be comparable with that of conventional irrigants both on the biofilm and planktonic counterparts. PMID:24082577
Salamaga, Bartłomiej; Prajsnar, Tomasz K.; Willemse, Joost; Bewley, Martin A.; Chau, Françoise
2017-01-01
Enterococcus faecalis is an opportunistic pathogen frequently isolated in clinical settings. This organism is intrinsically resistant to several clinically relevant antibiotics and can transfer resistance to other pathogens. Although E. faecalis has emerged as a major nosocomial pathogen, the mechanisms underlying the virulence of this organism remain elusive. We studied the regulation of daughter cell separation during growth and explored the impact of this process on pathogenesis. We demonstrate that the activity of the AtlA peptidoglycan hydrolase, an enzyme dedicated to septum cleavage, is controlled by several mechanisms, including glycosylation and recognition of the peptidoglycan substrate. We show that the long cell chains of E. faecalis mutants are more susceptible to phagocytosis and are no longer able to cause lethality in the zebrafish model of infection. Altogether, this work indicates that control of cell separation during division underpins the pathogenesis of E. faecalis infections and represents a novel enterococcal virulence factor. We propose that inhibition of septum cleavage during division represents an attractive therapeutic strategy to control infections. PMID:28742152
Increased Enterococcus faecalis infection is associated with clinically active Crohn disease
Zhou, Youlian; Chen, Huiting; He, Hanchang; Du, Yanlei; Hu, Jiaqi; Li, Yingfei; Li, Yuyuan; Zhou, Yongjian; Wang, Hong; Chen, Ye; Nie, Yuqiang
2016-01-01
Abstract This study was performed to investigate the relationship between the abundance of pathogenic gut microbes in Chinese patients with inflammatory bowel disease (IBD) and disease severity. We collected clinical data and fecal samples from 47 therapy-naive Chinese patients with ulcerative colitis (UC), 67 patients with Crohn disease (CD), and 48 healthy volunteers. Bacteria levels of Fusobacterium species (spp), enterotoxigenic Bacteroides fragilis (B fragilis), enteropathogenic Escherichia coli (E coli), and Enterococcus faecalis (E faecalis) were assessed by quantitative real-time PCR (qRT-PCR). Spearman correlation coefficients were calculated to test associations between bacterial content and clinical parameters. Compared to healthy controls, the levels of both Fusobacterium spp and E faecalis were significantly increased in the feces of patients with IBD (P < 0.01). B fragilis levels were higher (P < 0.05) and E faecalis levels lower (P < 0.05) in patients with CD compared to those with UC. Increased E faecalis colonization in CD associated positively with disease activity (P = 0.015), Crohn disease activity index (CDAI; R = 0.3118, P = 0.0108), and fecal calprotectin (P = 0.016). E faecalis and Fusobacterium spp are significantly enriched in patients with IBD, and increased E faecalis infection is associated with clinically active CD. PMID:27684872
Increased Enterococcus faecalis infection is associated with clinically active Crohn disease.
Zhou, Youlian; Chen, Huiting; He, Hanchang; Du, Yanlei; Hu, Jiaqi; Li, Yingfei; Li, Yuyuan; Zhou, Yongjian; Wang, Hong; Chen, Ye; Nie, Yuqiang
2016-09-01
This study was performed to investigate the relationship between the abundance of pathogenic gut microbes in Chinese patients with inflammatory bowel disease (IBD) and disease severity.We collected clinical data and fecal samples from 47 therapy-naive Chinese patients with ulcerative colitis (UC), 67 patients with Crohn disease (CD), and 48 healthy volunteers. Bacteria levels of Fusobacterium species (spp), enterotoxigenic Bacteroides fragilis (B fragilis), enteropathogenic Escherichia coli (E coli), and Enterococcus faecalis (E faecalis) were assessed by quantitative real-time PCR (qRT-PCR). Spearman correlation coefficients were calculated to test associations between bacterial content and clinical parameters.Compared to healthy controls, the levels of both Fusobacterium spp and E faecalis were significantly increased in the feces of patients with IBD (P < 0.01). B fragilis levels were higher (P < 0.05) and E faecalis levels lower (P < 0.05) in patients with CD compared to those with UC. Increased E faecalis colonization in CD associated positively with disease activity (P = 0.015), Crohn disease activity index (CDAI; R = 0.3118, P = 0.0108), and fecal calprotectin (P = 0.016).E faecalis and Fusobacterium spp are significantly enriched in patients with IBD, and increased E faecalis infection is associated with clinically active CD.
Tedim, Ana P.; Ruiz-Garbajosa, Patricia; Corander, Jukka; Rodríguez, Concepción M.; Cantón, Rafael; Willems, Rob J.; Baquero, Fernando
2014-01-01
The diversity of enterococcal populations from fecal samples from hospitalized (n = 133) and nonhospitalized individuals (n = 173) of different age groups (group I, ages 0 to 19 years; group II, ages 20 to 59 years; group III, ages ≥60 years) was analyzed. Enterococci were recovered at similar rates from hospitalized and nonhospitalized persons (77.44% to 79.77%) of all age groups (75.0% to 82.61%). Enterococcus faecalis and Enterococcus faecium were predominant, although seven other Enterococcus species were identified. E. faecalis and E. faecium (including ampicillin-resistant E. faecium) colonization rates in nonhospitalized persons were age independent. For inpatients, E. faecalis colonization rates were age independent, but E. faecium colonization rates (particularly the rates of ampicillin-resistant E. faecium colonization) significantly increased with age. The population structure of E. faecium and E. faecalis was determined by superimposing goeBURST and Bayesian analysis of the population structure (BAPS). Most E. faecium sequence types (STs; 150 isolates belonging to 75 STs) were linked to BAPS groups 1 (22.0%), 2 (31.3%), and 3 (36.7%). A positive association between hospital isolates and BAPS subgroups 2.1a and 3.3a (which included major ampicillin-resistant E. faecium human lineages) and between community-based ampicillin-resistant E. faecium isolates and BAPS subgroups 1.2 and 3.3b was found. Most E. faecalis isolates (130 isolates belonging to 58 STs) were grouped into 3 BAPS groups, BAPS groups 1 (36.9%), 2 (40.0%), and 3 (23.1%), with each one comprising widespread lineages. No positive associations with age or hospitalization were established. The diversity and dynamics of enterococcal populations in the fecal microbiota of healthy humans are largely unexplored, with the available knowledge being fragmented and contradictory. The study offers a novel and comprehensive analysis of enterococcal population landscapes and suggests that E. faecium populations from hospitalized patients and from community-based individuals differ, with a predominance of certain clonal lineages, often in association with elderly individuals, occurring in the hospital setting. PMID:25548052
Ben Said, Leila; Klibi, Naouel; Lozano, Carmen; Dziri, Raoudha; Ben Slama, Karim; Boudabous, Abdellatif; Torres, Carmen
2015-10-15
One hundred-fourteen samples of wastewater (n=64) and surface-water (n=50) were inoculated in Slanetz-Bartley agar plates supplemented or not with gentamicin (SB-Gen and SB plates, respectively) for enterococci recovery. Enterococci were obtained from 75% of tested samples in SB media (72% in wastewater; 78% in surface-water), and 85 enterococcal isolates (one/positive-sample) were obtained. Enterococcus faecium was the most prevalent species (63.5%), followed by Enterococcus faecalis (20%), Enterococcus hirae (9.4%), Enterococcus casseliflavus (4.7%), and Enterococcus gallinarum/Enterococcus durans (2.4%). Antibiotic resistance detected among these enterococci was as follows [percentage/detected gene (number isolates)]: kanamycin [29%/aph(3')-IIIa (n=22)], streptomycin [8%/ant(6)-Ia (n=4)], erythromycin [44%/erm(B) (n=34)], tetracycline [18%/tet(M) (n=6)/tet(M)-tet(L) (n=9)], chloramphenicol [2%/cat(A) (n=1)], ciprofloxacin [7%] and trimethoprim-sulfamethoxazole [94%]. High-level-gentamicin resistant (HLR-G) enterococci were recovered from 15 samples in SB-Gen or SB plates [12/64 samples of wastewater (19%) and 3/50 samples of surface-water (6%)]; HLR-G isolates were identified as E. faecium (n=7), E. faecalis (n=6), and E. casseliflavus (n=2). These HLR-G enterococci carried the aac(6')-Ie-aph(2")-Ia and erm(B) genes, in addition to aph(3')-IIIa (n=10), ant(6)-Ia (n=9), tet(M) (n=13), tet(L) (n=8) and cat(A) genes (n=2). Three HLR-G enterococci carried the esp virulence gene. Sequence-types detected among HLR-G enterococci were as follows: E. faecalis (ST480, ST314, ST202, ST55, and the new ones ST531 and ST532) and E. faecium (ST327, ST12, ST296, and the new ones ST985 and ST986). Thirty-two different PFGE patterns were detected among 36 high-level-aminoglycoside-resistant enterococci recovered in water samples. Diverse genetic lineages of HLR-G enterococci were detected in wastewater and surface-water in Tunisia. Water can represent an important source for the dissemination of these antibiotic resistant microorganisms to other environments. Copyright © 2015 Elsevier B.V. All rights reserved.
Lavilla Lerma, Leyre; Benomar, Nabil; Valenzuela, Antonio Sánchez; Casado Muñoz, María del Carmen; Gálvez, Antonio; Abriouel, Hikmate
2014-12-01
Enterococcus faecalis and Enterococcus faecium isolated from various traditional fermented foods of both animal and vegetable origins have shown multidrug resistance to several antibiotics and tolerance to biocides. Reduced susceptibility was intra and inter-species dependent and was due to specific and unspecific mechanisms such as efflux pumps. EfrAB, a heterodimeric ABC transporter efflux pump, was detected in 100% of multidrug resistant (MDR) E. faecalis strains and only in 12% of MDR E. faecium strains. EfrAB expression was induced by half of minimum inhibitory concentration (MIC) of gentamicin, streptomycin and chloramphenicol. However, expression of efrA and efrB genes was highly dependent on the strain tested and on the antimicrobial used. Our results indicated that 3 mM EDTA highly reduced the MICs of almost all drugs tested. Nevertheless, the higher reductions (>8 folds) were obtained with gentamicin, streptomycin, chlorhexidine and triclosan. Reductions of MICs were correlated with down-regulation of EfrAB expression (10-140 folds) in all three MDR enterococci strains. This is the first report describing the role of EfrAB in the efflux of antibiotics and biocides which reflect also the importance of EfrAB in multidrug resistance in enterococci. EDTA used at low concentration as food preservative could be one of the best choices to prevent spread of multidrug resistant enterococci throughout food chain by decreasing EfrAB expression. EfrAB could be an attractive target not only in enterococci present in food matrix but also those causing infections as well by using EDTA as therapeutic agent in combination with low doses of antibiotics. Copyright © 2014 Elsevier Ltd. All rights reserved.
A Current Perspective on Daptomycin for the Clinical Microbiologist
Pollett, Simon; Sakoulas, George
2013-01-01
SUMMARY Daptomycin is a lipopeptide antimicrobial with in vitro bactericidal activity against Gram-positive bacteria that was first approved for clinical use in 2004 in the United States. Since this time, significant data have emerged regarding the use of daptomycin for the treatment of serious infections, such as bacteremia and endocarditis, caused by Gram-positive pathogens. However, there are also increasing reports of daptomycin nonsusceptibility, in Staphylococcus aureus and, in particular, Enterococcus faecium and Enterococcus faecalis. Such nonsusceptibility is largely in the context of prolonged treatment courses and infections with high bacterial burdens, but it may occur in the absence of prior daptomycin exposure. Nonsusceptibility in both S. aureus and Enterococcus is mediated by adaptations to cell wall homeostasis and membrane phospholipid metabolism. This review summarizes the data on daptomycin, including daptomycin's unique mode of action and spectrum of activity and mechanisms for nonsusceptibility in key pathogens, including S. aureus, E. faecium, and E. faecalis. The challenges faced by the clinical laboratory in obtaining accurate susceptibility results and reporting daptomycin MICs are also discussed. PMID:24092854
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ni, Shuisong; McAteer, Kathleen; Bussiere, Dirksen E.
2004-06-01
CylR2 is one of the two regulatory proteins associated with the quorum-sensing-dependent synthesis of cytolysin for the common pathogen Enterococcus faecalis. The protein was expressed with a C-terminal 6-histidine tag and purified to homogeneity with a cobalt affinity column followed by another size exclusion column. Both native and SeMet proteins were crystallized. A complete X-ray diffraction data set from the native crystal was collected to 2.3 resolution. The crystal was tetragonal, belonging to space group P41/43, with unit-cell dimensions a=b=66.2 , c=40.9 and a=b=g=90. The asymmetric unit contained two molecules of CylR2.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen Wei; Huang Jun; Wang Xingquan
2012-07-01
An atmospheric cold plasma brush suitable for large area and low-temperature plasma-based sterilization is designed. Results demonstrate that the He/O{sub 2} plasma more effectively kills Enterococcus faecalis than the pure He plasma. In addition, the sterilization efficiency values of the He/O{sub 2} plasma depend on the oxygen fraction in Helium gas. The atmospheric cold plasma brush using a proper ratio of He/O{sub 2} (2.5%) reaches the optimum sterilization efficiency. After plasma treatment, the cell structure and morphology changes can be observed by the scanning electron microscopy. Optical emission measurements indicate that reactive species such as O and OH play amore » significant role in the sterilization process.« less
Prevalence and antibiotic resistance of Enterococcus strains isolated from poultry.
Stępień-Pyśniak, Dagmara; Marek, Agnieszka; Banach, Tomasz; Adaszek, Łukasz; Pyzik, Ewelina; Wilczyński, Jarosław; Winiarczyk, Stanisław
2016-06-01
The aim of this study was to evaluate the frequency of occurrence of bacteria of the genus Enterococcus in poultry, to identify them by means of matrixassisted laser desorption/ionisation time-of-flight mass spectrometry (MALDITOF MS), and to analyse the antimicrobial susceptibility of the isolated strains to the drugs most frequently used in poultry. The material for the bacteriological tests was obtained mainly from the heart (97%) of the birds investigated. Of a total of 2,970 samples tested, 911 (30.7%) tested positive for Enterococcus spp. Enterococci were detected in broilers (88.1%), laying hens (5.3%), turkeys (3.9%), breeding hens (2.2%), and geese (0.4%). The most commonly identified species were Enterococcus (E.) faecalis (74.7%), E. faecium (10.1%), E. gallinarum (5.5%), E. hirae (4.6%), and E. cecorum (4.1%). The most frequent resistance properties were resistance to sulphamethoxazole/trimethoprim (88%), tylosin (71.4%), enrofloxacin (69.4%), doxycycline (67.3%), and lincomycin/spectinomycin (56.1%). Only one vancomycin-resistant Enterococcus, E. cecorum from a broiler, was found.
The in vitro activity of flomoxef compared to four other cephalosporins and imipenem.
Shah, P M; Knothe, H
1991-01-01
The antibacterial activity of the oxacephalosporin flomoxef was evaluated in comparison to cefpirome, cefuzoname, cefotaxime, ceftazidime, and imipenem against fresh clinical isolates. Flomoxef is an antibiotic with strong antibacterial activity against staphylococci including methicillin-resistant strains and streptococci with the exception of Enterococcus faecalis and Enterococcus faecium. It is very active against gram-negative cocci and rods including gram-positive and gram-negative anaerobes. Against Pseudomonas sp. flomoxef has no activity.
Ocaña, Virginia S.; Pesce de Ruiz Holgado, Aída A.; Nader-Macías, María Elena
1999-01-01
A novel bacteriocin-like substance produced by vaginal Lactobacillus salivarius subsp. salivarius CRL 1328 with activity against Enterococcus faecalis, Enterococcus faecium, and Neisseria gonorrhoeae was characterized. The highest level of production of this heat-resistant peptide or protein occurred during the late exponential phase. Its mode of action was shown to be bactericidal. L. salivarius subsp. salivarius CRL 1328 could be used for the design of a probiotic to prevent urogenital infections. PMID:10584033
Dautle, Melanie P.; Ulrich, Ricky L.; Hughes, Thomas A.
2002-01-01
In this study, 83 clinical isolates purified from biofilms colonizing 18 silicone gastrostomy devices (12 “buttons” and six tubes converted to skin level devices) were selected for subtype characterization utilizing genetic analysis. The tubes, previously used for feeding, remained in place for 3 to 47 months (mean, 20.0 months) in children ranging in age from 6 months to 17 years. Classification of specific microbes using random amplified polymorphic DNA (RAPD) analysis revealed genetic similarities and differences among isolates belonging to the same genus. Both gram-positive and -negative bacteria were investigated, including 2 isolates of Bacillus brevis, 4 isolates of Bacillus licheniformis, 2 isolates of Bacillus pumilus, 3 isolates of Enterococcus durans, 19 isolates of Enterococcus faecalis, 8 isolates of Enterococcus faecium, 2 isolates of Enterococcus hirae, 7 isolates of Escherichia coli, 8 isolates of Lactobacillus plantarum, 19 isolates of Staphylococcus aureus, 2 isolates of Staphylococcus epidermidis, and 7 isolates of Staphylococcus saprophyticus. Amplified DNA fragments (amplicons) provided species-specific fingerprints for comparison by agarose gel electrophoresis. A total of 62 distinct RAPD types were categorized from the five genera studied. Typing analysis suggested cross acquisition of E. coli, E. faecalis, and S. aureus in three patient pairs. Genomic polymorphism detection proved efficient and reliable for classifying bacterial subtypes isolated from biofilms adhering to various portions of commonly employed enteral access tubes. PMID:11825951
Yadav, Pankaj; Chaudhary, Sarika; Saxena, Rajendra K; Talwar, Sangeeta; Yadav, Sudha
2017-03-01
Bacterial biofilms formed on the root canal wall are often difficult to remove. This study aimed to evaluate the cytotoxic effect and antibacterial efficacy of chitosan when used as root canal irrigant against E. Faecalis and Candida albicans biofilm formed on tooth substrate. The present study evaluated antibacterial effect of 0.25% Chitosan, 0.5% Chitosan, 2% chlorhexidine and 3% sodium hypochlorite against Enterococcus faecalis and Candida Albicans . Agar-well diffusion methods, minimal inhibitory concentration tests and biofilm susceptibility assays were used to determine antibacterial activity. Teeth specimens were sectioned to obtain a standardized tooth length of 12mm. Specimens were inoculated with 10 mL of the freshly prepared E. Faecalis suspension and Candida albicans for 4 weeks. The specimens were then instrumented with ProTaper rotary files F3 size. After irrigation with test solution, three sterile paper points were placed into one canal, left for 60 s and transferred to a test tube containing 1 mL of reduced transport fluid. The number of CFU in 1 mL was determined. 3-week biofilm qualitative assay showed complete inhibition of bacterial growth with 3% Sodium hypochlorite, 2% Chlorhexidine and Chitosan except saline, which showed presence of bacterial growth. Significant reduction of colony forming units (CFU)/mL was observed for the chitosan groups and the antibacterial activity of the chitosan groups was at par with 3% NaOCl and 2% Chlorhexidine. It was observed that the chitosan showed no cytotoxicity at 3mg/ml and 10% cytotoxicity at 6mg/ml. The use of chitosan as a root canal irrigant might be an alternative considering the various undesirable properties of NaOCl and chlorhexidine. Key words: Biofilm, Candida albicans, Chitosan, Cytotoxicity, Enterococcus faecalis.
Fazal, Nadeem; Shelip, Alla; Siddiqui, Erum; Ali, Ashraf; Azim, Anser C; Al-Ghoul, Walid M
2012-03-01
Recently we found that superimposition of Enterococcus faecalis infection on burn injury caused an eruption of host mortality not seen with either individual challenge. We hypothesized that the Enterococcus bacteria, and/or factors related to these organisms, aggravate burn-induced modulations in host defense by neutrophils. Our study focuses on alterations in neutrophils' oxidative, proteolytic, and adhesive functions and transendothelial migration of neutrophils in burn rats inoculated with E. faecalis. Rats were subjected to burn (30% total body surface area) and then intra-abdominally inoculated with E. faecalis (10(4)CFU kg(-1) b.w). Polymorphonuclear neutrophils (PMNs) were harvested from circulating/blood and tissue/peritoneal cavity at day-2 post injury. Extracellular release of O(-)(2) anion production was determined by luminometry, and intracellular production of reactive oxygen species was measured by digital imaging technique. Fluoroscan analysis and confocal microscopy determined intracellular elastase production. The expression of adhesion molecule CD11b/CD18 was performed by flow cytometry. Calcein AM-labeled PMNs were co-cultured with TNF-α-stimulated rat lung microvascular endothelial cells, and their ability to adhere was assessed by fluorometry and digital imaging and finally, chemotaxis was measured by neutrophil transmigration assays. The results showed differential effector responses by circulatory and/or tissue PMNs. Tissue/peritoneal PMNs produced more O(-)(2), less intracellular elastase, and increased expression of CD11b/CD18 accompanied with increased adhesivity of MIP-2-stimulated PMNs to endothelial cells as compared to circulatory/blood PMNs. This differential effect was more pronounced following burn plus E. faecalis infection, indicating that the combined injury changed neutrophil functions. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Irankhah, Sahar; Soudi, Mohammad Reza; Gharavi, Sara
2016-04-01
The US Environmental Protection Agency has suggested faecal enterococci as the primary bacterial indicators. Of more importance is their direct correlation with swimmer-associated gastroenteritis in recreation water quality monitoring. In contrast to other seawater bodies with 3.5% salinity, the recreational waters in the southern coast of the Caspian Sea possess its own salinity (about 1% w/v) and thus require further investigations to determine the capacity of Enterococcus faecalis as the sole primary microbial index in this unique aquatic environment. The survey of the presence and survival of E. faecalis as a microbial index in the recreational waters of the southern Caspian Sea was carried out using a microcosm as an experimental model. The concentration of E. faecalis cells in samples of seawater were estimated by a standard membrane filtration method using m-Enterococcus agar as the selective culture medium. As the current standard culture-based methods are not reliable enough for the detection of non-growing, damaged and under-tension bacteria, PCR was used to identify the possible VBNC form of the bacterium after disappearance of the culturable cells. A continuous decline in the number of culturable E. faecalis cells resulted in apparent elimination of the bacteria from seawater in a defined period. Detection of intact DNA was possible in the following 60 days. The salinity of about 1% and the self-purification properties of the Caspian Sea make the conditions feasible for the use of this microorganism as a measure of water quality throughout the region. The results confirmed the presence of damaged bacterial cells, namely VBNC forms, indicating the necessity of examining of the sea water samples by using molecular approaches or repair procedures.
Silveira, Luiz Fernando Machado; Baca, Pilar; Arias-Moliz, María Teresa; Rodríguez-Archilla, Alberto; Ferrer-Luque, Carmen María
2013-01-01
The purpose of this study was to assess the efficacy of alexidine (ALX), alone and combined with N-acetylcysteine (NAC), in eradicating two Enterococcus faecalis strain biofilms. The biofilms of E. faecalis ATCC 29212 and the clinical isolate E. faecalis D1 were grown in the MBEC-high-throughput device for 24 h and were exposed to five twofold dilutions of ALX (2%–0.007 8%) alone and combined with 100 mg⋅mL−1 NAC, for 1 and 5 min. Eradication was defined as 100% kill of biofilm bacteria. The Student's t-test was used to compare the efficacy of the associations of the two irrigants. After 1-min contact time, ALX eradicated the biofilms at all concentrations except for 0.007 8% and 0.015 6%–0.007 8% with E. faecalis ATCC 29212 and E. faecalis D1, respectively. Similar results for eradication and concentration were obtained when it was combined with 100 mg⋅mL−1 NAC. After 5 min of contact time, ALX alone and combined with NAC eradicated all enterococci biofilms. ALX showed antimicrobial properties against the two E. faecalis strain biofilms tested at very low concentrations, and its combined use with NAC was not seen to enhance its activity. PMID:23970139
Fan, Wei; Wu, Yujie; Ma, Tengjiao; Li, Yanyun; Fan, Bing
2016-01-01
The main purpose of this study was to investigate the substantivity of Ag-Ca-Si mesoporous nanoparticles (Ag-MCSNs) on dentin and its residual antibacterial effects against Enterococcus faecalis. Ag-MCSNs were fabricated and characterized, ion release profile and pH were tested, and the ability to inhibit planktonic E. faecalis as well as the cytotoxicity was evaluated. Dentin slices were medicated with Ca(OH)2 paste, 2 % chlorhexidine gel and Ag-MCSNs paste for 7 days and then irrigated. Dentin slices were then immersed in E. faecalis suspension for 6 days and then transferred to fresh brain heart infusion solution. The optical density value within 10 h after immersing and transferring were measured and compared among groups. Results indicated that Ag-MCSNs showed high pH, sustained Ag(+)-Ca(2+)-SiO3 (2-) ion release, and high substantivity on dentin. The Ag-MCSNs exhibited strong antibacterial effects against planktonic E. faecalis and much better residual inhibition effects against E. faecalis growth on dentin than Ca(OH)2 paste (P < 0.05). The Ag-MCSNs showed excellent antibacterial ability against E. faecalis and high substantivity on dentin, which might be developed to a new effective intra-canal medicament for human teeth.
2012-03-01
Staphylococcus epidermidis, Micrococcus sp., Enterococcus faecalis, Listeria monocytogenes, Shigella boydii, Shigella sonnei, Shigella flexneri...MSSA, VRE B. cereus, MSSA, MRSA, Micrococcus , E. faecalis, L. monocytogenes, Shigella, E. coli, S. enterica, Acinetobacter 505 G1 B. subtilis 505...subtilis B. cereus 506 B3 VRE B. cereus, MSSA, MRSA, Micrococcus , E. faecalis, L. monocytogenes, Shigella, E. coli, S. enterica, Acinetobacter
Yuan, Li; Zhai, Ya-Jun; Wu, Hua; Sun, Hua-Run; He, Zhi-Pei; Wang, Ya-Bin; Pan, Yu-Shan; Kuang, Nan-Nan; Hu, Gong-Zheng
2018-06-01
The resistance/nodulation/cell division (RND) family multidrug efflux pump, OqxAB, has been identified as one of the leading mechanisms of plasmid-mediated quinolone resistance and has become increasingly prevalent among Enterobacteriaceae in recent years. However, oqxAB genes have not yet been reported in Enterococcus isolates. The aim of the present study was to identify the oqxAB genes and investigate their prevalence among Enterococcus from swine manure in China. The oqxAB genes were screened in 87 Enterococcus isolates by PCR. The transferability of the oqxAB genes in Enterococcus was determined by conjugation experiments. The genetic environment of oqxAB genes was investigated by cloning experiments, PCR mapping and sequencing. A high prevalence (86.2 %) of olaquindox resistance was observed in Enterococcus and 98.9 % isolates exhibited multidrug-resistance phenotypes. The occurrence of oqxA and oqxB in Enterococcus was also high (79.3 and 65.5 %, respectively). Sequence analysis of the cloned fragment indicated that the oqxAB cassette was linked to an incomplete Tn5 transposon containing aph(3')-IIa and flanked by IS26 [IS26-oqxAB-IS26-aph(3')-IIa]. The oqxAB-aph(3')-IIa-positive transconjugant or transformant showed resistance or reduced susceptibility to enrofloxacin, ciprofloxacin, olaquindox, mequindox, florfenicol, neomycin and kanamycin. This is the first time that the oqxAB genes have been identified in Enterococcus faecalis from swine manure. The genetic linkage of oqxAB-aph(3')-IIa in Enterococcus has not been described before. The high prevalence of oqxAB genes in Enterococcus suggests that it may constitute a reservoir for oqxAB genes and pose a potential threat to public health.
Yang, Jing-xian; Li, Tong; Ning, Yong-zhong; Shao, Dong-hua; Liu, Jing; Wang, Shu-qin; Liang, Guo-wei
2015-07-01
The incidence of vancomycin-resistant enterococcus (VRE) in China is increasing, the molecular epidemiology of VRE in China is only partly known. This study was conducted to assess the molecular characterization of resistance, virulence and clonality of 69 vancomycin-resistant Enterococcus faecium (VREfm) and seven vancomycin-resistant Enterococcus faecalis (VREfs) isolates obtained from a Chinese hospital between July 2011 and July 2013. The glycopeptide resistance genes (VanA and VanB) were screened by multiplex PCR. The presence of five putative virulence genes (esp, gelE, asa1, hyl and cylA) were evaluated by another multiplex PCR. Multilocus sequence typing (MLST) scheme was used to assess the clonality. All 76 VRE isolates exhibited VanA phenotype and harbored VanA gene. Esp was the only gene detected both in VREfm and VREfs strains, accounting for 89.9% and 42.9%, respectively. The hyl gene was merely positive in 27.5% of VREfm strains. MLST analysis demonstrated three STs (ST6, ST4 and ST470) in VREfs and twelve STs (ST78, ST571, ST17, ST564, ST389, ST18, ST547, ST341, ST414, ST343, ST262 and ST203) in VREfm, which were all designated as CC17 by eBURST algorithm. An outbreak of VREfm belonging to ST571 was found to happen within the neurology ward in this hospital. To our knowledge, this is the first report of ST6 (CC2) VREfs strains in China and the first outbreak report of VREfm strains belonging to ST571 around the world. Our data could offer important information for understanding the molecular features of VRE in China. Copyright © 2015 Elsevier B.V. All rights reserved.
Quantification of carious pathogens in the interdental microbiota of young caries-free adults
Inquimbert, Camille; Tramini, Paul; Molinari, Nicolas; Carrouel, Florence
2017-01-01
Background The majority of caries lesions in adults occur on the proximal tooth surfaces of the posterior teeth. A comprehensive study of the composition of the oral microbiota is fundamental for a better understanding of the etiology of interdental caries. Methods Twenty-five caries-free subjects (20–35 years old) were enrolled in the study. The interdental biofilm of four interdental sites were collected. The real-time polymerase chain reaction (PCR) methodology were used to quantify (i) the following bacteria: Streptococcus spp., Streptococcus mutans, Lactobacillus spp., Enterococcus spp., and Enterococcus faecalis; (ii) the fungus Candida albicans; and (iii) total bacteria. Results Streptococcus spp. was the most abundant species, followed by Lactobacillus spp. and Enterococcus spp. Streptococcus spp. and Lactobacillus spp. were detected at all tested sites and Enterococcus spp. at 99% of sites. S. mutans was detected at only 28% of the tested sites and C. albicans was detected at 11% of sites. E. faecalis was never detected. In 54.5% of the biofilm inhabited by C. albicans, S. mutans was present. Moreover, 28% of the ID sites co-expressed S. mutans and Lactobacillus spp. The studied pathogens were organized into two correlated groups of species. Strikingly, the fungus C. albicans and the bacteria Enterococcus spp. cluster together, whereas Streptococcus spp., S. mutans and Lactobacillus spp. form one distinct cluster. Conclusion The interdental biofilm of young caries-free adults is comprised of pathogens that are able to induce interproximal caries. That several of these pathogens are implicated in heart disease or other systemic diseases is an argument for the disruption of interdental biofilms using daily oral hygiene. PMID:29016613
Gavaldà, Joan; Len, Oscar; Miró, José M; Muñoz, Patricia; Montejo, Miguel; Alarcón, Aristides; de la Torre-Cisneros, Julián; Peña, Carmen; Martínez-Lacasa, Xavier; Sarria, Cristina; Bou, Germán; Aguado, José M; Navas, Enrique; Romeu, Joan; Marco, Francesc; Torres, Carmen; Tornos, Pilar; Planes, Ana; Falcó, Vicenç; Almirante, Benito; Pahissa, Albert
2007-04-17
High-level aminoglycoside resistance (HLAR) that precludes bactericidal synergism with penicillins or glycopeptides and nephrotoxicity related to aminoglycoside treatment are major problems in treating Enterococcus faecalis endocarditis. To evaluate the efficacy and safety of ampicillin plus ceftriaxone for treating endocarditis due to E. faecalis with and without HLAR. Observational, open-label, nonrandomized, multicenter clinical trial. 13 centers in Spain. 21 patients with HLAR E. faecalis endocarditis and 22 patients with non-HLAR E. faecalis endocarditis. All were at risk for nephrotoxicity related to aminoglycoside use. 6-week course of intravenous ampicillin, 2 g every 4 hours, plus intravenous ceftriaxone, 2 g every 12 hours. Clinical and microbiological outcomes. The clinical cure rate at 3 months was 67.4% (29 of 43 patients) among all episodes. During treatment, 28.6% of patients with HLAR E. faecalis endocarditis and 18.2% of patients with non-HLAR E. faecalis endocarditis died of infection-related causes. The rate of clinical and microbiological cure in patients who completed the protocol was 100% in the HLAR E. faecalis endocarditis group. No episodes of breakthrough bacteremia occurred, although there were 2 relapses in the non-HLAR E. faecalis endocarditis group. Treatment was withdrawn in 1 case because of fever and skin rash. The study had a small sample and was observational. The combination of ampicillin and ceftriaxone is effective and safe for treating HLAR E. faecalis endocarditis and could be a reasonable alternative for patients with non-HLAR E. faecalis endocarditis who are at increased risk for nephrotoxicity.
Valera, Marcia Carneiro; da Silva, Katy Costa Godinho; Maekawa, Lilian Eiko; Carvalho, Cláudio Antonio Talge; Koga-Ito, Cristiane Yumi; Camargo, Carlos Henrique Ribeiro; Silva e Lima, Raphael
2009-01-01
Objective: The purpose of this study was to evaluate the action of sodium hypochlorite (NaOCl) associated with an intracanal medication against Candida albicans and Enterococcus faecalis inoculated in root canals. Material and Methods: Thirty-six human single-rooted teeth with single root canals were used. The canals were contaminated with C. albicans and E. faecalis for 21 days and were then instrumented with 1% NaOCl. The roots were divided into 3 groups (n=12) according to the intracanal medication applied: calcium hydroxide paste, 2% chlorhexidine (CHX) gel, and 2% CHX gel associated with calcium hydroxide. The following collections were made from the root canals: a) initial sample (IS): 21 days after contamination (control), b) S1: after instrumentation, c) S2: 14 days after intracanal medication placement; S3: 7 days after intracanal medication removal. The results were analyzed statistically by the Kruskal-Wallis test at 5% significance level. Results and Conclusions: Both 1% NaOCl irrigation and the intracanal medications were effective in eliminating E. faecalis and C. albicans inoculated in root canals. PMID:20027425
Valera, Marcia Carneiro; Silva, Katy Costa Godinho da; Maekawa, Lilian Eiko; Carvalho, Cláudio Antonio Talge; Koga-Ito, Cristiane Yumi; Camargo, Carlos Henrique Ribeiro; Lima, Raphael Silva e
2009-01-01
The purpose of this study was to evaluate the action of sodium hypochlorite (NaOCl) associated with an intracanal medication against Candida albicans and Enterococcus faecalis inoculated in root canals. Thirty-six human single-rooted teeth with single root canals were used. The canals were contaminated with C. albicans and E. faecalis for 21 days and were then instrumented with 1% NaOCl. The roots were divided into 3 groups (n=12) according to the intracanal medication applied: calcium hydroxide paste, 2% chlorhexidine (CHX) gel, and 2% CHX gel associated with calcium hydroxide. The following collections were made from the root canals: a) initial sample (IS): 21 days after contamination (control), b) S1: after instrumentation, c) S2: 14 days after intracanal medication placement; S3: 7 days after intracanal medication removal. The results were analyzed statistically by the Kruskal-Wallis test at 5% significance level. Both 1% NaOCl irrigation and the intracanal medications were effective in eliminating E. faecalis and C. albicans inoculated in root canals.
Ono, Toshirou; Usami, Atsushi; Nakaya, Satoshi; Maeba, Keisuke; Yonejima, Yasunori; Toyoda, Masanori; Ikeda, Atsushi; Miyazawa, Mitsuo
2015-01-01
Enterococcus faecalis is one of the major lactic acid bacterium (LAB) species colonizing the intestines of animals and humans. The characteristic odor of the volatile oils obtained from both the liquid medium after incubation (MAI) and liquid medium before incubation (MBI) in the cultivation process of E. faecalis was investigated to determine the utility of the liquid medium. In total, fifty-six and thirty-two compounds were detected in the volatile oils from the MAI (MAI oil) and MBI (MBI oil), respectively. The principle components of MAI oil were 2,5-dimethylpyrazine (19.3%), phenylacetaldehyde (19.3%), and phenylethyl alcohol (9.3%). The aroma extract dilution analysis (AEDA) method was performed using gas chromatography-olfactometry (GC-O). The total number of aroma-active compounds identified in the volatile oil from MBI and MAI was thirteen compounds; in particular, 5-methyl-2-furanmethanol, phenylacetaldehyde, and phenylethyl alcohol were the most primary aroma-active compounds in MAI oil. These results imply that the industrial cultivation medium after incubation of E. faecalis may be utilized as a source of volatile oils.
Prażmo, Ewa Joanna; Godlewska, Renata Alicja; Mielczarek, Agnieszka Beata
2017-04-01
The study aimed to investigate the effectiveness of photodynamic therapy in the elimination of intracanal Enterococcus faecalis biofilm and to analyse how a repeated light irradiation, replenishment of oxygen and photosensitiser affect the results of the photodynamic disinfecting protocol. After chemomechanical preparation, 46 single-rooted human teeth were infected with a clinical strain of E. faecalis and incubated for a week in microaerobic conditions. The experimental procedures included groups of single application of photodynamic therapy, two cycles of PDT, irrigation with 5.25% NaOCl solution and negative and positive control. The number of residing bacterial colonies in the root canals was determined based on the CFU/ml method. In the group of preparations irrigated with NaOCl, bacterial colonies were not observed. A single PDT eliminated 45% of the initial CFU/ml. Repeated PDT eradicated 95% of the intracanal bacterial biofilm. Photodynamic therapy has a high potential for the elimination of E. faecalis biofilm. There is a safe therapeutic window where photoinduced disinfection can be used as an adjuvant to conventional endodontic treatment, which remains the most effective.
Gao, Yurong; Li, Benling; Li, Dapeng; Zhang, Liyuan
2016-05-01
To purify and characterize a novel bacteriocin with broad inhibitory spectrum produced by an isolate of Enterococcus faecalis from Chinese fermented cucumber. E. faecalis L11 produced a bacteriocin with antimicrobial activity against both Escherichia coli and Staphylococcus aureus. The amino acid sequence of the purified bacteriocin, enterocin L11, was assayed by Edman degradation method. It differs from other class II bacteriocins and exhibited a broad antimicrobial activity against not only Gram-positive bacteria, including Bacillus subtilis, S. aureus, Listeria monocytogenes, Sarcina flava, Lactobacillus acidophilus, L. plantarum, L. delbrueckii subsp. delbrueckii, L. delbrueckii subsp. bulgaricus and Streptococcus thermophilus, but also some Gram-negative bacteria including Salmonella typhimurium, E. coli and Shigella flexneri. Enterocin L11 retained 91 % of its activity after holding at 121 °C for 30 min. It was also resistant to acids and alkalis. Enterocin L11 is a novel broad-spectrum Class II bacteriocin produced by E. faecalis L11, and may have potential as a food biopreservative.
Biohybrid Polymer-Antimicrobial Peptide Medium against Enterococcus faecalis
Eckhard, Lea H.; Sol, Asaf; Abtew, Ester; Shai, Yechiel; Domb, Abraham J.
2014-01-01
Antimicrobial peptides (AMPs) are conserved evolutionary components of the innate immune system that are being tested as alternatives to antibiotics. Slow release of AMPs using biodegradable polymers can be advantageous in maintaining high peptide levels for topical treatment, especially in the oral environment in which dosage retention is challenged by drug dilution with saliva flow and by drug inactivation by salivary enzymatic activity. Enterococcus faecalis is a multidrug resistant nosocomial pathogen and a persistent pathogen in root canal infections. In this study, four ultra-short lipopeptides (C16-KGGK, C16-KLLK, C16-KAAK and C16-KKK) and an amphipathic α-helical antimicrobial peptide (Amp-1D) were tested against E. faecalis. The antibacterial effect was determined against planktonic bacteria and bacteria grown in biofilm. Of the five tested AMPs, C16-KGGK was the most effective. Next C16-KGGK was formulated with one of two polymers poly (lactic acid co castor oil) (DLLA) or ricinoleic acid-based poly (ester-anhydride) P(SA-RA). Peptide-synthetic polymer conjugates, also referred to as biohybrid mediums were tested for antibacterial activity against E. faecalis grown in suspension and in biofilms. The new formulations exhibited strong and improved anti- E. faecalis activity. PMID:25279943
Mansfield, Jillian M; Herrmann, Paul; Jesionowski, Amy M; Vickerman, M Margaret
2017-11-01
Streptococcus gordonii produces a pheromone heptapeptide, s.g.cAM373, which induces a conjugative mating response in Enterococcus faecalis cells carrying the responsive plasmid, pAM373. We investigated the extent of this intergeneric signaling on DNA acquisition by streptococcal species likely to cohabit oral biofilms. E. faecalis/pAM373/pAMS470 cells were incubated with synthetic s.g.cAM373, reverse peptide s.g.cAM373-R, or peptide-free medium and examined for their abilities to transfer plasmid DNA to streptococcal species in the presence of DNase. Preinduction of E. faecalis donors with s.g.cAM373 resulted in transconjugation frequencies in non-pheromone producing strains of Streptococcus mutans, Streptococcus sanguinis, Streptococcus anginosus, and Streptococcus suis that were significantly higher than frequencies when donors were preincubated with s.g.cAM373-R or medium alone. Peptide-mediated communication between commensal streptococci and E. faecalis carrying pheromone-responsive plasmids may facilitate conjugative DNA transfer to bystander species, and influence the reservoir of antibiotic resistance determinants of enterococcal origin in the oral metagenome.
Wojnicz, Dorota; Tichaczek-Goska, Dorota; Korzekwa, Kamila; Kicia, Marta; Hendrich, Andrzej B
2016-12-01
Drinking of cranberry fruit juice and application of commercial preparations containing the cranberry extracts are recommended in the prevention and treatment of urinary tract infections (UTIs), especially in women with recurrent UTIs. Many studies focus on the activity of cranberries against uropathogenic Escherichia coli (E. coli) strains. However, the knowledge of the cranberry effect on Gram-positive Enterococcus faecalis (E. faecalis) is limited. Therefore, the aim of our study was to establish the activity of commercial concentrated cranberry extract on the growth, virulence factors and biofilm formation of E. faecalis strains isolated from urine. Minimal inhibitory concentrations (MICs) of cranberry extract were determined by the broth microdilution method. Disc diffusion method was used to determine antimicrobial susceptibility. The impact of cranberry extract on bacterial survival, hydrophobicity, synthesis of lipase, lecithinase, DNase, hemolysin, gelatinase and biofilm mass was determined. Results show that cranberry extract inhibits the growth, enzymatic activities of bacteria and limits biofilm formation. The antibacterial activities of the studied cranberry extract confirm that it could be successfully used in prevention of UTIs caused by E. faecalis.
Hanin, Aurelie; Sava, Irina; Bao, YinYin; Huebner, Johannes; Hartke, Axel; Auffray, Yanick; Sauvageot, Nicolas
2010-01-01
Enterococcus faecalis is part of the commensal microbiota of humans and its main habitat is the gastrointestinal tract. Although harmless in healthy individuals, E. faecalis has emerged as a major cause of nosocomial infections. In order to better understand the transformation of a harmless commensal into a life-threatening pathogen, we developed a Recombination-based In Vivo Expression Technology for E. faecalis. Two R-IVET systems with different levels of sensitivity have been constructed in a E. faecalis V583 derivative strain and tested in the insect model Galleria mellonella, during growth in urine, in a mouse bacteremia and in a mouse peritonitis model. Our combined results led to the identification of 81 in vivo activated genes. Among them, the ef_3196/7 operon was shown to be strongly induced in the insect host model. Deletion of this operonic structure demonstrated that this two-component system was essential to the E. faecalis pathogenic potential in Galleria. Gene ef_0377, induced in insect and mammalian models, has also been further analyzed and it has been demonstrated that this ankyrin-encoding gene was also involved in E. faecalis virulence. Thus these R-IVET screenings led to the identification of new E. faecalis factors implied in in vivo persistence and pathogenic potential of this opportunistic pathogen. PMID:20686694
Targeting Enterococcus faecalis Biofilms with Phage Therapy
Khalifa, Leron; Brosh, Yair; Gelman, Daniel; Coppenhagen-Glazer, Shunit; Beyth, Shaul; Poradosu-Cohen, Ronit; Que, Yok-Ai; Beyth, Nurit
2015-01-01
Phage therapy has been proven to be more effective, in some cases, than conventional antibiotics, especially regarding multidrug-resistant biofilm infections. The objective here was to isolate an anti-Enterococcus faecalis bacteriophage and to evaluate its efficacy against planktonic and biofilm cultures. E. faecalis is an important pathogen found in many infections, including endocarditis and persistent infections associated with root canal treatment failure. The difficulty in E. faecalis treatment has been attributed to the lack of anti-infective strategies to eradicate its biofilm and to the frequent emergence of multidrug-resistant strains. To this end, an anti-E. faecalis and E. faecium phage, termed EFDG1, was isolated from sewage effluents. The phage was visualized by electron microscopy. EFDG1 coding sequences and phylogeny were determined by whole genome sequencing (GenBank accession number KP339049), revealing it belongs to the Spounavirinae subfamily of the Myoviridae phages, which includes promising candidates for therapy against Gram-positive pathogens. This analysis also showed that the EFDG1 genome does not contain apparent harmful genes. EFDG1 antibacterial efficacy was evaluated in vitro against planktonic and biofilm cultures, showing effective lytic activity against various E. faecalis and E. faecium isolates, regardless of their antibiotic resistance profile. In addition, EFDG1 efficiently prevented ex vivo E. faecalis root canal infection. These findings suggest that phage therapy using EFDG1 might be efficacious to prevent E. faecalis infection after root canal treatment. PMID:25662974
Park, Shin Yong; Kim, Kyoung Mi; Lee, Joon Ha; Seo, Sook Jae; Lee, In Hee
2007-01-01
We isolated Enterococcus faecalis from the body fluids of dead larvae of the greater wax moth, Galleria mellonella. Extracellular gelatinase (GelE) and serine protease (SprE), both of which are considered putative virulence factors of E. faecalis, were purified from the culture supernatant of E. faecalis. In an attempt to elucidate their virulence mechanisms, purified GelE and SprE were injected into hemolymph of G. mellonella and evaluated with regard to their effects on the immune system of insect hemolymph. As a result, it was determined that E. faecalis GelE degraded an inducible antimicrobial peptide (Gm cecropin) which is known to perform a critical role in host defense during the early phase of microbial infection. The results obtained from the G. mellonella-E. faecalis infection model compelled us to assess the virulence activity of GelE against the complement system in human serum. E. faecalis GelE hydrolyzed C3a and also mediated the degradation of the alpha chain of C3b, thereby inhibiting opsonization and the formation of the membrane attack complex resultant from the activation of the complement cascade triggered by C3 activation. In contrast, E. faecalis SprE exhibited no virulence effect against the immune system of insect hemolymph or human serum tested in this study. PMID:17261598
Wei, Lei; Wu, Qingping; Zhang, Jumei; Guo, Weipeng; Chen, Moutong; Xue, Liang; Wang, Juan; Ma, Lianying
2017-01-01
Enterococcus faecalis is an important opportunistic pathogen which is frequently detected in mineral water and spring water for human consumption and causes human urinary tract infections, endocarditis and neonatal sepsis. The aim of this study was to determine the prevalence, virulence genes, antimicrobial resistance and genetic diversity of E. faecalis from mineral water and spring water in China. Of 314 water samples collected from January 2013 to January 2014, 48 samples (15.3%) were contaminated E. faecalis . The highest contamination rate occurred in activated carbon filtered water of spring water (34.5%), followed by source water of spring water (32.3%) and source water of mineral water (6.4%). The virulence gene test of 58 E. faecalis isolates showed that the detection rates of asa1 , ace , cylA , gelE and hyl were 79.3, 39.7, 0, 100, 0%, respectively. All 58 E. faecalis isolates were not resistant to 12 kinds of antibiotics (penicillin, ampicillin, linezolid, quinupristin/dalfopristin, vancomycin, gentamicin, streptomycin, ciprofloxacin, levofloxacin, norfloxacin, nitrofurantoin, and tetracycline). Enterobacterial repetitive intergenic consensus-PCR classified 58 isolates and three reference strains into nine clusters with a similarity of 75%. This study is the first to investigate the prevalence of E. faecalis in mineral water and spring water in China. The results of this study suggested that spring water could be potential vehicles for transmission of E. faecalis .
Beshiru, Abeni; Igbinosa, Isoken H; Omeje, Faith I; Ogofure, Abraham G; Eyong, Martin M; Igbinosa, Etinosa O
2017-03-01
The continuous misuse of antimicrobials in food animals both orally and subcutaneously as therapeutic and prophylactic agents to bacterial infections could be detrimental and contribute to the dissemination of resistant clones in livestock production. The present study was carried out to determine the antibiogram and virulence gene characteristics of Enterococcus species from pig farms. A total of 300 faecal samples were obtained from two pig farms in Benin City between February and July 2016. Standard culture-based and polymerase chain reaction (PCR) assay were adopted in the detection and characterization of the Enterococcus species. Antimicrobial susceptibility profile was determined using disc diffusion method. A total of 268 enterococci isolates were recovered from both farms investigated. In Farm A, 94/95 (99%) of E. faecalis isolates were resistant to clindamycin; while 23/25 (92%) of E. faecium isolates were resistant to clindamycin. In farm B, all E. faecalis isolates 119/119 (100%) were resistant to clindamycin; while 26/29 (90%) of E. faecium isolates were resistant to clindamycin. Virulence gene detected in the enterococci isolates includes aggregation (asa1) [Farm A (E. faecalis 66%, E. faecium 76%), Farm B (E. faecalis 71%, E. faecium 13%)] and others. Multidrug resistant profile of the isolates revealed that 17/95 (18%) of E. faecalis and 3/25 (12%) of E. faecium isolates from Farm A as well as, 16/119 (14%) of E. faecalis and 5/29 (17%) of E. faecium isolates from Farm B were resistant to CLI R , PEN R , ERY R , GEN R , TET R , MEM R , KAN R , and PTZ R . The high level of resistance observed in the study and their virulence gene signatures, calls for effective environmental monitoring to circumvent the environmental dissemination of resistant pathogenic clones. Thus environmental hygiene should be provided to food animals to prevent the proliferation and spread of resistant bacteria. Copyright © 2017 Elsevier Ltd. All rights reserved.
Zhang, Rui; Chen, Min; Lu, Yan; Guo, Xiangjun; Qiao, Feng; Wu, Ligeng
2015-08-06
We compared the antibacterial and residual antimicrobial activities of five root canal irrigants (17% EDTA,2% chlorhexidine,0.2% cetrimide, MTAD, and QMix) in a model of Enterococcus faecalis biofilm formation. Sixty dentin blocks with 3-week E. faecalis biofilm were divided into six equal groups and flushed with irrigant for 2 min or left untreated. A blank control group was also established. Antibacterial activities of the irrigants were evaluated by counting colony forming units. To test residual antimicrobial activities, 280 dentin blocks were divided into seven equal groups and flushed with irrigant for 2 min or left untreated and then incubated with E. faecalis suspension for 48 h, or used as a blank. No bacteria were observed in the blank control group. The number of viable E. faecalis was significantly fewer in the irrigant-treated groups compared with the untreated control (P < 0.05). Among the five irrigants, QMix had the strongest antibacterial activity. Residual antimicrobial activities of CHX were significantly higher at 12 h, 24 h and 36 h compared to untreated control (P < 0.05). All five root canal irrigants were effective to some extent against E. faecalis, but QMix and CHX had the strongest, and CHX the longest (up to 36 h), antimicrobial activity.
Isolation and identification of Enterococcus faecalis from necrotic root canals using multiplex PCR.
Mahmoudpour, Ali; Rahimi, Saeed; Sina, Mahmood; Soroush, Mohammad H; Shahi, Shahriar; Shahisa, Shahriar; Asl-Aminabadi, Naser
2007-09-01
This study was designed to survey the incidence of Enterococcus faecalis infection in symptomatic and asymptomatic root canals of necrotic teeth using PCR and to isolate the bacterium for further screening. Sixty patients categorized according to their clinical symptoms were used for sampling by insertion of paper points into the root canals and absorbing all the fluids present within them. The samples were incubated in 1.0 ml 2xYT (containing 16 g bacto tryptone, 10 g yeast extract and 5.0 g NaCl per liter) for 24 h at 37 degrees C without aeration prior to multiplex PCR analysis. To assist the isolation of E. faecalis, sub-samples were further grown in the same medium supplemented with 6.5% NaCl and back-inoculated into bile esculin. Using multiple cultivation-dependent and PCR analyses, 6 cases (10%) of E. faecalis were identified. Four isolates were obtained from asymptomatic cases of chronic apical periodontitis, and the other two were associated with phoenix abscess and acute apical abscess, respectively. No E. faecalis infection was found in 5 patients with acute apical periodontitis or in 9 with chronic suppurative periodontitis. Our results indicate that there is no significant difference in the incidence of E. faecalis between symptomatic and asymptomatic necrotic dental root canals (P > 0.05).
Chajęcka-Wierzchowska, Wioleta; Zadernowska, Anna; Łaniewska-Trokenheim, Łucja
2016-10-25
The objective of the study was to answer the question of whether the ready-to-eat meat products can pose indirect hazard for consumer health serving as reservoir of Enterococcus strains harboring tetracyclines, aminoglycosides, and macrolides resistance genes. A total of 390 samples of ready-to-eat meat products were investigated. Enterococcus strains were found in 74.1% of the samples. A total of 302 strains were classified as: Enterococcus faecalis (48.7%), Enterococcus faecium (39.7%), Enterococcus casseliflavus (4.3%), Enterococcus durans (3.0%), Enterococcus hirae (2.6%), and other Enterococcus spp. (1.7%). A high percentage of isolates were resistant to streptomycin high level (45%) followed by erythromycin (42.7%), fosfomycin (27.2%), rifampicin (19.2%), tetracycline (36.4%), tigecycline (19.9%). The ant(6')-Ia gene was the most frequently found gene (79.6%). Among the other genes that encode aminoglycosides-modifying enzymes, the highest portion of the strains had the aac(6')-Ie-aph(2'')-Ia (18.5%) and aph(3'')-IIIa (16.6%), but resistance of isolates from food is also an effect of the presence of aph(2'')-Ib, aph(2'')-Ic, aph(2'')-Id genes. Resistance to tetracyclines was associated with the presence of tetM (43.7%), tetL (32.1%), tetK (14.6%), tetW (0.7%), and tetO (0.3%) genes. The ermB and ermA genes were found in 33.8% and 18.9% of isolates, respectively. Nearly half of the isolates contained a conjugative transposon of the Tn916/Tn1545 family. Enterococci are widely present in retail ready-to-eat meat products. Many isolated strains (including such species as E. casseliflavus, E. durans, E. hirae, and Enterococcus gallinarum) are antibiotic resistant and carry transferable resistance genes. © 2016 Institute of Food Technologists®.
Beukers, Alicia G.; Zaheer, Rahat; Cook, Shaun R.; Stanford, Kim; Chaves, Alexandre V.; Ward, Michael P.; McAllister, Tim A.
2015-01-01
Tylosin phosphate is a macrolide commonly administered to cattle in North America for the control of liver abscesses. This study investigated the effect of in-feed administration of tylosin phosphate to cattle at subtherapeutic levels and its subsequent withdrawal on macrolide resistance using enterococci as an indicator bacterium. Fecal samples were collected from steers that received no antibiotics and steers administered tylosin phosphate (11 ppm) in-feed for 197 days and withdrawn 28 days before slaughter. Enterococcus species isolated from fecal samples were identified through sequencing the groES-EL intergenic spacer region and subject to antimicrobial susceptibility testing, identification of resistance determinants and pulsed-field gel electrophoresis profiling. Tylosin increased (P < 0.05) the proportion of eryR and tylR enterococci within the population. Just prior to its removal, the proportion of eryR and tylR resistant enterococci began decreasing and continued to decrease after tylosin was withdrawn from the diet until there was no difference (P > 0.05) between treatments on d 225. This suggests that antibiotic withdrawal prior to slaughter contributes to a reduction in the proportion of macrolide resistant enterococci entering the food chain. Among the 504 enterococci isolates characterized, Enterococcus hirae was found to predominate (n = 431), followed by Enterococcus villorum (n = 32), Enterococcus faecium (n = 21), Enterococcus durans (n = 7), Enterococcus casseliflavus (n = 4), Enterococcus mundtii (n = 4), Enterococcus gallinarum (n = 3), Enterococcus faecalis (n = 1), and Enterococcus thailandicus (n = 1). The diversity of enterococci was greater in steers at arrival than at exit from the feedlot. Erythromycin resistant isolates harbored the erm(B) and/or msrC gene. Similar PFGE profiles of eryR E. hirae pre- and post-antibiotic treatment suggest that increased abundance of eryR enterococci after administration of tylosin phosphate reflects selection for strains that were already present within the gastrointestinal tract of cattle at arrival. PMID:26074889
Figueras, M J; Inza, I; Polo, F; Guarro, J
1998-10-01
m-Enterococcus agar (m-Ent) has been generally considered the reference medium for faecal streptococci in bathing waters. However, it shows several shortcomings, and therefore it is important to test newly developed media that can guarantee more precise results. In this sense, the recently described oxolinic acid--esculin--azide agar medium (OAA) and m-enterococcus agar (m-Ent) were comparatively evaluated for the detection of faecal streptococci from seawater and fresh water. The OAA medium showed a significantly higher relative recovery percentage and specificity for both types of water than m-Ent. A similar spectrum of species was recorded from both media, Enterococcus faecium being predominant in fresh water and Enterococcus faecalis, in seawater. The superior performance of the OAA medium in both types of bathing waters, added to the fact that it does not require the use of complementary confirmative tests, makes this medium an excellent candidate to be employed for monitoring programmes.
Furlaneto-Maia, Luciana; Rocha, Kátia Real; Siqueira, Vera Lúcia Dias; Furlaneto, Márcia Cristina
2014-01-01
Enterococci are increasingly responsible for nosocomial infections worldwide. This study was undertaken to compare the identification and susceptibility profile using an automated MicrosScan system, PCR-based assay and disk diffusion assay of Enterococcus spp. We evaluated 30 clinical isolates of Enterococcus spp. Isolates were identified by MicrosScan system and PCR-based assay. The detection of antibiotic resistance genes (vancomycin, gentamicin, tetracycline and erythromycin) was also determined by PCR. Antimicrobial susceptibilities to vancomycin (30 µg), gentamicin (120 µg), tetracycline (30 µg) and erythromycin (15 µg) were tested by the automated system and disk diffusion method, and were interpreted according to the criteria recommended in CLSI guidelines. Concerning Enterococcus identification the general agreement between data obtained by the PCR method and by the automatic system was 90.0% (27/30). For all isolates of E. faecium and E. faecalis we observed 100% agreement. Resistance frequencies were higher in E. faecium than E. faecalis. The resistance rates obtained were higher for erythromycin (86.7%), vancomycin (80.0%), tetracycline (43.35) and gentamicin (33.3%). The correlation between disk diffusion and automation revealed an agreement for the majority of the antibiotics with category agreement rates of > 80%. The PCR-based assay, the van(A) gene was detected in 100% of vancomycin resistant enterococci. This assay is simple to conduct and reliable in the identification of clinically relevant enterococci. The data obtained reinforced the need for an improvement of the automated system to identify some enterococci. PMID:24626409
Rana, N F; Gente, S; Rincé, A; Auffray, Y; Laplace, J M
2012-09-01
Genetically-modified Enterococcus faecalis has a potential of survival and can be used in ethanolic fermentations. Fermentation profiles of E. faecalis JH2-2 were assessed using glucose and lactose as carbon sources. Deletion of lactate dehydrogenase (ldh) genes increased the ethanol production from 0.25 to 0.82 g/l, which was further increased to 0.96 g/l by the insertion of a pyruvate decarboxylase (pdc) gene (from Sarcina ventriculi or Clostridium acetobutylicum) in place ldh1. When grown on lactose, the pdcSv and pdcCa showed 13.6 and 17.6 U mg(-1) of pdc specific activity, respectively. Highest activity (47 U mg(-1)) and ethanol concentration (2.3 g/l) were obtained with pdcCa using an expression plasmid. Formate and acetate were also produced in high quantities. Transcriptional analysis showed that aldehyde alcohol dehydrogenase gene was upregulated up to 16-fold. Further optimizations are required for higher ethanol production.
Model systems for the study of Enterococcal colonization and infection
Goh, H. M. Sharon; Yong, M. H. Adeline; Chong, Kelvin Kian Long
2017-01-01
ABSTRACT Enterococcus faecalis and Enterococcus faecium are common inhabitants of the human gastrointestinal tract, as well as frequent opportunistic pathogens. Enterococci cause a range of infections including, most frequently, infections of the urinary tract, catheterized urinary tract, bloodstream, wounds and surgical sites, and heart valves in endocarditis. Enterococcal infections are often biofilm-associated, polymicrobial in nature, and resistant to antibiotics of last resort. Understanding Enterococcal mechanisms of colonization and pathogenesis are important for identifying new ways to manage and intervene with these infections. We review vertebrate and invertebrate model systems applied to study the most common E. faecalis and E. faecium infections, with emphasis on recent findings examining Enterococcal-host interactions using these models. We discuss strengths and shortcomings of each model, propose future animal models not yet applied to study mono- and polymicrobial infections involving E. faecalis and E. faecium, and comment on the significance of anti-virulence strategies derived from a fundamental understanding of host-pathogen interactions in model systems. PMID:28102784
Seet, Aaron N; Zilm, Peter S; Gully, Neville J; Cathro, Peter R
2012-12-01
The effectiveness of sonic activation, laser activation and syringe irrigation of 4% sodium hypochlorite in removing an Enterococcus faecalis biofilm was compared. Biofilms were grown in extracted human single rooted teeth using a flow cell apparatus. After 4 weeks' growth, teeth were subjected to each treatment using 4% sodium hypochlorite and radicular dentinal surfaces of the root canals were analysed by scanning electron microscopy. Results showed that sonic activation and syringe irrigation with sodium hypochlorite showed reduced numbers of bacterial cells on the radicular dentine but were not effective in eliminating E. faecalis in the dentinal tubules. Laser activation of sodium hypochlorite resulted in clean dentine walls and undetectable levels of bacteria within dentinal tubules. Qualitatively, sonic or laser activation of 4% NaOCl resulted in greater bacterial reduction compared with syringe irrigation, with laser activation producing the greatest overall reduction. © 2012 The Authors. Australian Endodontic Journal © 2012 Australian Society of Endodontology.
Di Sante, Laura; Morroni, Gianluca; Brenciani, Andrea; Vignaroli, Carla; Antonelli, Alberto; D'Andrea, Marco Maria; Di Cesare, Andrea; Giovanetti, Eleonora; Varaldo, Pietro E; Rossolini, Gian Maria; Biavasco, Francesca
2017-09-01
To analyse the recombination events associated with conjugal mobilization of two multiresistance plasmids, pRUM17i48 and pLAG (formerly named pDO1-like), from Enterococcus faecium 17i48 to Enterococcus faecalis JH2-2. The plasmids from two E. faecalis transconjugants (JH-4T, tetracycline resistant, and JH-8E, erythromycin resistant) and from the E. faecium donor (also carrying a pHTβ-like conjugative plasmid, named pHTβ17i48) were investigated by several methods, including PCR mapping and sequencing, S1-PFGE followed by Southern blotting and hybridization, and WGS. Two locations of repApHTβ were detected in both transconjugants, one on a ∼50 kb plasmid (as in the donor) and the other on plasmids of larger sizes. In JH-4T, WGS disclosed an 88.6 kb plasmid resulting from the recombination of pHTβ17i48 (∼50 kb) and a new plasmid, named pLAG (35.3 kb), carrying the tet(M), tet(L), lsa(E), lnu(B), spw and aadE resistance genes. In JH-8E, a 75 kb plasmid resulting from the recombination of pHTβ17i48 and pRUM17i48 was observed. In both cases, the cointegrates were apparently derived from replicative transposition of an IS1216 present in each of the multiresistance plasmids into pHTβ17i48. The cointegrates could resolve to yield the multiresistance plasmids and a pHTβ17i48 derivative carrying an IS1216 (unlike the pHTβ17i48 of the donor). Our results completed the characterization of the multiresistance plasmids carried by the E. faecium 17i48, confirming the role of pHT plasmids in the mobilization of non-conjugative antibiotic resistance elements among enterococci. Results also revealed that mobilization to E. faecalis was associated with the generation of cointegrate plasmids promoted by IS1216-mediated transposition. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
2017-01-01
ABSTRACT Enterococcus faecalis is a commensal of the human gastrointestinal tract that can persist in the external environment and is a leading cause of hospital-acquired infections. Given its diverse habitats, the organism has developed numerous strategies to survive a multitude of environmental conditions. Previous studies have demonstrated that E. faecalis will incorporate fatty acids from bile and serum into its membrane, resulting in an induced tolerance to membrane-damaging agents. To discern whether all fatty acids induce membrane stress protection, we examined how E. faecalis responded to individually supplied fatty acids. E. faecalis readily incorporated fatty acids 14 to 18 carbons in length into its membrane but poorly incorporated fatty acids shorter or longer than this length. Supplementation with saturated fatty acids tended to increase generation time and lead to altered cellular morphology in most cases. Further, exogenously supplied saturated fatty acids did not induce tolerance to the membrane-damaging antibiotic daptomycin. Supplementation with unsaturated fatty acids produced variable growth effects, with some impacting generation time and morphology. Exogenously supplied unsaturated fatty acids that are normally produced by E. faecalis and those that are found in bile or serum could restore growth in the presence of a fatty acid biosynthetic inhibitor. However, only the eukaryote-derived fatty acids oleic acid and linoleic acid provided protection from daptomycin. Thus, exogenous fatty acids do not lead to a common physiological effect on E. faecalis. The organism responds uniquely to each, and only host-derived fatty acids induce membrane protection. IMPORTANCE Enterococcus faecalis is a commonly acquired hospital infectious agent with resistance to many antibiotics, including those that target its cellular membrane. We previously demonstrated that E. faecalis will incorporate fatty acids found in human fluids, like serum, into its cellular membrane, thereby altering its membrane composition. In turn, the organism is better able to survive membrane-damaging agents, including the antibiotic daptomycin. We examined fatty acids commonly found in serum and those normally produced by E. faecalis to determine which fatty acids can induce protection from membrane damage. Supplementation with individual fatty acids produced a myriad of different effects on cellular growth, morphology, and stress response. However, only host-derived unsaturated fatty acids provided stress protection. Future studies are aimed at understanding how these specific fatty acids induce protection from membrane damage. PMID:29079613
Guerrero-Olmos, Katheryne; Báez, John; Valenzuela, Nicomédes; Gahona, Joselyne; del Campo, Rosa; Silva, Juan
2014-01-01
Background Enterococcus is one of the major human pathogens able to acquire multiple antibiotic-resistant markers as well as virulence factors which also colonize remote ecosystems, including wild animals. In this work, we characterized the Enterococcus population colonizing the gut of Chilean Altiplano camelids without foreign human contact. Material and methods Rectal swabs from 40 llamas and 10 alpacas were seeded in M-Enterococcus agar, and we selected a total of 57 isolates. Species identification was performed by biochemical classical tests, semi-automated WIDER system, mass spectrometry analysis by MALDI-TOF (matrix-assisted laser desorption/ionization with a time-of-flight mass spectrometer), and, finally, nucleotide sequence of internal fragments of the 16S rRNA, rpoB, pheS, and aac(6)-I genes. Genetic diversity was measured by pulsed field gel electrophoresis (PFGE)-SmaI, whereas the antibiotic susceptibility was determined by the WIDER system. Carriage of virulence factors was explored by polymerase chain reaction (PCR). Results Our results demonstrated that the most prevalent specie was Enterococcus hirae (82%), followed by other non–Enterococcus faecalis and non–Enterococcus faecium species. Some discrepancies were detected among the identification methods used, and the most reliable were the rpoB, pheS, and aac(6)-I nucleotide sequencing. Selected isolates exhibited susceptibility to almost all studied antibiotics, and virulence factors were not detected by PCR. Finally, some predominant clones were characterized by PFGE into a diverse genetic background. Conclusion Enterococcus species from the Chilean camelids’ gut microbiota were different from those adapted to humans, and they remained free of antibiotic resistance mechanisms as well as virulence factors. PMID:25405007
Comparative genomics of Enterococcus faecalis from healthy Norwegian infants
Solheim, Margrete; Aakra, Ågot; Snipen, Lars G; Brede, Dag A; Nes, Ingolf F
2009-01-01
Background Enterococcus faecalis, traditionally considered a harmless commensal of the intestinal tract, is now ranked among the leading causes of nosocomial infections. In an attempt to gain insight into the genetic make-up of commensal E. faecalis, we have studied genomic variation in a collection of community-derived E. faecalis isolated from the feces of Norwegian infants. Results The E. faecalis isolates were first sequence typed by multilocus sequence typing (MLST) and characterized with respect to antibiotic resistance and properties associated with virulence. A subset of the isolates was compared to the vancomycin resistant strain E. faecalis V583 (V583) by whole genome microarray comparison (comparative genomic hybridization (CGH)). Several of the putative enterococcal virulence factors were found to be highly prevalent among the commensal baby isolates. The genomic variation as observed by CGH was less between isolates displaying the same MLST sequence type than between isolates belonging to different evolutionary lineages. Conclusion The variations in gene content observed among the investigated commensal E. faecalis is comparable to the genetic variation previously reported among strains of various origins thought to be representative of the major E. faecalis lineages. Previous MLST analysis of E. faecalis have identified so-called high-risk enterococcal clonal complexes (HiRECC), defined as genetically distinct subpopulations, epidemiologically associated with enterococcal infections. The observed correlation between CGH and MLST presented here, may offer a method for the identification of lineage-specific genes, and may therefore add clues on how to distinguish pathogenic from commensal E. faecalis. In this work, information on the core genome of E. faecalis is also substantially extended. PMID:19393078
Schouten, M A; Hoogkamp-Korstanje, J A
1997-08-01
The in-vitro activity of quinupristin-dalfopristin was compared with those of vancomycin, teicoplanin, erythromycin, clarithromycin, rifampicin, imipenem, meropenem, ciprofloxacin and sparfloxacin against 414 bloodstream isolates of Gram-positive cocci. Quinupristin-dalfopristin inhibited strains of Streptococcus pyogenes and Streptococcus agalactiae at 0.12 mg/L, methicillin- and/or erythromycin-resistant Staphylococcus aureus and Staphylococcus epidermidis at 0.5 mg/L, Staphylococcus haemolyticus, Enterococcus faecium, Streptococcus pneumoniae, Streptococcus mitis, Streptococcus bovis, Streptococcus sanguis and Streptococcus anginosus at 1 mg/L and Enterococcus faecalis at 8 mg/L.
Izquierdo, Esther; Wagner, Camille; Marchioni, Eric; Aoude-Werner, Dalal; Ennahar, Saïd
2009-01-01
Enterococcus faecalis WHE 96, a strain isolated from soft cheese based on its anti-Listeria activity, produced a 5,494-Da bacteriocin that was purified to homogeneity by ultrafiltration and cation-exchange and reversed-phase chromatographies. The amino acid sequence of this bacteriocin, named enterocin 96, was determined by Edman degradation, and its structural gene was sequenced, revealing a double-glycine leader peptide. After a comparison with other bacteriocins, it was shown that enterocin 96 was a new class II bacteriocin that showed very little similarity with known structures. Enterocin 96 was indeed a new bacteriocin belonging to class II bacteriocins. The activity spectrum of enterocin 96 covered a wide range of bacteria, with strong activity against most gram-positive strains but very little or no activity against gram-negative strains. PMID:19411428
Izquierdo, Esther; Wagner, Camille; Marchioni, Eric; Aoude-Werner, Dalal; Ennahar, Saïd
2009-07-01
Enterococcus faecalis WHE 96, a strain isolated from soft cheese based on its anti-Listeria activity, produced a 5,494-Da bacteriocin that was purified to homogeneity by ultrafiltration and cation-exchange and reversed-phase chromatographies. The amino acid sequence of this bacteriocin, named enterocin 96, was determined by Edman degradation, and its structural gene was sequenced, revealing a double-glycine leader peptide. After a comparison with other bacteriocins, it was shown that enterocin 96 was a new class II bacteriocin that showed very little similarity with known structures. Enterocin 96 was indeed a new bacteriocin belonging to class II bacteriocins. The activity spectrum of enterocin 96 covered a wide range of bacteria, with strong activity against most gram-positive strains but very little or no activity against gram-negative strains.
Olfa, Baâtour; Mariem, Aouadi; Salah, Abbassi Mohamed; Mouhiba, BenNasri Ayachi
2016-11-01
Essential oils of marjoram were extracted from plants, growing under non-saline and saline condition (75mM NaCl). Their antioxidant and antibaterial activity against six bacteria (Enterococcus faecalis, Escherichia coli, Salmonella enteritidis, Listeria ivanovii, Listeria inocula, and Listeria monocytogenes) were assessed. Result showed that, (i) independently of salt treatment, marjoram essential oils inhibited the growth of most of the bacteria but in degrees. The least susceptible one was Enterococcus faecalis. (ii) Gram negative bacteria seemed more sensitive to treated essential oils than Gram positive ones. (iii) Compared to synthetic antibiotics, marjoram essential oils were more effective against E. coli, L. innocua and S. enteridis. This activity was due to their high antioxidant activity. Thus, essential oils of marjoram may be an alternative source of natural antibacterial and antioxidant agents.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shi,K.; Brown, C.; Gu, Z.
2005-01-01
Many bacterial activities, including expression of virulence factors, horizontal genetic transfer, and production of antibiotics, are controlled by intercellular signaling using small molecules. To date, understanding of the molecular mechanisms of peptide-mediated cell-cell signaling has been limited by a dearth of published information about the molecular structures of the signaling components. Here, we present the molecular structure of PrgX, a DNA- and peptide-binding protein that regulates expression of the conjugative transfer genes of the Enterococcus faecalis plasmid pCF10 in response to an intercellular peptide pheromone signal. Comparison of the structures of PrgX and the PrgX/pheromone complex suggests that pheromone bindingmore » destabilizes PrgX tetramers, opening a 70-bp pCF10 DNA loop required for conjugation repression.« less
Enterococcal Endocarditis: Can We Win the War?
Munita, Jose M.
2015-01-01
Treatment of enterococcal infections has long been recognized as an important clinical challenge, particularly in the setting of infective endocarditis (IE). Furthermore, the increase prevalence of isolates exhibiting multidrug resistance (MDR) to traditional anti-enterococcal antibiotics such as ampicillin, vancomycin and aminoglycosides (high-level resistance) poses immense therapeutic dilemmas in hospitals around the world. Unlike IE caused by most isolates of Enterococcus faecalis, which still retain susceptibility to ampicillin and vancomycin, the emergence and dissemination of a hospital-associated genetic clade of multidrug resistant Enterococcus faecium, markedly limits the therapeutic options. The best treatment of IE MDR enterococcal endocarditis is unknown and the paucity of antibiotics with bactericidal activity against these organisms is a cause of serious concern. Although it appears that we are winning the war against E. faecalis, the battle rages on against isolates of multidrug-resistant E. faecium. PMID:22661339
Lee, Sae-Mi; Huh, Hee Jae; Song, Dong Joon; Shim, Hyang Jin; Park, Kyung Sun; Kang, Cheol-In; Ki, Chang-Seok; Lee, Nam Yong
2017-12-01
To investigate linezolid-resistance mechanisms in linezolid-nonsusceptible enterococci (LNSE) isolated from a tertiary hospital in Korea. Enterococcal isolates exhibiting linezolid MICs ≥4 mg l -1 that were isolated between December 2011 and May 2016 were investigated by PCR and sequencing for mutations in 23S rRNA or ribosomal proteins (L3, L4 and L22) and for the presence of cfr, cfr(B) and optrA genes.Results/Key findings. Among 135 LNSE (87 Enterococcus faecium and 48 Enterococcus faecalis isolates), 39.1 % (34/87) of E. faecium and 18.8 % (9/48) of E. faecalis isolates were linezolid-resistant. The optrA carriage was the dominant mechanism in E. faecalis: 13 isolates, including 10 E. faecalis [70 % (7/10) linezolid-resistant and 30 % (3/10) linezolid-intermediate] and three E. faecium [33.3 % (1/3) linezolid-resistant and 66.7 % (2/3) linezolid-intermediate], contained the optrA gene. G2576T mutations in the 23S rRNA gene were detected only in E. faecium [14 isolates; 71.4 % (10/14) linezolid-resistant and 28.6 % (4/14) linezolid-intermediate]. One linezolid-intermediate E. faecium harboured a L22 protein alteration (Ser77Thr). No isolates contained cfr or cfr(B) genes and any L3 or L4 protein alterations. No genetic mechanism of resistance was identified for 67.6 % (23/34) of linezolid-resistant E. faecium. A low rate of 23S rRNA mutations and the absence of known linezolid-resistance mechanisms in the majority of E. faecium isolates suggest regional differences in the mechanisms of linezolid resistance and the possibility of additional mechanisms.
Oravcova, Veronika; Mihalcin, Matus; Zakova, Jana; Pospisilova, Lucie; Masarikova, Martina; Literak, Ivan
2017-12-31
Vancomycin-resistant enterococci (VRE) are pathogens of increasing medical importance. In Brno, Czech Republic, we collected 37 samples from the effluent of a wastewater treatment plant (WWTP), 21 surface swabs from hospital settings, and 59 fecal samples from hospitalized patients and staff. Moreover, we collected 284 gull cloacal swabs from the colony situated 35km downstream the WWTP. Samples were cultured selectively. Enterococci were identified using MALDI-TOF MS, phenotypically tested for susceptibility to antibiotics, and by PCR for occurrence of resistance and virulence genes. Pulsed-field gel electrophoresis (PFGE) and multi-locus sequence typing (MLST) were used to examine genotypic diversity. VRE carrying the vanA gene were found in 32 (86%, n=37) wastewater samples, from which we obtained 49 isolates: Enterococcus faecium (44) and Enterococcus gallinarum (2), Enterococcus casseliflavus (2), and Enterococcus raffinosus (1). From 33 (69%) of 48 inpatient stool samples, we obtained 39 vanA-carrying VRE, which belonged to E. faecium (33 isolates), Enterococcus faecalis (4), and Enterococcus raffinosus (2). Nearly one-third of the samples from hospital surfaces contained VRE with the vanA gene. VRE were not detected among gulls. Sixty-seven (84%, n=80) E. faecium isolates carried virulence genes hyl and/or esp. Virulence of E. faecalis was encoded by gelE, asa1, and cylA genes. A majority of the E. faecium isolates belonged to the clinically important sequence types ST17 (WWTP: 10 isolates; hospital: 4 isolates), ST18 (9;8), and ST78 (5;0). The remaining isolates belonged to ST555 (2;0), ST262 (1;6), ST273 (3;0), ST275 (1;0), ST549 (2;0), ST19 (0;1), ST323 (3;0), and ST884 (7;17). Clinically important enterococci carrying the vanA gene were almost continually detectable in the effluent of the WWTP, indicating insufficient removal of VRE during wastewater treatment and permanent shedding of these antibiotic resistant pathogens into the environment from this source. This represents a risk of their transmission to the environment. Copyright © 2017 Elsevier B.V. All rights reserved.
da Silva Fernandes, Meg; Kabuki, Dirce Yorika; Kuaye, Arnaldo Yoshiteru
2015-05-04
The formation of mono-species biofilm (Listeria monocytogenes) and multi-species biofilms (Enterococcus faecium, Enterococcus faecalis, and L. monocytogenes) was evaluated. In addition, the effectiveness of sanitation procedures for the control of the multi-species biofilm also was evaluated. The biofilms were grown on stainless steel coupons at various incubation temperatures (7, 25 and 39°C) and contact times (0, 1, 2, 4, 6 and 8 days). In all tests, at 7°C, the microbial counts were below 0.4 log CFU/cm(2) and not characteristic of biofilms. In mono-species biofilm, the counts of L. monocytogenes after 8 days of contact were 4.1 and 2.8 log CFU/cm(2) at 25 and 39°C, respectively. In the multi-species biofilms, Enterococcus spp. were present at counts of 8 log CFU/cm(2) at 25 and 39°C after 8 days of contact. However, the L. monocytogenes in multi-species biofilms was significantly affected by the presence of Enterococcus spp. and by temperature. At 25°C, the growth of L. monocytogenes biofilms was favored in multi-species cultures, with counts above 6 log CFU/cm(2) after 8 days of contact. In contrast, at 39°C, a negative effect was observed for L. monocytogenes biofilm growth in mixed cultures, with a significant reduction in counts over time and values below 0.4 log CFU/cm(2) starting at day 4. Anionic tensioactive cleaning complemented with another procedure (acid cleaning, disinfection or acid cleaning+disinfection) eliminated the multi-species biofilms under all conditions tested (counts of all micro-organisms<0.4 log CFU/cm(2)). Peracetic acid was the most effective disinfectant, eliminating the multi-species biofilms under all tested conditions (counts of the all microorganisms <0.4 log CFU/cm(2)). In contrast, biguanide was the least effective disinfectant, failing to eliminate biofilms under all the test conditions. Copyright © 2015 Elsevier B.V. All rights reserved.
Ghosh, Anuradha; Borst, Luke; Stauffer, Stephen H.; Suyemoto, Mitsu; Moisan, Peter; Zurek, Ludek
2013-01-01
Approximately 15% of foster kittens die before 8 weeks of age, with most of these kittens demonstrating clinical signs or postmortem evidence of enteritis. While a specific cause of enteritis is not determined in most cases, these kittens are often empirically administered probiotics that contain enterococci. The enterococci are members of the commensal intestinal microbiota but also can function as opportunistic pathogens. Given the complicated role of enterococci in health and disease, it would be valuable to better understand what constitutes a “healthy” enterococcal community in these kittens and how this microbiota is impacted by severe illness. In this study, we characterized the ileum mucosa-associated enterococcal community of 50 apparently healthy and 50 terminally ill foster kittens. In healthy kittens, Enterococcus hirae was the most common species of ileum mucosa-associated enterococci and was often observed to adhere extensively to the small intestinal epithelium. These E. hirae isolates generally lacked virulence traits. In contrast, non-E. hirae enterococci, notably Enterococcus faecalis, were more commonly isolated from the ileum mucosa of kittens with terminal illness. Isolates of E. faecalis had numerous virulence traits and multiple antimicrobial resistances. Moreover, the attachment of Escherichia coli to the intestinal epithelium was significantly associated with terminal illness and was not observed in any kitten with adherent E. hirae. These findings identify a significant difference in the species of enterococci cultured from the ileum mucosa of kittens with terminal illness compared to the species cultured from healthy kittens. In contrast to prior case studies that associated enteroadherent E. hirae with diarrhea in young animals, these controlled studies identified E. hirae as more often isolated from healthy kittens and adherence of E. hirae as more common and extensive in healthy kittens than in sick kittens. PMID:23966487
Ma, Jinglei; Tong, Zhongchun; Ling, Junqi; Liu, Hongyan; Wei, Xi
2015-07-01
Sodium hypochlorite (NaOCl), chlorhexidine (CHX) and calcium hydroxide are common intracanal medicaments. The present study aimed to evaluate the effects of NaOCl and CHX on the antibacterial activities of alkaline media against Enterococcus faecalis. The survival rates of planktonic and biofilm E. faecalis were evaluated by plate counts after 1 min of pretreatment with NaOCl and CHX, and time-kill assays were then used to assess subsequent pH alkaline challenges. Dead and living cells in the E. faecalis biofilm were assessed with SYTO 9 and PI staining in combination with confocal laser scanning microscopy following exposure to NaOCl or CHX and subsequent alkaline challenges by common root canal irrigation and dressing procedures. One minute of pretreatment with 2% CHX, 0.2% CHX, or 5.25% NaOCl in combination with a subsequent alkaline challenge significantly decreased planktonic E. faecalis survival rates, but pretreatment with 1% NaOCl did not. The E. faecalis biofilm survival rates were reduced in the subsequent alkaline challenge following CHX pretreatment but gradually increased following NaOCl pretreatment. Similarly, CLSM analysis revealed that the greatest proportions of dead E. faecalis cells in the biofilms were presented in the CHX and alkaline treatment group. CHX might be more effective in improving the antibacterial activities of alkaline root canal medicaments against E. faecalis than NaOCl during routine root canal therapy procedures. Copyright © 2015 Elsevier Ltd. All rights reserved.
Maekawa, Lilian Eiko; Rossoni, Rodnei Dennis; Barbosa, Júnia Oliveira; Jorge, Antonio Olavo Cardoso; Junqueira, Juliana Campos; Valera, Marcia Carneiro
2015-01-01
Dried, fresh and glycolic extracts of Zingiber officinale were obtained to evaluate the action against G. mellonella survival assay against Enterococcus faecalis infection. Eighty larvae were divided into: 1) E. faecalis suspension (control); 2) E. faecalis + fresh extract of Z. officinale (FEO); 3) E. faecalis + dried extract of Z. officinale (DEO); 4) E. faecalis + glycolic extract of Z. officinale (GEO); 5) Phosphate buffered saline (PBS). For control group, a 5 μL inoculum of standardized suspension (107 cells/mL) of E. faecalis (ATCC 29212) was injected into the last left proleg of each larva. For the treatment groups, after E. faecalis inoculation, the extracts were also injected, but into the last right proleg. The larvae were stored at 37 °C and the number of dead larvae was recorded daily for 168 h (7 days) to analyze the survival curve. The larvae were considered dead when they did not show any movement after touching. E. faecalis infection led to the death of 85% of the larvae after 168 h. Notwithstanding, in treatment groups with association of extracts, there was an increase in the survival rates of 50% (GEO), 61% (FEO) and 66% (DEO) of the larvae. In all treatment groups, the larvae exhibited a survival increase with statistically significant difference in relation to control group (p=0.0029). There were no statistically significant differences among treatment groups with different extracts (p=0.3859). It may be concluded that the tested extracts showed antimicrobial activity against E. faecalis infection by increasing the survival of Galleria mellonella larvae.
Jaimee, G; Halami, P M
2017-09-01
High level aminoglycoside resistance (HLAR) in the lactic acid bacteria (LAB) derived from food animals is detrimental. The aim of this study was to investigate the localization and conjugal transfer of aminoglycoside resistance genes, aac(6')Ie-aph(2″)Ia and aph(3')IIIa in different Enterococcus species. The cross resistance patterns in Enterococcus faecalis MCC3063 to clinically important aminoglycosides by real time PCR were also studied. Southern hybridization experiments revealed the presence of aac(6')Ie-aph(2 ″ )Ia and aph(3')IIIa genes conferring HLAR in high molecular weight plasmids except in Lactobacillus plantarum. The plasmid encoded bifunctional aac(6')Ie-aph(2″)Ia gene was transferable from Enterococcus avium (n = 2), E. cecorum (n = 1), E. faecalis (n = 1) and Pediococcus lolii (n = 1) species into the recipient strain; E. faecalis JH2-2 by filter mating experiments thus indicating the possible risks of gene transfer into pathogenic strains. Molecular analysis of cross resistance patterns in native isolate of E. faecalis MCC3063 carrying aac(6')Ie-aph(2″)Ia and aph(3')IIIa gene was displayed by quantification of the mRNA levels in this study. For this, the culture was induced with increasing concentrations of gentamicin, kanamycin and streptomycin (2048, 4096, 8192, 16384 μg/mL) individually. The increasing concentrations of gentamicin and kanamycin induced the expression of the aac(6')Ie-aph(2″)Ia and aph(3')IIIa resistance genes, respectively. Interestingly, it was observed that induction with streptomycin triggered a significant fold increase in the expression of the aph(3')IIIa gene which otherwise was not known to modify the aminoglycoside. This is noteworthy as streptomycin was found to confer cross resistance to structurally unrelated kanamycin. Also, expression of the aph(3')IIIa gene when induced with streptomycin, revealed that bacteria harbouring this gene will be able to overcome streptomycin bactericidal action at specific concentrations. HLAR in E. faecalis MCC3063 may be due to the combined expression of both the aac(6')Ie-aph(2″)Ia and aph(3')IIIa genes which could be therapeutically challenging. A combined expression of both the genes in E. faecalis MCC3063 may yield HLAR which could be therapeutically challenging. The study highlights the significant alterations in the mRNA expression levels of aac(6')Ie-aph(2″)Ia and aph(3')IIIa in resistant pathogens, upon exposure to clinically vital aminoglycosides. Copyright © 2017 Elsevier Ltd. All rights reserved.
An Attenuated CRISPR-Cas System in Enterococcus faecalis Permits DNA Acquisition.
Hullahalli, Karthik; Rodrigues, Marinelle; Nguyen, Uyen Thy; Palmer, Kelli
2018-05-01
Antibiotic-resistant bacteria are critical public health concerns. Among the prime causative factors for the spread of antibiotic resistance is horizontal gene transfer (HGT). A useful model organism for investigating the relationship between HGT and antibiotic resistance is the opportunistic pathogen Enterococcus faecalis , since the species possesses highly conjugative plasmids that readily disseminate antibiotic resistance genes and virulence factors in nature. Unlike many commensal E. faecalis strains, the genomes of multidrug-resistant (MDR) E. faecalis clinical isolates are enriched for mobile genetic elements (MGEs) and lack c lustered r egularly i nterspaced s hort p alindromic r epeats (CRISPR) and C RISPR- as sociated protein (Cas) genome defense systems. CRISPR-Cas systems cleave foreign DNA in a programmable, sequence-specific manner and are disadvantageous for MGE-derived genome expansion. An unexplored facet of CRISPR biology in E. faecalis is that MGEs that are targeted by native CRISPR-Cas systems can be maintained transiently. Here, we investigate the basis for this "CRISPR tolerance." We observe that E. faecalis can maintain self-targeting constructs that direct Cas9 to cleave the chromosome, but at a fitness cost. Interestingly, DNA repair genes were not upregulated during self-targeting, but integrated prophages were strongly induced. We determined that low cas9 expression contributes to this transient nonlethality and used this knowledge to develop a robust CRISPR-assisted genome-editing scheme. Our results suggest that E. faecalis has maximized the potential for DNA acquisition by attenuating its CRISPR machinery, thereby facilitating the acquisition of potentially beneficial MGEs that may otherwise be restricted by genome defense. IMPORTANCE CRISPR-Cas has provided a powerful toolkit to manipulate bacteria, resulting in improved genetic manipulations and novel antimicrobials. These powerful applications rely on the premise that CRISPR-Cas chromosome targeting, which leads to double-stranded DNA breaks, is lethal. In this study, we show that chromosomal CRISPR targeting in Enterococcus faecalis is transiently nonlethal. We uncover novel phenotypes associated with this "CRISPR tolerance" and, after determining its genetic basis, develop a genome-editing platform in E. faecalis with negligible off-target effects. Our findings reveal a novel strategy exploited by a bacterial pathogen to cope with CRISPR-induced conflicts to more readily accept DNA, and our robust CRISPR editing platform will help simplify genetic modifications in this organism. Copyright © 2018 Hullahalli et al.
Molina, Matías Alejandro; Díaz, Ailén Magalí; Hesse, Christina; Ginter, Wiebke; Gentilini, María Virginia; Nuñez, Guillermo Gabriel; Canellada, Andrea Mercedes; Sparwasser, Tim; Berod, Luciana; Castro, Marisa Silvia; Manghi, Marcela Alejandra
2015-01-01
Probiotics can modulate the immune system, conferring beneficial effects on the host. Understanding how these microorganisms contribute to improve the health status is still a challenge. Previously, we have demonstrated that Enterococcus faecalis CECT7121 implants itself and persists in the murine gastrointestinal tract, and enhances and skews the profile of cytokines towards the Th1 phenotype in several biological models. Given the importance of dendritic cells (DCs) in the orchestration of immunity, the aim of this work was to elucidate the influence of E. faecalis CECT7121 on DCs and the outcome of the immune responses. In this work we show that E. faecalis CECT7121 induces a strong dose-dependent activation of DCs and secretion of high levels of IL-12, IL-6, TNFα, and IL-10. This stimulation is dependent on TLR signaling, and skews the activation of T cells towards the production of IFNγ. The influence of this activation in the establishment of Th responses in vivo shows the accumulation of specific IFNγ-producing cells. Our findings indicate that the activation exerted by E. faecalis CECT7121 on DCs and its consequence on the cellular adaptive immune response may have broad therapeutic implications in immunomodulation. PMID:25978357
Genes Important for Catalase Activity in Enterococcus faecalis
Baureder, Michael; Hederstedt, Lars
2012-01-01
Little in general is known about how heme proteins are assembled from their constituents in cells. The Gram-positive bacterium Enterococcus faecalis cannot synthesize heme and does not depend on it for growth. However, when supplied with heme in the growth medium the cells can synthesize two heme proteins; catalase (KatA) and cytochrome bd (CydAB). To identify novel factors important for catalase biogenesis libraries of E. faecalis gene insertion mutants were generated using two different types of transposons. The libraries of mutants were screened for clones deficient in catalase activity using a colony zymogram staining procedure. Analysis of obtained clones identified, in addition to katA (encoding the catalase enzyme protein), nine genes distributed over five different chromosomal loci. No factors with a dedicated essential role in catalase biogenesis or heme trafficking were revealed, but the results indicate the RNA degradosome (srmB, rnjA), an ABC-type oligopeptide transporter (oppBC), a two-component signal transducer (etaR), and NADH peroxidase (npr) as being important for expression of catalase activity in E. faecalis. It is demonstrated that catalase biogenesis in E. faecalis is independent of the CydABCD proteins and that a conserved proline residue in the N-terminal region of KatA is important for catalase assembly. PMID:22590595
Clinical and molecular epidemiology of hospital Enterococcus faecalis isolates in eastern France.
Mulin, Blandine; Bailly, Pascale; Thouverez, Michelle; Cailleaux, Vincent; Cornette, Christian; Dupont, Marie-Jeanne; Talon, Daniel
1999-03-01
OBJECTIVE: To report on the occurrence of Enterococcus faecalis hospital isolates obtained during 1 year in hospitals in the Franche-Comté region of France. METHODS: Clinical isolates of E. faecalis of different antibiotic susceptibility phenotypes from hospitalized patients were characterized by pulsed-field gel electrophoresis. Patients with positive cultures were investigated by three case-control studies to identify risk factors for colonization/infection. RESULTS: The crude incidence of colonization/infection was 2.37%, and 4-day and 7-day colonization rates after admission were 10.0% and 6.36%, respectively. The rates of high-level resistance to kanamycin (HLKR) and to gentamicin (HLGR) were 47.1% and 7.1%, respectively. No isolate was resistant to glycopeptides or produced beta-lactamase. The 209 hospital isolates obtained during the study yielded 98 major DNA patterns, of which two were major epidemic patterns including HLKR isolates. No single factor was significantly associated with colonization/infection by HLKR isolates. The length of hospitalization before isolation was associated with colonization by HLGR isolates. CONCLUSIONS: The isolation frequency of E. faecalis strains with acquired resistance to aminoglycoside antibiotics, and the wide dissemination of resistant strains with characteristics that allow them to persist and spread, argue for further large prospective surveys of clinical isolates of E. faecalis in hospitals.
Veras, H. N. H.; Rodrigues, F. F. G.; Botelho, M. A.; Menezes, I. R. A.; Coutinho, H. D. M.; da Costa, J. G. M.
2014-01-01
The species Lippia sidoides Cham. (Verbenaceae) is utilized in popular medicine as a local antiseptic on the skin and mucosal tissues. Enterococcus faecalis is the bacterium isolated from root canals of teeth with persistent periapical lesions and has the ability to form biofilm, where it is responsible for the failure of endodontic treatments. Essential oil of L. sidoides (EOLS) and its major component, thymol, were evaluated for reducing the CFU in biofilms of E. faecalis in vitro. The essential oil was obtained by hydrodistillation and examined with respect to the chemical composition, by gas chromatography-mass spectrometry (GC-MS). The GC-MS analysis has led to the identification of thymol (84.9%) and p-cymene (5.33%). EOLS and thymol reduced CFU in biofilms of E. faecalis in vitro (time of maturation, 72 h), with an exposure time of 30 and 60 min at concentrations of 2.5 and 10%. There was no statistical difference in effect between EOLS and thymol, demonstrating that this phenolic monoterpene was the possible compound responsible for the antimicrobial activity of EOLS. This study provides a basis for the possible utilization of EOLS as an adjuvant in the treatment of root canals that show colonization by E. faecalis. PMID:24683344
Mapp, Latisha; Klonicki, Patricia; Takundwa, Prisca; Hill, Vincent R; Schneeberger, Chandra; Knee, Jackie; Raynor, Malik; Hwang, Nina; Chambers, Yildiz; Miller, Kenneth; Pope, Misty
2015-11-01
The U.S. Environmental Protection Agency's (EPA) Water Laboratory Alliance (WLA) currently uses ultrafiltration (UF) for concentration of biosafety level 3 (BSL-3) agents from large volumes (up to 100-L) of drinking water prior to analysis. Most UF procedures require comprehensive training and practice to achieve and maintain proficiency. As a result, there was a critical need to develop quality control (QC) criteria. Because select agents are difficult to work with and pose a significant safety hazard, QC criteria were developed using surrogates, including Enterococcus faecalis and Bacillus atrophaeus. This article presents the results from the QC criteria development study and results from a subsequent demonstration exercise in which E. faecalis was used to evaluate proficiency using UF to concentrate large volume drinking water samples. Based on preliminary testing EPA Method 1600 and Standard Methods 9218, for E. faecalis and B. atrophaeus respectively, were selected for use during the QC criteria development study. The QC criteria established for Method 1600 were used to assess laboratory performance during the demonstration exercise. Based on the results of the QC criteria study E. faecalis and B. atrophaeus can be used effectively to demonstrate and maintain proficiency using ultrafiltration. Published by Elsevier B.V.
Molina, Matías Alejandro; Díaz, Ailén Magalí; Hesse, Christina; Ginter, Wiebke; Gentilini, María Virginia; Nuñez, Guillermo Gabriel; Canellada, Andrea Mercedes; Sparwasser, Tim; Berod, Luciana; Castro, Marisa Silvia; Manghi, Marcela Alejandra
2015-01-01
Probiotics can modulate the immune system, conferring beneficial effects on the host. Understanding how these microorganisms contribute to improve the health status is still a challenge. Previously, we have demonstrated that Enterococcus faecalis CECT7121 implants itself and persists in the murine gastrointestinal tract, and enhances and skews the profile of cytokines towards the Th1 phenotype in several biological models. Given the importance of dendritic cells (DCs) in the orchestration of immunity, the aim of this work was to elucidate the influence of E. faecalis CECT7121 on DCs and the outcome of the immune responses. In this work we show that E. faecalis CECT7121 induces a strong dose-dependent activation of DCs and secretion of high levels of IL-12, IL-6, TNFα, and IL-10. This stimulation is dependent on TLR signaling, and skews the activation of T cells towards the production of IFNγ. The influence of this activation in the establishment of Th responses in vivo shows the accumulation of specific IFNγ-producing cells. Our findings indicate that the activation exerted by E. faecalis CECT7121 on DCs and its consequence on the cellular adaptive immune response may have broad therapeutic implications in immunomodulation.
Haubert, Louise; Cunha, Carlos Eduardo Pouey da; Lopes, Graciela Völz; Silva, Wladimir Padilha da
2018-05-01
The genetic basis of tetracycline resistance in a food isolate Listeria monocytogenes (Lm16) was evaluated. Resistance to tetracycline was associated with the presence of the tetM gene in plasmid DNA. The sequence of tetM showed 100% of similarity with the Enterococcus faecalis sequences found in the EMBL database, suggesting that Lm16 received this gene from E. faecalis. Various size bands were detected in the DNA plasmid analysis, the largest being approximately 54.38 kb. Transferability of the tetM gene was achieved in vitro by agar matings between Lm16 and E. faecalis JH2-2, proving the potential for the spread of tetM by horizontal gene transfer. Furthermore, the conjugation experiments were performed on the surface of processed cheese, confirming the transferability in a food matrix. PCR assays were used to confirm the identity of E. faecalis and to detect the tetM gene in transconjugant bacteria. Additionally, the minimal inhibitory concentration for tetracycline and rifampicin and plasmid profiling were performed. This is the first report of a food isolate L. monocytogenes carrying the tetM gene in plasmid DNA, and it highlights the potential risk of spreading antimicrobial resistance genes between different bacteria. Copyright © 2018 Elsevier Ltd. All rights reserved.
Repizo, Guillermo D; Blancato, Víctor S; Mortera, Pablo; Lolkema, Juke S; Magni, Christian
2013-05-01
Enterococcus faecalis encodes a biotin-dependent oxaloacetate decarboxylase (OAD), which is constituted by four subunits: E. faecalis carboxyltransferase subunit OadA (termed Ef-A), membrane pump Ef-B, biotin acceptor protein Ef-D, and the novel subunit Ef-H. Our results show that in E. faecalis, subunits Ef-A, Ef-D, and Ef-H form a cytoplasmic soluble complex (termed Ef-AHD) which is also associated with the membrane. In order to characterize the role of the novel Ef-H subunit, coexpression of oad genes was performed in Escherichia coli, showing that this subunit is vital for Ef-A and Ef-D interaction. Diminished growth of the oadA and oadD single deletion mutants in citrate-supplemented medium indicated that the activity of the complex is essential for citrate utilization. Remarkably, the oadB-deficient strain was still capable of growing to wild-type levels but with a delay during the citrate-consuming phase, suggesting that the soluble Ef-AHD complex is functional in E. faecalis. These results suggest that the Ef-AHD complex is active in its soluble form, and that it is capable of interacting in a dynamic way with the membrane-bound Ef-B subunit to achieve its maximal alkalinization capacity during citrate fermentation.
van der Waal, Suzette V; Jiang, Lei-Meng; de Soet, Johannes J; van der Sluis, Lucas W M; Wesselink, Paul R; Crielaard, Wim
2012-10-01
Incomplete disinfection of the root canal system is a major cause of post-treatment disease. This study aimed to investigate the disinfecting property of organic acid salts and sodium chloride (NaCl), in a double-hurdle strategy, on Enterococcus faecalis biofilms. First of all, the high-throughput resazurin metabolism assay (RMA) was used to test a range of organic acid salts. Then, to gain more insight into the efficacy of sorbate salt solutions, 48-h E. faecalis biofilms were evaluated in colony-forming unit (CFU) assays. Chlorhexidine (CHX) and calcium hydroxide [Ca(OH)(2) ] were tested in parallel as controls. Sorbate salt produced the largest and most significant reduction of fluorescence intensity in the RMA assay. Neither NaCl nor potassium sorbate (KS) alone induced a clinically relevant reduction of CFU counts after 1 h. Surprisingly, the combination of the two in a single solution had a synergistic effect on the inactivation of E. faecalis. Potassium sorbate amplified the efficacy of NaCl. Of the salts tested, NaCl with KS eradicated E. faecalis biofilms within 1 h. This study showed that the double-hurdle strategy indeed leads to synergistic efficacy and is a possible next step in the complete disinfection of endodontic infections. © 2012 Eur J Oral Sci.
Karkare, Swati Ramesh; Ahire, Nivedita Pramod; Khedkar, Smita Uday
2015-01-01
Enterococcus faecalis are the most resistant and predominant microorganisms recovered from root canals of teeth where previous treatment has failed. Over the past decade, interest in drugs derived from medicinal plants has markedly increased. In dentistry, phytomedicines has been used as an anti-inflammatory, antibiotic, analgesic, sedative, and also as an endodontic irrigant. In endodontics, because of the cytotoxic reactions of most of the commercial intracanal medicaments and their inability to eliminate bacteria completely from dentinal tubules, the trend is shifting toward use of biologic medication extracted from natural plants. To compare the antimicrobial efficacy of newer irrigating agents which would probably be as effective or more and at the same time less irritating to the tissues than sodium hypochlorite (NaOCl). The objective of this study was to compare the antimicrobial activity of saturated and diluted (1:1) hydroalcoholic extract of Aloe vera, garlic, and 5% NaOCl against E. faecalis using the commonly used agar diffusion method. Saturated hydroalcoholic extract of A. vera showed the highest zone of inhibition against E. faecalis. NaOCl, which is considered as gold standard, also showed higher zones of inhibition.
Woodford, N; Morrison, D; Johnson, A P; Briant, V; George, R C; Cookson, B
1993-01-01
DNA probes specific for genes encoding rRNA and the glycopeptide resistance gene vanA were used to investigate a cluster of vancomycin-resistant (MICs, > 512 mg/liter) Enterococcus faecalis and Enterococcus faecium isolated from separate patients in a renal unit in a London hospital. When digested with BamHI, 12 of 13 vancomycin-resistant E. faecalis isolates exhibited a common restriction fragment length polymorphism pattern of rRNA genes (ribotype). A vanA probe hybridized with chromosomal DNA in these 12 isolates. The other isolate of vancomycin-resistant E. faecalis had a different ribotype and the vanA gene was located on plasmid DNA. These data suggest that cross-infection with a single strain of vancomycin-resistant E. faecalis occurred in most instances. In contrast, 23 vancomycin-resistant E. faecium isolates showed greater heterogeneity, comprising 8 ribotypes, suggesting that multiple strains were present in the unit. Twenty-one of these 23 isolates harbored a 24-MDa plasmid which hybridized with the vanA probe, implying that interstrain dissemination of a vancomycin resistance plasmid may have occurred among E. faecium isolates in the renal unit. Images PMID:8096216
Velraeds, M M; van der Mei, H C; Reid, G; Busscher, H J
1996-06-01
In this study, 15 Lactobacillus isolates were found to produce biosurfactants in the mid-exponential and stationary growth phases. The stationary-phase biosurfactants from lactobacillus casei subsp. rhamnosus 36 and ATCC 7469, Lactobacillus fermentum B54, and Lactobacillus acidophilus RC14 were investigated further to determine their capacity to inhibit the initial adhesion of uropathogenic Enterococcus faecalis 1131 to glass in a parallel-plate flow chamber. The initial deposition rate of E. faecalis to glass with an adsorbed biosurfactant layer from L. acidophilus RC14 or L. fermentum B54 was significantly decreased by approximately 70%, while the number of adhering enterococci after 4 h of adhesion was reduced by an average of 77%. The surface activity of the biosurfactants and their activity inhibiting the initial adhesion of E. faecalis 1131 were retained after dialysis (molecular weight cutoff, 6,000 to 8,000) and freeze-drying. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy revealed that the freeze-dried biosurfactants from L. acidophilus RC14 and L. fermentum B54 were richest in protein, while those from L. casei subsp. rhamnosus 36 and ATCC 7469 had relatively high polysaccharide and phosphate contents.
Velraeds, M M; van der Mei, H C; Reid, G; Busscher, H J
1996-01-01
In this study, 15 Lactobacillus isolates were found to produce biosurfactants in the mid-exponential and stationary growth phases. The stationary-phase biosurfactants from lactobacillus casei subsp. rhamnosus 36 and ATCC 7469, Lactobacillus fermentum B54, and Lactobacillus acidophilus RC14 were investigated further to determine their capacity to inhibit the initial adhesion of uropathogenic Enterococcus faecalis 1131 to glass in a parallel-plate flow chamber. The initial deposition rate of E. faecalis to glass with an adsorbed biosurfactant layer from L. acidophilus RC14 or L. fermentum B54 was significantly decreased by approximately 70%, while the number of adhering enterococci after 4 h of adhesion was reduced by an average of 77%. The surface activity of the biosurfactants and their activity inhibiting the initial adhesion of E. faecalis 1131 were retained after dialysis (molecular weight cutoff, 6,000 to 8,000) and freeze-drying. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy revealed that the freeze-dried biosurfactants from L. acidophilus RC14 and L. fermentum B54 were richest in protein, while those from L. casei subsp. rhamnosus 36 and ATCC 7469 had relatively high polysaccharide and phosphate contents. PMID:8787394
DOE Office of Scientific and Technical Information (OSTI.GOV)
Skaff, D. Andrew; Ramyar, Kasra X.; McWhorter, William J.
Hymeglusin (1233A, F244, L-659-699) is established as a specific {beta}-lactone inhibitor of eukaryotic hydroxymethylglutaryl-CoA synthase (HMGCS). Inhibition results from formation of a thioester adduct to the active site cysteine. In contrast, the effects of hymeglusin on bacterial HMG-CoA synthase, mvaS, have been minimally characterized. Hymeglusin blocks growth of Enterococcus faecalis. After removal of the inhibitor from culture media, a growth curve inflection point at 3.1 h is observed (vs 0.7 h for the uninhibited control). Upon hymeglusin inactivation of purified E. faecalis mvaS, the thioester adduct is more stable than that measured for human HMGCS. Hydroxylamine cleaves the thioester adduct;more » substantial enzyme activity is restored at a rate that is 8-fold faster for human HMGCS than for mvaS. Structural results explain these differences in enzyme-inhibitor thioester adduct stability and solvent accessibility. The E. faecalis mvaS-hymeglusin cocrystal structure (1.95 {angstrom}) reveals virtually complete occlusion of the bound inhibitor in a narrow tunnel that is largely sequestered from bulk solvent. In contrast, eukaryotic (Brassica juncea) HMGCS binds hymeglusin in a more solvent-exposed cavity.« less
Bactericidal effect of the 908 nm diode laser on Enterococcus faecalis in infected root canals
Preethee, Thomas; Kandaswamy, Deivanayagam; Arathi, Ganesh; Hannah, Rosaline
2012-01-01
Aim: The aim of this study is to evaluate the bactericidal effect of 908 nm diode laser in conjunction with various irrigation regimes in disinfection of apical third of root dentin. Materials and Methods: Sixty prepared teeth with single canals were contaminated with Enterococcus faecalis. The specimens were divided into 6 groups (n = 10): Group 1 and 3 and 5 were subjected to chemo-mechanical preparation using 5.25% sodium hypochlorite (NaOCl), 17% Ethylenediaminetetraacetic acid (EDTA); 1.3% NaOCl, MTAD (mixture of doxycycline, citric acid and a detergent (Tween 80); and, 8.5% saline, respectively followed by 908 nm diode laser irradiation; Group 2 and 4, followed the same procedure as Group1 and 3, however without laser irradiation; and, Group 6, rinsed with saline solution (control). Dentin shavings from apical third were analyzed for the presence of E. faecalis using culture method and Polymerase Chain reaction (PCR). Results: One-way Analysis of variance showed statistically significant differences between the laser irradiated groups, non irradiated groups and the control group. Conclusion: 908 nm diode used in conjunction with conventional chemomechanical techniques demonstrated a significant elimination of E. faecalis in the apical third of root dentin. PMID:22368335
NASA Astrophysics Data System (ADS)
Yu, Wen; Hallinen, Kelsey; Wood, Kevin
Enterococcus faecalis are commonly associated with hospital acquired infections, because they readily form biofilms on instruments and medical devices. Biofilms are inherently more resistant to killing by antibiotics compared to planktonic bacteria, in part because of their heterogeneous spatial structure. Surprisingly, however, subminimal inhibitory concentrations (sub-MICs) of some antibiotics can actually promote biofilm formation. Unfortunately, much is still unknown about how low drug doses affect the composition and spatial structure of the biofilm. In this work, we investigate the effects of sub-MICs of ampicillin on the formation of E. faecalis biofilms. First, we quantified biofilm mass using crystal violet staining in polystyrene microtiter plates. We found that total biofilm mass is increased over a narrow range of ampicillin concentrations before ultimately declining at higher concentrations. Second, we show that sub-MICs of ampicillin can increase mass of E. faecalis biofilms while simultaneously increasing extracellular DNA/RNA and changing total number of viable cells under confocal microscopy. Further, we use RNA-seq to identify genes differentially expressed under sub-MICs of ampicillin. Finally, we show a mathematical model to explain this phenomenon. This work was funded by The Hartwell Foundation Individual Biomedical Research Award and NSF CAREER 1553208 to KBW.
Price, Valerie J; Huo, Wenwen; Sharifi, Ardalan; Palmer, Kelli L
2016-01-01
Enterococcus faecalis is an opportunistic pathogen and a leading cause of nosocomial infections. Conjugative pheromone-responsive plasmids are narrow-host-range mobile genetic elements (MGEs) that are rapid disseminators of antibiotic resistance in the faecalis species. Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas and restriction-modification confer acquired and innate immunity, respectively, against MGE acquisition in bacteria. Most multidrug-resistant E. faecalis isolates lack CRISPR-Cas and possess an orphan locus lacking cas genes, CRISPR2, that is of unknown function. Little is known about restriction-modification defense in E. faecalis. Here, we explore the hypothesis that multidrug-resistant E. faecalis strains are immunocompromised. We assessed MGE acquisition by E. faecalis T11, a strain closely related to the multidrug-resistant hospital isolate V583 but which lacks the ~620 kb of horizontally acquired genome content that characterizes V583. T11 possesses the E. faecalis CRISPR3-cas locus and a predicted restriction-modification system, neither of which occurs in V583. We demonstrate that CRISPR-Cas and restriction-modification together confer a 4-log reduction in acquisition of the pheromone-responsive plasmid pAM714 in biofilm matings. Additionally, we show that the orphan CRISPR2 locus is functional for genome defense against another pheromone-responsive plasmid, pCF10, only in the presence of cas9 derived from the E. faecalis CRISPR1-cas locus, which most multidrug-resistant E. faecalis isolates lack. Overall, our work demonstrated that the loss of only two loci led to a dramatic reduction in genome defense against a clinically relevant MGE, highlighting the critical importance of the E. faecalis accessory genome in modulating horizontal gene transfer. Our results rationalize the development of antimicrobial strategies that capitalize upon the immunocompromised status of multidrug-resistant E. faecalis. IMPORTANCE Enterococcus faecalis is a bacterium that normally inhabits the gastrointestinal tracts of humans and other animals. Although these bacteria are members of our native gut flora, they can cause life-threatening infections in hospitalized patients. Antibiotic resistance genes appear to be readily shared among high-risk E. faecalis strains, and multidrug resistance in these bacteria limits treatment options for infections. Here, we find that CRISPR-Cas and restriction-modification systems, which function as adaptive and innate immune systems in bacteria, significantly impact the spread of antibiotic resistance genes in E. faecalis populations. The loss of these systems in high-risk E. faecalis suggests that they are immunocompromised, a tradeoff that allows them to readily acquire new genes and adapt to new antibiotics.
Clark, Nancye; Patel, Jean B.
2013-01-01
Vancomycin-resistant Staphylococcus aureus (VRSA) is thought to result from the in vivo conjugative transfer of a vanA plasmid from an Enterococcus sp. to S. aureus. We studied bacterial isolates from VRSA cases that occurred in the United States to identify microbiological factors which may contribute to this plasmid transfer. First, vancomycin-susceptible, methicillin-resistant S. aureus (MRSA) isolates from five VRSA cases were tested for their ability to accept foreign DNA by conjugation in mating experiments with Enterococcus faecalis JH2-2 containing pAM378, a pheromone-response conjugative plasmid. All of the MRSA isolates accepted the plasmid DNA with similar transfer efficiencies (∼10−7/donor CFU) except for one isolate, MRSA8, for which conjugation was not successful. The MRSA isolates were also tested as recipients in mating experiments between an E. faecalis isolate with an Inc18-like vanA plasmid that was isolated from a VRSA case patient. Conjugative transfer was successful for 3/5 MRSA isolates. Successful MRSA recipients carried a pSK41-like plasmid, a staphylococcal conjugative plasmid, whereas the two unsuccessful MRSA recipients did not carry pSK41. The transfer of a pSK41-like plasmid from a successful MRSA recipient to the two unsuccessful recipients resulted in conjugal transfer of the Inc18-like vanA plasmid from E. faecalis at a frequency of 10−7/recipient CFU. In addition, conjugal transfer could be achieved for pSK41-negative MRSA in the presence of a cell-free culture filtrate from S. aureus carrying a pSK41-like plasmid at a frequency of 10−8/recipient CFU. These results indicated that a pSK41-like plasmid can facilitate the transfer of an Inc18-like vanA plasmid from E. faecalis to S. aureus, possibly via an extracellular factor produced by pSK41-carrying isolates. PMID:23089754
Emergence of vanA Enterococcus faecium in Denmark, 2005-15.
Hammerum, Anette M; Baig, Sharmin; Kamel, Yasmin; Roer, Louise; Pinholt, Mette; Gumpert, Heidi; Holzknecht, Barbara; Røder, Bent; Justesen, Ulrik S; Samulioniené, Jurgita; Kjærsgaard, Mona; Østergaard, Claus; Holm, Anette; Dzajic, Esad; Søndergaard, Turid Snekloth; Gaini, Shahin; Edquist, Petra; Alm, Erik; Lilje, Berit; Westh, Henrik; Stegger, Marc; Hasman, Henrik
2017-08-01
To describe the changing epidemiology of vancomycin-resistant Enterococcus faecium and Enterococcus faecalis in clinical samples in Denmark 2005-15 according to species and van type, and, furthermore, to investigate the genetic relatedness of the clinical E. faecium isolates from 2015. During 2005-14, all clinical VRE isolates were tested for the presence of vanA/B/C genes by PCR. In 2015, all clinical VRE isolates were whole-genome sequenced. From the WGS data, the presence of van genes and MLST STs were extracted in silico . Core-genome MLST (cgMLST) analysis was performed for the vancomycin-resistant E. faecium isolates. During 2005-15, 1043 vanA E. faecium , 25 vanB E. faecium , 4 vanA E. faecalis and 28 vanB E. faecalis were detected. The number of VRE was <50 isolates/year until 2012 to > 200 isolates/year in 2013-15. In 2015, 368 vanA E. faecium and 1 vanB E. faecium were detected along with 1 vanA E. faecalis and 1 vanB E. faecalis . cgMLST subdivided the 368 vanA E. faecium isolates into 33 cluster types (CTs), whereas the vanB E. faecium isolate belonged to a different CT. ST203-CT859 was most prevalent (51%), followed by ST80-CT14 (22%), ST117-CT24 (6%), ST80-CT866 (4%) and ST80-CT860 (2%). Comparison with the cgMLST.org database, previous studies and personal communications with neighbouring countries revealed that the novel cluster ST203-CT859 emerged in December 2014 and spread to the south of Sweden and the Faroe Islands during 2015. VRE increased in Denmark during 2005-15 due to the emergence of several vanA E. faecium clones. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
NASA Astrophysics Data System (ADS)
Zhang, Rui; Chen, Min; Lu, Yan; Guo, Xiangjun; Qiao, Feng; Wu, Ligeng
2015-08-01
We compared the antibacterial and residual antimicrobial activities of five root canal irrigants (17% EDTA,2% chlorhexidine,0.2% cetrimide, MTAD, and QMix) in a model of Enterococcus faecalis biofilm formation. Sixty dentin blocks with 3-week E. faecalis biofilm were divided into six equal groups and flushed with irrigant for 2 min or left untreated. A blank control group was also established. Antibacterial activities of the irrigants were evaluated by counting colony forming units. To test residual antimicrobial activities, 280 dentin blocks were divided into seven equal groups and flushed with irrigant for 2 min or left untreated and then incubated with E. faecalis suspension for 48 h, or used as a blank. No bacteria were observed in the blank control group. The number of viable E. faecalis was significantly fewer in the irrigant-treated groups compared with the untreated control (P < 0.05). Among the five irrigants, QMix had the strongest antibacterial activity. Residual antimicrobial activities of CHX were significantly higher at 12 h, 24 h and 36 h compared to untreated control (P < 0.05). All five root canal irrigants were effective to some extent against E. faecalis, but QMix and CHX had the strongest, and CHX the longest (up to 36 h), antimicrobial activity.
Balto, Hanan A.; Shakoor, Zahid A.; Kanfar, Maha A.
2015-01-01
Objectives: To evaluate the combined effect of a mixture of tetracycline, acid, and detergent (MTAD) and Nisin against Enterococcus faecalis (E. faecalis) and Actinomyces viscosus (A. viscosus) biofilms. Methods: This study was conducted between June and December 2013 in collaboration with Dental Caries Research Chair, College of Dentistry, King Saud University, Riyadh, Saudi Arabia. Single-species biofilms (n=9/species/observation period) were generated on membrane filter discs and subjected to 5, 10, or 15 minute incubation with MTADN (MTAD with 3% Nisin), 5.25% sodium hypochlorite (NaOCl), or normal saline. The colony forming units were counted using the Dark field colony counter. Results: A 100% bactericidal effect of 5.25% NaOCl was noted during the 3 observation periods; a significant reduction (p=0.000) in mean survival rates of E. faecalis (77.3+13.6) and A. viscosus (39.6+12.6) was noted after 5 minutes exposure to MTADN compared with normal saline (78000000+5291503) declining to almost no growth after 10 and 15 minutes. The survival rates of the E. faecalis and A. viscosus biofilm were no different after treatment with MTADN and 5.25% NaOCl at the 3 observation periods (p=1.000). Conclusion: A combination of MTAD and Nisin was as effective as NaOCl against E. faecalis and A. viscosus biofilms. PMID:25719587
Pringle, Shelly L; Palmer, Kelli L; McLean, Robert J C
2017-01-01
Escherichia coli lives in the gastrointestinal tract and elsewhere, where it coexists within a mixed population. Indole production enables E. coli to grow with other gram-negative bacteria as indole inhibits N-acyl-homoserine lactone (AHL) quorum regulation. We investigated whether E. coli indole production enhanced competition with gram-positive Enterococcus faecalis, wherein quorum signaling is mediated by small peptides. During planktonic co-culture with E. faecalis, the fitness and population density of E. coli tnaA mutants (unable to produce indole) equaled or surpassed that of E. coli wt. During biofilm growth, the fitness of both populations of E. coli stabilized around 100 %, whereas the fitness of E. faecalis declined over time to 85-90 %, suggesting that biofilm and planktonic populations have different competition strategies. Media supplementation with indole removed the competitive advantage of E. coli tnaA in planktonic populations but enhanced it in biofilm populations. E. coli wt and tnaA showed similar growth in Luria-Bertani (LB) broth. However, E. coli growth was inhibited in the presence of filter-sterilized spent LB from E. faecalis, with inhibition being enhanced by indole. Similarly, there was also an inhibition of E. faecalis growth by proteinaceous components (likely bacteriocins) from spent culture media from both E. coli strains. We conclude that E. coli indole production is not a universal competition strategy, but rather works against gram-negative, AHL-producing bacteria.
Vitality of Enterococcus faecalis inside dentinal tubules after five root canal disinfection methods
Vatkar, Niranjan Ashok; Hegde, Vivek; Sathe, Sucheta
2016-01-01
Aim: To compare the vitality of Enterococcus faecalis within dentinal tubules after subjected to five root canal disinfection methods. Materials and Methods: Dentin blocks (n = 60) were colonized with E. faecalis. After 4 weeks of incubation, the dentin blocks were divided into one control and five test groups (n = 10 each). The root canals of test groups were subjected to one of the disinfection methods, namely, normal saline (NS), sodium hypochlorite (NaOCl), chlorhexidine digluconate (CHX), neodymium-doped yttrium aluminum garnet (Nd: YAG) laser, and diode laser. The effect of disinfection methods was assessed by LIVE/DEAD BacLight stain under the confocal laser scanning microscopy to determine the “zone of dead bacteria” (ZDB). Mean values were calculated for ZDB and the difference between groups was established. Results: Penetration of E. faecalis was seen to a depth of >1000 μm. Viable bacteria were detected with NS irrigation. NaOCl and CHX showed partial ZDB. When the root canals were disinfected with Nd: YAG and diode lasers, no viable bacteria were found. Conclusion: E. faecalis has the ability to colonize inside dentinal tubules to a depth of >1000 μm. In contrast to conventional irrigants, both Nd: YAG and diode lasers were effective in eliminating the vitality of E. faecalis. NS, NaOCl, and CHX showed viable bacteria remaining in dentinal tubules. PMID:27656064
Tyson, Gregory H; Nyirabahizi, Epiphanie; Crarey, Emily; Kabera, Claudine; Lam, Claudia; Rice-Trujillo, Crystal; McDermott, Patrick F; Tate, Heather
2018-01-01
Bacteria of the genus Enterococcus are important human pathogens that are frequently resistant to a number of clinically important antibiotics. They are also used as markers of animal fecal contamination of human foods and are employed as sentinel organisms for tracking trends in resistance to antimicrobials with Gram-positive activity. As part of the National Antimicrobial Resistance Monitoring System (NARMS), we evaluated several retail meat commodities for the presence of enterococci from 2002 to 2014, and we found 92.0% to be contaminated. The majority of isolates were either Enterococcus faecalis (64.0%) or Enterococcus faecium (28.6%), and the antimicrobial resistance of each isolate was assessed by broth microdilution. The resistance prevalences for several drugs, including erythromycin and gentamicin, were significantly higher among poultry isolates, compared to retail beef or pork isolates. None of the isolates was resistant to the clinically important human drug vancomycin, only 1 isolate was resistant to linezolid, and resistance to tigecycline was below 1%. In contrast, a majority of both E. faecalis (67.5%) and E. faecium (53.7%) isolates were resistant to tetracycline. Overall, the robust NARMS testing system employed consistent sampling practices and methods throughout the testing period, with the only significant trend in resistance prevalence being decreased E. faecium resistance to penicillin. These data provide excellent baseline levels of resistance that can be used to measure future changes in resistance prevalence that may result from alterations in the use of antimicrobials in food animal production. IMPORTANCE Enterococci, including E. faecalis and E. faecium , are present in the guts of food-producing animals and are used as a measure of fecal contamination of meat. We used the large consistent sampling methods of NARMS to assess the prevalence of Enterococcus strains isolated from retail meats, and we found over 90% of meats to be contaminated with enterococci. We also assessed the resistance of the Enterococcus strains, commonly used as a measure of resistance to agents with Gram-positive activity, in foods. Resistance prevalence was over 25% for some antimicrobials and sample sources but was less than 1% for several of the most important therapeutic agents used in human medicine. This is a work of the U.S. Government and is not subject to copyright protection in the United States. Foreign copyrights may apply.
Enterococcus faecalis urinary-tract infections: Do they have a zoonotic origin?
Abat, Cédric; Huart, Michael; Garcia, Vincent; Dubourg, Grégory; Raoult, Didier
2016-10-01
Major human pathogens are frequently isolated from meat-producing animals, particularly poultry. Among them is Enterococcus faecalis, which is known to be one of the main cause of human urinary-tract infections worldwide. Early in 2015, we detected several, consecutive abnormal increases in the weekly number of human E. faecalis infections in various medical settings in the Provence-Alpes-Côte d'Azur region of France, especially including community-acquired urinary-tract infections. Speculating that this region-wide epidemiological event may have originated from animal-based food, we initiated this work to provide an overview of the epidemiology of E. faecalis, with a particular focus on the possible link between E. faecalis clones isolated from food-producing animals and those responsible for human urinary-tract infections. At that time, only one study had clearly identified strong epidemiological links between E. faecalis clones isolated from food-producing animals and human E. faecalis urinary-tract infections. This observation, coupled with our region-wide epidemiological experience, leads us to strongly believe that E. faecalis is a real zoonotic pathogen with potentially highly significant impact on human health. This is of particular concern because of its ability to acquire antibiotic-resistance genes and to infect animals and humans. Various strategies must be urgently implemented to address this public health threat, in particular through the development and implementation of large integrated automated surveillance systems based on animal and human health data to enable us to detect E. faecalis epidemiological events. Copyright © 2016 The British Infection Association. Published by Elsevier Ltd. All rights reserved.
Ozbek, Selcuk M.; Ozbek, Ahmet; Erdogan, Aziz S.
2009-01-01
Objective: The aims of this study were to investigate the presence of Enterococcus faecalis in primary endodontic infections and failed endodontic treatments using real-time PCR and to determine the statistical importance of the presence of E. faecalis in a Turkish population with endodontic infections. Material and Methods: E. faecalis was investigated from 79 microbial samples collected from patients who were treated at the Endodontic Clinic of the Dental School of Atatürk University (Erzurum, Turkey). Microbial samples were taken from 43 patients (Group 1) with failed endodontic treatments and 36 patients (Group 2) with chronic apical periodontitis (primary endodontic infections). DNA was extracted from the samples by using a QIAamp® DNA mini-kit and analyzed with real-time PCR SYBR Green. Results: E. faecalis was detected in 41 out of 79 patients, suggesting that it exists in not less than 61% of all endodontic infections when the proportion test (z= -1.645,
Mubarak, Zaki; Soraya, Cut
2018-01-01
Background: The objective of the present study was to evaluate the acid tolerance response and pH adaptation when Enterococcus faecalis interacted with extract of lime ( Citrus aurant iifolia ). Methods : We used E. faecalis ATCC 29212 and lime extract from Aceh, Indonesia. The microbe was analyzed for its pH adaptation, acid tolerance response, and adhesion assay using a light microscope with a magnification of x1000. Further, statistical tests were performed to analyze both correlation and significance of the acid tolerance and pH adaptation as well as the interaction activity. Results : E. faecalis was able to adapt to a very acidic environment (pH 2.9), which was characterized by an increase in its pH (reaching 4.2) at all concentrations of the lime extract (p < 0.05). E. faecalis was also able to provide acid tolerance response to lime extract based on spectrophotometric data (595 nm) (p < 0.05). Also, the interaction activity of E. faecalis in different concentrations of lime extract was relatively stable within 6 up to 12 hours (p < 0.05), but it became unstable within 24-72 hours (p > 0.05) based on the mass profiles of its interaction activity. Conclusions : E. faecalis can adapt to acidic environments (pH 2.9-4.2); it is also able to tolerate acid generated by Citrus auranti ifolia extract, revealing a stable interaction in the first 6-12 hours.
An agmatine-inducible system for the expression of recombinant proteins in Enterococcus faecalis.
Linares, Daniel M; Perez, Marta; Ladero, Victor; Del Rio, Beatriz; Redruello, Begoña; Martin, M Cruz; Fernandez, María; Alvarez, Miguel A
2014-12-04
Scientific interest in Enterococcus faecalis has increased greatly over recent decades. Some strains are involved in food fermentation and offer health benefits, whereas others are vancomycin-resistant and cause infections that are difficult to treat. The limited availability of vectors able to express cloned genes efficiently in E. faecalis has hindered biotechnological studies on the bacterium's regulatory and pathogenicity-related genes. The agmatine deiminase (AGDI) pathway of E. faecalis, involved in the conversion of agmatine into putrescine, is driven by a response inducer gene aguR. This study describes that the exposure to the induction factor (agmatine) results in the transcription of genes under the control of the aguB promoter, including the aguBDAC operon. A novel E. faecalis expression vector, named pAGEnt, combining the aguR inducer gene and the aguB promoter followed by a cloning site and a stop codon was constructed. pAGEnt was designed for the overexpression and purification of a protein fused to a 10-amino-acid His-tag at the C-terminus. The use of GFP as a reporter of gene expression in E. faecalis revealed that under induction with 60 mM agmatine, fluorescence reached 40 arbitrary units compared to 0 in uninduced cells. pAGEnt vector can be used for the overexpression of recombinant proteins under the induction of agmatine in E. faecalis, with a close correlation between agmatine concentration and fluorescence when GFP was used as reporter.
Gorduysus, Melahat; Nagas, Emre; Torun, Ozgur Yildirim; Gorduysus, Omer
2011-12-01
The aim of this study was to compare the in vitro reduction of a bacterial population in a root canal by mechanical instrumentation using three rotary systems and hand instrumentation technique. The root canals contaminated with a suspension of Enterococcus faecalis were instrumented using ProTaper, K3, HeroShaper and K-file hand instrumentation technique. Later the root canals were sampled. After serial dilutions, samples were incubated in culture media for 24 h. Bacterial colonies were counted and the results were given as number of colony-forming units per millilitre. The results showed that all the canal instrumentation systems reduced the number of bacterial cells in the root canals. Statistically, ProTaper instruments were more effective in reducing the number of bacteria than the other rotary files or hand instruments. © 2010 The Authors. Australian Endodontic Journal © 2010 Australian Society of Endodontology.
Millsap, K; Reid, G; van der Mei, H C; Busscher, H J
1994-01-01
The displacement of Enterococcus faecalis 1131 from hydrophobic and hydrophilic substrata by isolates of Lactobacillus casei 36 and Streptococcus hyointestinalis KM1 was studied in a parallel plate flow chamber. The experiments were conducted with either 10 mM potassium phosphate buffer or human urine as the suspending fluid, and adhesion and displacement were measured by real-time in situ image analysis. The results showed that E. faecalis 1131 was displaced by lactobacilli (31%) and streptococci (74%) from fluorinated ethylene propylene in buffer and that displacement by lactobacilli was even more effective on a glass substratum in urine (54%). The passage of an air-liquid interface significantly impacted on adhesion, especially when the surface had been challenged with lactobacilli (up to 100% displacement) or streptococci (up to 94% displacement). These results showed that the parallel plate flow system with real-time in situ image analysis was effective for studying bacterial adhesion and that uropathogenic enterococci can be displaced by indigenous bacteria. Images PMID:8031082
Reddy, Lebaka Veeranjaneya; Kim, Young-Min; Yun, Jong-Sun; Ryu, Hwa-Won; Wee, Young-Jung
2016-06-01
Enterococcus faecalis RKY1 was used to produce l-lactic acid from hydrol, soybean curd residues (SCR), and malt. Hydrol was efficiently metabolized to l-lactic acid with optical purity of >97.5%, though hydrol contained mixed sugars such as glucose, maltose, maltotriose, and maltodextrin. Combined utilization of hydrol, SCR, and malt was enough to sustain lactic acid fermentation by E. faecalis RKY1. In order to reduce the amount of nitrogen sources and product inhibition, cell-recycle repeated-batch fermentation was employed, where a high cell mass (26.3g/L) was obtained. Lactic acid productivity was improved by removal of lactic acid from fermentation broth by membrane filtration and by linearly increased cell density. When the total of 10 repeated-batch fermentations were carried out using 100g/L hydrol, 150g/L SCR hydrolyzate, and 20g/L malt hydrolyzate as the main nutrients, lactic acid productivity was increased significantly from 3.20g/L/h to 6.37g/L/h. Copyright © 2016 Elsevier Ltd. All rights reserved.
The two-component system GrvRS (EtaRS) regulates ace expression in Enterococcus faecalis OG1RF.
Roh, Jung Hyeob; Singh, Kavindra V; La Rosa, Sabina Leanti; Cohen, Ana Luisa V; Murray, Barbara E
2015-01-01
Expression of ace (adhesin to collagen of Enterococcus faecalis), encoding a virulence factor in endocarditis and urinary tract infection models, has been shown to increase under certain conditions, such as in the presence of serum, bile salts, urine, and collagen and at 46 °C. However, the mechanism of ace/Ace regulation under different conditions is still unknown. In this study, we identified a two-component regulatory system GrvRS as the main regulator of ace expression under these stress conditions. Using Northern hybridization and β-galactosidase assays of an ace promoter-lacZ fusion, we found transcription of ace to be virtually absent in a grvR deletion mutant under the conditions that increase ace expression in wild-type OG1RF and in the complemented strain. Moreover, a grvR mutant revealed decreased collagen binding and biofilm formation as well as attenuation in a murine urinary tract infection model. Here we show that GrvR plays a major role in control of ace expression and E. faecalis virulence. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Strickertsson, Jesper A B; Desler, Claus; Martin-Bertelsen, Tomas; Machado, Ana Manuel Dantas; Wadstrøm, Torkel; Winther, Ole; Rasmussen, Lene Juel; Friis-Hansen, Lennart
2013-01-01
Achlorhydria caused by e.g. atrophic gastritis allows for bacterial overgrowth, which induces chronic inflammation and damage to the mucosal cells of infected individuals driving gastric malignancies and cancer. Enterococcus faecalis (E. faecalis) can colonize achlohydric stomachs and we therefore wanted to study the impact of E. faecalis infection on inflammatory response, reactive oxygen species (ROS) formation, mitochondrial respiration, and mitochondrial genetic stability in gastric mucosal cells. To separate the changes induced by bacteria from those of the inflammatory cells we established an in vitro E. faecalis infection model system using the gastric carcinoma cell line MKN74. Total ROS and superoxide was measured by fluorescence microscopy. Cellular oxygen consumption was characterized non-invasively using XF24 microplate based respirometry. Gene expression was examined by microarray, and response pathways were identified by Gene Set Analysis (GSA). Selected gene transcripts were verified by quantitative real-time polymerase chain reaction (qRT-PCR). Mitochondrial mutations were determined by sequencing. Infection of MKN74 cells with E. faecalis induced intracellular ROS production through a pathway independent of oxidative phosphorylation (oxphos). Furthermore, E. faecalis infection induced mitochondrial DNA instability. Following infection, genes coding for inflammatory response proteins were transcriptionally up-regulated while DNA damage repair and cell cycle control genes were down-regulated. Cell growth slowed down when infected with viable E. faecalis and responded in a dose dependent manner to E. faecalis lysate. Infection by E. faecalis induced an oxphos-independent intracellular ROS response and damaged the mitochondrial genome in gastric cell culture. Finally the bacteria induced an NF-κB inflammatory response as well as impaired DNA damage response and cell cycle control gene expression. Array Express accession number E-MEXP-3496.
Gao, Iris H.; Nair, Zeus J.; Kumar, Jaspal K.; Gao, Liang; Kline, Kimberly A.; Wenk, Markus R.
2017-01-01
Enterococcus faecalis is a Gram-positive, opportunistic, pathogenic bacterium that causes a significant number of antibiotic-resistant infections in hospitalized patients. The development of antibiotic resistance in hospital-associated pathogens is a formidable public health threat. In E. faecalis and other Gram-positive pathogens, correlations exist between lipid composition and antibiotic resistance. Resistance to the last-resort antibiotic daptomycin is accompanied by a decrease in phosphatidylglycerol (PG) levels, whereas multiple peptide resistance factor (MprF) converts anionic PG into cationic lysyl-PG via a trans-esterification reaction, providing resistance to cationic antimicrobial peptides. Unlike previous studies that relied on thin layer chromatography and spectrophotometry, we have performed liquid chromatography-tandem mass spectrometry (LC-MS/MS) directly on lipids extracted from E. faecalis, and quantified the phospholipids through multiple reaction monitoring (MRM). In the daptomycin-sensitive E. faecalis strain OG1RF, we have identified 17 PGs, 8 lysyl-PGs (LPGs), 23 cardiolipins (CL), 3 glycerophospho-diglucosyl-diacylglycerols (GPDGDAG), 5 diglucosyl-diacylglycerols (DGDAG), 3 diacylglycerols (DAGs), and 4 triacylglycerols (TAGs). We have quantified PG and shown that PG levels vary during growth of E. faecalis in vitro. We also show that two daptomycin-resistant (DapR) strains of E. faecalis have substantially lower levels of PG and LPG levels. Since LPG levels in these strains are lower, daptomycin resistance is likely due to the reduction in PG. This lipidome map is the first comprehensive analysis of membrane phospholipids and glycolipids in the important human pathogen E. faecalis, for which antimicrobial resistance and altered lipid homeostasis have been intimately linked. PMID:28423018
Mikalsen, Theresa; Pedersen, Torunn; Willems, Rob; Coque, Teresa M; Werner, Guido; Sadowy, Ewa; van Schaik, Willem; Jensen, Lars Bogø; Sundsfjord, Arnfinn; Hegstad, Kristin
2015-04-10
The success of Enterococcus faecium and E. faecalis evolving as multi-resistant nosocomial pathogens is associated with their ability to acquire and share adaptive traits, including antimicrobial resistance genes encoded by mobile genetic elements (MGEs). Here, we investigate this mobilome in successful hospital associated genetic lineages, E. faecium sequence type (ST)17 (n=10) and ST78 (n=10), E. faecalis ST6 (n=10) and ST40 (n=10) by DNA microarray analyses. The hybridization patterns of 272 representative targets including plasmid backbones (n=85), transposable elements (n=85), resistance determinants (n=67), prophages (n=29) and clustered regularly interspaced short palindromic repeats (CRISPR)-cas sequences (n=6) separated the strains according to species, and for E. faecalis also according to STs. RCR-, Rep_3-, RepA_N- and Inc18-family plasmids were highly prevalent and with the exception of Rep_3, evenly distributed between the species. There was a considerable difference in the replicon profile, with rep 17/pRUM , rep 2/pRE25 , rep 14/EFNP1 and rep 20/pLG1 dominating in E. faecium and rep 9/pCF10 , rep 2/pRE25 and rep 7 in E. faecalis strains. We observed an overall high correlation between the presence and absence of genes coding for resistance towards antibiotics, metals, biocides and their corresponding MGEs as well as their phenotypic antimicrobial susceptibility pattern. Although most IS families were represented in both E. faecalis and E. faecium, specific IS elements within these families were distributed in only one species. The prevalence of IS256-, IS3-, ISL3-, IS200/IS605-, IS110-, IS982- and IS4-transposases was significantly higher in E. faecium than E. faecalis, and that of IS110-, IS982- and IS1182-transposases in E. faecalis ST6 compared to ST40. Notably, the transposases of IS981, ISEfm1 and IS1678 that have only been reported in few enterococcal isolates were well represented in the E. faecium strains. E. faecalis ST40 strains harboured possible functional CRISPR-Cas systems, and still resistance and prophage sequences were generally well represented. The targeted MGEs were highly prevalent among the selected STs, underlining their potential importance in the evolution of hospital-adapted lineages of enterococci. Although the propensity of inter-species horizontal gene transfer (HGT) must be emphasized, the considerable species-specificity of these MGEs indicates a separate vertical evolution of MGEs within each species, and for E. faecalis within each ST.
OCCURRENCE OF HIGH-LEVEL AMINOGLYCOSIDE RESISTANCE IN ENVIRONMENTAL ISOLATES OF ENTEROCOCCI
High-level resistance fo aminoglycosides was observed in environmental isolates of enterococci. Various aquatic habitats, including agricultural runoff, creeks, rivers, wastewater, and wells, were analyzed. Strains of Enterococcus faecalis, e.faecium, E. gallinarum, and other Ent...
Bjørkeng, Eva Katrin; Tessema, Girum Tadesse; Lundblad, Eirik Wasmuth; Butaye, Patrick; Willems, Rob; Sollid, Johanna Ericsson; Sundsfjord, Arnfinn; Hegstad, Kristin
2010-01-01
The presence, distribution and expression of cassette chromosome recombinase (ccr) genes, which are homologous to the staphylococcal ccrAB genes and are designated ccrABEnt genes, were examined in enterococcal isolates (n=421) representing 13 different species. A total of 118 (28 %) isolates were positive for ccrABEnt genes by PCR, and a number of these were confirmed by Southern hybridization with a ccrAEnt probe (n=76) and partial DNA sequencing of ccrAEnt and ccrBEnt genes (n=38). ccrABEnt genes were present in Enterococcus faecium (58/216, 27 %), Enterococcus durans (31/38, 82 %), Enterococcus hirae (27/52, 50 %), Enterococcus casseliflavus (1/4, 25 %) and Enterococcus gallinarum (1/2, 50 %). In the eight other species tested, including Enterococcus faecalis (n=94), ccrABEnt genes were not found. Thirty-eight sequenced ccrABEnt genes from five different enterococcal species showed 94–100 % nucleotide sequence identity and linkage PCRs showed heterogeneity in the ccrABEnt flanking chromosomal genes. Expression analysis of ccrABEnt genes from the E. faecium DO strain showed constitutive expression as a bicistronic mRNA. The ccrABEnt mRNA levels were lower during log phase than stationary phase in relation to total mRNA. Multilocus sequence typing was performed on 39 isolates. ccrABEnt genes were detected in both hospital-related (10/29, 34 %) and non-hospital (4/10, 40 %) strains of E. faecium. Various sequence types were represented by both ccrABEnt positive and negative isolates, suggesting acquisition or loss of ccrABEnt in E. faecium. In summary, ccrABEnt genes, potentially involved in genome plasticity, are expressed in E. faecium and are widely distributed in the E. faecium and E. casseliflavus species groups. PMID:20817645
Volpato, Lusiane; Gabardo, Marilisa Carneiro Leão; Leonardi, Denise Piotto; Tomazinho, Paulo Henrique; Maranho, Leila Teresinha; Baratto-Filho, Flares
2017-03-06
Persea major Kopp (Lauraceae) is a plant with wound healing, antibacterial, and analgesic properties. The aim of this study was to assess the in vitro antibacterial activity of the concentrated crude extract (CCE) and ethyl acetate fraction (EAF) of this plant against Enterococcus faecalis and compare it with calcium hydroxide [Ca(OH) 2 ] paste and 2% chlorhexidine digluconate (CHX). The plant material was collected, and an extract was prepared according to the requirements of the study (CCE and EAF). The minimum inhibitory concentrations (MICs) of CCE, EAF, Ca(OH) 2 , Ca(OH) 2 + CCE, and CHX against E. faecalis were determined using the broth microdilution method RESULTS: The EAF inhibited E. faecalis at concentrations of 166.50, 83.25, and 41.62 mg mL -1 , and 1.00, 0.50, and 0.25% of CHX solutions showed antimicrobial activity. The MICs of Ca(OH) 2 paste were 166.50 and 83.25 mg mL -1 , whereas Ca(OH) 2 + CCE showed antimicrobial activity only at a concentration of 166.50 mg mL -1 . CCE showed no inhibitory effect at any of the concentrations tested CONCLUSIONS: The CCE did not show any antimicrobial activity against E. faecalis; however, the EAF was the most effective among the three highest concentrations tested.
Rigvava, Sophio; Tchgkonia, Irina; Jgenti, Darejan; Dvalidze, Teona; Carpino, James; Goderdzishvili, Marina
2013-01-01
Enterococcus faecalis and Streptococcus mitis are common commensal inhabitants of the human gastrointestinal and genitourinary tracts. However, both species can be opportunistic pathogens and cause disease in nosocomial settings. These infections can be difficult to treat because of the frequency of antibiotic resistance among these strains. Bacteriophages are often suggested as an alternative therapeutic agent against these infections. In this study, E. faecalis and S. mitis strains were isolated from female patients with urinary tract infections. Bacteriophages active against these strains were isolated from sewage water from the Mtkvari River. Two phages, designated vB_EfaS_GEC-EfS_3 (Syphoviridae) and vB_SmM_GEC-SmitisM_2 (Myoviridae), were specific for E. faecalis and S. mitis, respectively. Each phage's growth patterns and adsorption rates were quantified. Sensitivity to ultraviolet light and temperature was determined, as was host range and serology. The S. mitis bacteriophage was found to be more resistant to ultraviolet light and exposure to high temperatures than the E. faecalis bacteriophage, despite having a much greater rate of replication. While each phage was able to infect a broad range of strains of the same species as the host species from which they were isolated, they were unable to infect other host species tested.
Castillo-Rojas, Gonzalo; Mazari-Hiríart, Marisa; Ponce de León, Sergio; Amieva-Fernández, Rosa I; Agis-Juárez, Raúl A; Huebner, Johannes; López-Vidal, Yolanda
2013-01-01
Enterococci are part of the normal intestinal flora in a large number of mammals, and these microbes are currently used as indicators of fecal contamination in water and food for human consumption. These organisms are considered one of the primary causes of nosocomial and environmental infections due to their ability to survive in the environment and to their intrinsic resistance to antimicrobials. The aims of this study were to determine the biochemical patterns and antimicrobial susceptibilities of Enterococcus faecalis and E. faecium isolates from clinical samples and from water (groundwater, water from the Xochimilco wetland, and treated water from the Mexico City Metropolitan Area) and to determine the genetic relationships among these isolates. A total of 121 enterococcus strains were studied; 31 and 90 strains were isolated from clinical samples and water (groundwater, water from the Xochimilco wetland, and water for agricultural irrigation), respectively. Identification to the species level was performed using a multiplex PCR assay, and antimicrobial profiles were obtained using a commercial kit. Twenty-eight strains were analyzed by pulsed-field gel electrophoresis (PFGE). E. faecium strains isolated from water showed an atypical biochemical pattern. The clinical isolates showed higher resistance to antibiotics than those from water. Both the enterococci isolated from humans, and those isolated from water showed high genetic diversity according to the PFGE analysis, although some strains seemed to be closely related. In conclusion, enterococci isolated from humans and water are genetically different. However, water represents a potential route of transmission to the community and a source of antimicrobial resistance genes that may be readily transmitted to other, different bacterial species.
Mote, Beth L.; Turner, Jeffrey W.
2012-01-01
Enterococci are used to evaluate recreational-water quality and health risks in marine environments. In addition to their occurrence in feces of warm blooded animals, they are also common epiphytes. We investigated the contribution of plankton- or particle-associated enterococci in estuarine and coastal water. Seven water and size-fractionated plankton samples were collected monthly between April 2008 and January 2009 in the tidal reaches of the Skidaway River (Georgia, USA). Each size fraction, along with filtered (<30 μm) and bulk estuarine water, was processed according to U.S. Environmental Protection Agency method 1600. Presumptive enterococci were selected and species were identified using carbon substrate utilization patterns. The highest average densities occurred within the 30-, 63-, 105-, and 150-μm size fractions, which also represented the majority (>99%) of the particles within the sampled water. Particle-associated enterococci accounted for as little as 1% of enterococci in bulk water in April to as much as 95% in July. Enterococcus faecalis was the most commonly isolated species from both water and plankton and represented 31% (16/51) and 35% (6/17) of the identified Enterococcus species from water and plankton, respectively. Enterococcus casseliflavus represented 29% of the selected isolates from plankton and 16% from water. Both E. faecalis and E. casseliflavus were able to survive and grow in plankton suspensions significantly longer than in artificial seawater. Enterococcus spp. may be highly concentrated in plankton and associated particles, especially during summer and fall months. These findings could have implications for the effectiveness of enterococci as an indicator of coastal water quality, especially in particle-rich environments. PMID:22327586
Castillo-Rojas, Gonzalo; Mazari-Hiríart, Marisa; Ponce de León, Sergio; Amieva-Fernández, Rosa I.; Agis-Juárez, Raúl A.; Huebner, Johannes; López-Vidal, Yolanda
2013-01-01
Enterococci are part of the normal intestinal flora in a large number of mammals, and these microbes are currently used as indicators of fecal contamination in water and food for human consumption. These organisms are considered one of the primary causes of nosocomial and environmental infections due to their ability to survive in the environment and to their intrinsic resistance to antimicrobials. The aims of this study were to determine the biochemical patterns and antimicrobial susceptibilities of Enterococcus faecalis and E. faecium isolates from clinical samples and from water (groundwater, water from the Xochimilco wetland, and treated water from the Mexico City Metropolitan Area) and to determine the genetic relationships among these isolates. A total of 121 enterococcus strains were studied; 31 and 90 strains were isolated from clinical samples and water (groundwater, water from the Xochimilco wetland, and water for agricultural irrigation), respectively. Identification to the species level was performed using a multiplex PCR assay, and antimicrobial profiles were obtained using a commercial kit. Twenty-eight strains were analyzed by pulsed-field gel electrophoresis (PFGE). E. faecium strains isolated from water showed an atypical biochemical pattern. The clinical isolates showed higher resistance to antibiotics than those from water. Both the enterococci isolated from humans, and those isolated from water showed high genetic diversity according to the PFGE analysis, although some strains seemed to be closely related. In conclusion, enterococci isolated from humans and water are genetically different. However, water represents a potential route of transmission to the community and a source of antimicrobial resistance genes that may be readily transmitted to other, different bacterial species. PMID:23560050
Dada, Ayokunle Christopher; Ahmad, Asmat; Usup, Gires; Heng, Lee Yook; Hamid, Rahimi
2013-09-01
We report the first study on the occurrence of high-level aminoglycoside-resistant (HLAR) Enterococci in coastal bathing waters and beach sand in Malaysia. None of the encountered isolates were resistant to high levels of gentamicin (500 μg/mL). However, high-level resistance to kanamycin (2,000 μg/mL) was observed in 14.2 % of tested isolates, the highest proportions observed being among beach sand isolates. High-level resistance to kanamycin was higher among Enterococcus faecalis and Enterococcus faecium than Enterococcus spp. Chi-square analysis showed no significant association between responses to tested antibiotics and the species allocation or source of isolation of all tested Enterococci. The species classification of encountered Enterococci resistance to vancomycin was highest among Enterococcus spp. (5.89 %) followed by E. faecium (4.785) and least among E. faecalis. A total of 160 isolates were also tested for virulence characteristics. On the whole, caseinase production was profoundly highest (15.01 %) while the least prevalent virulence characteristic observed among tested beach Enterococci was haemolysis of rabbit blood (3.65 %). A strong association was observed between the source of isolation and responses for each of caseinase (C = 0.47, V = 0.53) and slime (C = 0.50, V = 0.58) assays. Analysis of obtained spearman's coefficient showed a strong correlation between caseinase and each of the slime production (p = 0.04), gelatinase (p = 0.0035) and haemolytic activity on horse blood (p = 0.004), respectively. Suggestively, these are the main virulent characteristics of the studied beach Enterococci. Our findings suggest that recreational beaches may contribute to the dissemination of Enterococci with HLAR and virulence characteristics.
Bazvand, Leila; Aminozarbian, Mohammad Ghasem; Farhad, Alireza; Noormohammadi, Hamid; Hasheminia, Seyed Mohsen; Mobasherizadeh, Sina
2014-07-01
The aim of this ex vivo study was to compare the antimicrobial effect of triantibiotic paste, 0.2% chlorhexidine gel, Propolis and Aloe vera on Enterococcus faecalis in deep dentin. Ninety fresh extracted single-rooted teeth were used in a dentin block model. Seventy-five teeth were infected with E. faecalis and divided into four experimental groups (n = 15). Experimental groups were treated with triantibiotic mixture with distilled water, 0.2% chlorhexidine gel, 70% ethanol + Propolis and Aloe vera. Fifteen teeth treated with distilled water as the positive control and 15 samples, free of bacterial contamination, were considered as the negative control. Gates-Glidden drill #4 was used for removal of surface dentin and Gates-Glidden drill #5 was used to collect samples of deep dentin. The samples were prepared and colony-forming units were counted. Data were analyzed by one-way ANOVA and post hoc Tukey tests. Statistical significance was defined at P < 0.05. Triantibiotic mixture group exhibited the least bacterial growth. However, the rate of bacterial growth showed no significant differences between chlorhexidine and Propolis groups (P > 0.05). Aloe vera had antibacterial effects on E. faecalis, but in comparison with other medicaments, it was less effective (P < 0.05). This experimental study showed that triantibiotic mixture, 0.2% chlorhexidine gel, Propolis and Aleo vera were relatively effective against E. faecalis. All the intracanal medicements had similar effects on E. faecalis in deep dentin except for Aloe vera.
Shah, Shanal; Venkataraghavan, Karthik; Choudhary, Prashant; Mohammad, Shameer; Trivedi, Krishna; Shah, Shalin G
2016-01-01
The aim of this study is to evaluate the antimicrobial activity of Soluneem ™ when used as an irrigating solution along with other commonly used irrigating solution sodium hypochlorite (NaOCl) against Enterococcus faecalis. Microorganism used in this study was E. faecalis (Microbial Type Culture Collection 439). Test substance used was Soluneem ™, which was obtained from Vittal Mallya Scientific Research Foundation (VMSRF), Bengaluru. This study was conducted in a microbiology laboratory (Biocare Research India Pvt., Ltd. Laboratory, Ahmedabad, Gujarat) to evaluate the antimicrobial effect of Soluneem ™ (Azadirachtin) on E. faecalis. Antimicrobial activity testing was performed using the macrobroth dilution method according to the Clinical Laboratory Standards Institute guidelines. All determinations were performed thrice. Minimum bactericidal concentration (MBC) was seen as 2.6% for Soluneem ™ while the same was seen at 0.1% for NaOCl. Independent sample t-test was carried out to compare the MBC of Soluneem ™ and NaOCl, which showed that there was no statistically significant difference between them, i.e., 2.6% Soluneem ™ was as effective as 0.1% NaOCl. Soluneem ™ showed antimicrobial activity against E. faecalis at various concentrations. It was also found that the efficacy of Soluneem ™ at 2.6% concentration and above was relatively similar to that of gold standard irrigating solution (NaOCl) on inhibition of E. faecalis.
Asnaashari, Mohamad; Ebad, Leila Tahmasebi; Shojaeian, Shiva
2016-10-01
Background and aim: Use of laser technology in endodontics has greatly increased in the recent years due to the introduction of new wavelengths and methods and optimal antimicrobial and smear layer removal properties of lasers. This in vitro study aimed to compare the antibacterial effects of diode lasers of 810 nm and 980 nm wavelength on Enterococcus faecalis (E. faecalis) biofilm in the root canal system. Materials and methods: Fifty single-canal human anterior teeth were cleaned, shaped, sterilized and randomly divided into four groups namely two experimental, one positive and one negative control group. The experimental and positive control groups were inoculated with E. faecalis and incubated for two weeks. The experimental group one (n=20) received 810 nm diode laser irradiation (1.5W) while the experimental group two (n=20) was subjected to 980 nm diode laser irradiation (1.5W). The E. faecalis colony forming units (CFUs) were counted in each root canal before and after laser irradiation. Results: Laser irradiation significantly decreased the bacterial colony count in both experimental groups. The reduction in microbial count was significantly greater in 810 nm laser group compared to 980 nm laser group. Conclusion: Irradiation of both 810 and 980 nm lasers significantly decreased the E. faecalis count in the root canal system; 810 nm laser was more effective in decreasing the intracanal microbial load.
Hodel-Christian, S L; Murray, B E
1992-01-01
The genetic determinant encoding gentamicin resistance (Gmr) on the beta-lactamase encoding plasmid pBEM10 of Enterococcus faecalis HH22 is carried on a transposon, termed Tn5281, that is highly related to the staphylococcal Gmr transposons Tn4001 found in Australian isolates of Staphylococcus aureus and Tn4031 found in United States isolates of Staphylococcus epidermidis. We have now studied plasmid DNA from Gmr strains of E. faecalis isolated from diverse geographical locations (Houston, Pennsylvania, Thailand, and Chile) by using restriction endonuclease analysis and DNA-DNA hybridization to determine whether other Gmr E. faecalis carry Tn5281 or a similar type of element. We also compared these enterococci to several United States isolates of Staphylococcus aureus with nonmobile Gmr determinants. Three E. faecalis isolates (from Houston and Chile) carried Tn5281-like elements, whereas two isolates (from Houston and Pennsylvania) had restriction endonuclease and DNA-DNA hybridization patterns more similar to those of the Tn4001-IS257 hybrid found in the nonmobile Gmr determinants in United States isolates of S. aureus. A strain from Thailand had a third pattern unrelated to either Tn5281 or the nonmobile Gmr determinants present in United States isolates of S. aureus. Our results demonstrate that there is both similarity and diversity between the Gmr determinant of strains of E. faecalis isolated in diverse geographic locations. Images PMID:1332593
Asnaashari, Mohamad; Ebad, Leila Tahmasebi
2016-01-01
Background and aim: Use of laser technology in endodontics has greatly increased in the recent years due to the introduction of new wavelengths and methods and optimal antimicrobial and smear layer removal properties of lasers. This in vitro study aimed to compare the antibacterial effects of diode lasers of 810 nm and 980 nm wavelength on Enterococcus faecalis (E. faecalis) biofilm in the root canal system. Materials and methods: Fifty single-canal human anterior teeth were cleaned, shaped, sterilized and randomly divided into four groups namely two experimental, one positive and one negative control group. The experimental and positive control groups were inoculated with E. faecalis and incubated for two weeks. The experimental group one (n=20) received 810 nm diode laser irradiation (1.5W) while the experimental group two (n=20) was subjected to 980 nm diode laser irradiation (1.5W). The E. faecalis colony forming units (CFUs) were counted in each root canal before and after laser irradiation. Results: Laser irradiation significantly decreased the bacterial colony count in both experimental groups. The reduction in microbial count was significantly greater in 810 nm laser group compared to 980 nm laser group. Conclusion: Irradiation of both 810 and 980 nm lasers significantly decreased the E. faecalis count in the root canal system; 810 nm laser was more effective in decreasing the intracanal microbial load. PMID:27853346
Gao, Peng; Pinkston, Kenneth L.; Bourgogne, Agathe; Cruz, Melissa R.; Garsin, Danielle A.; Murray, Barbara E.
2013-01-01
The Enterococcus faecalis cell wall-anchored protein Ace is an important virulence factor involved in cell adhesion and infection. Expression of Ace on the cell surface is affected by many factors, including stage of growth, culture temperature, and environmental components, such as serum, urine, and collagen. However, the mechanisms that regulate or modulate Ace display are not well understood. With interest in identifying genes associated with Ace expression, we utilized a whole-cell enzyme-linked immunosorbent assay (ELISA)-based screening method to identify mutants from a transposon insertion mutant library which exhibited distinct Ace surface expression profiles. We identified a ccpA insertion mutant which showed significantly decreased levels of Ace surface expression at early growth phase versus those of wild-type OG1RF. Confirmation of the observation was achieved through flow cytometry and complementation analysis. Compared to the wild type, the E. faecalis ccpA mutant had an impaired ability to adhere to collagen when grown to early exponential phase, consistent with the lack of Ace expression in the early growth phase. As a key component of carbon catabolite regulation, CcpA has been previously reported to play a critical role in regulating expression of proteins involved in E. faecalis carbohydrate uptake and utilization. Our discovery is the first to associate CcpA with the production of a major E. faecalis virulence factor, providing new insights into the regulation of E. faecalis pathogenesis. PMID:23974022
Bio-preservation of ground beef meat by Enterococcus faecalis CECT7121.
Sparo, M D; Confalonieri, A; Urbizu, L; Ceci, M; Bruni, S F Sánchez
2013-01-01
Meat and particularly ground beef is frequently associated with Food Poisoning episodes and breeches in Food Safety. The main goal of this research was to evaluate the bactericide effect of the probiotic Enterococcus faecalis CECT7121, against different pathogens as: Escherichia coli O157:H7, Staphylococcus aureus, Clostridium perfringens and Listeria monocytogenes, inoculated in ground beef meat. Three studies were performed to evaluate the inhibition of E. faecalis CECT7121 on ground beef meat samples inoculated with pathogens: Study I: Samples (100 g meat) were inoculated with pathogens (10(3) CFU/g)) and E. faecalis CECT7121 (10(4) CFU/g) simultaneously. Study II: Samples were inoculated with E. faecalis CECT7121 24 h before the pathogens. Study III: E. faecalis CECT7121were inoculated 24 h after pathogens. The viable counts were performed at 0, 24, 48 and 72 h post-inoculation. The simultaneous inoculation of E. faecalis CECT7121 with E. coli O157:H7 strains resulted in the absence of viable counts of bacteria at 72 h post-treatment. However, when the probiotic was added 24 h before and 24 h after the pathogen E. coli O157:H7, viable cells were not detected at 24 h and 48 h post-treatment, respectively. Consistently, neither S. aureus nor Cl. perfringens viable bacteria were detected at 48 h in whole assays when inoculated with E. faecalis CECT7121. The same trend than described before was obtained after applying the 3 models assayed for L. monocytogenes. The current assays demonstrated the bactericide activity of E. faecalis CECT7121 strain on bacterial pathogens in ground beef meat.
Kajwadkar, Ruma; Shin, Jae M; Lin, Guo-Hao; Fenno, J Christopher; Rickard, Alexander H; Kapila, Yvonne L
2017-06-01
Nisin, a broad-spectrum bacteriocin, has recently been highlighted for its biomedical applications. To date, no studies have examined the antimicrobial and antibiofilm properties of high-purity (>95%) nisin (nisin ZP) on Enterococcus faecalis and biofilms formed by this species. We hypothesize that nisin can inhibit E. faecalis and reduce biofilm biomass, and combinations of nisin and sodium hypochlorite (NaOCl) will enhance the antibiofilm properties against E. faecalis biofilms. Using broth cultures, disc diffusion assays, and biofilm assays, we examined the effects of nisin on various E. faecalis growth parameters and biofilm properties (biovolume, thickness, and roughness). Confocal microscopy was used in conjunction with Imaris and Comstat2 software (Kongens Lyngby, Copenhagen, Denmark) to measure and analyze the biofilm properties. Nisin significantly decreased the growth of planktonic E. faecalis dose dependently. The minimum inhibitory concentrations against E. faecalis strains OG-1 and ATCC 29212 were 15 and 50 μg/mL, and the minimum bactericidal concentrations were 150 and 200 μg/mL, respectively. A reduction in biofilm biovolume and thickness was observed for biofilms treated with nisin at ≥10 μg/mL for 10 minutes. In addition, the combination of nisin with low doses of NaOCl enhanced the antibiofilm properties of both antimicrobial agents. Nisin alone or in combination with low concentrations of NaOCl reduces the planktonic growth of E. faecalis and disrupts E. faecalis biofilm structure. Our results suggest that nisin has potential as an adjunctive endodontic therapeutic agent and as an alternative to conventional NaOCl irrigation. Copyright © 2017 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Comparative Analysis of the Orphan CRISPR2 Locus in 242 Enterococcus faecalis Strains
Hullahalli, Karthik; Rodrigues, Marinelle; Schmidt, Brendan D.; Li, Xiang; Bhardwaj, Pooja; Palmer, Kelli L.
2015-01-01
Clustered, Regularly Interspaced Short Palindromic Repeats and their associated Cas proteins (CRISPR-Cas) provide prokaryotes with a mechanism for defense against mobile genetic elements (MGEs). A CRISPR locus is a molecular memory of MGE encounters. It contains an array of short sequences, called spacers, that generally have sequence identity to MGEs. Three different CRISPR loci have been identified among strains of the opportunistic pathogen Enterococcus faecalis. CRISPR1 and CRISPR3 are associated with the cas genes necessary for blocking MGEs, but these loci are present in only a subset of E. faecalis strains. The orphan CRISPR2 lacks cas genes and is ubiquitous in E. faecalis, although its spacer content varies from strain to strain. Because CRISPR2 is a variable locus occurring in all E. faecalis, comparative analysis of CRISPR2 sequences may provide information about the clonality of E. faecalis strains. We examined CRISPR2 sequences from 228 E. faecalis genomes in relationship to subspecies phylogenetic lineages (sequence types; STs) determined by multilocus sequence typing (MLST), and to a genome phylogeny generated for a representative 71 genomes. We found that specific CRISPR2 sequences are associated with specific STs and with specific branches on the genome tree. To explore possible applications of CRISPR2 analysis, we evaluated 14 E. faecalis bloodstream isolates using CRISPR2 analysis and MLST. CRISPR2 analysis identified two groups of clonal strains among the 14 isolates, an assessment that was confirmed by MLST. CRISPR2 analysis was also used to accurately predict the ST of a subset of isolates. We conclude that CRISPR2 analysis, while not a replacement for MLST, is an inexpensive method to assess clonality among E. faecalis isolates, and can be used in conjunction with MLST to identify recombination events occurring between STs. PMID:26398194
Vebø, Heidi C; Snipen, Lars; Nes, Ingolf F; Brede, Dag A
2009-11-04
Enterococcus faecalis plays a dual role in human ecology, predominantly existing as a commensal in the alimentary canal, but also as an opportunistic pathogen that frequently causes nosocomial infections like bacteremia. A number of virulence factors that contribute to the pathogenic potential of E. faecalis have been established. However, the process in which E. faecalis gains access to the bloodstream and establishes a persistent infection is not well understood. To enhance our understanding of how this commensal bacterium adapts during a bloodstream infection and to examine the interplay between genes we designed an in vitro experiment using genome-wide microarrays to investigate what effects the presence of and growth in blood have on the transcriptome of E. faecalis strain V583. We showed that growth in both 2xYT supplemented with 10% blood and in 100% blood had a great impact on the transcription of many genes in the V583 genome. We identified several immediate changes signifying cellular processes that might contribute to adaptation and growth in blood. These include modulation of membrane fatty acid composition, oxidative and lytic stress protection, acquisition of new available substrates, transport functions including heme/iron transporters and genes associated with virulence in E. faecalis. The results presented here reveal that cultivation of E. faecalis in blood in vitro has a profound impact on its transcriptome, which includes a number of virulence traits. Observed regulation of genes and pathways revealed new insight into physiological features and metabolic capacities which enable E. faecalis to adapt and grow in blood. A number of the regulated genes might potentially be useful candidates for development of new therapeutic approaches for treatment of E. faecalis infections.
Incorporation of Exogenous Fatty Acids Protects Enterococcus faecalis from Membrane-Damaging Agents
Saito, Holly E.; Harp, John R.
2014-01-01
Enterococcus faecalis is a commensal bacterium of the mammalian intestine that can persist in soil and aquatic systems and can be a nosocomial pathogen to humans. It employs multiple stress adaptation strategies in order to survive such a wide range of environments. Within this study, we sought to elucidate whether membrane fatty acid composition changes are an important component for stress adaptation. We noted that E. faecalis OG1RF was capable of changing its membrane composition depending upon growth phase and temperature. The organism also readily incorporated fatty acids from bile, serum, and medium supplemented with individual fatty acids, often dramatically changing the membrane composition such that a single fatty acid was predominant. Growth in either low levels of bile or specific individual fatty acids was found to protect the organism from membrane challenges such as high bile exposure. In particular, we observed that when grown in low levels of bile, serum, or the host-derived fatty acids oleic acid and linoleic acid, E. faecalis was better able to survive the antibiotic daptomycin. Interestingly, the degree of membrane saturation did not appear to be important for protection from the stressors examined here; instead, it appears that a specific fatty acid or combination of fatty acids is critical for stress resistance. PMID:25128342
Saxena, Divya; Saha, Suparna Ganguly; Saha, Mainak Kanti; Dubey, Sandeep; Khatri, Margie
2015-01-01
Sodium hypochlorite is the most widely used irrigant in endodontic practice, but it has various disadvantages. Literature has shown that herbal products such as Propolis, Azadirachta indica (AI), Triphala, Curcuma longa, and Morinda citrifolia (MC) possess good antimicrobial properties and thus can be used as potential endodontic irrigants. To evaluate and compare the antimicrobial activity of five herbal extracts, i.e., Propolis, AI, Triphala, C. longa, and MC with that of 2.5% sodium hypochlorite against Enterococcus faecalis. E. faecalis American Type Culture Collection 21292 was inoculated onto brain heart infusion agar plate. Discs impregnated with herbal medicaments were placed on the inoculated plates and incubated at 37°C aerobically for 24 h and growth inhibition zones were measured. Mean zone of inhibition in descending order was found as sodium hypochlorite > Propolis > AI > Triphala > C. longa = MC > ethanol. Statistical analysis was performed using one-way analysis of variance which showed a significant difference in the zone of inhibition of sodium hypochlorite and Propolis (P < 0.001). Propolis showed highest zone of inhibition among all the herbal extracts next to sodium hypochlorite. Propolis and AI have significant antimicrobial activity against E. faecalis.
Arias-Moliz, M T; Ordinola-Zapata, R; Baca, P; Ruiz-Linares, M; García García, E; Hungaro Duarte, M A; Monteiro Bramante, C; Ferrer-Luque, C M
2015-12-01
To evaluate the antimicrobial effect of 2.5% sodium hypochlorite alone (NaOCl) and associated with 9% HEBP (NaOCl/HEBP), 2% peracetic acid (PAA) and 2% chlorhexidine (CHX), on the viability of Enterococcus faecalis biofilms attached to dentine. Biofilms of E. faecalis were grown on the surface of dentine blocks for 5 days and then exposed to the irrigating solutions for 3 min. Distilled water was used as the control. The total biovolume and the percentage of dead cells of the infected dentine were measured by means of confocal microscopy and the live/dead technique. Nonparametric tests were used to determine statistical differences (P < 0.05). NaOCl and the NaOCl/HEBP mixture were associated with a significantly greater percentage of dead cells, followed by PAA (P < 0.05). No significant antimicrobial effect of CHX was observed in comparison with the control group. Total biovolume decreased significantly in NaOCl, NaOCl/HEBP and PAA solutions in comparison with the CHX and control groups. NaOCl alone or associated with HEBP were the most effective irrigant solutions in dissolving and killing E. faecalis biofilms. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Simjee, S; White, D G; McDermott, P F; Wagner, D D; Zervos, M J; Donabedian, S M; English, L L; Hayes, J R; Walker, R D
2002-12-01
Thirty-five enterococcal isolates were recovered from dogs diagnosed with urinary tract infections at the Michigan State University Veterinary Teaching Hospital over a 2-year period (1996 to 1998). Isolated species included Enterococcus faecium (n = 13), Enterococcus faecalis (n = 7), Enterococcus gallinarum (n = 11), and Enterococcus casseliflavus (n = 4). Antimicrobial susceptibility testing revealed several different resistance phenotypes, with the majority of the enterococcal isolates exhibiting resistance to three or more antibiotics. One E. faecium isolate, CVM1869, displayed high-level resistance to vancomycin (MIC > 32 micro g/ml) and gentamicin (MIC > 2,048 micro g/ml). Molecular analysis of this isolate revealed the presence of Tn1546 (vanA), responsible for high-level vancomycin resistance, and Tn5281 carrying aac6'-aph2", conferring high-level aminoglycoside resistance. Pulsed-field gel electrophoresis analysis revealed that CVM1869 was a canine E. faecium clone that had acquired Tn1546, perhaps from a human vancomycin-resistant E. faecium. Transposons Tn5281 and Tn1546 were located on two different conjugative plasmids. Sequence analysis revealed that in Tn1546, ORF1 had an 889-bp deletion and an IS1216V insertion at the 5' end and an IS1251 insertion between vanS and vanH. To date, this particular form of Tn1546 has only been described in human clinical vancomycin-resistant enterococcus isolates unique to the United States. Additionally, this is the first report of a vancomycin-resistant E. faecium isolated from a companion animal in the United States.
An Attenuated CRISPR-Cas System in Enterococcus faecalis Permits DNA Acquisition
Hullahalli, Karthik; Rodrigues, Marinelle; Nguyen, Uyen Thy
2018-01-01
ABSTRACT Antibiotic-resistant bacteria are critical public health concerns. Among the prime causative factors for the spread of antibiotic resistance is horizontal gene transfer (HGT). A useful model organism for investigating the relationship between HGT and antibiotic resistance is the opportunistic pathogen Enterococcus faecalis, since the species possesses highly conjugative plasmids that readily disseminate antibiotic resistance genes and virulence factors in nature. Unlike many commensal E. faecalis strains, the genomes of multidrug-resistant (MDR) E. faecalis clinical isolates are enriched for mobile genetic elements (MGEs) and lack clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (Cas) genome defense systems. CRISPR-Cas systems cleave foreign DNA in a programmable, sequence-specific manner and are disadvantageous for MGE-derived genome expansion. An unexplored facet of CRISPR biology in E. faecalis is that MGEs that are targeted by native CRISPR-Cas systems can be maintained transiently. Here, we investigate the basis for this “CRISPR tolerance.” We observe that E. faecalis can maintain self-targeting constructs that direct Cas9 to cleave the chromosome, but at a fitness cost. Interestingly, DNA repair genes were not upregulated during self-targeting, but integrated prophages were strongly induced. We determined that low cas9 expression contributes to this transient nonlethality and used this knowledge to develop a robust CRISPR-assisted genome-editing scheme. Our results suggest that E. faecalis has maximized the potential for DNA acquisition by attenuating its CRISPR machinery, thereby facilitating the acquisition of potentially beneficial MGEs that may otherwise be restricted by genome defense. PMID:29717009
Wieland, N; Boss, J; Lettmann, S; Fritz, B; Schwaiger, K; Bauer, J; Hölzel, C S
2017-06-01
The spread of bacteria that are simultaneously resistant to disinfectants and antimicrobials would constitute an unsettling scenario. In order to explore an association between antimicrobial resistance and reduced susceptibility to biocides/microbicides (disinfectants) in agriculture, we investigated Escherichia coli (n = 438) and enterococci (n = 120) isolated from six different flocks of the same poultry farm with known history of antimicrobial treatment. Susceptibility to disinfectants (formic acid and a quaternary ammonium compound (QAC), didecyldimethylammoniumchloride-DDAC) was assessed by macrodilution according to guidelines of the German Veterinary Society. Escherichia coli, Enterococcus faecalis and Enterococcus faecium were screened (i) for reduced biocide susceptibility and (ii) for an association of biocide susceptibility and antimicrobial resistance including the production of extended-spectrum beta-lactamases (ESBL) and the hyperproduction of AmpC-type beta-lactamases. DDAC inhibited ESBL/AmpC(hyper)-producing E. coli (n = 53) from poultry at similar or slightly lower inhibitory concentrations, compared with non-ESBL/AmpC strains (median MIC = 0·36 vs 1·44 mg l -1 ). In contrast, DDAC-MICs were positively correlated with several other antibiotic MICs (e.g. piperacillin and sulphamethoxazole + trimethoprim in E. coli, chloramphenicol in E. faecalis) and increased DDAC-MICs were statistically linked to high-level aminoglycoside resistance in enterococci (streptomycin high level). DDAC-MICs did not correlate with the presence of the integron marker qacEDelta1. This study provides indication that residual disinfectant might be able to select antimicrobial-resistant enterococci, but not ESBL-/AmpC (hyper)producing E. coli from poultry. While ESBL-/AmpC-E. coli were inhibited at disinfectant concentrations comparable to or lower than wildtype values, low concentrations of QACs might be able to select other antimicrobial-resistant E. coli or enterococci-a finding with special significance for the food processing industry, where QACs are regularly used. © 2017 The Society for Applied Microbiology.
Chau, N P T; Chung, N H; Jeon, J G
2015-08-01
To determine the relationships between the antibacterial activity of NaOCl and treatment time and biofilm age in early Enterococcus faecalis biofilms using a linear fitting procedure. Enterococcus faecalis biofilms were formed on hydroxyapatite discs. To investigate the relationship between the antibacterial activity of NaOCl and biofilm age, 22-, 46-, 70- and 94-h-old biofilms were exposed to NaOCl (0-3%) for 5 min. To investigate the relationship between the antibacterial activity of NaOCl and treatment time, 70-h-old biofilms were exposed to NaOCl (0-3%) for 1, 3, 5 and 7 min. After treatment, colony-forming units (CFUs) were counted. To determine the relationships between these variables, linear fitting was performed. The change in the minimum biofilm eradication concentration (MBEC) of NaOCl followed a linear pattern of biofilm age (R = 0.941, R(2) = 0.886) or treatment time dependence (R = -0.948, R(2) = 0.898). Below the MBEC, the fitting lines for bacterial CFU count versus NaOCl concentration (R ≤ -0.973, R(2) ≥ 0.948) in the 22-, 46-, 70- and 94-h-old biofilms implied that the antibacterial activity of NaOCl decreased as the biofilm age increased. The fitting lines for bacterial CFU count versus NaOCl concentration (R ≤ -0.970, R(2) ≥ 0.942) in the 1-, 3-, 5- and 7-min treatments implied that the antibacterial activity of NaOCl increased with treatment time. These results suggest that the antibacterial activity of NaOCl against early E. faecalis biofilms in root canals may follow a linear pattern depending on biofilm age or treatment time. © 2014 International Endodontic Journal. Published by John Wiley & Sons Ltd.
Characterization of the endolysin from the Enterococcus faecalis bacteriophage VD13
USDA-ARS?s Scientific Manuscript database
Bacteriophage infecting bacteria produce endolysins (peptidoglycan hydrolases) to lyse the host cell from within and release nascent bacteriophage particles. Recombinant endolysins can also lyse Gram-positive bacteria when added exogenously. As a potential alternative to antibiotics, we cloned and...
USE OF TAQMAN TO ENUMERATE ENTEROCOCCUS FAECALIS IN WATER
The Polymerase Chain Reaction (PCR) has become a useful tool in the detection of microorganisms. However, conventional PCR is somewhat time-consuming considering that additional steps (e.g., gel electrophoresis and gene sequencing) are required to confirm the presence of the tar...
2013-03-01
530-E6 MSSA, MRSA, E. coli, VRE, E. faecalis, B. subtilis 530-E7 MSSA, MRSA, E. coli, VRE, E. faecalis, B. subtilis B. anthracis, Micrococcus sp...530-E10 MSSA, MRSA, E. coli, VRE, E. faecalis, B. subtilis Micrococcus sp. 530-A5 VRE 530-B12 VRE 530-C12 VRE B. anthracis 530-D12 VRE 530-E12...VRE Micrococcus sp. 530-F11 VRE Micrococcus sp. 530-F12 VRE Enterococcus. faecium Figure 9. Pathogen overlay assay plates showing
Sharifi, Yaeghob; Hasani, Alka; Ghotaslou, Reza; Varshochi, Mojtaba; Hasani, Akbar; Aghazadeh, Mohammad; Milani, Morteza
2012-01-01
Recent data indicates an increasing rate of vancomycin resistance in clinical enterococcal isolates worldwide. The nosocomial enterococci are likely to harbor virulence elements that increase their ability to colonize hospitalized patients. The aim of this study was to characterize virulence determinants in vancomycin-resistant enterococci (VRE) obtained from various clinical sources. During the years 2008 to 2010, a total of 48 VRE isolates were obtained from three University teaching hospitals in Northwest, Iran. Initially, phenotypic speciation was done and minimum inhibitory concentrations (MICs) of vancomycin were determined by agar dilution method and E-test. Then, species identification and resistance genotypes along with detection of virulence genes (asa1, esp, gelE, ace and cpd) of the isolates were performed by multiplex PCR. Thirty eight isolates were identified as vancomycin-resistant Enterococcus faecium (VREfm) and ten as E. faecalis (VREfs). Irrespective of the species, vanA gene (89.58%) was dominant and three phenotypically vancomycin susceptible E. faecium isolates carried the vanB gene. Among virulence genes investigated, the esp was found in 27(71%) VREfm strains, but did not in any VREfs. Other virulence determinants were highly detected in VREfs strains. Our data indicate a high prevalence of E. faecium harboring vancomycin resistance with vanA genotype and the two VRE species displayed different virulence genes. PMID:22582098
Donado-Godoy, Pilar; Byrne, Barbara A; León, Maribel; Castellanos, Ricardo; Vanegas, Consuelo; Coral, Adriana; Arevalo, Alejandra; Clavijo, Viviana; Vargas, Mercedes; Romero Zuñiga, Juan J; Tafur, McAllister; Pérez-Gutierrez, Enrique; Smith, Woutrina A
2015-04-01
As a step toward implementing the Colombian Integrated Program for Antimicrobial Resistance Surveillance (COIPARS), this study aimed to establish the baseline antimicrobial resistance patterns of Salmonella serovars, Escherichia coli, and Enterococcus spp. isolates in retail poultry meat from independent stores and from a main chain distributor center. MICs of the isolates were determined for antimicrobials used both in humans and animals, using an automated system. Salmonella serovars were isolated from 26% of the meat samples and E. coli from 83%, whereas Enterococcus faecalis and Enterococcus faecium were detected in 81 and 13% of the meat samples, respectively. A principal finding of concern in this study was that almost 98% of isolates tested were multidrug resistant. Ceftiofur, enrofloxacin, nalidixic acid, and tetracycline were the antimicrobials that showed the highest frequency of resistance among Salmonella and E. coli isolates. For enterococci, 61.5% of E. faecium isolates were found to be resistant to quinupristin-dalfopristin; this is significant because it is used to treat nosocomial infections when vancomycin resistance is present. Vancomycin resistance was detected in 4% of the E. faecalis isolates. The results of our study highlight the need for rapid implementation of an integrated program for surveillance of antimicrobial resistance by the Colombian authorities in order to monitor trends, raise awareness, and help promote practices to safeguard later generation antimicrobial agents.
Gao, Yan; Jiang, Xiaoqiong; Lin, Dongjia; Chen, Yanhuo; Tong, Zhongchun
2016-08-01
Enterococcus faecalis is the most frequently detected species in root canal-treated teeth, and it is able to survive under starvation conditions. However, persistent periapical disease is often caused by multispecies. The aim of this study was to explore the survival of E. faecalis in starvation conditions and biofilm formation with the 4 common pathogenic species. A dual-species model of Candida albicans, Streptococcus gordonii, Actinomyces viscosus, or Lactobacillus acidophilus in combination with E. faecalis was established and allowed to grow in phosphate-buffered saline for the examination of starvation survival. Cefuroxime sodium and vancomycin at a concentration of 100 mg/L were added into brain-heart infusion plate agar to count the 2 bacteria separately in the dual species. Scanning electron microscopy was used to observe the dual species and multiple species on the root canal dentin of bovine teeth for 48 hours. A confocal laser scanning microscope was used to show the 4 groups of dual-species biofilms on substrates with glass bottoms for 48 hours. E. faecalis was more resistant to starvation in coexistence with C. albicans, S. gordonii, A. viscosus, or L. acidophilus, and S. gordonii was completely inhibited in coexistence with E. faecalis. The dual-species biofilm showed that E. faecalis formed thicker and denser biofilms on the root canal dentin and glass slides in coexistence with S. gordonii and A. viscosus than C. albicans and L. acidophilus. The multispecies community is conducive to the resistance to starvation of E. faecalis and biofilm formation in root canals. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Transmission and genetic diversity of Enterococcus faecalis among layer chickens during hatch
2011-01-01
Background Studies on transmission of Enterococcus faecalis among chickens during hatch have not been carried out so far. Information about vertical transmission and subsequent spreading and colonization of the cloacal mucosa through cloacal 'drinking' during hatch are important to understand the epidemiology of E. faecalis infections. In the present investigation vertical transmission and subsequent spreading and colonization of the cloacal mucosa of chickens by E. faecalis through cloacal 'drinking' were examined. Methods Two different batches of layer chickens originating from 45 weeks old Brown and White Lohmann parents, respectively from the same farm were sampled in the hatcher. Isolates were confirmed to be E. faecalis by polymerase chain reaction (PCR) and further by multilocus sequence typing (MLST) to state their population structure and comparison made to sequence types previously obtained from chicken. Results A total of 480 chickens were swabbed from the cloacae just after hatch and after 24 hours. A total of 101 isolates were confirmed as E. faecalis by a species specific PCR. The prevalence of E. faecalis increased from 14% at 0 h to 97% after 24 h for the Brown Lohmann chickens and from 0.5% to 23% for the White Lohmann flock. The 84 isolates analysed by MLST were distributed on 14 sequence types (ST). Three ST (401, 82 and 249) accounted for 64% of all isolates analysed by MLST after 24 h. ST 82 has previously been reported from amyloid arthropathy and other lesions in poultry. Conclusions The present findings demonstrated a high potential of a few contaminated eggs or embryos to rapidly facilitate the spread of E. faecalis to almost all chickens during hatch. PMID:22017822
Enterococci in foods--a conundrum for food safety.
Franz, Charles M A P; Stiles, Michael E; Schleifer, Karl Heinz; Holzapfel, Wilhelm H
2003-12-01
Enterococci form part of the lactic acid bacteria (LAB) of importance in foods. They can spoil processed meats but they are on the other hand important for ripening and aroma development of certain traditional cheeses and sausages, especially those produced in the Mediterranean area. Enterococci are also used as human probiotics. However, they are important nosocomial pathogens that cause bacteraemia, endocarditis and other infections. Some strains are resistant to many antibiotics, but antibiotic resistance alone cannot explain the virulence of some of these bacteria. Virulence factors such as adhesins, invasins and haemolysin have been described. The role of enterococci in disease has raised questions on their safety for use in foods or as probiotics. Studies on the incidence of virulence traits among enterococcal strains isolated from food showed that some harbour virulence traits and generally, Enterococcus faecalis harbours more of them than Enterococcus faecium. Regulations in Europe stipulate that safety of probiotic or starter strains is the responsibility of the producer; therefore, each strain intended for such use should be carefully evaluated. For numerous questions, immediate answers are not fully available. It is therefore suggested that when considering an Enterococcus strain for use as a starter or probiotic culture, it is imperative that each particular strain should be carefully evaluated for the presence of all known virulence factors. Ideally, such strains should harbour no virulence determinants and should be sensitive to clinically relevant antibiotics. In general, E. faecium appears to pose a lower risk for use in foods, because these strains generally harbour fewer recognised virulence determinants than E. faecalis. Generally, the incidence of such virulence determinants among E. faecium strains is low, as compared to E. faecalis strains, probably as a result of the presence of pheromone-responsive plasmids.
Hombach, Michael; Jetter, Marion; Blöchliger, Nicolas; Kolesnik-Goldmann, Natalia; Keller, Peter M; Böttger, Erik C
2018-01-01
Abstract Background We investigated the feasibility of rapid disc diffusion antibiotic susceptibility testing (rAST) with reading of inhibition zones after 6 and/or 8 h of incubation for Enterococcus faecalis, Enterococcus faecium, Pseudomonas aeruginosa and Acinetobacter baumannii. In addition, we evaluated discrimination of resistant populations from the WT populations at early timepoints and the requirement for clinical breakpoint adaptations for proper interpretation of rAST data. Methods In total, 815 clinical strains [E. faecalis (n = 135), E. faecium (n = 227), P. aeruginosa (n = 295) and A. baumannii (n = 158)] were included in this study. Disc diffusion plates were streaked, incubated and imaged using the WASPLabTM automation system. WT populations and non-WT populations were defined using epidemiological cut-offs. Results and conclusions rAST at 6 and 8 h was possible for A. baumannii and enterococci with readability of inhibition zones >90%. Overall categorical agreement of rAST at 6 h with AST at 18 h was 97.2%, 97.4% and 95.3% for E. faecalis, E. faecium and A. baumannii, respectively. With few exceptions, major categorization error rates were <1% for A. baumannii, and vancomycin-resistant E. faecium were clearly separated from the WT at 6 h. For P. aeruginosa the average readability of inhibition zones was 68.9% at 8 h and we found an overall categorical agreement of 94.8%. Adaptations of clinical breakpoints and/or introduction of technical buffer zones, preferably based on aggregated population data from various epidemiological settings, are required for proper interpretation of rAST. PMID:29186434
de Almeida, Ana Paula; Souza, Matheus Albino; Miyagaki, Daniela Cristina; Dal Bello, Yuri; Cecchin, Doglas; Farina, Ana Paula
2014-12-01
The purpose of this study was to compare in vitro the effectiveness of calcium hypochlorite (Ca[OCl]2) and sodium hypochlorite (NaOCl) associated with passive ultrasonic irrigation in root canals of bovine teeth infected with Enterococcus faecalis. The root canals of 60 single-rooted bovine extracted teeth were enlarged up to a file 45, autoclaved, inoculated with Enterococcus faecalis, and incubated for 30 days. The samples were divided into 6 groups (n = 10) according to the protocol for decontamination: G1: no treatment; G2: distilled water; G3: 2.5% NaOCl; G4: 2.5% Ca(OCl)2; G5: 2.5% NaOCl with ultrasonic activation; and G6: 2.5% Ca(OCl)2 with ultrasonic activation (US). Microbiological testing (colony-forming unit [CFU] counting) was performed to evaluate and show, respectively, the effectiveness of the proposed treatments. Data were subjected to 1-way analysis of variance followed by the post hoc Tukey test (α = 0.05). Groups 1 and 2 showed the highest mean contamination (3.26 log10 CFU/mL and 2.69 log10 CFU/mL, respectively), which was statistically different from all other groups (P < .05). Group 6 (Ca[OCl]2 + US) showed the lowest mean contamination (1.00 log10 CFU/mL), with no statistically significant difference found in groups 3 (NaOCl), 4 (Ca[OCl]2), and 5 (NaOCl + US) (P < .05). Ca(OCl)2 as well as passive ultrasonic irrigation can aid in chemomechanical preparation, contributing in a significant way to the reduction of microbial content during root canal treatment. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Hayakawa, Teruo; Masuda, Tomohide; Kurosawa, Daisuke; Tsukahara, Takamitsu
2016-12-01
Probiotics have gained considerable attention with respect to their beneficial effects on livestock performance and health. The most significant effects of probiotics on the gut microbiota and the host animals take place when they are included in diets during particularly stressful periods such as weaning and/or at the beginning of the lactation period. The probiotics Bacillus mesentericus strain TO-A at 1 × 10 8 colony forming units (CFU)/g, Clostridium butyricum strain TO-A at 1 × 10 8 CFU/g and Enterococcus faecalis strain T-110 at 1 × 10 9 CFU/g were used. Litter weight at delivery and ratio of return to estrous improved significantly (17% and 24% improvement, respectively) by probiotic administration to sows (0.2% (w/w)). Furthermore, the feed intake of the probiotics-administered sows was greater than that of the control sows during the late lactation period. Post-weaning diarrheal incidence and growth performance was improved by probiotics administration to neonates (0.02% (w/w)), while the combined use of probiotics in sows and their neonates induced the enlargement of villous height and prevented muscle layer thinning in the small intestine of weaning piglets. The administration of probiotics of three species of live bacteria improved the porcine reproductive performance around stressful periods of sows (farrowing) and piglets (weaning). [Corrections added on 26 April 2016, after first online publication: 'Enterococcus faecalis strain T-100' has been corrected to 'Enterococcus faecalis strain T-110' in the above paragraph and in the 'Probiotics' section under the Materials and Methods heading.]. © 2016 Japanese Society of Animal Science.
Bhardwaj, Anuj; Ballal, Suma; Velmurugan, Natanasabapathy
2012-07-01
A comparative evaluation of the antimicrobial activity of natural extracts of Morinda citrifolia, papain, and aloe vera (all in gel formulations), 2% chlorhexidine gel and calcium hydroxide, against Enterococcus faecalis-an in vitro study. The antimicrobial efficacy was assessed in vitro using dentin shavings collected at 2 depths of 200 and 400 μm. The total colony forming units at the end of 1, 3, and 5 days were assessed. The overall percentage inhibition of bacterial growth (200 and 400 μm depth) was 100% with chlorhexidine gel. This was followed by M. citrifolia gel (86.02%), which showed better antimicrobial efficacy as compared with aloe vera gel (78.9%), papain gel (67.3%), and calcium hydroxide (64.3%). There was no statistical difference between data at 200 and 400 μm depth. Chlorhexidine gel showed the maximum antimicrobial activity against E. faecalis, whereas calcium hydroxide showed the least. Among the natural intracanal medicaments, M. citrifolia gel consistently exhibited good inhibition up to the 5(th) day followed by aloe vera gel and papain gel.
Bactericial effect of a non-thermal plasma needle against Enterococcus faecalis biofilms
NASA Astrophysics Data System (ADS)
Jiang, Chunqi; Schaudinn, C.; Jaramillo, D. E.; Sedghizadeh, P. P.; Webster, P.; Costerton, J. W.
2011-10-01
Up to 3 cm long submillimeter-in-scale plasma needle was generated in ambient atmosphere for root canal disinfection. Powered with 1-2 kHz, multi-kilovolt nanosecond electric pulses, this He/(1%)O2 plasma jet consists of ionization fronts propagating at speeds of the order of 107 cm/s. Plasma treatment of Enterococcus faecalis biofilms on hydroxyapatite (HA) discs for 5 min resulted in severe damage of the bacterial cells and sterilized HA surfaces of more than 3 mm in diameter, observed by the scanning electron microscopy. With a curing dielectric microtube placed 1 cm or less below the nozzle, the plasma jet entered even at a sharp angle and followed the curvature of the tube, and reached the bottom of the tube. The bactericidal effect of the plasma needle against E. faecalis biofilm grown on the inner surfaces of the tube was demonstrated. However, the bactericidal effect weakens or diminishes for the bacteria grown deeper in the tube, indicating improvement of the plasma treatment scheme is needed. Mechanisms of the plasma bactericidal effects are discussed. Supported by the National Institute of Dental and Craniofacial Research and the Air Force Office of Scientific Research.
Characterization and application of enterocin RM6, a bacteriocin from Enterococcus faecalis.
Huang, En; Zhang, Liwen; Chung, Yoon-Kyung; Zheng, Zuoxing; Yousef, Ahmed E
2013-01-01
Use of bacteriocins in food preservation has received great attention in recent years. The goal of this study is to characterize enterocin RM6 from Enterococcus faecalis OSY-RM6 and investigate its efficacy against Listeria monocytogenes in cottage cheese. Enterocin RM6 was purified from E. faecalis culture supernatant using ion exchange column, multiple C18-silica cartridges, followed by reverse-phase high-performance liquid chromatography. The molecular weight of enterocin RM6 is 7145.0823 as determined by mass spectrometry (MS). Tandem mass spectrometry (MS/MS) analysis revealed that enterocin RM6 is a 70-residue cyclic peptide with a head-to-tail linkage between methionine and tryptophan residues. The peptide sequence of enterocin RM6 was further confirmed by sequencing the structural gene of the peptide. Enterocin RM6 is active against Gram-positive bacteria, including L. monocytogenes, Bacillus cereus, and methicillin-resistant Staphylococcus aureus (MRSA). Enterocin RM6 (final concentration in cottage cheese, 80 AU/mL) caused a 4-log reduction in population of L. monocytogenes inoculated in cottage cheese within 30 min of treatment. Therefore, enterocin RM6 has potential applications as a potent antimicrobial peptide against foodborne pathogens in food.
Characterization and Application of Enterocin RM6, a Bacteriocin from Enterococcus faecalis
Chung, Yoon-Kyung; Yousef, Ahmed E.
2013-01-01
Use of bacteriocins in food preservation has received great attention in recent years. The goal of this study is to characterize enterocin RM6 from Enterococcus faecalis OSY-RM6 and investigate its efficacy against Listeria monocytogenes in cottage cheese. Enterocin RM6 was purified from E. faecalis culture supernatant using ion exchange column, multiple C18-silica cartridges, followed by reverse-phase high-performance liquid chromatography. The molecular weight of enterocin RM6 is 7145.0823 as determined by mass spectrometry (MS). Tandem mass spectrometry (MS/MS) analysis revealed that enterocin RM6 is a 70-residue cyclic peptide with a head-to-tail linkage between methionine and tryptophan residues. The peptide sequence of enterocin RM6 was further confirmed by sequencing the structural gene of the peptide. Enterocin RM6 is active against Gram-positive bacteria, including L. monocytogenes, Bacillus cereus, and methicillin-resistant Staphylococcus aureus (MRSA). Enterocin RM6 (final concentration in cottage cheese, 80 AU/mL) caused a 4-log reduction in population of L. monocytogenes inoculated in cottage cheese within 30 min of treatment. Therefore, enterocin RM6 has potential applications as a potent antimicrobial peptide against foodborne pathogens in food. PMID:23844357
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kang, Ji Yong; Lee, Hyung Ho; Yoon, Hye Jin
2006-11-01
Phosphopantetheine adenylyltransferase from En. faecalis was crystallized and X-ray diffraction data were collected to 2.70 Å resolution. Phosphopantetheine adenylyltransferase, an essential enzyme in the coenzyme A biosynthetic pathway, catalyzes the reversible transfer of an adenylyl group from ATP to 4′-phosphopantetheine, yielding 3′-dephospho-CoA and pyrophosphate. Enterococcus faecalis PPAT has been overexpressed in Escherichia coli as a fusion with a C-terminal purification tag and crystallized at 297 K using a reservoir solution consisting of 0.1 M sodium HEPES pH 7.5, 0.8 M sodium dihydrogen phosphate and 0.8 M potassium dihydrogen phosphate. X-ray diffraction data were collected to 2.70 Å at 100 K.more » The crystals belong to the primitive tetragonal space group P4{sub 1} (or P4{sub 3}), with unit-cell parameters a = b = 160.81, c = 225.68 Å. Four copies of the hexameric molecule are likely to be present in the asymmetric unit, giving a crystal volume per protein weight (V{sub M}) of 3.08 Å{sup 3} Da{sup −1} and a solvent content of 60.1%.« less
Elal Mus, Tulay; Cetinkaya, Figen; Cibik, Recep; Soyutemiz, Gul Ece; Simsek, Husniye; Coplu, Nilay
2017-12-01
In this study, the presence of genes responsible for the pathogenicity and antibiotic resistance profile of enterococci isolated from various foodstuffs of animal origin was investigated. The percentage prevalence of enterococci was 54.1% (203/375) and the average count was found to be 3.81 log cfu/ml-g. Species-specific primers revealed Enterococcus faecalis as the predominant species carrying one or more virulence-associated traits of efa, gelE, ace, esp and agg genetic markers. Only one E. faecium isolate (from milk) was positive for the esp gene. Regarding antibiotic resistance, the highest frequency of resistance was observed for tetracycline (21.7%), followed by quinupristin/dalfopristin (13.3%), ciprofloxacin (2.0%), penicillin (2.0%), linezolid (1.0%), ampicillin (1.0%), streptomycin (1.0%), and gentamicin (0.5%). Enterococcus faecalis showed a higher prevalence of antibiotic resistance than other enterococci. The percentage of multidrug resistance among the isolates was 3.4%. Twenty-nine E. faecalis isolates (26.6%) carrying one of the virulence-associated traits were at the same time resistant to at least one antibiotic. Our results show that foods of animal origin, including ready-to-eat products, may be reservoirs of antibiotic-resistant and potentially virulent enterococci.
Palmer, Kelli L.; Godfrey, Paul; Griggs, Allison; Kos, Veronica N.; Zucker, Jeremy; Desjardins, Christopher; Cerqueira, Gustavo; Gevers, Dirk; Walker, Suzanne; Wortman, Jennifer; Feldgarden, Michael; Haas, Brian; Birren, Bruce; Gilmore, Michael S.
2012-01-01
ABSTRACT The enterococci are Gram-positive lactic acid bacteria that inhabit the gastrointestinal tracts of diverse hosts. However, Enterococcus faecium and E. faecalis have emerged as leading causes of multidrug-resistant hospital-acquired infections. The mechanism by which a well-adapted commensal evolved into a hospital pathogen is poorly understood. In this study, we examined high-quality draft genome data for evidence of key events in the evolution of the leading causes of enterococcal infections, including E. faecalis, E. faecium, E. casseliflavus, and E. gallinarum. We characterized two clades within what is currently classified as E. faecium and identified traits characteristic of each, including variation in operons for cell wall carbohydrate and putative capsule biosynthesis. We examined the extent of recombination between the two E. faecium clades and identified two strains with mosaic genomes. We determined the underlying genetics for the defining characteristics of the motile enterococci E. casseliflavus and E. gallinarum. Further, we identified species-specific traits that could be used to advance the detection of medically relevant enterococci and their identification to the species level. PMID:22354958
Feng, J; Heinze, T M; Xu, H; Cerniglia, C E; Chen, H
2010-05-01
Although cytoplasmic azoreductases have been purified and characterized from various bacteria, little evidence demonstrating that these azoreductases are directly involved in azo dye reduction in vivo is known. In order to evaluate the contribution of the enzyme to azo dye reduction in vivo, experiments were conducted to determine the effect of a recombinant cytoplasmic azoreductase (AzoA) from Enterococcus faecalis expressed in Escherichia coli on the rate of metabolism of Methyl Red, Ponceau BS and Orange II. The intact cells that contained IPTG induced AzoA had a higher rate of dye reduction with increases of 2 (Methyl Red), 4 (Ponceau BS) and 2.6 (Orange II)-fold compared to noninduced cells, respectively. Metabolites of Methyl Red isolated from induced cultures were identified as N,N-dimethyl-p-phenylenediamine and 2-aminobenzoic acid through liquid chromatography electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) analyses. In conclusion, our data demonstrate that AzoA from Ent. faecalis is capable of increasing the reduction of azo dyes in intact E. coli cells and that cytoplasmic azoreductase is involved in bacterial dye degradation in vivo.
Feng, Jinhui; Heinze, Thomas M.; Xu, Haiyan; Cerniglia, Carl E.; Chen, Huizhong
2018-01-01
Although cytoplasmic azoreductases have been purified and characterized from various bacteria, little evidence demonstrating that these azoreductases are directly involved in azo dye reduction in vivo is known. In order to evaluate the contribution of the enzyme to azo dye reduction in vivo, experiments were conducted to determine the effect of a recombinant cytoplasmic azoreductase (AzoA) from Enterococcus faecalis expressed in Escherichia coli on the rate of metabolism of Methyl Red, Ponceau BS and Orange II. The intact cells that contained IPTG induced AzoA had a higher rate of dye reduction with increases of 2 (Methyl Red), 4 (Ponceau BS) and 2.6 (Orange II)-fold compared to noninduced cells, respectively. Metabolites of Methyl Red isolated from induced cultures were identified as N,N-dimethyl-p-phenylenediamine and 2-aminobenzoic acid through liquid chromatography electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) analyses. In conclusion, our data demonstrate that AzoA from Ent. faecalis is capable of increasing the reduction of azo dyes in intact E. coli cells and that cytoplasmic azoreductase is involved in bacterial dye degradation in vivo. PMID:19663804
Osman, Kamelia M; Ali, Mohamed N; Radwan, Ismail; ElHofy, Fatma; Abed, Ahmed H; Orabi, Ahmed; Fawzy, Nehal M
2016-01-01
Although normally regarded harmless commensals, enterococci may cause a range of different infections in humans, including urinary tract infections, sepsis, and endocarditis. The acquisition of vancomycin resistance by enterococci (VRE) has seriously affected the treatment and infection control of these organisms. VRE are frequently resistant to all antibiotics that are effective treatment for vancomycin-susceptible enterococci, which leaves clinicians treating VRE infections with limited therapeutic options. With VRE emerging as a global threat to public health, we aimed to isolate, identify enterococci species from tilapia and their resistance to van-mediated glycopeptide (vanA and vanC) as well as the presence of enterococcal surface protein (esp) using conventional and molecular methods. The cultural, biochemical (Vitek 2 system) and polymerase chain reaction results revealed eight Enterococcus isolates from the 80 fish samples (10%) to be further identified as E. faecalis (6/8, 75%) and E gallinarum (2/8, 25%). Intraperitoneal injection of healthy Nile tilapia with the eight Enterococcus isolates caused significant morbidity (70%) within 3 days and 100% mortality at 6 days post-injection with general signs of septicemia. All of the eight Enterococcus isolates were found to be resistant to tetracycline. The 6/6 E. faecalis isolates were susceptible for penicillin, nitrofurantoin, gentamicin, and streptomycin. On the other hand 5/6 were susceptible for ampicillin, vancomycin, chloramphenicol, and ciprofloxacin. The two isolates of E. gallinarum were sensitive to rifampicin and ciprofloxacin and resistant to vancomycin, chloramphenicol, and erythromycin. Molecular characterization proved that they all presented the prototypic vanC element. On the whole, one of the two vancomycin resistance gene was present in 3/8 of the enterococci isolates, while the esp virulence gene was present in 1/8 of the enterococci isolates. The results in this study emphasize the potential role that aquatic environments are correlated to proximity to anthropogenic activities in determining the antimicrobial resistance patterns of Enterococcus spp. recovered from fish in the river Nile in Giza, Elmounib, Egypt as a continuation of our larger study on the reservoirs of antibiotic resistance in the environment.
Lee, Keehoon; Lee, Kang-Mu; Kim, Donggeun
2017-01-01
ABSTRACT Biofilms are microbial communities that inhabit various surfaces and are surrounded by extracellular matrices (ECMs). Clinical microbiologists have shown that the majority of chronic infections are caused by biofilms, following the introduction of the first biofilm infection model by J. W. Costerton and colleagues (J. Lam, R. Chan, K. Lam, and J. W. Costerton, Infect Immun 28:546–556, 1980). However, treatments for chronic biofilm infections are still limited to surgical removal of the infected sites. Pseudomonas aeruginosa and Enterococcus faecalis are two frequently identified bacterial species in biofilm infections; nevertheless, the interactions between these two species, especially during biofilm growth, are not clearly understood. In this study, we observed phenotypic changes in a dual-species biofilm of P. aeruginosa and E. faecalis, including a dramatic increase in biofilm matrix thickness. For clear elucidation of the spatial distribution of the dual-species biofilm, P. aeruginosa and E. faecalis were labeled with red and green fluorescence, respectively. E. faecalis was located at the lower part of the dual-species biofilm, while P. aeruginosa developed a structured biofilm on the upper part. Mutants with altered exopolysaccharide (EPS) productions were constructed in order to determine the molecular basis for the synergistic effect of the dual-species biofilm. Increased biofilm matrix thickness was associated with EPSs, not extracellular DNA. In particular, Pel and Psl contributed to interspecies and intraspecies interactions, respectively, in the dual-species P. aeruginosa and E. faecalis biofilm. Accordingly, targeting Pel and Psl might be an effective part of eradicating P. aeruginosa polymicrobial biofilms. IMPORTANCE Chronic infection is a serious problem in the medical field. Scientists have observed that chronic infections are closely associated with biofilms, and the vast majority of infection-causing biofilms are polymicrobial. Many studies have reported that microbes in polymicrobial biofilms interact with each other and that the bacterial interactions result in elevated virulence, in terms of factors, such as infectivity and antibiotic resistance. Pseudomonas aeruginosa and Enterococcus faecalis are frequently isolated pathogens in chronic biofilm infections. Nevertheless, while both bacteria are known to be agents of numerous nosocomial infections and can cause serious diseases, interactions between the bacteria in biofilms have rarely been examined. In this investigation, we aimed to characterize P. aeruginosa and E. faecalis dual-species biofilms and to determine the molecular factors that cause synergistic effects, especially on the matrix thickening of the biofilm. We suspect that our findings will contribute to the development of more efficient methods for eradicating polymicrobial biofilm infections. PMID:28842537
Lee, Keehoon; Lee, Kang-Mu; Kim, Donggeun; Yoon, Sang Sun
2017-11-01
Biofilms are microbial communities that inhabit various surfaces and are surrounded by extracellular matrices (ECMs). Clinical microbiologists have shown that the majority of chronic infections are caused by biofilms, following the introduction of the first biofilm infection model by J. W. Costerton and colleagues (J. Lam, R. Chan, K. Lam, and J. W. Costerton, Infect Immun 28:546-556, 1980). However, treatments for chronic biofilm infections are still limited to surgical removal of the infected sites. Pseudomonas aeruginosa and Enterococcus faecalis are two frequently identified bacterial species in biofilm infections; nevertheless, the interactions between these two species, especially during biofilm growth, are not clearly understood. In this study, we observed phenotypic changes in a dual-species biofilm of P. aeruginosa and E. faecalis , including a dramatic increase in biofilm matrix thickness. For clear elucidation of the spatial distribution of the dual-species biofilm, P. aeruginosa and E. faecalis were labeled with red and green fluorescence, respectively. E. faecalis was located at the lower part of the dual-species biofilm, while P. aeruginosa developed a structured biofilm on the upper part. Mutants with altered exopolysaccharide (EPS) productions were constructed in order to determine the molecular basis for the synergistic effect of the dual-species biofilm. Increased biofilm matrix thickness was associated with EPSs, not extracellular DNA. In particular, Pel and Psl contributed to interspecies and intraspecies interactions, respectively, in the dual-species P. aeruginosa and E. faecalis biofilm. Accordingly, targeting Pel and Psl might be an effective part of eradicating P. aeruginosa polymicrobial biofilms. IMPORTANCE Chronic infection is a serious problem in the medical field. Scientists have observed that chronic infections are closely associated with biofilms, and the vast majority of infection-causing biofilms are polymicrobial. Many studies have reported that microbes in polymicrobial biofilms interact with each other and that the bacterial interactions result in elevated virulence, in terms of factors, such as infectivity and antibiotic resistance. Pseudomonas aeruginosa and Enterococcus faecalis are frequently isolated pathogens in chronic biofilm infections. Nevertheless, while both bacteria are known to be agents of numerous nosocomial infections and can cause serious diseases, interactions between the bacteria in biofilms have rarely been examined. In this investigation, we aimed to characterize P. aeruginosa and E. faecalis dual-species biofilms and to determine the molecular factors that cause synergistic effects, especially on the matrix thickening of the biofilm. We suspect that our findings will contribute to the development of more efficient methods for eradicating polymicrobial biofilm infections. Copyright © 2017 American Society for Microbiology.
Effects of Enterococcus faecalis CECT 7121 on Cryptosporidium parvum infection in mice
USDA-ARS?s Scientific Manuscript database
Cryptosporidium is an opportunistic protozoan parasite of humans and animals worldwide, causes diarrheal disease that is typically self-limiting in immunocompetent hosts but often life-threatening to immunocompromised individuals. However, there is a lack of completely efficient therapy available. P...
NASA Astrophysics Data System (ADS)
Schuerger, A. C.; Ming, D. W.; Golden, D. C.
2012-03-01
Bacillus subtilis and Enterococcus faecalis were exposed to six Mars analog soils under martian conditions. Only high-salt soils were observed to be moderately biotoxic to both species, suggesting regoltih may be habitable to terrestrial microorganisms.
Cogulu, Dilsah; Uzel, Atac; Oncag, Ozant; Eronat, Cemal
2008-09-01
The aim of the present study was to evaluate the presence of the selected pathogens in samples from deciduous and permanent tooth root canals by using PCR method and to determine the association of these organisms with clinical symptoms. A total of 145 children, 5 to 13 years old, were involved in this study. The presence of selected pathogens (Actinomyces israelii, Candida albicans, Enterococcus faecalis, Fusobacterium nucleatum, Porphyromonas endodontalis, Porphyromonas gingivalis, Prevotella intermedia, Streptococcus intermedius, Treponema denticola, Parvimonas micra, Tannerella forsythensis, Enterococcus faecium, Prevotella melaninogenica) in infected root canals was studied using PCR. T. denticola (P = .012, .02) and E. faecalis (P = .012, .04) were highly associated with periapical radiolucency and previous pain, while P. gingivalis was associated with tenderness to percussion in both deciduous and permanent teeth (P = .01, .015). The results of the present study confirm that certain species of microorganisms are associated with clinical signs and symptoms of endodontic disease in both deciduous and permanent teeth.
Sealing ability of MTA, CPM, and MBPc as root-end filling materials: a bacterial leakage study.
Medeiros, Paulo Leal; Bernardineli, Norberti; Cavenago, Bruno Cavalini; Torres, Sérgio Aparecido; Duarte, Marco Antonio Hungaro; Bramante, Clovis Monteiro; Marciano, Marina Angélica
2016-04-01
Objectives To evaluate the sealing ability of three root-end filling materials (white MTA, CPM, and MBPc) using an Enterococcus faecalis leakage model. Material and Methods Seventy single-root extracted human teeth were instrumented and root-ends were resected to prepare 3 mm depth cavities. Root-end preparations were filled with white MTA, CPM, and MBPc cements. Enterococcus faecalis was coronally introduced and the apical portion was immersed in BHI culture medium with phenol red indicator. The bacterial leakage was monitored every 24 h for 4 weeks. The statistical analysis was performed using the Wilcoxon-Gehan test (p<0.05). Results All cements showed bacterial leakage after 24 hours, except for the negative control group. The MBPc showed significantly less bacterial leakage compared with the MTA group (p<0.05). No significant differences were found between the CPM and the other groups. Conclusions The epoxy resin-based cement MBPc had lower bacterial leakage compared with the calcium silicate-based cements MTA and CPM.
Shoeibi, Sara; Mashreghi, Mohammad
2017-01-01
Microorganisms are capable of synthesizing metal nanoparticles, and specifically Enterococcus faecalis bacteria were tested for its ability to synthesize selenium nanoparticles (Se-NPs) from sodium selenite. The biosynthesized Se-NPs were spherical in shape with the size range of 29-195nm. Also, the TEM microscopy showed the accumulation of nano-structures as extracellular deposits. The ability of the bacteria to tolerate high levels of toxic selenite was studied by changing with different concentrations of sodium selenite (0.19mM-2.97mM). Also, the effect of Se-NPs was studied on the growth profile of number of pathogenic Gram-positive and -negative bacteria. High concentrations of sodium selenite in the medium led to the production of small amounts of selenium nanostructures by bacteria. In addition, Se-NPs can be used as an anti-staphylococcal element to effectively prevent and treat S. aureus infections. Copyright © 2016 Elsevier GmbH. All rights reserved.
Sewify, Gamal H; Hamada, Hanan M; Alhadrami, Hani A
2017-01-01
The invasive red palm weevil, Rhynchophorus ferrugineus Olivier (Coleoptera: Curculionidae), is considered one of the world's most devastating insect pests to palm trees. It was observed that larvae of this pest are able to inhibit microbial growth on the rearing media when they start feeding and this observation has led us to study the effect of red palm weevils on various microbial species. The antimicrobial effect of extracts from different parts of the alimentary canal on Gram positive bacteria ( Enterococcus faecalis and Staphylococcus aureus ), Gram negative bacteria ( Escherichia coli and Klebsiella spp.), Candida albicans, and Penicillium sp. was tested using the agar well diffusion method. All extracts inhibited the tested microbial species. Foregut extracts had the greatest zones of growth inhibition. Enterococcus faecalis , Staphylococcus aureus, and Penicillium sp. were significantly sensitive to the extracts and had the largest growth inhibition zones. It is concluded that the gut extracts contain potent antimicrobial activity and may provide a new source of antimicrobial peptides.
Suyemoto, M M; Barnes, H J; Borst, L B
2017-03-01
Pathogenic strains of Enterococcus cecorum (EC) expressing multidrug resistance have emerged. In National Antimicrobial Resistance Monitoring System (NARMS) data, EC is rarely recovered from chickens. Two NARMS methodologies (FDA and USDA) were compared with standard culture (SC) techniques for recovery of EC. NARMS methods failed to detect EC in 58 caecal samples, 20 chicken breast or six whole broiler samples. EC was recovered from 1 of 38 (2·6%) and 2 of 38 (5·2%) preharvest spinal lesions (USDA and FDA method, respectively). In contrast, using the SC method, EC was recovered from 44 of 53 (83%) caecal samples, all 38 (100%) spinal lesions, 14 of 20 (70%) chicken breast samples, and all three spinal lesions identified in whole carcasses. Compared with other Enterococcus spp., EC isolates had a higher prevalence of resistance to macrolides. The NARMS methods significantly affected recovery of enterococcal species other than EC. When the postharvest FDA method was applied to preharvest caecal samples, isolates of Enterococcus faecium were preferentially recovered. All 11 E. faecium isolates were multidrug resistant, including resistance to penicillin, daptomycin and linezolid. These findings confirm that current methodologies may not accurately identify the amount and range of antimicrobial resistance of enterococci from chicken sources. Enterococci are an important reservoir for antimicrobial resistance. This study demonstrates how current culture methods underreport resistance to macrolides in enterococci by selecting against strains of Enterococcus cecorum in pre- and postharvest chicken. Further, the application of postharvest surveillance methods to preharvest samples resulted in selective recovery of Enterococcus faecium over Enterococcus faecalis. Isolates of E. faecium recovered exhibited multidrug resistance including penicillin, daptomycin and linezolid resistance. These findings suggest that culture methodology significantly impacts the range and amount of antimicrobial resistance detected in enterococci isolated from chicken. © 2016 The Society for Applied Microbiology.
Fan, Wei; Li, Yanyun; Sun, Qing; Ma, Tengjiao; Fan, Bing
2016-10-21
In infected periapical tissues, Enterococcus faecalis is one of the most common dominant bacteria. Chlorhexidine has been proved to show strong antibacterial ability against E. faecalis but is ineffective in promoting mineralization for tissues around root apex. Mesoporous calcium-silicate nanoparticles are newly synthesized biomaterials with excellent ability to promote mineralization and carry-release bioactive molecules in a controlled manner. In this study, mesoporous calcium-silicate nanoparticles were functionalized with chlorhexidine and their releasing profile, antibacterial ability, effect on cell proliferation and in vitro mineralization property were evaluated. The chlorhexidine was successfully incorporated into mesoporous calcium-silicate nanoparticles by a mixing-coupling method. The new material could release chlorhexidine as well as Ca 2+ and SiO 3 2- in a sustained manner with an alkaline pH value under different conditions. The antimicrobial ability against planktonic E. faecalis was dramatically improved after chlorhexidine incorporation. The nanoparticles with chlorhexidine showed no negative effect on cell proliferation with low concentrations. On dentin slices, the new synthesized material demonstrated a similar inhibitory effect on E. faecalis as the chlorhexidine. After being immersed in SBF for 9 days, numerous apatite crystals could be observed on surfaces of the material tablets. Mesoporous calcium-silicate nanoparticles loaded with chlorhexidine exhibited release of ions and chlorhexidine, low cytotoxicity, excellent antibacterial ability and in vitro mineralization. This material could be developed into a new effective intra-canal medication in dentistry or a new bone defect filling material for infected bone defects.
Blancato, Víctor S.; Magni, Christian
2013-01-01
Although the agmatine deiminase system (AgDI) has been investigated in Enterococcus faecalis, little information is available with respect to its gene regulation. In this study we demonstrate that the presence of exogenous agmatine induces the expression of agu genes in this bacterium. In contrast to the homologous and extensively characterized AgDI system of S. mutants, the aguBDAC operon in E. faecalis is not induced in response to low pH. In spite of this, agmatine catabolism in this bacterium contributes by neutralizing the external medium while enhancing bacterial growth. Our results indicate that carbon catabolic repression (CCR) operates on the AgDI system via a mechanism that involves interaction of CcpA and P-Ser-HPr with a cre site found in an unusual position considering the aguB promoter (55 nt upstream the +1 position). In addition, we found that components of the mannose phosphotransferase (PTSMan) system also contributed to CCR in E. faecalis since a complete relief of the PTS-sugars repressive effect was observed only in a PTSMan and CcpA double defective strain. Our gene context analysis revealed that aguR is present in oral and gastrointestinal microorganisms. Thus, regulation of the aguBDAC operon in E. faecalis seems to have evolved to obtain energy and resist low pH conditions in order to persist and colonize gastrointestinal niches. PMID:24155893
Infante, Victor Hugo Pacagnelli; Conceição, Natália; de Oliveira, Adriana Gonçalves; Darini, Ana Lúcia da Costa
2016-04-01
The aim of the present study was to verify whether penicillin-resistant, ampicillin-susceptible Enterococcus faecalis (PRASEF) occurred in Brazil prior to the beginning of the 21st century, and to verify whether ampicillin susceptibility can predict susceptibility to other β-lactams in E. faecalis with this inconsistent phenotype. The presence of polymorphisms in the pbp4 gene and genetic diversity among the isolates were investigated. Of 21 PRASEF analyzed, 5 (23.8%) and 4 (19.0%) were imipenem and piperacillin resistant simultaneously by disk diffusion and broth dilution respectively, contradicting the current internationally accepted standards of susceptibility testing. Sequencing of pbp4 gene revealed an amino acid substitution (Asp-573→Glu) in all PRASEF isolates but not in the penicillin-susceptible, ampicillin-susceptible E. faecalis. Most PRASEF (90.5%) had related pulsed-field gel electrophoresis profiles, but were different from other PRASEF described to date. Results demonstrate that penicillin-resistant, ampicillin-susceptible phenotype was already a reality in the 1990s in E. faecalis isolates in different Brazilian states, and some of these isolates were also imipenem- and piperacillin-resistant; therefore, internationally accepted susceptibility criteria cannot be applied to these isolates. According to pbp4 gene sequencing, this study suggests that a specific amino acid substitution in pbp4 gene found in all PRASEF analyzed is associated with penicillin resistance. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Louwakul, Phumisak; Saelo, Attapon; Khemaleelakul, Saengusa
2017-04-01
The objective of this study was to compare the antibacterial effect of calcium oxide nanoparticles (CONPs) and calcium hydroxide nanoparticles (CHNPs) against Enterococcus faecalis in a dentinal block model. E. faecalis strain JCM 7783 was introduced into dentinal tubules of semicylindrical dentin specimens by centrifugation and incubated for 1 week. Fifty microliters of CONPs or CHNPs was placed on the root canal side of the infected dentin specimens. The specimens were then incubated in aerobic condition at 37 °C and 100 % relative humidity for 1 week. The treated dentin specimens were subjected to fluorescent staining and confocal laser scanning microscopy (CLSM) to analyze the proportions of non-vital and vital bacterial cells inside the dentinal tubules. Scanning electron microscopy (SEM) was used to confirm the effect of the medicaments on the bacteria in the dentinal tubules. Calcium oxide (CO) and calcium hydroxide (CH) were used as controls. Based on the CLSM and SEM analyses, CHNPs were more efficient than CONPs in the elimination of the bacteria in the dentinal tubules. CONPs significantly killed more E. faecalis than CO and CH (P < .05). Neither CO nor CH was able to kill the bacteria. CHNPs were more effective than CONPs in the elimination of E. faecalis in dentinal tubules. CHNPs are effective nanoparticles in killing endodontic bacteria present in dentinal tubules. They have potential as an intracanal medicament, which may be beneficial in root canal therapy.
Snipen, Lars; Nes, Ingolf F.; Brede, Dag A.
2010-01-01
Urinary tract infection (UTI) is the most common infection caused by enterococci, and Enterococcus faecalis accounts for the majority of enterococcal infections. Although a number of virulence related traits have been established, no comprehensive genomic or transcriptomic studies have been conducted to investigate how to distinguish pathogenic from non-pathogenic E. faecalis in their ability to cause UTI. In order to identify potential genetic traits or gene regulatory features that distinguish pathogenic from non-pathogenic E. faecalis with respect to UTI, we have performed comparative genomic analysis, and investigated growth capacity and transcriptome profiling in human urine in vitro. Six strains of different origins were cultivated and all grew readily in human urine. The three strains chosen for transcriptional analysis showed an overall similar response with respect to energy and nitrogen metabolism, stress mechanism, cell envelope modifications, and trace metal acquisition. Our results suggest that citrate and aspartate are significant for growth of E. faecalis in human urine, and manganese appear to be a limiting factor. The majority of virulence factors were either not differentially regulated or down-regulated. Notably, a significant up-regulation of genes involved in biofilm formation was observed. Strains from different origins have similar capacity to grow in human urine. The overall similar transcriptional responses between the two pathogenic and the probiotic strain suggest that the pathogenic potential of a certain E. faecalis strain may to a great extent be determined by presence of fitness and virulence factors, rather than the level of expression of such traits. PMID:20824220
Ling, Junqi; Ma, Jinglei; Huang, Lijia; Zhang, Luodan
2014-01-01
Enterococcus faecalis rank among the leading causes of nosocomial infections worldwide and possesses both intrinsic and acquired resistance to a variety of antibiotics. Development of new antibiotics is limited, and pathogens continually generate new antibiotic resistance. Many researchers aim to identify strategies to effectively kill this drug-resistant pathogen. Here, we evaluated the effect of the antimicrobial peptide nisin on the antibacterial activities of 18 antibiotics against E. faecalis. The MIC and MBC results showed that the antibacterial activities of 18 antibiotics against E. faecalis OG1RF, ATCC 29212, and strain E were significantly improved in the presence of 200 U/ml nisin. Statistically significant differences were observed between the results with and without 200 U/ml nisin at the same concentrations of penicillin or chloramphenicol (p<0.05). The checkerboard assay showed that the combination of nisin and penicillin or chloramphenicol had a synergetic effect against the three tested E. faecalis strains. The transmission electron microscope images showed that E. faecalis was not obviously destroyed by penicillin or chloramphenicol alone but was severely disrupted by either antibiotic in combination with nisin. Furthermore, assessing biofilms by a confocal laser scanning microscope showed that penicillin, ciprofloxacin, and chloramphenicol all showed stronger antibiofilm actions in combination with nisin than when these antibiotics were administered alone. Therefore, nisin can significantly improve the antibacterial and antibiofilm activities of many antibiotics, and certain antibiotics in combination with nisin have considerable potential for use as inhibitors of this drug-resistant pathogen. PMID:24586598
Raeisi, Javad; Saifi, Mahnaz; Pourshafie, Mohammad Reza; Habibi, Mehri; Mohajerani, Hamid Reza; Akbari, Neda
2017-01-01
Introduction Vancomycin Resistant Enterococci (VRE) can be found all over the world. Thus, rapid detection of the isolates could be of high importance in the treatment or prevention of the associated disease. Aim To measure the turanose fermentation in Enterococcus faecalis clinical isolates for rapid differentiation of VRE and Vancomycin-Susceptible E. faecalis (VSE) isolates. Materials and Methods Forty E. faecalis samples were isolated from 200 clinical samples in Tehran Medical Center, Iran, from October 2012 to December 2012. These isolates were detected according to the standard microbial and biochemical tests. Detection of VRE isolates was originally performed by disk diffusion using 1 μg vancomycin disk, followed by Polymerase Chain Reaction (PCR) amplification of the vanA gene. Finally, the turanose consumption in 1%, 0.7% and 0.5% dilutions was detected by a phenotypic method. Results Among the 40 E. faecalis isolates, 20 vancomycin-susceptible and 20 vancomycin-resistant E. faecalis were isolated according to the disk diffusion and PCR of the vanA gene. There was a considerable difference between VRE and VSE isolates in 0.7% dilution of turanose. However, there was no significant difference between VRE and VSE in 1% and 0.5% dilutions of turanose. Conclusion Since detection of VRE isolates is of high importance, especially in nosocomial infections, phenotypic methods may be highly useful for this purpose. In conclusion, our data indicate that VRE isolated from clinical samples could be distinguished from VSE isolates by turanose fermentation at dilution 0.7%. PMID:28511382
Kellogg, Stephanie L; Kristich, Christopher J
2018-04-09
Two common signal transduction mechanisms used by bacteria to sense and respond to changing environments are two-component systems (TCSs) and eukaryotic-like Ser/Thr kinases and phosphatases (eSTK/Ps). Enterococcus faecalis is a Gram-positive bacterium and serious opportunistic pathogen that relies on both a TCS and an eSTK/P pathway for intrinsic resistance to cell wall-targeting antibiotics. The TCS consists of a histidine kinase (CroS) and response regulator (CroR) that become activated upon exposure of cells to cell wall-targeting antibiotics, leading to modulation of gene expression. The eSTK/P pathway consists of a transmembrane kinase (IreK) and its cognate phosphatase (IreP), which act antagonistically to mediate antibiotic resistance through an unknown mechanism. Because both CroS/R and IreK/P contribute to enterococcal resistance towards cell wall-targeting antibiotics, we hypothesized these signaling systems are intertwined. To test this hypothesis, we analyzed CroR phosphorylation and CroS/R-dependent gene expression to probe the influence of IreK and IreP on CroS/R signaling. In addition, we analyzed the phosphorylation state of CroS which revealed IreK-dependent phosphorylation of a Thr residue important for CroS function. Our results are consistent with a model in which IreK positively influences CroR-dependent gene expression through phosphorylation of CroS to promote antimicrobial resistance in E. faecalis Importance Two-component signaling systems (TCSs) and eukaryotic-like Ser/Thr kinases (eSTKs) are used by bacteria to sense and adapt to changing environments. Understanding how these pathways are regulated to promote bacterial survival is critical for a more complete understanding of bacterial stress responses and physiology. The opportunistic pathogen Enterococcus faecalis relies on both a TCS (CroS/R) and an eSTK (IreK) for intrinsic resistance to cell wall-targeting antibiotics. We probed the relationship between CroS/R and IreK, revealing convergence of IreK and the sensor kinase CroS to enhance signaling through CroS/R and increase antimicrobial resistance in E. faecalis This newly described example of eSTK/TCS convergence adds to our understanding of the signaling networks mediating antimicrobial resistance in E. faecalis . Copyright © 2018 American Society for Microbiology.
Animal Rennets as Sources of Dairy Lactic Acid Bacteria
Cruciata, Margherita; Sannino, Ciro; Ercolini, Danilo; Scatassa, Maria L.; De Filippis, Francesca; Mancuso, Isabella; La Storia, Antonietta; Moschetti, Giancarlo
2014-01-01
The microbial composition of artisan and industrial animal rennet pastes was studied by using both culture-dependent and -independent approaches. Pyrosequencing targeting the 16S rRNA gene allowed to identify 361 operational taxonomic units (OTUs) to the genus/species level. Among lactic acid bacteria (LAB), Streptococcus thermophilus and some lactobacilli, mainly Lactobacillus crispatus and Lactobacillus reuteri, were the most abundant species, with differences among the samples. Twelve groups of microorganisms were targeted by viable plate counts revealing a dominance of mesophilic cocci. All rennets were able to acidify ultrahigh-temperature-processed (UHT) milk as shown by pH and total titratable acidity (TTA). Presumptive LAB isolated at the highest dilutions of acidified milks were phenotypically characterized, grouped, differentiated at the strain level by randomly amplified polymorphic DNA (RAPD)-PCR analysis, and subjected to 16S rRNA gene sequencing. Only 18 strains were clearly identified at the species level, as Enterococcus casseliflavus, Enterococcus faecium, Enterococcus faecalis, Enterococcus lactis, Lactobacillus delbrueckii, and Streptococcus thermophilus, while the other strains, all belonging to the genus Enterococcus, could not be allotted into any previously described species. The phylogenetic analysis showed that these strains might represent different unknown species. All strains were evaluated for their dairy technological performances. All isolates produced diacetyl, and 10 of them produced a rapid pH drop in milk, but only 3 isolates were also autolytic. This work showed that animal rennet pastes can be sources of LAB, mainly enterococci, that might contribute to the microbial diversity associated with dairy productions. PMID:24441167
Kim, Y-J; Park, J-H; Seo, K-H
2018-01-01
Antibiotic-resistant bacteria in poultry meat are a threat to public health. In this study, we compared the Enterococcus spp. loads and antibiotic-resistance profiles between carcasses of conventionally and organically raised chickens. A total of 144 chicken carcasses (72 conventional and 72 organic) was collected from local retail markets in Seoul, South Korea. Overall, 77.7% (112 of 144; 75% conventional and 80% organic) of chicken carcasses were positive for Enterococcus. The mean loads of Enterococcus spp. were greater in conventional chicken carcasses, at 2.9 ± 0.4 log CFU/mL, than those in organic chicken carcasses, at 1.78 ± 0.3 log CFU/mL (p < 0.05). A total of 104 isolates (52 from conventional and 52 from organic chicken carcasses) was randomly selected for further analysis. The predominant species was Enterococcus faecalis in both conventional and organic chicken carcasses (57.7 and 76.9%, respectively; P > 0.05). Rates of resistance to ciprofloxacin and erythromycin, which are used in veterinary medicine in South Korea, were significantly higher in conventional chicken carcasses than in organic chicken carcasses. However, we found no difference between the rates of resistance to antibiotics such as vancomycin and tigecycline, which were not registered for use in veterinary medicine in South Korea, of Enterococcus isolates from conventional and organic chicken carcasses. In addition, although multidrug resistant isolates were obtained from both types of chicken samples, the prevalence of samples positive for Enterococcus was significantly higher in conventional chicken carcasses than in organic chicken carcasses (P < 0.05). The most common multidrug resistance pattern was erythromycin-tetracycline-rifampicin in conventional chicken carcasses and quinupristin-dalfopristin-tetracycline-rifampicin in organic chicken carcasses. A high level of gentamicin resistance was observed in isolates from not only conventional (5.8%) but also organic chicken (1.9%) carcasses, with no significant difference in rates between them (P > 0.05). Despite this, our results suggest that organic food certification is effective in reducing fecal contamination and the burden of antibiotic-resistant Enterococcus spp. in chicken carcasses. © 2017 Poultry Science Association Inc.
Isolation and identification of lactic acid bacteria from fermented red dragon fruit juices.
Ong, Yien Yien; Tan, Wen Siang; Rosfarizan, Mohamad; Chan, Eng Seng; Tey, Beng Ti
2012-10-01
Red dragon fruit or red pitaya is rich in potassium, fiber, and antioxidants. Its nutritional properties and unique flesh color have made it an attractive raw material of various types of food products and beverages including fermented beverages or enzyme drinks. In this study, phenotypic and genotypic methods were used to confirm the identity of lactic acid bacteria (LAB) appeared in fermented red dragon fruit (Hylocereus polyrhizus) beverages. A total of 21 isolates of LAB were isolated and characterized. They belonged to the genus of Enterococcus based on their biochemical characteristics. The isolates can be clustered into two groups by using the randomly amplified polymorphic DNA method. Nucleotide sequencing and restriction fragment length polymorphism of the 16S rRNA region suggested that they were either Enterococcus faecalis or Enterococcus durans. Current research revealed the use of biochemical analyses and molecular approaches to identify the microbial population particularly lactic acid bacteria from fermented red dragon fruit juices. © 2012 Institute of Food Technologists®
Patanè, Salvatore
2014-04-01
Heart valve repair or replacement is a serious problem. Patients can benefit from an open dialogue between both cardiologists and gastroenterologists for the optimal effective patients care. The focused update on infective endocarditis of the American College of Cardiology/American Heart Association 2008 (ACC/AHA guidelines) and guidelines on the prevention, diagnosis, and treatment of infective endocarditis (new version 2009) of the European Society of Cardiology (ESC guidelines) describe prophylaxis against infective endocarditis (IE) as not recommended for gastroscopy and colonoscopy in the absence of active infection but increasing evidence suggests that the role of IE antibiotic prophylaxis remains a dark side of the cardio-oncology prevention. New evidences concerning infective endocarditis due to Streptococcus bovis, Streptococcus agalactiae, Enterococcus faecalis, Enterococcus faecium, Enterococcus durans, and new findings indicate that there is a need for bacterial endocarditis prophylaxis in patients undergoing gastrointestinal endoscopy especially in elderly patients and in cancer and immunocompromised patients, to avoid serious consequences.
Pinheiro, Sérgio Luiz; Azenha, Giuliana Rodrigues; Democh, Yasmin Marialva; Nunes, Daniela Camila; Provasi, Silvia; Fontanetti, Giovana Masiero; Duarte, Danilo Antônio; Fontana, Carlos Eduardo; da Silveira Bueno, Carlos Eduardo
2016-12-01
The present study sought to evaluate the antimicrobial activity against Enterococcus faecalis of photodynamic therapy applied before and after reciprocating instrumentation of permanent molars. Apical extrusion of debris can cause flare-ups due to introduction of bacteria into the periapical tissues. Eighteen mesial roots from permanent mandibular molars were selected. The crowns were removed to obtain a standard root length of 15 mm. The included mesial roots had an angulation of 10°-40° and canals with independent foramina. The orifice of each mesiolingual canal was sealed with light-curing resin, and the working length was established visually, 1 mm short of the apical foramen. The roots were rendered impermeable and sterilized, and the mesiobuccal canals were contaminated with a standard strain of E. faecalis for 21 days. Specimens were randomly divided into three groups (n = 6): G1, photodynamic therapy performed before instrumentation and irrigation with 0.9% NaCl (saline) solution; G2, photodynamic therapy performed after instrumentation and irrigation with 0.9% NaCl; and G3 (control), instrumentation and irrigation with 2.5% NaOCl (sodium hypochlorite) solution. Canals were shaped with a WaveOne primary file (25.08) and irrigated with 0.9% NaCl. E. faecalis samples were collected before and after each procedure, and the results were analyzed using descriptive statistics and the Kruskal-Wallis and Wilcoxon tests. Significant reductions in E. faecalis were observed when photodynamic therapy was performed before and after instrumentation of the root canal system (p < 0.05). Reciprocating instrumentation significantly reduced E. faecalis colonies in experimentally contaminated root canal systems (p < 0.05). Photodynamic therapy was effective in removing E. faecalis from the root canal system, whether performed before or after reciprocating instrumentation.
Afkhami, Farzaneh; Pourhashemi, Seyyed Jalal; Sadegh, Mona; Salehi, Yasaman; Fard, Mohammad Javad Kharrazi
2015-12-01
The aim of the present study was to investigate antibacterial characteristic and Enterococcus faecalis (E. faecalis) biofilm suppression effect of different vehicles of calcium hydroxide as intracanal medicaments in short and long-term. Fifty-four human single-root teeth were contaminated with E. faecalis bacteria. The teeth were randomly divided into three experimental (n=16) and one control group (n=6). Each group was then exposed to various intracanal medicaments, namely calcium hydroxide paste (group 1), calcium hydroxide with chlorhexidine (group 2), calcium hydroxide with silver nanoparticles suspension (AgNPs) (group 3), and saline as the control group (group 4). Cultures were made from each group after one week and one month, and the number of colonies was counted. Moreover, a sample of each group was examined under electron microscope. Kruskal-Wallis test served for inter-group comparisons, and Mann-Whitney test served for comparison between the two incubation periods. All the intracanal medicaments resulted in significant decrease in number of colonies compared to control group in both incubation periods. After one week, the mixture of calcium hydroxide and AgNPs was the most effective medicament against E. faecalis bacteria (p<.05). No significant difference in antibacterial effect of the medicaments existed after one month incubation period (p>.05). AgNPs was more effective on the E. faecalis biofilm than other tested vehicles in short-term medication. AgNPs seems to have a good potential to be used as an appropriate vehicle of calcium hydroxide in order to eliminate of E. faecalis biofilm from human dentine in short-term. Copyright © 2015 Elsevier Ltd. All rights reserved.
Zhang, H.; Fouts, D. E.; DePew, J.
2013-01-01
ϕEf11 is a temperate bacteriophage originally isolated by induction from a lysogenic Enterococcus faecalis strain recovered from an infected root canal, and the ϕEf11 prophage is widely disseminated among strains of E. faecalis. Because E. faecalis has emerged as a significant opportunistic human pathogen, we were interested in examining the genes and regulatory sequences predicted to be critical in the establishment/maintenance of lysogeny by ϕEf11 as a first step in the construction of the genome of a virulent, highly lytic phage that could be used in treating serious E. faecalis infections. Passage of ϕEf11 in E. faecalis JH2-2 yielded a variant that produced large, extensively spreading plaques in lawns of indicator cells, and elevated phage titres in broth cultures. Genetic analysis of the cloned virus producing the large plaques revealed that the variant was a recombinant between ϕEf11 and a defective ϕFL1C-like prophage located in the E. faecalis JH2-2 chromosome. The recombinant possessed five ORFs of the defective ϕFL1C-like prophage in place of six ORFs of the ϕEf11 genome. Deletion of the putative lysogeny gene module (ORFs 31–36) and replacement of the putative cro promoter from the recombinant phage genome with a nisin-inducible promoter resulted in no loss of virus infectivity. The genetic construct incorporating all the aforementioned ϕEf11 genomic modifications resulted in the generation of a variant that was incapable of lysogeny and insensitive to repressor, rendering it virulent and highly lytic, with a notably extended host range. PMID:23579685
[Development of an Enterococcus faecalis periapical biofilm model for in vitro morphological study].
Cao, Ridan; Hou, Benxiang
2014-08-01
This study aims to develop and observe a model system of the periapical biofilm structure of Enterococcus faecalis (E. faecalis). A total of 24 intact human single-rooted premolars extracted for orthodontic reasons were collected and randomly divided into eight groups (n = 3). The specimens were subjected to ultraviolet disinfection, inoculated with E. faecalis (ATCC 29212) suspension adjusted to 1 x 10(8) CFU x mL(-1), and incubated at 37 degrees C for 1, 2, and 7 d. Specimen groups were prepared for scanning electron microscope to examine the biofilm formation. The specimens in the confocal laser scanning microscope (CLSM) groups were stained with propidium iodide (PI) and ConA-fluorescein isothiocyanate (ConA-FITC) to examine the biofilm formation. The images were randomized, and biofilm coverage (%) was assessed using Photoshop CS5. The biofilm coverage (%) on the cementum increased with increasing incubation period. The biofilm coverage of the 7 d group was significantly higher than those of the 1 and 2 d groups (P < 0.05). The values of the latter two groups were not significantly different (P > 0.05). Dense aggregations composed of E. faecalis and the amorphous matrix were observed on the root cementum surfaces of the specimens in the 7 d group. The bacteria were stained red by PI, and the matrix was stained green by ConA-FITC under CLSM observation. The biofilm coverage (%) on the samples in the 7 d group was 17.23% +/- 1.52%, showing multi-level space structure and water channels. E. faecalis forms bacterial biofilms on the root cementum surface in 7 d. The biofilms were composed of E. faecalis and the amorphous matrix.
Enterococcus faecalis Constitutes an Unusual Bacterial Model in Lysozyme Resistance▿
Hébert, Laurent; Courtin, Pascal; Torelli, Riccardo; Sanguinetti, Maurizio; Chapot-Chartier, Marie-Pierre; Auffray, Yanick; Benachour, Abdellah
2007-01-01
Lysozyme is an important and widespread compound of the host constitutive defense system, and it is assumed that Enterococcus faecalis is one of the few bacteria that are almost completely lysozyme resistant. On the basis of the sequence analysis of the whole genome of E. faecalis V583 strain, we identified two genes that are potentially involved in lysozyme resistance, EF_0783 and EF_1843. Protein products of these two genes share significant homology with Staphylococcus aureus peptidoglycan O-acetyltransferase (OatA) and Streptococcus pneumoniae N-acetylglucosamine deacetylase (PgdA), respectively. In order to determine whether EF_0783 and EF_1843 are involved in lysozyme resistance, we constructed their corresponding mutants and a double mutant. The ΔEF_0783 mutant and ΔEF_0783 ΔEF_1843 double mutant were shown to be more sensitive to lysozyme than the parental E. faecalis JH2-2 strain and ΔEF_1843 mutant were. However, compared to other bacteria, such as Listeria monocytogenes or S. pneumoniae, the tolerance of ΔEF_0783 and ΔEF_0783 ΔEF_1843 mutants towards lysozyme remains very high. Peptidoglycan structure analysis showed that EF_0783 modifies the peptidoglycan by O acetylation of N-acetyl muramic acid, while the EF_1843 deletion has no obvious effect on peptidoglycan structure under the same conditions. Moreover, the EF_0783 and EF_1843 deletions seem to significantly affect the ability of E. faecalis to survive within murine macrophages. In all, while EF_0783 is currently involved in the lysozyme resistance of E. faecalis, peptidoglycan O acetylation and de-N-acetylation are not the main mechanisms conferring high levels of lysozyme resistance to E. faecalis. PMID:17785473
Borba, Alberto Sabin Moura; da Silva Pereira, Sângela Maria; Borba, Mellyna Cavalcante Mendes; Paschoal, Marco Aurélio Benini; de Jesus Tavarez, Rudys Rodolfo; de Castro Rizzi, Claudia; Ferreira, Meire Coelho; Maia Filho, Etevaldo Matos
2017-09-01
The failure of endodontic treatment is linked to the presence of microorganisms, particularly Enterococcus faecalis, in the root canals. This study evaluated the effectiveness of photodynamic therapy (PDT) using erythrosine irradiated by a high-power curing light on a planktonic suspension culture of E. faecalis. Bacterial suspensions of E. faecalis were adjusted and then mixed in a 1:1 proportion, in triplicate, in treatment groups by varying the length of irradiation time (120 and 240s) and the molarity of the erythrosine (5 and 10μM). In order to verify the post-treatment bactericidal effect, a count of the viable bacteria was performed (CFUmL -1 ) and transformed into Log10 CFU. The one-way ANOVA with Tukey post-hoc test was applied to check for differences between the groups. The bacteria were completely eradicated in the groups that used PDT with 5μM 240s, 10μM 120s and 10μM 240s (p≪0.001). The effect of the PDT 5μM 120s group was significant (p≪0.05) in comparison with the groups using only light or only erythrosine. Positive control (exposure to 2.5% NaClO for 120 and 240s) completely eradicated E. faecalis. The negative control (PBS) did not alter the quantities of E. faecalis CFU with 9.605 Log10 CFU at 120s and 9.621 Log10 CFU at 240s. PDT with erythrosine in a concentration of 10μM and high-power LED is capable of totally eliminating E. faecalis in planktonic suspension. Copyright © 2017 Elsevier B.V. All rights reserved.
Bargossi, Eleonora; Tabanelli, Giulia; Montanari, Chiara; Lanciotti, Rosalba; Gatto, Veronica; Gardini, Fausto; Torriani, Sandra
2015-01-01
The ability to accumulate tyramine and 2-phenylethylamine by two strains of Enterococcus faecalis and two strains Enterococcus faecium was evaluated in two cultural media added or not with tyrosine. All the enterococcal strains possessed a tyrosine decarboxylase (tyrDC) which determined tyramine accumulation in all the conditions tested, independently on the addition of high concentration of free tyrosine. Enterococci differed in rate and level of biogenic amines accumulation. E. faecalis EF37 and E. faecium FC12 produced tyramine in high amount since the exponential growth phase, while 2-phenylethylamine was accumulated when tyrosine was depleted. E. faecium FC12 and E. faecalis ATCC 29212 showed a slower tyraminogenic activity which took place mainly in the stationary phase up to 72 h of incubation. Moreover, E. faecalis ATCC 29212 produced 2-phenylethylamine only in the media without tyrosine added. In BHI added or not with tyrosine the tyrDC gene expression level differed considerably depending on the strains and the growth phase. In particular, the tyrDC gene expression was high during the exponential phase in rich medium for all the strains and subsequently decreased except for E. faecium FC12. Even if tyrDC presence is common among enterococci, this study underlines the extremely variable decarboxylating potential of strains belonging to the same species, suggesting strain-dependent implications in food safety.
Vlassakidis, Alexander; Niepel, Mediha; Hoedke, Daniela; Schulze, Julia; Neumann, Konrad; Moter, Annette; Noetzel, Jörn
2017-01-01
The objective was to compare the antibacterial effects of adjunctive disinfection using diode laser and gaseous ozone compared to the medical dressings calcium hydroxide (Ca(OH)2) and chlorhexidine gel (CHX-Gel) on Enterococcus faecalis biofilms in human root canals ex vivo. Root canals of 180 human extracted teeth were infected by E. faecalis and divided into 3 main groups (G): G1, control; G2, instrumentation and irrigation using 0.9% NaCl; G3, instrumentation and irrigation using 1% NaOCl. In each main group, the following treatments were applied: gaseous ozone, diode laser, and medical dressings of Ca(OH)2 or CHX-Gel for 7 days (n = 15). Reduction of colony forming units (CFUs) inside the root canal of planktons and frequencies of adherent bacteria after treatment were calculated. Bacterial reduction was significantly affected by the irrigation protocol (p < 0.0005) and the disinfection method (p < 0.0005), and a significant interaction between both factors could be observed (p < 0.0005; ANOVA). In G3 (instrumentation using 1% NaOCl), no significant effect of disinfection methods could be demonstrated on planktonic bacteria (p = 0.062; ANOVA) and frequencies of adherent bacteria (p > 0.05; chi-square test). Instrumentation and irrigation using NaOCl combined with ozone or laser application resulted in comparable bacterial reduction on E. faecalis to the application of medical dressings. PMID:28567421
Wiegerinck, M; Hyoju, S K; Mao, J; Zaborin, A; Adriaansens, C; Salzman, E; Hyman, N H; Zaborina, O; van Goor, H; Alverdy, J C
2018-04-16
Previous work has demonstrated that anastomotic leak can be caused by collagenolytic bacteria such as Enterococcus faecalis via an effect on wound collagen. In humans, E. faecalis is the organism cultured most commonly from a leaking anastomosis, and is not routinely eliminated by standard oral or intravenous antibiotics. Novel strategies are needed to contain the virulence of this pathogen when present on anastomotic tissues. Polyphosphorylated polymer ABA-PEG20k-Pi20 was tested in mice for its ability to prevent anastomotic leak caused by collagenolytic E. faecalis. The study design included a distal colonic resection and anastomosis followed by introduction of E. faecalis to anastomotic tissues via enema. Mice were assigned randomly to receive either ABA-PEG20-Pi20 or its unphosphorylated precursor ABA-PEG20k in their drinking water. The development of anastomotic leak was determined after the animals had been killed. Overnight incubation of two different E. faecalis collagenolytic strains with 2 mmol/l of ABA-PEG20k-Pi20 led to near complete inhibition of collagenase production (from 21 000 to 1000 and from 68 000 to 5000 units; P < 0·001; 6 samples per group) without suppressing bacterial growth. In mice drinking 1 per cent ABA-PEG20k-Pi20, the phosphate concentration in the distal colonic mucosa increased twofold and leak rates decreased from eight of 15 to three of 15 animals (P < 0·001). In mice drinking ABA-PEG20k-Pi20, the percentage of collagenolytic colonies among E. faecalis populations present at anastomotic tissue sites was decreased by 6-4800-fold (P = 0·008; 5 animals). These data indicate that oral intake of ABA-PEG20k-Pi20 may be an effective agent to contain the virulence of E. faecalis and may prevent anastomotic leak caused by this organism. Clinical relevance Progress in understanding the pathogenesis of anastomotic leak continues to point to intestinal bacteria as key causative agents. The presence of pathogens such as Enterococcus faecalis that predominate on anastomotic tissues despite antibiotic use, coupled with their ability to produce collagenase, appears to alter the process of healing that leads to leakage. Further antibiotic administration may seem logical, but carries the unwanted risk of eliminating the normal microbiome, which functions competitively to exclude and suppress the virulence of pathogens such as E. faecalis. Therefore, non-antibiotic strategies that can suppress the production of collagenase by E. faecalis without affecting its growth, or potentially normal beneficial microbiota, may have unique advantages. The findings of this study demonstrate that drinking a phosphate-based polymer can achieve the goal of preventing anastomotic leak by suppressing collagenase production in E. faecalis without affecting its growth. © 2018 BJS Society Ltd Published by John Wiley & Sons Ltd.
Stamper, Paul D; Shulder, Stephanie; Bekalo, Pearl; Manandhar, Deepika; Ross, Tracy L; Speser, Sharon; Kingery, Julie; Carroll, Karen C
2010-11-01
A study was performed on 517 surveillance rectal swabs to evaluate a selective and differential chromogenic medium, the BBL CHROMagar VanRE (CVRE), which enables recovery and identification of VanA- and VanB-containing Enterococcus faecium (ENFM) and Enterococcus faecalis (ENFS) isolates. Compared to BBL Enterococcosel agar, a bile-esculin-azide-vancomycin (BEAV) agar, the initial overall sensitivity, specificity, and positive and negative predictive values of CVRE for the detection of vancomycin-resistant ENFM and ENFS were 99.1% and 94.8% and 84.2% and 99.7%, respectively. Among our patient population, more vancomycin-resistant enterococci (VRE) were recovered with CVRE than BEAV.
Stamper, Paul D.; Shulder, Stephanie; Bekalo, Pearl; Manandhar, Deepika; Ross, Tracy L.; Speser, Sharon; Kingery, Julie; Carroll, Karen C.
2010-01-01
A study was performed on 517 surveillance rectal swabs to evaluate a selective and differential chromogenic medium, the BBL CHROMagar VanRE (CVRE), which enables recovery and identification of VanA- and VanB-containing Enterococcus faecium (ENFM) and Enterococcus faecalis (ENFS) isolates. Compared to BBL Enterococcosel agar, a bile-esculin-azide-vancomycin (BEAV) agar, the initial overall sensitivity, specificity, and positive and negative predictive values of CVRE for the detection of vancomycin-resistant ENFM and ENFS were 99.1% and 94.8% and 84.2% and 99.7%, respectively. Among our patient population, more vancomycin-resistant enterococci (VRE) were recovered with CVRE than BEAV. PMID:20739492
Heterologous expression of enterocin AS-48 in several strains of lactic acid bacteria.
Fernández, M; Martínez-Bueno, M; Martín, M C; Valdivia, E; Maqueda, M
2007-05-01
Enterococcus faecalis produces a cationic and circular enterocin, AS-48, of 7149 Da, the genetic determinants of which are located within the pMB2 plasmid. We have compared enterocin AS-48 production by different enterococci species with that of other 'safe' lactic acid bacteris (LAB) (GRAS status) and looked into the subsequent application of this enterocin in food production. In an effort to exploit this system for the heterologous expression of enterocin AS-48, a number of vectors containing the as-48 cluster were constructed and used to transform several LAB strains (genera Enterococcus, Lactococcus and Lactobacillus) Heterologous production of enterocin AS-48 failed when bacteria other than those belonging to the genus Enterococcus were used as hosts, although expression of a partial level of resistance against AS-48 were always detected, ruling out the possibility of a lack of recognition of the enterococcal promoters. Our results reveal the special capacity of species from the genus Enterococcus to produce AS-48, an enterocin that requires a post-transcriptional modification to generate a circular peptide with a wide range of inhibitory activity against pathogenic and spoilage bacteria. Preliminary experiments in foodstuffs using nonvirulent enterococci with interesting functional properties reveal the possibility of a biotechnological application of these transformants.
USDA-ARS?s Scientific Manuscript database
Liamocin oil from Aureobasidium pullulans NRRL 50380 was tested for antibacterial activity. Liamocins inhibited growth of Streptococcus agalactiae, S. uberis, S. mitis, S. infantarius, and S. mutans, with minimum inhibitory concentrations from 20 'g/ml to 78 'g/ml. Enterococcus faecalis was less sus...
Enterococci are frequently used as indicators of fecal pollution in surface waters. To accelerate the identification of Enterococcus faecalis-specific DNA sequences, we employed a comparative genomic strategy utilizing a positive selection process to compare E. faec...
Medium-Induced Antagonistic Behavior in Staphylococcus Aureus.
ERIC Educational Resources Information Center
Benathen, Isaiah A.
1992-01-01
Antagonism is the production of substances by microorganisms that inhibit or prevent the growth of other bacteria. This paper demonstrates the antagonistic behavior of gram-positive coccus on the B. subtilis and Enterococcus faecalis gram-positive microorganisms, showing that the process of antagonism is sometimes dependent on the nutritional…
Ortega-Peña, Silvestre; Colín-Castro, Claudia; Hernández-Duran, Melissa; López-Jácome, Esaú; Franco-Cendejas, Rafael
2015-01-01
The prosthetic joint infection is the most feared and catastrophic complication for cause severe physical damage to patients and, generates high economic costs. To describe the microbiological characteristics and to determine the resistance pattern in prosthetic joint infections in a reference hospital in Mexico. Patients whose prosthetic devices were withdrawn due to suspicion of septic and aseptic loosening were included. Cultures were performed to identify microorganisms and susceptibility analysis. Of the 111 patients included, 55% were diagnosed with prosthetic joint infection, with the most frequent prosthesis being of the hip (43%). Positive cultures were obtained in 97% of the infected cases, of which 75% were monomicrobial infections. The most frequent bacterial species isolated were: Staphylococcus epidermidis (31%), Enterococcus faecalis (16%), Staphylococcus aureus (13%), and Escherichia coli (8%). The resistance patterns for the Staphylococcus genus were: oxacillin (79%), erythromycin (45%) and ciprofloxacin (37%). Enterococcus faecalis showed a high percentage of resistance to erythromycin and clindamycin (86%), and fluoroquinolones (43%). The large majority (86%) of Escherichia coli were extended spectrum beta-lactamases positive, in addition to having high resistance to fluoroquinolones (86%), trimethoprim/sulfamethoxazole (86%) and gentamicin (72%). The microbiological characteristics found in prosthetic joint infections vary according to the hospitals. In this series, a high proportion of coagulase-negative Staphylococci and Enterococcus spp. were found, as well as a high bacterial resistance. Copyright © 2015 Academia Mexicana de Cirugía A.C. Published by Masson Doyma México S.A. All rights reserved.
Increased d-lactic Acid intestinal bacteria in patients with chronic fatigue syndrome.
Sheedy, John R; Wettenhall, Richard E H; Scanlon, Denis; Gooley, Paul R; Lewis, Donald P; McGregor, Neil; Stapleton, David I; Butt, Henry L; DE Meirleir, Kenny L
2009-01-01
Patients with chronic fatigue syndrome (CFS) are affected by symptoms of cognitive dysfunction and neurological impairment, the cause of which has yet to be elucidated. However, these symptoms are strikingly similar to those of patients presented with D-lactic acidosis. A significant increase of Gram positive facultative anaerobic faecal microorganisms in 108 CFS patients as compared to 177 control subjects (p<0.01) is presented in this report. The viable count of D-lactic acid producing Enterococcus and Streptococcus spp. in the faecal samples from the CFS group (3.5 x 10(7) cfu/L and 9.8 x 10(7) cfu/L respectively) were significantly higher than those for the control group (5.0 x 10(6) cfu/L and 8.9 x 10(4) cfu/L respectively). Analysis of exometabolic profiles of Enterococcus faecalis and Streptococcus sanguinis, representatives of Enterococcus and Streptococcus spp. respectively, by NMR and HPLC showed that these organisms produced significantly more lactic acid (p<0.01) from (13)C-labeled glucose, than the Gram negative Escherichia coli. Further, both E. faecalis and S. sanguinis secrete more D-lactic acid than E. coli. This study suggests a probable link between intestinal colonization of Gram positive facultative anaerobic D-lactic acid bacteria and symptom expressions in a subgroup of patients with CFS. Given the fact that this might explain not only neurocognitive dysfunction in CFS patients but also mitochondrial dysfunction, these findings may have important clinical implications.
Zscheck, K K; Murray, B E
1991-01-01
The nucleotide sequence of the constitutively produced beta-lactamase (Bla) gene from Enterococcus faecalis HH22 was shown to be identical to the published sequences of three of four staphylococcal type A beta-lactamase genes; more differences were seen with the genes for staphylococcal type C and D enzymes. One hundred forty nucleotides upstream of the beta-lactamase start codon were determined for an inducible staphylococcal beta-lactamase and were identical to those of the constitutively expressed enterococcal gene, indicating that the changes resulting in constitutive expression are not due to changes in the promoter or operator region. Moreover, complementation studies indicated that production of the enterococcal enzyme could be repressed. The genes for the enterococcal Bla and an inducible staphylococcal Bla were each cloned into a shuttle vector and transformed into enterococcal and staphylococcal recipients. The major difference between the backgrounds of the two hosts was that more enzyme was produced by the staphylococcal host, regardless of the source of the gene. The location of the enzyme was found to be host dependent, since each cloned gene generated extracellular (free) enzyme in the staphylococcus and cell-bound enzyme in the enterococcus. On the basis of the identities of the enterococcal Bla and several staphylococcal Bla sequences, these data suggest the recent spread of beta-lactamase to enterococci and also suggest the loss of a functional repressor. PMID:1952840
The Presence and Origin of Enterococcus faecalis in Cabo Rojo, Puerto Rico
NASA Astrophysics Data System (ADS)
Zachman, A. J.; Sturm, P.; Viqueira Ríos, R.
2015-12-01
Currently, a watershed management plan is being developed for Cabo Rojo region in Southwest Puerto Rico. This project fills in major gaps for water quality data on the Rio Viejo, a tributary on the Guanajibio River. The Rio Viejo flows through the town of Cabo Rojo, a town of 51,245 people. The project has identified 5 sites along the river to track bacterial loads. In the tropics, Enterococcus faecalis is an important indicator for fecal contamination in surface waters as it does not reproduce as quickly soils as E. coli. A combination of EPA 1600 and 9230B from Standard Methods for the Examination of Water and Wastewater for identification of E. faecalis were utilized. The assay is a four step procedure that identifies the four criteria of bacteria in the group D Streptococcus system. The criteria require that the bacteria are Gram-positive cocci and Esculin-positive. There also must be growth in Brain Heart Infusion Broth at 35C and 45C as well as growth in Brain Heart Infusion broth + 6.5% NaCl. Further research will be conducted at North Carolina State University to ascertain the vertebrate species that is the source of the contamination through the use of qPCR.
Ishijima, Sanae A; Hayama, Kazumi; Ninomiya, Kentaro; Iwasa, Masahiro; Yamazaki, Masatoshi; Abe, Shigeru
2014-01-01
To develop a new therapy against oral candidiasis, a commensal microorganism, Enterococcus faecalis was tested for its ability to modulate Candida growth in vitro and its therapeutic activities against a murine model in vivo. Addition of heat-killed E. faecalis strain EF2001 (EF2001) isolated from healthy human feces to the culture of C. albicans strain TIMM1768 inhibited adherence of the latter to a microtiter plate in a dose dependent manner and Candida cells surrounded by EF2001 were increased. To examine the protective activities of EF2001 in vivo, heat-killed EF2001 was applied orally before and after inoculation of Candida to the tongue of mice previously immunosuppressed. Two days after inoculation this inoculation, both the symptom score and CFU from swabbed-tongue were significantly reduced in the EF2001-treated animals. Histological analysis indicated that EF2001 may potentiate the accumulation of polymorphnuclear cells near a Candida-infected region. These results suggest that oral administration of EF2001 has protective activity against oral candidiasis and that the in vivo activity may be reflected by direct interaction between EF2001 and Candida cells in vitro and the potentiation of an immunostimulatory effect of EF2001.
Selective grazing by protists upon enteric bacteria in an aquatic system.
Domínguez, María S; Escalante, Alicia H; Folabella, Alicia M; Zamora, Angela S
2012-01-01
It is well known that protozoan grazing can be an important agent of mortality for suspended bacteria, both in marine and freshwater environments. Considering that the presence of fecal contamination is a frequent phenomenon in tríese environments, and that Escherichia coli and the genus Enterococcus are indicators of microbiological water quality, the effect of protozoan grazing on E. coli and Enterococcus faecalis in Los Padres Lagoon waters (Buenos Aires, Argentina, 37° 56'30" S, 57° 44'30" W) was herein analyzed. Microcosm assays were carried out, simulating lacustrine conditions, confronting suspensions of autochthonous bacterivorous protozoans with suspensions of autochthonous and collection strains of E. coli and E. faecalis, combined and individually. Daily counts were made for evaluating bacterial survival and the number of ciliates. The results obtained indicate that there is a preferential sequence for bacterial removal in the water, where E. faecalis is more grazing-resistant than E. coli. Moreover, it was noted that the origin of bacterial strains influenced their sensitivity for grazing, at least in the short term (e.g. the collection strains were less affected). We conclude that protozoan grazing can modify the relative abundance of fecal indicator microorganisms, thus altering the results of water quality studies.
Saber, Shehab El-Din Mohamed; El-Hady, Soha A.
2012-01-01
Objectives: To develop a mature biofilm of Enterococcus faecalis inside the root canal system and to test its susceptibility to some antimicrobial medications in vitro. Methods: Single rooted premolars were mechanically enlarged, sterilized, and then infected with a clinical isolate of E. faecalis. Biofilm formation and maturation was monitored using SEM. Biofilm bacteria were exposed to Amoxicillin+clavulanate, Ciprofloxacin, Clindamycin, Doxycycline, and calcium hydroxide as intracanal medications for 1 week. Finally bacterial samples were collected, and colony-forming units were enumerated. Results: SEM examination confirmed the formation of a mature biofilm at the end of the incubation period. All the chemotherapeutic agents used were significantly better than Calcium hydroxide in elimination of biofilm bacteria. The antimicrobial effect of Amoxicillin + clavulanate, Ciprofloxacin and Clindamycin was significantly better than Doxycycline (P=.05). However the difference in the antimicrobial effectiveness among them was statistically non-significant (P=.05). Conclusions: The method used for bacterial biofilm development and maturation is reliable and can be used to assess the anti bacterial potential of endodontic materials. Also, the local application of antibacterial agents can be beneficial in resistant cases of apical periodontitis but only after careful culture and sensitivity testing to choose the appropriate agent for the existing flora. PMID:22229006
León-Calvijo, María A.; Leal-Castro, Aura L.; Almanzar-Reina, Giovanni A.; Rosas-Pérez, Jaiver E.; García-Castañeda, Javier E.; Rivera-Monroy, Zuly J.
2015-01-01
Peptides derived from human and bovine lactoferricin were designed, synthesized, purified, and characterized using RP-HPLC and MALDI-TOF-MS. Specific changes in the sequences were designed as (i) the incorporation of unnatural amino acids in the sequence, the (ii) reduction or (iii) elongation of the peptide chain length, and (iv) synthesis of molecules with different number of branches containing the same sequence. For each peptide, the antibacterial activity against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212 was evaluated. Our results showed that Peptides I.2 (RWQWRWQWR) and I.4 ((RRWQWR)4K2 Ahx 2C2) exhibit bigger or similar activity against E. coli (MIC 4–33 μM) and E. faecalis (MIC 10–33 μM) when they were compared with lactoferricin protein (LF) and some of its derivate peptides as II.1 (FKCRRWQWRMKKLGA) and IV.1 (FKCRRWQWRMKKLGAPSITCVRRAE). It should be pointed out that Peptides I.2 and I.4, containing the RWQWR motif, are short and easy to synthesize; our results demonstrate that it is possible to design and obtain synthetic peptides that exhibit enhanced antibacterial activity using a methodology that is fast and low-cost and that allows obtaining products with a high degree of purity and high yield. PMID:25815317
León-Calvijo, María A; Leal-Castro, Aura L; Almanzar-Reina, Giovanni A; Rosas-Pérez, Jaiver E; García-Castañeda, Javier E; Rivera-Monroy, Zuly J
2015-01-01
Peptides derived from human and bovine lactoferricin were designed, synthesized, purified, and characterized using RP-HPLC and MALDI-TOF-MS. Specific changes in the sequences were designed as (i) the incorporation of unnatural amino acids in the sequence, the (ii) reduction or (iii) elongation of the peptide chain length, and (iv) synthesis of molecules with different number of branches containing the same sequence. For each peptide, the antibacterial activity against Escherichia coli ATCC 25922 and Enterococcus faecalis ATCC 29212 was evaluated. Our results showed that Peptides I.2 (RWQWRWQWR) and I.4 ((RRWQWR)4K2Ahx2C2) exhibit bigger or similar activity against E. coli (MIC 4-33 μM) and E. faecalis (MIC 10-33 μM) when they were compared with lactoferricin protein (LF) and some of its derivate peptides as II.1 (FKCRRWQWRMKKLGA) and IV.1 (FKCRRWQWRMKKLGAPSITCVRRAE). It should be pointed out that Peptides I.2 and I.4, containing the RWQWR motif, are short and easy to synthesize; our results demonstrate that it is possible to design and obtain synthetic peptides that exhibit enhanced antibacterial activity using a methodology that is fast and low-cost and that allows obtaining products with a high degree of purity and high yield.
Viçosa, Gabriela Nogueira; Botta, Cristian; Ferrocino, Ilario; Bertolino, Marta; Ventura, Marco; Nero, Luís Augusto; Cocolin, Luca
2018-08-01
Previous studies have demonstrated the antagonistic potential of lactic acid bacteria (LAB) present in raw milk microbiota over Staphylococcus aureus, albeit the molecular mechanisms underlying this inhibitory effect are not fully understood. In this study, we compared the behavior of S. aureus ATCC 29213 alone and in the presence of a cheese-isolated LAB strain, Enterococcus faecalis 41FL1 in skimmed milk at 30 °C for 24 h using phenotypical and molecular approaches. Phenotypic analysis showed the absence of classical staphylococcal enterotoxins in co-culture with a 1.2-log decrease in S. aureus final population compared to single culture. Transcriptional activity of several exotoxins and global regulators, including agr, was negatively impacted in co-culture, contrasting with the accumulation of transcripts coding for surface proteins. After 24 h, the number of transcripts coding for several metabolite responsive elements, as well as enzymes involved in glycolysis and acetoin metabolism was increased in co-culture. The present study discusses the complexity of the transcriptomic mechanisms possibly leading to S. aureus attenuated virulence in the presence of E. faecalis and provides insights into this interspecies interaction in a simulated food context. Copyright © 2018 Elsevier Ltd. All rights reserved.
Shen, Jiangchuan; Walsh, Brenna J C; Flores-Mireles, Ana Lidia; Peng, Hui; Zhang, Yifan; Zhang, Yixiang; Trinidad, Jonathan C; Hultgren, Scott J; Giedroc, David P
2018-05-17
Recent studies of hydrogen sulfide (H 2 S) signaling implicate low molecular weight (LMW) thiol persulfides and other reactive sulfur species (RSS) as signaling effectors. Here, we show that a CstR protein from the human pathogen Enterococcus faecalis ( E. faecalis), previously identified in Staphylococcus aureus ( S. aureus), is an RSS-sensing repressor that transcriptionally regulates a cst-like operon in response to both exogenous sulfide stress and Angeli's salt, a precursor of nitroxyl (HNO). E. faecalis CstR reacts with coenzyme A persulfide (CoASSH) to form interprotomer disulfide and trisulfide bridges between C32 and C61', which negatively regulate DNA binding to a consensus CstR DNA operator. A Δ cstR strain exhibits deficiency in catheter colonization in a catheter-associated urinary tract infection (CAUTI) mouse model, suggesting sulfide regulation and homeostasis is critical for pathogenicity. Cellular polysulfide metabolite profiling of sodium sulfide-stressed E. faecalis confirms an increase in both inorganic polysulfides and LMW thiols and persulfides sensed by CstR. The cst-like operon encodes two authentic thiosulfate sulfurtransferases and an enzyme we characterize here as an NADH and FAD-dependent coenzyme A (CoA) persulfide reductase (CoAPR) that harbors an N-terminal CoA disulfide reductase (CDR) domain and a C-terminal rhodanese homology domain (RHD). Both cysteines in the CDR (C42) and RHD (C508) domains are required for CoAPR activity and complementation of a sulfide-induced growth phenotype of a S. aureus strain lacking cstB, encoding a nonheme Fe II persulfide dioxygenase. We propose that S. aureus CstB and E. faecalis CoAPR employ orthogonal chemistries to lower CoASSH that accumulates under conditions of cellular sulfide toxicity and signaling.
Gong, Shi-Qiang; Huang, Zhi-Bin; Shi, Wei; Ma, Bo; Tay, Franklin R; Zhou, Bin
2014-10-01
The purpose of this study was to evaluate the in vitro antibacterial effect of AH Plus (Dentsply, DeTrey, Konstanz, Germany) incorporated with quaternary ammonium epoxy silicate (QAES) against Enterococcus faecalis. QAES particles were synthesized by the cocondensation of tetraethoxysilane with 2 trialkoxysilanes (3-[trimethoxysilyl]propyldimethyloctadecyl ammonium chloride and 3-glycidyloxypropyltrimethoxysilane) through a 1-pot sol-gel route. Dried QAES particles were then characterized by attenuated total reflection Fourier transform infrared spectroscopy and scanning electron microscopy. AH Plus sealers incorporated with 0-8 wt% QAES were tested after 4 weeks of water aging to assess the in vitro antibacterial activity against E. faecalis by the direct contact test (DCT) and 3-dimensional image analysis of live/dead-stained E. faecalis biofilms using confocal laser scanning microscopy. The Fourier transform infrared spectroscopy spectrum of QAES particles revealed the coexistence of the characteristic absorbance band of the siloxane backbone (Si-O-Si) from 1,000-1,100 cm(-1), epoxide band peaking at ∼916 cm(-1), and C-N stretching vibration peaking at 1,373 cm(-1). The scanning electron microscopic image showed the spherical morphology of QAES particles with ∼120 nm in diameter and a rough surface. DCT results revealed that AH Plus alone (0 wt% QAES) after 4 weeks of water aging had no inhibitory effect on E. faecalis growth (P = .569). AH Plus incorporated with QAES (2-8 wt%) showed antibacterial activity against E. faecalis as shown in DCT and biofilm viability results (P < .001). The incorporation of QAES into epoxy resin-based AH Plus may be a promising approach for controlling endodontic infection at the time of canal filling and preventing subsequent reinfection. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Tennert, C; Drews, A M; Walther, V; Altenburger, M J; Karygianni, L; Wrbas, K T; Hellwig, E; Al-Ahmad, A
2015-06-01
The aim of this study was to evaluate the effect of photodynamic therapy (PDT) on Enterococcus faecalis biofilms in artificially infected root canals using modified photosensitizers and passive ultrasonic activation. Two hundred and seventy extracted human teeth with one root canal were instrumented utilizing ProTaper files, autoclaved, infected with E. faecalis T9 for 72 h and divided into different groups: irrigation with 3% sodium hypochlorite (NaOCl), 20% ethylenediaminetetraacetic acid (EDTA), or 20% citric acid, PDT without irrigation, PDT accompanied by irrigation with NaOCl, EDTA, or citric acid, PDT using an EDTA-based photosensitizer or a citric-acid-based photosensitizer and PDT with ultrasonic activation of the photosensitizer. A 15 mg/ml toluidine blue served as the photosensitizer, activated by a 100 mW LED light source. Sterile paper points were used for sampling the root canals and dentin chips were collected to assess the remaining contamination after treatment. Samples were cultured on blood agar plates and colony forming units were quantified. PDT alone achieved a reduction in E. faecalis counts by 92.7%, NaOCl irrigation alone and combined with PDT by 99.9%. The antibacterial effects increased by the combination of irrigation using EDTA or citric acid and PDT compared to irrigation alone. More than 99% of E. faecalis were killed using PDT with the modified photosensitizers and ultrasonic activation. NaOCl based disinfection achieved the highest antimicrobial effect. Using PDT with an EDTA-based or citric-acid-based phozosensitizer or activating the photosensitizer with ultrasound resulted in a significantly higher reduction in E. faecalis counts compared to conventional PDT. Copyright © 2015 Elsevier B.V. All rights reserved.
Restructuring of Enterococcus faecalis biofilm architecture in response to antibiotic-induced stress
Dale, Jennifer L.; Nilson, Jennifer L.; Barnes, Aaron M. T.; ...
2017-06-30
Bacterial biofilms are intrinsically resistant to antimicrobial treatment, which contributes to microbial persistence in clinical infections. Enterococcus faecalis is an opportunistic pathogen that readily forms biofilms and is the most prevalent enterococcal species identified in healthcare-associated infections. Since intrinsic resistance to multiple antibiotics is common for enterococci, and antibiotic resistance is elevated in biofilm populations, it is imperative to understand the mechanisms involved. Previously, we identified two glycosyltransferase genes whose disruption resulted in impaired nascent biofilm formation in the presence of antibiotic concentrations subinhibitory for parent growth and biofilm formation. The glycosyltransferases are involved in synthesis of the cell-wall-associated rhamnopolysaccharidemore » Epa. Here we examined the effect of epa mutations on the temporal development of E. faecalis biofilms, and on the effects of antibiotics on pre-formed biofilms using scanning electron microscopy. We show that ΔepaOX mutant cells arrange into complex multidimensional biofilms independent of antibiotic exposure, while parent cells form biofilms that are monolayers in the absence of antibiotics. Remarkably, upon exposure to antibiotics parent biofilm cells restructure into complex three-dimensional biofilms resembling those of the ΔepaOX mutant without antibiotics. All biofilms exhibiting complex cellular architectures were less structurally stable than monolayer biofilms, with the biofilm cells exhibiting increased detachment. Our results indicate that E. faecalis biofilms restructure in response to cellular stress whether induced by antibiotics in the case of parent cells, or by deficiencies in Epa composition for the ΔepaOX strain. The data demonstrate a link between cellular architecture and antibiotic resistance of E. faecalis biofilms.« less
Sahebi, S; Khosravifar, N; Sedighshamsi, M; Motamedifar, M
2014-03-01
The main purpose of a root canal treatment is to eliminate the bacteria and their products from the pulp space. Sodium hypochlorite has excellent antibacterial properties, but also some negative features. The aim of the present study is to compare the antimicrobial effect of Aloe Vera solution with sodium hypochlorite on E.faecalis in the root canals of human extracted teeth. Sixty human extracted single rooted teeth were selected for this in vitro study. The teeth recruited in this study had no cracks, internal resorption, external resorption and calcification. Enterococcus faecalis was injected in the root canals of all teeth. The teeth were then divided into three groups randomly. Each group consisted of 20 teeth that were all rinsed with one of the following solutions: sodium hypochlorite 2.5%, Aloe vera and normal saline. Subsequent to rinsing, root canals of all teeth were sampled. The samples were cultured and growth of the bacteria was assessed after 48 hours. The number of colonies of the bacteria was then counted. The difference between the inhibitory effect of Aloe vera and normal saline on E.faecalis was not significant according to independent t-test (p= 0.966). The inhibitory effect of sodium hypochlorite on E.faecalis was much greater than that of Aloe vera and normal saline (p< 0.001). Aloe vera solution is not recommended as a root canal irrigator, but future studies are suggested to investigate the antibacterial effect of Aloe vera with longer duration of exposure and as an intra canal medicament.
Ehsani, Maryam; Amin Marashi, Mahmood; Zabihi, Ebrahim; Issazadeh, Maryam; Khafri, Soraya
2013-01-01
Removing the bacteria, including Enterococcus faecalis, from the root canal is one of the important aims in endodontic treatment.We aimed to compare the antibacterial activity of Chlorhexidine with two natural drugs. The antibacterial activities of three different propolis extracts (alcohol concentrations: 0, 15, 40%) and Aloe vera gel on E. faecalis were compared using three methods: disk diffusion, microdilution and direct contact test. In addition to the above bacterium, the Aloe vera gel effect on Staphylococcus aureus and Streptococcus mutans was evaluated. Disk diffusion test revealed that propolis ethanolic extracts (the alcohol concentration of 15 and 40%) and Aloe vera gel have antibacterial activities but aqueous extract of propolis did not show any effect in this test. The MICs for propolis ethanolic extracts, Aloe vera gel and aqueous extract of propolis (0% alcohol) were 313 µg/ml, 750 µg/ml, 2250 µg/ml, and ≥ 500 µg/ml respectively, much higher than the Chlorhexidine one. In direct contact test, contrary to Aloe vera, all three propolis extracts showed antibacterial effects on E. faecalis. The Aloe vera gel also showed significant antibacterial effect on S.aureus and S.mutans. The hydroalcoholic extracts of propolis and Aloe vera gel had antibacterial effects on E. faecalis, however, propolis is more potent than Aloe vera. The antibacterial effect of Aloe vera on S. aureus and S. mutans is low (MIC ≥ 2250 µg/ml). Appropriate concentrations of alcoholic extracts of propolis and some fractions of Aloe vera gel might be good choices for disinfecting the root canal in endodontic treatments.
Sohrabi, Khosrow; Sooratgar, Aidin; Zolfagharnasab, Kaveh; Kharazifard, Mohammad Javad; Afkhami, Farzaneh
2016-01-01
The aim of the present in vitro study was to evaluate the disinfection ability of 980-nm diode laser in comparison with sodium hypochlorite (NaOCl) as a common root canal irrigant in canals infected with Enterococcus faecalis (E. faecalis). The root canals of 18 extracted single-rooted premolars were prepared by rotary system. After decoronation, the roots were autoclaved. One specimen was chosen for the negative control, and the remaining teeth were incubated with E. faecalis suspension for two weeks. Subsequently, one specimen was selected as the positive control and the remaining samples were divided into two groups (n=8). The samples of the first group were irrigated with 5.25% NaOCl and the second group were treated with a 980-nm diode laser. Microbial samples were taken from the root canals and bacterial cultivation was carried out. The average value and the standard deviation of colony-forming units (CFU) of each specimen were measured using descriptive statistics. The student's t-test was used to compare the reduction in CFU in each group. The equality of variance of CFU was measured by the Levene's test. NaOCl resulted in 99.87% removal of the bacteria and showed significantly more antibacterial effect compared to the 980-nm diode laser which led to 96.56% bacterial reduction (P<0.05). Although 5.25% NaOCl seems to reduce E. faecalis more effectively, the diode laser also reduced the bacterial count. Therefore a 980-nm diode laser could be considered as a complementary disinfection method in root canal treatment.
Priyank, Harsh; Pandey, Vinisha; Bagul, Abhishek; Majety, Kishore Kumar; Verma, Parul; Choudhury, Basanta Kumar
2017-03-01
Endodontic treatment removes all pathogens, such as Enterococcus faecalis from pulp and root canals. The aim of this study is to assess the usefulness of sodium hypo-chlorite (NaOCl) in removing E. faecalis from the root canal used with three different irrigation methods. This study was conducted on freshly extracted maxillary incisors. After biomechanical preparation, root canals were injected with E. faecalis. Three groups were made which contained 30 teeth in each group; 2 mL of NaOCl solution was used for irrigation followed by agitation with K-files in group I; 2 mL of NaOCl solution was used for irrigation and ultrasonic agitation was done in group II. In group III, an alternate irrigation with NaOCl and 3% hydrogen peroxide was done. The fourth group (control) was irrigated with sterile saline solution. E. fae-calis bacteria were sampled to the root canals with paper points and were transferred to tubes that contained 5 mL of brain heart infusion broth. Tubes were incubated and the presence of broth turbidity was suggestive of bacteria remaining in the root canal. All three groups showed no statistically significant difference. However, difference existed between experimental groups and control groups. The author concluded that all three methods of application of NaOCl were effective in disinfecting the root canal than the saline solution. No single irrigant has 100% efficiency. Thus by this study, a best irrigating solution with maximum properties can be established.
Fang, Chong; Stiegeler, Emanuel; Cook, Gregory M.; Mascher, Thorsten; Gebhard, Susanne
2014-01-01
To combat antibiotic resistance of Enterococcus faecalis, a better understanding of the molecular mechanisms, particularly of antibiotic detection, signal transduction and gene regulation is needed. Because molecular studies in this bacterium can be challenging, we aimed at exploiting the genetically highly tractable Gram-positive model organism Bacillus subtilis as a heterologous host. Two fundamentally different regulators of E. faecalis resistance against cell wall antibiotics, the bacitracin sensor BcrR and the vancomycin-sensing two-component system VanSB-VanRB, were produced in B. subtilis and their functions were monitored using target promoters fused to reporter genes (lacZ and luxABCDE). The bacitracin resistance system BcrR-BcrAB of E. faecalis was fully functional in B. subtilis, both regarding regulation of bcrAB expression and resistance mediated by the transporter BcrAB. Removal of intrinsic bacitracin resistance of B. subtilis increased the sensitivity of the system. The lacZ and luxABCDE reporters were found to both offer sensitive detection of promoter induction on solid media, which is useful for screening of large mutant libraries. The VanSB-VanRB system displayed a gradual dose-response behaviour to vancomycin, but only when produced at low levels in the cell. Taken together, our data show that B. subtilis is a well-suited host for the molecular characterization of regulatory systems controlling resistance against cell wall active compounds in E. faecalis. Importantly, B. subtilis facilitates the careful adjustment of expression levels and genetic background required for full functionality of the introduced regulators. PMID:24676422
Fang, Chong; Stiegeler, Emanuel; Cook, Gregory M; Mascher, Thorsten; Gebhard, Susanne
2014-01-01
To combat antibiotic resistance of Enterococcus faecalis, a better understanding of the molecular mechanisms, particularly of antibiotic detection, signal transduction and gene regulation is needed. Because molecular studies in this bacterium can be challenging, we aimed at exploiting the genetically highly tractable Gram-positive model organism Bacillus subtilis as a heterologous host. Two fundamentally different regulators of E. faecalis resistance against cell wall antibiotics, the bacitracin sensor BcrR and the vancomycin-sensing two-component system VanSB-VanRB, were produced in B. subtilis and their functions were monitored using target promoters fused to reporter genes (lacZ and luxABCDE). The bacitracin resistance system BcrR-BcrAB of E. faecalis was fully functional in B. subtilis, both regarding regulation of bcrAB expression and resistance mediated by the transporter BcrAB. Removal of intrinsic bacitracin resistance of B. subtilis increased the sensitivity of the system. The lacZ and luxABCDE reporters were found to both offer sensitive detection of promoter induction on solid media, which is useful for screening of large mutant libraries. The VanSB-VanRB system displayed a gradual dose-response behaviour to vancomycin, but only when produced at low levels in the cell. Taken together, our data show that B. subtilis is a well-suited host for the molecular characterization of regulatory systems controlling resistance against cell wall active compounds in E. faecalis. Importantly, B. subtilis facilitates the careful adjustment of expression levels and genetic background required for full functionality of the introduced regulators.
Woods, Stephanie E; Lieberman, Mia T; Lebreton, Francois; Trowel, Elise; de la Fuente-Núñez, César; Dzink-Fox, Joanne; Gilmore, Michael S; Fox, James G
2017-01-01
Nonhuman primates are commonly used for cognitive neuroscience research and often surgically implanted with cephalic recording chambers for electrophysiological recording. Aerobic bacterial cultures from 25 macaques identified 72 bacterial isolates, including 15 Enterococcus faecalis isolates. The E. faecalis isolates displayed multi-drug resistant phenotypes, with resistance to ciprofloxacin, enrofloxacin, trimethoprim-sulfamethoxazole, tetracycline, chloramphenicol, bacitracin, and erythromycin, as well as high-level aminoglycoside resistance. Multi-locus sequence typing showed that most belonged to two E. faecalis sequence types (ST): ST 4 and ST 55. The genomes of three representative isolates were sequenced to identify genes encoding antimicrobial resistances and other traits. Antimicrobial resistance genes identified included aac(6')-aph(2"), aph(3')-III, str, ant(6)-Ia, tetM, tetS, tetL, ermB, bcrABR, cat, and dfrG, and polymorphisms in parC (S80I) and gyrA (S83I) were observed. These isolates also harbored virulence factors including the cytolysin toxin genes in ST 4 isolates, as well as multiple biofilm-associated genes (esp, agg, ace, SrtA, gelE, ebpABC), hyaluronidases (hylA, hylB), and other survival genes (ElrA, tpx). Crystal violet biofilm assays confirmed that ST 4 isolates produced more biofilm than ST 55 isolates. The abundance of antimicrobial resistance and virulence factor genes in the ST 4 isolates likely relates to the loss of CRISPR-cas. This macaque colony represents a unique model for studying E. faecalis infection associated with indwelling devices, and provides an opportunity to understand the basis of persistence of this pathogen in a healthcare setting.
Restructuring of Enterococcus faecalis biofilm architecture in response to antibiotic-induced stress
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dale, Jennifer L.; Nilson, Jennifer L.; Barnes, Aaron M. T.
Bacterial biofilms are intrinsically resistant to antimicrobial treatment, which contributes to microbial persistence in clinical infections. Enterococcus faecalis is an opportunistic pathogen that readily forms biofilms and is the most prevalent enterococcal species identified in healthcare-associated infections. Since intrinsic resistance to multiple antibiotics is common for enterococci, and antibiotic resistance is elevated in biofilm populations, it is imperative to understand the mechanisms involved. Previously, we identified two glycosyltransferase genes whose disruption resulted in impaired nascent biofilm formation in the presence of antibiotic concentrations subinhibitory for parent growth and biofilm formation. The glycosyltransferases are involved in synthesis of the cell-wall-associated rhamnopolysaccharidemore » Epa. Here we examined the effect of epa mutations on the temporal development of E. faecalis biofilms, and on the effects of antibiotics on pre-formed biofilms using scanning electron microscopy. We show that ΔepaOX mutant cells arrange into complex multidimensional biofilms independent of antibiotic exposure, while parent cells form biofilms that are monolayers in the absence of antibiotics. Remarkably, upon exposure to antibiotics parent biofilm cells restructure into complex three-dimensional biofilms resembling those of the ΔepaOX mutant without antibiotics. All biofilms exhibiting complex cellular architectures were less structurally stable than monolayer biofilms, with the biofilm cells exhibiting increased detachment. Our results indicate that E. faecalis biofilms restructure in response to cellular stress whether induced by antibiotics in the case of parent cells, or by deficiencies in Epa composition for the ΔepaOX strain. The data demonstrate a link between cellular architecture and antibiotic resistance of E. faecalis biofilms.« less
Tan, Yen Ee; Ng, Lily S Y; Tan, Thean Yen
2014-10-01
It has been recently reported that ampicillin susceptibility cannot accurately predict piperacillin and imipenem susceptibilities in penicillin-resistant, ampicillin-susceptible (Pen-R, Amp-S) Enterococcus faecalis isolates, contrary to the current Clinical and Laboratory Standards Institute (CLSI) recommendations. This has important therapeutic implications. Such isolates were noted after the use of Vitek-2 Compact system AST-GP67 susceptibility cards in a Singapore general hospital and they were increasing in numbers. The primary aim of this study was to evaluate these clinical isolates against microbroth dilution (MBD) technique and other commonly used antimicrobial susceptibility test (AST) methods for penicillin and ampicillin. The secondary aim was to evaluate whether ampicillin susceptibility could indeed be a reliable surrogate marker for piperacillin and imipenem susceptibilities in E. faecalis isolates that were confirmed Pen-R, Amp-S.From 2009 to 2013, a total of 49 isolates (5%) of 983 non-duplicate E. faecalis tested by Vitek-2 displayed the 'Pen-R, Amp-S' phenotype in a general hospital in Singapore. These were tested against MBD which was the reference method, Etest and disc diffusion for penicillin and ampicillin. Susceptibilities to piperacillin and imipenem were also tested using MBD. In addition, β-lactamase production test was performed. Forty E. faecalis isolates with penicillin-susceptible, ampicillin-susceptible (Pen-S, Amp-S) phenotype were included for comparative purposes.The categorical agreement rate was 100% for all AST methods in ampicillin reporting for the 'Pen-R, Amp-S' group of E. faecalis isolates. However, a large number of isolates (46 isolates, 93.9%) fell into the major error category for penicillin testing by the Vitek-2 system. Penicillin minimum inhibitory concentrations (MICs) generated by the Vitek-2 system for the majority of these isolates were two doubling dilutions higher compared to those obtained by the reference test. The Etest method correlated well with the MBD method. Thirty-two isolates (65.3%) were in categorical agreement with the MBD method when tested by the disc diffusion method for penicillin. Only three E. faecalis isolates (6.1%) were confirmed to have the uncommon penicillin resistance phenotype, with two of them showing resistance to piperacillin and intermediate to imipenem. β-lactamase production test was negative for all isolates. Among the Pen-S, Amp-S E. faecalis isolates, the categorical agreement was 100% for penicillin and ampicillin in all the tested methods.Enterococcus faecalis with 'Pen-R, Amp-S' phenotype reported by the Vitek-2 system using AST-GP67 susceptibility cards must be confirmed with a reference test, the Etest method being a good alternative. The Vitek-2 system generated higher penicillin MIC readings compared to MBD in this study. The actual prevalence of this uncommon penicillin resistance phenotype in E. faecalis was found to be low in this institution. More studies are required to confirm the reliability of ampicillin as a surrogate marker for piperacillin and imipenem susceptibilities in these isolates.
2012-01-01
Background Enterococci are among the leading causes of hospital-acquired infections in the United States and Europe, with Enterococcus faecalis and Enterococcus faecium being the two most common species isolated from enterococcal infections. In the last decade, the proportion of enterococcal infections caused by E. faecium has steadily increased compared to other Enterococcus species. Although the underlying mechanism for the gradual replacement of E. faecalis by E. faecium in the hospital environment is not yet understood, many studies using genotyping and phylogenetic analysis have shown the emergence of a globally dispersed polyclonal subcluster of E. faecium strains in clinical environments. Systematic study of the molecular epidemiology and pathogenesis of E. faecium has been hindered by the lack of closed, complete E. faecium genomes that can be used as references. Results In this study, we report the complete genome sequence of the E. faecium strain TX16, also known as DO, which belongs to multilocus sequence type (ST) 18, and was the first E. faecium strain ever sequenced. Whole genome comparison of the TX16 genome with 21 E. faecium draft genomes confirmed that most clinical, outbreak, and hospital-associated (HA) strains (including STs 16, 17, 18, and 78), in addition to strains of non-hospital origin, group in the same clade (referred to as the HA clade) and are evolutionally considerably more closely related to each other by phylogenetic and gene content similarity analyses than to isolates in the community-associated (CA) clade with approximately a 3–4% average nucleotide sequence difference between the two clades at the core genome level. Our study also revealed that many genomic loci in the TX16 genome are unique to the HA clade. 380 ORFs in TX16 are HA-clade specific and antibiotic resistance genes are enriched in HA-clade strains. Mobile elements such as IS16 and transposons were also found almost exclusively in HA strains, as previously reported. Conclusions Our findings along with other studies show that HA clonal lineages harbor specific genetic elements as well as sequence differences in the core genome which may confer selection advantages over the more heterogeneous CA E. faecium isolates. Which of these differences are important for the success of specific E. faecium lineages in the hospital environment remain(s) to be determined. PMID:22769602
Lack of direct effects of agrochemicals on zoonotic pathogens and fecal indicator bacteria.
Staley, Zachery R; Senkbeil, Jacob K; Rohr, Jason R; Harwood, Valerie J
2012-11-01
Agrochemicals, fecal indicator bacteria (FIB), and pathogens frequently contaminate water simultaneously. No significant direct effects of fertilizer, atrazine, malathion, and chlorothalonil on the survival of Escherichia coli, Enterococcus faecalis, Salmonella enterica, human polyomaviruses, and adenovirus were detected, supporting the assertion that previously observed effects of agrochemicals on FIB were indirect.
Solar radiation-driven inactivation of bacteria, virus and protozoan pathogen models was quantified in simulated drinking water at a temperate latitude (34°S). The water was seeded with Enterococcus faecalis, Clostridium sporogenes spores, and P22 bacteriophage, each at ca 1 x 10...
Crystal structure of enterococcus faecalis sly A-like transcriptional factor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wu, R.; Zhang, R.; Zagnitko, O.
2003-05-30
The crystal structure of a SlyA transcriptional regulator at 1.6 {angstrom} resolution is presented, and structural relationships between members of the MarR/SlyA family are discussed. The SlyA family, which includes SlyA, Rap, Hor, and RovA proteins, is widely distributed in bacterial and archaeal genomes. Current evidence suggests that SlyA-like factors act as repressors, activators, and modulators of gene transcription. These proteins have been shown to up-regulate the expression of molecular chaperones, acid-resistance proteins, and cytolysin, and down-regulate several biosynthetic enzymes. The structure of SlyA from Enterococcus faecalis, determined as a part of an ongoing structural genomics initiative (www.mcsg.anl.gov), revealed themore » same winged helix DNA-binding motif that was recently found in the MarR repressor from Escherichia coli and the MexR repressor from Pseudomonas aeruginosa, a sequence homologue of MarR. Phylogenetic analysis of the MarR/SlyA family suggests that Sly is placed between the SlyA and MarR subfamilies and shows significant sequence similarity to members of both subfamilies.« less
Enterococcus faecalis Endogenous Endophthalmitis from Valvular Endocarditis
Barge, Sidnei; Rothwell, Renata; Varandas, Rosário; Agrelos, Luís
2013-01-01
We report a case of a 74-year-old female, with a mitral heart valve, who presented with pain and blurred vision in the right eye for 2 days. Her visual acuity was light perception (LP) in the right eye and 20/40 in the left eye. Slit lamp examination showed corneal edema and hypopyon, and a view of the right fundus was impossible. Echography showed vitreous condensation. One day after presentation, the patient developed acute lung edema requiring hospitalization, so she was not submitted to vitreous tap and intravitreal treatment. The cardiac and systemic evaluations revealed a mitral endocarditis secondary to Enterococcus faecalis. The patient improved systemically with treatment with gentamicin, vancomycin, and linezolid. Her visual acuity remained as no LP, and her intraocular pressure (IOP) has been controlled with brimonidine bid despite developing a total cataract with 360° posterior synechia. A cardiac source for endogenous endophthalmitis should be considered in the presence of a prosthetic cardiac valve. The treatment and followup must be made in cooperation with a cardiologist specialist, but the ophthalmologist can play a key role in the diagnosis. PMID:23936701
In vitro activity of salicylamide derivatives against vancomycin-resistant enterococci.
Pospisilova, Sarka; Michnova, Hana; Kauerova, Tereza; Pauk, Karel; Kollar, Peter; Vinsova, Jarmila; Imramovsky, Ales; Cizek, Alois; Jampilek, Josef
2018-07-01
A series of 13 salicylamide derivatives was assessed for antibacterial activity against three isolates of vancomycin-resistant Enterococcus faecalis (VRE) and Enterococcus faecalis ATCC 29212 as a quality standard. The minimum inhibitory concentration was determined by the broth microdilution method with subsequent subcultivation of aliquots to assess minimum bactericidal concentration. The growth kinetics was established by the time-kill assay. Ampicillin, ciprofloxacin, tetracycline and vancomycin were used as the reference antibacterial drugs. Three of the investigated compounds showed strong bacteriostatic activity against VRE (0.199-25 µM) comparable to or more potent than ampicillin and ciprofloxacin. In addition, these compounds were tested for synergistic effect with vancomycin, ciprofloxacin and tetracycline, while 5-chloro-2-hydroxy-N-[4-(trifluoromethyl)phenyl]benzamide showed the highest potency as well as synergistic activity with vancomycin against VRE 368. Screening of the cytotoxicity of the most effective compounds was performed using human monocytic leukemia THP-1 cells, and based on LD 50 values, it can be stated that the compounds have insignificant toxicity against human cells. Copyright © 2018 Elsevier Ltd. All rights reserved.
Enterococcus faecalis Prophage Dynamics and Contributions to Pathogenic Traits
Matos, Renata C.; Lapaque, Nicolas; Rigottier-Gois, Lionel; Debarbieux, Laurent; Meylheuc, Thierry; Gonzalez-Zorn, Bruno; Repoila, Francis; Lopes, Maria de Fatima; Serror, Pascale
2013-01-01
Polylysogeny is frequently considered to be the result of an adaptive evolutionary process in which prophages confer fitness and/or virulence factors, thus making them important for evolution of both bacterial populations and infectious diseases. The Enterococcus faecalis V583 isolate belongs to the high-risk clonal complex 2 that is particularly well adapted to the hospital environment. Its genome carries 7 prophage-like elements (V583-pp1 to -pp7), one of which is ubiquitous in the species. In this study, we investigated the activity of the V583 prophages and their contribution to E. faecalis biological traits. We systematically analyzed the ability of each prophage to excise from the bacterial chromosome, to replicate and to package its DNA. We also created a set of E. faecalis isogenic strains that lack from one to all six non-ubiquitous prophages by mimicking natural excision. Our work reveals that prophages of E. faecalis V583 excise from the bacterial chromosome in the presence of a fluoroquinolone, and are able to produce active phage progeny. Intricate interactions between V583 prophages were also unveiled: i) pp7, coined EfCIV583 for E. faecalis chromosomal island of V583, hijacks capsids from helper phage 1, leading to the formation of distinct virions, and ii) pp1, pp3 and pp5 inhibit excision of pp4 and pp6. The hijacking exerted by EfCIV583 on helper phage 1 capsids is the first example of molecular piracy in Gram positive bacteria other than staphylococci. Furthermore, prophages encoding platelet-binding-like proteins were found to be involved in adhesion to human platelets, considered as a first step towards the development of infective endocarditis. Our findings reveal not only a role of E. faecalis V583 prophages in pathogenicity, but also provide an explanation for the correlation between antibiotic usage and E. faecalis success as a nosocomial pathogen, as fluoriquinolone may provoke release of prophages and promote gene dissemination among isolates. PMID:23754962
Tong, Zhongchun; Du, Yu; Ling, Junqi; Huang, Lijia; Ma, Jinglei
2017-01-01
A high prevalence of Enterococcus faecalis (E. faecalis) is observed in teeth with root canal treatment failures. Clustered regularly interspaced short palindromic repeats (CRISPR) are widely distributed in prokaryotes that have adaptive immune systems against mobile elements, including pathogenic genes. The present study investigated the relevance of the CRISPR in E. faecalis strains isolated from retreated root canals on biofilms, periapical lesions and drug resistance. A total of 20 E. faecalis strains were extracted from the root canals of teeth referred for root canal retreatment. CRISPR-Cas loci were identified by two pairs of relevant primers and polymerase chain reaction. The susceptibility of the 20 isolated strains to intracanal irrigants was evaluated by 1- and 5-minute challenges with a mixture of a tetracycline isomer, an acid and a detergent (MTAD), 2% chlorhexidine (CHX) and 5.25% sodium hypochlorite (NaOCl). The microtiter plate assay and crystal violet staining were used to compare the biofilm formation of the E. faecalis isolate strains. Out of the 20 E. faecalis isolate strains, 5 strains that lacked CRISPR-cas determinants exhibited significant periapical lesions. Among the 15 strains containing CRISPR-cas determinants, 8 were isolated from root canals with inadequate fillings and 7 were isolated from root canals without any fillings. The five strains lacking CRISPR-cas loci were observed to be more resistant to MTAD and 2% CHX than the 15 strains that had CRISPR-cas loci. All of the strains exhibited the same susceptibility to 5.25% NaOCl. Furthermore, the 5 strains lacking CRISPR-cas determinants generated more biofilm than the other 15 strains. Thus, the results of the present study suggested that E. faecalis root canal isolates lacking CRISPR-cas exhibit higher resistance to intracanal irrigants, stronger biofilm formation and generate significant periapical lesions. PMID:29285081
Tong, Zhongchun; Du, Yu; Ling, Junqi; Huang, Lijia; Ma, Jinglei
2017-12-01
A high prevalence of Enterococcus faecalis ( E. faecalis ) is observed in teeth with root canal treatment failures. Clustered regularly interspaced short palindromic repeats (CRISPR) are widely distributed in prokaryotes that have adaptive immune systems against mobile elements, including pathogenic genes. The present study investigated the relevance of the CRISPR in E. faecalis strains isolated from retreated root canals on biofilms, periapical lesions and drug resistance. A total of 20 E. faecalis strains were extracted from the root canals of teeth referred for root canal retreatment. CRISPR-Cas loci were identified by two pairs of relevant primers and polymerase chain reaction. The susceptibility of the 20 isolated strains to intracanal irrigants was evaluated by 1- and 5-minute challenges with a mixture of a tetracycline isomer, an acid and a detergent (MTAD), 2% chlorhexidine (CHX) and 5.25% sodium hypochlorite (NaOCl). The microtiter plate assay and crystal violet staining were used to compare the biofilm formation of the E. faecalis isolate strains. Out of the 20 E. faecalis isolate strains, 5 strains that lacked CRISPR-cas determinants exhibited significant periapical lesions. Among the 15 strains containing CRISPR-cas determinants, 8 were isolated from root canals with inadequate fillings and 7 were isolated from root canals without any fillings. The five strains lacking CRISPR-cas loci were observed to be more resistant to MTAD and 2% CHX than the 15 strains that had CRISPR-cas loci. All of the strains exhibited the same susceptibility to 5.25% NaOCl. Furthermore, the 5 strains lacking CRISPR-cas determinants generated more biofilm than the other 15 strains. Thus, the results of the present study suggested that E. faecalis root canal isolates lacking CRISPR-cas exhibit higher resistance to intracanal irrigants, stronger biofilm formation and generate significant periapical lesions.
Zilm, Peter S; Butnejski, Victor; Rossi-Fedele, Giampiero; Kidd, Stephen P; Edwards, Suzanne; Vasilev, Krasimir
2017-01-01
Enterococcus faecalis is the most frequent species present in post-treatment disease and plays a significant role in persistent periapical infections following root canal treatment. Its ability to persist in stressful environments is inter alia, due to its ability to form biofilms. The presence of certain D-amino acids (DAAs) has previously been shown to reduce formation of Bacillus subtilis biofilms. The aims of this investigation were to determine if DAAs disrupt biofilms in early and late growth stages for clinical E. faecalis strains and to test their efficacy in disrupting E. faecalis biofilms grown in sub-minimum inhibitory concentrations of commonly used endodontic biocides. From thirty-seven E. faecalis strains, the ten "best" biofilm producers were used to test the ability of a mixture containing D-leucine, D-methionine, D-tyrosine and D-tryptophan to reduce biofilm growth over a period of 24, 72 and 144 hours and when compared to their cognate L-Amino Acids (LAAs). We have previously shown that sub-MIC levels of tetracycline and sodium hypochlorite promotes biofilm growth in clinical strains of E. faecalis. DAAs were therefore tested for their effectiveness to reduce biofilm growth in the presence of sub-minimal concentrations of sodium hypochlorite (NaOCl-0.031%) and Odontocide™ (0.25% w/v), and in the presence of Odontopaste™ (0.25% w/v). DAAs significantly reduced biofilm formation for all strains tested in vitro, while DAAs significantly reduced biofilm formation compared to LAAs. The inhibitory effect of DAAs on biofilm formation was concentration dependent. DAAs were also shown to be effective in reducing E. faecalis biofilms in the presence of Odontopaste™ and sub-MIC levels of NaOCl and Odontocide™. The results suggest that the inclusion of DAAs into current endodontic procedures may reduce E. faecalis biofilms.
Wulkersdorfer, Beatrix; Jaros, David; Eberl, Sabine; Poschner, Stefan; Jäger, Walter; Cosentini, Enrico; Zeitlinger, Markus; Schwameis, Richard
2017-08-01
It has been known from previous studies that body fluids, such as cerebrospinal fluid, lung surfactant, and urine, have a strong impact on the bacterial killing of many anti-infective agents. However, the influence of human bile on the antimicrobial activity of antibiotics is widely unknown. Human bile was obtained and pooled from 11 patients undergoing cholecystectomy. After sterilization of the bile fluid by gamma irradiation, its effect on bacterial killing was investigated for linezolid (LZD) and tigecycline (TGC) against Enterococcus faecalis ATCC 29212. Further, ciprofloxacin (CIP), meropenem (MEM), and TGC were tested against Escherichia coli ATCC 25922. Time-kill curves were performed in pooled human bile and Mueller-Hinton broth (MHB) over 24 h. Bacterial counts (in CFU per milliliter after 24 h) of bile growth controls were approximately equal to MHB growth controls for E. coli and approximately 2-fold greater for E. faecalis , indicating a promotion of bacterial growth by bile for the latter strain. Bile reduced the antimicrobial activity of CIP, MEM, and TGC against E. coli as well as the activity of LZD and TGC against E. faecalis This effect was strongest for TGC against the two strains. Degradation of TGC in bile was identified as the most likely explanation. These findings may have important implications for the treatment of bacterial infections of the gallbladder and biliary tract and should be explored in more detail. Copyright © 2017 American Society for Microbiology.
Wang, Yi; Li, Hui; Wang, Yan; Zhang, Lu; Xu, Jianguo; Ye, Changyun
2017-01-01
The report describes a simple, rapid and sensitive assay for visual and multiplex detection of Enterococcus faecalis and Staphylococcus aureus based on multiple loop-mediated isothermal amplification (mLAMP) and lateral flow biosensor (LFB). Detection and differentiation of the Ef0027 gene (E. faecalis-specific gene) and nuc gene (S. aureus-specific gene) were determined using fluorescein (FITC)-and digoxin-modified primers in the mLAMP process. In the presence of biotin- and FITC-/digoxin-modified primers, the mLAMP yielded numerous biotin- and FITC-/digoxin-attached duplex products, which were detected by LFB through biotin/streptavidin interaction (biotin on the duplex and streptavidin on the gold nanoparticle) and immunoreactions (FITC/digoxin on the duplex and anti-FITC/digoxin on the LFB test line). The accumulation of gold nanoparticles generated a characteristic red line, enabling visual and multiplex detection of target pathogens without instrumentation. The limit of detection (LoD), analytical specificity and feasibility of LAMP-LFB technique were successfully examined in pure culture and blood samples. The entire procedure, including specimen (blood samples) processing (30 min), isothermal reaction (40 min) and result reporting (within 2 min), could be completed within 75 min. Thus, this assay offers a simple, rapid, sensitive and specific test for multiplex detection of E. faecalis and S. aureus strains. Furthermore, the LAMP-LFB strategy is a universal technique, which can be extended to detect various target sequences by re-designing the specific LAMP primers. PMID:28239371
de Annunzio, Sarah Raquel; de Freitas, Laura Marise; Blanco, Ana Lígia; da Costa, Mardoqueu Martins; Carmona-Vargas, Christian C; de Oliveira, Kleber Thiago; Fontana, Carla Raquel
2018-01-01
Bacterial resistance to available antibiotics nowadays is a global threat leading researchers around the world to study new treatment modalities for infections. Antimicrobial photodynamic therapy (aPDT) has been considered an effective and promising therapeutic alternative in this scenario. Briefly, this therapy is based on the activation of a non-toxic photosensitizing agent, known as photosensitizer (PS), by light at a specific wavelength generating cytotoxic singlet oxygen and free radicals. Virtually all studies related to aPDT involve a huge screening to identify ideal PS concentration and light dose combinations, a laborious and time-consuming process that is hardly disclosed in the literature. Herein, we describe an antimicrobial Photodynamic Therapy (aPDT) study against Enterococcus faecalis and Propionibacterium acnes employing methylene blue, chlorin-e6 or curcumin as PS. Similarities and discrepancies between the two bacterial species were pointed out in an attempt to speed up and facilitate futures studies against those clinical relevant strains. Susceptibility tests were performed by the broth microdilution method. Our results demonstrate that aPDT mediated by the three above-mentioned PS was effective in eliminating both gram-positive bacteria, although P. acnes showed remarkably higher susceptibility to aPDT when compared to E. faecalis. PS uptake assays revealed that P. acnes is 80 times more efficient than E. faecalis in internalizing all three PS molecules. Our results evidence that the cell wall structure is not a limiting feature when predicting bacterial susceptibility to aPDT treatment. Copyright © 2017. Published by Elsevier B.V.
Jarzembowski, T; Wiśniewska, K; Józwik, A; Bryl, E; Witkowski, J
2008-08-01
We studied the usefulness of flow cytometry for detection of penicillin resistance in E. faecalis and S. aureus by direct binding of commercially available fluorescent penicillin, Bocillin FL, to cells obtained from culture. There were significantly lower percentages of fluorescent cells and median and mean fluorescence values per particle in penicillin-resistant than in penicillin-sensitive strains of both species observed. The method allows rapid detection of penicillin resistance in S. aureus and E. faecalis. The results encourage further investigations on the detection of antibiotic resistance in bacteria using flow cytometry.
Kim, Min-Chan; Cha, Min-Hyeok; Ryu, Jae-Gee; Woo, Gun-Jo
2017-04-01
Increased enterococcal infections in hospitals and multidrug-resistant and vancomycin-resistant enterococci (VRE) isolated from humans, animals, and food sources raised public health concern on the presence of VRE in multiple sources. We performed a comparative analysis of the antimicrobial resistance and genetics of VRE isolates derived from fresh produce and human fecal samples. Of 389 Enterococcus isolates, 8 fecal and 3 produce isolates were resistant to vancomycin and teicoplanin; all harbored vanA gene. The VRE isolates showed multidrug-resistant properties. The isolates from fresh produce in this study showed to have the common shared characteristics with the isolates from humans by the results of antimicrobial resistance, multilocus sequence typing, and Tn 1546 transposon analysis. Therefore, VRE isolates from fresh produce are likely related to VRE derived from humans. The results suggested that VRE may contaminate vegetables through the environment, and the contaminated vegetables could then act as a vehicle for human infections. Ongoing nationwide surveillance of antibiotic resistance and the promotion of the proper use of antibiotics are necessary.
López-Martínez, Briceida; Calderón-Jaimes, Ernesto; Olivar-López, Víctor; Parra-Ortega, Israel; Alcázar-López, Virginia; Castellanos-Cruz, María Del Carmen; de la Garza-López, Alicia
Urinary tract infection in children is well recognized as a cause of acute morbidity and chronic medical conditions. As a result, appropriate use of antimicrobial agents, however, increases antibiotic resistance and complicates its treatment due to increased patient morbidity, costs, rates of hospitalization, and use of broader-spectrum antibiotics. The goal of this study was to determine antibiotic susceptibility to commonly used agents for urinary tract infection against recent urinary isolates. A total of 457 consecutive children attending the emergency room at the Hospital Infantil de México Federico Gómez with symptoms of uncomplicated lower urinary tract infection were eligible for inclusion. Patients who had had symptoms for≥7 days and those who had had previous episodes of urinary tract infection, received antibiotics or other complicated factors were excluded. Midstream and catheter urine specimens were collected. All isolates were identified and the in vitro activities of antimicrobials were determined. The most frequently isolated urinary pathogens were as follows: Escherichia coli (E. coli) (312, 68.3%), Enterococcus spp. (42, 11%), Klebsiella pneumoniae (K. pneumoniae) (40, 8.7%), Pseudomonas aeruginosa (P. aeruginosa) (34, 7.5%), Proteus mirabilis (P. mirabilis) (21, 4.5%), Enterobacter cloacae (8, 1.7%). The resistance to trimetoprim/sulfametoxazol (%) was 73.7, 62.2, 100, 52, and 50, respectively, for E. coli, K. pneumoniae, P. aeruginosa, P. mirabilis and Enterobacter spp., 92.5 for Enterococcus faecalis (E. faecalis) and 49.9 for Enterococcus faecium (E. faecium). Ampicillin was 86.3, 45, 100, 47.9, and 66.6% for the same strains, ciprofloxacin 33.8, 9, 18.8, 0, 0%, nitrofurantoin 4.4, 13, 97.7, 70, 0%; to E. faecalis 0% and 16.7% to E. faecium. Frequently prescribed empirical agents for uncomplicated urinary tract infection demonstrate lowered in vitro susceptibilities when tested against recent clinical isolates. Copyright © 2014 Hospital Infantil de México Federico Gómez. Publicado por Masson Doyma México S.A. All rights reserved.
Antimicrobial resistance and virulence genes in enterococci from wild game meat in Spain.
Guerrero-Ramos, Emilia; Cordero, Jorge; Molina-González, Diana; Poeta, Patrícia; Igrejas, Gilberto; Alonso-Calleja, Carlos; Capita, Rosa
2016-02-01
A total of 55 enterococci (45 Enterococcus faecium, 7 Enterococcus faecalis, and three Enterococcus durans) isolated from the meat of wild game animals (roe deer, boar, rabbit, pheasant, and pigeon) in North-Western Spain were tested for susceptibility to 14 antimicrobials by the disc diffusion method. All strains showed a multi-resistant phenotype (resistance to between three and 10 antimicrobials). The strains exhibited high percentages of resistance to erythromycin (89.1%), tetracycline (67.3%), ciprofloxacin (92.7%), nitrofurantoin (67.3%), and quinupristin-dalfopristin (81.8%). The lowest values (9.1%) were observed for high-level resistance to gentamicin, kanamycin, and streptomycin. The average number of resistances per strain was 5.8 for E. faecium isolates, 7.9 for E. faecalis, and 5.7 for E. durans. Genes encoding antimicrobial resistance and virulence were studied by polymerase chain reaction. A total of 15 (57.7%) of the 26 vancomycin-resistant isolates harboured the vanA gene. Other resistance genes detected included vanB, erm(B) and/or erm(C), tet(L) and/or tet(M), acc(6')-aph(2″), and aph(3')-IIIa in strains resistant to vancomycin, erythromycin, tetracycline, gentamicin, and kanamycin, respectively. Specific genes of the Tn5397 transposon were detected in 54.8% of the tet(M)-positive enterococci. Nine virulence factors (gelE, agg, ace, cpd, frs, esp, hyl, efaAfs and efaAfm) were studied. All virulence genes, with the exception of the frs gene, were found to be present in the enterococcal isolates. At least one virulence gene was detected in 20.0% of E. faecium, 71.4% of E. faecalis and 33.3% of E. durans isolates, with ace and cpd being the most frequently detected genes (6 isolates each). This suggests that wild game meat might play a role in the spreading through the food chain of enterococci with antimicrobial resistance and virulence determinants to humans. Copyright © 2015 Elsevier Ltd. All rights reserved.
Antibacterial efficacy of an endodontic sonic-powered irrigation system: An in vitro study.
Zeng, Chang; Willison, Jon; Meghil, Mohamed M; Bergeron, Brian E; Cutler, Christopher W; Tay, Franklin R; Niu, Lina; Ma, Jingzhi
2018-06-13
To evaluate the efficacy of EDDY, a new sonic-powered irrigation system, in reducing intracanal bacteria load. Thirty-eight instrumented, autoclaved single-rooted human premolars were inoculated with Enterococcus faecalis (ATCC-29212) for 21 days. Two teeth were used as negative control without bacterial contamination. For the bacteria-inoculated teeth, 6 were used as positive control without irrigation. The remaining 30 teeth were randomly divided into 2 groups (N = 15), using 3% NaOCl as irrigant: (A) 30-gauge syringe needle irrigation (SNI), (B) EDDY (VDW, Munich, Germany). Twelve teeth per group and 4 teeth in the positive control were evaluated for bacterial reduction using MTT assay. The remaining teeth were split for BacLight LIVE/DEAD staining to examine the percentages of live/dead bacteria present in the dentinal tubules from different canal locations (coronal, mid-root and apical portions of the canal space) using confocal laser scanning microscopy (CLSM). MTT assay indicated that both SNI and EDDY significantly reduced overall intracanal bacterial load compared with the positive control, with no significant difference between the two techniques. CLSM indicated that EDDY had better intratubular bacterial killing efficacy than SNI in the coronal and mid-root portions of the canal space only but not in the apical portion. In all canal locations (coronal, mid-root apical), both systems failed to eliminate bacteria that proliferated deep within the dentinal tubules. With the use of 3% NaOCl, sonic-powered irrigant activation with EDDY tips did not provide additional advantage over SNI in killing Enterococcus faecalis from deep intraradicular dentin. Both the sonic-powered root canal irrigant activation system and syringe needle irrigation can reduce intracanal bacteria load but are incapable of completely killing all bacteria that resided deep within the dentinal tubules of root canals infected with Enterococcus faecalis. Published by Elsevier Ltd.
Heß, Stefanie; Gallert, Claudia
2016-11-01
Culture-based approaches are used to monitor, e.g., drinking water or bathing water quality and to investigate species diversity and antibiotic resistance levels in environmental samples. For health risk assessment, it is important to know whether the growing cultures display the actual abundance of, e.g., clinically relevant antibiotic resistance phenotypes such as vancomycin-resistant Enterococcus faecium/Enterococcus faecalis (VRE) or methicillin-resistant Staphylococcus aureus. In addition, it is important to know whether sub-inhibitory antibiotic concentrations, which are present in surface waters, favor the growth of antibiotic-resistant strains. Therefore, clinically relevant bacteria were isolated from different water sources and the growth behavior of 58 Escherichia coli, 71 Enterococcus, and 120 Staphylococcus isolates, belonging to different species and revealing different antibiotic resistance patterns, was studied with respect to "environmental" antibiotic concentrations. The finding that VRE could only be detected after specific enrichment can be explained by their slow growth compared to non-resistant strains. Interpreting their absence in standardized culture-based methods as nonexistent might be a fallacy. Sub-inhibitory antibiotic concentrations that were detected in sewage and receiving river water did not specifically promote antibiotic-resistant strains. Generally, those antibiotics that influenced cell metabolism directly led to slightly reduced growth rates and less than maximal optical densities after 48 h of incubation.
Garcia-Garrote, Fernando; Cercenado, Emilia; Bouza, Emilio
2000-01-01
We evaluated the new automated VITEK 2 system (bioMérieux) for the identification and antimicrobial susceptibility testing of enterococci. The results obtained with the VITEK 2 system were compared to those obtained by reference methods: standard identification by the scheme of Facklam and Sahm [R. R. Facklam and D. F. Sahm, p. 308–314, in P. R. Murray et al., ed., Manual of Clinical Microbiology, 6th ed., 1995] and with the API 20 STREP system and, for antimicrobial susceptibility testing, broth microdilution and agar dilution methods by the procedures of the National Committee for Clinical Laboratory Standards. The presence of vanA and vanB genes was determined by PCR. A total of 150 clinical isolates were studied, corresponding to 60 Enterococcus faecalis, 55 Enterococcus faecium, 26 Enterococcus gallinarum, 5 Enterococcus avium, 2 Enterococcus durans, and 2 Enterococcus raffinosus isolates. Among those isolates, 131 (87%) were correctly identified to the species level with the VITEK 2 system. Approximately half of the misidentifications were for E. faecium with low-level resistance to vancomycin, identified as E. gallinarum or E. casseliflavus; however, a motility test solved the discrepancies and increased the agreement to 94%. Among the strains studied, 66% were vancomycin resistant (57 VanA, 16 VanB, and 26 VanC strains), 23% were ampicillin resistant (MICs, ≥16 μg/ml), 31% were high-level gentamicin resistant, and 45% were high-level streptomycin resistant. Percentages of agreement for susceptibility and resistance to ampicillin, vancomycin, and teicoplanin and for high-level gentamicin resistance and high-level streptomycin resistance were 93, 95, 97, 97, and 96%, respectively. The accuracy of identification and antimicrobial susceptibility testing of enterococci with the VITEK 2 system, together with the significant reduction in handling time, will have a positive impact on the work flow of the clinical microbiology laboratory. PMID:10834961
Integration of non-oral bacteria into in vitro oral biofilms.
Thurnheer, Thomas; Belibasakis, Georgios N
2015-01-01
Biofilms are polymicrobial communities that grow on surfaces in nature. Oral bacteria can spontaneously form biofilms on the surface of teeth, which may compromise the health of the teeth, or their surrounding (periodontal) tissues. While the oral bacteria exhibit high tropism for their specialized ecological niche, it is not clear if bacteria that are not part of the normal oral microbiota can efficiently colonize and grow within oral biofilms. By using an in vitro "supragingival" biofilm model of 6 oral species, this study aimed to investigate if 3 individual bacterial species that are not part of the normal oral microbiota (Eschericia coli, Staphylococcus aureus, Enterococcus faecails) and one not previously tested oral species (Aggregatibacter actinomycetemcomitans) can be incorporated into this established supragingival biofilm model. Staphylococcus aureus and A. actinomycetemcomitans were able to grow efficiently in the biofilm, without disrupting the growth of the remaining species. They localized in sparse small aggregates within the biofilm mass. Enterococcus faecalis and E. coli were both able to populate the biofilm at high numbers, and suppressed the growth of A. oris and S. mutants. Enterococcus faecalis was arranged in a chain-like conformation, whereas E. coli was densely and evenly spread throughout the biofilm mass. In conclusion, it is possible for selected species that are not part of the normal oral microbiota to be introduced into an oral biofilm, under the given experimental micro-environmental conditions. Moreover, the equilibrated incorporation of A. actinomycetemcomitans and S. aureus in this oral biofilm model could be a useful tool in the study of aggressive periodontitis and peri-implantitis, in which these organisms are involved, respectively.
Olvera-García, Myrna; Sanchez-Flores, Alejandro; Quirasco Baruch, Maricarmen
2018-03-01
Enterococcus spp. are present in the native microbiota of many traditional fermented foods. Their ability to produce antibacterial compounds, mainly against Listeria monocytogenes, has raised interest recently. However, there is scarce information about their proteolytic and lipolytic potential, and their biotechnological application is currently limited because enterococcal strains have been related to nosocomial infections. In this work, next-generation sequencing and optimised bioinformatic pipelines were used to annotate the genomes of two Enterococcus strains-one E. faecium and one E. faecalis-isolated from the Mexican artisanal ripened Cotija cheese. A battery of genes involved in their proteolytic system was annotated. Genes coding for lipases, esterases and other enzymes whose final products contribute to cheese aroma and flavour were identified as well. As for the production of antibacterial compounds, several peptidoglycan hydrolase- and bacteriocin-coding genes were identified in both genomes experimentally and by bioinformatic analyses. E. faecalis showed resistance to aminoglycosides and E. faecium to aminoglycosides and macrolides, as predicted by the genome functional annotation. No pathogenicity islands were found in any of the strains, although traits such as the ability of biofilm formation and cell aggregation were observed. Finally, a comparative genomic analysis was able to discriminate between the food strains isolated and nosocomial strains. In summary, pathogenic strains are resistant to a wide range of antibiotics and contain virulence factors that cause host damage; in contrast, food strains display less antibiotic resistance, include genes that encode class II bacteriocins and express virulence factors associated with host colonisation rather than invasion.
KuKanich, Kate S; Ghosh, Anuradha; Skarbek, Jennifer V; Lothamer, Kale M; Zurek, Ludek
2012-02-15
To determine the prevalence of bacterial contamination on 4 surfaces of 4 types of standard equipment in small animal veterinary hospitals. Surveillance study. 10 small animal veterinary hospitals. Each hospital was visited 3 times at 4-month intervals; at each visit, a cage door, stethoscope, rectal thermometer, and mouth gag were swabbed. Swab samples were each plated onto media for culture of enterococci and organisms in the family Enterobacteriaceae. Enterococci were identified via a species-specific PCR assay and sodA gene sequencing; species of Enterobacteriaceae were identified with a biochemical test kit. Antimicrobial susceptibility was assessed via the disk diffusion method. Enterococci were screened for virulence traits and genotyped to assess clonality. Among the 10 hospitals, enterococci were isolated from cage doors in 7, from stethoscopes in 7, from thermometers in 6, and from mouth gags in 1; contamination with species of Enterobacteriaceae was rare. Enterococci were mainly represented by Enterococcus faecium (35.4%), Enterococcus faecalis (33.2%), and Enterococcus hirae (28.3%). Antimicrobial resistance was common in E. faecium, whereas virulence traits were present in 99% of E. faecalis isolates but not in E. faecium isolates. Clonal multidrug-resistant E. faecium was isolated from several surfaces at 1 hospital over multiple visits, whereas sporadic nonclonal contamination was detected in other hospitals. Contamination of surfaces in small animal veterinary hospitals with multidrug-resistant enterococci is a potential concern for pets and humans contacting these surfaces. Implementing precautions to minimize enterococcal contamination on these surfaces is recommended.
Antibacterial Activity of Zinc Oxide-Coated Nanoporous Alumina
2012-05-17
microorganisms, including Bacillus subtilis, Enterococcus faecalis, E. coli, methicillin - sensitive S. aureus , methicillin - resistant S. aureus , S... Staphylococcus aureus , and Staphylococcus epidermidis. On the other hand, zinc 1. REPORT DATE (DD-MM-YYYY) 4. TITLE AND SUBTITLE 13. SUPPLEMENTARY...alumina membranes against several bacteria found on the skin surface, including Bacillus subtilis, Escherichia coli, Staphylococcus aureus , and
Lack of Direct Effects of Agrochemicals on Zoonotic Pathogens and Fecal Indicator Bacteria
Staley, Zachery R.; Senkbeil, Jacob K.; Rohr, Jason R.
2012-01-01
Agrochemicals, fecal indicator bacteria (FIB), and pathogens frequently contaminate water simultaneously. No significant direct effects of fertilizer, atrazine, malathion, and chlorothalonil on the survival of Escherichia coli, Enterococcus faecalis, Salmonella enterica, human polyomaviruses, and adenovirus were detected, supporting the assertion that previously observed effects of agrochemicals on FIB were indirect. PMID:22961900
SAATCHI, Masoud; SHOKRANEH, Ali; NAVAEI, Hooman; MARACY, Mohammad Reza; SHOJAEI, Hasan
2014-01-01
Objective Enterococcus faecalis (E. faecalis) is the most frequently isolated strain in failed endodontic therapy cases since it is resistant to calcium hydroxide (CH). Whether a combination of CH and chlorhexidine (CHX) is more effective than CH alone against E. faecalis is a matter of controversy. Thus, the aim of this study was to conduct a systematic review and meta-analysis of the literature. Material and Methods A comprehensive search in PubMed, EMbase, EBSCOhost, The Cochrane Library, SciELO, and BBO databases, Clinical trials registers, Open Grey, and conference proceedings from the earliest available date to February 1, 2013 was carried out and the relevant articles were identified by two independent reviewers. Backward and forward search was performed and then inclusion and exclusion criteria were applied. The included studies were divided into "comparisons" according to the depth of sampling and dressing period of each medicament. Meta-analysis was performed using Stata software 10.0. The level of significance was set at 0.05. Results Eighty-five studies were retrieved from databases and backward/forward searches. Fortyfive studies were considered as relevant (5 in vivo, 18 in vitro, 18 ex vivo, and 4 review articles). Nine studies were included for meta-analysis. Inter-observer agreement (Cohen kappa) was 0.93. The included studies were divided into 21 comparisons for meta-analysis. Chi-square test showed the comparisons were heterogeneous (p<0.001). Random effect model demonstrated no significant difference between CH/CHX mixture and CH alone in their effect on E. faecalis (p=0.115). Conclusions According to the evidence available now, mixing CH with CHX does not significantly increase the antimicrobial activity of CH against E. faecalis. It appears that mixing CH with CHX does not improve its ex vivo antibacterial property as an intracanal medicament against E. faecalis. Further in vivo studies are necessary to confirm and correlate the findings of this study with the clinical outcomes. PMID:25466470
Effect of gaseous ozone on Enterococcus faecalis biofilm-an in vitro study.
Boch, Tanja; Tennert, Christian; Vach, Kirstin; Al-Ahmad, Ali; Hellwig, Elmar; Polydorou, Olga
2016-09-01
The aim of this study was to evaluate the antimicrobial effect of gaseous ozone compared to conventional methods against Enterococcus faecalis. One hundred twenty-five teeth were infected by E. faecalis and were incubated for 72 h to form biofilm. Teeth were distributed among five groups. In the first group, ozone was used; in the second group, teeth were rinsed with 20 % ethylenediaminetetraacetic acid (EDTA); in the third group, with 3 % sodium hypochlorite (NaOCl). Group 4 combined 20 % EDTA with ozone. NaOCl and ozone were combined in group 5. After treatment, the samples with paper points were taken, followed by dentin samples taken with K-file, and cultured for 24 h. Then bacterial colonies were counted. All treatments reduced significantly (p < 0.05) the bacteria. Paper points' samples showed 85.38 % reduction after ozone. The highest reduction was observed in NaOCl group (99.98 %). EDTA reduced bacteria by 80.64 %. Combination of NaOCl and ozone eradicated 99.95 % of the bacteria. Combination of EDTA and ozone reduced E. faecalis up to 91.33 %. The dentin chips showed the following: the highest CFU counts were observed in EDTA group, followed by ozone and NaOCl group. The lowest CFU counts were found in NaOCl-ozone group and EDTA-ozone group. Ozone reduced E. faecalis, even organised in a biofilm, however, lower than NaOCl. No treatment reduced totally the bacteria. Used as an adjuvant, ozone can increase the efficacy of conventional rinsing like EDTA and presents an alternative treatment when NaOCl cannot be used e.g. in teeth with a wide-open apical foramen.
Ong, Teik Hwa; Chitra, Ebenezer; Ramamurthy, Srinivasan; Siddalingam, Rajinikanth Paruvathanahalli; Yuen, Kah Hay; Ambu, Stephen Periathamby
2017-01-01
Propolis obtained from bee hives is a natural substance with antimicrobial properties. It is limited by its insolubility in aqueous solutions; hence ethanol and ethyl acetate extracts of Malaysian propolis were prepared. Both the extracts displayed antimicrobial and anti-biofilm properties against Enterococcus faecalis, a common bacterium associated with hospital-acquired infections. High performance liquid chromatography (HPLC) analysis of propolis revealed the presence of flavonoids like kaempferol and pinocembrin. This study investigated the role of propolis developed into nanoparticles with chitosan for its antimicrobial and anti-biofilm properties against E. faecalis. Bacteria that grow in a slimy layer of biofilm are resistant to penetration by antibacterial agents. The use of nanoparticles in medicine has received attention recently due to better bioavailability, enhanced penetrative capacity and improved efficacy. A chitosan-propolis nanoformulation was chosen based on ideal physicochemical properties such as particle size, zeta potential, polydispersity index, encapsulation efficiency and the rate of release of the active ingredients. This formulation inhibited E. faecalis biofilm formation and reduced the number of bacteria in the biofilm by ~90% at 200 μg/ml concentration. When tested on pre-formed biofilms, the formulation reduced bacterial number in the biofilm by ~40% and ~75% at 200 and 300 μg/ml, respectively. The formulation not only reduced bacterial numbers, but also physically disrupted the biofilm structure as observed by scanning electron microscopy. Treatment of biofilms with chitosan-propolis nanoparticles altered the expression of biofilm-associated genes in E. faecalis. The results of this study revealed that chitosan-propolis nanoformulation can be deemed as a potential anti-biofilm agent in resisting infections involving biofilm formation like chronic wounds and surgical site infections. PMID:28362873
Khani, Mitra; Fatollahzade, Mahdie; Pajavand, Hamid; Bakhtiari, Somaye; Abiri, Ramin
2016-03-01
Enterococci are important pathogens in nosocomial infections. Various types of antibiotics, such as aminoglycosides, are used for treatment of these infections. Enterococci can acquire resistant traits, which can lead to therapeutic problems with aminoglycosides. This study was designed to identify the prevalence of, and to compare, the aac(6')-aph(2") and aph(3)-IIIa genes and their antimicrobial resistance patterns among Enterococcus faecalis and E. faecium isolates from patients at Imam Reza hospital in Kermanshah in 2011 - 2012. One hundred thirty-eight clinical specimens collected from different wards of Imam Reza hospital were identified to the species level by biochemical tests. Antimicrobial susceptibility tests against kanamycin, teicoplanin, streptomycin, imipenem, ciprofloxacin, and ampicillin were performed by the disk diffusion method. The minimum inhibitory concentrations of gentamicin, streptomycin, kanamycin, and amikacin were evaluated with the microbroth dilution method. The aminoglycoside resistance genes aac(6')-aph(2") and aph(3")-IIIa were analyzed with multiplex PCR. The prevalence of isolates was 33 (24.1%) for E. faecium and 63 (46%) for E. faecalis. Eighty-nine percent of the isolates were high-level gentamicin resistant (HLGR), and 32.8% of E. faecium isolates and 67.2% of E. faecalis isolates carried aac(6')-aph(2"). The prevalence of aph(3")-IIIa among the E. faecalis and E. faecium isolates was 22.7% and 77.3%, respectively. Remarkably increased incidence of aac(6')-aph(2") among HLGR isolates explains the relationship between this gene and the high level of resistance to aminoglycosides. As the resistant gene among enterococci can be transferred, the use of new-generation antibiotics is necessary.
Khani, Mitra; Fatollahzade, Mahdie; Pajavand, Hamid; Bakhtiari, Somaye; Abiri, Ramin
2016-01-01
Background: Enterococci are important pathogens in nosocomial infections. Various types of antibiotics, such as aminoglycosides, are used for treatment of these infections. Enterococci can acquire resistant traits, which can lead to therapeutic problems with aminoglycosides. Objectives: This study was designed to identify the prevalence of, and to compare, the aac(6’)-aph(2”) and aph(3)-IIIa genes and their antimicrobial resistance patterns among Enterococcus faecalis and E. faecium isolates from patients at Imam Reza hospital in Kermanshah in 2011 - 2012. Patients and Methods: One hundred thirty-eight clinical specimens collected from different wards of Imam Reza hospital were identified to the species level by biochemical tests. Antimicrobial susceptibility tests against kanamycin, teicoplanin, streptomycin, imipenem, ciprofloxacin, and ampicillin were performed by the disk diffusion method. The minimum inhibitory concentrations of gentamicin, streptomycin, kanamycin, and amikacin were evaluated with the microbroth dilution method. The aminoglycoside resistance genes aac(6’)-aph(2”) and aph(3”)-IIIa were analyzed with multiplex PCR. Results: The prevalence of isolates was 33 (24.1%) for E. faecium and 63 (46%) for E. faecalis. Eighty-nine percent of the isolates were high-level gentamicin resistant (HLGR), and 32.8% of E. faecium isolates and 67.2% of E. faecalis isolates carried aac(6’)-aph(2”). The prevalence of aph(3”)-IIIa among the E. faecalis and E. faecium isolates was 22.7% and 77.3%, respectively. Conclusions: Remarkably increased incidence of aac(6’)-aph(2”) among HLGR isolates explains the relationship between this gene and the high level of resistance to aminoglycosides. As the resistant gene among enterococci can be transferred, the use of new-generation antibiotics is necessary. PMID:27217920
Macovei, Lilia; Zurek, Ludek
2006-01-01
In this project, enterococci from the digestive tracts of 260 houseflies (Musca domestica L.) collected from five restaurants were characterized. Houseflies frequently (97% of the flies were positive) carried enterococci (mean, 3.1 × 103 CFU/fly). Using multiplex PCR, 205 of 355 randomly selected enterococcal isolates were identified and characterized. The majority of these isolates were Enterococcus faecalis (88.2%); in addition, 6.8% were E. faecium, and 4.9% were E. casseliflavus. E. faecalis isolates were phenotypically resistant to tetracycline (66.3%), erythromycin (23.8%), streptomycin (11.6%), ciprofloxacin (9.9%), and kanamycin (8.3%). Tetracycline resistance in E. faecalis was encoded by tet(M) (65.8%), tet(O) (1.7%), and tet(W) (0.8%). The majority (78.3%) of the erythromycin-resistant E. faecalis isolates carried erm(B). The conjugative transposon Tn916 and members of the Tn916/Tn1545 family were detected in 30.2% and 34.6% of the identified isolates, respectively. E. faecalis carried virulence genes, including a gelatinase gene (gelE; 70.7%), an aggregation substance gene (asa1; 33.2%), an enterococcus surface protein gene (esp; 8.8%), and a cytolysin gene (cylA; 8.8%). Phenotypic assays showed that 91.4% of the isolates with the gelE gene were gelatinolytic and that 46.7% of the isolates with the asa1 gene aggregated. All isolates with the cylA gene were hemolytic on human blood. This study showed that houseflies in food-handling and -serving facilities carry antibiotic-resistant and potentially virulent enterococci that have the capacity for horizontal transfer of antibiotic resistance genes to other bacteria. PMID:16751512
Macovei, Lilia; Zurek, Ludek
2006-06-01
In this project, enterococci from the digestive tracts of 260 houseflies (Musca domestica L.) collected from five restaurants were characterized. Houseflies frequently (97% of the flies were positive) carried enterococci (mean, 3.1 x 10(3) CFU/fly). Using multiplex PCR, 205 of 355 randomly selected enterococcal isolates were identified and characterized. The majority of these isolates were Enterococcus faecalis (88.2%); in addition, 6.8% were E. faecium, and 4.9% were E. casseliflavus. E. faecalis isolates were phenotypically resistant to tetracycline (66.3%), erythromycin (23.8%), streptomycin (11.6%), ciprofloxacin (9.9%), and kanamycin (8.3%). Tetracycline resistance in E. faecalis was encoded by tet(M) (65.8%), tet(O) (1.7%), and tet(W) (0.8%). The majority (78.3%) of the erythromycin-resistant E. faecalis isolates carried erm(B). The conjugative transposon Tn916 and members of the Tn916/Tn1545 family were detected in 30.2% and 34.6% of the identified isolates, respectively. E. faecalis carried virulence genes, including a gelatinase gene (gelE; 70.7%), an aggregation substance gene (asa1; 33.2%), an enterococcus surface protein gene (esp; 8.8%), and a cytolysin gene (cylA; 8.8%). Phenotypic assays showed that 91.4% of the isolates with the gelE gene were gelatinolytic and that 46.7% of the isolates with the asa1 gene aggregated. All isolates with the cylA gene were hemolytic on human blood. This study showed that houseflies in food-handling and -serving facilities carry antibiotic-resistant and potentially virulent enterococci that have the capacity for horizontal transfer of antibiotic resistance genes to other bacteria.
Chaitanya, Bathula Vimala; Somisetty, Kusum Valli; Diwan, Abhinav; Pasha, Shiraz; Shetty, Nandaprasad; Reddy, Yashwanth; Nadigar, Shankar
2016-10-01
Sodium hypochlorite (NaOCl), the most commonly used irrigant, has many potential properties like its unique ability to dissolve pulp tissue, excellent antimicrobial activity, but has a cytotoxic effect when injected into periapical tissues. It is also known to produce allergic reactions, foul smell and taste, and potential for corrosion. Facultative organisms such as Enterococcus faecalis and aerobes like Staphylococcus aureus are considered to be the most resistant species and one of the possible causes of root canal treatment failure. So there is a need to find an alternative to sodium hypochlorite to act against these resistant microorganisms. To evaluate and compare the antibacterial efficacy of morinda citrifolia and turmeric extract with 3% NaOCl as a root canal irrigant, against E. faecalis and S.aureus . The antimicrobial efficacy was assessed in vitro using agar well diffusion method. Agar plates were prepared using Brain-Heart Infusion (BHI) agar. Cultures of E.faecalis and S.aureus were grown in nutrient broth at 37°C. Plates were incubated for 24 hours at 37°C and microbial zones of inhibition were recorded. Statistical analysis was performed using ANOVA. NaOCl (3%) showed larger zones of inhibition than herbal irrigants against both the microorganisms. Among the herbal irrigants, morinda citrifolia showed larger zones of inhibition than turmeric hydro-alcoholic extract and turmeric water extract which was statistically significant (p<0.05). NaOCl (3%) showed maximum antibacterial activity against E. faecalis , followed by morinda citrifolia and turmeric extracts. Considering the potential for undesirable properties of NaOCl, use of herbal alternatives in endodontics might prove to be advantageous.
Somisetty, Kusum Valli; Diwan, Abhinav; Pasha, Shiraz; Shetty, Nandaprasad; Reddy, Yashwanth; Nadigar, Shankar
2016-01-01
Introduction Sodium hypochlorite (NaOCl), the most commonly used irrigant, has many potential properties like its unique ability to dissolve pulp tissue, excellent antimicrobial activity, but has a cytotoxic effect when injected into periapical tissues. It is also known to produce allergic reactions, foul smell and taste, and potential for corrosion. Facultative organisms such as Enterococcus faecalis and aerobes like Staphylococcus aureus are considered to be the most resistant species and one of the possible causes of root canal treatment failure. So there is a need to find an alternative to sodium hypochlorite to act against these resistant microorganisms. Aim To evaluate and compare the antibacterial efficacy of morinda citrifolia and turmeric extract with 3% NaOCl as a root canal irrigant, against E. faecalis and S.aureus. Materials and Methods The antimicrobial efficacy was assessed in vitro using agar well diffusion method. Agar plates were prepared using Brain-Heart Infusion (BHI) agar. Cultures of E.faecalis and S.aureus were grown in nutrient broth at 37°C. Plates were incubated for 24 hours at 37°C and microbial zones of inhibition were recorded. Statistical analysis was performed using ANOVA. Results NaOCl (3%) showed larger zones of inhibition than herbal irrigants against both the microorganisms. Among the herbal irrigants, morinda citrifolia showed larger zones of inhibition than turmeric hydro-alcoholic extract and turmeric water extract which was statistically significant (p<0.05). Conclusion NaOCl (3%) showed maximum antibacterial activity against E. faecalis, followed by morinda citrifolia and turmeric extracts. Considering the potential for undesirable properties of NaOCl, use of herbal alternatives in endodontics might prove to be advantageous. PMID:27891459
Stojanović, Nikola; Krunić, Jelena; Popović, Branka; Stojičić, Sonja; Zivković, Slavoljub
2014-01-01
Because apical periodontitis is recognizably an infectious disease, elimination or reduction of intracanal bacteria is of utmost importance for optimum treatment outcome. The prevalence of Enterococcus faecalis and Porphyromonas gingivalis in infected root canals was studied Also, the effect of endodontic therapy by using intracanal medicaments, calcium hydroxide paste (CH) or gutta-percha points containing calcium hydroxide (CH-GP) or chlorhexidine (CHX-GP) on these microorganisms was assessed by polymerase chain reaction (PCR) assay. Fifty-one patients with chronic apical periodontitis were randomly allocated in one of the fol- lowing groups according to the intracanal medicament used: CH, CH-GP and CHX-GP group. Bacterial samples were taken upon access (S1), after chemomechanical instrumentation (S2) and after 15-day medication (S3). PCR assay was used to detect the presence of selected bacteria. E. faecalis was detected in 49% (25/51) and P. gingivalis in 17.6% (9/51) of the samples. Samples which showed no bacterial presence at S1 were excluded from further analysis. Overall analysis of all 29 samples revealed significant differences between S1 and S2 (p < 0.001), S2 and S3 (p < 0.05), and S1 and S3 (p < 0.001). When distinction was made between the intracanal medications, there was a significant difference in the number of PCR positive samples between S1 and 52, S1 and S3, but not between S2 and S3 samples. E. faecalis is more prevalent than P. gingivalis in primary endodontic infection. Intracanal medication in conduction with instrumentation and irrigation efficiently eliminates E. faecalis and P. gingivalis from infected root canals.
Molecular Epidemiology of Enterococcal Bacteremia in Australia
Pearson, Julie C.; Daley, Denise A.; Le, Tam; Robinson, Owen J.; Gottlieb, Thomas; Howden, Benjamin P.; Johnson, Paul D. R.; Bennett, Catherine M.; Stinear, Timothy P.; Turnidge, John D.
2014-01-01
Enterococci are a major cause of health care-associated infections and account for approximately 10% of all bacteremias globally. The aim of this study was to determine the proportion of enterococcal bacteremia isolates in Australia that are antimicrobial resistant, with particular emphasis on susceptibility to ampicillin and the glycopeptides, and to characterize the molecular epidemiology of the Enterococcus faecalis and Enterococcus faecium isolates. From 1 January to 31 December 2011, 1,079 unique episodes of bacteremia were investigated, of which 95.8% were caused by either E. faecalis (61.0%) or E. faecium (34.8%). The majority of bacteremias were health care associated, and approximately one-third were polymicrobial. Ampicillin resistance was detected in 90.4% of E. faecium isolates but was not detected in E. faecalis isolates. Vancomycin nonsusceptibility was reported in 0.6% and 36.5% of E. faecalis and E. faecium isolates, respectively. Unlike Europe and the United States, where vancomycin resistance in E. faecium is predominately due to the acquisition of the vanA operon, 98.4% of E. faecium isolates harboring van genes carried the vanB operon, and 16.1% of the vanB E. faecium isolates had vancomycin MICs at or below the susceptible breakpoint of the CLSI. Although molecular typing identified 126 E. faecalis pulsed-field gel electrophoresis pulsotypes, >50% belonged to two pulsotypes that were isolated across Australia. E. faecium consisted of 73 pulsotypes from which 43 multilocus sequence types were identified. Almost 90% of the E. faecium isolates were identified as CC17 clones, of which approximately half were characterized as ST203, which was isolated Australia-wide. In conclusion, the Australian Enterococcal Sepsis Outcome Programme (AESOP) study has shown that although they are polyclonal, enterococcal bacteremias in Australia are frequently caused by ampicillin-resistant vanB E. faecium. PMID:24391201
Díaz, A M; Almozni, B; Molina, M A; Sparo, M D; Manghi, M A; Canellada, A M; Castro, M S
2018-04-10
Vaccination against pathogens involved in bovine respiratory disease (BRD) is a useful tool to reduce the risk of this disease however, it has been observed that the commercially available vaccines only partially prevent the infections caused by Pasteurella multocida and Mannheimia haemolytica. Therefore, it is recommended to search for new adjuvant strategies to minimise the economic impact of this respiratory syndrome. A possibility to improve the conventional vaccine response is to modulate the immune system with probiotics, since there is accumulating evidence that certain immunomodulatory strains administered around the time of vaccination can potentiate the immune response. Considering veterinary vaccines are frequently tested in murine models, we have developed an immunisation schedule in BALB/c mice that allows us to study the immune response elicited by BRD vaccine. In order to evaluate a potential strategy to enhance vaccine efficacy, the adjuvant effect of Enterococcus faecalis CECT7121 on the murine specific humoral immune response elicited by a commercial vaccine against BRD was studied. Results indicate that the intragastric administration of E. faecalis CECT7121 was able to induce an increase in the specific antibody titres against the bacterial components of the BRD vaccines (P. multocida and M. haemolytica). The quality of the humoral immune response, in terms of antibody avidity, was also improved. Regarding the cellular immune response, although the BRD vaccination induced a low specific secretion of cytokines in the spleen cell culture supernatants, E. faecalis CECT7121-treated mice showed higher interferon-γ production than immunised control mice. Our results allowed us to conclude that the administration of E. faecalis CECT7121 could be employed as an adjuvant strategy to potentiate humoral immune responses.
Park, Young-Guen; Jung, Min-Cheol; Song, Heesang; Jeong, Ki-Woong; Bang, Eunjung; Hwang, Geum-Sook; Kim, Yangmee
2016-01-01
Enterococcus faecalis is a Gram-positive, commensal bacterium that lives in the gastrointestinal tracts of humans and other mammals. It causes severe infections because of high antibiotic resistance. E. faecalis can endure extremes of temperature and pH. Acyl carrier protein (ACP) is a key element in the biosynthesis of fatty acids responsible for acyl group shuttling and delivery. In this study, to understand the origin of high thermal stabilities of E. faecalis ACP (Ef-ACP), its solution structure was investigated for the first time. CD experiments showed that the melting temperature of Ef-ACP is 78.8 °C, which is much higher than that of Escherichia coli ACP (67.2 °C). The overall structure of Ef-ACP shows the common ACP folding pattern consisting of four α-helices (helix I (residues 3–17), helix II (residues 39–53), helix III (residues 60–64), and helix IV (residues 68–78)) connected by three loops. Unique Ef-ACP structural features include a hydrophobic interaction between Phe45 in helix II and Phe18 in the α1α2 loop and a hydrogen bonding between Ser15 in helix I and Ile20 in the α1α2 loop, resulting in its high thermal stability. Phe45-mediated hydrophobic packing may block acyl chain binding subpocket II entry. Furthermore, Ser58 in the α2α3 loop in Ef-ACP, which usually constitutes a proline in other ACPs, exhibited slow conformational exchanges, resulting in the movement of the helix III outside the structure to accommodate a longer acyl chain in the acyl binding cavity. These results might provide insights into the development of antibiotics against pathogenic drug-resistant E. faecalis strains. PMID:26631734
de Lucena, J M V M; Decker, E M; Walter, C; Boeira, L S; Löst, C; Weiger, R
2013-01-01
To determine the viability of Enterococcus faecalis in infected human root dentine in vitro after exposure to root canal medicaments based on chlorhexidine and octenidine. Human root segments (n = 40) were infected with E. faecalis for 8 weeks. Root dentine samples (rd) collected at week 4 served as individual baseline values. At week 8, the root segments were randomly divided into four test groups (n = 10 each) for the placement of one of the following medicaments in the root canals: calcium hydroxide paste (CH), chlorhexidine gel (CHX-gel) (5.0%), chlorhexidine/gutta-percha points (CHX-GP) (active points(®) ; Roeko, Langenau, Germany) and octenidine gel (OCT-gel) (5.0%) followed by incubation for 4 weeks. The effect on E. faecalis viability was assessed by two fluorescent dyes (syto 9/propidium iodide) to determine the 'proportion of viable bacteria' (PVB%) and number of 'colony-forming units' (CFU). Mean values and 95% confidence intervals (CI) were calculated for PVB% and log CFU, and the difference between groups was established. Viable and dead bacterial cells were detected in all 'rd' samples at weeks 4 and 8. The treatment with CHX-gel, CHX-GP and OCT-gel resulted in significantly lower PVB% values with 15.4%, 3.5% and 0%, respectively. No growth (CFU) was recorded for these samples at week 12. When medicated by CH, the PVB% was increased without a corresponding change in CFUs. In contrast to calcium hydroxide, both CHX - and octenidine-based intracanal medicaments were effective in decreasing the viability of E. faecalis. OCT showed the most favourable results and may have potential as an endodontic medicament. © 2012 International Endodontic Journal.
Marcinek, Herbert; Wirth, Reinhard; Muscholl-Silberhorn, Albrecht; Gauer, Matthias
1998-01-01
The ability of Enterococcus faecalis to transfer various genetic elements under natural conditions was tested in two municipal sewage water treatment plants. Experiments in activated sludge basins of the plants were performed in a microcosm which allowed us to work under sterile conditions; experiments in anoxic sludge digestors were performed in dialysis bags. We used the following naturally occurring genetic elements: pAD1 and pIP1017 (two so-called sex pheromone plasmids with restricted host ranges, which are transferred at high rates under laboratory conditions); pIP501 (a resistance plasmid possessing a broad host range for gram-positive bacteria, which is transferred at low rates under laboratory conditions); and Tn916 (a conjugative transposon which is transferred under laboratory conditions at low rates to gram-positive bacteria and at very low rates to gram-negative bacteria). The transfer rate between different strains of E. faecalis under natural conditions was, compared to that under laboratory conditions, at least 105-fold lower for the sex pheromone plasmids, at least 100-fold lower for pIP501, and at least 10-fold lower for Tn916. In no case was transfer from E. faecalis to another bacterial species detected. By determining the dependence of transfer rates for pIP1017 on bacterial concentration and extrapolating to actual concentrations in the sewage water treatment plant, we calculated that the maximum number of transfer events for the sex pheromone plasmids between different strains of E. faecalis in the municipal sewage water treatment plant of the city of Regensburg ranged from 105 to 108 events per 4 h, indicating that gene transfer should take place under natural conditions. PMID:9464401
Ong, Teik Hwa; Chitra, Ebenezer; Ramamurthy, Srinivasan; Siddalingam, Rajinikanth Paruvathanahalli; Yuen, Kah Hay; Ambu, Stephen Periathamby; Davamani, Fabian
2017-01-01
Propolis obtained from bee hives is a natural substance with antimicrobial properties. It is limited by its insolubility in aqueous solutions; hence ethanol and ethyl acetate extracts of Malaysian propolis were prepared. Both the extracts displayed antimicrobial and anti-biofilm properties against Enterococcus faecalis, a common bacterium associated with hospital-acquired infections. High performance liquid chromatography (HPLC) analysis of propolis revealed the presence of flavonoids like kaempferol and pinocembrin. This study investigated the role of propolis developed into nanoparticles with chitosan for its antimicrobial and anti-biofilm properties against E. faecalis. Bacteria that grow in a slimy layer of biofilm are resistant to penetration by antibacterial agents. The use of nanoparticles in medicine has received attention recently due to better bioavailability, enhanced penetrative capacity and improved efficacy. A chitosan-propolis nanoformulation was chosen based on ideal physicochemical properties such as particle size, zeta potential, polydispersity index, encapsulation efficiency and the rate of release of the active ingredients. This formulation inhibited E. faecalis biofilm formation and reduced the number of bacteria in the biofilm by ~90% at 200 μg/ml concentration. When tested on pre-formed biofilms, the formulation reduced bacterial number in the biofilm by ~40% and ~75% at 200 and 300 μg/ml, respectively. The formulation not only reduced bacterial numbers, but also physically disrupted the biofilm structure as observed by scanning electron microscopy. Treatment of biofilms with chitosan-propolis nanoparticles altered the expression of biofilm-associated genes in E. faecalis. The results of this study revealed that chitosan-propolis nanoformulation can be deemed as a potential anti-biofilm agent in resisting infections involving biofilm formation like chronic wounds and surgical site infections.
Antimicrobial-resistant bacteria in wild game in Slovenia
NASA Astrophysics Data System (ADS)
Križman, M.; Kirbiš, A.; Jamnikar-Ciglenečki, U.
2017-09-01
Wildlife is usually not exposed to clinically-used antimicrobial agents but can acquire antimicrobial resistance throughout contact with humans, domesticated animals and environments. Samples of faeces from intestines (80 in total) were collected from roe deer (52), wild boars (11), chamois (10) red deer (6) and moufflon (1). After culture on ChromID extended spectrum β-lactamase (ESBL) plates to select for growth of ESBL-producing bacteria, 25 samples produced bacterial colonies for further study. Six species of bacteria were identified from the 25 samples: Stenotrophomonas maltophilia, Serratia fonticola, Stenotrophomonas nitritireducens, Enterococcus faecium, Enterococcus faecalis and Escherichia coli. Two ESBL enzymes were amplified from group TEM and three from group CTX-M-1. Undercooked game meat and salami can be a source of resistant bacteria when animals are not eviscerated properly.
Perez, Marta; Ladero, Victor; del Rio, Beatriz; Redruello, Begoña; de Jong, Anne; Kuipers, Oscar; Kok, Jan; Martin, M. Cruz; Fernandez, Maria; Alvarez, Miguel A.
2017-01-01
Enterococci are considered mainly responsible for the undesirable accumulation of the biogenic amines tyramine and putrescine in cheeses. The biosynthesis of tyramine and putrescine has been described as a species trait in Enterococcus faecalis. Tyramine is formed by the decarboxylation of the amino acid tyrosine, by the tyrosine decarboxylase (TDC) route encoded in the tdc cluster. Putrescine is formed from agmatine by the agmatine deiminase (AGDI) pathway encoded in the agdi cluster. These biosynthesis routes have been independently studied, tyrosine and agmatine transcriptionally regulate the tdc and agdi clusters. The objective of the present work is to study the possible co-regulation among TDC and AGDI pathways in E. faecalis. In the presence of agmatine, a positive correlation between putrescine biosynthesis and the tyrosine concentration was found. Transcriptome studies showed that tyrosine induces the transcription of putrescine biosynthesis genes and up-regulates pathways involved in cell growth. The tyrosine modulation over AGDI route was not observed in the mutant Δtdc strain. Fluorescence analyses using gfp as reporter protein revealed PaguB (the promoter of agdi catabolic genes) was induced by tyrosine in the wild-type but not in the mutant strain, confirming that tdc cluster was involved in the tyrosine induction of putrescine biosynthesis. This study also suggests that AguR (the transcriptional regulator of agdi) was implicated in interaction among the two clusters. PMID:29163401
Structural Studies on Cytosolic Domain of Magnesium Transporter MgtE from Enterococcus faecalis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ragumani, S.; Sauder, J; Burley, S
2009-01-01
Magnesium (Mg{sup 2+}) is an essential element for growth and maintenance of living cells. It acts as a cofactor for many enzymes and is also essential for stability of the plasma membrane. There are two distinct classes of magnesium transporters identified in bacteria that convey Mg{sup 2+} from periplasm to cytoplasm [ATPase-dependent (MgtA and MgtB) and constitutively active (CorA and MgtE)]. Previously published work on Mg{sup 2+} transporters yielded structures of full length MgtE from Thermus thermophilus, determined at 3.5 {angstrom} resolution, and its cytoplasmic domain with and without bond Mg{sup 2+} determined at 2.3 and 3.9 {angstrom} resolution, respectively.more » Here, they report the crystal structure of the Mg{sup 2+} bound form of the cytosolic portion of MgtE (residues 6-262) from Enterococcus faecalis at 2.2 {angstrom} resolution. The present structure and magnesium bound cytosolic domain structure from T. thermophilus (PDB ID: 2YVY) are structurally similar. Three magnesium binding sites are common to both MgtE full length and the present structure. Their work revealed an additional Mg{sup 2+} binding site in the E. faecalis structure. In this report, they discuss the functional significance of Mg{sup 2+} binding sites in the cytosolic domains of MgtE transporters.« less
Gawryszewska, Iwona; Malinowska, Katarzyna; Kuch, Alicja; Chrobak-Chmiel, Dorota; Trokenheim, Lucja Laniewska-; Hryniewicz, Waleria; Sadowy, Ewa
2017-03-01
Enterococcus faecalis represents an important factor of hospital-associated infections (HAIs). The knowledge on its evolution from a commensal to an opportunistic pathogen is still limited; thus, we performed a study to characterise distribution of factors that may contribute to this adaptation. Using a collection obtained from various settings (hospitalised patients, community carriers, animals, fresh food, sewage, water), we investigated differences in antimicrobial susceptibility, distribution of antimicrobial resistance genes, virulence-associated determinants and phenotypes, and CRISPR loci in the context of the clonal relatedness of isolates. Bayesian Analysis of Population Structure revealed the presence of three major groups; two subgroups comprised almost exclusively HAI isolates, belonging to previously proposed enterococcal high-risk clonal complexes (HiRECCs) 6 and 28. Isolates of these two subgroups were significantly enriched in antimicrobial resistance genes, presumably produced a polysaccharide capsule and often carried the aggregation substance asa1; distribution of other virulence-associated genes, such as esp and cyl, formation of a biofilm and gelatinase production were more variable. Moreover, both subgroups showed a low prevalence of CRISPR-Cas 1 and 3 and presence of small CRISPR2 variants. Our study confirms the importance of HiRECCs in the population of E. faecalis and their confinement to the hospital settings. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.
Yuen, Grace J; Ausubel, Frederick M
2018-12-31
The innate immune response of the nematode Caenorhabditis elegans has been extensively studied and a variety of Toll-independent immune response pathways have been identified. Surprisingly little, however, is known about how pathogens activate the C. elegans immune response. Enterococcus faecalis and Enterococcus faecium are closely related enterococcal species that exhibit significantly different levels of virulence in C. elegans infection models. Previous work has shown that activation of the C. elegans immune response by Pseudomonas aeruginosa involves P. aeruginosa-mediated host damage. Through ultrastructural imaging, we report that infection with either E. faecalis or E. faecium causes the worm intestine to become distended with proliferating bacteria in the absence of extensive morphological changes and apparent physical damage. Genetic analysis, whole-genome transcriptional profiling, and multiplexed gene expression analysis demonstrate that both enterococcal species, whether live or dead, induce a rapid and similar transcriptional defense response dependent upon previously described immune signaling pathways. The host response to E. faecium shows a stricter dependence upon stress response signaling pathways than the response to E. faecalis. Unexpectedly, we find that E. faecium is a C. elegans pathogen and that an active wild-type host defense response is required to keep an E. faecium infection at bay. These results provide new insights into the mechanisms underlying the C. elegans immune response to pathogen infection.
Gawryszewska, Iwona; Malinowska, Katarzyna; Kuch, Alicja; Chrobak-Chmiel, Dorota; Trokenheim, Łucja Łaniewska-; Hryniewicz, Waleria; Sadowy, Ewa
2017-01-01
Abstract Enterococcus faecalis represents an important factor of hospital-associated infections (HAIs). The knowledge on its evolution from a commensal to an opportunistic pathogen is still limited; thus, we performed a study to characterise distribution of factors that may contribute to this adaptation. Using a collection obtained from various settings (hospitalised patients, community carriers, animals, fresh food, sewage, water), we investigated differences in antimicrobial susceptibility, distribution of antimicrobial resistance genes, virulence-associated determinants and phenotypes, and CRISPR loci in the context of the clonal relatedness of isolates. Bayesian Analysis of Population Structure revealed the presence of three major groups; two subgroups comprised almost exclusively HAI isolates, belonging to previously proposed enterococcal high-risk clonal complexes (HiRECCs) 6 and 28. Isolates of these two subgroups were significantly enriched in antimicrobial resistance genes, presumably produced a polysaccharide capsule and often carried the aggregation substance asa1; distribution of other virulence-associated genes, such as esp and cyl, formation of a biofilm and gelatinase production were more variable. Moreover, both subgroups showed a low prevalence of CRISPR-Cas 1 and 3 and presence of small CRISPR2 variants. Our study confirms the importance of HiRECCs in the population of E. faecalis and their confinement to the hospital settings. PMID:28334141
2018-01-01
ABSTRACT The innate immune response of the nematode Caenorhabditis elegans has been extensively studied and a variety of Toll-independent immune response pathways have been identified. Surprisingly little, however, is known about how pathogens activate the C. elegans immune response. Enterococcus faecalis and Enterococcus faecium are closely related enterococcal species that exhibit significantly different levels of virulence in C. elegans infection models. Previous work has shown that activation of the C. elegans immune response by Pseudomonas aeruginosa involves P. aeruginosa-mediated host damage. Through ultrastructural imaging, we report that infection with either E. faecalis or E. faecium causes the worm intestine to become distended with proliferating bacteria in the absence of extensive morphological changes and apparent physical damage. Genetic analysis, whole-genome transcriptional profiling, and multiplexed gene expression analysis demonstrate that both enterococcal species, whether live or dead, induce a rapid and similar transcriptional defense response dependent upon previously described immune signaling pathways. The host response to E. faecium shows a stricter dependence upon stress response signaling pathways than the response to E. faecalis. Unexpectedly, we find that E. faecium is a C. elegans pathogen and that an active wild-type host defense response is required to keep an E. faecium infection at bay. These results provide new insights into the mechanisms underlying the C. elegans immune response to pathogen infection. PMID:29436902
Molecular Basis for Lytic Bacteriophage Resistance in Enterococci.
Duerkop, Breck A; Huo, Wenwen; Bhardwaj, Pooja; Palmer, Kelli L; Hooper, Lora V
2016-08-30
The human intestine harbors diverse communities of bacteria and bacteriophages. Given the specificity of phages for their bacterial hosts, there is growing interest in using phage therapies to combat the rising incidence of multidrug-resistant bacterial infections. A significant barrier to such therapies is the rapid development of phage-resistant bacteria, highlighting the need to understand how bacteria acquire phage resistance in vivo Here we identify novel lytic phages in municipal raw sewage that kill Enterococcus faecalis, a Gram-positive opportunistic pathogen that resides in the human intestine. We show that phage infection of E. faecalis requires a predicted integral membrane protein that we have named PIPEF (for phage infection protein from E. faecalis). We find that PIPEF is conserved in E. faecalis and harbors a 160-amino-acid hypervariable region that determines phage tropism for distinct enterococcal strains. Finally, we use a gnotobiotic mouse model of in vivo phage predation to show that the sewage phages temporarily reduce E. faecalis colonization of the intestine but that E. faecalis acquires phage resistance through mutations in PIPEF Our findings define the molecular basis for an evolutionary arms race between E. faecalis and the lytic phages that prey on them. They also suggest approaches for engineering E. faecalis phages that have altered host specificity and that can subvert phage resistance in the host bacteria. Bacteriophage therapy has received renewed attention as a potential solution to the rise in antibiotic-resistant bacterial infections. However, bacteria can acquire phage resistance, posing a major barrier to phage therapy. To overcome this problem, it is necessary to understand phage resistance mechanisms in bacteria. We have unraveled one such resistance mechanism in Enterococcus faecalis, a Gram-positive natural resident of the human intestine that has acquired antibiotic resistance and can cause opportunistic infections. We have identified a cell wall protein hypervariable region that specifies phage tropism in E. faecalis Using a gnotobiotic mouse model of in vivo phage predation, we show that E. faecalis acquires phage resistance through mutations in this cell wall protein. Our findings define the molecular basis for lytic phage resistance in E. faecalis They also suggest opportunities for engineering E. faecalis phages that circumvent the problem of bacterial phage resistance. Copyright © 2016 Duerkop et al.
Sparo, M; Urbizu, L; Solana, M V; Pourcel, G; Delpech, G; Confalonieri, A; Ceci, M; Sánchez Bruni, S F
2012-02-01
To investigate the in vivo gene transfer of high-level gentamicin resistance (HLRG) from Enterococcus faecalis isolated from the food of animal origin to a human isolate, using a mouse model of intestinally colonized human microbiota. In vitro study: The presence of plasmids involved in HLRG coding was investigated. After the conjugation experiment, the recipient strain, Ent. faecalis JH2-SS, acquired a plasmid responsible for HLRG [minimal inhibitory concentration (MIC) >800 μg ml(-1) ], in a similar position to the donor cells. In vivo study: Seven BALB/c mice were dosed with ceftriaxone (400 mg kg(-1) ) and then inoculated with a dilution of 1/100 of human faeces (HFc). After 72 h, Ent. faecalis JH2-SS (recipient) was inoculated and then, after a further 72 h, the animals were given Ent. faecalis CS19, isolated from the food of animal origin, involved in HLRG (donor). The presence of transconjugant strains in HFc was subsequently recorded on a daily basis until the end of the experiment. The clonal relationship between Ent. faecalis and Escherichia coli in faeces was assessed by RAPD-PCR. Both the in vitro and in vivo studies showed that the receptor strain acquired a plasmid responsible for HLRG (MICs >800 μg ml(-1) ), which migrated with a similar relative mobility value. Transconjugant strains were detected from 24 h after the donor strain inoculation and persisted until the end of the experiment. The in vivo gene transfer of HLRG from Ent. faecalis strains, isolated from the food of animal origin, to human microbiota has been demonstrated in a mouse model. The complexity found on the therapeutic responses of invasive infectious diseases caused by Ent. faecalis facilitates the assessment of food of animal origin as a resistant pathogen reservoir. In addition, this study may contribute to the understanding of antimicrobials' resistance gene transfer between Ent. faecalis strains from food and human GI tract. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.
León, Jorge; Aponte, Juan José; Rojas, Rosario; Cuadra, D'Lourdes; Ayala, Nathaly; Tomás, Gloria; Guerrero, Marco
2011-06-01
To determine the antimicrobial potential of marine actinomycetes against drug-resistant pathogens represented by strains of methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecalis (VRE). Strains of actinomycetes (29) isolated from marine sediment were evaluated by their characteristics in two culture media and by testing their inhibitory capacity by in vitro antagonism against multi-drug resistant (MDR) pathogenic bacteria for MRSA and VRE. Organic extracts of 3 selected actinomicetes were processed to determine the minimum inhibitory concentration (MIC) of the active compound. Most isolated actinomycetes belong to a homogeneous group of write-gray actinomycetes with a good growth in Marine Agar. The inhibitory rates of the isolates were above 85% for both pathogens with inhibition zones greater than 69 and 78 mm in diameter for MRSA and VRE respectively. Dichloromethane extracts of 3 isolates (I-400A, B1-T61, M10-77) showed strong inhibitory activity of both pathogens, M10-77 being the highest actinomycete strain with antibiotic activity against methicillin-resistant S. aureus ATCC 43300 and vancomycin-resistant E. faecalis ATCC 51299 with a minimum inhibitory concentrations (MIC) of 7.9 and 31.7 μg/ml respectively. Phylogenetic analysis of M10-77 strain showed 99% similarity with the marine species Streptomyces erythrogriseus. Marine sediments of the central coast of Peru, are a source of actinomycetes strains showing high capacity to produce bioactive compounds able to inhibit pathogens classified as multi-drug-resistant such as methicillin-resistant S. aureus and vancomycin-resistant E. faecalis.
Divia, A R; Nair, Mali G; Varughese, Jolly Mary; Kurien, Shobha
2018-01-01
Endodontic infections require effective removal of microorganisms from the root canal system for long-term prognosis. Sodium hypochlorite (NaOCl) is the most effective irrigant currently, but potential complications due to its toxicity warrant search for newer alternatives. In this study, the antimicrobial efficacy of Morinda citrifolia (MC), green tea polyphenols and Triphala was compared with 5% NaOCl against Enterococcus faecalis . In this in vitro study sixty extracted human premolar teeth were infected with E. faecalis , a Group D Streptococci for 48 h. At the end of 48 h, the vital bacterial population was assessed by counting the number of colony-forming units (CFUs) on blood agar plate. Samples were divided into five groups; Group I (distilled water), Group II (NaOCl), Group III (MC), Group IV (Triphala), and Group V (green tea polyphenols). The samples were irrigated with individual test agents and CFUs were recorded. Kruskal-Wallis test was performed as the parametric test to compare different groups. Student's t -test was used to compare mean values between groups before and after treatment with test agents ( P < 0.001). NaOCl was the most effective irrigant the elimination of E. faecalis reinforcing its role as the best irrigant available currently and a gold standard for comparison of the experimental groups. Its antibacterial effect was comparable to Triphala. Among the experimental groups, MC showed the minimum antibacterial effect. The use of herbal alternatives as a root canal irrigant might prove to be advantageous considering the several undesirable characteristics of NaOCl.
VALERA, Marcia Carneiro; MAEKAWA, Lilian Eiko; de OLIVEIRA, Luciane Dias; JORGE, Antonio Olavo Cardoso; SHYGEI, Érika; CARVALHO, Cláudio Antonio Talge
2013-01-01
Objective: The aim of this study was to evaluate the antimicrobial activity of auxiliary chemical substances and natural extracts on Candida albicans and Enterococcus faecalis inoculated in root canals. Material and Methods: Seventy-two human tooth roots were contaminated with C. albicans and E. faecalis for 21 days. The groups were divided according to the auxiliary chemical substance into: G1) 2.5% sodium hypochlorite (NaOCl), G2) 2% chlorhexidine gel (CHX), G3) castor oil, G4) glycolic Aloe vera extract, G5) glycolic ginger extract, and G6) sterile saline (control). The samples of the root canal were collected at different intervals: confirmation collection, at 21 days after contamination; 1st collection, after instrumentation; and 2nd collection, seven days after instrumentation. Microbiological samples were grown in culture medium and incubated at 37º C for 48 hours. Results: The results were submitted to the Kruskal-Wallis and Dunn (5%) statistical tests. NaOCl and CHX completely eliminated the microorganisms of the root canals. Castor oil and ginger significantly reduced the number of CFU of the tested bacteria. Reduction of CFU/mL at the 1st and 2nd collections for groups G1, G2, G3 and G4 was greater in comparison to groups G5 and G6. Conclusion: It was concluded that 2.5% sodium hypochlorite and 2% chlorhexidine gel were more effective in eliminating C. albicans and E. faecalis, followed by the castor oil and glycolic ginger extract. The Aloe vera extract showed no antimicrobial activity. PMID:23739849
Valera, Marcia Carneiro; Maekawa, Lilian Eiko; de Oliveira, Luciane Dias; Jorge, Antonio Olavo Cardoso; Shygei, Érika; Carvalho, Cláudio Antonio Talge
2013-01-01
The aim of this study was to evaluate the antimicrobial activity of auxiliary chemical substances and natural extracts on Candida albicans and Enterococcus faecalis inoculated in root canals. Seventy-two human tooth roots were contaminated with C. albicans and E. faecalis for 21 days. The groups were divided according to the auxiliary chemical substance into: G1) 2.5% sodium hypochlorite (NaOCl), G2) 2% chlorhexidine gel (CHX), G3) castor oil, G4) glycolic Aloe vera extract, G5) glycolic ginger extract, and G6) sterile saline (control). The samples of the root canal were collected at different intervals: confirmation collection, at 21 days after contamination; 1st collection, after instrumentation; and 2nd collection, seven days after instrumentation. Microbiological samples were grown in culture medium and incubated at 37°C for 48 hours. The results were submitted to the Kruskal-Wallis and Dunn (5%) statistical tests. NaOCl and CHX completely eliminated the microorganisms of the root canals. Castor oil and ginger significantly reduced the number of CFU of the tested bacteria. Reduction of CFU/mL at the 1st and 2nd collections for groups G1, G2, G3 and G4 was greater in comparison to groups G5 and G6. It was concluded that 2.5% sodium hypochlorite and 2% chlorhexidine gel were more effective in eliminating C. albicans and E. faecalis, followed by the castor oil and glycolic ginger extract. The Aloe vera extract showed no antimicrobial activity.
Conceição, Natália; da Silva, Lucas Emanuel Pinheiro; Darini, Ana Lúcia da Costa; Pitondo-Silva, André; de Oliveira, Adriana Gonçalves
2014-12-01
Despite the spread of penicillin-resistant, ampicillin-susceptible Enterococcus faecalis (PRASEF) isolates in diverse countries, the mechanisms leading to this unusual resistance phenotype have not yet been investigated. The aim of this study was to evaluate whether polymorphism in the pbp4 gene is associated with penicillin resistance in PRASEF isolates and to determine their genetic diversity. E. faecalis isolates were recovered from different clinical specimens of hospitalized patients from February 2006 to June 2010. The β-lactam minimal inhibitory concentrations (MICs) were determined by E-test®. The PCR-amplified pbp4 gene was sequenced with an automated sequencer. The genetic diversities of the isolates were established by PFGE (pulsed-field gel electrophoresis) and MLST (multilocus sequencing typing). Seventeen non-producing β-lactamase PRASEF and 10 penicillin-susceptible, ampicillin-susceptible E. faecalis (PSASEF) strains were analyzed. A single-amino-acid substitution (Asp-573→Glu) in the penicillin-binding domain was significantly found in all PRASEF isolates by sequencing of the pbp4 gene but not in the penicillin-susceptible isolates. In contrast to the PSASEF isolates, a majority of the PRASEFs had similar PFGE profiles. Six representative PRASEF isolates were resolved by MLST into ST9 and ST524 and belong to the globally dispersed clonal complex 9 (CC9). In conclusion, it appears quite likely that the amino acid alteration (Asp-573→Glu) found in the PBP4 of the Brazilian PRASEF isolates may account for their reduced susceptibility to penicillin, although other resistance mechanisms remain to be investigated. Copyright © 2014 Elsevier B.V. All rights reserved.
Frequency of ace, epa and elrA Genes in Clinical and Environmental Strains of Enterococcus faecalis.
Lysakowska, Monika Eliza; Denys, Andrzej; Sienkiewicz, Monika
2012-12-01
Surface proteins play an important role in the pathogenesis of enterococcal infections. Some of them are candidates for a vaccine, e.g., the frequency of endocarditis in rats vaccinated with Ace protein was 75 % as 12 opposed to 100 % in those who weren't. However, there are other components of enterococcal cells, such as Epa antigens or internalin-like proteins, which may be used in the prophylaxis of infections caused by them. However, also other virulence factors and resistance to antibiotics are important during enterococcal infection. Therefore, the relevance of ace, epa, elrA, other virulence genes, as well as resistance to antibiotics was investigated. 161 Enterococcus faecalis strains isolated from teaching hospitals in Lodz, cultured according to standard microbiological methods, were investigated for the presence of genes encoding surface proteins by PCR. Results were analyzed with χ(2) test. The elrA gene was found in all clinical and environmental strains, the ace gene was also widespread among E. faecalis (96.9 %). Both tested epa genes were found in the majority of isolates (83.25 %). There was correlation between the presence of esp and ace genes (p = 0.046) as well as between epa and agg genes (p = 0.0094; χ(2) test). The presence of the genes encoding surface proteins investigated in our study in the great majority of isolates implies that they would appear to be required during E. faecalis infection. Therefore, they could be excellent targets in therapy of enterococcal infections or, as some studies show, candidates for vaccines.
Sewage sludge and liquid pig manure as possible sources of antibiotic resistant bacteria.
Hölzel, Christina S; Schwaiger, Karin; Harms, Katrin; Küchenhoff, Helmut; Kunz, Anne; Meyer, Karsten; Müller, Christa; Bauer, Johann
2010-05-01
Within the last decades, the environmental spread of antibiotic resistant bacteria has become a topic of concern. In this study, liquid pig manure (n=305) and sewage sludge (n=111) - used as agricultural fertilizers between 2002 and 2005 - were investigated for the presence of Escherichia coli, Enterococcus faecalis and Enterococcus faecium. Bacteria were tested for their resistance against 40 chemotherapeutics including several "reserve drugs". E. coli (n=613) from pig manure were at a significantly higher degree resistant to streptomycin, doxycycline, spectinomycin, cotrimoxazole, and chloramphenicol than E. coli (n=116) from sewage sludge. Enterococci (Ent. faecalis, n=387, and Ent. faecium, n=183) from pig manure were significantly more often resistant to high levels of doxycycline, rifampicin, erythromycin, and streptomycin than Ent. faecalis (n=44) and Ent. faecium (n=125) from sewage sludge. Significant differences in enterococcal resistance were also seen for tylosin, chloramphenicol, gentamicin high level, fosfomycin, clindamicin, enrofloxacin, moxifloxacin, nitrofurantoin, and quinupristin/dalfopristin. By contrast, aminopenicillins were more effective in enterococci from pig manure, and mean MIC-values of piperacillin+tazobactam and third generation cefalosporines were significantly lower in E. coli from pig manure than in E. coli from sewage sludge. 13.4% (E. coli) to 25.3% (Ent. faecium) of pig manure isolates were high-level multiresistant to substances from more than three different classes of antimicrobial agents. In sewage sludge, high-level-multiresistance reached from 0% (Ent. faecalis) to 16% (Ent. faecium). High rates of (multi-) resistant bacteria in pig manure emphasize the need for a prudent - cautious - use of antibiotics in farm animals. Copyright 2010 Elsevier Inc. All rights reserved.
Starke, I C; Zentek, J; Vahjen, W
2015-01-01
Enterococcus faecium NCIMB 10415 is used as a probiotic for piglets and has been shown to modify the porcine intestinal microbiota. However, the mode of action of this probiotic modification is still unclear. One possible explanation is the direct growth inhibiting or stimulating effect of the probiotic on other indigenous bacteria. Therefore, the aim of the present study was to examine the growth interactions of the probiotic with different indigenous porcine bacteria in vitro. Reference strains were cultivated with the probiotic E. faecium strain NCIMB10415 (SF68) in a checkerboard assay with 102 to 105 cells/ml inoculum per strain. Growth kinetics were recorded for 8 h and used to determine specific growth of the co-cultures. Additionally, total DNA was extracted from the co-cultures at the end of the incubation to verify which strain in the co-culture was affected. Co-cultivation with eight Enterococcus spp. tester strains showed strain-specific growth differences. Three of four E. faecium strains were not influenced by the probiotic strain. PCR results showed reduced growth of the probiotic strain in co-culture with E. faecium DSM 6177. Three of four Enterococcus faecalis strains showed reduced specific growth in co-culture with the probiotic strain. However, E. faecalis DSM 20478 impaired growth of the probiotic E. faecium strain. The growth of Lactobacillus johnsonii DSM 10533 and Lactobacillus reuteri DSM 20016 was enhanced in co-culture with the probiotic strain, but co-cultivations with Lactobacillus mucosae DSM13345 or Lactobacillus amylovorus DSM10533 showed no differences. Co-cultures with the probiotic E. faecium showed no impact on the growth rate of four different enterobacterial reference strains (2 strains of Salmonella enterica and 2 strains of Escherichia coli), but PCR results showed reduced cell numbers for a pathogenic E. coli isolate at higher concentration of the probiotic strain. As the in vitro effect of the probiotic E. faecium on enterococci was strain specific and the growth of certain Lactobacillus spp. was enhanced by the probiotic, these results indicate a direct effect of the probiotic on certain members of the porcine gastro intestinal microbiota.
Terzic-Vidojevic, Amarela; Mihajlovic, Sanja; Uzelac, Gordana; Veljovic, Katarina; Tolinacki, Maja; Nikolic, Milica; Topisirovic, Ljubisa; Kojic, Milan
2014-05-01
The aim of this study was to investigate the composition of lactic acid bacteria (LAB) in autochthonous young cheeses, sweet creams and sweet kajmaks produced in the Vlašić mountain region of central Bosnia and Herzegovina near the town of Travnik over a four season period. These three products were made from cow's milk by a traditional method without the addition of a starter culture. Preliminary characterization with phenotype-based assays and identification using rep-PCR with a (GTG)5 primer and 16S rDNA sequence analysis were undertaken for 460 LAB isolates obtained from all the examined samples. Fifteen species were identified as follows: Lactococcus lactis, Lactococcus raffinolactis, Lactococcus garviae, Lactobacillus casei, Lactobacillus plantarum, Lactobacillus helveticus, Enterococcus faecium, Enterococcus durans, Enterococcus faecalis, Enterococcus italicus, Leuconostoc mesenteroides, Leuconostoc pseudomesenteroides, Leuconostoc lactis, Streptococcus thermophilus and Streptococcus mitis. A wide genotypic and phenotypic heterogeneity of the species was observed, particularly within the Lc. lactis strains. In all of the tested dairy products across four seasons, a significantly positive correlation (r = 0.690) between the presence of lactococci and enterococci and a negative correlation (r = 0.722) between the presence of lactococci and leuconostocs were recorded. Forty-five percent of the lactobacilli and 54.4% of the lactococci exhibited proteolytic activity, whereas 18.7% of the total LAB isolates exhibited antimicrobial activity. Copyright © 2013 Elsevier Ltd. All rights reserved.
Michael, K E; No, D; Roberts, M C
2017-02-01
Enterococcus spp. are a normal part of the gastrointestinal tract of humans and animals. They are also important pathogens, being responsible for 14% of US nosocomial infections from 2007 to 2010. To examine a laundry facility that processes clinical linens for the presence and seasonality of vancomycin-resistant Enterococcus spp. Surface samples were collected four times in 2015 from the dirty and clean areas of the laundry facility. Isolates were confirmed using biochemical assays, and antibiotic susceptibility testing was performed. Further investigations included molecular characterization by multi-locus sequence typing (MLST), detection of acquired vanA and vanB and/or intrinsic vanC1 genes by polymerase chain reaction, and eBURST analysis. Seventy-four vanA-positive multi-drug-resistant Enterococcus spp. were identified: 64/120 (53%) in the dirty area and 10/120 (8%) in the clean area. There were 14 ST types among the E. faecium isolates identified (ST16, 17, 18, 117, 186, 280, 324, 412, 584, 664, 665, 736, 750 and 1038). Both E. faecalis isolates were ST109. Isolation of vancomycin-resistant enterococci (VRE) isolates was significantly higher (53% vs 8%) in the dirty area of the facility compared with the clean area. This is the first study to examine an industrial laundry facility for the presence of VRE, and may be an unrecognized reservoir. Copyright © 2016 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.
USDA-ARS?s Scientific Manuscript database
The purpose of this study was to validate the hypothesis that pheophorbide a and pyropheophorbide a reduce erythromycin resistance of reference strains of facultative anaerobic bacteria with multidrug or macrolide efflux pumps, as indicative of their effect on bacteria indigenous to anaerobic swine ...
Flórez, Ana Belén; Ammor, Mohammed Salim; Delgado, Susana; Mayo, Baltasar
2006-12-01
An erm(B) gene carried on the Lactobacillus johnsonii G41 chromosome and the upstream and downstream regions were fully sequenced. Apparently, a 1,495-bp segment of pRE25 from Enterococcus faecalis carrying the erm(B) gene became inserted, by an unknown mechanism, into the L. johnsonii chromosome.
Giardino, Luciano; Ambu, Emanule; Savoldi, Enrico; Rimondini, Roberto; Cassanelli, Clara; Debbia, Eugenio A
2007-07-01
The aim of this study was to compare the antimicrobial efficacy of 5.25% NaOCl, BioPure MTAD (Dentsply Tulsa Dental, Johnson City, TN), and Tetraclean (Ogna Laboratori Farmaceutici, Milano, Italy) against Enterococcus faecalis biofilm generated on cellulose nitrate membrane filters. After incubation, the membrane filters were transferred into tubes containing 5 mL of the selected antimicrobial solution test agent or NaCl 0.9% (positive control) and incubated for 5, 30, and 60 minutes at 20 degrees C. After each period of time, the test agents were vortexed for 60 seconds to resuspend the microorganisms. Ten-fold serial dilutions were generated in reduced transport fluid. Each dilution was plated onto a brain heart infusion plates. The plates were then incubated for 48 hours in an aerobic atmosphere at 37 degrees C and colony-forming units per membrane was calculated. Statistical analysis showed that only 5.25% NaOCl can disgregate and remove the biofilm at every time; however, treatment with Tetraclean caused a high degree of biofilm disgregation in every considered time intervals as compared with MTAD (T5 p < 0.05, T30 p < 0.01, and T60 p < 0.001).
Garrison, Mark W; Mutters, Reinier; Dowzicky, Michael J
2009-11-01
The Tigecycline Evaluation and Surveillance Trial began in 2004 to monitor the in vitro activity of tigecycline and comparator agents against a global collection of Gram-negative and Gram-positive pathogens. Against Gram negatives (n = 63 699), tigecycline MIC(90)'s ranged from 0.25 to 2 mg/L for Escherichia coli, Haemophilus influenzae, Acinetobacter baumannii, Klebsiella oxytoca, Enterobacter cloacae, Klebsiella pneumoniae, and Serratia marcescens (but was > or =32 for Pseudomonas aeruginosa). Against Gram-positive organisms (n = 32 218), tigecycline MIC(90)'s were between 0.06 and 0.25 mg/L for Streptococcus pneumoniae, Enterococcus faecium, Streptococcus agalactiae, Staphylococcus aureus, and Enterococcus faecalis. The in vitro activity of tigecycline was maintained against resistant phenotypes, including multidrug-resistant A. baumannii (9.2% of isolates), extended-spectrum beta-lactamase-producing E. coli (7.0%) and K. pneumoniae (14.0%), beta-lactamase-producing H. influenzae (22.2%), methicillin-resistant S. aureus (44.5%), vancomycin-resistant E. faecium (45.9%) and E. faecalis (2.8%), and penicillin-resistant S. pneumoniae (13.8%). Tigecycline represents a welcome addition to the armamentarium against difficult to treat organisms.
Multidrug-Resistant Enterococcal Infections: New Compounds, Novel Antimicrobial Therapies?
van Harten, Roel M; Willems, Rob J L; Martin, Nathaniel I; Hendrickx, Antoni P A
2017-06-01
Over the past two decades infections due to antibiotic-resistant bacteria have escalated world-wide, affecting patient morbidity, mortality, and health care costs. Among these bacteria, Enterococcus faecium and Enterococcus faecalis represent opportunistic nosocomial pathogens that cause difficult-to-treat infections because of intrinsic and acquired resistance to a plethora of antibiotics. In recent years, a number of novel antimicrobial compound classes have been discovered and developed that target Gram-positive bacteria, including E. faecium and E. faecalis. These new antibacterial agents include teixobactin (targeting lipid II and lipid III), lipopeptides derived from nisin (targeting lipid II), dimeric vancomycin analogues (targeting lipid II), sortase transpeptidase inhibitors (targeting the sortase enzyme), alanine racemase inhibitors, lipoteichoic acid synthesis inhibitors (targeting LtaS), various oxazolidinones (targeting the bacterial ribosome), and tarocins (interfering with teichoic acid biosynthesis). The targets of these novel compounds and mode of action make them very promising for further antimicrobial drug development and future treatment of Gram-positive bacterial infections. Here we review current knowledge of the most favorable anti-enterococcal compounds along with their implicated modes of action and efficacy in animal models to project their possible future use in the clinical setting. Copyright © 2017 Elsevier Ltd. All rights reserved.
Tirali, Resmiye Ebru; Gulsahi, Kamran; Cehreli, Sevi Burcak; Karahan, Zeynep Ceren; Uzunoğlu, Emel; Elhan, Atilla
2013-05-01
The aim of this in vitro study was to investigate whether mixing with calcium hydroxide [Ca(OH)2] affects the antimicrobial action of Octenidine hydrochloride (Octenisept), MTAD and chlorhexidine against Enterococcus faecalis and Candida albicans. Freshly grown cultures of Enterococcus faecalis, Candida albicans and a mixture of both strains were incubated in agar plates containing brain-heart infusion broth (BHIB). Zones of inhibition were measured at 24 and 48 hours. Statistical analysis was performed using Mann-Whitney U test and Kruskal-Wallis one-way analysis of variance (ANOVA, both p=0.05). Mixing with Ca(OH)2 significantly increased the antibacterial effect of Octenisept (p<0.05), but did not alter its antifungal activity. Only chlorhexidine showed more antibacterial and antifungal efficiency compared to its Ca(OH)2-mixed version (both p<0.05). Mixing with Ca(OH)2 decreased the antibacterial efficacy of MTAD, but increased its antifungal effect (both p<0.05). These results demonstrate the differential effects of Ca(OH)2 addition on the antimicrobial action of the tested endodontic medicaments in vitro. Ca(OH)2 was as effective as its combination with all of the tested medicaments.
Response to alkaline stress by root canal bacteria in biofilms.
Chávez de Paz, L E; Bergenholtz, G; Dahlén, G; Svensäter, G
2007-05-01
To determine whether bacteria isolated from infected root canals survive alkaline shifts better in biofilms than in planktonic cultures. Clinical isolates of Enterococcus faecalis, Lactobacillus paracasei, Olsenella uli, Streptococcus anginosus, S. gordonii, S. oralis and Fusobacterium nucleatum in biofilm and planktonic cultures were stressed at pH 10.5 for 4 h, and cell viability determined using the fluorescent staining LIVE/DEAD BacLight bacterial viability kit. In addition, proteins released into extracellular culture fluids were identified by Western blotting. Enterococcus faecalis, L. paracasei, O. uli and S. gordonii survived in high numbers in both planktonic cultures and in biofilms after alkaline challenge. S. anginosus, S. oralis and F. nucleatum showed increased viability in biofilms compared with planktonic cultures. Alkaline exposure caused all planktonic cultures to aggregate into clusters and resulted in a greater extrusion of cellular proteins compared with cells in biofilms. Increased levels of DnaK, HPr and fructose-1,6-bisphosphate aldolase were observed in culture fluids, especially amongst streptococci. In general, bacteria isolated from infected roots canals resisted alkaline stress better in biofilms than in planktonic cultures, however, planktonic cells appeared to use aggregation and the extracellular transport of specific proteins as survival mechanisms.
Rios, Alejandro; He, Jianing; Glickman, Gerald N; Spears, Robert; Schneiderman, Emet D; Honeyman, Allen L
2011-06-01
Photodynamic therapy (PDT) with high-power lasers as the light source has been proven to be effective in disinfecting root canals. The aim of this study was to evaluate the antimicrobial effect of PDT using toluidine blue O (TBO) and a low-energy light-emitting diode (LED) lamp after the conventional disinfection protocol of 6% NaOCl. Single-rooted extracted teeth were cleaned, shaped, and sealed at the apex before incubation with Enterococcus faecalis for 2 weeks. Roots were randomly assigned to five experimental groups and three control groups. Dentin shavings were collected from the root canals of all groups with a #50/.06 rotary file, colony-forming units were determined, and the bacterial survival rate was calculated for each treatment. The bacterial survival rate of the NaOCl/TBO/light group (0.1%) was significantly lower (P < .005) than the NaOCl (0.66%) and TBO/light groups (2.9%). PDT using TBO and a LED lamp has the potential to be used as an adjunctive antimicrobial procedure in conventional endodontic therapy. Copyright © 2011 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Arokiyaraj, Selvaraj; Hairul Islam, Villianur Ibrahim; Bharanidharan, R; Raveendar, Sebastian; Lee, Jinwook; Kim, Do Hyung; Oh, Young Kyoon; Kim, Eun-Kyung; Kim, Kyoung Hoon
2014-07-01
In the present study bacterial strains were isolated from the rumen fluids of Bos primigenius and investigated their in vitro probiotic properties with potent antibacterial activity and anti-inflammatory effects. 9 g positive bacterial isolates were obtained and three isolates could able to tolerate gastric conditions, high bile salt concentrations and exhibited significant bactericidal effect against the enteric pathogens Vibrio cholera, Enterococcus faecalis, Enterobacter aerogens, Pseudomonas aeruginosa, Escherichia coli and Salmonella typhi. Moreover it showed above 70% cell surface hydrophobicity, significant low-invasion ability and potential adherence capacity in Caco-2 cells when compared with the control. The proinflammatory cytokines (TNF-α) was greatly reduced in rumen bacteria treatment and ARBS-1 modulate the immune response by activating the IL-4 secretion in parallel to TNF-α suppression. The 16s rRNA gene sequence of the active isolates were identified as Enterococcus hirae (ARBS-1), Pediococcus acidilactici (ARBS-4) and Bacillus licheniformis (ARBS-7). This study revealed the probiotic bactericidal properties of E. hirae obtained from the rumen of B. primigenius with potential antibacterial and anti-inflammatory effects. Future studies with the strains may yield some novel probiotic product for livestock's.
Photocatalytic properties and selective antimicrobial activity of TiO2(Eu)/CuO nanocomposite
NASA Astrophysics Data System (ADS)
Michal, Robert; Dworniczek, Ewa; Caplovicova, Maria; Monfort, Olivier; Lianos, Panagiotis; Caplovic, Lubomir; Plesch, Gustav
2016-05-01
TiO2(Eu)/CuO nanocomposites were prepared by precipitation method. The anatase nanocrystallites with a size of 26 nm exhibited well crystallized and characteristical dipyramidal morphology and {1 0 1} and {0 0 1} faceting. Transmission electron microscopy photographs with atomic resolution showed that the Eu(III) dopants were bounded on surface of titania. In the composites, the CuO nanocrystals exhibiting a monoclinic tenorite structure with a size in the range from 2 to 5 nm were grafted to the surface of titania. The influence of copper(II) oxide led to distinct selectivity in the photocatalytic and antimicrobial properties of the investigated TiO2(Eu)/CuO nanocomposites. While the presence of CuO nanocrystals strongly increased the photocatalytic production of hydrogen by ethanol reforming, it decreased the activity in photoinduced total mineralization of phenol comparing with non-modified TiO2(Eu). In investigated TiO2(Eu)/CuO powders, the photoinduced antimicrobial activity against membranes of Enterococcus species was influenced by the selective binding of CuO to the surface of the microorganism leading to distinct selectivity in their action. The activity against Enterococcus faecalis was higher than against Enterococcus faecium.
Todorov, Svetoslav D; Wachsman, Mónica B; Knoetze, Hendriëtte; Meincken, Martina; Dicks, Leon M T
2005-06-01
Enterococcus mundtii ST4V, isolated from soya beans, produces a 3950Da antibacterial peptide active against Gram-positive and Gram-negative bacteria, including Enterococcus faecalis, Streptococcus spp., Pseudomonas aeruginosa, Klebsiella pneumoniae, Streptococcus pneumoniae and Staphylococcus aureus. The peptide also inactivated the herpes simplex viruses HSV-1 (strain F) and HSV-2 (strain G), a polio virus (PV3, strain Sabin) and a measles virus (strain MV/BRAZIL/001/91, an attenuated strain of MV). MV, HSV-1 and HSV-2 were 95.5%-99.9% inactivated by peptide ST4V at 400 microg/ml. Monkey kidney Vero cells were not inactivated, even at four times the level peptide ST4V displayed antiviral activity, indicating that the effect was not due to cytotoxicity. Complete inactivation or significant reduction in antimicrobial activity was observed after treatment of peptide ST4V with Proteinase K, pronase, pepsin and trypsin. No change in antimicrobial activity was recorded after treatment with alpha-amylase, suggesting that peptide ST4V was not glycosylated. This is the first description of an antibacterial and antiviral peptide with such broad-spectrum of activity, produced by a lactic acid bacterium.
Vokurka, Samuel; Skardova, Jana; Hruskova, Renata; Kabatova-Maxova, Klara; Svoboda, Tomas; Bystricka, Eva; Steinerova, Katerina; Koza, Vladimir
2011-01-01
Summary Background Gelclair is an oral lubricating gel used in the management of oral mucositis (OM). We evaluated its efficacy, tolerance and impact on oral cavity microbial colonization in patients with OM after allogeneic hematopoietic stem cells transplantation. Material/Method Gelclair was administered in a group of 22 patients with active OM. A control group of 15 patients used other rinsing solutions (chlorhexidine, benzydamine, salvia). Tests with oral cavity swabs for microbiology analysis were performed once a week. Results The characteristics of OM in both groups were comparable, and rinsing solutions had satisfactory tolerability. There was no difference in the median improvement of oral intake and OM-related pain relief, which was assessed mostly as “slight effect”. In the Gelclair group, the effect duration was longer (median 3 [0–5] vs. 1 [0–3] hours, p=0.001). There was significant increase of Enterococcus faecalis and Candida sp. colonization of the oral cavity over the course of the hospitalization and significantly reduced incidence of such colonization in patients with OM in the Gelclair group: 1/22 (5%) vs. 6/15 (40%), p=0.01. In vitro tests showed inhibited growth of Enterococcus faecalis and Candida sp. colonies within the area of the Gelclair application. Conclusions Gelclair may be individually helpful in the management of OM and pain in patients after allogeneic stem cells transplantation. Its use did not lead to worsened oral bacterial and yeast colonization and probably even helped to protect mucosa from Enterococcus and Candida sp. Further studies based on larger cohorts are needed. PMID:21959611
Xu, Zhenbo; Xie, Jinhong; Peters, Brian M; Li, Bing; Li, Lin; Yu, Guangchao; Shirtliff, Mark E
2017-02-01
A longitudinal surveillance aimed to investigate the antibiogram of three genus of important Gram-positive pathogens in Southern China during 2001-2015. A total of 3849 Staphylococcus, Enterococcus and Streptococcus strains were isolated from Southern China during 2001-2015. Bacteria identification was performed by colony morphology, Gram staining, the API commercial kit and the Vitek 2 automated system. Antimicrobial susceptibility testing was determined by disk diffusion method and MIC method. As sampling site was concerned, 51.4% of Staphylococcus strains were isolated from sputum, whereas urinary tract remained the dominant infection site among Enterococcus and Streptococcus. According to the antimicrobial susceptibility, three genus of important Gram-positive pathogens showed high resistance against erythromycin, tetracycline, ciprofloxacin and clindamycin. Resistance rates to penicillins (penicillin, oxacillin, ampicillin) were high as well, with the exception of E. faecalis and Streptococcus. Overall, resistance rates against methicillin (oxacillin) were 63.2% in S. aureus and 76.2% in coagulase-negative Staphylococcus (CNS), along with continuous increases during the study. VRSA and vancomycin-resistant coagulase-negative Staphylococcus only appeared in 2011-2015. Sight decline was obtained for the vancomycin resistance of E. faecalis, while vancomycin-resistant E. faecium only appeared in 2011-2015, with its intermediate rate decreasing. Significant decrease in penicillin-resistant Streptococcus pneumonia (PRSP) was observed during studied period. Glycopeptide antibiotic remained highly effective to Staphylococcus, Enterococcus and Streptococcus (resistance rates <5%). Despite decline obtained for some antibiotic agents resistance during 2001-2015, antimicrobial resistance among Gram-positive pathogens still remained high in Southern China. This study may aid in the guidance for appropriate therapeutic strategy of infections caused by nosocomial pathogens. Copyright © 2016 Elsevier Ltd. All rights reserved.
Bortolaia, V; Espinosa-Gongora, C; Guardabassi, L
2016-02-01
Enterococci and staphylococci are frequent contaminants on poultry meat. Enterococcus faecalis, Enterococcus faecium and Staphylococcus aureus are also well-known aetiological agents of a wide variety of infections resulting in major healthcare costs. This review provides an overview of the human health risks associated with the occurrence of these opportunistic human pathogens on poultry meat with particular focus on the risk of food-borne transmission of antimicrobial resistance. In the absence of conclusive evidence of transmission, this risk was inferred using data from scientific articles and national reports on prevalence, bacterial load, antimicrobial resistance and clonal distribution of these three species on poultry meat. The risks associated with ingestion of antimicrobial-resistant enterococci of poultry origin comprise horizontal transfer of resistance genes and transmission of multidrug-resistant E. faecalis lineages such as sequence type ST16. Enterococcus faecium lineages occurring in poultry meat products are distantly related to those causing hospital-acquired infections but may act as donors of quinupristin/dalfopristin resistance and other resistance determinants of clinical interest to the human gut microbiota. Ingestion of poultry meat contaminated with S. aureus may lead to food poisoning. However, antimicrobial resistance in the toxin-producing strains does not have clinical implications because food poisoning is not managed by antimicrobial therapy. Recently methicillin-resistant S. aureus of livestock origin has been reported on poultry meat. In theory handling or ingestion of contaminated meat is a potential risk factor for colonization by methicillin-resistant S. aureus. However, this risk is presently regarded as negligible by public health authorities. Copyright © 2015 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All rights reserved.
Growth- and Stress-Induced PASTA Kinase Phosphorylation in Enterococcus faecalis.
Labbe, Benjamin D; Kristich, Christopher J
2017-11-01
Transmembrane Ser/Thr kinases containing extracellular PASTA domains are ubiquitous among Actinobacteria and Firmicutes Such PASTA kinases regulate critical processes, including antibiotic resistance, cell division, toxin production, and virulence, and are essential for viability in certain organisms. Based on in vitro studies with purified extracellular and intracellular fragments of PASTA kinases, a model for signaling has been proposed, in which the extracellular PASTA domains bind currently undefined ligands (typically thought to be peptidoglycan, or fragments thereof) to drive kinase dimerization, which leads to enhanced kinase autophosphorylation and enhanced phosphorylation of substrates. However, this model has not been rigorously tested in vivo Enterococcus faecalis is a Gram-positive intestinal commensal and major antibiotic-resistant opportunistic pathogen. In E. faecalis , the PASTA kinase IreK drives intrinsic resistance to cell wall-active antimicrobials, suggesting that such antimicrobials may trigger IreK signaling. Here we show that IreK responds to cell wall stress in vivo by enhancing its phosphorylation and that of a downstream substrate. This response requires both the extracellular PASTA domains and specific phosphorylatable residues in the kinase domain. Thus, our results provide in vivo evidence, with an intact full-length PASTA kinase in its native physiological environment, that supports the prevailing model of PASTA kinase signaling. In addition, we show that IreK responds to a signal associated with growth and/or cell division, in the absence of cell wall-active antimicrobials. Surprisingly, the ability of IreK to respond to growth and/or division does not require the extracellular PASTA domains, suggesting that IreK monitors multiple parameters for sensory input in vivo IMPORTANCE Transmembrane Ser/Thr kinases containing extracellular PASTA domains are ubiquitous among Actinobacteria and Firmicutes and regulate critical processes. The prevailing model for signaling by PASTA kinases proposes that the extracellular PASTA domains bind ligands to drive kinase dimerization, enhanced autophosphorylation, and enhanced phosphorylation of substrates. However, this model has not been rigorously tested in vivo We show that the PASTA kinase IreK of Enterococcus faecalis responds to cell wall stress in vivo by enhancing its phosphorylation and that of a downstream substrate. This response requires the PASTA domains and phosphorylatable residues in the kinase domain. Thus, our results provide in vivo evidence, with an intact full-length PASTA kinase in its native physiological environment, that supports the prevailing model of PASTA kinase signaling. Copyright © 2017 American Society for Microbiology.
Growth- and Stress-Induced PASTA Kinase Phosphorylation in Enterococcus faecalis
Labbe, Benjamin D.
2017-01-01
ABSTRACT Transmembrane Ser/Thr kinases containing extracellular PASTA domains are ubiquitous among Actinobacteria and Firmicutes. Such PASTA kinases regulate critical processes, including antibiotic resistance, cell division, toxin production, and virulence, and are essential for viability in certain organisms. Based on in vitro studies with purified extracellular and intracellular fragments of PASTA kinases, a model for signaling has been proposed, in which the extracellular PASTA domains bind currently undefined ligands (typically thought to be peptidoglycan, or fragments thereof) to drive kinase dimerization, which leads to enhanced kinase autophosphorylation and enhanced phosphorylation of substrates. However, this model has not been rigorously tested in vivo. Enterococcus faecalis is a Gram-positive intestinal commensal and major antibiotic-resistant opportunistic pathogen. In E. faecalis, the PASTA kinase IreK drives intrinsic resistance to cell wall-active antimicrobials, suggesting that such antimicrobials may trigger IreK signaling. Here we show that IreK responds to cell wall stress in vivo by enhancing its phosphorylation and that of a downstream substrate. This response requires both the extracellular PASTA domains and specific phosphorylatable residues in the kinase domain. Thus, our results provide in vivo evidence, with an intact full-length PASTA kinase in its native physiological environment, that supports the prevailing model of PASTA kinase signaling. In addition, we show that IreK responds to a signal associated with growth and/or cell division, in the absence of cell wall-active antimicrobials. Surprisingly, the ability of IreK to respond to growth and/or division does not require the extracellular PASTA domains, suggesting that IreK monitors multiple parameters for sensory input in vivo. IMPORTANCE Transmembrane Ser/Thr kinases containing extracellular PASTA domains are ubiquitous among Actinobacteria and Firmicutes and regulate critical processes. The prevailing model for signaling by PASTA kinases proposes that the extracellular PASTA domains bind ligands to drive kinase dimerization, enhanced autophosphorylation, and enhanced phosphorylation of substrates. However, this model has not been rigorously tested in vivo. We show that the PASTA kinase IreK of Enterococcus faecalis responds to cell wall stress in vivo by enhancing its phosphorylation and that of a downstream substrate. This response requires the PASTA domains and phosphorylatable residues in the kinase domain. Thus, our results provide in vivo evidence, with an intact full-length PASTA kinase in its native physiological environment, that supports the prevailing model of PASTA kinase signaling. PMID:28808126
Pérez-Garza, J; García, S; Heredia, N
2017-10-01
Food handlers are important sources of contamination in the agricultural environment. This study was conducted (i) to evaluate the activity of antimicrobial soaps against Escherichia coli and Enterococcus faecalis using a hand washing model with soiled hands and (ii) to determine the survival and persistence of these bacteria in rinsates. Sterilized agricultural soil from tomato and pepper farms was inoculated with E. coli or E. faecalis at 10 3 or 10 6 CFU/g. Decontaminated hands were placed in contact with contaminated soil for 2 min and were then washed with soaps with or without antimicrobial compounds (citric extracts, chloroxylenol, triclosan, or chlorhexidine gluconate). As the control, hands were washed with sterile distilled water. The levels of bacteria remaining on the hands and recovered from the rinsates were determined using a membrane filtration method and selective media. Antimicrobial soaps removed levels of E. coli similar to those removed by distilled water and nonantimicrobial soap on hands contaminated with E. coli at 10 3 CFU/g. However, when hands were contaminated with E. coli at 10 6 CFU/g, more E. coli was removed with the chlorhexidine gluconate soap. When hands were contaminated with E. faecalis at 10 3 CFU/g, bacteria were removed more effectively with soaps containing chloroxylenol or chlorhexidine gluconate. When hands were contaminated with E. faecalis at 10 6 CFU/g, all of the antimicrobial soaps were more effective for removing the bacteria than were distilled water and nonantimicrobial soap. E. coli grew in all of the hand washing rinsates except that containing triclosan, whereas E. faecalis from the 10 6 CFU/g treatments grew in rinsates containing chlorhexidine gluconate and in the distilled water rinsates. Washing with antimicrobial soap was more effective for reducing bacteria on soiled hands than was washing with water or nonantimicrobial soap. However, persistence or growth of bacteria in these rinsates poses health risks.
Enzymes Required for Maltodextrin Catabolism in Enterococcus faecalis Exhibit Novel Activities
Joyet, Philippe; Mokhtari, Abdelhamid; Riboulet-Bisson, Eliette; Blancato, Víctor S.; Espariz, Martin; Magni, Christian; Sauvageot, Nicolas
2017-01-01
ABSTRACT Maltose and maltodextrins are formed during the degradation of starch or glycogen. Maltodextrins are composed of a mixture of maltooligosaccharides formed by α-1,4- but also some α-1,6-linked glucosyl residues. The α-1,6-linked glucosyl residues are derived from branching points in the polysaccharides. In Enterococcus faecalis, maltotriose is mainly transported and phosphorylated by a phosphoenolpyruvate:carbohydrate phosphotransferase system. The formed maltotriose-6″-phosphate is intracellularly dephosphorylated by a specific phosphatase, MapP. In contrast, maltotetraose and longer maltooligosaccharides up to maltoheptaose are taken up without phosphorylation via the ATP binding cassette transporter MdxEFG-MsmX. We show that the maltose-producing maltodextrin hydrolase MmdH (GenBank accession no. EFT41964) in strain JH2-2 catalyzes the first catabolic step of α-1,4-linked maltooligosaccharides. The purified enzyme converts even-numbered α-1,4-linked maltooligosaccharides (maltotetraose, etc.) into maltose and odd-numbered (maltotriose, etc.) into maltose and glucose. Inactivation of mmdH therefore prevents the growth of E. faecalis on maltooligosaccharides ranging from maltotriose to maltoheptaose. Surprisingly, MmdH also functions as a maltogenic α-1,6-glucosidase, because it converts the maltotriose isomer isopanose into maltose and glucose. In addition, E. faecalis contains a glucose-producing α-1,6-specific maltodextrin hydrolase (GenBank accession no. EFT41963, renamed GmdH). This enzyme converts panose, another maltotriose isomer, into glucose and maltose. A gmdH mutant had therefore lost the capacity to grow on panose. The genes mmdH and gmdH are organized in an operon together with GenBank accession no. EFT41962 (renamed mmgT). Purified MmgT transfers glucosyl residues from one α-1,4-linked maltooligosaccharide molecule to another. For example, it catalyzes the disproportionation of maltotriose by transferring a glucosyl residue to another maltotriose molecule, thereby forming maltotetraose and maltose together with a small amount of maltopentaose. IMPORTANCE The utilization of maltodextrins by Enterococcus faecalis has been shown to increase the virulence of this nosocomial pathogen. However, little is known about how this organism catabolizes maltodextrins. We identified two enzymes involved in the metabolism of various α-1,4- and α-1,6-linked maltooligosaccharides. We found that one of them functions as a maltose-producing α-glucosidase with relaxed linkage specificity (α-1,4 and α-1,6) and exo- and endoglucosidase activities. A third enzyme, which resembles amylomaltase, exclusively transfers glucosyl residues from one maltooligosaccharide molecule to another. Similar enzymes are present in numerous other Firmicutes, such as streptococci and lactobacilli, suggesting that these organisms follow the same maltose degradation pathway as E. faecalis. PMID:28455338
Coque, Teresa M.; Singh, Kavindra V.; Weinstock, George M.; Murray, Barbara E.
1999-01-01
Enterococci are usually susceptible in vitro to trimethoprim; however, high-level resistance (HLR) (MICs, >1,024 μg/ml) has been reported. We studied Enterococcus faecalis DEL, for which the trimethoprim MIC was >1,024 μg/ml. No transfer of resistance was achieved by broth or filter matings. Two different genes that conferred trimethoprim resistance when they were cloned in Escherichia coli (MICs, 128 and >1,024 μg/ml) were studied. One gene that coded for a polypeptide of 165 amino acids (MIC, 128 μg/ml for E. coli) was identical to dfr homologs that we cloned from a trimethoprim-susceptible E. faecalis strain, and it is presumed to be the intrinsic E. faecalis dfr gene (which causes resistance in E. coli when cloned in multiple copies); this gene was designated dfrE. The nucleotide sequence 5′ to this dfr gene showed similarity to thymidylate synthetase genes, suggesting that the dfr and thy genes from E. faecalis are located in tandem. The E. faecalis gene that conferred HLR to trimethoprim in E. coli, designated dfrF, codes for a predicted polypeptide of 165 amino acids with 38 to 64% similarity with other dihydrofolate reductases from gram-positive and gram-negative organisms. The nucleotide sequence 5′ to dfrF did not show similarity to the thy sequences. A DNA probe for dfrF hybridized under high-stringency conditions only to colony lysates of enterococci for which the trimethoprim MIC was >1,024 μg/ml; there was no hybridization to plasmid DNA from the strain of origin. To confirm that this gene causes trimethoprim resistance in enterococci, we cloned it into the integrative vector pAT113 and electroporated it into RH110 (E. faecalis OG1RF::Tn916ΔEm) (trimethoprim MIC, 0.5 μg/ml), which resulted in RH110 derivatives for which the trimethoprim MIC was >1,024 μg/ml. These results indicate that dfrF is an acquired but probably chromosomally located gene which is responsible for in vitro HLR to trimethoprim in E. faecalis. PMID:9869579
DNA Microarray for Detection of Macrolide Resistance Genes
Cassone, Marco; D'Andrea, Marco M.; Iannelli, Francesco; Oggioni, Marco R.; Rossolini, Gian Maria; Pozzi, Gianni
2006-01-01
A DNA microarray was developed to detect bacterial genes conferring resistance to macrolides and related antibiotics. A database containing 65 nonredundant genes selected from publicly available DNA sequences was constructed and used to design 100 oligonucleotide probes that could specifically detect and discriminate all 65 genes. Probes were spotted on a glass slide, and the array was reacted with DNA templates extracted from 20 reference strains of eight different bacterial species (Streptococcus pneumoniae, Streptococcus pyogenes, Enterococcus faecalis, Enterococcus faecium, Staphylococcus aureus, Staphylococcus haemolyticus, Escherichia coli, and Bacteroides fragilis) known to harbor 29 different macrolide resistance genes. Hybridization results showed that probes reacted with, and only with, the expected DNA templates and allowed discovery of three unexpected genes, including msr(SA) in B. fragilis, an efflux gene that has not yet been described for gram-negative bacteria. PMID:16723563
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Chun-Liang; Mermoud, James C.; Paul, Lake N.
The mevalonate pathway produces isopentenyl diphosphate (IPP), a building block for polyisoprenoid synthesis, and is a crucial pathway for growth of the human bacterial pathogen Enterococcus faecalis. The final enzyme in this pathway, mevalonate diphosphate decarboxylase (MDD), acts on mevalonate diphosphate (MVAPP) to produce IPP while consuming ATP. This essential enzyme has been suggested as a therapeutic target for the treatment of drug-resistant bacterial infections. Here, we report functional and structural studies on the mevalonate diphosphate decarboxylase from E. faecalis (MDDEF). The MDDEF crystal structure in complex with ATP (MDDEF–ATP) revealed that the phosphate-binding loop (amino acids 97–105) is notmore » involved in ATP binding and that the phosphate tail of ATP in this structure is in an outward-facing position pointing away from the active site. This suggested that binding of MDDEF to MVAPP is necessary to guide ATP into a catalytically favorable position. Enzymology experiments show that the MDDEF performs a sequential ordered bi-substrate reaction with MVAPP as the first substrate, consistent with the isothermal titration calorimetry (ITC) experiments. On the basis of ITC results, we propose that this initial prerequisite binding of MVAPP enhances ATP binding. In summary, our findings reveal a substrate-induced substrate-binding event that occurs during the MDDEF-catalyzed reaction. The disengagement of the phosphate-binding loop concomitant with the alternative ATP-binding configuration may provide the structural basis for antimicrobial design against these pathogenic enterococci.« less
Cretella, Gilda; Lajolo, Carlo; Castagnola, Raffaella; Somma, Francesco; Inchingolo, MariaTeresa; Marigo, Luca
2017-04-01
This study examined the bactericidal effect of diode laser irradiation against intracanal Enterococcus faecalis. m total of 128 extracted single-rooted and single-canal teeth were treated with ProTaper instruments (Dentsply Maillefer, Ballaigues, Switzerland). A total of 120 root canals were inoculated with E. faecalis for 21 days, and the samples were randomly divided into five groups: Group 1 (n = 24) samples were irrigated with only saline solution (positive controls); Group 2 (n = 24) was treated with only 5.25% sodium hypochlorite; Group 3 (n = 24) was irrigated with saline solutions activated by diode laser; Group 4 (n = 24) was treated with 5.25% sodium hypochlorite activated by diode laser; and Group 5 (n = 24) was irrigated with saline solution with methylene blue dye activated by the diode laser Fox (Sweden & Martina, Padova, Italy); additionally, eight teeth were not contaminated and their canals were irrigated with saline solution and used as a negative control. The Uro-Quick system was used to determine the microbial residual charge. The data were analyzed using Pearson's chi-square test (p < 0.001). A statistically significant reduction in bacterial count was observed in Group 2 and Group 4 (p < 0.001). There were no statistically significant differences among the other groups (p > 0.001). Evidence indicates that the diode laser was not more effective than sodium hypochlorite in reducing free bacteria.
Fibrinogen release and deposition on urinary catheters placed during urologic procedures
Potretzke, Aaron M.; Schreiber, Henry L.; Park, Alyssa M.; Pinkner, Jerome S.; Caparon, Michael G.; Hultgren, Scott J.; Desai, Alana
2016-01-01
Purpose Catheter-associated urinary tract infections (CAUTI) account for ~40% of all hospital-acquired infections worldwide, with more than one million cases diagnosed annually. Recent data from a CAUTI animal model has shown that inflammation induced by catheterization releases host fibrinogen that accumulates on the catheter. Further, Enterococcus faecalis catheter colonization was found to be dependent on EbpA, a fibrinogen binding adhesin. We sought to evaluate this mechanism in a human model. Materials and methods Urinary catheters were collected from human subjects hospitalized for surgical or non-surgical urologic procedures. Catheters were subjected to immunofluorescence analyses by incubating them with anti-fibrinogen antibody and then stained for fluorescence. The fluorescence intensity was compared to standard catheters. Catheters were incubated with strains of Enterococcus faecalis, Staphylococcus aureus, or Candida to assess their binding to fibrinogen-laden catheters. Results Fifty catheters were collected after various surgical and urological procedures. In vivo dwell time ranged from 1 hour to 59 days. All catheters had fibrinogen deposition and its accumulation was dependent on dwell time but not on surgical procedure or catheter material. Catheters were probed ex vivo with E. faecalis, S. aureus, and Candida albicans, which bound to catheters only in those regions where fibrinogen was deposited. Conclusions Taken together, these data show that urinary catheters act as a binding surface for accumulation of fibrinogen, which is released due to inflammation resulting from a urological procedure or from catheter placement, creating a niche that can be exploited by uropathogens to cause CAUTI. PMID:26827873
Dada, Ayokunle Christopher; Ahmad, Asmat; Usup, Gires; Heng, Lee Yook
2013-02-01
We report the first study on the occurrence of antibiotic-resistant enterococci in coastal bathing waters in Malaysia. One hundred and sixty-five enterococci isolates recovered from two popular recreational beaches in Malaysia were speciated and screened for antibiotic resistance to a total of eight antibiotics. Prevalence of Enterococcus faecalis and Enterococcus faecium was highest in both beaches. E. faecalis/E. faecium ratio was 0.384:1 and 0.375:1, respectively, for isolates from Port Dickson (PD) and Bagan Lalang (BL). Analysis of Fisher's exact test showed that association of prevalence of E. faecalis and E. faecium with considered locations was not statistically significant (p < 0.05). Chi-square test revealed significant differences (χ(2) = 82.630, df = 20, p < 0.001) in the frequency of occurrence of enterococci isolates from the considered sites. Resistance was highest to nalidixic acid (94.84 %) and least for chloramphenicol (8.38 %). One-way ANOVA using Tukey-Kramer multiple comparison test showed that resistance to ampicillin was higher in PD beach isolates than BL isolates and the difference was extremely statistically significant (p < 0.0001). Frequency of occurrence of multiple antibiotic resistance (MAR) isolates were higher for PD beach water (64.29 %) as compared to BL beach water (13.51 %), while MAR indices ranged between 0.198 and 0.48. The results suggest that samples from Port Dickson may contain MAR bacteria and that this could be due to high-risk faecal contamination from sewage discharge pipes that drain into the sea water.
Marcinkeviciene, J; Jiang, W; Locke, G; Kopcho, L M; Rogers, M J; Copeland, R A
2000-05-01
We report the identification, expression, and characterization of a second Dihydroorotate dehydrogenase (DHODase A) from the human pathogen Enterococcus faecalis. The enzyme consists of a polypeptide chain of 322 amino acids that shares 68% identity with the cognate type A enzyme from the bacterium Lactococcus lactis. E. faecalis DHODase A catalyzed the oxidation of l-dihydroorotate while reducing a number of substrates, including fumarate, coenzyme Q(0), and menadione. The steady-state kinetic mechanism has been determined with menadione as an oxidizing substrate at pH 7.5. Initial velocity and product inhibition data suggest that the enzyme follows a two-site nonclassical ping-pong kinetic mechanism. The absorbance of the active site FMN cofactor is quenched in a concentration-dependent manner by titration with orotate and barbituric acid, two competitive inhibitors with respect to dihydroorotate. In contrast, titration of the enzyme with menadione had no effect on FMN absorbance, consistent with nonoverlapping binding sites for dihyroorotate and menadione, as suggested from the kinetic mechanism. The reductive half-reaction has been shown to be only partially rate limiting, and an attempt to evaluate the slow step in the overall reaction has been made by simulating orotate production under steady-state conditions. Our data indicate that the oxidative half-reaction is a rate-limiting segment, while orotate, most likely, retains significant affinity for the reduced enzyme, as suggested by the product inhibition pattern. Copyright 2000 Academic Press.
Sahar-Helft, Sharonit; Stabholtz, Adam; Moshonov, Joshua; Gutkin, Vitaly; Redenski, Idan; Steinberg, Doron
2013-07-01
Abstract Objective: The purpose of this study was to evaluate mineral content and surface morphology of root canals coated with Enterococcus faecalis biofilm after treatment with several endodontic irrigation solutions, with and without Er:YAG laser-activated irrigation (LAI). LAI has been introduced as a powerful method for root canal irrigation resulting in smear-layer removal from the root canal wall. Distal and palatal roots from 60 freshly extracted human molars were used in this study. The coronal of each tooth was removed. Roots were split longitudinally and placed in an ultrasonic bath to remove the smear layer, creating conditions for the formation of E. faecalis biofilm. After incubation, the two halves were reassembled in impression material to simulate clinical conditions. Specimens were divided into two main groups: roots rinsed with irrigation solutions and roots subjected to laser irradiation combined with irrigation solutions. Solutions tested were 2% chlorhexidine and 17% ethylenediaminetetraacetic acid (EDTA) and saline. Surface morphology: 17% EDTA irrigant solution combined with Er:YAG laser showed the best results for removing bacteria from the root canal walls. Chemical analysis: all samples treated with combined laser irradiation and irrigation solution had low surface levels of Ca compared with samples treated with irrigation alone. The Ca/P ratio was highest in the laser-EDTA group. Overall, mineral changes caused by laser with irrigation solutions were minimal, and statistically nonsignificant. In vitro irrigation solutions, combined with Er:YAG laser irradiation, were effective in removing E. faecalis biofilm from root canal walls. Irrigation solutions without laser irradiation were less effective, leaving a layer of biofilm on the dentin surface.
Effect of Passive Ultrasonic Irrigation on Enterococcus faecalis from Root Canals: An Ex Vivo Study.
Guerreiro-Tanomaru, Juliane Maria; Chávez-Andrade, Gisselle Moraima; de Faria-Júnior, Norberto Batista; Watanabe, Evandro; Tanomaru-Filho, Mário
2015-01-01
Endodontic irrigation aims to clean and disinfect the root canal system. Passive ultrasonic irrigation (PUI) is based on the use of an ultrasound-activated instrument into the root canal filled with irrigant. The aim of this study was to evaluate, ex vivo, the effectiveness of PUI in eliminating Enterococcus faecalis from root canals. Seventy-five extracted human single-root teeth were used. After root canal preparation, specimens were inoculated with E. faecalis and incubated at 37 °C for 21 days. Specimens were distributed into five groups (n=15), according to the irrigation method: PUI + saline solution (PUI/SS); PUI + 1% NaOCl (PUI/NaOCl); conventional needle irrigation (CNI) + saline solution (CNI/SS); CNI + 1% NaOCl (CNI/NaOCl); No irrigation (control). Microbiological samples were collected at three time points: initial (21 days after inoculation), post-irrigation (immediately after irrigation), and final (7 days after irrigation). Data were obtained in CFU mL-1 and subjected to analysis by ANOVA and Tukey's tests at 5% significance level. The post-irrigation samples did not demonstrate statistical difference between PUI/SS and CNI/SS nor between PUI/NaOCl and CNI/NaOCl (p>0.05), but PUI/NaOCl and CNI/NaOCl had lower CFU mL-1 number than the other groups (p>0.05). Statistically significant difference was observed between the initial and post-irrigation samples and between the post-irrigation and final samples (p<0.05) in all groups, except in the control. The final samples of all groups presented bacterial counts similar to the initial samples. PUI or CNI with 1% NaOCl contribute to disinfection, but are unable to eradicate E. faecalis from the root canal system.
Biscola, V; de Olmos, A Rodriguez; Choiset, Y; Rabesona, H; Garro, M S; Mozzi, F; Chobert, J-M; Drouet, M; Haertlé, T; Franco, B D G M
2017-08-24
Food allergies represent a serious problem affecting human health and soy proteins rank among the most allergenic proteins from food origin. The proteolytic enzymes produced by lactic acid bacteria (LAB) can hydrolyse the major allergens present in soybean, reducing their immunoreactivity. Many studies have reported the ability of LAB to ferment soy-based products; while the majority of them focus on the improvement of the sensory characteristics and functionality of soy proteins, a lack of information about the role of lactic fermentation in the reduction of immunoreactivity of these proteins exists. The aim of the present study was to evaluate the capability of the proteolytic strain Enterococcus faecalis VB43 to hydrolyse the main allergenic proteins present in soymilk and to determine the immunoreactivity of the obtained hydrolysates. Sodium dodecyl sulphate polyacrylamide gel electrophoresis (SDS-PAGE) results of fermented soymilk demonstrated complete hydrolysis of the β-subunit from β-conglycinin and the acidic polypeptide from glycinin. Reversed phase high performance liquid chromatography (RP-HPLC) analysis of the peptides released after hydrolysis revealed the appearance of new peptides and the disappearance of non-hydrolysed proteins, indicating extensive hydrolysis of the substrate. Results from competitive enzyme-linked immunosorbent assay (ELISA) tests clearly indicated a reduction in the immunoreactivity (more than one logarithmic unit) in the fermented sample as compared to the non-fermented control. Our results suggest that the soymilk fermented by E. faecalis VB43 may induce lower allergic responses in sensitive individuals. The strain E. faecalis VB43 may be considered as an excellent candidate to efficiently reduce the immunoreactivity of soymilk proteins.
Hasman, Henrik; Aarestrup, Frank M; Dalsgaard, Anders; Guardabassi, Luca
2006-04-01
The aim of the study was to determine whether glycopeptide resistance gene clusters from soil bacteria could be heterologously expressed in Enterococcus faecalis and adapt to the new host following exposure to vancomycin. The vanHAX clusters from Paenibacillus thiaminolyticus PT-2B1, Paenibacillus apiarius PA-B2B and Amycolatopsis coloradensis DSM 44225 were separately cloned in an appropriately constructed shuttle vector containing the two-component regulatory system (vanRS) of Tn1546. The complete vanA(PT) operon (vanRSHAXY) from P. thiaminolyticus PT-2B1 was cloned in the same shuttle vector lacking enterococcal vanRS. All plasmid constructs were electroporated into E. faecalis JH2-2 and the MICs of vancomycin and teicoplanin were determined for each recombinant strain before and following exposure to sublethal concentrations of vancomycin. The vanHAX clusters from P. thiaminolyticus and P. apiarius conferred high-level vancomycin resistance (MIC > or = 125 mg/L) in E. faecalis JH2-2. In contrast, cloning of the vanHAX cluster from A. coloradensis did not result in a significant increase of vancomycin resistance (MIC = 0.7 mg/L). Resistance to vancomycin was not observed after cloning the complete vanA(PT) operon from P. thiaminolyticus (MIC = 2 mg/L), but this recombinant rapidly adapted to high concentrations of vancomycin (MIC = 500 mg/L) following exposure to sub-lethal concentrations of this antibiotic. The results showed that vanA(PT) in P. thiaminolyticus is a possible ancestor of vanA-mediated glycopeptide resistance in enterococci. Experimental evidence supported the hypothesis that enterococci did not acquire glycopeptide resistance directly from glycopeptide-producing organisms such as A. coloradensis.
Divia, A. R.; Nair, Mali G.; Varughese, Jolly Mary; Kurien, Shobha
2018-01-01
Background: Endodontic infections require effective removal of microorganisms from the root canal system for long-term prognosis. Sodium hypochlorite (NaOCl) is the most effective irrigant currently, but potential complications due to its toxicity warrant search for newer alternatives. In this study, the antimicrobial efficacy of Morinda citrifolia (MC), green tea polyphenols and Triphala was compared with 5% NaOCl against Enterococcus faecalis. Materials and Methods: In this in vitro study sixty extracted human premolar teeth were infected with E. faecalis, a Group D Streptococci for 48 h. At the end of 48 h, the vital bacterial population was assessed by counting the number of colony-forming units (CFUs) on blood agar plate. Samples were divided into five groups; Group I (distilled water), Group II (NaOCl), Group III (MC), Group IV (Triphala), and Group V (green tea polyphenols). The samples were irrigated with individual test agents and CFUs were recorded. Kruskal–Wallis test was performed as the parametric test to compare different groups. Student's t-test was used to compare mean values between groups before and after treatment with test agents (P < 0.001). Results: NaOCl was the most effective irrigant the elimination of E. faecalis reinforcing its role as the best irrigant available currently and a gold standard for comparison of the experimental groups. Its antibacterial effect was comparable to Triphala. Among the experimental groups, MC showed the minimum antibacterial effect. Conclusion: The use of herbal alternatives as a root canal irrigant might prove to be advantageous considering the several undesirable characteristics of NaOCl. PMID:29576775
Du, Tianfeng; Wang, Zhejun; Shen, Ya; Ma, Jingzhi; Cao, Yingguang; Haapasalo, Markus
2015-08-01
The present study aimed to evaluate the antibacterial effect of the combined use of sodium hypochlorite (NaOCl) and root canal sealers on Enterococcus faecalis biofilms using a dentin infection model. Cells of E. faecalis were introduced into the dentinal tubules by centrifugation and incubated in brain-heart infusion for 3 weeks. The biofilms in dentin were first subjected to 5% NaOCl or sterile water for 10 minutes followed by an equal thickness of AH Plus (Dentsply International Inc, York, PA), Endosequence BC Sealer (Brasseler USA, Savannah, GA), or MTA Fillapex (Angelus Indústria de Produtos Odontológicos S/A, Londrina, Brazil) placed on the root canal wall of the dentin specimens for 7, 30, and 60 days. Gutta-percha and water were used in a similar manner as controls. The proportions of dead and live bacteria inside the dentinal tubules were assessed by confocal laser scanning microscopy and viability staining. The combined use of NaOCl and sealers (30 and 60 days) killed significantly more bacteria than NaOCl or sealers alone (P < .05). NaOCl + MTA Fillapex was the most effective antibacterial combination by killing 83% bacteria in dentin tubules in 60 days. Thirty and 60 days of exposure to the sealers resulted in significantly more dead bacteria in dentin biofilms than 7-day exposures (P < .05). The placement of root canal sealer after NaOCl treatment enhanced antibacterial effects against E. faecalis in the dentinal tubules. Little additional effect was obtained after 30 days of exposure to sealers. Copyright © 2015 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Antibacterial Efficacy of Super-Oxidized Water on Enterococcus faecalis Biofilms in Root Canal
Zan, Recai; Alacam, Tayfun; Hubbezoglu, Ihsan; Tunc, Tutku; Sumer, Zeynep; Alici, Oguzhan
2016-01-01
Background The success of endodontic treatment depends on a few crucial factors. One of these factors is the complete chemomechanic preparation of root canal against various bacteria. In particular, the effect of resistant bacteria may cause intense pain with flare-up and formation of periapical lesions. Therefore, the strong effect of irrigants plays an important role in terms of the complete elimination of these bacteria to achieve long-term successful treatment. Objectives The aim of this study was to investigate the antibacterial effects of super-oxidized water (SPO) in root canals infected with Enterococcus faecalis biofilms. Methods One hundred twenty single-root, premolar teeth were selected. Initially, the teeth were prepared and then disinfected. E. faecalis were inoculated and kept at 37°C for 24 hours in the root canals. The re-inoculation procedure was repeated on the first, fourth, seventh, and tenth days. The infected root canals were divided into one negative (saline) and one positive (sodium hypochlorite) control group and four experimental groups (super-oxidized water: 1, 2, 3, or 5 minutes) (n = 20). Paper points were placed in the root canals to control and evaluate the biofilm formation. Biofilms were counted on blood agar plates, and data was evaluated and statistically analyzed using one-way ANOVA and Tukey’s test. Results Although sodium hypochlorite (NaOCl) showed no statistically significant difference when compared with three and five minutes of SPO irrigation (P > 0.05), NaOCl showed statistically significant differences among all other groups (P < 0.05). Conclusions Super-oxidized water indicated a remarkable and similar bactericidal effect to that of traditional NaOCl against E. faecalis biofilms. In terms of successful endodontic treatment approaches, super-oxidized water may be used as an effective irrigation solution in clinics. PMID:27800142
Enterococcus faecalis phosphomevalonate kinase
Doun, Stephanie S.; Burgner, John W.; Briggs, Scott D.; Rodwell, Victor W.
2005-01-01
The six enzymes of the mevalonate pathway of isopentenyl diphosphate biosynthesis represent potential for addressing a pressing human health concern, the development of antibiotics against resistant strains of the Gram-positive streptococci. We previously characterized the first four of the mevalonate pathway enzymes of Enterococcus faecalis, and here characterize the fifth, phosphomevalonate kinase (E.C. 2.7.4.2). E. faecalis genomic DNA and the polymerase chain reaction were used to clone DNA thought to encode phosphomevalonate kinase into pET28b(+). Double-stranded DNA sequencing verified the sequence of the recombinant gene. The encoded N-terminal hexahistidine-tagged protein was expressed in Escherichia coli with induction by isopropylthiogalactoside and purified by Ni++ affinity chromatography, yield 20 mg protein per liter. Analysis of the purified protein by MALDI-TOF mass spectrometry established it as E. faecalis phosphomevalonate kinase. Analytical ultracentrifugation revealed that the kinase exists in solution primarily as a dimer. Assay for phosphomevalonate kinase activity used pyruvate kinase and lactate dehydrogenase to couple the formation of ADP to the oxidation of NADH. Optimal activity occurred at pH 8.0 and at 37°C. The activation energy was ~5.6 kcal/mol. Activity with Mn++, the preferred cation, was optimal at about 4 mM. Relative rates using different phosphoryl donors were 100 (ATP), 3.6 (GTP), 1.6 (TTP), and 0.4 (CTP). Km values were 0.17 mM for ATP and 0.19 mM for (R,S)-5-phosphomevalonate. The specific activity of the purified enzyme was 3.9 μmol substrate converted per minute per milligram protein. Applications to an immobilized enzyme bioreactor and to drug screening and design are discussed. PMID:15802646
Amachawadi, R. G.; Shelton, N. W.; Shi, X.; Vinasco, J.; Dritz, S. S.; Tokach, M. D.; Nelssen, J. L.; Scott, H. M.; Nagaraja, T. G.
2011-01-01
Copper, as copper sulfate, is increasingly used as an alternative to in-feed antibiotics for growth promotion in weaned piglets. Acquired copper resistance, conferred by a plasmid-borne, transferable copper resistance (tcrB) gene, has been reported in Enterococcus faecium and E. faecalis. A longitudinal field study was undertaken to determine the relationship between copper supplementation and the prevalence of tcrB-positive enterococci in piglets. The study was done with weaned piglets, housed in 10 pens with 6 piglets per pen, fed diets supplemented with a normal (16.5 ppm; control) or an elevated (125 ppm) level of copper. Fecal samples were randomly collected from three piglets per pen on days 0, 14, 28, and 42 and plated on M-Enterococcus agar, and three enterococcal isolates were obtained from each sample. The overall prevalence of tcrB-positive enterococci was 21.1% (38/180) in piglets fed elevated copper and 2.8% (5/180) in the control. Among the 43 tcrB-positive isolates, 35 were E. faecium and 8 were E. faecalis. The mean MICs of copper for tcrB-negative and tcrB-positive enterococci were 6.2 and 22.2 mM, respectively. The restriction digestion of the genomic DNA of E. faecium or E. faecalis with S1 nuclease yielded a band of ∼194-kbp size to which both tcrB and the erm(B) gene probes hybridized. A conjugation assay demonstrated cotransfer of tcrB and erm(B) genes between E. faecium and E. faecalis strains. The higher prevalence of tcrB-positive enterococci in piglets fed elevated copper compared to that in piglets fed normal copper suggests that supplementation of copper in swine diets selected for resistance. PMID:21705534
Functional analysis of AtlA, the major N-acetylglucosaminidase of Enterococcus faecalis.
Eckert, Catherine; Lecerf, Maxime; Dubost, Lionel; Arthur, Michel; Mesnage, Stéphane
2006-12-01
The major peptidoglycan hydrolase of Enterococcus faecalis, AtlA, has been identified, but its enzyme activity remains unknown. We have used tandem mass spectrometry analysis of peptidoglycan hydrolysis products obtained using the purified protein to show that AtlA is an N-acetylglucosaminidase. To gain insight into the regulation of its enzyme activity, the three domains of AtlA were purified alone or in combination following expression of truncated forms of the atlA gene in Escherichia coli or partial digestion of AtlA by proteinase K. The central domain of AtlA was catalytically active, but its activity was more than two orders of magnitude lower than that of the complete protein. Partial proteolysis of AtlA was detected in vivo: zymograms of E. faecalis extracts revealed two catalytically active protein bands of 62 and 72 kDa that were both absent in extracts from an atlA null mutant. Limited digestion of AtlA by proteinase K in vitro suggested that the proteolytic cleavage of AtlA in E. faecalis extracts corresponds to the truncation of the N-terminal domain, which is rich in threonine and glutamic acid residues. We show that the truncation of the N-terminal domain from recombinant AtlA has no impact on enzyme activity. The C-terminal domain of the protein, which contains six LysM modules bound to highly purified peptidoglycan, was required for optimal enzyme activity. These data indicate that AtlA is not produced as a proenzyme and that control of the AtlA glucosaminidase activity is likely to occur at the level of LysM-mediated binding to peptidoglycan.
Mesnage, Stéphane; Chau, Françoise; Dubost, Lionel; Arthur, Michel
2008-07-11
Identification of the full complement of peptidoglycan hydrolases detected by zymogram in Enterococcus faecalis extracts led to the characterization of two novel hydrolases that we named AtlB and AtlC. Both enzymes have a similar modular organization comprising a central catalytic domain fused to two LysM peptidoglycan-binding modules. AtlB and AtlC displayed N-acetylmuramidase activity, as demonstrated by tandem mass spectrometry analyses of peptidoglycan fragments generated by the purified enzymes. The genes encoding AtlB and AtlC were deleted either alone or in combination with the gene encoding AtlA, a previously described N-acetylglucosaminidase. No autolytic activity was detected in the triple mutant indicating that AtlA, AtlB, and AtlC account for the major hydrolytic activities in E. faecalis. Analysis of cell size distribution by flow cytometry showed that deletion of atlA resulted in the formation of long chains. Thus, AtlA digests the septum and is required for cell separation after cell division. We found that AtlB could act as a surrogate for AtlA, although the enzyme was less efficient at septum digestion. Deletion of atlC had no impact on cell morphology. Labeling of the peptidoglycan with N-[14C]acetylglucosamine revealed an unusually slow turnover as compared with model organisms, almost completely dependent upon the combined activities of AtlA and AtlB. In contrast to atlA, the atlB and atlC genes are located in putative prophages. Because AtlB and AtlC were produced in the absence of cell lysis or production of phage progeny, these enzymes may have been hijacked by E. faecalis to contribute to peptidoglycan metabolism.
Antimicrobial resistance status of Enterococcus from Australian cattle populations at slaughter
McMillan, Kate E.; Duffy, Lesley L.; Fegan, Narelle; Jordan, David; Mellor, Glen E.
2017-01-01
Antimicrobial agents are used in cattle production systems for the prevention and control of bacterial associated diseases. A consequence of their use is the potential development of antimicrobial resistance (AMR). Enterococcus faecium and Enterococcus faecalis that are resistant to antimicrobials are of increased concern to public health officials throughout the world as they may compromise the ability of various treatment regimens to control disease and infection in human medicine. Australia is a major exporter of beef; however it does not have an ongoing surveillance system for AMR in cattle or foods derived from these animals. This study examined 910 beef cattle, 290 dairy cattle and 300 veal calf faecal samples collected at slaughter for the presence of enterococci. Enterococcus were isolated from 805 (88.5%) beef cattle faeces, 244 (84.1%) dairy cattle faeces and 247 (82.3%) veal calf faeces with a total of 800 enterococci subsequently selected for AMR testing. The results of AMR testing identified high levels of resistance to antimicrobials that are not critically or highly important to human medicine with resistance to flavomycin (80.2%) and lincomycin (85.4–94.2%) routinely observed. Conversely, resistance to antibiotics considered critically or highly important to human medicine such as tigecycline, daptomycin, vancomycin and linezolid was not present in this study. There is minimal evidence that Australian cattle production practices are responsible for disproportionate contributions to AMR development and in general resistance to antimicrobials of critical and high importance in human medicine was low regardless of the isolate source. The low level of antimicrobial resistance in Enterococcus from Australian cattle is likely to result from comprehensive controls around the use of antimicrobials in food-production animals in Australia. Nevertheless, continued monitoring of the effects of all antimicrobial use is required to support Australia’s reputation as a supplier of safe and healthy food. PMID:28542602
Antimicrobial resistance status of Enterococcus from Australian cattle populations at slaughter.
Barlow, Robert S; McMillan, Kate E; Duffy, Lesley L; Fegan, Narelle; Jordan, David; Mellor, Glen E
2017-01-01
Antimicrobial agents are used in cattle production systems for the prevention and control of bacterial associated diseases. A consequence of their use is the potential development of antimicrobial resistance (AMR). Enterococcus faecium and Enterococcus faecalis that are resistant to antimicrobials are of increased concern to public health officials throughout the world as they may compromise the ability of various treatment regimens to control disease and infection in human medicine. Australia is a major exporter of beef; however it does not have an ongoing surveillance system for AMR in cattle or foods derived from these animals. This study examined 910 beef cattle, 290 dairy cattle and 300 veal calf faecal samples collected at slaughter for the presence of enterococci. Enterococcus were isolated from 805 (88.5%) beef cattle faeces, 244 (84.1%) dairy cattle faeces and 247 (82.3%) veal calf faeces with a total of 800 enterococci subsequently selected for AMR testing. The results of AMR testing identified high levels of resistance to antimicrobials that are not critically or highly important to human medicine with resistance to flavomycin (80.2%) and lincomycin (85.4-94.2%) routinely observed. Conversely, resistance to antibiotics considered critically or highly important to human medicine such as tigecycline, daptomycin, vancomycin and linezolid was not present in this study. There is minimal evidence that Australian cattle production practices are responsible for disproportionate contributions to AMR development and in general resistance to antimicrobials of critical and high importance in human medicine was low regardless of the isolate source. The low level of antimicrobial resistance in Enterococcus from Australian cattle is likely to result from comprehensive controls around the use of antimicrobials in food-production animals in Australia. Nevertheless, continued monitoring of the effects of all antimicrobial use is required to support Australia's reputation as a supplier of safe and healthy food.
Ryu, Hodon; Henson, Michael; Elk, Michael; Toledo-Hernandez, Carlos; Griffith, John; Blackwood, Denene; Noble, Rachel; Gourmelon, Michèle; Glassmeyer, Susan
2013-01-01
The detection of environmental enterococci has been determined primarily by using culture-based techniques that might exclude some enterococcal species as well as those that are nonculturable. To address this, the relative abundances of enterococci were examined by challenging fecal and water samples against a currently available genus-specific assay (Entero1). To determine the diversity of enterococcal species, 16S rRNA gene-based group-specific quantitative PCR (qPCR) assays were developed and evaluated against eight of the most common environmental enterococcal species. Partial 16S rRNA gene sequences of 439 presumptive environmental enterococcal strains were analyzed to study further the diversity of enterococci and to confirm the specificities of group-specific assays. The group-specific qPCR assays showed relatively high amplification rates with targeted species (>98%), although some assays cross-amplified with nontargeted species (1.3 to 6.5%). The results with the group-specific assays also showed that different enterococcal species co-occurred in most fecal samples. The most abundant enterococci in water and fecal samples were Enterococcus faecalis and Enterococcus faecium, although we identified more water isolates as Enterococcus casseliflavus than as any of the other species. The prevalence of the Entero1 marker was in agreement with the combined number of positive signals determined by the group-specific assays in most fecal samples, except in gull feces. On the other hand, the number of group-specific assay signals was lower in all water samples tested, suggesting that other enterococcal species are present in these samples. While the results highlight the value of genus- and group-specific assays for detecting the major enterococcal groups in environmental water samples, additional studies are needed to determine further the diversity, distributions, and relative abundances of all enterococcal species found in water. PMID:23087032
Campos, Joana; Mourão, Joana; Pestana, Nazaré; Peixe, Luísa; Novais, Carla; Antunes, Patrícia
2013-09-16
The increase demand for fresh vegetables is causing an expansion of the market for minimally processed vegetables along with new recognized food safety problems. To gain further insight on this topic we analyzed the microbiological quality of Portuguese ready-to-eat salads (RTS) and their role in the spread of bacteria carrying acquired antibiotic resistance genes, food products scarcely considered in surveillance studies. A total of 50 RTS (7 brands; split or mixed leaves, carrot, corn) were collected in 5 national supermarket chains in Porto region (2010). They were tested for aerobic mesophilic counts, coliforms and Escherichia coli counts as well as for the presence of Salmonella and Listeria monocytogenes. Samples were also plated in different selective media with/without antibiotics before and after enrichment. The E. coli, other coliforms and Enterococcus recovered were characterized for antibiotic resistance profiles and clonality with phenotypic and genetic approaches. A high number of RTS presented poor microbiological quality (86%--aerobic mesophilic counts, 74%--coliforms, 4%--E. coli), despite the absence of screened pathogens. In addition, a high diversity of bacteria (species and clones) and antibiotic resistance backgrounds (phenotypes and genotypes) were observed, mostly with enrichment and antibiotic selective media. E. coli was detected in 13 samples (n=78; all types and 4 brands; phylogenetic groups A, B1 and D; none STEC) with resistance to tetracycline [72%; tet(A) and/or tet(B)], streptomycin (58%; aadA and/or strA-strB), sulfamethoxazole (50%; sul1 and/or sul2), trimethoprim (50%; dfrA1 or dfrA12), ampicillin (49%; blaTEM), nalidixic acid (36%), ciprofloxacin (5%) or chloramphenicol (3%; catA). E. coli clones, including the widespread group D/ST69, were detected in different samples from the same brand or different brands pointing out to a potential cross-contamination. Other clinically relevant resistance genes were detected in 2 Raoultella terrigena carrying a bla(SHV-2) and 1 Citrobacter freundii isolate with a qnrB9 gene. Among Enterococcus (n=108; 35 samples; Enterococcus casseliflavus--40, Enterococcus faecalis--20, Enterococcus faecium--18, Enterococcus hirae--9, Enterococcus gallinarum--5, and Enterococcus spp.--16) resistance was detected for tetracyclines [6%; tet(M) and/or tet(L)], erythromycin [3%; erm(B)], nitrofurantoin (1%) or ciprofloxacin (1%). The present study places ready-to-eat salads within the spectrum of ecological niches that may be vehicles for antibiotic resistance bacteria/genes with clinical interest (e.g. E. coli-D-ST69; bla(SHV-2)) and these findings are worthy of attention as their spread to humans by ingestion cannot be dismissed. © 2013 Elsevier B.V. All rights reserved.
Detection of vancomycin resistances in enterococci within 3 1/2 hours
NASA Astrophysics Data System (ADS)
Schröder, U. -Ch.; Beleites, C.; Assmann, C.; Glaser, U.; Hübner, U.; Pfister, W.; Fritzsche, W.; Popp, J.; Neugebauer, U.
2015-02-01
Vancomycin resistant enterococci (VRE) constitute a challenging problem in health care institutions worldwide. Novel methods to rapidly identify resistances are highly required to ensure an early start of tailored therapy and to prevent further spread of the bacteria. Here, a spectroscopy-based rapid test is presented that reveals resistances of enterococci towards vancomycin within 3.5 hours. Without any specific knowledge on the strain, VRE can be recognized with high accuracy in two different enterococci species. By means of dielectrophoresis, bacteria are directly captured from dilute suspensions, making sample preparation very easy. Raman spectroscopic analysis of the trapped bacteria over a time span of two hours in absence and presence of antibiotics reveals characteristic differences in the molecular response of sensitive as well as resistant Enterococcus faecalis and Enterococcus faecium. Furthermore, the spectroscopic fingerprints provide an indication on the mechanisms of induced resistance in VRE.
Licata, M E; Albanese, A; Campisi, G; Geraci, D M; Russo, R; Gallina, G
2015-02-01
Some lasers have demonstrated to provide effective disinfection when used as adjunctive device to the conventional treatment. The aim of this in vitro study was to determine the effectiveness of the erbium, chromium:yttrium scandium gallium garnet (Er, Cr:YSGG) laser by measuring its bactericidal effect inside the root canal experimentally colonized with Enterococcus faecalis. The laser was tested at different irradiation times (30 and 60 s) and energy of impulses (75 and 25 mJ). A total of 52 single-rooted extracted human teeth were endodontically prepared with rotary instrumentation. All were sterilized and inoculated with a suspension of E. faecalis (105 bacteria/ml). The teeth were randomized into three treatment (group 1, group 2, and group 3) and one control groups. In all groups, teeth were chemically irrigated with 5.25% sodium hypochlorite and 17% ethylenediaminetetraacetic acid. Groups 1 and 2 were also irradiated at 30 and 60 s, respectively, with an Er, Cr:YSGG laser at 75 mJ. Teeth of group 3 were treated with laser for 60 s at 25 mJ. Samples were processed to detect the presence of E. faecalis. For all groups, a bactericidal effect was observed. The use of laser at 75 mJ with an irradiation time of 30 and 60 s eliminated a percentage of 92.3 and 100% of E. faecalis, respectively. In the control group, a reduction of 92.3% was observed. Lower percentage of reduction (46.1%) was obtained in teeth treated with laser at 25 mJ for 60 s. No statistical differences were observed between the groups (P = 0.543, Fisher's exact test). The results indicated a bactericidal effect of Er, Cr:YSGG laser irradiation at the settings used in this study. The highest bactericidal effect of this laser was observed at 60 s of irradiation time, using an energy pulse of 75 mJ.
Proteomic Investigation of the Response of Enterococcus faecalis V583 when Cultivated in Urine
Arntzen, Magnus Øverlie; Karlskås, Ingrid Lea; Skaugen, Morten; Eijsink, Vincent G. H.; Mathiesen, Geir
2015-01-01
Enterococcus faecalis is a robust bacterium, which is able to survive in and adapt to hostile environments such as the urinary tract and bladder. In this label-free quantitative proteomic study based on MaxQuant LFQ algorithms, we identified 127 proteins present in the secretome of the clinical vancomycin-resistant isolate E. faecalis V583 and we compared proteins secreted in the initial phase of cultivation in urine with the secretome during cultivation in standard laboratory medium, 2xYT. Of the 54 identified proteins predicted to be secreted, six were exclusively found after cultivation in urine including the virulence factor EfaA (“endocarditis specific antigen”) and its homologue EF0577 (“adhesion lipoprotein”). These two proteins are both involved in manganese transport, known to be an important determinant of colonization and infection, and may additionally function as adhesins. Other detected urine-specific proteins are involved in peptide transport (EF0063 and EF3106) and protease inhibition (EF3054). In addition, we found an uncharacterized protein (EF0764), which had not previously been linked to the adaptation of V583 to a urine environment, and which is unique to E. faecalis. Proteins found in both environments included a histone-like protein, EF1550, that was up-regulated during cultivation in urine and that has a homologue in streptococci (HlpA) known to be involved in bacterial adhesion to host cells. Up-regulated secreted proteins included autolysins. These results from secretome analyses are largely compatible with previously published data from transcriptomics studies. All in all, the present data indicate that transport, in particular metal transport, adhesion, cell wall remodelling and the unknown function carried out by the unique EF0764 are important for enterococcal adaptation to the urine environment. These results provide a basis for a more targeted exploration of novel proteins involved in the adaptability and pathogenicity of E. faecalis. PMID:25915650
Proteomic Investigation of the Response of Enterococcus faecalis V583 when Cultivated in Urine.
Arntzen, Magnus Øverlie; Karlskås, Ingrid Lea; Skaugen, Morten; Eijsink, Vincent G H; Mathiesen, Geir
2015-01-01
Enterococcus faecalis is a robust bacterium, which is able to survive in and adapt to hostile environments such as the urinary tract and bladder. In this label-free quantitative proteomic study based on MaxQuant LFQ algorithms, we identified 127 proteins present in the secretome of the clinical vancomycin-resistant isolate E. faecalis V583 and we compared proteins secreted in the initial phase of cultivation in urine with the secretome during cultivation in standard laboratory medium, 2xYT. Of the 54 identified proteins predicted to be secreted, six were exclusively found after cultivation in urine including the virulence factor EfaA ("endocarditis specific antigen") and its homologue EF0577 ("adhesion lipoprotein"). These two proteins are both involved in manganese transport, known to be an important determinant of colonization and infection, and may additionally function as adhesins. Other detected urine-specific proteins are involved in peptide transport (EF0063 and EF3106) and protease inhibition (EF3054). In addition, we found an uncharacterized protein (EF0764), which had not previously been linked to the adaptation of V583 to a urine environment, and which is unique to E. faecalis. Proteins found in both environments included a histone-like protein, EF1550, that was up-regulated during cultivation in urine and that has a homologue in streptococci (HlpA) known to be involved in bacterial adhesion to host cells. Up-regulated secreted proteins included autolysins. These results from secretome analyses are largely compatible with previously published data from transcriptomics studies. All in all, the present data indicate that transport, in particular metal transport, adhesion, cell wall remodelling and the unknown function carried out by the unique EF0764 are important for enterococcal adaptation to the urine environment. These results provide a basis for a more targeted exploration of novel proteins involved in the adaptability and pathogenicity of E. faecalis.
Asnaashari, Mohammad; Mojahedi, Seyed Masoud; Asadi, Zahra; Azari-Marhabi, Saranaz; Maleki, Alireza
2016-03-01
Failure of endodontic treatment is usually due to an inadequate disinfection of the root canal system. Enterococcus faecalis has been widely used as a valuable microbiological marker for in-vitro studies because of its ability to colonize in a biofilm like style in root canals, invading dentinal tubules and resistance to some endodontic treatments. The aim of this study was to investigate the antibacterial effects of two methods of photodynamic therapy using a light emitting diode lamp (LED lamp, 630 nm) and a diode laser (810 nm) on E. faecalis biofilms in anterior extracted human teeth. Fifty six single-rooted extracted teeth were used in this study. After routine root canal cleansing, shaping and sterilization, the teeth were incubated with E. faecalis for a period of two weeks. Teeth were then divided into two experimental groups (nu=23) and two control groups (nu=5). Teeth in one experimental group were exposed to a diode laser (810 nm), and in the other group samples were exposed to a LED lamp (630 nm). Intracanal bacterial sampling was done, and bacterial survival rate was then evaluated for each group. The Colony Forming Unit (CFU) in LED group (log10 CFUs=4.88±0.82) was significantly lower than the laser group (log CFUs=5.49±0.71) (p value=0.021). CFUs in positive control group (Log10 CFUs=10.96±0.44) were significantly higher than the treatment group (p˂0.001). No bacterial colony was found in negative control group. The results of this research show that photodynamic therapy could be an effective supplement in root canal disinfection. PDT using LED lamp was more effective than diode laser 810 nm in reducing CFUs of E. faecalis in human teeth. Copyright © 2015 Elsevier B.V. All rights reserved.
Doi, Yuki
2015-03-01
Biodiesel waste is a by-product of the biodiesel production process that contains a large amount of crude glycerol. To reuse the crude glycerol, a novel bioconversion process using Enterococcus faecalis was developed through physiological studies. The E. faecalis strain W11 could use biodiesel waste as a carbon source, although cell growth was significantly inhibited by the oil component in the biodiesel waste, which decreased the cellular NADH/NAD(+) ratio and then induced oxidative stress to cells. When W11 was cultured with glycerol, the maximum culture density (optical density at 600 nm [OD600]) under anaerobic conditions was decreased 8-fold by the oil component compared with that under aerobic conditions. Furthermore, W11 cultured with dihydroxyacetone (DHA) could show slight or no growth in the presence of the oil component with or without oxygen. These results indicated that the DHA kinase reaction in the glycerol metabolic pathway was sensitive to the oil component as an oxidant. The lactate dehydrogenase (Ldh) activity of W11 during anaerobic glycerol metabolism was 4.1-fold lower than that during aerobic glycerol metabolism, which was one of the causes of low l-lactate productivity. The E. faecalis pflB gene disruptant (Δpfl mutant) expressing the ldhL1LP gene produced 300 mM l-lactate from glycerol/crude glycerol with a yield of >99% within 48 h and reached a maximum productivity of 18 mM h(-1) (1.6 g liter(-1) h(-1)). Thus, our study demonstrates that metabolically engineered E. faecalis can convert crude glycerol to l-lactate at high conversion efficiency and provides critical information on the recycling process for biodiesel waste. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
Gibson, Kristen E; Schwab, Kellogg J
2011-01-01
Tangential-flow ultrafiltration was optimized for the recovery of Escherichia coli, Enterococcus faecalis, Clostridium perfringens spores, bacteriophages MS2 and PRD1, murine norovirus, and poliovirus seeded into 100-liter surface water (SW) and drinking water (DW) samples. SW and DW collected from two drinking water treatment plants were then evaluated for human enteric viruses.
Two streptothricins with a cis-streptolidine lactam moiety from Streptomyces sp. I08A 1776.
Gan, Maoluo; Guan, Yan; Zheng, Xudong; Yang, Yanhui; Hao, Xueqin; Liu, Yishuang; Yu, Liyan; Xiao, Chunling
2012-10-01
Two unique cis-fused streptothricins (1 and 2) were isolated from the culture broth of Streptomyces sp. I08A 1776. Their structures were determined by MS, CD, and 1D and 2D NMR spectroscopic data analysis. Compound 2 showed weak antibacterial activities against Bacillus subtilis and Enterococcus faecalis with MIC values of 32 and 64 μg ml(-1), respectively.
Enterococcus faecalis causing delayed spondylodiscitis in a case with retained intraspinal bullet.
Aiyer, Siddharth N; Shetty, Ajoy Prasad; Kanna, Rishi; Reddy, Srikanth; Rajasekaran, Shanmuganathan
2016-12-01
Delayed presentations have been reported following gunshot wounds (GSW) with retained intraspinal bullets due to migration of projectile or lead intoxication. We report on the rare occurrence of delayed pyogenic spondylodiscitis and neurological dysfunction following injury from low velocity GSW to the spine with a retained projectile. A 55-year-old male presented 4 months following GSW to the abdomen which resulted in colonic injury and L5 fracture. The patient was treated initially with ileo-transverse anastomosis, antibiotics, without retrieval of the bullet. He developed low back pain, claudication 4 months following GSW and investigations suggested a pyogenic spondylodiscitis at L5-S1. The patient was treated with surgical debridement of infective focus and stabilisation with definitive fusion being performed after an interval of 14 days. The biopsy of the lesion confirmed findings of spondylodiscitis and the culture isolated Enterococcus faecalis species. The patient was treated with antibiotics as per sensitivity and made an uneventful recovery over 4 weeks. The follow-up radiographs showed satisfactory healing at final follow up of 24 months. GSW with colonic perforation have higher incidence of infective complications however majority to these occur in the early postoperative period. This case report demonstrates the possibility of late onset presentation due to spinal infection occurring following colonic perforation with retained intraspinal bullet.
Bhardwaj, Anuj; Ballal, Suma; Velmurugan, Natanasabapathy
2012-01-01
Aim: A comparative evaluation of the antimicrobial activity of natural extracts of Morinda citrifolia, papain, and aloe vera (all in gel formulations), 2% chlorhexidine gel and calcium hydroxide, against Enterococcus faecalis—an in vitro study. Materials and Methods: The antimicrobial efficacy was assessed in vitro using dentin shavings collected at 2 depths of 200 and 400 μm. The total colony forming units at the end of 1, 3, and 5 days were assessed. Results: The overall percentage inhibition of bacterial growth (200 and 400 μm depth) was 100% with chlorhexidine gel. This was followed by M. citrifolia gel (86.02%), which showed better antimicrobial efficacy as compared with aloe vera gel (78.9%), papain gel (67.3%), and calcium hydroxide (64.3%). There was no statistical difference between data at 200 and 400 μm depth. Conclusion: Chlorhexidine gel showed the maximum antimicrobial activity against E. faecalis, whereas calcium hydroxide showed the least. Among the natural intracanal medicaments, M. citrifolia gel consistently exhibited good inhibition up to the 5th day followed by aloe vera gel and papain gel. PMID:22876022
NASA Astrophysics Data System (ADS)
Piontek, Marlena; Czyżewska, Wanda
2017-03-01
The issues presented in this study concern a very important problem of the occurrence of cyanobacterial blooms in surface water used for water supply purposes. The objective of this study was to analyze the occurrence of cyanotoxic risk in the catchment area of the Obrzyca River (including Sławskie lake which is the beginning of the river), which is a source of drinking water for the inhabitants of Zielona Góra. In order to evaluate toxicity of cyanobacterial bloom it was conducted toxicological testing using aquatic invertebrates (Daphnia magna, Dugesia tigrina) and heterotrophic bacteria (Escherichia coli, Enterococcus faecalis, Pseudomonas fluorescens). Test samples were collected from May to October, 2012. The most toxic was a sample collected from Lake Sławskie on 20th October when cyanobacteria bloom with a predominance of Microcystis aeruginosa occurred and the amount of microcystins was the largest. The methanol extract of the sample was toxic only above a concentration of 6·103 mg·dm-3. The lethal concentration (48-h LC 50) for Daphnia magna was 3.09·103 and for Dugesia tigrina (240-h LC 50) 1.51·103 mg·dm-3 of microcystins (MC-LR, MC-YR and MC-RR). The same extract stimulated growth of Escherichia coli and Enterococcus faecalis cells.
Dewaele, I; Ducatelle, R; Herman, L; Heyndrickx, M; De Reu, K
2011-06-01
The present study evaluated Escherichia coli, Enterococcus faecalis, and Enterococcus hirae as potential indicator organisms for the possible Salmonella Enteritidis (SE) presence in layer farms after cleaning and disinfection by comparing their susceptibility to disinfection. A quantitative suspension disinfection test according to European Standard EN1656 was performed using disinfection products CID20 and Virocid (both from CID Lines, Ieper, Belgium). In a preliminary test, the sensitivity to both disinfection products was compared between ATCC strains of SE, E. coli, En. faecalis, and En. hirae. The sensitivity of SE to disinfection was most comparable to that of E. coli. A second disinfection test compared the elimination of E. coli to SE ATCC strains as well as field strains. Results showed no significant effect regarding the strain (P > 0.05 for CID20 and Virocid), meaning that no difference was detected in sensitivity toward disinfection. When comparing the sensitivity in general at species level for all concentrations of disinfectant used, no significant difference was found between E. coli and SE in sensitivity to Virocid (P > 0.05). In conclusion, because of its similar response to disinfection in a suspension disinfection test, E. coli could be used as an indicator for possible Salmonella presence after cleaning and disinfection.
The first report of the vanC₁ gene in Enterococcus faecium isolated from a human clinical specimen.
Sun, Mingyue; Wang, Yue; Chen, Zhongju; Zhu, Xuhui; Tian, Lei; Sun, Ziyong
2014-09-01
The vanC₁ gene, which is chromosomally located, confers resistance to vancomycin and serves as a species marker for Enterococcus gallinarum. Enterococcus faecium TJ4031 was isolated from a blood culture and harbours the vanC₁gene. Polymerase chain reaction (PCR) assays were performed to detect vanXYc and vanTc genes. Only the vanXYc gene was found in the E. faecium TJ4031 isolate. The minimum inhibitory concentrations of vancomycin and teicoplanin were 2 µg/mL and 1 µg/mL, respectively. Real-time reverse transcription-PCR results revealed that the vanC₁ and vanXYc genes were not expressed. Pulsed-field gel electrophoresis and southern hybridisation results showed that the vanC₁ gene was encoded in the chromosome. E. faecalis isolated from animals has been reported to harbour vanC₁gene. However, this study is the first to report the presence of the vanC₁gene in E. faecium of human origin. Additionally, our research showed the vanC₁gene cannot serve as a species-specific gene of E. gallinarum and that it is able to be transferred between bacteria. Although the resistance marker is not expressed in the strain, our results showed that E. faecium could acquire the vanC₁gene from different species.
A 1.5 hour procedure for identification of Enterococcus Species directly from blood cultures.
Morgan, Margie A; Marlowe, Elizabeth; Novak-Weekly, Susan; Miller, J M; Painter, T M; Salimnia, Hossein; Crystal, Benjamin
2011-02-10
Enterococci are a common cause of bacteremia with E. faecalis being the predominant species followed by E. faecium. Because resistance to ampicillin and vancomycin in E. faecalis is still uncommon compared to resistance in E. faecium, the development of rapid tests allowing differentiation between enterococcal species is important for appropriate therapy and resistance surveillance. The E. faecalis OE PNA FISH assay (AdvanDx, Woburn, MA) uses species-specific peptide nucleic acid (PNA) probes in a fluorescence in situ hybridization format and offers a time to results of 1.5 hours and the potential of providing important information for species-specific treatment. Multicenter studies were performed to assess the performance of the 1.5 hour E. faecalis/OE PNA FISH procedure compared to the original 2.5 hour assay procedure and to standard bacteriology methods for the identification of enterococci directly from a positive blood culture bottle.
A 1.5 Hour Procedure for Identification of Enterococcus Species Directly from Blood Cultures
Morgan, Margie A.; Marlowe, Elizabeth; Novak-Weekly, Susan; Miller, J.M.; Painter, T.M.; Salimnia, Hossein; Crystal, Benjamin
2011-01-01
Enterococci are a common cause of bacteremia with E. faecalis being the predominant species followed by E. faecium. Because resistance to ampicillin and vancomycin in E. faecalis is still uncommon compared to resistance in E. faecium, the development of rapid tests allowing differentiation between enterococcal species is important for appropriate therapy and resistance surveillance. The E. faecalis OE PNA FISH assay (AdvanDx, Woburn, MA) uses species-specific peptide nucleic acid (PNA) probes in a fluorescence in situ hybridization format and offers a time to results of 1.5 hours and the potential of providing important information for species-specific treatment. Multicenter studies were performed to assess the performance of the 1.5 hour E. faecalis/OE PNA FISH procedure compared to the original 2.5 hour assay procedure and to standard bacteriology methods for the identification of enterococci directly from a positive blood culture bottle. PMID:21339730
Igari, Jun; Oguri, Toyoko; Hiramatsu, Nobuyoshi; Akiyama, Kazumitsu; Koyama, Tsuneo
2002-02-01
As a post-marketing surveillance, the in vitro antibacterial activities of cefozopran (CZOP), an agent of cephems, against various clinical isolates were yearly evaluated and compared with those of other cephems, oxacephems, penicillins, and carbapenems. Changes in the bacterial sensitivity for CZOP were also evaluated with the resistance ratio calculated with breakpoint MIC. Sixteen species (1,913 strains) of Gram-positive bacteria were isolated from the clinical materials annually collected from 1996 to 2000, and consisted of methicillin-susceptible Staphylococcus aureus (MSSA; n = 178), methicillin-resistant S. aureus (MRSA; n = 199), methicillin-susceptible Staphylococcus epidermidis (MSSE; n = 98), methicillin-resistant S. epidermidis (MRSE; n = 164), Staphylococcus haemolyticus (n = 72), Staphylococcus saprophyticus (n = 28), Enterococcus faecalis (n = 206), Enterococcus faecium (n = 91), Enterococcus avium (n = 72), Streptococcus pyogenes (n = 133), Streptococcus agalactiae (n = 138), penicillin-susceptible Streptococcus pneumoniae (PSSP; n = 133), penicillin-intermediate resistant S. pneumoniae (PISP; n = 100), penicillin-resistant S. pneumoniae (PRSP; n = 29), Streptococcus milleri group (n = 135) and Peptostreptococcus spp. (n = 137). CZOP possessed comparable antibacterial activities against MSSA and MSSE to other cephems, and was also effective on MRSE but not on MRSA. An antibacterial activity of CZOP against S. saprophyticus was comparable to or higher than other cephems. CZOP, however, did not indicate an antibacterial activity against S. haemolyticus, just like other cephems. An antibacterial activity of CZOP against E. faecalis was comparable to cefpirome (CPR) and higher than other cephems. No antibacterial activity of CZOP against E. faecium and E. avium was observed, just like other drugs. An antibacterial activity of CZOP against S. pyogenes was as potent as that of cefotiam (CTM), cefepime (CFPM) and CPR, and that against S. agalactiae was also preferable. CZOP and other cephems also had a preferable antibacterial activity against S. milleri group that was most sensitive to benzylpenicillin. An antibacterial activity of CZOP against Peptostreptococcus spp. was preferable but weaker than that of cefazolin, CTM and cefmetazole. The resistance ratio estimated with breakpoint MIC of CZOP was 96.5% in MRSA, 93.1% in PRSP, 60.0% in PISP, 40.3% in S. haemolyticus, 22.3% in E. faecalis, and 15.9% in MRSE. Those resistance ratios were similar to those for CFPM, but E. faecalis showed 90.8% resistance for CFPM. The difference in the resistance ratio of E. faecalis demonstrated that CZOP successfully maintained its antibacterial activity against this species. In conclusion, no remarkable annual change in the antibacterial activities of CZOP against the Gram-positive bacteria was observed. The sensitivities of PISP and PRSP to CZOP, however, was suggested to be decreasing.
Sadowy, Ewa; Luczkiewicz, Aneta
2014-03-14
Enterococci, ubiquitous colonizers of humans and other animals, play an increasingly important role in health-care associated infections (HAIs). It is believed that the recent evolution of two clinically relevant species, Enterococcus faecalis and Enterococcus faecium occurred in a big part in a hospital environment, leading to formation of high-risk enterococcal clonal complexes (HiRECCs), which combine multidrug resistance with increased pathogenicity and epidemicity. The aim of this study was to establish the species composition in wastewater, its marine recipient as well as a river estuary and to investigate the antimicrobial susceptibility of collected isolates. Molecular methods were additionally applied to test the presence of HiRRECC-related E. faecium. Two wastewater treatment plants (WWTPs), their marine outfalls and Vistula river that influence significantly the quality of waters in Gulf of Gdansk were sampled to investigate the presence of Enterococcus spp. Four-hundred-twenty-eight isolates were obtained, including E. faecium (244 isolates, 57.0%), E. hirae (113 isolates, 26.4%) and E. faecalis (63 isolates, 14.7%); other species (E. gallinarum/casseliflavus, E. durans and E. avium) accounted for 1.9%. Antimicrobial susceptibility testing revealed the presence of isolates resistant to erythromycin, tetracycline, amipicillin, fluoroquinolones and aminoglycosides (high-level resistance), especially among E. faecium, where such isolates were usually characterized by multilocus sequence types associated with nosocomial lineages 17, 18 and 78 of this species representing HiRECC, formerly called CC17. These isolates not only carried several resistance determinants but were also enriched in genes encoding pathogenicity factors (Esp, pili) and genes associated with mobile genetic elements (MGE), a feature also typical for nosocomial HiRECC. Our data show that WWTPs constitute an important source of enterococcal strains carrying antimicrobial resistance determinants, often associated with the presence of MGE, for the recipient water environment, thus increasing a pool of such genes for other organisms. The presence of HiRECCs in wastewaters and marine/river environment may indicate that adaptations gained in hospitals may be also beneficial for survival of such clones in other settings. There is an obvious need to monitor the release and spread of such strains in order to elucidate better ways to curb their dissemination.
2014-01-01
Background Enterococci, ubiquitous colonizers of humans and other animals, play an increasingly important role in health-care associated infections (HAIs). It is believed that the recent evolution of two clinically relevant species, Enterococcus faecalis and Enterococcus faecium occurred in a big part in a hospital environment, leading to formation of high-risk enterococcal clonal complexes (HiRECCs), which combine multidrug resistance with increased pathogenicity and epidemicity. The aim of this study was to establish the species composition in wastewater, its marine recipient as well as a river estuary and to investigate the antimicrobial susceptibility of collected isolates. Molecular methods were additionally applied to test the presence of HiRRECC-related E. faecium. Results Two wastewater treatment plants (WWTPs), their marine outfalls and Vistula river that influence significantly the quality of waters in Gulf of Gdansk were sampled to investigate the presence of Enterococcus spp. Four-hundred-twenty-eight isolates were obtained, including E. faecium (244 isolates, 57.0%), E. hirae (113 isolates, 26.4%) and E. faecalis (63 isolates, 14.7%); other species (E. gallinarum/casseliflavus, E. durans and E. avium) accounted for 1.9%. Antimicrobial susceptibility testing revealed the presence of isolates resistant to erythromycin, tetracycline, amipicillin, fluoroquinolones and aminoglycosides (high-level resistance), especially among E. faecium, where such isolates were usually characterized by multilocus sequence types associated with nosocomial lineages 17, 18 and 78 of this species representing HiRECC, formerly called CC17. These isolates not only carried several resistance determinants but were also enriched in genes encoding pathogenicity factors (Esp, pili) and genes associated with mobile genetic elements (MGE), a feature also typical for nosocomial HiRECC. Conclusions Our data show that WWTPs constitute an important source of enterococcal strains carrying antimicrobial resistance determinants, often associated with the presence of MGE, for the recipient water environment, thus increasing a pool of such genes for other organisms. The presence of HiRECCs in wastewaters and marine/river environment may indicate that adaptations gained in hospitals may be also beneficial for survival of such clones in other settings. There is an obvious need to monitor the release and spread of such strains in order to elucidate better ways to curb their dissemination. PMID:24629030
Potential of houseflies to contaminate ready-to-eat food with antibiotic-resistant enterococci.
Macovei, Lilia; Miles, Brett; Zurek, Ludek
2008-02-01
It was shown previously that houseflies in fast-food restaurants commonly carry antibiotic-resistant and potentially virulent enterococci. In this study, the potential of field-collected houseflies to contaminate ready-to-eat (RTE) food with enterococci was assessed by laboratory bioassays. Houseflies were collected with a sweep net in a cattle feedlot and exposed in groups of 5, 10, 20, and 40 to a beef patty (from an RTE hamburger) for 0.5, 1.0, 3.0, and 24 h. The exposure of RTE food to flies resulted in 100% contamination with enterococci in all bioassays, regardless of the number of houseflies and the length of exposure time. In addition, with the increasing number of houseflies as well as with the increasing time exposure, the concentration of enterococci in RTE food increased. Even a short time exposure (0.5 h) resulted in food contamination, ranging from 3.1 x 10(3) CFU/g (5 houseflies) to 8.4 x 10(4) CFU/g (40 houseflies). The analysis of 23 randomly selected enterococcal isolates from RTE food after the fly exposure revealed a single species, Enterococcus faecalis. In contrast, four Enterococcus species, including E. faecalis (57.1%), E. gallinarum (19.1%), E. hirae (14.3%), and E. faecium (9.5%), represented 21 randomly selected and identified isolates from houseflies. Phenotypic screening showed that E. faecalis isolates from RTE food were resistant to ciprofloxacin (17.4%), tetracycline (13.0%), erythromycin (13.0%), and chloramphenicol (4.3%). This study demonstrates a great potential of houseflies from a cattle feedlot to contaminate RTE food with enterococci in a short time.
Cord, Caroline Berwanger; Velasco, Rafael Vidal Cortez; Ribeiro Melo Lima, Laíla Fernanda; Rocha, Daniel Guimarães Pedro; da Silveira Bueno, Carlos Eduardo; Pinheiro, Sérgio Luiz
2014-08-01
The aim of this study was to evaluate the effectiveness of peracetic acid (PAA) in cleaning root canals contaminated with Enterococcus faecalis. Sixty first and second mandibular molars were used. Their mesiobuccal canals were prepared with the Reciproc System (VDW, Munich, Germany). The canals were irrigated with 10 mL saline during instrumentation. The teeth were randomly divided into 3 groups (n = 20), according to the irrigation solution to be used after instrumentation: group PAA (5 mL 1% PAA), group EDTA/sodium hypochlorite (NaOCl) (5 mL 17% EDTA followed by 5 mL 2.5% sodium hypochlorite), and group S (5 mL saline). Microbiological samples were collected before instrumentation and after final irrigation. Bacterial quantification was performed by counting the number of colony-forming units (CFUs/mL). The results were analyzed by the nonparametric Wilcoxon and Kruskal-Wallis tests. The 3 groups showed a significant reduction (P < .05) in CFUs/mL after final irrigation. PAA and NaOCl associated with EDTA produced a significantly higher reduction in CFUs/mL (P < .05) compared with saline. There was no statistically significant difference between PAA and EDTA + 2.5% NaOCl (P > .05). According to the results of the present study, the effectiveness of 1% PAA was similar to that of 17% EDTA + 2.5% NaOCl in cleaning curved root canals contaminated with E. faecalis. Copyright © 2014 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Recovery of Enterococcus faecalis from cheese in the oral cavity of healthy subjects.
Razavi, A; Gmür, R; Imfeld, T; Zehnder, M
2007-08-01
Enterococci are rarely found in the healthy human oral cavity, yet they are strongly associated with filled root canals. The origin of these enterococci remains unknown. Our hypothesis is that they are transient food-born colonizers under healthy conditions. This pilot study reinvestigated the prevalence of enterococci in the oral cavity of healthy volunteers, screened cheese samples for enterococci and investigated colonization of the oral cavity after ingestion of an enterocci-positive cheese. Concentrated oral rinse samples were collected from a cohort of 50 dental students and proved negative for viable enterococci. Twenty cheese samples were obtained from local supermarkets. Enterococci were cultured and identified using standard methods. Viable enterococci were detected in one of five specimens of Swiss Tilsiter, three of five samples of French soft cheese, one of five Mozzarella samples and one of five Feta samples. Eight volunteers from the cohort consumed 10 g of a cheese with high Enterococcus faecalis load. Oral rinse samples were collected before and 1, 10 and 100 min after cheese ingestion. One minute after ingestion, a median of 5,480 E. faecalis colony-forming units was recovered from the oral rinse samples. Bacterial counts were reduced after 10 min, had dropped after 100 min to levels that were significantly (P < 0.005) different from the 1-min and 10-min scores and were below the detection limit after 1 week. These findings suggest that colonization of the healthy oral cavity by enterococci is transitional, but at the same time add weight to our hypothesis that enterococcal root canal infections could be food-borne.
Tran, Truc T; Tam, Vincent H; Murray, Barbara E; Arias, Cesar A; Singh, Kavindra V
2017-06-01
We first assessed telavancin (TLV) pharmacokinetics in rats after a single subcutaneous dose of 35 mg/kg of body weight. The pharmacokinetic data were used to predict a TLV dose that simulates human exposure, and the efficacy of TLV was then evaluated using a TLV dose of 21 mg/kg every 12 h against Enterococcus faecalis OG1RF (TLV MIC of 0.06 μg/ml) in a rat endocarditis model with an indwelling catheter. Therapy was given for 3 days with TLV, daptomycin (DAP), or ampicillin (AMP) monotherapy and with combinations of TLV plus AMP, AMP plus gentamicin (GEN), and AMP plus ceftriaxone (CRO); rats were sacrificed 24 h after the last dose. Antibiotics were given to simulate clinically relevant concentrations or as used in other studies. TLV treatment resulted in a significant decrease in bacterial burden (CFU per gram) in vegetations from 6.0 log 10 at time 0 to 3.1 log 10 after 3 days of therapy. Bacterial burdens in vegetations were also significantly lower in the TLV-treated rats than in the AMP ( P = 0.0009)- and AMP-plus-GEN ( P = 0.035)-treated rats but were not significantly different from that of the AMP-plus-CRO-treated rats. Bacterial burdens from vegetations in TLV monotherapy and TLV-plus-AMP-and-DAP groups were similar to each other ( P ≥ 0.05). Our data suggest that further study of TLV as a therapeutic alternative for deep-seated infections caused by vancomycin-susceptible E. faecalis is warranted. Copyright © 2017 American Society for Microbiology.
Demetallization of Enterococcus faecalis biofilm: a preliminary study
ESTRELA, Carlos; COSTA E SILVA, Rodrigo; URBAN, Roberta Cerasi; GONÇALVES, Pablo José; SILVA, Júlio A.; ESTRELA, Cyntia R.A.; PECORA, Jesus Djalma; PETERS, Ove A.
2018-01-01
Abstract Objectives To determine the concentration of calcium, iron, manganese and zinc ions after the application of chelator to Enterococcus faecalis biofilms. Material and Methods Fifty bovine maxillary central incisors were prepared and inoculated with E. faecalis for 60 days. The following were used as irrigation solutions: 17% EDTA (pH 3, 7 and 10), 2.5% sodium hypochlorite (NaOCl) combined with 17% EDTA (pH 3, 7 and 10), distilled water (pH 3, 7 and 10), and 2.5% NaOCl. Each solution was kept in the root canal for five minutes. Fifteen uncontaminated root canals were irrigated with 17% EDTA (pH 3, 7 and 10). Six teeth were used as bacterial control. The number of calcium, iron, manganese and zinc ions was determined using flame atomic absorption spectrometry. Mean ± standard deviation (SD) values were used for descriptive statistics. Results Calcium chelation using 17% EDTA at pH 7 was higher than at pH 3 and 10, regardless of whether bacterial biofilm was present. The highest concentration of iron occurred at pH 3 in the presence of bacterial biofilm. The highest concentration of manganese found was 2.5% NaOCl and 17% EDTA at pH 7 in the presence of bacterial biofilm. Zinc levels were not detectable. Conclusions The pH of chelating agents affected the removal of calcium, iron, and manganese ions. The concentration of iron ions in root canals with bacterial biofilm was higher after the use of 17% EDTA at pH 3 than after the use of the other solutions at all pH levels. PMID:29451651
Mokhtari, Abdelhamid; Blancato, Víctor S.; Repizo, Guillermo; Henry, Céline; Pikis, Andreas; Bourand, Alexa; de Fátima Álvarez, María; Immel, Stefan; Mechakra-Maza, Aicha; Hartke, Axel; Thompson, John; Magni, Christian; Deutscher, Josef
2013-01-01
Summary Similar to Bacillus subtilis, Enterococcus faecalis transports and phosphorylates maltose via a phosphoenolpyruvate (PEP):maltose phosphotransferase system (PTS). The maltose-specific PTS permease is encoded by the malT gene. However, E. faecalis lacks a malA gene encoding a 6-phospho-α-glucosidase which in B. subtilis hydrolyses maltose-6’-P into glucose and glucose-6-P. Instead, an operon encoding a maltose phosphorylase (MalP), a phosphoglucomutase and a mutarotase starts upstream from malT. MalP was suggested to split maltose-6-P into glucose-1-P and glucose-6-P. However, purified MalP phosphorolyses maltose but not maltose-6’-P. We discovered that the gene downstream from malT encodes a novel enzyme (MapP) that dephosphorylates maltose-6’-P formed by the PTS. The resulting intracellular maltose is cleaved by MalP into glucose and glucose-1-P. Slow uptake of maltose probably via a maltodextrin ABC transporter allows poor growth for the mapP but not the malP mutant. Synthesis of MapP in a B. subtilis mutant accumulating maltose-6’-P restored growth on maltose. MapP catalyzes the dephosphorylation of intracellular maltose-6’-P, and the resulting maltose is converted by the B. subtilis maltose phosphorylase into glucose and glucose-1-P. MapP therefore connects PTS-mediated maltose uptake to maltose phosphorylase-catalyzed metabolism. Dephosphorylation assays with a wide variety of phospho-substrates revealed that MapP preferably dephosphorylates disaccharides containing an O-α-glycosyl linkage. PMID:23490043
Galván, E M; Mateyca, C; Ielpi, L
2016-10-01
Most catheter-associated urinary tract infections are polymicrobial. Here, uropathogen interactions in dual-species biofilms were studied. The dual-species associations selected based on their prevalence in clinical settings were Klebsiella pneumoniae-Escherichia coli, E. coli-Enterococcus faecalis, K. pneumoniae-E. faecalis, and K. pneumoniae-Proteus mirabilis. All species developed single-species biofilms in artificial urine. The ability of K. pneumoniae to form biofilms was not affected by E. coli or E. faecalis co-inoculation, but was impaired by P. mirabilis. Conversely, P. mirabilis established a biofilm when co-inoculated with K. pneumoniae. Additionally, E. coli persistence in biofilms was hampered by K. pneumoniae but not by E. faecalis. Interestingly, E. coli, but not K. pneumoniae, partially inhibited E. faecalis attachment to the surface and retarded biofilm development. The findings reveal bacterial interactions between uropathogens in dual-species biofilms ranged from affecting initial adhesion to outcompeting one bacterial species, depending on the identity of the partners involved.
Gurtler, Volker; Grando, Danilla; Mayall, Barrie C; Wang, Jenny; Ghaly-Derias, Shahbano
2012-09-01
In order to develop a typing and identification method for van gene containing Enterococcus faecium, two multiplex PCR reactions were developed for use in HRM-PCR (High Resolution Melt-PCR): (i) vanA, vanB, vanC, vanC23 to detect van genes from different Enterococcus species; (ii) ISR (intergenic spacer region between the 16S and 23S rRNA genes) to detect all Enterococcus species and obtain species and isolate specific HRM curves. To test and validate the method three groups of isolates were tested: (i) 1672 Enterococcus species isolates from January 2009 to December 2009; (ii) 71 isolates previously identified and typed by PFGE (pulsed-field gel electrophoresis) and MLST (multi-locus sequence typing); and (iii) 18 of the isolates from (i) for which ISR sequencing was done. As well as successfully identifying 2 common genotypes by HRM from the Austin Hospital clinical isolates, this study analysed the sequences of all the vanB genes deposited in GenBank and developed a numerical classification scheme for the standardised naming of these vanB genotypes. The identification of Enterococcus faecalis from E. faecium was reliable and stable using ISR PCR. The typing of E. faecium by ISR PCR: (i) detected two variable peaks corresponding to different copy numbers of insertion sequences I and II corresponding to peak I and II respectively; (ii) produced 7 melt profiles for E. faecium with variable copy numbers of sequences I and II; (iii) demonstrated stability and instability of peak heights with equal frequency within the patient sample (36.4±4.5 days and 38.6±5.8 days respectively for 192 patients); (iv) detected ISR-HRM types with as much discrimination as PFGE and more than MLST; and (v) detected ISR-HRM types that differentiated some isolates that were identical by PFGE and MLST. In conjunction with the rapid and accurate van genotyping method described here, this ISR-HRM typing and identification method can be used as a stable identification and typing method with predictable instability based on recombination and concerted evolution of the rrn operon that will complement existing typing methods. Crown Copyright © 2012. Published by Elsevier B.V. All rights reserved.
Atila-Pektaş, B; Yurdakul, P; Gülmez, D; Görduysus, O
2013-05-01
To compare the antimicrobial activities of Activ Point (Roeko, Langenau, Germany), Calcium Hydroxide Plus Point (Roeko, Langenau, Germany), calcium hydroxide, 1% chlorhexidine gel and bioactive glass (S53P4) against Enterococcus faecalis and Streptococcus mutans. One hundred and twenty extracted single-rooted human teeth were used. After removing the crowns, root canals were prepared by using the Protaper rotary system. Following autoclave sterilization, root canals were incubated at 37 °C with E. faecalis ATCC 29212 and S. mutans RSHM 676 for 1 week. The specimens, which were divided into five treatment groups for each microorganism according to the intracanal medicament used, were tested in 10 experimental runs. In each experimental run, 10 roots were included as treatment, one root as positive control and one root as sterility control. Sterile paper points were utilized to take samples from root canals after the incubation of teeth in thioglycollate medium at 37 °C for 1 week. Samples taken from teeth by sterile paper points were inoculated onto sheep blood agar, and following an overnight incubation, the colonies grown on sheep blood agar were counted and interpreted as colony-forming units. Results were tested statistically by using Kruskal-Wallis and Conover's nonparametric multiple comparison tests. CHX gel (P < 0.001 and P < 0.001), Activ Point (P = 0.003 and P = 0.002) and Ca(OH)₂ (P = 0.010 and P = 0.005) were significantly more effective against E. faecalis than that of Ca(OH)₂ Plus Point and bioactive glass, respectively. On the other hand, compared with Ca(OH)₂ , CHX gel (P < 0.001), and Activ Point (P < 0.001), bioactive glass (P = 0.014) produced significantly lower colony counts of S. mutans. When compared with the positive control, treatment with Ca(OH)₂ Plus Point (P = 0.085 and P = 0.066) did not produce significantly lower colony counts of E. faecalis and S. mutans, respectively. Compared with the medicaments having an antimicrobial effect because of their alkaline pH, the medicaments containing chlorhexidine were effective against both E. faecalis and S. mutans. © 2012 International Endodontic Journal.
Pericàs, J M; García-de-la-Mària, C; Brunet, M; Armero, Y; García-González, J; Casals, G; Almela, M; Quintana, E; Falces, C; Ninot, S; Fuster, D; Llopis, J; Marco, F; Moreno, A; Miró, J M
2017-06-01
Previous studies showed development of daptomycin non-susceptibility (DNS: MIC >4 mg/L) in Enterococcus faecalis infections. However, no studies have assessed the efficacy of the combination of daptomycin/ampicillin against E. faecalis strains developing DNS in the experimental endocarditis (EE) model. To assess the in vitro and in vivo efficacy of daptomycin at 10 mg/kg/day, daptomycin/ampicillin and ampicillin/ceftriaxone against two high-level aminoglycoside-resistant E. faecalis strains, one developing DNS after in vitro exposure to daptomycin and another that did not (DS). Subculture of 82 E. faecalis strains from patients with endocarditis with daptomycin MICs, time-kill and in vivo experiments using the EE model. 33% of the strains (27 of 82) displayed DNS after subculture with daptomycin. Daptomycin MIC rose from 0.5-2 to 8-16 mg/L. In time-kill experiments, when using a high inoculum (10 8 cfu/mL), daptomycin/ampicillin was synergistic for one-third of DS strains and none of DNS strains, while ampicillin/ceftriaxone retained synergy in all cases. In the EE model, daptomycin did not significantly reduce cfu/g from vegetations compared with control against either strain, while daptomycin/ampicillin reduced significantly more cfu/g than daptomycin against the DS strain, but not against the DNS strain [2.9 (2.0-4.1) versus 6.1 (4.5-8.0); P = 0.002]. Ampicillin/ceftriaxone was synergistic and bactericidal against both strains, displaying the same activity as daptomycin/ampicillin against the DS strain. Performance of an Etest for daptomycin MIC after subculture with daptomycin inhibitory doses on strains of high-level aminoglycoside-resistant E. faecalis endocarditis may be an easy test to predict the in vivo efficacy of daptomycin/ampicillin. © The Author 2017. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Resende, Juliana Alves; Fontes, Cláudia Oliveira; Ferreira-Machado, Alessandra Barbosa; Nascimento, Thiago César; Silva, Vânia Lúcia; Diniz, Cláudio Galuppo
2018-02-01
Although most Brazilian dairy products meet high technological standards, there are quality issues regarding milk production, which may reduce the final product quality. Several microbial species may contaminate milk during manufacture and handling. If antimicrobial usage remains uncontrolled in dairy cattle, the horizontal transfer of antimicrobial resistance genes in foodstuffs may be of particular concern for both food producers and dairy industry. This study focused on the evaluation of putative Gram positive cocci in Minas cheese and of antimicrobial and biocide resistance genes among the isolated bacteria. Representative samples of 7 different industrially trademarked Minas cheeses (n = 35) were processed for selective culture and isolation of Gram positive cocci. All isolated bacteria were identified by DNA sequencing of the 16S rRNA gene. Antimicrobial resistance genes were screened by PCR. Overall, 208 strains were isolated and identified as follows: Enterococcus faecalis (47.6%), Macrococcus caseolyticus (18.3%), Enterococcus faecium (11.5%), Enterococcus caseliflavus (7.7%), Staphylococcus haemolyticus (7.2%), Staphylococcus aureus (4.3%), Staphylococcus epidermidis (2.9%), and Enterococcus hirae (0.5%). The genetic markers mecA (78.0%) and smr (71.4%) were the most prevalent, but others were also detected, such as blaZ (65.2%), msrA (60.9%), msrB (46.6%), linA (54.7%), and aacA-aphD (47.6%). The occurrence of opportunist pathogenic bacteria harboring antimicrobial resistance markers in the cheese samples are of special concern, since these bacteria are not considered harmful contaminating agents according to the Brazilian sanitary regulations. However, they are potentially pathogenic bacteria and the cheese may be considered a reservoir for antimicrobial resistance genes available for horizontal transfer through the food chain, manufacturing personnel and consumers. © 2018 Institute of Food Technologists®.
Microbiological characteristics of "androlla", a Spanish traditional pork sausage.
García Fontán, María C; Lorenzo, José M; Parada, Ana; Franco, Inmaculada; Carballo, Javier
2007-02-01
Counts of total aerobic mesophilic microflora, lactic acid bacteria, salt-tolerant microflora, Enterobacteriaceae, enterococci, moulds and yeasts, and staphylococci, and some physico-chemical parameters (total solids, NaCl and nitrate contents and pH and aw values) were determined in 20 units of "androlla", a traditional dry-fermented sausage made in the NW of Spain. In general, high counts of all the investigated microbial groups were observed, with average values of 8.99 +/- 0.46 log cfu/g for the total aerobic mesophilic microflora, 9.11 +/- 0.16 log cfu/g for the lactic acid bacteria, 6.87 +/- 0.68 log cfu/g for the salt-tolerant microflora, 2.80+/-1.85 log cfu/g for the Enterobacteriaceae, 3.25 +/- 1.86 log cfu/g for the enterococci, 4.30 +/- 1.73 log cfu/g for the moulds and yeasts, and 3.62 +/- 0.60 log cfu/g for the staphylococci. From MRS agar, SPC agar + 7.5% NaCl, VRBG agar, and KAA agar, 10 colonies were randomly taken from each androlla unit and from each culture medium. A total of 200 strains per culture medium were then identified using the classical methods. Among the isolates from MRS agar, Lactobacillus sakei predominated, followed by Lactobacillus curvatus, Lactobacillus alimentarius and Lactobacillus plantarum. Of the 200 isolates obtained from SPC agar + 7.5% NaCl, only 56 strains belonged to the Staphylococcaceae or Micrococcaceae families. Among the Staphylococcaceae, Staphylococcus xylosus was the main species, followed by Staph. epidermidis; Staph. equorum, Staph. capitis and Staph. saprophyticus were isolated in very low proportions. Among the Micrococcaceae, Micrococcus luteus predominated, followed by Micrococcus lylae, Kocuria varians and Kocuria kristinae. Of the 150 isolates obtained from VRBG agar, Hafnia alvei was the main species, followed by Serratia liquefaciens and Enterobacter amnigenus; six isolates were identified as Salmonella. Among the 190 isolates obtained from KAA agar, 122 were considered enterococci; 20 isolates were identified as Enterococcus faecium, one as Enterococcus faecalis and 101 as Enterococcus inter faecalis-faecium.
Schiwon, Katarzyna; Arends, Karsten; Rogowski, Katja Marie; Fürch, Svea; Prescha, Katrin; Sakinc, Türkan; Van Houdt, Rob; Werner, Guido; Grohmann, Elisabeth
2013-04-01
The International Space Station (ISS) and the Antarctic Research Station Concordia are confined and isolated habitats in extreme and hostile environments. The human and habitat microflora can alter due to the special environmental conditions resulting in microbial contamination and health risk for the crew. In this study, 29 isolates from the ISS and 55 from the Antarctic Research Station Concordia belonging to the genera Staphylococcus and Enterococcus were investigated. Resistance to one or more antibiotics was detected in 75.8 % of the ISS and in 43.6 % of the Concordia strains. The corresponding resistance genes were identified by polymerase chain reaction in 86 % of the resistant ISS strains and in 18.2 % of the resistant Concordia strains. Plasmids are present in 86.2 % of the ISS and in 78.2 % of the Concordia strains. Eight Enterococcus faecalis strains (ISS) harbor plasmids of about 130 kb. Relaxase and/or transfer genes encoded on plasmids from gram-positive bacteria like pIP501, pRE25, pSK41, pGO1 and pT181 were detected in 86.2 % of the ISS and in 52.7 % of the Concordia strains. Most pSK41-homologous transfer genes were detected in ISS isolates belonging to coagulase-negative staphylococci. We demonstrated through mating experiments that Staphylococcus haemolyticus F2 (ISS) and the Concordia strain Staphylococcus hominis subsp. hominis G2 can transfer resistance genes to E. faecalis and Staphylococcus aureus, respectively. Biofilm formation was observed in 83 % of the ISS and in 92.7 % of the Concordia strains. In conclusion, the ISS isolates were shown to encode more resistance genes and possess a higher gene transfer capacity due to the presence of three vir signature genes, virB1, virB4 and virD4 than the Concordia isolates.
Sletvold, H; Johnsen, P J; Hamre, I; Simonsen, G S; Sundsfjord, A; Nielsen, K M
2008-07-01
Glycopeptide resistant Enterococcus faecium (GREF) persists on Norwegian poultry farms despite the ban on the growth promoter avoparcin. The biological basis for long-term persistence of avoparcin resistance is not fully understood. This study presents the complete DNA sequence of the E. faecium R-plasmid pVEF3 and functional studies of some plasmid-encoded traits (a toxin-antitoxin (TA) system and an ABC transporter) that may be of importance for plasmid persistence. The pVEF3 (63.1 kbp), isolated from an E. faecium strain of poultry origin sampled in Norway in 1999, has 71 coding sequences including the vanA avoparcin/vancomycin resistance encoding gene cluster. pVEF3 encodes the TA system omega-epsilon-zeta, and plasmid stability tests and transcription analysis show that omega-epsilon-zeta is functional in Enterococcus faecalis OGIX, although with decreasing effect over time. The predicted ABC transporter was not found to confer reduced susceptibility to any of the 28 substances tested. The TA system identified in the pVEF-type plasmids may contribute to vanA plasmid persistence on Norwegian poultry farms. However, size and compositional heterogeneity among E. faecium vanA plasmids suggest that additional plasmid maintenance systems in combination with host specific factors and frequent horizontal gene transfer and rearrangement causes the observed plasmid composition and distribution patterns.
Caballero-Granado, F J; Cisneros, J M; Luque, R; Torres-Tortosa, M; Gamboa, F; Díez, F; Villanueva, J L; Pérez-Cano, R; Pasquau, J; Merino, D; Menchero, A; Mora, D; López-Ruz, M A; Vergara, A
1998-02-01
A prospective, multicenter study was carried out over a period of 10 months. All patients with clinically significant bacteremia caused by Enterococcus spp. were included. The epidemiological, microbiological, clinical, and prognostic features and the relationship of these features to the presence of high-level resistance to gentamicin (HLRG) were studied. Ninety-three patients with enterococcal bacteremia were included, and 31 of these cases were caused by HLRG (33%). The multivariate analysis selected chronic renal failure, intensive care unit stay, previous use of antimicrobial agents, and Enterococcus faecalis species as the independent risk factors that influenced the development of HLRG. The strains with HLRG showed lower levels of susceptibility to penicillin and ciprofloxacin. Clinical features (except for chronic renal failure) were similar in both groups of patients. HLRG did not influence the prognosis for patients with enterococcal bacteremia in terms of either the crude mortality rate (29% for patients with bacteremia caused by enterococci with HLRG and 28% for patients not infected with strains with HLRG) or the hospital stay after the acquisition of enterococcal bacteremia. Hemodynamic compromise, inappropriate antimicrobial therapy, and mechanical ventilation were revealed in the multivariate analysis to be the independent risk factors for mortality. Prolonged hospitalization was associated with the nosocomial acquisition of bacteremia and polymicrobial infections.
Enterococcus faecalis causing delayed spondylodiscitis in a case with retained intraspinal bullet
Aiyer, Siddharth N.; Kanna, Rishi; Reddy, Srikanth; Rajasekaran, Shanmuganathan
2016-01-01
Delayed presentations have been reported following gunshot wounds (GSW) with retained intraspinal bullets due to migration of projectile or lead intoxication. We report on the rare occurrence of delayed pyogenic spondylodiscitis and neurological dysfunction following injury from low velocity GSW to the spine with a retained projectile. A 55-year-old male presented 4 months following GSW to the abdomen which resulted in colonic injury and L5 fracture. The patient was treated initially with ileo-transverse anastomosis, antibiotics, without retrieval of the bullet. He developed low back pain, claudication 4 months following GSW and investigations suggested a pyogenic spondylodiscitis at L5–S1. The patient was treated with surgical debridement of infective focus and stabilisation with definitive fusion being performed after an interval of 14 days. The biopsy of the lesion confirmed findings of spondylodiscitis and the culture isolated Enterococcus faecalis species. The patient was treated with antibiotics as per sensitivity and made an uneventful recovery over 4 weeks. The follow-up radiographs showed satisfactory healing at final follow up of 24 months. GSW with colonic perforation have higher incidence of infective complications however majority to these occur in the early postoperative period. This case report demonstrates the possibility of late onset presentation due to spinal infection occurring following colonic perforation with retained intraspinal bullet. PMID:28097252
Neuhaus, Klaus; Lamparter, Marina C; Zölch, Benjamin; Landstorfer, Richard; Simon, Svenja; Spanier, Britta; Ehrmann, Matthias A; Vogel, Rudi F
2017-03-01
Enterohemorrhagic E. coli O157:H7 (EHEC) shorten the lifespan of Caenorhabditis elegans compared to avirulent bacteria. Co-feeding EHEC with Enterococcus faecalis Symbioflor ® significantly increased the worms' lifespan. The transcriptome of EHEC grown in vitro with or without Symbioflor ® was analyzed using RNA-seq. The analysis revealed downregulation of several virulence-associated genes in the presence of Symbioflor ® , including virulence key genes (e.g., LEE, flagellum, quorum-sensing). The downregulation of the LEE genes was corroborated by lux-transposon mutants. Upregulated genes included acid response genes, due to a decrease in pH exerted by Symbioflor ® . Further genes indicate cellular stress in EHEC (e.g. prophage/mobile elements involved in excision, cell lysis, and cell division inhibition). Thus, the observed protection of C. elegans during an EHEC infection by the probiotic Symbioflor ® is suggested to be caused by triggering concomitant transcriptomic changes. To verify the biological relevance of this modulation, exemplary genes found to be influenced by Symbioflor ® were knocked out (fliD, espB, Z3136, Z3917, and L7052). The lifespan of nematodes changed when using knock-outs as food source and the effect could be complemented in trans. In summary, Symbioflor ® appears to be a protective probiotic in the nematode model.
[Chronic bacterial prostatitis. Clinical and microbiological study of 332 cases].
Heras-Cañas, Víctor; Gutiérrez-Soto, Blanca; Serrano-García, María Luisa; Vázquez-Alonso, Fernando; Navarro-Marí, José María; Gutiérrez-Fernández, José
2016-08-19
Chronic bacterial prostatitis (CBP) is characterized by long-lasting symptoms, frequently associated with psychosomatic disorders. The objective of the study was to study PCB in our environment clinically and microbiologically. Between January 2013 and December 2014 761 patients with suspected CBP were studied. Of these patients 332 (43.6%) underwent a complete microbiological study and the major clinical signs and symptoms were collected. Eighteen point four percent of patients were diagnosed microbiologically with CBP, Enterococcus faecalis being the main aetiologic agent (37.7%), followed by Escherichia coli (22.2%). Ninety-six point seven percent of the CBP had positive semen cultures, while only 22.9% had positive urine post-semen cultures. Data of sensitivity, specificity, positive predictive value and negative predictive value of semen were 96.7%, 95.9%, 84.3% and 99.3%, respectively and urine post-semen 22.9%, 99.3%, 87.5% and 85.1%, respectively. Testicular perineum pain (44.3%), ejaculatory discomfort (27.9%) and haemospermia (26.2%) were highlighted as the patients' main clinical manifestations. Fractionated culture for the microbiological diagnosis of CBP could be simplified by the culture of urine pre-semen and semen, without the need for the culture of urine post-semen. The main aetiologic agent of CBP in our media was Enterococcus faecalis, followed by Escherichia coli. Copyright © 2016 Elsevier España, S.L.U. All rights reserved.
Adaptation of Enterococcus faecalis to daptomycin reveals an ordered progression to resistance.
Miller, Corwin; Kong, Jiayi; Tran, Truc T; Arias, Cesar A; Saxer, Gerda; Shamoo, Yousif
2013-11-01
With increasing numbers of hospital-acquired antibiotic resistant infections each year and staggering health care costs, there is a clear need for new antimicrobial agents, as well as novel strategies to extend their clinical efficacy. While genomic studies have provided a wealth of information about the alleles associated with adaptation to antibiotics, they do not provide essential information about the relative importance of genomic changes, their order of appearance, or potential epistatic relationships between adaptive changes. Here we used quantitative experimental evolution of a single polymorphic population in continuous culture with whole-genome sequencing and allelic frequency measurements to study daptomycin (DAP) resistance in the vancomycin-resistant clinical pathogen Enterococcus faecalis S613. Importantly, we sustained both planktonic and nonplanktonic (i.e., biofilm) populations in coculture as the concentration of antibiotic was raised, facilitating the development of more ecological complexity than is typically observed in laboratory evolution. Quantitative experimental evolution revealed a clear order and hierarchy of genetic changes leading to resistance, the signaling and metabolic pathways responsible, and the relative importance of these mutations to the evolution of DAP resistance. Despite the relative simplicity of this ex vivo approach compared to the ecological complexity of the human body, we showed that experimental evolution allows for rapid identification of clinically relevant adaptive molecular pathways and new targets for drug design in pathogens.
Shankar, Jayendra; Walker, Rachel G; Wilkinson, Mark C; Ward, Deborah; Horsburgh, Malcolm J
2012-07-01
The culture supernatant fraction of an Enterococcus faecalis gelE mutant of strain OG1RF contained elevated levels of the secreted antigen SalB. Using differential fluorescence gel electrophoresis (DIGE) the salB mutant was shown to possess a unique complement of exoproteins. Differentially abundant exoproteins were identified using matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry. Stress-related proteins including DnaK, Dps family protein, SOD, and NADH peroxidase were present in greater quantity in the OG1RF salB mutant culture supernatant. Moreover, several proteins involved in cell wall synthesis and cell division, including d-Ala-d-Lac ligase and EzrA, were present in reduced quantity in OG1RF salB relative to the parent strain. The salB mutant displayed reduced viability and anomalous cell division, and these phenotypes were exacerbated in a gelE salB double mutant. An epistatic relationship between gelE and salB was not identified with respect to increased autolysis and cell morphological changes observed in the salB mutant. SalB was purified as a six-histidine-tagged protein to investigate peptidoglycan hydrolytic activity; however, activity was not evident. High-pressure liquid chromatography (HPLC) analysis of reduced muropeptides from peptidoglycan digested with mutanolysin revealed that the salB mutant and OG1RF were indistinguishable.
Guerreiro-Tanomaru, Juliane Maria; Trindade-Junior, Adinael; Cesar Costa, Bernardo; da Silva, Guilherme Ferreira; Drullis Cifali, Leonardo; Basso Bernardi, Maria Inês
2014-01-01
The aim of the present study was to evaluate the antibiofilm activity against Enterococcus faecalis, compressive strength. and radiopacity of Portland cement (PC) added to zirconium oxide (ZrO2), as radiopacifier, with or without nanoparticulated zinc oxide (ZnO). The following experimental materials were evaluated: PC, PC + ZrO2, PC + ZrO2 + ZnO (5%), and PC + ZrO2 + ZnO (10%). Antibiofilm activity was analyzed by using direct contact test (DCT) on Enterococcus faecalis biofilm, for 5 h or 15 h. The analysis was conducted by using the number of colony-forming units (CFU/mL). The compressive strength was performed in a mechanical testing machine. For the radiopacity tests, the specimens were radiographed together with an aluminium stepwedge. The results were submitted to ANOVA and Tukey tests, with level of significance at 5%. The results showed that all materials presented similar antibiofilm activity (P > 0.05). The addition of nanoparticulated ZnO decreased the compressive strength of PC. All materials presented higher radiopacity than pure PC. It can be concluded that the addition of ZrO2 and ZnO does not interfere with the antibiofilm activity and provides radiopacity to Portland cement. However, the presence of ZnO (5% or 10%) significantly decreased the compressive strength of the materials. PMID:25431798
Tennert, Christian; Feldmann, Katharina; Haamann, Edwina; Al-Ahmad, Ali; Follo, Marie; Wrbas, Karl-Thomas; Hellwig, Elmar; Altenburger, Markus J
2014-11-04
To determine the antibacterial effect of photodynamic Therapy on Enterococcus faecalis (E. faecalis) biofilms in experimentally infected human root canals in primary infections and endodontic retreatments. One hundred and sixty single-rooted extracted teeth with one root canal were prepared using ProTaper instruments. Seventy specimens were left without root canal filling and autoclaved. The root canals of another 70 specimens were filled with Thermafil and AH Plus and the root canal fillings were removed after 24 hours using ProTaper D files and plasma sterilized. The specimens were infected with a clinical isolate of E. faecalis for 72 hours. Samples were taken using sterile paper points to determine the presence of E. faecalis in the root canals. The specimens were randomly divided into groups according to their treatment with 20 teeth each and a control. In the PDT group the teeth were treated using PDT, consisting of the photosensitizer toluidine blue and the PDT light source at 635 nm. In the NaOCl (sodium hypochlorite) group the root canals were rinsed with 10 mL of 3% NaOCl. In the NaOCl-PDT group the root canals were rinsed with 10 mL of 3% of sodium hypochlorite and then treated with PDT. Samples were taken after treatments using sterile paper points. Additionally, remaining root canal filling material was recovered from the root canal walls. Survival fractions of the samples were calculated by counting colony-forming units. A one-way analysis of variance (ANOVA) was applied to the data to assess the effect of different treatment techniques. Antimicrobial treatment of root canals caused a significant reduction of bacterial load in all groups. NaOCl irrigation eliminated E. faecalis most effectively. PDT alone was less effective compared to NaOCl irrigation and the combination of NaOCl irrigation and PDT. CFU levels recovered from the filling material after NaOCl irrigation of the root canals were 10fold higher compared to PDT and the combination of NaOCl irrigation and PDT. Photodynamic therapy killed E. faecalis in experimental primary endodontic infections and retreated human root canals. PDT is an effective supplement in root canal disinfection, especially in endodontic retreatments.
Bourne, Roger; Himmelreich, Uwe; Sharma, Ansuiya; Mountford, Carolyn; Sorrell, Tania
2001-01-01
A new fingerprinting technique with the potential for rapid identification of bacteria was developed by combining proton magnetic resonance spectroscopy (1H MRS) with multivariate statistical analysis. This resulted in an objective identification strategy for common clinical isolates belonging to the bacterial species Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis, Streptococcus pneumoniae, Streptococcus pyogenes, Streptococcus agalactiae, and the Streptococcus milleri group. Duplicate cultures of 104 different isolates were examined one or more times using 1H MRS. A total of 312 cultures were examined. An optimized classifier was developed using a bootstrapping process and a seven-group linear discriminant analysis to provide objective classification of the spectra. Identification of isolates was based on consistent high-probability classification of spectra from duplicate cultures and achieved 92% agreement with conventional methods of identification. Fewer than 1% of isolates were identified incorrectly. Identification of the remaining 7% of isolates was defined as indeterminate. PMID:11474013
Olawale, Adetunji Kola; David, Oluwole Moses; Oluyege, Adekemi Olubukunola; Osuntoyinbo, Richard Temitope; Laleye, Solomon Anjuwon; Famurewa, Oladiran
2015-01-01
Enterococci have been implicated as an emerging important cause of several diseases and multiple antibiotic resistance. However, there is little information about the prevalence of pathogenic and/or antibiotic-resistant Enterococcus faecalis in ready-to-eat foods in Nigeria. Here we report the pathogenic potential of three selected antibiotic-resistant E. faecalis strains isolated from food canteens and food outlets with different virulence determinant genes, including EFC 12 (with gel (+), esp (+), cylA (+), and asa1 (+)), EFT 148 (with gel (+), ace (+), and asa1 (+)), and EFS 18 (with esp (+) and cylA (+)) in an animal model. Enterococcemia, hematological parameters, and histopathological changes in organ tissues were examined in experimental animals. The results showed differences in enterococcemia and hematological parameters between the control group and experimental animal group. Enterococcemia was observed for 7 days, and the animal group infected with EFC 12 showed the highest growth rate, followed by EFT 148, with the lowest growth rate seen in the EFS 18-infected group. White blood cell count, packed cell volume, and platelets were significantly reduced (P<0.05) in the experimental animals compared with the controls. White blood cells decreased drastically during the study period in rats challenged with EFC 12 (from 7,800 to 6,120 per mm(3)) but levels remained higher in the control group (from 9,228 to 9,306 per mm(3)). Histopathological changes included areas of pronounced hemorrhage, necrosis, and distortion in liver tissues, which were more marked in rats infected with EFC 12, followed by EFT 148, then EFS 18. The results of this study suggest the presence of potentially pathogenic E. faecalis strains in food canteens and food outlets; hence, there is a need for strict adherence to good hygiene practices in the study area owing to the epidemiological significance of foods.
ROSSI-FEDELE, Giampiero; de FIGUEIREDO, José Antonio Poli; STEIER, Liviu; CANULLO, Luigi; STEIER, Gabriela; ROBERTS, Adam P.
2010-01-01
Ideally root canal irrigants should have, amongst other properties, antimicrobial action associated with a lack of toxicity against periapical tissues. Sodium hypochlorite (NaOCl) is a widely used root canal irrigant, however it has been shown to have a cytotoxic effect on vital tissue and therefore it is prudent to investigate alternative irrigants. Sterilox's Aquatine Alpha Electrolyte® belongs to the group of the super-oxidized waters; it consists of a mixture of oxidizing substances, and has been suggested to be used as root canal irrigant. Super-oxidized waters have been shown to provide efficient cleaning of root canal walls, and have been proposed to be used for the disinfection of medical equipment. Objective To compare the antimicrobial action against Enterococcus faecalis of NaOCl, Optident Sterilox Electrolyte Solution® and Sterilox's Aquatine Alpha Electrolyte® when used as irrigating solutions in a bovine root canal model. Methodology Root sections were prepared and inoculated with E. faecalis JH2-2. After 10 days of incubation the root canals were irrigated using one of three solutions (NaOCl, Optident Sterilox Electrolyte Solution® and Sterilox's Aquatine Alpha Electrolyte®) and subsequently sampled by grinding dentin using drills. The debris was placed in BHI broth and dilutions were plated onto fresh agar plates to quantify growth. Results Sodium hypochlorite was the only irrigant to eliminate all bacteria. When the dilutions were made, although NaOCl was still statistically superior, Sterilox's Aquatine Alpha Electrolyte® solution was superior to Optident Sterilox Electrolyte Solution®. Conclusion Under the conditions of this study Sterilox's Aquatine Alpha Electrolyte® appeared to have significantly more antimicrobial action compared to the Optident Sterilox Electrolyte Solution® alone, however NaOCl was the only solution able to consistently eradicate E. faecalis in the model. PMID:21085808
Bukhary, Sundus; Balto, Hanan
2017-04-01
The purpose of this study was to evaluate the antibacterial effectiveness of Octenisept (OCT; Schülke & Mayr GmBH, Norderstedt, Germany), 1% alexidine (ALX) (Santa Cruz Biotechnology, Inc, Santa Cruz, CA), and 2% chlorhexidine (CHX) against Enterococcus faecalis biofilm using confocal laser scanning microscopy. Root dentin discs were prepared from extracted human teeth, sterilized, and inoculated with E. faecalis strain (ATCC 29212) to establish 3-week-old biofilm model. Infected dentin discs were exposed to OCT (n = 20), 1% ALX (n = 20), and 2% CHX (n = 20) for 10 minutes. Dentin discs (n = 15) exposed to 5.25% sodium hypochlorite (NaOCl) were used as a positive control, whereas specimens exposed to saline (n = 15) were used as a negative control. After exposure, the dentin discs were stained with fluorescent LIVE/DEAD BacLight dye (Invitrogen Molecular Probes, Eugene, OR) and analyzed with confocal laser scanning microscopy to determine the proportion of dead cells in the biofilm. Statistical analysis was performed using the Kruskal-Wallis and Mann-Whitney U tests (P < .05). The highest proportion of dead cells was found in the 5.25% NaOCl group (94.14%; range, 92.30%-98.20%) compared with the experimental groups (P < .05). A significantly greater proportion of dead cells was found in the OCT group (74.14%; range, 70.03%-78.96%) compared with the 1% ALX and 2% CHX groups (P < .05). The proportion of dead cells was 43.89% (range, 24.86%-55.63%) and 42.78% (range, 25.45%-55.06%) in the 1% ALX and 2% CHX groups, respectively, with no statistical significant difference between the 2 groups (P > .05). NaOCl had significantly greater antimicrobial activity against E. faecalis biofilms compared with OCT, CHX, and ALX. OCT was more effective than CHX and ALX. Copyright © 2016 American Association of Endodontists. Published by Elsevier Inc. All rights reserved.
Perumal, Venkatesh; Repally, Ayyanna; Dasari, Ankaiah; Venkatesan, Arul
2016-10-02
A novel bacteriocin produced by avian duck isolated lactic acid bacterium Enterococcus faecalis DU10 was isolated. This bacteriocin showed a broad spectrum of antibacterial activity against important food-borne pathogens and was purified by size exclusion chromatography followed by reverse-phase high-performance liquid chromatography in a C-18 column. Tricine-SDS PAGE revealed the presence of a band with an estimated molecular mass of 6.3 kDa. The zymogram clearly linked the antimicrobial activity with this band. This result was further confirmed by mass-assisted laser desorption ionization time-of-flight mass spectrometry, since a sharp peak corresponding to 6.313 kDa was detected and the functional groups were revealed by Fourier transform infrared spectroscopy. Bacteriocin DU10 activity was found sensitive to proteinase-K and pepsin and partially affected by trypsin and α-chymotrypsin. The activity of bacteriocin DU10 was partially resistant to heat treatments ranging from 30 to 90°C for 30 min. It also withstood a treatment at 121°C for 10 min. Cytotoxicity of bacteriocin DU10 by methyl-thiazolyl-diphenyl-tetrazolium bromide assay showed that the viability of HT-29 and HeLa cells decreased 60 ± 0.7% and 43 ± 4.8%, respectively, in the presence of 3,200 AU/mL of bacteriocin. The strain withstood 0.3% w/v of bile oxgall and pH 2 affected the bacterial growth between 2 and 4 hr of incubation. Adhesion properties examined with HT-29 cell line showed 69.85% initial population of strain E. faecalis DU10, which was found to be strongly adhered to this cell line. These results conclude bacteriocin DU10 may be used as a potential biopreservative and E. faecalis DU10 may be used as a potential probiont to control Salmonella infections.
Tan, Thean Yen; Jiang, Boran; Ng, Lily Siew Yong
2017-08-01
Screening for vancomycin-resistant enterococci (VRE) by culture takes days to generate results, while polymerase chain reaction (PCR) testing directly from clinical specimens lacks specificity. The aims of this study were to develop a real-time PCR to detect and identify Enterococcus faecium, Enterococcus faecalis, and vanA and vanB genes, and to evaluate the impact of this PCR on test-reporting times when performing it directly from suspect VRE isolates present on screening chromogenic media. The tetraplex PCR primers were designed to amplify E. faecium, E. faecalis, and vanA and vanB genes, with melt-curve analysis of PCR products. Following analytical and clinical validation of the molecular assay, PCR testing was performed for target colonies present on VRE chromogenic media. PCR results were evaluated against conventional phenotypic identification and susceptibility testing, with the time to result being monitored for both modalities. A total of 519 colonies from clinical specimens were tested concurrently by real-time PCR and phenotypic methods. In all, 223 isolates were identified with phenotypic vancomycin resistance (vanA, n = 108; vanB, n = 105; non-vanA/vanB = 10), with complete agreement between PCR and phenotypic testing for vancomycin-resistant E. faecium and E. faecalis. The majority (88.6%) of PCR results were reported, on average, 24.8 hours earlier than those of phenotypic testing, with 68% reduction in total costs. The use of culture on selective media, followed by direct colony PCR confirmation allows faster and economical VRE screening. Copyright © 2015. Published by Elsevier B.V.
Baron, Aleksandr; Lindsey, Kimberly; Sidow, Stephanie J; Dickinson, Douglas; Chuang, Augustine; McPherson, James C
2016-01-01
The purpose of this investigation was to determine the effect of a sodium hypochlorite-surfactant combination on the removal of Enterococcus faecalis from infected teeth. Sixty-four extracted human single canal anterior teeth were prepared with rotary instrumentation and sterilized. Teeth were divided into 4 groups, N = 16. Three experimental groups were inoculated with E. faecalis and cultured for 21 days before use: positive control group, no irrigation; NaOCl group, irrigated with 5 mL 6% NaOCl; and NaOCl/BAK group, irrigated with 5 mL 6% NaOCl/0.008% benzalkonium chloride (BAK). The negative control group received medium only and no inoculate. Paper point sampling of the canals was obtained before irrigation (S1) for all 4 groups and for 2 groups after irrigation (S2) to determine remaining colony-forming units. After sampling, all teeth were split in half and evaluated for bacterial viability colony-forming units and penetration of dentinal tubules by using fluorescent vital dye staining and confocal laser scanning microscopy. Comparison of pre-irrigation and post-irrigation paper point samples from the 2 irrigated groups showed a significant reduction in bacterial canal load (P < .001, Kruskal-Wallis), with a significantly lower load in the NaOCl/BAK group than in the NaOCl group (P = .001, Mann-Whitney U test); 68.8% of the NaOCl/BAK samples gave no recoverable counts. In contrast, no significant difference between these groups was found for counts recovered from dentin. Confocal laser scanning microscopy showed no differences in tubule penetration. The addition of BAK to NaOCl significantly reduced the number of remaining bacteria within the canal after irrigation compared with NaOCl alone. Published by Elsevier Inc.
Mohmmed, Saifalarab A; Vianna, Morgana E; Penny, Matthew R; Hilton, Stephen T; Mordan, Nicola; Knowles, Jonathan C
2017-08-01
Root canal irrigation is an important adjunct to control microbial infection. The aim of this study was to investigate the effect of 2.5% (wt/vol) sodium hypochlorite (NaOCl) agitation on the removal, killing, and degradation of Enterococcus faecalis biofilm. A total of 45 root canal models were manufactured using 3D printing with each model comprising an 18 mm length simulated root canal of apical size 30 and taper 0.06. E. faecalis biofilms were grown on the apical 3 mm of the models for 10 days. A total of 60 s of 9 ml of 2.5% NaOCl irrigation using syringe and needle was performed, the irrigant was either left stagnant in the canal or agitated using manual (Gutta-percha), sonic, and ultrasonic methods for 30 s. Following irrigation, the residual biofilms were observed using confocal laser scanning, scanning electron, and transmission electron microscopy. The data were analyzed using one-way ANOVA with Dunnett post hoc tests at a level of significance p ≤ .05. Consequence of root canal irrigation indicate that the reduction in the amount of biofilm achieved with the active irrigation groups (manual, sonic, and ultrasonic) was significantly greater when compared with the passive and untreated groups (p < .05). Collectively, finding indicate that passive irrigation exhibited more residual biofilm on the model surface than irrigant agitated by manual or automated (sonic, ultrasonic) methods. Total biofilm degradation and nonviable cells were associated with the ultrasonic group. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.
Characterization of Two Metal Binding Lipoproteins as Vaccine Candidates for Enterococcal Infections
Romero-Saavedra, Felipe; Laverde, Diana; Budin-Verneuil, Aurélie; Muller, Cécile; Bernay, Benoit; Benachour, Abdellah; Hartke, Axel; Huebner, Johannes
2015-01-01
Background Enterococcus faecium and faecalis are Gram-positive opportunistic pathogens that have become leading causes of nosocomial infections over the last decades. Especially multidrug resistant enterococci have become a challenging clinical problem worldwide. Therefore, new treatment options are needed and the identification of alternative targets for vaccine development has emerged as a feasible alternative to fight the infections caused by these pathogens. Results We extrapolate the transcriptomic data from a mice peritonitis infection model in E. faecalis to identify putative up-regulated surface proteins under infection conditions in E. faecium. After the bionformatic analyses two metal binding lipoproteins were identified to have a high homology (>72%) between the two species, the manganese ABC transporter substrate-binding lipoprotein (PsaAfm,) and the zinc ABC transporter substrate-binding lipoprotein (AdcAfm). These candidate lipoproteins were overexpressed in Escherichia coli and purified. The recombinant proteins were used to produce rabbit polyclonal antibodies that were able to induce specific opsonic antibodies that mediated killing of the homologous strain E. faecium E155 as well as clinical strains E. faecium E1162, Enterococcus faecalis 12030, type 2 and type 5. Mice were passively immunized with the antibodies raised against recombinant lipoproteins, showing significant reduction of colony counts in mice livers after the bacterial challenge and demonstrating the efficacy of these metal binding lipoproteins as promising vaccine candidates to treat infections caused by these enterococcal pathogens. Conclusion Overall, our results demonstrate that these two metal binding lipoproteins elicited specific, opsonic and protective antibodies, with an extensive cross-reactivity and serotype-independent coverage among these two important nocosomial pathogens. Pointing these two protein antigens as promising immunogens, that can be used as single components or as carrier proteins together with polysaccharide antigens in vaccine development against enterococcal infections. PMID:26322633