Science.gov

Sample records for enteroscopy effectively enables

  1. Enteroscopy

    MedlinePlus

    Small bowel biopsy; Push enteroscopy; Double-balloon enteroscopy; Capsule enteroscopy; Sonde enteroscopy ... into the upper gastrointestinal tract. During a double-balloon enteroscopy, balloons attached to the endoscope can be ...

  2. Effect of the manipulation of the duodenal papilla during double balloon enteroscopy

    PubMed Central

    Latorre, Rafael; López-Albors, Octavio; Soria, Federico; Candanosa, Eugenia; Pérez-Cuadrado, Enrique

    2016-01-01

    AIM: To determine the hypothesis that inflating the balloons in the duodenal papilla determines changes in the biochemical markers of pancreatitis. METHODS: Four groups of pigs were used: Group papilla (GP), the overtube’s balloon was inflated in the area of the papilla; GP + double balloon enteroscopy (GP + DBE), the overtube’s balloon was kept inflated in the area of the papilla for 20 min before a DBE; Group DBE (GDBE), DBE was carried out after insuring the balloon’s inflation far from the pancreatic papilla; and Group control (GC). Serum concentrations of amylase, lipase and C-reactive protein (CRP) were evaluated. Pancreases were processed for histopathology examination. RESULTS: Main changes occurred 24 h after the procedure compared with baseline levels. Amylase levels increased significantly in GP (59.2% higher) and were moderately higher in groups GP + DBE and GDBE (22.7% and 20%, respectively). Lipase increased in GP and GP + DBE, whereas it hardly changed in GDBE and in GC. CRP increased significantly in GP, GP + DBE and GDBE, while no changes were reported for GC. No statistically significant difference between groups GP and GP + DBE was found for the histopathological findings, except for vacuolization and necrosis of the pancreatic parenchyma that was higher in GP than in GP + DBE. CONCLUSION: The manipulation of the duodenal papilla by the inflated overtube’s balloon during DBE causes pancreatic structural damage and increased biochemical markers associated with pancreatitis. PMID:27158201

  3. Effects of carbon dioxide insufflation in balloon-assisted enteroscopy: A systematic review and meta-analysis

    PubMed Central

    Nishizawa, Toshihiro; Fujimoto, Ai; Ochiai, Yasutoshi; Kanai, Takanori; Naohisa, Yahagi

    2015-01-01

    Background and aim The efficacy of CO2 insufflation during balloon-assisted enteroscopy remains controversial. This study aimed to perform a systematic review with meta-analysis of randomized controlled trials (RCTs) in which CO2 insufflation was compared with air insufflation in balloon-assisted enteroscopy. Methods PubMed, the Cochrane library, and the Igaku-Chuo-Zasshi database were searched to identify RCTs eligible for inclusion in the systematic review. Data from the eligible studies were combined to calculate the pooled odds ratios (ORs) or weighted mean differences (WMDs) with 95% confidence intervals (CIs). Results Four RCTs (461 patients) were identified. Compared with air insufflation, CO2 insufflation significantly increased intubation depth of oral enteroscopy (WMD: 55.2, 95% CI: 10.77–99.65, p = 0.015). However, there was significant heterogeneity. The intubation depth of anal enteroscopy showed no significant difference between the CO2 group and the air group. CO2 insufflation significantly reduced abdominal pain compared with air insufflation (WMD: −2.463, 95% CI: −4.452 to −0.474, p = 0.015), without significant heterogeneity. The PaCO2 or end-tidal CO2 level showed no significant difference between the CO2 group and air group. Conclusions Compared with air insufflation, CO2 insufflation during balloon-assisted enteroscopy caused less post-procedural pain without CO2 retention. PMID:26966518

  4. Use of Capsule Small Bowel Transit Time to Determine the Optimal Enteroscopy Approach

    PubMed Central

    Chalazan, Brandon; Gostout, Christopher J; Song, Louis M Wong Kee; Enders, Felicity T; Rajan, Elizabeth

    2012-01-01

    Background Capsule small bowel transit time (SBTT) is used to select the most effective enteroscopy approach when targeting capsule endoscopy (CE) findings. Aim of this study was to determine if capsule SBTT can be used to guide the choice of enteroscopy technique for reaching CE abnormalities. Methods Single center, retrospective study involving 60 patients. Data were abstracted from medical records of patients with abnormal CE who proceeded to enteroscopy which included push enteroscopy (PE) single balloon enteroscopy (SBE) and double balloon enteroscopy (DBE). Results Ninety five findings were documented on CE with presumed identification of 56 (59%) of these abnormalities by enteroscopy. Majority were angioectasias on CE (42%) and enteroscopy (59%). Optimal cutoff values for selection of enteroscopy procedure were: 0-21% SBTT for PE (80% sensitivity, 74% specificity, 83% PPV); 0 - 36% SBTT for antegrade SBE (93% sensitivity, 40% specificity, 82% PPV); 0 - 57% SBTT for antegrade DBE (75% sensitivity, 80% specificity, 75% PPV); and 74 - 100% SBTT for retrograde DBE (88% sensitivity, 78% specificity, 78% PPV). Conclusion Capsule SBTT may be used to guide the selection of enteroscopy approach. PE, antegrade SBE, antegrade DBE and retrograde DBE are optimal when abnormalities on CE are seen at ≤ 21%, ≤ 36%, ≤ 57% and ≥ 74% SBTT respectively.

  5. From Capsule Endoscopy to Balloon-Assisted Deep Enteroscopy: Exploring Small-Bowel Endoscopic Imaging

    PubMed Central

    Cooley, D. Matthew; Walker, Andrew J.

    2015-01-01

    In the past 15 years, the use of endoscopic evaluations in patients with obscure gastrointestinal bleeding has become more common. Indications for further endoscopic interventions include iron deficiency anemia, suspicion of Crohn’s disease or small-bowel tumors, assessment of celiac disease or of ulcers induced by nonsteroidal anti-inflammatory drugs, and screening for familial adenomatous polyposis. Often, capsule endoscopy is performed in concert with other endoscopic studies and can guide decisions regarding whether enteroscopy should be carried out in an anterograde or a retrograde approach. Retrograde endoscopy is beneficial in dealing with disease of the more distal small bowel. Multiple studies have examined the diagnostic yield of balloon-assisted deep enteroscopy and have estimated a diagnostic yield of 40% to 80%. Some of the studies have found that diagnostic yields are higher when capsule endoscopy is performed before balloon-assisted deep enteroscopy in a search for small-bowel bleeds. Each of these procedures has a role when performed alone; however, research suggests that they are especially effective as complementary techniques and together can provide better-directed therapy. Both procedures are relatively safe, with high diagnostic and therapeutic yields that allow evaluation of the small bowel. Because both interventions are relatively new to the world of gastroenterology, much research remains to be done regarding their overall efficacy, cost, and safety, as well as further indications for their use in the detection and treatment of diseases of the small bowel. PMID:27099585

  6. Endoscopic shuffling, infection control, and the clinical practice of push enteroscopy.

    PubMed

    Muscarella, Lawrence F

    2007-01-01

    Failure to identify and diagnose the site and cause of obscure bleeding or some other gastrointestinal disorder may be an indication for push enteroscopy. During this procedure, a long, narrow, flexible gastrointestinal endoscope, known as a push enteroscope, is advanced into the upper gastrointestinal tract to examine and evaluate the proximal section (first one third) of the small bowel. Because of limited funding and inadequate instrument availability, some gastrointestinal endoscopy units may perform this procedure using a colonoscope instead of a push enteroscope. Although not specifically designed for push enteroscopy, colonoscopes are less expensive than push enteroscopes and readily available for clinical use in virtually every gastrointestinal endoscopy unit. The use of a colonoscope or other lower gastrointestinal endoscope to perform push enteroscopy or another upper gastrointestinal procedure (or the use of an upper gastrointestinal endoscope to perform a lower gastrointestinal procedure) is defined in this article as endoscopic shuffling. Although it is arguably efficient and cost effective (and in some instances may improve clinical outcomes), endoscopic shuffling raises a number of economic, legal, medical, and ethical questions and concerns, several of which are discussed in this article, with a particular focus on infection control. PMID:17440313

  7. Ischemic etiopathogenesis as the possible origin of post-double baloon enteroscopy pancreatitis. A porcine model study.

    PubMed

    Soria, Federico; Pérez-Cuadrado, Enrique; López-Albors, Octavio; Morcillo, Esther; Sarriá, Ricardo; Candanosa, Eugenia; Esteban, Pilar; Carballo, Luis Fernando; Navarro, Marc; Nacher, Víctor; Sánchez, Francisco Miguel; Latorre, Rafael

    2015-01-01

    The aim is to evaluate the pancreatic vascular-ischemic effects related to double balloon enteroscopy in the porcine model as a possible etiopathogenesis of post-enteroscopic pancreatitis. For this reason we carry out two independent experiments in a porcine animal model. In the first arm protocol (group I), 10 animals underwent 90 minutes of oral enteroscopy with 7 days follow-up.The levels of amylase, lipase and C-reactive protein were measured at T0 basal-T1 -90 min, T2-24, T3-7 days. Also we perform upper gastrointestinal endoscopy in a control group. At 7 days, the animals of experimental protocol-I had their pancreases removed for a pathological and immunohistochemical study to evaluate vascular epithelial growth factor (VEGF) expression.The second experimental protocol in this study aims to evaluate possible changes in vascular topography due to the double balloon enteroscopy (DBE). Group-II (10 animals) underwent oral enteroscopy and selective angiography of the cranial mesenteric artery and celiac trunk. None of the group I or control group animals presented pancreatitis, although the biochemical results for group-I showed increases in the levels of amylase, lipase and C reactive protein at 24 hours. The microscopic study for group-I showed pancreatic necrotic foci and positive VEGF expression, though these changes were not expressed in the control group.These foci were found in 50% of the group I animals and in relation to the total of the parenchyma were quantified at 6% of the pancreas. The results for group-II showed that the enteroscopy caused mobilization of the mesenteric vascular axis, with signs of both intestinal and pancreatic hypoperfusion. The conclusions of this study are that, after enteroscopy in the porcine model, pancreatic necrotic foci are produced, in addition to ischemic phenomena causing VEGF expression. This could be related to episodes of visceral hypoperfusion caused by vascular alterations on a topographic level. This can be

  8. First report of splenic rupture following deep enteroscopy

    PubMed Central

    Girelli, Carlo Maria; Pometta, Roberta; Facciotto, Corinna; Mella, Roberto; Bernasconi, Giordano

    2016-01-01

    Splenic rupture is a rare complication of diagnostic and therapeutic gastrointestinal endoscopy procedures. Herein, we report for the first time a case of splenic rupture following therapeutic retrograde double-balloon enteroscopy, which occurred in an 85-year-old man who was treated for recurrent mid-intestinal bleeding that resulted from ileal angioectasia. This patient promptly underwent an operation and eventually recovered. PMID:27170840

  9. A meta-analysis on efficacy and safety: single-balloon vs. double-balloon enteroscopy

    PubMed Central

    Wadhwa, Vaibhav; Sethi, Saurabh; Tewani, Sumeet; Garg, Sushil Kumar; Pleskow, Douglas K.; Chuttani, Ram; Berzin, Tyler M.; Sethi, Nidhi; Sawhney, Mandeep S.

    2015-01-01

    Background and aim: Double-balloon enteroscopy (DBE) and single-balloon enteroscopy (SBE) are new techniques capable of providing deep enteroscopy. Results of individual studies comparing these techniques have not been able to identify a superior strategy. Our aim was to systematically pool all available studies to compare the efficacy and safety of DBE with SBE for evaluation of the small bowel. Methods: Databases were searched, including PubMed, Embase, and the Cochrane Central Register of Controlled Trials. The main outcome measures were complete small-bowel visualization, diagnostic yield, therapeutic yield, and complication rate. Statistical analysis was performed using Review Manager (RevMan version 5.2). Meta-analysis was performed using fixed-effect or random-effect methods, depending on the absence or presence of significant heterogeneity. We used the χ2 and I2 test to assess heterogeneity between trials. Results were expressed as risk ratios (RR) or mean differences with 95% confidence intervals (CI). Results: Four prospective, randomized, controlled trials with a total of 375 patients were identified. DBE was superior to SBE for visualization of the entire small bowel [pooled RR = 0.37 (95% CI: 0.19–0.73; P = 0.004)]. DBE and SBE were similar in ability to provide diagnosis [pooled RR = 0.95 (95% CI: 0.77–1.17; P = 0.62)]. There was no significant difference between DBE and SBE in therapeutic yield [pooled RR = 0.78 (95% CI: 0.59–1.04; P = 0.09)] and complication rate [pooled RR = 1.08 (95% CI: 0.28–4.22); P = 0.91]. Conclusions: DBE was superior to SBE with regard to complete small bowel visualization. DBE was similar to SBE with regard to diagnostic yield, ability to provide treatment and complication rate, but these results should be interpreted with caution as they is based on very few studies and the overall quality of the evidence was rated as low to moderate, due to the small sample size. PMID:25698560

  10. Characteristics of Small Intestinal Diseases on Single-Balloon Enteroscopy

    PubMed Central

    Tao, Zhang; Liu, G.X.; Cai, L.; Yu, H.; Min, X.J.; Gan, H.T.; Yang, K.; SQ, Li; Yan, J.; Chen, L.; Tan, Q.H.; Wu, J.C.; Huang, X.L.

    2015-01-01

    Abstract The small intestine has been considered inaccessible for a long term. The development of single-balloon endoscopy has greatly improved the diagnosis and treatment possibilities for small intestinal diseases. In this study, we aimed to explore the demographic characteristics and small intestinal diseases of patients who underwent single-balloon enteroscopy between 2009 and 2014 at our endoscopy center. We determined the enteroscopic findings for each small intestinal disease and the most susceptible age groups. In total, 186 patients were included in the study. Their mean age was 45.87 ± 15.77 years. Patients who underwent single-balloon enteroscopy were found to have neoplasms (most common age group: 14–45 years, most common lesion location: jejunum), lymphoma (46–59 and 60–74 years, ileum), protuberant lesions (45–59 years, jejunum), inflammation (14–45 and 46–59 years, ileum), benign ulcers (14–45 years, jejunum), diverticulum (14–45 years, ileum), vascular malformations (60–74 years, jejunum), polyps (14–45 years, jejunum), Crohn's disease (14–45 years, jejunum), hookworm infection (14–45 years, jejunum), lipid pigmentation (14–45 and 46–59 years, jejunum), undetermined bleeding (46–59 years, ileum), or undetermined stenosis (31 years, duodenum). Each small intestinal disease had distinct enteroscopic findings. PMID:26496270

  11. A Case of Blind Loop Syndrome Caused by Infection with Giardia duodenalis Diagnosed with Double Balloon Enteroscopy.

    PubMed

    Nakagawa, Tomoo; Katsuno, Tatsuro; Mandai, Yasushi; Saito, Masaya; Yoshihama, Sayuri; Saito, Keiko; Minemura, Shoko; Maruoka, Daisuke; Matsumura, Tomoaki; Arai, Makoto; Yokosuka, Osamu

    2014-09-01

    A 75-year-old man who had undergone partial gastrectomy was referred to our hospital due to worsening leg edema, loose stools and malnutrition. Double balloon enteroscopy followed by insertion of an indwelling ileus tube was performed to investigate the microbial flora and for washing inside the blind loop. Trophozoites of Giardia were detected in the sampled fluid from the blind loop and DNA analysis disclosed an assemblage of genotype A-II of Giardia duodenalis. Treatment with oral metronidazole was effective. This case emphasizes the importance of a correct diagnosis when treating patients with blind loop syndrome in the digestive tract.

  12. A Case of Blind Loop Syndrome Caused by Infection with Giardia duodenalis Diagnosed with Double Balloon Enteroscopy

    PubMed Central

    Nakagawa, Tomoo; Katsuno, Tatsuro; Mandai, Yasushi; Saito, Masaya; Yoshihama, Sayuri; Saito, Keiko; Minemura, Shoko; Maruoka, Daisuke; Matsumura, Tomoaki; Arai, Makoto; Yokosuka, Osamu

    2014-01-01

    A 75-year-old man who had undergone partial gastrectomy was referred to our hospital due to worsening leg edema, loose stools and malnutrition. Double balloon enteroscopy followed by insertion of an indwelling ileus tube was performed to investigate the microbial flora and for washing inside the blind loop. Trophozoites of Giardia were detected in the sampled fluid from the blind loop and DNA analysis disclosed an assemblage of genotype A-II of Giardia duodenalis. Treatment with oral metronidazole was effective. This case emphasizes the importance of a correct diagnosis when treating patients with blind loop syndrome in the digestive tract. PMID:25408630

  13. Conservative approach in Peutz-Jeghers syndrome: Single-balloon enteroscopy and small bowel polypectomy

    PubMed Central

    Torroni, Filippo; Romeo, Erminia; Rea, Francesca; Angelis, Paola De; Foschia, Francesca; Faraci, Simona; Abriola, Giovanni Federici di; Contini, Anna Chiara; Caldaro, Tamara; Dall’Oglio, Luigi

    2014-01-01

    AIM: To assess the usefulness of the balloon assisted enteroscopy in preventing surgical intervention in patients with Peutz-Jeghers syndrome (PJS) having a small bowel large polyps. METHODS: Seven consecutive asymptomatic pts (age 15-38 years) with PJS have been collected; six underwent polypectomy using single balloon enteroscopy (Olympus SIF Q180) with antegrade approach using push and pull technique. SBE system consists of the SIF-Q180 enteroscope, an overtube balloon control unit (OBCU Olympus Balloon Control Unit) and a disposable silicone splinting tube with balloon (ST-SB1). All procedures were performed under general anesthesia. Previously all pts received wireless capsule endoscopy (WCE). Prophylactic polypectomy was reserved mainly in pts who had polyps > 15 mm in diameter. The balloon is inflated and deflated by a balloon control unit with a safety pressure setting range from -6.0 kPa to +5.4 kPa. Informed consent has been obtained from pts or parents for each procedure. RESULTS: Six pts underwent polypectomy of small bowel polyps; in 5 pts a large polyp > 15 mm (range 20-50 mm in diameter) was resected; in 1 patient with WCE negative, SBE was performed for previous surgical resection of gastrointestinal stromal tumors. In 2 pts endoscopic clips were placed due to a polypectomy. No surgical complication have been reported. SBE with resection of small bowel large polyps in PJS pts was useful to avoid gastrointestinal bleeding and emergency laparotomy due to intestinal intussusceptions. No gastrointestinal tumors were found in subsequent enteroscopic surveillance in all seven pts. In order surveillance, all pts received WCE, upper endoscopy, ileocolonoscopy every 2 years. No pts had extraintestinal malignant lesions. SBE was performed when WCE was positive for significant polyps (> 15 mm). CONCLUSION: The effective of prophylactic polypectomy of small bowel large polyps (> 15 mm) could be the first line treatment for conservative approach in management of

  14. Timing of single balloon enteroscopy: significant or not?

    PubMed Central

    Nelson, Kirbylee K.; Lipka, Seth; Davis-Yadley, Ashley H.; Rodriguez, Andrea C.; Doraiswamy, Vignesh; Rabbanifard, Roshanak; Kumar, Ambuj; Brady, Patrick G.

    2016-01-01

    Background: The development of balloon assisted enteroscopy (BAE) has revolutionized diagnostic and therapeutic modalities for small-bowel disorders. Although the role of emergent esophagogastroduodenoscopy and colonoscopy for upper and lower gastrointestinal bleeding is well defined, there is scarce data with regard to emergent BAE for gastrointestinal bleeding. Study: We performed a retrospective cohort study including 110 hospitalized patients with obscure gastrointestinal bleeding who underwent single balloon enteroscopy (SBE) between January 2010 and August 2013. Patients were divided into two groups based on procedures performed emergently (within 24 hours) versus non-emergently (greater than 24 hours). Data on patient demographics, hemodynamic characteristics, type of obscure bleed, lesions identified, location of lesions, endoscopic intervention performed, need for further surgical or radiological intervention, diagnostic and therapeutic yield, and adverse events were compared between groups. Independent samples t test and Fisher’s exact test were used to assess the association between dependent and independent variables. For continuous data, the results were summarized as mean difference and 95 % confidence intervals (CI), and for binary as odds ratio and 95 %CI. Results: Although patients in the group where enteroscopy was performed within 24 hours had a significantly higher incidence of radiological intervention (10.0 % vs. 0.0 %, P = 0.019), the diagnostic and therapeutic yields between the two groups were not significantly different. Additionally, there were no statistically significant differences between the groups for overt and occult bleeding, transfusion requirements, type and location of lesions, endoscopic intervention performed, or adverse events. Hospital stay was shorter in the patients who had SBE within 24 hours of admission (6.2 vs. 11.3 days, P < 0.001). Conclusions: Although the diagnostic and therapeutic yields of SBE

  15. Capsule enteroscopy and radiology of the small intestine.

    PubMed

    Fork, Frans-Thomas; Aabakken, Lars

    2007-12-01

    In a very few years, the video capsule for small bowel enteroscopy has gained widespread clinical acceptance. It is readily ingested, disposable, and allows for a complete, low-invasive endoscopic examination of the entire mucosa of the small bowel. It is a patient-friendly method and a first-line procedure in the difficult evaluation of obscure gastrointestinal bleeding. It has the highest proven figure of diagnostic sensitivity for detecting lesions of the mucosa, irrespective of aetiology. The limitations of capsule endoscopy include difficulty in localising mucosal lesions anatomically and its restricted use in patients with dysphagia, strictures or motor dysfunction. Strictures, transmural and extra-mural lesions in patients with small bowel Crohn's disease are evaluated by MRI- enterography and CT-enterography.

  16. Biobanks and Electronic Medical Records: Enabling Cost-Effective Research

    PubMed Central

    Bowton, Erica; Field, Julie R.; Wang, Sunny; Schildcrout, Jonathan S.; Van Driest, Sara L.; Delaney, Jessica T.; Cowan, James; Weeke, Peter; Mosley, Jonathan D.; Wells, Quinn S.; Karnes, Jason H.; Shaffer, Christian; Peterson, Josh F.; Denny, Joshua C.; Roden, Dan M.; Pulley, Jill M.

    2014-01-01

    The use of electronic medical record data linked to biological specimens in health care settings is expected to enable cost-effective and rapid genomic analyses. Here, we present a model that highlights potential advantages for genomic discovery and describe the operational infrastructure that facilitated multiple simultaneous discovery efforts. PMID:24786321

  17. Enablement, Constraint, and "The 7 Habits of Highly Effective People."

    ERIC Educational Resources Information Center

    Carlone, David

    2001-01-01

    Uses interviews to examine how the self-help book "The 7 Habits of Highly Effective People" shapes the identity of organization members who read and use the book. Suggests that such people are simultaneously enabled and constrained as they confront tensions between individualism and community, competition and cooperation, and domination and…

  18. Current status of single-balloon enteroscopy: Insertability and clinical applications

    PubMed Central

    Kawamura, Takuji; Uno, Koji; Tanaka, Kiyohito; Yasuda, Kenjiro

    2015-01-01

    The single-balloon enteroscopy (SBE) system was launched in 2007, proposed as a simpler method than double-balloon enteroscopy (DBE). Controversy surrounds whether the SBE system has the same insertability as DBE. However, many methods have been proposed to improve the depth of insertion with the SBE system, involving several techniques and endoscopic accessories. SBE is used for investigating not only small bowel diseases, but also diseases of the pancreatobiliary and colonic structures. SBE is a necessary advancement for many endoscopic procedures and applications in modern clinical practice. In our review, we summarized the current literature concerning the insertability of SBE and described the technical aspects of improving the rate of deep insertion in SBE procedures. In addition, the recent applications of SBE to diseases besides those of the small bowel are described. PMID:25610535

  19. Therapeutic enteroscopy using a new single-balloon enteroscope: a case series

    PubMed Central

    Moreels, Tom G.; Kouinche Madenko, Nathalie; Taha, Alaa; Piessevaux, Hubert; Deprez, Pierre H.

    2016-01-01

    Background and study aims: Balloon-assisted enteroscopy allows therapeutic intervention in the small bowel, and even of the biliopancreatic system in patients with altered anatomy. However, the conventional single-balloon enteroscope (SBE) has limited therapeutic use because of its small-caliber working channel and the lack of an additional water jet channel. The new single-balloon enteroscope prototype XSIF-180JY has been developed to overcome these problems. We present experience with use of the new SBE prototype during 14 therapeutic endoscopy procedures, which illustrates its advantages. Patients and methods: During a 2-month period, 16 SBE procedures were performed (2 antegrade, 2 retrograde and 12 ERCP procedures) using the XSIF-180JY prototype, 14 of which were done with therapeutic intent. Results: The XSIF-180JY SBE allowed deep enteroscopy with balloon dilation and multiple intestinal polypectomies. Moreover, 14 ERCP procedures were successfully performed in 12 patients with Roux-en-Y altered anatomy. Sphincterotomy, balloon dilation, stone extraction and 7 Fr plastic stent placement were performed through the 3.2-mm working channel. The additional water jet was useful for flushing away stone fragments from the intrahepatic bile ducts and the retrieval basket and for flushing away blood from a bleeding sphincterotomy. No complications related to the enteroscope were encountered. Conclusions: The new therapeutic XSIF-180JY SBE permitted therapeutic enteroscopy and ERCP through its 3.2-mm working channel and the additional water jet channel proved useful in flushing away biliary stones and blood without the need to clear the working channel. This newly developed SBE has the advantage of a larger working channel and an additional water jet, improving therapeutic enteroscopy. PMID:27540583

  20. Safety of Deep Enteroscopy and Capsule Endoscopy in LVAD Patients: Case Report and Literature Review

    PubMed Central

    Kwong, Wilson Tak-Yu; Pearlman, Michelle; Kalmaz, Denise

    2015-01-01

    Patients with a left ventricular assist device (LVAD) have increased risk of gastrointestinal (GI) bleeding. They are prone to develop angiodysplasia of the small intestine, and have a higher risk of bleeding as these patients are all required to be on permanent therapeutic anticoagulation. Here we report a case of a critically ill 55-year-old male on pressors and inotropes with an LVAD, who successfully underwent an antegrade double balloon enteroscopy (DBE).

  1. [The enteroscopy capsule--a swallowable instrument for video examination of the small bowel].

    PubMed

    Fork, Frans-Thomas; Tóth, Ervin; Benoni, Cecilia

    2002-11-28

    Since 1.5 years wireless enteroscopy with the GivenM2A-capsule has been tested clinically. Wireless capsule-enteroscopy (WCE) has already contributed significantly to the understanding of patients with obscure intestinal symptoms. Series of occult bleeders show that WCE detects lesions in 60%, whereas enterography only in 15%, and push-enteroscopy in 25%. Lesions detected are angiodysplasia in 55%, ulcerations in 14%, apthoid lesions and erosions in 11%, tumours in 8%. Active bleeding was seen in 43%. In patients with Crohn's disease further information on extent of disease and type of lesions is gained, mainly seen as erosions in 64%. WCE in hereditary polyposis disclosed more and bigger lesions, and in celiac enteropathy villous atrophy and scalloping of the mucous membrane is readily identified. Software to locate the capsule in the gastrointestinal tract is recently launched together with a graphic display of capsule track and transit times. Soon displays for motility and pressure will follow. Capsule adaptation for screening for Barrett's esophagus and colon cancer might come true. PMID:12523069

  2. Balloon-assisted enteroscopy for suspected Meckel’s diverticulum and indefinite diagnostic imaging workup

    PubMed Central

    Gomes, Guilherme Francisco; Bonin, Eduardo Aimore; Noda, Rafael William; Cavazzola, Leandro Totti; Bartholomei, Thiago Ferreira

    2016-01-01

    Meckel’s diverticulum (MD) is estimated to affect 1%-2% of the general population, and it represents a clinically silent finding of a congenital anomaly in up to 85% of the cases. In adults, MD may cause symptoms, such as overt occult lower gastrointestinal bleeding. The diagnostic imaging workup includes computed tomography scan, magnetic resonance imaging enterography, technetium 99m scintigraphy (99mTc) using either labeled red blood cells or pertechnetate (known as the Meckel’s scan) and angiography. The preoperative detection rate of MD in adults is low, and many patients ultimately undergo exploratory laparoscopy. More recently, however, endoscopic identification of MD has been possible with the use of balloon-assisted enteroscopy via direct luminal access, which also provides visualization of the diverticular ostium. The aim of this study was to review the diagnosis by double-balloon enteroscopy of 4 adults with symptomatic MD but who had negative diagnostic imaging workups. These cases indicate that balloon-assisted enteroscopy is a valuable diagnostic method and should be considered in adult patients who have suspected MD and indefinite findings on diagnostic imaging workup, including negative Meckel’s scan. PMID:27803776

  3. ERCP using double-balloon enteroscopy in patients with Roux-en-Y anatomy.

    PubMed

    Kuga, Rogério; Furuya, Carlos Kiyoshi; Hondo, Fábio Yuji; Ide, Edson; Ishioka, Shinichi; Sakai, Paulo

    2008-01-01

    Double-balloon enteroscopy (DBE) is a useful method for endoscopic retrograde cholangiopancreatography (ERCP) in patients with Roux-en-Y anatomy. Depending on the distorted anatomy, endoscopic therapies with conventional scopes were very difficult or impossible before the advent of DBE and patients had to be submitted to a percutaneous or surgical approach. The case of 6 patients with different types of Roux-en-Y-altered anatomy in which DBE-ERCP was performed with 83.3% successful rate (5/6) is reported confirming recent data in the literature on the feasibility of this method. PMID:19188724

  4. Using balloon-overtube-assisted enteroscopy for postoperative endoscopic retrograde cholangiopancreatography

    PubMed Central

    Skinner, Matthew; Velázquez-Aviña, Jacobo

    2014-01-01

    Endoscopic retrograde cholangiopancreatography (ERCP) is technically more challenging in patients with postsurgical anatomy such as Roux-en-Y anastomosis, frequently mandating an operative intervention. Although limited, there is growing evidence that ERCP can be performed using the balloon-overtube-assisted enteroscopy (BOAE) in patients with complex postoperative anatomy. We present the technical aspects of performing ERCP with the BOAE in patients presenting with complex postsurgical anatomy having biliary problems. ERCP using the BOAE is feasible in patients with complex postsurgical anatomy, permitting diagnostic and therapeutic interventions in 80% of patients. PMID:25364385

  5. Fecal microbiota transplant by push enteroscopy to treat diarrhea caused by Clostridium difficile

    PubMed Central

    Ganc, Arnaldo José; Ganc, Ricardo Leite; Reimão, Sílvia Mansur; Frisoli, Alberto; Pasternak, Jacyr

    2015-01-01

    ABSTRACT Clostridium difficile is the major etiological agent of pseudomembranous colitis and is found in up to 20% of adult inpatients. The recommended treatment is antibiotic therapy with metronidazole and/or vancomycin. However, the recurrence rate may reach up to 25% and it increases in each episode. The newest alternative to treat diarrhea due to recurrent Clostridium difficile is fecal microbiota transplantation. The procedure was performed in 12 patients, with a 6-month follow-up on 10 of them. Of the ten cases, bacterial recurrence was diagnosed in only one patient, after a course of antibiotic to treat urinary tract infection, without presenting with diarrhea. The particularity of our study, besides being an unprecedented event in South America, is the way to perform the infusion of fecal microbiota by enteroscopy. PMID:26154556

  6. Retained wireless video enteroscopy capsule: a case report and review of the literature.

    PubMed

    Kelley, Scott R; Lohr, Joann M

    2009-01-01

    Capsule enteroscopy, which is a wireless noninvasive approach to evaluation of the small intestine, consists of an 11 x 26-mm capsule containing a miniature video camera, batteries, illuminating light-emitting diodes, a transmitter, and an antenna. The components inside the capsule are encased by a slippery, nonbiodegradable, plastic housing, which weighs less than 4 g. Information obtained from the imager, approximately 2 frames per second, is transmitted by way of radiotelemetry to an array of sensors taped to the abdomen, which connect to a data recorder worn on a belt around the waist. The batteries are designed to last roughly 7-8 hours, providing enough energy to generate approximately 50,000 to 60,000 detailed images. The clinical review of the imagery is made available after completion of the study when images are downloaded from the data recorder to a computer with dedicated software. PMID:20005505

  7. Fecal microbiota transplant by push enteroscopy to treat diarrhea caused by Clostridium difficile.

    PubMed

    Ganc, Arnaldo José; Ganc, Ricardo Leite; Reimão, Sílvia Mansur; Frisoli Junior, Alberto; Pasternak, Jacyr

    2015-01-01

    Clostridium difficile is the major etiological agent of pseudomembranous colitis and is found in up to 20% of adult inpatients. The recommended treatment is antibiotic therapy with metronidazole and/or vancomycin. However, the recurrence rate may reach up to 25% and it increases in each episode. The newest alternative to treat diarrhea due to recurrent Clostridium difficile is fecal microbiota transplantation. The procedure was performed in 12 patients, with a 6-month follow-up on 10 of them. Of the ten cases, bacterial recurrence was diagnosed in only one patient, after a course of antibiotic to treat urinary tract infection, without presenting with diarrhea. The particularity of our study, besides being an unprecedented event in South America, is the way to perform the infusion of fecal microbiota by enteroscopy.

  8. A new approach to blue rubber bleb nevus syndrome: the role of capsule endoscopy and intra-operative enteroscopy.

    PubMed

    Kopácová, Marcela; Tachecí, Ilja; Koudelka, Jaroslav; Králová, Miroslava; Rejchrt, Stanislav; Bures, Jan

    2007-07-01

    Blue rubber bleb nevus syndrome (BRBNS) is a rare vascular malformation disorder with cutaneous and visceral lesions frequently associated with serious, even fatal bleeding and anemia. The syndrome is considered to be autosomaly predominantly inherited. Intra-operative enteroscopy (IOE) is the best method of identification of all lesions (particularly the small ones, less than 3 mm) and treatment by endoscopic electro-coagulation or surgical excision. Capsule wireless endoscopy is optimal for screening before the IOE and for monitoring the effect of therapy (in patients with BRBNS). We report two cases of BRBNS. Anemia, gastrointestinal bleeding, gastrointestinal malformations and multifocal venous malformations of the skin were present in both of our cases. Gastrointestinal lesions were identified by gastroscopy, colonoscopy and capsule endoscopy. The multiple venous malformations were treated partly by endoscopic electro-coagulation (lesions up to 4 mm in diameter) and by wedge resection. Both of our patients were 12-year-old girls at the time of operation. In the first patient 31 venous malformations of the small bowel were coagulated, two were resected by the surgeon. In the second patient 20 lesions were coagulated endoscopically and another 31 nevi were resected during an 8 h procedure. The first girl is doing fine 4 years after the procedure, the second was allowed home 2 weeks after the procedure in excellent condition. IOE is a unique method of small bowel investigation and concurrently provides a solution for pathological findings. Capsule endoscopy is a feasible non-invasive screening procedure. We believe that a radical eliminatory approach by means of combined surgery and IOE is indicated for the BRBNS to prevent ongoing gastrointestinal bleeding. PMID:17205297

  9. A new approach to blue rubber bleb nevus syndrome: the role of capsule endoscopy and intra-operative enteroscopy.

    PubMed

    Kopácová, Marcela; Tachecí, Ilja; Koudelka, Jaroslav; Králová, Miroslava; Rejchrt, Stanislav; Bures, Jan

    2007-07-01

    Blue rubber bleb nevus syndrome (BRBNS) is a rare vascular malformation disorder with cutaneous and visceral lesions frequently associated with serious, even fatal bleeding and anemia. The syndrome is considered to be autosomaly predominantly inherited. Intra-operative enteroscopy (IOE) is the best method of identification of all lesions (particularly the small ones, less than 3 mm) and treatment by endoscopic electro-coagulation or surgical excision. Capsule wireless endoscopy is optimal for screening before the IOE and for monitoring the effect of therapy (in patients with BRBNS). We report two cases of BRBNS. Anemia, gastrointestinal bleeding, gastrointestinal malformations and multifocal venous malformations of the skin were present in both of our cases. Gastrointestinal lesions were identified by gastroscopy, colonoscopy and capsule endoscopy. The multiple venous malformations were treated partly by endoscopic electro-coagulation (lesions up to 4 mm in diameter) and by wedge resection. Both of our patients were 12-year-old girls at the time of operation. In the first patient 31 venous malformations of the small bowel were coagulated, two were resected by the surgeon. In the second patient 20 lesions were coagulated endoscopically and another 31 nevi were resected during an 8 h procedure. The first girl is doing fine 4 years after the procedure, the second was allowed home 2 weeks after the procedure in excellent condition. IOE is a unique method of small bowel investigation and concurrently provides a solution for pathological findings. Capsule endoscopy is a feasible non-invasive screening procedure. We believe that a radical eliminatory approach by means of combined surgery and IOE is indicated for the BRBNS to prevent ongoing gastrointestinal bleeding.

  10. Primary intestinal lymphangiectasia diagnosed by capsule endoscopy and double balloon enteroscopy

    PubMed Central

    Oh, Tak Geun; Chung, Joo Won; Kim, Hee Man; Han, Seok-Joo; Lee, Jin Sung; Park, Jung Yeob; Song, Si Young

    2011-01-01

    Primary intestinal lymphangiectasia (PIL) is a rare disorder characterized by dilated intestinal lymphatics and the development of protein-losing enteropathy. Patients with PIL develop hypoalbuminemia, hypocalcemia, lymphopenia and hypogammaglobulinemia, and present with bilateral lower limb edema, fatigue, abdominal pain and diarrhea. Endoscopy reveals diffusely elongated, circumferential and polypoid mucosae covered with whitish enlarged villi, all of which indicate intestinal lymphangiectasia. Diagnosis is confirmed by characteristic tissue pathology, which includes dilated intestinal lymphatics with diffusely swollen mucosa and enlarged villi. The prevalence of PIL has increased since the introduction of capsule endoscopy. The etiology and prevalence of PIL remain unknown. Some studies have reported that several genes and regulatory molecules for lymphangiogenesis are related to PIL. We report the case of a patient with PIL involving the entire small bowel that was confirmed by capsule endoscopy and double-balloon enteroscopy-guided tissue pathology who carried a deletion on chromosome 4q25. The relationship between this deletion on chromosome 4 and PIL remains to be investigated. PMID:22110841

  11. Comparison of Capsule Endoscopy Findings to Subsequent Double Balloon Enteroscopy: A Dual Center Experience

    PubMed Central

    Kalra, Amandeep S.; Walker, Andrew J.; Benson, Mark E.; Soni, Anurag; Guda, Nalini M.; Misha, Mehak; Gopal, Deepak V.

    2015-01-01

    Background. There has been a growing use of both capsule endoscopy (CE) and double balloon enteroscopy (DBE) to diagnose and treat patients with obscure gastrointestinal blood loss and suspected small bowel pathology. Aim. To compare and correlate sequential CE and DBE findings in a large series of patients at two tertiary level hospitals in Wisconsin. Methods. An IRB approved retrospective study of patients who underwent sequential CE and DBE, at two separate tertiary care academic centers from May 2007 to December 2011, was performed. Results. 116 patients were included in the study. The mean age ± SD was 66.6 ± 13.2 years. There were 56% males and 43.9% females. Measure of agreement between prior capsule and DBE findings was performed using kappa statistics, which gave kappa value of 0.396 with P < 0.001. Also contingency coefficient was calculated and was found to be 0.732 (P < 0.001). Conclusions. Our study showed good overall agreement between DBE and CE. Findings of angioectasia had maximum agreement of 69%. PMID:26420979

  12. Investigating the Role of Collective Trust, Collective Efficacy, and Enabling School Structures on Overall School Effectiveness

    ERIC Educational Resources Information Center

    Gray, Julie

    2016-01-01

    This study investigated the role of collective trust, collective efficacy, and enabling school structures on overall school effectiveness. While the concept of organizational effectiveness can be complex and difficult to measure, the results of this research demonstrated a connection of these variables to school effectiveness. Collective trust had…

  13. The safety and efficacy of single balloon enteroscopy in the elderly

    PubMed Central

    Davis-Yadley, Ashley H.; Lipka, Seth; Rodriguez, Andrea C.; Nelson, Kirbylee K.; Doraiswamy, Vignesh; Rabbanifard, Roshanak; Kumar, Ambuj; Brady, Patrick G.

    2016-01-01

    Background: Single balloon enteroscopy (SBE) is an important tool in the management of small bowel disease with limited data available on its performance in the elderly. We aimed to evaluate the safety, efficacy, diagnostic and therapeutic outcomes of SBE in the elderly. Methods: A retrospective review was performed on 366 patients undergoing 428 SBEs from 2010 to 2014. Patients were divided into different age groups: control <55, 55–64, 65–74 and ⩾75 years. Data on comorbidities, complications, findings, diagnostic and therapeutic yield were compared between groups. Results: Anterograde and retrograde SBE were performed in 340 and 49 patients, respectively, with 63 patients requiring more than 1 procedure. Diagnostic yield was significantly higher for age ⩾75 years compared with <55, 66.3% versus 50%, odds ratio (OR) 1.97 [95% confidence interval (CI) 1.14–3.41]. Therapeutic yield was significantly higher in all three older age groups compared with <55 years, 20.3%: 55–64 years, 44.4%, OR 3.13(95% CI 1.7–5.78); 65–74 years, 42%, OR 2.84 (95% CI 1.59–5.06); and >75 years, 47.5%, OR 3.55 (95% CI 1.96–6.43). No significant difference was seen between age groups in complications or failures. Our overall complication rate was 2.3% with 5 minor and 5 major complications. There was a higher yield of angioectasias in the elderly. Argon plasma coagulation (APC) and multipolar electrocoagulation were used more often in older age groups. Conclusion: SBE is safe in elderly patients and delivers higher diagnostic and therapeutic yields compared to younger patients. The elderly are more likely to have angioectasias and undergo APC and electrocoagulation. PMID:26929779

  14. A case of a ruptured submucosal aneurysm of the small intestine identified using double-balloon enteroscopy.

    PubMed

    Chiba, Hirofumi; Endo, Katsuya; Fujishima, Fumiyoshi; Ohtsuka, Hideo; Naitoh, Takeshi; Kuroha, Masatake; Kimura, Tomoya; Shiga, Hisashi; Kakuta, Yoichi; Kinouchi, Yoshitaka; Unno, Michiaki; Shimosegawa, Tooru

    2016-04-01

    A 47-year-old woman was admitted to our hospital urgently with sudden-onset hematochezia. She was temporarily in a state of hemorrhagic shock. As we strongly suspected bleeding from the small intestine, peroral double-balloon enteroscopy was performed, and indicated a 2.0-cm diameter hemispheric elevated lesion in the jejunum. Moreover, a blood clot was observed at the top of the protrusion. The site was marked by injecting India ink, without taking a biopsy specimen, to avoid further hemorrhaging. Subsequently, laparoscopic partial small bowel resection was performed. On histopathological examination, the lesion was found to be a sac-like submucosal arterial aneurysm, with a diameter of 3.5 mm, comprising several small abnormal arteries. The final diagnosis was a ruptured submucosal aneurysm of the small intestine. Ruptured submucosal aneurysms are very rarely observed in the small intestine. Only a few reports have described their endoscopic findings. Our experience indicates that small bowel enteroscopy may be useful for managing ruptured submucosal aneurysms of the small intestine.

  15. Microfluidic multiplexed partitioning enables flexible and effective utilization of magnetic sensor arrays.

    PubMed

    Bechstein, Daniel J B; Ng, Elaine; Lee, Jung-Rok; Cone, Stephanie G; Gaster, Richard S; Osterfeld, Sebastian J; Hall, Drew A; Weaver, James A; Wilson, Robert J; Wang, Shan X

    2015-11-21

    We demonstrate microfluidic partitioning of a giant magnetoresistive sensor array into individually addressable compartments that enhances its effective use. Using different samples and reagents in each compartment enables measuring of cross-reactive species and wide dynamic ranges on a single chip. This compartmentalization technique motivates the employment of high density sensor arrays for highly parallelized measurements in lab-on-a-chip devices.

  16. Using Email to Enable E[superscript 3] (Effective, Efficient, and Engaging) Learning

    ERIC Educational Resources Information Center

    Kim, ChanMin

    2008-01-01

    This article argues that technology that supports both noncognitive and cognitive aspects can make learning more effective, efficient, and engaging (e[superscript 3]-learning). The technology of interest in this article is email. The investigation focuses on characteristics of email that are likely to enable e[superscript 3]-learning. In addition,…

  17. Outcome and Safety of Anterograde and Retrograde Single-Balloon Enteroscopy: Clinical Experience at a Tertiary Medical Center in Taiwan

    PubMed Central

    Lin, Meng-Chiung; Chen, Peng-Jen; Shih, Yu-Lueng; Huang, Hsin-Hung; Chang, Wei-Kuo; Hsieh, Tsai-Yuan; Huang, Tien-Yu

    2016-01-01

    Single-balloon enteroscopy (SBE) is designed for identifying possible small bowel lesions with balloon-assisted enteroscopy that allows deep intubation of the intestine. However, data regarding the outcome and safety of SBE remain limited. We conducted this study to evaluate the outcome and safety of anterograde and retrograde SBE approaches. This retrospective review from a tertiary medical center in Taiwan included endoscopic reports and chart data from 128 patients with 200 anterograde and retrograde procedures from September 2009 to November 2014. In this study, the most common indication for both anterograde and retrograde SBE was obscure gastrointestinal bleeding (64.4% vs. 60.6%). There were no significant differences between anterograde and retrograde approaches in terms of the diagnostic yield (69.3% vs. 52.5%) and intervention rate (23.8% vs. 17.2%). The procedure time was shorter for anterograde SBE than for retrograde SBE (68.1 ± 23.9 vs. 76.8 ± 27.7 min, P = 0.018). In addition, among the subgroup of patients with obscure gastrointestinal bleeding, the most common etiologies for those in different age-groups were angiodysplasia (≥ 65 years), non-specific ulcers (30–64 years), and Meckel’s diverticulum (< 30 years). The major complication rate during the study was 1.5%; the rate of asymptomatic hyperamylasemia was higher for patients who underwent anterograde SBE than for those who underwent retrograde SBE (13.9% vs. 2%, P = 0.005). The outcome and safety of anterograde and retrograde SBE are similar. However, anterograde SBE has a shorter procedural time and a higher rate of asymptomatic hyperamylasemia. PMID:27548619

  18. Integrated radiologist's workstation enabling the radiologist as an effective clinical consultant

    NASA Astrophysics Data System (ADS)

    McEnery, Kevin W.; Suitor, Charles T.; Hildebrand, Stan; Downs, Rebecca; Thompson, Stephen K.; Shepard, S. Jeff

    2002-05-01

    Since February 2000, radiologists at the M. D. Anderson Cancer Center have accessed clinical information through an internally developed radiologist's clinical interpretation workstation called RadStation. This project provides a fully integrated digital dictation workstation with clinical data review. RadStation enables the radiologist as an effective clinical consultant with access to pertinent sources of clinical information at the time of dictation. Data sources not only include prior radiology reports from the radiology information system (RIS) but access to pathology data, laboratory data, history and physicals, clinic notes, and operative reports. With integrated clinical information access, a radiologists's interpretation not only comments on morphologic findings but also can enable evaluation of study findings in the context of pertinent clinical presentation and history. Image access is enabled through the integration of an enterprise image archive (Stentor, San Francisco). Database integration is achieved by a combination of real time HL7 messaging and queries to SQL-based legacy databases. A three-tier system architecture accommodates expanding access to additional databases including real-time patient schedule as well as patient medications and allergies.

  19. Single Balloon Enteroscopy-Assisted Endoscopic Retrograde Cholangiopancreatography in Patients Who Underwent a Gastrectomy with Roux-en-Y Anastomosis: Six Cases from a Single Center.

    PubMed

    Soh, Jae Seung; Yang, Dong-Hoon; Lee, Sang Soo; Lee, Seohyun; Bae, Jungho; Byeon, Jeong-Sik; Myung, Seung-Jae; Yang, Suk-Kyun

    2015-09-01

    Patients with altered anatomy such as a Roux-en-Y anastomosis often present with various pancreaticobiliary problems requiring therapeutic intervention. However, a conventional endoscopic approach to the papilla is very difficult owing to the long afferent limb and acute angle of a Roux-en-Y anastomosis. Balloon-assisted enteroscopy can be used for endoscopic retrograde cholangiopancreatography (ERCP) in patients with altered anatomy. We experienced six cases of Roux-en-Y anastomosis with biliary problems, and attempted ERCP using single balloon enteroscopy (SBE). SBE insertion followed by replacement with a conventional endoscope was attempted in five of six patients. The papilla was successfully approached using SBE in all cases. However, therapeutic intervention was completed in only three cases because of poor maneuverability caused by postoperative adhesion. We conclude that in patients with Roux-en-Y anastomosis, the ampulla can be readily accessed with SBE, but longer dedicated accessories are necessary to improve this therapeutic intervention.

  20. Single Balloon Enteroscopy-Assisted Endoscopic Retrograde Cholangiopancreatography in Patients Who Underwent a Gastrectomy with Roux-en-Y Anastomosis: Six Cases from a Single Center

    PubMed Central

    Soh, Jae Seung; Lee, Sang Soo; Lee, Seohyun; Bae, Jungho; Byeon, Jeong-Sik; Myung, Seung-Jae; Yang, Suk-Kyun

    2015-01-01

    Patients with altered anatomy such as a Roux-en-Y anastomosis often present with various pancreaticobiliary problems requiring therapeutic intervention. However, a conventional endoscopic approach to the papilla is very difficult owing to the long afferent limb and acute angle of a Roux-en-Y anastomosis. Balloon-assisted enteroscopy can be used for endoscopic retrograde cholangiopancreatography (ERCP) in patients with altered anatomy. We experienced six cases of Roux-en-Y anastomosis with biliary problems, and attempted ERCP using single balloon enteroscopy (SBE). SBE insertion followed by replacement with a conventional endoscope was attempted in five of six patients. The papilla was successfully approached using SBE in all cases. However, therapeutic intervention was completed in only three cases because of poor maneuverability caused by postoperative adhesion. We conclude that in patients with Roux-en-Y anastomosis, the ampulla can be readily accessed with SBE, but longer dedicated accessories are necessary to improve this therapeutic intervention. PMID:26473133

  1. Transverse-electric Brewster effect enabled by nonmagnetic two-dimensional materials

    NASA Astrophysics Data System (ADS)

    Lin, Xiao; Shen, Yichen; Kaminer, Ido; Chen, Hongsheng; Soljačić, Marin

    2016-08-01

    Discovered in the 19th century, the Brewster effect is known to occur for transverse-magnetic waves in regular optical dielectrics; however, it is believed to arise for transverse-electric (TE) waves only in systems with magnetic responses, i.e., nonunity effective relative permeability. This paper introduces a scheme to realize the TE Brewster effect in a homogeneous dielectric interface without magnetic responses, by adding ultrathin two-dimensional (2D) materials such as graphene. In particular, the effect remains even for waves approaching normal incidence, spanning from terahertz to visible frequencies. In contrast to the conventional Brewster effect, the graphene-assisted TE Brewster effect is asymmetric, and can be achieved only when the incidence is from the higher-refractive-index side. Moreover, graphene layers can tailor a total-internal-reflection dielectric interface into zero reflection, accompanied by perfect absorption. This control over TE waves enabled by ultrathin 2D materials may lead to a variety of applications, such as atomically thin absorbers, polarizers, and antireflection coating.

  2. Networking between community health programs: a case study outlining the effectiveness, barriers and enablers

    PubMed Central

    2012-01-01

    Background In India, since the 1990s, there has been a burgeoning of NGOs involved in providing primary health care. This has resulted in a complex NGO-Government interface which is difficult for lone NGOs to navigate. The Uttarakhand Cluster, India, links such small community health programs together to build NGO capacity, increase visibility and better link to the government schemes and the formal healthcare system. This research, undertaken between 1998 and 2011, aims to examine barriers and facilitators to such linking, or clustering, and the effectiveness of this clustering approach. Methods Interviews, indicator surveys and participant observation were used to document the process and explore the enablers, the barriers and the effectiveness of networks improving community health. Results The analysis revealed that when activating, framing, mobilising and synthesizing the Uttarakhand Cluster, key brokers and network players were important in bridging between organisations. The ties (or relationships) that held the cluster together included homophily around common faith, common friendships and geographical location and common mission. Self interest whereby members sought funds, visibility, credibility, increased capacity and access to trainings was also a commonly identified motivating factor for networking. Barriers to network synthesizing included lack of funding, poor communication, limited time and lack of human resources. Risk aversion and mistrust remained significant barriers to overcome for such a network. Conclusions In conclusion, specific enabling factors allowed the clustering approach to be effective at increasing access to resources, creating collaborative opportunities and increasing visibility, credibility and confidence of the cluster members. These findings add to knowledge regarding social network formation and collaboration, and such knowledge will assist in the conceptualisation, formation and success of potential health networks in India

  3. Enabling cost-effective high-current burst-mode operation in superconducting accelerators

    SciTech Connect

    Sheffield, Richard L.

    2015-06-01

    Superconducting (SC) accelerators are very efficient for CW or long-pulse operation, and normal conducting (NC) accelerators are cost effective for short-pulse operation. The addition of a short NC linac section to a SC linac can correct for the energy droop that occurs when pulsed high-current operation is required that exceeds the capability of the klystrons to replenish the cavity RF fields due to the long field fill-times of SC structures, or a requirement to support a broad range of beam currents results in variable beam loading. This paper describes the implementation of this technique to enable microseconds of high beam-current, 90 mA or more, in a 12 GeV SC long-pulse accelerator designed for the MaRIE 42-keV XFEL proposed for Los Alamos National Laboratory.

  4. Enabling cost-effective high-current burst-mode operation in superconducting accelerators

    DOE PAGESBeta

    Sheffield, Richard L.

    2015-06-01

    Superconducting (SC) accelerators are very efficient for CW or long-pulse operation, and normal conducting (NC) accelerators are cost effective for short-pulse operation. The addition of a short NC linac section to a SC linac can correct for the energy droop that occurs when pulsed high-current operation is required that exceeds the capability of the klystrons to replenish the cavity RF fields due to the long field fill-times of SC structures, or a requirement to support a broad range of beam currents results in variable beam loading. This paper describes the implementation of this technique to enable microseconds of high beam-current,more » 90 mA or more, in a 12 GeV SC long-pulse accelerator designed for the MaRIE 42-keV XFEL proposed for Los Alamos National Laboratory.« less

  5. Effect of Knowledge Management on Organizational Performance: Enabling Thought Leadership and Social Capital through Technology Management

    NASA Astrophysics Data System (ADS)

    Chalhoub, Michel S.

    The present paper studies the relationship between social networks enabled by technological advances in social software, and overall business performance. With the booming popularity of online communication and the rise of knowledge communities, businesses are faced with a challenge as well as an opportunity - should they monitor the use of social software or encourage it and learn from it? We introduce the concept of user-autonomy and user-fun, which go beyond the traditional user-friendly requirement of existing information technologies. We identified 120 entities out of a sample of 164 from Mediterranean countries and the Gulf region, to focus on the effect of social exchange information systems in thought leadership.

  6. Interface-Located Photothermoelectric Effect of Organic Thermoelectric Materials in Enabling NIR Detection.

    PubMed

    Huang, Dazhen; Zou, Ye; Jiao, Fei; Zhang, Fengjiao; Zang, Yaping; Di, Chong-an; Xu, Wei; Zhu, Daoben

    2015-05-01

    Organic photothermoelectric (PTE) materials are promising candidates for various photodetection applications. Herein, we report on poly[Cux(Cu-ett)]:PVDF, which is an excellent polymeric thermoelectric composite, possesses unprecedented PTE properties. The NIR light irradiation on the poly[Cu(x)(Cu-ett)]:PVDF film could induce obvious enhancement in Seebeck coefficient from 52 ± 1.5 to 79 ± 5.0 μV/K. By taking advantage of prominent photothermoelectric effect of poly[Cu(x)(Cu-ett)]:PVDF, an unprecedented voltage of 12 mV was obtained. This excellent performance enables its promising applications in electricity generation from solar energy and NIR detection to a wide range of light intensities ranging from 1.7 mW/cm(2) to 17 W/cm(2). PMID:25875974

  7. Complimentary Imaging Modalities for Investigating Obscure Gastrointestinal Bleeding: Capsule Endoscopy, Double-Balloon Enteroscopy, and Computed Tomographic Enterography.

    PubMed

    Chu, Ye; Wu, Sheng; Qian, Yuting; Wang, Qi; Li, Juanjuan; Tang, Yanping; Bai, Tingting; Wang, Lifu

    2016-01-01

    Objectives. The complimentary value of computed tomographic enterography (CTE) and double-balloon enteroscopy (DBE) combined with capsule endoscopy (CE) was evaluated in the diagnosis of obscure gastrointestinal bleeding (OGIB). Methods. Patients who received CE examinations at Ruijin Hospital between July 2007 and July 2014 with the indication of OGIB were identified, and those who also underwent DBE and/or CTE were included. Their clinical information was retrieved, and results from each test were compared with findings from the other two examinations. Results. The overall diagnostic yield of CE was comparable with DBE (73.9% versus 60.9%) but was significantly higher than the yield of CTE (87% versus 25%, p < 0.001). The diagnostic yield of angiodysplasia at CE was significantly higher than CTE (73% versus 8%, p < 0.001) and DBE (39.1% versus 17.4%, p = 0.013), while no significant difference was found between the three approaches for small bowel tumors. DBE and CTE identified small bowel diseases undetected or undetermined by CE. Conversely, CE improved diagnosis in the cases with negative CTE and DBE, and findings at initial CE directed further diagnosis made by DBE. Conclusions. Combination of the three diagnostic platforms provides complementary value in the diagnosis of OGIB. PMID:26858753

  8. Double-balloon enteroscopy for ERCP in patients with Billroth II anatomy: results of a large series of papillary large-balloon dilation for biliary stone removal

    PubMed Central

    Cheng, Chi-Liang; Liu, Nai-Jen; Tang, Jui-Hsiang; Yu, Ming-Chin; Tsui, Yi-Ning; Hsu, Fang-Yu; Lee, Ching-Song; Lin, Cheng-Hui

    2015-01-01

    Background and study aims: Data on double-balloon enteroscopy (DBE)-assisted endoscopic retrograde cholangiopancreatogrphy (ERCP) in patients with Billroth II gastrectomy and the use of endoscopic papillary large-balloon dilation (EPLBD) for the removal of common bile duct stones in Billroth II anatomy are limited. The aims of the study were to evaluate the success of DBE-assisted ERCP in patients with Billroth II gastrectomy and examine the efficacy of EPLBD ( ≥ 10 mm) for the removal of common bile duct stones. Patients and methods: A total of 77 patients with Billroth II gastrectomy in whom standard ERCP had failed underwent DBE-assisted ERCP. DBE success was defined as visualizing the papilla and ERCP success as completing the intended intervention. The clinical results of EPLBD for the removal of common bile duct stones were analyzed. Results: DBE was successful in 73 of 77 patients (95 %), and ERCP success was achieved in 67 of these 73 (92 %). Therefore, the rate of successful DBE-assisted ERCP was 87 % (67 of a total of 77 patients). The reasons for ERCP failure (n = 10) included tumor obstruction (n = 2), adhesion obstruction (n = 2), failed cannulation (n = 3), failed stone removal (n = 2), and bowel perforation (n = 1). Overall DBE-assisted ERCP complications occurred in 5 of 77 patients (6.5 %). A total of 48 patients (34 male, mean age 75.5 years) with common bile duct stones underwent EPLBD. Complete stone removal in the first session was accomplished in 36 patients (75 %); mechanical lithotripsy was required in 1 patient. EPLBD-related mild perforation occurred in 2 patients (4 %). No acute pancreatitis occurred. Conclusions: DBE permits therapeutic ERCP in patients who have a difficult Billroth II gastrectomy with a high success rate and acceptable complication rates. EPLBD is effective and safe for the removal of common bile duct stones in patients with Billroth II anatomy. PMID:26171434

  9. Underwater microwave ignition of hydrophobic thermite powder enabled by the bubble-marble effect

    SciTech Connect

    Meir, Yehuda; Jerby, Eli

    2015-08-03

    Highly energetic thermite reactions could be useful for a variety of combustion and material-processing applications, but their usability is yet limited by their hard ignition conditions. Furthermore, in virtue of their zero-oxygen balance, exothermic thermite reactions may also occur underwater. However, this feature is also hard to utilize because of the hydrophobic properties of the thermite powder, and its tendency to agglomerate on the water surface rather than to sink into the water. The recently discovered bubble-marble (BM) effect enables the insertion and confinement of a thermite-powder batch into water by a magnetic field. Here, we present a phenomenon of underwater ignition of a thermite-BM by localized microwaves. The thermite combustion underwater is observed in-situ, and its microwave absorption and optical spectral emission are detected. The vapour pressure generated by the thermite reaction is measured and compared to theory. The combustion products are examined ex-situ by X-ray photo-electron spectroscopy which verifies the thermite reaction. Potential applications of this underwater combustion effect are considered, e.g., for detonation, wet welding, thermal drilling, material processing, thrust generation, and composite-material production, also for other oxygen-free environments.

  10. Innovative qPCR using interfacial effects to enable low threshold cycle detection and inhibition relief

    PubMed Central

    Harshman, Dustin K.; Rao, Brianna M.; McLain, Jean E.; Watts, George S.; Yoon, Jeong-Yeol

    2015-01-01

    Molecular diagnostics offers quick access to information but fails to operate at a speed required for clinical decision-making. Our novel methodology, droplet-on-thermocouple silhouette real-time polymerase chain reaction (DOTS qPCR), uses interfacial effects for droplet actuation, inhibition relief, and amplification sensing. DOTS qPCR has sample-to-answer times as short as 3 min 30 s. In infective endocarditis diagnosis, DOTS qPCR demonstrates reproducibility, differentiation of antibiotic susceptibility, subpicogram limit of detection, and thermocycling speeds of up to 28 s/cycle in the presence of tissue contaminants. Langmuir and Gibbs adsorption isotherms are used to describe the decreasing interfacial tension upon amplification. Moreover, a log-linear relationship with low threshold cycles is presented for real-time quantification by imaging the droplet-on-thermocouple silhouette with a smartphone. DOTS qPCR resolves several limitations of commercially available real-time PCR systems, which rely on fluorescence detection, have substantially higher threshold cycles, and require expensive optical components and extensive sample preparation. Due to the advantages of low threshold cycle detection, we anticipate extending this technology to biological research applications such as single cell, single nucleus, and single DNA molecule analyses. Our work is the first demonstrated use of interfacial effects for sensing reaction progress, and it will enable point-of-care molecular diagnosis of infections. PMID:26601245

  11. Templating effect in DNA proximity ligation enables use of non-bioorthogonal chemistry in biological fluids.

    PubMed

    Spiropulos, Nicholas G; Heemstra, Jennifer M

    2012-07-01

    Here we describe the first example of selective reductive amination in biological fluids using split aptamer proximity ligation (StAPL). Utilizing the cocaine split aptamer, we demonstrate small-molecule-dependent ligation that is dose-dependent over a wide range of target concentrations in buffer, human blood serum and artificial urine medium. We explore the substrate binding preferences of the split aptamer and find that the cinchona alkaloids quinine and quinidine bind to the aptamer with higher affinity than cocaine. This increased affinity leads to improved detection limits for these small-molecule targets. We also demonstrate that linker length and hydrophobicity impact the efficiency of split aptamer ligation. The ability to carry out selective chemical transformations using non-bioorthogonal chemistry in media where competing reactive groups are present highlights the power of the increased effective molarity provided by DNA assembly. Obviating the need for bioorthogonal chemistry would dramatically expand the repertoire of chemical transformations available for use in templated reactions such as proximity ligation assays, in turn enabling the development of novel methods for biomolecule detection.

  12. Templating effect in DNA proximity ligation enables use of non-bioorthogonal chemistry in biological fluids

    PubMed Central

    Spiropulos, Nicholas G.; Heemstra, Jennifer M.

    2012-01-01

    Here we describe the first example of selective reductive amination in biological fluids using split aptamer proximity ligation (StAPL). Utilizing the cocaine split aptamer, we demonstrate small-molecule-dependent ligation that is dose-dependent over a wide range of target concentrations in buffer, human blood serum and artificial urine medium. We explore the substrate binding preferences of the split aptamer and find that the cinchona alkaloids quinine and quinidine bind to the aptamer with higher affinity than cocaine. This increased affinity leads to improved detection limits for these small-molecule targets. We also demonstrate that linker length and hydrophobicity impact the efficiency of split aptamer ligation. The ability to carry out selective chemical transformations using non-bioorthogonal chemistry in media where competing reactive groups are present highlights the power of the increased effective molarity provided by DNA assembly. Obviating the need for bioorthogonal chemistry would dramatically expand the repertoire of chemical transformations available for use in templated reactions such as proximity ligation assays, in turn enabling the development of novel methods for biomolecule detection. PMID:23370267

  13. Femtosecond pulse shaping enables detection of optical Kerr-effect (OKE) dynamics for molecular imaging

    PubMed Central

    Robles, Francisco E.; Fischer, Martin C.; Warren, Warren S.

    2014-01-01

    We apply femtosecond pulse shaping to generate optical pulse trains that directly access a material’s nonlinear refractive index (n2) and can thus determine time-resolved optical Kerr-effect (OKE) dynamics. Two types of static pulse trains are discussed: The first uses two identical fields delayed in time, plus a pump field at a different wavelength. Time-resolved OKE dynamics are retrieved by monitoring the phase of the interference pattern produced by the two identical fields in the Fourier-domain (FD) as a function of pump–probe–time–delay (where the probe is one of the two identical fields). The second pulse train uses three fields with equal time delays, but with the center field phase shifted by π/2. In this pulse scheme, changes on a sample’s nonlinear refractive index produce a new frequency in the FD signal, which in turn yields background-free intensity changes in the conjugate (time) domain and provides superior signal-to-noise ratios. The demonstrated sensitivity improvements enable, for the first time to our knowledge, molecular imaging based on OKE dynamics. PMID:25121875

  14. Chemical and engineering approaches to enable organic field-effect transistors for electronic skin applications.

    PubMed

    Sokolov, Anatoliy N; Tee, Benjamin C-K; Bettinger, Christopher J; Tok, Jeffrey B-H; Bao, Zhenan

    2012-03-20

    Skin is the body's largest organ and is responsible for the transduction of a vast amount of information. This conformable material simultaneously collects signals from external stimuli that translate into information such as pressure, pain, and temperature. The development of an electronic material, inspired by the complexity of this organ is a tremendous, unrealized engineering challenge. However, the advent of carbon-based electronics may offer a potential solution to this long-standing problem. In this Account, we describe the use of an organic field-effect transistor (OFET) architecture to transduce mechanical and chemical stimuli into electrical signals. In developing this mimic of human skin, we thought of the sensory elements of the OFET as analogous to the various layers and constituents of skin. In this fashion, each layer of the OFET can be optimized to carry out a specific recognition function. The separation of multimodal sensing among the components of the OFET may be considered a "divide and conquer" approach, where the electronic skin (e-skin) can take advantage of the optimized chemistry and materials properties of each layer. This design of a novel microstructured gate dielectric has led to unprecedented sensitivity for tactile pressure events. Typically, pressure-sensitive components within electronic configurations have suffered from a lack of sensitivity or long mechanical relaxation times often associated with elastomeric materials. Within our method, these components are directly compatible with OFETs and have achieved the highest reported sensitivity to date. Moreover, the tactile sensors operate on a time scale comparable with human skin, making them ideal candidates for integration as synthetic skin devices. The methodology is compatible with large-scale fabrication and employs simple, commercially available elastomers. The design of materials within the semiconductor layer has led to the incorporation of selectivity and sensitivity within

  15. Demonstration of high current carbon nanotube enabled vertical organic field effect transistors at industrially relevant voltages

    NASA Astrophysics Data System (ADS)

    McCarthy, Mitchell

    The display market is presently dominated by the active matrix liquid crystal display (LCD). However, the active matrix organic light emitting diode (AMOLED) display is argued to become the successor to the LCD, and is already beginning its way into the market, mainly in small size displays. But, for AMOLED technology to become comparable in market share to LCD, larger size displays must become available at a competitive price with their LCD counterparts. A major issue preventing low-cost large AMOLED displays is the thin-film transistor (TFT) technology. Unlike the voltage driven LCD, the OLEDs in the AMOLED display are current driven. Because of this, the mature amorphous silicon TFT backplane technology used in the LCD must be upgraded to a material possessing a higher mobility. Polycrystalline silicon and transparent oxide TFT technologies are being considered to fill this need. But these technologies bring with them significant manufacturing complexity and cost concerns. Carbon nanotube enabled vertical organic field effect transistors (CN-VFETs) offer a unique solution to this problem (now known as the AMOLED backplane problem). The CN-VFET allows the use of organic semiconductors to be used for the semiconductor layer. Organics are known for their low-cost large area processing compatibility. Although the mobility of the best organics is only comparable to that of amorphous silicon, the CN-VFET makes up for this by orienting the channel vertically, as opposed to horizontally (like in conventional TFTs). This allows the CN-VFET to achieve sub-micron channel lengths without expensive high resolution patterning. Additionally, because the CN-VFET can be easily converted into a light emitting transistor (called the carbon nanotube enabled vertical organic light emitting transistor---CN-VOLET) by essentially stacking an OLED on top of the CN-VFET, more potential benefits can be realized. These potential benefits include, increased aperture ratio, increased OLED

  16. Effect of centrifugation on water recycling and algal growth to enable algae biodiesel production.

    PubMed

    Igou, Thomas; Van Ginkel, Steven W; Penalver-Argueso, Patricia; Fu, Hao; Doi, Shusuke; Narode, Asmita; Cheruvu, Sarasija; Zhang, Qian; Hassan, Fariha; Woodruff, Frazier; Chen, Yongsheng

    2014-12-01

    The latest research shows that algal biofuels, at the production levels mandated in the Energy Independence and Security Act of 2007, will place significant demands on water and compete with agriculture meant for food production. Thus, there is a great need to recycle water while producing algal biofuels. This study shows that when using a synthetic medium, soluble algal products, bacteria, and other inhibitors can be removed by centrifugation and enable water recycling. Average water recovery reached 84% and water could be recycled at least 10 times without reducing algal growth.

  17. Capturing Safety Requirements to Enable Effective Task Allocation Between Humans and Automaton in Increasingly Autonomous Systems

    NASA Technical Reports Server (NTRS)

    Neogi, Natasha A.

    2016-01-01

    There is a current drive towards enabling the deployment of increasingly autonomous systems in the National Airspace System (NAS). However, shifting the traditional roles and responsibilities between humans and automation for safety critical tasks must be managed carefully, otherwise the current emergent safety properties of the NAS may be disrupted. In this paper, a verification activity to assess the emergent safety properties of a clearly defined, safety critical, operational scenario that possesses tasks that can be fluidly allocated between human and automated agents is conducted. Task allocation role sets were proposed for a human-automation team performing a contingency maneuver in a reduced crew context. A safety critical contingency procedure (engine out on takeoff) was modeled in the Soar cognitive architecture, then translated into the Hybrid Input Output formalism. Verification activities were then performed to determine whether or not the safety properties held over the increasingly autonomous system. The verification activities lead to the development of several key insights regarding the implicit assumptions on agent capability. It subsequently illustrated the usefulness of task annotations associated with specialized requirements (e.g., communication, timing etc.), and demonstrated the feasibility of this approach.

  18. Enteral metallic stenting by balloon enteroscopy for obstruction of surgically reconstructed intestine.

    PubMed

    Nakahara, Kazunari; Okuse, Chiaki; Matsumoto, Nobuyuki; Suetani, Keigo; Morita, Ryo; Michikawa, Yosuke; Ozawa, Shun-ichiro; Hosoya, Kosuke; Kobayashi, Shinjiro; Otsubo, Takehito; Itoh, Fumio

    2015-06-28

    We present three cases of self-expandable metallic stent (SEMS) placement using a balloon enteroscope (BE) and its overtube (OT) for malignant obstruction of surgically reconstructed intestine. A BE is effective for the insertion of an endoscope into the deep bowel. However, SEMS placement is impossible through the working channel, because the working channel of BE is too small and too long for the stent device. Therefore, we used a technique in which the BE is inserted as far as the stenotic area; thereafter, the BE is removed, leaving only the OT, and then the stent is placed by inserting the stent device through the OT. In the present three cases, a modification of this technique resulted in the successful placement of the SEMS for obstruction of surgically reconstructed intestine, and the procedures were performed without serious complications. We consider that the present procedure is extremely effective as a palliative treatment for distal bowel stenosis, such as in the surgically reconstructed intestine.

  19. Note: Electrical detection and quantification of spin rectification effect enabled by shorted microstrip transmission line technique

    SciTech Connect

    Soh, Wee Tee; Ong, C. K.; Peng, Bin; Chai, Guozhi

    2014-02-15

    We describe a shorted microstrip method for the sensitive quantification of Spin Rectification Effect (SRE). SRE for a Permalloy (Ni{sub 80}Fe{sub 20}) thin film strip sputtered onto SiO{sub 2} substrate is demonstrated. Our method obviates the need for simultaneous lithographic patterning of the sample and transmission line, therefore greatly simplifying the SRE measurement process. Such a shorted microstrip method can allow different contributions to SRE (anisotropic magnetoresistance, Hall effect, and anomalous Hall effect) to be simultaneously determined. Furthermore, SRE signals from unpatterned 50 nm thick Permalloy films of area dimensions 5 mm × 10 mm can even be detected.

  20. Nanoparticle-mediated photothermal effect enables a new method for quantitative biochemical analysis using a thermometer.

    PubMed

    Fu, Guanglei; Sanjay, Sharma T; Dou, Maowei; Li, XiuJun

    2016-03-14

    A new biomolecular quantitation method, nanoparticle-mediated photothermal bioassay, using a common thermometer as the signal reader was developed. Using an immunoassay as a proof of concept, iron oxide nanoparticles (NPs) captured in the sandwich-type assay system were transformed into a near-infrared (NIR) laser-driven photothermal agent, Prussian blue (PB) NPs, which acted as a photothermal probe to convert the assay signal into heat through the photothermal effect, thus allowing sensitive biomolecular quantitation using a thermometer. This is the first report of biomolecular quantitation using a thermometer and also serves as the first attempt to introduce the nanoparticle-mediated photothermal effect for bioassays.

  1. Great Principals at Scale: Creating District Conditions That Enable All Principals to Be Effective

    ERIC Educational Resources Information Center

    Ikemoto, Gina; Taliaferro, Lori; Fenton, Benjamin; Davis, Jacquelyn

    2014-01-01

    School leaders are critical in the lives of students and to the development of their teachers. Unfortunately, in too many instances, principals are effective in spite of--rather than because of--district conditions. To truly improve student achievement for all students across the country, well-prepared principals need the tools, support, and…

  2. Collaborative Activities Enabled by GroupScribbles (GS): An Exploratory Study of Learning Effectiveness

    ERIC Educational Resources Information Center

    Looi, Chee-Kit; Chen, Wenli; Ng, Foo-Keong

    2010-01-01

    This paper describes the findings of an exploratory cycle of a design-based research project and examines the learning effectiveness of collaborative activities that are supported by the GroupScribbles (GS) software technology in two Singapore primary science classrooms. The students had ten weeks of GS-based lessons in science, which were…

  3. The Relationship between School Climate, Trust, Enabling Structures, and Perceived School Effectiveness

    ERIC Educational Resources Information Center

    Mayerson, Deborah R.

    2010-01-01

    The purpose of Deborah R. Mayerson was to assess the relative impact of climate, trust, and bureaucratic structure upon teachers' perceptions of organizational effectiveness. An existing data set compiled by Nancy Casella (2006) for her dissertation was analyzed. The data consisted of questionnaire responses of a random sample of 220 public school…

  4. Great Principals at Scale: Creating District Conditions That Enable All Principals to Be Effective. Executive Summary

    ERIC Educational Resources Information Center

    Ikemoto, Gina; Taliaferro, Lori; Fenton, Benjamin; Davis, Jacquelyn

    2014-01-01

    School leaders are critical in the lives of students and to the development of their teachers. Unfortunately, in too many instances, principals are effective in spite of--rather than because of--district conditions. To truly improve student achievement for all students across the country, well-prepared principals need the tools, support, and…

  5. Enabling the use of climate model data in the Dutch climate effect community

    NASA Astrophysics Data System (ADS)

    Som de Cerff, Wim; Plieger, Maarten

    2010-05-01

    Within the climate effect community the usage of climate model data is emerging. Where mostly climate time series and weather generators were used, there is a shift to incorporate climate model data into climate effect models. The use of climate model data within the climate effect models is difficult, due to missing metadata, resolution and projection issues, data formats and availability of the parameters of interest. Often the climate effect modelers are not aware of available climate model data or are not aware of how they can use it. Together with seven other partners (CERFACS, CNR-IPSL, SMHI, INHGA, CMCC, WUR, MF-CNRM), KNMI is involved in the FP7 IS ENES (http://www.enes.org) project work package 10/JRA5 ‘Bridging Climate Research Data and the Needs of the Impact Community. The aims of this work package are to enhance the use of Climate Research Data and to enhance the interaction with climate effect/impact communities. Phase one is to define use cases together with the Dutch climate effect community, which describe the intended use of climate model data in climate effect models. We defined four use cases: 1) FEWS hydrological Framework (Deltares) 2) METAPHOR, a plants and species dispersion model (Wageningen University) 3) Natuurplanner, an Ecological model suite (Wageningen University) 4) Land use models (Free University/JRC). Also the other partners in JRA5 have defined use cases, which are representative for the climate effect and impact communities in their country. Goal is to find commonalities between all defined use cases. The common functionality will be implemented as e-tools and incorporated in the IS-ENES data portal. Common issues relate to e.g., need for high resolution: downscaling from GCM to local scale (also involves interpolation); parameter selection; finding extremes; averaging methods. At the conference we will describe the FEWS case in more detail: Delft FEWS is an open shell system (in development since 1995) for performing

  6. High performance MoS2-based field-effect transistor enabled by hydrazine doping.

    PubMed

    Lim, Dongsuk; Kannan, E S; Lee, Inyeal; Rathi, Servin; Li, Lijun; Lee, Yoontae; Khan, Muhammad Atif; Kang, Moonshik; Park, Jinwoo; Kim, Gil-Ho

    2016-06-01

    We investigated the n-type doping effect of hydrazine on the electrical characteristics of a molybdenum disulphide (MoS2)-based field-effect transistor (FET). The threshold voltage of the MoS2 FET shifted towards more negative values (from -20 to -70 V) on treating with 100% hydrazine solution with the channel current increasing from 0.5 to 25 μA at zero gate bias. The inverse subthreshold slope decreased sharply on doping, while the ON/OFF ratio increased by a factor of 100. Gate-channel coupling improved with doping, which facilitates the reduction of channel length between the source and drain electrodes without compromising on the transistor performance, making the MoS2-based FET easily scalable.

  7. Performance enhancement of organic photovoltaic devices enabled by Au nanoarrows inducing surface plasmonic resonance effect.

    PubMed

    Li, Shujun; Li, Zhiqi; Zhang, Xinyuan; Zhang, Zhihui; Liu, Chunyu; Shen, Liang; Guo, Wenbin; Ruan, Shengping

    2016-09-21

    The surface plasmon resonance (SPR) effect of metal nanoparticles is widely employed in organic solar cells to enhance device performance. However, the light-harvesting improvement is highly dependent on the shape of the metal nanoparticles. In this study, the significantly enhanced performance upon incorporation of Au nanoarrows in solution-processed organic photovoltaic devices is demonstrated. Incorporating Au nanoarrows into the ZnO cathode buffer layer results in superior broadband optical absorption improvement and a power conversion efficiency of 7.82% is realized with a 27.3% enhancement compared with the control device. The experimental and theoretical results indicate that the introduction of Au nanoarrows not only increases optical trapping by the SPR effect but also facilitates exciton generation, dissociation, and charge transport inside the thin film device. PMID:27531663

  8. High performance MoS2-based field-effect transistor enabled by hydrazine doping

    NASA Astrophysics Data System (ADS)

    Lim, Dongsuk; Kannan, E. S.; Lee, Inyeal; Rathi, Servin; Li, Lijun; Lee, Yoontae; Atif Khan, Muhammad; Kang, Moonshik; Park, Jinwoo; Kim, Gil-Ho

    2016-06-01

    We investigated the n-type doping effect of hydrazine on the electrical characteristics of a molybdenum disulphide (MoS2)-based field-effect transistor (FET). The threshold voltage of the MoS2 FET shifted towards more negative values (from ‑20 to ‑70 V) on treating with 100% hydrazine solution with the channel current increasing from 0.5 to 25 μA at zero gate bias. The inverse subthreshold slope decreased sharply on doping, while the ON/OFF ratio increased by a factor of 100. Gate–channel coupling improved with doping, which facilitates the reduction of channel length between the source and drain electrodes without compromising on the transistor performance, making the MoS2-based FET easily scalable.

  9. High performance MoS2-based field-effect transistor enabled by hydrazine doping.

    PubMed

    Lim, Dongsuk; Kannan, E S; Lee, Inyeal; Rathi, Servin; Li, Lijun; Lee, Yoontae; Khan, Muhammad Atif; Kang, Moonshik; Park, Jinwoo; Kim, Gil-Ho

    2016-06-01

    We investigated the n-type doping effect of hydrazine on the electrical characteristics of a molybdenum disulphide (MoS2)-based field-effect transistor (FET). The threshold voltage of the MoS2 FET shifted towards more negative values (from -20 to -70 V) on treating with 100% hydrazine solution with the channel current increasing from 0.5 to 25 μA at zero gate bias. The inverse subthreshold slope decreased sharply on doping, while the ON/OFF ratio increased by a factor of 100. Gate-channel coupling improved with doping, which facilitates the reduction of channel length between the source and drain electrodes without compromising on the transistor performance, making the MoS2-based FET easily scalable. PMID:27098430

  10. Performance enhancement of organic photovoltaic devices enabled by Au nanoarrows inducing surface plasmonic resonance effect.

    PubMed

    Li, Shujun; Li, Zhiqi; Zhang, Xinyuan; Zhang, Zhihui; Liu, Chunyu; Shen, Liang; Guo, Wenbin; Ruan, Shengping

    2016-09-21

    The surface plasmon resonance (SPR) effect of metal nanoparticles is widely employed in organic solar cells to enhance device performance. However, the light-harvesting improvement is highly dependent on the shape of the metal nanoparticles. In this study, the significantly enhanced performance upon incorporation of Au nanoarrows in solution-processed organic photovoltaic devices is demonstrated. Incorporating Au nanoarrows into the ZnO cathode buffer layer results in superior broadband optical absorption improvement and a power conversion efficiency of 7.82% is realized with a 27.3% enhancement compared with the control device. The experimental and theoretical results indicate that the introduction of Au nanoarrows not only increases optical trapping by the SPR effect but also facilitates exciton generation, dissociation, and charge transport inside the thin film device.

  11. Develop an Architecture to Enable Effective Information Process in Mitigating Asteroid's Threat

    NASA Astrophysics Data System (ADS)

    Yu, M.; Piccione, M.; Sun, M.; Yang, C. P.; Bambacus, M.; Seery, B.

    2015-12-01

    Research on asteroid impacts on Earth is crucial and challenging nationally and globally. Existing efforts for Near Earth Object (NEO) survey such as Catalina Sky Survey and SAO-minor planets center (MPC) have been established. However, our understanding of asteroids still needs to be advanced through physical characterization, modeling of atmospheric entry/breakup, and risk assessments of impacts (land and water), with emphases on small impactors. To achieve the goal of knowledge advancement, activities such as orbit determination, threat analysis, and impact simulation are fundamental, and all require accurate information and effective processing capability. Here we propose a planetary framework including the workflow, information flow, organization dependencies, and most importantly the cyberinfrastructure configuration required to achieve effective information processing. This framework will serve as a foundation for understanding the NEO hazard and building a long-term capability to counter a potential NEO impact threat.

  12. Nanoscale triboelectric-effect-enabled energy conversion for sustainably powering portable electronics.

    PubMed

    Wang, Sihong; Lin, Long; Wang, Zhong Lin

    2012-12-12

    Harvesting energy from our living environment is an effective approach for sustainable, maintenance-free, and green power source for wireless, portable, or implanted electronics. Mechanical energy scavenging based on triboelectric effect has been proven to be simple, cost-effective, and robust. However, its output is still insufficient for sustainably driving electronic devices/systems. Here, we demonstrated a rationally designed arch-shaped triboelectric nanogenerator (TENG) by utilizing the contact electrification between a polymer thin film and a metal thin foil. The working mechanism of the TENG was studied by finite element simulation. The output voltage, current density, and energy volume density reached 230 V, 15.5 μA/cm(2), and 128 mW/cm(3), respectively, and an energy conversion efficiency as high as 10-39% has been demonstrated. The TENG was systematically studied and demonstrated as a sustainable power source that can not only drive instantaneous operation of light-emitting diodes (LEDs) but also charge a lithium ion battery as a regulated power module for powering a wireless sensor system and a commercial cell phone, which is the first demonstration of the nanogenerator for driving personal mobile electronics, opening the chapter of impacting general people's life by nanogenerators.

  13. Training effect of a virtual reality haptics-enabled dynamic hip screw simulator

    PubMed Central

    Sugand, Kapil; Akhtar, Kash; Khatri, Chetan; Cobb, Justin; Gupte, Chinmay

    2015-01-01

    Background and purpose — Virtual reality (VR) simulation offers a safe, controlled, and effective environment to complement training but requires extensive validation before it can be implemented within the curriculum. The main objective was to assess whether VR dynamic hip screw (DHS) simulation has a training effect to improve objective performance metrics. Patients and methods — 52 surgical trainees who were naïve to DHS procedures were randomized to 2 groups: the training group, which had 5 attempts, and the control group, which had only one attempt. After 1 week, both cohorts repeated the same number of attempts. Objective performance metrics included total procedural time (sec), fluoroscopy time (sec), number of radiographs (n), tip-apex distance (TAD; mm), attempts at guide-wire insertion (n), and probability of cut-out (%). Mean scores (with SD) and learning curves were calculated. Significance was set as p < 0.05. Results — The training group was 68% quicker than the control group, used 75% less fluoroscopy, took 66% fewer radiographs, had 82% less retries at guide-wire insertion, achieved a reduced TAD (by 41%), had lower probability of cut-out (by 85%), and obtained an increased global score (by 63%). All these results were statistically significant (p < 0.001). The participants agreed that the simulator provided a realistic learning environment, they stated that they had enjoyed using the simulator, and they recognized the need for the simulator in formal training. Interpretation — We found a significant training effect on the VR DHS simulator in improving objective performance metrics of naïve surgical trainees. Patient safety, an important priority, was not compromised. PMID:26168925

  14. Contraceptive Counseling: Best Practices to Ensure Quality Communication and Enable Effective Contraceptive Use

    PubMed Central

    Dehlendorf, Christine; Krajewski, Colleen; Borrero, Sonya

    2014-01-01

    Improving the quality of contraceptive counseling is one strategy to prevent unintended pregnancy. We identify aspects of relational and task-oriented communication in family planning care that can assist providers in meeting their patients’ needs. Approaches to optimizing women's experiences of contraceptive counseling include working to develop a close, trusting relationship with patients and using a shared decision-making approach that focuses on eliciting and responding to patient preferences. Providing counseling about side effects and using strategies to promote contraceptive continuation and adherence can also help optimize women's use of contraception. PMID:25264697

  15. Intrinsic properties of cupric oxide nanoparticles enable effective filtration of arsenic from water

    NASA Astrophysics Data System (ADS)

    McDonald, Kyle J.; Reynolds, Brandon; Reddy, K. J.

    2015-06-01

    The contamination of arsenic in human drinking water supplies is a serious global health concern. Despite multiple years of research, sustainable arsenic treatment technologies have yet to be developed. This study demonstrates the intrinsic abilities of cupric oxide nanoparticles (CuO-NP) towards arsenic adsorption and the development of a point-of-use filter for field application. X-ray diffraction and X-ray photoelectron spectroscopy experiments were used to examine adsorption, desorption, and readsorption of aqueous arsenite and arsenate by CuO-NP. Field experiments were conducted with a point-of-use filter, coupled with real-time arsenic monitoring, to remove arsenic from domestic groundwater samples. The CuO-NP were regenerated by desorbing arsenate via increasing pH above the zero point of charge. Results suggest an effective oxidation of arsenite to arsenate on the surface of CuO-NP. Naturally occurring arsenic was effectively removed by both as-prepared and regenerated CuO-NP in a field demonstration of the point-of-use filter. A sustainable arsenic mitigation model for contaminated water is proposed.

  16. Intrinsic properties of cupric oxide nanoparticles enable effective filtration of arsenic from water

    PubMed Central

    McDonald, Kyle J.; Reynolds, Brandon; Reddy, K. J.

    2015-01-01

    The contamination of arsenic in human drinking water supplies is a serious global health concern. Despite multiple years of research, sustainable arsenic treatment technologies have yet to be developed. This study demonstrates the intrinsic abilities of cupric oxide nanoparticles (CuO-NP) towards arsenic adsorption and the development of a point-of-use filter for field application. X-ray diffraction and X-ray photoelectron spectroscopy experiments were used to examine adsorption, desorption, and readsorption of aqueous arsenite and arsenate by CuO-NP. Field experiments were conducted with a point-of-use filter, coupled with real-time arsenic monitoring, to remove arsenic from domestic groundwater samples. The CuO-NP were regenerated by desorbing arsenate via increasing pH above the zero point of charge. Results suggest an effective oxidation of arsenite to arsenate on the surface of CuO-NP. Naturally occurring arsenic was effectively removed by both as-prepared and regenerated CuO-NP in a field demonstration of the point-of-use filter. A sustainable arsenic mitigation model for contaminated water is proposed. PMID:26047164

  17. Intrinsic properties of cupric oxide nanoparticles enable effective filtration of arsenic from water.

    PubMed

    McDonald, Kyle J; Reynolds, Brandon; Reddy, K J

    2015-01-01

    The contamination of arsenic in human drinking water supplies is a serious global health concern. Despite multiple years of research, sustainable arsenic treatment technologies have yet to be developed. This study demonstrates the intrinsic abilities of cupric oxide nanoparticles (CuO-NP) towards arsenic adsorption and the development of a point-of-use filter for field application. X-ray diffraction and X-ray photoelectron spectroscopy experiments were used to examine adsorption, desorption, and readsorption of aqueous arsenite and arsenate by CuO-NP. Field experiments were conducted with a point-of-use filter, coupled with real-time arsenic monitoring, to remove arsenic from domestic groundwater samples. The CuO-NP were regenerated by desorbing arsenate via increasing pH above the zero point of charge. Results suggest an effective oxidation of arsenite to arsenate on the surface of CuO-NP. Naturally occurring arsenic was effectively removed by both as-prepared and regenerated CuO-NP in a field demonstration of the point-of-use filter. A sustainable arsenic mitigation model for contaminated water is proposed.

  18. Intrinsic properties of cupric oxide nanoparticles enable effective filtration of arsenic from water.

    PubMed

    McDonald, Kyle J; Reynolds, Brandon; Reddy, K J

    2015-01-01

    The contamination of arsenic in human drinking water supplies is a serious global health concern. Despite multiple years of research, sustainable arsenic treatment technologies have yet to be developed. This study demonstrates the intrinsic abilities of cupric oxide nanoparticles (CuO-NP) towards arsenic adsorption and the development of a point-of-use filter for field application. X-ray diffraction and X-ray photoelectron spectroscopy experiments were used to examine adsorption, desorption, and readsorption of aqueous arsenite and arsenate by CuO-NP. Field experiments were conducted with a point-of-use filter, coupled with real-time arsenic monitoring, to remove arsenic from domestic groundwater samples. The CuO-NP were regenerated by desorbing arsenate via increasing pH above the zero point of charge. Results suggest an effective oxidation of arsenite to arsenate on the surface of CuO-NP. Naturally occurring arsenic was effectively removed by both as-prepared and regenerated CuO-NP in a field demonstration of the point-of-use filter. A sustainable arsenic mitigation model for contaminated water is proposed. PMID:26047164

  19. Singlet oxygen generation in porphyrin-doped polymeric surface coating enables antimicrobial effects on Staphylococcus aureus.

    PubMed

    Felgenträger, Ariane; Maisch, Tim; Späth, Andreas; Schröder, Josef A; Bäumler, Wolfgang

    2014-10-14

    Surfaces can be coated with photosensitizer molecules, which generate singlet oxygen ((1)O2) when the surface is exposed to light. (1)O2 may diffuse from the coating and has the potential to kill microorganisms present on the surface. In the present study a derivative of the meso-tetraphenylporphyrin (TPP) was immobilized onto polyurethane (PU) after being sprayed and polymerized as a thin layer onto poly-methylmethacrylate (PMMA). PU is gas permeable and thus a sufficient amount of oxygen reaches the photosensitizer in this coating. The surface generation of (1)O2 and its diffusion were investigated by detecting its luminescence at 1270 nm and a tri-iodide assay. Antimicrobial photodynamic surface effects were tested on Staphylococcus aureus. The spectrally resolved detection of (1)O2 luminescence yielded a clear peak at 1275 nm. The time-resolved luminescence showed multi-exponential decay, revealing rise and decay times in the range of 5-2 × 10(2)μs. The photodynamic inactivation of S. aureus was monitored at different photosensitizer concentrations and radiant exposures of light. A photodynamic killing of >99.9% (>3log10-steps) was achieved within an irradiation time of 30 min. The photodynamic killing on the bioactive surface confirmed the antimicrobial effect of (1)O2 that was generated in the PU-coating and reached the bacteria by diffusion. PMID:25155698

  20. Utility of Ligand Effect in Homogenous Gold Catalysis: Enabling Regiodivergent π-Bond-Activated Cyclization.

    PubMed

    Ding, Dong; Mou, Tao; Feng, Minghao; Jiang, Xuefeng

    2016-04-27

    Comprehensive utilization of both electronic and steric properties of ligands in homogeneous gold catalysis is achieved in the regiodivergent intramolecular hydroarylation of alkynes. A flexible electron-deficient phosphite ligand, combined with the readily transformable directing group methoxyl amide, is attached to a cationic Au(I) center in three-coordinate mode, affording sterically hindered ortho-position cyclization. Meanwhile, para-position cyclization is exclusively achieved with the assistance of a rigid electron-abundant phosphine ligand-based Au(I) catalyst, in which ligands manifest the compensating effect for cyclization through steric hindrance and electronic properties. By combining gold with silver catalysts, tetrahydropyrroloquinolinones possessing a congested tricyclic structure are obtained via a proven Au/Ag relay catalytic process. PMID:27058740

  1. Developing a mobile application to better inform patients and enable effective consultation in implant dentistry.

    PubMed

    Canbazoglu, Erokan; Salman, Yucel Batu; Yildirim, Mustafa Eren; Merdenyan, Burak; Ince, Ibrahim Furkan

    2016-01-01

    The field of dentistry lacks satisfactory tools to help visualize planned procedures and their potential results to patients. Dentists struggle to provide an effective image in their patient's mind of the end results of the planned treatment only through verbal explanations. Thus, verbal explanations alone often cannot adequately help the patients make a treatment decision. Inadequate attempts are frequently made by dentists to sketch the procedure for the patient in an effort to depict the treatment. These attempts however require an artistic ability not all dentists have. Real case photographs are sometimes of help in explaining and illustrating treatments. However, particularly in implant cases, real case photographs are often ineffective and inadequate. The purpose of this study is to develop a mobile application with an effective user interface design to support the dentist-patient interaction by providing the patient with illustrative descriptions of the procedures and the end result. Sketching, paper prototyping, and wire framing were carried out with the actual user's participation. Hard and soft dental tissues were modeled using three dimensional (3D) modeling programs and real cases. The application enhances the presentation to the patients of potential implants and implant supported prosthetic treatments with rich 3D illustrative content. The application was evaluated in terms of perceived ease of use and perceived usefulness through an online survey. The application helps improve the information sharing behavior of dentists to enhance the patients' right to make informed decisions. The paper clearly demonstrates the relevance of interactive communication technologies for dentist-patient communication. PMID:27453770

  2. The effect of nanoparticle uptake on cellular behavior: disrupting or enabling functions?

    PubMed Central

    Panariti, Alice; Miserocchi, Giuseppe; Rivolta, Ilaria

    2012-01-01

    Nanoparticles (NPs) are materials with overall dimensions in the nanoscale range. They have unique physicochemical properties, and have emerged as important players in current research in modern medicine. In the last few decades, several types of NPs and microparticles have been synthesized and proposed for use as contrast agents for diagnostics and imaging and for drug delivery; for example, in cancer therapy. Yet specific targeting that will improve their delivery still represents an unsolved challenge. The mechanism by which NPs enter the cell has important implications not only for their fate but also for their impact on biological systems. Several papers in the literature discuss the potential risks related to NP exposure, and more recently the concept that even sublethal doses of NPs may elicit a cell response has been proposed. In this review, we intend to present an overall view of cell mechanisms that may be perturbed by cell–NP interaction. Published data, in fact, emphasize that NPs should no longer be viewed only as simple carriers for biomedical applications, but that they can also play an active role in mediating biological effects. PMID:24198499

  3. Five task clusters that enable efficient and effective digitization of biological collections.

    PubMed

    Nelson, Gil; Paul, Deborah; Riccardi, Gregory; Mast, Austin R

    2012-01-01

    This paper describes and illustrates five major clusters of related tasks (herein referred to as task clusters) that are common to efficient and effective practices in the digitization of biological specimen data and media. Examples of these clusters come from the observation of diverse digitization processes. The staff of iDigBio (The U.S. National Science Foundation's National Resource for Advancing Digitization of Biological Collections) visited active biological and paleontological collections digitization programs for the purpose of documenting and assessing current digitization practices and tools. These observations identified five task clusters that comprise the digitization process leading up to data publication: (1) pre-digitization curation and staging, (2) specimen image capture, (3) specimen image processing, (4) electronic data capture, and (5) georeferencing locality descriptions. While not all institutions are completing each of these task clusters for each specimen, these clusters describe a composite picture of digitization of biological and paleontological specimens across the programs that were observed. We describe these clusters, three workflow patterns that dominate the implemention of these clusters, and offer a set of workflow recommendations for digitization programs. PMID:22859876

  4. Five task clusters that enable efficient and effective digitization of biological collections

    PubMed Central

    Nelson, Gil; Paul, Deborah; Riccardi, Gregory; Mast, Austin R.

    2012-01-01

    Abstract This paper describes and illustrates five major clusters of related tasks (herein referred to as task clusters) that are common to efficient and effective practices in the digitization of biological specimen data and media. Examples of these clusters come from the observation of diverse digitization processes. The staff of iDigBio (The U.S. National Science Foundation’s National Resource for Advancing Digitization of Biological Collections) visited active biological and paleontological collections digitization programs for the purpose of documenting and assessing current digitization practices and tools. These observations identified five task clusters that comprise the digitization process leading up to data publication: (1) pre-digitization curation and staging, (2) specimen image capture, (3) specimen image processing, (4) electronic data capture, and (5) georeferencing locality descriptions. While not all institutions are completing each of these task clusters for each specimen, these clusters describe a composite picture of digitization of biological and paleontological specimens across the programs that were observed. We describe these clusters, three workflow patterns that dominate the implemention of these clusters, and offer a set of workflow recommendations for digitization programs. PMID:22859876

  5. Sustainability and scale-up of household water treatment and safe storage practices: Enablers and barriers to effective implementation.

    PubMed

    Ojomo, Edema; Elliott, Mark; Goodyear, Lorelei; Forson, Michael; Bartram, Jamie

    2015-11-01

    Household water treatment and safe storage (HWTS) provides a solution, when employed correctly and consistently, for managing water safety at home. However, despite years of promotion by non-governmental organizations (NGOs), governments and others, boiling is the only method to achieve scale. Many HWTS programs have reported strong initial uptake and use that then decreases over time. This study maps out enablers and barriers to sustaining and scaling up HWTS practices. Interviews were carried out with 79 practitioners who had experience with HWTS programs in over 25 countries. A total of 47 enablers and barriers important to sustaining and scaling up HWTS practices were identified. These were grouped into six domains: user guidance on HWTS products; resource availability; standards, certification and regulations; integration and collaboration; user preferences; and market strategies. Collectively, the six domains cover the major aspects of moving products from development to the consumers. It is important that each domain is considered in all programs that aim to sustain and scale-up HWTS practices. Our findings can assist governments, NGOs, and other organizations involved in HWTS to approach programs more effectively and efficiently.

  6. Sustainability and scale-up of household water treatment and safe storage practices: Enablers and barriers to effective implementation.

    PubMed

    Ojomo, Edema; Elliott, Mark; Goodyear, Lorelei; Forson, Michael; Bartram, Jamie

    2015-11-01

    Household water treatment and safe storage (HWTS) provides a solution, when employed correctly and consistently, for managing water safety at home. However, despite years of promotion by non-governmental organizations (NGOs), governments and others, boiling is the only method to achieve scale. Many HWTS programs have reported strong initial uptake and use that then decreases over time. This study maps out enablers and barriers to sustaining and scaling up HWTS practices. Interviews were carried out with 79 practitioners who had experience with HWTS programs in over 25 countries. A total of 47 enablers and barriers important to sustaining and scaling up HWTS practices were identified. These were grouped into six domains: user guidance on HWTS products; resource availability; standards, certification and regulations; integration and collaboration; user preferences; and market strategies. Collectively, the six domains cover the major aspects of moving products from development to the consumers. It is important that each domain is considered in all programs that aim to sustain and scale-up HWTS practices. Our findings can assist governments, NGOs, and other organizations involved in HWTS to approach programs more effectively and efficiently. PMID:25865927

  7. Effective visualization of integrated knowledge and data to enable informed decisions in drug development and translational medicine.

    PubMed

    Brynne, Lena; Bresell, Anders; Sjögren, Niclas

    2013-10-08

    Integrative understanding of preclinical and clinical data is imperative to enable informed decisions and reduce the attrition rate during drug development. The volume and variety of data generated during drug development have increased tremendously. A new information model and visualization tool was developed to effectively utilize all available data and current knowledge. The Knowledge Plot integrates preclinical, clinical, efficacy and safety data by adding two concepts: knowledge from the different disciplines and protein binding.Internal and public available data were gathered and processed to allow flexible and interactive visualizations. The exposure was expressed as the unbound concentration of the compound and the treatment effect was normalized and scaled by including expert opinion on what a biologically meaningful treatment effect would be.The Knowledge Plot has been applied both retrospectively and prospectively in project teams in a number of different therapeutic areas, resulting in closer collaboration between multiple disciplines discussing both preclinical and clinical data. The Plot allows head to head comparisons of compounds and was used to support Candidate Drug selections and differentiation from comparators and competitors, back translation of clinical data, understanding the predictability of preclinical models and assays, reviewing drift in primary endpoints over the years, and evaluate or benchmark compounds in due diligence comparing multiple attributes.The Knowledge Plot concept allows flexible integration and visualization of relevant data for interpretation in order to enable scientific and informed decision-making in various stages of drug development. The concept can be used for communication, decision-making, knowledge management, and as a forward and back translational tool, that will result in an improved understanding of the competitive edge for a particular project or disease area portfolio. In addition, it also builds up a

  8. Overtube-assisted enteroscopy and capsule endoscopy for the diagnosis of small-bowel polyps and tumors: a systematic review and meta-analysis

    PubMed Central

    Sulbaran, Marianny; de Moura, Eduardo; Bernardo, Wanderley; Morais, Cintia; Oliveira, Joel; Bustamante-Lopez, Leonardo; Sakai, Paulo; Mönkemüller, Klaus; Safatle-Ribeiro, Adriana

    2016-01-01

    Background and study aims: Several studies have evaluated the utility of double-balloon enteroscopy (DBE) and capsule endoscopy (CE) for patients with small-bowel disease showing inconsistent results. The aim of this study was to determine the sensitivity and specificity of overtube-assisted enteroscopy (OAE) as well as the diagnostic concordance between OAE and CE for small-bowel polyps and tumors. Patients and methods: We conducted a systematic review and meta-analysis of studies in which the results of OAE were compared with the results of CE for the evaluation of small-bowel polyps and tumors. When data for surgically resected lesions were available, the histopathological results of OAE and surgical specimens were compared. The sensitivity, specificity, positive likelihood ratio, and negative likelihood ratio for the diagnosis of small-bowel polyps and tumors were analyzed. Secondarily, the rates of diagnostic concordance and discordance between OAE and CE were calculated. Results: There were 15 full-length studies with a total of 821 patients that met the inclusion criteria. The pooled sensitivity, specificity, positive likelihood ratio, and negative likelihood ratio were as follows: 0.89 (95 % confidence interval [CI] 0.84 – 0.93), with heterogeneity χ2 = 41.23 (P = 0.0002) and inconsistency (I 2) = 66.0 %; 0.97 (95 %CI 0.95 – 0.98), with heterogeneity χ2 = 45.27 (P = 0.07) and inconsistency (I 2) = 69.1 %; 16.61 (95 %CI 3.74 – 73.82), with heterogeneity Cochrane’s Q = 225.19 (P < 0.01) and inconsistency (I 2) = 93.8 %; and 0.14 (95 %CI 0.05 – 0.35), with heterogeneity Cochrane’s Q = 81.01 (P < .01) and inconsistency (I 2) = 82.7 %, respectively. A summary receiver operating characteristic curve (SROC) curve was constructed, and the area under the curve (AUC) was 0.97. Conclusion: OAE is an accurate test for the detection of small-bowel polyps and tumors. OAE and CE

  9. Effectiveness, usability, and acceptability of haptic-enabled virtual reality and mannequin modality simulators for surgical cricothyroidotomy.

    PubMed

    Proctor, Michael D; Campbell-Wynn, Lillian

    2014-03-01

    This research assesses the effectiveness, usability, and acceptability of mannequin and haptic-enabled virtual reality (VR) modality simulators by Army medics in a surgical cricothyroidotomy procedure. Research methods investigate through experimentation surgical task performance, technology acceptance, user recommendation, comparative analysis, and select cognitive task load results. Results indicate that the HapMed mannequin and CricSim VR simulators proved effective by meeting training task performance evaluation requirements. Both systems meet 95% user technology acceptance and 85% user recommendation levels. In conclusion, at those levels, either system may complement, reduce, or replace the use of some alternative training methods such as animals or cadavers. To raise recommendation rates, future research needs to reduce barriers to blending visualization with mannequin modalities and make further refinements within the modalities. One research pathway identified blends a mannequin with stereoscopic visualization and motion parallax, providing correlated, partially transparent visual layers of anatomy and of various medical procedures in virtual overlay with the mannequin. Future research also needs to clarify acceptable degrees of freedom levels by task for haptics VR in light of real-world degrees of freedom requirements. Finally, artificial skin may need research to achieve better replication of human skin on mannequins.

  10. Effectiveness, usability, and acceptability of haptic-enabled virtual reality and mannequin modality simulators for surgical cricothyroidotomy.

    PubMed

    Proctor, Michael D; Campbell-Wynn, Lillian

    2014-03-01

    This research assesses the effectiveness, usability, and acceptability of mannequin and haptic-enabled virtual reality (VR) modality simulators by Army medics in a surgical cricothyroidotomy procedure. Research methods investigate through experimentation surgical task performance, technology acceptance, user recommendation, comparative analysis, and select cognitive task load results. Results indicate that the HapMed mannequin and CricSim VR simulators proved effective by meeting training task performance evaluation requirements. Both systems meet 95% user technology acceptance and 85% user recommendation levels. In conclusion, at those levels, either system may complement, reduce, or replace the use of some alternative training methods such as animals or cadavers. To raise recommendation rates, future research needs to reduce barriers to blending visualization with mannequin modalities and make further refinements within the modalities. One research pathway identified blends a mannequin with stereoscopic visualization and motion parallax, providing correlated, partially transparent visual layers of anatomy and of various medical procedures in virtual overlay with the mannequin. Future research also needs to clarify acceptable degrees of freedom levels by task for haptics VR in light of real-world degrees of freedom requirements. Finally, artificial skin may need research to achieve better replication of human skin on mannequins. PMID:24594459

  11. The integration of cyanide hydratase and tyrosinase catalysts enables effective degradation of cyanide and phenol in coking wastewaters.

    PubMed

    Martínková, Ludmila; Chmátal, Martin

    2016-10-01

    The aim of this study was to design an effective method for the bioremediation of coking wastewaters, specifically for the concurrent elimination of their highly toxic components - cyanide and phenols. Almost full degradation of free cyanide (0.32-20 mM; 8.3-520 mg L(-1)) in the model and the real coking wastewaters was achieved by using a recombinant cyanide hydratase in the first step. The removal of cyanide, a strong inhibitor of tyrosinase, enabled an effective degradation of phenols by this enzyme in the second step. Phenol (16.5 mM, 1,552 mg L(-1)) was completely removed from a real coking wastewater within 20 h and cresols (5.0 mM, 540 mg L(-1)) were removed by 66% under the same conditions. The integration of cyanide hydratase and tyrosinase open up new possibilities for the bioremediation of wastewaters with complex pollution.

  12. The integration of cyanide hydratase and tyrosinase catalysts enables effective degradation of cyanide and phenol in coking wastewaters.

    PubMed

    Martínková, Ludmila; Chmátal, Martin

    2016-10-01

    The aim of this study was to design an effective method for the bioremediation of coking wastewaters, specifically for the concurrent elimination of their highly toxic components - cyanide and phenols. Almost full degradation of free cyanide (0.32-20 mM; 8.3-520 mg L(-1)) in the model and the real coking wastewaters was achieved by using a recombinant cyanide hydratase in the first step. The removal of cyanide, a strong inhibitor of tyrosinase, enabled an effective degradation of phenols by this enzyme in the second step. Phenol (16.5 mM, 1,552 mg L(-1)) was completely removed from a real coking wastewater within 20 h and cresols (5.0 mM, 540 mg L(-1)) were removed by 66% under the same conditions. The integration of cyanide hydratase and tyrosinase open up new possibilities for the bioremediation of wastewaters with complex pollution. PMID:27328365

  13. Light-Driven Overall Water Splitting Enabled by a Photo-Dember Effect Realized on 3D Plasmonic Structures.

    PubMed

    Chen, Min; Gu, Jiajun; Sun, Cheng; Zhao, Yixin; Zhang, Ruoxi; You, Xinyuan; Liu, Qinglei; Zhang, Wang; Su, Yishi; Su, Huilan; Zhang, Di

    2016-07-26

    Photoelectric conversion driven by sunlight has a broad range of energy/environmental applications (e.g., in solar cells and water splitting). However, difficulties are encountered in the separation of photoexcited charges. Here, we realize a long-range (∼1.5 μm period) electric polarization via asymmetric localization of surface plasmons on a three-dimensional silver structure (3D-Ag). This visible-light-responsive effect-the photo-Dember effect, can be analogous to the thermoelectric effect, in which hot carriers are thermally generated instead of being photogenerated. The induced electric field can efficiently separate photogenerated charges, enabling sunlight-driven overall water splitting on a series of dopant-free commercial semiconductor particles (i.e., ZnO, CeO2, TiO2, and WO3) once they are combined with the 3D-Ag substrate. These photocatalytic processes can last over 30 h on 3D-Ag+ZnO, 3D-Ag+CeO2, and 3D-Ag+TiO2, thus demonstrating good catalytic stability for these systems. Using commercial WO3 powder as a reference, the amount of O2 generated with 3D-Ag+CeO2 surpasses even its recently reported counterpart in which sacrificial reagents had to be involved to run half-reactions. This plasmon-mediated charge separation strategy provides an effective way to improve the efficiency of photoelectric energy conversion, which can be useful in photovoltaics and photocatalysis.

  14. Light-Driven Overall Water Splitting Enabled by a Photo-Dember Effect Realized on 3D Plasmonic Structures.

    PubMed

    Chen, Min; Gu, Jiajun; Sun, Cheng; Zhao, Yixin; Zhang, Ruoxi; You, Xinyuan; Liu, Qinglei; Zhang, Wang; Su, Yishi; Su, Huilan; Zhang, Di

    2016-07-26

    Photoelectric conversion driven by sunlight has a broad range of energy/environmental applications (e.g., in solar cells and water splitting). However, difficulties are encountered in the separation of photoexcited charges. Here, we realize a long-range (∼1.5 μm period) electric polarization via asymmetric localization of surface plasmons on a three-dimensional silver structure (3D-Ag). This visible-light-responsive effect-the photo-Dember effect, can be analogous to the thermoelectric effect, in which hot carriers are thermally generated instead of being photogenerated. The induced electric field can efficiently separate photogenerated charges, enabling sunlight-driven overall water splitting on a series of dopant-free commercial semiconductor particles (i.e., ZnO, CeO2, TiO2, and WO3) once they are combined with the 3D-Ag substrate. These photocatalytic processes can last over 30 h on 3D-Ag+ZnO, 3D-Ag+CeO2, and 3D-Ag+TiO2, thus demonstrating good catalytic stability for these systems. Using commercial WO3 powder as a reference, the amount of O2 generated with 3D-Ag+CeO2 surpasses even its recently reported counterpart in which sacrificial reagents had to be involved to run half-reactions. This plasmon-mediated charge separation strategy provides an effective way to improve the efficiency of photoelectric energy conversion, which can be useful in photovoltaics and photocatalysis. PMID:27351779

  15. Low operating voltage single ZnO nanowire field-effect transistors enabled by self-assembled organic gate nanodielectrics.

    PubMed

    Ju, Sanghyun; Lee, Kangho; Janes, David B; Yoon, Myung-Han; Facchetti, Antonio; Marks, Tobin J

    2005-11-01

    The development of nanowire transistors enabled by appropriate dielectrics is of great interest for flexible electronic and display applications. In this study, nanowire field-effect transistors (NW-FETs) composed of individual ZnO nanowires are fabricated using a self-assembled superlattice (SAS) as the gate insulator. The 15-nm SAS film used in this study consists of four interlinked layer-by-layer self-assembled organic monolayers and exhibits excellent insulating properties with a large specific capacitance, 180 nF/cm2, and a low leakage current density, 1 x 10(-8) A/cm2. SAS-based ZnO NW-FETs display excellent drain current saturation at Vds = 0.5 V, a threshold voltage (Vth) of -0.4 V, a channel mobility of approximately 196 cm2/V s, an on-off current ratio of approximately 10(4), and a subthreshold slope of 400 mV/dec. For comparison, ZnO NW-FETs are also fabricated using 70-nm SiO2 as the gate insulator. Implementation of the SAS gate dielectric reduces the NW-FET operating voltage dramatically with more than 1 order of magnitude enhancement of the on-current. These results strongly indicate that SAS-based ZnO NW-FETs are promising candidates for future flexible display and logic technologies.

  16. Small-bowel capsule endoscopy and device-assisted enteroscopy for diagnosis and treatment of small-bowel disorders: European Society of Gastrointestinal Endoscopy (ESGE) Clinical Guideline.

    PubMed

    Pennazio, Marco; Spada, Cristiano; Eliakim, Rami; Keuchel, Martin; May, Andrea; Mulder, Chris J; Rondonotti, Emanuele; Adler, Samuel N; Albert, Joerg; Baltes, Peter; Barbaro, Federico; Cellier, Christophe; Charton, Jean Pierre; Delvaux, Michel; Despott, Edward J; Domagk, Dirk; Klein, Amir; McAlindon, Mark; Rosa, Bruno; Rowse, Georgina; Sanders, David S; Saurin, Jean Christophe; Sidhu, Reena; Dumonceau, Jean-Marc; Hassan, Cesare; Gralnek, Ian M

    2015-04-01

    This Guideline is an official statement of the European Society of Gastrointestinal Endoscopy (ESGE). The Guideline was also reviewed and endorsed by the British Society of Gastroenterology (BSG). It addresses the roles of small-bowel capsule endoscopy and device-assisted enteroscopy for diagnosis and treatment of small-bowel disorders. Main recommendations 1 ESGE recommends small-bowel video capsule endoscopy as the first-line investigation in patients with obscure gastrointestinal bleeding (strong recommendation, moderate quality evidence). 2 In patients with overt obscure gastrointestinal bleeding, ESGE recommends performing small-bowel capsule endoscopy as soon as possible after the bleeding episode, optimally within 14 days, in order to maximize the diagnostic yield (strong recommendation, moderate quality evidence). 3 ESGE does not recommend the routine performance of second-look endoscopy prior to small-bowel capsule endoscopy; however whether to perform second-look endoscopy before capsule endoscopy in patients with obscure gastrointestinal bleeding or iron-deficiency anaemia should be decided on a case-by-case basis (strong recommendation, low quality evidence). 4 In patients with positive findings at small-bowel capsule endoscopy, ESGE recommends device-assisted enteroscopy to confirm and possibly treat lesions identified by capsule endoscopy (strong recommendation, high quality evidence). 5 ESGE recommends ileocolonoscopy as the first endoscopic examination for investigating patients with suspected Crohn's disease (strong recommendation, high quality evidence). In patients with suspected Crohn's disease and negative ileocolonoscopy findings, ESGE recommends small-bowel capsule endoscopy as the initial diagnostic modality for investigating the small bowel, in the absence of obstructive symptoms or known stenosis (strong recommendation, moderate quality evidence).ESGE does not recommend routine small-bowel imaging or the use of the PillCam patency capsule

  17. Transcriptome-based exon capture enables highly cost-effective comparative genomic data collection at moderate evolutionary scales

    PubMed Central

    2012-01-01

    Background To date, exon capture has largely been restricted to species with fully sequenced genomes, which has precluded its application to lineages that lack high quality genomic resources. We developed a novel strategy for designing array-based exon capture in chipmunks (Tamias) based on de novo transcriptome assemblies. We evaluated the performance of our approach across specimens from four chipmunk species. Results We selectively targeted 11,975 exons (~4 Mb) on custom capture arrays, and enriched over 99% of the targets in all libraries. The percentage of aligned reads was highly consistent (24.4-29.1%) across all specimens, including in multiplexing up to 20 barcoded individuals on a single array. Base coverage among specimens and within targets in each species library was uniform, and the performance of targets among independent exon captures was highly reproducible. There was no decrease in coverage among chipmunk species, which showed up to 1.5% sequence divergence in coding regions. We did observe a decline in capture performance of a subset of targets designed from a much more divergent ground squirrel genome (30 My), however, over 90% of the targets were also recovered. Final assemblies yielded over ten thousand orthologous loci (~3.6 Mb) with thousands of fixed and polymorphic SNPs among species identified. Conclusions Our study demonstrates the potential of a transcriptome-enabled, multiplexed, exon capture method to create thousands of informative markers for population genomic and phylogenetic studies in non-model species across the tree of life. PMID:22900609

  18. Outcomes from Enabling Courses.

    ERIC Educational Resources Information Center

    Phan, Oanh; Ball, Katrina

    The outcomes of enabling courses offered in Australia's vocational education and training (VET) sector were examined. "Enabling course" was defined as lower-level preparatory and prevocational courses covering a wide range of areas, including remedial education, bridging courses, precertificate courses, and general employment preparation courses.…

  19. Technology Enabled Learning. Symposium.

    ERIC Educational Resources Information Center

    2002

    This document contains three papers on technology-enabled learning and human resource development. Among results found in "Current State of Technology-enabled Learning Programs in Select Federal Government Organizations: a Case Study of Ten Organizations" (Letitia A. Combs) are the following: the dominant delivery method is traditional…

  20. Enabling Remote Access to Fieldwork: Gaining Insight into the Pedagogic Effectiveness of "Direct" and "Remote" Field Activities

    ERIC Educational Resources Information Center

    Stokes, Alison; Collins, Trevor; Maskall, John; Lea, John; Lunt, Paul; Davies, Sarah

    2012-01-01

    This study considers the pedagogical effectiveness of remote access to fieldwork locations. Forty-one students from across the GEES disciplines (geography, earth and environmental sciences) undertook a fieldwork exercise, supported by two lecturers. Twenty students accessed the field site directly and the remainder accessed the site remotely using…

  1. Developing the practice context to enable more effective pain management with older people: an action research approach

    PubMed Central

    2011-01-01

    Background This paper, which draws upon an Emancipatory Action Research (EAR) approach, unearths how the complexities of context influence the realities of nursing practice. While the intention of the project was to identify and change factors in the practice context that inhibit effective person-centred pain management practices with older people (65 years or older), reflective critical engagement with the findings identified that enhancing pain management practices with older people was dependent on cultural change in the unit as a whole. Methods An EAR approach was utilised. The project was undertaken in a surgical unit that conducted complex abdominal surgery. Eighty-five percent (n = 48) of nursing staff participated in the two-year project (05/NIR02/107). Data were obtained through the use of facilitated critical reflection with nursing staff. Results Three key themes (psychological safety, leadership, oppression) and four subthemes (power, horizontal violence, distorted perceptions, autonomy) were found to influence the way in which effective nursing practice was realised. Within the theme of 'context,' effective leadership and the creation of a psychologically safe environment were key elements in the enhancement of all aspects of nursing practice. Conclusions Whilst other research has identified the importance of 'practice context' and models and frameworks are emerging to address this issue, the theme of 'psychological safety' has been given little attention in the knowledge translation/implementation literature. Within the principles of EAR, facilitated reflective sessions were found to create 'psychologically safe spaces' that supported practitioners to develop effective person-centred nursing practices in complex clinical environments. PMID:21284857

  2. A survey of informatics platforms that enable distributed comparative effectiveness research using multi-institutional heterogenous clinical data.

    PubMed

    Sittig, Dean F; Hazlehurst, Brian L; Brown, Jeffrey; Murphy, Shawn; Rosenman, Marc; Tarczy-Hornoch, Peter; Wilcox, Adam B

    2012-07-01

    Comparative effectiveness research (CER) has the potential to transform the current health care delivery system by identifying the most effective medical and surgical treatments, diagnostic tests, disease prevention methods, and ways to deliver care for specific clinical conditions. To be successful, such research requires the identification, capture, aggregation, integration, and analysis of disparate data sources held by different institutions with diverse representations of the relevant clinical events. In an effort to address these diverse demands, there have been multiple new designs and implementations of informatics platforms that provide access to electronic clinical data and the governance infrastructure required for interinstitutional CER. The goal of this manuscript is to help investigators understand why these informatics platforms are required and to compare and contrast 6 large-scale, recently funded, CER-focused informatics platform development efforts. We utilized an 8-dimension, sociotechnical model of health information technology to help guide our work. We identified 6 generic steps that are necessary in any distributed, multi-institutional CER project: data identification, extraction, modeling, aggregation, analysis, and dissemination. We expect that over the next several years these projects will provide answers to many important, and heretofore unanswerable, clinical research questions.

  3. A survey of informatics platforms that enable distributed comparative effectiveness research using multi-institutional heterogenous clinical data.

    PubMed

    Sittig, Dean F; Hazlehurst, Brian L; Brown, Jeffrey; Murphy, Shawn; Rosenman, Marc; Tarczy-Hornoch, Peter; Wilcox, Adam B

    2012-07-01

    Comparative effectiveness research (CER) has the potential to transform the current health care delivery system by identifying the most effective medical and surgical treatments, diagnostic tests, disease prevention methods, and ways to deliver care for specific clinical conditions. To be successful, such research requires the identification, capture, aggregation, integration, and analysis of disparate data sources held by different institutions with diverse representations of the relevant clinical events. In an effort to address these diverse demands, there have been multiple new designs and implementations of informatics platforms that provide access to electronic clinical data and the governance infrastructure required for interinstitutional CER. The goal of this manuscript is to help investigators understand why these informatics platforms are required and to compare and contrast 6 large-scale, recently funded, CER-focused informatics platform development efforts. We utilized an 8-dimension, sociotechnical model of health information technology to help guide our work. We identified 6 generic steps that are necessary in any distributed, multi-institutional CER project: data identification, extraction, modeling, aggregation, analysis, and dissemination. We expect that over the next several years these projects will provide answers to many important, and heretofore unanswerable, clinical research questions. PMID:22692259

  4. Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier

    DOE PAGESBeta

    Liu, Yuanyue; Stradins, Paul; Wei, Su -Huai

    2016-04-22

    Two-dimensional (2D) semiconductors have shown great potential for electronic and optoelectronic applications. However, their development is limited by a large Schottky barrier (SB) at the metal-semiconductor junction (MSJ), which is difficult to tune by using conventional metals because of the effect of strong Fermi level pinning (FLP). We show that this problem can be overcome by using 2D metals, which are bounded with 2D semiconductors through van der Waals (vdW) interactions. This success relies on a weak FLP at the vdW MSJ, which is attributed to the suppression of metal-induced gap states. Consequently, the SB becomes tunable and can vanishmore » with proper 2D metals (for example, H-NbS2). This work not only offers new insights into the fundamental properties of heterojunctions but also uncovers the great potential of 2D metals for device applications.« less

  5. High-performance GaAs metal-insulator-semiconductor field-effect transistors enabled by self-assembled nanodielectrics

    NASA Astrophysics Data System (ADS)

    Lin, H. C.; Ye, P. D.; Xuan, Y.; Lu, G.; Facchetti, A.; Marks, T. J.

    2006-10-01

    High-performance GaAs metal-insulator-semiconductor field-effect-transistors (MISFETs) fabricated with very thin self-assembled organic nanodielectrics (SANDs), deposited from solution at room temperature, are demonstrated. A submicron gate-length depletion-mode n-channel GaAs MISFET with SAND thicknesses ranging from 5.5to16.5nm exhibit a gate leakage current density <10-5A/cm2 at a gate bias smaller than 3V, a maximum drain current of 370mA/mm at a forward gate bias of 2V, and a maximum intrinsic transconductance of 170mS/mm. The importance of appropriate GaAs surface chemistry treatments on SAND/GaAs interface properties is also presented. Application of SANDs to III-V compound semiconductors affords more opportunities to manipulate the complex III-V surface chemistry with broad materials options.

  6. Spontaneous Genomic Alterations in a Chimeric Model of Colorectal Cancer Enable Metastasis and Guide Effective Combinatorial Therapy

    PubMed Central

    Bressel, Angela; Yalavarthi, Sireesha; Zi, Tong; Potz, Darren; Farlow, Samuel; Brodeur, Joelle; Monti, Anthony; Reddipalli, Shailaja; Xiao, Qiurong; Bottega, Steve; Feng, Bin; Chiu, M. Isabel; Bosenberg, Marcus; Heyer, Joerg

    2014-01-01

    Colon cancer is the second most common cause of cancer mortality in the Western world with metastasis commonly present at the time of diagnosis. Screening for propagation and metastatic behavior in a novel chimeric-mouse colon cancer model, driven by mutant p53 and β-Catenin, led to the identification of a unique, invasive adenocarcinoma. Comparison of the genome of this tumor, CB42, with genomes from non-propagating tumors by array CGH and sequencing revealed an amplicon on chromosome five containing CDK6 and CDK14, and a KRAS mutation, respectively. Single agent small molecule inhibition of either CDK6 or MEK, a kinase downstream of KRAS, led to tumor growth inhibition in vivo whereas combination therapy not only led to regression of the subcutaneous tumors, but also near complete inhibition of lung metastasis; thus, genomic analysis of this tumor led to effective, individualized treatment. PMID:25162504

  7. Van der Waals metal-semiconductor junction: Weak Fermi level pinning enables effective tuning of Schottky barrier

    PubMed Central

    Liu, Yuanyue; Stradins, Paul; Wei, Su-Huai

    2016-01-01

    Two-dimensional (2D) semiconductors have shown great potential for electronic and optoelectronic applications. However, their development is limited by a large Schottky barrier (SB) at the metal-semiconductor junction (MSJ), which is difficult to tune by using conventional metals because of the effect of strong Fermi level pinning (FLP). We show that this problem can be overcome by using 2D metals, which are bounded with 2D semiconductors through van der Waals (vdW) interactions. This success relies on a weak FLP at the vdW MSJ, which is attributed to the suppression of metal-induced gap states. Consequently, the SB becomes tunable and can vanish with proper 2D metals (for example, H-NbS2). This work not only offers new insights into the fundamental properties of heterojunctions but also uncovers the great potential of 2D metals for device applications. PMID:27152360

  8. "Water-in-salt" electrolytes enable the use of cost-effective aluminum current collectors for aqueous high-voltage batteries.

    PubMed

    Kühnel, R-S; Reber, D; Remhof, A; Figi, R; Bleiner, D; Battaglia, C

    2016-08-16

    The extended electrochemical stability window offered by highly concentrated electrolytes allows the operation of aqueous batteries at voltages significantly above the thermodynamic stability limit of water, at which the stability of the current collector potentially limits the cell voltage. Here we report the observation of suppressed anodic dissolution of aluminum in "water-in-salt" electrolytes enabling roll-to-roll electrode fabrication for high-voltage aqueous lithium-ion batteries on cost-effective light-weight aluminum current collectors using established lithium-ion battery technology. PMID:27488137

  9. "Water-in-salt" electrolytes enable the use of cost-effective aluminum current collectors for aqueous high-voltage batteries.

    PubMed

    Kühnel, R-S; Reber, D; Remhof, A; Figi, R; Bleiner, D; Battaglia, C

    2016-08-16

    The extended electrochemical stability window offered by highly concentrated electrolytes allows the operation of aqueous batteries at voltages significantly above the thermodynamic stability limit of water, at which the stability of the current collector potentially limits the cell voltage. Here we report the observation of suppressed anodic dissolution of aluminum in "water-in-salt" electrolytes enabling roll-to-roll electrode fabrication for high-voltage aqueous lithium-ion batteries on cost-effective light-weight aluminum current collectors using established lithium-ion battery technology.

  10. Nano-porous architecture of N-doped carbon nanorods grown on graphene to enable synergetic effects of supercapacitance.

    PubMed

    Fan, H S; Wang, H; Zhao, N; Xu, J; Pan, F

    2014-12-18

    A novel nano-porous 3D architecture of N-doped carbon nanorods arrays grown on the surface of graphene has been prepared by carbonizing polyaniline/graphene oxide (PANI-GO) composite with PANI nanorod arrays on both sides of GO nanosheets. The obtained carbon materials are entirely composed of regularly grown carbon nanorods on graphene with height of about 100 nm and width about 30 nm, showing porous property due to the decomposition of PANI chains. The morphology of PANI grown on GO at the different growth stages was investigated to demonstrate the mechanism of the finally hierarchical architecture formation. Due to its large specific surface area and incorporation of the nitrogen groups into the carbon matrix, the obtained 3D carbon material enhances the ionic transport and the super-capacitance by synergetic effect of both double-layer and faradaic capacitances. This study provides a controllable approach to fabricate hierarchical carbon material based on conducting polymers and graphene oxide with promising applications in the high-rate electrode material of supercapacitors.

  11. Nano-porous architecture of N-doped carbon nanorods grown on graphene to enable synergetic effects of supercapacitance

    NASA Astrophysics Data System (ADS)

    Fan, H. S.; Wang, H.; Zhao, N.; Xu, J.; Pan, F.

    2014-12-01

    A novel nano-porous 3D architecture of N-doped carbon nanorods arrays grown on the surface of graphene has been prepared by carbonizing polyaniline/graphene oxide (PANI-GO) composite with PANI nanorod arrays on both sides of GO nanosheets. The obtained carbon materials are entirely composed of regularly grown carbon nanorods on graphene with height of about 100 nm and width about 30 nm, showing porous property due to the decomposition of PANI chains. The morphology of PANI grown on GO at the different growth stages was investigated to demonstrate the mechanism of the finally hierarchical architecture formation. Due to its large specific surface area and incorporation of the nitrogen groups into the carbon matrix, the obtained 3D carbon material enhances the ionic transport and the super-capacitance by synergetic effect of both double-layer and faradaic capacitances. This study provides a controllable approach to fabricate hierarchical carbon material based on conducting polymers and graphene oxide with promising applications in the high-rate electrode material of supercapacitors.

  12. Nano-porous architecture of N-doped carbon nanorods grown on graphene to enable synergetic effects of supercapacitance

    PubMed Central

    Fan, H. S.; Wang, H.; Zhao, N.; Xu, J.; Pan, F.

    2014-01-01

    A novel nano-porous 3D architecture of N-doped carbon nanorods arrays grown on the surface of graphene has been prepared by carbonizing polyaniline/graphene oxide (PANI-GO) composite with PANI nanorod arrays on both sides of GO nanosheets. The obtained carbon materials are entirely composed of regularly grown carbon nanorods on graphene with height of about 100 nm and width about 30 nm, showing porous property due to the decomposition of PANI chains. The morphology of PANI grown on GO at the different growth stages was investigated to demonstrate the mechanism of the finally hierarchical architecture formation. Due to its large specific surface area and incorporation of the nitrogen groups into the carbon matrix, the obtained 3D carbon material enhances the ionic transport and the super-capacitance by synergetic effect of both double-layer and faradaic capacitances. This study provides a controllable approach to fabricate hierarchical carbon material based on conducting polymers and graphene oxide with promising applications in the high-rate electrode material of supercapacitors. PMID:25519206

  13. Enable: Developing Instructional Language Skills.

    ERIC Educational Resources Information Center

    Witt, Beth

    The program presented in this manual provides a structure and activities for systematic development of effective listening comprehension in typical and atypical children. The complete ENABLE kit comes with pictures, cut-outs, and puppets to illustrate the directives, questions, and narrative activities. The manual includes an organizational and…

  14. Physician Enabling Skills Questionnaire

    PubMed Central

    Hudon, Catherine; Lambert, Mireille; Almirall, José

    2015-01-01

    Abstract Objective To evaluate the reliability and validity of the newly developed Physician Enabling Skills Questionnaire (PESQ) by assessing its internal consistency, test-retest reliability, concurrent validity with patient-centred care, and predictive validity with patient activation and patient enablement. Design Validation study. Setting Saguenay, Que. Participants One hundred patients with at least 1 chronic disease who presented in a waiting room of a regional health centre family medicine unit. Main outcome measures Family physicians’ enabling skills, measured with the PESQ at 2 points in time (ie, while in the waiting room at the family medicine unit and 2 weeks later through a mail survey); patient-centred care, assessed with the Patient Perception of Patient-Centredness instrument; patient activation, assessed with the Patient Activation Measure; and patient enablement, assessed with the Patient Enablement Instrument. Results The internal consistency of the 6 subscales of the PESQ was adequate (Cronbach α = .69 to .92). The test-retest reliability was very good (r = 0.90; 95% CI 0.84 to 0.93). Concurrent validity with the Patient Perception of Patient-Centredness instrument was good (r = −0.67; 95% CI −0.78 to −0.53; P < .001). The PESQ accounts for 11% of the total variance with the Patient Activation Measure (r2 = 0.11; P = .002) and 19% of the variance with the Patient Enablement Instrument (r2 = 0.19; P < .001). Conclusion The newly developed PESQ presents good psychometric properties, allowing for its use in practice and research. PMID:26889507

  15. Dust control for Enabler

    NASA Technical Reports Server (NTRS)

    Hilton, Kevin; Karl, Chad; Litherland, Mark; Ritchie, David; Sun, Nancy

    1992-01-01

    The dust control group designed a system to restrict dust that is disturbed by the Enabler during its operation from interfering with astronaut or camera visibility. This design also considers the many different wheel positions made possible through the use of artinuation joints that provide the steering and wheel pitching for the Enabler. The system uses a combination of brushes and fenders to restrict the dust when the vehicle is moving in either direction and in a turn. This design also allows for each of maintenance as well as accessibility of the remainder of the vehicle.

  16. Dust control for Enabler

    NASA Technical Reports Server (NTRS)

    Hilton, Kevin; Karl, Chad; Litherland, Mark; Ritchie, David; Sun, Nancy

    1992-01-01

    The dust control group designed a system to restrict dust that is disturbed by the Enabler during its operation from interfering with astronaut or camera visibility. This design also considers the many different wheel positions made possible through the use of artinuation joints that provide the steering and wheel pitching for the Enabler. The system uses a combination of brushes and fenders to restrict the dust when the vehicle is moving in either direction and in a turn. This design also allows for ease of maintenance as well as accessibility of the remainder of the vehicle.

  17. Microsystems Enabled Photovoltaics

    SciTech Connect

    Gupta, Vipin; Nielson, Greg; Okandan, Murat, Granata, Jennifer; Nelson, Jeff; Haney, Mike; Cruz-Campa, Jose Luiz

    2012-07-02

    Sandia's microsystems enabled photovoltaic advances combine mature technology and tools currently used in microsystem production with groundbreaking advances in photovoltaics cell design, decreasing production and system costs while improving energy conversion efficiency. The technology has potential applications in buildings, houses, clothing, portable electronics, vehicles, and other contoured structures.

  18. Microsystems Enabled Photovoltaics

    ScienceCinema

    Gupta, Vipin; Nielson, Greg; Okandan, Murat, Granata, Jennifer; Nelson, Jeff; Haney, Mike; Cruz-Campa, Jose Luiz

    2016-07-12

    Sandia's microsystems enabled photovoltaic advances combine mature technology and tools currently used in microsystem production with groundbreaking advances in photovoltaics cell design, decreasing production and system costs while improving energy conversion efficiency. The technology has potential applications in buildings, houses, clothing, portable electronics, vehicles, and other contoured structures.

  19. Enabling Wind Power Nationwide

    SciTech Connect

    Jose, Zayas; Michael, Derby; Patrick, Gilman; Ananthan, Shreyas; Lantz, Eric; Cotrell, Jason; Beck, Fredic; Tusing, Richard

    2015-05-01

    Leveraging this experience, the U.S. Department of Energy’s (DOE’s) Wind and Water Power Technologies Office has evaluated the potential for wind power to generate electricity in all 50 states. This report analyzes and quantifies the geographic expansion that could be enabled by accessing higher above ground heights for wind turbines and considers the means by which this new potential could be responsibly developed.

  20. Impaired drug absorption due to high stomach pH: a review of strategies for mitigation of such effect to enable pharmaceutical product development.

    PubMed

    Mitra, Amitava; Kesisoglou, Filippos

    2013-11-01

    Published reports have clearly shown that weakly basic drugs which have low solubility at high pH could have impaired absorption in patients with high gastric pH thus leading to reduced and variable bioavailability. Since such reduction in exposure can lead to significant loss of efficacy, it is imperative to (1) understand the behavior of the compound as a function of stomach pH to inform of any risk of bioavailability loss in clinical studies and (2) develop a robust formulation which can provide adequate exposure in achlorhydric patients. In this review paper, we provide an overview of the factors that can cause high gastric pH in human, discuss clinical and preclinical pharmacokinetic data for weak bases under conditions of normal and high gastric pH, and give examples of formulation strategies to minimize or mitigate the reduced absorption of weakly basic drugs under high gastric pH conditions. It should be noted that the ability to overcome pH sensitivity issues is highly compound dependent and there are no obvious and general solutions to overcome such effect. Further, we discuss, along with several examples, the use of biopharmaceutical tools such as in vitro dissolution, absorption modeling, and gastric pH modified animal models to assess absorption risk of weak bases in high gastric pH and also the use of these tools to enable development of formulations to mitigate such effects.

  1. What Are the Key Ingredients for an Effective and Successful Tertiary Enabling Program for Aboriginal and Torres Strait Islander Students? An Evaluation of the Evolution of One Program

    ERIC Educational Resources Information Center

    Hall, Lisa

    2015-01-01

    Tertiary enabling programs have become an increasingly important part of the post-secondary schooling landscape. In recognition of the need for increased access for certain under-represented groups within the university population, enabling, bridging or foundational programs are offered by a large number of universities in Australia as alternative…

  2. Smart Grid Enabled EVSE

    SciTech Connect

    None, None

    2014-10-15

    The combined team of GE Global Research, Federal Express, National Renewable Energy Laboratory, and Consolidated Edison has successfully achieved the established goals contained within the Department of Energy’s Smart Grid Capable Electric Vehicle Supply Equipment funding opportunity. The final program product, shown charging two vehicles in Figure 1, reduces by nearly 50% the total installed system cost of the electric vehicle supply equipment (EVSE) as well as enabling a host of new Smart Grid enabled features. These include bi-directional communications, load control, utility message exchange and transaction management information. Using the new charging system, Utilities or energy service providers will now be able to monitor transportation related electrical loads on their distribution networks, send load control commands or preferences to individual systems, and then see measured responses. Installation owners will be able to authorize usage of the stations, monitor operations, and optimally control their electricity consumption. These features and cost reductions have been developed through a total system design solution.

  3. Enabling graphene nanoelectronics.

    SciTech Connect

    Pan, Wei; Ohta, Taisuke; Biedermann, Laura Butler; Gutierrez, Carlos; Nolen, C. M.; Howell, Stephen Wayne; Beechem Iii, Thomas Edwin; McCarty, Kevin F.; Ross, Anthony Joseph, III

    2011-09-01

    Recent work has shown that graphene, a 2D electronic material amenable to the planar semiconductor fabrication processing, possesses tunable electronic material properties potentially far superior to metals and other standard semiconductors. Despite its phenomenal electronic properties, focused research is still required to develop techniques for depositing and synthesizing graphene over large areas, thereby enabling the reproducible mass-fabrication of graphene-based devices. To address these issues, we combined an array of growth approaches and characterization resources to investigate several innovative and synergistic approaches for the synthesis of high quality graphene films on technologically relevant substrate (SiC and metals). Our work focused on developing the fundamental scientific understanding necessary to generate large-area graphene films that exhibit highly uniform electronic properties and record carrier mobility, as well as developing techniques to transfer graphene onto other substrates.

  4. Enabling immersive simulation.

    SciTech Connect

    McCoy, Josh; Mateas, Michael; Hart, Derek H.; Whetzel, Jonathan; Basilico, Justin Derrick; Glickman, Matthew R.; Abbott, Robert G.

    2009-02-01

    The object of the 'Enabling Immersive Simulation for Complex Systems Analysis and Training' LDRD has been to research, design, and engineer a capability to develop simulations which (1) provide a rich, immersive interface for participation by real humans (exploiting existing high-performance game-engine technology wherever possible), and (2) can leverage Sandia's substantial investment in high-fidelity physical and cognitive models implemented in the Umbra simulation framework. We report here on these efforts. First, we describe the integration of Sandia's Umbra modular simulation framework with the open-source Delta3D game engine. Next, we report on Umbra's integration with Sandia's Cognitive Foundry, specifically to provide for learning behaviors for 'virtual teammates' directly from observed human behavior. Finally, we describe the integration of Delta3D with the ABL behavior engine, and report on research into establishing the theoretical framework that will be required to make use of tools like ABL to scale up to increasingly rich and realistic virtual characters.

  5. Displays enabling mobile multimedia

    NASA Astrophysics Data System (ADS)

    Kimmel, Jyrki

    2007-02-01

    With the rapid advances in telecommunications networks, mobile multimedia delivery to handsets is now a reality. While a truly immersive multimedia experience is still far ahead in the mobile world, significant advances have been made in the constituent audio-visual technologies to make this become possible. One of the critical components in multimedia delivery is the mobile handset display. While such alternatives as headset-style near-to-eye displays, autostereoscopic displays, mini-projectors, and roll-out flexible displays can deliver either a larger virtual screen size than the pocketable dimensions of the mobile device can offer, or an added degree of immersion by adding the illusion of the third dimension in the viewing experience, there are still challenges in the full deployment of such displays in real-life mobile communication terminals. Meanwhile, direct-view display technologies have developed steadily, and can provide a development platform for an even better viewing experience for multimedia in the near future. The paper presents an overview of the mobile display technology space with an emphasis on the advances and potential in developing direct-view displays further to meet the goal of enabling multimedia in the mobile domain.

  6. Enabling responsible public genomics.

    PubMed

    Conley, John M; Doerr, Adam K; Vorhaus, Daniel B

    2010-01-01

    As scientific understandings of genetics advance, researchers require increasingly rich datasets that combine genomic data from large numbers of individuals with medical and other personal information. Linking individuals' genetic data and personal information precludes anonymity and produces medically significant information--a result not contemplated by the established legal and ethical conventions governing human genomic research. To pursue the next generation of human genomic research and commerce in a responsible fashion, scientists, lawyers, and regulators must address substantial new issues, including researchers' duties with respect to clinically significant data, the challenges to privacy presented by genomic data, the boundary between genomic research and commerce, and the practice of medicine. This Article presents a new model for understanding and addressing these new challenges--a "public genomics" premised on the idea that ethically, legally, and socially responsible genomics research requires openness, not privacy, as its organizing principle. Responsible public genomics combines the data contributed by informed and fully consenting information altruists and the research potential of rich datasets in a genomic commons that is freely and globally available. This Article examines the risks and benefits of this public genomics model in the context of an ambitious genetic research project currently under way--the Personal Genome Project. This Article also (i) demonstrates that large-scale genomic projects are desirable, (ii) evaluates the risks and challenges presented by public genomics research, and (iii) determines that the current legal and regulatory regimes restrict beneficial and responsible scientific inquiry while failing to adequately protect participants. The Article concludes by proposing a modified normative and legal framework that embraces and enables a future of responsible public genomics.

  7. FOILFEST :community enabled security.

    SciTech Connect

    Moore, Judy Hennessey; Johnson, Curtis Martin; Whitley, John B.; Drayer, Darryl Donald; Cummings, John C., Jr.

    2005-09-01

    The Advanced Concepts Group of Sandia National Laboratories hosted a workshop, ''FOILFest: Community Enabled Security'', on July 18-21, 2005, in Albuquerque, NM. This was a far-reaching look into the future of physical protection consisting of a series of structured brainstorming sessions focused on preventing and foiling attacks on public places and soft targets such as airports, shopping malls, hotels, and public events. These facilities are difficult to protect using traditional security devices since they could easily be pushed out of business through the addition of arduous and expensive security measures. The idea behind this Fest was to explore how the public, which is vital to the function of these institutions, can be leveraged as part of a physical protection system. The workshop considered procedures, space design, and approaches for building community through technology. The workshop explored ways to make the ''good guys'' in public places feel safe and be vigilant while making potential perpetrators of harm feel exposed and convinced that they will not succeed. Participants in the Fest included operators of public places, social scientists, technology experts, representatives of government agencies including DHS and the intelligence community, writers and media experts. Many innovative ideas were explored during the fest with most of the time spent on airports, including consideration of the local airport, the Albuquerque Sunport. Some provocative ideas included: (1) sniffers installed in passage areas like revolving door, escalators, (2) a ''jumbotron'' showing current camera shots in the public space, (3) transparent portal screeners allowing viewing of the screening, (4) a layered open/funnel/open/funnel design where open spaces are used to encourage a sense of ''communitas'' and take advantage of citizen ''sensing'' and funnels are technological tunnels of sensors (the tunnels of truth), (5) curved benches with blast proof walls or backs, (6

  8. An Examination of the Effects of a Short Course Aimed at Enabling Teachers in Infant, Junior and Secondary Schools to Alter the Verbal Feedback Given to Their Pupils

    ERIC Educational Resources Information Center

    Swinson, Jeremy; Harrop, Alex

    2005-01-01

    Nineteen teachers took part in a brief, one session, in-service course in which they were trained in behavioural techniques with the main aim of helping them increase their rates of approval contingent upon required behaviours from their pupils and to decrease their rates of disapproval. Subsidiary aims were that the teachers would be enabled to…

  9. Enabling Europe to innovate.

    PubMed

    Dearing, Andrew

    2007-01-19

    As activities that relate to innovation become increasingly global and open and so draw the private and public sectors into complex networks of partnerships, these activities also tend to concentrate where the ecosystem is most supportive. European public policy, which in recent years has emphasized the importance of research and development (R&D) in achieving competitive knowledge-based societies, is shifting toward approaches that address the broader qualities required of favorable ecosystems for innovation in a global economy, thereby incorporating the roles of market demand, public procurement, and regulation, as well as science, education, and industrial R&D, as part of determining effective innovation policies.

  10. Enabling Europe to innovate.

    PubMed

    Dearing, Andrew

    2007-01-19

    As activities that relate to innovation become increasingly global and open and so draw the private and public sectors into complex networks of partnerships, these activities also tend to concentrate where the ecosystem is most supportive. European public policy, which in recent years has emphasized the importance of research and development (R&D) in achieving competitive knowledge-based societies, is shifting toward approaches that address the broader qualities required of favorable ecosystems for innovation in a global economy, thereby incorporating the roles of market demand, public procurement, and regulation, as well as science, education, and industrial R&D, as part of determining effective innovation policies. PMID:17234939

  11. Enabling scientific teamwork

    NASA Astrophysics Data System (ADS)

    Hereld, Mark; Hudson, Randy; Norris, John; Papka, Michael E.; Uram, Thomas

    2009-07-01

    The Computer Supported Collaborative Work research community has identified that the technology used to support distributed teams of researchers, such as email, instant messaging, and conferencing environments, are not enough. Building from a list of areas where it is believed technology can help support distributed teams, we have divided our efforts into support of asynchronous and synchronous activities. This paper will describe two of our recent efforts to improve the productivity of distributed science teams. One effort focused on supporting the management and tracking of milestones and results, with the hope of helping manage information overload. The second effort focused on providing an environment that supports real-time analysis of data. Both of these efforts are seen as add-ons to the existing collaborative infrastructure, developed to enhance the experience of teams working at a distance by removing barriers to effective communication.

  12. Enabling technology for human collaboration.

    SciTech Connect

    Murphy, Tim Andrew; Jones, Wendell Bruce; Warner, David Jay; Doser, Adele Beatrice; Johnson, Curtis Martin; Merkle, Peter Benedict

    2003-11-01

    This report summarizes the results of a five-month LDRD late start project which explored the potential of enabling technology to improve the performance of small groups. The purpose was to investigate and develop new methods to assist groups working in high consequence, high stress, ambiguous and time critical situations, especially those for which it is impractical to adequately train or prepare. A testbed was constructed for exploratory analysis of a small group engaged in tasks with high cognitive and communication performance requirements. The system consisted of five computer stations, four with special devices equipped to collect physiologic, somatic, audio and video data. Test subjects were recruited and engaged in a cooperative video game. Each team member was provided with a sensor array for physiologic and somatic data collection while playing the video game. We explored the potential for real-time signal analysis to provide information that enables emergent and desirable group behavior and improved task performance. The data collected in this study included audio, video, game scores, physiological, somatic, keystroke, and mouse movement data. The use of self-organizing maps (SOMs) was explored to search for emergent trends in the physiological data as it correlated with the video, audio and game scores. This exploration resulted in the development of two approaches for analysis, to be used concurrently, an individual SOM and a group SOM. The individual SOM was trained using the unique data of each person, and was used to monitor the effectiveness and stress level of each member of the group. The group SOM was trained using the data of the entire group, and was used to monitor the group effectiveness and dynamics. Results suggested that both types of SOMs were required to adequately track evolutions and shifts in group effectiveness. Four subjects were used in the data collection and development of these tools. This report documents a proof of concept

  13. Good pharmacovigilance practices: technology enabled.

    PubMed

    Nelson, Robert C; Palsulich, Bruce; Gogolak, Victor

    2002-01-01

    The assessment of spontaneous reports is most effective it is conducted within a defined and rigorous process. The framework for good pharmacovigilance process (GPVP) is proposed as a subset of good postmarketing surveillance process (GPMSP), a functional structure for both a public health and corporate risk management strategy. GPVP has good practices that implement each step within a defined process. These practices are designed to efficiently and effectively detect and alert the drug safety professional to new and potentially important information on drug-associated adverse reactions. These practices are enabled by applied technology designed specifically for the review and assessment of spontaneous reports. Specific practices include rules-based triage, active query prompts for severe organ insults, contextual single case evaluation, statistical proportionality and correlational checks, case-series analyses, and templates for signal work-up and interpretation. These practices and the overall GPVP are supported by state-of-the-art web-based systems with powerful analytical engines, workflow and audit trials to allow validated systems support for valid drug safety signalling efforts. It is also important to understand that a process has a defined set of steps and any one cannot stand independently. Specifically, advanced use of technical alerting methods in isolation can mislead and allow one to misunderstand priorities and relative value. In the end, pharmacovigilance is a clinical art and a component process to the science of pharmacoepidemiology and risk management. PMID:12071777

  14. Solar Glitter -- Microsystems Enabled Photovoltaics

    NASA Astrophysics Data System (ADS)

    Nielson, Gregory N.

    2012-02-01

    Many products have significantly benefitted from, or been enabled by, the ability to manufacture structures at an ever decreasing length scale. Obvious examples of this include integrated circuits, flat panel displays, micro-scale sensors, and LED lighting. These industries have benefited from length scale effects in terms of improved performance, reduced cost, or new functionality (or a combination of these). In a similar manner, we are working to take advantage of length scale effects that exist within solar photovoltaic (PV) systems. While this is a significant step away from traditional approaches to solar power systems, the benefits in terms of new functionality, improved performance, and reduced cost for solar power are compelling. We are exploring scale effects that result from the size of the solar cells within the system. We have developed unique cells of both crystalline silicon and III-V materials that are very thin (5-20 microns thick) and have very small lateral dimensions (on the order of hundreds of microns across). These cells minimize the amount of expensive semiconductor material required for the system, allow improved cell performance, and provide an expanded design space for both module and system concepts allowing optimized power output and reduced module and balance of system costs. Furthermore, the small size of the cells allows for unique high-efficiency, high-flexibility PV panels and new building-integrated PV options that are currently unavailable. These benefits provide a pathway for PV power to become cost competitive with grid power and allow unique power solutions independent of grid power.

  15. Enabling Space Science and Exploration

    NASA Technical Reports Server (NTRS)

    Weber, William J.

    2006-01-01

    This viewgraph presentation on enabling space science and exploration covers the following topics: 1) Today s Deep Space Network; 2) Next Generation Deep Space Network; 3) Needed technologies; 4) Mission IT and networking; and 5) Multi-mission operations.

  16. Computer Security Systems Enable Access.

    ERIC Educational Resources Information Center

    Riggen, Gary

    1989-01-01

    A good security system enables access and protects information from damage or tampering, but the most important aspects of a security system aren't technical. A security procedures manual addresses the human element of computer security. (MLW)

  17. 75 FR 13235 - IP-Enabled Services

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ... 47 CFR 63.60(a) and (f), published on August 7, 2009 (74 FR 39551), were approved by the Office of... published a document in the Federal Register, 74 FR 39551, August 7, 2009, that sets forth an effective date... COMMISSION 47 CFR Part 63 IP-Enabled Services AGENCY: Federal Communications Commission ACTION: Final...

  18. Acyclic Cucurbit[n]uril-Type Molecular Container Enables Systemic Delivery of Effective Doses of Albendazole for Treatment of SK-OV-3 Xenograft Tumors.

    PubMed

    Hettiarachchi, Gaya; Samanta, Soumen K; Falcinelli, Shane; Zhang, Ben; Moncelet, Damien; Isaacs, Lyle; Briken, Volker

    2016-03-01

    Approximately, 40-70% of active pharmaceutical ingredients (API) are severely limited by their extremely poor aqueous solubility, and consequently, there is a high demand for excipients that can be used to formulate clinically relevant doses of these drug candidates. Here, proof-of-concept studies demonstrate the potential of our recently discovered acyclic cucurbit[n]uril-type molecular container Motor1 (M1) as a solubilizing agent for insoluble drugs. M1 did not induce significant rates of mutations in various Salmonella typhimurium test strains during the Ames test, suggesting low genotoxicity. M1 also has low risk of causing cardiac toxicity in humans since it did not inhibit the human Ether-à-go-go-Related Gene channel as tested on transfected CHO cell lines via patch clamp analysis. Albendazole (ABZ) is a widely used antihelminthic agent but that has also shown promising efficacy against cancerous cells in vitro. However, due to its low aqueous solubility (2.7 μM) and poor pharmacokinetics, ABZ is clinically limited as an anticancer agent. Here we investigated the potential of M1 as a solubilizing excipient for ABZ formulation. A pharmacokinetic study indicated that ABZ escapes the peritoneal cavity resulting in 78% absolute bioavailability, while its active intermediate metabolite, albendazole sulfoxide, achieved 43% absolute bioavailability. The daily dosing of 681 mg/kg M1 complexed with 3.2 mg/kg of ABZ for 14 days did not result in significant weight loss or pathology in Swiss Webster mice. In vivo efficacy studies using this M1·ABZ inclusion complex showed significant decreases in tumor growth rates and increases in survival of mice bearing SK-OV-3 xenograft tumors. In conclusion, we provide substantial new evidence demonstrating that M1 is a safe and efficient excipient that enables in vivo parenteral delivery of poorly water-soluble APIs.

  19. Acyclic Cucurbit[n]uril-Type Molecular Container Enables Systemic Delivery of Effective Doses of Albendazole for Treatment of SK-OV-3 Xenograft Tumors.

    PubMed

    Hettiarachchi, Gaya; Samanta, Soumen K; Falcinelli, Shane; Zhang, Ben; Moncelet, Damien; Isaacs, Lyle; Briken, Volker

    2016-03-01

    Approximately, 40-70% of active pharmaceutical ingredients (API) are severely limited by their extremely poor aqueous solubility, and consequently, there is a high demand for excipients that can be used to formulate clinically relevant doses of these drug candidates. Here, proof-of-concept studies demonstrate the potential of our recently discovered acyclic cucurbit[n]uril-type molecular container Motor1 (M1) as a solubilizing agent for insoluble drugs. M1 did not induce significant rates of mutations in various Salmonella typhimurium test strains during the Ames test, suggesting low genotoxicity. M1 also has low risk of causing cardiac toxicity in humans since it did not inhibit the human Ether-à-go-go-Related Gene channel as tested on transfected CHO cell lines via patch clamp analysis. Albendazole (ABZ) is a widely used antihelminthic agent but that has also shown promising efficacy against cancerous cells in vitro. However, due to its low aqueous solubility (2.7 μM) and poor pharmacokinetics, ABZ is clinically limited as an anticancer agent. Here we investigated the potential of M1 as a solubilizing excipient for ABZ formulation. A pharmacokinetic study indicated that ABZ escapes the peritoneal cavity resulting in 78% absolute bioavailability, while its active intermediate metabolite, albendazole sulfoxide, achieved 43% absolute bioavailability. The daily dosing of 681 mg/kg M1 complexed with 3.2 mg/kg of ABZ for 14 days did not result in significant weight loss or pathology in Swiss Webster mice. In vivo efficacy studies using this M1·ABZ inclusion complex showed significant decreases in tumor growth rates and increases in survival of mice bearing SK-OV-3 xenograft tumors. In conclusion, we provide substantial new evidence demonstrating that M1 is a safe and efficient excipient that enables in vivo parenteral delivery of poorly water-soluble APIs. PMID:26756920

  20. Enabling individualized therapy through nanotechnology

    PubMed Central

    Sakamoto, Jason H.; van de Ven, Anne L.; Godin, Biana; Blanco, Elvin; Serda, Rita E.; Grattoni, Alessandro; Ziemys, Arturas; Bouamrani, Ali; Hu, Tony; Ranganathan, Shivakumar I.; De Rosa, Enrica; Martinez, Jonathan O.; Smid, Christine A.; Buchanan, Rachel M.; Lee, Sei-Young; Srinivasan, Srimeenakshi; Landry, Matthew; Meyn, Anne; Tasciotti, Ennio; Liu, Xuewu; Decuzzi, Paolo; Ferrari, Mauro

    2010-01-01

    Individualized medicine is the healthcare strategy that rebukes the idiomatic dogma of ‘losing sight of the forest for the trees’. We are entering a new era of healthcare where it is no longer acceptable to develop and market a drug that is effective for only 80% of the patient population. The emergence of “-omic” technologies (e.g. genomics, transcriptomics, proteomics, metabolomics) and advances in systems biology are magnifying the deficiencies of standardized therapy, which often provide little treatment latitude for accommodating patient physiologic idiosyncrasies. A personalized approach to medicine is not a novel concept. Ever since the scientific community began unraveling the mysteries of the genome, the promise of discarding generic treatment regimens in favor of patient-specific therapies became more feasible and realistic. One of the major scientific impediments of this movement towards personalized medicine has been the need for technological enablement. Nanotechnology is projected to play a critical role in patient-specific therapy; however, this transition will depend heavily upon the evolutionary development of a systems biology approach to clinical medicine based upon “-omic” technology analysis and integration. This manuscript provides a forward looking assessment of the promise of nanomedicine as it pertains to individualized medicine and establishes a technology “snapshot” of the current state of nano-based products over a vast array of clinical indications and range of patient specificity. Other issues such as market driven hurdles and regulatory compliance reform are anticipated to “self-correct” in accordance to scientific advancement and healthcare demand. These peripheral, non-scientific concerns are not addressed at length in this manuscript; however they do exist, and their impact to the paradigm shifting healthcare transformation towards individualized medicine will be critical for its success. PMID:20045055

  1. Smoking spaces as enabling spaces of wellbeing.

    PubMed

    Tan, Qian Hui

    2013-11-01

    A persistent emphasis on the negative biomedical effects of cigarette smoking effectively glosses over the affectual-sensual and social wellbeing that smoking can enable. In addition, while tobacco research has recently been more attuned to the stigmatizing affects brought about by smoking de-normalization efforts, a lot less attention has been placed on how smokers negotiate these feelings of stigmatization so as to restore their personal spaces of wellbeing. In this paper, I situate my investigation of smoking geographies in the burgeoning literature on enabling spaces which focuses on how places co-constitute our ability to act/affect in empowering ways. By deploying qualitative research methods such as in-depth interviews, I argue that an acknowledgment of how smoking spaces in Singapore can be enabling along affectual, sensorial and social registers is long overdue. While it is not my purpose to systematically downplay the damaging health effects that smoking can engender, a focus on enabling smoking spaces emphasizes the role of smokers as creative agents capable of (re)fashioning their own holistic and subjective versions of wellbeing. In so doing, I hope to contribute to the existing research on smoking spaces and a recent profusion of work on relational geographies of affect.

  2. Do Frameworks Enable Educational Psychologists to Work Effectively and Efficiently in Practice? A Critical Discussion of the Development of Executive Frameworks

    ERIC Educational Resources Information Center

    Wicks, Abigail

    2013-01-01

    This paper explores whether adopting an "executive framework" makes educational psychologists' (EPs) practice more efficient and effective. Whilst many EPs understand and value executive frameworks in theory, explicit use of such tools may not be fully integrated into their day-to-day practice. Why this might be is considered.…

  3. Enabling the Differently-Abled

    ERIC Educational Resources Information Center

    Pal, Sonali

    2009-01-01

    It is perhaps unfortunate that enabling technologies do not come with an "ability warning", as they generally require the user to already have acquired a certain level of IT skills, in a similar way that online courses require users to have a certain level of prior IT knowledge. Accessing a computer and making the most of e-learning…

  4. Copolymer Networks From Oligo(ε-caprolactone) and n-Butyl Acrylate Enable a Reversible Bidirectional Shape-Memory Effect at Human Body Temperature.

    PubMed

    Saatchi, Mersa; Behl, Marc; Nöchel, Ulrich; Lendlein, Andreas

    2015-05-01

    Exploiting the tremendous potential of the recently discovered reversible bidirectional shape-memory effect (rbSME) for biomedical applications requires switching temperatures in the physiological range. The recent strategy is based on the reduction of the melting temperature range (ΔT m ) of the actuating oligo(ε-caprolactone) (OCL) domains in copolymer networks from OCL and n-butyl acrylate (BA), where the reversible effect can be adjusted to the human body temperature. In addition, it is investigated whether an rbSME in the temperature range close or even above Tm,offset (end of the melting transition) can be obtained. Two series of networks having mixtures of OCLs reveal broad ΔTm s from 2 °C to 50 °C and from -10 °C to 37 °C, respectively. In cyclic, thermomechanical experiments the rbSME can be tailored to display pronounced actuation in a temperature interval between 20 °C and 37 °C. In this way, the application spectrum of the rbSME can be extended to biomedical applications.

  5. Direct-current and radio-frequency characterizations of GaAs metal-insulator-semiconductor field-effect transistors enabled by self-assembled nanodielectrics

    NASA Astrophysics Data System (ADS)

    Lin, H. C.; Kim, S. K.; Chang, D.; Xuan, Y.; Mohammadi, S.; Ye, P. D.; Lu, G.; Facchetti, A.; Marks, T. J.

    2007-08-01

    Direct-current and radio-frequency characterizations of GaAs metal-insulator-semiconductor field-effect transistors (MISFETs) with very thin self-assembled organic nanodielectrics (SANDs) are presented. The application of SAND on compound semiconductors offers unique opportunities for high-performance devices. Thus, 1μm gate-length depletion-mode n-channel SAND/GaAs MISFETs exhibit low gate leakage current densities of 10-2-10-5A/cm2, a maximum drain current of 260mA/mm at 2V forward gate bias, and a maximum intrinsic transconductance of 127mS/mm. These devices achieve a current cutoff frequency (fT) of 10.6GHz and a maximum oscillation frequency (fmax) of 6.9GHz. Nearly hysteresis-free Ids-Vgs characteristics and low flicker noise indicate that a high-quality SAND-GaAs interface is achieved.

  6. Convection-enhanced delivery of Ls-TPT enables an effective, continuous, low-dose chemotherapy against malignant glioma xenograft model.

    PubMed

    Saito, Ryuta; Krauze, Michal T; Noble, Charles O; Drummond, Daryl C; Kirpotin, Dmitri B; Berger, Mitchel S; Park, John W; Bankiewicz, Krystof S

    2006-07-01

    Treatment of malignant gliomas represents one of the most formidable challenges in oncology. The combination of surgery, radiation, and chemotherapy yields median survivals of less than one year. Here we demonstrate the use of a minimally invasive surgical technique, convection-enhanced delivery (CED), for local administration of a novel nanoparticle liposome containing topotecan. CED of this liposomal topotecan (Ls-TPT) resulted in extended brain tissue retention (t1/2 = 1.5 days), whereas free topotecan was rapidly cleared (t1/2 = 0.1 days) after CED. The favorable pharmacokinetic profile of extended topotecan release for about seven days, along with biodistribution featuring perivascular accumulation of the nanoparticles, provided, in addition to the known topoisomerase I inhibition, an effective antiangiogenic therapy. In the rat intracranial U87MG tumor model, vascular targeting of Ls-TPT with CED was associated with reductions in laminin expression and vascular density compared to free topotecan or control treatments. A single CED treatment on day 7 showed that free topotecan conferred no survival benefit versus control. However, Ls-TPT produced a significant (P = 0.0002) survival benefit, with six of seven complete cures. Larger U87MG tumors, where CED of Ls-TPT on day 12 resulted in one of six cures, indicated the necessity to cover the entire tumor with the infused therapeutic agent. CED of Ls-TPT was also efficacious in the intracranial U251MG tumor model (P = 0.0005 versus control). We conclude that the combination of a novel nanoparticle Ls-TPT and CED administration was very effective in treating experimental brain tumors.

  7. Technologies for Networked Enabled Operations

    NASA Technical Reports Server (NTRS)

    Glass, B.; Levine, J.

    2005-01-01

    Current point-to-point data links will not scale to support future integration of surveillance, security, and globally-distributed air traffic data, and already hinders efficiency and capacity. While the FAA and industry focus on a transition to initial system-wide information management (SWIM) capabilities, this paper describes a set of initial studies of NAS network-enabled operations technology gaps targeted for maturity in later SWIM spirals (201 5-2020 timeframe).

  8. Echo-Enabled Harmonic Generation

    SciTech Connect

    Stupakov, Gennady; /SLAC

    2012-06-28

    A recently proposed concept of the Echo-Enabled Harmonic Generation (EEHG) FEL uses two laser modulators in combination with two dispersion sections to generate a high-harmonic density modulation in a relativistic beam. This seeding technique holds promise of a one-stage soft x-ray FEL that radiates not only transversely but also longitudinally coherent pulses. Currently, an experimental verification of the concept is being conducted at the SLAC National Accelerator Laboratory aimed at the demonstration of the EEHG.

  9. Echo-Enabled Harmonic Generation

    SciTech Connect

    Stupakov, Gennady

    2010-08-25

    A recently proposed concept of the Echo-Enabled Harmonic Generation (EEHG) FEL uses two laser modulators in combination with two dispersion sections to generate a high-harmonic density modulation in a relativistic beam. This seeding technique holds promise of a one-stage soft x-ray FEL that radiates not only transversely but also longitudinally coherent pulses. Currently, an experimental verification of the concept is being conducted at the SLAC National Accelerator Laboratory aimed at the demonstration of the EEHG.

  10. MEMS: Enabled Drug Delivery Systems.

    PubMed

    Cobo, Angelica; Sheybani, Roya; Meng, Ellis

    2015-05-01

    Drug delivery systems play a crucial role in the treatment and management of medical conditions. Microelectromechanical systems (MEMS) technologies have allowed the development of advanced miniaturized devices for medical and biological applications. This Review presents the use of MEMS technologies to produce drug delivery devices detailing the delivery mechanisms, device formats employed, and various biomedical applications. The integration of dosing control systems, examples of commercially available microtechnology-enabled drug delivery devices, remaining challenges, and future outlook are also discussed.

  11. New Generation Sensor Web Enablement

    PubMed Central

    Bröring, Arne; Echterhoff, Johannes; Jirka, Simon; Simonis, Ingo; Everding, Thomas; Stasch, Christoph; Liang, Steve; Lemmens, Rob

    2011-01-01

    Many sensor networks have been deployed to monitor Earth’s environment, and more will follow in the future. Environmental sensors have improved continuously by becoming smaller, cheaper, and more intelligent. Due to the large number of sensor manufacturers and differing accompanying protocols, integrating diverse sensors into observation systems is not straightforward. A coherent infrastructure is needed to treat sensors in an interoperable, platform-independent and uniform way. The concept of the Sensor Web reflects such a kind of infrastructure for sharing, finding, and accessing sensors and their data across different applications. It hides the heterogeneous sensor hardware and communication protocols from the applications built on top of it. The Sensor Web Enablement initiative of the Open Geospatial Consortium standardizes web service interfaces and data encodings which can be used as building blocks for a Sensor Web. This article illustrates and analyzes the recent developments of the new generation of the Sensor Web Enablement specification framework. Further, we relate the Sensor Web to other emerging concepts such as the Web of Things and point out challenges and resulting future work topics for research on Sensor Web Enablement. PMID:22163760

  12. Rectification and tunneling effects enabled by Al2O3 atomic layer deposited on back contact of CdTe solar cells

    NASA Astrophysics Data System (ADS)

    Liang, Jun; Lin, Qinxian; Li, Hao; Su, Yantao; Yang, Xiaoyang; Wu, Zhongzhen; Zheng, Jiaxin; Wang, Xinwei; Lin, Yuan; Pan, Feng

    2015-07-01

    Atomic layer deposition (ALD) of Aluminum oxide (Al2O3) is employed to optimize the back contact of thin film CdTe solar cells. Al2O3 layers with a thickness of 0.5 nm to 5 nm are tested, and an improved efficiency, up to 12.1%, is found with the 1 nm Al2O3 deposition, compared with the efficiency of 10.7% without Al2O3 modification. The performance improvement stems from the surface modification that optimizes the rectification and tunneling of back contact. The current-voltage analysis indicates that the back contact with 1 nm Al2O3 maintains large tunneling leakage current and improves the filled factor of CdTe cells through the rectification effect. XPS and capacitance-voltage electrical measurement analysis show that the ALD-Al2O3 modification layer features a desired low-density of interface state of 8 × 1010 cm-2 by estimation.

  13. Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe2: enabling nanoscale direct write homo-junctions

    NASA Astrophysics Data System (ADS)

    Stanford, Michael G.; Pudasaini, Pushpa Raj; Belianinov, Alex; Cross, Nicholas; Noh, Joo Hyon; Koehler, Michael R.; Mandrus, David G.; Duscher, Gerd; Rondinone, Adam J.; Ivanov, Ilia N.; Ward, T. Zac; Rack, Philip D.

    2016-06-01

    Atomically thin transition metal dichalcogenides (TMDs) are currently receiving significant attention due to their promising opto-electronic properties. Tuning optical and electrical properties of mono and few-layer TMDs, such as tungsten diselenide (WSe2), by controlling the defects, is an intriguing opportunity to synthesize next generation two dimensional material opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on the structural, optical and electrical properties of few-layer WSe2, via high resolution scanning transmission electron microscopy, Raman spectroscopy, and electrical transport measurements. By controlling the ion irradiation dose, we selectively introduce precise defects in few-layer WSe2 thereby locally tuning the resistivity and transport properties of the material. Hole transport in the few layer WSe2 is degraded more severely relative to electron transport after helium ion irradiation. Furthermore, by selectively exposing material with the ion beam, we demonstrate a simple yet highly tunable method to create lateral homo-junctions in few layer WSe2 flakes, which constitutes an important advance towards two dimensional opto-electronic devices.

  14. Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe2: Enabling nanoscale direct write homo-junctions

    DOE PAGESBeta

    Stanford, Michael; Noh, Joo Hyon; Koehler, Michael R.; Mandrus, David G.; Duscher, Gerd; Rondinone, Adam Justin; Ivanov, Ilia N.; Ward, Thomas Zac; Rack, Philip D.; Pudasaini, Pushpa Raj; et al

    2016-06-06

    Atomically thin transition metal dichalcogenides (TMDs) are currently receiving significant attention due to their promising opto-electronic properties. Tuning optical and electrical properties of mono and few-layer TMDs, such as tungsten diselenide (WSe2), by controlling the defects, is an intriguing opportunity to synthesize next generation two dimensional material opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on the structural, optical and electrical properties of few-layer WSe2, via high resolution scanning transmission electron microscopy, Raman spectroscopy, and electrical transport measurements. By controlling the ion irradiation dose, we selectively introduce precise defects in few-layer WSe2 thereby locally tuningmore » the resistivity and transport properties of the material. Hole transport in the few layer WSe2 is degraded more severely relative to electron transport after helium ion irradiation. Moreover, by selectively exposing material with the ion beam, we demonstrate a simple yet highly tunable method to create lateral homo-junctions in few layer WSe2 flakes, which constitutes an important advance towards two dimensional opto-electronic devices.« less

  15. Rectification and tunneling effects enabled by Al{sub 2}O{sub 3} atomic layer deposited on back contact of CdTe solar cells

    SciTech Connect

    Liang, Jun; Lin, Qinxian; Li, Hao; Su, Yantao; Yang, Xiaoyang; Wu, Zhongzhen; Zheng, Jiaxin; Wang, Xinwei; Lin, Yuan; Pan, Feng

    2015-07-06

    Atomic layer deposition (ALD) of Aluminum oxide (Al{sub 2}O{sub 3}) is employed to optimize the back contact of thin film CdTe solar cells. Al{sub 2}O{sub 3} layers with a thickness of 0.5 nm to 5 nm are tested, and an improved efficiency, up to 12.1%, is found with the 1 nm Al{sub 2}O{sub 3} deposition, compared with the efficiency of 10.7% without Al{sub 2}O{sub 3} modification. The performance improvement stems from the surface modification that optimizes the rectification and tunneling of back contact. The current-voltage analysis indicates that the back contact with 1 nm Al{sub 2}O{sub 3} maintains large tunneling leakage current and improves the filled factor of CdTe cells through the rectification effect. XPS and capacitance-voltage electrical measurement analysis show that the ALD-Al{sub 2}O{sub 3} modification layer features a desired low-density of interface state of 8 × 10{sup 10 }cm{sup −2} by estimation.

  16. Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe2: enabling nanoscale direct write homo-junctions.

    PubMed

    Stanford, Michael G; Pudasaini, Pushpa Raj; Belianinov, Alex; Cross, Nicholas; Noh, Joo Hyon; Koehler, Michael R; Mandrus, David G; Duscher, Gerd; Rondinone, Adam J; Ivanov, Ilia N; Ward, T Zac; Rack, Philip D

    2016-06-06

    Atomically thin transition metal dichalcogenides (TMDs) are currently receiving significant attention due to their promising opto-electronic properties. Tuning optical and electrical properties of mono and few-layer TMDs, such as tungsten diselenide (WSe2), by controlling the defects, is an intriguing opportunity to synthesize next generation two dimensional material opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on the structural, optical and electrical properties of few-layer WSe2, via high resolution scanning transmission electron microscopy, Raman spectroscopy, and electrical transport measurements. By controlling the ion irradiation dose, we selectively introduce precise defects in few-layer WSe2 thereby locally tuning the resistivity and transport properties of the material. Hole transport in the few layer WSe2 is degraded more severely relative to electron transport after helium ion irradiation. Furthermore, by selectively exposing material with the ion beam, we demonstrate a simple yet highly tunable method to create lateral homo-junctions in few layer WSe2 flakes, which constitutes an important advance towards two dimensional opto-electronic devices.

  17. Focused helium-ion beam irradiation effects on electrical transport properties of few-layer WSe2: enabling nanoscale direct write homo-junctions

    PubMed Central

    Stanford, Michael G.; Pudasaini, Pushpa Raj; Belianinov, Alex; Cross, Nicholas; Noh, Joo Hyon; Koehler, Michael R.; Mandrus, David G.; Duscher, Gerd; Rondinone, Adam J.; Ivanov, Ilia N.; Ward, T. Zac; Rack, Philip D.

    2016-01-01

    Atomically thin transition metal dichalcogenides (TMDs) are currently receiving significant attention due to their promising opto-electronic properties. Tuning optical and electrical properties of mono and few-layer TMDs, such as tungsten diselenide (WSe2), by controlling the defects, is an intriguing opportunity to synthesize next generation two dimensional material opto-electronic devices. Here, we report the effects of focused helium ion beam irradiation on the structural, optical and electrical properties of few-layer WSe2, via high resolution scanning transmission electron microscopy, Raman spectroscopy, and electrical transport measurements. By controlling the ion irradiation dose, we selectively introduce precise defects in few-layer WSe2 thereby locally tuning the resistivity and transport properties of the material. Hole transport in the few layer WSe2 is degraded more severely relative to electron transport after helium ion irradiation. Furthermore, by selectively exposing material with the ion beam, we demonstrate a simple yet highly tunable method to create lateral homo-junctions in few layer WSe2 flakes, which constitutes an important advance towards two dimensional opto-electronic devices. PMID:27263472

  18. Integrating metabolic performance, thermal tolerance, and plasticity enables for more accurate predictions on species vulnerability to acute and chronic effects of global warming.

    PubMed

    Magozzi, Sarah; Calosi, Piero

    2015-01-01

    Predicting species vulnerability to global warming requires a comprehensive, mechanistic understanding of sublethal and lethal thermal tolerances. To date, however, most studies investigating species physiological responses to increasing temperature have focused on the underlying physiological traits of either acute or chronic tolerance in isolation. Here we propose an integrative, synthetic approach including the investigation of multiple physiological traits (metabolic performance and thermal tolerance), and their plasticity, to provide more accurate and balanced predictions on species and assemblage vulnerability to both acute and chronic effects of global warming. We applied this approach to more accurately elucidate relative species vulnerability to warming within an assemblage of six caridean prawns occurring in the same geographic, hence macroclimatic, region, but living in different thermal habitats. Prawns were exposed to four incubation temperatures (10, 15, 20 and 25 °C) for 7 days, their metabolic rates and upper thermal limits were measured, and plasticity was calculated according to the concept of Reaction Norms, as well as Q10 for metabolism. Compared to species occupying narrower/more stable thermal niches, species inhabiting broader/more variable thermal environments (including the invasive Palaemon macrodactylus) are likely to be less vulnerable to extreme acute thermal events as a result of their higher upper thermal limits. Nevertheless, they may be at greater risk from chronic exposure to warming due to the greater metabolic costs they incur. Indeed, a trade-off between acute and chronic tolerance was apparent in the assemblage investigated. However, the invasive species P. macrodactylus represents an exception to this pattern, showing elevated thermal limits and plasticity of these limits, as well as a high metabolic control. In general, integrating multiple proxies for species physiological acute and chronic responses to increasing

  19. Clinical effectiveness and cost-effectiveness of the Rehabilitation Enablement in Chronic Heart Failure (REACH-HF) facilitated self-care rehabilitation intervention in heart failure patients and caregivers: rationale and protocol for a multicentre randomised controlled trial

    PubMed Central

    Taylor, R S; Hayward, C; Eyre, V; Austin, J; Davies, R; Doherty, P; Jolly, K; Wingham, J; Van Lingen, R; Abraham, C; Green, C; Warren, FC; Britten, N; Greaves, C J; Singh, S; Buckingham, S; Paul, K; Dalal, H

    2015-01-01

    Introduction The Rehabilitation EnAblement in CHronic Heart Failure (REACH-HF) trial is part of a research programme designed to develop and evaluate a health professional facilitated, home-based, self-help rehabilitation intervention to improve self-care and health-related quality of life in people with heart failure and their caregivers. The trial will assess the clinical effectiveness and cost-effectiveness of the REACH-HF intervention in patients with systolic heart failure and impact on the outcomes of their caregivers. Methods and analysis A parallel two group randomised controlled trial with 1:1 individual allocation to the REACH-HF intervention plus usual care (intervention group) or usual care alone (control group) in 216 patients with systolic heart failure (ejection fraction <45%) and their caregivers. The intervention comprises a self-help manual delivered by specially trained facilitators over a 12-week period. The primary outcome measure is patients’ disease-specific health-related quality of life measured using the Minnesota Living with Heart Failure questionnaire at 12 months’ follow-up. Secondary outcomes include survival and heart failure related hospitalisation, blood biomarkers, psychological well-being, exercise capacity, physical activity, other measures of quality of life, patient safety and the quality of life, psychological well-being and perceived burden of caregivers at 4, 6 and 12 months’ follow-up. A process evaluation will assess fidelity of intervention delivery and explore potential mediators and moderators of changes in health-related quality of life in intervention and control group patients. Qualitative studies will describe patient and caregiver experiences of the intervention. An economic evaluation will estimate the cost-effectiveness of the REACH-HF intervention plus usual care versus usual care alone in patients with systolic heart failure. Ethics and dissemination The study is approved by the North West

  20. Optimized microsystems-enabled photovoltaics

    DOEpatents

    Cruz-Campa, Jose Luis; Nielson, Gregory N.; Young, Ralph W.; Resnick, Paul J.; Okandan, Murat; Gupta, Vipin P.

    2015-09-22

    Technologies pertaining to designing microsystems-enabled photovoltaic (MEPV) cells are described herein. A first restriction for a first parameter of an MEPV cell is received. Subsequently, a selection of a second parameter of the MEPV cell is received. Values for a plurality of parameters of the MEPV cell are computed such that the MEPV cell is optimized with respect to the second parameter, wherein the values for the plurality of parameters are computed based at least in part upon the restriction for the first parameter.

  1. Nanomaterial-Enabled Neural Stimulation.

    PubMed

    Wang, Yongchen; Guo, Liang

    2016-01-01

    Neural stimulation is a critical technique in treating neurological diseases and investigating brain functions. Traditional electrical stimulation uses electrodes to directly create intervening electric fields in the immediate vicinity of neural tissues. Second-generation stimulation techniques directly use light, magnetic fields or ultrasound in a non-contact manner. An emerging generation of non- or minimally invasive neural stimulation techniques is enabled by nanotechnology to achieve a high spatial resolution and cell-type specificity. In these techniques, a nanomaterial converts a remotely transmitted primary stimulus such as a light, magnetic or ultrasonic signal to a localized secondary stimulus such as an electric field or heat to stimulate neurons. The ease of surface modification and bio-conjugation of nanomaterials facilitates cell-type-specific targeting, designated placement and highly localized membrane activation. This review focuses on nanomaterial-enabled neural stimulation techniques primarily involving opto-electric, opto-thermal, magneto-electric, magneto-thermal and acousto-electric transduction mechanisms. Stimulation techniques based on other possible transduction schemes and general consideration for these emerging neurotechnologies are also discussed.

  2. Enabling Exploration Through Docking Standards

    NASA Technical Reports Server (NTRS)

    Hatfield, Caris A.

    2012-01-01

    Human exploration missions beyond low earth orbit will likely require international cooperation in order to leverage limited resources. International standards can help enable cooperative missions by providing well understood, predefined interfaces allowing compatibility between unique spacecraft and systems. The International Space Station (ISS) partnership has developed a publicly available International Docking System Standard (IDSS) that provides a solution to one of these key interfaces by defining a common docking interface. The docking interface provides a way for even dissimilar spacecraft to dock for exchange of crew and cargo, as well as enabling the assembly of large space systems. This paper provides an overview of the key attributes of the IDSS, an overview of the NASA Docking System (NDS), and the plans for updating the ISS with IDSS compatible interfaces. The NDS provides a state of the art, low impact docking system that will initially be made available to commercial crew and cargo providers. The ISS will be used to demonstrate the operational utility of the IDSS interface as a foundational technology for cooperative exploration.

  3. Nanomaterial-Enabled Neural Stimulation

    PubMed Central

    Wang, Yongchen; Guo, Liang

    2016-01-01

    Neural stimulation is a critical technique in treating neurological diseases and investigating brain functions. Traditional electrical stimulation uses electrodes to directly create intervening electric fields in the immediate vicinity of neural tissues. Second-generation stimulation techniques directly use light, magnetic fields or ultrasound in a non-contact manner. An emerging generation of non- or minimally invasive neural stimulation techniques is enabled by nanotechnology to achieve a high spatial resolution and cell-type specificity. In these techniques, a nanomaterial converts a remotely transmitted primary stimulus such as a light, magnetic or ultrasonic signal to a localized secondary stimulus such as an electric field or heat to stimulate neurons. The ease of surface modification and bio-conjugation of nanomaterials facilitates cell-type-specific targeting, designated placement and highly localized membrane activation. This review focuses on nanomaterial-enabled neural stimulation techniques primarily involving opto-electric, opto-thermal, magneto-electric, magneto-thermal and acousto-electric transduction mechanisms. Stimulation techniques based on other possible transduction schemes and general consideration for these emerging neurotechnologies are also discussed. PMID:27013938

  4. Enabling Radiation Tolerant Systems for Space

    NASA Technical Reports Server (NTRS)

    Kauffman, Billy; Hardage, Donna

    1999-01-01

    A hazard to all spacecraft orbiting the Earth is the existence of a harsh environment with its subsequent effects. The effects can provide damaging or even disabling effects on spacecraft and its instruments. One of the most recognized and serious of the different space environments is ionizing radiation and its effects on spacecraft and spacecraft systems. This is increasingly becoming more of an issue for all missions due to the use of lighter composite materials, smaller satellites, and smaller electronics. NASA's Space Environments and Effects (SEE) Program was established to develop new plateaus of technical capability to reduce the cost of NASA's missions and provide leading-edge exploratory and focused technology to promote continued U.S. preeminence in space. The SEE Program has an "Implementation Plan" to develop roadmaps and fund technical tasks to enable radiation systems for space.

  5. Simulation enabled safeguards assessment methodology

    SciTech Connect

    Bean, Robert; Bjornard, Trond; Larson, Tom

    2007-07-01

    It is expected that nuclear energy will be a significant component of future supplies. New facilities, operating under a strengthened international nonproliferation regime will be needed. There is good reason to believe virtual engineering applied to the facility design, as well as to the safeguards system design will reduce total project cost and improve efficiency in the design cycle. Simulation Enabled Safeguards Assessment MEthodology has been developed as a software package to provide this capability for nuclear reprocessing facilities. The software architecture is specifically designed for distributed computing, collaborative design efforts, and modular construction to allow step improvements in functionality. Drag and drop wire-frame construction allows the user to select the desired components from a component warehouse, render the system for 3D visualization, and, linked to a set of physics libraries and/or computational codes, conduct process evaluations of the system they have designed. (authors)

  6. Simulation Enabled Safeguards Assessment Methodology

    SciTech Connect

    Robert Bean; Trond Bjornard; Thomas Larson

    2007-09-01

    It is expected that nuclear energy will be a significant component of future supplies. New facilities, operating under a strengthened international nonproliferation regime will be needed. There is good reason to believe virtual engineering applied to the facility design, as well as to the safeguards system design will reduce total project cost and improve efficiency in the design cycle. Simulation Enabled Safeguards Assessment MEthodology (SESAME) has been developed as a software package to provide this capability for nuclear reprocessing facilities. The software architecture is specifically designed for distributed computing, collaborative design efforts, and modular construction to allow step improvements in functionality. Drag and drop wireframe construction allows the user to select the desired components from a component warehouse, render the system for 3D visualization, and, linked to a set of physics libraries and/or computational codes, conduct process evaluations of the system they have designed.

  7. Context-Enabled Business Intelligence

    SciTech Connect

    Troy Hiltbrand

    2012-04-01

    To truly understand context and apply it in business intelligence, it is vital to understand what context is and how it can be applied in addressing organizational needs. Context describes the facets of the environment that impact the way that end users interact with the system. Context includes aspects of location, chronology, access method, demographics, social influence/ relationships, end-user attitude/ emotional state, behavior/ past behavior, and presence. To be successful in making Business Intelligence content enabled, it is important to be able to capture the context of use user. With advances in technology, there are a number of ways in which this user based information can be gathered and exposed to enhance the overall end user experience.

  8. Design and Simulation of MEMS Enabled Systems

    NASA Astrophysics Data System (ADS)

    da Silva, Mark

    2001-03-01

    Over the past two decades considerable progress in microsystems (MEMS) fabrication technologies has been made resulting in a variety of commercially successful devices. Most of these devices have required application specific fabrication steps, which must be developed, and the lack of proper design tools often resulted in repeated prototyping that was expensive and time consuming. Further development of MEMS enabled commercial products and reduction of the time to market requires implementation of a concurrent design methodology through better design tools and standardization of the fabrication processes. The cross-disciplinary nature of MEMS-Enabled Systems necessitates designers with different backgrounds to work together in understanding the effects of one sub-system on another and this requires a top-down approach to integrated system design. Design tools that can facilitate this communication and reduce the need for excessive prototype fabrication and test iterations and significantly reduce cost and time-to-market are vitally important. The main focus of this article is to describe the top-down design methodology and and ongoing research on tools that facilitate concurrent design of MEMS enabled systems.

  9. Enabling Participation In Exoplanet Science

    NASA Astrophysics Data System (ADS)

    Taylor, Stuart F.

    2015-08-01

    Determining the distribution of exoplanets has required the contributions of a community of astronomers, who all require the support of colleagues to finish their projects in a manner to enable them to enter new collaborations to continue to contribute to understanding exoplanet science.The contributions of each member of the astronomy community are to be encouraged and must never be intentionally obstructed.We present a member’s long pursuit to be a contributing part of the exoplanet community through doing transit photometry as a means of commissioning the telescopes for a new observatory, followed by pursuit of interpreting the distributions in exoplanet parameter data.We present how the photometry projects have been presented as successful by the others who have claimed to have completed them, but how by requiring its employees to present results while omitting one member has been obstructive against members working together and has prevented the results from being published in what can genuinely be called a peer-reviewed fashion.We present how by tolerating one group to obstruct one member from finishing participation and then falsely denying credit is counterproductive to doing science.We show how expecting one member to attempt to go around an ostracizing group by starting something different is destructive to the entire profession. We repeat previously published appeals to help ostracized members to “go around the observatory” by calling for discussion on how the community must act to reverse cases of shunning, bullying, and other abuses. Without better recourse and support from the community, actions that do not meet standard good collegial behavior end up forcing good members from the community. The most important actions are to enable an ostracized member to have recourse to participating in group papers by either working through other authors or through the journal. All journals and authors must expect that no co-author is keeping out a major

  10. Enabling Communication in Emergency Response Environments

    PubMed Central

    Aldunate, Roberto G.; Schmidt, Klaus Nicholas; Herrera, Oriel

    2012-01-01

    Effective communication among first responders during response to natural and human-made large-scale catastrophes has increased tremendously during the last decade. However, most efforts to achieve a higher degree of effectiveness in communication lack synergy between the environment and the technology involved to support first responders operations. This article presents a natural and intuitive interface to support Stigmergy; or communication through the environment, based on intuitively marking and retrieving information from the environment with a pointer. A prototype of the system was built and tested in the field, however the pointing activity revealed challenges regarding accuracy due to limitations of the sensors used. The results obtained from these field tests were the basis for this research effort and will have the potential to enable communication through the environment for first responders operating in highly dynamical and inhospitable disaster relief environments. PMID:22778647

  11. A wireless sensor enabled by wireless power.

    PubMed

    Lee, Da-Sheng; Liu, Yu-Hong; Lin, Chii-Ruey

    2012-11-22

    Through harvesting energy by wireless charging and delivering data by wireless communication, this study proposes the concept of a wireless sensor enabled by wireless power (WPWS) and reports the fabrication of a prototype for functional tests. One WPWS node consists of wireless power module and sensor module with different chip-type sensors. Its main feature is the dual antenna structure. Following RFID system architecture, a power harvesting antenna was designed to gather power from a standard reader working in the 915 MHz band. Referring to the Modbus protocol, the other wireless communication antenna was integrated on a node to send sensor data in parallel. The dual antenna structure integrates both the advantages of an RFID system and a wireless sensor. Using a standard UHF RFID reader, WPWS can be enabled in a distributed area with a diameter up to 4 m. Working status is similar to that of a passive tag, except that a tag can only be queried statically, while the WPWS can send dynamic data from the sensors. The function is the same as a wireless sensor node. Different WPWSs equipped with temperature and humidity, optical and airflow velocity sensors are tested in this study. All sensors can send back detection data within 8 s. The accuracy is within 8% deviation compared with laboratory equipment. A wireless sensor network enabled by wireless power should be a totally wireless sensor network using WPWS. However, distributed WPWSs only can form a star topology, the simplest topology for constructing a sensor network. Because of shielding effects, it is difficult to apply other complex topologies. Despite this limitation, WPWS still can be used to extend sensor network applications in hazardous environments. Further research is needed to improve WPWS to realize a totally wireless sensor network.

  12. A wireless sensor enabled by wireless power.

    PubMed

    Lee, Da-Sheng; Liu, Yu-Hong; Lin, Chii-Ruey

    2012-01-01

    Through harvesting energy by wireless charging and delivering data by wireless communication, this study proposes the concept of a wireless sensor enabled by wireless power (WPWS) and reports the fabrication of a prototype for functional tests. One WPWS node consists of wireless power module and sensor module with different chip-type sensors. Its main feature is the dual antenna structure. Following RFID system architecture, a power harvesting antenna was designed to gather power from a standard reader working in the 915 MHz band. Referring to the Modbus protocol, the other wireless communication antenna was integrated on a node to send sensor data in parallel. The dual antenna structure integrates both the advantages of an RFID system and a wireless sensor. Using a standard UHF RFID reader, WPWS can be enabled in a distributed area with a diameter up to 4 m. Working status is similar to that of a passive tag, except that a tag can only be queried statically, while the WPWS can send dynamic data from the sensors. The function is the same as a wireless sensor node. Different WPWSs equipped with temperature and humidity, optical and airflow velocity sensors are tested in this study. All sensors can send back detection data within 8 s. The accuracy is within 8% deviation compared with laboratory equipment. A wireless sensor network enabled by wireless power should be a totally wireless sensor network using WPWS. However, distributed WPWSs only can form a star topology, the simplest topology for constructing a sensor network. Because of shielding effects, it is difficult to apply other complex topologies. Despite this limitation, WPWS still can be used to extend sensor network applications in hazardous environments. Further research is needed to improve WPWS to realize a totally wireless sensor network. PMID:23443370

  13. A Wireless Sensor Enabled by Wireless Power

    PubMed Central

    Lee, Da-Sheng; Liu, Yu-Hong; Lin, Chii-Ruey

    2012-01-01

    Through harvesting energy by wireless charging and delivering data by wireless communication, this study proposes the concept of a wireless sensor enabled by wireless power (WPWS) and reports the fabrication of a prototype for functional tests. One WPWS node consists of wireless power module and sensor module with different chip-type sensors. Its main feature is the dual antenna structure. Following RFID system architecture, a power harvesting antenna was designed to gather power from a standard reader working in the 915 MHz band. Referring to the Modbus protocol, the other wireless communication antenna was integrated on a node to send sensor data in parallel. The dual antenna structure integrates both the advantages of an RFID system and a wireless sensor. Using a standard UHF RFID reader, WPWS can be enabled in a distributed area with a diameter up to 4 m. Working status is similar to that of a passive tag, except that a tag can only be queried statically, while the WPWS can send dynamic data from the sensors. The function is the same as a wireless sensor node. Different WPWSs equipped with temperature and humidity, optical and airflow velocity sensors are tested in this study. All sensors can send back detection data within 8 s. The accuracy is within 8% deviation compared with laboratory equipment. A wireless sensor network enabled by wireless power should be a totally wireless sensor network using WPWS. However, distributed WPWSs only can form a star topology, the simplest topology for constructing a sensor network. Because of shielding effects, it is difficult to apply other complex topologies. Despite this limitation, WPWS still can be used to extend sensor network applications in hazardous environments. Further research is needed to improve WPWS to realize a totally wireless sensor network. PMID:23443370

  14. Nano-Enabled SERS Reporting Photosensitizers

    PubMed Central

    Farhadi, Arash; Roxin, Áron; Wilson, Brian C.; Zheng, Gang

    2015-01-01

    To impart effective cellular damage via photodynamic therapy (PDT), it is vital to deliver the appropriate light dose and photosensitizer concentration, and to monitor the PDT dose delivered at the site of interest. In vivo monitoring of photosensitizers has in large part relied on their fluorescence emission. Palladium-containing photosensitizers have shown promising clinical results by demonstrating near full conversion of light to PDT activity at the cost of having undetectable fluorescence. We demonstrate that, through the coupling of plasmonic nanoparticles with palladium-photosensitizers, surface-enhanced Raman scattering (SERS) provides both reporting and monitoring capability to otherwise quiescent molecules. Nano-enabled SERS reporting of photosensitizers allows for the decoupling of the therapeutic and imaging mechanisms so that both phenomena can be optimized independently. Most importantly, the design enables the use of the same laser wavelength to stimulate both the PDT and imaging features, opening the potential for real-time dosimetry of photosensitizer concentration and PDT dose delivery by SERS monitoring. PMID:25767614

  15. The Master Enabler: In Orbit Servicing

    NASA Technical Reports Server (NTRS)

    Reed, Benjamin B.; Kienlen, Michael; Naasz, Bo; Roberts, Brian; Deweese, Keith; Cassidy, Justin

    2015-01-01

    Some of the most noteworthy missions in space exploration have occurred in the last two decades and owe their success to on-orbit servicing. The tremendously successful Hubble Space Telescope repair and upgrade missions, as well as the completed assembly of the International Space Station (ISS) and its full utilization, lead us to the next chapter and set of challenges. These include fully exploiting the many space systems already launched, assembling large structures in situ thereby enabling new scientific discoveries, and providing systems that reliably and cost-effectively support the next steps in space exploration. In-orbit servicing is a tool--a tool that can serve as the master enabler to create space architectures that would otherwise be unattainable. This paper will survey how NASA's satellite-servicing technology development efforts are being applied to the planning and execution of two such ambitious missions, specifically asteroid capture and the in-space assembly of a very large life-finding telescope.

  16. The "Master Enabler" - In-Orbit Servicing

    NASA Technical Reports Server (NTRS)

    Reed, Benjamin; Kienlen, Michael; Naasz, Bo; Roberts, Brian; Deweese, Keith; Cassidy, Justin

    2015-01-01

    Some of the most noteworthy missions in space exploration have occurred in the last two decades and owe their success to on-orbit servicing. The tremendously successful Hubble Space Telescope repair and upgrade missions, as well as the completed assembly of the International Space Station (ISS) and its full utilization, lead us to the next chapter and set of challenges. These include fully exploiting the many space systems already launched, assembling large structures in situ thereby enabling new scientific discoveries, and providing systems that reliably and cost-effectively support the next steps in space exploration. In-orbit servicing is a tool-a tool that can serve as the master enabler to create space architectures that would otherwise be unattainable. This paper will survey how NASA's satellite-servicing technology development efforts are being applied to the planning and execution of two such ambitious missions, specifically asteroid capture and the in-space assembly of a very large life-finding telescope.

  17. In-Orbit Servicing: The Master Enabler

    NASA Technical Reports Server (NTRS)

    Reed, Benjamin B.; Kienlen, Michael; Naasz, Bo; Roberts, Brian; Deweese, Keith

    2015-01-01

    Some of the most noteworthy missions in space exploration have occurred in the last two decades and owe their success to on-orbit servicing. The tremendously successful Hubble Space Telescope repair and upgrade missions, as well as the completed assembly of the International Space Station (ISS) and its full utilization, lead us to the next chapter and set of challenges. These include fully exploiting the many space systems already launched, assembling large structures in situ thereby enabling new scientific discoveries, and providing systems that reliably and cost-effectively support the next steps in space exploration. In-orbit servicing is a tool--a tool that can serve as the master enabler to create space architectures that would otherwise be unattainable. This paper will survey how NASA's satellite-servicing technology development efforts are being applied to the planning and execution of two such ambitious missions, specifically asteroid capture and the in-space assembly of a very large life-finding telescope.

  18. Asymmetric catalysis: An enabling science

    PubMed Central

    Trost, Barry M.

    2004-01-01

    Chirality of organic molecules plays an enormous role in areas ranging from medicine to material science, yet the synthesis of such entities in one enantiomeric form is one of the most difficult challenges. The advances being made stem from the convergence of a broader understanding of theory and how structure begets function, the developments in the interface between organic and inorganic chemistry and, most notably, the organic chemistry of the transition metals, and the continuing advancements in the tools to help define structure, especially in solution. General themes for designing catalysts to effect asymmetric induction are helping to make this strategy more useful, in general, with the resultant effect of a marked enhancement of synthetic efficiency. PMID:14990801

  19. Plasmonic Metallurgy Enabled by DNA.

    PubMed

    Ross, Michael B; Ku, Jessie C; Lee, Byeongdu; Mirkin, Chad A; Schatz, George C

    2016-04-13

    Mixed silver and gold plasmonic nanoparticle architectures are synthesized using DNA-programmable assembly, unveiling exquisitely tunable optical properties that are predicted and explained both by effective thin-film models and explicit electrodynamic simulations. These data demonstrate that the manner and ratio with which multiple metallic components are arranged can greatly alter optical properties, including tunable color and asymmetric reflectivity behavior of relevance for thin-film applications.

  20. Enabling communication concurrency through flexible MPI endpoints

    SciTech Connect

    Dinan, James; Grant, Ryan E.; Balaji, Pavan; Goodell, David; Miller, Douglas; Snir, Marc; Thakur, Rajeev

    2014-09-23

    MPI defines a one-to-one relationship between MPI processes and ranks. This model captures many use cases effectively; however, it also limits communication concurrency and interoperability between MPI and programming models that utilize threads. Our paper describes the MPI endpoints extension, which relaxes the longstanding one-to-one relationship between MPI processes and ranks. Using endpoints, an MPI implementation can map separate communication contexts to threads, allowing them to drive communication independently. Also, endpoints enable threads to be addressable in MPI operations, enhancing interoperability between MPI and other programming models. Furthermore, these characteristics are illustrated through several examples and an empirical study that contrasts current multithreaded communication performance with the need for high degrees of communication concurrency to achieve peak communication performance.

  1. Enabling communication concurrency through flexible MPI endpoints

    DOE PAGESBeta

    Dinan, James; Grant, Ryan E.; Balaji, Pavan; Goodell, David; Miller, Douglas; Snir, Marc; Thakur, Rajeev

    2014-09-23

    MPI defines a one-to-one relationship between MPI processes and ranks. This model captures many use cases effectively; however, it also limits communication concurrency and interoperability between MPI and programming models that utilize threads. Our paper describes the MPI endpoints extension, which relaxes the longstanding one-to-one relationship between MPI processes and ranks. Using endpoints, an MPI implementation can map separate communication contexts to threads, allowing them to drive communication independently. Also, endpoints enable threads to be addressable in MPI operations, enhancing interoperability between MPI and other programming models. Furthermore, these characteristics are illustrated through several examples and an empirical study thatmore » contrasts current multithreaded communication performance with the need for high degrees of communication concurrency to achieve peak communication performance.« less

  2. Enabling Computational Technologies for Terascale Scientific Simulations

    SciTech Connect

    Ashby, S.F.

    2000-08-24

    We develop scalable algorithms and object-oriented code frameworks for terascale scientific simulations on massively parallel processors (MPPs). Our research in multigrid-based linear solvers and adaptive mesh refinement enables Laboratory programs to use MPPs to explore important physical phenomena. For example, our research aids stockpile stewardship by making practical detailed 3D simulations of radiation transport. The need to solve large linear systems arises in many applications, including radiation transport, structural dynamics, combustion, and flow in porous media. These systems result from discretizations of partial differential equations on computational meshes. Our first research objective is to develop multigrid preconditioned iterative methods for such problems and to demonstrate their scalability on MPPs. Scalability describes how total computational work grows with problem size; it measures how effectively additional resources can help solve increasingly larger problems. Many factors contribute to scalability: computer architecture, parallel implementation, and choice of algorithm. Scalable algorithms have been shown to decrease simulation times by several orders of magnitude.

  3. Coupling Functions Enable Secure Communications

    NASA Astrophysics Data System (ADS)

    Stankovski, Tomislav; McClintock, Peter V. E.; Stefanovska, Aneta

    2014-01-01

    Secure encryption is an essential feature of modern communications, but rapid progress in illicit decryption brings a continuing need for new schemes that are harder and harder to break. Inspired by the time-varying nature of the cardiorespiratory interaction, here we introduce a new class of secure communications that is highly resistant to conventional attacks. Unlike all earlier encryption procedures, this cipher makes use of the coupling functions between interacting dynamical systems. It results in an unbounded number of encryption key possibilities, allows the transmission or reception of more than one signal simultaneously, and is robust against external noise. Thus, the information signals are encrypted as the time variations of linearly independent coupling functions. Using predetermined forms of coupling function, we apply Bayesian inference on the receiver side to detect and separate the information signals while simultaneously eliminating the effect of external noise. The scheme is highly modular and is readily extendable to support different communications applications within the same general framework.

  4. Semantically enabled image similarity search

    NASA Astrophysics Data System (ADS)

    Casterline, May V.; Emerick, Timothy; Sadeghi, Kolia; Gosse, C. A.; Bartlett, Brent; Casey, Jason

    2015-05-01

    Georeferenced data of various modalities are increasingly available for intelligence and commercial use, however effectively exploiting these sources demands a unified data space capable of capturing the unique contribution of each input. This work presents a suite of software tools for representing geospatial vector data and overhead imagery in a shared high-dimension vector or embedding" space that supports fused learning and similarity search across dissimilar modalities. While the approach is suitable for fusing arbitrary input types, including free text, the present work exploits the obvious but computationally difficult relationship between GIS and overhead imagery. GIS is comprised of temporally-smoothed but information-limited content of a GIS, while overhead imagery provides an information-rich but temporally-limited perspective. This processing framework includes some important extensions of concepts in literature but, more critically, presents a means to accomplish them as a unified framework at scale on commodity cloud architectures.

  5. Fundamental enabling issues in nanotechnology :

    SciTech Connect

    Floro, Jerrold Anthony; Foiles, Stephen Martin; Hearne, Sean Joseph; Hoyt, Jeffrey John; Seel, Steven Craig; Webb, Edmund Blackburn,; Morales, Alfredo Martin; Zimmerman, Jonathan A.

    2007-10-01

    To effectively integrate nanotechnology into functional devices, fundamental aspects of material behavior at the nanometer scale must be understood. Stresses generated during thin film growth strongly influence component lifetime and performance; stress has also been proposed as a mechanism for stabilizing supported nanoscale structures. Yet the intrinsic connections between the evolving morphology of supported nanostructures and stress generation are still a matter of debate. This report presents results from a combined experiment and modeling approach to study stress evolution during thin film growth. Fully atomistic simulations are presented predicting stress generation mechanisms and magnitudes during all growth stages, from island nucleation to coalescence and film thickening. Simulations are validated by electrodeposition growth experiments, which establish the dependence of microstructure and growth stresses on process conditions and deposition geometry. Sandia is one of the few facilities with the resources to combine experiments and modeling/theory in this close a fashion. Experiments predicted an ongoing coalescence process that generates signficant tensile stress. Data from deposition experiments also supports the existence of a kinetically limited compressive stress generation mechanism. Atomistic simulations explored island coalescence and deposition onto surfaces intersected by grain boundary structures to permit investigation of stress evolution during later growth stages, e.g. continual island coalescence and adatom incorporation into grain boundaries. The predictive capabilities of simulation permit direct determination of fundamental processes active in stress generation at the nanometer scale while connecting those processes, via new theory, to continuum models for much larger island and film structures. Our combined experiment and simulation results reveal the necessary materials science to tailor stress, and therefore performance, in

  6. An Internet enabled impact limiter material database

    SciTech Connect

    Wix, S.; Kanipe, F.; McMurtry, W.

    1998-09-01

    This paper presents a detailed explanation of the construction of an interest enabled database, also known as a database driven web site. The data contained in the internet enabled database are impact limiter material and seal properties. The technique used in constructing the internet enabled database presented in this paper are applicable when information that is changing in content needs to be disseminated to a wide audience.

  7. Electronic Health Record Application Support Service Enablers.

    PubMed

    Neofytou, M S; Neokleous, K; Aristodemou, A; Constantinou, I; Antoniou, Z; Schiza, E C; Pattichis, C S; Schizas, C N

    2015-08-01

    There is a huge need for open source software solutions in the healthcare domain, given the flexibility, interoperability and resource savings characteristics they offer. In this context, this paper presents the development of three open source libraries - Specific Enablers (SEs) for eHealth applications that were developed under the European project titled "Future Internet Social and Technological Alignment Research" (FI-STAR) funded under the "Future Internet Public Private Partnership" (FI-PPP) program. The three SEs developed under the Electronic Health Record Application Support Service Enablers (EHR-EN) correspond to: a) an Electronic Health Record enabler (EHR SE), b) a patient summary enabler based on the EU project "European patient Summary Open Source services" (epSOS SE) supporting patient mobility and the offering of interoperable services, and c) a Picture Archiving and Communications System (PACS) enabler (PACS SE) based on the dcm4che open source system for the support of medical imaging functionality. The EHR SE follows the HL7 Clinical Document Architecture (CDA) V2.0 and supports the Integrating the Healthcare Enterprise (IHE) profiles (recently awarded in Connectathon 2015). These three FI-STAR platform enablers are designed to facilitate the deployment of innovative applications and value added services in the health care sector. They can be downloaded from the FI-STAR cataloque website. Work in progress focuses in the validation and evaluation scenarios for the proving and demonstration of the usability, applicability and adaptability of the proposed enablers. PMID:26736531

  8. Key Enabling Technologies for Virtual Private Clouds

    NASA Astrophysics Data System (ADS)

    Nick, Jeffrey M.; Cohen, David; Kaliski, Burton S.

    The concept of a virtual private cloud (VPC) has emerged recently as a way of managing information technology resources so that they appear to be operated for a single organization from a logical point of view, but may be built from underlying physical resources that belong to the organization, an external service provider, or a combination of both. Several technologies are essential to the effective implementation of a VPC. Virtual data centers provide the insulation that sets one organization's virtual resources apart from those of other organizations and from the underlying physical infrastructure. Virtual applications collect those resources into separately manageable units. Policy-based deployment and policy compliance offer a means of control and verification of the operation of the virtual applications across the virtual data centers. Finally, service management integration bridges across the underlying resources to give an overall, logical and actionable view. These key technologies enable cloud providers to offer organizations the cost and efficiency benefits of cloud computing as well as the operational autonomy and flexibility to which they have been accustomed.

  9. Water: A Critical Material Enabling Space Exploration

    NASA Technical Reports Server (NTRS)

    Pickering, Karen D.

    2014-01-01

    Water is one of the most critical materials in human spaceflight. The availability of water defines the duration of a space mission; the volume of water required for a long-duration space mission becomes too large, heavy, and expensive for launch vehicles to carry. Since the mission duration is limited by the amount of water a space vehicle can carry, the capability to recycle water enables space exploration. In addition, water management in microgravity impacts spaceflight in other respects, such as the recent emergency termination of a spacewalk caused by free water in an astronaut's spacesuit helmet. A variety of separation technologies are used onboard spacecraft to ensure that water is always available for use, and meets the stringent water quality required for human space exploration. These separation technologies are often adapted for use in a microgravity environment, where water behaves in unique ways. The use of distillation, membrane processes, ion exchange and granular activated carbon will be reviewed. Examples of microgravity effects on operations will also be presented. A roadmap for future technologies, needed to supply water resources for the exploration of Mars, will also be reviewed.

  10. Nanocrystal-enabled solid state bonding.

    SciTech Connect

    San Diego State University, San Diego, CA; Puskar, Joseph David; Tikare, Veena; Garcia Cardona, Cristina; Reece, Mark; Brewer, Luke N.; Holm, Elizabeth Ann

    2010-10-01

    In this project, we performed a preliminary set of sintering experiments to examine nanocrystal-enabled diffusion bonding (NEDB) in Ag-on-Ag and Cu-on-Cu using Ag nanoparticles. The experimental test matrix included the effects of material system, temperature, pressure, and particle size. The nanoparticle compacts were bonded between plates using a customized hot press, tested in shear, and examined post mortem using microscopy techniques. NEDB was found to be a feasible mechanism for low-temperature, low-pressure, solid-state bonding of like materials, creating bonded interfaces that were able to support substantial loads. The maximum supported shear strength varied substantially within sample cohorts due to variation in bonded area; however, systematic variation with fabrication conditions was also observed. Mesoscale sintering simulations were performed in order to understand whether sintering models can aid in understanding the NEDB process. A pressure-assisted sintering model was incorporated into the SPPARKS kinetic Monte Carlo sintering code. Results reproduce most of the qualitative behavior observed in experiments, indicating that simulation can augment experiments during the development of the NEDB process. Because NEDB offers a promising route to low-temperature, low-pressure, solid-state bonding, we recommend further research and development with a goal of devising new NEDB bonding processes to support Sandia's customers.

  11. Utility Energy Services Contracts: Enabling Documents

    SciTech Connect

    2009-05-01

    Utility Energy Services Contracts: Enabling Documents provides materials that clarify the authority for Federal agencies to enter into utility energy services contracts (UESCs), as well as sample documents and resources to ease utility partnership contracting.

  12. An Architecture to Enable Future Sensor Webs

    NASA Technical Reports Server (NTRS)

    Mandl, Dan; Caffrey, Robert; Frye, Stu; Grosvenor, Sandra; Hess, Melissa; Chien, Steve; Sherwood, Rob; Davies, Ashley; Hayden, Sandra; Sweet, Adam

    2004-01-01

    A sensor web is a coherent set of distributed 'nodes', interconnected by a communications fabric, that collectively behave as a single dynamic observing system. A 'plug and play' mission architecture enables progressive mission autonomy and rapid assembly and thereby enables sensor webs. This viewgraph presentation addresses: Target mission messaging architecture; Strategy to establish architecture; Progressive autonomy with onboard sensor web; EO-1; Adaptive array antennas (smart antennas) for satellite ground stations.

  13. Biotechniques Laboratory: An Enabling Course in the Biological Sciences

    ERIC Educational Resources Information Center

    Di Trapani, Giovanna; Clarke, Frank

    2012-01-01

    Practical skills and competencies are critical to student engagement and effective learning in laboratory courses. This article describes the design of a yearlong, stand-alone laboratory course--the Biotechniques Laboratory--a common core course in the second year of all our degree programs in the biological sciences. It is an enabling,…

  14. "Nanotechnology Enabled Advanced Industrial Heat Transfer Fluids"

    SciTech Connect

    Dr. Ganesh Skandan; Dr. Amit Singhal; Mr. Kenneth Eberts; Mr. Damian Sobrevilla; Prof. Jerry Shan; Stephen Tse; Toby Rossmann

    2008-06-12

    ABSTRACT Nanotechnology Enabled Advanced industrial Heat Transfer Fluids” Improving the efficiency of Industrial Heat Exchangers offers a great opportunity to improve overall process efficiencies in diverse industries such as pharmaceutical, materials manufacturing and food processing. The higher efficiencies can come in part from improved heat transfer during both cooling and heating of the material being processed. Additionally, there is great interest in enhancing the performance and reducing the weight of heat exchangers used in automotives in order to increase fuel efficiency. The goal of the Phase I program was to develop nanoparticle containing heat transfer fluids (e.g., antifreeze, water, silicone and hydrocarbon-based oils) that are used in transportation and in the chemical industry for heating, cooling and recovering waste heat. Much work has been done to date at investigating the potential use of nanoparticle-enhanced thermal fluids to improve heat transfer in heat exchangers. In most cases the effect in a commercial heat transfer fluid has been marginal at best. In the Phase I work, we demonstrated that the thermal conductivity, and hence heat transfer, of a fluid containing nanoparticles can be dramatically increased when subjected to an external influence. The increase in thermal conductivity was significantly larger than what is predicted by commonly used thermal models for two-phase materials. Additionally, the surface of the nanoparticles was engineered so as to have a minimal influence on the viscosity of the fluid. As a result, a nanoparticle-laden fluid was successfully developed that can lead to enhanced heat transfer in both industrial and automotive heat exchangers

  15. New Labour and the enabling state.

    PubMed

    Taylor, Ian

    2000-11-01

    The notion of the 'enabling state' gained currency in the UK during the 1990s as an alternative to the 'providing' or the welfare state. It reflected the process of contracting out in the NHS and compulsory competitive tendering (CCT) in local government during the 1980s, but was also associated with developments during the 1990s in health, social care and education in particular. The creation of an internal market in the NHS and the associated purchaser-provider split appeared to transfer 'ownership' of services increasingly to the providers - hospitals, General Practitioners (GPs) and schools. The mixed economy of care that was stimulated by the 1990 NHS and Community Care Act appeared to offer local authorities the opportunity to enable non state providers to offer care services in the community. The new service charters were part of the enablement process because they offered users more opportunity to influence provision. This article examines how far service providers were enabled and assesses the extent to which new Labour's policies enhance or reject the 'enabling state' in favour of more direct provision. PMID:11560707

  16. Origami-enabled deformable silicon solar cells

    SciTech Connect

    Tang, Rui; Huang, Hai; Liang, Hanshuang; Liang, Mengbing; Tu, Hongen; Xu, Yong; Song, Zeming; Jiang, Hanqing; Yu, Hongyu

    2014-02-24

    Deformable electronics have found various applications and elastomeric materials have been widely used to reach flexibility and stretchability. In this Letter, we report an alternative approach to enable deformability through origami. In this approach, the deformability is achieved through folding and unfolding at the creases while the functional devices do not experience strain. We have demonstrated an example of origami-enabled silicon solar cells and showed that this solar cell can reach up to 644% areal compactness while maintaining reasonable good performance upon cyclic folding/unfolding. This approach opens an alternative direction of producing flexible, stretchable, and deformable electronics.

  17. Networking Technologies Enable Advances in Earth Science

    NASA Technical Reports Server (NTRS)

    Johnson, Marjory; Freeman, Kenneth; Gilstrap, Raymond; Beck, Richard

    2004-01-01

    This paper describes an experiment to prototype a new way of conducting science by applying networking and distributed computing technologies to an Earth Science application. A combination of satellite, wireless, and terrestrial networking provided geologists at a remote field site with interactive access to supercomputer facilities at two NASA centers, thus enabling them to validate and calibrate remotely sensed geological data in near-real time. This represents a fundamental shift in the way that Earth scientists analyze remotely sensed data. In this paper we describe the experiment and the network infrastructure that enabled it, analyze the data flow during the experiment, and discuss the scientific impact of the results.

  18. Energy Savings Performance Contract (ESPC) ENABLE Program

    SciTech Connect

    2012-06-01

    The Energy Savings Performance Contract (ESPC) ENABLE program, a new project funding approach, allows small Federal facilities to realize energy and water savings in six months or less. ESPC ENABLE provides a standardized and streamlined process to install targeted energy conservation measures (ECMs) such as lighting, water, and controls with measurement and verification (M&V) appropriate for the size and scope of the project. This allows Federal facilities smaller than 200,000 square feet to make progress towards important energy efficiency and water conservation requirements.

  19. Safely Enabling Low-Altitude Airspace Operations

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal

    2015-01-01

    Near-term Goal - Enable initial low-altitude airspace and UAS operations with demonstrated safety as early as possible, within 5 years. Long-term Goal - Accommodate increased UAS operations with highest safety, efficiency, and capacity as much autonomously as possible (10-15 years).

  20. School Bureaucracies That Work: Enabling, Not Coercive.

    ERIC Educational Resources Information Center

    Hoy, Wayne K.; Sweetland, Scott R.

    2000-01-01

    Attempts to reconcile two theoretically opposing perspectives of bureaucracy (as either alienating or facilitative) by creating and testing a new construct called "enabling bureaucracy." Empirical results are encouraging. Schools can be designed with formalized procedures and hierarchical structures that help rather than hinder teaching and…

  1. Nanotechnologv Enabled Biological and Chemical Sensors

    NASA Technical Reports Server (NTRS)

    Koehne, Jessica; Meyyappan, M.

    2011-01-01

    Nanotechnology is an enabling technology that will impact almost all economic sectors: one of the most important and with great potential is the health/medical sector. - Nanomaterials for drug delivery - Early warning sensors - Implantable devices - Artificial parts with improved characteristics Carbon nanotubes and nanofibers show promise for use in sensor development, electrodes and other biomedical applications.

  2. Action Learning: Avoiding Conflict or Enabling Action

    ERIC Educational Resources Information Center

    Corley, Aileen; Thorne, Ann

    2006-01-01

    Action learning is based on the premise that action and learning are inextricably entwined and it is this potential, to enable action, which has contributed to the growth of action learning within education and management development programmes. However has this growth in action learning lead to an evolution or a dilution of Revan's classical…

  3. Safely Enabling Low-Altitude Airspace Operations

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal

    2015-01-01

    Near-term Goal: Enable initial low-altitude airspace and UAS operations with demonstrated safety as early as possible, within 5 years. Long-term Goal: Accommodate increased UAS operations with highest safety, efficiency, and capacity as much autonomously as possible (10-15 years).

  4. ICT-Enabled Learning: The Student Perspective

    ERIC Educational Resources Information Center

    Scott, Geoff; Grebennikov, Leonid; Gozzard, Terry

    2009-01-01

    This research seeks to contribute to current discussions in Australian higher education on how best to deploy ICT-enabled learning. Its particular focus is on examining the qualitative data from students on their experience of using Information and Communication Technologies (ICT) at one college in an Australian university. In total, about 71,240…

  5. Technology-Enabled Crime, Policing and Security

    ERIC Educational Resources Information Center

    McQuade, Sam

    2006-01-01

    Crime, policing and security are enabled by and co-evolve with technologies that make them possible. As criminals compete with security and policing officials for technological advantage perpetually complex crime, policing and security results in relatively confusing and therefore unmanageable threats to society. New, adaptive and ordinary crimes…

  6. Enabling Family-Friendly Cultural Change

    ERIC Educational Resources Information Center

    Quinn, Kate; Yen, Joyce W.; Riskin, Eve A.; Lange, Sheila Edwards

    2007-01-01

    Strategies to address the problem of work and family balance have begun emerging in recent years. Many American college and universities have begun to adopt this "family-friendly policies," such as tenure-clock extensions. Each of the policies to enable work and family balance, however, is situated within the broader academic culture. Departmental…

  7. Fluorescent particles enable visualization of gas flow

    NASA Technical Reports Server (NTRS)

    Wilson, A. J.

    1968-01-01

    Fluorescent particles enable visualization of the flow patterns of gases at slow velocities. Through a transparent section in the gas line, a camera views the visible light emitted by the particles carried by the gas stream. Fine definition of the particle tracks are obtained at slow camera shutter speeds.

  8. Robotics to Enable Older Adults to Remain Living at Home

    PubMed Central

    Pearce, Alan J.; Adair, Brooke; Ozanne, Elizabeth; Said, Catherine; Santamaria, Nick; Morris, Meg E.

    2012-01-01

    Given the rapidly ageing population, interest is growing in robots to enable older people to remain living at home. We conducted a systematic review and critical evaluation of the scientific literature, from 1990 to the present, on the use of robots in aged care. The key research questions were as follows: (1) what is the range of robotic devices available to enable older people to remain mobile, independent, and safe? and, (2) what is the evidence demonstrating that robotic devices are effective in enabling independent living in community dwelling older people? Following database searches for relevant literature an initial yield of 161 articles was obtained. Titles and abstracts of articles were then reviewed by 2 independent people to determine suitability for inclusion. Forty-two articles met the criteria for question 1. Of these, 4 articles met the criteria for question 2. Results showed that robotics is currently available to assist older healthy people and people with disabilities to remain independent and to monitor their safety and social connectedness. Most studies were conducted in laboratories and hospital clinics. Currently limited evidence demonstrates that robots can be used to enable people to remain living at home, although this is an emerging smart technology that is rapidly evolving. PMID:23304507

  9. Blue space geographies: Enabling health in place.

    PubMed

    Foley, Ronan; Kistemann, Thomas

    2015-09-01

    Drawing from research on therapeutic landscapes and relationships between environment, health and wellbeing, we propose the idea of 'healthy blue space' as an important new development Complementing research on healthy green space, blue space is defined as; 'health-enabling places and spaces, where water is at the centre of a range of environments with identifiable potential for the promotion of human wellbeing'. Using theoretical ideas from emotional and relational geographies and critical understandings of salutogenesis, the value of blue space to health and wellbeing is recognised and evaluated. Six individual papers from five different countries consider how health can be enabled in mixed blue space settings. Four sub-themes; embodiment, inter-subjectivity, activity and meaning, document multiple experiences within a range of healthy blue spaces. Finally, we suggest a considerable research agenda - theoretical, methodological and applied - for future work within different forms of blue space. All are suggested as having public health policy relevance in social and public space.

  10. Femtosecond laser enabled keratoplasty for advanced keratoconus

    PubMed Central

    Shivanna, Yathish; Nagaraja, Harsha; Kugar, Thungappa; Shetty, Rohit

    2013-01-01

    Purpose: To assess the efficacy and advantages of femtosecond laser enabled keratoplasty (FLEK) over conventional penetrating keratoplasty (PKP) in advanced keratoconus. Materials and Methods: Detailed review of literature of published randomized controlled trials of operative techniques in PKP and FLEK. Results: Fifteen studies were identified, analyzed, and compared with our outcome. FLEK was found to have better outcome in view of better and earlier stabilization uncorrected visual acuity (UCVA), best corrected visual acuity (BCVA), and better refractive outcomes with low astigmatism as compared with conventional PKP. Wound healing also was noticed to be earlier, enabling early suture removal in FLEK. Conclusions: Studies relating to FLEK have shown better results than conventional PKP, however further studies are needed to assess the safety and intraoperative complications of the procedure. PMID:23925340

  11. NASA Missions Enabled by Space Nuclear Systems

    NASA Technical Reports Server (NTRS)

    Scott, John H.; Schmidt, George R.

    2009-01-01

    This viewgraph presentation reviews NASA Space Missions that are enabled by Space Nuclear Systems. The topics include: 1) Space Nuclear System Applications; 2) Trade Space for Electric Power Systems; 3) Power Generation Specific Energy Trade Space; 4) Radioisotope Power Generation; 5) Radioisotope Missions; 6) Fission Power Generation; 7) Solar Powered Lunar Outpost; 8) Fission Powered Lunar Outpost; 9) Fission Electric Power Generation; and 10) Fission Nuclear Thermal Propulsion.

  12. Enabling international adoption of LOINC through translation

    PubMed Central

    Vreeman, Daniel J.; Chiaravalloti, Maria Teresa; Hook, John; McDonald, Clement J.

    2012-01-01

    Interoperable health information exchange depends on adoption of terminology standards, but international use of such standards can be challenging because of language differences between local concept names and the standard terminology. To address this important barrier, we describe the evolution of an efficient process for constructing translations of LOINC terms names, the foreign language functions in RELMA, and the current state of translations in LOINC. We also present the development of the Italian translation to illustrate how translation is enabling adoption in international contexts. We built a tool that finds the unique list of LOINC Parts that make up a given set of LOINC terms. This list enables translation of smaller pieces like the core component “hepatitis c virus” separately from all the suffixes that could appear with it, such “Ab.IgG”, “DNA”, and “RNA”. We built another tool that generates a translation of a full LOINC name from all of these atomic pieces. As of version 2.36 (June 2011), LOINC terms have been translated into 9 languages from 15 linguistic variants other than its native English. The five largest linguistic variants have all used the Part-based translation mechanism. However, even with efficient tools and processes, translation of standard terminology is a complex undertaking. Two of the prominent linguistic challenges that translators have faced include: the approach to handling acronyms and abbreviations, and the differences in linguistic syntax (e.g. word order) between languages. LOINC’s open and customizable approach has enabled many different groups to create translations that met their needs and matched their resources. Distributing the standard and its many language translations at no cost worldwide accelerates LOINC adoption globally, and is an important enabler of interoperable health information exchange PMID:22285984

  13. Delivering compassionate care: the enablers and barriers.

    PubMed

    Christiansen, Angela; O'Brien, Mary R; Kirton, Jennifer A; Zubairu, Kate; Bray, Lucy

    The importance of providing compassionate care to patients is well established. While compassionate care can be understood as an individual response to others' vulnerability, it is acknowledged that healthcare environments can impact significantly on this aspect of practice. This study sought to explore how health professionals and pre-qualifying healthcare students (HCS) understand compassionate care and factors that hinder or enable them to practice compassionately. The perceptions of health professionals (n=146) and HCS (n=166) registered at a university in Northwest England were explored using mixed methods. This article reports on the data gained from the qualitative interviews and responses to open-text questions from the mainly quantitative questionnaire. The findings are discussed under the following themes: individual and relationship factors that impact on compassionate care practice; organisational factors that impact on the clinical environment and team; and leadership factors that hinder or enable a compassionate care culture. This article argues that there are a number of enabling factors that enhance a culture conducive to providing compassionate care. These include leaders who act as positive role models, good relationships between team members and a focus on staff wellbeing. PMID:26355360

  14. Leadership Training Module on Enable Others to Act (Kouzes & Posner)

    ERIC Educational Resources Information Center

    Sharma, Ananya

    2013-01-01

    Everyone has either come in contact with a leader or played the role of a leader. Everyone has also worked with effective leaders and ineffective leaders. And all of us want to work with leaders who can share a vision with us and empower and enable us to meet our goals. One can say that leaders play a crucial role in the success or failure of a…

  15. Incentives and enablers to improve adherence in tuberculosis

    PubMed Central

    Lutge, Elizabeth E; Wiysonge, Charles Shey; Knight, Stephen E; Sinclair, David; Volmink, Jimmy

    2015-01-01

    Background Patient adherence to medications, particularly for conditions requiring prolonged treatment such as tuberculosis (TB), is frequently less than ideal and can result in poor treatment outcomes. Material incentives to reward good behaviour and enablers to remove economic barriers to accessing care are sometimes given in the form of cash, vouchers, or food to improve adherence. Objectives To evaluate the effects of material incentives and enablers in patients undergoing diagnostic testing, or receiving prophylactic or curative therapy, for TB. Search methods We undertook a comprehensive search of the Cochrane Infectious Diseases Group Specialized Register; Cochrane Central Register of Controlled Trials (CENTRAL); MEDLINE; EMBASE; LILACS; Science Citation Index; and reference lists of relevant publications up to 5 June 2015. Selection criteria Randomized controlled trials of material incentives in patients being investigated for TB, or on treatment for latent or active TB. Data collection and analysis At least two review authors independently screened and selected studies, extracted data, and assessed the risk of bias in the included trials. We compared the effects of interventions using risk ratios (RR), and presented RRs with 95% confidence intervals (CI). The quality of the evidence was assessed using GRADE. Main results We identified 12 eligible trials. Ten were conducted in the USA: in adolescents (one trial), in injection drug or cocaine users (four trials), in homeless adults (three trials), and in prisoners (two trials). The remaining two trials, in general adult populations, were conducted in Timor-Leste and South Africa. Sustained incentive programmes Only two trials have assessed whether material incentives and enablers can improve long-term adherence and completion of treatment for active TB, and neither demonstrated a clear benefit (RR 1.04, 95% CI 0.97 to 1.14; two trials, 4356 participants; low quality evidence). In one trial, the incentive

  16. Web-enabling technologies for the factory floor: a web-enabling strategy for emanufacturing

    NASA Astrophysics Data System (ADS)

    Velez, Ricardo; Lastra, Jose L. M.; Tuokko, Reijo O.

    2001-10-01

    This paper is intended to address the different technologies available for Web-enabling of the factory floor. It will give an overview of the importance of Web-enabling of the factory floor, in the application of the concepts of flexible and intelligent manufacturing, in conjunction with e-commerce. As a last section, it will try to define a Web-enabling strategy for the application in eManufacturing. This is made under the scope of the electronics manufacturing industry, so every application, technology or related matter is presented under such scope.

  17. Small-RPS Enabled Mars Rover Concept

    NASA Astrophysics Data System (ADS)

    Balint, Tibor S.

    2005-02-01

    Both the MER and the Mars Pathfinder rovers operated on Mars in an energy-limited mode, since the solar panels generated power during daylight hours only. At other times the rovers relied on power stored in batteries. In comparison, Radioisotope Power Systems (RPS) offer a power-enabled paradigm, where power can be generated for long mission durations (measured in years), independently from the Sun, and on a continuous basis. A study was performed at JPL to assess the feasibility of a small-RPS enabled MER-class rover concept and any associated advantages of its mission on Mars, The rover concept relied on design heritage from MER with two significant changes. First, the solar panels were replaced with two single GPHS module based small-RPSs. Second, the Mossbauer spectroscope was substituted with a laser Raman spectroscope, in order to move towards MEPAG defined astrobiology driven science goals. The highest power requirements were contributed to mobility and telecommunication type operating modes, hence influencing power system sizing. The resulting hybrid power system included two small-RPSs and two batteries. Each small-RPS was assumed to generate 50 We of power or 620 Wh/sol of energy (BOL), comparable to that of MER. The two 8 Ah batteries were considered available during peak power usage. Mission architecture, power trades, science instruments, data, communication, thermal and radiation environments, mobility, and mass issues were also addressed. The study demonstrated that a new set of RPS-enabled rover missions could be envisioned for Mars exploration within the next decade, targeting astrobiology oriented science objectives, while powered by 2 to 4 GPHS modules.

  18. Small-RPS Enabled Mars Rover Concept

    NASA Technical Reports Server (NTRS)

    Balint, Tibor S.

    2004-01-01

    Both the MER and the Mars Pathfinder rovers operated on Mars in an energy-limited mode, since the solar panels generated power during daylight hours only. At other times the rovers relied on power stored in batteries. In comparison, Radioisotope Power Systems (RPS) offer a power-enabled paradigm, where power can be generated for long mission durations (measured in years), independently from the Sun, and on a continuous basis. A study was performed at PL to assess the feasibility of a small-RPS enabled MER-class rover concept and any associated advantages of its mission on Mars. The rover concept relied on design heritage from MER with two significant changes. First, the solar panels were replaced with two single GPHS module based small-RPSs. Second, the Mossbauer spectroscope was substituted with a laser Raman spectroscope, in order to move towards MEPAG defined astrobiology driven science goals. The highest power requirements were contributed to mobility and telecommunication type operating modes, hence influencing power system sizing. The resulting hybrid power system included two small-RPSs and two batteries. Each small-RPS was assumed to generate 50We of power or 62OWh/sol of energy (BOL), comparable to that of MER. The two 8Ah batteries were considered available during peak power usage. Mission architecture, power trades, science instruments, data, communication, thermal and radiation environments, mobility, mass issues were also addressed. The study demonstrated that a new set of RPS-enabled rover missions could be envisioned for Mars exploration within the next decade, targeting astrobiology oriented science objectives, while powered by 2 to 4 GPHS modules.

  19. Solar vapor generation enabled by nanoparticles.

    PubMed

    Neumann, Oara; Urban, Alexander S; Day, Jared; Lal, Surbhi; Nordlander, Peter; Halas, Naomi J

    2013-01-22

    Solar illumination of broadly absorbing metal or carbon nanoparticles dispersed in a liquid produces vapor without the requirement of heating the fluid volume. When particles are dispersed in water at ambient temperature, energy is directed primarily to vaporization of water into steam, with a much smaller fraction resulting in heating of the fluid. Sunlight-illuminated particles can also drive H(2)O-ethanol distillation, yielding fractions significantly richer in ethanol content than simple thermal distillation. These phenomena can also enable important compact solar applications such as sterilization of waste and surgical instruments in resource-poor locations.

  20. Enabling Strain Hardening Simulations with Dislocation Dynamics

    SciTech Connect

    Arsenlis, A; Cai, W

    2006-12-20

    Numerical algorithms for discrete dislocation dynamics simulations are investigated for the purpose of enabling strain hardening simulations of single crystals on massively parallel computers. The algorithms investigated include the /(N) calculation of forces, the equations of motion, time integration, adaptive mesh refinement, the treatment of dislocation core reactions, and the dynamic distribution of work on parallel computers. A simulation integrating all of these algorithmic elements using the Parallel Dislocation Simulator (ParaDiS) code is performed to understand their behavior in concert, and evaluate the overall numerical performance of dislocation dynamics simulations and their ability to accumulate percents of plastic strain.

  1. Enabling Rapid Naval Architecture Design Space Exploration

    NASA Technical Reports Server (NTRS)

    Mueller, Michael A.; Dufresne, Stephane; Balestrini-Robinson, Santiago; Mavris, Dimitri

    2011-01-01

    Well accepted conceptual ship design tools can be used to explore a design space, but more precise results can be found using detailed models in full-feature computer aided design programs. However, defining a detailed model can be a time intensive task and hence there is an incentive for time sensitive projects to use conceptual design tools to explore the design space. In this project, the combination of advanced aerospace systems design methods and an accepted conceptual design tool facilitates the creation of a tool that enables the user to not only visualize ship geometry but also determine design feasibility and estimate the performance of a design.

  2. Enabling Meetings for ``Anywhere and Anytime''

    NASA Astrophysics Data System (ADS)

    Lee, Alison; Chandra, Umesh

    Mobile technologies and services are playing critical roles in mobile work. One area is mobile collaboration where mobile telephony and data sharing are in high demand. This paper explores and demonstrates that enabling meetings for the mobile context to support “anywhere and anytime” collaboration poses new opportunities, challenges, and tools. EasyMeet incorporates four novel additions, compared to traditional, electronic, meeting tools that support these scenarios and opportunities. They include s60 widget, synchronous voice and data sharing, remote content access, and access to mobile phone platform capabilities through web services. Initial feedback from a pilot has provided insights and improvements about usability and system performance.

  3. ENABLER Nuclear Propulsion System Conceptual Design

    NASA Astrophysics Data System (ADS)

    Pauley, Keith A.; Woodham, Kurt; Ohi, Don; Haga, Heath; Henderson, Bo

    2004-02-01

    The Titan Corporation conducted a systems engineering study to develop an overall architecture that meets both the articulated and unarticulated requirements on the Prometheus Program with the least development effort. Key elements of the Titan-designed ENABLER system include a thermal fission reactor, thermionic power converters, sodium heat pipes, ion thruster engines, and a radiation shield and deployable truss to protect the payload. The overall design is scaleable over a wide range of power requirements from 10s of kilowatts to 10s of megawatts.

  4. Solar vapor generation enabled by nanoparticles.

    PubMed

    Neumann, Oara; Urban, Alexander S; Day, Jared; Lal, Surbhi; Nordlander, Peter; Halas, Naomi J

    2013-01-22

    Solar illumination of broadly absorbing metal or carbon nanoparticles dispersed in a liquid produces vapor without the requirement of heating the fluid volume. When particles are dispersed in water at ambient temperature, energy is directed primarily to vaporization of water into steam, with a much smaller fraction resulting in heating of the fluid. Sunlight-illuminated particles can also drive H(2)O-ethanol distillation, yielding fractions significantly richer in ethanol content than simple thermal distillation. These phenomena can also enable important compact solar applications such as sterilization of waste and surgical instruments in resource-poor locations. PMID:23157159

  5. WSKE: Web Server Key Enabled Cookies

    NASA Astrophysics Data System (ADS)

    Masone, Chris; Baek, Kwang-Hyun; Smith, Sean

    In this paper, we present the design and prototype of a new approach to cookie management: if a server deposits a cookie only after authenticating itself via the SSL handshake, the browser will return the cookie only to a server that can authenticate itself, via SSL, to the same keypair. This approach can enable usable but secure client authentication. This approach can improve the usability of server authentication by clients. This approach is superior to the prior work on Active Cookies in that it defends against both DNS spoofing and IP spoofing—and does not require binding a user's interaction with a server to individual IP addresses.

  6. Transparent displays enabled by resonant nanoparticle scattering

    NASA Astrophysics Data System (ADS)

    Hsu, Chia Wei; Zhen, Bo; Qiu, Wenjun; Shapira, Ofer; Delacy, Brendan G.; Joannopoulos, John D.; Soljačić, Marin

    2014-01-01

    The ability to display graphics and texts on a transparent screen can enable many useful applications. Here we create a transparent display by projecting monochromatic images onto a transparent medium embedded with nanoparticles that selectively scatter light at the projected wavelength. We describe the optimal design of such nanoparticles, and experimentally demonstrate this concept with a blue-color transparent display made of silver nanoparticles in a polymer matrix. This approach has attractive features including simplicity, wide viewing angle, scalability to large sizes and low cost.

  7. Camera-enabled techniques for organic synthesis

    PubMed Central

    Ingham, Richard J; O’Brien, Matthew; Browne, Duncan L

    2013-01-01

    Summary A great deal of time is spent within synthetic chemistry laboratories on non-value-adding activities such as sample preparation and work-up operations, and labour intensive activities such as extended periods of continued data collection. Using digital cameras connected to computer vision algorithms, camera-enabled apparatus can perform some of these processes in an automated fashion, allowing skilled chemists to spend their time more productively. In this review we describe recent advances in this field of chemical synthesis and discuss how they will lead to advanced synthesis laboratories of the future. PMID:23766820

  8. The role of CORBA in enabling telemedicine

    SciTech Connect

    Forslund, D.W.

    1997-07-01

    One of the most powerful tools available for telemedicine is a multimedia medical record accessible over a wide area and simultaneously editable by multiple physicians. The ability to do this through an intuitive interface linking multiple distributed data repositories while maintaining full data integrity is a fundamental enabling technology in healthcare. The author discusses the role of distributed object technology using CORBA in providing this capability including an example of such a system (TeleMed) which can be accessed through the World Wide Web. Issues of security, scalability, data integrity, and useability are emphasized.

  9. MENTOR: an enabler for interoperable intelligent systems

    NASA Astrophysics Data System (ADS)

    Sarraipa, João; Jardim-Goncalves, Ricardo; Steiger-Garcao, Adolfo

    2010-07-01

    A community with knowledge organisation based on ontologies will enable an increase in the computational intelligence of its information systems. However, due to the worldwide diversity of communities, a high number of knowledge representation elements, which are not semantically coincident, have appeared representing the same segment of reality, becoming a barrier to business communications. Even if a domain community uses the same kind of technologies in its information systems, such as ontologies, it doesn't solve its semantics differences. In order to solve this interoperability problem, a solution is to use a reference ontology as an intermediary in the communications between the community enterprises and the outside, while allowing the enterprises to keep their own ontology and semantics unchanged internally. This work proposes MENTOR, a methodology to support the development of a common reference ontology for a group of organisations sharing the same business domain. This methodology is based on the mediator ontology (MO) concept, which assists the semantic transformations among each enterprise's ontology and the referential one. The MO enables each organisation to keep its own terminology, glossary and ontological structures, while providing seamless communication and interaction with the others.

  10. Interaction-enabled topological crystalline phases

    NASA Astrophysics Data System (ADS)

    Lapa, Matthew F.; Teo, Jeffrey C. Y.; Hughes, Taylor L.

    2016-03-01

    In this article we provide a general mechanism for generating interaction-enabled fermionic topological phases. We illustrate the mechanism with crystalline symmetry-protected topological phases in one, two, and three spatial dimensions. These nontrivial phases require interactions for their existence, and in the cases we consider, the free-fermion classification yields only a trivial phase. For the one- and two-dimensional phases we consider, we provide explicit exactly solvable models which realize the interaction-enabled phases. Similar to the interpretation of the Kitaev Majorana wire as a mean-field p -wave superconductor Hamiltonian arising from an interacting model with quartic interactions, we show that our systems can be interpreted as "mean-field" charge-4 e superconductors arising, e.g., from an interacting model with eight-body interactions or through another physical mechanism. The quartet superconducting nature allows for the teleportation of full Cooper pairs and, in two dimensions, for interesting semiclassical crystalline defects with non-Abelian anyon bound states.

  11. Enabling occupational performance: optimal experiences in therapy.

    PubMed

    Rebeiro, K L; Polgar, J M

    1999-02-01

    Occupational therapists believe that engagement in occupation contributes to health through an individually balanced use of time, a positive focus for one's physical and mental energy, and the provision of a sense of purpose. Flow is a construct which describes optimal experiences or enjoyment in everyday activities. A review of the literature suggests that the theory of optimal experience is complementary to occupational therapy beliefs and that an understanding of the flow experience may contribute to our understanding of human occupation. Specifically, flow may be useful in understanding those aspects of the occupation, environment and person that contribute to a "just right" challenge, and to enabling occupational performance through enjoyable, structured and purposeful activity. Occupational therapists are encouraged to explore whether optimal experiences facilitate occupational performance for individuals with a disability. Future research could explore whether the occupational opportunities available to persons with a disability provide the degree of challenge required to elicit the optimal experience. Finally, research could explore whether the client-driven selection of meaningful occupation, and therapist enablement of the "just right" challenge, influences optimal experience, occupational performance, and life satisfaction for those with a disability. PMID:10462878

  12. Petascale Computing Enabling Technologies Project Final Report

    SciTech Connect

    de Supinski, B R

    2010-02-14

    The Petascale Computing Enabling Technologies (PCET) project addressed challenges arising from current trends in computer architecture that will lead to large-scale systems with many more nodes, each of which uses multicore chips. These factors will soon lead to systems that have over one million processors. Also, the use of multicore chips will lead to less memory and less memory bandwidth per core. We need fundamentally new algorithmic approaches to cope with these memory constraints and the huge number of processors. Further, correct, efficient code development is difficult even with the number of processors in current systems; more processors will only make it harder. The goal of PCET was to overcome these challenges by developing the computer science and mathematical underpinnings needed to realize the full potential of our future large-scale systems. Our research results will significantly increase the scientific output obtained from LLNL large-scale computing resources by improving application scientist productivity and system utilization. Our successes include scalable mathematical algorithms that adapt to these emerging architecture trends and through code correctness and performance methodologies that automate critical aspects of application development as well as the foundations for application-level fault tolerance techniques. PCET's scope encompassed several research thrusts in computer science and mathematics: code correctness and performance methodologies, scalable mathematics algorithms appropriate for multicore systems, and application-level fault tolerance techniques. Due to funding limitations, we focused primarily on the first three thrusts although our work also lays the foundation for the needed advances in fault tolerance. In the area of scalable mathematics algorithms, our preliminary work established that OpenMP performance of the AMG linear solver benchmark and important individual kernels on Atlas did not match the predictions of our

  13. Bio-enabled synthesis of metamaterials.

    PubMed

    DuFort, Christopher C; Dragnea, Bogdan

    2010-01-01

    Biological systems offer more than an inspiration for the spontaneous hierarchical organization of matter at length scales between 1 and 1000 nm. They also provide useful principles and molecular building blocks that have recently emerged with the proven ability to generate extended three-dimensional structures of hybrid biotic/abiotic components arranged with molecular precision. These principles and tools draw from the methods of molecular biology and modern biochemistry and are expected to provide unmatched flexibility in building supramolecular architectures, notably structures made of artificial atoms whose coupled responses to electromagnetic or elastic excitations have been predicted to yield astonishing properties unparalleled by any conventional materials. To illustrate the potential of merging bio-enabled organization with metamaterials synthesis, we provide here a succinct overview of the architectural constraints leading to metamaterial behavior together with examples of biological material assembly that are particularly promising to comply with these constraints. PMID:20055682

  14. Health-Enabled Smart Sensor Fusion Technology

    NASA Technical Reports Server (NTRS)

    Wang, Ray

    2012-01-01

    A process was designed to fuse data from multiple sensors in order to make a more accurate estimation of the environment and overall health in an intelligent rocket test facility (IRTF), to provide reliable, high-confidence measurements for a variety of propulsion test articles. The object of the technology is to provide sensor fusion based on a distributed architecture. Specifically, the fusion technology is intended to succeed in providing health condition monitoring capability at the intelligent transceiver, such as RF signal strength, battery reading, computing resource monitoring, and sensor data reading. The technology also provides analytic and diagnostic intelligence at the intelligent transceiver, enhancing the IEEE 1451.x-based standard for sensor data management and distributions, as well as providing appropriate communications protocols to enable complex interactions to support timely and high-quality flow of information among the system elements.

  15. Enabling opportunistic resources for CMS Computing Operations

    SciTech Connect

    Hufnagel, Dick

    2015-11-19

    With the increased pressure on computing brought by the higher energy and luminosity from the LHC in Run 2, CMS Computing Operations expects to require the ability to utilize “opportunistic” resources — resources not owned by, or a priori configured for CMS — to meet peak demands. In addition to our dedicated resources we look to add computing resources from non CMS grids, cloud resources, and national supercomputing centers. CMS uses the HTCondor/glideinWMS job submission infrastructure for all its batch processing, so such resources will need to be transparently integrated into its glideinWMS pool. Bosco and parrot wrappers are used to enable access and bring the CMS environment into these non CMS resources. Here we describe our strategy to supplement our native capabilities with opportunistic resources and our experience so far using them.

  16. The network-enabled optimization system server

    SciTech Connect

    Mesnier, M.P.

    1995-08-01

    Mathematical optimization is a technology under constant change and advancement, drawing upon the most efficient and accurate numerical methods to date. Further, these methods can be tailored for a specific application or generalized to accommodate a wider range of problems. This perpetual change creates an ever growing field, one that is often difficult to stay abreast of. Hence, the impetus behind the Network-Enabled Optimization System (NEOS) server, which aims to provide users, both novice and expert, with a guided tour through the expanding world of optimization. The NEOS server is responsible for bridging the gap between users and the optimization software they seek. More specifically, the NEOS server will accept optimization problems over the Internet and return a solution to the user either interactively or by e-mail. This paper discusses the current implementation of the server.

  17. Science Missions Enabled by the Ares V

    NASA Technical Reports Server (NTRS)

    Worden, Simon Peter; Weiler, Edward J.

    2008-01-01

    NASA's planned heavy-lift Ares V rocket is a centerpiece of U.S. Space Exploration Policy. With approximately 30% more capacity to Trans-Lunar Injection (TLI) than the Saturn V, Ares V could also enable additional science and exploration missions currently unachievable or extremely unworkable under current launch vehicle architectures. During the spring and summer of 2008, NASA held two workshops dedicated to the discussion of these new mission concepts for the Ares V rocket. The first workshop dealt with astronomy and astrophysics, and the second dealt primarily with planetary science and exploration, but did touch on Earth science and heliophysics. We present here the summary results and outcomes of these meetings, including a discussion of specific mission concepts and ideas, as well as suggestions on design for the Ares V fairing and flight configurations that improve science return.

  18. Enabling opportunistic resources for CMS Computing Operations

    NASA Astrophysics Data System (ADS)

    Hufnagel, D.; CMS Collaboration

    2015-12-01

    With the increased pressure on computing brought by the higher energy and luminosity from the LHC in Run 2, CMS Computing Operations expects to require the ability to utilize opportunistic resources resources not owned by, or a priori configured for CMS to meet peak demands. In addition to our dedicated resources we look to add computing resources from non CMS grids, cloud resources, and national supercomputing centers. CMS uses the HTCondor/glideinWMS job submission infrastructure for all its batch processing, so such resources will need to be transparently integrated into its glideinWMS pool. Bosco and parrot wrappers are used to enable access and bring the CMS environment into these non CMS resources. Here we describe our strategy to supplement our native capabilities with opportunistic resources and our experience so far using them.

  19. Enabling a New Planning and Scheduling Paradigm

    NASA Technical Reports Server (NTRS)

    Jaap, John; Davis, Elizabeth

    2004-01-01

    The Flight Projects Directorate at NASA's Marshall Space Flight Center is developing a new planning and scheduling environment and a new scheduling algorithm to enable a paradigm shift in planning and scheduling concepts. Over the past 33 years Marshall has developed and evolved a paradigm for generating payload timelines for Skylab, Spacelab, various other Shuttle payloads, and the International Space Station. The current paradigm starts by collecting the requirements, called "tasks models," from the scientists and technologists for the tasks that they want to be done. Because of shortcomings in the current modeling schema, some requirements are entered as notes. Next a cadre with knowledge of vehicle and hardware modifies these models to encompass and be compatible with the hardware model; again, notes are added when the modeling schema does not provide a better way to represent the requirements. Finally, another cadre further modifies the models to be compatible with the scheduling engine. This last cadre also submits the models to the scheduling engine or builds the timeline manually to accommodate requirements that are expressed in notes. A future paradigm would provide a scheduling engine that accepts separate science models and hardware models. The modeling schema would have the capability to represent all the requirements without resorting to notes. Furthermore, the scheduling engine would not require that the models be modified to account for the capabilities (limitations) of the scheduling engine. The enabling technology under development at Marshall has three major components. (1) A new modeling schema allows expressing all the requirements of the tasks without resorting to notes or awkward contrivances. The chosen modeling schema is both maximally expressive and easy to use. It utilizes graphics methods to show hierarchies of task constraints and networks of temporal relationships. (2) A new scheduling algorithm automatically schedules the models

  20. Bluetooth-enabled teleradiology: applications and complications.

    PubMed

    Hura, Angela M

    2002-01-01

    Wireless personal area networks and local area networks are becoming increasingly more prevalent in the teleradiology and telemedicine industry. Although there has been much debate about the role that Bluetooth will play in the future of wireless technology, both promoters and doubters acknowledge that Bluetooth will have an impact on networking, even if only as a "niche" product. This article provides an overview of the Bluetooth standard and highlights current and future areas of inclusion for use in a teleradiology environment. The possibilities for Bluetooth in a teleradiology environment without wires are nearly boundless and an overview of current and proposed Bluetooth-enabled radiology equipment and vendors is provided. A comparison of Bluetooth and other wireless technologies is provided, including areas of similarity and potential conflict. Bluetooth and other wireless technologies can not only peacefully coexist but also complement each other and provide enhanced teleradiology services.

  1. Laboratory Astrophysics: Enabling Scientific Discovery and Understanding

    NASA Technical Reports Server (NTRS)

    Kirby, K.

    2006-01-01

    NASA's Science Strategic Roadmap for Universe Exploration lays out a series of science objectives on a grand scale and discusses the various missions, over a wide range of wavelengths, which will enable discovery. Astronomical spectroscopy is arguably the most powerful tool we have for exploring the Universe. Experimental and theoretical studies in Laboratory Astrophysics convert "hard-won data into scientific understanding". However, the development of instruments with increasingly high spectroscopic resolution demands atomic and molecular data of unprecedented accuracy and completeness. How to meet these needs, in a time of severe budgetary constraints, poses a significant challenge both to NASA, the astronomical observers and model-builders, and the laboratory astrophysics community. I will discuss these issues, together with some recent examples of productive astronomy/lab astro collaborations.

  2. Nanoplasmon-enabled macroscopic thermal management

    PubMed Central

    Jonsson, Gustav Edman; Miljkovic, Vladimir; Dmitriev, Alexandre

    2014-01-01

    In numerous applications of energy harvesting via transformation of light into heat the focus recently shifted towards highly absorptive nanoplasmonic materials. It is currently established that noble metals-based absorptive plasmonic platforms deliver significant light-capturing capability and can be viewed as super-absorbers of optical radiation. Naturally, approaches to the direct experimental probing of macroscopic temperature increase resulting from these absorbers are welcomed. Here we derive a general quantitative method of characterizing heat-generating properties of optically absorptive layers via macroscopic thermal imaging. We further monitor macroscopic areas that are homogeneously heated by several degrees with nanostructures that occupy a mere 8% of the surface, leaving it essentially transparent and evidencing significant heat generation capability of nanoplasmon-enabled light capture. This has a direct bearing to a large number of applications where thermal management is crucial. PMID:24870613

  3. Microsystem enabled photovoltaic modules and systems

    DOEpatents

    Nielson, Gregory N; Sweatt, William C; Okandan, Murat

    2015-05-12

    A microsystem enabled photovoltaic (MEPV) module including: an absorber layer; a fixed optic layer coupled to the absorber layer; a translatable optic layer; a translation stage coupled between the fixed and translatable optic layers; and a motion processor electrically coupled to the translation stage to controls motion of the translatable optic layer relative to the fixed optic layer. The absorber layer includes an array of photovoltaic (PV) elements. The fixed optic layer includes an array of quasi-collimating (QC) micro-optical elements designed and arranged to couple incident radiation from an intermediate image formed by the translatable optic layer into one of the PV elements such that it is quasi-collimated. The translatable optic layer includes an array of focusing micro-optical elements corresponding to the QC micro-optical element array. Each focusing micro-optical element is designed to produce a quasi-telecentric intermediate image from substantially collimated radiation incident within a predetermined field of view.

  4. Grid Enabled Geospatial Catalogue Web Service

    NASA Technical Reports Server (NTRS)

    Chen, Ai-Jun; Di, Li-Ping; Wei, Ya-Xing; Liu, Yang; Bui, Yu-Qi; Hu, Chau-Min; Mehrotra, Piyush

    2004-01-01

    Geospatial Catalogue Web Service is a vital service for sharing and interoperating volumes of distributed heterogeneous geospatial resources, such as data, services, applications, and their replicas over the web. Based on the Grid technology and the Open Geospatial Consortium (0GC) s Catalogue Service - Web Information Model, this paper proposes a new information model for Geospatial Catalogue Web Service, named as GCWS which can securely provides Grid-based publishing, managing and querying geospatial data and services, and the transparent access to the replica data and related services under the Grid environment. This information model integrates the information model of the Grid Replica Location Service (RLS)/Monitoring & Discovery Service (MDS) with the information model of OGC Catalogue Service (CSW), and refers to the geospatial data metadata standards from IS0 19115, FGDC and NASA EOS Core System and service metadata standards from IS0 191 19 to extend itself for expressing geospatial resources. Using GCWS, any valid geospatial user, who belongs to an authorized Virtual Organization (VO), can securely publish and manage geospatial resources, especially query on-demand data in the virtual community and get back it through the data-related services which provide functions such as subsetting, reformatting, reprojection etc. This work facilitates the geospatial resources sharing and interoperating under the Grid environment, and implements geospatial resources Grid enabled and Grid technologies geospatial enabled. It 2!so makes researcher to focus on science, 2nd not cn issues with computing ability, data locztic, processir,g and management. GCWS also is a key component for workflow-based virtual geospatial data producing.

  5. Disability and dignity-enabling home environments.

    PubMed

    Gibson, Barbara E; Secker, Barbara; Rolfe, Debbie; Wagner, Frank; Parke, Bob; Mistry, Bhavnita

    2012-01-01

    In Canada where long-term care is primarily oriented to elderly persons and affordable accessible housing is limited, younger disabled adults may be living in circumstances that do not meet their health needs and contribute to their social exclusion. The purpose of this study was to undertake an ethical analysis of what constitute an 'adequate' home environment for adults with significant mobility disabilities. An integrated design was used that combined qualitative interviews with normative ethical analysis in an iterative process. Twenty interviews with 19 participants were conducted in Ontario, Canada with two groups: younger adults (ages 18-55) with mobility disabilities and 'decision-makers' who consisted of policy makers, program administrators and discharge planners. Data were analyzed using a critical disability ethics approach and processes of reflective equilibrium. Drawing on Nora Jacobson's (Jacobson, 2009) taxonomy of dignity and pluralistic approaches to social justice, the concept of 'social dignity' provides a lens for exploring the adequacy of home environments for disabled people. Analyses suggested seven threshold conditions necessary for a dignity-enabling home: the ability to form and sustain meaningful relationships; access to community and civic life; access to control and flexibility of daily activities; access to opportunities for self-expression and identity affirmation; access to respectful relationships with attendants; access to opportunities to participate in school, work or leisure; access to physical, psychological and ontological security. The results have implications for housing, health and social care policies, and political reform. Social dignity provides a normative ethical grounding for assessing the adequacy of home environments. The threshold elements outline specific dignity-enabling conditions that are open to further specification or elaboration in different contexts.

  6. Encapsulation of the flavonoid quercetin with an arsenic chelator into nanocapsules enables the simultaneous delivery of hydrophobic and hydrophilic drugs with a synergistic effect against chronic arsenic accumulation and oxidative stress.

    PubMed

    Ghosh, Swarupa; Dungdung, Sandhya Rekha; Chowdhury, Somsubhra Thakur; Mandal, Ardhendu K; Sarkar, Sibani; Ghosh, Debasree; Das, Nirmalendu

    2011-11-15

    Chronic arsenic exposure causes oxidative stress and mitochondrial dysfunction in the liver and brain. The ideal treatment would be to chelate arsenic and prevent oxidative stress. meso-2,3-Dimercaptosuccinic acid (DMSA) is used to chelate arsenic but its hydrophilicity makes it membrane-impermeative. Conversely, quercetin (QC) is a good antioxidant with limited clinical application because of its hydrophobic nature and limited bioavailability, and it is not possible to solubilize these two compounds in a single nontoxic solvent. Nanocapsules have emerged as a potent drug delivery system and make it feasible to incorporate both hydrophilic and lipophilic compounds. Nanoencapsulated formulations with QC and DMSA either alone or coencapsulated in polylactide-co-glycolide [N(QC+DMSA)] were synthesized to explore their therapeutic application in a rat model of chronic arsenic toxicity. These treatments were compared to administration of quercetin or DMSA alone using conventional delivery methods. Both nanoencapsulated quercetin and nanoencapsulated DMSA were more effective at decreasing oxidative injury in liver or brain compared to conventional delivery methods, but coencapsulation of quercetin and DMSA into nanoparticles had a marked synergistic effect, decreasing liver and brain arsenic levels from 9.5 and 4.8μg/g to 2.2 and 1.5μg/g, respectively. Likewise, administration of coencapsulated quercetin and DMSA virtually normalized changes in mitochondrial function, formation of reactive oxygen species, and liver injury. We conclude that coencapsulation of quercetin and DMSA may provide a more effective therapeutic strategy in the management of arsenic toxicity and also presents a novel way of combining hydrophilic and hydrophobic drugs into a single delivery system.

  7. Multimodal Supervision Programme to Reduce Catheter Associated Urinary Tract Infections and Its Analysis to Enable Focus on Labour and Cost Effective Infection Control Measures in a Tertiary Care Hospital in India

    PubMed Central

    Jaggi, Namita; Sissodia, Pushpa

    2012-01-01

    Background Catheter Associated Urinary Tract Infections (CAUTI) contribute 30%-40% of all the nosocomial infections and they are associated with substantially increased institutional death rates. A multimodal supervision program which incorporates training of the staff with respect to infection control measures can be effective in reducing the CAUTIs in hospitals. Aim To assess the impact of a multimodal UTI supervision program on the CAUTI rates over a year, from January 2009 to December 2009, in a tertiary care hospital in India. Setting A 215 bedded tertiary care private hospital. Materials and Methods The CAUTI rates were analyzed for the first 6 months (January 2009-June 2009). A UTI supervision program was instituted in the month of July 2009, which included training with respect to the standard protocols for the sample collection and diagnosis, the bundle components of the urinary catheter checklist and hand hygiene practices. The impact was assessed as per the CAUTI rates in the subsequent months. Results The average CAUTI rate was reduced by 47.1% (from 10.6 to 5.6) after the introduction of the supervision program. This study presented the mean age of the patients with CAUTIs as 54.5 years and it showed an approximately equal contribution of both the sexes (52.94% in males and 47.05% in females). The impact analysis of the supervision program showed a reduction of 8.7% (from 23 days to 21 days) during the average duration of the catheterization. The adherence to the components of the urinary catheter check list was increased by 44.4% (p=0.069) and the hand hygiene compliance was increased by 56.4% (p=0.004) respectively after the interventions. Components like bladder irrigation and practising perineal cleaning were found to show no effect on the CAUTI rates. Conclusion The most common labour and cost effective infection control measures as revealed by the supervision programme were adherence to the urinary catheter checklist components (indication for

  8. Enabling Technologies for Ceramic Hot Section Components

    SciTech Connect

    Venkat Vedula; Tania Bhatia

    2009-04-30

    Silicon-based ceramics are attractive materials for use in gas turbine engine hot sections due to their high temperature mechanical and physical properties as well as lower density than metals. The advantages of utilizing ceramic hot section components include weight reduction, and improved efficiency as well as enhanced power output and lower emissions as a result of reducing or eliminating cooling. Potential gas turbine ceramic components for industrial, commercial and/or military high temperature turbine applications include combustor liners, vanes, rotors, and shrouds. These components require materials that can withstand high temperatures and pressures for long duration under steam-rich environments. For Navy applications, ceramic hot section components have the potential to increase the operation range. The amount of weight reduced by utilizing a lighter gas turbine can be used to increase fuel storage capacity while a more efficient gas turbine consumes less fuel. Both improvements enable a longer operation range for Navy ships and aircraft. Ceramic hot section components will also be beneficial to the Navy's Growth Joint Strike Fighter (JSF) and VAATE (Versatile Affordable Advanced Turbine Engines) initiatives in terms of reduced weight, cooling air savings, and capability/cost index (CCI). For DOE applications, ceramic hot section components provide an avenue to achieve low emissions while improving efficiency. Combustors made of ceramic material can withstand higher wall temperatures and require less cooling air. Ability of the ceramics to withstand high temperatures enables novel combustor designs that have reduced NO{sub x}, smoke and CO levels. In the turbine section, ceramic vanes and blades do not require sophisticated cooling schemes currently used for metal components. The saved cooling air could be used to further improve efficiency and power output. The objectives of this contract were to develop technologies critical for ceramic hot section

  9. Realising the Uncertainty Enabled Model Web

    NASA Astrophysics Data System (ADS)

    Cornford, D.; Bastin, L.; Pebesma, E. J.; Williams, M.; Stasch, C.; Jones, R.; Gerharz, L.

    2012-12-01

    The FP7 funded UncertWeb project aims to create the "uncertainty enabled model web". The central concept here is that geospatial models and data resources are exposed via standard web service interfaces, such as the Open Geospatial Consortium (OGC) suite of encodings and interface standards, allowing the creation of complex workflows combining both data and models. The focus of UncertWeb is on the issue of managing uncertainty in such workflows, and providing the standards, architecture, tools and software support necessary to realise the "uncertainty enabled model web". In this paper we summarise the developments in the first two years of UncertWeb, illustrating several key points with examples taken from the use case requirements that motivate the project. Firstly we address the issue of encoding specifications. We explain the usage of UncertML 2.0, a flexible encoding for representing uncertainty based on a probabilistic approach. This is designed to be used within existing standards such as Observations and Measurements (O&M) and data quality elements of ISO19115 / 19139 (geographic information metadata and encoding specifications) as well as more broadly outside the OGC domain. We show profiles of O&M that have been developed within UncertWeb and how UncertML 2.0 is used within these. We also show encodings based on NetCDF and discuss possible future directions for encodings in JSON. We then discuss the issues of workflow construction, considering discovery of resources (both data and models). We discuss why a brokering approach to service composition is necessary in a world where the web service interfaces remain relatively heterogeneous, including many non-OGC approaches, in particular the more mainstream SOAP and WSDL approaches. We discuss the trade-offs between delegating uncertainty management functions to the service interfaces themselves and integrating the functions in the workflow management system. We describe two utility services to address

  10. A Voice Enabled Procedure Browser for the International Space Station

    NASA Technical Reports Server (NTRS)

    Rayner, Manny; Chatzichrisafis, Nikos; Hockey, Beth Ann; Farrell, Kim; Renders, Jean-Michel

    2005-01-01

    Clarissa, an experimental voice enabled procedure browser that has recently been deployed on the International Space Station (ISS), is to the best of our knowledge the first spoken dialog system in space. This paper gives background on the system and the ISS procedures, then discusses the research developed to address three key problems: grammar-based speech recognition using the Regulus toolkit; SVM based methods for open microphone speech recognition; and robust side-effect free dialogue management for handling undos, corrections and confirmations.

  11. Technology-enabled Airborne Spacing and Merging

    NASA Technical Reports Server (NTRS)

    Hull, James; Barmore, Bryan; Abbott, Tetence

    2005-01-01

    Over the last several decades, advances in airborne and groundside technologies have allowed the Air Traffic Service Provider (ATSP) to give safer and more efficient service, reduce workload and frequency congestion, and help accommodate a critically escalating traffic volume. These new technologies have included advanced radar displays, and data and communication automation to name a few. In step with such advances, NASA Langley is developing a precision spacing concept designed to increase runway throughput by enabling the flight crews to manage their inter-arrival spacing from TRACON entry to the runway threshold. This concept is being developed as part of NASA s Distributed Air/Ground Traffic Management (DAG-TM) project under the Advanced Air Transportation Technologies Program. Precision spacing is enabled by Automatic Dependent Surveillance-Broadcast (ADS-B), which provides air-to-air data exchange including position and velocity reports; real-time wind information and other necessary data. On the flight deck, a research prototype system called Airborne Merging and Spacing for Terminal Arrivals (AMSTAR) processes this information and provides speed guidance to the flight crew to achieve the desired inter-arrival spacing. AMSTAR is designed to support current ATC operations, provide operationally acceptable system-wide increases in approach spacing performance and increase runway throughput through system stability, predictability and precision spacing. This paper describes problems and costs associated with an imprecise arrival flow. It also discusses methods by which Air Traffic Controllers achieve and maintain an optimum interarrival interval, and explores means by which AMSTAR can assist in this pursuit. AMSTAR is an extension of NASA s previous work on in-trail spacing that was successfully demonstrated in a flight evaluation at Chicago O Hare International Airport in September 2002. In addition to providing for precision inter-arrival spacing, AMSTAR

  12. Willing and Enabled: The Academic Outcomes of a Tertiary Enabling Program in Regional Australia

    ERIC Educational Resources Information Center

    Andrewartha, Lisa; Harvey, Andrew

    2014-01-01

    This paper examines the achievement levels of students undertaking the Tertiary Enabling Program (TEP) at La Trobe University. The TEP is an alternative pathway program that traverses multiple institutions, campuses, and disciplinary areas, and is designed to prepare a diverse student cohort for tertiary study. The Program integrates several…

  13. Survey of Enabling Technologies for CAPS

    NASA Technical Reports Server (NTRS)

    Antol, Jeffrey; Mazanek, Daniel D.; Koons, Robert H.

    2005-01-01

    The enabling technologies required for the development of a viable Comet/Asteroid Protection System (CAPS) can be divided into two principal areas: detection and deflection/orbit modification. With the proper funding levels, many of the technologies needed to support a CAPS architecture could be achievable within the next 15 to 20 years. In fact, many advanced detection technologies are currently in development for future in-space telescope systems such as the James Webb Space Telescope (JWST), formerly known as the Next Generation Space Telescope. It is anticipated that many of the JWST technologies would be available for application for CAPS detection concepts. Deflection/orbit modification technologies are also currently being studied as part of advanced power and propulsion research. However, many of these technologies, such as extremely high-output power systems, advanced propulsion, heat rejection, and directed energy systems, would likely be farther term in availability than many of the detection technologies. Discussed subsequently is a preliminary examination of the main technologies that have been identified as being essential to providing the element functionality defined during the CAPS conceptual study. The detailed requirements for many of the technology areas are still unknown, and many additional technologies will be identified as future in-depth studies are conducted in this area.

  14. Enabling electroweak baryogenesis through dark matter

    NASA Astrophysics Data System (ADS)

    Lewicki, Marek; Rindler-Daller, Tanja; Wells, James D.

    2016-06-01

    We study the impact on electroweak baryogenesis from a swifter cosmological expansion induced by dark matter. We detail the experimental bounds that one can place on models that realize it, and we investigate the modifications of these bounds that result from a non-standard cosmological history. The modifications can be sizeable if the expansion rate of the Universe increases by several orders of magnitude. We illustrate the impact through the example of scalar field dark matter, which can alter the cosmological history enough to enable a strong-enough first-order phase transition in the Standard Model when it is supplemented by a dimension six operator directly modifying the Higgs boson potential. We show that due to the modified cosmological history, electroweak baryogenesis can be realized, while keeping deviations of the triple Higgs coupling below HL-LHC sensitivies. The required scale of new physics to effectuate a strong-enough first order phase transition can change by as much as twenty percent as the expansion rate increases by six orders of magnitude.

  15. Enabler for the agile virtual enterprise

    NASA Astrophysics Data System (ADS)

    Fuerst, Karl; Schmidt, Thomas; Wippel, Gerald

    2001-10-01

    In this presentation, a new approach for a flexible low-cost Internet extended enterprise (project FLoCI-EE) will be presented. FLoCI-EE is a project in the fifth framework program of the European commission with 8 partners from 4 countries, which started in January 2001 and will be finished in December 2003. The main objective of FLoCI-EE is the development of a software prototype, which enables flexible enterprise cooperation with the aim to design, manufacture and sell products commonly, independent of enterprise borderlines. The needed IT-support includes functions of product data management (PDM), enterprise resource planning (ERP), supply chain management (SCM) and customer relationship management (CRM). Especially for small and medium sized enterprises, existing solutions are too expensive and inflexible to be of use under current turbulent market conditions. The second part of this paper covers the item Web Services, because in the role-specific support approach of FLoCI-EE, there are user- interface-components, which are tailored for specific roles in an enterprise. These components integrate automatically the services of the so-called basic-components, and the externally offered Web Services like UDDI.

  16. Bandwidth Enabled Flight Operations: Examining the Possibilities

    NASA Technical Reports Server (NTRS)

    Pisanich, Greg; Renema, Fritz; Clancy, Dan (Technical Monitor)

    2002-01-01

    The Bandwidth Enabled Flight Operations project is a research effort at the NASA Ames Research Center to investigate the use of satellite communications to improve aviation safety and capacity. This project is a follow on to the AeroSAPIENT Project, which demonstrated methods for transmitting high bandwidth data in various configurations. For this research, we set a goal to nominally use only 10 percent of the available bandwidth demonstrated by AeroSAPIENT or projected by near-term technology advances. This paper describes the results of our research, including available satellite bandwidth, commercial and research efforts to provide these services, and some of the limiting factors inherent with this communications medium. It also describes our investigation into the needs of the stakeholders (Airlines, Pilots, Cabin Crews, ATC, Maintenance, etc). The paper also describes our development of low-cost networked flight deck and airline operations center simulations that were used to demonstrate two application areas: Providing real time weather information to the commercial flight deck, and enhanced crew monitoring and control for airline operations centers.

  17. Smart sensors enable smart air conditioning control.

    PubMed

    Cheng, Chin-Chi; Lee, Dasheng

    2014-01-01

    In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants' information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans' intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It's also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection. PMID:24961213

  18. Smart sensors enable smart air conditioning control.

    PubMed

    Cheng, Chin-Chi; Lee, Dasheng

    2014-06-24

    In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants' information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans' intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It's also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection.

  19. Smart Sensors Enable Smart Air Conditioning Control

    PubMed Central

    Cheng, Chin-Chi; Lee, Dasheng

    2014-01-01

    In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants' information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans' intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It's also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection. PMID:24961213

  20. Glass ceramic ZERODUR enabling nanometer precision

    NASA Astrophysics Data System (ADS)

    Jedamzik, Ralf; Kunisch, Clemens; Nieder, Johannes; Westerhoff, Thomas

    2014-03-01

    The IC Lithography roadmap foresees manufacturing of devices with critical dimension of < 20 nm. Overlay specification of single digit nanometer asking for nanometer positioning accuracy requiring sub nanometer position measurement accuracy. The glass ceramic ZERODUR® is a well-established material in critical components of microlithography wafer stepper and offered with an extremely low coefficient of thermal expansion (CTE), the tightest tolerance available on market. SCHOTT is continuously improving manufacturing processes and it's method to measure and characterize the CTE behavior of ZERODUR® to full fill the ever tighter CTE specification for wafer stepper components. In this paper we present the ZERODUR® Lithography Roadmap on the CTE metrology and tolerance. Additionally, simulation calculations based on a physical model are presented predicting the long term CTE behavior of ZERODUR® components to optimize dimensional stability of precision positioning devices. CTE data of several low thermal expansion materials are compared regarding their temperature dependence between - 50°C and + 100°C. ZERODUR® TAILORED 22°C is full filling the tight CTE tolerance of +/- 10 ppb / K within the broadest temperature interval compared to all other materials of this investigation. The data presented in this paper explicitly demonstrates the capability of ZERODUR® to enable the nanometer precision required for future generation of lithography equipment and processes.

  1. Powered wheelchairs: are we enabling or disabling?

    PubMed

    Beaumont-White, S; Ham, R O

    1997-04-01

    Following the unsuccessful issue of three powered indoor National Health Service (NHS) wheelchairs, a survey was carried out of 40 users in a London wheelchair service to identify the problems with issue and possible areas for improvement to practice. The survey identified improvements that were necessary both from the service and the manufacturers' booklets. The improvements include the issue of written instructions and information to complement verbal instruction given at handover. Such information should be as interesting to read as possible, make use of appropriate language and diagrams (especially in area where English is often not the first language), colour, text and print size to maximise comprehension to these severely disabled users and often their elderly relatives or carers. The importance of the role of the rehabilitation engineer in training the user, giving instruction at handover and annual review are highlighted to ensure that the equipment remains working, suitable and up to date for the individual's needs. Training in interpersonal and communication skills and the importance of recall should also be emphasised. The implementation of the findings should lead to increasing contact with the service by the user, reduction in repair and replacement costs, regular review, correct supply and will therefore enable users to increase their independence with appropriate equipment. PMID:9141127

  2. Enabling scientific workflows in virtual reality

    USGS Publications Warehouse

    Kreylos, O.; Bawden, G.; Bernardin, T.; Billen, M.I.; Cowgill, E.S.; Gold, R.D.; Hamann, B.; Jadamec, M.; Kellogg, L.H.; Staadt, O.G.; Sumner, D.Y.

    2006-01-01

    To advance research and improve the scientific return on data collection and interpretation efforts in the geosciences, we have developed methods of interactive visualization, with a special focus on immersive virtual reality (VR) environments. Earth sciences employ a strongly visual approach to the measurement and analysis of geologic data due to the spatial and temporal scales over which such data ranges, As observations and simulations increase in size and complexity, the Earth sciences are challenged to manage and interpret increasing amounts of data. Reaping the full intellectual benefits of immersive VR requires us to tailor exploratory approaches to scientific problems. These applications build on the visualization method's strengths, using both 3D perception and interaction with data and models, to take advantage of the skills and training of the geological scientists exploring their data in the VR environment. This interactive approach has enabled us to develop a suite of tools that are adaptable to a range of problems in the geosciences and beyond. Copyright ?? 2008 by the Association for Computing Machinery, Inc.

  3. Imaging enabled platforms for development of therapeutics

    NASA Astrophysics Data System (ADS)

    Celli, Jonathan; Rizvi, Imran; Blanden, Adam R.; Evans, Conor L.; Abu-Yousif, Adnan O.; Spring, Bryan Q.; Muzikansky, Alona; Pogue, Brian W.; Finkelstein, Dianne M.; Hasan, Tayyaba

    2011-03-01

    Advances in imaging and spectroscopic technologies have enabled the optimization of many therapeutic modalities in cancer and noncancer pathologies either by earlier disease detection or by allowing therapy monitoring. Amongst the therapeutic options benefiting from developments in imaging technologies, photodynamic therapy (PDT) is exceptional. PDT is a photochemistry-based therapeutic approach where a light-sensitive molecule (photosensitizer) is activated with light of appropriate energy (wavelength) to produce reactive molecular species such as free radicals and singlet oxygen. These molecular entities then react with biological targets such as DNA, membranes and other cellular components to impair their function and lead to eventual cell and tissue death. Development of PDT-based imaging also provides a platform for rapid screening of new therapeutics in novel in vitro models prior to expensive and labor-intensive animal studies. In this study we demonstrate how an imaging platform can be used for strategizing a novel combination treatment strategy for multifocal ovarian cancer. Using an in vitro 3D model for micrometastatic ovarian cancer in conjunction with quantitative imaging we examine dose and scheduling strategies for PDT in combination with carboplatin, a chemotherapeutic agent presently in clinical use for management of this deadly form of cancer.

  4. Double-balloon enteroscopy in small bowel diseases

    PubMed Central

    Chen, Wen-Guo; Shan, Guo-Dong; Zhang, Hong; Yang, Ming; L, Lin; Yue, Min; Chen, Guang-Wu; Gu, Qing; Zhu, Hua-Tuo; Xu, Guo-Qiang; Chen, Li-Hua

    2016-01-01

    Abstract The aim of the study was to evaluate the diagnostic and therapeutic value of double-balloon entoroscopy (DBE) in small bowel diseases (SBDs) in China. A retrospective review of 674 consecutive patients who underwent DBE between January 2007 and November 2015 was conducted. Patients were divided into 3 groups by age, young group (<45 years), middle-aged group (45–65 years), and elderly group (>65 years). Data were collected with regard to demographics, clinical, endoscopic findings, complications, diagnostic yield, and management. A total of 729 DBE procedures were performed successfully in our series. More than 20 types of SBDs were found with the detection rate of 70.9%(517/729). The majority of patients were Crohn's disease (33.4%,225/674), followed by tumor (18.8%,127/674) and angioectasia (7.9%, 53/674). Endoscopic treatment was performed in 60 patients in which hemostasis (17,28.3%) and polypectomy (15,25%) were the predominant form of intervention used. Adverse events occurred in 6 patients (0.96%,6/729) including perforation, hemorrhage, aspiration pneumonia. No acute pancreatitis or other major complications occurred. Adenocarcinoma, GIST, and lymphoma were the most common tumor detected, the majority of tumors located in the jejunum (56.7%), The detection rate of angioectasia was also higher in the jejunum (54.7%),77.8% of Crohn's disease was located in the ileum. The positive rate of DBE in small bowel tumor and Crohn's disease were significantly higher than that of angioectasia (P<0.05). In young cohort, Crohn's disease (48.1%) was the most commonly diseases followed by tumor (10.4%) and nonspecific enteritis (7.1%). Yet in the elderly group, the majority of patients were tumor (27.6%); angioectasia (21.3%) was also detected frequently. The positive rate of capsule endoscopy was 75.44 %(202/268) which was a little high than DBE (67.9%, 182/268) (P > 0.05). The obscure gastrointestinal bleeding (OGIB) was the most common indication, and the diagnostic yield was 71.8%. DBE is a useful diagnostic and therapeutic tool with high clinical practice value for the investigation of SBDs. With growing experience of endoscopist, we believe that DBE must be kept in mind as the first-line modality for suspected SBDs. PMID:27759639

  5. Enabling a Scientific Cloud Marketplace: VGL (Invited)

    NASA Astrophysics Data System (ADS)

    Fraser, R.; Woodcock, R.; Wyborn, L. A.; Vote, J.; Rankine, T.; Cox, S. J.

    2013-12-01

    The Virtual Geophysics Laboratory (VGL) provides a flexible, web based environment where researchers can browse data and use a variety of scientific software packaged into tool kits that run in the Cloud. Both data and tool kits are published by multiple researchers and registered with the VGL infrastructure forming a data and application marketplace. The VGL provides the basic work flow of Discovery and Access to the disparate data sources and a Library for tool kits and scripting to drive the scientific codes. Computation is then performed on the Research or Commercial Clouds. Provenance information is collected throughout the work flow and can be published alongside the results allowing for experiment comparison and sharing with other researchers. VGL's "mix and match" approach to data, computational resources and scientific codes, enables a dynamic approach to scientific collaboration. VGL allows scientists to publish their specific contribution, be it data, code, compute or work flow, knowing the VGL framework will provide other components needed for a complete application. Other scientists can choose the pieces that suit them best to assemble an experiment. The coarse grain workflow of the VGL framework combined with the flexibility of the scripting library and computational toolkits allows for significant customisation and sharing amongst the community. The VGL utilises the cloud computational and storage resources from the Australian academic research cloud provided by the NeCTAR initiative and a large variety of data accessible from national and state agencies via the Spatial Information Services Stack (SISS - http://siss.auscope.org). VGL v1.2 screenshot - http://vgl.auscope.org

  6. New Catalog of Resources Enables Paleogeosciences Research

    NASA Astrophysics Data System (ADS)

    Lingo, R. C.; Horlick, K. A.; Anderson, D. M.

    2014-12-01

    The 21st century promises a new era for scientists of all disciplines, the age where cyber infrastructure enables research and education and fuels discovery. EarthCube is a working community of over 2,500 scientists and students of many Earth Science disciplines who are looking to build bridges between disciplines. The EarthCube initiative will create a digital infrastructure that connects databases, software, and repositories. A catalog of resources (databases, software, repositories) has been produced by the Research Coordination Network for Paleogeosciences to improve the discoverability of resources. The Catalog is currently made available within the larger-scope CINERGI geosciences portal (http://hydro10.sdsc.edu/geoportal/catalog/main/home.page). Other distribution points and web services are planned, using linked data, content services for the web, and XML descriptions that can be harvested using metadata protocols. The databases provide searchable interfaces to find data sets that would otherwise remain dark data, hidden in drawers and on personal computers. The software will be described in catalog entries so just one click will lead users to methods and analytical tools that many geoscientists were unaware of. The repositories listed in the Paleogeosciences Catalog contain physical samples found all across the globe, from natural history museums to the basements of university buildings. EarthCube has over 250 databases, 300 software systems, and 200 repositories which will grow in the coming year. When completed, geoscientists across the world will be connected into a productive workflow for managing, sharing, and exploring geoscience data and information that expedites collaboration and innovation within the paleogeosciences, potentially bringing about new interdisciplinary discoveries.

  7. Web enabled data management with DPM & LFC

    NASA Astrophysics Data System (ADS)

    Alvarez Ayllon, Alejandro; Beche, Alexandre; Furano, Fabrizio; Hellmich, Martin; Keeble and, Oliver; Brito Da Rocha, Ricardo

    2012-12-01

    The Disk Pool Manager (DPM) and LCG File Catalog (LFC) are two grid data management components currently used in production with more than 240 endpoints. Together with a set of grid client tools they give the users a unified view of their data, hiding most details concerning data location and access. Recently we've put a lot of effort in developing a reliable and high performance HTTP/WebDAV frontend to both our grid catalog and storage components, exposing the existing functionality to users accessing the services via standard clients - e.g. web browsers, curl - present in all operating systems, giving users a simple and straight-forward way of interaction. In addition, as other relevant grid storage components (like dCache) expose their data using the same protocol, for the first time we had the opportunity of attempting a unified view of all grid storage using HTTP. We describe the HTTP redirection mechanism used to integrate the grid catalog(s) with the multiple storage components, including details on some assumptions made to allow integration with other implementations. We describe the way we hide the details regarding site availability or catalog inconsistencies by switching the standard HTTP client automatically between multiple replicas. We also present measurements of access performance, and the relevant factors regarding replica selection - current throughput and load, geographic proximity, etc. Finally, we report on some additional work done to have this system as a viable alternative to GridFTP, providing multi-stream transfers and exploiting some additional features of WebDAV to enable third party copies - essential for managing data movements between storage systems - with equivalent performance.

  8. A Successful Infusion Process for Enabling Lunar Exploration Technologies

    NASA Technical Reports Server (NTRS)

    Over, Ann P.; Klem, Mark K.; Motil, Susan M.

    2008-01-01

    The NASA Vision for Space Exploration begins with a more reliable flight capability to the International Space Station and ends with sending humans to Mars. An important stepping stone on the path to Mars encompasses human missions to the Moon. There is little doubt throughout the stakeholder community that new technologies will be required to enable this Vision. However, there are many factors that influence the ability to successfully infuse any technology including the technical risk, requirement and development schedule maturity, and, funds available. This paper focuses on effective infusion processes that have been used recently for the technologies in development for the lunar exploration flight program, Constellation. Recent successes with Constellation customers are highlighted for the Exploration Technology Development Program (ETDP) Projects managed by NASA Glenn Research Center (GRC). Following an overview of the technical context of both the flight program and the technology capability mapping, the process is described for how to effectively build an integrated technology infusion plan. The process starts with a sound risk development plan and is completed with an integrated project plan, including content, schedule and cost. In reality, the available resources for this development are going to change over time, necessitating some level of iteration in the planning. However, the driving process is based on the initial risk assessment, which changes only when the overall architecture changes, enabling some level of stability in the process.

  9. Enabling New Research with Free Landsat Data

    NASA Astrophysics Data System (ADS)

    Headley, R.

    2009-12-01

    to Level 0 data has just become available. Independently created software will be required to read and process these data. In all, the Landsat Project has every interest to enable research that requires a broadening of geographic and temporal coverage at the mid-resolution scale. We hope to prevent the need for individual long-term archive building by providing any scene at any time with the most up-to-date processing parameters.

  10. Echo-enabled Harmonic Generation Free Electron Laser

    SciTech Connect

    Xiang, D; Stupakov, G.; /SLAC

    2008-12-18

    In this paper, we systematically study the echo-enabled harmonic generation (EEHG) free electron laser (FEL). The EEHG FEL uses two modulators in combination with two dispersion sections that allow to generate in the beam a high harmonic density modulation starting with a relatively small initial energy modulation of the beam. After presenting analytical theory of the phenomenon, we address several practically important issues, such as the effect of incoherent synchrotron radiation in the dispersion sections, and the beam transverse size effect in the modulator. Using a representative realistic set of beam parameters, we show how the EEHG scheme enhances the FEL performance and allows to generate a fully (both longitudinally and transversely) coherent radiation. As an example, we demonstrate that 5 nm coherent soft x-rays with GW peak power can be generated directly from the 240 nm seeding laser using the proposed EEHG scheme.

  11. Towards Grid-Enabling the Global Geodynamics Project

    NASA Astrophysics Data System (ADS)

    Lumb, I.; Aldridge, K. D.

    2004-05-01

    The Global Geodynamics Project (GGP) allows Earth scientists to access a network of globally distributed superconducting gravimeters (SGs). By establishing standards around SG instrumentation and data, in concert with various bilateral agreements, the GGP ensures scientific and organizational integrity. Now in its second phase, the GGP is proactively engaging non-traditional disciplines - i.e., those outside the tidal gravimetry community. Although GGP has generated interest with geodynamicists, seismologists, and others, there are practicalities which inhibit engangement by these `non-specialists'. For example, to geodynamicists and seismologists, tidal, atmospheric, hydrologic and oceanic signals are all unwanted. This means that the processed GGP Data must undergo further, non-trivial reductions before it is useful for geodynamic and seismic purposes. The requirement to correlate data in time and space presents another example. Currently this is a manually intensive process that requires geodynamicists and seismologists to specify temporal (e.g., a period of time, an event in time) and/or spatial (e.g., global, regional, specific instruments) specifics to allow for further analysis. These and other examples suggest infrastructural opportunities for further enabling GGP scientists. With decided emphasis on Virtual Organizations, open standards and qualities of experience, Grid Computing has the potential to facilitate deeper degrees of collaboration within the context of the GGP. Through use cases which seek to identify core resonance effects at semi-diurnal periods (e.g., Lumb et al., AGU Monograph 72, 51-68, 1993) and earthquake activity, various opportunities for Grid-enabling the GGP are identified and prioritized. Because the High Energy Physics community has figured so significantly in the development of the World Wide Web and The Grid, a Grid-enabled GGP also has the potential to play a role in shaping the ongoing evolution of Grid Computing.

  12. Enabling Non-Specialists to Teach School Physics Effectively

    ERIC Educational Resources Information Center

    Campbell, Peter

    2011-01-01

    This article describes the genesis and nature of a 40-day course intended to improve the teaching of physics in England by teachers not originally trained in the subject. It also describes early experiences and discusses course evaluation. An accompanying article by James de Winter reviews experiences as described by participating teachers.…

  13. Fuel properties to enable lifted-flame combustion

    SciTech Connect

    Kurtz, Eric

    2015-03-15

    The Fuel Properties to Enable Lifted-Flame Combustion project responded directly to solicitation DE-FOA-0000239 AOI 1A, Fuels and Lubricants for Advanced Combustion Regimes. This subtopic was intended to encompass clean and highly-efficient, liquid-fueled combustion engines to achieve extremely low engine-out nitrogen oxides (NOx) and particulate matter (PM) as a target and similar efficiency as state-of-the-art direct injection diesel engines. The intent of this project was to identify how fuel properties can be used to achieve controllable Leaner Lifted Flame Combustion (LLFC) with low NOx and PM emissions. Specifically, this project was expected to identify and test key fuel properties to enable LLFC and their compatibility with current fuel systems and to enhance combustion models to capture the effect of fuel properties on advanced combustion. Successful demonstration of LLFC may reduce the need for after treatment devices, thereby reducing costs and improving thermal efficiency. The project team consisted of key technical personnel from Ford Motor Company (FMC), the University of Wisconsin-Madison (UW), Sandia National Laboratories (SNL) and Lawrence Livermore National Laboratories (LLNL). Each partner had key roles in achieving project objectives. FMC investigated fuel properties relating to LLFC and sooting tendency. Together, FMC and UW developed and integrated 3D combustion models to capture fuel property combustion effects. FMC used these modeling results to develop a combustion system and define fuel properties to support a single-cylinder demonstration of fuel-enabled LLFC. UW investigated modeling the flame characteristics and emissions behavior of different fuels, including those with different cetane number and oxygen content. SNL led spray combustion experiments to quantify the effect of key fuel properties on combustion characteristics critical for LLFC, as well as single cylinder optical engine experiments to improve fundamental

  14. An Investigation of Relations among Academic Enablers and Reading Outcomes

    ERIC Educational Resources Information Center

    Jenkins, Lyndsay N.; Demaray, Michelle Kilpatrick

    2015-01-01

    The current study examined the link between academic enablers and different types of reading achievement measures. Academic enablers are skills and behaviors that support, or enable, students to perform well academically, such as engagement, interpersonal skills, motivation, and study skills. The sample in this study consisted of 61 third-,…

  15. 78 FR 76603 - Enable Gas Transmission, LLC; Notice of Application

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-12-18

    ... Energy Regulatory Commission Enable Gas Transmission, LLC; Notice of Application Take notice that on November 26, 2013, Enable Gas Transmission, LLC (Enable) 1111 Louisiana Street, Houston, Texas 77002, filed in the above reference docket application pursuant to section 7(b) and 7(c) of the of the Natural...

  16. A 3D printed fluidic device that enables integrated features.

    PubMed

    Anderson, Kari B; Lockwood, Sarah Y; Martin, R Scott; Spence, Dana M

    2013-06-18

    Fluidic devices fabricated using conventional soft lithography are well suited as prototyping methods. Three-dimensional (3D) printing, commonly used for producing design prototypes in industry, allows for one step production of devices. 3D printers build a device layer by layer based on 3D computer models. Here, a reusable, high throughput, 3D printed fluidic device was created that enables flow and incorporates a membrane above a channel in order to study drug transport and affect cells. The device contains 8 parallel channels, 3 mm wide by 1.5 mm deep, connected to a syringe pump through standard, threaded fittings. The device was also printed to allow integration with commercially available membrane inserts whose bottoms are constructed of a porous polycarbonate membrane; this insert enables molecular transport to occur from the channel to above the well. When concentrations of various antibiotics (levofloxacin and linezolid) are pumped through the channels, approximately 18-21% of the drug migrates through the porous membrane, providing evidence that this device will be useful for studies where drug effects on cells are investigated. Finally, we show that mammalian cells cultured on this membrane can be affected by reagents flowing through the channels. Specifically, saponin was used to compromise cell membranes, and a fluorescent label was used to monitor the extent, resulting in a 4-fold increase in fluorescence for saponin treated cells.

  17. Campus Cyberinfrastructure: A Crucial Enabler for Science

    ERIC Educational Resources Information Center

    Freeman, Peter A.; Almes, Guy T.

    2005-01-01

    Driven by the needs of college/university researchers and guided by a blue-ribbon advisory panel chaired by Daniel E. Atkins, the National Science Foundation (NSF) has initiated a broad, multi-directorate activity to create modern cyberinfrastructure and to apply it to transforming the effectiveness of the scientific research enterprise in higher…

  18. Workplace-Based Practicum: Enabling Expansive Practices

    ERIC Educational Resources Information Center

    Pridham, Bruce A.; Deed, Craig; Cox, Peter

    2013-01-01

    Effective pre-service teacher education integrates theoretical and practical knowledge. One means of integration is practicum in a school workplace. In a time of variable approaches to, and models of, practicum, we outline an innovative model of school immersion as part of a teacher preparation program. We apply Fuller and Unwin's (2004)…

  19. Refined AFC-Enabled High-Lift System Integration Study

    NASA Technical Reports Server (NTRS)

    Hartwich, Peter M.; Shmilovich, Arvin; Lacy, Douglas S.; Dickey, Eric D.; Scalafani, Anthony J.; Sundaram, P.; Yadlin, Yoram

    2016-01-01

    A prior trade study established the effectiveness of using Active Flow Control (AFC) for reducing the mechanical complexities associated with a modern high-lift system without sacrificing aerodynamic performance at low-speed flight conditions representative of takeoff and landing. The current technical report expands on this prior work in two ways: (1) a refined conventional high-lift system based on the NASA Common Research Model (CRM) is presented that is more representative of modern commercial transport aircraft in terms of stall characteristics and maximum Lift/Drag (L/D) ratios at takeoff and landing-approach flight conditions; and (2) the design trade space for AFC-enabled high-lift systems is expanded to explore a wider range of options for improving their efficiency. The refined conventional high-lift CRM (HL-CRM) concept features leading edge slats and slotted trailing edge flaps with Fowler motion. For the current AFC-enhanced high lift system trade study, the refined conventional high-lift system is simplified by substituting simply-hinged trailing edge flaps for the slotted single-element flaps with Fowler motion. The high-lift performance of these two high-lift CRM variants is established using Computational Fluid Dynamics (CFD) solutions to the Reynolds-Averaged Navier-Stokes (RANS) equations. These CFD assessments identify the high-lift performance that needs to be recovered through AFC to have the CRM variant with the lighter and mechanically simpler high-lift system match the performance of the conventional high-lift system. In parallel to the conventional high-lift concept development, parametric studies using CFD guided the development of an effective and efficient AFC-enabled simplified high-lift system. This included parametric trailing edge flap geometry studies addressing the effects of flap chord length and flap deflection. As for the AFC implementation, scaling effects (i.e., wind-tunnel versus full-scale flight conditions) are addressed

  20. Automatic Mode Transition Enabled Robust Triboelectric Nanogenerators.

    PubMed

    Chen, Jun; Yang, Jin; Guo, Hengyu; Li, Zhaoling; Zheng, Li; Su, Yuanjie; Wen, Zhen; Fan, Xing; Wang, Zhong Lin

    2015-12-22

    Although the triboelectric nanogenerator (TENG) has been proven to be a renewable and effective route for ambient energy harvesting, its robustness remains a great challenge due to the requirement of surface friction for a decent output, especially for the in-plane sliding mode TENG. Here, we present a rationally designed TENG for achieving a high output performance without compromising the device robustness by, first, converting the in-plane sliding electrification into a contact separation working mode and, second, creating an automatic transition between a contact working state and a noncontact working state. The magnet-assisted automatic transition triboelectric nanogenerator (AT-TENG) was demonstrated to effectively harness various ambient rotational motions to generate electricity with greatly improved device robustness. At a wind speed of 6.5 m/s or a water flow rate of 5.5 L/min, the harvested energy was capable of lighting up 24 spot lights (0.6 W each) simultaneously and charging a capacitor to greater than 120 V in 60 s. Furthermore, due to the rational structural design and unique output characteristics, the AT-TENG was not only capable of harvesting energy from natural bicycling and car motion but also acting as a self-powered speedometer with ultrahigh accuracy. Given such features as structural simplicity, easy fabrication, low cost, wide applicability even in a harsh environment, and high output performance with superior device robustness, the AT-TENG renders an effective and practical approach for ambient mechanical energy harvesting as well as self-powered active sensing.

  1. Enabling performance skills: Assessment in engineering education

    NASA Astrophysics Data System (ADS)

    Ferrone, Jenny Kristina

    Current reform in engineering education is part of a national trend emphasizing student learning as well as accountability in instruction. Assessing student performance to demonstrate accountability has become a necessity in academia. In newly adopted criterion proposed by the Accreditation Board for Engineering and Technology (ABET), undergraduates are expected to demonstrate proficiency in outcomes considered essential for graduating engineers. The case study was designed as a formative evaluation of freshman engineering students to assess the perceived effectiveness of performance skills in a design laboratory environment. The mixed methodology used both quantitative and qualitative approaches to assess students' performance skills and congruency among the respondents, based on individual, team, and faculty perceptions of team effectiveness in three ABET areas: Communications Skills. Design Skills, and Teamwork. The findings of the research were used to address future use of the assessment tool and process. The results of the study found statistically significant differences in perceptions of Teamwork Skills (p < .05). When groups composed of students and professors were compared, professors were less likely to perceive student's teaming skills as effective. The study indicated the need to: (1) improve non-technical performance skills, such as teamwork, among freshman engineering students; (2) incorporate feedback into the learning process; (3) strengthen the assessment process with a follow-up plan that specifically targets performance skill deficiencies, and (4) integrate the assessment instrument and practice with ongoing curriculum development. The findings generated by this study provides engineering departments engaged in assessment activity, opportunity to reflect, refine, and develop their programs as it continues. It also extends research on ABET competencies of engineering students in an under-investigated topic of factors correlated with team

  2. Automatic Mode Transition Enabled Robust Triboelectric Nanogenerators.

    PubMed

    Chen, Jun; Yang, Jin; Guo, Hengyu; Li, Zhaoling; Zheng, Li; Su, Yuanjie; Wen, Zhen; Fan, Xing; Wang, Zhong Lin

    2015-12-22

    Although the triboelectric nanogenerator (TENG) has been proven to be a renewable and effective route for ambient energy harvesting, its robustness remains a great challenge due to the requirement of surface friction for a decent output, especially for the in-plane sliding mode TENG. Here, we present a rationally designed TENG for achieving a high output performance without compromising the device robustness by, first, converting the in-plane sliding electrification into a contact separation working mode and, second, creating an automatic transition between a contact working state and a noncontact working state. The magnet-assisted automatic transition triboelectric nanogenerator (AT-TENG) was demonstrated to effectively harness various ambient rotational motions to generate electricity with greatly improved device robustness. At a wind speed of 6.5 m/s or a water flow rate of 5.5 L/min, the harvested energy was capable of lighting up 24 spot lights (0.6 W each) simultaneously and charging a capacitor to greater than 120 V in 60 s. Furthermore, due to the rational structural design and unique output characteristics, the AT-TENG was not only capable of harvesting energy from natural bicycling and car motion but also acting as a self-powered speedometer with ultrahigh accuracy. Given such features as structural simplicity, easy fabrication, low cost, wide applicability even in a harsh environment, and high output performance with superior device robustness, the AT-TENG renders an effective and practical approach for ambient mechanical energy harvesting as well as self-powered active sensing. PMID:26529374

  3. Enabling Pinpoint Landing (PPL) on Mars

    NASA Technical Reports Server (NTRS)

    Hattis, Phil; George, Sean; Wolf, Aron

    2005-01-01

    Pinpoint landing (PPL) missions will deliver about 1000 kg of useful payload to the surface of Mars. Mid-to-high latitude landing site compatibility is sought which should provide the means to land at sites up to 2.5 km above Mars mean surface altitude. A dispersion and control analysis process is presented which helps to identify the effects of PPL error drivers, quantify the effect of dispersions on landing error and quantify the landing position control capability/authority along the entry path. An entry/descent/landing (EDL) profile is provided. Guided aeroshell is the baseline for all candidate Mars atmospheric entry architectures. A two-stage architecture is considered for the aerodynamic decelerator descent phase: supersonic parachute plus guided subsonic parachute or high-Mach inflatable decelerator plus guided subsonic parachute. The powered descent phase uses propulsive descent stage for soft landing and final error reduction maneuvers. Studies have found that the aeroshell entry face dispersions can be large, but closed-loop guidance can null out resulting errors to within about 2 km. Additionally, projected parachute control is inadequate to correct worst case dispersions without wind forecast data. To mitigate the problems dispersions due to atmospheric uncertainty can be reduced by providing on-board external means to measure density and winds ahead of the vehicle, higher L/D control authority options for the subsonic parachute phase can be investigated, and decelerators with control authority options for the supersonic descent phase can be examined. A navigation error analysis and wind effects summary are included.

  4. Integrated metrology: an enabler for advanced process control (APC)

    NASA Astrophysics Data System (ADS)

    Schneider, Claus; Pfitzner, Lothar; Ryssel, Heiner

    2001-04-01

    Advanced process control (APC) techniques become more and more important as short innovation cycles in microelectronics and a highly competitive market requires cost-effective solutions in semiconductor manufacturing. APC marks a paradigm shift from statistically based techniques (SPC) using monitor wafers for sampling measurement data towards product wafer control. The APC functionalities including run-to-run control, fault detection, and fault analysis allow to detect process drifts and excursions at an early stage and to minimize the number of misprocessed wafers. APC is being established as part of factory control systems through the definition of an APC framework. A precondition for APC is the availability of sensors and measurement methods providing the necessary wafer data. This paper discusses integrated metrology as an enabler for APC and demonstrates practical implementations in semiconductor manufacturing.

  5. Protective jacket enabling decision support for workers in cold climate.

    PubMed

    Seeberg, Trine M; Vardoy, Astrid-Sofie B; Austad, Hanne O; Wiggen, Oystein; Stenersen, Henning S; Liverud, Anders E; Storholmen, Tore Christian B; Faerevik, Hilde

    2013-01-01

    The cold and harsh climate in the High North represents a threat to safety and work performance. The aim of this study was to show that sensors integrated in clothing can provide information that can improve decision support for workers in cold climate without disturbing the user. Here, a wireless demonstrator consisting of a working jacket with integrated temperature, humidity and activity sensors has been developed. Preliminary results indicate that the demonstrator can provide easy accessible information about the thermal conditions at the site of the worker and local cooling effects of extremities. The demonstrator has the ability to distinguish between activity and rest, and enables implementation of more sophisticated sensor fusion algorithms to assess work load and pre-defined activities. This information can be used in an enhanced safety perspective as an improved tool to advice outdoor work control for workers in cold climate.

  6. Sequestration of ubiquitous dietary derived pigments enables mitochondrial light sensing

    PubMed Central

    Zhang, Dan; Robinson, Kiera; Mihai, Doina M.; Washington, Ilyas

    2016-01-01

    Animals alter their physiological states in response to their environment. We show that the introduction of a chlorophyll metabolite, a light-absorbing pigment widely consumed in human diets, to Caenorhabditis elegans results in animals whose fat mass can be modulated by exposure to light, despite the worm consuming the same amount of food. In the presence of the chlorophyll metabolite, exposing the worms to light increased adenosine triphosphate, reduced oxidative damage, and increased median life spans, without an effect on animal reproduction. Mice fed a dietary metabolite of chlorophyll and exposed to light, over several months, showed reductions in systemic inflammation as measured by plasma α-macroglobulin. We propose that dietary chlorophyll metabolites can enable mitochondria to use light as an environmental cue, by absorbing light and transferring the energy to mitochondrial coenzyme Q. PMID:27731322

  7. Antibody-enabled small-molecule drug discovery.

    PubMed

    Lawson, Alastair D G

    2012-06-29

    Although antibody-based therapeutics have become firmly established as medicines for serious diseases, the value of antibodies as tools in the early stages of small-molecule drug discovery is only beginning to be realized. In particular, antibodies may provide information to reduce risk in small-molecule drug discovery by enabling the validation of targets and by providing insights into the design of small-molecule screening assays. Moreover, antibodies can act as guides in the quest for small molecules that have the ability to modulate protein-protein interactions, which have traditionally only been considered to be tractable targets for biological drugs. The development of small molecules that have similar therapeutic effects to current biologics has the potential to benefit a broader range of patients at earlier stages of disease.

  8. Protective jacket enabling decision support for workers in cold climate.

    PubMed

    Seeberg, Trine M; Vardoy, Astrid-Sofie B; Austad, Hanne O; Wiggen, Oystein; Stenersen, Henning S; Liverud, Anders E; Storholmen, Tore Christian B; Faerevik, Hilde

    2013-01-01

    The cold and harsh climate in the High North represents a threat to safety and work performance. The aim of this study was to show that sensors integrated in clothing can provide information that can improve decision support for workers in cold climate without disturbing the user. Here, a wireless demonstrator consisting of a working jacket with integrated temperature, humidity and activity sensors has been developed. Preliminary results indicate that the demonstrator can provide easy accessible information about the thermal conditions at the site of the worker and local cooling effects of extremities. The demonstrator has the ability to distinguish between activity and rest, and enables implementation of more sophisticated sensor fusion algorithms to assess work load and pre-defined activities. This information can be used in an enhanced safety perspective as an improved tool to advice outdoor work control for workers in cold climate. PMID:24111230

  9. Procedural apprenticeship in school science: Constructivist enabling of connoisseurship

    NASA Astrophysics Data System (ADS)

    Bencze, J. Lawrence

    2000-11-01

    In many parts of the world, school science, especially at the secondary school level, is a sort of selection and training camp for future scientists and engineers. For most students, their general lack of cultural capital (Apple, 1990) minimizes their opportunities to survive the rapid coverage of large volumes of abstract, decontextualized laws, theories, and inventions so typical of school science. Most graduates and drop-outs become relatively scientifically and technologically illiterate. They either have forgotten or have confused conceptions of scientific and technological knowledge; often view science and technology as relatively certain, unbiased, and benign with respect to effects on society and the environment; and lack resources necessary to effectively judge products and processes of science and technology or, crucially, to create their own explanations for and changes to phenomena. Citizens with illiteracy to this extent may have little control over their own thoughts and actions and be prey to whims of those who control knowledge, its production and dissemination. Curriculum frameworks are required that enable all students to achieve their maximum potential literacy and, as well, to create their own knowledge, to develop in directions unique to their needs, interests, abilities, and perspectives; that is, to become self-actualized. This latter goal can, in part, be achieved through apprenticeship education in schools, such that students acquire a measure of scientific and technological connoisseurship - expertise enabling them to conduct open-ended scientific investigations and invention projects of their design. In collaboration with five teachers of secondary school science, such a framework was, indeed, developed, and field-tested. Through a spiraling, cyclical process involving synchronous reconstruction of conceptual and procedural understandings, evidence suggests students were able to carry out experiments, studies, and tests of their

  10. Ocean Research Enabled by Underwater Gliders.

    PubMed

    Rudnick, Daniel L

    2016-01-01

    Underwater gliders are autonomous underwater vehicles that profile vertically by changing their buoyancy and use wings to move horizontally. Gliders are useful for sustained observation at relatively fine horizontal scales, especially to connect the coastal and open ocean. In this review, research topics are grouped by time and length scales. Large-scale topics addressed include the eastern and western boundary currents and the regional effects of climate variability. The accessibility of horizontal length scales of order 1 km allows investigation of mesoscale and submesoscale features such as fronts and eddies. Because the submesoscales dominate vertical fluxes in the ocean, gliders have found application in studies of biogeochemical processes. At the finest scales, gliders have been used to measure internal waves and turbulent dissipation. The review summarizes gliders' achievements to date and assesses their future in ocean observation.

  11. Ocean Research Enabled by Underwater Gliders.

    PubMed

    Rudnick, Daniel L

    2016-01-01

    Underwater gliders are autonomous underwater vehicles that profile vertically by changing their buoyancy and use wings to move horizontally. Gliders are useful for sustained observation at relatively fine horizontal scales, especially to connect the coastal and open ocean. In this review, research topics are grouped by time and length scales. Large-scale topics addressed include the eastern and western boundary currents and the regional effects of climate variability. The accessibility of horizontal length scales of order 1 km allows investigation of mesoscale and submesoscale features such as fronts and eddies. Because the submesoscales dominate vertical fluxes in the ocean, gliders have found application in studies of biogeochemical processes. At the finest scales, gliders have been used to measure internal waves and turbulent dissipation. The review summarizes gliders' achievements to date and assesses their future in ocean observation. PMID:26291384

  12. Ocean Research Enabled by Underwater Gliders

    NASA Astrophysics Data System (ADS)

    Rudnick, Daniel L.

    2016-01-01

    Underwater gliders are autonomous underwater vehicles that profile vertically by changing their buoyancy and use wings to move horizontally. Gliders are useful for sustained observation at relatively fine horizontal scales, especially to connect the coastal and open ocean. In this review, research topics are grouped by time and length scales. Large-scale topics addressed include the eastern and western boundary currents and the regional effects of climate variability. The accessibility of horizontal length scales of order 1 km allows investigation of mesoscale and submesoscale features such as fronts and eddies. Because the submesoscales dominate vertical fluxes in the ocean, gliders have found application in studies of biogeochemical processes. At the finest scales, gliders have been used to measure internal waves and turbulent dissipation. The review summarizes gliders' achievements to date and assesses their future in ocean observation.

  13. Tunable beam steering enabled by graphene metamaterials.

    PubMed

    Orazbayev, B; Beruete, M; Khromova, I

    2016-04-18

    We demonstrate tunable mid-infrared (MIR) beam steering devices based on multilayer graphene-dielectric metamaterials. The effective refractive index of such metamaterials can be manipulated by changing the chemical potential of each graphene layer. This can arbitrarily tailor the spatial distribution of the phase of the transmitted beam, providing mechanisms for active beam steering. Three different beam steerer (BS) designs are discussed: a graded-index (GRIN) graphene-based metamaterial block, an array of metallic waveguides filled with graphene-dielectric metamaterial and an array of planar waveguides created in a graphene-dielectric metamaterial block with a specific spatial profile of graphene sheets doping. The performances of the BSs are numerically analyzed, showing the tunability of the proposed designs for a wide range of output angles (up to approximately 70°). The proposed graphene-based tunable beam steering can be used in tunable transmitter/receiver modules for infrared imaging and sensing.

  14. Superconductors Enable Lower Cost MRI Systems

    NASA Technical Reports Server (NTRS)

    2013-01-01

    The future looks bright, light, and green, especially where aircraft are concerned. The division of NASA s Fundamental Aeronautics Program called the Subsonic Fixed Wing Project is aiming to reach new heights by 2025-2035, improving the efficiency and environmental impact of air travel by developing new capabilities for cleaner, quieter, and more fuel efficient aircraft. One of the many ways NASA plans to reach its aviation goals is by combining new aircraft configurations with an advanced turboelectric distributed propulsion (TeDP) system. Jeff Trudell, an engineer at Glenn Research Center, says, "The TeDP system consists of gas turbines generating electricity to power a large number of distributed motor-driven fans embedded into the airframe." The combined effect increases the effective bypass ratio and reduces drag to meet future goals. "While room temperature components may help reduce emissions and noise in a TeDP system, cryogenic superconducting electric motors and generators are essential to reduce fuel burn," says Trudell. Superconductors provide significantly higher current densities and smaller and lighter designs than room temperature equivalents. Superconductors are also able to conduct direct current without resistance (loss of energy) below a critical temperature and applied field. Unfortunately, alternating current (AC) losses represent the major part of the heat load and depend on the frequency of the current and applied field. A refrigeration system is necessary to remove the losses and its weight increases with decreasing temperature. In 2001, a material called magnesium diboride (MgB2) was discovered to be superconducting. The challenge, however, has been learning to manufacture MgB2 inexpensively and in long lengths to wind into large coils while meeting the application requirements.

  15. Scientific Data Management Center for Enabling Technologies

    SciTech Connect

    Vouk, Mladen A.

    2013-01-15

    Managing scientific data has been identified by the scientific community as one of the most important emerging needs because of the sheer volume and increasing complexity of data being collected. Effectively generating, managing, and analyzing this information requires a comprehensive, end-to-end approach to data management that encompasses all of the stages from the initial data acquisition to the final analysis of the data. Fortunately, the data management problems encountered by most scientific domains are common enough to be addressed through shared technology solutions. Based on community input, we have identified three significant requirements. First, more efficient access to storage systems is needed. In particular, parallel file system and I/O system improvements are needed to write and read large volumes of data without slowing a simulation, analysis, or visualization engine. These processes are complicated by the fact that scientific data are structured differently for specific application domains, and are stored in specialized file formats. Second, scientists require technologies to facilitate better understanding of their data, in particular the ability to effectively perform complex data analysis and searches over extremely large data sets. Specialized feature discovery and statistical analysis techniques are needed before the data can be understood or visualized. Furthermore, interactive analysis requires techniques for efficiently selecting subsets of the data. Finally, generating the data, collecting and storing the results, keeping track of data provenance, data post-processing, and analysis of results is a tedious, fragmented process. Tools for automation of this process in a robust, tractable, and recoverable fashion are required to enhance scientific exploration. The SDM center was established under the SciDAC program to address these issues. The SciDAC-1 Scientific Data Management (SDM) Center succeeded in bringing an initial set of advanced

  16. ITK: enabling reproducible research and open science

    PubMed Central

    McCormick, Matthew; Liu, Xiaoxiao; Jomier, Julien; Marion, Charles; Ibanez, Luis

    2014-01-01

    Reproducibility verification is essential to the practice of the scientific method. Researchers report their findings, which are strengthened as other independent groups in the scientific community share similar outcomes. In the many scientific fields where software has become a fundamental tool for capturing and analyzing data, this requirement of reproducibility implies that reliable and comprehensive software platforms and tools should be made available to the scientific community. The tools will empower them and the public to verify, through practice, the reproducibility of observations that are reported in the scientific literature. Medical image analysis is one of the fields in which the use of computational resources, both software and hardware, are an essential platform for performing experimental work. In this arena, the introduction of the Insight Toolkit (ITK) in 1999 has transformed the field and facilitates its progress by accelerating the rate at which algorithmic implementations are developed, tested, disseminated and improved. By building on the efficiency and quality of open source methodologies, ITK has provided the medical image community with an effective platform on which to build a daily workflow that incorporates the true scientific practices of reproducibility verification. This article describes the multiple tools, methodologies, and practices that the ITK community has adopted, refined, and followed during the past decade, in order to become one of the research communities with the most modern reproducibility verification infrastructure. For example, 207 contributors have created over 2400 unit tests that provide over 84% code line test coverage. The Insight Journal, an open publication journal associated with the toolkit, has seen over 360,000 publication downloads. The median normalized closeness centrality, a measure of knowledge flow, resulting from the distributed peer code review system was high, 0.46. PMID:24600387

  17. ITK: enabling reproducible research and open science.

    PubMed

    McCormick, Matthew; Liu, Xiaoxiao; Jomier, Julien; Marion, Charles; Ibanez, Luis

    2014-01-01

    Reproducibility verification is essential to the practice of the scientific method. Researchers report their findings, which are strengthened as other independent groups in the scientific community share similar outcomes. In the many scientific fields where software has become a fundamental tool for capturing and analyzing data, this requirement of reproducibility implies that reliable and comprehensive software platforms and tools should be made available to the scientific community. The tools will empower them and the public to verify, through practice, the reproducibility of observations that are reported in the scientific literature. Medical image analysis is one of the fields in which the use of computational resources, both software and hardware, are an essential platform for performing experimental work. In this arena, the introduction of the Insight Toolkit (ITK) in 1999 has transformed the field and facilitates its progress by accelerating the rate at which algorithmic implementations are developed, tested, disseminated and improved. By building on the efficiency and quality of open source methodologies, ITK has provided the medical image community with an effective platform on which to build a daily workflow that incorporates the true scientific practices of reproducibility verification. This article describes the multiple tools, methodologies, and practices that the ITK community has adopted, refined, and followed during the past decade, in order to become one of the research communities with the most modern reproducibility verification infrastructure. For example, 207 contributors have created over 2400 unit tests that provide over 84% code line test coverage. The Insight Journal, an open publication journal associated with the toolkit, has seen over 360,000 publication downloads. The median normalized closeness centrality, a measure of knowledge flow, resulting from the distributed peer code review system was high, 0.46.

  18. Distributive Distillation Enabled by Microchannel Process Technology

    SciTech Connect

    Arora, Ravi

    2013-01-22

    The application of microchannel technology for distributive distillation was studied to achieve the Grand Challenge goals of 25% energy savings and 10% return on investment. In Task 1, a detailed study was conducted and two distillation systems were identified that would meet the Grand Challenge goals if the microchannel distillation technology was used. Material and heat balance calculations were performed to develop process flow sheet designs for the two distillation systems in Task 2. The process designs were focused on two methods of integrating the microchannel technology 1) Integrating microchannel distillation to an existing conventional column, 2) Microchannel distillation for new plants. A design concept for a modular microchannel distillation unit was developed in Task 3. In Task 4, Ultrasonic Additive Machining (UAM) was evaluated as a manufacturing method for microchannel distillation units. However, it was found that a significant development work would be required to develop process parameters to use UAM for commercial distillation manufacturing. Two alternate manufacturing methods were explored. Both manufacturing approaches were experimentally tested to confirm their validity. The conceptual design of the microchannel distillation unit (Task 3) was combined with the manufacturing methods developed in Task 4 and flowsheet designs in Task 2 to estimate the cost of the microchannel distillation unit and this was compared to a conventional distillation column. The best results were for a methanol-water separation unit for the use in a biodiesel facility. For this application microchannel distillation was found to be more cost effective than conventional system and capable of meeting the DOE Grand Challenge performance requirements.

  19. Translational Activities to Enable NTD Vaccines.

    PubMed

    Gray, S A; Coler, R N; Carter, D; Siddiqui, A A

    2016-01-01

    There is an urgent need to develop new vaccines for tuberculosis, HIV/AIDS, and malaria, as well as for chronic and debilitating infections known as neglected tropical diseases (NTDs). The term "NTD" emerged at the beginning of the new millennium to describe a set of diseases that are characterized as (1) poverty related, (2) endemic to the tropics and subtropics, (3) lacking public health attention and inadequate industrial investment, (4) having poor research funding and a weak research and development (R&D) pipeline, (5) usually associated with high morbidity but low mortality, and (6) often having no safe and long-lasting treatment available. Many additional challenges to the current control and elimination programs for NTDs exist. These include inconsistent performance of diagnostic tests, regional differences in access to treatment and in treatment outcome, lack of integrated surveillance and vector/intermediate host control, and impact of ecological climatic changes particularly in regions where new cases are increasing in previously nonendemic areas. Moreover, the development of NTD vaccines, including those for schistosomiasis, leishmaniasis, leprosy, hookworm, and Chagas disease are being led by nonprofit product development partnerships (PDPs) working in partnership with academic and industrial partners, contract research organizations, and in some instances vaccine manufacturers in developing countries. In this review, we emphasize global efforts to fuel the development of NTD vaccines, the translational activities needed to effectively move promising vaccine candidates to Phase-I clinical trials and some of the hurdles to ensuring their availability to people in the poorest countries of Africa, Asia, Latin America, and the Caribbean. PMID:27571699

  20. Data Identifiers and Citations Enable Reproducible Science

    NASA Astrophysics Data System (ADS)

    Tilmes, C.

    2011-12-01

    Modern science often involves data processing with tremendous volumes of data. Keeping track of that data has been a growing challenge for data center. Researchers who access and use that data don't always reference and cite their data sources adequately for consumers of their research to follow their methodology or reproduce their analyses or experiments. Recent research has led to recommendations for good identifiers and citations that can help address this problem. This paper will describe some of the best practices in data identifiers, reference and citation. Using a simplified example scenario based on a long term remote sensing satellite mission, it will explore issues in identifying dynamic data sets and the importance of good data citations for reproducibility. It will describe the difference between granule and collection level identifiers, using UUIDs and DOIs to illustrate some recommendations for developing identifiers and assigning them during data processing. As data processors create data products, the provenance of the input products and precise steps that led to their creation are recorded and published for users of the data to see. As researchers access the data from an archive, they can use the provenance to help understand the genesis of the data, which could have effects on their usage of the data. By citing the data on publishing their research, others can retrieve the precise data used in their research and reproduce the analyses and experiments to confirm the results. Describing the experiment to a sufficient extent to reproduce the research enforces a formal approach that lends credibility to the results, and ultimately, to the policies of decision makers depending on that research.

  1. NUCLEAR INCIDENT CAPABILITIES, KNOWLEDGE & ENABLER LEVERAGING

    SciTech Connect

    Kinney, J.; Newman, J.; Goodwyn, A.; Dewes, J.

    2011-04-18

    action. Much work needs to be accomplished to enhance nuclear preparedness and to substantially bolster and clarify the capacity to deploy competent resources. Until detailed plans are scripted, and personnel and other resources are postured, and exercised, IND specific planning remains an urgent need requiring attention and action. Although strategic guidance, policies, concepts of operations, roles, responsibilities, and plans governing the response and consequence management for the IND scenario exist, an ongoing integration challenge prevails regarding how best to get capable and competent surge capacity personnel (disaster reservists) and other resources engaged and readied in an up-front manner with pre-scripted assignments to augment the magnitude of anticipated demands of expertise. With the above in mind, Savannah River National Laboratory (SRNL) puts science to work to create and deploy practical, high-value, cost-effective nuclear solutions. As the Department of Energy's (DOE) applied research and development laboratory, SRNL supports Savannah River Site (SRS) operations, DOE, national initiatives, and other federal agencies, across the country and around the world. SRNL's parent at SRS also employs more than 8,000 personnel. The team is a great asset that seeks to continue their service in the interest of national security and stands ready to accomplish new missions. Overall, an integral part of the vision for SRNL's National and Homeland Security Directorate is the establishment of a National Security Center at SRNL, and development of state of the science capabilities (technologies and trained technical personnel) for responding to emergency events on local, regional, or national scales. This entails leveraging and posturing the skills, knowledge and experience base of SRS personnel to deliver an integrated capability to support local, state, and federal authorities through the development of pre-scripted requests for assistance, agreements, and plans. It

  2. Germanium as a Material to Enable Silicon Photonics

    NASA Astrophysics Data System (ADS)

    Ichikawa, R.; Takita, S.; Ishikawa, Y.; Wada, K.

    Germanium has been an enabler of the information age. Ge on Si nucleates Si photonics as well as high-speed CMOS electronics. Recently, Ge has played a significant role in integrating materials such as III-Vs on Si. The structure of GaAs on a thick Ge layer on Si has been studied for many years to expand its device application menu such as lasers, high-performance transistors, and tandem solar cells on Si. However, an ultra-thin Ge buffer layer (referred to as (Ge) hereafter) technology described in this chapter has created new fields for applications. One of the emerging fields is the structure and properties of AlGaAs/GaAs/(Ge)/Si/Ge, which has been impossible to create previously using the thick Ge buffer on Si technology. Here, we demonstrate an application as a new green power generation platform, i.e., high-efficiency cost-effective tandem solar cells using Si as a cell as well as the mechanical substrate. The (Ge) thickness has not been fully optimized yet, but is in the range 10-20 nm. Our design for a tandem solar cell shows that its theoretical efficiency reaches 43%. The key attributes are the crystalline quality and surface roughness of ultrathin (Ge). We have experimentally optimized the (Ge) buffer thickness to achieve both requirements and prototyped Ge solar cells on Si. The Ge solar cells have successfully reproduced their ideal external quantum efficiency. This is the proof of concept of the success of the Ge challenge as the material enabler to integrate Si and GaAs.

  3. Mammalian enabled (Mena) is a critical regulator of cardiac function

    PubMed Central

    Aguilar, Frédérick; Belmonte, Stephen L.; Ram, Rashmi; Noujaim, Sami F.; Dunaevsky, Olga; Protack, Tricia L.; Jalife, Jose; Todd Massey, H.; Gertler, Frank B.

    2011-01-01

    Mammalian enabled (Mena) of the Drosophila enabled/vasodilator-stimulated phosphoprotein gene family is a cytoskeletal protein implicated in actin regulation and cell motility. Cardiac Mena expression is enriched in intercalated discs (ICD), the critical intercellular communication nexus between adjacent muscle cells. We previously identified Mena gene expression to be a key predictor of human and murine heart failure (HF). To determine the in vivo function of Mena in the heart, we assessed Mena protein expression in multiple HF models and characterized the effects of genetic Mena deletion on cardiac structure and function. Immunoblot analysis revealed significant upregulation of Mena protein expression in left ventricle tissue from patients with end-stage HF, calsequestrin-overexpressing mice, and isoproterenol-infused mice. Characterization of the baseline cardiac function of adult Mena knockout mice (Mena−/−) via echocardiography demonstrated persistent cardiac dysfunction, including a significant reduction in percent fractional shortening compared with wild-type littermates. Electrocardiogram PR and QRS intervals were significantly prolonged in Mena−/− mice, manifested by slowed conduction on optical mapping studies. Ultrastructural analysis of Mena−/− hearts revealed disrupted organization and widening of ICD structures, mislocalization of the gap junction protein connexin 43 (Cx43) to the lateral borders of cardiomyoycytes, and increased Cx43 expression. Furthermore, the expression of vinculin (an adherens junction protein) was significantly reduced in Mena−/− mice. We report for the first time that genetic ablation of Mena results in cardiac dysfunction, highlighted by diminished contractile performance, disrupted ICD structure, and slowed electrical conduction. PMID:21335464

  4. Science enabled by ATHENA: Solar system targets and exoplanets

    NASA Astrophysics Data System (ADS)

    Branduardi-Raymont, Graziella

    2016-07-01

    ATHENA studies of the solar system will offer some of the deepest insights in the complex workings of planetary magnetospheres and exospheres; ATHENA will answer many of the questions that have only started to be tackled by Chandra and XMM-Newton and will add in a major way to our understanding of the interactions of space plasmas with magnetised and un-magnetised bodies in the solar system. The non-dispersive character of X-IFU spectroscopy will enable Jupiter's auroral and disk X-ray emissions, and that from the Io Plasma Torus, to be mapped spatially and spectrally at high resolution; it will also enable surface composition analysis through fluorescence spectra of the Galilean satellites. ATHENA will establish how planetary exospheres, such as that of Mars, and comets respond to the interaction with the solar wind, in a detailed and global way that other observatories or in situ measurements cannot provide. With its remarkably improved sensitivity over current X-ray telescopes, ATHENA will push the search for auroral X-ray emission on Saturn to much fainter limits, and set very sensitive constraints on Uranus X-ray emission. ATHENA will explore the magnetic interplay between stars and planets in X-rays by searching for X-ray spectral variability over the planet's orbital phases and for systems of different orbital eccentricity, and will investigate ingress/eclipse/egress effects for transiting hot-Jupiter exoplanets; again instrumental to this will be the vastly improved signal-to-noise ratio provided by ATHENA over that achievable by XMM-Newton or Chandra.

  5. Progress in the Development of a Prototype Reuse Enablement System

    NASA Astrophysics Data System (ADS)

    Marshall, J. J.; Downs, R. R.; Gilliam, L. J.; Wolfe, R. E.

    2008-12-01

    An important part of promoting software reuse is to ensure that reusable software assets are readily available to the software developers who want to use them. Through dialogs with the community, the NASA Earth Science Data Systems Software Reuse Working Group has learned that the lack of a centralized, domain- specific software repository or catalog system addressing the needs of the Earth science community is a major barrier to software reuse within the community. The Working Group has proposed the creation of such a reuse enablement system, which would provide capabilities for contributing and obtaining reusable software, to remove this barrier. The Working Group has recommended the development of a Reuse Enablement System to NASA and has performed a trade study to review systems with similar capabilities and to identify potential platforms for the proposed system. This was followed by an architecture study to determine an expeditious and cost-effective solution for this system. A number of software packages and systems were examined through both creating prototypes and examining existing systems that use the same software packages and systems. Based on the results of the architecture study, the Working Group developed a prototype of the proposed system using the recommended software package, through an iterative process of identifying needed capabilities and improving the system to provide those capabilities. Policies for the operation and maintenance of the system are being established for the system, and the identification of system policies also has contributed to the development process. Additionally, a test plan is being developed for formal testing of the prototype, to ensure that it meets all of the requirements previously developed by the Working Group. This poster summarizes the results of our work to date, focusing on the most recent activities.

  6. Space Weathering Investigations Enabled by NASA's Virtual Heliophysical Observatories

    NASA Technical Reports Server (NTRS)

    Cooper, John F.; King, Joseph H.; Papitashvili, Natalia E.; Lal, Nand; Sittler, Edward C.; Sturner, Steven J.; Hills, Howard K.; Lipatov, Alexander S.; Kovalick, Tamara J.; Johnson, Rita C.; McGuire, Robert E.; Narock, Thomas W.; Szabo, Adam; Armstrong, Thomas P.; Manweiler, Jerry W.; Patterson, J. Douglas; McKibben, Robert B.

    2012-01-01

    Structural and chemical impact of the heliospheric space environment on exposed planetary surfaces and interplanetary dust grains may be generally defined as space weathering . In the inner solar system, from the asteroid belt inwards towards the Sun, the surface regolith structures of airless bodies are primarily determined by cumulative meteoritic impacts over billions of years, but the molecular composition to meters in depth can be substantially modified by irradiation effects. Plasma ions at eV to keV energies may both erode uppermost surfaces by sputtering, and implant or locally produce exogenic material, e.g. He-3 and H2O, while more energetic ions drive molecular change through electronic ionization. Galactic cosmic ray ions and more energetic solar ions can impact chemistry to meters in depth. High energy cosmic ray interactions produce showers of secondary particles and energetic photons that present hazards for robotic and human exploration missions but also enable detection of potentially useable resources such as water ice, oxygen, and many other elements. Surface sputtering also makes ejected elemental and molecular species accessible for in-situ compositional analysis by spacecraft with ion and neutral mass spectrometers. Modeling of relative impacts for these various space weathering processes requires knowledge of the incident species-resolved ion flux spectra at plasma to cosmic ray energies and as integrated over varying time scales. Although the main drivers for investigations of these processes come from NASA's planetary science and human exploration programs, the NASA heliophysics program provides the requisite data measurement and modeling resources to enable specification of the field & plasma and energetic particle irradiation environments for application to space weather and surface weathering investigations. The Virtual Heliospheric Observatory (VHO), Virtual Energetic Particle Observatory (VEPO), Lunar Solar Origins Exploration (Luna

  7. FINESSE: Field Investigations to Enable Solar System Science and Exploration

    NASA Technical Reports Server (NTRS)

    Heldmann, Jennifer; Lim, Darlene; Colaprete, Anthony

    2015-01-01

    The FINESSE (Field Investigations to Enable Solar System Science and Exploration) team is focused on a science and exploration field-based research program aimed at generating strategic knowledge in preparation for the human and robotic exploration of the Moon, near-Earth asteroids (NEAs) and Phobos and Deimos. We follow the philosophy that "science enables exploration and exploration enables science." 1) FINESSE Science: Understand the effects of volcanism and impacts as dominant planetary processes on the Moon, NEAs, and Phobos & Deimos. 2) FINESSE Exploration: Understand which exploration concepts of operations (ConOps) and capabilities enable and enhance scientific return. To accomplish these objectives, we are conducting an integrated research program focused on scientifically-driven field exploration at Craters of the Moon National Monument and Preserve in Idaho and at the West Clearwater Lake Impact Structure in northern Canada. Field deployments aimed at reconnaissance geology and data acquisition were conducted in 2014 at Craters of the Moon National Monument and Preserve. Targets for data acquisition included selected sites at Kings Bowl eruptive fissure, lava field and blowout crater, Inferno Chasm vent and outflow channel, North Crater lava flow and Highway lava flow. Field investigation included (1) differential GPS (dGPS) measurements of lava flows, channels (and ejecta block at Kings Bowl); (2) LiDAR imaging of lava flow margins, surfaces and other selected features; (3) digital photographic documentation; (4) sampling for geochemical and petrographic analysis; (5) UAV aerial imagery of Kings Bowl and Inferno Chasm features; and (6) geologic assessment of targets and potential new targets. Over the course of the 5-week field FINESSE campaign to the West Clearwater Impact Structure (WCIS) in 2014, the team focused on several WCIS research topics, including impactites, central uplift formation, the impact-generated hydrothermal system, multichronometer

  8. Flexibility of crab chemosensory sensilla enables flicking antennules to sniff.

    PubMed

    Waldrop, Lindsay D; Reidenbach, Matthew A; Koehl, M A R

    2015-10-01

    The first step in smelling is capture of odorant molecules from the surrounding fluid. We used lateral flagella of olfactory antennules of crabs Callinectes sapidus to study the physical process of odor capture by antennae bearing dense tufts of hair-like chemosensory sensilla (aesthetascs). Fluid flow around and through aesthetasc arrays on dynamically scaled models of lateral flagella of C. sapidus was measured by particle image velocimetry to determine how antennules sample the surrounding water when they flick. Models enabled separate evaluation of the effects of flicking speed, aesthetasc spacing, and antennule orientation. We found that crab antennules, like those of other malacostracan crustaceans, take a discrete water sample during each flick by having a rapid downstroke, during which water flows into the aesthetasc array, and a slow recovery stroke, when water is trapped in the array and odorants have time to diffuse to aesthetascs. However, unlike antennules of crustaceans with sparse aesthetasc arrays, crabs enhance sniffing via additional mechanisms: 1) Aesthetascs are flexible and splay as a result of the hydrodynamic drag during downstrokes, then clump together during return strokes; and 2) antennules flick with aesthetascs on the upstream side of the stalk during downstrokes, but are hidden downstream during return strokes. Aiming aesthetascs into ambient flow maintains sniffing. When gaps between aesthetascs are wide, changes in antennule speed are more effective at altering flow through the array than when gaps are narrow. Nonetheless, if crabs had fixed gap widths, their ability to take discrete samples of their odorant environment would be diminished.

  9. Commitment in Structurally Enabled and Induced Exchange Relations

    ERIC Educational Resources Information Center

    Lawler, Edward J.; Thye, Shane R.; Yoon, Jeongkoo

    2006-01-01

    Network structures both enable and constrain the development of social relations. This research investigates these features by comparing the development of commitments in structurally enabled and structurally induced exchange relations. We integrate ideas from the theory of relational cohesion and the choice process theory of commitment. In an…

  10. AFC-Enabled Vertical Tail System Integration Study

    NASA Technical Reports Server (NTRS)

    Mooney, Helen P.; Brandt, John B.; Lacy, Douglas S.; Whalen, Edward A.

    2014-01-01

    This document serves as the final report for the SMAAART AFC-Enabled Vertical Tail System Integration Study. Included are the ground rule assumptions which have gone into the study, layouts of the baseline and AFC-enabled configurations, critical sizing information, system requirements and architectures, and assumed system properties that result in an NPV assessment of the two candidate AFC technologies.

  11. Complexity Science Framework for Big Data: Data-enabled Science

    NASA Astrophysics Data System (ADS)

    Surjalal Sharma, A.

    2016-07-01

    The ubiquity of Big Data has stimulated the development of analytic tools to harness the potential for timely and improved modeling and prediction. While much of the data is available near-real time and can be compiled to specify the current state of the system, the capability to make predictions is lacking. The main reason is the basic nature of Big Data - the traditional techniques are challenged in their ability to cope with its velocity, volume and variability to make optimum use of the available information. Another aspect is the absence of an effective description of the time evolution or dynamics of the specific system, derived from the data. Once such dynamical models are developed predictions can be made readily. This approach of " letting the data speak for itself " is distinct from the first-principles models based on the understanding of the fundamentals of the system. The predictive capability comes from the data-derived dynamical model, with no modeling assumptions, and can address many issues such as causality and correlation. This approach provides a framework for addressing the challenges in Big Data, especially in the case of spatio-temporal time series data. The reconstruction of dynamics from time series data is based on recognition that in most systems the different variables or degrees of freedom are coupled nonlinearly and in the presence of dissipation the state space contracts, effectively reducing the number of variables, thus enabling a description of its dynamical evolution and consequently prediction of future states. The predictability is analysed from the intrinsic characteristics of the distribution functions, such as Hurst exponents and Hill estimators. In most systems the distributions have heavy tails, which imply higher likelihood for extreme events. The characterization of the probabilities of extreme events are critical in many cases e. g., natural hazards, for proper assessment of risk and mitigation strategies. Big Data with

  12. Enabling Advanced Modeling and Simulations for Fuel-Flexible Combustors

    SciTech Connect

    Pitsch, Heinz

    2010-05-31

    The overall goal of the present project is to enable advanced modeling and simulations for the design and optimization of fuel-flexible turbine combustors. For this purpose we use a high fidelity, extensively-tested large-eddy simulation (LES) code and state-of-the-art models for premixed/partially-premixed turbulent combustion developed in the PI's group. In the frame of the present project, these techniques are applied, assessed, and improved for hydrogen enriched premixed and partially premixed gas-turbine combustion. Our innovative approaches include a completely consistent description of flame propagation; a coupled progress variable/level set method to resolve the detailed flame structure, and incorporation of thermal-diffusion (non-unity Lewis number) effects. In addition, we have developed a general flamelet-type transformation holding in the limits of both non-premixed and premixed burning. As a result, a model for partially premixed combustion has been derived. The coupled progress variable/level method and the general flamelet transformation were validated by LES of a lean-premixed low-swirl burner that has been studied experimentally at Lawrence Berkeley National Laboratory. The model is extended to include the non-unity Lewis number effects, which play a critical role in fuel-flexible combustor with high hydrogen content fuel. More specifically, a two-scalar model for lean hydrogen and hydrogen-enriched combustion is developed and validated against experimental and direct numerical simulation (DNS) data. Results are presented to emphasize the importance of non-unity Lewis number effects in the lean-premixed low-swirl burner of interest in this project. The proposed model gives improved results, which shows that the inclusion of the non-unity Lewis number effects is essential for accurate prediction of the lean-premixed low-swirl flame.

  13. Enabling Advanced Modeling and Simulations for Fuel-Flexible Combustors

    SciTech Connect

    Heinz Pitsch

    2010-05-31

    The overall goal of the present project is to enable advanced modeling and simulations for the design and optimization of fuel-flexible turbine combustors. For this purpose we use a high-fidelity, extensively-tested large-eddy simulation (LES) code and state-of-the-art models for premixed/partially-premixed turbulent combustion developed in the PI's group. In the frame of the present project, these techniques are applied, assessed, and improved for hydrogen enriched premixed and partially premixed gas-turbine combustion. Our innovative approaches include a completely consistent description of flame propagation, a coupled progress variable/level set method to resolve the detailed flame structure, and incorporation of thermal-diffusion (non-unity Lewis number) effects. In addition, we have developed a general flamelet-type transformation holding in the limits of both non-premixed and premixed burning. As a result, a model for partially premixed combustion has been derived. The coupled progress variable/level method and the general flamelet tranformation were validated by LES of a lean-premixed low-swirl burner that has been studied experimentally at Lawrence Berkeley National Laboratory. The model is extended to include the non-unity Lewis number effects, which play a critical role in fuel-flexible combustor with high hydrogen content fuel. More specifically, a two-scalar model for lean hydrogen and hydrogen-enriched combustion is developed and validated against experimental and direct numerical simulation (DNS) data. Results are presented to emphasize the importance of non-unity Lewis number effects in the lean-premixed low-swirl burner of interest in this project. The proposed model gives improved results, which shows that the inclusion of the non-unity Lewis number effects is essential for accurate prediction of the lean-premixed low-swirl flame.

  14. Incentives and enablers to improve adherence in tuberculosis

    PubMed Central

    Lutge, Elizabeth E; Wiysonge, Charles Shey; Knight, Stephen E; Sinclair, David; Volmink, Jimmy

    2015-01-01

    Background Patient adherence to medications, particularly for conditions requiring prolonged treatment such as tuberculosis (TB), is frequently less than ideal and can result in poor treatment outcomes. Material incentives to reward good behaviour and enablers to remove economic barriers to accessing care are sometimes given in the form of cash, vouchers, or food to improve adherence. Objectives To evaluate the effects of material incentives and enablers in patients undergoing diagnostic testing, or receiving prophylactic or curative therapy, for TB. Search methods We undertook a comprehensive search of the Cochrane Infectious Diseases Group Specialized Register; Cochrane Central Register of Controlled Trials (CENTRAL); MEDLINE; EMBASE; LILACS; Science Citation Index; and reference lists of relevant publications up to 5 June 2015. Selection criteria Randomized controlled trials of material incentives in patients being investigated for TB, or on treatment for latent or active TB. Data collection and analysis At least two review authors independently screened and selected studies, extracted data, and assessed the risk of bias in the included trials. We compared the effects of interventions using risk ratios (RR), and presented RRs with 95% confidence intervals (CI). The quality of the evidence was assessed using GRADE. Main results We identified 12 eligible trials. Ten were conducted in the USA: in adolescents (one trial), in injection drug or cocaine users (four trials), in homeless adults (three trials), and in prisoners (two trials). The remaining two trials, in general adult populations, were conducted in Timor-Leste and South Africa. Sustained incentive programmes Only two trials have assessed whether material incentives and enablers can improve long-term adherence and completion of treatment for active TB, and neither demonstrated a clear benefit (RR 1.04, 95% CI 0.97 to 1.14; two trials, 4356 participants; low quality evidence). In one trial, the incentive

  15. Environmental and policy analysis of renewable energy enabling technologies

    NASA Astrophysics Data System (ADS)

    Denholm, Paul L.

    For intermittent electricity generation sources such as wind and solar energy to meet a large fraction (>20%) of the nation's electricity supply, two enabling technologies, energy storage and long distance transmission, will need to be deployed on a large scale. A life-cycle study was performed to evaluate the environmental performance of energy storage and transmission technologies in terms of compatibility with the goals of deploying renewable energy systems. Metrics were developed to evaluate net efficiency, fossil fuel use, and greenhouse gas emissions that result from the use of enabling technologies with conventional and renewable energy sources. Storage technologies evaluated in this study include pumped hydro storage, compressed air energy storage, and battery energy storage. Three combinations of renewable energy generation and storage were evaluated. Wind/CAES is a likely candidate for large scale deployment, and delivers more than 5 times the amount of electrical energy from a unit of fossil fuel than the most efficient combustion system available, with about 20% of GHG emissions. Both wind/PHS and Solar PVBES also demonstrate superior performance to fossil energy systems in terms of energy sustainability and GHG emissions. Near term deployment of energy storage will likely take advantage of low cost off-peak energy from existing coal plants, which can result in increases in harmful air emissions. The "grandfathering" provisions of the U.S. Clean Air Act allow for increased output from these older plants that produce high levels of emissions. Energy storage provides a loophole that could be used to increase output from these plants, instead of building cleaner alternatives. The unique hybrid-CAES system has lower life-cycle emissions than any other storage technologies when coupled to coal, but effectively produces emissions that far exceed standards for any new source. A new CAES plant in the Midwestern U.S. will effectively produce SO2 at a rate more

  16. "OnTrack" to University: Understanding Mechanisms of Student Retention in an Australian Pre-University Enabling Program

    ERIC Educational Resources Information Center

    Lisciandro, Joanne G.; Gibbs, Gael

    2016-01-01

    University-based enabling programs have become an important pathway to university for non-traditional students. There is increasing interest in understanding the mechanisms that facilitate retention and success of enabling pathway students, with the aim of developing effective strategies for maximising opportunities for university access and…

  17. Internet-enabled collaborative agent-based supply chains

    NASA Astrophysics Data System (ADS)

    Shen, Weiming; Kremer, Rob; Norrie, Douglas H.

    2000-12-01

    This paper presents some results of our recent research work related to the development of a new Collaborative Agent System Architecture (CASA) and an Infrastructure for Collaborative Agent Systems (ICAS). Initially being proposed as a general architecture for Internet based collaborative agent systems (particularly complex industrial collaborative agent systems), the proposed architecture is very suitable for managing the Internet enabled complex supply chain for a large manufacturing enterprise. The general collaborative agent system architecture with the basic communication and cooperation services, domain independent components, prototypes and mechanisms are described. Benefits of implementing Internet enabled supply chains with the proposed infrastructure are discussed. A case study on Internet enabled supply chain management is presented.

  18. Enabling information management systems in tactical network environments

    NASA Astrophysics Data System (ADS)

    Carvalho, Marco; Uszok, Andrzej; Suri, Niranjan; Bradshaw, Jeffrey M.; Ceccio, Philip J.; Hanna, James P.; Sinclair, Asher

    2009-05-01

    Net-Centric Information Management (IM) and sharing in tactical environments promises to revolutionize forward command and control capabilities by providing ubiquitous shared situational awareness to the warfighter. This vision can be realized by leveraging the tactical and Mobile Ad hoc Networks (MANET) which provide the underlying communications infrastructure, but, significant technical challenges remain. Enabling information management in these highly dynamic environments will require multiple support services and protocols which are affected by, and highly dependent on, the underlying capabilities and dynamics of the tactical network infrastructure. In this paper we investigate, discuss, and evaluate the effects of realistic tactical and mobile communications network environments on mission-critical information management systems. We motivate our discussion by introducing the Advanced Information Management System (AIMS) which is targeted for deployment in tactical sensor systems. We present some operational requirements for AIMS and highlight how critical IM support services such as discovery, transport, federation, and Quality of Service (QoS) management are necessary to meet these requirements. Our goal is to provide a qualitative analysis of the impact of underlying assumptions of availability and performance of some of the critical services supporting tactical information management. We will also propose and describe a number of technologies and capabilities that have been developed to address these challenges, providing alternative approaches for transport, service discovery, and federation services for tactical networks.

  19. Fabrication Infrastructure to Enable Efficient Exploration and Utilization of Space

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Fikes, John C.; McLemore, Carole A.; Manning, Curtis W.; Good, Jim

    2007-01-01

    Unlike past one-at-a-time mission approaches, system-of-systems infrastructures will be needed to enable ambitious scenarios for sustainable future space exploration and utilization. Fabrication infrastructure will be needed to support habitat structure development, tools and mechanical part fabrication, as well as repair and replacement of ground support and space mission hardware such as life support items, vehicle components and crew systems. The fabrication infrastructure will need the In Situ Fabrication and Repair (ISFR) element, which is working in conjunction with the In Situ Resources Utilization (ISRU) element, to live off the land. The ISFR Element supports the entire life cycle of Exploration by: reducing downtime due to failed components; decreasing risk to crew by recovering quickly from degraded operation of equipment; improving system functionality with advanced geometry capabilities; and enhancing mission safety by reducing assembly part counts of original designs where possible. This paper addresses the fabrication infrastructures that support efficient, affordable, reliable infrastructures for both space exploration systems and logistics; these infrastructures allow sustained, affordable and highly effective operations on the Moon, Mars and beyond.

  20. Athermal achromat lens enabled by polymer gradient index optics

    NASA Astrophysics Data System (ADS)

    Flynn, Richard A.; Beadie, Guy

    2016-05-01

    An optical design is shown which provides simultaneous color correction over the visible spectrum and passive thermal compensation, for an f/4 doublet made of a glass and a polymer gradient index (GRIN) element. The design is enabled by a new optical model for the thermally varying GRIN element, which incorporates measured material properties from 20-40°C (limited only by the extent of the measured data set). The design is made possible because of the GRIN degrees of freedom available to the material. A color-corrected doublet is most efficient when there is a large ratio of the dispersion strength (Abbe number) between the two materials. To make that doublet athermal, however, there needs to be an equally high ratio between the thermal coefficients. The large ratio of polymer to glass thermal coefficients presents a unique advantage for GRIN: the effective GRIN dispersion coefficient can have just as large a ratio to the glass as the thermal coefficients, making for a powerful athermal achromat. To our knowledge, this is the first example of a polymer GRIN used for simultaneous chromatic and thermal correction.

  1. Ecological assessment of nano-enabled supercapacitors for automotive applications

    NASA Astrophysics Data System (ADS)

    Weil, M.; Dura, H.; Shimon, B.; Baumann, M.; Zimmermann, B.; Ziemann, S.; Lei, C.; Markoulidis, F.; Lekakou, T.; Decker, M.

    2012-09-01

    New materials on nano scale have the potential to overcome existing technical barriers and are one of the most promising key technologies to enable the decoupling of economic growth and resource consumption. Developing these innovative materials for industrial applications means facing a complex quality profile, which includes among others technical, economic, and ecological aspects. So far the two latter aspects are not sufficiently included in technology development, especially from a life cycle point of view. Supercapacitors are considered a promising option for electric energy storage in hybrid and full electric cars. In comparison with presently used lithium based electro chemical storage systems supercapacitors possess a high specific power, but a relatively low specific energy. Therefore, the goal of ongoing research is to develop a new generation of supercapacitors with high specific power and high specific energy. To reach this goal particularly nano materials are developed and tested on cell level. In the presented study the ecological implications (regarding known environmental effects) of carbon based nano materials are analysed using Life Cycle Assessment (LCA). Major attention is paid to efficiency gains of nano particle production due to scaling up of such processes from laboratory to industrial production scales. Furthermore, a developed approach will be displayed, how to assess the environmental impact of nano materials on an automotive system level over the whole life cycle.

  2. Multispectral tissue analysis and classification towards enabling automated robotic surgery

    NASA Astrophysics Data System (ADS)

    Triana, Brian; Cha, Jaepyeong; Shademan, Azad; Krieger, Axel; Kang, Jin U.; Kim, Peter C. W.

    2014-02-01

    Accurate optical characterization of different tissue types is an important tool for potentially guiding surgeons and enabling automated robotic surgery. Multispectral imaging and analysis have been used in the literature to detect spectral variations in tissue reflectance that may be visible to the naked eye. Using this technique, hidden structures can be visualized and analyzed for effective tissue classification. Here, we investigated the feasibility of automated tissue classification using multispectral tissue analysis. Broadband reflectance spectra (200-1050 nm) were collected from nine different ex vivo porcine tissues types using an optical fiber-probe based spectrometer system. We created a mathematical model to train and distinguish different tissue types based upon analysis of the observed spectra using total principal component regression (TPCR). Compared to other reported methods, our technique is computationally inexpensive and suitable for real-time implementation. Each of the 92 spectra was cross-referenced against the nine tissue types. Preliminary results show a mean detection rate of 91.3%, with detection rates of 100% and 70.0% (inner and outer kidney), 100% and 100% (inner and outer liver), 100% (outer stomach), and 90.9%, 100%, 70.0%, 85.7% (four different inner stomach areas, respectively). We conclude that automated tissue differentiation using our multispectral tissue analysis method is feasible in multiple ex vivo tissue specimens. Although measurements were performed using ex vivo tissues, these results suggest that real-time, in vivo tissue identification during surgery may be possible.

  3. Self discovery enables robot social cognition: are you my teacher?

    PubMed

    Kaipa, Krishnanand N; Bongard, Josh C; Meltzoff, Andrew N

    2010-01-01

    Infants exploit the perception that others are 'like me' to bootstrap social cognition (Meltzoff, 2007a). This paper demonstrates how the above theory can be instantiated in a social robot that uses itself as a model to recognize structural similarities with other robots; this thereby enables the student to distinguish between appropriate and inappropriate teachers. This is accomplished by the student robot first performing self-discovery, a phase in which it uses actuation-perception relationships to infer its own structure. Second, the student models a candidate teacher using a vision-based active learning approach to create an approximate physical simulation of the teacher. Third, the student determines that the teacher is structurally similar (but not necessarily visually similar) to itself if it can find a neural controller that allows its self model (created in the first phase) to reproduce the perceived motion of the teacher model (created in the second phase). Fourth, the student uses the neural controller (created in the third phase) to move, resulting in imitation of the teacher. Results with a physical student robot and two physical robot teachers demonstrate the effectiveness of this approach. The generalizability of the proposed model allows it to be used over variations in the demonstrator: The student robot would still be able to imitate teachers of different sizes and at different distances from itself, as well as different positions in its field of view, because change in the interrelations of the teacher's body parts are used for imitation, rather than absolute geometric properties.

  4. Anatomy drawing screencasts: enabling flexible learning for medical students.

    PubMed

    Pickering, James D

    2015-01-01

    The traditional lecture remains an essential method of disseminating information to medical students. However, due to the constant development of the modern medical curriculum many institutions are embracing novel means for delivering the core anatomy syllabus. Using mobile media devices is one such way, enabling students to access core material at a time and place that suits their specific learning style. This study has examined the effect of five anatomy drawing screencasts that replicate the popular anatomy drawing element of a lecture. These resources were uploaded to the University's Virtual Learning Environment for student access. Usage data and an end of module questionnaire were used to assess the impact of the screencasts on student education. The data revealed a high level of usage that varied in both the time of day and day of the week, with the number of downloads dramatically increasing towards the end of the module when the assessment was approaching. The student group found the additional resources extremely useful in consolidating information and revision, with many commenting on their preference to the screencasts compared to the more traditional approaches to learning. Scrutinizing the screencasts in relation to cognitive load theory and the cognitive theory of multimedia learning indicates a high correlation with an evidence-based approach to designing learning resources. Overall the screencasts have been a well-received enhancement that supports the student learning and has been shown to promote flexible learning.

  5. Enabling Technologies for Scalable Trapped Ion Quantum Computing

    NASA Astrophysics Data System (ADS)

    Crain, Stephen; Gaultney, Daniel; Mount, Emily; Knoernschild, Caleb; Baek, Soyoung; Maunz, Peter; Kim, Jungsang

    2013-05-01

    Scalability is one of the main challenges of trapped ion based quantum computation, mainly limited by the lack of enabling technologies needed to trap, manipulate and process the increasing number of qubits. Microelectromechanical systems (MEMS) technology allows one to design movable micromirrors to focus laser beams on individual ions in a chain and steer the focal point in two dimensions. Our current MEMS system is designed to steer 355 nm pulsed laser beams to carry out logic gates on a chain of Yb ions with a waist of 1.5 μm across a 20 μm range. In order to read the state of the qubit chain we developed a 32-channel PMT with a custom read-out circuit operating near the thermal noise limit of the readout amplifier which increases state detection fidelity. We also developed a set of digital to analog converters (DACs) used to supply analog DC voltages to the electrodes of an ion trap. We designed asynchronous DACs to avoid added noise injection at the update rate commonly found in synchronous DACs. Effective noise filtering is expected to reduce the heating rate of a surface trap, thus improving multi-qubit logic gate fidelities. Our DAC system features 96 channels and an integrated FPGA that allows the system to be controlled in real time. This work was supported by IARPA/ARO.

  6. How youth-serving organizations enable acquaintance molesters.

    PubMed

    Boyle, Patrick

    2014-10-01

    In recent years, some of the country's most prominent institutions have been ensnared in child sex abuse scandals. While each abuse incident features its own particular circumstances, institutions that have been the subject of these scandals have displayed similar patterns of organizational behavior that allowed molesting to occur and molesters to escape accountability. We can learn from those patterns to better understand and combat acquaintance molestation in youth-serving organizations. Although sex abuse is an inherent risk in youth work, American youth-serving organizations have responded to this risk largely on a case-by-case basis after abuse incidents have been revealed, rather than through proactive strategies to reduce the risk of abuse and to respond effectively to allegations. An examination of abuse scandals reveals common patterns of behavior among paid and volunteer staff in organizations that did not enact comprehensive, proactive strategies: Faith in the organiation blinded staff to the liklihood of abuse; organizations kept workers ignorant about the extent of the abuse problem; when abuse accusations arose, staff gave the benefit of the doubt to the adult; when abuse accusations were confirmed, staffers did not know how to respond; and not knowing how to resopnd, staff prioritized the protection of the organization. As a result, child molesters have been falsely exonerated or not held accountable, abused children have been disbelieved, and abuse has continued. These organizations inadvertently achieved the opposite of their missions: They enabled child molesters at the expense of children. PMID:24860082

  7. Bayesian Genomic-Enabled Prediction as an Inverse Problem

    PubMed Central

    Cuevas, Jaime; Pérez-Elizalde, Sergio; Soberanis, Victor; Pérez-Rodríguez, Paulino; Gianola, Daniel; Crossa, José

    2014-01-01

    Genomic-enabled prediction in plant and animal breeding has become an active area of research. Many prediction models address the collinearity that arises when the number (p) of molecular markers (e.g. single-nucleotide polymorphisms) is larger than the sample size (n). Here we propose four Bayesian approaches to the problem based on commonly used data reduction methods. Specifically, we use a Gaussian linear model for an orthogonal transformation of both the observed data and the matrix of molecular markers. Because shrinkage of estimates is affected by the prior variance of transformed effects, we propose four structures of the prior variance as a way of potentially increasing the prediction accuracy of the models fitted. To evaluate our methods, maize and wheat data previously used with standard Bayesian regression models were employed for measuring prediction accuracy using the proposed models. Results indicate that, for the maize and wheat data sets, our Bayesian models yielded, on average, a prediction accuracy that is 3% greater than that of standard Bayesian regression models, with less computational effort. PMID:25155273

  8. Online Monitoring to Enable Improved Diagnostics, Prognostics and Maintenance

    SciTech Connect

    Bond, Leonard J.

    2011-02-01

    For both existing and new plant designs there are increasing opportunities and needs for the application of advanced online surveillance, diagnostic and prognostic techniques. These methods can continuously monitor and assess the health of nuclear power plant systems and components. The added effectiveness of such programs has the potential to enable holistic plant management, and minimize exposure to future and unknown risks. The 'NDE & On-line Monitoring' activities within the Advanced Instrumentation, Information and Control Systems (II&CS) Pathway are developing R&D to establish advanced condition monitoring and prognostics technologies to understand and predict future phenomena, derived from plant aging in systems, structures, and components (SSC). This research includes utilization of the enhanced functionality and system condition awareness that becomes available through the application of digital technologies at existing nuclear power plants for online monitoring and prognostics. The current state-of-the-art for on-line monitoring applied to active components (eg pumps, valves, motors) and passive structure (eg core internals, primary piping, pressure vessel, concrete, cables, buried pipes) is being reviewed. This includes looking at the current deployment of systems that monitor reactor noise, acoustic signals and vibration in various forms, leak monitoring, and now increasingly condition-based maintenance (CBM) for active components. The NDE and on-line monitoring projects are designed to look beyond locally monitored CBM. Current trends include centralized plant monitoring of SSC, potential fleet-based CBM and technology that will enable operation and maintenance to be performed with limited on-site staff. Attention is also moving to systems that use online monitoring to permit longer term operation (LTO), including a prognostic or predictive element that estimates a remaining useful life (RUL). Many, if not all, active components (pumps, valves, motors

  9. Ultrafast disk technology enables next generation micromachining laser sources

    NASA Astrophysics Data System (ADS)

    Heckl, Oliver H.; Weiler, Sascha; Luzius, Severin; Zawischa, Ivo; Sutter, Dirk

    2013-02-01

    Ultrashort pulsed lasers based on thin disk technology have entered the 100 W regime and deliver several tens of MW peak power without chirped pulse amplification. Highest uptime and insensitivity to back reflections make them ideal tools for efficient and cost effective industrial micromachining. Frequency converted versions allow the processing of a large variety of materials. On one hand, thin disk oscillators deliver more than 30 MW peak power directly out of the resonator in laboratory setups. These peak power levels are made possible by recent progress in the scaling of the pulse energy in excess of 40 μJ. At the corresponding high peak intensity, thin disk technology profits from the limited amount of material and hence the manageable nonlinearity within the resonator. Using new broadband host materials like for example the sesquioxides will eventually reduce the pulse duration during high power operation and further increase the peak power. On the other hand industry grade amplifier systems deliver even higher peak power levels. At closed-loop controlled 100W, the TruMicro Series 5000 currently offers the highest average ultrafast power in an industry proven product, and enables efficient micromachining of almost any material, in particular of glasses, ceramics or sapphire. Conventional laser cutting of these materials often requires UV laser sources with pulse durations of several nanoseconds and an average power in the 10 W range. Material processing based on high peak power laser sources makes use of multi-photon absorption processes. This highly nonlinear absorption enables micromachining driven by the fundamental (1030 nm) or frequency doubled (515 nm) wavelength of Yb:YAG. Operation in the IR or green spectral range reduces the complexity and running costs of industrial systems initially based on UV light sources. Where UV wavelength is required, the TruMicro 5360 with a specified UV crystal life-time of more than 10 thousand hours of continues

  10. A data management system to enable urgent natural disaster computing

    NASA Astrophysics Data System (ADS)

    Leong, Siew Hoon; Kranzlmüller, Dieter; Frank, Anton

    2014-05-01

    Civil protection, in particular natural disaster management, is very important to most nations and civilians in the world. When disasters like flash floods, earthquakes and tsunamis are expected or have taken place, it is of utmost importance to make timely decisions for managing the affected areas and reduce casualties. Computer simulations can generate information and provide predictions to facilitate this decision making process. Getting the data to the required resources is a critical requirement to enable the timely computation of the predictions. An urgent data management system to support natural disaster computing is thus necessary to effectively carry out data activities within a stipulated deadline. Since the trigger of a natural disaster is usually unpredictable, it is not always possible to prepare required resources well in advance. As such, an urgent data management system for natural disaster computing has to be able to work with any type of resources. Additional requirements include the need to manage deadlines and huge volume of data, fault tolerance, reliable, flexibility to changes, ease of usage, etc. The proposed data management platform includes a service manager to provide a uniform and extensible interface for the supported data protocols, a configuration manager to check and retrieve configurations of available resources, a scheduler manager to ensure that the deadlines can be met, a fault tolerance manager to increase the reliability of the platform and a data manager to initiate and perform the data activities. These managers will enable the selection of the most appropriate resource, transfer protocol, etc. such that the hard deadline of an urgent computation can be met for a particular urgent activity, e.g. data staging or computation. We associated 2 types of deadlines [2] with an urgent computing system. Soft-hard deadline: Missing a soft-firm deadline will render the computation less useful resulting in a cost that can have severe

  11. An IT-enabled supply chain model: a simulation study

    NASA Astrophysics Data System (ADS)

    Cannella, Salvatore; Framinan, Jose M.; Barbosa-Póvoa, Ana

    2014-11-01

    During the last decades, supply chain collaboration practices and the underlying enabling technologies have evolved from the classical electronic data interchange (EDI) approach to a web-based and radio frequency identification (RFID)-enabled collaboration. In this field, most of the literature has focused on the study of optimal parameters for reducing the total cost of suppliers, by adopting operational research (OR) techniques. Herein we are interested in showing that the considered information technology (IT)-enabled structure is resilient, that is, it works well across a reasonably broad range of parameter settings. By adopting a methodological approach based on system dynamics, we study a multi-tier collaborative supply chain. Results show that the IT-enabled supply chain improves operational performance and customer service level. Nonetheless, benefits for geographically dispersed networks are of minor entity.

  12. The ISECG White Paper: Science Enabled by Human Exploration

    NASA Astrophysics Data System (ADS)

    Bussey, D. B. J.; Worms, J. C.; Schlutz, J.; Spiero, F.; Science Advisory Group

    2016-08-01

    The ISECG has asked the international science community to develop a science white paper that highlights science opportunities enabled by human exploration beyond low Earth orbit. Here we present the asteroid science, as described in the white paper.

  13. Utility Energy Services Contracts: Enabling Documents, May 2009 (Book)

    SciTech Connect

    Not Available

    2009-05-01

    Enabling Documents, delivered by the U.S. Department of Energy's Federal Energy Management Program (FEMP) to provide materials that clarify the authority for federal agencies to enter into utility energy services contracts (UESCs).

  14. Grid-enabled mammographic auditing and training system

    NASA Astrophysics Data System (ADS)

    Yap, M. H.; Gale, A. G.

    2008-03-01

    Effective use of new technologies to support healthcare initiatives is important and current research is moving towards implementing secure grid-enabled healthcare provision. In the UK, a large-scale collaborative research project (GIMI: Generic Infrastructures for Medical Informatics), which is concerned with the development of a secure IT infrastructure to support very widespread medical research across the country, is underway. In the UK, there are some 109 breast screening centers and a growing number of individuals (circa 650) nationally performing approximately 1.5 million screening examinations per year. At the same, there is a serious, and ongoing, national workforce issue in screening which has seen a loss of consultant mammographers and a growth in specially trained technologists and other non-radiologists. Thus there is a need to offer effective and efficient mammographic training so as to maintain high levels of screening skills. Consequently, a grid based system has been proposed which has the benefit of offering very large volumes of training cases that the mammographers can access anytime and anywhere. A database, spread geographically across three university systems, of screening cases is used as a test set of known cases. The GIMI mammography training system first audits these cases to ensure that they are appropriately described and annotated. Subsequently, the cases are utilized for training in a grid-based system which has been developed. This paper briefly reviews the background to the project and then details the ongoing research. In conclusion, we discuss the contributions, limitations, and future plans of such a grid based approach.

  15. Mechanical Engineering Design Project report: Enabler control systems

    NASA Technical Reports Server (NTRS)

    Cullen, Christian; Delvecchio, Dave; Scarborough, Alan; Havics, Andrew A.

    1992-01-01

    The Controls Group was assigned the responsibility for designing the Enabler's control system. The requirement for the design was that the control system must provide a simple user interface to control the boom articulation joints, chassis articulation joints, and the wheel drive. The system required controlling hydraulic motors on the Enabler by implementing 8-bit microprocessor boards. In addition, feedback to evaluate positions and velocities must be interfaced to provide the operator with confirmation as well as control.

  16. Supporting Pre-Service Teachers' Technology-Enabled Learning Design Thinking through Whole of Programme Transformation

    ERIC Educational Resources Information Center

    Bower, Matt; Highfield, Kate; Furney, Pam; Mowbray, Lee

    2013-01-01

    This paper explains a development and evaluation project aimed at transforming two pre-service teacher education programmes at Macquarie University to more effectively cultivate students' technology-enabled learning design thinking. The process of transformation was based upon an explicit and sustained focus on developing university academics'…

  17. Utilizing Fission Technology to Enable Rapid and Affordable Access to any Point in the Solar System

    NASA Technical Reports Server (NTRS)

    Houts, Mike; Bonometti, Joe; Morton, Jeff; Hrbud, Ivana; Bitteker, Leo; VanDyke, Melissa; Godfroy, T.; Pedersen, K.; Dobson, C.; Patton, B.; Martin, J.; Chakrabarti, S.

    2000-01-01

    Fission technology can enable rapid, affordable access to any point in the solar system. Potential fission-based transportation options include bimodal nuclear thermal rockets, high specific energy propulsion systems, and pulsed fission propulsion systems. In-space propellant re-supply enhances the effective performance of all systems, but requires significant infrastructure development. Safe, timely, affordable utilization of first-generation space fission propulsion systems will enable the development of more advanced systems. First generation systems can build on over 45 years of US and international space fission system technology development to minimize cost.

  18. Enabling patient-centered care through health information technology.

    PubMed Central

    Finkelstein, Joseph; Knight, Amy; Marinopoulos, Spyridon; Gibbons, M Christopher; Berger, Zackary; Aboumatar, Hanan; Wilson, Renee F; Lau, Brandyn D; Sharma, Ritu; Bass, Eric B

    2012-01-01

    OBJECTIVES The main objective of the report is to review the evidence on the impact of health information technology (IT) that supports patient-centered care (PCC) on: health care processes; clinical outcomes; intermediate outcomes (patient or provider satisfaction, health knowledge and behavior, and cost); responsiveness to needs and preferences of patients; shared decisionmaking and patient-clinician communication; and access to information. Additional objectives were to identify barriers and facilitators for using health IT to deliver PCC, and to identify gaps in evidence and information needed by patients, providers, payers, and policymakers. DATA SOURCES MEDLINE®, Embase®, Cochrane Library, Scopus, Cumulative Index to Nursing and Allied Health Literature, PsycINFO, INSPEC, and Compendex databases through July 31, 2010. METHODS Paired members of our team reviewed citations to identify randomized controlled trials of PCC-related health IT interventions and studies that addressed barriers and facilitators for health IT for delivery of PCC. Independent assessors rated studies for quality. Paired reviewers abstracted data. RESULTS The search identified 327 eligible articles, including 184 articles on the impact of health IT applications implemented to support PCC and 206 articles addressing barriers or facilitators for such health IT applications. Sixty-three articles addressed both questions. The study results suggested positive effects of PCC-related health IT interventions on health care process outcomes, disease-specific clinical outcomes (for diabetes mellitus, heart disease, cancer, and other health conditions), intermediate outcomes, responsiveness to the needs and preferences of patients, shared decisionmaking, patient-clinician communication, and access to medical information. Studies reported a number of barriers and facilitators for using health IT applications to enable PCC. Barriers included: lack of usability; problems with access to the health IT

  19. What Enables Size-Selective Trophy Hunting of Wildlife?

    PubMed Central

    2014-01-01

    Although rarely considered predators, wildlife hunters can function as important ecological and evolutionary agents. In part, their influence relates to targeting of large reproductive adults within prey populations. Despite known impacts of size-selective harvests, however, we know little about what enables hunters to kill these older, rarer, and presumably more wary individuals. In other mammalian predators, predatory performance varies with knowledge and physical condition, which accumulates and declines, respectively, with age. Moreover, some species evolved camouflage as a physical trait to aid in predatory performance. In this work, we tested whether knowledge-based faculty (use of a hunting guide with accumulated experience in specific areas), physical traits (relative body mass [RBM] and camouflage clothing), and age can predict predatory performance. We measured performance as do many hunters: size of killed cervid prey, using the number of antler tines as a proxy. Examining ∼4300 online photographs of hunters posing with carcasses, we found that only the presence of guides increased the odds of killing larger prey. Accounting for this effect, modest evidence suggested that unguided hunters presumably handicapped with the highest RBM actually had greater odds of killing large prey. There was no association with hunter age, perhaps because of our coarse measure (presence of grey hair) and the performance trade-offs between knowledge accumulation and physical deterioration with age. Despite its prevalence among sampled hunters (80%), camouflage had no influence on size of killed prey. Should these patterns be representative of other areas and prey, and our interpretations correct, evolutionarily-enlightened harvest management might benefit from regulatory scrutiny on guided hunting. More broadly, we suggest that by being nutritionally and demographically de-coupled from prey and aided by efficient killing technology and road access, wildlife hunters in the

  20. Characterization of Macrolesions Induced by Myocardial Cavitation-Enabled Therapy

    PubMed Central

    Zhu, Yiying I.; Miller, Douglas L.; Dou, Chunyan

    2015-01-01

    Intermittent high intensity ultrasound pulses with circulating contrast agent microbubbles can induce scattered cavitation myocardial microlesions of potential value for tissue reduction therapy. Here, computer-aided histological evaluation of the effective treated volume was implemented to optimize ultrasound pulse parameters, exposure duration, and contrast agent dose. Rats were treated with 1.5 MHz focused ultrasound bursts and Evans blue staining indicates lethal cardiomyocytic injury. Each heart was sectioned to provide samples covering the entire exposed myocardial volume. Both brightfield and fluorescence images were taken for up to 40 tissue sections. Tissue identification and microlesion detection were first done based on 2D images to form microlesion masks containing the outline of the heart and the stained cell regions. Image registration was then performed on the microlesion masks to reconstruct a volume-based model according to the morphology of the heart. The therapeutic beam path was estimated from the 3D stacked microlesions, and finally the total microlesion volume, here termed macrolesion, was characterized along the therapeutic beam axis. Radially symmetric fractional macrolesions were characterized via stepping disks of variable radius determined by the local distribution of microlesions. Treated groups showed significant macrolesions of a median volume of 87.3 μL, 2.7 mm radius, 4.8 mm length, and 14.0% lesion density compared to zero radius, length, and lesion density for sham. The proposed radially symmetric lesion model is a robust evaluation for Myocardial Contrast Enabled Therapy (MCET). Future work will include validating the proposed method with varying acoustic exposures and optimizing involved parameters to provide macrolesion characterization. PMID:25347871

  1. Does Deuterium Enable the Formation of Primordial Brown Dwarfs?

    PubMed

    Uehara; Inutsuka

    2000-03-10

    We investigate thermal and dynamical evolution of a primordial gas cloud with an updated deuterium chemistry. We consider a fragment of a postshock-cooled sheet that is expected to form by collapse of a massive cloud ( greater, similar108 M middle dot in circle) and by blast waves due to supernova explosions. At first we investigate molecule formation in a primordial shock. We show that almost all deuterium can be converted to HD within the age of the universe at the collapsed redshift in the case of a cloud that has a virial temperature of approximately 106 K and collapses at z>1. When the postshock sheet fragments owing to gravitational instability, the fractional H2 and HD abundances become approximately 10-2 and approximately 10-5, respectively, which are 103-104 times higher than the result of molecule formation in the expanding universe after recombination. To study the subsequent evolution of a fragment, we performed one-dimensional simulations of a spherical/cylindrical cloud, of which initial conditions (e.g., fractional abundances of chemical composition, temperature) are derived from the result of the shock. It is found that, in case of a cylindrical collapse, the cooling by HD molecules keeps the temperature of the cloud less than 100 K and the cloud evolves almost isothermally. When the cloud becomes optically thick to the HD line emission ( approximately 1010 cm-3) and the gravitational fragmentation of the cylindrical cloud becomes effective, the Jeans mass becomes comparable to 0.1 M middle dot in circle. This series of processes enables the formation of primordial low-mass stars, and possibly brown dwarfs, in primordial gas clouds.

  2. Does Deuterium Enable the Formation of Primordial Brown Dwarfs?

    PubMed

    Uehara; Inutsuka

    2000-03-10

    We investigate thermal and dynamical evolution of a primordial gas cloud with an updated deuterium chemistry. We consider a fragment of a postshock-cooled sheet that is expected to form by collapse of a massive cloud ( greater, similar108 M middle dot in circle) and by blast waves due to supernova explosions. At first we investigate molecule formation in a primordial shock. We show that almost all deuterium can be converted to HD within the age of the universe at the collapsed redshift in the case of a cloud that has a virial temperature of approximately 106 K and collapses at z>1. When the postshock sheet fragments owing to gravitational instability, the fractional H2 and HD abundances become approximately 10-2 and approximately 10-5, respectively, which are 103-104 times higher than the result of molecule formation in the expanding universe after recombination. To study the subsequent evolution of a fragment, we performed one-dimensional simulations of a spherical/cylindrical cloud, of which initial conditions (e.g., fractional abundances of chemical composition, temperature) are derived from the result of the shock. It is found that, in case of a cylindrical collapse, the cooling by HD molecules keeps the temperature of the cloud less than 100 K and the cloud evolves almost isothermally. When the cloud becomes optically thick to the HD line emission ( approximately 1010 cm-3) and the gravitational fragmentation of the cylindrical cloud becomes effective, the Jeans mass becomes comparable to 0.1 M middle dot in circle. This series of processes enables the formation of primordial low-mass stars, and possibly brown dwarfs, in primordial gas clouds. PMID:10688760

  3. Distinguishing between causes and enabling conditions-through mental models or linguistic cues?

    PubMed

    Kuhnmünch, Gregory; Beller, Sieghard

    2005-11-12

    The mental model theory of naive causal understanding and reasoning (Goldvarg & Johnson-Laird, 2001, Cognitive Science, 25, 565-610) claims that people distinguish between causes and enabling conditions on the basis of sets of models that represent possible causal situations. In the tasks used to test this hypothesis, however, the proposed set of models was confounded with linguistic cues that frame which event to assume as given (the enabling condition) and which to consider as responsible for the effect under this assumption (the cause). By disentangling these two factors, we were able to show that when identifying causes and enabling conditions in these tasks, people rely strongly on the linguistic cues but not on the proposed set of models and that this set of models does not even reflect people's typical interpretation of the tasks. We propose an alternative explanation that integrates syntactic and causal considerations.

  4. A federated semantic metadata registry framework for enabling interoperability across clinical research and care domains.

    PubMed

    Sinaci, A Anil; Laleci Erturkmen, Gokce B

    2013-10-01

    In order to enable secondary use of Electronic Health Records (EHRs) by bridging the interoperability gap between clinical care and research domains, in this paper, a unified methodology and the supporting framework is introduced which brings together the power of metadata registries (MDR) and semantic web technologies. We introduce a federated semantic metadata registry framework by extending the ISO/IEC 11179 standard, and enable integration of data element registries through Linked Open Data (LOD) principles where each Common Data Element (CDE) can be uniquely referenced, queried and processed to enable the syntactic and semantic interoperability. Each CDE and their components are maintained as LOD resources enabling semantic links with other CDEs, terminology systems and with implementation dependent content models; hence facilitating semantic search, much effective reuse and semantic interoperability across different application domains. There are several important efforts addressing the semantic interoperability in healthcare domain such as IHE DEX profile proposal, CDISC SHARE and CDISC2RDF. Our architecture complements these by providing a framework to interlink existing data element registries and repositories for multiplying their potential for semantic interoperability to a greater extent. Open source implementation of the federated semantic MDR framework presented in this paper is the core of the semantic interoperability layer of the SALUS project which enables the execution of the post marketing safety analysis studies on top of existing EHR systems. PMID:23751263

  5. A federated semantic metadata registry framework for enabling interoperability across clinical research and care domains.

    PubMed

    Sinaci, A Anil; Laleci Erturkmen, Gokce B

    2013-10-01

    In order to enable secondary use of Electronic Health Records (EHRs) by bridging the interoperability gap between clinical care and research domains, in this paper, a unified methodology and the supporting framework is introduced which brings together the power of metadata registries (MDR) and semantic web technologies. We introduce a federated semantic metadata registry framework by extending the ISO/IEC 11179 standard, and enable integration of data element registries through Linked Open Data (LOD) principles where each Common Data Element (CDE) can be uniquely referenced, queried and processed to enable the syntactic and semantic interoperability. Each CDE and their components are maintained as LOD resources enabling semantic links with other CDEs, terminology systems and with implementation dependent content models; hence facilitating semantic search, much effective reuse and semantic interoperability across different application domains. There are several important efforts addressing the semantic interoperability in healthcare domain such as IHE DEX profile proposal, CDISC SHARE and CDISC2RDF. Our architecture complements these by providing a framework to interlink existing data element registries and repositories for multiplying their potential for semantic interoperability to a greater extent. Open source implementation of the federated semantic MDR framework presented in this paper is the core of the semantic interoperability layer of the SALUS project which enables the execution of the post marketing safety analysis studies on top of existing EHR systems.

  6. Barriers and enablers that influence sustainable interprofessional education: a literature review.

    PubMed

    Lawlis, Tanya Rechael; Anson, Judith; Greenfield, David

    2014-07-01

    The effective incorporation of interprofessional education (IPE) within health professional curricula requires the synchronised and systematic collaboration between and within the various stakeholders. Higher education institutions, as primary health education providers, have the capacity to advocate and facilitate this collaboration. However, due to the diversity of stakeholders, facilitating the pedagogical change can be challenging and complex, and brings a degree of uncertainty and resistance. This review, through an analysis of the barriers and enablers investigates the involvement of stakeholders in higher education IPE through three primary stakeholder levels: Government and Professional, Institutional and Individual. A review of eight primary databases using 21 search terms resulted in 40 papers for review. While the barriers to IPE are widely reported within the higher education IPE literature, little is documented about the enablers of IPE. Similarly, the specific identification and importance of enablers for IPE sustainability and the dual nature of some barriers and enablers have not been previously reported. An analysis of the barriers and enablers of IPE across the different stakeholder levels reveals five key "fundamental elements" critical to achieving sustainable IPE in higher education curricula.

  7. How language enables abstraction: a study in computational cultural psychology.

    PubMed

    Neuman, Yair; Turney, Peter; Cohen, Yohai

    2012-06-01

    The idea that language mediates our thoughts and enables abstract cognition has been a key idea in socio-cultural psychology. However, it is not clear what mechanisms support this process of abstraction. Peirce argued that one mechanism by which language enables abstract thought is hypostatic abstraction, the process through which a predicate (e.g., dark) turns into an object (e.g., darkness). By using novel computational tools we tested Peirce's idea. Analysis of the data provides empirical support for Peirce's mechanism and evidence of the way the use of signs enables abstraction. These conclusions are supported by the in-depth analysis of two case studies concerning the abstraction of sweet and dark. The paper concludes by discussing the findings from a broad and integrative theoretical perspective and by pointing to computational cultural psychology as a promising perspective for addressing long-lasting questions of the field.

  8. Solar Sail Propulsion: Enabling New Capabilities for Heliophysics

    NASA Technical Reports Server (NTRS)

    Johnson, L.; Young, R.; Alhorn, D.; Heaton, A.; Vansant, T.; Campbell, B.; Pappa, R.; Keats, W.; Liewer, P. C.; Alexander, D.; Wawrzyniak, G.; Ayon, J.; Burton, R.; Carroll, D.; Matloff, G.; Kezerashvili, R. Ya.

    2010-01-01

    Solar sails can play a critical role in enabling solar and heliophysics missions. Solar sail technology within NASA is currently at 80% of TRL-6, suitable for an in-flight technology demonstration. It is conceivable that an initial demonstration could carry scientific payloads that, depending on the type of mission, are commensurate with the goals of the three study panels of the 2010 Heliophysics Survey. Follow-on solar sail missions, leveraging advances in solar sail technology to support Heliophysics Survey goals, would then be feasible. This white paper reports on a sampling of missions enabled by solar sails, the current state of the technology, and what funding is required to advance the current state of technology such that solar sails can enable these missions

  9. Integrated Control with Structural Feedback to Enable Lightweight Aircraft

    NASA Technical Reports Server (NTRS)

    Taylor, Brian R.

    2011-01-01

    This presentation for the Fundamental Aeronautics Program Technical Conference covers the benefits of active structural control, related research areas, and focuses on the use of optimal control allocation for the prevention of critical loads. Active control of lightweight structures has the potential to reduce aircraft weight and fuel burn. Sensor, control law, materials, control effector, and system level research will be necessary to enable active control of lightweight structures. Optimal control allocation with structural feedback has been shown in simulation to be feasible in preventing critical loads and is one example of a control law to enable future lightweight aircraft.

  10. Surgical Materials: Current Challenges and Nano-enabled Solutions

    PubMed Central

    Annabi, Nasim; Tamayol, Ali; Shin, Su Ryon; Ghaemmaghami, Amir M.; Peppas, Nicholas A.; Khademhosseini, Ali

    2014-01-01

    Surgical adhesive biomaterials have emerged as substitutes to sutures and staples in many clinical applications. Nano-enabled materials containing nanoparticles or having a distinct nanotopography have been utilized for generation of a new class of surgical materials with enhanced functionality. In this review, the state of the art in the development of conventional surgical adhesive biomaterials is critically reviewed and their shortcomings are outlined. Recent advancements in generation of nano-enabled surgical materials with their potential future applications are discussed. This review will open new avenues for the innovative development of the next generation of tissue adhesives, hemostats, and sealants with enhanced functionality for various surgical applications. PMID:25530795

  11. Fabric opto-electronics enabling healthcare applications; a case study.

    PubMed

    van Pieterson, L; van Abeelen, F A; van Os, K; Hornix, E; Zhou, G; Oversluizen, G

    2011-01-01

    Textiles are a ubiquitous part of human life. By combining them with electronics to create electronic textile systems, new application fields emerge. In this paper, technology and applications of light-emitting textile systems are presented, with emphasis on the healthcare domain: A fabric substrate is described for electronic textile with robust interwoven connections between the conductive yarns in it. This fabric enables the creation of different forms of comfortable light therapy systems. Specific challenges to enable this use in medical applications are discussed.

  12. A survey of enabling technologies in synthetic biology

    PubMed Central

    2013-01-01

    Background Realizing constructive applications of synthetic biology requires continued development of enabling technologies as well as policies and practices to ensure these technologies remain accessible for research. Broadly defined, enabling technologies for synthetic biology include any reagent or method that, alone or in combination with associated technologies, provides the means to generate any new research tool or application. Because applications of synthetic biology likely will embody multiple patented inventions, it will be important to create structures for managing intellectual property rights that best promote continued innovation. Monitoring the enabling technologies of synthetic biology will facilitate the systematic investigation of property rights coupled to these technologies and help shape policies and practices that impact the use, regulation, patenting, and licensing of these technologies. Results We conducted a survey among a self-identifying community of practitioners engaged in synthetic biology research to obtain their opinions and experiences with technologies that support the engineering of biological systems. Technologies widely used and considered enabling by survey participants included public and private registries of biological parts, standard methods for physical assembly of DNA constructs, genomic databases, software tools for search, alignment, analysis, and editing of DNA sequences, and commercial services for DNA synthesis and sequencing. Standards and methods supporting measurement, functional composition, and data exchange were less widely used though still considered enabling by a subset of survey participants. Conclusions The set of enabling technologies compiled from this survey provide insight into the many and varied technologies that support innovation in synthetic biology. Many of these technologies are widely accessible for use, either by virtue of being in the public domain or through legal tools such as non

  13. The Enabler: A concept for a lunar work vehicle

    NASA Technical Reports Server (NTRS)

    Brazell, James W.; Campbell, Craig; Kaser, Ken; Austin, James A.; Beard, Clark; Ceniza, Glenn; Hamby, Thomas; Robinson, Anne; Wooters, Dana

    1992-01-01

    The Enabler is an earthbound prototype designed to model an actual lunar work vehicle and is able to perform many of the tasks that might be expected of a lunar work vehicle. The vehicle will be constructed entirely from parts made by students and from standard stock parts. The design utilizes only four distinct chassis pieces and sixteen moving parts. The Enabler has non-orthogonal articulating joints that give the vehicle a wide range of mobility and reduce the total number of parts. Composite wheels provide the primary suspension system for the vehicle.

  14. Barriers and Enablers to Evidence-Based Practices

    ERIC Educational Resources Information Center

    Foster, Robyn

    2014-01-01

    The importance of educational practices based on evidence is well-supported in the literature, however barriers to their implementation in classrooms still exist. This paper examines the phenomenon of evidence-based practice in education highlighting enablers and barriers to their implementation with particular reference to RTLB practice.

  15. Enabling the BC Transfer System: A Discussion Paper

    ERIC Educational Resources Information Center

    British Columbia Council on Admissions and Transfer, 2011

    2011-01-01

    This discussion paper outlines processes, as well as opportunities and constraints, for "enabling" BC Transfer System institutions to enhance transfer credit information in the BC Transfer Guide, making it more reflective of institutional practices and student mobility. BCCAT's focus is increasing the availability of transfer credit information…

  16. An Enabling Pedagogy: Meditations on Writing and Disability.

    ERIC Educational Resources Information Center

    Brueggemann, Brenda Jo

    2001-01-01

    Proposes that disability theory can complement existing work in gender, sexuality, race, class, and genre. Argues that disability enables insight. Discusses representations of disability in literature and films. Outlines the author's experience of teaching a number of composition classes focusing on disabilities. (PM)

  17. Anatomy Drawing Screencasts: Enabling Flexible Learning for Medical Students

    ERIC Educational Resources Information Center

    Pickering, James D.

    2015-01-01

    The traditional lecture remains an essential method of disseminating information to medical students. However, due to the constant development of the modern medical curriculum many institutions are embracing novel means for delivering the core anatomy syllabus. Using mobile media devices is one such way, enabling students to access core material…

  18. Enabling Science and Technology Research Teams: A Breadmaking Metaphor

    ERIC Educational Resources Information Center

    Pennington, Deana

    2010-01-01

    Anyone who has been involved with a cross-disciplinary team that combines scientists and information technology specialists knows just how tough it can be to move these efforts forward. Decades of experience point to the transformative potential of technology-enabled science efforts, and the success stories offer hope for future efforts. But for…

  19. Fraternity as "Enabling Environment:" Does Membership Lead to Gambling Problems?

    ERIC Educational Resources Information Center

    Biddix, J. Patrick; Hardy, Thomas W.

    2008-01-01

    Researchers have suggested that fraternity membership is the most reliable predictor of gambling and gambling problems on campus. The purpose of this study was to determine if problematic gambling could be linked to specific aspects of fraternity membership. Though the null hypothesis (no enabling environment) failed to be rejected, descriptive…

  20. Key enablers to facilitate healthy behavior change: workshop summary.

    PubMed

    Teyhen, Deydre S; Aldag, Matt; Centola, Damon; Edinborough, Elton; Ghannadian, Jason D; Haught, Andrea; Jackson, Theresa; Kinn, Julie; Kunkler, Kevin J; Levine, Betty; Martindale, Valerie E; Neal, David; Snyder, Leslie B; Styn, Mindi A; Thorndike, Frances; Trabosh, Valerie; Parramore, David J

    2014-05-01

    The increases in preventable chronic diseases and the rising costs of health care are unsustainable. The US Army Surgeon General's vision to transition from a health care system to a system of health requires the identification of key health enablers to facilitate the adoption of healthy behaviors. In support of this vision, the US Army Telemedicine and Advanced Technology Research Center hosted a workshop in April 2013 titled "Incentives to Create and Sustain Change for Health." Members of government and academia participated to identify key health enablers that could ultimately be leveraged by technology. The key health enablers discussed included (1) public health messaging, (2) changing health habits and the environmental influence on health, (3) goal setting and tracking, (4) the role of incentives in behavior-change intervention, and (5) the role of peer and social networks on change. This report summarizes leading evidence and the group consensus on evidence-based practices with respect to the key enablers in creating healthy behavior change.

  1. Thrice Disabling Disability: Enabling Inclusive, Socially Just Teacher Education

    ERIC Educational Resources Information Center

    Thompson, S. Anthony

    2012-01-01

    The goal of this inquiry was to create a social justice-oriented inclusive and enabling pedagogy by situating traditional individualised views of disability alongside three alternative understandings: a disability studies in education perspective, a First Nations view of disability and one based upon the autism pride/autism-as-culture movement.…

  2. The Xenopus ORFeome: A resource that enables functional genomics

    PubMed Central

    Grant, Ian M.; Balcha, Dawit; Hao, Tong; Shen, Yun; Trivedi, Prasad; Patrushev, Ilya; Fortriede, Joshua D.; Karpinka, John B.; Liu, Limin; Zorn, Aaron M.; Stukenberg, P. Todd; Hill, David E.; Gilchrist, Michael J.

    2015-01-01

    Functional characterisation of proteins and large-scale, systems-level studies are enabled by extensive sets of cloned open reading frames (ORFs) in an easily-accessible format that enables many different applications. Here we report the release of the first stage of the Xenopus ORFeome, which contains 8673 ORFs from the Xenopus Gene Collection (XGC) for Xenopus laevis, cloned into a Gateway® donor vector enabling rapid in-frame transfer of the ORFs to expression vectors. This resource represents an estimated 7871 unique genes, approximately 40% of the non-redundant X. laevis gene complement, and includes 2724 genes where the human ortholog has an association with disease. Transfer into the Gateway system was validated by 5′ and 3′ end sequencing of the entire collection and protein expression of a set of test clones. In a parallel process, the underlying ORF predictions from the original XGC collection were re-analysed to verify quality and full-length status, identifying those proteins likely to exhibit truncations when translated. These data are integrated into Xenbase, the Xenopus community database, which associates genomic, expression, function and human disease model metadata to each ORF, enabling end-users to search for ORFeome clones with links to commercial distributors of the collection. When coupled with the experimental advantages of Xenopus eggs and embryos, the ORFeome collection represents a valuable resource for functional genomics and disease modelling. PMID:26391338

  3. Mission Possible: Enabling Good Work in Higher Education.

    ERIC Educational Resources Information Center

    Berg, Gary A.; Csikszentmihalyi, Mihaly; Nakamura, Jeanne

    2003-01-01

    Considers how institutions can define and refine their missions so that they enable productive work in times of change. Presents a systems model of what it takes to do good work in any context. Current studies are addressing the application of this model to excellent, ethical, and personally rewarding work in academia. (SLD)

  4. Integrated Children's Services: Enablers, Challenges and Impact. Research Briefing

    ERIC Educational Resources Information Center

    Robinson, Mark; Atkinson, Mary; Downing, Dick

    2008-01-01

    This summary provides background information about the enablers, challenges and impact of integration, based on a thorough literature review of thirty-five sources. The review findings are presented under thematic headings that reflect the: (1) extent of integration: the "stage" or depth of the collaborative activity in integrated services; (2)…

  5. Explorations of Psyche and Callisto Enabled by Ion Propulsion

    NASA Technical Reports Server (NTRS)

    Wenkert, Daniel D.; Landau, Damon F.; Bills, Bruce G.; Elkins-Tanton, Linda T.

    2013-01-01

    Recent developments in ion propulsion (specifically solar electric propulsion - SEP) have the potential for dramatically reducing the transportation cost of planetary missions. We examine two representative cases, where these new developments enable missions which, until recently, would have required resouces well beyond those allocated to the Discovery program. The two cases of interest address differentiation of asteroids and large icy satellites

  6. QTIMaps: A Model to Enable Web Maps in Assessment

    ERIC Educational Resources Information Center

    Navarrete, Toni; Santos, Patricia; Hernandez-Leo, Davinia; Blat, Josep

    2011-01-01

    Test-based e-Assessment approaches are mostly focused on the assessment of knowledge and not on that of other skills, which could be supported by multimedia interactive services. This paper presents the QTIMaps model, which combines the IMS QTI standard with web maps services enabling the computational assessment of geographical skills. We…

  7. Interactive BIM-Enabled Safety Training Piloted in Construction Education

    ERIC Educational Resources Information Center

    Clevenger, Caroline; Lopez del Puerto, Carla; Glick, Scott

    2015-01-01

    This paper documents and assesses the development of a construction safety training module featuring interactive, BIM-enabled, 3D visualizations to test if such a tool can enhance safety training related to scaffolds. This research documents the technical challenges and the lessons learned through the development and administration of a prototype…

  8. Mechanical Design Engineering Enabler Project wheel and wheel drives

    NASA Technical Reports Server (NTRS)

    Nutt, Richard E.; Couch, Britt K.; Holley, John L., Jr.; Garris, Eric S.; Staut, Paul V.

    1992-01-01

    Our group was assigned the responsibility of designing the wheel and wheel drive system for a proof-of-concept model of the lunar-based ENABLER. ENABLER is a multi-purpose, six wheeled vehicle designed to lift and transport heavy objects associated with the construction of a lunar base. The resulting design was based on the performance criteria of the ENABLER. The drive system was designed to enable the vehicle to achieve a speed of 7 mph on a level surface, climb a 30 percent grade, and surpass a one meter high object and one meter wide crevice. The wheel assemblies were designed to support the entire weight of the vehicle on two wheels. The wheels were designed to serve as the main component of the vehicle's suspension and will provide suitable traction for lunar-type surfaces. The expected performance of the drive system for the ENABLER was influenced by many mechanical factors. The expected top speed on a level sandy surface is 4 mph instead of the desired 7 mph. This is due to a lack of necessary power at the wheels. The lack of power resulted from dimension considerations that allowed only an eight horsepower engine and also from mechanical inefficiencies of the hydraulic system. However, the vehicle will be able to climb a 30 percent grade, surpass a one meter high object and one meter wide crevice. The wheel assemblies will be able to support the entire weight of the vehicle on two wheels. The wheels will also provide adequate suspension for the vehicle and sufficient traction for lunar-type surfaces.

  9. NASA's Space Launch System: An Enabling Capability for Discovery

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.

    2014-01-01

    The National Aeronautics and Space Administration's (NASA's) Space Launch System (SLS) Program, managed at the Marshall Space Flight Center, is making progress toward delivering a new capability for human spaceflight and scientific missions beyond Earth orbit. Developed with the goals of safety, affordability, and sustainability in mind, the SLS rocket will launch the Orion Multi-Purpose Crew Vehicle (MPCV), equipment, supplies, and major science missions for exploration and discovery. Making its first uncrewed test flight in 2017 and its first crewed flight in 2021, the SLS will evolve into the most powerful launch vehicle ever flown, capable of supporting human missions into deep space and to Mars. This paper will summarize the planned capabilities of the vehicle, the progress the SLS Program has made in the years since the Agency formally announced its architecture in September 2011, and the path the program is following to reach the launch pad in 2017 and then to evolve the 70 metric ton (t) initial lift capability to 130 t lift capability. The paper will outline the milestones the program has already reached, from developmental milestones such as the manufacture of the first flight hardware and recordbreaking engine testing, to life-cycle milestones such as the vehicle's Preliminary Design Review in the summer of 2013. The paper will also discuss the remaining challenges in both delivering the 70 t vehicle and in evolving its capabilities to the 130 t vehicle, and how the program plans to accomplish these goals. In addition, this paper will demonstrate how the Space Launch System is being designed to enable or enhance not only human exploration missions, but robotic scientific missions as well. Because of its unique launch capabilities, SLS will support simplifying spacecraft complexity, provide improved mass margins and radiation mitigation, and reduce mission durations. These capabilities offer attractive advantages for ambitious science missions by reducing

  10. Enabling Technologies for Direct Detection Optical Phase Modulation Formats

    NASA Astrophysics Data System (ADS)

    Xu, Xian

    Phase modulation formats are believed to be one of the key enabling techniques for next generation high speed long haul fiber-optic communication systems due to the following main advantages: (1) with a balanced detection, a better receiver sensitivity over conventional intensity modulation formats, e.g., a ˜3-dB sensitivity improvement using differential phase shift keying (DPSK) and a ˜1.3-dB sensitivity improvement using differential quadrature phase shift keying (DQPSK); (2) excellent robustness against fiber nonlinearities; (3) high spectrum efficiency when using multilevel phase modulation formats, such as DQPSK. As the information is encoded in the phase of the optical field, the phase modulation formats are sensitive to the phase-related impairments and the deterioration induced in the phase-intensity conversion. This consequently creates new challenging issues. The research objective of this thesis is to depict some of the challenging issues and provide possible solutions. The first challenge is the cross-phase modulation (XPM) penalty for the phase modulated channels co-propagating with the intensity modulated channels. The penalty comes from the pattern dependent intensity fluctuations of the neighboring intensity modulated channels being converted into phase noise in the phase modulation channels. We propose a model to theoretically analyze the XPM penalty dependence on the walk off effect. From this model, we suggest that using fibers with large local dispersion or intentionally introducing some residual dispersion per span would help mitigate the XPM penalty. The second challenge is the polarization dependent frequency shift (PDf) induced penalty during the phase-intensity conversion. The direct detection DPSK is usually demodulated in a Mach-Zehnder delay interferometer (DI). The polarization dependence of DI introduces a PDf causing a frequency offset between the laser's frequency and the transmissivity peak of DI, degrading the demodulated DPSK

  11. Enabling conformity to international standards within SeaDataNet

    NASA Astrophysics Data System (ADS)

    Schaap, Dick M. A.; Boldrini, Enrico; de Korte, Arjen; Santoro, Mattia; Manzella, Giuseppe; Nativi, Stefano

    2010-05-01

    SeaDataNet objective is to construct a standardized system for managing the large and diverse data sets collected by the oceanographic fleets and the new automatic observation systems. The aim is to network and enhance the currently existing infrastructures, which are the national oceanographic data centres and satellite data centres of 36 countries, active in data collection. The networking of these professional data centres, in a unique virtual data management system will provide integrated data sets of standardized quality on-line. The Common Data Index (CDI) is the middleware service adopted by SeaDataNet for discovery and access of the available data. In order to develop an interoperable and effective system, the use of international de facto and de jure standards is required. In particular the new goal object of this presentation is to introduce and discuss the solutions for making SeaDataNet compliant with the European Union (EU) INSPIRE directive and in particular with its Implementing Rules (IR). The European INSPIRE directive aims to rule the creation of an European Spatial Data Infrastructure (ESDI). This will enable the sharing of environmental spatial information among public sector organisations and better facilitate public access to spatial information across Europe. To ensure that the spatial data infrastructures of the European Member States are compatible and usable in a community and transboundary context, the directive requires that common IRs are adopted in a number of specific areas (Metadata, Data Specifications, Network Services, Data and Service Sharing and Monitoring and Reporting). Often the use of already approved digital geographic information standards is mandated, drawing from international organizations like the Open Geospatial Consortium (OGC) and the International Organization for Standardization (ISO), the latter by means of its Technical Committee 211 (ISO/TC 211). In the context of geographic data discovery a set of mandatory

  12. Using high-performance networks to enable computational aerosciences applications

    NASA Technical Reports Server (NTRS)

    Johnson, Marjory J.

    1992-01-01

    One component of the U.S. Federal High Performance Computing and Communications Program (HPCCP) is the establishment of a gigabit network to provide a communications infrastructure for researchers across the nation. This gigabit network will provide new services and capabilities, in addition to increased bandwidth, to enable future applications. An understanding of these applications is necessary to guide the development of the gigabit network and other high-performance networks of the future. In this paper we focus on computational aerosciences applications run remotely using the Numerical Aerodynamic Simulation (NAS) facility located at NASA Ames Research Center. We characterize these applications in terms of network-related parameters and relate user experiences that reveal limitations imposed by the current wide-area networking infrastructure. Then we investigate how the development of a nationwide gigabit network would enable users of the NAS facility to work in new, more productive ways.

  13. SciDAC Visualization and Analytics Center for Enabling Technologies

    SciTech Connect

    Joy, Kenneth I.

    2014-09-14

    This project focuses on leveraging scientific visualization and analytics software technology as an enabling technology for increasing scientific productivity and insight. Advances in computational technology have resulted in an "information big bang," which in turn has created a significant data understanding challenge. This challenge is widely acknowledged to be one of the primary bottlenecks in contemporary science. The vision for our Center is to respond directly to that challenge by adapting, extending, creating when necessary and deploying visualization and data understanding technologies for our science stakeholders. Using an organizational model as a Visualization and Analytics Center for Enabling Technologies (VACET), we are well positioned to be responsive to the needs of a diverse set of scientific stakeholders in a coordinated fashion using a range of visualization, mathematics, statistics, computer and computational science and data management technologies.

  14. Discussion of the enabling environments for decentralised water systems.

    PubMed

    Moglia, M; Alexander, K S; Sharma, A

    2011-01-01

    Decentralised water supply systems are becoming increasingly affordable and commonplace in Australia and have the potential to alleviate urban water shortages and reduce pollution into natural receiving marine and freshwater streams. Learning processes are necessary to support the efficient implementation of decentralised systems. These processes reveal the complex socio-technical and institutional factors to be considered when developing an enabling environment supporting decentralised water and wastewater servicing solutions. Critical to the technological transition towards established decentralised systems is the ability to create strategic and adaptive capacity to promote learning and dialogue. Learning processes require institutional mechanisms to ensure the lessons are incorporated into the formulation of policy and regulation, through constructive involvement of key government institutions. Engagement of stakeholders is essential to the enabling environment. Collaborative learning environments using systems analysis with communities (social learning) and adaptive management techniques are useful in refining and applying scientists' and managers' knowledge (knowledge management). PMID:21977657

  15. Federated and Cloud Enabled Resources for Data Management and Utilization

    NASA Astrophysics Data System (ADS)

    Rankin, R.; Gordon, M.; Potter, R. G.; Satchwill, B.

    2011-12-01

    The emergence of cloud computing over the past three years has led to a paradigm shift in how data can be managed, processed and made accessible. Building on the federated data management system offered through the Canadian Space Science Data Portal (www.cssdp.ca), we demonstrate how heterogeneous and geographically distributed data sets and modeling tools have been integrated to form a virtual data center and computational modeling platform that has services for data processing and visualization embedded within it. We also discuss positive and negative experiences in utilizing Eucalyptus and OpenStack cloud applications, and job scheduling facilitated by Condor and Star Cluster. We summarize our findings by demonstrating use of these technologies in the Cloud Enabled Space Weather Data Assimilation and Modeling Platform CESWP (www.ceswp.ca), which is funded through Canarie's (canarie.ca) Network Enabled Platforms program in Canada.

  16. NASA Space Launch System: An Enabling Capability for Discovery

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.

    2014-01-01

    SLS provides capability for human exploration missions. 70 t configuration enables EM-1 and EM-2 flight tests. Evolved configurations enable missions including humans to Mars. u? SLS offers unrivaled benefits for a variety of missions. 70 t provides greater mass lift than any contemporary launch vehicle; 130 t offers greater lift than any launch vehicle ever. With 8.4m and 10m fairings, SLS will over greater volume lift capability than any other vehicle. center dot Initial ICPS configuration and future evolution will offer high C3 for beyond- Earth missions. SLS is currently on schedule for first launch in December 2017. Preliminary design completed in July 2013; SLS is now in implementation. Manufacture and testing are currently underway. Hardware now exists representing all SLS elements.

  17. Polysulfide flow batteries enabled by percolating nanoscale conductor networks.

    PubMed

    Fan, Frank Y; Woodford, William H; Li, Zheng; Baram, Nir; Smith, Kyle C; Helal, Ahmed; McKinley, Gareth H; Carter, W Craig; Chiang, Yet-Ming

    2014-01-01

    A new approach to flow battery design is demonstrated wherein diffusion-limited aggregation of nanoscale conductor particles at ∼1 vol % concentration is used to impart mixed electronic-ionic conductivity to redox solutions, forming flow electrodes with embedded current collector networks that self-heal after shear. Lithium polysulfide flow cathodes of this architecture exhibit electrochemical activity that is distributed throughout the volume of flow electrodes rather than being confined to surfaces of stationary current collectors. The nanoscale network architecture enables cycling of polysulfide solutions deep into precipitation regimes that historically have shown poor capacity utilization and reversibility and may thereby enable new flow battery designs of higher energy density and lower system cost. Lithium polysulfide half-flow cells operating in both continuous and intermittent flow mode are demonstrated for the first time. PMID:24597525

  18. Middleware for Data Visualization in VO-enabled Data Archives

    NASA Astrophysics Data System (ADS)

    Zolotukhin, I.; Chilingarian, I.

    2008-08-01

    We present middleware for visualization and exploration of complex datasets in a VO framework, that performs interaction between data archives and existing VO client applications using PLASTIC. It comprises: (1) PLASTIC-enabled Java control applet, integrated into archive web-pages and interacting with VO applications; (2) cross-browser compatible JavaScript part managing PLASTIC-aware VO Clients (launch, data manipulation) by means of Java LiveConnect. This (or similar) solution is an essential for the new generation VO-enabled data archives providing access to complex observational and theoretical datasets (3D-spectroscopy, N-body simulations, etc.) through web-interface. Thanks to PLASTIC capabilities it is possible to start all necessary client software with a single-click in the archive query result page in a web-browser. This simplifies the scientific usage of the VO resources and makes it easy even for users with no experience in the VO technologies.

  19. A Revolution in Plant Metabolism: Genome-Enabled Pathway Discovery

    PubMed Central

    Kim, Jeongwoon; Buell, C. Robin

    2015-01-01

    Genome-enabled discoveries are the hallmark of 21st century biology, including major discoveries in the biosynthesis and regulation of plant metabolic pathways. Access to next generation sequencing technologies has enabled research on the biosynthesis of diverse plant metabolites, especially secondary metabolites, resulting in a broader understanding of not only the structural and regulatory genes involved in metabolite biosynthesis but also in the evolution of chemical diversity in the plant kingdom. Several paradigms that govern secondary metabolism have emerged, including that (1) gene family expansion and diversification contribute to the chemical diversity found in the plant kingdom, (2) genes encoding biochemical pathway components are frequently transcriptionally coregulated, and (3) physical clustering of nonhomologous genes that encode components of secondary metabolic pathways can occur. With an increasing knowledge base that is coupled with user-friendly and inexpensive technologies, biochemists are poised to accelerate the annotation of biochemical pathways relevant to human health, agriculture, and the environment. PMID:26224805

  20. A simple physical mechanism enables homeostasis in primitive cells

    NASA Astrophysics Data System (ADS)

    Engelhart, Aaron E.; Adamala, Katarzyna P.; Szostak, Jack W.

    2016-05-01

    The emergence of homeostatic mechanisms that enable maintenance of an intracellular steady state during growth was critical to the advent of cellular life. Here, we show that concentration-dependent reversible binding of short oligonucleotides, of both specific and random sequence, can modulate ribozyme activity. In both cases, catalysis is inhibited at high concentrations, and dilution activates the ribozyme via inhibitor dissociation, thus maintaining near-constant ribozyme specific activity throughout protocell growth. To mimic the result of RNA synthesis within non-growing protocells, we co-encapsulated high concentrations of ribozyme and oligonucleotides within fatty acid vesicles, and ribozyme activity was inhibited. Following vesicle growth, the resulting internal dilution produced ribozyme activation. This simple physical system enables a primitive homeostatic behaviour: the maintenance of constant ribozyme activity per unit volume during protocell volume changes. We suggest that such systems, wherein short oligonucleotides reversibly inhibit functional RNAs, could have preceded sophisticated modern RNA regulatory mechanisms, such as those involving miRNAs.

  1. Global tree network for computing structures enabling global processing operations

    DOEpatents

    Blumrich; Matthias A.; Chen, Dong; Coteus, Paul W.; Gara, Alan G.; Giampapa, Mark E.; Heidelberger, Philip; Hoenicke, Dirk; Steinmacher-Burow, Burkhard D.; Takken, Todd E.; Vranas, Pavlos M.

    2010-01-19

    A system and method for enabling high-speed, low-latency global tree network communications among processing nodes interconnected according to a tree network structure. The global tree network enables collective reduction operations to be performed during parallel algorithm operations executing in a computer structure having a plurality of the interconnected processing nodes. Router devices are included that interconnect the nodes of the tree via links to facilitate performance of low-latency global processing operations at nodes of the virtual tree and sub-tree structures. The global operations performed include one or more of: broadcast operations downstream from a root node to leaf nodes of a virtual tree, reduction operations upstream from leaf nodes to the root node in the virtual tree, and point-to-point message passing from any node to the root node. The global tree network is configurable to provide global barrier and interrupt functionality in asynchronous or synchronized manner, and, is physically and logically partitionable.

  2. Devices to enable persons with amputation to participate in sports.

    PubMed

    Rubin, G; Fleiss, D

    1983-01-01

    Participation in physically challenging competitive sports is as important to some persons with amputations as are work and leisure, both of which are ordinarily of a sedentary character. Sports participation contributes not only to physical but also to psychologic well-being. The manner in which a prosthetic clinic team can aid in this aspect of rehabilitation is discussed. Some of the more sophisticated prostheses prescribed to enable participation in sports include above-knee and below-knee water-resistant prostheses for swimmers, an adjustable foot-ankle unit for the proficient swimmer and scuba diver, prostheses and special equipment for skiers, special devices for golfers with upper extremity or lower extremity amputations, and various commercially available terminal devices to enable persons with an upper extremity amputation to bowl, to hold a fishing pole and reel, to play baseball, to hold tools, to fire a pistol, and to swim.

  3. Jamming as an enabling technology for soft robotics

    NASA Astrophysics Data System (ADS)

    Steltz, E.; Mozeika, A.; Rembisz, J.; Corson, N.; Jaeger, H. M.

    2010-04-01

    This paper presents a new architecture in soft robotics that utilizes particulate jamming technology. A novel concept of actuation is described that utilizes jamming technology to modulate the direction and magnitude of the work performed by a single central actuator. Jamming "activators" modulate work by jamming and unjamming (solidifying and liquifying) a granular medium coupled to a core actuator. These ideas are demonstrated in the Jamming Skin Enabled Locomotion (JSEL) prototype which can morph its shape and achieve locomotion. Next, a new actuator, denoted a Jamming Modulated Unimorph (JMU), is presented in addition to the JSEL topology. The JMU uses a single linear actuator and a discrete number of jamming cells to turn the 1 degree of freedom (DOF) linear actuator into a multi DOF bending actuator. Full characterization of the JMU actuator is presented, followed by a concluding argument for jamming as an enabling mechanism for soft robots in general, regardless of actuation technology.

  4. Polysulfide flow batteries enabled by percolating nanoscale conductor networks.

    PubMed

    Fan, Frank Y; Woodford, William H; Li, Zheng; Baram, Nir; Smith, Kyle C; Helal, Ahmed; McKinley, Gareth H; Carter, W Craig; Chiang, Yet-Ming

    2014-01-01

    A new approach to flow battery design is demonstrated wherein diffusion-limited aggregation of nanoscale conductor particles at ∼1 vol % concentration is used to impart mixed electronic-ionic conductivity to redox solutions, forming flow electrodes with embedded current collector networks that self-heal after shear. Lithium polysulfide flow cathodes of this architecture exhibit electrochemical activity that is distributed throughout the volume of flow electrodes rather than being confined to surfaces of stationary current collectors. The nanoscale network architecture enables cycling of polysulfide solutions deep into precipitation regimes that historically have shown poor capacity utilization and reversibility and may thereby enable new flow battery designs of higher energy density and lower system cost. Lithium polysulfide half-flow cells operating in both continuous and intermittent flow mode are demonstrated for the first time.

  5. Differentially photo-crosslinked polymers enable self-assembling microfluidics

    PubMed Central

    Jamal, Mustapha; Zarafshar, Aasiyeh M.; Gracias, David H.

    2012-01-01

    An important feature of naturally self-assembled systems such as leaves and tissues is that they are curved and have embedded fluidic channels that enable the transport of nutrients to, or removal of waste from, specific three-dimensional (3D) regions. Here, we report the self-assembly of photopatterned polymers, and consequently microfluidic devices, into curved geometries. We discovered that differentially photo-crosslinked SU-8 films spontaneously and reversibly curved upon film de-solvation and re-solvation. Photolithographic patterning of the SU-8 films enabled the self-assembly of cylinders, cubes, and bidirectionally folded sheets. We integrated polydimethylsiloxane (PDMS) microfluidic channels with these SU-8 films to self-assemble curved microfluidic networks. PMID:22068594

  6. Informatics Methods to Enable Sharing of Quantitative Imaging Research Data

    PubMed Central

    Levy, Mia A.; Freymann, John B.; Kirby, Justin S.; Fedorov, Andriy; Fennessy, Fiona M.; Eschrich, Steven A.; Berglund, Anders E.; Fenstermacher, David A.; Tan, Yongqiang; Guo, Xiaotao; Casavant, Thomas L.; Brown, Bartley J.; Braun, Terry A.; Dekker, Andre; Roelofs, Erik; Mountz, James M.; Boada, Fernando; Laymon, Charles; Oborski, Matt; Rubin, Daniel L

    2012-01-01

    Introduction The National Cancer Institute (NCI) Quantitative Research Network (QIN) is a collaborative research network whose goal is to share data, algorithms and research tools to accelerate quantitative imaging research. A challenge is the variability in tools and analysis platforms used in quantitative imaging. Our goal was to understand the extent of this variation and to develop an approach to enable sharing data and to promote reuse of quantitative imaging data in the community. Methods We performed a survey of the current tools in use by the QIN member sites for representation and storage of their QIN research data including images, image meta-data and clinical data. We identified existing systems and standards for data sharing and their gaps for the QIN use case. We then proposed a system architecture to enable data sharing and collaborative experimentation within the QIN. Results There area variety of tools currently used by each QIN institution. We developed a general information system architecture to support the QIN goals. We also describe the remaining architecture gaps we are developing to enable members to share research images and image meta-data across the network. Conclusions As a research network, the QIN will stimulate quantitative imaging research by pooling data, algorithms and research tools. However, there are gaps in current functional requirements that will need to be met by future informatics development. Special attention must be given to the technical requirements needed to translate these methods into the clinical research workflow to enable validation and qualification of these novel imaging biomarkers. PMID:22770688

  7. Progress Towards a NASA Earth Science Reuse Enablement System (RES)

    NASA Technical Reports Server (NTRS)

    Marshall, James J.; Downs, Robert R.; Mattmann, Chris A.

    2010-01-01

    A Reuse Enablement System (RES) allows developers of Earth science software to contribute software for reuse by others and.for users to find, select, and obtain software for reuse in their own systems. This paper describes work that the X4S,4 Earth Science Data Systems (ESDS) Software Reuse Working Group has completed to date in the development of an RES for NASA.

  8. Ames Coronagraph Experiment: Enabling Missions to Directly Image Exoplanets

    NASA Technical Reports Server (NTRS)

    Belikov, Ruslan

    2014-01-01

    Technology to find biomarkers and life on other worlds is rapidly maturing. If there is a habitable planet around the nearest star, we may be able to detect it this decade with a small satellite mission. In the 2030 decade, we will likely know if there is life in our Galactic neighborhood (1000 nearest stars). The Ames Coronagraph Experiment is developing coronagraphic technologies to enable such missions.

  9. Useful Sensor Web Capabilities to Enable Progressive Mission Autonomy

    NASA Technical Reports Server (NTRS)

    Mandl, Dan

    2007-01-01

    This viewgraph presentation reviews using the Sensor Web capabilities as an enabling technology to allow for progressive autonomy of NASA space missions. The presentation reviews technical challenges for future missions, and some of the capabilities that exist to meet those challenges. To establish the ability of the technology to meet the challenges, experiments were conducted on three missions: Earth Observing 1 (EO-1), Cosmic Hot Interstellar Plasma Spectrometer (CHIPS) and Space Technology 5 (ST-5). These experiments are reviewed.

  10. Fly-by-Wire Systems Enable Safer, More Efficient Flight

    NASA Technical Reports Server (NTRS)

    2012-01-01

    Using the ultra-reliable Apollo Guidance Computer that enabled the Apollo Moon missions, Dryden Flight Research Center engineers, in partnership with industry leaders such as Cambridge, Massachusetts-based Draper Laboratory, demonstrated that digital computers could be used to fly aircraft. Digital fly-by-wire systems have since been incorporated into large airliners, military jets, revolutionary new aircraft, and even cars and submarines.

  11. Photonically enabled agile rf waveform generation by optical comb shifting.

    PubMed

    Long, Christopher M; Leaird, Daniel E; Weiner, Andrew M

    2010-12-01

    We present a photonically enabled rf arbitrary waveform generator that can rapidly switch between two output waveforms. This method is based on line-by-line shaping of an optical comb and then converting the optical pulses to rf waveforms with a fast photodetector. It uses a single diode laser as the optical source and selects different patterns preprogrammed into an optical pulse shaper by shifting the laser frequency. We demonstrate minimum update delay times of 0.45 ns.

  12. Volume CT (VCT) enabled by a novel diode technology

    NASA Astrophysics Data System (ADS)

    Ikhlef, Aziz; Zeman, Greg; Hoffman, David; Li, Wen; Possin, George

    2005-04-01

    One of the results of the latest developments in x-ray tube and detector technology, is the enabling of computed tomography (CT) as a strong non-invasive imaging modality for a new set of clinical applications including cardiac and brain imaging. A common theme among the applications is an ability to have wide anatomical coverage in a single rotation. Large coverage in CT is expected to bring significant diagnostic value in clinical field, especially in cardiac, trauma, pediatric, neuro, angiography, Stroke WorkUp and pulmonary applications. This demand, in turn, creates a need for tile-able and scalable detector design. In this paper, we introduce the design of a new diode, a crucial part of the detector, discuss how it enables wide coverage, its performance in terms of cross-talk, light output response, maximized geometric efficiency, and other CT requirements, and compare it to the traditional design which is front-illuminated diode. We ran extensive simulation and measurement experiments to study the geometric efficiency and assess the cross talk and all other performance parameters Critical To Quality (CTQs) with both designs. We modeled x-ray scattering in the scintillator, light scattering through the septa and optical coupler, and electrical cross talk. We tested the design with phantoms and clinical experiments on a scanner (LightSpeed VCT, GE Healthcare Technologies, Waukesha, WI, USA). Our preliminary results indicate that the new diode design performs as well as the traditional in terms of cross talk and other CTQs. It, also, yields better geometric efficiency and enables tile-able detector design, which is crucial for the VCT. We introduced a new diode design, which is an essential enabler for VCT. We demonstrated the new design is superior to the traditional design for the clinically relevant performance measures.

  13. Challenges and Enablers of Deprescribing: A General Practitioner Perspective

    PubMed Central

    Ailabouni, Nagham J.; Nishtala, Prasad S.; Mangin, Dee; Tordoff, June M.

    2016-01-01

    Aims Deprescribing is the process of reducing or discontinuing medicines that are unnecessary or deemed to be harmful. We aimed to investigate general practitioner (GP) perceived challenges to deprescribing in residential care and the possible enablers that support GPs to implement deprescribing. Methods A qualitative study was undertaken using semi-structured, face-to-face interviews from two cities in New Zealand and a purpose-developed pilot-tested interview schedule. Interviews were recorded with permission and transcribed verbatim. Transcripts were read and re-read and themes were identified with iterative building of a coding list until all data was accounted for. Interviews continued until saturation of ideas occurred. Analysis was carried out with the assistance of a Theoretical Domains Framework (TDF) and constant comparison techniques. Several themes were identified. Challenges and enablers of deprescribing were determined based on participants’ answers. Results Ten GPs agreed to participate. Four themes were identified to define the issues around prescribing for older people, from the GPs’ perspectives. Theme 1, the ‘recognition of the problem’, discusses the difficulties involved with prescribing for older people. Theme 2 outlines the identified behaviour change factors relevant to the problem. Deprescribing challenges were drawn from these factors and summarised in Theme 3 under three major headings; ‘prescribing factors’, ‘social influences’ and ‘policy and processes’. Deprescribing enablers, based on the opinions and professional experience of GPs, were retrieved and summarised in Theme 4. Conclusion The process of deprescribing is laced with many challenges for GPs. The uncertainty of research evidence in older people and social factors such as specialists’ and nurses’ influences were among the major challenges identified. Deprescribing enablers encompassed support for GPs’ awareness and knowledge, improvement of

  14. Potential Astrophysics Science Missions Enabled by NASA's Planned Ares V

    NASA Technical Reports Server (NTRS)

    Stahl, H. Philip; Thronson, Harley; Langhoff, Stepheni; Postman, Marc; Lester, Daniel; Lillie, Chuck

    2009-01-01

    NASA s planned Ares V cargo vehicle with its 10 meter diameter fairing and 60,000 kg payload mass to L2 offers the potential to launch entirely new classes of space science missions such as 8-meter monolithic aperture telescopes, 12- meter aperture x-ray telescopes, 16 to 24 meter segmented telescopes and highly capable outer planet missions. The paper will summarize the current Ares V baseline performance capabilities and review potential mission concepts enabled by these capabilities.

  15. Split rheometer Couette attachment to enable sample extraction

    NASA Astrophysics Data System (ADS)

    Guthrie, Sarah E.; Idziak, Stefan H. J.

    2005-02-01

    We report on the development of a Couette attachment insert for a rheometer, which is designed to split in half, enabling intact sample extraction of cocoa butter crystallized from the melt under known dynamic stress conditions. This cell is capable of producing a sample 1mm thick. At shear rates of 90-720s-1 and final temperatures of 18-20°C it was shown that the sample will completely separate from the cell surface intact.

  16. Quantum dot blueing and blinking enables fluorescence nanoscopy.

    PubMed

    Hoyer, Patrick; Staudt, Thorsten; Engelhardt, Johann; Hell, Stefan W

    2011-01-12

    We demonstrate superresolution fluorescence imaging of cells using bioconjugated CdSe/ZnS quantum dot markers. Fluorescence blueing of quantum dot cores facilitates separation of blinking markers residing closer than the diffraction barrier. The high number of successively emitted photons enables ground state depletion microscopy followed by individual marker return with a resolving power of the size of a single dot (∼12 nm). Nanoscale imaging is feasible with a simple webcam.

  17. Enabling Disabled Persons to Gain Access to Digital Media

    NASA Technical Reports Server (NTRS)

    Beach, Glenn; OGrady, Ryan

    2011-01-01

    A report describes the first phase in an effort to enhance the NaviGaze software to enable profoundly disabled persons to operate computers. (Running on a Windows-based computer equipped with a video camera aimed at the user s head, the original NaviGaze software processes the user's head movements and eye blinks into cursor movements and mouse clicks to enable hands-free control of the computer.) To accommodate large variations in movement capabilities among disabled individuals, one of the enhancements was the addition of a graphical user interface for selection of parameters that affect the way the software interacts with the computer and tracks the user s movements. Tracking algorithms were improved to reduce sensitivity to rotations and reduce the likelihood of tracking the wrong features. Visual feedback to the user was improved to provide an indication of the state of the computer system. It was found that users can quickly learn to use the enhanced software, performing single clicks, double clicks, and drags within minutes of first use. Available programs that could increase the usability of NaviGaze were identified. One of these enables entry of text by using NaviGaze as a mouse to select keys on a virtual keyboard.

  18. Fundamental plant biology enabled by the space shuttle.

    PubMed

    Paul, Anna-Lisa; Wheeler, Ray M; Levine, Howard G; Ferl, Robert J

    2013-01-01

    The relationship between fundamental plant biology and space biology was especially synergistic in the era of the Space Shuttle. While all terrestrial organisms are influenced by gravity, the impact of gravity as a tropic stimulus in plants has been a topic of formal study for more than a century. And while plants were parts of early space biology payloads, it was not until the advent of the Space Shuttle that the science of plant space biology enjoyed expansion that truly enabled controlled, fundamental experiments that removed gravity from the equation. The Space Shuttle presented a science platform that provided regular science flights with dedicated plant growth hardware and crew trained in inflight plant manipulations. Part of the impetus for plant biology experiments in space was the realization that plants could be important parts of bioregenerative life support on long missions, recycling water, air, and nutrients for the human crew. However, a large part of the impetus was that the Space Shuttle enabled fundamental plant science essentially in a microgravity environment. Experiments during the Space Shuttle era produced key science insights on biological adaptation to spaceflight and especially plant growth and tropisms. In this review, we present an overview of plant science in the Space Shuttle era with an emphasis on experiments dealing with fundamental plant growth in microgravity. This review discusses general conclusions from the study of plant spaceflight biology enabled by the Space Shuttle by providing historical context and reviews of select experiments that exemplify plant space biology science.

  19. Ammonia recycling enables sustainable operation of bioelectrochemical systems.

    PubMed

    Cheng, Ka Yu; Kaksonen, Anna H; Cord-Ruwisch, Ralf

    2013-09-01

    Ammonium (NH4(+)) migration across a cation exchange membrane is commonly observed during the operation of bioelectrochemical systems (BES). This often leads to anolyte acidification (pH <5.5) and complete inactivation of biofilm electroactivity. Without using conventional pH controls (dosage of alkali or pH buffers), the present study revealed that anodic biofilm activity (current) could be sustained if recycling of ammonia (NH3) was implemented. A simple gas-exchange apparatus was designed to enable continuous recycling of NH3 (released from the catholyte at pH >10) from the cathodic headspace to the acidified anolyte. Results indicated that current (110 mA or 688 Am(-3) net anodic chamber volume) was sustained as long as the NH3 recycling path was enabled, facilitating continuous anolyte neutralization with the recycled NH3. Since the microbial current enabled NH4(+) migration against a strong concentration gradient (~10-fold), a novel way of ammonia recovery from wastewaters could be envisaged.

  20. Fundamental plant biology enabled by the space shuttle.

    PubMed

    Paul, Anna-Lisa; Wheeler, Ray M; Levine, Howard G; Ferl, Robert J

    2013-01-01

    The relationship between fundamental plant biology and space biology was especially synergistic in the era of the Space Shuttle. While all terrestrial organisms are influenced by gravity, the impact of gravity as a tropic stimulus in plants has been a topic of formal study for more than a century. And while plants were parts of early space biology payloads, it was not until the advent of the Space Shuttle that the science of plant space biology enjoyed expansion that truly enabled controlled, fundamental experiments that removed gravity from the equation. The Space Shuttle presented a science platform that provided regular science flights with dedicated plant growth hardware and crew trained in inflight plant manipulations. Part of the impetus for plant biology experiments in space was the realization that plants could be important parts of bioregenerative life support on long missions, recycling water, air, and nutrients for the human crew. However, a large part of the impetus was that the Space Shuttle enabled fundamental plant science essentially in a microgravity environment. Experiments during the Space Shuttle era produced key science insights on biological adaptation to spaceflight and especially plant growth and tropisms. In this review, we present an overview of plant science in the Space Shuttle era with an emphasis on experiments dealing with fundamental plant growth in microgravity. This review discusses general conclusions from the study of plant spaceflight biology enabled by the Space Shuttle by providing historical context and reviews of select experiments that exemplify plant space biology science. PMID:23281389

  1. Strategic Research to Enable NASA's Exploration Missions Conference and Workshop: Poster Session. Volume 2

    NASA Technical Reports Server (NTRS)

    Nahra, Henry (Compiler)

    2004-01-01

    Reports are presented from volume 2 of the conference titled Strategic Research to Enable NASA's Exploration Missions, poster session. Topics included spacecraft fire suppression and fire extinguishing agents,materials flammability, various topics on the effects of microgravity including crystal growth, fluid mechanics, electric particulate suspension, melting and solidification, bubble formation, the sloshing of liquid fuels, biological studies, separation of carbon dioxide and carbon monoxide for Mars ISRU.

  2. RIC-3 phosphorylation enables dual regulation of excitation and inhibition of Caenorhabditis elegans muscle.

    PubMed

    Safdie, Gracia; Liewald, Jana F; Kagan, Sarah; Battat, Emil; Gottschalk, Alexander; Treinin, Millet

    2016-10-01

    Brain function depends on a delicate balance between excitation and inhibition. Similarly, Caenorhabditis elegans motor system function depends on a precise balance between excitation and inhibition, as C. elegans muscles receive both inhibitory, GABAergic and excitatory, cholinergic inputs from motor neurons. Here we show that phosphorylation of the ER-resident chaperone of nicotinic acetylcholine receptors, RIC-3, leads to increased muscle excitability. RIC-3 phosphorylation at Ser-164 depends on opposing functions of the phosphatase calcineurin (TAX-6), and of the casein kinase II homologue KIN-10. Effects of calcineurin down-regulation and of phosphorylated RIC-3 on muscle excitability are mediated by GABAA receptor inhibition. Thus RIC-3 phosphorylation enables effects of this chaperone on GABAA receptors in addition to nAChRs. This dual effect provides coordinated regulation of excitation and inhibition and enables fine-tuning of the excitation-inhibition balance. Moreover, regulation of inhibitory GABAA signaling by calcineurin, a calcium- and calmodulin-dependent phosphatase, enables homeostatic balancing of excitation and inhibition.

  3. Contributions of treatment theory and enablement theory to rehabilitation research and practice.

    PubMed

    Whyte, John

    2014-01-01

    Scientific theory is crucial to the advancement of clinical research. The breadth of rehabilitation treatment requires that many different theoretical perspectives be incorporated into the design and testing of treatment interventions. In this article, the 2 broad classes of theory relevant to rehabilitation research and practice are defined, and their distinct but complementary contributions to research and clinical practice are explored. These theory classes are referred to as treatment theories (theories about how to effect change in clinical targets) and enablement theories (theories about how changes in a proximal clinical target will influence distal clinical aims). Treatment theories provide the tools for inducing clinical change but do not specify how far reaching the ultimate impact of the change will be. Enablement theories model the impact of changes on other areas of function but provide no insight as to how treatment can create functional change. Treatment theories are more critical in the early stages of treatment development, whereas enablement theories become increasingly relevant in specifying the clinical significance and practical effectiveness of more mature treatments. Understanding the differences in the questions these theory classes address and how to combine their insights is crucial for effective research development and clinical practice.

  4. RIC-3 phosphorylation enables dual regulation of excitation and inhibition of Caenorhabditis elegans muscle.

    PubMed

    Safdie, Gracia; Liewald, Jana F; Kagan, Sarah; Battat, Emil; Gottschalk, Alexander; Treinin, Millet

    2016-10-01

    Brain function depends on a delicate balance between excitation and inhibition. Similarly, Caenorhabditis elegans motor system function depends on a precise balance between excitation and inhibition, as C. elegans muscles receive both inhibitory, GABAergic and excitatory, cholinergic inputs from motor neurons. Here we show that phosphorylation of the ER-resident chaperone of nicotinic acetylcholine receptors, RIC-3, leads to increased muscle excitability. RIC-3 phosphorylation at Ser-164 depends on opposing functions of the phosphatase calcineurin (TAX-6), and of the casein kinase II homologue KIN-10. Effects of calcineurin down-regulation and of phosphorylated RIC-3 on muscle excitability are mediated by GABAA receptor inhibition. Thus RIC-3 phosphorylation enables effects of this chaperone on GABAA receptors in addition to nAChRs. This dual effect provides coordinated regulation of excitation and inhibition and enables fine-tuning of the excitation-inhibition balance. Moreover, regulation of inhibitory GABAA signaling by calcineurin, a calcium- and calmodulin-dependent phosphatase, enables homeostatic balancing of excitation and inhibition. PMID:27489343

  5. Interaction-enabled topological phases in topological insulator-superconductor heterostructures

    NASA Astrophysics Data System (ADS)

    Pikulin, D. I.; Chiu, Ching-Kai; Zhu, Xiaoyu; Franz, M.

    2015-08-01

    Topological phases of matter that depend for their existence on interactions are fundamentally interesting and potentially useful as platforms for future quantum computers. Despite the multitude of theoretical proposals, the only interaction-enabled topological phase experimentally observed is the fractional quantum Hall liquid. To help identify other systems that can give rise to such phases, we present in this work a detailed study of the effect of interactions on Majorana zero modes bound to vortices in a superconducting surface of a three-dimensional topological insulator. This system is of interest because, as was recently pointed out, it can be tuned into the regime of strong interactions. We start with a zero-dimensional system suggesting an experimental realization of the interaction-induced Z8 ground-state periodicity previously discussed by Fidkowski and Kitaev [Phys. Rev. B 81, 134509 (2010), 10.1103/PhysRevB.81.134509; Phys. Rev. B 83, 075103 (2011), 10.1103/PhysRevB.83.075103] . We argue that the periodicity is experimentally observable using a tunnel probe. We then focus on interaction-enabled crystalline topological phases that can be built with the Majoranas in a vortex lattice in higher dimensions. In one dimension, we identify an interesting exactly solvable model which is related to a previously discussed one that exhibits an interaction-enabled topological phase. We study these models using analytical techniques, exact numerical diagonalization, and density matrix renormalization group. Our results confirm the existence of the interaction-enabled topological phase and clarify the nature of the quantum phase transition that leads to it. We finish with a discussion of models in dimensions 2 and 3 that produce similar interaction-enabled topological phases.

  6. Advances in Pediatric Small Bowel Imaging.

    PubMed

    Lin, Tom K

    2016-01-01

    Technological advances for visualizing the small bowel have significantly grown over the past few decades. Balloon-assisted enteroscopy has come to the forefront of these innovations, and has been found to be safe and effective in children with small bowel ailments. The expanding body of research into balloon-assisted enteroscopy will continue to refine the current knowledge base of this technique, along with a growing assessment of the long-term benefits of such interventions. PMID:26616902

  7. Smart phones: platform enabling modular, chemical, biological, and explosives sensing

    NASA Astrophysics Data System (ADS)

    Finch, Amethist S.; Coppock, Matthew; Bickford, Justin R.; Conn, Marvin A.; Proctor, Thomas J.; Stratis-Cullum, Dimitra N.

    2013-05-01

    Reliable, robust, and portable technologies are needed for the rapid identification and detection of chemical, biological, and explosive (CBE) materials. A key to addressing the persistent threat to U.S. troops in the current war on terror is the rapid detection and identification of the precursor materials used in development of improvised explosive devices, homemade explosives, and bio-warfare agents. However, a universal methodology for detection and prevention of CBE materials in the use of these devices has proven difficult. Herein, we discuss our efforts towards the development of a modular, robust, inexpensive, pervasive, archival, and compact platform (android based smart phone) enabling the rapid detection of these materials.

  8. Electric propulsion applications enabled by space nuclear power

    NASA Technical Reports Server (NTRS)

    Vicente, F. A.; Karras, T.; Brewer, L.; Gore, R.

    1989-01-01

    Electric propulsion promises the advantage of providing high Isp's for placing payloads into their assigned orbits. This translates into heavier payloads using a given lift capability or, conversely, the use of smaller boosters. To accomplish this, high electric powers are required. Space reactor power systems such as SP-100 enable this technology. The electric propulsion requirements needed, namely, their power requirements and the resulting payload masses and time-to-orbit, are shown. Also indicated are the missions most benefitting from the use of electric propulsion. An Interim Reference Mission is described, synthesizing the results shown, for demonstration purposes.

  9. CMS@home: Enabling Volunteer Computing Usage for CMS

    NASA Astrophysics Data System (ADS)

    Field, L.; Borras, H.; Spiga, D.; Riahi, H.

    2015-12-01

    Volunteer computing remains a largely untapped opportunistic resource for the LHC experiments. The use of virtualization in this domain was pioneered by the Test4Theory project and enabled the running of high energy particle physics simulations on home computers. This paper describes the model for CMS to run workloads using a similar volunteer computing platform. It is shown how the original approach is exploited to map onto the existing CMS workflow and identifies missing functionality along with the components and changes that are required. The final implementation of the prototype is detailed along with the identification of areas that would benefit from further development.

  10. Enabling CoO improvement thru green initiatives

    NASA Astrophysics Data System (ADS)

    Gross, Eric; Padmabandu, G. G.; Ujazdowski, Richard; Haran, Don; Lake, Matt; Mason, Eric; Gillespie, Walter

    2015-03-01

    Chipmakers continued pressure to drive down costs while increasing utilization requires development in all areas. Cymer's commitment to meeting customer's needs includes developing solutions that enable higher productivity as well as lowering cost of lightsource operation. Improvements in system power efficiency and predictability were deployed to chipmakers' in 2014 with release of our latest Master Oscillating gas chamber. In addition, Cymer has committed to reduced gas usage, completing development in methods to reduce Helium gas usage while maintaining superior bandwidth and wavelength stability. The latest developments in lowering cost of operations are paired with our advanced ETC controller in Cymer's XLR 700ix product.

  11. SixDOF position sensor: enabling manufacturing flexibility

    SciTech Connect

    Vann, C.S.

    1998-03-24

    A small, non-contact optical sensor invented by the author attaches to a robot (or other machines), enabling the robot to detect objects, adjust its alignment in all six degrees of freedom (SixDOF), and read a task from a code on the part. Thus, the SixDOF sensor provides robots more intelligence to operate autonomously and adapt to changes without human intervention. A description of the sensor is provided. Also, an operating arrangement of a robot using the SixDOF sensor is presented with performance results described.

  12. Enabling science with Gaia observations of naked-eye stars

    NASA Astrophysics Data System (ADS)

    Sahlmann, J.; Martín-Fleitas, J.; Mora, A.; Abreu, A.; Crowley, C. M.; Joliet, E.

    2016-07-01

    ESA's Gaia space astrometry mission is performing an all-sky survey of stellar objects. At the beginning of the nominal mission in July 2014, an operation scheme was adopted that enabled Gaia to routinely acquire observations of all stars brighter than the original limit of G˜6, i.e. the naked-eye stars. Here, we describe the current status and extent of those observations and their on-ground processing. We present an overview of the data products generated for G<6 stars and the potential scientific applications. Finally, we discuss how the Gaia survey could be enhanced by further exploiting the techniques we developed.

  13. Enabling New Operations Concepts for Lunar and Mars Exploration

    NASA Technical Reports Server (NTRS)

    Jaap, John; Maxwell, Theresa

    2005-01-01

    The planning and scheduling of human space activities is an expensive and time-consuming task that seldom provides the crew with the control, flexibility, or insight that they need. During the past thirty years, scheduling software has seen only incremental improvements; however, software limitations continue to prevent even evolutionary improvements in the operations concept that is used for human space missions. Space missions are planned on the ground long before they are executed in space, and the crew has little input or influence on the schedule. In recent years the crew has been presented with a job jar of activities that they can do whenever they have time, but the contents of the jar is limited to tasks that do not use scarce shared resources and do not have external timing constraints. Consequently, the crew has no control over the schedule of the majority of their own tasks. As humans venture farther from earth for longer durations, it will become imperative that they have the ability to plan and schedule not only their own activities, but also the unattended activities of the systems, equipment, and robots on the journey with them. Significant software breakthroughs are required to enable the change in the operations concept. The crew does not have the time to build or modify the schedule by hand. They only need to issue a request to schedule a task and the system should automatically do the rest. Of course, the crew should not be required to build the complete schedule. Controllers on the ground should contribute the models and schedules where they have the better knowledge. The system must allow multiple simultaneous users, some on earth and some in space. The Mission Operations Laboratory at NASA's Marshall Space flight Center has been researching and prototyping a modeling schema, scheduling engine, and system architecture that can enable the needed paradigm shift - it can make the crew autonomous. This schema and engine can be the core of a

  14. Chandra enables study of x-ray jets

    PubMed Central

    Schwartz, Daniel

    2010-01-01

    The exquisite angular resolution of the Chandra x-ray telescope has enabled the detection and study of resolved x-ray jets in a wide variety of astronomical systems. Chandra has detected extended jets in our galaxy from protostars, symbiotic binaries, neutron star pulsars, black hole binaries, extragalactic jets in radio sources, and quasars. The x-ray data play an essential role in deducing the emission mechanism of the jets, in revealing the interaction of jets with the intergalactic or intracluster media, and in studying the energy generation budget of black holes. PMID:20378839

  15. Intelligent security and privacy solutions for enabling personalized telepathology

    PubMed Central

    2011-01-01

    Starting with the paradigm change of health systems towards personalized health services, the paper introduces the technical paradigms to be met for enabling ubiquitous pHealth including ePathology. The system-theoretical, architecture-centric approach to mobile, pervasive and autonomous solutions has to be based on an open component system framework such as the Generic Component Model. The crucial challenge to be met for comprehensive interoperability is multi-disciplinary knowledge representation, which must be integrated into the aforementioned framework. The approach is demonstrated for security and privacy services fundamental for any eHealth or ePathology environment. PMID:21489199

  16. UTM Safely Enabling UAS Operations in Low-Altitude Airspace

    NASA Technical Reports Server (NTRS)

    Kopardekar, Parimal H.

    2016-01-01

    Conduct research, development and testing to identify airspace operations requirements to enable large-scale visual and beyond visual line of sight UAS operations in the low-altitude airspace. Use build-a-little-test-a-little strategy remote areas to urban areas Low density: No traffic management required but understanding of airspace constraints. Cooperative traffic management: Understanding of airspace constraints and other operations. Manned and unmanned traffic management: Scalable and heterogeneous operations. UTM construct consistent with FAAs risk-based strategy. UTM research platform is used for simulations and tests. UTM offers path towards scalability.

  17. Graphene-controlled fiber Bragg grating and enabled optical bistability.

    PubMed

    Gan, Xuetao; Wang, Yadong; Zhang, Fanlu; Zhao, Chenyang; Jiang, Biqiang; Fang, Liang; Li, Dongying; Wu, Hao; Ren, Zhaoyu; Zhao, Jianlin

    2016-02-01

    We report a graphene-assisted all-optical control of a fiber Bragg grating (FBG), which enables in-fiber optical bistability and switching. With an optical pump, a micro-FBG wrapped by graphene evolves into chirped and phase-shifted FBGs, whose characteristic wavelengths and bandwidths could be controlled by the pump power. Optical bistability and multistability are achieved in the controlled FBG based on a shifted Bragg reflection or Fabry-Perot-type resonance, which allow the implementation of optical switching with an extinction ratio exceeding 20 dB and a response time in tens of milliseconds. PMID:26907434

  18. Enabling Technologies for the Future of Chemical Synthesis.

    PubMed

    Fitzpatrick, Daniel E; Battilocchio, Claudio; Ley, Steven V

    2016-03-23

    Technology is evolving at breakneck pace, changing the way we communicate, travel, find out information, and live our lives. Yet chemistry as a science has been slower to adapt to this rapidly shifting world. In this Outlook we use highlights from recent literature reports to describe how progresses in enabling technologies are altering this trend, permitting chemists to incorporate new advances into their work at all levels of the chemistry development cycle. We discuss the benefits and challenges that have arisen, impacts on academic-industry relationships, and future trends in the area of chemical synthesis. PMID:27163040

  19. Directed Evolution: An Evolving and Enabling Synthetic Biology Tool

    PubMed Central

    Cobb, Ryan E.; Si, Tong; Zhao, Huimin

    2012-01-01

    Synthetic biology, with its goal of designing biological entities for wide-ranging purposes, remains a field of intensive research interest. However, the vast complexity of biological systems has heretofore rendered rational design prohibitively difficult. As a result, directed evolution remains a valuable tool for synthetic biology, enabling the identification of desired functionalities from large libraries of variants. This review highlights the most recent advances in the use of directed evolution in synthetic biology, focusing on new techniques and applications at the pathway and genome scale. PMID:22673064

  20. Enabling aspects of fiber optic acoustic sensing in harsh environments

    NASA Astrophysics Data System (ADS)

    Saxena, Indu F.

    2013-05-01

    The advantages of optical fiber sensing in harsh electromagnetic as well as physical stress environments make them uniquely suited for structural health monitoring and non-destructive testing. In addition to aerospace applications they are making a strong footprint in geophysical monitoring and exploration applications for higher temperature and pressure environments, due to the high temperature resilience of fused silica glass sensors. Deeper oil searches and geothermal exploration and harvesting are possible with these novel capabilities. Progress in components and technologies that are enabling these systems to be fieldworthy are reviewed and emerging techniques summarized that could leapfrog the system performance and reliability.

  1. QUICKFIRE: a JPEG 2000/JPIP-enabled ISR screener application

    NASA Astrophysics Data System (ADS)

    Rajan, S. Danny; Kavanagh, Christopher; Kasner, James; Maenner, Paul

    2005-05-01

    In this paper we present a JPEG2000-enabled ISR dissemination system that provides an airborne-based compression server and a ground-based screener client. This system makes possible direct dissemination of airborne collected imagery to users on the ground via existing portable communications. Utilizing the progressive nature of JPEG2000, the interactive capabilities of its associated JPIP streaming, and the on-the-fly mosaicing capability of the MIRAGE ground screener client application, ground-based users can interactively access large volumes of geo-referenced imagery from an airborne image collector. The system, called QUICKFIRE, is a recently developed prototype demonstrator. We present preliminary results from this effort.

  2. Technical innovation: Multidimensional computerized software enabled subtraction computed tomographic angiography.

    PubMed

    Bhatia, Mona; Rosset, Antoine; Platon, Alexandra; Didier, Dominique; Becker, Christoph D; Poletti, Pierre-Alexandre

    2010-01-01

    Computed tomographic angiography (CTA) is a frequent noninvasive alternative to digital subtraction angiography. We previously reported the development of a new subtraction software to overcome limitations of adjacent bone and calcification in CT angiographic subtraction. Our aim was to further develop and improve this fast and automated computerized software, universally available for free use and compatible with most CT scanners, thus enabling better delineation of vascular structures, artifact reduction, and shorter reading times with potential clinical benefits. This computer-based free software will be available as an open source in the next release of OsiriX at the Web site http://www.osirix-viewer.com.

  3. Enabling a systems biology knowledgebase with gaggle and firegoose

    SciTech Connect

    Baliga, Nitin S.

    2014-12-12

    The overall goal of this project was to extend the existing Gaggle and Firegoose systems to develop an open-source technology that runs over the web and links desktop applications with many databases and software applications. This technology would enable researchers to incorporate workflows for data analysis that can be executed from this interface to other online applications. The four specific aims were to (1) provide one-click mapping of genes, proteins, and complexes across databases and species; (2) enable multiple simultaneous workflows; (3) expand sophisticated data analysis for online resources; and enhance open-source development of the Gaggle-Firegoose infrastructure. Gaggle is an open-source Java software system that integrates existing bioinformatics programs and data sources into a user-friendly, extensible environment to allow interactive exploration, visualization, and analysis of systems biology data. Firegoose is an extension to the Mozilla Firefox web browser that enables data transfer between websites and desktop tools including Gaggle. In the last phase of this funding period, we have made substantial progress on development and application of the Gaggle integration framework. We implemented the workspace to the Network Portal. Users can capture data from Firegoose and save them to the workspace. Users can create workflows to start multiple software components programmatically and pass data between them. Results of analysis can be saved to the cloud so that they can be easily restored on any machine. We also developed the Gaggle Chrome Goose, a plugin for the Google Chrome browser in tandem with an opencpu server in the Amazon EC2 cloud. This allows users to interactively perform data analysis on a single web page using the R packages deployed on the opencpu server. The cloud-based framework facilitates collaboration between researchers from multiple organizations. We have made a number of enhancements to the cmonkey2 application to enable and

  4. Enabling Large-Scale Biomedical Analysis in the Cloud

    PubMed Central

    Lin, Ying-Chih; Yu, Chin-Sheng; Lin, Yen-Jen

    2013-01-01

    Recent progress in high-throughput instrumentations has led to an astonishing growth in both volume and complexity of biomedical data collected from various sources. The planet-size data brings serious challenges to the storage and computing technologies. Cloud computing is an alternative to crack the nut because it gives concurrent consideration to enable storage and high-performance computing on large-scale data. This work briefly introduces the data intensive computing system and summarizes existing cloud-based resources in bioinformatics. These developments and applications would facilitate biomedical research to make the vast amount of diversification data meaningful and usable. PMID:24288665

  5. Enabling Technologies for the Future of Chemical Synthesis

    PubMed Central

    2016-01-01

    Technology is evolving at breakneck pace, changing the way we communicate, travel, find out information, and live our lives. Yet chemistry as a science has been slower to adapt to this rapidly shifting world. In this Outlook we use highlights from recent literature reports to describe how progresses in enabling technologies are altering this trend, permitting chemists to incorporate new advances into their work at all levels of the chemistry development cycle. We discuss the benefits and challenges that have arisen, impacts on academic–industry relationships, and future trends in the area of chemical synthesis. PMID:27163040

  6. Chandra enables study of x-ray jets.

    PubMed

    Schwartz, Daniel

    2010-04-20

    The exquisite angular resolution of the Chandra x-ray telescope has enabled the detection and study of resolved x-ray jets in a wide variety of astronomical systems. Chandra has detected extended jets in our galaxy from protostars, symbiotic binaries, neutron star pulsars, black hole binaries, extragalactic jets in radio sources, and quasars. The x-ray data play an essential role in deducing the emission mechanism of the jets, in revealing the interaction of jets with the intergalactic or intracluster media, and in studying the energy generation budget of black holes. PMID:20378839

  7. Working Towards New Transformative Geoscience Analytics Enabled by Petascale Computing

    NASA Astrophysics Data System (ADS)

    Woodcock, R.; Wyborn, L.

    2012-04-01

    Currently the top 10 supercomputers in the world are petascale and already exascale computers are being planned. Cloud computing facilities are becoming mainstream either as private or commercial investments. These computational developments will provide abundant opportunities for the earth science community to tackle the data deluge which has resulted from new instrumentation enabling data to be gathered at a greater rate and at higher resolution. Combined, the new computational environments should enable the earth sciences to be transformed. However, experience in Australia and elsewhere has shown that it is not easy to scale existing earth science methods, software and analytics to take advantage of the increased computational capacity that is now available. It is not simply a matter of 'transferring' current work practices to the new facilities: they have to be extensively 'transformed'. In particular new Geoscientific methods will need to be developed using advanced data mining, assimilation, machine learning and integration algorithms. Software will have to be capable of operating in highly parallelised environments, and will also need to be able to scale as the compute systems grow. Data access will have to improve and the earth science community needs to move from the file discovery, display and then locally download paradigm to self describing data cubes and data arrays that are available as online resources from either major data repositories or in the cloud. In the new transformed world, rather than analysing satellite data scene by scene, sensor agnostic data cubes of calibrated earth observation data will enable researchers to move across data from multiple sensors at varying spatial data resolutions. In using geophysics to characterise basement and cover, rather than analysing individual gridded airborne geophysical data sets, and then combining the results, petascale computing will enable analysis of multiple data types, collected at varying

  8. PACFEST 2004 : enabling technologies for maritime security in the Pacific region.

    SciTech Connect

    Moore, Judy Hennessey; Whitley, John B.; Chellis, Craig

    2005-06-01

    In October of 2003 experts involved in various aspects of homeland security from the Pacific region met to engage in a free-wheeling discussion and brainstorming (a 'fest') on the role that technology could play in winning the war on terrorism in the Pacific region. The result was a concise and relatively thorough definition of the terrorism problem in the Pacific region, emphasizing the issues unique to Island nations in the Pacific setting, along with an action plan for developing working demonstrations of advanced technological solutions to these issues. Since PacFest 2003, the maritime dimensions of the international security environment have garnered increased attention and interest. To this end, PacFest 2004 sought to identify gaps and enabling technologies for maritime domain awareness and responsive decision-making in the Asia-Pacific region. The PacFest 2004 participants concluded that the technologies and basic information building blocks exist to create a system that would enable the Pacific region government and private organizations to effectively collaborate and share their capabilities and information concerning maritime security. The proposed solution summarized in this report integrates national environments in real time, thereby enabling effective prevention and first response to natural and terrorist induced disasters through better use of national and regional investments in people, infrastructure, systems, processes and standards.

  9. Towards a comprehensive framework for reuse: A reuse-enabling software evolution environment

    NASA Technical Reports Server (NTRS)

    Basili, V. R.; Rombach, H. D.

    1988-01-01

    Reuse of products, processes and knowledge will be the key to enable the software industry to achieve the dramatic improvement in productivity and quality required to satisfy the anticipated growing demand. Although experience shows that certain kinds of reuse can be successful, general success has been elusive. A software life-cycle technology which allows broad and extensive reuse could provide the means to achieving the desired order-of-magnitude improvements. The scope of a comprehensive framework for understanding, planning, evaluating and motivating reuse practices and the necessary research activities is outlined. As a first step towards such a framework, a reuse-enabling software evolution environment model is introduced which provides a basis for the effective recording of experience, the generalization and tailoring of experience, the formalization of experience, and the (re-)use of experience.

  10. A Single-use Strategy to Enable Manufacturing of Affordable Biologics.

    PubMed

    Jacquemart, Renaud; Vandersluis, Melissa; Zhao, Mochao; Sukhija, Karan; Sidhu, Navneet; Stout, Jim

    2016-01-01

    The current processing paradigm of large manufacturing facilities dedicated to single product production is no longer an effective approach for best manufacturing practices. Increasing competition for new indications and the launch of biosimilars for the monoclonal antibody market have put pressure on manufacturers to produce at lower cost. Single-use technologies and continuous upstream processes have proven to be cost-efficient options to increase biomass production but as of today the adoption has been only minimal for the purification operations, partly due to concerns related to cost and scale-up. This review summarizes how a single-use holistic process and facility strategy can overcome scale limitations and enable cost-efficient manufacturing to support the growing demand for affordable biologics. Technologies enabling high productivity, right-sized, small footprint, continuous, and automated upstream and downstream operations are evaluated in order to propose a concept for the flexible facility of the future. PMID:27570613

  11. A delicate web: household changes in health behaviour enabled by microcredit in Burkina Faso.

    PubMed

    Hennink, Monique; McFarland, Deborah A

    2013-01-01

    Providing microcredit to women in developing countries has long been highlighted as a simple and effective strategy for poverty reduction and health improvement. However, little is known about how microcredit enables changes in health behaviour. This knowledge is critical to further strengthen microcredit initiatives. This qualitative study, conducted in Burkina Faso, shows how microcredit can not only facilitate savings and investment strategies, but also lead to changes in household decision-making, enabling women to initiate health prevention, seek health treatment and manage health emergencies. Some changes led to increased household burdens for women that impeded health gains, such as administrative loan delays by the microcredit institution and reduced household contributions by the husband. Furthermore, the study highlighted the fragile nature of health gains, which may be eroded due to economic shocks on a household, such as crop failure, drought or illness.

  12. A Single-use Strategy to Enable Manufacturing of Affordable Biologics.

    PubMed

    Jacquemart, Renaud; Vandersluis, Melissa; Zhao, Mochao; Sukhija, Karan; Sidhu, Navneet; Stout, Jim

    2016-01-01

    The current processing paradigm of large manufacturing facilities dedicated to single product production is no longer an effective approach for best manufacturing practices. Increasing competition for new indications and the launch of biosimilars for the monoclonal antibody market have put pressure on manufacturers to produce at lower cost. Single-use technologies and continuous upstream processes have proven to be cost-efficient options to increase biomass production but as of today the adoption has been only minimal for the purification operations, partly due to concerns related to cost and scale-up. This review summarizes how a single-use holistic process and facility strategy can overcome scale limitations and enable cost-efficient manufacturing to support the growing demand for affordable biologics. Technologies enabling high productivity, right-sized, small footprint, continuous, and automated upstream and downstream operations are evaluated in order to propose a concept for the flexible facility of the future.

  13. Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media

    NASA Astrophysics Data System (ADS)

    Fahrbach, Florian O.; Rohrbach, Alexander

    2012-01-01

    Laser beams that can self-reconstruct their initial beam profile even in the presence of massive phase perturbations are able to propagate deeper into inhomogeneous media. This ability has crucial advantages for light sheet-based microscopy in thick media, such as cell clusters, embryos, skin or brain tissue or plants, as well as scattering synthetic materials. A ring system around the central intensity maximum of a Bessel beam enables its self-reconstruction, but at the same time illuminates out-of-focus regions and deteriorates image contrast. Here we present a detection method that minimizes the negative effect of the ring system. The beam's propagation stability along one straight line enables the use of a confocal line principle, resulting in a significant increase in image contrast. The axial resolution could be improved by nearly 100% relative to the standard light-sheet techniques using scanned Gaussian beams, while demonstrating self-reconstruction also for high propagation depths.

  14. Propagation stability of self-reconstructing Bessel beams enables contrast-enhanced imaging in thick media.

    PubMed

    Fahrbach, Florian O; Rohrbach, Alexander

    2012-01-17

    Laser beams that can self-reconstruct their initial beam profile even in the presence of massive phase perturbations are able to propagate deeper into inhomogeneous media. This ability has crucial advantages for light sheet-based microscopy in thick media, such as cell clusters, embryos, skin or brain tissue or plants, as well as scattering synthetic materials. A ring system around the central intensity maximum of a Bessel beam enables its self-reconstruction, but at the same time illuminates out-of-focus regions and deteriorates image contrast. Here we present a detection method that minimizes the negative effect of the ring system. The beam's propagation stability along one straight line enables the use of a confocal line principle, resulting in a significant increase in image contrast. The axial resolution could be improved by nearly 100% relative to the standard light-sheet techniques using scanned Gaussian beams, while demonstrating self-reconstruction also for high propagation depths.

  15. Drag reducing chemical enables increased sea water injection without increasing the oxygen corrosion rate

    SciTech Connect

    McMahon, A.J.; Smith, P.S.; Lee, Y.

    1997-08-01

    Water soluble drag reducer chemicals have enabled significant increases in flow rates in many oilfield water injection systems. In some cases there is concern that this could lead to increased oxygen corrosion whenever the dissolved oxygen concentration strays above a typical injection target such as 20 ppb O{sub 2}. The effect of a chemical drag reducer on oxygen corrosion of carbon steel was examined in a large scale flow loop simulating a sea water injection line. Drag reduction (up to 48%) matched corrosion reduction (up to 39%). This means that drag reducer has a self compensating effect on oxygen corrosion: it permits higher flow rates without increasing the oxygen corrosion rate.

  16. The role of goal-focused leadership in enabling the expression of conscientiousness.

    PubMed

    Colbert, Amy E; Witt, L A

    2009-05-01

    The authors tested the hypothesis that goal-focused leadership enables conscientious workers to perform effectively by helping them to accurately understand organizational goal priorities. Data collected from 162 workers in a private sector document processing organization supported the hypotheses that goal-focused leadership moderates the relationship between conscientiousness and job performance and that person-organization goal congruence mediates this moderated relationship. Specifically, conscientiousness was more strongly positively related to performance among workers who perceived that their supervisors effectively set goals and defined roles, responsibilities, and priorities than among workers who did not perceive this type of goal-focused leadership. PMID:19450014

  17. Enabling complex queries to drug information sources through functional composition.

    PubMed

    Peters, Lee; Mortensen, Jonathan; Nguyen, Thang; Bodenreider, Olivier

    2013-01-01

    Our objective was to enable an end-user to create complex queries to drug information sources through functional composition, by creating sequences of functions from application program interfaces (API) to drug terminologies. The development of a functional composition model seeks to link functions from two distinct APIs. An ontology was developed using Protégé to model the functions of the RxNorm and NDF-RT APIs by describing the semantics of their input and output. A set of rules were developed to define the interoperable conditions for functional composition. The operational definition of interoperability between function pairs is established by executing the rules on the ontology. We illustrate that the functional composition model supports common use cases, including checking interactions for RxNorm drugs and deploying allergy lists defined in reference to drug properties in NDF-RT. This model supports the RxMix application (http://mor.nlm.nih.gov/RxMix/), an application we developed for enabling complex queries to the RxNorm and NDF-RT APIs. PMID:23920645

  18. Enabling sustainable urban water management through governance experimentation.

    PubMed

    Bos, J J; Brown, R R; Farrelly, M A; de Haan, F J

    2013-01-01

    A shift towards sustainable urban water management is widely advocated but poorly understood. There is a growing body of literature claiming that social learning is of high importance in restructuring conventional systems. In particular, governance experimentation, which explicitly aims for social learning, has been suggested as an approach for enabling the translation of sustainability ideas into practice. This type of experimentation requires a very different dynamic within societal relations and necessitates a changed role for professionals engaged in such a process. This empirically focused paper investigates a contemporary governance experiment, the Cooks River Sustainability Initiative, and determines its outcome in terms of enabling social learning for attaining sustainable water practice in an urban catchment. Drawing on the qualitative insights of the actors directly involved in this novel process, this paper provides evidence of changes in individual and collective understanding generated through diverse forms of social interaction. Furthermore, the research reveals perceived key-factors that foster and/or hamper the execution of this new form of experimentation, including project complexity, resource intensity and leadership. Overall, this paper highlights that, while implementation of governance experimentation in a conventional setting can be highly challenging, it can also be highly rewarding in terms of learning. PMID:23579824

  19. Nano-enabled tribological thin film coatings: global patent scenario.

    PubMed

    Sivudu, Kurva S; Mahajan, Yashwant R; Joshi, Shrikant V

    2014-01-01

    The aim of this paper is to present current status and future prospects of nano-enabled tribological thin film coatings based on worldwide patent landscape analysis. The study also presents an overview of technological trends by carrying out state-of-the-art literature analysis, including survey of corporate websites. Nanostructured tribological coatings encompass a wide spectrum of nanoscale microstructures, including nanocrystalline, nanolayered, nano-multilayered, nanocomposite, nanogradient structures or their unique combinations, which are composed of single or multi-component phases. The distinct microstructural features of the coatings impart outstanding tribological properties combined with multifunctional attributes to the coated components. Their unique combination of remarkable properties make them ideal candidates for a wide range of applications in diverse fields such as cutting and metalworking tools, biomedical devices, automotive engine components, wear parts, hard disc drives etc. The patent landscape analysis has revealed that nano-enabled tribological thin film coatings have significant potential for commercial applications in view of the lion's share of corporate industry in patenting activity. The largest patent portfolio is held by Japan followed by USA, Germany, Sweden and China. The prominent players involved in this field are Mitsubishi Materials Corp., Sandvik Aktiebolag, Hitachi Ltd., Sumitomo Electric Industries Ltd., OC Oerlikon Corp., and so on. The outstanding potential of nanostructured thin film tribological coatings is yet to be fully unravelled and, therefore, immense opportunities are available in future for microstructurally engineered novel coatings to enhance their performance and functionality by many folds. PMID:24962377

  20. Oxytonergic circuitry sustains and enables creative cognition in humans

    PubMed Central

    Baas, Matthijs; Roskes, Marieke; Sligte, Daniel J.; Ebstein, Richard P.; Chew, Soo Hong; Tong, Terry; Jiang, Yushi; Mayseless, Naama; Shamay-Tsoory, Simone G.

    2014-01-01

    Creativity enables humans to adapt flexibly to changing circumstances, to manage complex social relations and to survive and prosper through social, technological and medical innovations. In humans, chronic, trait-based as well as temporary, state-based approach orientation has been linked to increased capacity for divergent rather than convergent thinking, to more global and holistic processing styles and to more original ideation and creative problem solving. Here, we link creative cognition to oxytocin, a hypothalamic neuropeptide known to up-regulate approach orientation in both animals and humans. Study 1 (N = 492) showed that plasma oxytocin predicts novelty-seeking temperament. Study 2 (N = 110) revealed that genotype differences in a polymorphism in the oxytocin receptor gene rs1042778 predicted creative ideation, with GG/GT-carriers being more original than TT-carriers. Using double-blind placebo-controlled between-subjects designs, Studies 3–6 (N = 191) finally showed that intranasal oxytocin (vs matching placebo) reduced analytical reasoning, and increased holistic processing, divergent thinking and creative performance. We conclude that the oxytonergic circuitry sustains and enables the day-to-day creativity humans need for survival and prosperity and discuss implications. PMID:23863476

  1. Heliophysics Science Enabled By the Return to the Moon

    NASA Technical Reports Server (NTRS)

    Spann, James F.; Spence, Harlan; Christensen, Andrew

    2006-01-01

    The lunar plasma and radiation environment and those physical processes that drive and control it, are intrinsically part of the science domain of the Heliophysics Division. Since the inception of the space program with Explorer 1 in 1958 and continuing to the present, scientists in the Heliophysics community have concentrated on characterizing and understanding the connected Sun-Earth system including the regions the Moon traverses and the interaction of plasmas and radiation with large and small bodies. This has been accomplished with in situ and remote sensing instrumentation and physics- and numerically-based models that provide understanding of the dominant mechanisms that define the environment in which the Moon is immersed. Therefore, the Heliospheric science community is uniquely and in many cases exclusively qualified to address interesting and compelling science problems that are enabled by the return to the Moon. This talk will provide an overview of representative, high-priority science investigations that are made possible by the return to the lunar surface. The content of this presentation is a result of an ongoing effort to inventory and articulate compelling science topics and how they are enabled by the return to the Moon.

  2. Enabling Large Focal Plane Arrays Through Mosaic Hybridization

    NASA Technical Reports Server (NTRS)

    Miller, Timothy M.; Jhabvala, Christine A.; Leong, Edward; Costen, Nicholas P.; Sharp, Elmer; Adachi, Tomoko; Benford, Dominic J.

    2012-01-01

    We have demonstrated advances in mosaic hybridization that will enable very large format far-infrared detectors. Specifically we have produced electrical detector models via mosaic hybridization yielding superconducting circuit paths by hybridizing separately fabricated sub-units onto a single detector unit. The detector model was made on a 100mm diameter wafer while four model readout quadrant chips were made from a separate 100mm wafer. The individually fabricated parts were hybridized using a flip-chip bonder to assemble the detector-readout stack. Once all of the hybridized readouts were in place, a single, large and thick silicon substrate was placed on the stack and attached with permanent epoxy to provide strength and a Coefficient of Thermal Expansion match to the silicon components underneath. Wirebond pads on the readout chips connect circuits to warm readout electronics; and were used to validate the successful superconducting electrical interconnection of the model mosaic-hybrid detector. This demonstration is directly scalable to 150 mm diameter wafers, enabling pixel areas over ten times the area currently available.

  3. MOPED enables discoveries through consistently processed proteomics data.

    PubMed

    Higdon, Roger; Stewart, Elizabeth; Stanberry, Larissa; Haynes, Winston; Choiniere, John; Montague, Elizabeth; Anderson, Nathaniel; Yandl, Gregory; Janko, Imre; Broomall, William; Fishilevich, Simon; Lancet, Doron; Kolker, Natali; Kolker, Eugene

    2014-01-01

    The Model Organism Protein Expression Database (MOPED, http://moped.proteinspire.org) is an expanding proteomics resource to enable biological and biomedical discoveries. MOPED aggregates simple, standardized and consistently processed summaries of protein expression and metadata from proteomics (mass spectrometry) experiments from human and model organisms (mouse, worm, and yeast). The latest version of MOPED adds new estimates of protein abundance and concentration as well as relative (differential) expression data. MOPED provides a new updated query interface that allows users to explore information by organism, tissue, localization, condition, experiment, or keyword. MOPED supports the Human Proteome Project's efforts to generate chromosome- and diseases-specific proteomes by providing links from proteins to chromosome and disease information as well as many complementary resources. MOPED supports a new omics metadata checklist to harmonize data integration, analysis, and use. MOPED's development is driven by the user community, which spans 90 countries and guides future development that will transform MOPED into a multiomics resource. MOPED encourages users to submit data in a simple format. They can use the metadata checklist to generate a data publication for this submission. As a result, MOPED will provide even greater insights into complex biological processes and systems and enable deeper and more comprehensive biological and biomedical discoveries.

  4. Synaptic plasticity enables adaptive self-tuning critical networks.

    PubMed

    Stepp, Nigel; Plenz, Dietmar; Srinivasa, Narayan

    2015-01-01

    During rest, the mammalian cortex displays spontaneous neural activity. Spiking of single neurons during rest has been described as irregular and asynchronous. In contrast, recent in vivo and in vitro population measures of spontaneous activity, using the LFP, EEG, MEG or fMRI suggest that the default state of the cortex is critical, manifested by spontaneous, scale-invariant, cascades of activity known as neuronal avalanches. Criticality keeps a network poised for optimal information processing, but this view seems to be difficult to reconcile with apparently irregular single neuron spiking. Here, we simulate a 10,000 neuron, deterministic, plastic network of spiking neurons. We show that a combination of short- and long-term synaptic plasticity enables these networks to exhibit criticality in the face of intrinsic, i.e. self-sustained, asynchronous spiking. Brief external perturbations lead to adaptive, long-term modification of intrinsic network connectivity through long-term excitatory plasticity, whereas long-term inhibitory plasticity enables rapid self-tuning of the network back to a critical state. The critical state is characterized by a branching parameter oscillating around unity, a critical exponent close to -3/2 and a long tail distribution of a self-similarity parameter between 0.5 and 1. PMID:25590427

  5. Synaptic Plasticity Enables Adaptive Self-Tuning Critical Networks

    PubMed Central

    Stepp, Nigel; Plenz, Dietmar; Srinivasa, Narayan

    2015-01-01

    During rest, the mammalian cortex displays spontaneous neural activity. Spiking of single neurons during rest has been described as irregular and asynchronous. In contrast, recent in vivo and in vitro population measures of spontaneous activity, using the LFP, EEG, MEG or fMRI suggest that the default state of the cortex is critical, manifested by spontaneous, scale-invariant, cascades of activity known as neuronal avalanches. Criticality keeps a network poised for optimal information processing, but this view seems to be difficult to reconcile with apparently irregular single neuron spiking. Here, we simulate a 10,000 neuron, deterministic, plastic network of spiking neurons. We show that a combination of short- and long-term synaptic plasticity enables these networks to exhibit criticality in the face of intrinsic, i.e. self-sustained, asynchronous spiking. Brief external perturbations lead to adaptive, long-term modification of intrinsic network connectivity through long-term excitatory plasticity, whereas long-term inhibitory plasticity enables rapid self-tuning of the network back to a critical state. The critical state is characterized by a branching parameter oscillating around unity, a critical exponent close to -3/2 and a long tail distribution of a self-similarity parameter between 0.5 and 1. PMID:25590427

  6. BIM: enabling sustainability and asset management through knowledge management.

    PubMed

    Kivits, Robbert Anton; Furneaux, Craig

    2013-01-01

    Building Information Modeling (BIM) is the use of virtual building information models to develop building design solutions and design documentation and to analyse construction processes. Recent advances in IT have enabled advanced knowledge management, which in turn facilitates sustainability and improves asset management in the civil construction industry. There are several important qualifiers and some disadvantages of the current suite of technologies. This paper outlines the benefits, enablers, and barriers associated with BIM and makes suggestions about how these issues may be addressed. The paper highlights the advantages of BIM, particularly the increased utility and speed, enhanced fault finding in all construction phases, and enhanced collaborations and visualisation of data. The paper additionally identifies a range of issues concerning the implementation of BIM as follows: IP, liability, risks, and contracts and the authenticity of users. Implementing BIM requires investment in new technology, skills training, and development of new ways of collaboration and Trade Practices concerns. However, when these challenges are overcome, BIM as a new information technology promises a new level of collaborative engineering knowledge management, designed to facilitate sustainability and asset management issues in design, construction, asset management practices, and eventually decommissioning for the civil engineering industry.

  7. A simple physical mechanism enables homeostasis in primitive cells.

    PubMed

    Engelhart, Aaron E; Adamala, Katarzyna P; Szostak, Jack W

    2016-05-01

    The emergence of homeostatic mechanisms that enable maintenance of an intracellular steady state during growth was critical to the advent of cellular life. Here, we show that concentration-dependent reversible binding of short oligonucleotides, of both specific and random sequence, can modulate ribozyme activity. In both cases, catalysis is inhibited at high concentrations, and dilution activates the ribozyme via inhibitor dissociation, thus maintaining near-constant ribozyme specific activity throughout protocell growth. To mimic the result of RNA synthesis within non-growing protocells, we co-encapsulated high concentrations of ribozyme and oligonucleotides within fatty acid vesicles, and ribozyme activity was inhibited. Following vesicle growth, the resulting internal dilution produced ribozyme activation. This simple physical system enables a primitive homeostatic behaviour: the maintenance of constant ribozyme activity per unit volume during protocell volume changes. We suggest that such systems, wherein short oligonucleotides reversibly inhibit functional RNAs, could have preceded sophisticated modern RNA regulatory mechanisms, such as those involving miRNAs. PMID:27102678

  8. Nano-imaging enabled via self-assembly

    PubMed Central

    McLeod, Euan; Ozcan, Aydogan

    2014-01-01

    SUMMARY Imaging object details with length scales below approximately 200 nm has been historically difficult for conventional microscope objective lenses because of their inability to resolve features smaller than one-half the optical wavelength. Here we review some of the recent approaches to surpass this limit by harnessing self-assembly as a fabrication mechanism. Self-assembly can be used to form individual nano- and micro-lenses, as well as to form extended arrays of such lenses. These lenses have been shown to enable imaging with resolutions as small as 50 nm half-pitch using visible light, which is well below the Abbe diffraction limit. Furthermore, self-assembled nano-lenses can be used to boost contrast and signal levels from small nano-particles, enabling them to be detected relative to background noise. Finally, alternative nano-imaging applications of self-assembly are discussed, including three-dimensional imaging, enhanced coupling from light-emitting diodes, and the fabrication of contrast agents such as quantum dots and nanoparticles. PMID:25506387

  9. Plasma Modeling Enabled Technology Development Empowered by Fundamental Scattering Data

    NASA Astrophysics Data System (ADS)

    Kushner, Mark J.

    2016-05-01

    Technology development increasingly relies on modeling to speed the innovation cycle. This is particularly true for systems using low temperature plasmas (LTPs) and their role in enabling energy efficient processes with minimal environmental impact. In the innovation cycle, LTP modeling supports investigation of fundamental processes that seed the cycle, optimization of newly developed technologies, and prediction of performance of unbuilt systems for new applications. Although proof-of-principle modeling may be performed for idealized systems in simple gases, technology development must address physically complex systems that use complex gas mixtures that now may be multi-phase (e.g., in contact with liquids). The variety of fundamental electron and ion scattering, and radiation transport data (FSRD) required for this modeling increases as the innovation cycle progresses, while the accuracy required of that data depends on the intended outcome. In all cases, the fidelity, depth and impact of the modeling depends on the availability of FSRD. Modeling and technology development are, in fact, empowered by the availability and robustness of FSRD. In this talk, examples of the impact of and requirements for FSRD in the innovation cycle enabled by plasma modeling will be discussed using results from multidimensional and global models. Examples of fundamental studies and technology optimization will focus on microelectronics fabrication and on optically pumped lasers. Modeling of systems as yet unbuilt will address the interaction of atmospheric pressure plasmas with liquids. Work supported by DOE Office of Fusion Energy Science and the National Science Foundation.

  10. Oxytonergic circuitry sustains and enables creative cognition in humans.

    PubMed

    De Dreu, Carsten K W; Baas, Matthijs; Roskes, Marieke; Sligte, Daniel J; Ebstein, Richard P; Chew, Soo Hong; Tong, Terry; Jiang, Yushi; Mayseless, Naama; Shamay-Tsoory, Simone G

    2014-08-01

    Creativity enables humans to adapt flexibly to changing circumstances, to manage complex social relations and to survive and prosper through social, technological and medical innovations. In humans, chronic, trait-based as well as temporary, state-based approach orientation has been linked to increased capacity for divergent rather than convergent thinking, to more global and holistic processing styles and to more original ideation and creative problem solving. Here, we link creative cognition to oxytocin, a hypothalamic neuropeptide known to up-regulate approach orientation in both animals and humans. Study 1 (N = 492) showed that plasma oxytocin predicts novelty-seeking temperament. Study 2 (N = 110) revealed that genotype differences in a polymorphism in the oxytocin receptor gene rs1042778 predicted creative ideation, with GG/GT-carriers being more original than TT-carriers. Using double-blind placebo-controlled between-subjects designs, Studies 3-6 (N = 191) finally showed that intranasal oxytocin (vs matching placebo) reduced analytical reasoning, and increased holistic processing, divergent thinking and creative performance. We conclude that the oxytonergic circuitry sustains and enables the day-to-day creativity humans need for survival and prosperity and discuss implications. PMID:23863476

  11. Oxytonergic circuitry sustains and enables creative cognition in humans.

    PubMed

    De Dreu, Carsten K W; Baas, Matthijs; Roskes, Marieke; Sligte, Daniel J; Ebstein, Richard P; Chew, Soo Hong; Tong, Terry; Jiang, Yushi; Mayseless, Naama; Shamay-Tsoory, Simone G

    2014-08-01

    Creativity enables humans to adapt flexibly to changing circumstances, to manage complex social relations and to survive and prosper through social, technological and medical innovations. In humans, chronic, trait-based as well as temporary, state-based approach orientation has been linked to increased capacity for divergent rather than convergent thinking, to more global and holistic processing styles and to more original ideation and creative problem solving. Here, we link creative cognition to oxytocin, a hypothalamic neuropeptide known to up-regulate approach orientation in both animals and humans. Study 1 (N = 492) showed that plasma oxytocin predicts novelty-seeking temperament. Study 2 (N = 110) revealed that genotype differences in a polymorphism in the oxytocin receptor gene rs1042778 predicted creative ideation, with GG/GT-carriers being more original than TT-carriers. Using double-blind placebo-controlled between-subjects designs, Studies 3-6 (N = 191) finally showed that intranasal oxytocin (vs matching placebo) reduced analytical reasoning, and increased holistic processing, divergent thinking and creative performance. We conclude that the oxytonergic circuitry sustains and enables the day-to-day creativity humans need for survival and prosperity and discuss implications.

  12. BIM: enabling sustainability and asset management through knowledge management.

    PubMed

    Kivits, Robbert Anton; Furneaux, Craig

    2013-01-01

    Building Information Modeling (BIM) is the use of virtual building information models to develop building design solutions and design documentation and to analyse construction processes. Recent advances in IT have enabled advanced knowledge management, which in turn facilitates sustainability and improves asset management in the civil construction industry. There are several important qualifiers and some disadvantages of the current suite of technologies. This paper outlines the benefits, enablers, and barriers associated with BIM and makes suggestions about how these issues may be addressed. The paper highlights the advantages of BIM, particularly the increased utility and speed, enhanced fault finding in all construction phases, and enhanced collaborations and visualisation of data. The paper additionally identifies a range of issues concerning the implementation of BIM as follows: IP, liability, risks, and contracts and the authenticity of users. Implementing BIM requires investment in new technology, skills training, and development of new ways of collaboration and Trade Practices concerns. However, when these challenges are overcome, BIM as a new information technology promises a new level of collaborative engineering knowledge management, designed to facilitate sustainability and asset management issues in design, construction, asset management practices, and eventually decommissioning for the civil engineering industry. PMID:24324392

  13. SpyAvidin Hubs Enable Precise and Ultrastable Orthogonal Nanoassembly

    PubMed Central

    2014-01-01

    The capture of biotin by streptavidin is an inspiration for supramolecular chemistry and a central tool for biological chemistry and nanotechnology, because of the rapid and exceptionally stable interaction. However, there is no robust orthogonal interaction to this hub, limiting the size and complexity of molecular assemblies that can be created. Here we combined traptavidin (a streptavidin variant maximizing biotin binding strength) with an orthogonal irreversible interaction. SpyTag is a peptide engineered to form a spontaneous isopeptide bond to its protein partner SpyCatcher. SpyTag or SpyCatcher was successfully fused to the C-terminus of Dead streptavidin subunits. We were able to generate chimeric tetramers with n (0 ≤ n ≤ 4) biotin binding sites and 4-n SpyTag or SpyCatcher binding sites. Chimeric SpyAvidin tetramers bound precise numbers of ligands fused to biotin or SpyTag/SpyCatcher. Mixing chimeric tetramers enabled assembly of SpyAvidin octamers (8 subunits) or eicosamers (20 subunits). We validated assemblies using electrophoresis and native mass spectrometry. Eicosameric SpyAvidin was used to cluster trimeric major histocompatibility complex (MHC) class I:β2-microglobulin:peptide complexes, generating an assembly with up to 56 components. MHC eicosamers surpassed the conventional MHC tetramers in acting as a powerful stimulus to T cell signaling. Combining ultrastable noncovalent with irreversible covalent interaction, SpyAvidins enable a simple route to create robust nanoarchitectures. PMID:25111182

  14. Wavelet-enabled progressive data Access and Storage Protocol (WASP)

    NASA Astrophysics Data System (ADS)

    Clyne, J.; Frank, L.; Lesperance, T.; Norton, A.

    2015-12-01

    Current practices for storing numerical simulation outputs hail from an era when the disparity between compute and I/O performance was not as great as it is today. The memory contents for every sample, computed at every grid point location, are simply saved at some prescribed temporal frequency. Though straightforward, this approach fails to take advantage of the coherency in neighboring grid points that invariably exists in numerical solutions to mathematical models. Exploiting such coherence is essential to digital multimedia; DVD-Video, digital cameras, streaming movies and audio are all possible today because of transform-based compression schemes that make substantial reductions in data possible by taking advantage of the strong correlation between adjacent samples in both space and time. Such methods can also be exploited to enable progressive data refinement in a manner akin to that used in ubiquitous digital mapping applications: views from far away are shown in coarsened detail to provide context, and can be progressively refined as the user zooms in on a localized region of interest. The NSF funded WASP project aims to provide a common, NetCDF-compatible software framework for supporting wavelet-based, multi-scale, progressive data, enabling interactive exploration of large data sets for the geoscience communities. This presentation will provide an overview of this work in progress to develop community cyber-infrastructure for the efficient analysis of very large data sets.

  15. Nano-enabled tribological thin film coatings: global patent scenario.

    PubMed

    Sivudu, Kurva S; Mahajan, Yashwant R; Joshi, Shrikant V

    2014-01-01

    The aim of this paper is to present current status and future prospects of nano-enabled tribological thin film coatings based on worldwide patent landscape analysis. The study also presents an overview of technological trends by carrying out state-of-the-art literature analysis, including survey of corporate websites. Nanostructured tribological coatings encompass a wide spectrum of nanoscale microstructures, including nanocrystalline, nanolayered, nano-multilayered, nanocomposite, nanogradient structures or their unique combinations, which are composed of single or multi-component phases. The distinct microstructural features of the coatings impart outstanding tribological properties combined with multifunctional attributes to the coated components. Their unique combination of remarkable properties make them ideal candidates for a wide range of applications in diverse fields such as cutting and metalworking tools, biomedical devices, automotive engine components, wear parts, hard disc drives etc. The patent landscape analysis has revealed that nano-enabled tribological thin film coatings have significant potential for commercial applications in view of the lion's share of corporate industry in patenting activity. The largest patent portfolio is held by Japan followed by USA, Germany, Sweden and China. The prominent players involved in this field are Mitsubishi Materials Corp., Sandvik Aktiebolag, Hitachi Ltd., Sumitomo Electric Industries Ltd., OC Oerlikon Corp., and so on. The outstanding potential of nanostructured thin film tribological coatings is yet to be fully unravelled and, therefore, immense opportunities are available in future for microstructurally engineered novel coatings to enhance their performance and functionality by many folds.

  16. Enabling Large Focal Plane Arrays Through Mosaic Hybridization

    NASA Technical Reports Server (NTRS)

    Miller, Timothy M.; Jhabvala, Christine A.; Leong, Edward; Costen, Nick P.; Sharp, Elmer; Adachi, Tomoko; Benford, Dominic J.

    2012-01-01

    We have demonstrated advances in mosaic hybridization that will enable very large format far-infrared detectors. Specifically we have produced electrical detector models via mosaic hybridization yielding superconducting circuit patbs by hybridizing separately fabricated sub-units onto a single detector unit. The detector model was made on a 100mm diameter wafer while four model readout quadrant chips were made from a separate 100mm wafer. The individually fabric.ted parts were hybridized using a Suss FCI50 flip chip bonder to assemble the detector-readout stack. Once all of the hybridized readouts were in place, a single, large and thick silicon substrate was placed on the stack and attached with permanent epoxy to provide strength and a Coefficient of Thermal Expansion match to the silicon components underneath. Wirebond pads on the readout chips connect circuits to warm readout electronics; and were used to validate the successful superconducting electrical interconnection of the model mosaic-hybrid detector. This demonstration is directly scalable to 150 mm diameter wafers, enabling pixel areas over ten times the area currently available.

  17. Semantically-Enabled Sensor Plug & Play for the Sensor Web

    PubMed Central

    Bröring, Arne; Maúe, Patrick; Janowicz, Krzysztof; Nüst, Daniel; Malewski, Christian

    2011-01-01

    Environmental sensors have continuously improved by becoming smaller, cheaper, and more intelligent over the past years. As consequence of these technological advancements, sensors are increasingly deployed to monitor our environment. The large variety of available sensor types with often incompatible protocols complicates the integration of sensors into observing systems. The standardized Web service interfaces and data encodings defined within OGC’s Sensor Web Enablement (SWE) framework make sensors available over the Web and hide the heterogeneous sensor protocols from applications. So far, the SWE framework does not describe how to integrate sensors on-the-fly with minimal human intervention. The driver software which enables access to sensors has to be implemented and the measured sensor data has to be manually mapped to the SWE models. In this article we introduce a Sensor Plug & Play infrastructure for the Sensor Web by combining (1) semantic matchmaking functionality, (2) a publish/subscribe mechanism underlying the SensorWeb, as well as (3) a model for the declarative description of sensor interfaces which serves as a generic driver mechanism. We implement and evaluate our approach by applying it to an oil spill scenario. The matchmaking is realized using existing ontologies and reasoning engines and provides a strong case for the semantic integration capabilities provided by Semantic Web research. PMID:22164033

  18. ACES: An Enabling Technology for Next Generation Space Transportation

    NASA Astrophysics Data System (ADS)

    Crocker, Andrew M.; Wuerl, Adam M.; Andrews, Jason E.; Andrews, Dana G.

    2004-02-01

    Andrews Space has developed the ``Alchemist'' Air Collection and Enrichment System (ACES), a dual-mode propulsion system that enables safe, economical launch systems that take off and land horizontally. Alchemist generates liquid oxygen through separation of atmospheric air using the refrigeration capacity of liquid hydrogen. The key benefit of Alchemist is that it minimizes vehicle takeoff weight. All internal and NASA-funded activities have shown that ACES, previously proposed for hypersonic combined cycle RLVs, is a higher payoff, lower-risk technology if LOX generation is performed while the vehicle cruises subsonically. Andrews Space has developed the Alchemist concept from a small system study to viable Next Generation launch system technology, conducting not only feasibility studies but also related hardware tests, and it has planned a detailed risk reduction program which employs an experienced, proven contractor team. Andrews also has participated in preliminary studies of an evolvable Next Generation vehicle architecture-enabled by Alchemist ACES-which could meet civil, military, and commercial space requirements within two decades.

  19. Radio frequency identification enabled wireless sensing for intelligent food logistics.

    PubMed

    Zou, Zhuo; Chen, Qiang; Chen, Qing; Uysal, Ismail; Zheng, Lirong

    2014-06-13

    Future technologies and applications for the Internet of Things (IoT) will evolve the process of the food supply chain and create added value of business. Radio frequency identifications (RFIDs) and wireless sensor networks (WSNs) have been considered as the key technological enablers. Intelligent tags, powered by autonomous energy, are attached on objects, networked by short-range wireless links, allowing the physical parameters such as temperatures and humidities as well as the location information to seamlessly integrate with the enterprise information system over the Internet. In this paper, challenges, considerations and design examples are reviewed from system, implementation and application perspectives, particularly with focus on intelligent packaging and logistics for the fresh food tracking and monitoring service. An IoT platform with a two-layer network architecture is introduced consisting of an asymmetric tag-reader link (RFID layer) and an ad-hoc link between readers (WSN layer), which are further connected to the Internet via cellular or Wi-Fi. Then, we provide insights into the enabling technology of RFID with sensing capabilities. Passive, semi-passive and active RFID solutions are discussed. In particular, we describe ultra-wideband radio RFID which has been considered as one of the most promising techniques for ultra-low-power and low-cost wireless sensing. Finally, an example is provided in the form of an application in fresh food tracking services and corresponding field testing results.

  20. BIM: Enabling Sustainability and Asset Management through Knowledge Management

    PubMed Central

    2013-01-01

    Building Information Modeling (BIM) is the use of virtual building information models to develop building design solutions and design documentation and to analyse construction processes. Recent advances in IT have enabled advanced knowledge management, which in turn facilitates sustainability and improves asset management in the civil construction industry. There are several important qualifiers and some disadvantages of the current suite of technologies. This paper outlines the benefits, enablers, and barriers associated with BIM and makes suggestions about how these issues may be addressed. The paper highlights the advantages of BIM, particularly the increased utility and speed, enhanced fault finding in all construction phases, and enhanced collaborations and visualisation of data. The paper additionally identifies a range of issues concerning the implementation of BIM as follows: IP, liability, risks, and contracts and the authenticity of users. Implementing BIM requires investment in new technology, skills training, and development of new ways of collaboration and Trade Practices concerns. However, when these challenges are overcome, BIM as a new information technology promises a new level of collaborative engineering knowledge management, designed to facilitate sustainability and asset management issues in design, construction, asset management practices, and eventually decommissioning for the civil engineering industry. PMID:24324392

  1. Resource optimization scheme for multimedia-enabled wireless mesh networks.

    PubMed

    Ali, Amjad; Ahmed, Muhammad Ejaz; Piran, Md Jalil; Suh, Doug Young

    2014-08-08

    Wireless mesh networking is a promising technology that can support numerous multimedia applications. Multimedia applications have stringent quality of service (QoS) requirements, i.e., bandwidth, delay, jitter, and packet loss ratio. Enabling such QoS-demanding applications over wireless mesh networks (WMNs) require QoS provisioning routing protocols that lead to the network resource underutilization problem. Moreover, random topology deployment leads to have some unused network resources. Therefore, resource optimization is one of the most critical design issues in multi-hop, multi-radio WMNs enabled with multimedia applications. Resource optimization has been studied extensively in the literature for wireless Ad Hoc and sensor networks, but existing studies have not considered resource underutilization issues caused by QoS provisioning routing and random topology deployment. Finding a QoS-provisioned path in wireless mesh networks is an NP complete problem. In this paper, we propose a novel Integer Linear Programming (ILP) optimization model to reconstruct the optimal connected mesh backbone topology with a minimum number of links and relay nodes which satisfies the given end-to-end QoS demands for multimedia traffic and identification of extra resources, while maintaining redundancy. We further propose a polynomial time heuristic algorithm called Link and Node Removal Considering Residual Capacity and Traffic Demands (LNR-RCTD). Simulation studies prove that our heuristic algorithm provides near-optimal results and saves about 20% of resources from being wasted by QoS provisioning routing and random topology deployment.

  2. Tagging and Enriching Proteins Enables Cell-Specific Proteomics.

    PubMed

    Elliott, Thomas S; Bianco, Ambra; Townsley, Fiona M; Fried, Stephen D; Chin, Jason W

    2016-07-21

    Cell-specific proteomics in multicellular systems and whole animals is a promising approach to understand the differentiated functions of cells and tissues. Here, we extend our stochastic orthogonal recoding of translation (SORT) approach for the co-translational tagging of proteomes with a cyclopropene-containing amino acid in response to diverse codons in genetically targeted cells, and create a tetrazine-biotin probe containing a cleavable linker that offers a way to enrich and identify tagged proteins. We demonstrate that SORT with enrichment, SORT-E, efficiently recovers and enriches SORT tagged proteins and enables specific identification of enriched proteins via mass spectrometry, including low-abundance proteins. We show that tagging at distinct codons enriches overlapping, but distinct sets of proteins, suggesting that tagging at more than one codon enhances proteome coverage. Using SORT-E, we accomplish cell-specific proteomics in the fly. These results suggest that SORT-E will enable the definition of cell-specific proteomes in animals during development, disease progression, and learning and memory. PMID:27447048

  3. Space Partitioning for Privacy Enabled 3D City Models

    NASA Astrophysics Data System (ADS)

    Filippovska, Y.; Wichmann, A.; Kada, M.

    2016-10-01

    Due to recent technological progress, data capturing and processing of highly detailed (3D) data has become extensive. And despite all prospects of potential uses, data that includes personal living spaces and public buildings can also be considered as a serious intrusion into people's privacy and a threat to security. It becomes especially critical if data is visible by the general public. Thus, a compromise is needed between open access to data and privacy requirements which can be very different for each application. As privacy is a complex and versatile topic, the focus of this work particularly lies on the visualization of 3D urban data sets. For the purpose of privacy enabled visualizations of 3D city models, we propose to partition the (living) spaces into privacy regions, each featuring its own level of anonymity. Within each region, the depicted 2D and 3D geometry and imagery is anonymized with cartographic generalization techniques. The underlying spatial partitioning is realized as a 2D map generated as a straight skeleton of the open space between buildings. The resulting privacy cells are then merged according to the privacy requirements associated with each building to form larger regions, their borderlines smoothed, and transition zones established between privacy regions to have a harmonious visual appearance. It is exemplarily demonstrated how the proposed method generates privacy enabled 3D city models.

  4. A simple physical mechanism enables homeostasis in primitive cells

    PubMed Central

    Engelhart, Aaron E.; Adamala, Katarzyna; Szostak, Jack W.

    2016-01-01

    The emergence of homeostatic mechanisms that enabled maintenance of an intracellular steady-state during growth was critical to the advent of cellular life. Here, we show that concentration-dependent reversible binding of short oligonucleotides, of both specific and random sequence, can modulate ribozyme activity. In both cases, catalysis is inhibited at high concentrations, and dilution activates the ribozyme via inhibitor dissociation, thus maintaining near-constant ribozyme specific activity throughout protocell growth. To mimic the result of RNA synthesis within non-growing protocells, we co-encapsulated high concentrations of ribozyme and oligonucleotides within fatty acid vesicles; ribozyme activity was inhibited. Following vesicle growth, the resulting internal dilution produced ribozyme activation. This simple physical system enables a primitive homeostatic behavior: the maintenance of constant ribozyme activity per unit volume during protocell volume changes. We suggest such systems, wherein short oligonucleotides reversibly inhibit functional RNAs, could have preceded sophisticated modern RNA regulatory mechanisms, such as those involving miRNAs. PMID:27102678

  5. Gaze-enabled Egocentric Video Summarization via Constrained Submodular Maximization

    PubMed Central

    Xut, Jia; Mukherjee, Lopamudra; Li, Yin; Warner, Jamieson; Rehg, James M.; Singht, Vikas

    2016-01-01

    With the proliferation of wearable cameras, the number of videos of users documenting their personal lives using such devices is rapidly increasing. Since such videos may span hours, there is an important need for mechanisms that represent the information content in a compact form (i.e., shorter videos which are more easily browsable/sharable). Motivated by these applications, this paper focuses on the problem of egocentric video summarization. Such videos are usually continuous with significant camera shake and other quality issues. Because of these reasons, there is growing consensus that direct application of standard video summarization tools to such data yields unsatisfactory performance. In this paper, we demonstrate that using gaze tracking information (such as fixation and saccade) significantly helps the summarization task. It allows meaningful comparison of different image frames and enables deriving personalized summaries (gaze provides a sense of the camera wearer's intent). We formulate a summarization model which captures common-sense properties of a good summary, and show that it can be solved as a submodular function maximization with partition matroid constraints, opening the door to a rich body of work from combinatorial optimization. We evaluate our approach on a new gaze-enabled egocentric video dataset (over 15 hours), which will be a valuable standalone resource. PMID:26973428

  6. Enabling complex queries to drug information sources through functional composition.

    PubMed

    Peters, Lee; Mortensen, Jonathan; Nguyen, Thang; Bodenreider, Olivier

    2013-01-01

    Our objective was to enable an end-user to create complex queries to drug information sources through functional composition, by creating sequences of functions from application program interfaces (API) to drug terminologies. The development of a functional composition model seeks to link functions from two distinct APIs. An ontology was developed using Protégé to model the functions of the RxNorm and NDF-RT APIs by describing the semantics of their input and output. A set of rules were developed to define the interoperable conditions for functional composition. The operational definition of interoperability between function pairs is established by executing the rules on the ontology. We illustrate that the functional composition model supports common use cases, including checking interactions for RxNorm drugs and deploying allergy lists defined in reference to drug properties in NDF-RT. This model supports the RxMix application (http://mor.nlm.nih.gov/RxMix/), an application we developed for enabling complex queries to the RxNorm and NDF-RT APIs.

  7. Semantically-enabled sensor plug & play for the sensor web.

    PubMed

    Bröring, Arne; Maúe, Patrick; Janowicz, Krzysztof; Nüst, Daniel; Malewski, Christian

    2011-01-01

    Environmental sensors have continuously improved by becoming smaller, cheaper, and more intelligent over the past years. As consequence of these technological advancements, sensors are increasingly deployed to monitor our environment. The large variety of available sensor types with often incompatible protocols complicates the integration of sensors into observing systems. The standardized Web service interfaces and data encodings defined within OGC's Sensor Web Enablement (SWE) framework make sensors available over the Web and hide the heterogeneous sensor protocols from applications. So far, the SWE framework does not describe how to integrate sensors on-the-fly with minimal human intervention. The driver software which enables access to sensors has to be implemented and the measured sensor data has to be manually mapped to the SWE models. In this article we introduce a Sensor Plug & Play infrastructure for the Sensor Web by combining (1) semantic matchmaking functionality, (2) a publish/subscribe mechanism underlying the SensorWeb, as well as (3) a model for the declarative description of sensor interfaces which serves as a generic driver mechanism. We implement and evaluate our approach by applying it to an oil spill scenario. The matchmaking is realized using existing ontologies and reasoning engines and provides a strong case for the semantic integration capabilities provided by Semantic Web research.

  8. Resource Optimization Scheme for Multimedia-Enabled Wireless Mesh Networks

    PubMed Central

    Ali, Amjad; Ahmed, Muhammad Ejaz; Piran, Md. Jalil; Suh, Doug Young

    2014-01-01

    Wireless mesh networking is a promising technology that can support numerous multimedia applications. Multimedia applications have stringent quality of service (QoS) requirements, i.e., bandwidth, delay, jitter, and packet loss ratio. Enabling such QoS-demanding applications over wireless mesh networks (WMNs) require QoS provisioning routing protocols that lead to the network resource underutilization problem. Moreover, random topology deployment leads to have some unused network resources. Therefore, resource optimization is one of the most critical design issues in multi-hop, multi-radio WMNs enabled with multimedia applications. Resource optimization has been studied extensively in the literature for wireless Ad Hoc and sensor networks, but existing studies have not considered resource underutilization issues caused by QoS provisioning routing and random topology deployment. Finding a QoS-provisioned path in wireless mesh networks is an NP complete problem. In this paper, we propose a novel Integer Linear Programming (ILP) optimization model to reconstruct the optimal connected mesh backbone topology with a minimum number of links and relay nodes which satisfies the given end-to-end QoS demands for multimedia traffic and identification of extra resources, while maintaining redundancy. We further propose a polynomial time heuristic algorithm called Link and Node Removal Considering Residual Capacity and Traffic Demands (LNR-RCTD). Simulation studies prove that our heuristic algorithm provides near-optimal results and saves about 20% of resources from being wasted by QoS provisioning routing and random topology deployment. PMID:25111241

  9. Radio frequency identification enabled wireless sensing for intelligent food logistics.

    PubMed

    Zou, Zhuo; Chen, Qiang; Chen, Qing; Uysal, Ismail; Zheng, Lirong

    2014-06-13

    Future technologies and applications for the Internet of Things (IoT) will evolve the process of the food supply chain and create added value of business. Radio frequency identifications (RFIDs) and wireless sensor networks (WSNs) have been considered as the key technological enablers. Intelligent tags, powered by autonomous energy, are attached on objects, networked by short-range wireless links, allowing the physical parameters such as temperatures and humidities as well as the location information to seamlessly integrate with the enterprise information system over the Internet. In this paper, challenges, considerations and design examples are reviewed from system, implementation and application perspectives, particularly with focus on intelligent packaging and logistics for the fresh food tracking and monitoring service. An IoT platform with a two-layer network architecture is introduced consisting of an asymmetric tag-reader link (RFID layer) and an ad-hoc link between readers (WSN layer), which are further connected to the Internet via cellular or Wi-Fi. Then, we provide insights into the enabling technology of RFID with sensing capabilities. Passive, semi-passive and active RFID solutions are discussed. In particular, we describe ultra-wideband radio RFID which has been considered as one of the most promising techniques for ultra-low-power and low-cost wireless sensing. Finally, an example is provided in the form of an application in fresh food tracking services and corresponding field testing results. PMID:24797140

  10. Grid-enabled Web Services for Geospatial Interoperability

    NASA Astrophysics Data System (ADS)

    Chen, A.; di, L.; Bai, Y.; Wei, Y.

    2006-05-01

    Geospatial interoperability technology makes better and easier use of the huge volume of distributed heterogeneous geospatial data and services in Earth related science research and applications . Open Geospatial Consortium (OGC) has been developing interoperable Web service specifications, such as Web Coverage Service (WCS), Web Map Service (WMS), Web Feature Service (WFS) and Catalog Service for Web (CSW), for promoting geospatial interoperability in the distributed environment. These specifications are widely used by the geospatial community for sharing data and service. Due to the complex nature of Earth related science research and applications, a geoprocessing task normally composes of many inter-related steps of computations in the web service environment. There is a need for the cooperation and security mechanism between any two geospatial web services. Grid, as a promising e-science infrastructure, promotes and facilitates the secure interoperation and collaboration of distributed heterogeneous resources. In this paper, we discuss the technology for enabling the OGC-based geospatial interoperability in a Globus- based Grid environment. Firstly, a new Grid-enabled catalogue services model for secure registry, discovery and access of geospatial data and service was developed. The model not only combines the information schemas of Grid Metadata Catalog Service (MCS)/Replica Location Service (RSL) and the OGC Catalog Service for Web (CSW), but also exploits the geospatial metadata standards including ISO 19115, ISO 19115- 2, FGDC Content Standard for Geospatial metadata, and NASA ECS Metadata. Based on the model, the Grid- enabled CSW (GCSW) service is developed. The service preserves the OGC CSW interface while providing the naming and location transparency by mapping Grid MCS/RLS information model to OGC CSW information model. Moreover, the OGC CSW model is extended to accommodate more than 40 mandatory metadata elements needed for describing the properties

  11. Wild jujube polysaccharides protect against experimental inflammatory bowel disease by enabling enhanced intestinal barrier function.

    PubMed

    Yue, Yuan; Wu, Shuangchan; Li, Zhike; Li, Jian; Li, Xiaofei; Xiang, Jin; Ding, Hong

    2015-08-01

    Dietary polysaccharides provide various beneficial effects for our health. We investigated the protective effects of wild jujube (Ziziphus jujuba Mill. var. spinosa (Bunge) Hu ex H. F. Chou) sarcocarp polysaccharides (WJPs) against experimental inflammatory bowel disease (IBD) by enabling enhanced intestinal barrier function. Colitis was induced in rats by the intrarectal administration of TNBS. We found that WJPs markedly ameliorated the colitis severity, including less weight loss, decreased disease activity index scores, and improved mucosal damage in colitis rats. Moreover, WJPs suppressed the inflammatory response via attenuation of TNF-α, IL-1β, IL-6 and MPO activity in colitis rats. And then, to determine the effect of WJPs on the intestinal barrier, we measured the effect of WJPs on the transepithelial electrical resistance (TER) and FITC-conjugated dextran permeability in Caco-2 cell stimulation with TNF-α. We further demonstrated that the alleviation of WJPs to colon injury was associated with barrier function by assembly of tight junction proteins. Moreover, the effect of WJPs on TER was eliminated by the specific inhibitor of AMPK. AMPK activity was also up-regulated by WJPs in Caco-2 cell stimulation with TNF-α and in colitis rats. This study demonstrates that WJPs protect against IBD by enabling enhanced intestinal barrier function involving the activation of AMPK.

  12. A Security Architecture for Grid-enabling OGC Web Services

    NASA Astrophysics Data System (ADS)

    Angelini, Valerio; Petronzio, Luca

    2010-05-01

    In the proposed presentation we describe an architectural solution for enabling a secure access to Grids and possibly other large scale on-demand processing infrastructures through OGC (Open Geospatial Consortium) Web Services (OWS). This work has been carried out in the context of the security thread of the G-OWS Working Group. G-OWS (gLite enablement of OGC Web Services) is an international open initiative started in 2008 by the European CYCLOPS , GENESI-DR, and DORII Project Consortia in order to collect/coordinate experiences in the enablement of OWS's on top of the gLite Grid middleware. G-OWS investigates the problem of the development of Spatial Data and Information Infrastructures (SDI and SII) based on the Grid/Cloud capacity in order to enable Earth Science applications and tools. Concerning security issues, the integration of OWS compliant infrastructures and gLite Grids needs to address relevant challenges, due to their respective design principles. In fact OWS's are part of a Web based architecture that demands security aspects to other specifications, whereas the gLite middleware implements the Grid paradigm with a strong security model (the gLite Grid Security Infrastructure: GSI). In our work we propose a Security Architectural Framework allowing the seamless use of Grid-enabled OGC Web Services through the federation of existing security systems (mostly web based) with the gLite GSI. This is made possible mediating between different security realms, whose mutual trust is established in advance during the deployment of the system itself. Our architecture is composed of three different security tiers: the user's security system, a specific G-OWS security system, and the gLite Grid Security Infrastructure. Applying the separation-of-concerns principle, each of these tiers is responsible for controlling the access to a well-defined resource set, respectively: the user's organization resources, the geospatial resources and services, and the Grid

  13. Endocrine Proxies Can Simplify Endocrine Complexity to Enable Evolutionary Prediction.

    PubMed

    Davidowitz, Goggy

    2016-08-01

    It is well understood that much of evolutionary change is mediated through the endocrine system with growing interest to identify how this occurs. This however, causes a conflict of sorts. To understand endocrine mechanism, a focus on detail is required. In contrast, to understand evolutionary change, reduction to a few key traits is essential. Endocrine proxies, measurable traits that accurately reflect specific hormonal titers or the timing of specific hormonal events, can reduce endocrine complexity to a few traits that enable predictions of how the endocrine system regulates evolutionary change. In the tobacco hornworm (Manduca sexta, Sphingidae), three endocrine proxies, measured on 5470 individuals, were used to test explicit predictions of how the endocrine system regulates the response to 10 generations of simultaneous selection on body size and development time. The critical weight (CW) reflects the variation in the cessation of juvenile hormone (JH) secretion in the last larval instar, the interval to cessation of growth (ICG) reflects the variation in prothoracicotropic hormone and 20-hydroxyecdysone (20E). Growth rate (GR) reflects the nutrient signaling pathways, primarily the insulin and TOR This is a standard identity similar to DNA signaling pathways. These three endocrine proxies explained 99% and 93% of the variation in body size and development time, respectively, following the 10 generations of simultaneous selection. When the two focal traits, body size and development time, were selected in the same direction, both to either increase or both to decrease, the response to selection was determined primarily by the CW and the ICG, proxies for the developmental hormones JH and 20E, and constrained by GR. In contrast, when the two focal traits were selected in opposite directions, one to increase and the other to decrease, the response to selection was determined primarily by the insulin and TOR signaling pathways as measured by their proxy, GR, and

  14. Endocrine Proxies Can Simplify Endocrine Complexity to Enable Evolutionary Prediction.

    PubMed

    Davidowitz, Goggy

    2016-08-01

    It is well understood that much of evolutionary change is mediated through the endocrine system with growing interest to identify how this occurs. This however, causes a conflict of sorts. To understand endocrine mechanism, a focus on detail is required. In contrast, to understand evolutionary change, reduction to a few key traits is essential. Endocrine proxies, measurable traits that accurately reflect specific hormonal titers or the timing of specific hormonal events, can reduce endocrine complexity to a few traits that enable predictions of how the endocrine system regulates evolutionary change. In the tobacco hornworm (Manduca sexta, Sphingidae), three endocrine proxies, measured on 5470 individuals, were used to test explicit predictions of how the endocrine system regulates the response to 10 generations of simultaneous selection on body size and development time. The critical weight (CW) reflects the variation in the cessation of juvenile hormone (JH) secretion in the last larval instar, the interval to cessation of growth (ICG) reflects the variation in prothoracicotropic hormone and 20-hydroxyecdysone (20E). Growth rate (GR) reflects the nutrient signaling pathways, primarily the insulin and TOR This is a standard identity similar to DNA signaling pathways. These three endocrine proxies explained 99% and 93% of the variation in body size and development time, respectively, following the 10 generations of simultaneous selection. When the two focal traits, body size and development time, were selected in the same direction, both to either increase or both to decrease, the response to selection was determined primarily by the CW and the ICG, proxies for the developmental hormones JH and 20E, and constrained by GR. In contrast, when the two focal traits were selected in opposite directions, one to increase and the other to decrease, the response to selection was determined primarily by the insulin and TOR signaling pathways as measured by their proxy, GR, and

  15. Building the 'Uncertainty Enabled Model Web'- lessons learned

    NASA Astrophysics Data System (ADS)

    Cornford, Dan; Stasch, Christoph; Pebesma, Edzer; Jones, Richard; Bastin, Lucy; Bigagli, Lorenzo

    2013-04-01

    The creation of the Uncertainty Enabled Model Web was the aim of the UncertWeb project, which finished in January 2013. In this work we consider the outcomes of the UncertWeb project, critically assessing both the successes and identifying areas where further work is required. In particular we focus on three main areas: 1. How to expose models on the web. We review the Web Processing Service specification, and suggest how this might be improved using annotations, how to simplify the service interface using a SOAP/WSDL approach and identify the challenges of deploying models on the web in practice. We consider how to best facilitate the deployment of models in a web setting, and the implications of this for both model developers and web tool support needed. 2. Information models for the model web. We review the Observations and Measurements, GML and NetCDF extensions / profiles developed in the project, and provide guidance on when the different profiles are appropriate. We consider UncertML as an encoding for uncertainty and highlight possible improvements. We suggest where there are currently gaps in the existing information models and what is needed to improve the situation. 3. Tool support for web based model services. A key outcome of the UncertWeb project was the range of tools created, including tools for visualisation of uncertain geospatial data, expert elicitation of uncertainty and sensitivity analysis, emulation and probabilistic model validation. We review the tools, considering their strengths and limitations. We also consider the architectural approach adopted in UncertWeb, which is based on a brokering approach using mediators that theoretically enable us to integrate a number of model exposures and encodings in a single unified system based on Open Geospatial Consortium standards at its core. We consider the "composition as a service" approach to be architecturally sound, and provide recommendations for future model web initiatives to consider. In

  16. Exploration of the Moon to Enable Lunar and Planetary Science

    NASA Astrophysics Data System (ADS)

    Neal, C. R.

    2014-12-01

    The Moon represents an enabling Solar System exploration asset because of its proximity, resources, and size. Its location has facilitated robotic missions from 5 different space agencies this century. The proximity of the Moon has stimulated commercial space activity, which is critical for sustainable space exploration. Since 2000, a new view of the Moon is coming into focus, which is very different from that of the 20th century. The documented presence of volatiles on the lunar surface, coupled with mature ilmenite-rich regolith locations, represent known resources that could be used for life support on the lunar surface for extended human stays, as well as fuel for robotic and human exploration deeper into the Solar System. The Moon also represents a natural laboratory to explore the terrestrial planets and Solar System processes. For example, it is an end-member in terrestrial planetary body differentiation. Ever since the return of the first lunar samples by Apollo 11, the magma ocean concept was developed and has been applied to both Earth and Mars. Because of the small size of the Moon, planetary differentiation was halted at an early (primary?) stage. However, we still know very little about the lunar interior, despite the Apollo Lunar Surface Experiments, and to understand the structure of the Moon will require establishing a global lunar geophysical network, something Apollo did not achieve. Also, constraining the impact chronology of the Moon allows the surfaces of other terrestrial planets to be dated and the cratering history of the inner Solar System to be constrained. The Moon also represents a natural laboratory to study space weathering of airless bodies. It is apparent, then, that human and robotic missions to the Moon will enable both science and exploration. For example, the next step in resource exploration is prospecting on the surface those deposits identified from orbit to understand the yield that can be expected. Such prospecting will also

  17. Enabling collaboration across communities through blogs and mashups

    NASA Astrophysics Data System (ADS)

    Blower, Jon; Frey, Jeremy; Haines, Keith; Gemmell, Alastair; Milsted, Andrew

    2010-05-01

    The use of Web technologies to visualize and explore geoscientific data is now well-established (e.g. [1]). Many systems are now available, based upon standard approaches, to provide interactive online capabilities for publishing data, hiding much of the complexities of the underlying data and infrastructure. Recently, progress has been made in moving beyond simple visualization to enabling intercomparison of diverse datasets (e.g. [2]), supporting scientific work in model validation, data assimilation and other areas. These systems typically lack an important feature, namely the ability of the user to contribute to the information on these sites, rather than simply acting as a consumer. We present early results from two recent projects that apply Web 2.0 and social networking techniques to enable collaborative geoscientific work on the Web in which user-contributed material is just as important as that provided by the central data providers. "BlogMyData" combines an interactive online visualization system (Godiva2) with a sophisticated blogging engine, which was originally designed for laboratory chemists. Scientists use the blog to make comments on the visualizations they see, for example to hold discussions on particular features of interest, such as a potential problem with a numerical forecast model. The blog entries are geospatially tagged, meaning that comments can be discovered by location and time, enabling scientists to find new collaborators in similar areas of interest. A use case in climate reanalysis will be discussed. "MashMyData" builds on previous work in online intercomparison systems by allowing users to upload their own data for automated intercomparison with other datasets. This brings complex datasets within the reach of new communities; for example, we shall demonstrate a particular use case in which an ocean geochemist employs the system to compare her own temperature proxy data (derived from coccolithophore studies) with physical

  18. Enabling technologies and green processes in cyclodextrin chemistry.

    PubMed

    Cravotto, Giancarlo; Caporaso, Marina; Jicsinszky, Laszlo; Martina, Katia

    2016-01-01

    The design of efficient synthetic green strategies for the selective modification of cyclodextrins (CDs) is still a challenging task. Outstanding results have been achieved in recent years by means of so-called enabling technologies, such as microwaves, ultrasound and ball mills, that have become irreplaceable tools in the synthesis of CD derivatives. Several examples of sonochemical selective modification of native α-, β- and γ-CDs have been reported including heterogeneous phase Pd- and Cu-catalysed hydrogenations and couplings. Microwave irradiation has emerged as the technique of choice for the production of highly substituted CD derivatives, CD grafted materials and polymers. Mechanochemical methods have successfully furnished greener, solvent-free syntheses and efficient complexation, while flow microreactors may well improve the repeatability and optimization of critical synthetic protocols. PMID:26977187

  19. Enhanced CARES Software Enables Improved Ceramic Life Prediction

    NASA Technical Reports Server (NTRS)

    Janosik, Lesley A.

    1997-01-01

    The NASA Lewis Research Center has developed award-winning software that enables American industry to establish the reliability and life of brittle material (e.g., ceramic, intermetallic, graphite) structures in a wide variety of 21st century applications. The CARES (Ceramics Analysis and Reliability Evaluation of Structures) series of software is successfully used by numerous engineers in industrial, academic, and government organizations as an essential element of the structural design and material selection processes. The latest version of this software, CARES/Life, provides a general- purpose design tool that predicts the probability of failure of a ceramic component as a function of its time in service. CARES/Life was recently enhanced by adding new modules designed to improve functionality and user-friendliness. In addition, a beta version of the newly-developed CARES/Creep program (for determining the creep life of monolithic ceramic components) has just been released to selected organizations.

  20. Systems and Methods for RFID-Enabled Pressure Sensing Apparatus

    NASA Technical Reports Server (NTRS)

    Fink, Patrick W. (Inventor); Lin, Gregory Y. (Inventor); Kennedy, Timothy F. (Inventor); Ngo, Phong H. (Inventor)

    2016-01-01

    Methods, apparatuses and systems for radio frequency identification (RFID)-enabled information collection are disclosed, including an enclosure, a collector coupled to the enclosure, an interrogator, a processor, and one or more RFID field sensors, each having an individual identification, disposed within the enclosure. In operation, the interrogator transmits an incident signal to the collector, causing the collector to generate an electromagnetic field within the enclosure. The electromagnetic field is affected by one or more influences. RFID sensors respond to the electromagnetic field by transmitting reflected signals containing the individual identifications of the responding RFID sensors to the interrogator. The interrogator receives the reflected signals, measures one or more returned signal strength indications ("RSSI") of the reflected signals and sends the RSSI measurements and identification of the responding RFID sensors to the processor to determine one or more facts about the influences. Other embodiments are also described.

  1. Propulsion with a Reciprocal Stroke Enabled by Nonlinear Rheology

    NASA Astrophysics Data System (ADS)

    Arratia, Paulo; Shen, Xiaoning; Keim, Nathan

    2012-11-01

    In a fluid that is entirely viscous, a reciprocal swimming stroke results in no net displacement. However, complex fluids such as mucus or dense suspensions exhibit nonlinear rheology even at low Reynolds number. This nonlinear fluid response can lead to time-reversal symmetry breaking which can enable a reciprocal swimmer to move. Here we demonstrate this principle with a reciprocally-actuated artificial propeller in two viscoelastic fluids: a polymeric fluid with elasticity but negligible shear thinning, and a wormlike micellar fluid that exhibits shear thinning and shear-bands. Propulsion is absent in Newtonian fluid, and is strongest in the shear-thinning micellar fluid. We report on the role of elasticity (Deborah number) in setting the speed of propulsion, and of body shape and boundary conditions in setting its direction. This work is supported by the Army Research Office through award W911NF-11-1-0488.

  2. Graphene-enabled electrically switchable radar-absorbing surfaces.

    PubMed

    Balci, Osman; Polat, Emre O; Kakenov, Nurbek; Kocabas, Coskun

    2015-01-01

    Radar-absorbing materials are used in stealth technologies for concealment of an object from radar detection. Resistive and/or magnetic composite materials are used to reduce the backscattered microwave signals. Inability to control electrical properties of these materials, however, hinders the realization of active camouflage systems. Here, using large-area graphene electrodes, we demonstrate active surfaces that enable electrical control of reflection, transmission and absorption of microwaves. Instead of tuning bulk material property, our strategy relies on electrostatic tuning of the charge density on an atomically thin electrode, which operates as a tunable metal in microwave frequencies. Notably, we report large-area adaptive radar-absorbing surfaces with tunable reflection suppression ratio up to 50 dB with operation voltages <5 V. Using the developed surfaces, we demonstrate various device architectures including pixelated and curved surfaces. Our results provide a significant step in realization of active camouflage systems in microwave frequencies. PMID:25791719

  3. Geo-enabling Science through Web Services (Invited)

    NASA Astrophysics Data System (ADS)

    White, C. E.

    2010-12-01

    Sharing research is a crucial part of participating in science. The value of a dataset increases when users 1) know the dataset exists, and 2) can access the dataset and use it. Exposing data through web services allows other researchers to quickly access, overlay, and analyze data in the web-based or desktop mapping client of their choice. The ability to mash up different web services can reveal new - especially spatial - relationships between phenomena, and encourage creative uses of the data. This presentation will investigate the scientific and business value of standards-based web services for earth observation data, teach step-by-step how to expose such datasets as web services, and demonstrate tools - such as Catalog Services, REST endpoints, and GIS portals - that enable other researchers to discover and use web-accessible data resources.

  4. Enabling research with human embryonic and fetal tissue resources

    PubMed Central

    Gerrelli, Dianne; Lisgo, Steven; Copp, Andrew J.; Lindsay, Susan

    2015-01-01

    Summary Congenital anomalies are a significant burden on human health. Understanding the developmental origins of such anomalies is key to developing potential therapies. The Human Developmental Biology Resource (HDBR), based in London and Newcastle UK, was established to provide embryonic and fetal material for a variety of human studies ranging from single gene expression analysis to large scale genomic/transcriptomic studies. Increasingly HDBR material is enabling the derivation of stem cell lines and contributing towards developments in tissue engineering. Use of the HDBR and other fetal tissue resources discussed here will contribute to the long term aims of understanding the causation and pathogenesis of congenital anomalies, and developing new methods for their treatment and prevention. PMID:26395135

  5. Graphene-enabled electrically switchable radar-absorbing surfaces.

    PubMed

    Balci, Osman; Polat, Emre O; Kakenov, Nurbek; Kocabas, Coskun

    2015-03-20

    Radar-absorbing materials are used in stealth technologies for concealment of an object from radar detection. Resistive and/or magnetic composite materials are used to reduce the backscattered microwave signals. Inability to control electrical properties of these materials, however, hinders the realization of active camouflage systems. Here, using large-area graphene electrodes, we demonstrate active surfaces that enable electrical control of reflection, transmission and absorption of microwaves. Instead of tuning bulk material property, our strategy relies on electrostatic tuning of the charge density on an atomically thin electrode, which operates as a tunable metal in microwave frequencies. Notably, we report large-area adaptive radar-absorbing surfaces with tunable reflection suppression ratio up to 50 dB with operation voltages <5 V. Using the developed surfaces, we demonstrate various device architectures including pixelated and curved surfaces. Our results provide a significant step in realization of active camouflage systems in microwave frequencies.

  6. Recent Advances in Skin-Inspired Sensors Enabled by Nanotechnology

    NASA Astrophysics Data System (ADS)

    Loh, Kenneth J.; Azhari, Faezeh

    2012-07-01

    The highly optimized performance of nature's creations and biological assemblies has inspired the development of their bio-inspired artificial counterparts that can potentially outperform conventional systems. In particular, the skin of humans, animals, and insects exhibits unique functionalities and properties and has subsequently led to active research in developing skin-inspired sensors. This paper presents a summary of selected work related to skin-inspired tactile, distributed strain, and artificial hair cell flow sensors, with a particular focus on technologies enabled by recent advancements in the nanotechnology domain. The purpose is not to present a comprehensive review on this broad subject matter but rather to use selected work to outline the diversity of current research activities.

  7. Enabling Campus Grids with Open Science Grid Technology

    NASA Astrophysics Data System (ADS)

    Weitzel, Derek; Bockelman, Brian; Fraser, Dan; Pordes, Ruth; Swanson, David

    2011-12-01

    The Open Science Grid is a recognized key component of the US national cyber-infrastructure enabling scientific discovery through advanced high throughput computing. The principles and techniques that underlie the Open Science Grid can also be applied to Campus Grids since many of the requirements are the same, even if the implementation technologies differ. We find five requirements for a campus grid: trust relationships, job submission, resource independence, accounting, and data management. The Holland Computing Center's campus grid at the University of Nebraska-Lincoln was designed to fulfill the requirements of a campus grid. A bridging daemon was designed to bring non-Condor clusters into a grid managed by Condor. Condor features which make it possible to bridge Condor sites into a multi-campus grid have been exploited at the Holland Computing Center as well.

  8. Reactive polymer enables efficient in vivo bioorthogonal chemistry

    PubMed Central

    Devaraj, Neal K.; Thurber, Greg M.; Keliher, Edmund J.; Marinelli, Brett; Weissleder, Ralph

    2012-01-01

    There has been intense interest in the development of selective bioorthogonal reactions or “click” chemistry that can proceed in live animals. Until now however, most reactions still require vast surpluses of reactants because of steep temporal and spatial concentration gradients. Using computational modeling and design of pharmacokinetically optimized reactants, we have developed a predictable method for efficient in vivo click reactions. Specifically, we show that polymer modified tetrazines (PMT) are a key enabler for in vivo bioorthogonal chemistry based on the very fast and catalyst-free [4 + 2] tetrazine/trans-cyclooctene cycloaddition. Using fluorescent PMT for cellular resolution and 18F labeled PMT for whole animal imaging, we show that cancer cell epitopes can be easily reacted in vivo. This generic strategy should help guide the design of future chemistries and find widespread use for different in vivo bioorthogonal applications, particularly in the biomedical sciences. PMID:22411831

  9. Reactive polymer enables efficient in vivo bioorthogonal chemistry.

    PubMed

    Devaraj, Neal K; Thurber, Greg M; Keliher, Edmund J; Marinelli, Brett; Weissleder, Ralph

    2012-03-27

    There has been intense interest in the development of selective bioorthogonal reactions or "click" chemistry that can proceed in live animals. Until now however, most reactions still require vast surpluses of reactants because of steep temporal and spatial concentration gradients. Using computational modeling and design of pharmacokinetically optimized reactants, we have developed a predictable method for efficient in vivo click reactions. Specifically, we show that polymer modified tetrazines (PMT) are a key enabler for in vivo bioorthogonal chemistry based on the very fast and catalyst-free [4 + 2] tetrazine/trans-cyclooctene cycloaddition. Using fluorescent PMT for cellular resolution and (18)F labeled PMT for whole animal imaging, we show that cancer cell epitopes can be easily reacted in vivo. This generic strategy should help guide the design of future chemistries and find widespread use for different in vivo bioorthogonal applications, particularly in the biomedical sciences. PMID:22411831

  10. Enabling technologies and green processes in cyclodextrin chemistry

    PubMed Central

    Caporaso, Marina; Jicsinszky, Laszlo; Martina, Katia

    2016-01-01

    Summary The design of efficient synthetic green strategies for the selective modification of cyclodextrins (CDs) is still a challenging task. Outstanding results have been achieved in recent years by means of so-called enabling technologies, such as microwaves, ultrasound and ball mills, that have become irreplaceable tools in the synthesis of CD derivatives. Several examples of sonochemical selective modification of native α-, β- and γ-CDs have been reported including heterogeneous phase Pd- and Cu-catalysed hydrogenations and couplings. Microwave irradiation has emerged as the technique of choice for the production of highly substituted CD derivatives, CD grafted materials and polymers. Mechanochemical methods have successfully furnished greener, solvent-free syntheses and efficient complexation, while flow microreactors may well improve the repeatability and optimization of critical synthetic protocols. PMID:26977187

  11. Enabling Self-Monitoring Data Exchange in Participatory Medicine.

    PubMed

    Lopez-Campos, Guillermo; Ofoghi, Bahadorreza; Martin-Sanchez, Fernando

    2015-01-01

    The development of new methods, devices and apps for self-monitoring have enabled the extension of the application of these approaches for consumer health and research purposes. The increase in the number and variety of devices has generated a complex scenario where reporting guidelines and data exchange formats will be needed to ensure the quality of the information and the reproducibility of results of the experiments. Based on the Minimal Information for Self Monitoring Experiments (MISME) reporting guideline we have developed an XML format (MISME-ML) to facilitate data exchange for self monitoring experiments. We have also developed a sample instance to illustrate the concept and a Java MISME-ML validation tool. The implementation and adoption of these tools should contribute to the consolidation of a set of methods that ensure the reproducibility of self monitoring experiments for research purposes. PMID:26262401

  12. Enabling nanomaterial, nanofabrication and cellular technologies for nanoneuromedicines

    PubMed Central

    Mallapragada, Surya K.; Brenza, Timothy M.; McMillan, JoEllyn M.; Narasimhan, Balaji; Sakaguchi, Donald S.; Sharma, Anup D.; Zbarska, Svitlana; Gendelman, Howard E.

    2015-01-01

    Nanoparticulate delivery systems represent an area of particular promise for nanoneuromedicines. They possess significant potential for desperately needed therapies designed to combat a range of disorders associated with aging. As such, the field was selected as the focus for the 2014 meeting of the American Society for Nanomedicine. Regenerative, protective, immune modulatory, anti-microbial and anti-inflammatory products, or imaging agents are readily encapsulated in or conjugated to nanoparticles and as such facilitate the delivery of drug payloads to specific action sites across the blood-brain barrier. Diagnostic imaging serves to precisely monitor disease onset and progression while neural stem cell replacement can regenerate damaged tissue through control of stem cell fates. These, taken together, can improve disease burden and limit systemic toxicities. Such enabling technologies serve to protect the nervous system against a broad range of degenerative, traumatic, metabolic, infectious and immune disorders. PMID:25652894

  13. Nanomaterial-Enabled Dry Electrodes for Electrophysiological Sensing: A Review

    NASA Astrophysics Data System (ADS)

    Yao, Shanshan; Zhu, Yong

    2016-04-01

    Long-term, continuous, and unsupervised tracking of physiological data is becoming increasingly attractive for health/wellness monitoring and ailment treatment. Nanomaterials have recently attracted extensive attention as building blocks for flexible/stretchable conductors and are thus promising candidates for electrophysiological electrodes. Here we provide a review on nanomaterial-enabled dry electrodes for electrophysiological sensing, focusing on electrocardiography (ECG). The dry electrodes can be classified into contact surface electrodes, contact-penetrating electrodes, and noncontact capacitive electrodes. Different types of electrodes including their corresponding equivalent electrode-skin interface models and the sources of the noise are first introduced, followed by a review on recent developments of dry ECG electrodes based on various nanomaterials, including metallic nanowires, metallic nanoparticles, carbon nanotubes, and graphene. Their fabrication processes and performances in terms of electrode-skin impedance, signal-to-noise ratio, resistance to motion artifacts, skin compatibility, and long-term stability are discussed.

  14. Enabling lunar and space missions by laser power transmission

    NASA Technical Reports Server (NTRS)

    Deyoung, R. J.; Nealy, J. E.; Humes, D. H.; Meador, W. E.

    1992-01-01

    Applications are proposed for laser power transmission on the Moon. A solar-pumped laser in lunar orbit would beam power to the lunar surface for conversion into either electricity or propulsion needs. For example, lunar rovers could be much more flexible and lighter than rovers using other primary power sources. Also, laser power could be absorbed by lunar soil to create a hard glassy surface for dust-free roadways and launch pads. Laser power could also be used to power small lunar rockets or orbital transfer vehicles, and finally, photovoltaic laser converters could power remote excavation vehicles and human habitats. Laser power transmission is shown to be a highly flexible, enabling primary power source for lunar missions.

  15. Graphene-enabled electrically switchable radar-absorbing surfaces

    NASA Astrophysics Data System (ADS)

    Balci, Osman; Polat, Emre O.; Kakenov, Nurbek; Kocabas, Coskun

    2015-03-01

    Radar-absorbing materials are used in stealth technologies for concealment of an object from radar detection. Resistive and/or magnetic composite materials are used to reduce the backscattered microwave signals. Inability to control electrical properties of these materials, however, hinders the realization of active camouflage systems. Here, using large-area graphene electrodes, we demonstrate active surfaces that enable electrical control of reflection, transmission and absorption of microwaves. Instead of tuning bulk material property, our strategy relies on electrostatic tuning of the charge density on an atomically thin electrode, which operates as a tunable metal in microwave frequencies. Notably, we report large-area adaptive radar-absorbing surfaces with tunable reflection suppression ratio up to 50 dB with operation voltages <5 V. Using the developed surfaces, we demonstrate various device architectures including pixelated and curved surfaces. Our results provide a significant step in realization of active camouflage systems in microwave frequencies.

  16. Science Opportunities Enabled by NASA's Constellation System: Interim Report

    NASA Technical Reports Server (NTRS)

    2008-01-01

    In 2004 NASA initiated studies of advanced science mission concepts known as the Vision Missions and inspired by a series of NASA roadmap activities conducted in 2003. Also in 2004 NASA began implementation of the first phases of a new space exploration policy, the Vision for Space Exploration. This implementation effort included development of a new human-carrying spacecraft, known as Orion, and two new launch vehicles, the Ares I and Ares V rockets.collectively called the Constellation System. NASA asked the National Research Council (NRC) to evaluate the science opportunities enabled by the Constellation System (see Preface) and to produce an interim report on a short time schedule and a final report by November 2008. The committee notes, however, that the Constellation System and its Orion and Ares vehicles have been justified by NASA and selected in order to enable human exploration beyond low Earth orbit, and not to enable science missions. This interim report of the Committee on Science Opportunities Enabled by NASA s Constellation System evaluates the 11 Vision Mission studies presented to it and groups them into two categories: those more deserving of future study, and those less deserving of future study. Although its statement of task also refers to Earth science missions, the committee points out that the Vision Missions effort was focused on future astronomy, heliophysics, and planetary exploration and did not include any Earth science studies because, at the time, the NRC was conducting the first Earth science decadal survey, and funding Earth science studies as part of the Vision Missions effort would have interfered with that process. Consequently, no Earth science missions are evaluated in this interim report. However, the committee will evaluate any Earth science mission proposal submitted in response to its request for information issued in March 2008 (see Appendix A). The committee based its evaluation of the preexisting Vision Missions studies

  17. Enabling technologies and building blocks for large planetary orbiters

    NASA Astrophysics Data System (ADS)

    Poncy, J.; Roser, X.; Couzin, P.

    2013-09-01

    Thales Alenia Space reports how, beyond ExoMars, enabling technologies and their corresponding building blocks for large orbiters and mother ships will play a key-role in the exploration of our System. We first make a census of the targets, of the induced missions for the next decades and of the constraints they place on the physical and functional architecture of the main spacecraft. As a function of the maturity of the related technologies, and of the urgency of scientific and exploration needs, we then introduce the time dimension per target and mission type, as an input for establishing a future comprehensive road map. We conclude by recalling the most urgent developments.

  18. Enabling complex nanoscale pattern customization using directed self-assembly

    NASA Astrophysics Data System (ADS)

    Doerk, Gregory S.; Cheng, Joy Y.; Singh, Gurpreet; Rettner, Charles T.; Pitera, Jed W.; Balakrishnan, Srinivasan; Arellano, Noel; Sanders, Daniel P.

    2014-12-01

    Block copolymer directed self-assembly is an attractive method to fabricate highly uniform nanoscale features for various technological applications, but the dense periodicity of block copolymer features limits the complexity of the resulting patterns and their potential utility. Therefore, customizability of nanoscale patterns has been a long-standing goal for using directed self-assembly in device fabrication. Here we show that a hybrid organic/inorganic chemical pattern serves as a guiding pattern for self-assembly as well as a self-aligned mask for pattern customization through cotransfer of aligned block copolymer features and an inorganic prepattern. As informed by a phenomenological model, deliberate process engineering is implemented to maintain global alignment of block copolymer features over arbitrarily shaped, ‘masking’ features incorporated into the chemical patterns. These hybrid chemical patterns with embedded customization information enable deterministic, complex two-dimensional nanoscale pattern customization through directed self-assembly.

  19. Computationally driven antibody engineering enables simultaneous humanization and thermostabilization.

    PubMed

    Choi, Yoonjoo; Ndong, Christian; Griswold, Karl E; Bailey-Kellogg, Chris

    2016-10-01

    Humanization reduces the immunogenicity risk of therapeutic antibodies of non-human origin. Thermostabilization can be critical for clinical development and application of therapeutic antibodies. Here, we show that the computational antibody redesign method Computationally Driven Antibody Humanization (CoDAH) enables these two goals to be accomplished simultaneously and seamlessly. A panel of CoDAH designs for the murine parent of cetuximab, a chimeric anti-EGFR antibody, exhibited both substantially improved thermostabilities and substantially higher levels of humanness, while retaining binding activity near the parental level. The consistently high quality of the turnkey CoDAH designs, over a whole panel of variants, suggests that the computationally directed approach encapsulates key determinants of antibody structure and function.

  20. An Enabling Technology for New Planning and Scheduling Paradigms

    NASA Technical Reports Server (NTRS)

    Jaap, John; Davis, Elizabeth

    2004-01-01

    The Night Projects Directorate at NASA's Marshall Space Flight Center is developing a new planning and scheduling environment and a new scheduling algorithm to enable a paradigm shift in planning and scheduling concepts. Over the past 33 years Marshall has developed and evolved a paradigm for generating payload timelines for Skylab, Spacelab, various other Shuttle payloads, and the International Space Station. The current paradigm starts by collecting the requirements, called ?ask models," from the scientists and technologists for the tasks that are to be scheduled. Because of shortcomings in the current modeling schema, some requirements are entered as notes. Next, a cadre with knowledge of vehicle and hardware modifies these models to encompass and be compatible with the hardware model; again, notes are added when the modeling schema does not provide a better way to represent the requirements. Finally, the models are modified to be compatible with the scheduling engine. Then the models are submitted to the scheduling engine for automatic scheduling or, when requirements are expressed in notes, the timeline is built manually. A future paradigm would provide a scheduling engine that accepts separate science models and hardware models. The modeling schema would have the capability to represent all the requirements without resorting to notes. Furthermore, the scheduling engine would not require that the models be modified to account for the capabilities (limitations) of the scheduling engine. The enabling technology under development at Marshall has three major components: (1) A new modeling schema allows expressing all the requirements of the tasks without resorting to notes or awkward contrivances. The chosen modeling schema is both maximally expressive and easy to use. It utilizes graphical methods to show hierarchies of task constraints and networks of temporal relationships. (2) A new scheduling algorithm automatically schedules the models without the