A study of dynamical behavior of space environment
NASA Technical Reports Server (NTRS)
Wu, S. T.
1974-01-01
Studies have covered a wide range of problems in the space environment, such as the problems of the dynamical behavior of the thermosphere, hydromagnetic wave propagation in the ionosphere, and interplanetary space environment. The theories used to analyze these problems range from a continuum theory of magnetohydrodynamics to the kinetic theory of free molecular flow. This is because the problems encountered covered the entire range of the Knudsen number (i.e., the ratio of mean free path to the characteristic length). Significant results are summarized.
Is a Universal Science of Complexity Conceivable?
NASA Astrophysics Data System (ADS)
West, Geoffrey B.
Over the past quarter of a century, terms like complex adaptive system, the science of complexity, emergent behavior, self-organization, and adaptive dynamics have entered the literature, reflecting the rapid growth in collaborative, trans-disciplinary research on fundamental problems in complex systems ranging across the entire spectrum of science from the origin and dynamics of organisms and ecosystems to financial markets, corporate dynamics, urbanization and the human brain...
Thermal and dynamic range characterization of a photonics-based RF amplifier
NASA Astrophysics Data System (ADS)
Noque, D. F.; Borges, R. M.; Muniz, A. L. M.; Bogoni, A.; Cerqueira S., Arismar, Jr.
2018-05-01
This work reports a thermal and dynamic range characterization of an ultra-wideband photonics-based RF amplifier for microwave and mm-waves future 5G optical-wireless networks. The proposed technology applies the four-wave mixing nonlinear effect to provide RF amplification in analog and digital radio-over-fiber systems. The experimental analysis from 300 kHz to 50 GHz takes into account different figures of merit, such as RF gain, spurious-free dynamic range and RF output power stability as a function of temperature. The thermal characterization from -10 to +70 °C demonstrates a 27 dB flat photonics-assisted RF gain over the entire frequency range under real operational conditions of a base station for illustrating the feasibility of the photonics-assisted RF amplifier for 5G networks.
The Million-Body Problem: Particle Simulations in Astrophysics
Rasio, Fred
2018-05-21
Computer simulations using particles play a key role in astrophysics. They are widely used to study problems across the entire range of astrophysical scales, from the dynamics of stars, gaseous nebulae, and galaxies, to the formation of the largest-scale structures in the universe. The 'particles' can be anything from elementary particles to macroscopic fluid elements, entire stars, or even entire galaxies. Using particle simulations as a common thread, this talk will present an overview of computational astrophysics research currently done in our theory group at Northwestern. Topics will include stellar collisions and the gravothermal catastrophe in dense star clusters.
Molecular Simulations of Dynamic Processes of Solid Explosives
2004-12-01
compression. Therefore, we analyzed the dynamics of the energetic crystals RDX , HMX , HNIW and PETN under hydrostatic compression conditions using...for the RDX , HMX and HNIW crystals were found in good agreement with experimental values over the entire range of pressures investigated...Theoretical studies of the hydrostatic compression of RDX , HMX , HNIW, and PETN crystals, J. Phys. Chem. B 103, 6783. scu, D. C.; Rice, B. M. and
Finite Element Model Development For Aircraft Fuselage Structures
NASA Technical Reports Server (NTRS)
Buehrle, Ralph D.; Fleming, Gary A.; Pappa, Richard S.; Grosveld, Ferdinand W.
2000-01-01
The ability to extend the valid frequency range for finite element based structural dynamic predictions using detailed models of the structural components and attachment interfaces is examined for several stiffened aircraft fuselage structures. This extended dynamic prediction capability is needed for the integration of mid-frequency noise control technology. Beam, plate and solid element models of the stiffener components are evaluated. Attachment models between the stiffener and panel skin range from a line along the rivets of the physical structure to a constraint over the entire contact surface. The finite element models are validated using experimental modal analysis results.
Method and Apparatus for Improving the Resolution of Digitally Sampled Analog Data
NASA Technical Reports Server (NTRS)
Liaghati, Amir L. (Inventor)
2017-01-01
A system and method is described for converting an analog signal into a digital signal. The gain and offset of an ADC is dynamically adjusted so that the N-bits of input data are assigned to a narrower channel instead of the entire input range of the ADC. This provides greater resolution in the range of interest without generating longer digital data strings.
On hydrodynamics of drag and lift of the human arm.
Gardano, Paola; Dabnichki, Peter
2006-01-01
The work presents results on drag and lift measurement conducted in a low speed wind tunnel on a replica of the entire human arm. The selected model positions were identical to those during purely rotational front crawl stroke in quasi-static conditions. A computational fluid dynamics model using Fluent showed close correspondence with the experimental results and confirmed the suitability of low speed wind tunnel for the drag and lift measurement in quasi-static conditions. The obtained profiles of the hydrodynamic forces were similar to the dynamic data presented in an earlier study suggesting that shape drag is a major contributing factor in propulsive force generation. The aim of this study was to underline the importance of the entire arm analysis, the elbow angle and a newly defined angle of attack representing the angle of shoulder rotation. It was found that both the maximum value of the drag force at 160 degrees elbow flexion angle and the momentum generated by it exceed the respective magnitudes for the fully extended arm. The latter is underlined by a prolonged plateau of near maximum drag that was obtained at shoulder angle range of 50-140 degrees suggesting that optimal arm configuration in terms of propulsive force generation requires elbow flexion. Furthermore it was found that drag trend is not consistent with the widely assumed and used sinus wave profile. A gap in the existing experimental research was filled as for the first time the entire arm lift and drag was measured across the entire stroke range.
High-dynamic-range imaging for cloud segmentation
NASA Astrophysics Data System (ADS)
Dev, Soumyabrata; Savoy, Florian M.; Lee, Yee Hui; Winkler, Stefan
2018-04-01
Sky-cloud images obtained from ground-based sky cameras are usually captured using a fisheye lens with a wide field of view. However, the sky exhibits a large dynamic range in terms of luminance, more than a conventional camera can capture. It is thus difficult to capture the details of an entire scene with a regular camera in a single shot. In most cases, the circumsolar region is overexposed, and the regions near the horizon are underexposed. This renders cloud segmentation for such images difficult. In this paper, we propose HDRCloudSeg - an effective method for cloud segmentation using high-dynamic-range (HDR) imaging based on multi-exposure fusion. We describe the HDR image generation process and release a new database to the community for benchmarking. Our proposed approach is the first using HDR radiance maps for cloud segmentation and achieves very good results.
Computational fluid dynamics analysis of a maglev centrifugal left ventricular assist device.
Burgreen, Greg W; Loree, Howard M; Bourque, Kevin; Dague, Charles; Poirier, Victor L; Farrar, David; Hampton, Edward; Wu, Z Jon; Gempp, Thomas M; Schöb, Reto
2004-10-01
The fluid dynamics of the Thoratec HeartMate III (Thoratec Corp., Pleasanton, CA, U.S.A.) left ventricular assist device are analyzed over a range of physiological operating conditions. The HeartMate III is a centrifugal flow pump with a magnetically suspended rotor. The complete pump was analyzed using computational fluid dynamics (CFD) analysis and experimental particle imaging flow visualization (PIFV). A comparison of CFD predictions to experimental imaging shows good agreement. Both CFD and experimental PIFV confirmed well-behaved flow fields in the main components of the HeartMate III pump: inlet, volute, and outlet. The HeartMate III is shown to exhibit clean flow features and good surface washing across its entire operating range.
Biological Analogs for Language Contact Situations
ERIC Educational Resources Information Center
Seliger, Herbert W.
1977-01-01
This article proposes that language contact can be best understood if the entire range of such situations from second language learning to evolution of dialects and creoles is studied within a framework analogical to the symbiosis of living organisms. Language contact is viewed in terms of dynamic evolutionary stages. (CHK)
NASA Astrophysics Data System (ADS)
Santhosh Kumar, K.; Das, Sarmistha; Eswara Phanindra, V.; Rana, D. S.
2017-12-01
The metal-insulator transition (MIT) in correlated systems is a central phenomenon that possesses potential for several emerging technologies. We investigate the kinetics of such MIT in perovskite nickelates by studying the terahertz (THz) low-energy charge dynamics in orthorhombic and tetragonal symmetries of Pr0.5Nd0.5NiO3 thin films. The THz conductivity of the orthorhombic thin film is dominated by Drude behavior in the entire temperature range, albeit a dominant anomaly at and around the MIT region. The tetragonal thin film exhibits different overall THz conductivity dynamics though, i.e. of a Drude-Smith (DS) type in the entire temperature range, the DS coefficient signifying dominant backscattering peaks in the MIT region. While the overall THz dynamics profile is different for the two films, a unique yet similar sensitivity of the I-M transition regions of both films to THz frequencies underlines the fundamental origin of the bi-critical phase around MIT of the nickelates. The peculiar behavior around the I-M transition, as evaluated in the framework of a percolative path approximation based Dyre expression, emphasizes the importance of critical metallic volume fraction (f c) for the percolation conduction, as an f c of ~0.645 obtained for the present case, along with evidence for the absence of super-heating.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kharkov, B. B.; Chizhik, V. I.; Dvinskikh, S. V., E-mail: sergeid@kth.se
2016-01-21
Dipolar recoupling is an essential part of current solid-state NMR methodology for probing atomic-resolution structure and dynamics in solids and soft matter. Recently described magic-echo amplitude- and phase-modulated cross-polarization heteronuclear recoupling strategy aims at efficient and robust recoupling in the entire range of coupling constants both in rigid and highly dynamic molecules. In the present study, the properties of this recoupling technique are investigated by theoretical analysis, spin-dynamics simulation, and experimentally. The resonance conditions and the efficiency of suppressing the rf field errors are examined and compared to those for other recoupling sequences based on similar principles. The experimental datamore » obtained in a variety of rigid and soft solids illustrate the scope of the method and corroborate the results of analytical and numerical calculations. The technique benefits from the dipolar resolution over a wider range of coupling constants compared to that in other state-of-the-art methods and thus is advantageous in studies of complex solids with a broad range of dynamic processes and molecular mobility degrees.« less
Poissonian steady states: from stationary densities to stationary intensities.
Eliazar, Iddo
2012-10-01
Markov dynamics are the most elemental and omnipresent form of stochastic dynamics in the sciences, with applications ranging from physics to chemistry, from biology to evolution, and from economics to finance. Markov dynamics can be either stationary or nonstationary. Stationary Markov dynamics represent statistical steady states and are quantified by stationary densities. In this paper, we generalize the notion of steady state to the case of general Markov dynamics. Considering an ensemble of independent motions governed by common Markov dynamics, we establish that the entire ensemble attains Poissonian steady states which are quantified by stationary Poissonian intensities and which hold valid also in the case of nonstationary Markov dynamics. The methodology is applied to a host of Markov dynamics, including Brownian motion, birth-death processes, random walks, geometric random walks, renewal processes, growth-collapse dynamics, decay-surge dynamics, Ito diffusions, and Langevin dynamics.
Poissonian steady states: From stationary densities to stationary intensities
NASA Astrophysics Data System (ADS)
Eliazar, Iddo
2012-10-01
Markov dynamics are the most elemental and omnipresent form of stochastic dynamics in the sciences, with applications ranging from physics to chemistry, from biology to evolution, and from economics to finance. Markov dynamics can be either stationary or nonstationary. Stationary Markov dynamics represent statistical steady states and are quantified by stationary densities. In this paper, we generalize the notion of steady state to the case of general Markov dynamics. Considering an ensemble of independent motions governed by common Markov dynamics, we establish that the entire ensemble attains Poissonian steady states which are quantified by stationary Poissonian intensities and which hold valid also in the case of nonstationary Markov dynamics. The methodology is applied to a host of Markov dynamics, including Brownian motion, birth-death processes, random walks, geometric random walks, renewal processes, growth-collapse dynamics, decay-surge dynamics, Ito diffusions, and Langevin dynamics.
Al-Thani, Mohamed H; Sadoun, Eman; Al-Thani, Al-Anoud; Khalifa, Shamseldin A; Sayegh, Suzan; Badawi, Alaa
2014-12-01
Developing effective public health policies and strategies for interventions necessitates an assessment of the structure, dynamics, disease rates and causes of death in a population. Lately, Qatar has undertaken development resurgence in health and economy that resulted in improving the standard of health services and health status of the entire Qatari population (i.e., Qatari nationals and non-Qatari residents). No study has attempted to evaluate the population structure/dynamics and recent changes in disease-related mortality rates among Qatari nationals. The present study examines the population structure/dynamics and the related changes in the cause-specific mortality rates and disease prevalence in the Qatari nationals. This is a retrospective, analytic descriptive analysis covering a period of 5years (2007-2011) and utilizes a range of data sources from the State of Qatar including the population structure, disease-related mortality rates, and the prevalence of a range of chronic and infectious diseases. Factors reflecting population dynamics such as crude death (CDR), crude birth (CBR), total fertility (TFR) and infant mortality (IMR) rates were also calculated. The Qatari nationals is an expansive population with an annual growth rate of ∼4% and a stable male:female ratio. The CDR declined by 15% within the study period, whereas the CBR was almost stable. The total disease-specific death rate, however, was decreased among the Qatari nationals by 23% due to the decline in mortality rates attributed to diseases of the blood and immune system (43%), nervous system (44%) and cardiovascular system (41%). There was a high prevalence of a range of chronic diseases, whereas very low frequencies of the infectious diseases within the study population. Public health strategies, approaches and programs developed to reduce disease burden and the related death, should be tailored to target the population of Qatari nationals which exhibits characteristics that vary from the entire Qatari population. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.
Achieving comb formation over the entire lasing range of quantum cascade lasers.
Yang, Yang; Burghoff, David; Reno, John; Hu, Qing
2017-10-01
Frequency combs based on quantum cascade lasers (QCLs) are finding promising applications in high-speed broadband spectroscopy in the terahertz regime, where many molecules have their "fingerprints." To form stable combs in QCLs, an effective control of group velocity dispersion plays a critical role. The dispersion of the QCL cavity has two main parts: a static part from the material and a dynamic part from the intersubband transitions. Unlike the gain, which is clamped to a fixed value above the lasing threshold, dispersion associated with the intersubband transitions changes with bias, even above the threshold, and this reduces the dynamic range of comb formation. Here, by incorporating tunability into the dispersion compensator, we demonstrate a QCL device exhibiting comb operation from I th to I max , which greatly expands the operation range of the frequency combs.
Lox droplet vaporization in a supercritical forced convective environment
NASA Technical Reports Server (NTRS)
Hsiao, Chia-Chun; Yang, Vigor
1994-01-01
A systematic investigation has been conducted to study the effects of ambient flow conditions (i.e. pressure and velocity) on supercritical droplet gasification in a forced-convective environment. The model is based on the time-dependent conservation equations in axisymmetric coordinates, and accommodates thermodynamic nonidealities and transport anomalies. In addition, an efficient scheme for evaluating thermophysical properties over the entire range of fluid thermodynamic states is established. The analysis allows a thorough examination of droplet behavior during its entire lifetime, including transient gasification, dynamic deformation, and shattering. A parametric study of droplet vaporization rate in terms of ambient pressure and Reynolds number is also conducted.
Matthew B. Dickinson; Andrew T. Hudak; Thomas Zajkowski; E. Louise Loudermilk; Wilfrid Schroeder; Luke Ellison; Robert L. Kremens; William Holley; Otto Martinez; Alexander Paxton; Benjamin C. Bright; Joseph O' Brien; Ben Hornsby; Charles Ichoku; Jason Faulring; Aaron Gerace; David Peterson; Joseph Mauceri
2016-01-01
Characterising radiation from wildland fires is an important focus of fire science because radiation relates directly to the combustion process and can be measured across a wide range of spatial extents and resolutions. As part of a more comprehensive set of measurements collected during the 2012 Prescribed Fire Combustion and Atmospheric Dynamics Research (RxCADRE)...
In vivo optical imaging and dynamic contrast methods for biomedical research
Hillman, Elizabeth M. C.; Amoozegar, Cyrus B.; Wang, Tracy; McCaslin, Addason F. H.; Bouchard, Matthew B.; Mansfield, James; Levenson, Richard M.
2011-01-01
This paper provides an overview of optical imaging methods commonly applied to basic research applications. Optical imaging is well suited for non-clinical use, since it can exploit an enormous range of endogenous and exogenous forms of contrast that provide information about the structure and function of tissues ranging from single cells to entire organisms. An additional benefit of optical imaging that is often under-exploited is its ability to acquire data at high speeds; a feature that enables it to not only observe static distributions of contrast, but to probe and characterize dynamic events related to physiology, disease progression and acute interventions in real time. The benefits and limitations of in vivo optical imaging for biomedical research applications are described, followed by a perspective on future applications of optical imaging for basic research centred on a recently introduced real-time imaging technique called dynamic contrast-enhanced small animal molecular imaging (DyCE). PMID:22006910
Collective relaxation dynamics of small-world networks
NASA Astrophysics Data System (ADS)
Grabow, Carsten; Grosskinsky, Stefan; Kurths, Jürgen; Timme, Marc
2015-05-01
Complex networks exhibit a wide range of collective dynamic phenomena, including synchronization, diffusion, relaxation, and coordination processes. Their asymptotic dynamics is generically characterized by the local Jacobian, graph Laplacian, or a similar linear operator. The structure of networks with regular, small-world, and random connectivities are reasonably well understood, but their collective dynamical properties remain largely unknown. Here we present a two-stage mean-field theory to derive analytic expressions for network spectra. A single formula covers the spectrum from regular via small-world to strongly randomized topologies in Watts-Strogatz networks, explaining the simultaneous dependencies on network size N , average degree k , and topological randomness q . We present simplified analytic predictions for the second-largest and smallest eigenvalue, and numerical checks confirm our theoretical predictions for zero, small, and moderate topological randomness q , including the entire small-world regime. For large q of the order of one, we apply standard random matrix theory, thereby overarching the full range from regular to randomized network topologies. These results may contribute to our analytic and mechanistic understanding of collective relaxation phenomena of network dynamical systems.
Collective relaxation dynamics of small-world networks.
Grabow, Carsten; Grosskinsky, Stefan; Kurths, Jürgen; Timme, Marc
2015-05-01
Complex networks exhibit a wide range of collective dynamic phenomena, including synchronization, diffusion, relaxation, and coordination processes. Their asymptotic dynamics is generically characterized by the local Jacobian, graph Laplacian, or a similar linear operator. The structure of networks with regular, small-world, and random connectivities are reasonably well understood, but their collective dynamical properties remain largely unknown. Here we present a two-stage mean-field theory to derive analytic expressions for network spectra. A single formula covers the spectrum from regular via small-world to strongly randomized topologies in Watts-Strogatz networks, explaining the simultaneous dependencies on network size N, average degree k, and topological randomness q. We present simplified analytic predictions for the second-largest and smallest eigenvalue, and numerical checks confirm our theoretical predictions for zero, small, and moderate topological randomness q, including the entire small-world regime. For large q of the order of one, we apply standard random matrix theory, thereby overarching the full range from regular to randomized network topologies. These results may contribute to our analytic and mechanistic understanding of collective relaxation phenomena of network dynamical systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hensel-Bielowka, Stella; Wojnarowska, Zaneta E.; Dzida, Marzena
2015-08-11
Dynamic crossover above T g has been recognized as a characteristic feature of molecular dynamics of liquids approaching glass transition. Experimentally, it is manifested as a change in Vogel Fulcher Tammann dependence or a breakdown of the Stokes Einstein and related relations. In this paper, we report the exception from this rather general pattern of behavior. By means of dielectric, ultrasonic, rheological, and calorimetric methods, dynamics of two good ionic conductors (BMIm) 2[Co(NCS) 4] and (EMIm) 2[Co(NCS) 4] of less common stoichiometry (2:1) was studied in a very broad temperature range. However, none of the mentioned dynamic changes was observedmore » in the entire studied temperature range. On the contrary, the single VFT and the same fractional Walden coefficient were found for conductivity and viscosity changes over 12 decades. Furthermore, ultrasonic studies revealed that the data at temperatures which cover the normal liquid region cannot be fitted by a single exponential decay, and the Cole Cole function should be used instead.« less
Computer Assisted Exercises - Background
2003-06-01
standard JSAF interface devices. As a result of this HITL capability, Red and Blue engaged in real-time, dynamic free - play . Further, JSAF permitted...Red- vs.-Blue, free play , entity-level synthetic battlespace. JSAF simulates warfare at the platform level. JSAF simulates the entire range of...works to ensure the free play of events maintains a course that serves the overall objectives. 2-34 This slide has been deliberately left blank
Instantaneous phase mapping deflectometry for dynamic deformable mirror characterization
NASA Astrophysics Data System (ADS)
Trumper, Isaac; Choi, Heejoo
2017-09-01
We present an instantaneous phase mapping deflectometry (PMD) system in the context of measuring a continuous surface deformable mirror (DM). Deflectometry has a high dynamic range, enabling the full range of surfaces generated by the DM to be measured. The recent development of an instantaneous PMD system leverages the simple setup of the PMD system to measure dynamic objects with accuracy similar to an interferometer. To demonstrate the capabilities of this technology, we perform a linearity measurement of the actuator motion in a continuous surface DM, which is critical for closed loop control in adaptive optics applications. We measure the entire set of actuators across the DM as they traverse their full range of motion with a Shack-Hartman wavefront sensor, thereby obtaining the influence function. Given the influence function of each actuator, the DM can produce specific Zernike terms on its surface. We then measure the linearity of the Zernike modes available in the DM software using the instantaneous PMD system. By obtaining the relationship between modes, we can more accurately generate surface profiles composed of Zernike terms. This ability is useful for other dynamic freeform metrology applications that utilize the DM as a null component.
NASA Technical Reports Server (NTRS)
Freymuth, Peter
1992-01-01
Aims for improvement of fighter aircraft pursued by the unsteady flow community are high agility (the ability of the aircraft to make close turns in a low-speed regime) and super maneuverability (the ability of the aircraft to operate at high angles of attack in a post stall regime during quick maneuvers in a more extended speed range). High agility requires high lift coefficients at low speeds in a dynamic situation and this requirement can be met by dynamically forced separation or by quasistatic stall control. The competing methods will be assessed based on the known physics. Maneuvering into the post stall regime also involves dynamic separation but because even fast maneuvers involving the entire aircraft are 'aerodynamically slow' the resulting dynamic vortex structures should be considered 'elicited' rather than 'forced.' More work seems to be needed in this area of elicited dynamic separation.
Real-time intravital microscopy of individual nanoparticle dynamics in liver and tumors of live mice
van de Ven, Anne L; Kim, Pilhan; Ferrari, Mauro; Yun, Seok Hyun
2013-01-01
Intravital microscopy is emerging as an important experimental tool for the research and development of multi-functional therapeutic nanoconstructs. The direct visualization of nanoparticle dynamics within live animals provides invaluable insights into the mechanisms that regulate nanotherapeutics transport and cell-particle interactions. Here we present a protocol to image the dynamics of nanoparticles within the liver and tumors of live mice immediately following systemic injection using a high-speed (30-400 fps) confocal or multi-photon laser-scanning fluorescence microscope. Techniques for quantifying the real-time accumulation and cellular association of individual particles with a size ranging from several tens of nanometers to micrometers are described, as well as an experimental strategy for labeling Kupffer cells in the liver in vivo. Experimental design considerations and controls are provided, as well as minimum equipment requirements. The entire protocol takes approximately 4-8 hours and yields quantitative information. These techniques can serve to study a wide range of kinetic parameters that drive nanotherapeutics delivery, uptake, and treatment response. PMID:25383179
Eddy current gauge for monitoring displacement using printed circuit coil
Visioli, Jr., Armando J.
1977-01-01
A proximity detection system for non-contact displacement and proximity measurement of static or dynamic metallic or conductive surfaces is provided wherein the measurement is obtained by monitoring the change in impedance of a flat, generally spiral-wound, printed circuit coil which is excited by a constant current, constant frequency source. The change in impedance, which is detected as a corresponding change in voltage across the coil, is related to the eddy current losses in the distant conductive material target. The arrangement provides for considerable linear displacement range with increased accuracies, stability, and sensitivity over the entire range.
Advanced Suspension and Control Algorithm for U.S. Army Ground Vehicles
2013-04-01
Army Materiel Systems Analysis Activity (AMSAA), for his assistance and guidance in building a multibody vehicle dynamics model of a typical light...Mobility Multipurpose Wheeled Vehicle [HMMWV] model) that was developed in collaboration with the U.S. Army Materiel Systems Analysis Activity (5) is...control weight for GPC With Explicit Disturbance was R = 1.0e-7 over the entire speed range. To simplify analysis , the control weights for the other two
Characterizing Total Radiation Belt Electron Content Using Van Allen Probes Data
NASA Astrophysics Data System (ADS)
Huang, C. L.; Spence, H. E.; Boyd, A. J.; Jordan, A.; Paulson, K. W.; Zhang, J.; Blake, J. B.; Kletzing, C.
2014-12-01
The comprehensive particle and wave measurements of the Van Allen Probes enable us to monitor the entire radiation belt near the equator from L-shells of 2.5 to 6. Using the particle measurements, we create an improved, high-level quantity representing the entire outer belt. This quantity, the total radiation belt electron content (TRBEC), is the half-orbit sum of outer belt electrons over the radiation belt energy ranges of importance and all pitch angles using data from RBSP-ECT instrument on board both spacecraft. The goal is to characterize statistically the dynamics of the entire radiation belt by comparing TRBEC with solar wind parameters, magnetospheric waves, and electron seed population. When comparing TRBEC with solar wind velocity, our result shows a triangle-distribution similar to that which Reeves et al. (2011) found using geosynchronous electron flux. We also correlate TRBEC with other solar wind parameters to identify which solar wind conditions effectively enhance or deplete radiation belt electrons. In addition, plasma waves in the inner magnetosphere, via wave-particle interaction, are key elements affecting the dynamics of the radiation belt. Therefore, we compare TRBEC with integrated EMIC and chorus (upper and lower bands) wave power calculated from EMFISIS wave measurements to determine the relative importance between each wave-particle process. Finally, we demonstrate the ~100 keV seed population's characteristics that correspond to the MeV population enhancement. While the gross features of the two populations are similar, the MeV population's dynamics lag behind those of the seed population by 5 to 60 hours, which implies the acceleration or loss processes vary by event.
Lee, Young Kwang; Kim, Sungi; Nam, Jwa-Min
2015-01-12
Observation of single plasmonic nanoparticles in reconstituted biological systems allows us to obtain snapshots of dynamic processes between molecules and nanoparticles with unprecedented spatiotemporal resolution and single-molecule/single-particle-level data acquisition. This Concept is intended to introduce nanoparticle-tethered supported lipid bilayer platforms that allow for the dynamic confinement of nanoparticles on a two-dimensional fluidic surface. The dark-field-based long-term, stable, real-time observation of freely diffusing plasmonic nanoparticles on a lipid bilayer enables one to extract a broad range of information about interparticle and molecular interactions throughout the entire reaction period. Herein, we highlight important developments in this context to provide ideas on how molecular interactions can be interpreted by monitoring dynamic behaviors and optical signals of laterally mobile nanoparticles. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Paul A.
Nonlinear dynamics induced by seismic sources and seismic waves are common in Earth. Observations range from seismic strong ground motion (the most damaging aspect of earthquakes), intense near-source effects, and distant nonlinear effects from the source that have important consequences. The distant effects include dynamic earthquake triggering-one of the most fascinating topics in seismology today-which may be elastically nonlinearly driven. Dynamic earthquake triggering is the phenomenon whereby seismic waves generated from one earthquake trigger slip events on a nearby or distant fault. Dynamic triggering may take place at distances thousands of kilometers from the triggering earthquake, and includes triggering ofmore » the entire spectrum of slip behaviors currently identified. These include triggered earthquakes and triggered slow, silent-slip during which little seismic energy is radiated. It appears that the elasticity of the fault gouge-the granular material located between the fault blocks-is key to the triggering phenomenon.« less
An extrinsic fiber Fabry-Perot interferometer for dynamic displacement measurement
NASA Astrophysics Data System (ADS)
Pullteap, S.; Seat, H. C.
2015-03-01
A versatile fiber interferometer was proposed for high precision measurement. The sensor exploited a double-cavity within the unique sensing arm of an extrinsic-type fiber Fabry-Perot interferometer to produce the quadrature phase-shifted interference fringes. Interference signal processing was carried out using a modified zero-crossing (fringe) counting technique to demodulate two sets of fringes. The fiber interferometer has been successfully employed for dynamic displacement measurement under different displacement profiles over a range of 0.7 μm to 140 μm. A dedicated computer incorporating the demodulation algorithm was next used to interpret these detected data as well as plot the displacement information with a resolution of λ/64. A commercial displacement sensor was employed for comparison purposes with the experimental data obtained from the fiber interferometer as well as to gauge its performance, resulting in the maximum error of 2.8% over the entire displacement range studied.
Achieving comb formation over the entire lasing range of quantum cascade lasers
Yang, Yang; Burghoff, David; Reno, John; ...
2017-01-01
Frequency combs based on quantum cascade laser (QCL) are finding promising applications in highspeed broadband spectroscopy in the terahertz regime, where many molecules have their "fingerprints". To form stable combs in QCLs, an effective control of group velocity dispersion plays a critical role. The dispersion of the QCL cavity has two main parts: a static part from the material and a dynamic part from the intersubband transitions. Unlike the gain, which is clamped to a fixed value above the lasing threshold, dispersion associated with the intersubband transitions changes with bias even above the threshold, and this reduces the dynamic rangemore » of comb formation. Here, by incorporating tunability into the dispersion compensator, we demonstrate a QCL device exhibiting comb operation from I th to I max, which greatly expands the operation range of the frequency combs.« less
Modelling and identification for control of gas bearings
NASA Astrophysics Data System (ADS)
Theisen, Lukas R. S.; Niemann, Hans H.; Santos, Ilmar F.; Galeazzi, Roberto; Blanke, Mogens
2016-03-01
Gas bearings are popular for their high speed capabilities, low friction and clean operation, but suffer from poor damping, which poses challenges for safe operation in presence of disturbances. Feedback control can achieve enhanced damping but requires low complexity models of the dominant dynamics over its entire operating range. Models from first principles are complex and sensitive to parameter uncertainty. This paper presents an experimental technique for "in situ" identification of a low complexity model of a rotor-bearing-actuator system and demonstrates identification over relevant ranges of rotational speed and gas injection pressure. This is obtained using parameter-varying linear models that are found to capture the dominant dynamics. The approach is shown to be easily applied and to suit subsequent control design. Based on the identified models, decentralised proportional control is designed and shown to obtain the required damping in theory and in a laboratory test rig.
Energy calibration of CALET onboard the International Space Station
NASA Astrophysics Data System (ADS)
Asaoka, Y.; Akaike, Y.; Komiya, Y.; Miyata, R.; Torii, S.; Adriani, O.; Asano, K.; Bagliesi, M. G.; Bigongiari, G.; Binns, W. R.; Bonechi, S.; Bongi, M.; Brogi, P.; Buckley, J. H.; Cannady, N.; Castellini, G.; Checchia, C.; Cherry, M. L.; Collazuol, G.; Di Felice, V.; Ebisawa, K.; Fuke, H.; Guzik, T. G.; Hams, T.; Hareyama, M.; Hasebe, N.; Hibino, K.; Ichimura, M.; Ioka, K.; Ishizaki, W.; Israel, M. H.; Javaid, A.; Kasahara, K.; Kataoka, J.; Kataoka, R.; Katayose, Y.; Kato, C.; Kawanaka, N.; Kawakubo, Y.; Kitamura, H.; Krawczynski, H. S.; Krizmanic, J. F.; Kuramata, S.; Lomtadze, T.; Maestro, P.; Marrocchesi, P. S.; Messineo, A. M.; Mitchell, J. W.; Miyake, S.; Mizutani, K.; Moiseev, A. A.; Mori, K.; Mori, M.; Mori, N.; Motz, H. M.; Munakata, K.; Murakami, H.; Nakagawa, Y. E.; Nakahira, S.; Nishimura, J.; Okuno, S.; Ormes, J. F.; Ozawa, S.; Pacini, L.; Palma, F.; Papini, P.; Penacchioni, A. V.; Rauch, B. F.; Ricciarini, S.; Sakai, K.; Sakamoto, T.; Sasaki, M.; Shimizu, Y.; Shiomi, A.; Sparvoli, R.; Spillantini, P.; Stolzi, F.; Takahashi, I.; Takayanagi, M.; Takita, M.; Tamura, T.; Tateyama, N.; Terasawa, T.; Tomida, H.; Tsunesada, Y.; Uchihori, Y.; Ueno, S.; Vannuccini, E.; Wefel, J. P.; Yamaoka, K.; Yanagita, S.; Yoshida, A.; Yoshida, K.; Yuda, T.
2017-05-01
In August 2015, the CALorimetric Electron Telescope (CALET), designed for long exposure observations of high energy cosmic rays, docked with the International Space Station (ISS) and shortly thereafter began to collect data. CALET will measure the cosmic ray electron spectrum over the energy range of 1 GeV to 20 TeV with a very high resolution of 2% above 100 GeV, based on a dedicated instrument incorporating an exceptionally thick 30 radiation-length calorimeter with both total absorption and imaging (TASC and IMC) units. Each TASC readout channel must be carefully calibrated over the extremely wide dynamic range of CALET that spans six orders of magnitude in order to obtain a degree of calibration accuracy matching the resolution of energy measurements. These calibrations consist of calculating the conversion factors between ADC units and energy deposits, ensuring linearity over each gain range, and providing a seamless transition between neighboring gain ranges. This paper describes these calibration methods in detail, along with the resulting data and associated accuracies. The results presented in this paper show that a sufficient accuracy was achieved for the calibrations of each channel in order to obtain a suitable resolution over the entire dynamic range of the electron spectrum measurement.
Functionalized anatomical models for EM-neuron Interaction modeling
NASA Astrophysics Data System (ADS)
Neufeld, Esra; Cassará, Antonino Mario; Montanaro, Hazael; Kuster, Niels; Kainz, Wolfgang
2016-06-01
The understanding of interactions between electromagnetic (EM) fields and nerves are crucial in contexts ranging from therapeutic neurostimulation to low frequency EM exposure safety. To properly consider the impact of in vivo induced field inhomogeneity on non-linear neuronal dynamics, coupled EM-neuronal dynamics modeling is required. For that purpose, novel functionalized computable human phantoms have been developed. Their implementation and the systematic verification of the integrated anisotropic quasi-static EM solver and neuronal dynamics modeling functionality, based on the method of manufactured solutions and numerical reference data, is described. Electric and magnetic stimulation of the ulnar and sciatic nerve were modeled to help understanding a range of controversial issues related to the magnitude and optimal determination of strength-duration (SD) time constants. The results indicate the importance of considering the stimulation-specific inhomogeneous field distributions (especially at tissue interfaces), realistic models of non-linear neuronal dynamics, very short pulses, and suitable SD extrapolation models. These results and the functionalized computable phantom will influence and support the development of safe and effective neuroprosthetic devices and novel electroceuticals. Furthermore they will assist the evaluation of existing low frequency exposure standards for the entire population under all exposure conditions.
Perceiving while producing: Modeling the dynamics of phonological planning
Roon, Kevin D.; Gafos, Adamantios I.
2016-01-01
We offer a dynamical model of phonological planning that provides a formal instantiation of how the speech production and perception systems interact during online processing. The model is developed on the basis of evidence from an experimental task that requires concurrent use of both systems, the so-called response-distractor task in which speakers hear distractor syllables while they are preparing to produce required responses. The model formalizes how ongoing response planning is affected by perception and accounts for a range of results reported across previous studies. It does so by explicitly addressing the setting of parameter values in representations. The key unit of the model is that of the dynamic field, a distribution of activation over the range of values associated with each representational parameter. The setting of parameter values takes place by the attainment of a stable distribution of activation over the entire field, stable in the sense that it persists even after the response cue in the above experiments has been removed. This and other properties of representations that have been taken as axiomatic in previous work are derived by the dynamics of the proposed model. PMID:27440947
Effects of finite size on spin glass dynamics
NASA Astrophysics Data System (ADS)
Sato, Tetsuya; Komatsu, Katsuyoshi
2010-12-01
In spite of comprehensive studies to clarify a variety of interesting phenomena of spin glasses, their understanding has been insufficiently established. To overcome such a problem, fabrication of a mesoscopic spin glass system, whose dynamics can be observed over the entire range to the equilibrium, is useful. In this review the challenges of research that has been performed up to now in this direction and our recent related studies are introduced. We have established to study the spin glass behaviour in terms of droplet picture using nanofabricated mesoscopic samples to some extent, but some problems that should be clarified have been left. Finally, the direction of some new studies is proposed to solve the problems.
Ruggeri, Marco; Uhlhorn, Stephen R.; De Freitas, Carolina; Ho, Arthur; Manns, Fabrice; Parel, Jean-Marie
2012-01-01
Abstract: An optical switch was implemented in the reference arm of an extended depth SD-OCT system to sequentially acquire OCT images at different depths into the eye ranging from the cornea to the retina. A custom-made accommodation module was coupled with the delivery of the OCT system to provide controlled step stimuli of accommodation and disaccommodation that preserve ocular alignment. The changes in the lens shape were imaged and ocular distances were dynamically measured during accommodation and disaccommodation. The system is capable of dynamic in vivo imaging of the entire anterior segment and eye-length measurement during accommodation in real-time. PMID:22808424
Ruggeri, Marco; Uhlhorn, Stephen R; De Freitas, Carolina; Ho, Arthur; Manns, Fabrice; Parel, Jean-Marie
2012-07-01
An optical switch was implemented in the reference arm of an extended depth SD-OCT system to sequentially acquire OCT images at different depths into the eye ranging from the cornea to the retina. A custom-made accommodation module was coupled with the delivery of the OCT system to provide controlled step stimuli of accommodation and disaccommodation that preserve ocular alignment. The changes in the lens shape were imaged and ocular distances were dynamically measured during accommodation and disaccommodation. The system is capable of dynamic in vivo imaging of the entire anterior segment and eye-length measurement during accommodation in real-time.
Das Mahanta, Debasish; Patra, Animesh; Samanta, Nirnay; Luong, Trung Quan; Mukherjee, Biswaroop; Mitra, Rajib Kumar
2016-10-28
A combined experimental (mid- and far-infrared FTIR spectroscopy and THz time domain spectroscopy (TTDS) (0.3-1.6 THz)) and molecular dynamics (MD) simulation technique are used to understand the evolution of the structure and dynamics of water in its binary mixture with 1,2-dimethoxy ethane (DME) over the entire concentration range. The cooperative hydrogen bond dynamics of water obtained from Debye relaxation of TTDS data reveals a non-monotonous behaviour in which the collective dynamics is much faster in the low X w region (where X w is the mole fraction of water in the mixture), whereas in X w ∼ 0.8 region, the dynamics gets slower than that of pure water. The concentration dependence of the reorientation times of water, calculated from the MD simulations, also captures this non-monotonous character. The MD simulation trajectories reveal presence of large amplitude angular jumps, which dominate the orientational relaxation. We rationalize the non-monotonous, concentration dependent orientational dynamics by identifying two different physical mechanisms which operate at high and low water concentration regimes.
Confounded winter and spring phenoclimatology on large herbivore ranges
Christianson, David; Klaver, Robert W.; Middleton, Arthur; Kauffman, Matthew
2013-01-01
Annual variation in winter severity and growing season vegetation dynamics appear to influence the demography of temperate herbivores but parsing winter from spring effects requires independent metrics of environmental conditions specific to each season. We tested for independence in annual variation amongst four common metrics used to describe winter severity and early growing season vegetation dynamics across the entire spatial distribution of elk (Cervus elaphus) in Wyoming from 1989 to 2006. Winter conditions and early growing season dynamics were correlated in a specific way. Winters with snow cover that ended early tended to be followed by early, but slow, rises in the normalized difference vegetation index (NDVI), while long winters with extended periods of snow cover were often followed by late and rapid rises in NDVI. Across the 35 elk ranges, 0.4–86.8 % of the variation in the rate of increase in NDVI’s in spring was explained by the date snow cover disappeared from SNOTEL stations. Because phenoclimatological metrics are correlated across seasons and shifting due to climate change, identifying environmental constraints on herbivore fitness, particularly migratory species, is more difficult than previously recognized.
Predicting Adaptive Behavior in the Environment from Central Nervous System Dynamics
Proekt, Alex; Wong, Jane; Zhurov, Yuriy; Kozlova, Nataliya; Weiss, Klaudiusz R.; Brezina, Vladimir
2008-01-01
To generate adaptive behavior, the nervous system is coupled to the environment. The coupling constrains the dynamical properties that the nervous system and the environment must have relative to each other if adaptive behavior is to be produced. In previous computational studies, such constraints have been used to evolve controllers or artificial agents to perform a behavioral task in a given environment. Often, however, we already know the controller, the real nervous system, and its dynamics. Here we propose that the constraints can also be used to solve the inverse problem—to predict from the dynamics of the nervous system the environment to which they are adapted, and so reconstruct the production of the adaptive behavior by the entire coupled system. We illustrate how this can be done in the feeding system of the sea slug Aplysia. At the core of this system is a central pattern generator (CPG) that, with dynamics on both fast and slow time scales, integrates incoming sensory stimuli to produce ingestive and egestive motor programs. We run models embodying these CPG dynamics—in effect, autonomous Aplysia agents—in various feeding environments and analyze the performance of the entire system in a realistic feeding task. We find that the dynamics of the system are tuned for optimal performance in a narrow range of environments that correspond well to those that Aplysia encounter in the wild. In these environments, the slow CPG dynamics implement efficient ingestion of edible seaweed strips with minimal sensory information about them. The fast dynamics then implement a switch to a different behavioral mode in which the system ignores the sensory information completely and follows an internal “goal,” emergent from the dynamics, to egest again a strip that proves to be inedible. Key predictions of this reconstruction are confirmed in real feeding animals. PMID:18989362
Fourcade, Yoan; Ranius, Thomas; Öckinger, Erik
2017-10-01
Prediction of species distributions in an altered climate requires knowledge on how global- and local-scale factors interact to limit their current distributions. Such knowledge can be gained through studies of spatial population dynamics at climatic range margins. Here, using a butterfly (Pyrgus armoricanus) as model species, we first predicted based on species distribution modelling that its climatically suitable habitats currently extend north of its realized range. Projecting the model into scenarios of future climate, we showed that the distribution of climatically suitable habitats may shift northward by an additional 400 km in the future. Second, we used a 13-year monitoring dataset including the majority of all habitat patches at the species northern range margin to assess the synergetic impact of temperature fluctuations and spatial distribution of habitat, microclimatic conditions and habitat quality, on abundance and colonization-extinction dynamics. The fluctuation in abundance between years was almost entirely determined by the variation in temperature during the species larval development. In contrast, colonization and extinction dynamics were better explained by patch area, between-patch connectivity and host plant density. This suggests that the response of the species to future climate change may be limited by future land use and how its host plants respond to climate change. It is, thus, probable that dispersal limitation will prevent P. armoricanus from reaching its potential future distribution. We argue that models of range dynamics should consider the factors influencing metapopulation dynamics, especially at the range edges, and not only broad-scale climate. It includes factors acting at the scale of habitat patches such as habitat quality and microclimate and landscape-scale factors such as the spatial configuration of potentially suitable patches. Knowledge of population dynamics under various environmental conditions, and the incorporation of realistic scenarios of future land use, appears essential to provide predictions useful for actions mitigating the negative effects of climate change. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.
Dynamics of Nuclear Regions of Galaxies
NASA Technical Reports Server (NTRS)
Miller, Richard H.
1996-01-01
Current research carried out with the help of the ASEE-NASA Summer Faculty Program, at NASA-Ames, is concentrated on the dynamics of nuclear regions of galaxies. From a dynamical point of view a galaxy is a collection of around 10(sup 11) stars like our Sun, each of which moves in the summed gravitational field of all the remaining stars. Thus galaxy dynamics becomes a self-consistent n-body problem with forces given by Newtonian gravitation. Strong nonlinearity in the gravitational force and the inherent nonlinearity of self-consistent problems both argue for a numerical approach. The technique of numerical experiments consis of constructing an environment in the computer that is as close as possible to the physical conditions in a real galaxy and then carrying out experiments much like laboratory experiments in physics or engineering, in this environment. Computationally, an experiment is an initial value problem, and a good deal of thought and effort goes into the design of the starting conditions that serve as initial values. Experiments are run at Ames because all the 'equipment' is in place-the programs, the necessary computational power, and good facilities for post-run analysis. Our goal for this research program is to study the nuclear regions in detail and this means replacing most of the galaxy by a suitable boundary condition to allow the full capability of numerical experiments to be brought to bear on a small region perhaps 1/1000 of the linear dimensions of an entire galaxy. This is an extremely delicate numerical problem, one in which some small feature overlook, can easily lead to a collapse or blow-up of the entire system. All particles attract each other in gravitational problems, and the 1/r(sup 2) force is: (1) nonlinear; (2) strong at short range; (3) long-range, and (4) unscreened at any distance.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Suiter, Christopher L.; Paramasivam, Sivakumar; Hou, Guangjin
Recently, we have demonstrated that considerable inherent sensitivity gains are attained in MAS NMR spectra acquired by nonuniform sampling (NUS) and introduced maximum entropy interpolation (MINT) processing that assures the linearity of transformation between the time and frequency domains. In this report, we examine the utility of the NUS/MINT approach in multidimensional datasets possessing high dynamic range, such as homonuclear 13C–13C correlation spectra. We demonstrate on model compounds and on 1–73-(U-13C,15N)/74–108-(U-15N) E. coli thioredoxin reassembly, that with appropriately constructed 50 % NUS schedules inherent sensitivity gains of 1.7–2.1-fold are readily reached in such datasets. We show that both linearity andmore » line width are retained under these experimental conditions throughout the entire dynamic range of the signals. Furthermore, we demonstrate that the reproducibility of the peak intensities is excellent in the NUS/MINT approach when experiments are repeated multiple times and identical experimental and processing conditions are employed. Finally, we discuss the principles for design and implementation of random exponentially biased NUS sampling schedules for homonuclear 13C–13C MAS correlation experiments that yield high quality artifact-free datasets.« less
NASA Technical Reports Server (NTRS)
Chappell, Charles R.
1988-01-01
The geospace environment has been viewed as a mixing bowl for plasmas of both solar and terrestrial origin. The present perspective on the nature of the supply mechanisms has undergone a radical evolution over the past decade, particularly during the five years of the Dynamics Explorer mission. During this period, the terrestrial source has increased in importance in both magnitude and character of ionospheric outflow. These outflows include the classical polar wind, the cleft ion fountain, the auroral ion fountain, and the polar cap. The earth can be envisioned as a multifaceted fountain which ejects particles from different spatial locations spread around the globe. These particles exhibit a range of masses from 1 to 32 amu and a range of energies from 1 eV to 10 keV. The total flux of this ionospheric outflow is very large: adequate to supply the entire magnetospheric particle population. And the implications of the outflow are significant across a broad spectrum of solar-terrestrial processes ranging from sources of magnetospheric plasmas, to influences on ionospheric density and temperature structure, to energy transfer in phenomena such as stable auroral red arcs. The Dynamics Explorer mission has made a major contribution in the characterization of the terrestrial plasma source.
Suiter, Christopher L.; Paramasivam, Sivakumar; Hou, Guangjin; Sun, Shangjin; Rice, David; Hoch, Jeffrey C.; Rovnyak, David
2014-01-01
Recently, we have demonstrated that considerable inherent sensitivity gains are attained in MAS NMR spectra acquired by nonuniform sampling (NUS) and introduced maximum entropy interpolation (MINT) processing that assures the linearity of transformation between the time and frequency domains. In this report, we examine the utility of the NUS/MINT approach in multidimensional datasets possessing high dynamic range, such as homonuclear 13C–13C correlation spectra. We demonstrate on model compounds and on 1–73-(U-13C, 15N)/74–108-(U-15N) E. coli thioredoxin reassembly, that with appropriately constructed 50 % NUS schedules inherent sensitivity gains of 1.7–2.1-fold are readily reached in such datasets. We show that both linearity and line width are retained under these experimental conditions throughout the entire dynamic range of the signals. Furthermore, we demonstrate that the reproducibility of the peak intensities is excellent in the NUS/MINT approach when experiments are repeated multiple times and identical experimental and processing conditions are employed. Finally, we discuss the principles for design and implementation of random exponentially biased NUS sampling schedules for homonuclear 13C–13C MAS correlation experiments that yield high-quality artifact-free datasets. PMID:24752819
Dielectric Study of Alcohols Using Broadband Terahertz Time Domain Spectroscopy (THz-TDS).
NASA Astrophysics Data System (ADS)
Sarkar, Sohini; Saha, Debasis; Banerjee, Sneha; Mukherjee, Arnab; Mandal, Pankaj
2016-06-01
Broadband Terahertz-Time Domain Spectroscopy (THz-TDS) (1-10 THz) has been utilized to study the complex dielectric properties of methanol, ethanol, 1-propanol, 2-propanol, 1-butanol, and 1-octanol. Previous reports on dielectric study of alcohols were limited to 5 THz. At THz (1 THz = 33.33 wn = 4 meV) frequency range (0.1 to 15 THz), the molecular reorientation and several intermolecular vibrations (local oscillation of dipoles) may coexist and contribute to the overall liquid dynamics. We find that the Debye type relaxations barely contribute beyond 1 THz, rather three harmonic oscillators dominate the entire spectral range. To get insights on the modes responsible for the observed absorption in THz frequency range, we performed all atom molecular dynamics (MD) using OPLS force field and ab initio quantum calculations. Combined experimental and theoretical study reveal that the complex dielectric functions of alcohols have contribution from a) alkyl group oscillation within H-bonded network ( 1 THz), b) intermolecular H-bond stretching ( 5 THz) , and c) librational motions in alcohols. The present work, therefore, complements all previous studies on alcohols at lower frequencies and provides a clear picture on them in a broad spectral range from microwave to 10 THz.
Solar-diffuser panel and ratioing radiometer approach to satellite sensor on-board calibration
NASA Technical Reports Server (NTRS)
Slater, Philip N.; Palmer, James M.
1991-01-01
The use of a solar-diffuser panel is a desirable approach to the on-board absolute radiometric calibration of satellite multispectral sensors used for earth observation in the solar reflective spectral range. It provides a full aperture, full field, end-to-end calibration near the top of the sensor's dynamic range and across its entire spectral response range. A serious drawback is that the panel's reflectance, and the response of any simple detector used to monitor its reflectance may change with time. This paper briefly reviews some preflight and on-board methods for absolute calibration and introduces the ratioing-radiometer concept in which the radiance of the panel is ratioed with respect to the solar irradiance at the time the multispectral sensor is viewing the panel in its calibration mode.
SphinX soft X-ray spectrophotometer: Science objectives, design and performance
NASA Astrophysics Data System (ADS)
Gburek, S.; Sylwester, J.; Kowalinski, M.; Bakala, J.; Kordylewski, Z.; Podgorski, P.; Plocieniak, S.; Siarkowski, M.; Sylwester, B.; Trzebinski, W.; Kuzin, S. V.; Pertsov, A. A.; Kotov, Yu. D.; Farnik, F.; Reale, F.; Phillips, K. J. H.
2011-06-01
The goals and construction details of a new design Polish-led X-ray spectrophotometer are described. The instrument is aimed to observe emission from entire solar corona and is placed as a separate block within the Russian TESIS X- and EUV complex aboard the CORONAS-PHOTON solar orbiting observatory. SphinX uses silicon PIN diode detectors for high time resolution measurements of the solar spectra in the range 0.8-15 keV. Its spectral resolution allows for discerning more than hundred separate energy bands in this range. The instrument dynamic range extends two orders of magnitude below and above these representative for GOES. The relative and absolute accuracy of spectral measurements is expected to be better than few percent, as follows from extensive ground laboratory calibrations.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wronski, M.; Zhao, W.; Tanioka, K.
Purpose: The authors are investigating the feasibility of a new type of solid-state x-ray imaging sensor with programmable avalanche gain: scintillator high-gain avalanche rushing photoconductor active matrix flat panel imager (SHARP-AMFPI). The purpose of the present work is to investigate the inherent x-ray detection properties of SHARP and demonstrate its wide dynamic range through programmable gain. Methods: A distributed resistive layer (DRL) was developed to maintain stable avalanche gain operation in a solid-state HARP. The signal and noise properties of the HARP-DRL for optical photon detection were investigated as a function of avalanche gain both theoretically and experimentally, and themore » results were compared with HARP tube (with electron beam readout) used in previous investigations of zero spatial frequency performance of SHARP. For this new investigation, a solid-state SHARP x-ray image sensor was formed by direct optical coupling of the HARP-DRL with a structured cesium iodide (CsI) scintillator. The x-ray sensitivity of this sensor was measured as a function of avalanche gain and the results were compared with the sensitivity of HARP-DRL measured optically. The dynamic range of HARP-DRL with variable avalanche gain was investigated for the entire exposure range encountered in radiography/fluoroscopy (R/F) applications. Results: The signal from HARP-DRL as a function of electric field showed stable avalanche gain, and the noise associated with the avalanche process agrees well with theory and previous measurements from a HARP tube. This result indicates that when coupled with CsI for x-ray detection, the additional noise associated with avalanche gain in HARP-DRL is negligible. The x-ray sensitivity measurements using the SHARP sensor produced identical avalanche gain dependence on electric field as the optical measurements with HARP-DRL. Adjusting the avalanche multiplication gain in HARP-DRL enabled a very wide dynamic range which encompassed all clinically relevant medical x-ray exposures. Conclusions: This work demonstrates that the HARP-DRL sensor enables the practical implementation of a SHARP solid-state x-ray sensor capable of quantum noise limited operation throughout the entire range of clinically relevant x-ray exposures. This is an important step toward the realization of a SHARP-AMFPI x-ray flat-panel imager.« less
Sub-cycle control of terahertz high-harmonic generation by dynamical Bloch oscillations
NASA Astrophysics Data System (ADS)
Schubert, O.; Hohenleutner, M.; Langer, F.; Urbanek, B.; Lange, C.; Huttner, U.; Golde, D.; Meier, T.; Kira, M.; Koch, S. W.; Huber, R.
2014-02-01
Ultrafast charge transport in strongly biased semiconductors is at the heart of high-speed electronics, electro-optics and fundamental solid-state physics. Intense light pulses in the terahertz spectral range have opened fascinating vistas. Because terahertz photon energies are far below typical electronic interband resonances, a stable electromagnetic waveform may serve as a precisely adjustable bias. Novel quantum phenomena have been anticipated for terahertz amplitudes, reaching atomic field strengths. We exploit controlled (multi-)terahertz waveforms with peak fields of 72 MV cm-1 to drive coherent interband polarization combined with dynamical Bloch oscillations in semiconducting gallium selenide. These dynamics entail the emission of phase-stable high-harmonic transients, covering the entire terahertz-to-visible spectral domain between 0.1 and 675 THz. Quantum interference of different ionization paths of accelerated charge carriers is controlled via the waveform of the driving field and explained by a quantum theory of inter- and intraband dynamics. Our results pave the way towards all-coherent terahertz-rate electronics.
Dynamic-load-enabled ultra-low power multiple-state RRAM devices.
Yang, Xiang; Chen, I-Wei
2012-01-01
Bipolar resistance-switching materials allowing intermediate states of wide-varying resistance values hold the potential of drastically reduced power for non-volatile memory. To exploit this potential, we have introduced into a nanometallic resistance-random-access-memory (RRAM) device an asymmetric dynamic load, which can reliably lower switching power by orders of magnitude. The dynamic load is highly resistive during on-switching allowing access to the highly resistive intermediate states; during off-switching the load vanishes to enable switching at low voltage. This approach is entirely scalable and applicable to other bipolar RRAM with intermediate states. The projected power is 12 nW for a 100 × 100 nm(2) device and 500 pW for a 10 × 10 nm(2) device. The dynamic range of the load can be increased to allow power to be further decreased by taking advantage of the exponential decay of wave-function in a newly discovered nanometallic random material, reaching possibly 1 pW for a 10×10 nm(2) nanometallic RRAM device.
NASA Astrophysics Data System (ADS)
Zdanowicz, E.; Guarino, V.; Konrad, C.; Williams, B.; Capatina, D.; D'Amico, K.; Arganbright, N.; Zimmerman, K.; Turneaure, S.; Gupta, Y. M.
2017-06-01
The Dynamic Compression Sector (DCS) at the Advanced Photon Source (APS), located at Argonne National Laboratory (ANL), has a diverse set of dynamic compression drivers to obtain time resolved x-ray data in single event, dynamic compression experiments. Because the APS x-ray beam direction is fixed, each driver at DCS must have the capability to move through a large range of linear and angular motions with high precision to accommodate a wide variety of scientific needs. Particularly challenging was the design and implementation of the motion control system for the two-stage light gas gun, which rests on a 26' long structure and weighs over 2 tons. The target must be precisely positioned in the x-ray beam while remaining perpendicular to the gun barrel axis to ensure one-dimensional loading of samples. To accommodate these requirements, the entire structure can pivot through 60° of angular motion and move 10's of inches along four independent linear directions with 0.01° and 10 μm resolution, respectively. This presentation will provide details of how this system was constructed, how it is controlled, and provide examples of the wide range of x-ray/sample geometries that can be accommodated. Work supported by DOE/NNSA.
Ion dynamics of a laser produced aluminium plasma at different ambient pressures
NASA Astrophysics Data System (ADS)
Sankar, Pranitha; Shashikala, H. D.; Philip, Reji
2018-01-01
Plasma is generated by pulsed laser ablation of an Aluminium target using 1064 nm, 7 ns Nd:YAG laser pulses. The spatial and temporal evolution of the whole plasma plume, as well as that of the ionic (Al2+) component present in the plume, are investigated using spectrally resolved time-gated imaging. The influence of ambient gas pressure on the expansion dynamics of Al2+ is studied in particular. In vacuum (10-5 Torr, 10-2 Torr) the whole plume expands adiabatically and diffuses into the ambient. For higher pressures in the range of 1-10 Torr plume expansion is in accordance with the shock wave model, while at 760 Torr the expansion follows the drag model. On the other hand, the expansion dynamics of the Al2+ component, measured by introducing a band pass optical filter in the detection system, fits to the shock wave model for the entire pressure range of 10-2 Torr to 760 Torr. The expansion velocities of the whole plume and the Al2+ component have been measured in vacuum. These dynamics studies are of potential importance for applications such as laser-driven plasma accelerators, ion acceleration, pulsed laser deposition, micromachining, laser-assisted mass spectrometry, ion implantation, and light source generation.
The effect of lagoons on Adriatic Sea tidal dynamics
NASA Astrophysics Data System (ADS)
Ferrarin, Christian; Maicu, Francesco; Umgiesser, Georg
2017-11-01
In this study the effects that lagoons exert on the barotropic tidal dynamics of a regional sea, the Adriatic Sea, were numerically explored. This semi-enclosed basin is one of the places with the highest tidal range in the Mediterranean Sea and is characterised by the presence of several lagoons in its northern part. The tidal dynamics of a system comprising the whole Adriatic Sea and the lagoons of Venice, Marano-Grado and Po Delta were investigated using an unstructured hydrodynamic model. Numerical experiments with and without lagoons reveal that even if the considered shallow water bodies represent only the 0.5 and 0.002% of the Adriatic Sea surface and volume, respectively, they significantly affect the entire Northern Adriatic Sea tidal dynamics by enhancing tidal range (by 5%) and currents (by 10%). The inclusion of lagoons in the computation improved the model performance by 25% in reproducing tidal constituents in the Adriatic Sea. The back-effect of the lagoons on the open-sea tide is due to the waves radiating from the co-oscillating lagoons into the adjacent sea. This is the first time these processes are shown to be relevant for the Adriatic Sea, thus enhancing the understanding of the tidal dynamics in this regional sea. These findings may also apply to other coastal seas with connections to lagoons, bays and estuaries.
Molecular dynamics analysis of transitions between rotational isomers in polymethylene
NASA Astrophysics Data System (ADS)
Zúñiga, Ignacio; Bahar, Ivet; Dodge, Robert; Mattice, Wayne L.
1991-10-01
Molecular dynamics trajectories have been computed and analyzed for linear chains, with sizes ranging from C10H22 to C100H202, and for cyclic C100H200. All hydrogen atoms are included discretely. All bond lengths, bond angles, and torsion angles are variable. Hazard plots show a tendency, at very short times, for correlations between rotational isomeric transitions at bond i and i±2, in much the same manner as in the Brownian dynamics simulations reported by Helfand and co-workers. This correlation of next nearest neighbor bonds in isolated polyethylene chains is much weaker than the correlation found for next nearest neighbor CH-CH2 bonds in poly(1,4-trans-butadiene) confined to the channel formed by crystalline perhydrotriphenylene [Dodge and Mattice, Macromolecules 24, 2709 (1991)]. Less than half of the rotational isomeric transitions observed in the entire trajectory for C50H102 can be described as strongly coupled next nearest neighbor transitions. If correlated motions are identified with successive transitions, which occur within a time interval of Δt≤1 ps, only 18% of the transitions occur through cooperative motion of bonds i and i±2. An analysis of the entire data set of 2482 rotational isomeric state transitions, observed in a 3.7 ns trajectory for C50H102 at 400 K, was performed using a formalism that treats the transitions at different bonds as being independent. On time scales of 0.1 ns or longer, the analysis based on independent bonds accounts reasonably well for the results from the molecular dynamics simulations. At shorter times the molecular dynamics simulation reveals a higher mobility than implied by the analysis assuming independent bonds, presumably due to the influence of correlations that are important at shorter times.
Dynamic range considerations for EUV MAMA detectors. [Extreme UV Multianode Microchannel Array
NASA Technical Reports Server (NTRS)
Illing, Rainer M. E.; Bybee, Richard L.; Timothy, J. G.
1990-01-01
The multianode microchannel array (MAMA) has been chosen as the detector for two instruments on the ESA/NASA Solar Heliospheric Observatory. The response of the MAMA to the two extreme types of solar spectra, disk and corona, have been modeled with a view toward evaluating dynamic range effects present. The method of MAMA operation is discussed, with emphasis given to modeling the effect of electron cloud charge spreading to several detector anodes and amplifiers (n-fold events). Representative synthetic EUV spectra have been created. The detector response to these spectra is modeled by dissecting the input photon radiation field across the detector array into contributions to the various amplifier channels. The results of this dissection are shown for spectral regions across the entire wavelength region of interest. These results are used to identify regions in which total array photon counting rate or individual amplifier rate may exceed the design limits. This allows the design or operational modes to be tailored to eliminate the problem areas.
mizer: an R package for multispecies, trait-based and community size spectrum ecological modelling.
Scott, Finlay; Blanchard, Julia L; Andersen, Ken H
2014-10-01
Size spectrum ecological models are representations of a community of individuals which grow and change trophic level. A key emergent feature of these models is the size spectrum; the total abundance of all individuals that scales negatively with size. The models we focus on are designed to capture fish community dynamics useful for assessing the community impacts of fishing.We present mizer , an R package for implementing dynamic size spectrum ecological models of an entire aquatic community subject to fishing. Multiple fishing gears can be defined and fishing mortality can change through time making it possible to simulate a range of exploitation strategies and management options. mizer implements three versions of the size spectrum modelling framework: the community model, where individuals are only characterized by their size; the trait-based model, where individuals are further characterized by their asymptotic size; and the multispecies model where additional trait differences are resolved.A range of plot, community indicator and summary methods are available to inspect the results of the simulations.
Spatiotemporal light-beam compression from nonlinear mode coupling
NASA Astrophysics Data System (ADS)
Krupa, Katarzyna; Tonello, Alessandro; Couderc, Vincent; Barthélémy, Alain; Millot, Guy; Modotto, Daniele; Wabnitz, Stefan
2018-04-01
We experimentally demonstrate simultaneous spatial and temporal compression in the propagation of light pulses in multimode nonlinear optical fibers. We reveal that the spatial beam self-cleaning recently discovered in graded-index multimode fibers is accompanied by significant temporal reshaping and up to fourfold shortening of the injected subnanosecond laser pulses. Since the nonlinear coupling among the modes strongly depends on the instantaneous power, we explore the entire range of the nonlinear dynamics with a single optical pulse, where the optical power is continuously varied across the pulse profile.
VizieR Online Data Catalog: Large area KX quasar catalogue (Maddox+, 2012)
NASA Astrophysics Data System (ADS)
Maddox, N.; Hewett, P. C.; Peroux, C.; Nestor, D. B.; Wisotzki, L.
2013-05-01
In order to maximize the dynamic range of the survey in absolute magnitude at fixed redshift, while ensuring adequate sampling of the brightest quasars, a 'wedding cake' survey geometry is adopted. Thus, the entire survey area is complete to the brightest limits, with a smaller subregion complete to fainter magnitudes and the smallest subregion complete to the faintest limits. Observations of the survey area utilized four telescopes (NTT, VLT, CA 2.2m and CA 3.5m) over three observing semesters between 2009 May and 2010 July. (2 data files).
A Compact 600 GHz Electronically Tunable Vector Measurement System for Submillimeter Wave Imaging
NASA Technical Reports Server (NTRS)
Dengler, Robert J.; Maiwald, Frank; Siegel, Peter H.
2006-01-01
A compact submillimeter wave transmission / reflection measurement system has been demonstrated at 560-635 GHz, with electronic tuning over the entire band. Maximum dynamic range measured at a single frequency is 90 dB (60 dB typical), and phase noise is less than +/- 2(deg). By using a frequency steerable lens at the source output and mixer input, the frequency agility of the system can be used to scan the source and receive beams, resulting in near real-time imaging capability using only a single pixel.
A dilation-driven vortex flow in sheared granular materials explains a rheometric anomaly.
Krishnaraj, K P; Nott, Prabhu R
2016-02-11
Granular flows occur widely in nature and industry, yet a continuum description that captures their important features is yet not at hand. Recent experiments on granular materials sheared in a cylindrical Couette device revealed a puzzling anomaly, wherein all components of the stress rise nearly exponentially with depth. Here we show, using particle dynamics simulations and imaging experiments, that the stress anomaly arises from a remarkable vortex flow. For the entire range of fill heights explored, we observe a single toroidal vortex that spans the entire Couette cell and whose sense is opposite to the uppermost Taylor vortex in a fluid. We show that the vortex is driven by a combination of shear-induced dilation, a phenomenon that has no analogue in fluids, and gravity flow. Dilatancy is an important feature of granular mechanics, but not adequately incorporated in existing models.
Autonomous microfluidic system for phosphate detection.
McGraw, Christina M; Stitzel, Shannon E; Cleary, John; Slater, Conor; Diamond, Dermot
2007-02-28
Miniaturization of analytical devices through the advent of microfluidics and micro total analysis systems is an important step forward for applications such as medical diagnostics and environmental monitoring. The development of field-deployable instruments requires that the entire system, including all necessary peripheral components, be miniaturized and packaged in a portable device. A sensor for long-term monitoring of phosphate levels has been developed that incorporates sampling, reagent and waste storage, detection, and wireless communication into a complete, miniaturized system. The device employs a low-power detection and communication system, so the entire instrument can operate autonomously for 7 days on a single rechargeable, 12V battery. In addition, integration of a wireless communication device allows the instrument to be controlled and results to be downloaded remotely. This autonomous system has a limit of detection of 0.3mg/L and a linear dynamic range between 0 and 20mg/L.
Vibrational dynamics of aqueous hydroxide solutions probed using broadband 2DIR spectroscopy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mandal, Aritra; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139; Tokmakoff, Andrei, E-mail: tokmakoff@uchicago.edu
2015-11-21
We employed ultrafast transient absorption and broadband 2DIR spectroscopy to study the vibrational dynamics of aqueous hydroxide solutions by exciting the O–H stretch vibrations of the strongly hydrogen-bonded hydroxide solvation shell water and probing the continuum absorption of the solvated ion between 1500 and 3800 cm{sup −1}. We observe rapid vibrational relaxation processes on 150–250 fs time scales across the entire probed spectral region as well as slower vibrational dynamics on 1–2 ps time scales. Furthermore, the O–H stretch excitation loses its frequency memory in 180 fs, and vibrational energy exchange between bulk-like water vibrations and hydroxide-associated water vibrations occursmore » in ∼200 fs. The fast dynamics in this system originate in strong nonlinear coupling between intra- and intermolecular vibrations and are explained in terms of non-adiabatic vibrational relaxation. These measurements indicate that the vibrational dynamics of the aqueous hydroxide complex are faster than the time scales reported for long-range transport of protons in aqueous hydroxide solutions.« less
NASA Astrophysics Data System (ADS)
Chen, Zaigang; Zhai, Wanming; Wang, Kaiyun
2018-07-01
Traction or braking operations are usually applied to trains or locomotives for acceleration, speed adjustment, and stopping. During these operations, gear transmission equipment plays a very significant role in the delivery of traction or electrical braking power. Failures of the gear transmissions are likely to cause power loses and even threaten the operation safety of the train. Its dynamic performance is closely related to the normal operation and service safety of the entire train, especially under some emergency braking conditions. In this paper, a locomotive-track coupled vertical-longitudinal dynamics model is employed with considering the dynamic action from the gear transmissions. This dynamics model enables the detailed analysis and more practical simulation on the characteristics of power transmission path, namely motor-gear transmission-wheelset-longitudinal motion of locomotive, especially for traction or braking conditions. Multi-excitation sources, such as time-varying mesh stiffness and nonlinear wheel-rail contact excitations, are considered in this study. This dynamics model is then validated by comparing the simulated results with the experimental test results under braking conditions. The calculated results indicate that involvement of gear transmission could reveal the load reduction of the wheelset due to transmitted forces. Vibrations of the wheelset and the motor are dominated by variation of the gear dynamic mesh forces in the low speed range and by rail geometric irregularity in the higher speed range. Rail vertical geometric irregularity could also cause wheelset longitudinal vibrations, and do modulations to the gear dynamic mesh forces. Besides, the hauling weight has little effect on the locomotive vibrations and the dynamic mesh forces of the gear transmissions for both traction and braking conditions under the same running speed.
Horsch, Martin; Vrabec, Jadran; Bernreuther, Martin; Grottel, Sebastian; Reina, Guido; Wix, Andrea; Schaber, Karlheinz; Hasse, Hans
2008-04-28
Molecular dynamics (MD) simulation is applied to the condensation process of supersaturated vapors of methane, ethane, and carbon dioxide. Simulations of systems with up to a 10(6) particles were conducted with a massively parallel MD program. This leads to reliable statistics and makes nucleation rates down to the order of 10(30) m(-3) s(-1) accessible to the direct simulation approach. Simulation results are compared to the classical nucleation theory (CNT) as well as the modification of Laaksonen, Ford, and Kulmala (LFK) which introduces a size dependence of the specific surface energy. CNT describes the nucleation of ethane and carbon dioxide excellently over the entire studied temperature range, whereas LFK provides a better approach to methane at low temperatures.
Temperature dependent recombination dynamics in InP/ZnS colloidal nanocrystals
NASA Astrophysics Data System (ADS)
Shirazi, R.; Kopylov, O.; Kovacs, A.; Kardynał, B. E.
2012-08-01
In this letter, we investigate exciton recombination in InP/ZnS core-shell colloidal nanocrystals over a wide temperature range. Over the entire range between room temperature and liquid helium temperature, multi-exponential exciton decay curves are observed and well explained by the presence of bright and dark exciton states, as well as defect states. Two different types of defect are present: one located at the core-shell interface and the other on the surface of the nanocrystal. Based on the temperature dependent contributions of all four states to the total photoluminescence signal, we estimate that the four states are distributed within a 20 meV energy band in nanocrystals that emit at 1.82 eV.
Structure and mechanical properties of a high-carbon steel subjected to severe deformation
NASA Astrophysics Data System (ADS)
Gorkunov, E. S.; Zadvorkin, S. M.; Goruleva, L. S.; Makarov, A. V.; Pecherkina, N. L.
2017-10-01
The structure and mechanical properties of a high-carbon eutectic steel subjected to the cold plastic deformation by hydrostatic extrusion in a wide range of true strain have been studied. Using scanning and transmission electron microscopy, it has been shown that the formation of cellular, fragmented, and submicrocrystalline structures occurs in the ferritic constituent of the pearlite structure of the steel upon extrusion. This is a consequence of the occurrence of dynamic recovery and continuous dynamic and post-dynamic recrystallization, which cause a decrease in the density of free dislocations at the true strain of more than 1.62. The partial dissolution of the carbide phase is also observed. It has been found that, at a true strain of up to 0.81, the strength properties of the investigated steel are determined mainly by subgrain, dislocation, and precipitation mechanisms of the strengthening; in the deformation range of 0.81-1.62, the role of the grainboundary strengthening increases. At strains above 1.62, grain-boundary strengthening is a prevailing mechanism in the formation of the level of strength properties of the extruded U8A steel. The ultimate tensile strength and yield stress over the entire strain range only uniquely correlate with the density of highangle boundaries; the dependences of the strength characteristics on other structural parameters are not monotonic.
Imaging multi-scale dynamics in vivo with spiral volumetric optoacoustic tomography
NASA Astrophysics Data System (ADS)
Deán-Ben, X. Luís.; Fehm, Thomas F.; Ford, Steven J.; Gottschalk, Sven; Razansky, Daniel
2017-03-01
Imaging dynamics in living organisms is essential for the understanding of biological complexity. While multiple imaging modalities are often required to cover both microscopic and macroscopic spatial scales, dynamic phenomena may also extend over different temporal scales, necessitating the use of different imaging technologies based on the trade-off between temporal resolution and effective field of view. Optoacoustic (photoacoustic) imaging has been shown to offer the exclusive capability to link multiple spatial scales ranging from organelles to entire organs of small animals. Yet, efficient visualization of multi-scale dynamics remained difficult with state-of-the-art systems due to inefficient trade-offs between image acquisition and effective field of view. Herein, we introduce a spiral volumetric optoacoustic tomography (SVOT) technique that provides spectrally-enriched high-resolution optical absorption contrast across multiple spatio-temporal scales. We demonstrate that SVOT can be used to monitor various in vivo dynamics, from video-rate volumetric visualization of cardiac-associated motion in whole organs to high-resolution imaging of pharmacokinetics in larger regions. The multi-scale dynamic imaging capability thus emerges as a powerful and unique feature of the optoacoustic technology that adds to the multiple advantages of this technology for structural, functional and molecular imaging.
Simpson, Stephen D; Harrison, Hugo B; Claereboudt, Michel R; Planes, Serge
2014-01-01
Dispersal is a crucial ecological process, driving population dynamics and defining the structure and persistence of populations. Measuring demographic connectivity between discreet populations remains a long-standing challenge for most marine organisms because it involves tracking the movement of pelagic larvae. Recent studies demonstrate local connectivity of reef fish populations via the dispersal of planktonic larvae, while biogeography indicates some larvae must disperse 100-1000 s kilometres. To date, empirical measures of long-distance dispersal are lacking and the full scale of dispersal is unknown. Here we provide the first measure of long-distance dispersal in a coral reef fish, the Omani clownfish Amphiprion omanensis, throughout its entire species range. Using genetic assignment tests we demonstrate bidirectional exchange of first generation migrants, with subsequent social and reproductive integration, between two populations separated by over 400 km. Immigration was 5.4% and 0.7% in each region, suggesting a biased southward exchange, and matched predictions from a physically-coupled dispersal model. This rare opportunity to measure long-distance dispersal demonstrates connectivity of isolated marine populations over distances of 100 s of kilometres and provides a unique insight into the processes of biogeography, speciation and adaptation.
Claereboudt, Michel R.; Planes, Serge
2014-01-01
Dispersal is a crucial ecological process, driving population dynamics and defining the structure and persistence of populations. Measuring demographic connectivity between discreet populations remains a long-standing challenge for most marine organisms because it involves tracking the movement of pelagic larvae. Recent studies demonstrate local connectivity of reef fish populations via the dispersal of planktonic larvae, while biogeography indicates some larvae must disperse 100–1000 s kilometres. To date, empirical measures of long-distance dispersal are lacking and the full scale of dispersal is unknown. Here we provide the first measure of long-distance dispersal in a coral reef fish, the Omani clownfish Amphiprion omanensis, throughout its entire species range. Using genetic assignment tests we demonstrate bidirectional exchange of first generation migrants, with subsequent social and reproductive integration, between two populations separated by over 400 km. Immigration was 5.4% and 0.7% in each region, suggesting a biased southward exchange, and matched predictions from a physically-coupled dispersal model. This rare opportunity to measure long-distance dispersal demonstrates connectivity of isolated marine populations over distances of 100 s of kilometres and provides a unique insight into the processes of biogeography, speciation and adaptation. PMID:25229550
Finite Element Model Development and Validation for Aircraft Fuselage Structures
NASA Technical Reports Server (NTRS)
Buehrle, Ralph D.; Fleming, Gary A.; Pappa, Richard S.; Grosveld, Ferdinand W.
2000-01-01
The ability to extend the valid frequency range for finite element based structural dynamic predictions using detailed models of the structural components and attachment interfaces is examined for several stiffened aircraft fuselage structures. This extended dynamic prediction capability is needed for the integration of mid-frequency noise control technology. Beam, plate and solid element models of the stiffener components are evaluated. Attachment models between the stiffener and panel skin range from a line along the rivets of the physical structure to a constraint over the entire contact surface. The finite element models are validated using experimental modal analysis results. The increased frequency range results in a corresponding increase in the number of modes, modal density and spatial resolution requirements. In this study, conventional modal tests using accelerometers are complemented with Scanning Laser Doppler Velocimetry and Electro-Optic Holography measurements to further resolve the spatial response characteristics. Whenever possible, component and subassembly modal tests are used to validate the finite element models at lower levels of assembly. Normal mode predictions for different finite element representations of components and assemblies are compared with experimental results to assess the most accurate techniques for modeling aircraft fuselage type structures.
Distinct collective states due to trade-off between attractive and repulsive couplings
NASA Astrophysics Data System (ADS)
Sathiyadevi, K.; Chandrasekar, V. K.; Senthilkumar, D. V.; Lakshmanan, M.
2018-03-01
We investigate the effect of repulsive coupling together with an attractive coupling in a network of nonlocally coupled oscillators. To understand the complex interaction between these two couplings we introduce a control parameter in the repulsive coupling which plays a crucial role in inducing distinct complex collective patterns. In particular, we show the emergence of various cluster chimera death states through a dynamically distinct transition route, namely the oscillatory cluster state and coherent oscillation death state as a function of the repulsive coupling in the presence of the attractive coupling. In the oscillatory cluster state, the oscillators in the network are grouped into two distinct dynamical states of homogeneous and inhomogeneous oscillatory states. Further, the network of coupled oscillators follow the same transition route in the entire coupling range. Depending upon distinct coupling ranges, the system displays different number of clusters in the death state and oscillatory state. We also observe that the number of coherent domains in the oscillatory cluster state exponentially decreases with increase in coupling range and obeys a power-law decay. Additionally, we show analytical stability for observed solitary state, synchronized state, and incoherent oscillation death state.
Das, Arya; Ali, Sk Musharaf
2018-02-21
Tri-isoamyl phosphate (TiAP) has been proposed to be an alternative for tri-butyl phosphate (TBP) in the Plutonium Uranium Extraction (PUREX) process. Recently, we have successfully calibrated and tested all-atom optimized potentials for liquid simulations using Mulliken partial charges for pure TiAP, TBP, and dodecane by performing molecular dynamics (MD) simulation. It is of immense importance to extend this potential for the various molecular properties of TiAP and TiAP/n-dodecane binary mixtures using MD simulation. Earlier, efforts were devoted to find out a suitable force field which can explain both structural and dynamical properties by empirical parameterization. Therefore, the present MD study reports the structural, dynamical, and thermodynamical properties with different mole fractions of TiAP-dodecane mixtures at the entire range of mole fraction of 0-1 employing our calibrated Mulliken embedded optimized potentials for liquid simulation (OPLS) force field. The calculated electric dipole moment of TiAP was seen to be almost unaffected by the TiAP concentration in the dodecane diluent. The calculated liquid densities of the TiAP-dodecane mixture are in good agreement with the experimental data. The mixture densities at different temperatures are also studied which was found to be reduced with temperature as expected. The plot of diffusivities for TiAP and dodecane against mole fraction in the binary mixture intersects at a composition in the range of 25%-30% of TiAP in dodecane, which is very much closer to the TBP/n-dodecane composition used in the PUREX process. The excess volume of mixing was found to be positive for the entire range of mole fraction and the excess enthalpy of mixing was shown to be endothermic for the TBP/n-dodecane mixture as well as TiAP/n-dodecane mixture as reported experimentally. The spatial pair correlation functions are evaluated between TiAP-TiAP and TiAP-dodecane molecules. Further, shear viscosity has been computed by performing the non-equilibrium molecular dynamics employing the periodic perturbation method. The calculated shear viscosity of the binary mixture is found to be in excellent agreement with the experimental values. The use of the newly calibrated OPLS force field embedding Mulliken charges is shown to be equally reliable in predicting the structural and dynamical properties for the mixture without incorporating any arbitrary scaling in the force field or Lennard-Jones parameters. Further, the present MD simulation results demonstrate that the Stokes-Einstein relation breaks down at the molecular level. The present methodology might be adopted to evaluate the liquid state properties of an aqueous-organic biphasic system, which is of great significance in the interfacial science and technology.
NASA Astrophysics Data System (ADS)
Das, Arya; Ali, Sk. Musharaf
2018-02-01
Tri-isoamyl phosphate (TiAP) has been proposed to be an alternative for tri-butyl phosphate (TBP) in the Plutonium Uranium Extraction (PUREX) process. Recently, we have successfully calibrated and tested all-atom optimized potentials for liquid simulations using Mulliken partial charges for pure TiAP, TBP, and dodecane by performing molecular dynamics (MD) simulation. It is of immense importance to extend this potential for the various molecular properties of TiAP and TiAP/n-dodecane binary mixtures using MD simulation. Earlier, efforts were devoted to find out a suitable force field which can explain both structural and dynamical properties by empirical parameterization. Therefore, the present MD study reports the structural, dynamical, and thermodynamical properties with different mole fractions of TiAP-dodecane mixtures at the entire range of mole fraction of 0-1 employing our calibrated Mulliken embedded optimized potentials for liquid simulation (OPLS) force field. The calculated electric dipole moment of TiAP was seen to be almost unaffected by the TiAP concentration in the dodecane diluent. The calculated liquid densities of the TiAP-dodecane mixture are in good agreement with the experimental data. The mixture densities at different temperatures are also studied which was found to be reduced with temperature as expected. The plot of diffusivities for TiAP and dodecane against mole fraction in the binary mixture intersects at a composition in the range of 25%-30% of TiAP in dodecane, which is very much closer to the TBP/n-dodecane composition used in the PUREX process. The excess volume of mixing was found to be positive for the entire range of mole fraction and the excess enthalpy of mixing was shown to be endothermic for the TBP/n-dodecane mixture as well as TiAP/n-dodecane mixture as reported experimentally. The spatial pair correlation functions are evaluated between TiAP-TiAP and TiAP-dodecane molecules. Further, shear viscosity has been computed by performing the non-equilibrium molecular dynamics employing the periodic perturbation method. The calculated shear viscosity of the binary mixture is found to be in excellent agreement with the experimental values. The use of the newly calibrated OPLS force field embedding Mulliken charges is shown to be equally reliable in predicting the structural and dynamical properties for the mixture without incorporating any arbitrary scaling in the force field or Lennard-Jones parameters. Further, the present MD simulation results demonstrate that the Stokes-Einstein relation breaks down at the molecular level. The present methodology might be adopted to evaluate the liquid state properties of an aqueous-organic biphasic system, which is of great significance in the interfacial science and technology.
Graphite Screen-Printed Electrodes Applied for the Accurate and Reagentless Sensing of pH.
Galdino, Flávia E; Smith, Jamie P; Kwamou, Sophie I; Kampouris, Dimitrios K; Iniesta, Jesus; Smith, Graham C; Bonacin, Juliano A; Banks, Craig E
2015-12-01
A reagentless pH sensor based upon disposable and economical graphite screen-printed electrodes (GSPEs) is demonstrated for the first time. The voltammetric pH sensor utilizes GSPEs which are chemically pretreated to form surface immobilized oxygenated species that, when their redox behavior is monitored, give a Nernstian response over a large pH range (1-13). An excellent experimental correlation is observed between the voltammetric potential and pH over the entire pH range of 1-13 providing a simple approach with which to monitor solution pH. Such a linear response over this dynamic pH range is not usually expected but rather deviation from linearity is encountered at alkaline pH values; absence of this has previously been attributed to a change in the pKa value of surface immobilized groups from that of solution phase species. This non-deviation, which is observed here in the case of our facile produced reagentless pH sensor and also reported in the literature for pH sensitive compounds immobilized upon carbon electrodes/surfaces, where a linear response is observed over the entire pH range, is explained alternatively for the first time. The performance of the GSPE pH sensor is also directly compared with a glass pH probe and applied to the measurement of pH in "real" unbuffered samples where an excellent correlation between the two protocols is observed validating the proposed GSPE pH sensor.
Using machine learning to explore the long-term evolution of GRS 1915+105
NASA Astrophysics Data System (ADS)
Huppenkothen, Daniela; Heil, Lucy M.; Hogg, David W.; Mueller, Andreas
2017-04-01
Among the population of known Galactic black hole X-ray binaries, GRS 1915+105 stands out in multiple ways. It has been in continuous outburst since 1992, and has shown a wide range of different states that can be distinguished by their timing and spectral properties. These states, also observed in IGR J17091-3624, have in the past been linked to accretion dynamics. Here, we present the first comprehensive study into the long-term evolution of GRS 1915+105, using the entire data set observed with Rossi X-ray Timing Explorer over its 16-yr lifetime. We develop a set of descriptive features allowing for automatic separation of states, and show that supervised machine learning in the form of logistic regression and random forests can be used to efficiently classify the entire data set. For the first time, we explore the duty cycle and time evolution of states over the entire 16-yr time span, and find that the temporal distribution of states has likely changed over the span of the observations. We connect the machine classification with physical interpretations of the phenomenology in terms of chaotic and stochastic processes.
NASA Astrophysics Data System (ADS)
Andy, H.; Blarquez, O.; Grondin, P.
2017-12-01
Facing the depletion of the wood resource in Québec and possible threats such as climate change, actors of the forest sector urge the need for a scientific frame to the forest management. A set of reference conditions has been developed for defining management targets that will help to keep forests within their natural range of variability according to the preindustrial period (XIX-XX centuries). Those reference conditions are based on the stands age-class distribution under a given fire regime that enable to define the percentage of old-growth forest (>100 years) to be maintained in a landscape. For the western spruce-moss domain in Québec, the fire return interval (FRI) is equal to 150 years resulting in a target of 48% of old-growth forests. Yet, this target supposes that the environment and the ecosystem processes are homogeneous for an entire bioclimatic domain of 175 000 km2. By using a Redundancy Analysis (RDA) on modern inventories data on natural and human disturbances; climate and physical variables and forest composition, we were able to distinguish 5 main zones where interactions between stands and their environment are homogeneous and where local management targets could be developed. We then used 10 published sedimentary pollens and charcoal series in order to reconstruct the holocene fire and vegetation dynamics for those zones. Vegetation deduced from the analysis of the pollen diagrams showed that the long-term vegetation dynamics are zone specific indicating that the modern forest composition is a result of the Holocene trajectories occurring within each zone. Charcoals series were statistically analyzed for past fire detection and long-term FRI reconstruction. They suggest that for the entire territory the holocene FRI range from 174 to 265 years resulting in old-growth forests percentage within 44 and 65% depending on the zone. Hence, we conclude that current management targets should be revised to fit more with local forests ecosystem variability at the landscape scale and that reference condition should be supplemented with data on the long-term fire dynamics and forest composition variability.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pilar, Kartik; Rua, Armando; Suarez, Sophia N.
A comprehensive variable temperature, pressure and frequency multinuclear ( 1H, 2H, and 19F) magnetic resonance study was undertaken on selectively deuterated 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide (BMIM TFSA) ionic liquid isotopologues. This study builds on our earlier investigation of the effects of increasing alkyl chain length on diffusion and dynamics in imidazolium-based TFSA ionic liquids. Fast field cycling 1H T 1 data revealed multiple modes of motion. Through calculation of diffusion coefficient (D) values and activation energies, the low- and high-field regimes were assigned to the translational and reorientation dynamics respectively. Variable-pressure 2H T 1 measurements reveal site-dependent interactions in the cation withmore » strengths in the order MD 3 > CD 3 > CD 2, indicating dissimilarities in the electric field gradients along the alkyl chain, with the CD 2 sites having the largest gradient. Additionally, the α saturation effect in T 1 vs. P was observed for all three sites, suggesting significant reduction of the short-range rapid reorientational dynamics. This reduction was also deduced from the variable pressure 1H T 1 data, which showed an approach to saturation for both the methyl and butyl group terminal methyl sites. Pressure-dependent D measurements show independent motions for both cations and anions, with the cations having greater D values over the entire pressure range.« less
EVERY INTERACTING DOUBLE WHITE DWARF BINARY MAY MERGE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shen, Ken J.
2015-05-20
Interacting double white dwarf (WD) binaries can give rise to a wide variety of astrophysical outcomes ranging from faint thermonuclear and Type Ia supernovae to the formation of neutron stars and stably accreting AM Canum Venaticorum systems. One key factor affecting the final outcome is whether mass transfer remains dynamically stable or instead diverges, leading to the tidal disruption of the donor and the merger of the binary. It is typically thought that for low ratios of the donor mass to the accretor mass, mass transfer remains stable, especially if accretion occurs via a disk. In this Letter, we examinemore » low mass ratio double WD binaries and find that the initial phase of hydrogen-rich mass transfer leads to a classical nova-like outburst on the accretor. Dynamical friction within the expanding nova shell shrinks the orbit and causes the mass transfer rate to increase dramatically above the accretor's Eddington limit, possibly resulting in a binary merger. If the binary survives the first hydrogen-rich nova outbursts, dynamical friction within the subsequent helium-powered nova shells pushes the system even more strongly toward merger. While further calculations are necessary to confirm this outcome for the entire range of binaries previously thought to be dynamically stable, it appears likely that most, if not all, interacting double WD binaries will merge during the course of their evolution.« less
Pilar, Kartik; Rua, Armando; Suarez, Sophia N.; ...
2017-05-11
A comprehensive variable temperature, pressure and frequency multinuclear ( 1H, 2H, and 19F) magnetic resonance study was undertaken on selectively deuterated 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)amide (BMIM TFSA) ionic liquid isotopologues. This study builds on our earlier investigation of the effects of increasing alkyl chain length on diffusion and dynamics in imidazolium-based TFSA ionic liquids. Fast field cycling 1H T 1 data revealed multiple modes of motion. Through calculation of diffusion coefficient (D) values and activation energies, the low- and high-field regimes were assigned to the translational and reorientation dynamics respectively. Variable-pressure 2H T 1 measurements reveal site-dependent interactions in the cation withmore » strengths in the order MD 3 > CD 3 > CD 2, indicating dissimilarities in the electric field gradients along the alkyl chain, with the CD 2 sites having the largest gradient. Additionally, the α saturation effect in T 1 vs. P was observed for all three sites, suggesting significant reduction of the short-range rapid reorientational dynamics. This reduction was also deduced from the variable pressure 1H T 1 data, which showed an approach to saturation for both the methyl and butyl group terminal methyl sites. Pressure-dependent D measurements show independent motions for both cations and anions, with the cations having greater D values over the entire pressure range.« less
Dielectric and spectroscopic study of binary mixture of Acrylonitrile with Chlorobenzene
NASA Astrophysics Data System (ADS)
Deshmukh, Snehal D.; Pattebahadur, K. L.; Mohod, A. G.; Undre, P. B.; Patil, S. S.; Khirade, P. W.
2018-05-01
In this paper, study of binary mixture of Acrylonitrile (ACN) with Chlorobenzene (CBZ) has been carried out at eleven concentrations at room temperature. The determined Dielectric Constant (ɛ0) Density (ρ) and Refractive index (nD) values of binary mixture are used to calculate the excess properties of mixture over the entire composition range and fitted to the Redlich-Kister equation. From the above parameters, intermolecular interaction and dynamics of molecules of binary mixture at molecular level are discussed. The Conformational analysis of the intermolecular interaction between Acrylonitrile and Chlorobenzene is supported by the FTIR spectra.
Active dynamics of colloidal particles in time-varying laser speckle patterns
Bianchi, Silvio; Pruner, Riccardo; Vizsnyiczai, Gaszton; Maggi, Claudio; Di Leonardo, Roberto
2016-01-01
Colloidal particles immersed in a dynamic speckle pattern experience an optical force that fluctuates both in space and time. The resulting dynamics presents many interesting analogies with a broad class of non-equilibrium systems like: active colloids, self propelled microorganisms, transport in dynamical intracellular environments. Here we show that the use of a spatial light modulator allows to generate light fields that fluctuate with controllable space and time correlations and a prescribed average intensity profile. In particular we generate ring-shaped random patterns that can confine a colloidal particle over a quasi one-dimensional random energy landscape. We find a mean square displacement that is diffusive at both short and long times, while a superdiffusive or subdiffusive behavior is observed at intermediate times depending on the value of the speckles correlation time. We propose two alternative models for the mean square displacement in the two limiting cases of a short or long speckles correlation time. A simple interpolation formula is shown to account for the full phenomenology observed in the mean square displacement across the entire range from fast to slow fluctuating speckles. PMID:27279540
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kaznovsky, A. P., E-mail: kaznovskyap@atech.ru; Kasiyanov, K. G.; Ryasnyj, S. I.
2015-01-15
A classification of the equipment important for the safety of nuclear power plants is proposed in terms of its dynamic behavior under seismic loading. An extended bank of data from dynamic tests over the entire range of thermal and mechanical equipment in generating units with VVER-1000 and RBMK-1000 reactors is analyzed. Results are presented from a study of the statistical behavior of the distribution of vibrational frequencies and damping decrements with the “small perturbation” factor that affects the measured damping decrements taken into account. A need to adjust the regulatory specifications for choosing the values of the damping decrements withmore » specified inertial loads on equipment owing to seismic effects during design calculations is identified. Minimum values of the decrements are determined and proposed for all types of equipment as functions of the directions and natural vibration frequencies of the dynamic interactions to be adopted as conservative standard values in the absence of actual experimental data in the course of design studies of seismic resistance.« less
Daphnia swarms: from single agent dynamics to collective vortex formation
NASA Astrophysics Data System (ADS)
Ordemann, Anke; Balazsi, Gabor; Caspari, Elizabeth; Moss, Frank
2003-05-01
Swarm theories have become fashionable in theoretical physics over the last decade. They span the range of interactions from individual agents moving in a mean field to coherent collective motions of large agent populations, such as vortex-swarming. But controlled laboratory tests of these theories using real biological agents have been problematic due primarily to poorly known agent-agent interactions (in the case of e.g. bacteria and slime molds) or the large swarm size (e.g. for flocks of birds and schools of fish). Moreover, the entire range of behaviors from single agent interactions to collective vortex motions of the swarm have here-to-fore not been observed with a single animal. We present the results of well defined experiments with the zooplankton Daphnia in light fields showing this range of behaviors. We interpret our results with a theory of the motions of self-propelled agents in a field.
NASA Astrophysics Data System (ADS)
Zehe, Erwin; Loritz, Ralf; Ehret, Uwe; Westhoff, Martijn; Kleidon, Axel; Savenije, Hubert
2017-04-01
It is flabbergasting to note that catchment systems often behave almost linearly, despite of the strong non-linearity of point scale soil water characteristics. In the present study we provide evidence that a thermodynamic treatment of environmental system dynamics is the key to understand how particularly a stronger spatial organization of catchments leads to a more linear rainfall runoff behavior. Our starting point is that water fluxes in a catchment are associated with fluxes of kinetic and potential energy while changes in subsurface water stocks go along with changes in potential energy and chemical energy of subsurface water. Steady state/local equilibrium of the entire system can be defined as a state of minimum free energy, reflecting an equilibrium subsurface water storage, which is determined catchment topography, soil water characteristics and water levels in the stream. Dynamics of the entire system, i.e. deviations from equilibrium storage, are 'pseudo' oscillations in a thermodynamic state space. Either to an excess potential energy in case of wetting while subsequent relaxation back to equilibrium requires drainage/water export. Or to an excess in capillary binding energy in case of driving, while relaxation back to equilibrium requires recharge of the subsurface water stock. While system dynamics is highly non-linear on the 'too dry branch' it is essentially linear on the 'too wet branch' in case of potential energy excess. A steepened topography, which reflects a stronger spatial organization, reduces the equilibrium storage of the catchment system to smaller values, thereby it increases the range of states where the systems behaves linearly due to an excess in potential energy. Contrarily to this a shift to finer textured soils increases the equilibrium storage, which implies that the range of states where the systems behaves linearly is reduced. In this context it is important to note that an increased internal organization of the system due to an elevated density of the preferential flow paths, imply a less non-linear system behavior. This is because they avoid persistence of very dry states system states by facilitating recharge of the soil moisture stock. Based on the proposed approach we compare dynamics of four distinctly different catchments in their respective state space and demonstrate the feasibility of the approach to explain differences and similarities in their rainfall runoff regimes.
Entirely irrelevant distractors can capture and captivate attention.
Forster, Sophie; Lavie, Nilli
2011-12-01
The question of whether a stimulus onset may capture attention when it is entirely irrelevant to the task and even in the absence of any attentional settings for abrupt onset or any dynamic changes has been highly controversial. In the present study, we designed a novel irrelevant capture task to address this question. Participants engaged in a continuous task making sequential forced choice (letter or digit) responses to each item in an alphanumeric matrix that remained on screen throughout many responses. This task therefore involved no attentional settings for onset or indeed any dynamic changes, yet the brief onset of an entirely irrelevant distractor (a cartoon picture) resulted in significant slowing of the two (Experiment 1) or three (Experiment 2) responses immediately following distractor appearance These findings provide a clear demonstration of attention being captured and captivated by a distractor that is entirely irrelevant to any attentional settings of the task.
Liquid metal-organic frameworks
NASA Astrophysics Data System (ADS)
Gaillac, Romain; Pullumbi, Pluton; Beyer, Kevin A.; Chapman, Karena W.; Keen, David A.; Bennett, Thomas D.; Coudert, François-Xavier
2017-11-01
Metal-organic frameworks (MOFs) are a family of chemically diverse materials, with applications in a wide range of fields, covering engineering, physics, chemistry, biology and medicine. Until recently, research has focused almost entirely on crystalline structures, yet now a clear trend is emerging, shifting the emphasis onto disordered states, including `defective by design’ crystals, as well as amorphous phases such as glasses and gels. Here we introduce a strongly associated MOF liquid, obtained by melting a zeolitic imidazolate framework. We combine in situ variable temperature X-ray, ex situ neutron pair distribution function experiments, and first-principles molecular dynamics simulations to study the melting phenomenon and the nature of the liquid obtained. We demonstrate from structural, dynamical, and thermodynamical information that the chemical configuration, coordinative bonding, and porosity of the parent crystalline framework survive upon formation of the MOF liquid.
Liquid metal-organic frameworks.
Gaillac, Romain; Pullumbi, Pluton; Beyer, Kevin A; Chapman, Karena W; Keen, David A; Bennett, Thomas D; Coudert, François-Xavier
2017-11-01
Metal-organic frameworks (MOFs) are a family of chemically diverse materials, with applications in a wide range of fields, covering engineering, physics, chemistry, biology and medicine. Until recently, research has focused almost entirely on crystalline structures, yet now a clear trend is emerging, shifting the emphasis onto disordered states, including 'defective by design' crystals, as well as amorphous phases such as glasses and gels. Here we introduce a strongly associated MOF liquid, obtained by melting a zeolitic imidazolate framework. We combine in situ variable temperature X-ray, ex situ neutron pair distribution function experiments, and first-principles molecular dynamics simulations to study the melting phenomenon and the nature of the liquid obtained. We demonstrate from structural, dynamical, and thermodynamical information that the chemical configuration, coordinative bonding, and porosity of the parent crystalline framework survive upon formation of the MOF liquid.
Liquid metal–organic frameworks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gaillac, Romain; Pullumbi, Pluton; Beyer, Kevin A.
Metal–organic frameworks (MOFs) are a family of chemically diverse materials, with applications in a wide range of fields, covering engineering, physics, chemistry, biology and medicine. Until recently, research has focused almost entirely on crystalline structures, yet now a clear trend is emerging, shifting the emphasis onto disordered states, including ‘defective by design’ crystals, as well as amorphous phases such as glasses and gels. Here we introduce a strongly associated MOF liquid, obtained by melting a zeolitic imidazolate framework. We combine in situ variable temperature X-ray, ex situ neutron pair distribution function experiments, and first-principles molecular dynamics simulations to study themore » melting phenomenon and the nature of the liquid obtained. We demonstrate from structural, dynamical, and thermodynamical information that the chemical configuration, coordinative bonding, and porosity of the parent crystalline framework survive upon formation of the MOF liquid.« less
Extensions to the Dynamic Aerospace Vehicle Exchange Markup Language
NASA Technical Reports Server (NTRS)
Brian, Geoffrey J.; Jackson, E. Bruce
2011-01-01
The Dynamic Aerospace Vehicle Exchange Markup Language (DAVE-ML) is a syntactical language for exchanging flight vehicle dynamic model data. It provides a framework for encoding entire flight vehicle dynamic model data packages for exchange and/or long-term archiving. Version 2.0.1 of DAVE-ML provides much of the functionality envisioned for exchanging aerospace vehicle data; however, it is limited in only supporting scalar time-independent data. Additional functionality is required to support vector and matrix data, abstracting sub-system models, detailing dynamics system models (both discrete and continuous), and defining a dynamic data format (such as time sequenced data) for validation of dynamics system models and vehicle simulation packages. Extensions to DAVE-ML have been proposed to manage data as vectors and n-dimensional matrices, and record dynamic data in a compatible form. These capabilities will improve the clarity of data being exchanged, simplify the naming of parameters, and permit static and dynamic data to be stored using a common syntax within a single file; thereby enhancing the framework provided by DAVE-ML for exchanging entire flight vehicle dynamic simulation models.
NASA Astrophysics Data System (ADS)
Heyes, David M.
1988-04-01
This study evaluates the shear viscosity, self-diffusion coefficient, and thermal conductivity of the Lennard-Jones (LJ) fluid over essentially the entire fluid range by molecular-dynamics (MD) computer simulation. The Green-Kubo (GK) method is mainly used. In addition, for shear viscosity, homogeneous shear nonequilibrium MD (NEMD) is also employed and compared with experimental data on argon along isotherms. Reasonable agreement between GK, NEMD, and experiment is found. Hard-sphere MD modified Chapman-Enskog expressions for these transport coefficients are tested with use of a temperature-dependent effective hard-sphere diameter. Excellent agreement is found for shear viscosity. The thermal conductivity and, more so, self-diffusion coefficient is less successful in this respect. This behavior is attributed to the attractive part to the LJ potential and its soft repulsive core. Expressions for the constant-volume and -pressure activation energies for these transport coefficients are derived solely in terms of the thermodynamic properties of the LJ fluid. Also similar expressions for the activation volumes are given, which should have a wider range of applications than just for the LJ system.
High Dynamic Range Pixel Array Detector for Scanning Transmission Electron Microscopy.
Tate, Mark W; Purohit, Prafull; Chamberlain, Darol; Nguyen, Kayla X; Hovden, Robert; Chang, Celesta S; Deb, Pratiti; Turgut, Emrah; Heron, John T; Schlom, Darrell G; Ralph, Daniel C; Fuchs, Gregory D; Shanks, Katherine S; Philipp, Hugh T; Muller, David A; Gruner, Sol M
2016-02-01
We describe a hybrid pixel array detector (electron microscope pixel array detector, or EMPAD) adapted for use in electron microscope applications, especially as a universal detector for scanning transmission electron microscopy. The 128×128 pixel detector consists of a 500 µm thick silicon diode array bump-bonded pixel-by-pixel to an application-specific integrated circuit. The in-pixel circuitry provides a 1,000,000:1 dynamic range within a single frame, allowing the direct electron beam to be imaged while still maintaining single electron sensitivity. A 1.1 kHz framing rate enables rapid data collection and minimizes sample drift distortions while scanning. By capturing the entire unsaturated diffraction pattern in scanning mode, one can simultaneously capture bright field, dark field, and phase contrast information, as well as being able to analyze the full scattering distribution, allowing true center of mass imaging. The scattering is recorded on an absolute scale, so that information such as local sample thickness can be directly determined. This paper describes the detector architecture, data acquisition system, and preliminary results from experiments with 80-200 keV electron beams.
The Role of Protein Loops and Linkers in Conformational Dynamics and Allostery.
Papaleo, Elena; Saladino, Giorgio; Lambrughi, Matteo; Lindorff-Larsen, Kresten; Gervasio, Francesco Luigi; Nussinov, Ruth
2016-06-08
Proteins are dynamic entities that undergo a plethora of conformational changes that may take place on a wide range of time scales. These changes can be as small as the rotation of one or a few side-chain dihedral angles or involve concerted motions in larger portions of the three-dimensional structure; both kinds of motions can be important for biological function and allostery. It is becoming increasingly evident that "connector regions" are important components of the dynamic personality of protein structures. These regions may be either disordered loops, i.e., poorly structured regions connecting secondary structural elements, or linkers that connect entire protein domains. Experimental and computational studies have, however, revealed that these regions are not mere connectors, and their role in allostery and conformational changes has been emerging in the last few decades. Here we provide a detailed overview of the structural properties and classification of loops and linkers, as well as a discussion of the main computational methods employed to investigate their function and dynamical properties. We also describe their importance for protein dynamics and allostery using as examples key proteins in cellular biology and human diseases such as kinases, ubiquitinating enzymes, and transcription factors.
Walczewska-Szewc, Katarzyna; Deplazes, Evelyne; Corry, Ben
2015-07-14
Adequately sampling the large number of conformations accessible to proteins and other macromolecules is one of the central challenges in molecular dynamics (MD) simulations; this activity can be difficult, even for relatively simple systems. An example where this problem arises is in the simulation of dye-labeled proteins, which are now being widely used in the design and interpretation of Förster resonance energy transfer (FRET) experiments. In this study, MD simulations are used to characterize the motion of two commonly used FRET dyes attached to an immobilized chain of polyproline. Even in this simple system, the dyes exhibit complex behavior that is a mixture of fast and slow motions. Consequently, very long MD simulations are required to sufficiently sample the entire range of dye motion. Here, we compare the ability of enhanced sampling methods to reproduce the behavior of fluorescent labels on proteins. In particular, we compared Accelerated Molecular Dynamics (AMD), metadynamics, Replica Exchange Molecular Dynamics (REMD), and High Temperature Molecular Dynamics (HTMD) to equilibrium MD simulations. We find that, in our system, all of these methods improve the sampling of the dye motion, but the most significant improvement is achieved using REMD.
Extended-Range High-Resolution Dynamical Downscaling over a Continental-Scale Domain
NASA Astrophysics Data System (ADS)
Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.
2014-12-01
High-resolution mesoscale simulations, when applied for downscaling meteorological fields over large spatial domains and for extended time periods, can provide valuable information for many practical application scenarios including the weather-dependent renewable energy industry. In the present study, a strategy has been proposed to dynamically downscale coarse-resolution meteorological fields from Environment Canada's regional analyses for a period of multiple years over the entire Canadian territory. The study demonstrates that a continuous mesoscale simulation over the entire domain is the most suitable approach in this regard. Large-scale deviations in the different meteorological fields pose the biggest challenge for extended-range simulations over continental scale domains, and the enforcement of the lateral boundary conditions is not sufficient to restrict such deviations. A scheme has therefore been developed to spectrally nudge the simulated high-resolution meteorological fields at the different model vertical levels towards those embedded in the coarse-resolution driving fields derived from the regional analyses. A series of experiments were carried out to determine the optimal nudging strategy including the appropriate nudging length scales, nudging vertical profile and temporal relaxation. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil-moisture, and snow conditions, towards their expected values obtained from a high-resolution offline surface scheme was also devised to limit any considerable deviation in the evolving surface fields due to extended-range temporal integrations. The study shows that ensuring large-scale atmospheric similarities helps to deliver near-surface statistical scores for temperature, dew point temperature and horizontal wind speed that are better or comparable to the operational regional forecasts issued by Environment Canada. Furthermore, the meteorological fields resulting from the proposed downscaling strategy have significantly improved spatiotemporal variance compared to those from the operational forecasts, and any time series generated from the downscaled fields do not suffer from discontinuities due to switching between the consecutive forecasts.
Equality of the Spectral and Dynamical Definitions of Reflection
NASA Astrophysics Data System (ADS)
Breuer, Jonathan; Ryckman, Eric; Simon, Barry
2010-04-01
For full-line Jacobi matrices, Schrödinger operators, and CMV matrices, we show that being reflectionless, in the sense of the well-known property of m-functions, is equivalent to a lack of reflection in the dynamics in the sense that any state that goes entirely to x = -∞ as t → -∞ goes entirely to x = ∞ as t → ∞. This allows us to settle a conjecture of Deift and Simon from 1983 regarding ergodic Jacobi matrices.
Effects of wind energy generation and white-nose syndrome on the viability of the Indiana bat
Erickson, Richard A.; Thogmartin, Wayne E.; Diffendorfer, James E.; Russell, Robin E.; Szymanski, Jennifer A.
2016-01-01
Wind energy generation holds the potential to adversely affect wildlife populations. Species-wide effects are difficult to study and few, if any, studies examine effects of wind energy generation on any species across its entire range. One species that may be affected by wind energy generation is the endangered Indiana bat (Myotis sodalis), which is found in the eastern and midwestern United States. In addition to mortality from wind energy generation, the species also faces range-wide threats from the emerging infectious fungal disease, white-nose syndrome (WNS). White-nose syndrome, caused by Pseudogymnoascus destructans, disturbs hibernating bats leading to high levels of mortality. We used a spatially explicit full-annual-cycle model to investigate how wind turbine mortality and WNS may singly and then together affect population dynamics of this species. In the simulation, wind turbine mortality impacted the metapopulation dynamics of the species by causing extirpation of some of the smaller winter colonies. In general, effects of wind turbines were localized and focused on specific spatial subpopulations. Conversely, WNS had a depressive effect on the species across its range. Wind turbine mortality interacted with WNS and together these stressors had a larger impact than would be expected from either alone, principally because these stressors together act to reduce species abundance across the spectrum of population sizes. Our findings illustrate the importance of not only prioritizing the protection of large winter colonies as is currently done, but also of protecting metapopulation dynamics and migratory connectivity.
Effects of wind energy generation and white-nose syndrome on the viability of the Indiana bat.
Erickson, Richard A; Thogmartin, Wayne E; Diffendorfer, Jay E; Russell, Robin E; Szymanski, Jennifer A
2016-01-01
Wind energy generation holds the potential to adversely affect wildlife populations. Species-wide effects are difficult to study and few, if any, studies examine effects of wind energy generation on any species across its entire range. One species that may be affected by wind energy generation is the endangered Indiana bat ( Myotis sodalis ), which is found in the eastern and midwestern United States. In addition to mortality from wind energy generation, the species also faces range-wide threats from the emerging infectious fungal disease, white-nose syndrome (WNS). White-nose syndrome, caused by Pseudogymnoascus destructans , disturbs hibernating bats leading to high levels of mortality. We used a spatially explicit full-annual-cycle model to investigate how wind turbine mortality and WNS may singly and then together affect population dynamics of this species. In the simulation, wind turbine mortality impacted the metapopulation dynamics of the species by causing extirpation of some of the smaller winter colonies. In general, effects of wind turbines were localized and focused on specific spatial subpopulations. Conversely, WNS had a depressive effect on the species across its range. Wind turbine mortality interacted with WNS and together these stressors had a larger impact than would be expected from either alone, principally because these stressors together act to reduce species abundance across the spectrum of population sizes. Our findings illustrate the importance of not only prioritizing the protection of large winter colonies as is currently done, but also of protecting metapopulation dynamics and migratory connectivity.
System Modeling of a MEMS Vibratory Gyroscope and Integration to Circuit Simulation.
Kwon, Hyukjin J; Seok, Seyeong; Lim, Geunbae
2017-11-18
Recently, consumer applications have dramatically created the demand for low-cost and compact gyroscopes. Therefore, on the basis of microelectromechanical systems (MEMS) technology, many gyroscopes have been developed and successfully commercialized. A MEMS gyroscope consists of a MEMS device and an electrical circuit for self-oscillation and angular-rate detection. Since the MEMS device and circuit are interactively related, the entire system should be analyzed together to design or test the gyroscope. In this study, a MEMS vibratory gyroscope is analyzed based on the system dynamic modeling; thus, it can be mathematically expressed and integrated into a circuit simulator. A behavioral simulation of the entire system was conducted to prove the self-oscillation and angular-rate detection and to determine the circuit parameters to be optimized. From the simulation, the operating characteristic according to the vacuum pressure and scale factor was obtained, which indicated similar trends compared with those of the experimental results. The simulation method presented in this paper can be generalized to a wide range of MEMS devices.
A Multipopulation Coevolutionary Strategy for Multiobjective Immune Algorithm
Shi, Jiao; Gong, Maoguo; Ma, Wenping; Jiao, Licheng
2014-01-01
How to maintain the population diversity is an important issue in designing a multiobjective evolutionary algorithm. This paper presents an enhanced nondominated neighbor-based immune algorithm in which a multipopulation coevolutionary strategy is introduced for improving the population diversity. In the proposed algorithm, subpopulations evolve independently; thus the unique characteristics of each subpopulation can be effectively maintained, and the diversity of the entire population is effectively increased. Besides, the dynamic information of multiple subpopulations is obtained with the help of the designed cooperation operator which reflects a mutually beneficial relationship among subpopulations. Subpopulations gain the opportunity to exchange information, thereby expanding the search range of the entire population. Subpopulations make use of the reference experience from each other, thereby improving the efficiency of evolutionary search. Compared with several state-of-the-art multiobjective evolutionary algorithms on well-known and frequently used multiobjective and many-objective problems, the proposed algorithm achieves comparable results in terms of convergence, diversity metrics, and running time on most test problems. PMID:24672330
RIGHT AND LEFT VENTRICULAR DIASTOLIC PRESSURE–VOLUME RELATIONS: A COMPREHENSIVE REVIEW
Pasipoularides, Ares
2012-01-01
Ventricular compliance alterations can affect cardiac performance and adaptations. Moreover, diastolic mechanics are important in assessing both diastolic and systolic function, since any filling impairment can compromise systolic function. A sigmoidal passive filling pressure-volume relationship, developed using chronically instrumented, awake-animal disease models, is clinically adaptable to evaluating diastolic dynamics using subject-specific micromanometric and volumetric data from the entire filling period of any heartbeat(s). This innovative relationship is the global, integrated expression of chamber geometry, wall thickness, and passive myocardial wall properties. Chamber and myocardial compliance curves of both ventricles can be computed by the sigmoidal methodology over the entire filling period and plotted over appropriate filling pressure ranges. Important characteristics of the compliance curves can be examined and compared between the right and the left ventricle, and for different physiological and pathological conditions. The sigmoidal paradigm is more accurate and, therefore, a better alternative to the conventional exponential pressure-volume approximation. PMID:23179133
[3D visualization and analysis of vocal fold dynamics].
Bohr, C; Döllinger, M; Kniesburges, S; Traxdorf, M
2016-04-01
Visual investigation methods of the larynx mainly allow for the two-dimensional presentation of the three-dimensional structures of the vocal fold dynamics. The vertical component of the vocal fold dynamics is often neglected, yielding a loss of information. The latest studies show that the vertical dynamic components are in the range of the medio-lateral dynamics and play a significant role within the phonation process. This work presents a method for future 3D reconstruction and visualization of endoscopically recorded vocal fold dynamics. The setup contains a high-speed camera (HSC) and a laser projection system (LPS). The LPS projects a regular grid on the vocal fold surfaces and in combination with the HSC allows a three-dimensional reconstruction of the vocal fold surface. Hence, quantitative information on displacements and velocities can be provided. The applicability of the method is presented for one ex-vivo human larynx, one ex-vivo porcine larynx and one synthetic silicone larynx. The setup introduced allows the reconstruction of the entire visible vocal fold surfaces for each oscillation status. This enables a detailed analysis of the three dimensional dynamics (i. e. displacements, velocities, accelerations) of the vocal folds. The next goal is the miniaturization of the LPS to allow clinical in-vivo analysis in humans. We anticipate new insight on dependencies between 3D dynamic behavior and the quality of the acoustic outcome for healthy and disordered phonation.
Ohn, Tzu-Lun; Rutherford, Mark A.; Jing, Zhizi; Jung, Sangyong; Duque-Afonso, Carlos J.; Hoch, Gerhard; Picher, Maria Magdalena; Scharinger, Anja; Strenzke, Nicola; Moser, Tobias
2016-01-01
For sounds of a given frequency, spiral ganglion neurons (SGNs) with different thresholds and dynamic ranges collectively encode the wide range of audible sound pressures. Heterogeneity of synapses between inner hair cells (IHCs) and SGNs is an attractive candidate mechanism for generating complementary neural codes covering the entire dynamic range. Here, we quantified active zone (AZ) properties as a function of AZ position within mouse IHCs by combining patch clamp and imaging of presynaptic Ca2+ influx and by immunohistochemistry. We report substantial AZ heterogeneity whereby the voltage of half-maximal activation of Ca2+ influx ranged over ∼20 mV. Ca2+ influx at AZs facing away from the ganglion activated at weaker depolarizations. Estimates of AZ size and Ca2+ channel number were correlated and larger when AZs faced the ganglion. Disruption of the deafness gene GIPC3 in mice shifted the activation of presynaptic Ca2+ influx to more hyperpolarized potentials and increased the spontaneous SGN discharge. Moreover, Gipc3 disruption enhanced Ca2+ influx and exocytosis in IHCs, reversed the spatial gradient of maximal Ca2+ influx in IHCs, and increased the maximal firing rate of SGNs at sound onset. We propose that IHCs diversify Ca2+ channel properties among AZs and thereby contribute to decomposing auditory information into complementary representations in SGNs. PMID:27462107
NASA Astrophysics Data System (ADS)
Kum, Oyeon; Dickson, Brad M.; Stuart, Steven J.; Uberuaga, Blas P.; Voter, Arthur F.
2004-11-01
Parallel replica dynamics simulation methods appropriate for the simulation of chemical reactions in molecular systems with many conformational degrees of freedom have been developed and applied to study the microsecond-scale pyrolysis of n-hexadecane in the temperature range of 2100-2500 K. The algorithm uses a transition detection scheme that is based on molecular topology, rather than energetic basins. This algorithm allows efficient parallelization of small systems even when using more processors than particles (in contrast to more traditional parallelization algorithms), and even when there are frequent conformational transitions (in contrast to previous implementations of the parallel replica algorithm). The parallel efficiency for pyrolysis initiation reactions was over 90% on 61 processors for this 50-atom system. The parallel replica dynamics technique results in reaction probabilities that are statistically indistinguishable from those obtained from direct molecular dynamics, under conditions where both are feasible, but allows simulations at temperatures as much as 1000 K lower than direct molecular dynamics simulations. The rate of initiation displayed Arrhenius behavior over the entire temperature range, with an activation energy and frequency factor of Ea=79.7 kcal/mol and log A/s-1=14.8, respectively, in reasonable agreement with experiment and empirical kinetic models. Several interesting unimolecular reaction mechanisms were observed in simulations of the chain propagation reactions above 2000 K, which are not included in most coarse-grained kinetic models. More studies are needed in order to determine whether these mechanisms are experimentally relevant, or specific to the potential energy surface used.
Photonic water dynamically responsive to external stimuli
Sano, Koki; Kim, Youn Soo; Ishida, Yasuhiro; Ebina, Yasuo; Sasaki, Takayoshi; Hikima, Takaaki; Aida, Takuzo
2016-01-01
Fluids that contain ordered nanostructures with periodic distances in the visible-wavelength range, anomalously exhibit structural colours that can be rapidly modulated by external stimuli. Indeed, some fish can dynamically change colour by modulating the periodic distance of crystalline guanine sheets cofacially oriented in their fluid cytoplasm. Here we report that a dilute aqueous colloidal dispersion of negatively charged titanate nanosheets exhibits structural colours. In this ‘photonic water', the nanosheets spontaneously adopt a cofacial geometry with an ultralong periodic distance of up to 675 nm due to a strong electrostatic repulsion. Consequently, the photonic water can even reflect near-infrared light up to 1,750 nm. The structural colour becomes more vivid in a magnetic flux that induces monodomain structural ordering of the colloidal dispersion. The reflective colour of the photonic water can be modulated over the entire visible region in response to appropriate physical or chemical stimuli. PMID:27572806
Schuler, Benjamin; Soranno, Andrea; Hofmann, Hagen; Nettels, Daniel
2016-07-05
The properties of unfolded proteins have long been of interest because of their importance to the protein folding process. Recently, the surprising prevalence of unstructured regions or entirely disordered proteins under physiological conditions has led to the realization that such intrinsically disordered proteins can be functional even in the absence of a folded structure. However, owing to their broad conformational distributions, many of the properties of unstructured proteins are difficult to describe with the established concepts of structural biology. We have thus seen a reemergence of polymer physics as a versatile framework for understanding their structure and dynamics. An important driving force for these developments has been single-molecule spectroscopy, as it allows structural heterogeneity, intramolecular distance distributions, and dynamics to be quantified over a wide range of timescales and solution conditions. Polymer concepts provide an important basis for relating the physical properties of unstructured proteins to folding and function.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sengupta, M.; Ganesh, R.
The dynamics of cylindrically trapped electron plasma has been investigated using a newly developed 2D Electrostatic PIC code that uses unapproximated, mass-included equations of motion for simulation. Exhaustive simulations, covering the entire range of Brillouin ratio, were performed for uniformly filled circular profiles in rigid rotor equilibrium. The same profiles were then loaded away from equilibrium with an initial value of rigid rotation frequency different from that required for radial force balance. Both these sets of simulations were performed for an initial zero-temperature or cold load of the plasma with no spread in either angular velocity or radial velocity. Themore » evolution of the off-equilibrium initial conditions to a steady state involve radial breathing of the profile that scales in amplitude and algebraic growth with Brillouin fraction. For higher Brillouin fractions, the growth of the breathing mode is followed by complex dynamics of spontaneous hollow density structures, excitation of poloidal modes, leading to a monotonically falling density profile.« less
Investigation of intermolecular interaction of binary mixture of acrylonitrile with bromobenzene
NASA Astrophysics Data System (ADS)
Deshmukh, S. D.; Pattebahadur, K. L.; Mohod, A. G.; Patil, S. S.; Khirade, P. W.
2018-04-01
In this paper, study of binary mixture of Acrylonitrile (ACN)with Bromobenzene(BB) has been carried out at eleven concentrations at room temperature. The determined density(ρ) and refractive index (nD) values of binary mixture are used to calculate the excess properties of mixture over the entire composition range. The aforesaid parameters are used to calculate excess parameters and fitted to the Redlich-Kister equation to determine the bj coefficients. From the above parameters, intermolecular interaction and dynamics of molecules of binary mixture at molecular level are discussed. The Conformational analysis of the intermolecular interaction between Acrylonitrile and Bromobenzene is supported by the FTIR spectra.
Beryllium-10 dating of the duration and retreat of the last pinedale glacial sequence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gosse, J.C.; Klein, J.; Evenson, E.B.
Accurate terrestrial glacial chronologies are needed for comparison with the marine record to establish the dynamics of global climate change during transitions from glacial to interglacial regimes. Cosmogenic beryllium-10 measurements in the Wind River Range indicate that the last glacial maximum (marine oxygen isotope stage 2) was achieved there by 21,700 {+-} 700 beryllium-10 years and lasted 5900 years. Ages of a sequence of recessional moraines and striated bedrock surfaces show that the initial deglaciation was rapid and that the entire glacial system retreated 33 kilometers to the cirque basin by 12,100 {+-} 500 beryllium-10 years.
Macridin, Alexandru; Burov, Alexey; Stern, Eric; ...
2015-07-22
Transverse dipole modes in bunches with space charge are simulated using the synergia accelerator modeling package and analyzed with dynamic mode decomposition. The properties of the first three space charge modes, including their shape, damping rates, and tune shifts are described over the entire range of space charge strength. As a result, the intrinsic Landau damping predicted and estimated in 2009 by one of the authors is confirmed with a reasonable scaling factor of ≃2.4. For the KV distribution, very good agreement with PATRIC simulations performed by Kornilov and Boine-Frankenheim is obtained.
Global Scale Solar Disturbances
NASA Astrophysics Data System (ADS)
Title, A. M.; Schrijver, C. J.; DeRosa, M. L.
2013-12-01
The combination of the STEREO and SDO missions have allowed for the first time imagery of the entire Sun. This coupled with the high cadence, broad thermal coverage, and the large dynamic range of the Atmospheric Imaging Assembly on SDO has allowed discovery of impulsive solar disturbances that can significantly affect a hemisphere or more of the solar volume. Such events are often, but not always, associated with M and X class flares. GOES C and even B class flares are also associated with these large scale disturbances. Key to the recognition of the large scale disturbances was the creation of log difference movies. By taking the log of images before differencing events in the corona become much more evident. Because such events cover such a large portion of the solar volume their passage can effect the dynamics of the entire corona as it adjusts to and recovers from their passage. In some cases this may lead to a another flare or filament ejection, but in general direct causal evidence of 'sympathetic' behavior is lacking. However, evidence is accumulating these large scale events create an environment that encourages other solar instabilities to occur. Understanding the source of these events and how the energy that drives them is built up, stored, and suddenly released is critical to understanding the origins of space weather. Example events and comments of their relevance will be presented.
Electrostatic fluctuations in collisional plasmas
NASA Astrophysics Data System (ADS)
Rozmus, W.; Brantov, A.; Fortmann-Grote, C.; Bychenkov, V. Yu.; Glenzer, S.
2017-10-01
We present a theory of electrostatic fluctuations in two-component plasmas where electrons and ions are described by Maxwellian distribution functions at unequal temperatures. Based on the exact solution of the Landau kinetic equation, that includes electron-electron, electron-ion, and ion-ion collision integrals, the dynamic form factor, S (k ⃗,ω ) , is derived for weakly coupled plasmas. The collective plasma responses at ion-acoustic, Langmuir, and entropy mode resonances are described for arbitrary wave numbers and frequencies in the entire range of plasma collisionality. The collisionless limit of S (k ⃗,ω ) and the strong-collision result based on the fluctuation-dissipation theorem and classical transport at Te=Ti are recovered and discussed. Results of several Thomson scattering experiments in the broad range of plasma parameters are described and discussed by means of our theory for S (k ⃗,ω ) .
Haberland, Ulrike; Klotz, Ernst; Abolmaali, Nasreddin
2010-07-01
Perfusion computed tomography is increasingly being used in diagnostic radiology. Axial coverage of the traditional approach is limited to the width of the detector. Using continuous periodic table movement coverage can be increased beyond this limit. In this study, we compared tissue flow values determined from scans with a periodic spiral implementation with variable pitch with ones determined from standard dynamic scan modes. A flow phantom (preserved porcine kidney) was scanned with 2 settings of a periodic spiral (Adaptive 4D Spiral) with a range of 100 and 148 mm and a temporal sampling of 1.5 seconds. Additionally, the whole phantom was scanned with the standard dynamic mode (detector width 38.4 mm, temporal sampling 1.0 seconds) at various overlapping positions as a reference. Scan parameters (80 kV, 140 mAs, 40s scan time) were selected similar to a typical brain perfusion study. All scans were repeated 5 times. Tissue flow was calculated with a dedicated deconvolution algorithm. In a center slice and 3 additional slices at various off center positions flow values were recorded in a total of 126 regions of interest (ROI). Reproducibility was determined from the variation of the repeat scans. Agreement between periodic spirals and standard mode was determined by Bland Altman plots and correlation analysis. The reproducibility of the tissue flow determination ranged from 2.7 to 4.4 mL/100 mL/min and was similar for all scan modes. The coefficient of variation ranged from 3.9% to 6.1%. Mean tissue flow in the 126 ROIs ranged from 35 to 121 mL/100 mL/min. There was excellent correlation between both periodic spiral ranges and the standard dynamic mode with a Pearson correlation coefficient of r = 0.97. The regression slope (intercept 0) for the 100 mm range was 1.01, for the 148 mm range it was 0.97. The absolute differences per ROI varied between 1.5 and 4.1 mL/100 mL/min, the relative differences between 1.9% and 6.5%. Differences did not depend on the slice location. Periodic spiral scan modes with variable pitch and a sampling rate of 1.5 seconds can be used for the quantitative determination of tissue flow. Their performance is equivalent to equidistant sampling with standard dynamic scan modes. The ranges of 100 and 148 mm investigated allow coverage of the whole brain or an entire organ for perfusion imaging.
Attached cavitation at a small diameter ultrasonic horn tip
NASA Astrophysics Data System (ADS)
Žnidarčič, Anton; Mettin, Robert; Cairós, Carlos; Dular, Matevž
2014-02-01
Ultrasonic horn transducers are frequently used in applications of acoustic cavitation in liquids, for instance, for cell disruption or sonochemical reactions. They are operated typically in the frequency range up to about 50 kHz and have tip diameters from some mm to several cm. It has been observed that if the horn tip is sufficiently small and driven at high amplitude, cavitation is very strong, and the tip can be covered entirely by the gas/vapor phase for longer time intervals. A peculiar dynamics of the attached cavity can emerge with expansion and collapse at a self-generated frequency in the subharmonic range, i.e., below the acoustic driving frequency. Here, we present a systematic study of the cavitation dynamics in water at a 20 kHz horn tip of 3 mm diameter. The system was investigated by high-speed imaging with simultaneous recording of the acoustic emissions. Measurements were performed under variation of acoustic power, air saturation, viscosity, surface tension, and temperature of the liquid. Our findings show that the liquid properties play no significant role in the dynamics of the attached cavitation at the small ultrasonic horn. Also the variation of the experimental geometry, within a certain range, did not change the dynamics. We believe that the main two reasons for the peculiar dynamics of cavitation on a small ultrasonic horn are the higher energy density on a small tip and the inability of the big tip to "wash" away the gaseous bubbles. Calculation of the somewhat adapted Strouhal number revealed that, similar to the hydrodynamic cavitation, values which are relatively low characterize slow cavitation structure dynamics. In cases where the cavitation follows the driving frequency this value lies much higher - probably at Str > 20. In the spirit to distinguish the observed phenomenon with other cavitation dynamics at ultrasonic transducer surfaces, we suggest to term the observed phenomenon of attached cavities partly covering the full horn tip as "acoustic supercavitation." This reflects the conjecture that not the sound field in terms of acoustic (negative) pressure in the liquid is responsible for nucleation, but the motion of the transducer surface.
Good coupling for the multiscale patch scheme on systems with microscale heterogeneity
NASA Astrophysics Data System (ADS)
Bunder, J. E.; Roberts, A. J.; Kevrekidis, I. G.
2017-05-01
Computational simulation of microscale detailed systems is frequently only feasible over spatial domains much smaller than the macroscale of interest. The 'equation-free' methodology couples many small patches of microscale computations across space to empower efficient computational simulation over macroscale domains of interest. Motivated by molecular or agent simulations, we analyse the performance of various coupling schemes for patches when the microscale is inherently 'rough'. As a canonical problem in this universality class, we systematically analyse the case of heterogeneous diffusion on a lattice. Computer algebra explores how the dynamics of coupled patches predict the large scale emergent macroscale dynamics of the computational scheme. We determine good design for the coupling of patches by comparing the macroscale predictions from patch dynamics with the emergent macroscale on the entire domain, thus minimising the computational error of the multiscale modelling. The minimal error on the macroscale is obtained when the coupling utilises averaging regions which are between a third and a half of the patch. Moreover, when the symmetry of the inter-patch coupling matches that of the underlying microscale structure, patch dynamics predicts the desired macroscale dynamics to any specified order of error. The results confirm that the patch scheme is useful for macroscale computational simulation of a range of systems with microscale heterogeneity.
A model-based gain scheduling approach for controlling the common-rail system for GDI engines
NASA Astrophysics Data System (ADS)
di Gaeta, Alessandro; Montanaro, Umberto; Fiengo, Giovanni; Palladino, Angelo; Giglio, Veniero
2012-04-01
The progressive reduction in vehicle emission requirements have forced the automotive industry to invest in research for developing alternative and more efficient control strategies. All control features and resources are permanently active in an electronic control unit (ECU), ensuring the best performance with respect to emissions, fuel economy, driveability and diagnostics, independently from engine working point. In this article, a considerable step forward has been achieved by the common-rail technology which has made possible to vary the injection pressure over the entire engine speed range. As a consequence, the injection of a fixed amount of fuel is more precise and multiple injections in a combustion cycle can be made. In this article, a novel gain scheduling pressure controller for gasoline direct injection (GDI) engine is designed to stabilise the mean fuel pressure into the rail and to track demanded pressure trajectories. By exploiting a simple control-oriented model describing the mean pressure dynamics in the rail, the control structure turns to be simple enough to be effectively implemented in commercial ECUs. Experimental results in a wide range of operating points confirm the effectiveness of the proposed control method to tame efficiently the mean value pressure dynamics of the plant showing a good accuracy and robustness with respect to unavoidable parameters uncertainties, unmodelled dynamics, and hidden coupling terms.
Effects of wind energy generation and white-nose syndrome on the viability of the Indiana bat
Thogmartin, Wayne E.; Diffendorfer, Jay E.; Russell, Robin E.; Szymanski, Jennifer A.
2016-01-01
Wind energy generation holds the potential to adversely affect wildlife populations. Species-wide effects are difficult to study and few, if any, studies examine effects of wind energy generation on any species across its entire range. One species that may be affected by wind energy generation is the endangered Indiana bat (Myotis sodalis), which is found in the eastern and midwestern United States. In addition to mortality from wind energy generation, the species also faces range-wide threats from the emerging infectious fungal disease, white-nose syndrome (WNS). White-nose syndrome, caused by Pseudogymnoascus destructans, disturbs hibernating bats leading to high levels of mortality. We used a spatially explicit full-annual-cycle model to investigate how wind turbine mortality and WNS may singly and then together affect population dynamics of this species. In the simulation, wind turbine mortality impacted the metapopulation dynamics of the species by causing extirpation of some of the smaller winter colonies. In general, effects of wind turbines were localized and focused on specific spatial subpopulations. Conversely, WNS had a depressive effect on the species across its range. Wind turbine mortality interacted with WNS and together these stressors had a larger impact than would be expected from either alone, principally because these stressors together act to reduce species abundance across the spectrum of population sizes. Our findings illustrate the importance of not only prioritizing the protection of large winter colonies as is currently done, but also of protecting metapopulation dynamics and migratory connectivity. PMID:28028486
Trouble with diffusion: Reassessing hillslope erosion laws with a particle-based model
NASA Astrophysics Data System (ADS)
Tucker, Gregory E.; Bradley, D. Nathan
2010-03-01
Many geomorphic systems involve a broad distribution of grain motion length scales, ranging from a few particle diameters to the length of an entire hillslope or stream. Studies of analogous physical systems have revealed that such broad motion distributions can have a significant impact on macroscale dynamics and can violate the assumptions behind standard, local gradient flux laws. Here, a simple particle-based model of sediment transport on a hillslope is used to study the relationship between grain motion statistics and macroscopic landform evolution. Surface grains are dislodged by random disturbance events with probabilities and distances that depend on local microtopography. Despite its simplicity, the particle model reproduces a surprisingly broad range of slope forms, including asymmetric degrading scarps and cinder cone profiles. At low slope angles the dynamics are diffusion like, with a short-range, thin-tailed hop length distribution, a parabolic, convex upward equilibrium slope form, and a linear relationship between transport rate and gradient. As slope angle steepens, the characteristic grain motion length scale begins to approach the length of the slope, leading to planar equilibrium forms that show a strongly nonlinear correlation between transport rate and gradient. These high-probability, long-distance motions violate the locality assumption embedded in many common gradient-based geomorphic transport laws. The example of a degrading scarp illustrates the potential for grain motion dynamics to vary in space and time as topography evolves. This characteristic renders models based on independent, stationary statistics inapplicable. An accompanying analytical framework based on treating grain motion as a survival process is briefly outlined.
NASA Astrophysics Data System (ADS)
Zolfaghari, M. R.; Ajamy, A.; Asgarian, B.
2015-12-01
The primary goal of seismic reassessment procedures in oil platform codes is to determine the reliability of a platform under extreme earthquake loading. Therefore, in this paper, a simplified method is proposed to assess seismic performance of existing jacket-type offshore platforms (JTOP) in regions ranging from near-elastic to global collapse. The simplified method curve exploits well agreement between static pushover (SPO) curve and the entire summarized interaction incremental dynamic analysis (CI-IDA) curve of the platform. Although the CI-IDA method offers better understanding and better modelling of the phenomenon, it is a time-consuming and challenging task. To overcome the challenges, the simplified procedure, a fast and accurate approach, is introduced based on SPO analysis. Then, an existing JTOP in the Persian Gulf is presented to illustrate the procedure, and finally a comparison is made between the simplified method and CI-IDA results. The simplified method is very informative and practical for current engineering purposes. It is able to predict seismic performance elasticity to global dynamic instability with reasonable accuracy and little computational effort.
Dynamic camouflage by Nassau groupers Epinephelus striatus on a Caribbean coral reef.
Watson, A C; Siemann, L A; Hanlon, R T
2014-11-01
This field study describes the camouflage pattern repertoire, associated behaviours and speed of pattern change of Nassau groupers Epinephelus striatus at Little Cayman Island, British West Indies. Three basic camouflaged body patterns were observed under natural conditions and characterized quantitatively. The mean speed of pattern change across the entire body was 4.44 s (range = 0.97-9.87 s); the fastest pattern change as well as contrast change within a fixed pattern occurred within 1 s. Aside from apparent defensive camouflage, E. striatus used camouflage offensively to approach crustacean or fish prey, and three successful predation events were recorded. Although animal camouflage is a widespread tactic, dynamic camouflage is relatively uncommon and has been studied rarely in marine teleosts under natural conditions. The rapid changes observed in E. striatus suggest direct neural control of some skin colouration elements, and comparative studies of functional morphology and behaviour of colour change in other coral-reef teleosts are likely to reveal new mechanisms and adaptations of dynamic colouration. © 2014 The Fisheries Society of the British Isles.
Decay of aftershock density with distance indicates triggering by dynamic stress
Felzer, K.R.; Brodsky, E.E.
2006-01-01
The majority of earthquakes are aftershocks, yet aftershock physics is not well understood. Many studies suggest that static stress changes trigger aftershocks, but recent work suggests that shaking (dynamic stresses) may also play a role. Here we measure the decay of aftershocks as a function of distance from magnitude 2-6 mainshocks in order to clarify the aftershock triggering process. We find that for short times after the mainshock, when low background seismicity rates allow for good aftershock detection, the decay is well fitted by a single inverse power law over distances of 0.2-50 km. The consistency of the trend indicates that the same triggering mechanism is working over the entire range. As static stress changes at the more distant aftershocks are negligible, this suggests that dynamic stresses may be triggering all of these aftershocks. We infer that the observed aftershock density is consistent with the probability of triggering aftershocks being nearly proportional to seismic wave amplitude. The data are not fitted well by models that combine static stress change with the evolution of frictionally locked faults. ?? 2006 Nature Publishing Group.
Efficient Computation of Anharmonic Force Constants via q-space, with Application to Graphene
NASA Astrophysics Data System (ADS)
Kornbluth, Mordechai; Marianetti, Chris
We present a new approach for extracting anharmonic force constants from a sparse sampling of the anharmonic dynamical tensor. We calculate the derivative of the energy with respect to q-space displacements (phonons) and strain, which guarantees the absence of supercell image errors. Central finite differences provide a well-converged quadratic error tail for each derivative, separating the contribution of each anharmonic order. These derivatives populate the anharmonic dynamical tensor in a sparse mesh that bounds the Brillouin Zone, which ensures comprehensive sampling of q-space while exploiting small-cell calculations for efficient, high-throughput computation. This produces a well-converged and precisely-defined dataset, suitable for big-data approaches. We transform this sparsely-sampled anharmonic dynamical tensor to real-space anharmonic force constants that obey full space-group symmetries by construction. Machine-learning techniques identify the range of real-space interactions. We show the entire process executed for graphene, up to and including the fifth-order anharmonic force constants. This method successfully calculates strain-based phonon renormalization in graphene, even under large strains, which solves a major shortcoming of previous potentials.
Three-step labyrinth seal for high-performance turbomachines
NASA Technical Reports Server (NTRS)
Hendricks, Robert C.
1987-01-01
A three-step labyrinth seal with 12, 11, and 10 labyrinth teeth per step, respectively, was tested under static (nonrotating) conditions. The configuration represented the seal for a high-performance turbopump (e.g., the space shuttle main engine fuel pump). The test data included critical mass flux and pressure profiles over a wide range of fluid conditions at concentric, partially eccentric, and fully eccentric seal positions. The seal mass fluxes (leakage rates) were lower over the entire range of fluid conditions tested than those for data collected for similar straight and three-step cylindrical seals, and this conformed somewhat to expectations. However, the pressure profiles for the eccentric positions indicated little, if any, direct stiffness for this configuration in contrast to significant direct stiffness reported for the straight and three-step cylindrical seals over the range of test conditions. Seal dynamics depend on geometric configuration, inlet and exit parameters, fluid phase, and rotation. The method of corresponding states was applied to the mass flux data, which were found to have a pressure dependency for helium.
Tan, Judith Zhi-Yie; Crossett, Marcus; Ditchfield, Michael
2013-04-01
The aim of this study was to evaluate the dynamic volumetric CT in the assessment of the paediatric airway. Ethics board approval was obtained for this retrospective review. Eight infants (median age 6 months, range 3 weeks to 1 year, 50% female) at a tertiary paediatric centre with complex clinical respiratory presentation underwent volumetric CT assessment of their airways. The entire lungs were examined over 1-2 respiratory cycles. In four patients, intravenous contrast was administered to assess for vascular airway compression. The patients were not intubated. CT findings were correlated with bronchography and bronchoscopy, where available. Two patients had diffuse tracheobronchomalacia associated with chronic lung disease. One patient demonstrated focal severe cervical tracheomalacia. One patient had a double aortic arch causing fixed narrowing with superimposed malacia of the distal trachea. Four patients had normal airways; one with chronic lung disease, one demonstrating air trapping. CT findings were concordant with bronchography (one case) and bronchoscopy (four cases) in all but one (CT negative, bronchoscopy positive) but did not alter patient management. The assessment of the paediatric airway, and in particular for tracheobronchomalacia, is difficult. Assessment with bronchography, bronchoscopy, helical CT and MR have issues with reliability, intubation, intratracheal/bronchial contrast administration and ionising radiation. Volumetric CT assesses the entire central airway in children at much lower radiation dose compared with previous dynamic CT imaging. This non-invasive, rapid assessment obviates the need for patient cooperation and enables evaluation of extratracheal intrathoracic structures. Volumetric CT enables four-dimensional assessment for paediatric tracheobronchomalacia without intubation or patient cooperation and at low radiation dose. © 2012 The Authors. Journal of Medical Imaging and Radiation Oncology © 2012 The Royal Australian and New Zealand College of Radiologists.
Dynamic neural networks based on-line identification and control of high performance motor drives
NASA Technical Reports Server (NTRS)
Rubaai, Ahmed; Kotaru, Raj
1995-01-01
In the automated and high-tech industries of the future, there wil be a need for high performance motor drives both in the low-power range and in the high-power range. To meet very straight demands of tracking and regulation in the two quadrants of operation, advanced control technologies are of a considerable interest and need to be developed. In response a dynamics learning control architecture is developed with simultaneous on-line identification and control. the feature of the proposed approach, to efficiently combine the dual task of system identification (learning) and adaptive control of nonlinear motor drives into a single operation is presented. This approach, therefore, not only adapts to uncertainties of the dynamic parameters of the motor drives but also learns about their inherent nonlinearities. In fact, most of the neural networks based adaptive control approaches in use have an identification phase entirely separate from the control phase. Because these approaches separate the identification and control modes, it is not possible to cope with dynamic changes in a controlled process. Extensive simulation studies have been conducted and good performance was observed. The robustness characteristics of neuro-controllers to perform efficiently in a noisy environment is also demonstrated. With this initial success, the principal investigator believes that the proposed approach with the suggested neural structure can be used successfully for the control of high performance motor drives. Two identification and control topologies based on the model reference adaptive control technique are used in this present analysis. No prior knowledge of load dynamics is assumed in either topology while the second topology also assumes no knowledge of the motor parameters.
Time-domain laser-induced fluorescence spectroscopy apparatus for clinical diagnostics
NASA Astrophysics Data System (ADS)
Fang, Qiyin; Papaioannou, Thanassis; Jo, Javier A.; Vaitha, Russel; Shastry, Kumar; Marcu, Laura
2004-01-01
We report the design and development of a compact optical fiber-based apparatus for in situ time-resolved laser-induced fluorescence spectroscopy (tr-LIFS) of biological systems. The apparatus is modular, optically robust, and compatible with the clinical environment. It incorporates a dual output imaging spectrograph, a gated multichannel plate photomultiplier (MCP-PMT), an intensified charge-coupled-device (ICCD) camera, and a fast digitizer. It can accommodate various types of light sources and optical fiber probes for selective excitation and remote light delivery/collection as required by different applications. The apparatus allows direct recording of the entire fluorescence decay with high sensitivity (nM range fluorescein dye concentration with signal-to-noise ratio of 46) and with four decades dynamic range. It is capable of resolving a broad range of fluorescence lifetimes from hundreds of picoseconds (as low as 300 ps) using the MCP-PMT coupled to the digitizer to milliseconds using the ICCD. The data acquisition and analysis process is fully automated, enabling fast recording of fluorescence intensity decay across the entire emission spectrum (0.8 s per wavelength or ˜40 s for a 200 nm wavelength range at 5 nm increments). The spectral and temporal responses of the apparatus were calibrated and its performance was validated using fluorescence lifetime standard dyes (Rhodamin B, 9-cyanoanthracene, and rose Bengal) and tissue endogenous fluorophores (elastin, collagen, nicotinamide adenine dinucleotide, and flavin adenine dinucleotide). Fluorescence decay lifetimes and emission spectra of all tested compounds measured with the current tr-LIFS apparatus were found in good agreement with the values reported in the literature. The design and performance of tr-LIFS apparatus have enabled in vivo studies of atherosclerotic plaques and brain tumors.
NASA Astrophysics Data System (ADS)
Allstadt, A. J.; Gorzo, J.; Bateman, B. L.; Heglund, P. J.; Pidgeon, A. M.; Thogmartin, W.; Vavrus, S. J.; Radeloff, V.
2016-12-01
Often, fewer birds are often observed in an area experiencing extreme weather, as local populations tend to leave an area (via out-migration or concentration in refugia) or experience a change in population size (via mortality or reduced fecundity). Further, weather patterns are often coherent over large areas so unsuitable weather may threaten large portions of an entire species range simultaneously. However, beyond a few iconic irruptive species, rarely have studies applied both the necessary scale and sensitivity required to assess avian population responses over entire species range. Here, we examined the effects of pre-breeding season weather on the distribution and abundances of 103 North American bird species from the late 1966-2010 using observed abundance records from the Breeding Bird Survey. We compared abundances with measures of drought and temperature over each species' range, and with three atmospheric teleconnections that describe large-scale circulation patterns influencing conditions on the ground. More than 90% of the species responded to at least one of our five weather variables. Grassland bird species tended to be most responsive to weather conditions and forest birds the least, though we found relations among all habitat types. For most species, the response was movement rather than large effects on the overall population size. Maps of these responses indicate that concentration and out-migration are both common strategies for coping with challenging weather conditions across a species range. The dynamic distribution of many bird species makes clear the need to account for temporal variability in conservation planning, as areas that are less important for a species' breeding success in most years may be very important in years with abnormal weather conditions.
Søndergaard, Rikke V; Henriksen, Jonas R; Andresen, Thomas L
2014-12-01
Particle-based nanosensors offer a tool for determining the pH in the endosomal-lysosomal system of living cells. Measurements providing absolute values of pH have so far been restricted by the limited sensitivity range of nanosensors, calibration challenges and the complexity of image analysis. This protocol describes the design and application of a polyacrylamide-based nanosensor (∼60 nm) that covalently incorporates two pH-sensitive fluorophores, fluorescein (FS) and Oregon Green (OG), to broaden the sensitivity range of the sensor (pH 3.1-7.0), and uses the pH-insensitive fluorophore rhodamine as a reference fluorophore. The nanosensors are spontaneously taken up via endocytosis and directed to the lysosomes where dynamic changes in pH can be measured with live-cell confocal microscopy. The most important focus areas of the protocol are the choice of pH-sensitive fluorophores, the design of calibration buffers, the determination of the effective range and especially the description of how to critically evaluate results. The entire procedure typically takes 2-3 weeks.
Mass Transfer Testing of a 12.5-cm Rotor Centrifugal Contactor
DOE Office of Scientific and Technical Information (OSTI.GOV)
D. H. Meikrantz; T. G. Garn; J. D. Law
2008-09-01
TRUEX mass transfer tests were performed using a single stage commercially available 12.5 cm centrifugal contactor and stable cerium (Ce) and europium (Eu). Test conditions included throughputs ranging from 2.5 to 15 Lpm and rotor speeds of 1750 and 2250 rpm. Ce and Eu extraction forward distribution coefficients ranged from 13 to 19. The first and second stage strip back distributions were 0.5 to 1.4 and .002 to .004, respectively, throughout the dynamic test conditions studied. Visual carryover of aqueous entrainment in all organic phase samples was estimated at < 0.1 % and organic carryover into all aqueous phase samplesmore » was about ten times less. Mass transfer efficiencies of = 98 % for both Ce and Eu in the extraction section were obtained over the entire range of test conditions. The first strip stage mass transfer efficiencies ranged from 75 to 93% trending higher with increasing throughput. Second stage mass transfer was greater than 99% in all cases. Increasing the rotor speed from 1750 to 2250 rpm had no significant effect on efficiency for all throughputs tested.« less
Biasetti, Jacopo; Hussain, Fazle; Gasser, T Christian
2011-10-07
Abdominal aortic aneurysms (AAAs) are frequently characterized by the development of an intra-luminal thrombus (ILT), which is known to have multiple biochemical and biomechanical implications. Development of the ILT is not well understood, and shear-stress-triggered activation of platelets could be the first step in its evolution. Vortical structures (VSs) in the flow affect platelet dynamics, which motivated the present study of a possible correlation between VS and ILT formation in AAAs. VSs educed by the λ(2)-method using computational fluid dynamics simulations of the backward-facing step problem, normal aorta, fusiform AAA and saccular AAA were investigated. Patient-specific luminal geometries were reconstructed from computed tomography scans, and Newtonian and Carreau-Yasuda models were used to capture salient rheological features of blood flow. Particularly in complex flow domains, results depended on the constitutive model. VSs developed all along the normal aorta, showing that a clear correlation between VSs and high wall shear stress (WSS) existed, and that VSs started to break up during late systole. In contrast, in the fusiform AAA, large VSs developed at sites of tortuous geometry and high WSS, occupying the entire lumen, and lasting over the entire cardiac cycle. Downward motion of VSs in the AAA was in the range of a few centimetres per cardiac cycle, and with a VS burst at that location, the release (from VSs) of shear-stress-activated platelets and their deposition to the wall was within the lower part of the diseased artery, i.e. where the thickest ILT layer is typically observed. In the saccular AAA, only one VS was found near the healthy portion of the aorta, while in the aneurysmatic bulge, no VSs occurred. We present a fluid-dynamics-motivated mechanism for platelet activation, convection and deposition in AAAs that has the potential of improving our current understanding of the pathophysiology of fluid-driven ILT growth.
16 CFR 1203.16 - Dynamic strength of retention system test.
Code of Federal Regulations, 2011 CFR
2011-01-01
... stirrup. (2) Mark the pre-test position of the retention system, with the entire dynamic test apparatus... 16 Commercial Practices 2 2011-01-01 2011-01-01 false Dynamic strength of retention system test... retention system test. (a) Test equipment. (1) ISO headforms without the lower chin portion shall be used...
16 CFR 1203.16 - Dynamic strength of retention system test.
Code of Federal Regulations, 2010 CFR
2010-01-01
... stirrup. (2) Mark the pre-test position of the retention system, with the entire dynamic test apparatus... 16 Commercial Practices 2 2010-01-01 2010-01-01 false Dynamic strength of retention system test... retention system test. (a) Test equipment. (1) ISO headforms without the lower chin portion shall be used...
16 CFR 1203.16 - Dynamic strength of retention system test.
Code of Federal Regulations, 2014 CFR
2014-01-01
... stirrup. (2) Mark the pre-test position of the retention system, with the entire dynamic test apparatus... 16 Commercial Practices 2 2014-01-01 2014-01-01 false Dynamic strength of retention system test... retention system test. (a) Test equipment. (1) ISO headforms without the lower chin portion shall be used...
16 CFR 1203.16 - Dynamic strength of retention system test.
Code of Federal Regulations, 2012 CFR
2012-01-01
... stirrup. (2) Mark the pre-test position of the retention system, with the entire dynamic test apparatus... 16 Commercial Practices 2 2012-01-01 2012-01-01 false Dynamic strength of retention system test... retention system test. (a) Test equipment. (1) ISO headforms without the lower chin portion shall be used...
16 CFR § 1203.16 - Dynamic strength of retention system test.
Code of Federal Regulations, 2013 CFR
2013-01-01
... stirrup. (2) Mark the pre-test position of the retention system, with the entire dynamic test apparatus... 16 Commercial Practices 2 2013-01-01 2013-01-01 false Dynamic strength of retention system test. Â... retention system test. (a) Test equipment. (1) ISO headforms without the lower chin portion shall be used...
Electrostatic fluctuations in collisional plasmas
Rozmus, W.; Brantov, A.; Fortmann-Grote, C.; ...
2017-10-12
Here, we present a theory of electrostatic fluctuations in two-component plasmas where electrons and ions are described by Maxwellian distribution functions at unequal temperatures. Based on the exact solution of the Landau kinetic equation, that includes electron-electron, electron-ion, and ion-ion collision integrals, the dynamic form factor, S( →k,ω), is derived for weakly coupled plasmas. The collective plasma responses at ion-acoustic, Langmuir, and entropy mode resonances are described for arbitrary wave numbers and frequencies in the entire range of plasma collisionality. The collisionless limit of S( →k,ω) and the strong-collision result based on the fluctuation-dissipation theorem and classical transport at Tmore » e = T i are recovered and discussed. Results of several Thomson scattering experiments in the broad range of plasma parameters are described and discussed by means of our theory for S( →k,ω).« less
Electrostatic fluctuations in collisional plasmas
DOE Office of Scientific and Technical Information (OSTI.GOV)
Rozmus, W.; Brantov, A.; Fortmann-Grote, C.
Here, we present a theory of electrostatic fluctuations in two-component plasmas where electrons and ions are described by Maxwellian distribution functions at unequal temperatures. Based on the exact solution of the Landau kinetic equation, that includes electron-electron, electron-ion, and ion-ion collision integrals, the dynamic form factor, S( →k,ω), is derived for weakly coupled plasmas. The collective plasma responses at ion-acoustic, Langmuir, and entropy mode resonances are described for arbitrary wave numbers and frequencies in the entire range of plasma collisionality. The collisionless limit of S( →k,ω) and the strong-collision result based on the fluctuation-dissipation theorem and classical transport at Tmore » e = T i are recovered and discussed. Results of several Thomson scattering experiments in the broad range of plasma parameters are described and discussed by means of our theory for S( →k,ω).« less
Electrostatic fluctuations in collisional plasmas.
Rozmus, W; Brantov, A; Fortmann-Grote, C; Bychenkov, V Yu; Glenzer, S
2017-10-01
We present a theory of electrostatic fluctuations in two-component plasmas where electrons and ions are described by Maxwellian distribution functions at unequal temperatures. Based on the exact solution of the Landau kinetic equation, that includes electron-electron, electron-ion, and ion-ion collision integrals, the dynamic form factor, S(k[over ⃗],ω), is derived for weakly coupled plasmas. The collective plasma responses at ion-acoustic, Langmuir, and entropy mode resonances are described for arbitrary wave numbers and frequencies in the entire range of plasma collisionality. The collisionless limit of S(k[over ⃗],ω) and the strong-collision result based on the fluctuation-dissipation theorem and classical transport at T_{e}=T_{i} are recovered and discussed. Results of several Thomson scattering experiments in the broad range of plasma parameters are described and discussed by means of our theory for S(k[over ⃗],ω).
Polarization-independent actively tunable colour generation on imprinted plasmonic surfaces
Franklin, Daniel; Chen, Yuan; Vazquez-Guardado, Abraham; Modak, Sushrut; Boroumand, Javaneh; Xu, Daming; Wu, Shin-Tson; Chanda, Debashis
2015-01-01
Structural colour arising from nanostructured metallic surfaces offers many benefits compared to conventional pigmentation based display technologies, such as increased resolution and scalability of their optical response with structure dimensions. However, once these structures are fabricated their optical characteristics remain static, limiting their potential application. Here, by using a specially designed nanostructured plasmonic surface in conjunction with high birefringence liquid crystals, we demonstrate a tunable polarization-independent reflective surface where the colour of the surface is changed as a function of applied voltage. A large range of colour tunability is achieved over previous reports by utilizing an engineered surface which allows full liquid crystal reorientation while maximizing the overlap between plasmonic fields and liquid crystal. In combination with imprinted structures of varying periods, a full range of colours spanning the entire visible spectrum is achieved, paving the way towards dynamic pixels for reflective displays. PMID:26066375
Relaxation of photoexcitations in polaron-induced magnetic microstructures
NASA Astrophysics Data System (ADS)
Köhler, Thomas; Rajpurohit, Sangeeta; Schumann, Ole; Paeckel, Sebastian; Biebl, Fabian R. A.; Sotoudeh, Mohsen; Kramer, Stephan C.; Blöchl, Peter E.; Kehrein, Stefan; Manmana, Salvatore R.
2018-06-01
We investigate the evolution of a photoexcitation in correlated materials over a wide range of time scales. The system studied is a one-dimensional model of a manganite with correlated electron, spin, orbital, and lattice degrees of freedom, which we relate to the three-dimensional material Pr1 -xCaxMnO3 . The ground-state phases for the entire composition range are determined and rationalized by a coarse-grained polaron model. At half doping a pattern of antiferromagnetically coupled Zener polarons is realized. Using time-dependent density-matrix renormalization group (tDMRG), we treat the electronic quantum dynamics following the excitation. The emergence of quasiparticles is addressed, and the relaxation of the nonequilibrium quasiparticle distribution is investigated via a linearized quantum-Boltzmann equation. Our approach shows that the magnetic microstructure caused by the Zener polarons leads to an increase of the relaxation times of the excitation.
Advanced Multispectral Scanner (AMS) study. [aircraft remote sensing
NASA Technical Reports Server (NTRS)
1978-01-01
The status of aircraft multispectral scanner technology was accessed in order to develop preliminary design specifications for an advanced instrument to be used for remote sensing data collection by aircraft in the 1980 time frame. The system designed provides a no-moving parts multispectral scanning capability through the exploitation of linear array charge coupled device technology and advanced electronic signal processing techniques. Major advantages include: 10:1 V/H rate capability; 120 deg FOV at V/H = 0.25 rad/sec; 1 to 2 rad resolution; high sensitivity; large dynamic range capability; geometric fidelity; roll compensation; modularity; long life; and 24 channel data acquisition capability. The field flattening techniques of the optical design allow wide field view to be achieved at fast f/nos for both the long and short wavelength regions. The digital signal averaging technique permits maximization of signal to noise performance over the entire V/H rate range.
Variable dynamic testbed vehicle : safety plan
DOT National Transportation Integrated Search
1997-02-01
This safety document covers the entire safety process from inception to delivery of the Variable Dynamic Testbed Vehicle. In addition to addressing the process of safety on the vehicle , it should provide a basis on which to build future safety proce...
Gordon, Brian J; Dapena, Jesús
2013-01-04
Inaccuracy in determining the orientation of the upper arm about its longitudinal axis (twist orientation) has been a pervasive problem in sport biomechanics research. The purpose of this study was to develop a method to improve the calculation of the upper arm twist orientation in dynamic sports activities. The twist orientation of the upper arm is defined by the orientation of its mediolateral axis. The basis for the new method is that at any angle in the flexion/extension range of an individual's elbow, it is possible to define a true mediolateral axis and also a surrogate mediolateral axis perpendicular to the plane containing the shoulder, elbow and wrist joints. The difference between the twist orientations indicated by these two versions of the mediolateral axis will vary from one elbow angle to another, but if the elbow joint deforms equally in different activities, for any given subject the difference should be constant at any given value of the elbow angle. Application of the new method required individuals to execute sedate elbow extension trials prior to the dynamic trials. Three-dimensional motion analysis of the sedate extension trials allowed quantification of the difference between the true and surrogate mediolateral axes for all angles in the entire flexion/extension range of an individual's elbow. This made it possible to calculate in any dynamic trial the twist orientation defined by the true mediolateral axis from the twist orientation defined by the surrogate mediolateral axis. The method was tested on a wooden model of the arm. Copyright © 2012 Elsevier Ltd. All rights reserved.
Energy efficient sensor scheduling with a mobile sink node for the target tracking application.
Maheswararajah, Suhinthan; Halgamuge, Saman; Premaratne, Malin
2009-01-01
Measurement losses adversely affect the performance of target tracking. The sensor network's life span depends on how efficiently the sensor nodes consume energy. In this paper, we focus on minimizing the total energy consumed by the sensor nodes whilst avoiding measurement losses. Since transmitting data over a long distance consumes a significant amount of energy, a mobile sink node collects the measurements and transmits them to the base station. We assume that the default transmission range of the activated sensor node is limited and it can be increased to maximum range only if the mobile sink node is out-side the default transmission range. Moreover, the active sensor node can be changed after a certain time period. The problem is to select an optimal sensor sequence which minimizes the total energy consumed by the sensor nodes. In this paper, we consider two different problems depend on the mobile sink node's path. First, we assume that the mobile sink node's position is known for the entire time horizon and use the dynamic programming technique to solve the problem. Second, the position of the sink node is varied over time according to a known Markov chain, and the problem is solved by stochastic dynamic programming. We also present sub-optimal methods to solve our problem. A numerical example is presented in order to discuss the proposed methods' performance.
Energy Efficient Sensor Scheduling with a Mobile Sink Node for the Target Tracking Application
Maheswararajah, Suhinthan; Halgamuge, Saman; Premaratne, Malin
2009-01-01
Measurement losses adversely affect the performance of target tracking. The sensor network's life span depends on how efficiently the sensor nodes consume energy. In this paper, we focus on minimizing the total energy consumed by the sensor nodes whilst avoiding measurement losses. Since transmitting data over a long distance consumes a significant amount of energy, a mobile sink node collects the measurements and transmits them to the base station. We assume that the default transmission range of the activated sensor node is limited and it can be increased to maximum range only if the mobile sink node is out-side the default transmission range. Moreover, the active sensor node can be changed after a certain time period. The problem is to select an optimal sensor sequence which minimizes the total energy consumed by the sensor nodes. In this paper, we consider two different problems depend on the mobile sink node's path. First, we assume that the mobile sink node's position is known for the entire time horizon and use the dynamic programming technique to solve the problem. Second, the position of the sink node is varied over time according to a known Markov chain, and the problem is solved by stochastic dynamic programming. We also present sub-optimal methods to solve our problem. A numerical example is presented in order to discuss the proposed methods' performance PMID:22399934
Challenging the Concept of Natural Distributions: Global Change Turns Trees Into Weeds
NASA Astrophysics Data System (ADS)
Gleadow, R.; O'Leary, B.; Burd, M.
2015-12-01
National parks and nature reserves are set aside to preserve certain ecosystems, reflecting species distributions at a moment in time. Changing climate and fire dynamics can mean that the species most suited to that area are different, leading new tree species to 'invade' the conservation areas. Pittosporum undulatum is an invasive tree native tree species with a natural range from southeast Queensland to Eastern Victoria, Australia. Soon after European settlement this species became a popular ornamental tree in gardens and was planted outside of its natural range across the continent and introduced to the USA (where it is known as Victorian Box), the Hawaiian Islands, Jamaica, southern Africa and the Azores. The reason this is important is because high density of P. undulatum lead to reduced biodiversity and often the complete suppression of regeneration of exiting forest trees. In Australia, changes in fire dynamics have played a major part in its in dominance. New strategies for forest management were proposed by Gleadow an Ashton in the 1980s, but lack of action has led us to predict that the entire Dandenong Ranges, near Melbourne, will be invaded within 25 years resulting in the loss of a major recreational and conservation area. This is a model of the type of problems that can be expected as the climate envelope for species changes in the coming century, challenging the very concept of a "native ".
Measurement of Meteor Impact Experiments Using Three-Component Particle Image Velocimetry
NASA Technical Reports Server (NTRS)
Heineck, James T.; Schultz, Peter H.
2002-01-01
The study of hypervelocity impacts has been aggressively pursued for more than 30 years at Ames as a way to simulate meteoritic impacts. Development of experimental methods coupled with new perspectives over this time has greatly improved the understanding of the basic physics and phenomenology of the impact process. These fundamental discoveries have led to novel methods for identifying impact craters and features in craters on both Earth and other planetary bodies. Work done at the Ames Vertical Gun Range led to the description of the mechanics of the Chicxualub crater (a.k.a. K-T crater) on the Yucatan Peninsula, widely considered to be the smoking gun impact that brought an end to the dinosaur era. This is the first attempt in the world to apply three-component particle image velocimetry (3-D PIV) to measure the trajectory of the entire ejecta curtain simultaneously with the fluid structure resulting from impact dynamics. The science learned in these experiments will build understanding in the entire impact process by simultaneously measuring both ejecta and atmospheric mechanics.
Dynamic analysis of a photovoltaic power system with battery storage capability
NASA Technical Reports Server (NTRS)
Merrill, W. C.; Blaha, R. J.; Pickrell, R. L.
1979-01-01
A photovolataic power system with a battery storage capability is analyzed. A dual battery current control concept is proposed, which enables the battery to either supply or accept power depending upon system environment and load conditions. A simulation of the power system, including the battery current control, is developed and evaluated. The evaulation demonstrate the visbility of the battery control concept of switch the battery from a charge to discharge mode and back as required by load and environmental conditions. An acceptable system operation is demonstrated over the entire insolation range. Additionally, system sensitivity, bandwidth, and damping characteristics of the battery control are shown to be acceptable for a projected hardware implementation.
High shrew diversity on Alaska's Seward Peninsula: Community assembly and environmental change
Hope, Andrew G.
2012-01-01
In September 2010, 6 species of shrews (genus: Sorex) were collected at a single locality on the Seward Peninsula of Alaska. Such high sympatric diversity within a single mammalian genus is seldom realized. This phenomenon at high latitudes highlights complex Arctic community dynamics that reflect significant turnover through time as a consequence of environmental change. Each of these shrew species occupies a broad geographic distribution collectively spanning the entire Holarctic, although the study site lies within Eastern Beringia, near the periphery of all individual ranges. A review of published genetic evidence reflects a depauperate shrew community within ice-free Beringia through the last glaciation, and recent assembly of current diversity during the Holocene.
Thermodynamics of Quantum Gases for the Entire Range of Temperature
ERIC Educational Resources Information Center
Biswas, Shyamal; Jana, Debnarayan
2012-01-01
We have analytically explored the thermodynamics of free Bose and Fermi gases for the entire range of temperature, and have extended the same for harmonically trapped cases. We have obtained approximate chemical potentials for the quantum gases in closed forms of temperature so that the thermodynamic properties of the quantum gases become…
Salomon-Ferrer, Romelia; Götz, Andreas W; Poole, Duncan; Le Grand, Scott; Walker, Ross C
2013-09-10
We present an implementation of explicit solvent all atom classical molecular dynamics (MD) within the AMBER program package that runs entirely on CUDA-enabled GPUs. First released publicly in April 2010 as part of version 11 of the AMBER MD package and further improved and optimized over the last two years, this implementation supports the three most widely used statistical mechanical ensembles (NVE, NVT, and NPT), uses particle mesh Ewald (PME) for the long-range electrostatics, and runs entirely on CUDA-enabled NVIDIA graphics processing units (GPUs), providing results that are statistically indistinguishable from the traditional CPU version of the software and with performance that exceeds that achievable by the CPU version of AMBER software running on all conventional CPU-based clusters and supercomputers. We briefly discuss three different precision models developed specifically for this work (SPDP, SPFP, and DPDP) and highlight the technical details of the approach as it extends beyond previously reported work [Götz et al., J. Chem. Theory Comput. 2012, DOI: 10.1021/ct200909j; Le Grand et al., Comp. Phys. Comm. 2013, DOI: 10.1016/j.cpc.2012.09.022].We highlight the substantial improvements in performance that are seen over traditional CPU-only machines and provide validation of our implementation and precision models. We also provide evidence supporting our decision to deprecate the previously described fully single precision (SPSP) model from the latest release of the AMBER software package.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sattari, Sulimon, E-mail: ssattari2@ucmerced.edu; Chen, Qianting, E-mail: qchen2@ucmerced.edu; Mitchell, Kevin A., E-mail: kmitchell@ucmerced.edu
Topological approaches to mixing are important tools to understand chaotic fluid flows, ranging from oceanic transport to the design of micro-mixers. Typically, topological entropy, the exponential growth rate of material lines, is used to quantify topological mixing. Computing topological entropy from the direct stretching rate is computationally expensive and sheds little light on the source of the mixing. Earlier approaches emphasized that topological entropy could be viewed as generated by the braiding of virtual, or “ghost,” rods stirring the fluid in a periodic manner. Here, we demonstrate that topological entropy can also be viewed as generated by the braiding ofmore » ghost rods following heteroclinic orbits instead. We use the machinery of homotopic lobe dynamics, which extracts symbolic dynamics from finite-length pieces of stable and unstable manifolds attached to fixed points of the fluid flow. As an example, we focus on the topological entropy of a bounded, chaotic, two-dimensional, double-vortex cavity flow. Over a certain parameter range, the topological entropy is primarily due to the braiding of a period-three orbit. However, this orbit does not explain the topological entropy for parameter values where it does not exist, nor does it explain the excess of topological entropy for the entire range of its existence. We show that braiding by heteroclinic orbits provides an accurate computation of topological entropy when the period-three orbit does not exist, and that it provides an explanation for some of the excess topological entropy when the period-three orbit does exist. Furthermore, the computation of symbolic dynamics using heteroclinic orbits has been automated and can be used to compute topological entropy for a general 2D fluid flow.« less
Steinhoff, Daniel F.; Monaghan, Andrew J.; Eisen, Lars; Barlage, Michael J.; Hopson, Thomas M.; Tarakidzwa, Isaac; Ortiz-Rosario, Karielys; Lozano-Fuentes, Saul; Hayden, Mary H.; Bieringer, Paul E.; Welsh Rodríguez, Carlos M.
2017-01-01
The mosquito virus vector Aedes (Ae.) aegypti exploits a wide range of containers as sites for egg laying and development of the immature life stages, yet the approaches for modeling meteorologically sensitive container water dynamics have been limited. This study introduces the Water Height and Temperature in Container Habitats Energy Model (WHATCH’EM), a state-of-the-science, physically based energy balance model of water height and temperature in containers that may serve as development sites for mosquitoes. The authors employ WHATCH’EM to model container water dynamics in three cities along a climatic gradient in México ranging from sea level, where Ae. aegypti is highly abundant, to ~2100 m, where Ae. aegypti is rarely found. When compared with measurements from a 1-month field experiment in two of these cities during summer 2013, WHATCH’EM realistically simulates the daily mean and range of water temperature for a variety of containers. To examine container dynamics for an entire season, WHATCH’EM is also driven with field-derived meteorological data from May to September 2011 and evaluated for three commonly encountered container types. WHATCH’EM simulates the highly nonlinear manner in which air temperature, humidity, rainfall, clouds, and container characteristics (shape, size, and color) determine water temperature and height. Sunlight exposure, modulated by clouds and shading from nearby objects, plays a first-order role. In general, simulated water temperatures are higher for containers that are larger, darker, and receive more sunlight. WHATCH’EM simulations will be helpful in understanding the limiting meteorological and container-related factors for proliferation of Ae. aegypti and may be useful for informing weather-driven early warning systems for viruses transmitted by Ae. aegypti. PMID:29123363
Di, Wenjun; Czarny, Ryan S; Fletcher, Nathan A; Krebs, Melissa D; Clark, Heather A
2016-10-01
This study aims to develop biodegradable and biocompatible polymer-based nanofibers that continuously monitor pH within microenvironments of cultured cells in real-time. In the future, these fibers will provide a scaffold for tissue growth while simultaneously monitoring the extracellular environment. Sensors to monitor pH were created by directly electrospinning the sensor components within a polymeric matrix. Specifically, the entire fiber structure is composed of the optical equivalent of an electrode, a pH-sensitive fluorophore, an ionic additive, a plasticizer, and a polymer to impart mechanical stability. The resulting poly(ε-caprolactone) (PCL) and poly(lactic-co-glycolic acid) (PLGA) based sensors were characterized by morphology, dynamic range, reversibility and stability. Since PCL-based nanofibers delivered the most desirable analytical response, this matrix was used for cellular studies. Electrospun nanofiber scaffolds (NFSs) were created directly out of optode material. The resulting NFS sensors respond to pH changes with a dynamic range centered at 7.8 ± 0.1 and 9.6 ± 0.2, for PCL and PLGA respectively. NFSs exhibited multiple cycles of reversibility with a lifetime of at least 15 days with preservation of response characteristics. By comparing the two NFSs, we found PCL-NFSs are more suitable for pH sensing due to their dynamic range and superior reversibility. The proposed sensing platform successfully exhibits a response to pH and compatibility with cultured cells. NSFs will be a useful tool for creating 3D cellular scaffolds that can monitor the cellular environment with applications in fields such as drug discovery and tissue engineering.
Using heteroclinic orbits to quantify topological entropy in fluid flows
NASA Astrophysics Data System (ADS)
Sattari, Sulimon; Chen, Qianting; Mitchell, Kevin A.
2016-03-01
Topological approaches to mixing are important tools to understand chaotic fluid flows, ranging from oceanic transport to the design of micro-mixers. Typically, topological entropy, the exponential growth rate of material lines, is used to quantify topological mixing. Computing topological entropy from the direct stretching rate is computationally expensive and sheds little light on the source of the mixing. Earlier approaches emphasized that topological entropy could be viewed as generated by the braiding of virtual, or "ghost," rods stirring the fluid in a periodic manner. Here, we demonstrate that topological entropy can also be viewed as generated by the braiding of ghost rods following heteroclinic orbits instead. We use the machinery of homotopic lobe dynamics, which extracts symbolic dynamics from finite-length pieces of stable and unstable manifolds attached to fixed points of the fluid flow. As an example, we focus on the topological entropy of a bounded, chaotic, two-dimensional, double-vortex cavity flow. Over a certain parameter range, the topological entropy is primarily due to the braiding of a period-three orbit. However, this orbit does not explain the topological entropy for parameter values where it does not exist, nor does it explain the excess of topological entropy for the entire range of its existence. We show that braiding by heteroclinic orbits provides an accurate computation of topological entropy when the period-three orbit does not exist, and that it provides an explanation for some of the excess topological entropy when the period-three orbit does exist. Furthermore, the computation of symbolic dynamics using heteroclinic orbits has been automated and can be used to compute topological entropy for a general 2D fluid flow.
NASA Astrophysics Data System (ADS)
Jia, Zhenzhong; Sun, Jing; Dobbs, Herb; King, Joel
2015-02-01
Conventional recuperating solid oxide fuel cell (SOFC)/gas turbine (GT) system suffers from its poor dynamic capability and load following performance. To meet the fast, safe and efficient load following requirements for mobile applications, a sprinter SOFC/GT system concept is proposed in this paper. In the proposed system, an SOFC stack operating at fairly constant temperature provides the baseline power with high efficiency while the fast dynamic capability of the GT-generator is fully explored for fast dynamic load following. System design and control studies have been conducted by using an SOFC/GT system model consisting of experimentally-verified component models. In particular, through analysis of the steady-state simulation results, an SOFC operation strategy is proposed to maintain fairly constant SOFC power (less than 2% power variation) and temperature (less than 2 K temperature variation) over the entire load range. A system design procedure well-suited to the proposed system has also been developed to help determining component sizes and the reference steady-state operation line. In addition, control analysis has been studied for both steady-state and transient operations. Simulation results suggest that the proposed system holds the promise to achieve fast and safe transient operations by taking full advantage of the fast dynamics of the GT-generator.
Unraveling DNA dynamics using atomic force microscopy.
Suzuki, Yuki; Yoshikawa, Yuko; Yoshimura, Shige H; Yoshikawa, Kenichi; Takeyasu, Kunio
2011-01-01
The elucidation of structure-function relationships of biological samples has become important issue in post-genomic researches. In order to unveil the molecular mechanisms controlling gene regulations, it is essential to understand the interplay between fundamental DNA properties and the dynamics of the entire molecule. The wide range of applicability of atomic force microscopy (AFM) has allowed us to extract physicochemical properties of DNA and DNA-protein complexes, as well as to determine their topographical information. Here, we review how AFM techniques have been utilized to study DNA and DNA-protein complexes and what types of analyses have accelerated the understanding of the DNA dynamics. We begin by illustrating the application of AFM to investigate the fundamental feature of DNA molecules; topological transition of DNA, length dependent properties of DNA molecules, flexibility of double-stranded DNA, and capability of the formation of non-Watson-Crick base pairing. These properties of DNA are critical for the DNA folding and enzymatic reactions. The technical advancement in the time-resolution of AFM and sample preparation methods enabled visual analysis of DNA-protein interactions at sub-second time region. DNA tension-dependent enzymatic reaction and DNA looping dynamics by restriction enzymes were examined at a nanoscale in physiological environments. Contribution of physical properties of DNA to dynamics of nucleosomes and transition of the higher-order structure of reconstituted chromatin are also reviewed. Copyright © 2011 John Wiley & Sons, Inc.
Intramuscular pressure and electromyography as indexes of force during isokinetic exercise
NASA Technical Reports Server (NTRS)
Aratow, M.; Ballard, R. E.; Grenshaw, A. G.; Styf, J.; Watenpaugh, D. E.; Kahan, N. J.; Hargens, A. R.
1993-01-01
A direct method for measuring force production of specific muscles during dynamic exercise is presently unavailable. Previous studies indicate that both intramuscular pressure (IMP) and electromyography (EMG) correlate linearly with muscle contraction force during isometric exercise. The objective of this study was to compare IMP and EMG as linear assessors of muscle contraction force during dynamic exercise. IMP and surface EMG activity were recorded during concentric and eccentric isokinetic plantarflexion and dorsiflexion of the ankle joint from the tibialis anterior (TA) and soleus (SOL) muscles of nine male volunteers. Ankle torque was measured using a dynamometer, and IMP was measured via catheterization. IMP exhibited better linear correlation than EMG with ankle joint torque during concentric contractions of the SOL and the TA, as well as during eccentric contractions. IMP provides a better index of muscle contraction force than EMG during concentric and eccentric exercise through the entire range of torque. IMP reflects intrinsic mechanical properties of individual muscles, such as length-tension relationships, which EMG is unable to assess.
Simulations of a binary-sized mixture of inelastic grains in rapid shear flow.
Clelland, R; Hrenya, C M
2002-03-01
In an effort to explore the rapid flow behavior associated with a binary-sized mixture of grains and to assess the predictive ability of the existing theory for such systems, molecular-dynamic simulations have been carried out. The system under consideration is composed of inelastic, smooth, hard disks engaged in rapid shear flow. The simulations indicate that nondimensional stresses decrease with an increase in d(L)/d(S) (ratio of large particle diameter to small particle diameter) or a decrease in nu(L)/nu(S) (area fraction ratio), as is also predicted by the kinetic theory of Willits and Arnarson [Phys. Fluids 11, 3116 (1999)]. Furthermore, the level of quantitative agreement between the theoretical stress predictions and simulation data is good over the entire range of parameters investigated. Nonetheless, the molecular-dynamic simulations also show that the assumption of an equipartition of energy rapidly deteriorates as the coefficient of restitution is decreased. The magnitude of this energy difference is found to increase with the difference in particle sizes.
Interfacial fluid instabilities and Kapitsa pendula.
Krieger, Madison S
2017-07-01
The onset and development of instabilities is one of the central problems in fluid mechanics. Here we develop a connection between instabilities of free fluid interfaces and inverted pendula. When acted upon solely by the gravitational force, the inverted pendulum is unstable. This position can be stabilized by the Kapitsa phenomenon, in which high-frequency low-amplitude vertical vibrations of the base creates a fictitious force which opposes the gravitational force. By transforming the dynamical equations governing a fluid interface into an appropriate pendulum-type equation, we demonstrate how stability can be induced in fluid systems by properly tuned vibrations. We construct a "dictionary"-type relationship between various pendula and the classical Rayleigh-Taylor, Kelvin-Helmholtz, Rayleigh-Plateau and the self-gravitational instabilities. This makes several results in control theory and dynamical systems directly applicable to the study of tunable fluid instabilities, where the critical wavelength depends on the external forces or the instability is suppressed entirely. We suggest some applications and instances of the effect ranging in scale from microns to the radius of a galaxy.
Multi-scale simulations of droplets in generic time-dependent flows
NASA Astrophysics Data System (ADS)
Milan, Felix; Biferale, Luca; Sbragaglia, Mauro; Toschi, Federico
2017-11-01
We study the deformation and dynamics of droplets in time-dependent flows using a diffuse interface model for two immiscible fluids. The numerical simulations are at first benchmarked against analytical results of steady droplet deformation, and further extended to the more interesting case of time-dependent flows. The results of these time-dependent numerical simulations are compared against analytical models available in the literature, which assume the droplet shape to be an ellipsoid at all times, with time-dependent major and minor axis. In particular we investigate the time-dependent deformation of a confined droplet in an oscillating Couette flow for the entire capillary range until droplet break-up. In this way these multi component simulations prove to be a useful tool to establish from ``first principles'' the dynamics of droplets in complex flows involving multiple scales. European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie Grant Agreement No 642069. & European Research Council under the European Community's Seventh Framework Program, ERC Grant Agreement No 339032.
NASA Technical Reports Server (NTRS)
Kirk, R. G.; Gunter, E. J.
1972-01-01
A steady state analysis of the shaft and the bearing housing motion was made by assuming synchronous precession of the system. The conditions under which the support system would act as a dynamic vibration absorber at the rotor critical speed were studied; plots of the rotor and support amplitudes, phase angles, and forces transmitted were evaluated by the computer, and the performance curves were automatically plotted by a CalComp plotter unit. Curves are presented on the optimization of the support housing characteristics to attenuate the rotor unbalance response over the entire rotor speed range. The complete transient motion including rotor unbalance was examined by integrating the equations of motion numerically using a modified fourth order Runge-Kutta procedure, and the resulting whirl orbits were plotted by the CalComp plotter unit. The results of the transient analysis are discussed with regards to the design optimization procedure derived from the steady-state analysis.
A hybrid system for upper limb movement restoration in quadriplegics.
Varoto, Renato; Barbarini, Elisa Signoreto; Cliquet, Alberto
2008-09-01
Generally, quadriplegic individuals have difficulties performing object manipulation. Toward satisfactory manipulation, reach and grasp movements must be performed with voluntary control, and for that, grasp force feedback is essential. A hybrid system aiming at partial upper limb sensory-motor restoration for quadriplegics was built. Such device is composed of an elbow dynamic orthosis that provides elbow flexion/extension (range was approximately from 20 degrees to 120 degrees , and average angular speed was approximately 15 degrees /s) with forearm support, a wrist static orthosis and neuromuscular electrical stimulation for grasping generation, and a glove with force sensors that allows grasping force feedback. The glove presents two user interface modes: visual by light emitting diodes or audio emitted by buzzer. Voice control of the entire system (elbow dynamic orthosis and electrical stimulator) is performed by the patient. The movements provided by the hybrid system, combined with the scapular and shoulder movements performed by the patient, can aid quadriplegic individuals in tasks that involve reach and grasp movements.
Probing RNA Native Conformational Ensembles with Structural Constraints.
Fonseca, Rasmus; van den Bedem, Henry; Bernauer, Julie
2016-05-01
Noncoding ribonucleic acids (RNA) play a critical role in a wide variety of cellular processes, ranging from regulating gene expression to post-translational modification and protein synthesis. Their activity is modulated by highly dynamic exchanges between three-dimensional conformational substates, which are difficult to characterize experimentally and computationally. Here, we present an innovative, entirely kinematic computational procedure to efficiently explore the native ensemble of RNA molecules. Our procedure projects degrees of freedom onto a subspace of conformation space defined by distance constraints in the tertiary structure. The dimensionality reduction enables efficient exploration of conformational space. We show that the conformational distributions obtained with our method broadly sample the conformational landscape observed in NMR experiments. Compared to normal mode analysis-based exploration, our procedure diffuses faster through the experimental ensemble while also accessing conformational substates to greater precision. Our results suggest that conformational sampling with a highly reduced but fully atomistic representation of noncoding RNA expresses key features of their dynamic nature.
NASA Astrophysics Data System (ADS)
Hooper, Justin B.; Smith, Grant D.; Bedrov, Dmitry
2013-09-01
Molecular dynamics (MD) simulations of mixtures of the room temperature ionic liquids (ILs) 1-butyl-4-methyl imidazolium [BMIM]/dicyanoamide [DCA] and [BMIM][NO3-] with HNO3 have been performed utilizing the polarizable, quantum chemistry based APPLE&P® potential. Experimentally it has been observed that [BMIM][DCA] exhibits hypergolic behavior when mixed with HNO3 while [BMIM][NO3-] does not. The structural, thermodynamic, and transport properties of the IL/HNO3 mixtures have been determined from equilibrium MD simulations over the entire composition range (pure IL to pure HNO3) based on bulk simulations. Additional (non-equilibrium) simulations of the composition profile for IL/HNO3 interfaces as a function of time have been utilized to estimate the composition dependent mutual diffusion coefficients for the mixtures. The latter have been employed in continuum-level simulations in order to examine the nature (composition and width) of the IL/HNO3 interfaces on the millisecond time scale.
Leaf area dynamics of conifer forests
DOE Office of Scientific and Technical Information (OSTI.GOV)
Margolis, H.; Oren, R.; Whitehead, D.
1995-07-01
Estimating the surface area of foliage supported by a coniferous forest canopy is critical for modeling its biological properties. Leaf area represents the surface area available for the interception of energy, the absorption of carbon dioxide, and the diffusion of water from the leaf to the atmosphere. The concept of leaf area is pertinent to the physiological and ecological dynamics of conifers at a wide range of spatial scales, from individual leaves to entire biomes. In fact, the leaf area of vegetation at a global level can be thought of as a carbon-absorbing, water-emitting membrane of variable thickness, which canmore » have an important influence on the dynamics and chemistry of the Earth`s atmosphere over both the short and the long term. Unless otherwise specified, references to leaf area herein refer to projected leaf area, i.e., the vertical projection of needles placed on a flat plane. Total leaf surface area is generally from 2.0 to 3.14 times that of projected leaf area for conifers. It has recently been suggested that hemisurface leaf area, i.e., one-half of the total surface area of a leaf, a more useful basis for expressing leaf area than is projected area. This chapter is concerned with the dynamics of coniferous forest leaf area at different spatial and temporal scales. In the first part, we consider various hypotheses related to the control of leaf area development, ranging from simple allometric relations with tree size to more complex mechanistic models that consider the movement of water and nutrients to tree canopies. In the second part, we consider various aspects of leaf area dynamics at varying spatial and temporal scales, including responses to perturbation, seasonal dynamics, genetic variation in crown architecture, the responses to silvicultural treatments, the causes and consequences of senescence, and the direct measurement of coniferous leaf area at large spatial scales using remote sensing.« less
Symbolic dynamics techniques for complex systems: Application to share price dynamics
NASA Astrophysics Data System (ADS)
Xu, Dan; Beck, Christian
2017-05-01
The symbolic dynamics technique is well known for low-dimensional dynamical systems and chaotic maps, and lies at the roots of the thermodynamic formalism of dynamical systems. Here we show that this technique can also be successfully applied to time series generated by complex systems of much higher dimensionality. Our main example is the investigation of share price returns in a coarse-grained way. A nontrivial spectrum of Rényi entropies is found. We study how the spectrum depends on the time scale of returns, the sector of stocks considered, as well as the number of symbols used for the symbolic description. Overall our analysis confirms that in the symbol space transition probabilities of observed share price returns depend on the entire history of previous symbols, thus emphasizing the need for a modelling based on non-Markovian stochastic processes. Our method allows for quantitative comparisons of entirely different complex systems, for example the statistics of symbol sequences generated by share price returns using 4 symbols can be compared with that of genomic sequences.
Stadler, A. M.; Garvey, C. J.; Bocahut, A.; Sacquin-Mora, S.; Digel, I.; Schneider, G. J.; Natali, F.; Artmann, G. M.; Zaccai, G.
2012-01-01
Thermodynamic stability, configurational motions and internal forces of haemoglobin (Hb) of three endotherms (platypus, Ornithorhynchus anatinus; domestic chicken, Gallus gallus domesticus and human, Homo sapiens) and an ectotherm (salt water crocodile, Crocodylus porosus) were investigated using circular dichroism, incoherent elastic neutron scattering and coarse-grained Brownian dynamics simulations. The experimental results from Hb solutions revealed a direct correlation between protein resilience, melting temperature and average body temperature of the different species on the 0.1 ns time scale. Molecular forces appeared to be adapted to permit conformational fluctuations with a root mean square displacement close to 1.2 Å at the corresponding average body temperature of the endotherms. Strong forces within crocodile Hb maintain the amplitudes of motion within a narrow limit over the entire temperature range in which the animal lives. In fully hydrated powder samples of human and chicken, Hb mean square displacements and effective force constants on the 1 ns time scale showed no differences over the whole temperature range from 10 to 300 K, in contrast to the solution case. A complementary result of the study, therefore, is that one hydration layer is not sufficient to activate all conformational fluctuations of Hb in the pico- to nanosecond time scale which might be relevant for biological function. Coarse-grained Brownian dynamics simulations permitted to explore residue-specific effects. They indicated that temperature sensing of human and chicken Hb occurs mainly at residues lining internal cavities in the β-subunits. PMID:22696485
Stadler, A M; Garvey, C J; Bocahut, A; Sacquin-Mora, S; Digel, I; Schneider, G J; Natali, F; Artmann, G M; Zaccai, G
2012-11-07
Thermodynamic stability, configurational motions and internal forces of haemoglobin (Hb) of three endotherms (platypus, Ornithorhynchus anatinus; domestic chicken, Gallus gallus domesticus and human, Homo sapiens) and an ectotherm (salt water crocodile, Crocodylus porosus) were investigated using circular dichroism, incoherent elastic neutron scattering and coarse-grained Brownian dynamics simulations. The experimental results from Hb solutions revealed a direct correlation between protein resilience, melting temperature and average body temperature of the different species on the 0.1 ns time scale. Molecular forces appeared to be adapted to permit conformational fluctuations with a root mean square displacement close to 1.2 Å at the corresponding average body temperature of the endotherms. Strong forces within crocodile Hb maintain the amplitudes of motion within a narrow limit over the entire temperature range in which the animal lives. In fully hydrated powder samples of human and chicken, Hb mean square displacements and effective force constants on the 1 ns time scale showed no differences over the whole temperature range from 10 to 300 K, in contrast to the solution case. A complementary result of the study, therefore, is that one hydration layer is not sufficient to activate all conformational fluctuations of Hb in the pico- to nanosecond time scale which might be relevant for biological function. Coarse-grained Brownian dynamics simulations permitted to explore residue-specific effects. They indicated that temperature sensing of human and chicken Hb occurs mainly at residues lining internal cavities in the β-subunits.
1986-08-01
each subsystem wist include more than a set of rigid body and normal modes to properly represent the dynamics of the entire system. Various types of...MCM 1 AUGMENTATION HETNO-MrifaOII FIELD TflACKER »f Tl BASIC EXPERIMENT Figure 3. Dynamics augmentation experiment. i i mnc...Villeurbanne - France Today the dynamic behavior of rotors must be predicted with the greatest care. This work deals with the influence of disc flexi
Erosion and Accretion on a Mudflat: The Importance of Very Shallow-Water Effects
NASA Astrophysics Data System (ADS)
Shi, Benwei; Cooper, James R.; Pratolongo, Paula D.; Gao, Shu; Bouma, T. J.; Li, Gaocong; Li, Chunyan; Yang, S. L.; Wang, Ya Ping
2017-12-01
Understanding erosion and accretion dynamics during an entire tidal cycle is important for assessing their impacts on the habitats of biological communities and the long-term morphological evolution of intertidal mudflats. However, previous studies often omitted erosion and accretion during very shallow-water stages (VSWS, water depths < 0.20 m). It is during these VSWS that bottom friction becomes relatively strong and thus erosion and accretion dynamics are likely to differ from those during deeper flows. In this study, we examine the contribution of very shallow-water effects to erosion and accretion of the entire tidal cycle, based on measured and modeled time-series of bed-level changes. Our field experiments revealed that the VSWS accounted for only 11% of the duration of the entire tidal cycle, but erosion and accretion during these stages accounted for 35% of the bed-level changes of the entire tidal cycle. Predicted cumulative bed-level changes agree much better with measured results when the entire tidal cycle is modeled than when only the conditions at water depths of >0.2 m (i.e., probe submerged) are considered. These findings suggest that the magnitude of bed-level changes during VSWS should not be neglected when modeling morphodynamic processes. Our results are useful in understanding the mechanisms of micro-topography formation and destruction that often occur at VSWS, and also improve our understanding and modeling ability of coastal morphological changes.
Neutron activation measurements over an extremely wide dynamic range (invited) (abstract)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnes, C.W.
1997-01-01
The DT program at the Tokamak Fusion Test Reactor (TFTR) created requirements on 14 MeV neutron measurements to measure from 10{sup 6} n/cm{sup 2} (for triton burnup and Ohmic tritium plasmas) to {gt}10{sup 12} n/cm{sup 2} (characteristic of {gt}10 MW DT plasmas) with an accuracy of 7% (one-sigma).1 To maintain an absolute calibration over this dynamic range with active neutron detectors required one to go from some absolute standard at one fluence level to a measurement at a much higher fluence. Maintaining accuracy requires an extremely linear set of measurements not systematically affected over this dynamic range. Neutron activation canmore » provide such linearity when care is taken with a number of effects such as gamma-ray detection efficiency and sample contamination.2 Absolutely calibrated neutron yield measurements using dosimetric (well-known cross section) reactions with thin (low-mass) elemental foils is be described. This technique makes the detector comparison to an absolute standard of gamma-ray activity correspond to all neutron fluences by reducing the sample mass while keeping the activation detectors operating in a linear counting mode; i.e., low count rates which minimize pileup effects. The International Thermonuclear Experimental Reactor is projected to have 1000 s burn durations at fluxes of few 10{sup 13} n/cm{sup 2}s, or more neutron fluence {ital per second} than entire TFTR discharges. Extrapolating neutron activation to these higher fluences will require yet more care. Some of the issues at such high fluences will be discussed.3 The National Ignition Facility (NIF) is projected to yield 10 MJ of fusion energy, or up to 10{sup 12} n/cm{sup 2} at the vacuum vessel wall, similar to TFTR DT conditions. It is expected that much interesting physics will be performed at yields far less than those from ignition, covering an even greater dynamic range than needed on TFTR. Thin foil techniques do not have the sensitivity required at low fluences.« less
GOCE Precise Science Orbits for the Entire Mission and their Use for Gravity Field Recovery
NASA Astrophysics Data System (ADS)
Jäggi, Adrian; Bock, Heike; Meyer, Ulrich; Weigelt, Matthias
The Gravity field and steady-state Ocean Circulation Explorer (GOCE), ESA's first Earth Explorer Core Mission, was launched on March 17, 2009 into a sun-synchronous dusk-dawn orbit and re-entered into the Earth's atmosphere on November 11, 2013. It was equipped with a three-axis gravity gradiometer for high-resolution recovery of the Earth's gravity field, as well as with a 12-channel, dual-frequency Global Positioning System (GPS) receiver for precise orbit determination (POD), instrument time-tagging, and the determination of the long wavelength part of the Earth’s gravity field. A precise science orbit (PSO) product was provided during the entire mission by the GOCE High-level Processing Facility (HPF) from the GPS high-low Satellite-to-Satellite Tracking (hl-SST) data. We present the reduced-dynamic and kinematic PSO results for the entire mission period. Orbit comparisons and validations with independent Satellite Laser Ranging (SLR) measurements demonstrate the high quality of both orbit products being close to 2 cm 1-D RMS, but also reveal a correlation between solar activity, GPS data availability, and the quality of the orbits. We use the 1-sec kinematic positions of the GOCE PSO product for gravity field determination and present GPS-only solutions covering the entire mission period. The generated gravity field solutions reveal severe systematic errors centered along the geomagnetic equator, which may be traced back to the GPS carrier phase observations used for the kinematic orbit determination. The nature of the systematic errors is further investigated and reprocessed orbits free of systematic errors along the geomagnetic equator are derived. Eventually, the potential of recovering time variable signals from GOCE kinematic positions is assessed.
Current transport mechanisms in mercury cadmium telluride diode
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gopal, Vishnu, E-mail: vishnu-46@yahoo.com, E-mail: wdhu@mail.sitp.ac.cn; Li, Qing; He, Jiale
This paper reports the results of modelling of the current-voltage characteristics (I-V) of a planar mid-wave Mercury Cadmium Telluride photodiode in a gate controlled diode experiment. It is reported that the diode exhibits nearly ideal I-V characteristics under the optimum surface potential leading to the minimal surface leakage current. Deviations from the optimum surface potential lead to non ideal I–V characteristics, indicating a strong relationship between the ideality factor of the diode with its surface leakage current. Diode's I–V characteristics have been modelled over a range of gate voltages from −9 V to −2 V. This range of gate voltages includes accumulation,more » flat band, and depletion and inversion conditions below the gate structure of the diode. It is shown that the I–V characteristics of the diode can be very well described by (i) thermal diffusion current, (ii) ohmic shunt current, (iii) photo-current due to background illumination, and (iv) excess current that grows by the process of avalanche multiplication in the gate voltage range from −3 V to −5 V that corresponds to the optimum surface potential. Outside the optimum gate voltage range, the origin of the excess current of the diode is associated with its high surface leakage currents. It is reported that the ohmic shunt current model applies to small surface leakage currents. The higher surface leakage currents exhibit a nonlinear shunt behaviour. It is also shown that the observed zero-bias dynamic resistance of the diode over the entire gate voltage range is the sum of ohmic shunt resistance and estimated zero-bias dynamic resistance of the diode from its thermal saturation current.« less
Structure of aqueous proline via parallel tempering molecular dynamics and neutron diffraction.
Troitzsch, R Z; Martyna, G J; McLain, S E; Soper, A K; Crain, J
2007-07-19
The structure of aqueous L-proline amino acid has been the subject of much debate centering on the validity of various proposed models, differing widely in the extent to which local and long-range correlations are present. Here, aqueous proline is investigated by atomistic, replica exchange molecular dynamics simulations, and the results are compared to neutron diffraction and small angle neutron scattering (SANS) data, which have been reported recently (McLain, S.; Soper, A.; Terry, A.; Watts, A. J. Phys. Chem. B 2007, 111, 4568). Comparisons between neutron experiments and simulation are made via the static structure factor S(Q) which is measured and computed from several systems with different H/D isotopic compositions at a concentration of 1:20 molar ratio. Several different empirical water models (TIP3P, TIP4P, and SPC/E) in conjunction with the CHARMM22 force field are investigated. Agreement between experiment and simulation is reasonably good across the entire Q range although there are significant model-dependent variations in some cases. In general, agreement is improved slightly upon application of approximate quantum corrections obtained from gas-phase path integral simulations. Dimers and short oligomeric chains formed by hydrogen bonds (frequently bifurcated) coexist with apolar (hydrophobic) contacts. These emerge as the dominant local motifs in the mixture. Evidence for long-range association is more equivocal: No long-range structures form spontaneously in the MD simulations, and no obvious low-Q signature is seen in the SANS data. Moreover, associations introduced artificially to replicate a long-standing proposed mesoscale structure for proline correlations as an initial condition are annealed out by parallel tempering MD simulations. However, some small residual aggregates do remain, implying a greater degree of long-range order than is apparent in the SANS data.
The strain-rate sensitivity of high-strength high-toughness steels.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dilmore, M.F.; Crenshaw, Thomas B.; Boyce, Brad Lee
2006-01-01
The present study examines the strain-rate sensitivity of four high strength, high-toughness alloys at strain rates ranging from 0.0002 s-1 to 200 s-1: Aermet 100, a modified 4340, modified HP9-4-20, and a recently developed Eglin AFB steel alloy, ES-1c. A refined dynamic servohydraulic method was used to perform tensile tests over this entire range. Each of these alloys exhibit only modest strain-rate sensitivity. Specifically, the strain-rate sensitivity exponent m, is found to be in the range of 0.004-0.007 depending on the alloy. This corresponds to a {approx}10% increase in the yield strength over the 7-orders of magnitude change in strain-rate.more » Interestingly, while three of the alloys showed a concominant {approx}3-10% drop in their ductility with increasing strain-rate, the ES1-c alloy actually exhibited a 25% increase in ductility with increasing strain-rate. Fractography suggests the possibility that at higher strain-rates ES-1c evolves towards a more ductile dimple fracture mode associated with microvoid coalescence.« less
Jammed Limit of Bijel Structure Formation
Welch, P. M.; Lee, M. N.; Parra-Vasquez, A. N. G.; ...
2017-11-02
Over the past decade, methods to control microstructure in heterogeneous mixtures by arresting spinodal decomposition via the addition of colloidal particles have led to an entirely new class of bicontinuous materials known as bijels. We present a new model for the development of these materials that yields to both numerical and analytical evaluation. This model reveals that a single dimensionless parameter that captures both chemical and environmental variables dictates the dynamics and ultimate structure formed in bijels. We also demonstrate that this parameter must fall within a fixed range in order for jamming to occur during spinodal decomposition, as wellmore » as show that known experimental trends for the characteristic domain sizes and time scales for formation are recovered by this model.« less
Performance of end-face seals with diametral tilt and coning - Hydrodynamic effects
NASA Technical Reports Server (NTRS)
Sharoni, A.; Etsion, I.
1979-01-01
Hydrodynamic effects in end-face seals with diametral tilt and coning are analyzed. A closed-form solution for the axial separating force and the restoring and transverse moments is presented that covers the whole range from zero to full angular misalignment at various degrees of coning. Both low-pressure seals with cavitating flow and high-pressure seals with full fluid film are considered. The effect of coning is to reduce the axial force and the restoring and transverse moments compared to their magnitude in flat-face seals. Strong coupling between diametral tilt and transverse moment is demonstrated. This transverse moment which is entirely due to hydrodynamic effects can be the source of dynamic instability in the form of seal wobble.
Kröckel, Lars; Frosch, Torsten; Schmidt, Markus A
2015-05-22
In conventional absorption spectrometers, the range of accessible concentrations of analytes in aqueous solution is significantly limited by the dynamic range of the measurement system. Here we introduce the concept of multiscale spectroscopy allowing extending that range by orders of magnitude within one single device. The concept relies on using multiple light-sample interaction lengths, boosting the accessible concentration range by a particular extension factor. We experimentally implement our concept by a liquid core waveguide having multiple fiber ports side-wise attached to the waveguide, thus probing the light propagating inside the core at predefined distances from the input. This configuration provides three orders of magnitude of interaction length in one device. To verify the concept we exemplarily determine the concentrations of nitrate and of Rhodamine 6G in water, showing one hundred times improved measurement capabilities. The multiscale spectrometer uses the entire sample volume and allows the simultaneous measurement of fluorescence and attenuance. Due to its integrated design and the extended measurements capabilities, we anticipate application of our device in many application-relevant areas such as water quality analysis or environmental science. Copyright © 2015 Elsevier B.V. All rights reserved.
Principles and Algorithms for Natural and Engineered Systems
2014-12-16
Toolbox for MATLAB into C/C++. The target for the calibration is a 2D black and white checkerboard pattern. In a typical set of calibration images...errors the dynamic clusters typically contain entangled trajectories i.e. links form between two different dynamic clusters (see Figures 8 and 9). To...all dynamic clusters is L, and the average number of trajectories a given dynamic cluster are entangled with for its entire length is known as the
2011-08-04
AND MULTI-BODY DYNAMICS Jayakumar , Smith, Ross, Jategaonkar, Konarzewski 4 August 2011 UNCLASSIFIED: Distribution Statement A. Approved for public...Autonomous Vehicle in an Off-Road Scenario Using Integrated Sensor, Controller, and Multi-Body Dynamics 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM...Cannot neglect vehicle dynamics 4 August 2011 3 UNCLASSIFIED Importance of Simulation Fidelity • Performance evaluation requires entire system
Characterizing Speech Intelligibility in Noise After Wide Dynamic Range Compression.
Rhebergen, Koenraad S; Maalderink, Thijs H; Dreschler, Wouter A
The effects of nonlinear signal processing on speech intelligibility in noise are difficult to evaluate. Often, the effects are examined by comparing speech intelligibility scores with and without processing measured at fixed signal to noise ratios (SNRs) or by comparing the adaptive measured speech reception thresholds corresponding to 50% intelligibility (SRT50) with and without processing. These outcome measures might not be optimal. Measuring at fixed SNRs can be affected by ceiling or floor effects, because the range of relevant SNRs is not know in advance. The SRT50 is less time consuming, has a fixed performance level (i.e., 50% correct), but the SRT50 could give a limited view, because we hypothesize that the effect of most nonlinear signal processing algorithms at the SRT50 cannot be generalized to other points of the psychometric function. In this article, we tested the value of estimating the entire psychometric function. We studied the effect of wide dynamic range compression (WDRC) on speech intelligibility in stationary, and interrupted speech-shaped noise in normal-hearing subjects, using a fast method-based local linear fitting approach and by two adaptive procedures. The measured performance differences for conditions with and without WDRC for the psychometric functions in stationary noise and interrupted speech-shaped noise show that the effects of WDRC on speech intelligibility are SNR dependent. We conclude that favorable and unfavorable effects of WDRC on speech intelligibility can be missed if the results are presented in terms of SRT50 values only.
Computational fluid dynamics characterization of a novel mixed cell raceway design
USDA-ARS?s Scientific Manuscript database
Computational fluid dynamics (CFD) analysis was performed on a new type of mixed cell raceway (MCR) that incorporates longitudinal plug flow using inlet and outlet weirs for the primary fraction of the total flow. As opposed to regular MCR wherein vortices are entirely characterized by the boundary ...
Ginkgo biloba's footprint of dynamic Pleistocene history dates back only 390,000 years ago.
Hohmann, Nora; Wolf, Eva M; Rigault, Philippe; Zhou, Wenbin; Kiefer, Markus; Zhao, Yunpeng; Fu, Cheng-Xin; Koch, Marcus A
2018-04-27
At the end of the Pliocene and the beginning of Pleistocene glaciation and deglaciation cycles Ginkgo biloba went extinct all over the world, and only few populations remained in China in relict areas serving as sanctuary for Tertiary relict trees. Yet the status of these regions as refuge areas with naturally existing populations has been proven not earlier than one decade ago. Herein we elaborated the hypothesis that during the Pleistocene cooling periods G. biloba expanded its distribution range in China repeatedly. Whole plastid genomes were sequenced, assembled and annotated, and sequence data was analyzed in a phylogenetic framework of the entire gymnosperms to establish a robust spatio-temporal framework for gymnosperms and in particular for G. biloba Pleistocene evolutionary history. Using a phylogenetic approach, we identified that Ginkgoatae stem group age is about 325 million years, whereas crown group radiation of extant Ginkgo started not earlier than 390,000 years ago. During repeated warming phases, Gingko populations were separated and isolated by contraction of distribution range and retreated into mountainous regions serving as refuge for warm-temperate deciduous forests. Diversification and phylogenetic splits correlate with the onset of cooling phases when Ginkgo expanded its distribution range and gene pools merged. Analysis of whole plastid genome sequence data representing the entire spatio-temporal genetic variation of wild extant Ginkgo populations revealed the deepest temporal footprint dating back to approximately 390,000 years ago. Present-day directional West-East admixture of genetic diversity is shown to be the result of pronounced effects of the last cooling period. Our evolutionary framework will serve as a conceptual roadmap for forthcoming genomic sequence data, which can then provide deep insights into the demographic history of Ginkgo.
Optimisation of the Sputnik-VAD design.
Selishchev, Sergey V; Telyshev, Dmitry V
2016-10-10
Miniaturisation of VADs can offer important benefits, including less invasive implantation techniques and more versatility in patient selection. The aim of this work was to reduce the weight, size, and energy consumption of the Sputnik VAD. The second generation of the Sputnik VAD was developed with a set of changes in construction. The head pressure-flow rate (H-Q) and power consumption-flow rate curves for the Sputnik VADs were measured at different rotational speeds. Computational fluid dynamics (CFD) were used for operating condition simulation and the LVADs were compared under the simulated physiological conditions. The slope of the H-Q curves for the Sputnik 1 VAD remains almost invariable over the entire range of the measured flow rate, in contrast to the curves for the Sputnik 2 VAD, which become flat in the high flow-rate region. Despite the design modification, the operating rotor speed remained invariable. The preload sensitivity of the Sputnik VAD is higher than that of the other rotary blood pumps and amounts to 0.111 ± 0.0092 L min-1 mmHg-1. The power consumption for the Sputnik 2 VAD is lower over the entire speed range, except for at 5,000 rpm. The pump weight was reduced from 246 to 205 g, the pump length was decreased from 82 to 66 mm, and the pump diameter was decreased from 32 to 29 mm. The total energy consumption of the pump was reduced by 15%.
Downlink Probability Density Functions for EOS-McMurdo Sound
NASA Technical Reports Server (NTRS)
Christopher, P.; Jackson, A. H.
1996-01-01
The visibility times and communication link dynamics for the Earth Observations Satellite (EOS)-McMurdo Sound direct downlinks have been studied. The 16 day EOS periodicity may be shown with the Goddard Trajectory Determination System (GTDS) and the entire 16 day period should be simulated for representative link statistics. We desire many attributes of the downlink, however, and a faster orbital determination method is desirable. We use the method of osculating elements for speed and accuracy in simulating the EOS orbit. The accuracy of the method of osculating elements is demonstrated by closely reproducing the observed 16 day Landsat periodicity. An autocorrelation function method is used to show the correlation spike at 16 days. The entire 16 day record of passes over McMurdo Sound is then used to generate statistics for innage time, outage time, elevation angle, antenna angle rates, and propagation loss. The levation angle probability density function is compared with 1967 analytic approximation which has been used for medium to high altitude satellites. One practical result of this comparison is seen to be the rare occurrence of zenith passes. The new result is functionally different than the earlier result, with a heavy emphasis on low elevation angles. EOS is one of a large class of sun synchronous satellites which may be downlinked to McMurdo Sound. We examine delay statistics for an entire group of sun synchronous satellites ranging from 400 km to 1000 km altitude. Outage probability density function results are presented three dimensionally.
Cultural turnover among Galápagos sperm whales
Whitehead, Hal; Rendell, Luke
2016-01-01
While populations may wax and wane, it is rare for an entire population to be replaced by a completely different set of individuals. We document the large-scale relocation of cultural groups of sperm whale off the Galápagos Islands, in which two sympatric vocal clans were entirely replaced by two different ones. Between 1985 and 1999, whales from two clans (called Regular and Plus-One) defined by cultural dialects in coda vocalizations were repeatedly photo-identified off Galápagos. Their occurrence in the area declined through the 1990s; by 2000, none remained. We reassessed Galápagos sperm whales in 2013–2014, identifying 463 new females. However, re-sighting rates were low, with no matches with the Galápagos 1985–1999 population, suggesting an eastward shift to coastal areas. Their vocal repertoires matched those of two other clans (called Short and Four-Plus) found across the Pacific but previously rare or absent around Galápagos. The mechanisms behind this cultural turnover may include large-scale environmental regime shifts favouring clan-specific foraging strategies, and a response to heavy whaling in the region involving redistribution of surviving whales into high-quality habitats. The fall and rise of sperm whale cultures off Galápagos reflect the structuring of the Pacific population into large, enduring clans with dynamic ranges. Long-lasting clan membership illustrates how culture can be bound up in the structure and dynamics of animal populations and so how tracking cultural traits can reveal large-scale population shifts. PMID:27853582
NASA Astrophysics Data System (ADS)
Elbing, Brian; Dowling, David; Solomon, Michael; Bian, Sherry; Ceccio, Steven
2007-11-01
A recent experiment at the U.S. Navy's Large Cavitation Channel (LCC) investigated the effect of wall roughness on wall-injection polymer drag reduction (PDR) within a high-Reynolds-number (10^7 to 2x10^8 based on downstream distance) turbulent boundary layer (TBL). Testing was performed in two parts: 1) PDR experiment on a 12.9 m long, 3.05 m wide hydro-dynamically smooth flat plate and 2) PDR experiment on the same model with the entire surface roughened. The roughness was produced by blowing glass beads into epoxy paint that was applied to the entire model. The roughened model had an average roughness height ranging between 307 and 1154 μm. Drag reduction was determined using six, stream-wise located integrated skin-friction balances. In addition to skin-friction measurements, sampling was performed at three stream-wise located ports. The sampling ports were used to determine the amount of degradation, if any, caused by the turbulent flow on the polymer. Both the skin-friction measurements and sampling analysis indicates that wall roughness in a turbulent boundary layer significantly increases degradation of the polymer solution.
NASA Technical Reports Server (NTRS)
Chamberlin, P. C.; Milligan, R. O.; Woods, T. N.
2012-01-01
This paper describes the methods used to obtain the thermal evolution and radiative output during solar flares as observed by the Extreme u ltraviolet Variability Experiment (EVE) onboard the Solar Dynamics Ob servatory (SDO). Presented and discussed in detail are how EVE measur ements, due to its temporal cadence, spectral resolution and spectral range, can be used to determine how the thermal plasma radiates at v arious temperatures throughout the impulsive and gradual phase of fla res. EVE can very accurately determine the radiative output of flares due to pre- and in-flight calibrations. Events are presented that sh ow the total radiated output of flares depends more on the flare duration than the typical GOES X-ray peak magnitude classification. With S DO observing every flare throughout its entire duration and over a la rge temperature range, new insights into flare heating and cooling as well as the radiative energy release in EUV wavelengths support exis ting research into understanding the evolution of solar flares.
Fiber optic shape sensing for monitoring of flexible structures
NASA Astrophysics Data System (ADS)
Lally, Evan M.; Reaves, Matt; Horrell, Emily; Klute, Sandra; Froggatt, Mark E.
2012-04-01
Recent advances in materials science have resulted in a proliferation of flexible structures for high-performance civil, mechanical, and aerospace applications. Large aspect-ratio aircraft wings, composite wind turbine blades, and suspension bridges are all designed to meet critical performance targets while adapting to dynamic loading conditions. By monitoring the distributed shape of a flexible component, fiber optic shape sensing technology has the potential to provide valuable data during design, testing, and operation of these smart structures. This work presents a demonstration of such an extended-range fiber optic shape sensing technology. Three-dimensional distributed shape and position sensing is demonstrated over a 30m length using a monolithic silica fiber with multiple optical cores. A novel, helicallywound geometry endows the fiber with the capability to convert distributed strain measurements, made using Optical Frequency-Domain Reflectometry (OFDR), to a measurement of curvature, twist, and 3D shape along its entire length. Laboratory testing of the extended-range shape sensing technology shows
Imaging of laboratory magnetospheric plasmas using coherence imaging technique
NASA Astrophysics Data System (ADS)
Nishiura, Masaki; Takahashi, Noriki; Yoshida, Zensho; Nakamura, Kaori; Kawazura, Yohei; Kenmochi, Naoki; Nakatsuka, Masataka; Sugata, Tetsuya; Katsura, Shotaro; Howard, John
2017-10-01
The ring trap 1 (RT-1) device creates a laboratory magnetosphere for the studies on plasma physics and advanced nuclear fusion. A levitated superconducting coil produces magnetic dipole fields that realize a high beta plasma confinement that is motivated by self-organized plasmas in planetary magnetospheres. The electron cyclotron resonance heating (ECRH) with 8.2 GHz and 50 kW produces the plasmas with hot electrons in a few ten keV range. The electrons contribute to the local electron beta that exceeded 1 in RT-1. For the ion heating, ion cyclotron range of frequencies (ICRF) heating with 2-4 MHz and 10 kW has been performed in RT-1. The radial profile of ion temperature by a spectroscopic measurement indicates the signature of ion heating. In the holistic point of view, a coherence imaging system has been implemented for imaging the entire ion dynamics in the laboratory magnetosphere. The diagnostic system and obtained results will be presented.
Effects of a chirped bias voltage on ion energy distributions in inductively coupled plasma reactors
NASA Astrophysics Data System (ADS)
Lanham, Steven J.; Kushner, Mark J.
2017-08-01
The metrics for controlling reactive fluxes to wafers for microelectronics processing are becoming more stringent as feature sizes continue to shrink. Recent strategies for controlling ion energy distributions to the wafer involve using several different frequencies and/or pulsed powers. Although effective, these strategies are often costly or present challenges in impedance matching. With the advent of matching schemes for wide band amplifiers, other strategies to customize ion energy distributions become available. In this paper, we discuss results from a computational investigation of biasing substrates using chirped frequencies in high density, electronegative inductively coupled plasmas. Depending on the frequency range and chirp duration, the resulting ion energy distributions exhibit components sampled from the entire frequency range. However, the chirping process also produces transient shifts in the self-generated dc bias due to the reapportionment of displacement and conduction with frequency to balance the current in the system. The dynamics of the dc bias can also be leveraged towards customizing ion energy distributions.
Kozachuk, Madalena S; Sham, Tsun-Kong; Martin, Ronald R; Nelson, Andrew J; Coulthard, Ian; McElhone, John P
2018-06-22
A daguerreotype image, the first commercialized photographic process, is composed of silver-mercury, and often silver-mercury-gold amalgam particles on the surface of a silver-coated copper plate. Specular and diffuse reflectance of light from these image particles produces the range of gray tones that typify these 19 th century images. By mapping the mercury distribution with rapid-scanning, synchrotron-based micro-X-ray fluorescence (μ-XRF) imaging, full portraits, which to the naked eye are obscured entirely by extensive corrosion, can be retrieved in a non-invasive, non-contact, and non-destructive manner. This work furthers the chemical understanding regarding the production of these images and suggests that mercury is retained in the image particles despite surface degradation. Most importantly, μ-XRF imaging provides curators with an image recovery method for degraded daguerreotypes, even if the artifact's condition is beyond traditional conservation treatments.
Computational analysis of unmanned aerial vehicle (UAV)
NASA Astrophysics Data System (ADS)
Abudarag, Sakhr; Yagoub, Rashid; Elfatih, Hassan; Filipovic, Zoran
2017-01-01
A computational analysis has been performed to verify the aerodynamics properties of Unmanned Aerial Vehicle (UAV). The UAV-SUST has been designed and fabricated at the Department of Aeronautical Engineering at Sudan University of Science and Technology in order to meet the specifications required for surveillance and reconnaissance mission. It is classified as a medium range and medium endurance UAV. A commercial CFD solver is used to simulate steady and unsteady aerodynamics characteristics of the entire UAV. In addition to Lift Coefficient (CL), Drag Coefficient (CD), Pitching Moment Coefficient (CM) and Yawing Moment Coefficient (CN), the pressure and velocity contours are illustrated. The aerodynamics parameters are represented a very good agreement with the design consideration at angle of attack ranging from zero to 26 degrees. Moreover, the visualization of the velocity field and static pressure contours is indicated a satisfactory agreement with the proposed design. The turbulence is predicted by enhancing K-ω SST turbulence model within the computational fluid dynamics code.
Highly sensitive detection of target molecules using a new fluorescence-based bead assay
NASA Astrophysics Data System (ADS)
Scheffler, Silvia; Strauß, Denis; Sauer, Markus
2007-07-01
Development of immunoassays with improved sensitivity, specificity and reliability are of major interest in modern bioanalytical research. We describe the development of a new immunomagnetic fluorescence detection (IM-FD) assay based on specific antigen/antibody interactions and on accumulation of the fluorescence signal on superparamagnetic PE beads in combination with the use of extrinsic fluorescent labels. IM-FD can be easily modified by varying the order of coatings and assay conditions. Depending on the target molecule, antibodies (ABs), entire proteins, or small protein epitopes can be used as capture molecules. The presence of target molecules is detected by fluorescence microscopy using fluorescently labeled secondary or detection antibodies. Here, we demonstrate the potential of the new assay detecting the two tumor markers IGF-I and p53 antibodies in the clinically relevant concentration range. Our data show that the fluorescence-based bead assay exhibits a large dynamic range and a high sensitivity down to the subpicomolar level.
In vivo optoacoustic monitoring of calcium activity in the brain (Conference Presentation)
NASA Astrophysics Data System (ADS)
Deán-Ben, Xose Luís.; Gottschalk, Sven; Sela, Gali; Lauri, Antonella; Kneipp, Moritz; Ntziachristos, Vasilis; Westmeyer, Gil G.; Shoham, Shy; Razansky, Daniel
2017-03-01
Non-invasive observation of spatio-temporal neural activity of large neural populations distributed over the entire brain of complex organisms is a longstanding goal of neuroscience [1,2]. Recently, genetically encoded calcium indicators (GECIs) have revolutionized neuroimaging by enabling mapping the activity of entire neuronal populations in vivo [3]. Visualization of these powerful sensors with fluorescence microscopy has however been limited to superficial regions while deep brain areas have so far remained unreachable [4]. We have developed a volumetric multispectral optoacoustic tomography platform for imaging neural activation deep in scattering brains [5]. The developed methodology can render 100 volumetric frames per second across scalable fields of view ranging between 50-1000 mm3 with respective spatial resolution of 35-150µm. Experiments performed in immobilized and freely swimming larvae and in adult zebrafish brains expressing the genetically-encoded calcium indicator GCaMP5G demonstrated, for the first time, the fundamental ability to directly track neural dynamics using optoacoustics while overcoming the depth barrier of optical imaging in scattering brains [6]. It was further possible to monitor calcium transients in a scattering brain of a living adult transgenic zebrafish expressing GCaMP5G calcium indicator [7]. Fast changes in optoacoustic traces associated to GCaMP5G activity were detectable in the presence of other strongly absorbing endogenous chromophores, such as hemoglobin. The results indicate that the optoacoustic signal traces generally follow the GCaMP5G fluorescence dynamics and further enable overcoming the longstanding optical-diffusion penetration barrier associated to scattering in biological tissues [6]. The new functional optoacoustic neuroimaging method can visualize neural activity at penetration depths and spatio-temporal resolution scales not covered with the existing neuroimaging techniques. Thus, in addition to the well-established capacity of optoacoustics to resolve vascular anatomy and multiple hemodynamic parameters deep in scattering tissues, the newly developed methodology offers unprecedented capabilities for functional whole brain observations of fast calcium dynamics.
Kazadi Mbamba, Christian; Flores-Alsina, Xavier; John Batstone, Damien; Tait, Stephan
2016-09-01
The focus of modelling in wastewater treatment is shifting from single unit to plant-wide scale. Plant-wide modelling approaches provide opportunities to study the dynamics and interactions of different transformations in water and sludge streams. Towards developing more general and robust simulation tools applicable to a broad range of wastewater engineering problems, this paper evaluates a plant-wide model built with sub-models from the Benchmark Simulation Model No. 2-P (BSM2-P) with an improved/expanded physico-chemical framework (PCF). The PCF includes a simple and validated equilibrium approach describing ion speciation and ion pairing with kinetic multiple minerals precipitation. Model performance is evaluated against data sets from a full-scale wastewater treatment plant, assessing capability to describe water and sludge lines across the treatment process under steady-state operation. With default rate kinetic and stoichiometric parameters, a good general agreement is observed between the full-scale datasets and the simulated results under steady-state conditions. Simulation results show differences between measured and modelled phosphorus as little as 4-15% (relative) throughout the entire plant. Dynamic influent profiles were generated using a calibrated influent generator and were used to study the effect of long-term influent dynamics on plant performance. Model-based analysis shows that minerals precipitation strongly influences composition in the anaerobic digesters, but also impacts on nutrient loading across the entire plant. A forecasted implementation of nutrient recovery by struvite crystallization (model scenario only), reduced the phosphorus content in the treatment plant influent (via centrate recycling) considerably and thus decreased phosphorus in the treated outflow by up to 43%. Overall, the evaluated plant-wide model is able to jointly describe the physico-chemical and biological processes, and is advocated for future use as a tool for design, performance evaluation and optimization of whole wastewater treatment plants. Copyright © 2016 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jankunas, Justin; Bertsche, Benjamin; Osterwalder, Andreas, E-mail: andreas.osterwalder@epfl.ch
2014-06-28
Two isotopic chemical reactions, Ne{sup *} + NH{sub 3}, and Ne{sup *} + ND{sub 3}, have been studied at low collision energies by means of a merged beams technique. Partial cross sections have been recorded for the two reactive channels, namely, Ne{sup *} + NH{sub 3} → Ne + NH{sub 3}{sup +} + e{sup −}, and Ne{sup *} + NH{sub 3} → Ne + NH{sub 2}{sup +}+ H + e{sup −}, by detecting the NH{sub 3}{sup +} and NH{sub 2}{sup +} product ions, respectively. The cross sections for both reactions were found to increase with decreasing collision energy, E{sub coll},more » in the range 8 μeV < E{sub coll} < 20 meV. The measured rate constant exhibits a curvature in a log(k)-log(E{sub coll}) plot from which it is concluded that the Langevin capture model does not properly describe the Ne{sup *} + NH{sub 3} reaction in the entire range of collision energies covered here. Calculations based on multichannel quantum defect theory were performed to reproduce and interpret the experimental results. Good agreement was obtained by including long range van der Waals interactions combined with a 6-12 Lennard-Jones potential. The branching ratio between the two reactive channels, Γ=([NH{sub 2}{sup +}])/([NH{sub 2}{sup +}]+[NH{sub 3}{sup +}]) , is relatively constant, Γ ≈ 0.3, in the entire collision energy range studied here. Possible reasons for this observation are discussed and rationalized in terms of relative time scales of the reactant approach and the molecular rotation. Isotopic differences between the Ne{sup *} + NH{sub 3} and Ne{sup *} + ND{sub 3} reactions are small, as suggested by nearly equal branching ratios and cross sections for the two reactions.« less
NASA Astrophysics Data System (ADS)
Ohnaka, M.
2004-12-01
For the past four decades, great progress has been made in understanding earthquake source processes. In particular, recent progress in the field of the physics of earthquakes has contributed substantially to unraveling the earthquake generation process in quantitative terms. Yet, a fundamental problem remains unresolved in this field. The constitutive law that governs the behavior of earthquake ruptures is the basis of earthquake physics, and the governing law plays a fundamental role in accounting for the entire process of an earthquake rupture, from its nucleation to the dynamic propagation to its arrest, quantitatively in a unified and consistent manner. Therefore, without establishing the rational constitutive law, the physics of earthquakes cannot be a quantitative science in a true sense, and hence it is urgent to establish the rational constitutive law. However, it has been controversial over the past two decades, and it is still controversial, what the constitutive law for earthquake ruptures ought to be, and how it should be formulated. To resolve the controversy is a necessary step towards a more complete, unified theory of earthquake physics, and now the time is ripe to do so. Because of its fundamental importance, we have to discuss thoroughly and rigorously what the constitutive law ought to be from the standpoint of the physics of rock friction and fracture on the basis of solid evidence. There are prerequisites for the constitutive formulation. The brittle, seismogenic layer and individual faults therein are characterized by inhomogeneity, and fault inhomogeneity has profound implications for earthquake ruptures. In addition, rupture phenomena including earthquakes are inherently scale dependent; indeed, some of the physical quantities inherent in rupture exhibit scale dependence. To treat scale-dependent physical quantities inherent in the rupture over a broad scale range quantitatively in a unified and consistent manner, it is critical to formulate the governing law properly so as to incorporate the scaling property. Thus, the properties of fault inhomogeneity and physical scaling are indispensable prerequisites to be incorporated into the constitutive formulation. Thorough discussion in this context necessarily leads to the consistent conclusion that the constitutive law must be formulated in such a manner that the shear traction is a primary function of the slip displacement, with the secondary effect of slip rate or stationary contact time. This constitutive formulation makes it possible to account for the entire process of an earthquake rupture over a broad scale range quantitatively in a unified and consistent manner.
Hydrologic Variability Governs Population Dynamics of a Vulnerable Amphibian in an Arid Environment
Zylstra, Erin R.; Steidl, Robert J.; Swann, Don E.; Ratzlaff, Kristina
2015-01-01
Dynamics of many amphibian populations are governed by the distribution and availability of water. Therefore, understanding the hydrological mechanisms that explain spatial and temporal variation in occupancy and abundance will improve our ability to conserve and recover populations of vulnerable amphibians. We used 16 years of survey data from intermittent mountain streams in the Sonoran Desert to evaluate how availability of surface water affected survival and adult recruitment of a threatened amphibian, the lowland leopard frog (Lithobates yavapaiensis). Across the entire study period, monthly survival of adults ranged from 0.72 to 0.99 during summer and 0.59 to 0.94 during winter and increased with availability of surface water (Z = 7.66; P < 0.01). Recruitment of frogs into the adult age class occurred primarily during winter and ranged from 1.9 to 3.8 individuals/season/pool; like survival, recruitment increased with availability of surface water (Z = 3.67; P < 0.01). Although abundance of frogs varied across seasons and years, we found no evidence of a systematic trend during the 16-year study period. Given the strong influence of surface water on population dynamics of leopard frogs, conservation of many riparian obligates in this and similar arid regions likely depends critically on minimizing threats to structures and ecosystem processes that maintain surface waters. Understanding the influence of surface-water availability on riparian organisms is particularly important because climate change is likely to decrease precipitation and increase ambient temperatures in desert riparian systems, both of which have the potential to alter fundamentally the hydrology of these systems. PMID:26030825
An Adaptive Complex Network Model for Brain Functional Networks
Gomez Portillo, Ignacio J.; Gleiser, Pablo M.
2009-01-01
Brain functional networks are graph representations of activity in the brain, where the vertices represent anatomical regions and the edges their functional connectivity. These networks present a robust small world topological structure, characterized by highly integrated modules connected sparsely by long range links. Recent studies showed that other topological properties such as the degree distribution and the presence (or absence) of a hierarchical structure are not robust, and show different intriguing behaviors. In order to understand the basic ingredients necessary for the emergence of these complex network structures we present an adaptive complex network model for human brain functional networks. The microscopic units of the model are dynamical nodes that represent active regions of the brain, whose interaction gives rise to complex network structures. The links between the nodes are chosen following an adaptive algorithm that establishes connections between dynamical elements with similar internal states. We show that the model is able to describe topological characteristics of human brain networks obtained from functional magnetic resonance imaging studies. In particular, when the dynamical rules of the model allow for integrated processing over the entire network scale-free non-hierarchical networks with well defined communities emerge. On the other hand, when the dynamical rules restrict the information to a local neighborhood, communities cluster together into larger ones, giving rise to a hierarchical structure, with a truncated power law degree distribution. PMID:19738902
Spatial Dynamics of Multilayer Cellular Neural Networks
NASA Astrophysics Data System (ADS)
Wu, Shi-Liang; Hsu, Cheng-Hsiung
2018-02-01
The purpose of this work is to study the spatial dynamics of one-dimensional multilayer cellular neural networks. We first establish the existence of rightward and leftward spreading speeds of the model. Then we show that the spreading speeds coincide with the minimum wave speeds of the traveling wave fronts in the right and left directions. Moreover, we obtain the asymptotic behavior of the traveling wave fronts when the wave speeds are positive and greater than the spreading speeds. According to the asymptotic behavior and using various kinds of comparison theorems, some front-like entire solutions are constructed by combining the rightward and leftward traveling wave fronts with different speeds and a spatially homogeneous solution of the model. Finally, various qualitative features of such entire solutions are investigated.
Ruggiero, Michael T; Krynski, Marcin; Kissi, Eric Ofosu; Sibik, Juraj; Markl, Daniel; Tan, Nicholas Y; Arslanov, Denis; van der Zande, Wim; Redlich, Britta; Korter, Timothy M; Grohganz, Holger; Löbmann, Korbinian; Rades, Thomas; Elliott, Stephen R; Zeitler, J Axel
2017-11-15
The fundamental origins surrounding the dynamics of disordered solids near their characteristic glass transitions continue to be fiercely debated, even though a vast number of materials can form amorphous solids, including small-molecule organic, inorganic, covalent, metallic, and even large biological systems. The glass-transition temperature, T g , can be readily detected by a diverse set of techniques, but given that these measurement modalities probe vastly different processes, there has been significant debate regarding the question of why T g can be detected across all of them. Here we show clear experimental and computational evidence in support of a theory that proposes that the shape and structure of the potential-energy surface (PES) is the fundamental factor underlying the glass-transition processes, regardless of the frequency that experimental methods probe. Whilst this has been proposed previously, we demonstrate, using ab initio molecular-dynamics (AIMD) simulations, that it is of critical importance to carefully consider the complete PES - both the intra-molecular and inter-molecular features - in order to fully understand the entire range of atomic-dynamical processes in disordered solids. Finally, we show that it is possible to utilise this dependence to directly manipulate and harness amorphous dynamics in order to control the behaviour of such solids by using high-powered terahertz pulses to induce crystallisation and preferential crystal-polymorph growth in glasses. Combined, these findings provide compelling evidence that the PES landscape, and the corresponding energy barriers, are the ultimate controlling feature behind the atomic and molecular dynamics of disordered solids, regardless of the frequency at which they occur.
NASA Astrophysics Data System (ADS)
Zhu, Zhiwei; Li, Tim
2017-01-01
The extended-range (10-30-day) rainfall forecast over the entire China was carried out using spatial-temporal projection models (STPMs). Using a rotated empirical orthogonal function analysis of intraseasonal (10-80-day) rainfall anomalies, China is divided into ten sub-regions. Different predictability sources were selected for each of the ten regions. The forecast skills are ranked for each region. Based on temporal correlation coefficient (TCC) and Gerrity skill score, useful skills are found for most parts of China at a 20-25-day lead. The southern China and the mid-lower reaches of Yangtze River Valley show the highest predictive skills, whereas southwestern China and Huang-Huai region have the lowest predictive skills. By combining forecast results from ten regional STPMs, the TCC distribution of 8-year (2003-2010) independent forecast for the entire China is investigated. The combined forecast results from ten STPMs show significantly higher skills than the forecast with just one single STPM for the entire China. Independent forecast examples of summer rainfall anomalies around the period of Beijing Olympic Games in 2008 and Shanghai World Expo in 2010 are presented. The result shows that the current model is able to reproduce the gross pattern of the summer intraseasonal rainfall over China at a 20-day lead. The present study provides, for the first time, a guide on the statistical extended-range forecast of summer rainfall anomalies for the entire China. It is anticipated that the ideas and methods proposed here will facilitate the extended-range forecast in China.
Block voter model: Phase diagram and critical behavior
NASA Astrophysics Data System (ADS)
Sampaio-Filho, C. I. N.; Moreira, F. G. B.
2011-11-01
We introduce and study the block voter model with noise on two-dimensional square lattices using Monte Carlo simulations and finite-size scaling techniques. The model is defined by an outflow dynamics where a central set of NPCS spins, here denoted by persuasive cluster spins (PCS), tries to influence the opinion of their neighboring counterparts. We consider the collective behavior of the entire system with varying PCS size. When NPCS>2, the system exhibits an order-disorder phase transition at a critical noise parameter qc which is a monotonically increasing function of the size of the persuasive cluster. We conclude that a larger PCS has more power of persuasion, when compared to a smaller one. It also seems that the resulting critical behavior is Ising-like independent of the range of interaction.
NASA Astrophysics Data System (ADS)
Liu, Zonghua; Lai, Ying-Cheng; Ye, Nong
2003-03-01
We consider the entire spectrum of architectures of general networks, ranging from being heterogeneous (scale-free) to homogeneous (random), and investigate the infection dynamics by using a three-state epidemiological model that does not involve the mechanism of self-recovery. This model is relevant to realistic situations such as the propagation of a flu virus or information over a social network. Our heuristic analysis and computations indicate that (1) regardless of the network architecture, there exists a substantial fraction of nodes that can never be infected and (2) heterogeneous networks are relatively more robust against spreads of infection as compared with homogeneous networks. We have also considered the problem of immunization for preventing wide spread of infection, with the result that targeted immunization is effective for heterogeneous networks.
NASA Technical Reports Server (NTRS)
1995-01-01
An evaluation of the effect of model inlet air temperature drift during a test run was performed to aid in the decision on the need for and/or the schedule for including heaters in the SRMAFTE. The Sverdrup acceptance test data was used to determine the drift in air temperature during runs over the entire range of delivered flow rates and pressures. The effect of this temperature drift on the model Reynolds number was also calculated. It was concluded from this study that a 2% change in absolute temperature during a test run could be adequately accounted for by the data analysis program. A handout package of these results was prepared and presented to ED35 management.
NASA Astrophysics Data System (ADS)
Rolley, Matthew H.; Sweet, Tracy K. N.; Min, Gao
2017-09-01
This work demonstrates a new technique that capitalizes on the inherent flexibility of the thermoelectric module to provide a multifunctional platform, and exhibits a unique advantage only available within CPV-TE hybrid architectures. This system is the first to use the thermoelectric itself for hot-side temperature feedback to a PID control system, needing no additional thermocouple or thermistor to be attached to the cell - eliminating shading, and complex mechanical designs for mounting. Temperature measurement accuracy and thermoelectric active cooling functionality is preserved. Dynamic "per-cell" condition monitoring and protection is feasible using this technique, with direct cell-specific temperature measurement accurate to 1°C demonstrated over the entire experimental range. The extrapolation accuracy potential of the technique was also evaluated.
Control of a lithium-ion battery storage system for microgrid applications
NASA Astrophysics Data System (ADS)
Pegueroles-Queralt, Jordi; Bianchi, Fernando D.; Gomis-Bellmunt, Oriol
2014-12-01
The operation of future microgrids will require the use of energy storage systems employing power electronics converters with advanced power management capacities. This paper presents the control scheme for a medium power lithium-ion battery bidirectional DC/AC power converter intended for microgrid applications. The switching devices of a bidirectional DC converter are commanded by a single sliding mode control law, dynamically shaped by a linear voltage regulator in accordance with the battery management system. The sliding mode controller facilitates the implementation and design of the control law and simplifies the stability analysis over the entire operating range. Control parameters of the linear regulator are designed to minimize the impact of commutation noise in the DC-link voltage regulation. The effectiveness of the proposed control strategy is illustrated by experimental results.
NASA Technical Reports Server (NTRS)
Jones, Scott M.
2007-01-01
This document is intended as an introduction to the analysis of gas turbine engine cycles using the Numerical Propulsion System Simulation (NPSS) code. It is assumed that the analyst has a firm understanding of fluid flow, gas dynamics, thermodynamics, and turbomachinery theory. The purpose of this paper is to provide for the novice the information necessary to begin cycle analysis using NPSS. This paper and the annotated example serve as a starting point and by no means cover the entire range of information and experience necessary for engine performance simulation. NPSS syntax is presented but for a more detailed explanation of the code the user is referred to the NPSS User Guide and Reference document (ref. 1).
Building micro-soccer-balls with evaporating colloidal fakir drops
NASA Astrophysics Data System (ADS)
Gelderblom, Hanneke; Marín, Álvaro G.; Susarrey-Arce, Arturo; van Housselt, Arie; Lefferts, Leon; Gardeniers, Han; Lohse, Detlef; Snoeijer, Jacco H.
2013-11-01
Drop evaporation can be used to self-assemble particles into three-dimensional microstructures on a scale where direct manipulation is impossible. We present a unique method to create highly-ordered colloidal microstructures in which we can control the amount of particles and their packing fraction. To this end, we evaporate colloidal dispersion drops from a special type of superhydrophobic microstructured surface, on which the drop remains in Cassie-Baxter state during the entire evaporative process. The remainders of the drop consist of a massive spherical cluster of the microspheres, with diameters ranging from a few tens up to several hundreds of microns. We present scaling arguments to show how the final particle packing fraction of these balls depends on the drop evaporation dynamics, particle size, and number of particles in the system.
Space processing applications rocket project. SPAR 8
NASA Technical Reports Server (NTRS)
Chassay, R. P. (Editor)
1984-01-01
The Space Processing Applications Rocket Project (SPAR) VIII Final Report contains the engineering report prepared at the Marshall Space Flight Center (MSFC) as well as the three reports from the principal investigators. These reports also describe pertinent portions of ground-based research leading to the ultimate selection of the flight sample composition, including design, fabrication, and testing, all of which are expected to contribute immeasurably to an improved comprehension of materials processing in space. This technical memorandum is directed entirely to the payload manifest flown in the eighth of a series of SPAR flights conducted at the White Sands Missile Range (WSMR) and includes the experiments entitled Glass Formation Experiment SPAR 74-42/1R, Glass Fining Experiment in Low-Gravity SPAR 77-13/1, and Dynamics of Liquid Bubbles SPAR Experiment 77-18/2.
The investigation of tethered satellite system dynamics
NASA Technical Reports Server (NTRS)
Lorenzini, E.
1984-01-01
Tethered satellite system (TSS) dynamics were studied. The dynamic response of the TSS during the entire stationkeeping phase for the first electrodynamic mission was investigated. An out of plane swing amplitude and the tether's bowing were observed. The dynamics of the slack tether was studied and computer code, SLACK2, was improved both in capabilities and computational speed. Speed hazard related to tether breakage or plasma contactor failure was examined. Preliminary values of the potential difference after the failure and of the drop of the electric field along the tether axis have been computed. The update of the satellite rotational dynamics model is initiated.
Evolutionary dynamics on graphs
NASA Astrophysics Data System (ADS)
Lieberman, Erez; Hauert, Christoph; Nowak, Martin A.
2005-01-01
Evolutionary dynamics have been traditionally studied in the context of homogeneous or spatially extended populations. Here we generalize population structure by arranging individuals on a graph. Each vertex represents an individual. The weighted edges denote reproductive rates which govern how often individuals place offspring into adjacent vertices. The homogeneous population, described by the Moran process, is the special case of a fully connected graph with evenly weighted edges. Spatial structures are described by graphs where vertices are connected with their nearest neighbours. We also explore evolution on random and scale-free networks. We determine the fixation probability of mutants, and characterize those graphs for which fixation behaviour is identical to that of a homogeneous population. Furthermore, some graphs act as suppressors and others as amplifiers of selection. It is even possible to find graphs that guarantee the fixation of any advantageous mutant. We also study frequency-dependent selection and show that the outcome of evolutionary games can depend entirely on the structure of the underlying graph. Evolutionary graph theory has many fascinating applications ranging from ecology to multi-cellular organization and economics.
Disease spreading in real-life networks
NASA Astrophysics Data System (ADS)
Gallos, Lazaros; Argyrakis, Panos
2002-08-01
In recent years the scientific community has shown a vivid interest in the network structure and dynamics of real-life organized systems. Many such systems, covering an extremely wide range of applications, have been recently shown to exhibit scale-free character in their connectivity distribution, meaning that they obey a power law. Modeling of epidemics on lattices and small-world networks suffers from the presence of a critical infection threshold, above which the entire population is infected. For scale-free networks, the original assumption was that the formation of a giant cluster would lead to an epidemic spreading in the same way as in simpler networks. Here we show that modeling epidemics on a scale-free network can greatly improve the predictions on the rate and efficiency of spreading, as compared to lattice models and small-world networks. We also show that the dynamics of a disease are greatly influenced by the underlying population structure. The exact same model can describe a plethora of networks, such as social networks, virus spreading in the Web, rumor spreading, signal transmission etc.
On Growth and Form of the Zebrafish Gut Microbiome
NASA Astrophysics Data System (ADS)
Jemielita, Matthew; Taormina, Michael; Rolig, Annah; Burns, Adam; Hampton, Jennifer; Guillemin, Karen; Parthasarathy, Raghuveer
2014-03-01
The vertebrate gut is home to a diverse microbial community whose composition has a strong influence on the development and health of the host organism. Researchers can identify the members of the microbiota, yet little is known about the spatial and temporal dynamics of these microbial communities, including the mechanisms guiding their nucleation, growth, and interactions. We address these issues using the larval zebrafish (Danio rerio) as a model organism, which are raised microbe-free and then inoculated with controlled compositions of fluorophore-expressing bacteria. Live imaging using light sheet fluorescence microscopy enables visualization of the gut's entire microbial population over the first 24 hours of colonization. Image analysis allows us to quantify microbial populations that range from a few individuals to tens of thousands of microbes, and analyze the structure and growth kinetics of gut bacterial communities. We find that genetically-identical microbes can show surprisingly different growth rates and colonization abilities depending on their order of arrival. This demonstrates that knowing only the constituents of the gut community is insufficient to determine their dynamics; rather, the history of colonization matters.
Makita, K.; Fèvre, E.M.; Waiswa, C.; Bronsvoort, M.D.C.; Eisler, M.C.; Welburn, S.C.
2010-01-01
In developing countries, cities are rapidly expanding and urban and peri-urban agriculture (UPA) has an important role in feeding these growing urban populations; however such agriculture also carries public health risks such as zoonotic disease transmission. It is important to assess the role of UPA in food security and public health risks to make evidence-based decisions on policies. Describing and mapping the peri-urban interface (PUI) are the essential first steps for such an assessment. Kampala, the capital city of Uganda is a rapidly expanding city where the PUI has not previously been mapped or properly described. In this paper we provide a spatial representation of the entire PUI of Kampala economic zone and determine the socio-economic factors related with peri-urbanicity using a population-dynamics focussed rapid rural mapping. This fills a technical gap of rapid rural mapping and offers a simple and rapid methodology for describing the PUI which can be applied in any city in developing countries for wide range of studies. PMID:22210972
The Dynamic Density Bottle: A Make-and-Take, Guided Inquiry Activity on Density
ERIC Educational Resources Information Center
Kuntzleman, Thomas S.
2015-01-01
An activity is described wherein students observe dynamic floating and sinking behavior of plastic pieces in various liquids. The liquids and solids are all contained within a plastic bottle; the entire assembly is called a "density bottle". After completing a series of experiments that guides students to think about the relative…
ERIC Educational Resources Information Center
Korat, Ofra; Levin, Iris; Atishkin, Shifra; Turgeman, Merav
2014-01-01
We investigated the effects of three facilitators: adults' support, dynamic visual vocabulary support and static visual vocabulary support on vocabulary acquisition in the context of e-book reading. Participants were 144 Israeli Hebrew-speaking preschoolers (aged 4-6) from middle SES neighborhoods. The entire sample read the e-book without a…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yang, Li-Ping, E-mail: yangliping302@hrbeu.edu.cn; Ding, Shun-Liang; Song, En-Zhe
The cycling combustion instabilities in a diesel engine have been analyzed based on chaos theory. The objective was to investigate the dynamical characteristics of combustion in diesel engine. In this study, experiments were performed under the entire operating range of a diesel engine (the engine speed was changed from 600 to 1400 rpm and the engine load rate was from 0% to 100%), and acquired real-time series of in-cylinder combustion pressure using a piezoelectric transducer installed on the cylinder head. Several methods were applied to identify and quantitatively analyze the combustion process complexity in the diesel engine including delay-coordinate embedding, recurrencemore » plot (RP), Recurrence Quantification Analysis, correlation dimension (CD), and the largest Lyapunov exponent (LLE) estimation. The results show that the combustion process exhibits some determinism. If LLE is positive, then the combustion system has a fractal dimension and CD is no more than 1.6 and within the diesel engine operating range. We have concluded that the combustion system of diesel engine is a low-dimensional chaotic system and the maximum values of CD and LLE occur at the lowest engine speed and load. This means that combustion system is more complex and sensitive to initial conditions and that poor combustion quality leads to the decrease of fuel economy and the increase of exhaust emissions.« less
Yang, Li-Ping; Ding, Shun-Liang; Litak, Grzegorz; Song, En-Zhe; Ma, Xiu-Zhen
2015-01-01
The cycling combustion instabilities in a diesel engine have been analyzed based on chaos theory. The objective was to investigate the dynamical characteristics of combustion in diesel engine. In this study, experiments were performed under the entire operating range of a diesel engine (the engine speed was changed from 600 to 1400 rpm and the engine load rate was from 0% to 100%), and acquired real-time series of in-cylinder combustion pressure using a piezoelectric transducer installed on the cylinder head. Several methods were applied to identify and quantitatively analyze the combustion process complexity in the diesel engine including delay-coordinate embedding, recurrence plot (RP), Recurrence Quantification Analysis, correlation dimension (CD), and the largest Lyapunov exponent (LLE) estimation. The results show that the combustion process exhibits some determinism. If LLE is positive, then the combustion system has a fractal dimension and CD is no more than 1.6 and within the diesel engine operating range. We have concluded that the combustion system of diesel engine is a low-dimensional chaotic system and the maximum values of CD and LLE occur at the lowest engine speed and load. This means that combustion system is more complex and sensitive to initial conditions and that poor combustion quality leads to the decrease of fuel economy and the increase of exhaust emissions.
Ecological allometries and niche use dynamics across Komodo dragon ontogeny.
Purwandana, Deni; Ariefiandy, Achmad; Imansyah, M Jeri; Seno, Aganto; Ciofi, Claudio; Letnic, Mike; Jessop, Tim S
2016-04-01
Ontogenetic allometries in ecological habits and niche use are key responses by which individuals maximize lifetime fitness. Moreover, such allometries have significant implications for how individuals influence population and community dynamics. Here, we examined how body size variation in Komodo dragons (Varanus komodoensis) influenced ecological allometries in their: (1) prey size preference, (2) daily movement rates, (3) home range area, and (4) subsequent niche use across ontogeny. With increased body mass, Komodo dragons increased prey size with a dramatic switch from small (≤10 kg) to large prey (≥50 kg) in lizards heavier than 20 kg. Rates of foraging movement were described by a non-linear concave down response with lizard increasing hourly movement rates up until ∼20 kg body mass before decreasing daily movement suggesting reduced foraging effort in larger lizards. In contrast, home range area exhibited a sigmoid response with increased body mass. Intrapopulation ecological niche use and overlap were also strongly structured by body size. Thus, ontogenetic allometries suggest Komodo dragon's transition from a highly active foraging mode exploiting small prey through to a less active sit and wait feeding strategy focused on killing large ungulates. Further, our results suggest that as body size increases across ontogeny, the Komodo dragon exhibited marked ontogenetic niche shifts that enabled it to function as an entire vertebrate predator guild by exploiting prey across multiple trophic levels.
Performance metric comparison study for non-magnetic bi-stable energy harvesters
NASA Astrophysics Data System (ADS)
Udani, Janav P.; Wrigley, Cailin; Arrieta, Andres F.
2017-04-01
Energy harvesting employing non-linear systems offers considerable advantages over linear systems given the broadband resonant response which is favorable for applications involving diverse input vibrations. In this respect, the rich dynamics of bi-stable systems present a promising means for harvesting vibrational energy from ambient sources. Harvesters deriving their bi-stability from thermally induced stresses as opposed to magnetic forces are receiving significant attention as it reduces the need for ancillary components and allows for bio- compatible constructions. However, the design of these bi-stable harvesters still requires further optimization to completely exploit the dynamic behavior of these systems. This study presents a comparison of the harvesting capabilities of non-magnetic, bi-stable composite laminates under variations in the design parameters as evaluated utilizing established power metrics. Energy output characteristics of two bi-stable composite laminate plates with a piezoelectric patch bonded on the top surface are experimentally investigated for variations in the thickness ratio and inertial mass positions for multiple load conditions. A particular design configuration is found to perform better over the entire range of testing conditions which include single and multiple frequency excitation, thus indicating that design optimization over the geometry of the harvester yields robust performance. The experimental analysis further highlights the need for appropriate design guidelines for optimization and holistic performance metrics to account for the range of operational conditions.
Ecological allometries and niche use dynamics across Komodo dragon ontogeny
NASA Astrophysics Data System (ADS)
Purwandana, Deni; Ariefiandy, Achmad; Imansyah, M. Jeri; Seno, Aganto; Ciofi, Claudio; Letnic, Mike; Jessop, Tim S.
2016-04-01
Ontogenetic allometries in ecological habits and niche use are key responses by which individuals maximize lifetime fitness. Moreover, such allometries have significant implications for how individuals influence population and community dynamics. Here, we examined how body size variation in Komodo dragons ( Varanus komodoensis) influenced ecological allometries in their: (1) prey size preference, (2) daily movement rates, (3) home range area, and (4) subsequent niche use across ontogeny. With increased body mass, Komodo dragons increased prey size with a dramatic switch from small (≤10 kg) to large prey (≥50 kg) in lizards heavier than 20 kg. Rates of foraging movement were described by a non-linear concave down response with lizard increasing hourly movement rates up until ˜20 kg body mass before decreasing daily movement suggesting reduced foraging effort in larger lizards. In contrast, home range area exhibited a sigmoid response with increased body mass. Intrapopulation ecological niche use and overlap were also strongly structured by body size. Thus, ontogenetic allometries suggest Komodo dragon's transition from a highly active foraging mode exploiting small prey through to a less active sit and wait feeding strategy focused on killing large ungulates. Further, our results suggest that as body size increases across ontogeny, the Komodo dragon exhibited marked ontogenetic niche shifts that enabled it to function as an entire vertebrate predator guild by exploiting prey across multiple trophic levels.
Yiu, Sze-Wing; Parrini, Francesca; Karczmarski, Leszek; Keith, Mark
2017-07-01
Understanding of animal spatial behavior is essential for informed management decisions. In southern Africa, reintroduction of lions (Panthera leo) to small reserves (<1000 km 2 ) has increased since the early 2000s, however studies on their ranging behavior in these enclosed systems remain lacking. We applied Time Local Convex Hull (T-LoCoH) methods to study the home range establishment and utilization of 11 lions reintroduced to Dinokeng Game Reserve, South Africa, during 2011 through 2014. Lions established home ranges close to their release sites and during the following 3 years their home range sizes continued to increase, but in each individual case the size remained smaller than half of the reserve area (<70 km 2 ). Space use strategies differed between the core and the entire home range, with higher frequency of visits found in core areas. Exceptionally high rates (>60 separate visits) around the largest dam and along rivers suggest the importance of water and its surrounding vegetation in the lions' space utilization pattern. The home range size did not differ with season or sex of the individuals, whereas shifts in locations of home ranges revealed differences in the response of the 2 sexes to territorial conflicts and management interventions. Our study shows a dynamic home range utilization pattern and highlights the importance of both fine-scale space use patterns (frequency and duration of visits) and broad-scale home range changes in understanding the ranging behavior of reintroduced animals. © 2016 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and John Wiley & Sons Australia, Ltd.
Sliding states of a soft-colloid cluster crystal: Cluster versus single-particle hopping
NASA Astrophysics Data System (ADS)
Rossini, Mirko; Consonni, Lorenzo; Stenco, Andrea; Reatto, Luciano; Manini, Nicola
2018-05-01
We study a two-dimensional model for interacting colloidal particles which displays spontaneous clustering. Within this model we investigate the competition between the pinning to a periodic corrugation potential and a sideways constant pulling force which would promote a sliding state. For a few sample particle densities and amplitudes of the periodic corrugation potential we investigate the depinning from the statically pinned to the dynamically sliding regime. This sliding state exhibits the competition between a dynamics where entire clusters are pulled from a minimum to the next and a dynamics where single colloids or smaller groups leave a cluster and move across the corrugation energy barrier to join the next cluster downstream in the force direction. Both kinds of sliding states can occur either coherently across the entire sample or asynchronously: the two regimes result in different average mobilities. Finite temperature tends to destroy separate sliding regimes, generating a smoother dependence of the mobility on the driving force.
Automated quantification of lumbar vertebral kinematics from dynamic fluoroscopic sequences
NASA Astrophysics Data System (ADS)
Camp, Jon; Zhao, Kristin; Morel, Etienne; White, Dan; Magnuson, Dixon; Gay, Ralph; An, Kai-Nan; Robb, Richard
2009-02-01
We hypothesize that the vertebra-to-vertebra patterns of spinal flexion and extension motion of persons with lower back pain will differ from those of persons who are pain-free. Thus, it is our goal to measure the motion of individual lumbar vertebrae noninvasively from dynamic fluoroscopic sequences. Two-dimensional normalized mutual information-based image registration was used to track frame-to-frame motion. Software was developed that required the operator to identify each vertebra on the first frame of the sequence using a four-point "caliper" placed at the posterior and anterior edges of the inferior and superior end plates of the target vertebrae. The program then resolved the individual motions of each vertebra independently throughout the entire sequence. To validate the technique, 6 cadaveric lumbar spine specimens were potted in polymethylmethacrylate and instrumented with optoelectric sensors. The specimens were then placed in a custom dynamic spine simulator and moved through flexion-extension cycles while kinematic data and fluoroscopic sequences were simultaneously acquired. We found strong correlation between the absolute flexionextension range of motion of each vertebra as recorded by the optoelectric system and as determined from the fluoroscopic sequence via registration. We conclude that this method is a viable way of noninvasively assessing twodimensional vertebral motion.
Dynamic Triple-Mode Sorption and Outgassing in Materials.
Sharma, Hom N; Harley, Stephen J; Sun, Yunwei; Glascoe, Elizabeth A
2017-06-07
Moisture uptake and outgassing can be detrimental to a system by altering the chemical and mechanical properties of materials within the system over time. In this work, we conducted isotherm experiments to investigate dynamic moisture sorption and desorption in markedly different materials, i.e., a polymeric material, Sylgard-184 and a ceramic aluminosilicate material, Zircar RS-1200, at different temperatures (30 °C-70 °C) by varying the water activity (0.0-0.90). Sylgard-184 showed a linear sorption and outgassing behavior with no-hysteresis over the entire temperature and water activity range considered here. Whereas, the sorption and outgassing of Zircar RS-1200 was highly non-linear with significant hysteresis, especially at higher water activities, at all temperatures considered here. The type of hysteresis suggested the presence of mesopores in Zircar RS-1200, whereas the lack of hysteresis in Sylgard-184 indicates that it has a nonporous structure. A diffusion model coupled with a dynamic, triple-mode sorption (Langmuir, Henry, and pooling modes) model employed in this study matched our experimental data very well and provides mechanistic insight into the processes. Our triple-mode sorption model was adaptive enough to (1) model these distinctly different materials and (2) predict sorption and outgassing under conditions that are distinctly different from the parameterization experiments.
Dynamic Triple-Mode Sorption and Outgassing in Materials
Sharma, Hom N.; Harley, Stephen J.; Sun, Yunwei; ...
2017-06-07
Moisture uptake and outgassing can be detrimental to a system by altering the chemical and mechanical properties of materials within the system over time. In this work, we conducted isotherm experiments to investigate dynamic moisture sorption and desorption in markedly different materials, i.e., a polymeric material, Sylgard-184 and a ceramic aluminosilicate material, Zircar RS-1200, at different temperatures (30 °C–70 °C) by varying the water activity (0.0–0.90). Sylgard-184 showed a linear sorption and outgassing behavior with no-hysteresis over the entire temperature and water activity range considered here. Whereas, the sorption and outgassing of Zircar RS-1200 was highly non-linear with significant hysteresis,more » especially at higher water activities, at all temperatures considered here. The type of hysteresis suggested the presence of mesopores in Zircar RS-1200, whereas the lack of hysteresis in Sylgard-184 indicates that it has a nonporous structure. A diffusion model coupled with a dynamic, triple-mode sorption (Langmuir, Henry, and pooling modes) model employed in this study matched our experimental data very well and provides mechanistic insight into the processes. Our triple-mode sorption model was adaptive enough to (1) model these distinctly different materials and (2) predict sorption and outgassing under conditions that are distinctly different from the parameterization experiments.« less
Mitochondrial pleomorphy in plant cells is driven by contiguous ER dynamics
Jaipargas, Erica-Ashley; Barton, Kiah A.; Mathur, Neeta; Mathur, Jaideep
2015-01-01
Mitochondria are pleomorphic, double membrane-bound organelles involved in cellular energetics in all eukaryotes. Mitochondria in animal and yeast cells are typically tubular-reticulate structures and several micro-meters long but in green plants they are predominantly observed as 0.2–1.5 μm punctae. While fission and fusion, through the coordinated activity of several conserved proteins, shapes mitochondria, the endoplasmic reticulum (ER) has recently been identified as an additional player in this process in yeast and mammalian cells. The mitochondria-ER relationship in plant cells remains largely uncharacterized. Here, through live-imaging of the entire range of mitochondria pleomorphy we uncover the underlying basis for the predominantly punctate mitochondrial form in plants. We demonstrate that mitochondrial morphology changes in response to light and cytosolic sugar levels in an ER mediated manner. Whereas, large ER polygons and low dynamics under dark conditions favor mitochondrial fusion and elongation, small ER polygons result in increased fission and predominantly small mitochondria. Hypoxia also reduces ER dynamics and increases mitochondrial fusion to produce giant mitochondria. By observing elongated mitochondria in normal plants and fission-impaired Arabidopsis nmt1-2 and drp3a mutants we also establish that thin extensions called matrixules and a beads-on-a-string mitochondrial phenotype are direct consequences of mitochondria-ER interactions. PMID:26442089
Robust Models for Optic Flow Coding in Natural Scenes Inspired by Insect Biology
Brinkworth, Russell S. A.; O'Carroll, David C.
2009-01-01
The extraction of accurate self-motion information from the visual world is a difficult problem that has been solved very efficiently by biological organisms utilizing non-linear processing. Previous bio-inspired models for motion detection based on a correlation mechanism have been dogged by issues that arise from their sensitivity to undesired properties of the image, such as contrast, which vary widely between images. Here we present a model with multiple levels of non-linear dynamic adaptive components based directly on the known or suspected responses of neurons within the visual motion pathway of the fly brain. By testing the model under realistic high-dynamic range conditions we show that the addition of these elements makes the motion detection model robust across a large variety of images, velocities and accelerations. Furthermore the performance of the entire system is more than the incremental improvements offered by the individual components, indicating beneficial non-linear interactions between processing stages. The algorithms underlying the model can be implemented in either digital or analog hardware, including neuromorphic analog VLSI, but defy an analytical solution due to their dynamic non-linear operation. The successful application of this algorithm has applications in the development of miniature autonomous systems in defense and civilian roles, including robotics, miniature unmanned aerial vehicles and collision avoidance sensors. PMID:19893631
Mechanical properties of highly defective graphene: from brittle rupture to ductile fracture.
Xu, Lanqing; Wei, Ning; Zheng, Yongping
2013-12-20
Defects are generally believed to deteriorate the superlative performance of graphene-based devices but may also be useful when carefully engineered to tailor the local properties and achieve new functionalities. Central to most defect-associated applications is the defect coverage and arrangement. In this work, we investigate, by molecular dynamics simulations, the mechanical properties and fracture dynamics of graphene sheets with randomly distributed vacancies or Stone-Wales defects under tensile deformations over a wide defect coverage range. With defects presented, an sp-sp(2) bonding network and an sp-sp(2)-sp(3) bonding network are observed in vacancy-defected and Stone-Wales-defected graphene, respectively. The ultimate strength degrades gradually with increasing defect coverage and saturates in the high-ratio regime, whereas the fracture strain presents an unusual descending-saturating-improving trend. In the dense vacancy defect situation, the fracture becomes more plastic and super-ductility is observed. Further fracture dynamics analysis reveals that the crack trapping by sp-sp(2) and sp-sp(2)-sp(3) rings and the crack-tip blunting account for the ductile fracture, whereas geometric rearrangement on the entire sheet for vacancy defects and geometric rearrangement on the specific defect sites for Stone-Wales defects account for their distinctive rules of the evolution of the fracture strain.
Dynamic Triple-Mode Sorption and Outgassing in Materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Sharma, Hom N.; Harley, Stephen J.; Sun, Yunwei
Moisture uptake and outgassing can be detrimental to a system by altering the chemical and mechanical properties of materials within the system over time. In this work, we conducted isotherm experiments to investigate dynamic moisture sorption and desorption in markedly different materials, i.e., a polymeric material, Sylgard-184 and a ceramic aluminosilicate material, Zircar RS-1200, at different temperatures (30 °C–70 °C) by varying the water activity (0.0–0.90). Sylgard-184 showed a linear sorption and outgassing behavior with no-hysteresis over the entire temperature and water activity range considered here. Whereas, the sorption and outgassing of Zircar RS-1200 was highly non-linear with significant hysteresis,more » especially at higher water activities, at all temperatures considered here. The type of hysteresis suggested the presence of mesopores in Zircar RS-1200, whereas the lack of hysteresis in Sylgard-184 indicates that it has a nonporous structure. A diffusion model coupled with a dynamic, triple-mode sorption (Langmuir, Henry, and pooling modes) model employed in this study matched our experimental data very well and provides mechanistic insight into the processes. Our triple-mode sorption model was adaptive enough to (1) model these distinctly different materials and (2) predict sorption and outgassing under conditions that are distinctly different from the parameterization experiments.« less
Dynamic model of a micro-tubular solid oxide fuel cell stack including an integrated cooling system
NASA Astrophysics Data System (ADS)
Hering, Martin; Brouwer, Jacob; Winkler, Wolfgang
2017-02-01
A novel dynamic micro-tubular solid oxide fuel cell (MT-SOFC) and stack model including an integrated cooling system is developed using a quasi three-dimensional, spatially resolved, transient thermodynamic, physical and electrochemical model that accounts for the complex geometrical relations between the cells and cooling-tubes. The modeling approach includes a simplified tubular geometry and stack design including an integrated cooling structure, detailed pressure drop and gas property calculations, the electrical and physical constraints of the stack design that determine the current, as well as control strategies for the temperature. Moreover, an advanced heat transfer balance with detailed radiative heat transfer between the cells and the integrated cooling-tubes, convective heat transfer between the gas flows and the surrounding structures and conductive heat transfer between the solid structures inside of the stack, is included. The detailed model can be used as a design basis for the novel MT-SOFC stack assembly including an integrated cooling system, as well as for the development of a dynamic system control strategy. The evaluated best-case design achieves very high electrical efficiency between around 75 and 55% in the entire power density range between 50 and 550 mW /cm2 due to the novel stack design comprising an integrated cooling structure.
Huntsman, Brock M.; Petty, J. Todd
2014-01-01
Spatial population models predict strong density-dependence and relatively stable population dynamics near the core of a species' distribution with increasing variance and importance of density-independent processes operating towards the population periphery. Using a 10-year data set and an information-theoretic approach, we tested a series of candidate models considering density-dependent and density-independent controls on brook trout population dynamics across a core-periphery distribution gradient within a central Appalachian watershed. We sampled seven sub-populations with study sites ranging in drainage area from 1.3–60 km2 and long-term average densities ranging from 0.335–0.006 trout/m. Modeled response variables included per capita population growth rate of young-of-the-year, adult, and total brook trout. We also quantified a stock-recruitment relationship for the headwater population and coefficients of variability in mean trout density for all sub-populations over time. Density-dependent regulation was prevalent throughout the study area regardless of stream size. However, density-independent temperature models carried substantial weight and likely reflect the effect of year-to-year variability in water temperature on trout dispersal between cold tributaries and warm main stems. Estimated adult carrying capacities decreased exponentially with increasing stream size from 0.24 trout/m in headwaters to 0.005 trout/m in the main stem. Finally, temporal variance in brook trout population size was lowest in the high-density headwater population, tended to peak in mid-sized streams and declined slightly in the largest streams with the lowest densities. Our results provide support for the hypothesis that local density-dependent processes have a strong control on brook trout dynamics across the entire distribution gradient. However, the mechanisms of regulation likely shift from competition for limited food and space in headwater streams to competition for thermal refugia in larger main stems. It also is likely that source-sink dynamics and dispersal from small headwater habitats may partially influence brook trout population dynamics in the main stem. PMID:24618602
Group dynamics and catecholamines during long-duration confinement in an isolated environment
NASA Technical Reports Server (NTRS)
Kraft, Norbert O.; Lyons, Terence J.; Binder, Heidi
2003-01-01
INTRODUCTION: The objectives of this study were to investigate possible relationships between catecholamine excretion and long-duration confinement in an isolated environment. METHODS: Stays of long duration were made by Group I (n = 4, all Russian, weeks 1-34), Group II (n = 4, mixed nationality, weeks 3-18), and Group III (n = 4, mixed nationality, weeks 22-38); other groups joined the residents for 1-wk intervals at weeks #13, #19, and #33. Data were collected from Groups I and III. RESULTS: In both Group I and Group III, the daily epinephrine excretion was significantly elevated during and after confinement compared with the pre-isolation baseline (p < 0.05), but remained mostly within normal limits during the experiment. During isolation, epinephrine excretion was significantly higher, compared with other weeks in isolation, during weeks #19 and #27 for Group I, and during week #30 for Group III. In both Group I and Group II, norepinephrine excretion increased significantly during and after isolation (p < 0.05) and was above the normal range. The daily norepinephrine excretion was significantly higher (p < 0.05) in Group I during weeks #12, #13, and #27, and during week #30 for Group III. DISCUSSION: Epinephrine excretion generally remained in the normal range. However, occasional elevations occurred due to psychological stress, which apparently correlate with changes in group dynamics. Norepinephrine excretion was above the normal range and was correlated with social events. These results suggest that to ensure optimum crew performance, entire crews along with their visiting crews should be selected collectively, rather than individually.
Mass transport in polyelectrolyte solutions
NASA Astrophysics Data System (ADS)
Schipper, F. J. M.; Leyte, J. C.
1999-02-01
The self-diffusion coefficients of the three components of a salt-free heavy-water solution of polymethacrylic acid, completely neutralized with tetra-methylammonium hydroxide, were measured over a broad concentration range. Three concentration regions were observed for the self-diffusion of both the polyions and the counterions. At polyion concentrations below 0.01 mol monomer kg-1, the dilute concentration regime for the polymer, the polyion self-diffusion coefficient approaches the self-diffusion coefficient of a freely diffusing rod upon dilution. At polyelectrolyte concentrations above 0.1 mol monomer kg-1, the self-diffusion coefficients of the solvent, the counterions and the polymer decreased with concentration, suggesting that this decrease is due to a topological constraint on the motions of the components. In the intermediate-concentration region, the self-diffusion coefficients of the polyions and the counterions are independent of the concentration. The polyion dynamic behaviour is, in the intermediate- and high-concentration regions, reasonably well described by that of a hard sphere, with a radius of 3.7 nm. A correct prediction for the solvent dynamics is given by the obstruction effect of this hard sphere on the solvent. The relative counterion self-diffusion coefficient is predicted almost quantitatively over the entire concentration range with the Poisson-Boltzmann-Smoluchowski model for the spherical cell, provided that the sphere radius and the number of charges are chosen appropriately (approximately the number of charges in a persistence length). Using this model, the dependence of the counterion self-diffusion coefficient on the ionic strength, polyion concentration and counterion radius is calculated quantitatively over a large concentration range.
NASA Astrophysics Data System (ADS)
Jerram, P. A.; Fryer, M.; Pratlong, J.; Pike, A.; Walker, A.; Dierickx, B.; Dupont, B.; Defernez, A.
2017-11-01
CCDs have been used for many years for Hyperspectral imaging missions and have been extremely successful. These include the Medium Resolution Imaging Spectrometer (MERIS) [1] on Envisat, the Compact High Resolution Imaging Spectrometer (CHRIS) on Proba and the Ozone Monitoring Instrument operating in the UV spectral region. ESA are also planning a number of further missions that are likely to use CCD technology (Sentinel 3, 4 and 5). However CMOS sensors have a number of advantages which means that they will probably be used for hyperspectral applications in the longer term. There are two main advantages with CMOS sensors: First a hyperspectral image consists of spectral lines with a large difference in intensity; in a frame transfer CCD the faint spectral lines have to be transferred through the part of the imager illuminated by intense lines. This can lead to cross-talk and whilst this problem can be reduced by the use of split frame transfer and faster line rates CMOS sensors do not require a frame transfer and hence inherently will not suffer from this problem. Second, with a CMOS sensor the intense spectral lines can be read multiple times within a frame to give a significant increase in dynamic range. We will describe the design, and initial test of a CMOS sensor for use in hyperspectral applications. This device has been designed to give as high a dynamic range as possible with minimum cross-talk. The sensor has been manufactured on high resistivity epitaxial silicon wafers and is be back-thinned and left relatively thick in order to obtain the maximum quantum efficiency across the entire spectral range
NASA Astrophysics Data System (ADS)
Kremens, R.; Dickinson, M. B.; Hardy, C.; Skowronski, N.; Ellicott, E. A.; Schroeder, W.
2016-12-01
We have developed a wide dynamic range (24-bit) data acquisition system for collection of radiant flux density (FRFD) data from wildland fires. The data collection subsystem was designed as an Arduino `shield' and incorporates a 24-bit analog-to-digital converter, precision voltage reference, real time clock, microSD card interface, audible annuciator and interface for various digital communication interfaces (RS232, I2C, SPI, etc.). The complete radiometer system consists of our custom-designed `shield', a commercially available Arduino MEGA computer circuit board and a thermopile sensor -amplifier daughter board. Software design and development is greatly assisted by the availability of a library of public-domain, user-implemented software. The daughter board houses a 5-band radiometer using thermopiles designed for this experiment (Dexter Research Corp., Dexter, MI) to allow determination of the total FRFD from the fire (using a wide band thermopile with a KRS-5 window, 0.1 - 30 um), the FRFD as would be received by an orbital asset like MODIS (3.95 um center wavelength (CWL) and 10.95 CWL, corresponding to MODIS bands 21/22 and 31, respectively) and wider bandpass (0.1-5.5 um and 8-14 um) corresponding to the FRFD recorded by `MWIR' and `LWIR' imaging systems. We required a very wide dynamic range system in order to be able to record the flux density from `cold' ground before the fire, through the `hot' flaming combustion stage, to the `cool' phase after passage of the fire front. The recording dynamic range required (with reasonable resolution at the lowest temperatures) is on the order of 106, which is not currently available in commercial instrumentation at a price point, size or feature set that is suitable for wildland fire investigations. The entire unit, along with rechargeable battery power supply is housed in a fireproof aluminum chassis box, which is then mounted on a mast at a height of 5 - 7 m above the fireground floor. We will report initial results on observation of wildland fires using this system for prescribed fires in the pitch-pine scrub oak forest type and the use of the system to determine the differences between actual and remotely sensed measures of FRFD, which is of importance in quantifying the release of CO2 and other fire products from wildland fire combustion.
Dynamics of magnetic shells and information loss problem
NASA Astrophysics Data System (ADS)
Lee, Bum-Hoon; Lee, Wonwoo; Yeom, Dong-han
2015-07-01
We investigate dynamics of magnetic thin-shells in three dimensional anti-de Sitter background. Because of the magnetic field, an oscillatory solution is possible. This oscillating shell can tunnel to a collapsing shell or a bouncing shell, where both tunnelings induce an event horizon and a singularity. In the entire path integral, via the oscillating solution, there is a nonzero probability to maintain a trivial causal structure without a singularity. Therefore, due to the path integral, the entire wave function can conserve information. Since an oscillating shell can tunnel after a number of oscillations, in the end, it will allow an infinite number of different branchings to classical histories. This system can be a good model of the effective loss of information, where information is conserved by a solution that is originated from gauge fields.
Tomography reveals buoyant asthenosphere accumulating beneath the Juan de Fuca plate
NASA Astrophysics Data System (ADS)
Hawley, William B.; Allen, Richard M.; Richards, Mark A.
2016-09-01
The boundary between Earth’s strong lithospheric plates and the underlying mantle asthenosphere corresponds to an abrupt seismic velocity decrease and electrical conductivity increase with depth, perhaps indicating a thin, weak layer that may strongly influence plate motion dynamics. The behavior of such a layer at subduction zones remains unexplored. We present a tomographic model, derived from on- and offshore seismic experiments, that reveals a strong low-velocity feature beneath the subducting Juan de Fuca slab along the entire Cascadia subduction zone. Through simple geodynamic arguments, we propose that this low-velocity feature is the accumulation of material from a thin, weak, buoyant layer present beneath the entire oceanic lithosphere. The presence of this feature could have major implications for our understanding of the asthenosphere and subduction zone dynamics.
NASA Astrophysics Data System (ADS)
Zimmermann, Bernhard B.; Fang, Qianqian; Boas, David A.; Carp, Stefan A.
2016-01-01
Frequency domain near-infrared spectroscopy (FD-NIRS) has proven to be a reliable method for quantification of tissue absolute optical properties. We present a full-sampling direct analog-to-digital conversion FD-NIR imager. While we developed this instrument with a focus on high-speed optical breast tomographic imaging, the proposed design is suitable for a wide-range of biophotonic applications where fast, accurate quantification of absolute optical properties is needed. Simultaneous dual wavelength operation at 685 and 830 nm is achieved by concurrent 67.5 and 75 MHz frequency modulation of each laser source, respectively, followed by digitization using a high-speed (180 MS/s) 16-bit A/D converter and hybrid FPGA-assisted demodulation. The instrument supports 25 source locations and features 20 concurrently operating detectors. The noise floor of the instrument was measured at <1.4 pW/√Hz, and a dynamic range of 115+ dB, corresponding to nearly six orders of magnitude, has been demonstrated. Titration experiments consisting of 200 different absorption and scattering values were conducted to demonstrate accurate optical property quantification over the entire range of physiologically expected values.
Zimmermann, Bernhard B.; Fang, Qianqian; Boas, David A.; Carp, Stefan A.
2016-01-01
Abstract. Frequency domain near-infrared spectroscopy (FD-NIRS) has proven to be a reliable method for quantification of tissue absolute optical properties. We present a full-sampling direct analog-to-digital conversion FD-NIR imager. While we developed this instrument with a focus on high-speed optical breast tomographic imaging, the proposed design is suitable for a wide-range of biophotonic applications where fast, accurate quantification of absolute optical properties is needed. Simultaneous dual wavelength operation at 685 and 830 nm is achieved by concurrent 67.5 and 75 MHz frequency modulation of each laser source, respectively, followed by digitization using a high-speed (180 MS/s) 16-bit A/D converter and hybrid FPGA-assisted demodulation. The instrument supports 25 source locations and features 20 concurrently operating detectors. The noise floor of the instrument was measured at <1.4 pW/√Hz, and a dynamic range of 115+ dB, corresponding to nearly six orders of magnitude, has been demonstrated. Titration experiments consisting of 200 different absorption and scattering values were conducted to demonstrate accurate optical property quantification over the entire range of physiologically expected values. PMID:26813081
AIRES: an Airborne Infra-Red Echelle Spectrometer for SOFIA
NASA Astrophysics Data System (ADS)
Erickson, E. F.; Haas, M. R.; Colgan, S. W. J.; Roellig, T.; Simpson, J. P.; Telesco, C. M.; Pina, R. K.; Young, E. T.; Wolf, J.
1997-12-01
The Stratospheric Observatory for Infrared Astronomy, SOFIA, is a 2.7 meter telescope which is scheduled to begin observations in a Boeing 747 in October 2001. Among other SOFIA science instruments recently selected for development is the facility spectrometer AIRES. AIRES is designed for studies of a broad range of phenomena occuring in the interstellar medium (ISM) which are uniquely enabled by SOFIA. Examples include accretion and outflow in protostars and young stellar objects, the morphology, dynamics, and excitation of neutral and ionized gas at the Galactic center, and the recycling of material to the ISM from evolved stars. Astronomers using AIRES will be able to select any wavelength from 17 to 210 mu m., with corresponding spectral resolving powers ranging from 60,000 to 4000 in less than a minute. This entire wavelength range is important because it contains spectral features, often widely separated in wavelength, which characterize fundamental ISM processes. AIRES will utilize two-dimensional detector arrays and a large echelle grating to achieve spectral imaging with excellent sensitivity and unparalleled angular resolution at these wavelengths. As a facility science instrument, AIRES will provide guest investigators frequent opportunities for far infrared spectroscopic observations when SOFIA begins operations.
Imaging the Subsurface of the Thuringian Basin (Germany) on Different Spatial Scales
NASA Astrophysics Data System (ADS)
Goepel, A.; Krause, M.; Methe, P.; Kukowski, N.
2014-12-01
Understanding the coupled dynamics of near surface and deep fluid flow patterns is essential to characterize the properties of sedimentary basins, to identify the processes of compaction, diagenesis, and transport of mass and energy. The multidisciplinary project INFLUINS (Integrated FLUid dynamics IN Sedimentary basins) aims for investigating the behavior of fluids in the Thuringian Basin, a small intra-continental sedimentary basin in Germany, at different spatial scales, ranging from the pore scale to the extent of the entire basin. As hydraulic properties often significantly vary with spatial scales, e.g. seismic data using different frequencies are required to gain information about the spatial variability of elastic and hydraulic subsurface properties. For the Thuringian Basin, we use seismic and borehole data acquired in the framework of INFLUINS. Basin-wide structural imaging data are available from 2D reflection seismic profiles as well as 2.5D and 3D seismic travel time tomography. Further, core material from a 1,179 m deep drill hole completed in 2013 is available for laboratory seismic experiments on mm- to cm-scale. The data are complemented with logging data along the entire drill hole. This campaign yielded e.g. sonic and density logs allowing the estimation of in-situ P-velocity and acoustic impedance with a spatial resolution on the cm-scale and provides improved information about petrologic and stratigraphic variability at different scales. Joint interpretation of basin scale structural and elastic properties data with laboratory scale data from ultrasound experiments using core samples enables a detailed and realistic imaging of the subsurface properties on different spatial scales. Combining seismic travel time tomography with stratigraphic interpretation provides useful information of variations in the elastic properties for certain geological units and therefore gives indications for changes in hydraulic properties.
McLaskey, Gregory C.; Lockner, David A.
2016-01-01
Acoustic emission (AE) analyses have been used for decades for rock mechanics testing, but because AE systems are not typically calibrated, the absolute sizes of dynamic microcrack growth and other physical processes responsible for the generation of AEs are poorly constrained. We describe a calibration technique for the AE recording system as a whole (transducers + amplifiers + digitizers + sample + loading frame) that uses the impact of a 4.76-mm free-falling steel ball bearing as a reference source. We demonstrate the technique on a 76-mm diameter cylinder of westerly granite loaded in a triaxial deformation apparatus at 40 MPa confining pressure. The ball bearing is dropped inside a cavity within the sample while inside the pressure vessel. We compare this reference source to conventional AEs generated during loading of a saw-cut fault in a second granite sample. All located AEs occur on the saw-cut surface and have moment magnitudes ranging from M −5.7 down to at least M −8. Dynamic events rupturing the entire simulated fault surface (stick–slip events) have measurable stress drop and macroscopic slip and radiate seismic waves similar to those from a M −3.5 earthquake. The largest AE events that do not rupture the entire fault are M −5.7. For these events, we also estimate the corner frequency (200–300 kHz), and we assume the Brune model to estimate source dimensions of 4–6 mm. These AE sources are larger than the 0.2 mm grain size and smaller than the 76 × 152 mm fault surface.
Borotikar, Bhushan S; Sipprell, William H; Wible, Emily E; Sheehan, Frances T
2012-04-05
Patellofemoral osteoarthritis and its potential precursor patellofemoral pain syndrome (PFPS) are common, costly, and debilitating diseases. PFPS has been shown to be associated with altered patellofemoral joint mechanics; however, an actual variation in joint contact stresses has not been established due to challenges in accurately quantifying in vivo contact kinematics (area and location). This study developed and validated a method for tracking dynamic, in vivo cartilage contact kinematics by combining three magnetic resonance imaging (MRI) techniques, cine-phase contrast (CPC), multi-plane cine (MPC), and 3D high-resolution static imaging. CPC and MPC data were acquired from 12 healthy volunteers while they actively extended/flexed their knee within the MRI scanner. Since no gold standard exists for the quantification of in vivo dynamic cartilage contact kinematics, the accuracy of tracking a single point (patellar origin relative to the femur) represented the accuracy of tracking the kinematics of an entire surface. The accuracy was determined by the average absolute error between the PF kinematics derived through registration of MPC images to a static model and those derived through integration of the CPC velocity data. The accuracy ranged from 0.47 mm to 0.77 mm for the patella and femur and from 0.68 mm to 0.86 mm for the patellofemoral joint. For purely quantifying joint kinematics, CPC remains an analytically simpler and more accurate (accuracy <0.33 mm) technique. However, for application requiring the tracking of an entire surface, such as quantifying cartilage contact kinematics, this combined imaging approach produces accurate results with minimal operator intervention. Published by Elsevier Ltd.
Experimental, Theoretical, and Computational Investigation of Separated Nozzle Flows
NASA Technical Reports Server (NTRS)
Hunter, Craig A.
2004-01-01
A detailed experimental, theoretical, and computational study of separated nozzle flows has been conducted. Experimental testing was performed at the NASA Langley 16-Foot Transonic Tunnel Complex. As part of a comprehensive static performance investigation, force, moment, and pressure measurements were made and schlieren flow visualization was obtained for a sub-scale, non-axisymmetric, two-dimensional, convergent- divergent nozzle. In addition, two-dimensional numerical simulations were run using the computational fluid dynamics code PAB3D with two-equation turbulence closure and algebraic Reynolds stress modeling. For reference, experimental and computational results were compared with theoretical predictions based on one-dimensional gas dynamics and an approximate integral momentum boundary layer method. Experimental results from this study indicate that off-design overexpanded nozzle flow was dominated by shock induced boundary layer separation, which was divided into two distinct flow regimes; three- dimensional separation with partial reattachment, and fully detached two-dimensional separation. The test nozzle was observed to go through a marked transition in passing from one regime to the other. In all cases, separation provided a significant increase in static thrust efficiency compared to the ideal prediction. Results indicate that with controlled separation, the entire overexpanded range of nozzle performance would be within 10% of the peak thrust efficiency. By offering savings in weight and complexity over a conventional mechanical exhaust system, this may allow a fixed geometry nozzle to cover an entire flight envelope. The computational simulation was in excellent agreement with experimental data over most of the test range, and did a good job of modeling internal flow and thrust performance. An exception occurred at low nozzle pressure ratios, where the two-dimensional computational model was inconsistent with the three-dimensional separation observed in the experiment. In general, the computation captured the physics of the shock boundary layer interaction and shock induced boundary layer separation in the nozzle, though there were some differences in shock structure compared to experiment. Though minor, these differences could be important for studies involving flow control or thrust vectoring of separated nozzles. Combined with other observations, this indicates that more detailed, three-dimensional computational modeling needs to be conducted to more realistically simulate shock-separated nozzle flows.
From cognitive networks to seizures: Stimulus evoked dynamics in a coupled cortical network
NASA Astrophysics Data System (ADS)
Lee, Jaejin; Ermentrout, Bard; Bodner, Mark
2013-12-01
Epilepsy is one of the most common neuropathologies worldwide. Seizures arising in epilepsy or in seizure disorders are characterized generally by uncontrolled spread of excitation and electrical activity to a limited region or even over the entire cortex. While it is generally accepted that abnormal excessive firing and synchronization of neuron populations lead to seizures, little is known about the precise mechanisms underlying human epileptic seizures, the mechanisms of transitions from normal to paroxysmal activity, or about how seizures spread. Further complication arises in that seizures do not occur with a single type of dynamics but as many different phenotypes and genotypes with a range of patterns, synchronous oscillations, and time courses. The concept of preventing, terminating, or modulating seizures and/or paroxysmal activity through stimulation of brain has also received considerable attention. The ability of such stimulation to prevent or modulate such pathological activity may depend on identifiable parameters. In this work, firing rate networks with inhibitory and excitatory populations were modeled. Network parameters were chosen to model normal working memory behaviors. Two different models of cognitive activity were developed. The first model consists of a single network corresponding to a local area of the brain. The second incorporates two networks connected through sparser recurrent excitatory connectivity with transmission delays ranging from approximately 3 ms within local populations to 15 ms between populations residing in different cortical areas. The effect of excitatory stimulation to activate working memory behavior through selective persistent activation of populations is examined in the models, and the conditions and transition mechanisms through which that selective activation breaks down producing spreading paroxysmal activity and seizure states are characterized. Specifically, we determine critical parameters and architectural changes that produce the different seizure dynamics in the networks. This provides possible mechanisms for seizure generation. Because seizures arise as attractors in a multi-state system, the system may possibly be returned to its baseline state through some particular stimulation. The ability of stimulation to terminate seizure dynamics in the local and distributed models is studied. We systematically examine when this may occur and the form of the stimulation necessary for the range of seizure dynamics. In both the local and distributed network models, termination is possible for all seizure types observed by stimulation possessing some particular configuration of spatial and temporal characteristics.
NASA Astrophysics Data System (ADS)
Chin, Alex
Singlet fission (SF) is an ultrafast process in which a singlet exciton spontaneously converts into a pair of entangled triplet excitons on neighbouring organic molecules. As a mechanism of multiple exciton generation, it has been suggested as a way to increase the efficiency of organic photovoltaic devices, and its underlying photophysics across a wide range of molecules and materials has attracted significant theoretical attention. Recently, a number of studies using ultrafast nonlinear optics have underscored the importance of intramolecular vibrational dynamics in efficient SF systems, prompting a need for methods capable of simulating open quantum dynamics in the presence of highly structured and strongly coupled environments. Here, a combination of ab initio electronic structure techniques and a new tensor-network methodology for simulating open vibronic dynamics is presented and applied to a recently synthesised dimer of pentacene (DP-Mes). We show that ultrafast (300 fs) SF in this system is driven entirely by symmetry breaking vibrations, and our many-body approach enables the real-time identification and tracking of the ''functional' vibrational dynamics and the role of the ''bath''-like parts of the environment. Deeper analysis of the emerging wave functions points to interesting links between the time at which parts of the environment become relevant to the SF process and the optimal topology of the tensor networks, highlighting the additional insight provided by moving the problem into the natural language of correlated quantum states and how this could lead to simulations of much larger multichromophore systems Supported by The Winton Programme for the Physics of Sustainability.
Impact of reduced scale free network on wireless sensor network
NASA Astrophysics Data System (ADS)
Keshri, Neha; Gupta, Anurag; Mishra, Bimal Kumar
2016-12-01
In heterogeneous wireless sensor network (WSN) each data-packet traverses through multiple hops over restricted communication range before it reaches the sink. The amount of energy required to transmit a data-packet is directly proportional to the number of hops. To balance the energy costs across the entire network and to enhance the robustness in order to improve the lifetime of WSN becomes a key issue of researchers. Due to high dimensionality of an epidemic model of WSN over a general scale free network, it is quite difficult to have close study of network dynamics. To overcome this complexity, we simplify a general scale free network by partitioning all of its motes into two classes: higher-degree motes and lower-degree motes, and equating the degrees of all higher-degree motes with lower-degree motes, yielding a reduced scale free network. We develop an epidemic model of WSN based on reduced scale free network. The existence of unique positive equilibrium is determined with some restrictions. Stability of the system is proved. Furthermore, simulation results show improvements made in this paper have made the entire network have a better robustness to the network failure and the balanced energy costs. This reduced model based on scale free network theory proves more applicable to the research of WSN.
Optimal control solutions to sodic soil reclamation
NASA Astrophysics Data System (ADS)
Mau, Yair; Porporato, Amilcare
2016-05-01
We study the reclamation process of a sodic soil by irrigation with water amended with calcium cations. In order to explore the entire range of time-dependent strategies, this task is framed as an optimal control problem, where the amendment rate is the control and the total rehabilitation time is the quantity to be minimized. We use a minimalist model of vertically averaged soil salinity and sodicity, in which the main feedback controlling the dynamics is the nonlinear coupling of soil water and exchange complex, given by the Gapon equation. We show that the optimal solution is a bang-bang control strategy, where the amendment rate is discontinuously switched along the process from a maximum value to zero. The solution enables a reduction in remediation time of about 50%, compared with the continuous use of good-quality irrigation water. Because of its general structure, the bang-bang solution is also shown to work for the reclamation of other soil conditions, such as saline-sodic soils. The novelty in our modeling approach is the capability of searching the entire "strategy space" for optimal time-dependent protocols. The optimal solutions found for the minimalist model can be then fine-tuned by experiments and numerical simulations, applicable to realistic conditions that include spatial variability and heterogeneities.
Oikonomou, Katerina D.; Short, Shaina M.; Rich, Matthew T.; Antic, Srdjan D.
2012-01-01
Repetitive synaptic stimulation overcomes the ability of astrocytic processes to clear glutamate from the extracellular space, allowing some dendritic segments to become submerged in a pool of glutamate, for a brief period of time. This dynamic arrangement activates extrasynaptic NMDA receptors located on dendritic shafts. We used voltage-sensitive and calcium-sensitive dyes to probe dendritic function in this glutamate-rich location. An excess of glutamate in the extrasynaptic space was achieved either by repetitive synaptic stimulation or by glutamate iontophoresis onto the dendrites of pyramidal neurons. Two successive activations of synaptic inputs produced a typical NMDA spike, whereas five successive synaptic inputs produced characteristic plateau potentials, reminiscent of cortical UP states. While NMDA spikes were coupled with brief calcium transients highly restricted to the glutamate input site, the dendritic plateau potentials were accompanied by calcium influx along the entire dendritic branch. Once initiated, the glutamate-mediated dendritic plateau potentials could not be interrupted by negative voltage pulses. Activation of extrasynaptic NMDA receptors in cellular compartments void of spines is sufficient to initiate and support plateau potentials. The only requirement for sustained depolarizing events is a surplus of free glutamate near a group of extrasynaptic receptors. Highly non-linear dendritic spikes (plateau potentials) are summed in a highly sublinear fashion at the soma, revealing the cellular bases of signal compression in cortical circuits. Extrasynaptic NMDA receptors provide pyramidal neurons with a function analogous to a dynamic range compression in audio engineering. They limit or reduce the volume of “loud sounds” (i.e., strong glutamatergic inputs) and amplify “quiet sounds” (i.e., glutamatergic inputs that barely cross the dendritic threshold for local spike initiation). Our data also explain why consecutive cortical UP states have uniform amplitudes in a given neuron. PMID:22934081
Built for speed: strain in the cartilaginous vertebral columns of sharks.
Porter, M E; Diaz, Candido; Sturm, Joshua J; Grotmol, Sindre; Summers, A P; Long, John H
2014-02-01
In most bony fishes vertebral column strain during locomotion is almost exclusively in the intervertebral joints, and when these joints move there is the potential to store and release strain energy. Since cartilaginous fishes have poorly mineralized vertebral centra, we tested whether the vertebral bodies undergo substantial strain and thus may be sites of energy storage during locomotion. We measured axial strains of the intervertebral joints and vertebrae in vivo and ex vivo to characterize the dynamic behavior of the vertebral column. We used sonomicrometry to directly measure in vivo and in situ strains of intervertebral joints and vertebrae of Squalus acanthias swimming in a flume. For ex vivo measurements, we used a materials testing system to dynamically bend segments of vertebral column at frequencies ranging from 0.25 to 1.00 Hz and a range of physiologically relevant curvatures, which were determined using a kinematic analysis. The vertebral centra of S. acanthias undergo strain during in vivo volitional movements as well as in situ passive movements. Moreover, when isolated segments of vertebral column were tested during mechanical bending, we measured the same magnitudes of strain. These data support our hypothesis that vertebral column strain in lateral bending is not limited to the intervertebral joints. In histological sections, we found that the vertebral column of S. acanthias has an intracentral canal that is open and covered with a velum layer. An open intracentral canal may indicate that the centra are acting as tunics around some sections of a hydrostat, effectively stiffening the vertebral column. These data suggest that the entire vertebral column of sharks, both joints and centra, is mechanically engaged as a dynamic spring during locomotion. Copyright © 2013 Elsevier GmbH. All rights reserved.
Ultrafast photoinduced dynamics of the 3,6-diaminoacridinium derivative ATTO 465 in solution.
Arden-Jacob, Jutta; Drexhage, Karl-Heinz; Druzhinin, Sergey I; Ekimova, Maria; Flender, Oliver; Lenzer, Thomas; Oum, Kawon; Scholz, Mirko
2013-02-14
The excited state dynamics of the dye ATTO 465, a well-known fluorescence marker for biological applications, have been characterized in various solvents including THF, ethanol, methanol, water and the highly polar protic ionic liquid 2-hydroxyethylammonium formate (2-OH-EAF) by combining results from time-correlated single-photon counting (TCSPC) and ultrafast pump-supercontinuum probe (PSCP) spectroscopy as well as steady-state absorption and fluorescence. In water, 2-OH-EAF and two fluorinated alcohols, there is a pronounced blue-shift and broadening of the S(0) → S(1) absorption band and also a larger Stokes shift than in the other solvents, indicating a particular influence of hydrogen-bonding interactions. S(1) lifetimes from TCSPC at 25 °C range from 3.3 ns to 5.6 ns. An unusual increase in the S(1) lifetime with temperature is observed for ethanol and methanol, however water behaves in the opposite way. The behavior can be tentatively explained by a solvent- and temperature-dependent "proximity effect", where coupling of the close-lying S(1) and S(2) states influences the intramolecular relaxation rate of the dye. In addition, temperature-dependent complex equilibria of ATTO 465 with solvent molecules may influence the measured lifetimes. Several excited-state absorption (ESA) transitions are identified in the PSCP spectra, which are in good agreement with the position of the UV bands in the steady-state absorption spectra. Small shifts of the stimulated emission and ESA bands are consistent with solvation dynamics in the excited electronic state. An additional ~16 ps component in water, visible over the entire spectral range, is tentatively ascribed to a fast IC channel which is accessed by a fraction of ATTO 465 molecules.
Handbook explaining the fundamentals of nuclear and atomic physics
NASA Technical Reports Server (NTRS)
Hanlen, D. F.; Morse, W. J.
1969-01-01
Indoctrination document presents nuclear, reactor, and atomic physics in an easy, straightforward manner. The entire subject of nuclear physics including atomic structure ionization, isotopes, radioactivity, and reactor dynamics is discussed.
Dynamics of Active Layer Depth across Alaskan Tundra Ecosystems
NASA Astrophysics Data System (ADS)
Ma, C.; Zhang, X.; Song, X.; Xu, X.
2016-12-01
The thickness of the active layer, near-surface layer of Earth material above permafrost undergoing seasonal freezing and thawing, is of considerable importance in high-latitude environments because most physical, chemical, and biological processes in the permafrost region take place within it. The dynamics of active layer thickness (ALT) result from a combination of various factors including heat transfer, soil water content, soil texture, root density, stem density, moss layer thickness, organic layer thickness, etc. However, the magnitude and controls of ALT in the permafrost region remain uncertain. The purpose of this study is to improve our understanding of the dynamics of ALT across Alaskan tundra ecosystems and their controls at multiple scales, ranging from plots to entire Alaska. This study compiled a comprehensive dataset of ALT at site and regional scales across the Alaskan tundra ecosystems, and further analyzed ALT dynamics and their hierarchical controls. We found that air temperature played a predominant role on the seasonality of ALT, regulated by other physical and chemical factors including soil texture, moisture, and root density. The structural equation modeling (SEM) analysis confirmed the predominant role of physical controls (dominated by heat and soil properties), followed by chemical and biological factors. Then a simple empirical model was developed to reconstruct the ALT across the Alaska. The comparisons against field observational data show that the method used in this study is robust; the reconstructed time-series ALT across Alaska provides a valuable dataset source for understanding ALT and validating large-scale ecosystem models.
RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview.
Šponer, Jiří; Bussi, Giovanni; Krepl, Miroslav; Banáš, Pavel; Bottaro, Sandro; Cunha, Richard A; Gil-Ley, Alejandro; Pinamonti, Giovanni; Poblete, Simón; Jurečka, Petr; Walter, Nils G; Otyepka, Michal
2018-04-25
With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA-ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field.
Quantum efficiency and dark current evaluation of a backside illuminated CMOS image sensor
NASA Astrophysics Data System (ADS)
Vereecke, Bart; Cavaco, Celso; De Munck, Koen; Haspeslagh, Luc; Minoglou, Kyriaki; Moore, George; Sabuncuoglu, Deniz; Tack, Klaas; Wu, Bob; Osman, Haris
2015-04-01
We report on the development and characterization of monolithic backside illuminated (BSI) imagers at imec. Different surface passivation, anti-reflective coatings (ARCs), and anneal conditions were implemented and their effect on dark current (DC) and quantum efficiency (QE) are analyzed. Two different single layer ARC materials were developed for visible light and near UV applications, respectively. QE above 75% over the entire visible spectrum range from 400 to 700 nm is measured. In the spectral range from 260 to 400 nm wavelength, QE values above 50% over the entire range are achieved. A new technique, high pressure hydrogen anneal at 20 atm, was applied on photodiodes and improvement in DC of 30% for the BSI imager with HfO2 as ARC as well as for the front side imager was observed. The entire BSI process was developed 200 mm wafers and evaluated on test diode structures. The knowhow is then transferred to real imager sensors arrays.
Asymmetry and basic pathways in sleep-stage transitions
NASA Astrophysics Data System (ADS)
Lo, Chung-Chuan; Bartsch, Ronny P.; Ivanov, Plamen Ch.
2013-04-01
We study dynamical aspects of sleep micro-architecture. We find that sleep dynamics exhibits a high degree of asymmetry, and that the entire class of sleep-stage transition pathways underlying the complexity of sleep dynamics throughout the night can be characterized by two independent asymmetric transition paths. These basic pathways remain stable under sleep disorders, even though the degree of asymmetry is significantly reduced. Our findings demonstrate an intriguing temporal organization in sleep micro-architecture at short time scales that is typical for physical systems exhibiting self-organized criticality (SOC), and indicates nonequilibrium critical dynamics in brain activity during sleep.
NASA Astrophysics Data System (ADS)
Garcia-Appadoo, D. A.; West, A. A.; Dalcanton, J. J.; Cortese, L.; Disney, M. J.
2009-03-01
We have used the Parkes Multibeam system and the Sloan Digital Sky Survey to assemble a sample of 195 galaxies selected originally from their HI signature to avoid biases against unevolved or low surface brightness objects. For each source nine intrinsic properties are measured homogeneously, as well as inclination and an optical spectrum. The sample, which should be almost entirely free of either misidentification or confusion, includes a wide diversity of galaxies ranging from inchoate, low surface brightness dwarfs to giant spirals. Despite this diversity there are five clear correlations among their properties. They include a common dynamical mass-to-light ratio within their optical radii, a correlation between surface brightness and luminosity and a common HI surface density. Such correlation should provide strong constrains on models of galaxy formation and evolution.
Dynamic spectral shifts of molecular anions in organic glasses. [Pulse radiolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huddleston, R.K.; Miller, J.R.
1982-06-24
Time-dependent spectra of the radical anions of pyromellitic dianhydride and p-dinitrobenzene have been observed after formation by pulse radiolysis in frozen 2-methyltetrahydrofuran and triacetin glasses. At temperatures near the glass transition, the spectra shift toward the blue over the entire observed time range 100 ns to 100 s), while at temperatures well below the glass transition, the spectral shifts can be stopped or greatly slowed. The magnitudes of the shifts are not large (typically approx. = to 10 nm), but because they are larger than the vibrational line widths, dramatic kinetics may be observed: the absorbance grows or decays bymore » more than a factor of five at some wavelengths. The observations are consistent with a solvent molecule reorientation mechanism for spectral shifts of molecular ions in low-temperature organic glasses. 6 figures.« less
Accurate Determination of Tunneling-Affected Rate Coefficients: Theory Assessing Experiment.
Zuo, Junxiang; Xie, Changjian; Guo, Hua; Xie, Daiqian
2017-07-20
The thermal rate coefficients of a prototypical bimolecular reaction are determined on an accurate ab initio potential energy surface (PES) using ring polymer molecular dynamics (RPMD). It is shown that quantum effects such as tunneling and zero-point energy (ZPE) are of critical importance for the HCl + OH reaction at low temperatures, while the heavier deuterium substitution renders tunneling less facile in the DCl + OH reaction. The calculated RPMD rate coefficients are in excellent agreement with experimental data for the HCl + OH reaction in the entire temperature range of 200-1000 K, confirming the accuracy of the PES. On the other hand, the RPMD rate coefficients for the DCl + OH reaction agree with some, but not all, experimental values. The self-consistency of the theoretical results thus allows a quality assessment of the experimental data.
1.5 nm fabrication of test patterns for characterization of metrological systems
Babin, Sergey; Calafiore, Giuseppe; Peroz, Christophe; ...
2015-11-06
Any metrology tool is only as good as it is calibrated. The characterization of metrology systems requires test patterns at a scale about ten times smaller than the measured features. The fabrication of patterns with linewidths down to 1.5 nm is described. The test sample was designed in such a way that the distribution of linewidths appears to be random at any location. This pseudorandom test pattern is used to characterize dimensional metrology equipment over its entire dynamic range by extracting the modulation transfer function of the system. The test pattern contains alternating lines of silicon and tungsten silicide, eachmore » according to its designed width. As a result, the fabricated test samples were imaged using a transmission electron microscope, a scanning electron microscope, and an atomic force microscope. (C) 2015 American Vacuum Society.« less
An Appreciation of the Life and Work of William C. Reynolds (1933-2004)
NASA Astrophysics Data System (ADS)
Moin, Parviz; Homsy, G. M.
2017-01-01
Bill Reynolds was a remarkably creative scientist who combined a natural curiosity with enormous energy to make significant contributions to fluid mechanics research. In this article, we combine our own recollections with those of many others to capture the aspects of Bill's personality and sense of humor that made him the irrepressible person that he was. We discuss his works on turbulent flow and touch on others that illustrate the wide range of his interests. We survey his involvement in education through classroom teaching and mentoring of research students, and his lifelong support of the Division of Fluid Dynamics of the American Physical Society. And we cover his many contributions during his long career at Stanford University, where he spent his entire working life, especially his seminal role with the Center for Turbulence Research.
Cluster formation and percolation in ethanol-water mixtures
NASA Astrophysics Data System (ADS)
Gereben, Orsolya; Pusztai, László
2017-10-01
Results of systematic molecular dynamics studies of ethanol-water mixtures, over the entire concentration range, were reported previously that agree with experimental X-ray diffraction data. These simulated systems are analyzed in this work to examine cluster formation and percolation, using four different hydrogen bond definitions. Percolation analyses revealed that each mixture (even the one containing 80 mol% ethanol) is above the 3D percolation threshold, with fractal dimensions, df, between 2.6 and 2.9, depending on concentration. Monotype water cluster formation was also studied in the mixtures: 3D water percolation can be found in systems with less than 40 mol% ethanol, with fractal dimensions between 2.53 and 2.84. These observations can be put in parallel with experimental data on some thermodynamic quantities, such as the excess partial molar enthalpy and entropy.
Kruse, Lyle W.
1985-01-01
A portal radiation monitor combines 0.1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.
Kruse, L.W.
1982-03-23
A portal radiation monitor combines .1% FAR with high sensitivity to special nuclear material. The monitor utilizes pulse shape discrimination, dynamic compression of the photomultiplier output and scintillators sized to maintain efficiency over the entire portal area.
Tomography reveals buoyant asthenosphere accumulating beneath the Juan de Fuca plate.
Hawley, William B; Allen, Richard M; Richards, Mark A
2016-09-23
The boundary between Earth's strong lithospheric plates and the underlying mantle asthenosphere corresponds to an abrupt seismic velocity decrease and electrical conductivity increase with depth, perhaps indicating a thin, weak layer that may strongly influence plate motion dynamics. The behavior of such a layer at subduction zones remains unexplored. We present a tomographic model, derived from on- and offshore seismic experiments, that reveals a strong low-velocity feature beneath the subducting Juan de Fuca slab along the entire Cascadia subduction zone. Through simple geodynamic arguments, we propose that this low-velocity feature is the accumulation of material from a thin, weak, buoyant layer present beneath the entire oceanic lithosphere. The presence of this feature could have major implications for our understanding of the asthenosphere and subduction zone dynamics. Copyright © 2016, American Association for the Advancement of Science.
NASA Astrophysics Data System (ADS)
Przybytek, J.; Fink-Finowicki, J.; Puźniak, R.; Shames, A.; Markovich, V.; Mogilyansky, D.; Jung, G.
2017-03-01
Robust random telegraph conductivity fluctuations have been observed in La0.86Ca0.14MnO3 manganite single crystals. At room temperatures, the spectra of conductivity fluctuations are featureless and follow a 1 /f shape in the entire experimental frequency and bias range. Upon lowering the temperature, clear Lorentzian bias-dependent excess noise appears on the 1 /f background and eventually dominates the spectral behavior. In the time domain, fully developed Lorentzian noise appears as pronounced two-level random telegraph noise with a thermally activated switching rate, which does not depend on bias current and applied magnetic field. The telegraph noise is very robust and persists in the exceptionally wide temperature range of more than 50 K. The amplitude of the telegraph noise decreases exponentially with increasing bias current in exactly the same manner as the sample resistance increases with the current, pointing out the dynamic current redistribution between percolation paths dominated by phase-separated clusters with different conductivity as a possible origin of two-level conductivity fluctuations.
Histological evidence for a dynamic dental battery in hadrosaurid dinosaurs.
Bramble, Katherine; LeBlanc, Aaron R H; Lamoureux, Denis O; Wosik, Mateusz; Currie, Philip J
2017-11-17
The first histological study of an entire hadrosaurid dental battery provides a comprehensive look at tooth movement within this complex structure. Previous studies have focused on isolated teeth, or in-situ batteries, but this is the first study to examine an entire dental battery of any dinosaur. The absence of direct tooth-to-tooth contact across the entire battery and a unique arrangement of the dental tissues in hadrosaurids led us to compare their teeth with the ever-growing incisors of mammals. The similarity in the distributions of tissues along the incisor, coupled with continuous eruption, make for helpful comparisons to hadrosaurid teeth. The mammalian ever-growing incisor can be used as a model to extrapolate the soft tissue connections and eruptive mechanisms within the hadrosaurid dental battery. Serial sections across the adult dental battery reveal signs of gradual ontogenetic tooth migration. Extensive remodeling of the alveolar septa and the anteroposterior displacement of successive generations of teeth highlight the gradual migration of tooth generations within the battery. These eruptive and ontogenetic tooth movements would not be possible without a ligamentous connection between successive teeth and the jaws, underscoring the dynamic nature of one of the most unique and complex dental systems in vertebrate history.
Evaluation of the thyroid status of Basenji dogs in Australia.
Seavers, A; Snow, D H; Mason, K V; Malik, R
2008-11-01
To determine the thyroid status of Basenji dogs in Australia. Jugular or cephalic venipuncture blood samples were taken from 113 Basenji, comprising 47 males, 5 castrates, 48 entire and 13 spayed bitches, and sent on ice in plain and EDTA tubes to a single laboratory to determine haematocrit and serum concentrations of total thyroid hormone (thyroxine, TT4), thyroid-stimulating hormone (TSH) and cholesterol. In a subgroup of 8 dogs with abnormal elevated TSH concentrations and subnormal TT4 concentrations, 5 were further examined by dynamic endocrine testing using recombinant human (rh) TSH (54 microg). Ages ranged from 1 to 14 years and weight range was 6.5 to 14.0 kg. TT4 concentrations (nmol/L) ranged from 2 to 27, with a median of 13 and a mean +/- SD of 13.0 +/- 5.7. Importantly, 85/113 (75%) of TT4 values were lower than the normal laboratory reference range (17-37). TSH concentrations (ng/mL) ranged from 0.05 to 5.37, with a median of 0.16 and a mean +/- SD of 0.3 +/- 0.6. Basenji have a similar reference range for serum TSH, but a considerably lower reference range for TT4 (2-27 nmol/L) than most breeds and crossbreds, resembling the sight hounds in this respect. Given the difficulty of accurately measuring TT4 concentrations that are so low, concomitant serial TSH determinations are essential to properly asses thyroid function. Taken alone, TT4 determinations are only of use when the value is within the reference range, in which case a diagnosis of hypothyroidism is likely excluded.
Analysis and numerical modelling of eddy current damper for vibration problems
NASA Astrophysics Data System (ADS)
Irazu, L.; Elejabarrieta, M. J.
2018-07-01
This work discusses a contactless eddy current damper, which is used to attenuate structural vibration. Eddy currents can remove energy from dynamic systems without any contact and, thus, without adding mass or modifying the rigidity of the structure. An experimental modal analysis of a cantilever beam in the absence of and under a partial magnetic field is conducted in the bandwidth of 01 kHz. The results show that the eddy current phenomenon can attenuate the vibration of the entire structure without modifying the natural frequencies or the mode shapes of the structure itself. In this study, a new inverse method to numerically determine the dynamic properties of the contactless eddy current damper is proposed. The proposed inverse method and the eddy current model based on a lineal viscous force are validated by a practical application. The numerically obtained transfer function correlates with the experimental one, thus showing good agreement in the entire bandwidth of 01 kHz. The proposed method provides an easy and quick tool to model and predict the dynamic behaviour of the contactless eddy current damper, thereby avoiding the use of complex analytical models.
The Australian Computational Earth Systems Simulator
NASA Astrophysics Data System (ADS)
Mora, P.; Muhlhaus, H.; Lister, G.; Dyskin, A.; Place, D.; Appelbe, B.; Nimmervoll, N.; Abramson, D.
2001-12-01
Numerical simulation of the physics and dynamics of the entire earth system offers an outstanding opportunity for advancing earth system science and technology but represents a major challenge due to the range of scales and physical processes involved, as well as the magnitude of the software engineering effort required. However, new simulation and computer technologies are bringing this objective within reach. Under a special competitive national funding scheme to establish new Major National Research Facilities (MNRF), the Australian government together with a consortium of Universities and research institutions have funded construction of the Australian Computational Earth Systems Simulator (ACcESS). The Simulator or computational virtual earth will provide the research infrastructure to the Australian earth systems science community required for simulations of dynamical earth processes at scales ranging from microscopic to global. It will consist of thematic supercomputer infrastructure and an earth systems simulation software system. The Simulator models and software will be constructed over a five year period by a multi-disciplinary team of computational scientists, mathematicians, earth scientists, civil engineers and software engineers. The construction team will integrate numerical simulation models (3D discrete elements/lattice solid model, particle-in-cell large deformation finite-element method, stress reconstruction models, multi-scale continuum models etc) with geophysical, geological and tectonic models, through advanced software engineering and visualization technologies. When fully constructed, the Simulator aims to provide the software and hardware infrastructure needed to model solid earth phenomena including global scale dynamics and mineralisation processes, crustal scale processes including plate tectonics, mountain building, interacting fault system dynamics, and micro-scale processes that control the geological, physical and dynamic behaviour of earth systems. ACcESS represents a part of Australia's contribution to the APEC Cooperation for Earthquake Simulation (ACES) international initiative. Together with other national earth systems science initiatives including the Japanese Earth Simulator and US General Earthquake Model projects, ACcESS aims to provide a driver for scientific advancement and technological breakthroughs including: quantum leaps in understanding of earth evolution at global, crustal, regional and microscopic scales; new knowledge of the physics of crustal fault systems required to underpin the grand challenge of earthquake prediction; new understanding and predictive capabilities of geological processes such as tectonics and mineralisation.
1999-09-20
c o i b f t c c c c w n c s p t s Calculating correlated color temperatures across the entire gamut of daylight and skylight chromaticities Javier...temperature ~CCT!, yet existing equations for calculating CCT from chromaticity coordinates span only part of this range. To improve both the gamut and accuracy...00-1999 to 00-00-1999 4. TITLE AND SUBTITLE Calculating correlated color temperatures across the entire gamut of daylight and skylight
NASA Astrophysics Data System (ADS)
Caron, David A.; Connell, Paige E.; Schaffner, Rebecca A.; Schnetzer, Astrid; Fuhrman, Jed A.; Countway, Peter D.; Kim, Diane Y.
2017-03-01
Biogeochemistry in marine plankton communities is strongly influenced by the activities of microbial species. Understanding the composition and dynamics of these assemblages is essential for modeling emergent community-level processes, yet few studies have examined all of the biological assemblages present in the plankton, and benchmark data of this sort from time-series studies are rare. Abundance and biomass of the entire microbial assemblage and mesozooplankton (>200 μm) were determined vertically, monthly and seasonally over a 3-year period at a coastal time-series station in the San Pedro Basin off the southwestern coast of the USA. All compartments of the planktonic community were enumerated (viruses in the femtoplankton size range [0.02-0.2 μm], bacteria + archaea and cyanobacteria in the picoplankton size range [0.2-2.0 μm], phototrophic and heterotrophic protists in the nanoplanktonic [2-20 μm] and microplanktonic [20-200 μm] size ranges, and mesozooplankton [>200 μm]. Carbon biomass of each category was estimated using standard conversion factors. Plankton abundances varied over seven orders of magnitude across all categories, and total carbon biomass averaged approximately 60 μg C l-1 in surface waters of the 890 m water column over the study period. Bacteria + archaea comprised the single largest component of biomass (>1/3 of the total), with the sum of phototrophic protistan biomass making up a similar proportion. Temporal variability at this subtropical station was not dramatic. Monthly depth-specific and depth-integrated biomass varied 2-fold at the station, while seasonal variances were generally <50%. This study provides benchmark information for investigating long-term environmental forcing on the composition and dynamics of the microbes that dominate food web structure and function at this coastal observatory.
Kontis, Kris J; Valcour, Andre; Patel, Ashok; Chen, Andy; Wang, Jan; Chow, Julia; Nayak, Narayan
2006-01-01
It has been reported that in vitro measurement of food-specific IgE can be used to accurately predict food allergy and reduce the risk associated with double-blinded placebo-controlled food challenges (DBPCFC). Our objective was to assess the performance characteristics of the Hycor Turbo-MP quantitative radioimmunoassay for food-specific IgE and to determine this method's comparability to another assay, the Pharmacia ImmunoCAP fluorescence enzyme immunoassay (FEIA). The dynamic range of the Turbo-MP assay is 0.05 to 100 IU/ml, compared to 0.35 to 100 IU/ml for the FEIA. Performance characteristics of the Turbo-MP assay (ie, reproducibility of the calibration curve, within-run precision, total precision, parallelism, and linearity) were determined using samples from the Hycor serum bank. The precision (CV) of IgE calibrator replicates was <10%. The total precision (CV) of the Turbo-MP assay ranged from 8.8% to 18.4% for specific IgE concentrations between 0.28 to 31.4 IU/ml. Testing of serial dilutions of sera with IgE specificities for egg white, cow's milk, codfish, wheat, peanut, and soybean showed that the assay is linear over the entire dynamic range. Serial dilution data (slopes of 1.01 to 1.10) showed parallelism to serial dilutions of the IgE calibrator (slope of 0.96). The Turbo-MP and FEIA methods were both used for quantitative assays of food-specific IgE in 457 serum samples obtained from a clinical reference laboratory. Comparison of specific IgE results by the Turbo-MP and FEIA methods for 6 major food allergens exhibited a slope of 0.99 (0.92 to 1.03) with a correlation coefficient of 0.81.
Voltage controlled current source
Casne, Gregory M.
1992-01-01
A seven decade, voltage controlled current source is described for use in testing intermediate range nuclear instruments that covers the entire test current range of from 10 picoamperes to 100 microamperes. High accuracy is obtained throughout the entire seven decades of output current with circuitry that includes a coordinated switching scheme responsive to the input signal from a hybrid computer to control the input voltage to an antilog amplifier, and to selectively connect a resistance to the antilog amplifier output to provide a continuous output current source as a function of a preset range of input voltage. An operator controlled switch provides current adjustment for operation in either a real-time simulation test mode or a time response test mode.
NASA Astrophysics Data System (ADS)
Pieprzyk, S.; Brańka, A. C.; Maćkowiak, Sz.; Heyes, D. M.
2018-03-01
The equation of state (EoS) of the Lennard-Jones fluid is calculated using a new set of molecular dynamics data which extends to higher temperature than in previous studies. The modified Benedict-Webb-Rubin (MBWR) equation, which goes up to ca. T ˜ 6, is reparametrized with new simulation data. A new analytic form for the EoS, which breaks the fluid range into two regions with different analytic forms and goes up to ca. T ≃ 35, is also proposed. The accuracy of the new formulas is at least as good as the MBWR fit and goes to much higher temperature allowing it to now encompass the Amagat line. The fitted formula extends into the high temperature range where the system can be well represented by inverse power potential scaling, which means that our specification of the equation of state covers the entire (ρ, T) plane. Accurate analytic fit formulas for the Boyle, Amagat, and inversion curves are presented. Parametrizations of the extrema loci of the isochoric, CV, and isobaric, CP, heat capacities are given. As found by others, a line maxima of CP terminates in the critical point region, and a line of minima of CP terminates on the freezing line. The line of maxima of CV terminates close to or at the critical point, and a line of minima of CV terminates to the right of the critical point. No evidence for a divergence in CV in the critical region is found.
Tarnacka, M; Madejczyk, O; Adrjanowicz, K; Pionteck, J; Kaminska, E; Kamiński, K; Paluch, M
2015-06-14
Pressure-Volume-Temperature (PVT) measurements and broadband dielectric spectroscopy were carried out to investigate molecular dynamics and to test the validity of thermodynamic scaling of two homologous compounds of pharmaceutical activity: itraconazole and ketoconazole in the wide range of thermodynamic conditions. The pressure coefficients of the glass transition temperature (dT(g)/dp) for itraconazole and ketoconazole were determined to be equal to 183 and 228 K/GPa, respectively. However, for itraconazole, the additional transition to the nematic phase was observed and characterized by the pressure coefficient dT(n)/dp = 258 K/GPa. From PVT and dielectric data, we obtained that the liquid-nematic phase transition is governed by the relaxation time since it occurred at constant τ(α) = 10(-5) s. Furthermore, we plotted the obtained relaxation times as a function of T(-1)v(-γ), which has revealed that the validity of thermodynamic scaling with the γ exponent equals to 3.69 ± 0.04 and 3.64 ± 0.03 for itraconazole and ketoconazole, respectively. Further analysis of the scaling parameter in itraconazole revealed that it unexpectedly decreases with increasing relaxation time, which resulted in dramatic change of the shape of the thermodynamic scaling master curve. While in the case of ketoconazole, it remained the same within entire range of data (within experimental uncertainty). We suppose that in case of itraconazole, this peculiar behavior is related to the liquid crystals' properties of itraconazole molecule.
Separation of electrocardiographic from electromyographic signals using dynamic filtration.
Christov, Ivaylo; Raikova, Rositsa; Angelova, Silvija
2018-07-01
Trunk muscle electromyographic (EMG) signals are often contaminated by the electrical activity of the heart. During low or moderate muscle force, these electrocardiographic (ECG) signals disturb the estimation of muscle activity. Butterworth high-pass filters with cut-off frequency of up to 60 Hz are often used to suppress the ECG signal. Such filters disturb the EMG signal in both frequency and time domain. A new method based on the dynamic application of Savitzky-Golay filter is proposed. EMG signals of three left trunk muscles and pure ECG signal were recorded during different motor tasks. The efficiency of the method was tested and verified both with the experimental EMG signals and with modeled signals obtained by summing the pure ECG signal with EMG signals at different levels of signal-to-noise ratio. The results were compared with those obtained by application of high-pass, 4th order Butterworth filter with cut-off frequency of 30 Hz. The suggested method is separating the EMG signal from the ECG signal without EMG signal distortion across its entire frequency range regardless of amplitudes. Butterworth filter suppresses the signals in the 0-30 Hz range thus preventing the low-frequency analysis of the EMG signal. An additional disadvantage is that it passes high-frequency ECG signal components which is apparent at equal and higher amplitudes of the ECG signal as compared to the EMG signal. The new method was also successfully verified with abnormal ECG signals. Copyright © 2018. Published by Elsevier Ltd.
Mechanism of resonant electron emission from the deprotonated GFP chromophore and its biomimetics.
Bochenkova, Anastasia V; Mooney, Ciarán R S; Parkes, Michael A; Woodhouse, Joanne L; Zhang, Lijuan; Lewin, Ross; Ward, John M; Hailes, Helen C; Andersen, Lars H; Fielding, Helen H
2017-04-01
The Green Fluorescent Protein (GFP), which is widely used in bioimaging, is known to undergo light-induced redox transformations. Electron transfer is thought to occur resonantly through excited states of its chromophore; however, a detailed understanding of the electron gateway states of the chromophore is still missing. Here, we use photoelectron spectroscopy and high-level quantum chemistry calculations to show that following UV excitation, the ultrafast electron dynamics in the chromophore anion proceeds via an excited shape resonance strongly coupled to the open continuum. The impact of this state is found across the entire 355-315 nm excitation range, from above the first bound-bound transition to below the opening of higher-lying continua. By disentangling the electron dynamics in the photodetachment channels, we provide an important reference for the adiabatic position of the electron gateway state, which is located at 348 nm, and discover the source of the curiously large widths of the photoelectron spectra that have been reported in the literature. By introducing chemical modifications to the GFP chromophore, we show that the detachment threshold and the position of the gateway state, and hence the underlying excited-state dynamics, can be changed systematically. This enables a fine tuning of the intrinsic electron emission properties of the GFP chromophore and has significant implications for its function, suggesting that the biomimetic GFP chromophores are more stable to photooxidation.
Dynamic Bioreactor Culture of High Volume Engineered Bone Tissue
Nguyen, Bao-Ngoc B.; Ko, Henry; Moriarty, Rebecca A.; Etheridge, Julie M.
2016-01-01
Within the field of tissue engineering and regenerative medicine, the fabrication of tissue grafts of any significant size—much less a whole organ or tissue—remains a major challenge. Currently, tissue-engineered constructs cultured in vitro have been restrained in size primarily due to the diffusion limit of oxygen and nutrients to the center of these grafts. Previously, we developed a novel tubular perfusion system (TPS) bioreactor, which allows the dynamic culture of bead-encapsulated cells and increases the supply of nutrients to the entire cell population. More interestingly, the versatility of TPS bioreactor allows a large range of engineered tissue volumes to be cultured, including large bone grafts. In this study, we utilized alginate-encapsulated human mesenchymal stem cells for the culture of a tissue-engineered bone construct in the size and shape of the superior half of an adult human femur (∼200 cm3), a 20-fold increase over previously reported volumes of in vitro engineered bone grafts. Dynamic culture in TPS bioreactor not only resulted in high cell viability throughout the femur graft, but also showed early signs of stem cell differentiation through increased expression of osteogenic genes and proteins, consistent with our previous models of smaller bone constructs. This first foray into full-scale bone engineering provides the foundation for future clinical applications of bioengineered bone grafts. PMID:26653703
Understanding transport mechanisms in ionic liquid/carbonate solvent electrolyte blends.
Oldiges, K; Diddens, D; Ebrahiminia, M; Hooper, J B; Cekic-Laskovic, I; Heuer, A; Bedrov, D; Winter, M; Brunklaus, G
2018-06-20
To unravel mechanistic details of the ion transport in liquid electrolytes, blends of the ionic liquid (IL) 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (Pyr14TFSI), ethylene carbonate (EC) and dimethyl carbonate (DMC) with the conducting salts lithium hexafluorophosphate (LiPF6) and lithium bis(trifluoromethylsulfonyl)imide (LiTFSI) were investigated as a function of the IL concentration. Electrochemical impedance, Pulsed Field Gradient Nuclear Magnetic Resonance (PFG NMR) and Raman spectroscopy supported by Molecular Dynamics (MD) simulations allowed the structural and dynamic correlations of the ion motions to be probed. Remarkably, we identified that though the individual correlations among different ion types exhibit a clear concentration dependence, their net effect is nearly constant throughout the entire concentration range, resulting in approximately equal transport and transference numbers, despite a monitored cross-over from carbonate-based lithium coordination to a TFSI-based ion coordination. In addition, though dynamical ion correlation could be found, the absolute values of the ionic conductivity are essentially determined by the overall viscosity of the electrolyte. The IL/carbonate blends with a Pyr14TFSI fraction of ∼10 wt% are found to be promising electrolyte solvents, with ionic conductivities and lithium ion transference numbers comparable to those of standard carbonate-based electrolytes while the thermal and electrochemical stabilities are considerably improved. In contrast, the choice of the conducting salt only marginally affects the transport properties.
Depth-dependent hydraulic roughness and its impact on the assessment of hydropeaking.
Kopecki, Ianina; Schneider, Matthias; Tuhtan, Jeffrey A
2017-01-01
Hydrodynamic river models in combination with physical habitat modelling serve as the basis for a wide spectrum of environmental studies. Larvae, juvenile and spawning fish, redds and benthic invertebrates belong to the biological groups most heavily affected by rapid flow variations as a consequence of peaking energy production, or "hydropeaking". As these species find their preferential habitat to a great extent in shallow regions, high prediction accuracy for these areas is essential to substantiate the use of hydrodynamic models. In this paper, a new formulation for the depth-dependent roughness originating from the boundary layer theory is derived. The modelling approach is based on the concept of a dynamic, spatio-temporal Manning's roughness which allows for considerable improvement in the accuracy of stationary and highly transient hydrodynamic simulations in shallow river areas. In addition, the approach facilitates more effective model calibration, as it allows for the preservation of the roughness sublayer thickness as a single calibration parameter for the entire range of hydropeaking discharges. The approach is tested and validated on a 7.5km long stretch of a middle-size gravel river affected by hydropeaking. Model results using conventional constant roughness and the proposed dynamic roughness approaches are compared. The implications for the stationary habitat assessment and calculation of dynamic hydropeaking parameters are analysed as well. Copyright © 2016 Elsevier B.V. All rights reserved.
Elastic and viscous properties of the nematic dimer CB7CB
NASA Astrophysics Data System (ADS)
Babakhanova, Greta; Parsouzi, Zeinab; Paladugu, Sathyanarayana; Wang, Hao; Nastishin, Yu. A.; Shiyanovskii, Sergij V.; Sprunt, Samuel; Lavrentovich, Oleg D.
2017-12-01
We present a comprehensive set of measurements of optical, dielectric, diamagnetic, elastic, and viscous properties in the nematic (N) phase formed by a liquid crystalline dimer. The studied dimer, 1,7-bis-4-(4'-cyanobiphenyl) heptane (CB7CB), is composed of two rigid rodlike cyanobiphenyl segments connected by a flexible aliphatic link with seven methyl groups. CB7CB and other nematic dimers are of interest due to their tendency to adopt bent configurations and to form two states possessing a modulated nematic director structure, namely, the twist-bend nematic, NTB, and the oblique helicoidal cholesteric, C hOH , which occurs when the achiral dimer is doped with a chiral additive and exposed to an external electric or magnetic field. We characterize the material parameters as functions of temperature in the entire temperature range of the N phase, including the pretransitional regions near the N -NTB and N-to-isotropic (I) transitions. The splay constant K11 is determined by two direct and independent techniques, namely, detection of the Frederiks transition and measurement of director fluctuation amplitudes by dynamic light scattering (DLS). The bend K33 and twist K22 constants are measured by DLS. K33, being the smallest of the three constants, shows a strong nonmonotonous temperature dependence with a negative slope in both N-I and N -NTB pretransitional regions. The measured ratio K11/K22 is larger than 2 in the entire nematic temperature range. The orientational viscosities associated with splay, twist, and bend fluctuations in the N phase are comparable to those of nematics formed by rodlike molecules. All three show strong temperature dependence, increasing sharply near the N -NTB transition.
Zydlewski, Joseph D.; Kinnison, Michael T.; Holbrook, Christopher M.
2011-01-01
Survival, distribution, and behavior of hatchery (n = 493) and naturally reared (n = 133) smolts of Atlantic salmon Salmo salar migrating through the Penobscot River and estuary in Maine were evaluated with acoustic telemetry in 2005 and 2006. Survival and use of a secondary migration path (the Stillwater Branch) were estimated with a multistate mark–recapture model. Higher rates of mortality per kilometer (range = 0.01–0.22) were observed near release sites and within reaches that contained three particular dams: Howland, West Enfield, and Milford dams. Estimated total survival of tagged hatchery smolts through entire individual reaches containing those dams ranged from 0.52 ( 0.18) to 0.94 ( 0.09), whereas survival through most of the reaches without dams exceeded 0.95. Of those smolts that survived to the Penobscot River–Stillwater Branch split at Marsh Island, most (≥74%) remained in the main stem around Marsh Island, where they experienced lower survival than fish that used the Stillwater Branch. Movement rates of hatchery-reared smolts were significantly lower through reaches containing dams than through reaches that lacked dams. Smolts arriving at dams during the day experienced longer delays than smolts arriving at night. Planned removal of two dams in this system is expected to enhance the passage of smolts through the main-stem corridor. However, the dams currently scheduled for removal (Great Works and Veazie dams) had less influence on smolt survival than some of the dams that will remain. This case study shows that by examining prerestoration migration dynamics throughout entire river systems rather than just in the vicinity of particular dams, tracking studies can help prioritize restoration efforts or predict the costs and benefits of future hydrosystem changes.
Dynamic Autoinoculation and the Microbial Ecology of a deep Water Hydrocarbon Irruption
2012-12-11
gas hydrate) likely altered plume com- position near the source, leavrngintruswrscknimatedbythemost soluble compounds, such as gases (2-4, 9, 10, 12...well. These results may reconcile disparate observations of the physical dynamics and microbial community structure of the deep plume . Model...feeds bacterial metabolism and cellular growth. We focused entirely on the deep plume horizon spanning 1,000-1,300 m water depth, applying
Inner-shelf ocean dynamics and seafloor morphologic changes during Hurricane Sandy
NASA Astrophysics Data System (ADS)
Warner, John C.; Schwab, William C.; List, Jeffrey H.; Safak, Ilgar; Liste, Maria; Baldwin, Wayne
2017-04-01
Hurricane Sandy was one of the most destructive hurricanes in US history, making landfall on the New Jersey coast on October 30, 2012. Storm impacts included several barrier island breaches, massive coastal erosion, and flooding. While changes to the subaerial landscape are relatively easily observed, storm-induced changes to the adjacent shoreface and inner continental shelf are more difficult to evaluate. These regions provide a framework for the coastal zone, are important for navigation, aggregate resources, marine ecosystems, and coastal evolution. Here we provide unprecedented perspective regarding regional inner continental shelf sediment dynamics based on both observations and numerical modeling over time scales associated with these types of large storm events. Oceanographic conditions and seafloor morphologic changes are evaluated using both a coupled atmospheric-ocean-wave-sediment numerical modeling system that covered spatial scales ranging from the entire US east coast (1000 s of km) to local domains (10 s of km). Additionally, the modeled response for the region offshore of Fire Island, NY was compared to observational analysis from a series of geologic surveys from that location. The geologic investigations conducted in 2011 and 2014 revealed lateral movement of sedimentary structures of distances up to 450 m and in water depths up to 30 m, and vertical changes in sediment thickness greater than 1 m in some locations. The modeling investigations utilize a system with grid refinement designed to simulate oceanographic conditions with progressively increasing resolutions for the entire US East Coast (5-km grid), the New York Bight (700-m grid), and offshore of Fire Island, NY (100-m grid), allowing larger scale dynamics to drive smaller scale coastal changes. Model results in the New York Bight identify maximum storm surge of up to 3 m, surface currents on the order of 2 ms-1 along the New Jersey coast, waves up to 8 m in height, and bottom stresses exceeding 10 Pa. Flow down the Hudson Shelf Valley is shown to result in convergent sediment transport and deposition along its axis. Modeled sediment redistribution along Fire Island showed erosion across the crests of inner shelf sand ridges and sedimentation in adjacent troughs, consistent with the geologic observations.
Flat-slab subduction, whole crustal faulting, and geohazards in Alaska: Targets for Earthscope
NASA Astrophysics Data System (ADS)
Gulick, S. P.; Pavlis, T. L.; Bruhn, R. L.; Christeson, G. L.; Freymueller, J. T.; Hansen, R. A.; Koons, P. O.; Pavlis, G. L.; Roeske, S.; Reece, R.; van Avendonk, H. J.; Worthington, L. L.
2010-12-01
Crustal structure and evolution illuminated by the Continental Dynamics ST. Elias Erosion and tectonics Project (STEEP) highlights some fundamental questions about active tectonics processes in Alaska including: 1) what are the controls on far field deformation and lithospheric stabilization, 2) do strike slip faults extend through the entire crust and upper mantle and how does this influence mantle flow, and 3) how does the transition from “normal” subduction of the Pacific along the Aleutians to flat slab subduction of the Yakutat Terrane beneath southeast and central Alaska to translation of the Yakutat Terrane past North American in eastern Alaska affect geohazard assessment for the north Pacific? Active and passive seismic studies and geologic fieldwork focusing on the Yakutat Terrane show that the Terrane ranges from 15-35 km thick and is underthrusting the North American plate from the St. Elias Mountains to the Alaska Range (~500 km). Deformation of the upper plate occurs within the offshore Pamplona Zone fold and thrust belt, and onshore throughout the Robinson Mountains. Deformation patterns, structural evolution, and the sedimentary products of orogenesis are fundamentally influenced by feedbacks with glacial erosion. The Yakutat megathrust extends beneath Prince William Sound such that the 1964 Mw 9.2 great earthquake epicenter was on this plate boundary and jumped to the adjacent Aleutian megathrust coseismically; this event illuminates the potential for transitional tectonic systems to enhance geohazards. The northern, southern, and eastern limits of the Yakutat microplate are strike-slip faults that, where imaged, appear to cut the entire crustal section and may allow for crustal extrusion towards the Bering Sea. Yakutat Terrane effects on mantle flow, however, have been suggested to cross these crustal features to allow for far-field deformation in the Yukon, Brooks Range, and Amerasia Basin. From the STEEP results it is clear that the Yakutat Terrane is driving a range of tectonic and surface processes perturbing the Aleutian subduction system at its eastern extent and linking this system with Laramide style subduction and plate boundary strike-slip tectonics farther east. Targeted geodetic and seismic deployments as part of Earthscope could examine all of these features and seek to address fundamental questions about tectonic interactions.
Modelling compressible dense and dilute two-phase flows
NASA Astrophysics Data System (ADS)
Saurel, Richard; Chinnayya, Ashwin; Carmouze, Quentin
2017-06-01
Many two-phase flow situations, from engineering science to astrophysics, deal with transition from dense (high concentration of the condensed phase) to dilute concentration (low concentration of the same phase), covering the entire range of volume fractions. Some models are now well accepted at the two limits, but none are able to cover accurately the entire range, in particular regarding waves propagation. In the present work, an alternative to the Baer and Nunziato (BN) model [Baer, M. R. and Nunziato, J. W., "A two-phase mixture theory for the deflagration-to-detonation transition (DDT) in reactive granular materials," Int. J. Multiphase Flow 12(6), 861 (1986)], initially designed for dense flows, is built. The corresponding model is hyperbolic and thermodynamically consistent. Contrarily to the BN model that involves 6 wave speeds, the new formulation involves 4 waves only, in agreement with the Marble model [Marble, F. E., "Dynamics of a gas containing small solid particles," Combustion and Propulsion (5th AGARD Colloquium) (Pergamon Press, 1963), Vol. 175] based on pressureless Euler equations for the dispersed phase, a well-accepted model for low particle volume concentrations. In the new model, the presence of pressure in the momentum equation of the particles and consideration of volume fractions in the two phases render the model valid for large particle concentrations. A symmetric version of the new model is derived as well for liquids containing gas bubbles. This model version involves 4 characteristic wave speeds as well, but with different velocities. Last, the two sub-models with 4 waves are combined in a unique formulation, valid for the full range of volume fractions. It involves the same 6 wave speeds as the BN model, but at a given point of space, 4 waves only emerge, depending on the local volume fractions. The non-linear pressure waves propagate only in the phase with dominant volume fraction. The new model is tested numerically on various test problems ranging from separated phases in a shock tube to shock-particle cloud interaction. Its predictions are compared to BN and Marble models as well as against experimental data showing clear improvements.
NASA Astrophysics Data System (ADS)
Xu, Jun; Kong, Fan
2018-05-01
Extreme value distribution (EVD) evaluation is a critical topic in reliability analysis of nonlinear structural dynamic systems. In this paper, a new method is proposed to obtain the EVD. The maximum entropy method (MEM) with fractional moments as constraints is employed to derive the entire range of EVD. Then, an adaptive cubature formula is proposed for fractional moments assessment involved in MEM, which is closely related to the efficiency and accuracy for reliability analysis. Three point sets, which include a total of 2d2 + 1 integration points in the dimension d, are generated in the proposed formula. In this regard, the efficiency of the proposed formula is ensured. Besides, a "free" parameter is introduced, which makes the proposed formula adaptive with the dimension. The "free" parameter is determined by arranging one point set adjacent to the boundary of the hyper-sphere which contains the bulk of total probability. In this regard, the tail distribution may be better reproduced and the fractional moments could be evaluated with accuracy. Finally, the proposed method is applied to a ten-storey shear frame structure under seismic excitations, which exhibits strong nonlinearity. The numerical results demonstrate the efficacy of the proposed method.
Magnetosphere-ionosphere interactions: Near Earth manifestations of the plasma universe
NASA Technical Reports Server (NTRS)
Faelthammar, Carl-Gunne
1986-01-01
As the universe consists almost entirely of plasma, the understanding of astrophysical phenomena must depend critically on the understanding of how matter behaves in the plasma state. In situ observations in the near Earth cosmical plasma offer an excellent opportunity of gaining such understanding. The near Earth cosmical plasma not only covers vast ranges of density and temperature, but is the site of a rich variety of complex plasma physical processes which are activated as a results of the interactions between the magnetosphere and the ionosphere. The geomagnetic field connects the ionosphere, tied by friction to the Earth, and the magnetosphere, dynamically coupled to the solar wind. This causes an exchange of energy an momentum between the two regions. The exchange is executed by magnetic-field-aligned electric currents, the so-called Birkeland currents. Both directly and indirectly (through instabilities and particle acceleration) these also lead to an exchange of plasma, which is selective and therefore causes chemical separation. Another essential aspect of the coupling is the role of electric fields, especially magnetic field aligned (parallel) electric fields, which have important consequences both for the dynamics of the coupling and, especially, for energization of charged particles.
Effect of concentration and temperature on the rheological behavior of collagen solution.
Lai, Guoli; Li, Yang; Li, Guoying
2008-04-01
Dynamic viscoelastic properties of collagen solutions with concentrations of 0.5-1.5% (w/w) were characterized by means of oscillatory rheometry at temperatures ranging from 20 to 32.5 degrees C. All collagen solutions showed a shear-thinning flow behavior. The complex viscosity exhibited an exponential increase and the loss tangent decreased with the increase of collagen concentration (C(COL)) when the C(COL)> or =0.75%. Both storage modulus (G') and loss modulus (G'') increased with the increase of frequency and concentration, but decreased with the increase of temperature and behaved without regularity at 32.5 degrees C. The relaxation times decreased with the increase of temperature for 1.0% collagen solution. According to a three-zone model, dynamic modulus of collagen solutions showed terminal-zone and plateau-zone behavior when C(COL) was no more than 1.25% or the stated temperature was no more than 30 degrees C. The concentrated solution (1.5%) behaved being entirely in plateau zone. An application of the time-temperature superposition (TTS) allowed the construction of master curve and an Arrhenius-type TTS principle was used to yield the activation energy of 161.4 kJ mol(-1).
Monte Carlo simulation of efficient data acquisition for an entire-body PET scanner
NASA Astrophysics Data System (ADS)
Isnaini, Ismet; Obi, Takashi; Yoshida, Eiji; Yamaya, Taiga
2014-07-01
Conventional PET scanners can image the whole body using many bed positions. On the other hand, an entire-body PET scanner with an extended axial FOV, which can trace whole-body uptake images at the same time and improve sensitivity dynamically, has been desired. The entire-body PET scanner would have to process a large amount of data effectively. As a result, the entire-body PET scanner has high dead time at a multiplex detector grouping process. Also, the entire-body PET scanner has many oblique line-of-responses. In this work, we study an efficient data acquisition for the entire-body PET scanner using the Monte Carlo simulation. The simulated entire-body PET scanner based on depth-of-interaction detectors has a 2016-mm axial field-of-view (FOV) and an 80-cm ring diameter. Since the entire-body PET scanner has higher single data loss than a conventional PET scanner at grouping circuits, the NECR of the entire-body PET scanner decreases. But, single data loss is mitigated by separating the axially arranged detector into multiple parts. Our choice of 3 groups of axially-arranged detectors has shown to increase the peak NECR by 41%. An appropriate choice of maximum ring difference (MRD) will also maintain the same high performance of sensitivity and high peak NECR while at the same time reduces the data size. The extremely-oblique line of response for large axial FOV does not contribute much to the performance of the scanner. The total sensitivity with full MRD increased only 15% than that with about half MRD. The peak NECR was saturated at about half MRD. The entire-body PET scanner promises to provide a large axial FOV and to have sufficient performance values without using the full data.
Analysis of stress-strain relationships in silicon ribbon
NASA Technical Reports Server (NTRS)
Dillon, O. W., Jr.
1984-01-01
An analysis of stress-strain relationships in silicon ribbon is presented. A model to present entire process, dynamical Transit Analysis is developed. It is found that knowledge of past-strain history is significant in modeling activities.
Single-image hard-copy display of the spine utilizing digital radiography
NASA Astrophysics Data System (ADS)
Artz, Dorothy S.; Janchar, Timothy; Milzman, David; Freedman, Matthew T.; Mun, Seong K.
1997-04-01
Regions of the entire spine contain a wide latitude of tissue densities within the imaged field of view presenting a problem for adequate radiological evaluation. With screen/film technology, the optimal technique for one area of the radiograph is sub-optimal for another area. Computed radiography (CR) with its inherent wide dynamic range, has been shown to be better than screen/film for lateral cervical spine imaging, but limitations are still present with standard image processing. By utilizing a dynamic range control (DRC) algorithm based on unsharp masking and signal transformation prior to gradation and frequency processing within the CR system, more vertebral bodies can be seen on a single hard copy display of the lateral cervical, thoracic, and thoracolumbar examinations. Examinations of the trauma cross-table lateral cervical spine, lateral thoracic spine, and lateral thoracolumbar spine were collected on live patient using photostimulable storage phosphor plates, the Fuji FCR 9000 reader, and the Fuji AC-3 computed radiography reader. Two images were produced from a single exposure; one with standard image processing and the second image with the standard process and the additional DRC algorithm. Both sets were printed from a Fuji LP 414 laser printer. Two different DRC algorithms were applied depending on which portion of the spine was not well visualized. One algorithm increased optical density and the second algorithm decreased optical density. The resultant image pairs were then reviewed by a panel of radiologists. Images produced with the additional DRC algorithm demonstrated improved visualization of previously 'under exposed' and 'over exposed' regions within the same image. Where lung field had previously obscured bony detail of the lateral thoracolumbar spine due to 'over exposure,' the image with the DRC applied to decrease the optical density allowed for easy visualization of the entire area of interest. For areas of the lateral cervical spine and lateral thoracic spine that typically have a low optical density value, the DRC algorithm used increased the optical density over that region improving visualization of C7-T2 and T11-L2 vertebral bodies; critical in trauma radiography. Emergency medicine physicians also reviewing the lateral cervical spine images were able to clear 37% of the DRC images compared to 30% of the non-DRC images for removal of the cervical collar. The DRC processed images reviewed by the physicians do not have a typical screen/film appearance; however, these different images were preferred for the three examinations in this study. This method of image processing after being tested and accepted, is in use clinically at Georgetown University Medical Center Department of Radiology for the following examinations: cervical spine, lateral thoracic spine, lateral thoracolumbar examinations, facial bones, shoulder, sternum, feet and portable chest. Computed radiography imaging of the spine is improved with the addition of histogram equalization known as dynamic range control (DRC). More anatomical structures are visualized on a single hard copy display.
The coefficient of friction, particularly of ice
NASA Astrophysics Data System (ADS)
Mills, Allan
2008-07-01
The static and dynamic coefficients of friction are defined, and values from 0.3 to 0.6 are quoted for common materials. These drop to about 0.15 when oil is added as a lubricant. Water ice at temperatures not far below 0 °C is remarkable for low coefficients of around 0.05 for static friction and 0.04-0.02 for dynamic friction, but these figures increase as the temperature diminishes. Reasons for the slipperiness of ice are summarized, but they are still not entirely clear. One hypothesis suggests that it is related to the transient formation of a lubricating film of liquid water produced by frictional heating. If this is the case, some composition melting a little above ambient temperatures might provide a skating rink that did not require expensive refrigeration. Various compositions have been tested, but an entirely satisfactory material has yet to be found.
Theoretical study of optical pump process in solid gain medium based on four-energy-level model
NASA Astrophysics Data System (ADS)
Ma, Yongjun; Fan, Zhongwei; Zhang, Bin; Yu, Jin; Zhang, Hongbo
2018-04-01
A semiclassical algorithm is explored to a four-energy level model, aiming to find out the factors that affect the dynamics behavior during the pump process. The impacts of pump intensity Ω p , non-radiative transition rate γ 43 and decay rate of electric dipole δ 14 are discussed in detail. The calculation results show that large γ 43, small δ 14, and strong pumping Ω p are beneficial to the establishing of population inversion. Under strong pumping conditions, the entire pump process can be divided into four different phases, tentatively named far-from-equilibrium process, Rabi oscillation process, quasi dynamic equilibrium process and ‘equilibrium’ process. The Rabi oscillation can slow the pumping process and cause some instability. Moreover, the duration of the entire process is negatively related to Ω p and γ 43 whereas positively related to δ 14.
Sutter-Fella, Carolin M; Li, Yanbo; Amani, Matin; Ager, Joel W; Toma, Francesca M; Yablonovitch, Eli; Sharp, Ian D; Javey, Ali
2016-01-13
Hybrid organic-inorganic halide perovskite based semiconductor materials are attractive for use in a wide range of optoelectronic devices because they combine the advantages of suitable optoelectronic attributes and simultaneously low-cost solution processability. Here, we present a two-step low-pressure vapor-assisted solution process to grow high quality homogeneous CH3NH3PbI3-xBrx perovskite films over the full band gap range of 1.6-2.3 eV. Photoluminescence light-in versus light-out characterization techniques are used to provide new insights into the optoelectronic properties of Br-containing hybrid organic-inorganic perovskites as a function of optical carrier injection by employing pump-powers over a 6 orders of magnitude dynamic range. The internal luminescence quantum yield of wide band gap perovskites reaches impressive values up to 30%. This high quantum yield translates into substantial quasi-Fermi level splitting and high "luminescence or optically implied" open-circuit voltage. Most importantly, both attributes, high internal quantum yield and high optically implied open-circuit voltage, are demonstrated over the entire band gap range (1.6 eV ≤ Eg ≤ 2.3 eV). These results establish the versatility of Br-containing perovskite semiconductors for a variety of applications and especially for the use as high-quality top cell in tandem photovoltaic devices in combination with industry dominant Si bottom cells.
NASA Astrophysics Data System (ADS)
Nazaruk, D. E.; Blokhin, S. A.; Maleev, N. A.; Bobrov, M. A.; Kuzmenkov, A. G.; Vasil'ev, A. P.; Gladyshev, A. G.; Pavlov, M. M.; Blokhin, A. A.; Kulagina, M. M.; Vashanova, K. A.; Zadiranov, Yu M.; Fefelov, A. G.; Ustinov, V. M.
2014-12-01
A new intracavity-contacted design to realize temperature and polarization-stable high-speed single-mode 850 nm vertical cavity surface emitting lasers (VCSELs) grown by molecular-beam epitaxy is proposed. Temperature dependences of static and dynamic characteristics of the 4.5 pm oxide aperture InGaAlAs VCSEL were investigated in detail. Due to optimal gain-cavity detuning and enhanced carrier localization in the active region the threshold current remains below 0.75 mA for the temperature range within 20-90°C, while the output power exceeds 1 mW up to 90°C. Single-mode operation with side-mode suppression ratio higher than 30 dB and orthogonal polarization suppression ratio more than 18 dB was obtained in the whole current and temperature operation range. Device demonstrates serial resistance less than 250 Ohm, which is rather low for any type of single-mode short- wavelength VCSELs. VCSEL demonstrates temperature robust high-speed operation with modulation bandwidth higher than 13 GHz in the entire temperature range of 20-90°C. Despite high resonance frequency the high-speed performance of developed VCSELs was limited by the cut-off frequency of the parasitic low pass filter created by device resistances and capacitances. The proposed design is promising for single-mode high-speed VCSEL applications in a wide spectral range.
Code of Federal Regulations, 2012 CFR
2012-07-01
... AUTHORIZATION REGULATION FOR KWAJALEIN MISSILE RANGE § 525.3 Criteria. (a) General. (1) Entry authorizations may... efficiency, capability or effectiveness of any military installation located within Kwajalein Missile Range... area entirely within the borders of Kwajalein Missile Range is not authorized except when such entry...
Code of Federal Regulations, 2013 CFR
2013-07-01
... AUTHORIZATION REGULATION FOR KWAJALEIN MISSILE RANGE § 525.3 Criteria. (a) General. (1) Entry authorizations may... efficiency, capability or effectiveness of any military installation located within Kwajalein Missile Range... area entirely within the borders of Kwajalein Missile Range is not authorized except when such entry...
Code of Federal Regulations, 2014 CFR
2014-07-01
... AUTHORIZATION REGULATION FOR KWAJALEIN MISSILE RANGE § 525.3 Criteria. (a) General. (1) Entry authorizations may... efficiency, capability or effectiveness of any military installation located within Kwajalein Missile Range... area entirely within the borders of Kwajalein Missile Range is not authorized except when such entry...
Code of Federal Regulations, 2010 CFR
2010-07-01
... AUTHORIZATION REGULATION FOR KWAJALEIN MISSILE RANGE § 525.3 Criteria. (a) General. (1) Entry authorizations may... efficiency, capability or effectiveness of any military installation located within Kwajalein Missile Range... area entirely within the borders of Kwajalein Missile Range is not authorized except when such entry...
Code of Federal Regulations, 2011 CFR
2011-07-01
... AUTHORIZATION REGULATION FOR KWAJALEIN MISSILE RANGE § 525.3 Criteria. (a) General. (1) Entry authorizations may... efficiency, capability or effectiveness of any military installation located within Kwajalein Missile Range... area entirely within the borders of Kwajalein Missile Range is not authorized except when such entry...
Nonlinear dynamic range transformation in visual communication channels.
Alter-Gartenberg, R
1996-01-01
The article evaluates nonlinear dynamic range transformation in the context of the end-to-end continuous-input/discrete processing/continuous-display imaging process. Dynamic range transformation is required when we have the following: (i) the wide dynamic range encountered in nature is compressed into the relatively narrow dynamic range of the display, particularly for spatially varying irradiance (e.g., shadow); (ii) coarse quantization is expanded to the wider dynamic range of the display; and (iii) nonlinear tone scale transformation compensates for the correction in the camera amplifier.
Adaptive contact networks change effective disease infectiousness and dynamics.
Van Segbroeck, Sven; Santos, Francisco C; Pacheco, Jorge M
2010-08-19
Human societies are organized in complex webs that are constantly reshaped by a social dynamic which is influenced by the information individuals have about others. Similarly, epidemic spreading may be affected by local information that makes individuals aware of the health status of their social contacts, allowing them to avoid contact with those infected and to remain in touch with the healthy. Here we study disease dynamics in finite populations in which infection occurs along the links of a dynamical contact network whose reshaping may be biased based on each individual's health status. We adopt some of the most widely used epidemiological models, investigating the impact of the reshaping of the contact network on the disease dynamics. We derive analytical results in the limit where network reshaping occurs much faster than disease spreading and demonstrate numerically that this limit extends to a much wider range of time scales than one might anticipate. Specifically, we show that from a population-level description, disease propagation in a quickly adapting network can be formulated equivalently as disease spreading on a well-mixed population but with a rescaled infectiousness. We find that for all models studied here--SI, SIS and SIR--the effective infectiousness of a disease depends on the population size, the number of infected in the population, and the capacity of healthy individuals to sever contacts with the infected. Importantly, we indicate how the use of available information hinders disease progression, either by reducing the average time required to eradicate a disease (in case recovery is possible), or by increasing the average time needed for a disease to spread to the entire population (in case recovery or immunity is impossible).
Lincoln estimates of mallard (Anas platyrhynchos) abundance in North America.
Alisauskas, Ray T; Arnold, Todd W; Leafloor, James O; Otis, David L; Sedinger, James S
2014-01-01
Estimates of range-wide abundance, harvest, and harvest rate are fundamental for sound inferences about the role of exploitation in the dynamics of free-ranging wildlife populations, but reliability of existing survey methods for abundance estimation is rarely assessed using alternative approaches. North American mallard populations have been surveyed each spring since 1955 using internationally coordinated aerial surveys, but population size can also be estimated with Lincoln's method using banding and harvest data. We estimated late summer population size of adult and juvenile male and female mallards in western, midcontinent, and eastern North America using Lincoln's method of dividing (i) total estimated harvest, [Formula: see text], by estimated harvest rate, [Formula: see text], calculated as (ii) direct band recovery rate, [Formula: see text], divided by the (iii) band reporting rate, [Formula: see text]. Our goal was to compare estimates based on Lincoln's method with traditional estimates based on aerial surveys. Lincoln estimates of adult males and females alive in the period June-September were 4.0 (range: 2.5-5.9), 1.8 (range: 0.6-3.0), and 1.8 (range: 1.3-2.7) times larger than respective aerial survey estimates for the western, midcontinent, and eastern mallard populations, and the two population estimates were only modestly correlated with each other (western: r = 0.70, 1993-2011; midcontinent: r = 0.54, 1961-2011; eastern: r = 0.50, 1993-2011). Higher Lincoln estimates are predictable given that the geographic scope of inference from Lincoln estimates is the entire population range, whereas sampling frames for aerial surveys are incomplete. Although each estimation method has a number of important potential biases, our review suggests that underestimation of total population size by aerial surveys is the most likely explanation. In addition to providing measures of total abundance, Lincoln's method provides estimates of fecundity and population sex ratio and could be used in integrated population models to provide greater insights about population dynamics and management of North American mallards and most other harvested species.
Cooper, Virgil N; Oshiro, Thomas; Cagnon, Christopher H; Bassett, Lawrence W; McLeod-Stockmann, Tyler M; Bezrukiy, Nikita V
2003-10-01
Digital detectors in mammography have wide dynamic range in addition to the benefit of decoupled acquisition and display. How wide the dynamic range is and how it compares to film-screen systems in the clinical x-ray exposure domain are unclear. In this work, we compare the effective dynamic ranges of film-screen and flat panel mammography systems, along with the dynamic ranges of their component image receptors in the clinical x-ray exposure domain. An ACR mammography phantom was imaged using variable mAs (exposure) values for both systems. The dynamic range of the contrast-limited film-screen system was defined as that ratio of mAs (exposure) values for a 26 kVp Mo/Mo (HVL=0.34 mm Al) beam that yielded passing phantom scores. The same approach was done for the noise-limited digital system. Data from three independent observers delineated a useful phantom background optical density range of 1.27 to 2.63, which corresponded to a dynamic range of 2.3 +/- 0.53. The digital system had a dynamic range of 9.9 +/- 1.8, which was wider than the film-screen system (p<0.02). The dynamic range of the film-screen system was limited by the dynamic range of the film. The digital detector, on the other hand, had an estimated dynamic range of 42, which was wider than the dynamic range of the digital system in its entirety by a factor of 4. The generator/tube combination was the limiting factor in determining the digital system's dynamic range.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Swaminathan-Gopalan, Krishnan; Stephani, Kelly A., E-mail: ksteph@illinois.edu
2016-02-15
A systematic approach for calibrating the direct simulation Monte Carlo (DSMC) collision model parameters to achieve consistency in the transport processes is presented. The DSMC collision cross section model parameters are calibrated for high temperature atmospheric conditions by matching the collision integrals from DSMC against ab initio based collision integrals that are currently employed in the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) and Data Parallel Line Relaxation (DPLR) high temperature computational fluid dynamics solvers. The DSMC parameter values are computed for the widely used Variable Hard Sphere (VHS) and the Variable Soft Sphere (VSS) models using the collision-specific pairing approach.more » The recommended best-fit VHS/VSS parameter values are provided over a temperature range of 1000-20 000 K for a thirteen-species ionized air mixture. Use of the VSS model is necessary to achieve consistency in transport processes of ionized gases. The agreement of the VSS model transport properties with the transport properties as determined by the ab initio collision integral fits was found to be within 6% in the entire temperature range, regardless of the composition of the mixture. The recommended model parameter values can be readily applied to any gas mixture involving binary collisional interactions between the chemical species presented for the specified temperature range.« less
Quantitative myocardial perfusion from static cardiac and dynamic arterial CT
NASA Astrophysics Data System (ADS)
Bindschadler, Michael; Branch, Kelley R.; Alessio, Adam M.
2018-05-01
Quantitative myocardial blood flow (MBF) estimation by dynamic contrast enhanced cardiac computed tomography (CT) requires multi-frame acquisition of contrast transit through the blood pool and myocardium to inform the arterial input and tissue response functions. Both the input and the tissue response functions for the entire myocardium are sampled with each acquisition. However, the long breath holds and frequent sampling can result in significant motion artifacts and relatively high radiation dose. To address these limitations, we propose and evaluate a new static cardiac and dynamic arterial (SCDA) quantitative MBF approach where (1) the input function is well sampled using either prediction from pre-scan timing bolus data or measured from dynamic thin slice ‘bolus tracking’ acquisitions, and (2) the whole-heart tissue response data is limited to one contrast enhanced CT acquisition. A perfusion model uses the dynamic arterial input function to generate a family of possible myocardial contrast enhancement curves corresponding to a range of MBF values. Combined with the timing of the single whole-heart acquisition, these curves generate a lookup table relating myocardial contrast enhancement to quantitative MBF. We tested the SCDA approach in 28 patients that underwent a full dynamic CT protocol both at rest and vasodilator stress conditions. Using measured input function plus single (enhanced CT only) or plus double (enhanced and contrast free baseline CT’s) myocardial acquisitions yielded MBF estimates with root mean square (RMS) error of 1.2 ml/min/g and 0.35 ml/min/g, and radiation dose reductions of 90% and 83%, respectively. The prediction of the input function based on timing bolus data and the static acquisition had an RMS error compared to the measured input function of 26.0% which led to MBF estimation errors greater than threefold higher than using the measured input function. SCDA presents a new, simplified approach for quantitative perfusion imaging with an acquisition strategy offering substantial radiation dose and computational complexity savings over dynamic CT.
Long-term optical stimulation of channelrhodopsin-expressing neurons to study network plasticity
Lignani, Gabriele; Ferrea, Enrico; Difato, Francesco; Amarù, Jessica; Ferroni, Eleonora; Lugarà, Eleonora; Espinoza, Stefano; Gainetdinov, Raul R.; Baldelli, Pietro; Benfenati, Fabio
2013-01-01
Neuronal plasticity produces changes in excitability, synaptic transmission, and network architecture in response to external stimuli. Network adaptation to environmental conditions takes place in time scales ranging from few seconds to days, and modulates the entire network dynamics. To study the network response to defined long-term experimental protocols, we setup a system that combines optical and electrophysiological tools embedded in a cell incubator. Primary hippocampal neurons transduced with lentiviruses expressing channelrhodopsin-2/H134R were subjected to various photostimulation protocols in a time window in the order of days. To monitor the effects of light-induced gating of network activity, stimulated transduced neurons were simultaneously recorded using multi-electrode arrays (MEAs). The developed experimental model allows discerning short-term, long-lasting, and adaptive plasticity responses of the same neuronal network to distinct stimulation frequencies applied over different temporal windows. PMID:23970852
Composition Measurements at the Magnetopause and in the Plasma Mantle
NASA Technical Reports Server (NTRS)
Gary, S. P.
1998-01-01
This final report describes activities under NASA grant NAGW-4049 to Lockheed Missiles and Space Company. The report covers the entire period of the grant from 15 August 1994 to 31 January 1998. The original grant was for 3 years ending in August 1997; however the grant was extended 6 months to accomodate additional data analysis that added significantly to the scientific results. This is a grant under the NASA Supporting Research and Technology Program for the analysis and interpretation of the combined scientific data from the ISEE-1 Plasma Composition Experiment and the AMPTE/CCE Hot Plasma Composition Experiment. These combined data sets were used in a study of the Earth's magnetopause to develop a fundamental understanding of plasma entry and dynamics at the boundary and formation and maintenance of the low latitude boundary layer under a variety of solar wind and magnetospheric conditions and at a wide range of local times.
Challenges in engineering large customized bone constructs.
Forrestal, David P; Klein, Travis J; Woodruff, Maria A
2017-06-01
The ability to treat large tissue defects with customized, patient-specific scaffolds is one of the most exciting applications in the tissue engineering field. While an increasing number of modestly sized tissue engineering solutions are making the transition to clinical use, successfully scaling up to large scaffolds with customized geometry is proving to be a considerable challenge. Managing often conflicting requirements of cell placement, structural integrity, and a hydrodynamic environment supportive of cell culture throughout the entire thickness of the scaffold has driven the continued development of many techniques used in the production, culturing, and characterization of these scaffolds. This review explores a range of technologies and methods relevant to the design and manufacture of large, anatomically accurate tissue-engineered scaffolds with a focus on the interaction of manufactured scaffolds with the dynamic tissue culture fluid environment. Biotechnol. Bioeng. 2017;114: 1129-1139. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Thermal expansion in dispersion-bound molecular crystals
Ko, Hsin -Yu; DiStasio, Robert A.; Santra, Biswajit; ...
2018-05-18
In this paper, we explore how anharmonicity, nuclear quantum effects (NQE), many-body dispersion interactions, and Pauli repulsion influence thermal properties of dispersion-bound molecular crystals. Accounting for anharmonicity with ab initio molecular dynamics yields cell parameters accurate to within 2% of experiment for a set of pyridinelike molecular crystals at finite temperatures and pressures. From the experimental thermal expansion curve, we find that pyridine-I has a Debye temperature just above its melting point, indicating sizable NQE across the entire crystalline range of stability. We find that NQE lead to a substantial volume increase in pyridine-I (≈ 40% more than classical thermalmore » expansion at 153 K) and attribute this to intermolecular Pauli repulsion promoted by intramolecular quantum fluctuations. Finally, when predicting delicate properties such as the thermal expansivity, we show that many-body dispersion interactions and more sophisticated density functional approximations improve the accuracy of the theoretical model.« less
Huang, C.-C.; Lee, Y.-H.; Liu, Huaibao P.; Keefer, D.K.; Jibson, R.W.
2001-01-01
The 1999 Chi-Chi, Taiwan, earthquake triggered numerous landslides throughout a large area in the Central Range, to the east, southeast, and south of the fault rupture. Among them are two large rock avalanches, at Tsaoling and at Jih-Feng-Erh-Shan. At Jih-Feng-Erh-Shan, the entire thickness (30-50 m) of the Miocene Changhukeng Shale over an area of 1 km2 slid down its bedding plane for a distance of about 1 km. Initial movement of the landslide was nearly purely translational. We investigate the effect of surface-normal acceleration on the initiation of the Jih-Feng-Erh-Shan landslide using a block slide model. We show that this acceleration, currently not considered by dynamic slope-stability analysis methods, significantly influences the initiation of the landslide.
Inevitable changes in snowpack and water resources over California's Sierra Nevada
NASA Astrophysics Data System (ADS)
Hall, A. D.; Sun, F.; Walton, D.; Berg, N.; Schwartz, M. A.
2015-12-01
Here we use a downscaling technique incorporating both dynamical and statistical methods to project end-of-century changes in spring snow water equivalent in California's Sierra Nevada. The technique produces outcomes for all Global Climate Models (GCMs) and the four greenhouse gas forcing scenarios adopted by the Intergovernmental Panel on Climate Change (IPCC). For all GCMs and forcing scenarios, significant snow loss occurs at elevations below 2500 meters, despite increasing precipitation in many GCMs. The loss is significantly enhanced by snow albedo feedback. The approximate intermodel range in percent of total snow remaining in the entire region is 60-85% for a likely "mitigation" scenario, and 35-55% for the "business-as-usual" scenario. Thus significant snowpack decrease by century's end is inevitable, even if the loss can be cushioned through greenhouse gas emissions reductions over the coming decades. The snowpack loss also leads to significant changes in runoff timing, which are also inevitable.
Order-disorder transition in a two-dimensional boron-carbon-nitride alloy
NASA Astrophysics Data System (ADS)
Lu, Jiong; Zhang, Kai; Feng Liu, Xin; Zhang, Han; Chien Sum, Tze; Castro Neto, Antonio H.; Loh, Kian Ping
2013-10-01
Two-dimensional boron-carbon-nitride materials exhibit a spectrum of electronic properties ranging from insulating to semimetallic, depending on their composition and geometry. Detailed experimental insights into the phase separation and ordering in such alloy are currently lacking. Here we report the mixing and demixing of boron-nitrogen and carbon phases on ruthenium (0001) and found that energetics for such processes are modified by the metal substrate. The brick-and-mortar patchwork observed of stoichiometrically percolated hexagonal boron-carbon-nitride domains surrounded by a network of segregated graphene nanoribbons can be described within the Blume-Emery-Griffiths model applied to a honeycomb lattice. The isostructural boron nitride and graphene assumes remarkable fluidity and can be exchanged entirely into one another by a catalytically assistant substitution. Visualizing the dynamics of phase separation at the atomic level provides the premise for enabling structural control in a two-dimensional network for broad nanotechnology applications.
Molecular Growth Inside of Polycyclic Aromatic Hydrocarbon Clusters Induced by Ion Collisions.
Delaunay, Rudy; Gatchell, Michael; Rousseau, Patrick; Domaracka, Alicja; Maclot, Sylvain; Wang, Yang; Stockett, Mark H; Chen, Tao; Adoui, Lamri; Alcamí, Manuel; Martín, Fernando; Zettergren, Henning; Cederquist, Henrik; Huber, Bernd A
2015-05-07
The present work combines experimental and theoretical studies of the collision between keV ion projectiles and clusters of pyrene, one of the simplest polycyclic aromatic hydrocarbons (PAHs). Intracluster growth processes induced by ion collisions lead to the formation of a wide range of new molecules with masses larger than that of the pyrene molecule. The efficiency of these processes is found to strongly depend on the mass and velocity of the incoming projectile. Classical molecular dynamics simulations of the entire collision process-from the ion impact (nuclear scattering) to the formation of new molecular species-reproduce the essential features of the measured molecular growth process and also yield estimates of the related absolute cross sections. More elaborate density functional tight binding calculations yield the same growth products as the classical simulations. The present results could be relevant to understand the physical chemistry of the PAH-rich upper atmosphere of Saturn's moon Titan.
Free energies of stable and metastable pores in lipid membranes under tension.
den Otter, Wouter K
2009-11-28
The free energy profile of pore formation in a lipid membrane, covering the entire range from a density fluctuation in an intact bilayer to a large tension-stabilized pore, has been calculated by molecular dynamics simulations with a coarse-grained lipid model. Several fixed elongations are used to obtain the Helmholtz free energy as a function of pore size for thermodynamically stable, metastable, and unstable pores, and the system-size dependence of these elongations is discussed. A link to the Gibbs free energy at constant tension, commonly known as the Litster model, is established by a Legendre transformation. The change of genus upon pore formation is exploited to estimate the saddle-splay modulus or Gaussian curvature modulus of the membrane leaflets. Details are provided of the simulation approach, which combines the potential of mean constraint force method with a reaction coordinate based on the local lipid density.
Thermal expansion in dispersion-bound molecular crystals
NASA Astrophysics Data System (ADS)
Ko, Hsin-Yu; DiStasio, Robert A.; Santra, Biswajit; Car, Roberto
2018-05-01
We explore how anharmonicity, nuclear quantum effects (NQE), many-body dispersion interactions, and Pauli repulsion influence thermal properties of dispersion-bound molecular crystals. Accounting for anharmonicity with ab initio molecular dynamics yields cell parameters accurate to within 2 % of experiment for a set of pyridinelike molecular crystals at finite temperatures and pressures. From the experimental thermal expansion curve, we find that pyridine-I has a Debye temperature just above its melting point, indicating sizable NQE across the entire crystalline range of stability. We find that NQE lead to a substantial volume increase in pyridine-I (≈40 % more than classical thermal expansion at 153 K) and attribute this to intermolecular Pauli repulsion promoted by intramolecular quantum fluctuations. When predicting delicate properties such as the thermal expansivity, we show that many-body dispersion interactions and more sophisticated density functional approximations improve the accuracy of the theoretical model.
NASA Astrophysics Data System (ADS)
Vorob'ev, V. L.; Bykov, P. V.; Bayankin, V. Ya.; Shushkov, A. A.; Vakhrushev, A. V.
2014-08-01
The effect of pulsed irradiation with argons and nitrogen ions on the mechanical properties, morphology, and structure of the surface layers of carbon steel St3 (0.2% C, 0.4% Mn, 0.15% Si, and Fe for balance) has been investigated depending on the rate of dose build-up at an average ion current density of 10, 20, and 40 μA/cm2. It has been established that the fatigue life and microhardness of surface layers increase in the entire studied range of dose build-up rates. This seems to be due to the hardening of the surface layers, which resulted from the generation of radiation defects and the irradiation-dynamic effect of fast ions. The sample irradiated by argon ions at the lowest of the selected dose build-up rates j av = 10 μA/cm2 withstands the largest number of cycles to failure.
Wide-Band Heterodyne Submillimetre Wave Spectrometer for Planetary Atmospheres
NASA Technical Reports Server (NTRS)
Schlecht, Erich
2010-01-01
We present calculations and measurements on a passive submillimetre wave spectroscopic sounder to gather data on the thermal structure, dynamics and composition of the upper atmosphere of a planet, e.g. the stratosphere of Jupiter, or the entire thickness of the atmosphere of Mars. The instrument will be capable of measuring wind speeds, temperature, pressure, and key constituent concentrations in the stratosphere of the target planet. This instrument consists of a Schottky diode based front end and a digital back-end spectrometer. It differs from previous space-based spectrometers in its combination of wide tunability (520-590 GHz), and rapid frequency switching between widely spaced lines within that range. This will enable near simultaneous observation of multiple lines, which is critical to the reconstruction of atmospheric pressure and density versus altitude profiles. At the same time frequency accuracy must be high to enable wind speeds to be determined directly by measurement of the line's Doppler shift.
Long-term optical stimulation of channelrhodopsin-expressing neurons to study network plasticity.
Lignani, Gabriele; Ferrea, Enrico; Difato, Francesco; Amarù, Jessica; Ferroni, Eleonora; Lugarà, Eleonora; Espinoza, Stefano; Gainetdinov, Raul R; Baldelli, Pietro; Benfenati, Fabio
2013-01-01
Neuronal plasticity produces changes in excitability, synaptic transmission, and network architecture in response to external stimuli. Network adaptation to environmental conditions takes place in time scales ranging from few seconds to days, and modulates the entire network dynamics. To study the network response to defined long-term experimental protocols, we setup a system that combines optical and electrophysiological tools embedded in a cell incubator. Primary hippocampal neurons transduced with lentiviruses expressing channelrhodopsin-2/H134R were subjected to various photostimulation protocols in a time window in the order of days. To monitor the effects of light-induced gating of network activity, stimulated transduced neurons were simultaneously recorded using multi-electrode arrays (MEAs). The developed experimental model allows discerning short-term, long-lasting, and adaptive plasticity responses of the same neuronal network to distinct stimulation frequencies applied over different temporal windows.
Integrative structure and functional anatomy of a nuclear pore complex
NASA Astrophysics Data System (ADS)
Kim, Seung Joong; Fernandez-Martinez, Javier; Nudelman, Ilona; Shi, Yi; Zhang, Wenzhu; Raveh, Barak; Herricks, Thurston; Slaughter, Brian D.; Hogan, Joanna A.; Upla, Paula; Chemmama, Ilan E.; Pellarin, Riccardo; Echeverria, Ignacia; Shivaraju, Manjunatha; Chaudhury, Azraa S.; Wang, Junjie; Williams, Rosemary; Unruh, Jay R.; Greenberg, Charles H.; Jacobs, Erica Y.; Yu, Zhiheng; de La Cruz, M. Jason; Mironska, Roxana; Stokes, David L.; Aitchison, John D.; Jarrold, Martin F.; Gerton, Jennifer L.; Ludtke, Steven J.; Akey, Christopher W.; Chait, Brian T.; Sali, Andrej; Rout, Michael P.
2018-03-01
Nuclear pore complexes play central roles as gatekeepers of RNA and protein transport between the cytoplasm and nucleoplasm. However, their large size and dynamic nature have impeded a full structural and functional elucidation. Here we determined the structure of the entire 552-protein nuclear pore complex of the yeast Saccharomyces cerevisiae at sub-nanometre precision by satisfying a wide range of data relating to the molecular arrangement of its constituents. The nuclear pore complex incorporates sturdy diagonal columns and connector cables attached to these columns, imbuing the structure with strength and flexibility. These cables also tie together all other elements of the nuclear pore complex, including membrane-interacting regions, outer rings and RNA-processing platforms. Inwardly directed anchors create a high density of transport factor-docking Phe-Gly repeats in the central channel, organized into distinct functional units. This integrative structure enables us to rationalize the architecture, transport mechanism and evolutionary origins of the nuclear pore complex.
THE WEIGHT OF SUCCESS: THE BODY MASS INDEX AND ECONOMIC WELL-BEING IN SOUTHERN AFRICA.
Wittenberg, Martin
2013-10-01
We show that body mass increases with economic resources among most Southern Africans, although not all. Among Black South Africans the relationship is non-decreasing over virtually the entire range of incomes/wealth. Furthermore in this group other measures of "success" (e.g., employment and education) are also associated with increases in body mass. This is true in both 1998 (the Demographic and Health Survey) and 2008 (National Income Dynamics Survey). A similar relationship holds among residents of Lesotho, Swaziland, Mozambique, Malawi, and Namibia. This suggests that body mass can be used as a crude measure of well-being. This allows us to examine the vexed question in South African labor economics whether there is involuntary unemployment. The fact that the unemployed are lighter than the employed, even when we control for household fixed effects, suggests that they are not choosing this state.
THE WEIGHT OF SUCCESS: THE BODY MASS INDEX AND ECONOMIC WELL-BEING IN SOUTHERN AFRICA
Wittenberg, Martin
2015-01-01
We show that body mass increases with economic resources among most Southern Africans, although not all. Among Black South Africans the relationship is non-decreasing over virtually the entire range of incomes/wealth. Furthermore in this group other measures of “success” (e.g., employment and education) are also associated with increases in body mass. This is true in both 1998 (the Demographic and Health Survey) and 2008 (National Income Dynamics Survey). A similar relationship holds among residents of Lesotho, Swaziland, Mozambique, Malawi, and Namibia. This suggests that body mass can be used as a crude measure of well-being. This allows us to examine the vexed question in South African labor economics whether there is involuntary unemployment. The fact that the unemployed are lighter than the employed, even when we control for household fixed effects, suggests that they are not choosing this state. PMID:26199456
Introduction of Service Systems Implementation
NASA Astrophysics Data System (ADS)
Demirkan, Haluk; Spohrer, James C.; Krishna, Vikas
Services systems can range from an individual to a firm to an entire nation. They can also be nested and composed of other service systems. They are configurations of people, information, technology and organizations to co-create value between a service customer and a provider (Maglio et al. 2006; Spohrer et al. 2007). While these configurations can take many, potentially infinite, forms, they can be optimized for the subject service to eliminate unnecessary costs in the forms of redundancies, over allocation, etc. So what is an ideal configuration that a provider and a customer might strive to achieve? As much as it would be nice to have a formula for such configurations, experiences that are result of engagement, are very different for each value co-creation configurations. The variances and dynamism of customer provider engagements result in potentially infinite types and numbers of configurations in today's global economy.
Thermal expansion in dispersion-bound molecular crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ko, Hsin -Yu; DiStasio, Robert A.; Santra, Biswajit
In this paper, we explore how anharmonicity, nuclear quantum effects (NQE), many-body dispersion interactions, and Pauli repulsion influence thermal properties of dispersion-bound molecular crystals. Accounting for anharmonicity with ab initio molecular dynamics yields cell parameters accurate to within 2% of experiment for a set of pyridinelike molecular crystals at finite temperatures and pressures. From the experimental thermal expansion curve, we find that pyridine-I has a Debye temperature just above its melting point, indicating sizable NQE across the entire crystalline range of stability. We find that NQE lead to a substantial volume increase in pyridine-I (≈ 40% more than classical thermalmore » expansion at 153 K) and attribute this to intermolecular Pauli repulsion promoted by intramolecular quantum fluctuations. Finally, when predicting delicate properties such as the thermal expansivity, we show that many-body dispersion interactions and more sophisticated density functional approximations improve the accuracy of the theoretical model.« less
Global time-size distribution of volcanic eruptions on Earth.
Papale, Paolo
2018-05-01
Volcanic eruptions differ enormously in their size and impacts, ranging from quiet lava flow effusions along the volcano flanks to colossal events with the potential to affect our entire civilization. Knowledge of the time and size distribution of volcanic eruptions is of obvious relevance for understanding the dynamics and behavior of the Earth system, as well as for defining global volcanic risk. From the analysis of recent global databases of volcanic eruptions extending back to more than 2 million years, I show here that the return times of eruptions with similar magnitude follow an exponential distribution. The associated relative frequency of eruptions with different magnitude displays a power law, scale-invariant distribution over at least six orders of magnitude. These results suggest that similar mechanisms subtend to explosive eruptions from small to colossal, raising concerns on the theoretical possibility to predict the magnitude and impact of impending volcanic eruptions.
EIT: Solar corona synoptic observations from SOHO with an Extreme-ultraviolet Imaging Telescope
NASA Technical Reports Server (NTRS)
Delaboudiniere, J. P.; Gabriel, A. H.; Artzner, G. E.; Michels, D. J.; Dere, K. P.; Howard, R. A.; Catura, R.; Stern, R.; Lemen, J.; Neupert, W.
1988-01-01
The Extreme-ultraviolet Imaging Telescope (EIT) of SOHO (solar and heliospheric observatory) will provide full disk images in emission lines formed at temperatures that map solar structures ranging from the chromospheric network to the hot magnetically confined plasma in the corona. Images in four narrow bandpasses will be obtained using normal incidence multilayered optics deposited on quadrants of a Ritchey-Chretien telescope. The EIT is capable of providing a uniform one arc second resolution over its entire 50 by 50 arc min field of view. Data from the EIT will be extremely valuable for identifying and interpreting the spatial and temperature fine structures of the solar atmosphere. Temporal analysis will provide information on the stability of these structures and identify dynamical processes. EIT images, issued daily, will provide the global corona context for aid in unifying the investigations and in forming the observing plans for SOHO coronal instruments.
Integrative structure and functional anatomy of a nuclear pore complex.
Kim, Seung Joong; Fernandez-Martinez, Javier; Nudelman, Ilona; Shi, Yi; Zhang, Wenzhu; Raveh, Barak; Herricks, Thurston; Slaughter, Brian D; Hogan, Joanna A; Upla, Paula; Chemmama, Ilan E; Pellarin, Riccardo; Echeverria, Ignacia; Shivaraju, Manjunatha; Chaudhury, Azraa S; Wang, Junjie; Williams, Rosemary; Unruh, Jay R; Greenberg, Charles H; Jacobs, Erica Y; Yu, Zhiheng; de la Cruz, M Jason; Mironska, Roxana; Stokes, David L; Aitchison, John D; Jarrold, Martin F; Gerton, Jennifer L; Ludtke, Steven J; Akey, Christopher W; Chait, Brian T; Sali, Andrej; Rout, Michael P
2018-03-22
Nuclear pore complexes play central roles as gatekeepers of RNA and protein transport between the cytoplasm and nucleoplasm. However, their large size and dynamic nature have impeded a full structural and functional elucidation. Here we determined the structure of the entire 552-protein nuclear pore complex of the yeast Saccharomyces cerevisiae at sub-nanometre precision by satisfying a wide range of data relating to the molecular arrangement of its constituents. The nuclear pore complex incorporates sturdy diagonal columns and connector cables attached to these columns, imbuing the structure with strength and flexibility. These cables also tie together all other elements of the nuclear pore complex, including membrane-interacting regions, outer rings and RNA-processing platforms. Inwardly directed anchors create a high density of transport factor-docking Phe-Gly repeats in the central channel, organized into distinct functional units. This integrative structure enables us to rationalize the architecture, transport mechanism and evolutionary origins of the nuclear pore complex.
Large-eddy simulation of a boundary layer with concave streamwise curvature
NASA Technical Reports Server (NTRS)
Lund, Thomas S.
1994-01-01
Turbulence modeling continues to be one of the most difficult problems in fluid mechanics. Existing prediction methods are well developed for certain classes of simple equilibrium flows, but are still not entirely satisfactory for a large category of complex non-equilibrium flows found in engineering practice. Direct and large-eddy simulation (LES) approaches have long been believed to have great potential for the accurate prediction of difficult turbulent flows, but the associated computational cost has been prohibitive for practical problems. This remains true for direct simulation but is no longer clear for large-eddy simulation. Advances in computer hardware, numerical methods, and subgrid-scale modeling have made it possible to conduct LES for flows or practical interest at Reynolds numbers in the range of laboratory experiments. The objective of this work is to apply ES and the dynamic subgrid-scale model to the flow of a boundary layer over a concave surface.
The natural history of Halley's comet
NASA Astrophysics Data System (ADS)
McLaughlin, W. I.
1981-07-01
The 1986 apparition of Halley's comet will be the subject of numerous space probes, planned to determine the chemical nature and physical structure of comet nuclei, atmospheres, and ionospheres, as well as comet tails. The problems of cometary origin remain inconclusive, with theories ranging from a purely interstellar origin to their being ejecta from the Galilean satellites of Jupiter. Comets can be grouped into one of two classes, depending on their periodicity, and statistical mechanics of the entire Jovian family of comets can be examined under the equilibrium hypothesis. Comet anatomy estimations have been determined, and there is speculation that comet chemistry may have been a factor in the origin of life on earth. Halley's comet was first noted using Newton's dynamical methods, and Brady (1972) attempted to use the comet as a gravitational probe in search of a trans-Plutonian planet. Halley's orbit is calculated by combination of ancient observations and modern scientific methods.
A discrete Markov metapopulation model for persistence and extinction of species.
Thompson, Colin J; Shtilerman, Elad; Stone, Lewi
2016-09-07
A simple discrete generation Markov metapopulation model is formulated for studying the persistence and extinction dynamics of a species in a given region which is divided into a large number of sites or patches. Assuming a linear site occupancy probability from one generation to the next we obtain exact expressions for the time evolution of the expected number of occupied sites and the mean-time to extinction (MTE). Under quite general conditions we show that the MTE, to leading order, is proportional to the logarithm of the initial number of occupied sites and in precise agreement with similar expressions for continuous time-dependent stochastic models. Our key contribution is a novel application of generating function techniques and simple asymptotic methods to obtain a second order asymptotic expression for the MTE which is extremely accurate over the entire range of model parameter values. Copyright © 2016 Elsevier Ltd. All rights reserved.
Beyond pairwise strategy updating in the prisoner's dilemma game
NASA Astrophysics Data System (ADS)
Wang, Xiaofeng; Perc, Matjaž; Liu, Yongkui; Chen, Xiaojie; Wang, Long
2012-10-01
In spatial games players typically alter their strategy by imitating the most successful or one randomly selected neighbor. Since a single neighbor is taken as reference, the information stemming from other neighbors is neglected, which begets the consideration of alternative, possibly more realistic approaches. Here we show that strategy changes inspired not only by the performance of individual neighbors but rather by entire neighborhoods introduce a qualitatively different evolutionary dynamics that is able to support the stable existence of very small cooperative clusters. This leads to phase diagrams that differ significantly from those obtained by means of pairwise strategy updating. In particular, the survivability of cooperators is possible even by high temptations to defect and over a much wider uncertainty range. We support the simulation results by means of pair approximations and analysis of spatial patterns, which jointly highlight the importance of local information for the resolution of social dilemmas.
Strength and scales of itinerant spin fluctuations in 3 d paramagnetic metals
Wysocki, Aleksander L.; Kutepov, Andrey; Antropov, Vladimir P.
2016-10-10
The full spin density fluctuations (SDF) spectra in 3d paramagnetic metals are analyzed from first principles using the linear response technique. Using the calculated complete wave vector and energy dependence of the dynamic spin susceptibility, we obtain the most important, but elusive, characteristic of SDF in solids: on-site spin correlator (SC). We demonstrate that the SDF have a mixed character consisting of interacting collective and single-particle excitations of similar strength spreading continuously over the entire Brillouin zone and a wide energy range up to femtosecond time scales. These excitations cannot be adiabatically separated and their intrinsically multiscale nature should alwaysmore » be taken into account for a proper description of metallic systems. Altogether, in all studied systems, despite the lack of local moment, we found a very large SC resulting in an effective fluctuating moment of the order of several Bohr magnetons.« less
Strength and scales of itinerant spin fluctuations in 3 d paramagnetic metals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wysocki, Aleksander L.; Kutepov, Andrey; Antropov, Vladimir P.
The full spin density fluctuations (SDF) spectra in 3d paramagnetic metals are analyzed from first principles using the linear response technique. Using the calculated complete wave vector and energy dependence of the dynamic spin susceptibility, we obtain the most important, but elusive, characteristic of SDF in solids: on-site spin correlator (SC). We demonstrate that the SDF have a mixed character consisting of interacting collective and single-particle excitations of similar strength spreading continuously over the entire Brillouin zone and a wide energy range up to femtosecond time scales. These excitations cannot be adiabatically separated and their intrinsically multiscale nature should alwaysmore » be taken into account for a proper description of metallic systems. Altogether, in all studied systems, despite the lack of local moment, we found a very large SC resulting in an effective fluctuating moment of the order of several Bohr magnetons.« less
Jacchia, Sara; Nardini, Elena; Bassani, Niccolò; Savini, Christian; Shim, Jung-Hyun; Trijatmiko, Kurniawan; Kreysa, Joachim; Mazzara, Marco
2015-05-27
This article describes the international validation of the quantitative real-time polymerase chain reaction (PCR) detection method for Golden Rice 2. The method consists of a taxon-specific assay amplifying a fragment of rice Phospholipase D α2 gene, and an event-specific assay designed on the 3' junction between transgenic insert and plant DNA. We validated the two assays independently, with absolute quantification, and in combination, with relative quantification, on DNA samples prepared in haploid genome equivalents. We assessed trueness, precision, efficiency, and linearity of the two assays, and the results demonstrate that both the assays independently assessed and the entire method fulfill European and international requirements for methods for genetically modified organism (GMO) testing, within the dynamic range tested. The homogeneity of the results of the collaborative trial between Europe and Asia is a good indicator of the robustness of the method.
Droplet impact dynamics for two liquids impinging on anisotropic superhydrophobic surfaces
NASA Astrophysics Data System (ADS)
Pearson, John T.; Maynes, Daniel; Webb, Brent W.
2012-09-01
Droplet impingement experiments were performed on grooved hydrophobic surfaces with cavity fractions of 0, 80, and 93 % using droplets of water and a 50 %/50 % water/glycerol mixture. The influence of liquid viscosity, cavity fraction, and spreading direction, relative to the surface grooves, is explored qualitatively and quantitatively. The maximum droplet spread diameter, velocity of the rebounding jet, and the time delay between droplet impact and jet emission were characterized for Weber numbers, We, based on droplet impact speed and diameter, up to 500. The unequal shear stresses and contact angles influence the maximum spread diameters in the two primary spread directions. At We > 100, the ratio of the spread diameter along the direction of the grooves to the spread diameter perpendicular to the grooves increases above unity with increasing We. The maximum droplet spread diameter is compared to recent predictive models, and the data reveal differing behavior for the two fluids considered. The results also reveal the existence of very high relative jet velocities in the range 5 ≤ We ≤ 15 for water droplets, while such jets were not observed for the more viscous mixture. Further, in the range 115 ≤ We ≤ 265, the water/glycerol jet formation dynamics are radically different from the water behavior. Most evident is the existence of two-pronged jets, which arise from the anisotropy of the surface and the unequal shear stresses and contact angles that prevail on the surfaces. It is these influences that give rise to differences in the maximum spread diameters in the two primary spread directions. Similar two-pronged jet emission was observed for water over the very narrow range of We from 91 to 96. The issuing jet velocities were also observed to increase with increasing cavity fraction for both fluids and over the entire range of We explored. Lastly, the elapsed time between droplet impact and jet emission decreased with increasing cavity fraction.
Geometrical calibration of an AOTF hyper-spectral imaging system
NASA Astrophysics Data System (ADS)
Špiclin, Žiga; Katrašnik, Jaka; Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan
2010-02-01
Optical aberrations present an important problem in optical measurements. Geometrical calibration of an imaging system is therefore of the utmost importance for achieving accurate optical measurements. In hyper-spectral imaging systems, the problem of optical aberrations is even more pronounced because optical aberrations are wavelength dependent. Geometrical calibration must therefore be performed over the entire spectral range of the hyper-spectral imaging system, which is usually far greater than that of the visible light spectrum. This problem is especially adverse in AOTF (Acousto- Optic Tunable Filter) hyper-spectral imaging systems, as the diffraction of light in AOTF filters is dependent on both wavelength and angle of incidence. Geometrical calibration of hyper-spectral imaging system was performed by stable caliber of known dimensions, which was imaged at different wavelengths over the entire spectral range. The acquired images were then automatically registered to the caliber model by both parametric and nonparametric transformation based on B-splines and by minimizing normalized correlation coefficient. The calibration method was tested on an AOTF hyper-spectral imaging system in the near infrared spectral range. The results indicated substantial wavelength dependent optical aberration that is especially pronounced in the spectral range closer to the infrared part of the spectrum. The calibration method was able to accurately characterize the aberrations and produce transformations for efficient sub-pixel geometrical calibration over the entire spectral range, finally yielding better spatial resolution of hyperspectral imaging system.
1978-10-04
The Shuttle Orbiter Enterprise inside of Marshall Space Flight Center's Dynamic Test Stand for Mated Vertical Ground Vibration tests (MVGVT). The tests marked the first time ever that the entire shuttle complement including Orbiter, external tank, and solid rocket boosters were vertically mated.
Optical properties of InGaN thin films in the entire composition range
NASA Astrophysics Data System (ADS)
Kazazis, S. A.; Papadomanolaki, E.; Androulidaki, M.; Kayambaki, M.; Iliopoulos, E.
2018-03-01
The optical properties of thick InGaN epilayers, with compositions spanning the entire ternary range, are studied in detail. High structural quality, single phase InxGa1-xN (0001) films were grown heteroepitaxially by radio-frequency plasma assisted molecular-beam epitaxy on freestanding GaN substrates. Their emission characteristics were investigated by low temperature photoluminescence spectroscopy, whereas variable angle spectroscopic ellipsometry was applied to determine the complex dielectric function of the films, in the 0.55-4.0 eV photon range. Photoluminescence lines were intense and narrow, in the range of 100 meV for Ga-rich InGaN films (x < 0.3), around 150 meV for mid-range composition films (0.3 < x < 0.6), and in the range of 50 meV for In-rich alloys (x > 0.6). The composition dependence of the strain-free emission energy was expressed by a bowing parameter of b = 2.70 ± 0.12 eV. The films' optical dielectric function dispersion was obtained by the analysis of the ellipsometric data employing a Kramers-Kronig consistent parameterized optical model. The refractive index dispersion was obtained for alloys in the entire composition range, and the corresponding values at the band edge show a parabolic dependence on the InN mole fraction expressed by a bowing parameter of b = 0.81 ± 0.04. The bowing parameter describing the fundamental energy bandgap was deduced to be equal to 1.66 ± 0.07 eV, consistent with the ab initio calculations for statistically random (non-clustered) InGaN alloys.
A numerical method for the dynamics of non-spherical cavitation bubbles
NASA Technical Reports Server (NTRS)
Lucca, G.; Prosperetti, A.
1982-01-01
A boundary integral numerical method for the dynamics of nonspherical cavitation bubbles in inviscid incompressible liquids is described. Only surface values of the velocity potential and its first derivatives are involved. The problem of solving the Laplace equation in the entire domain occupied by the liquid is thus avoided. The collapse of a bubble in the vicinity of a solid wall and the collapse of three bubbles with collinear centers are considered.
Accelerating Molecular Dynamic Simulation on Graphics Processing Units
Friedrichs, Mark S.; Eastman, Peter; Vaidyanathan, Vishal; Houston, Mike; Legrand, Scott; Beberg, Adam L.; Ensign, Daniel L.; Bruns, Christopher M.; Pande, Vijay S.
2009-01-01
We describe a complete implementation of all-atom protein molecular dynamics running entirely on a graphics processing unit (GPU), including all standard force field terms, integration, constraints, and implicit solvent. We discuss the design of our algorithms and important optimizations needed to fully take advantage of a GPU. We evaluate its performance, and show that it can be more than 700 times faster than a conventional implementation running on a single CPU core. PMID:19191337
Preslip and cascade processes initiating laboratory stick slip
McLaskey, Gregory C.; Lockner, David A.
2014-01-01
Recent modeling studies have explored whether earthquakes begin with a large aseismic nucleation process or initiate dynamically from the rapid growth of a smaller instability in a “cascade-up” process. To explore such a case in the laboratory, we study the initiation of dynamic rupture (stick slip) of a smooth saw-cut fault in a 76mm diameter cylindrical granite laboratory sample at 40–120MPa confining pressure. We use a high dynamic range recording system to directly compare the seismic waves radiated during the stick-slip event to those radiated from tiny (M _6) discrete seismic events, commonly known as acoustic emissions (AEs), that occur in the seconds prior to each large stick slip. The seismic moments, focal mechanisms, locations, and timing of the AEs all contribute to our understanding of their mechanics and provide us with information about the stick-slip nucleation process. In a sequence of 10 stick slips, the first few microseconds of the signals recorded from stick-slip instabilities are nearly indistinguishable from those of premonitory AEs. In this sense, it appears that each stick slip begins as an AE event that rapidly (~20 μs) grows about 2 orders of magnitude in linear dimension and ruptures the entire 150mm length of the simulated fault. We also measure accelerating fault slip in the final seconds before stick slip. We estimate that this slip is at least 98% aseismic and that it both weakens the fault and produces AEs that will eventually cascade-up to initiate the larger dynamic rupture.
Simulation of Attitude and Trajectory Dynamics and Control of Multiple Spacecraft
NASA Technical Reports Server (NTRS)
Stoneking, Eric T.
2009-01-01
Agora software is a simulation of spacecraft attitude and orbit dynamics. It supports spacecraft models composed of multiple rigid bodies or flexible structural models. Agora simulates multiple spacecraft simultaneously, supporting rendezvous, proximity operations, and precision formation flying studies. The Agora environment includes ephemerides for all planets and major moons in the solar system, supporting design studies for deep space as well as geocentric missions. The environment also contains standard models for gravity, atmospheric density, and magnetic fields. Disturbance force and torque models include aerodynamic, gravity-gradient, solar radiation pressure, and third-body gravitation. In addition to the dynamic and environmental models, Agora supports geometrical visualization through an OpenGL interface. Prototype models are provided for common sensors, actuators, and control laws. A clean interface accommodates linking in actual flight code in place of the prototype control laws. The same simulation may be used for rapid feasibility studies, and then used for flight software validation as the design matures. Agora is open-source and portable across computing platforms, making it customizable and extensible. It is written to support the entire GNC (guidance, navigation, and control) design cycle, from rapid prototyping and design analysis, to high-fidelity flight code verification. As a top-down design, Agora is intended to accommodate a large range of missions, anywhere in the solar system. Both two-body and three-body flight regimes are supported, as well as seamless transition between them. Multiple spacecraft may be simultaneously simulated, enabling simulation of rendezvous scenarios, as well as formation flying. Built-in reference frames and orbit perturbation dynamics provide accurate modeling of precision formation control.
Yu, Xiaozhen; Sigler, Sara C.; Hossain, Delwar; Wierdl, Monika; Gwaltney, Steven R.; Potter, Philip M.; Wadkins, Randy M.
2013-01-01
Carboxylesterases (CEs) are ubiquitous enzymes responsible for the detoxification of xenobiotics. In humans, substrates for these enzymes are far-ranging, and include the street drug heroin and the anticancer agent irinotecan. Hence, their ability to bind and metabolize substrates is of broad interest to biomedical science. In this study, we focused our attention on dynamic motions of a CE from B. subtilis (pnbCE), with emphasis on the question of what individual domains of the enzyme might contribute to its catalytic activity. We used a 10 ns all-atom molecular dynamics simulation, normal mode calculations, and enzyme kinetics to understand catalytic consequences of structural changes within this enzyme. Our results shed light on how molecular motions are coupled with catalysis. During molecular dynamics, we observed a distinct C-C bond rotation between two conformations of Glu310. Such a bond rotation would alternately facilitate and impede protonation of the active site His399 and act as a mechanism by which the enzyme alternates between its active and inactive conformation. Our normal mode results demonstrate that the distinct low-frequency motions of two loops in pnbCE, coil_5 and coil_21, are important in substrate conversion and seal the active site. Mutant CEs lacking these external loops show significantly reduced rates of substrate conversion, suggesting this sealing motion prevents escape of substrate. Overall, the results of our studies give new insight into the structure-function relationship of CEs and have implications for the entire family of α/β fold family of hydrolases, of which this CE is a member. PMID:22127613
RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview
2018-01-01
With both catalytic and genetic functions, ribonucleic acid (RNA) is perhaps the most pluripotent chemical species in molecular biology, and its functions are intimately linked to its structure and dynamics. Computer simulations, and in particular atomistic molecular dynamics (MD), allow structural dynamics of biomolecular systems to be investigated with unprecedented temporal and spatial resolution. We here provide a comprehensive overview of the fast-developing field of MD simulations of RNA molecules. We begin with an in-depth, evaluatory coverage of the most fundamental methodological challenges that set the basis for the future development of the field, in particular, the current developments and inherent physical limitations of the atomistic force fields and the recent advances in a broad spectrum of enhanced sampling methods. We also survey the closely related field of coarse-grained modeling of RNA systems. After dealing with the methodological aspects, we provide an exhaustive overview of the available RNA simulation literature, ranging from studies of the smallest RNA oligonucleotides to investigations of the entire ribosome. Our review encompasses tetranucleotides, tetraloops, a number of small RNA motifs, A-helix RNA, kissing-loop complexes, the TAR RNA element, the decoding center and other important regions of the ribosome, as well as assorted others systems. Extended sections are devoted to RNA–ion interactions, ribozymes, riboswitches, and protein/RNA complexes. Our overview is written for as broad of an audience as possible, aiming to provide a much-needed interdisciplinary bridge between computation and experiment, together with a perspective on the future of the field. PMID:29297679
Assessing tiger population dynamics using photographic capture-recapture sampling
Karanth, K.U.; Nichols, J.D.; Kumar, N.S.; Hines, J.E.
2006-01-01
Although wide-ranging, elusive, large carnivore species, such as the tiger, are of scientific and conservation interest, rigorous inferences about their population dynamics are scarce because of methodological problems of sampling populations at the required spatial and temporal scales. We report the application of a rigorous, noninvasive method for assessing tiger population dynamics to test model-based predictions about population viability. We obtained photographic capture histories for 74 individual tigers during a nine-year study involving 5725 trap-nights of effort. These data were modeled under a likelihood-based, ?robust design? capture?recapture analytic framework. We explicitly modeled and estimated ecological parameters such as time-specific abundance, density, survival, recruitment, temporary emigration, and transience, using models that incorporated effects of factors such as individual heterogeneity, trap-response, and time on probabilities of photo-capturing tigers. The model estimated a random temporary emigration parameter of =K' =Y' 0.10 ? 0.069 (values are estimated mean ? SE). When scaled to an annual basis, tiger survival rates were estimated at S = 0.77 ? 0.051, and the estimated probability that a newly caught animal was a transient was = 0.18 ? 0.11. During the period when the sampled area was of constant size, the estimated population size Nt varied from 17 ? 1.7 to 31 ? 2.1 tigers, with a geometric mean rate of annual population change estimated as = 1.03 ? 0.020, representing a 3% annual increase. The estimated recruitment of new animals, Bt, varied from 0 ? 3.0 to 14 ? 2.9 tigers. Population density estimates, D, ranged from 7.33 ? 0.8 tigers/100 km2 to 21.73 ? 1.7 tigers/100 km2 during the study. Thus, despite substantial annual losses and temporal variation in recruitment, the tiger density remained at relatively high levels in Nagarahole. Our results are consistent with the hypothesis that protected wild tiger populations can remain healthy despite heavy mortalities because of their inherently high reproductive potential. The ability to model the entire photographic capture history data set and incorporate reduced-parameter models led to estimates of mean annual population change that were sufficiently precise to be useful. This efficient, noninvasive sampling approach can be used to rigorously investigate the population dynamics of tigers and other elusive, rare, wide-ranging animal species in which individuals can be identified from photographs or other means.
Mueller, Thomas; Olson, K.A.; Dressler, G.; Leimgruber, Peter; Fuller, Todd K.; Nicholson, Craig; Novaro, A.J.; Bolgeri, M.J.; Wattles, David W.; DeStefano, Stephen; Calabrese, J.M.; Fagan, William F.
2011-01-01
Aim To demonstrate how the interrelations of individual movements form large-scale population-level movement patterns and how these patterns are associated with the underlying landscape dynamics by comparing ungulate movements across species.Locations Arctic tundra in Alaska and Canada, temperate forests in Massachusetts, Patagonian Steppes in Argentina, Eastern Steppes in Mongolia.Methods We used relocation data from four ungulate species (barren-ground caribou, Mongolian gazelle, guanaco and moose) to examine individual movements and the interrelation of movements among individuals. We applied and developed a suite of spatial metrics that measure variation in movement among individuals as population dispersion, movement coordination and realized mobility. Taken together, these metrics allowed us to quantify and distinguish among different large-scale population-level movement patterns such as migration, range residency and nomadism. We then related the population-level movement patterns to the underlying landscape vegetation dynamics via long-term remote sensing measurements of the temporal variability, spatial variability and unpredictability of vegetation productivity.Results Moose, which remained in sedentary home ranges, and guanacos, which were partially migratory, exhibited relatively short annual movements associated with landscapes having very little broad-scale variability in vegetation. Caribou and gazelle performed extreme long-distance movements that were associated with broad-scale variability in vegetation productivity during the peak of the growing season. Caribou exhibited regular seasonal migration in which individuals were clustered for most of the year and exhibited coordinated movements. In contrast, gazelle were nomadic, as individuals were independently distributed and moved in an uncoordinated manner that relates to the comparatively unpredictable (yet broad-scale) vegetation dynamics of their landscape.Main conclusions We show how broad-scale landscape unpredictability may lead to nomadism, an understudied type of long-distance movement. In contrast to classical migration where landscapes may vary at broad scales but in a predictable manner, long-distance movements of nomadic individuals are uncoordinated and independent from other such individuals. Landscapes with little broad-scale variability in vegetation productivity feature smaller-scale movements and allow for range residency. Nomadism requires distinct integrative conservation strategies that facilitate long-distance movements across the entire landscape and are not limited to certain migration corridors.
Mueller, T.; Olson, K.A.; Dressler, G.; Leimgruber, P.; Fuller, T.K.; Nicolson, C.; Novaro, A.J.; Bolgeri, M.J.; Wattles, David W.; DeStefano, S.; Calabrese, J.M.; Fagan, W.F.
2011-01-01
Aim To demonstrate how the interrelations of individual movements form large-scale population-level movement patterns and how these patterns are associated with the underlying landscape dynamics by comparing ungulate movements across species. Locations Arctic tundra in Alaska and Canada, temperate forests in Massachusetts, Patagonian Steppes in Argentina, Eastern Steppes in Mongolia. Methods We used relocation data from four ungulate species (barren-ground caribou, Mongolian gazelle, guanaco and moose) to examine individual movements and the interrelation of movements among individuals. We applied and developed a suite of spatial metrics that measure variation in movement among individuals as population dispersion, movement coordination and realized mobility. Taken together, these metrics allowed us to quantify and distinguish among different large-scale population-level movement patterns such as migration, range residency and nomadism. We then related the population-level movement patterns to the underlying landscape vegetation dynamics via long-term remote sensing measurements of the temporal variability, spatial variability and unpredictability of vegetation productivity. Results Moose, which remained in sedentary home ranges, and guanacos, which were partially migratory, exhibited relatively short annual movements associated with landscapes having very little broad-scale variability in vegetation. Caribou and gazelle performed extreme long-distance movements that were associated with broad-scale variability in vegetation productivity during the peak of the growing season. Caribou exhibited regular seasonal migration in which individuals were clustered for most of the year and exhibited coordinated movements. In contrast, gazelle were nomadic, as individuals were independently distributed and moved in an uncoordinated manner that relates to the comparatively unpredictable (yet broad-scale) vegetation dynamics of their landscape. Main conclusions We show how broad-scale landscape unpredictability may lead to nomadism, an understudied type of long-distance movement. In contrast to classical migration where landscapes may vary at broad scales but in a predictable manner, long-distance movements of nomadic individuals are uncoordinated and independent from other such individuals. Landscapes with little broad-scale variability in vegetation productivity feature smaller-scale movements and allow for range residency. Nomadism requires distinct integrative conservation strategies that facilitate long-distance movements across the entire landscape and are not limited to certain migration corridors. ?? 2011 Blackwell Publishing Ltd.
Assessing tiger population dynamics using photographic capture-recapture sampling.
Karanth, K Ullas; Nichols, James D; Kumar, N Samba; Hines, James E
2006-11-01
Although wide-ranging, elusive, large carnivore species, such as the tiger, are of scientific and conservation interest, rigorous inferences about their population dynamics are scarce because of methodological problems of sampling populations at the required spatial and temporal scales. We report the application of a rigorous, noninvasive method for assessing tiger population dynamics to test model-based predictions about population viability. We obtained photographic capture histories for 74 individual tigers during a nine-year study involving 5725 trap-nights of effort. These data were modeled under a likelihood-based, "robust design" capture-recapture analytic framework. We explicitly modeled and estimated ecological parameters such as time-specific abundance, density, survival, recruitment, temporary emigration, and transience, using models that incorporated effects of factors such as individual heterogeneity, trap-response, and time on probabilities of photo-capturing tigers. The model estimated a random temporary emigration parameter of gamma" = gamma' = 0.10 +/- 0.069 (values are estimated mean +/- SE). When scaled to an annual basis, tiger survival rates were estimated at S = 0.77 +/- 0.051, and the estimated probability that a newly caught animal was a transient was tau = 0.18 +/- 0.11. During the period when the sampled area was of constant size, the estimated population size N(t) varied from 17 +/- 1.7 to 31 +/- 2.1 tigers, with a geometric mean rate of annual population change estimated as lambda = 1.03 +/- 0.020, representing a 3% annual increase. The estimated recruitment of new animals, B(t), varied from 0 +/- 3.0 to 14 +/- 2.9 tigers. Population density estimates, D, ranged from 7.33 +/- 0.8 tigers/100 km2 to 21.73 +/- 1.7 tigers/100 km2 during the study. Thus, despite substantial annual losses and temporal variation in recruitment, the tiger density remained at relatively high levels in Nagarahole. Our results are consistent with the hypothesis that protected wild tiger populations can remain healthy despite heavy mortalities because of their inherently high reproductive potential. The ability to model the entire photographic capture history data set and incorporate reduced-parameter models led to estimates of mean annual population change that were sufficiently precise to be useful. This efficient, noninvasive sampling approach can be used to rigorously investigate the population dynamics of tigers and other elusive, rare, wide-ranging animal species in which individuals can be identified from photographs or other means.
Stationary bubbles and their tunneling channels toward trivial geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Pisin; Yeom, Dong-han; Domènech, Guillem
2016-04-01
In the path integral approach, one has to sum over all histories that start from the same initial condition in order to obtain the final condition as a superposition of histories. Applying this into black hole dynamics, we consider stable and unstable stationary bubbles as a reasonable and regular initial condition. We find examples where the bubble can either form a black hole or tunnel toward a trivial geometry, i.e., with no singularity nor event horizon. We investigate the dynamics and tunneling channels of true vacuum bubbles for various tensions. In particular, in line with the idea of superposition ofmore » geometries, we build a classically stable stationary thin-shell solution in a Minkowski background where its fate is probabilistically given by non-perturbative effects. Since there exists a tunneling channel toward a trivial geometry in the entire path integral, the entire information is encoded in the wave function. This demonstrates that the unitarity is preserved and there is no loss of information when viewed from the entire wave function of the universe, whereas a semi-classical observer, who can see only a definitive geometry, would find an effective loss of information. This may provide a resolution to the information loss dilemma.« less
Stationary bubbles and their tunneling channels toward trivial geometry
Chen, Pisin; Domènech, Guillem; Sasaki, Misao; ...
2016-04-07
In the path integral approach, one has to sum over all histories that start from the same initial condition in order to obtain the final condition as a superposition of histories. Applying this into black hole dynamics, we consider stable and unstable stationary bubbles as a reasonable and regular initial condition. We find examples where the bubble can either form a black hole or tunnel toward a trivial geometry, i.e., with no singularity nor event horizon. We investigate the dynamics and tunneling channels of true vacuum bubbles for various tensions. In particular, in line with the idea of superposition ofmore » geometries, we build a classically stable stationary thin-shell solution in a Minkowski background where its fate is probabilistically given by non-perturbative effects. Since there exists a tunneling channel toward a trivial geometry in the entire path integral, the entire information is encoded in the wave function. This demonstrates that the unitarity is preserved and there is no loss of information when viewed from the entire wave function of the universe, whereas a semi-classical observer, who can see only a definitive geometry, would find an effective loss of information. Ultimately, this may provide a resolution to the information loss dilemma.« less
Localization of single biological molecules out of the focal plane
NASA Astrophysics Data System (ADS)
Gardini, L.; Capitanio, M.; Pavone, F. S.
2014-03-01
Since the behaviour of proteins and biological molecules is tightly related to the cell's environment, more and more microscopy techniques are moving from in vitro to in living cells experiments. Looking at both diffusion and active transportation processes inside a cell requires three-dimensional localization over a few microns range, high SNR images and high temporal resolution (ms order of magnitude). We developed an apparatus that combines different microscopy techniques to satisfy all the technical requirements for 3D tracking of single fluorescent molecules inside living cells with nanometer accuracy. To account for the optical sectioning of thick samples we built up a HILO (Highly Inclined and Laminated Optical sheet) microscopy system through which we can excite the sample in a widefield (WF) configuration by a thin sheet of light that can follow the molecule up and down along the z axis spanning the entire thickness of the cell with a SNR much higher than traditional WF microscopy. Since protein dynamics inside a cell involve all three dimensions, we included a method to measure the x, y, and z coordinates with nanometer accuracy, exploiting the properties of the point-spread-function of out-of-focus quantum dots bound to the protein of interest. Finally, a feedback system stabilizes the microscope from thermal drifts, assuring accurate localization during the entire duration of the experiment.
Development and evaluation of a physics-based windblown ...
A new windblown dust emission treatment was incorporated in the Community Multiscale Air Quality (CMAQ) modeling system. This new model treatment has been built upon previously developed physics-based parameterization schemes from the literature. A distinct and novel feature of this scheme, however, is the incorporation of a newly developed dynamic relation for the surface roughness length relevant to small-scale dust generation processes. Through this implementation, the effect of nonerodible elements on the local flow acceleration, drag partitioning, and surface coverage protection is modeled in a physically based and consistent manner. Careful attention is paid in integrating the new windblown dust treatment in the CMAQ model to ensure that the required input parameters are correctly configured. To test the performance of the new dust module in CMAQ, the entire year 2011 is simulated for the continental United States, with particular emphasis on the southwestern United States (SWUS) where windblown dust concentrations are relatively large. Overall, the model shows good performance with the daily mean bias of soil concentrations fluctuating in the range of ±1 µg m−3 for the entire year. Springtime soil concentrations are in quite good agreement (normalized mean bias of 8.3%) with observations, while moderate to high underestimation of soil concentration is seen in the summertime. The latter is attributed to the issue of representing the convective dust sto
Resco de Dios, Víctor; Gessler, Arthur; Ferrio, Juan Pedro; Alday, Josu G; Bahn, Michael; Del Castillo, Jorge; Devidal, Sébastien; García-Muñoz, Sonia; Kayler, Zachary; Landais, Damien; Martín-Gómez, Paula; Milcu, Alexandru; Piel, Clément; Pirhofer-Walzl, Karin; Ravel, Olivier; Salekin, Serajis; Tissue, David T; Tjoelker, Mark G; Voltas, Jordi; Roy, Jacques
2016-10-20
Molecular clocks drive oscillations in leaf photosynthesis, stomatal conductance, and other cell and leaf-level processes over ~24 h under controlled laboratory conditions. The influence of such circadian regulation over whole-canopy fluxes remains uncertain; diurnal CO 2 and H 2 O vapor flux dynamics in the field are currently interpreted as resulting almost exclusively from direct physiological responses to variations in light, temperature and other environmental factors. We tested whether circadian regulation would affect plant and canopy gas exchange at the Montpellier European Ecotron. Canopy and leaf-level fluxes were constantly monitored under field-like environmental conditions, and under constant environmental conditions (no variation in temperature, radiation, or other environmental cues). We show direct experimental evidence at canopy scales of the circadian regulation of daytime gas exchange: 20-79 % of the daily variation range in CO 2 and H 2 O fluxes occurred under circadian entrainment in canopies of an annual herb (bean) and of a perennial shrub (cotton). We also observed that considering circadian regulation improved performance by 8-17 % in commonly used stomatal conductance models. Our results show that circadian controls affect diurnal CO 2 and H 2 O flux patterns in entire canopies in field-like conditions, and its consideration significantly improves model performance. Circadian controls act as a 'memory' of the past conditions experienced by the plant, which synchronizes metabolism across entire plant canopies.
NASA Astrophysics Data System (ADS)
Gancedo, Matthieu; Gutmark, Ephraim; Guillou, Erwann
2016-02-01
Turbocharging reciprocating engines is a viable solution in order to meet the new regulations for emissions and fuel efficiency in part because turbochargers allow to use smaller, more efficient engines (downsizing) while maintaining power. A major challenge is to match the flow range of a dynamic turbomachine (the centrifugal compressor in the turbocharger) with a positive displacement pump (the engine) as the flow range of the latter is typically higher. The operating range of the compressor is thus of prime interest. At low mass flow rate (MFR), the compressor range is limited by the occurrence of surge. To control and improve it, numerous and varied methods have been used. Yet, an automotive application requires that the solution remains relatively simple and preferably passive. A common feature that has been demonstrated to improve the surge line is the use of flow recirculation in the inducer region through a circumferential bleed slot around the shroud, also called "ported shroud", similar to what has been developed for axial compressors in the past. The compressor studied here features such a device. In order to better understand the effect of the recirculation slot on the compressor functioning, flow measurements were performed at the inlet using particle image velocimetry and the results were correlated with pressure measurements nearby. Measurements were taken on a compressor with and without recirculation and across the full range of normal operation and during surge using a phase-locking method to obtain average flow fields throughout the entire surge cycle. When the recirculation is blocked, it was found that strong backflow develops at low MFR perturbing the incoming flow and inducing significant preswirl. The slot eliminated most of the backflow in front of the inducer making the compressor operation more stable. The measurements performed during surge showed strong backflow occurring periodically during the outlet pressure drop and when the instantaneous MFR is near 0 or negative. The flow motion at the inlet is highly three dimensional as flow enters in the center of the inducer at all times, even when the instantaneous flow rate is negative, compared to the reversed flow observed in the entire inlet for surging axial compressors.
43 CFR 3203.10 - How are lands included in a competitive sale?
Code of Federal Regulations, 2011 CFR
2011-10-01
... within the legal subdivision, section, township, and range; (2) For unsurveyed lands, describe the lands..., include an entire section, township, and range. Do not divide protracted sections into aliquot parts; (4...
Liu, Xiaojun; Ferguson, Richard B.; Zheng, Hengbiao; Cao, Qiang; Tian, Yongchao; Cao, Weixing; Zhu, Yan
2017-01-01
The successful development of an optimal canopy vegetation index dynamic model for obtaining higher yield can offer a technical approach for real-time and nondestructive diagnosis of rice (Oryza sativa L) growth and nitrogen (N) nutrition status. In this study, multiple rice cultivars and N treatments of experimental plots were carried out to obtain: normalized difference vegetation index (NDVI), leaf area index (LAI), above-ground dry matter (DM), and grain yield (GY) data. The quantitative relationships between NDVI and these growth indices (e.g., LAI, DM and GY) were analyzed, showing positive correlations. Using the normalized modeling method, an appropriate NDVI simulation model of rice was established based on the normalized NDVI (RNDVI) and relative accumulative growing degree days (RAGDD). The NDVI dynamic model for high-yield production in rice can be expressed by a double logistic model: RNDVI=(1+e−15.2829×(RAGDDi−0.1944))−1−(1+e−11.6517×(RAGDDi−1.0267))−1 (R2 = 0.8577**), which can be used to accurately predict canopy NDVI dynamic changes during the entire growth period. Considering variation among rice cultivars, we constructed two relative NDVI (RNDVI) dynamic models for Japonica and Indica rice types, with R2 reaching 0.8764** and 0.8874**, respectively. Furthermore, independent experimental data were used to validate the RNDVI dynamic models. The results showed that during the entire growth period, the accuracy (k), precision (R2), and standard deviation of RNDVI dynamic models for the Japonica and Indica cultivars were 0.9991, 1.0170; 0.9084**, 0.8030**; and 0.0232, 0.0170, respectively. These results indicated that RNDVI dynamic models could accurately reflect crop growth and predict dynamic changes in high-yield crop populations, providing a rapid approach for monitoring rice growth status. PMID:28338637
Liu, Xiaojun; Ferguson, Richard B; Zheng, Hengbiao; Cao, Qiang; Tian, Yongchao; Cao, Weixing; Zhu, Yan
2017-03-24
The successful development of an optimal canopy vegetation index dynamic model for obtaining higher yield can offer a technical approach for real-time and nondestructive diagnosis of rice (Oryza sativa L) growth and nitrogen (N) nutrition status. In this study, multiple rice cultivars and N treatments of experimental plots were carried out to obtain: normalized difference vegetation index (NDVI), leaf area index (LAI), above-ground dry matter (DM), and grain yield (GY) data. The quantitative relationships between NDVI and these growth indices (e.g., LAI, DM and GY) were analyzed, showing positive correlations. Using the normalized modeling method, an appropriate NDVI simulation model of rice was established based on the normalized NDVI (RNDVI) and relative accumulative growing degree days (RAGDD). The NDVI dynamic model for high-yield production in rice can be expressed by a double logistic model: RNDVI = ( 1 + e - 15.2829 × ( R A G D D i - 0.1944 ) ) - 1 - ( 1 + e - 11.6517 × ( R A G D D i - 1.0267 ) ) - 1 (R2 = 0.8577**), which can be used to accurately predict canopy NDVI dynamic changes during the entire growth period. Considering variation among rice cultivars, we constructed two relative NDVI (RNDVI) dynamic models for Japonica and Indica rice types, with R2 reaching 0.8764** and 0.8874**, respectively. Furthermore, independent experimental data were used to validate the RNDVI dynamic models. The results showed that during the entire growth period, the accuracy (k), precision (R2), and standard deviation of RNDVI dynamic models for the Japonica and Indica cultivars were 0.9991, 1.0170; 0.9084**, 0.8030**; and 0.0232, 0.0170, respectively. These results indicated that RNDVI dynamic models could accurately reflect crop growth and predict dynamic changes in high-yield crop populations, providing a rapid approach for monitoring rice growth status.
An evaluation of MODIS 250-m data for green LAI estimation in crops
NASA Astrophysics Data System (ADS)
Gitelson, Anatoly A.; Wardlow, Brian D.; Keydan, Galina P.; Leavitt, Bryan
2007-10-01
Green leaf area index (LAI) is an important variable for climate modeling, estimates of primary production, agricultural yield forecasting, and many other diverse applications. Remotely sensed data provide considerable potential for estimating LAI at local, regional, and global scales. The goal of this study was to retrieve green LAI from MODIS 250-m vegetation index (VI) data for irrigated and rainfed maize and soybeans. The performance of both MODIS-derived NDVI and Wide Dynamic Range Vegetation Index (WDRVI) were evaluated across three growing seasons (2002 through 2004) over a wide range of LAI and also compared to the performance of NDVI and WDRVI derived from reflectance data collected at close-range across the same field locations. The NDVI vs. LAI relationship showed asymptotic behavior with a sharp decrease in the sensitivity of the NDVI to LAI exceeding 2 m2/m2 for both crops. WDRVI vs. LAI relation was linear across the entire range of LAI variation with determination coefficients above 0.93. Importantly, the coefficients of the close-range WDRVI vs. LAI equation and the MODIS-retrieved WDRVI vs. LAI equation were very close. The WDRVI was found to be capable of accurately estimating LAI across a much greater LAI range than the NDVI and can be used for assessing even slight variations in LAI, which are indicative of the early stages of plant stress. These results demonstrate the new possibilities for analyzing the spatio-temporal variation of the LAI of crops using multi-temporal MODIS 250-m imagery.
Enhancement of viability of muscle precursor cells on 3D scaffold in a perfusion bioreactor.
Cimetta, E; Flaibani, M; Mella, M; Serena, E; Boldrin, L; De Coppi, P; Elvassore, N
2007-05-01
The aim of this study was to develop a methodology for the in vitro expansion of skeletal-muscle precursor cells (SMPC) in a three-dimensional (3D) environment in order to fabricate a cellularized artificial graft characterized by high density of viable cells and uniform cell distribution over the entire 3D domain. Cell seeding and culture within 3D porous scaffolds by conventional static techniques can lead to a uniform cell distribution only on the scaffold surface, whereas dynamic culture systems have the potential of allowing a uniform growth of SMPCs within the entire scaffold structure. In this work, we designed and developed a perfusion bioreactor able to ensure long-term culture conditions and uniform flow of medium through 3D collagen sponges. A mathematical model to assist the design of the experimental setup and of the operative conditions was developed. The effects of dynamic vs static culture in terms of cell viability and spatial distribution within 3D collagen scaffolds were evaluated at 1, 4 and 7 days and for different flow rates of 1, 2, 3.5 and 4.5 ml/min using C2C12 muscle cell line and SMPCs derived from satellite cells. C2C12 cells, after 7 days of culture in our bioreactor, perfused applying a 3.5 ml/min flow rate, showed a higher viability resulting in a three-fold increase when compared with the same parameter evaluated for cultures kept under static conditions. In addition, dynamic culture resulted in a more uniform 3D cell distribution. The 3.5 ml/min flow rate in the bioreactor was also applied to satellite cell-derived SMPCs cultured on 3D collagen scaffolds. The dynamic culture conditions improved cell viability leading to higher cell density and uniform distribution throughout the entire 3D collagen sponge for both C2C12 and satellite cells.
Fish everywhere, all the time: modeling fish in the riverscape
From 2002-2006, EPA’s Western Ecology Division conducted innovative research on the population dynamics of fish within an entire stream network. Employing individual tagging and tracking technology, we examined spatial patterns of juvenile coho salmon (Oncorhynchus kisutch...
Liang, Wenkel; Chapman, Craig T; Ding, Feizhi; Li, Xiaosong
2012-03-01
A first-principles solvated electronic dynamics method is introduced. Solvent electronic degrees of freedom are coupled to the time-dependent electronic density of a solute molecule by means of the implicit reaction field method, and the entire electronic system is propagated in time. This real-time time-dependent approach, incorporating the polarizable continuum solvation model, is shown to be very effective in describing the dynamical solvation effect in the charge transfer process and yields a consistent absorption spectrum in comparison to the conventional linear response results in solution. © 2012 American Chemical Society
Luminescent tunable polydots: Charge effects in confined geometry
Wijesinghe, Sidath; Maskey, Sabina; Perahia, Dvora; ...
2017-06-28
Long-lived soft nanoparticles, formed by conjugated polymers, constitute a new class of far-from-equilibrium responsive structures for nano-medicine. Tethering ionizable groups to the polymers enables functionality. However concurrently, the ionic groups perturb the delicate balance of interactions that governs these particles. Using fully atomistic molecular dynamics simulations, this study probed the effects of charged groups tethered to poly para phenylene ethynylene substituted by alkyl groups on the polymer conformation and dynamics in confined geometry. As a result, we find that the ionizable groups affect the entire shape of the polydots and impact the conformation and dynamics of the polymer.
Dose conformation to the spine during palliative treatments using dynamic wedges
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ormsby, Matthew A., E-mail: Matthew.Ormsby@usoncology.com; Herndon, R. Craig; Kaczor, Joseph G.
2013-07-01
Radiation therapy is commonly used to alleviate pain associated with metastatic disease of the spine. Often, isodose lines are manipulated using dynamic or physical wedges to encompass the section of spine needing treatment while minimizing dose to normal tissue. We will compare 2 methods used to treat the entire thoracic spine. The first method treats the thoracic spine with a single, nonwedged posterior-anterior (PA) field. Dose is prescribed to include the entire spine. Isodose lines tightly conform to the top and bottom vertebrae, but vertebrae between these 2 received more than enough coverage. The second method uses a combination ofmore » wedges to create an isodose line that mimics the curvature of the thoracic spine. This “C”-shaped curvature is created by overlapping 2 fields with opposing dynamic wedges. Machine constraints limit the treatment length and therefore 2 isocenters are used. Each of the 2 PA fields contributes a portion of the total daily dose. This technique creates a “C”-shaped isodose line that tightly conforms to the thoracic spine, minimizing normal tissue dose. Spinal cord maximum dose is reduced, as well as mean dose to the liver, esophagus, and heart.« less
NASA Astrophysics Data System (ADS)
Kroupa, Pavel; Jeřábková, Tereza; Dinnbier, František; Beccari, Giacomo; Yan, Zhiqiang
2018-04-01
A scenario for the formation of multiple co-eval populations separated in age by about 1 Myr in very young clusters (VYCs, ages less than 10 Myr) and with masses in the range 600-20 000 M⊙ is outlined. It rests upon a converging inflow of molecular gas building up a first population of pre-main sequence stars. The associated just-formed O stars ionise the inflow and suppress star formation in the embedded cluster. However, they typically eject each other out of the embedded cluster within 106 yr, that is before the molecular cloud filament can be ionised entirely. The inflow of molecular gas can then resume forming a second population. This sequence of events can be repeated maximally over the life-time of the molecular cloud (about 10 Myr), but is not likely to be possible in VYCs with mass <300 M⊙, because such populations are not likely to contain an O star. Stellar populations heavier than about 2000 M⊙ are likely to have too many O stars for all of these to eject each other from the embedded cluster before they disperse their natal cloud. VYCs with masses in the range 600-2000 M⊙ are likely to have such multi-age populations, while VYCs with masses in the range 2000-20 000 M⊙ can also be composed solely of co-eval, mono-age populations. More massive VYCs are not likely to host sub-populations with age differences of about 1 Myr. This model is applied to the Orion Nebula Cluster (ONC), in which three well-separated pre-main sequences in the colour-magnitude diagram of the cluster have recently been discovered. The mass-inflow history is constrained using this model and the number of OB stars ejected from each population are estimated for verification using Gaia data. As a further consequence of the proposed model, the three runaway O star systems, AE Aur, μ Col and ι Ori, are considered as significant observational evidence for stellar-dynamical ejections of massive stars from the oldest population in the ONC. Evidence for stellar-dynamical ejections of massive stars in the currently forming population is also discussed.
Characterizing and modeling the dynamics of online popularity.
Ratkiewicz, Jacob; Fortunato, Santo; Flammini, Alessandro; Menczer, Filippo; Vespignani, Alessandro
2010-10-08
Online popularity has an enormous impact on opinions, culture, policy, and profits. We provide a quantitative, large scale, temporal analysis of the dynamics of online content popularity in two massive model systems: the Wikipedia and an entire country's Web space. We find that the dynamics of popularity are characterized by bursts, displaying characteristic features of critical systems such as fat-tailed distributions of magnitude and interevent time. We propose a minimal model combining the classic preferential popularity increase mechanism with the occurrence of random popularity shifts due to exogenous factors. The model recovers the critical features observed in the empirical analysis of the systems analyzed here, highlighting the key factors needed in the description of popularity dynamics.
Modelling droplet collision outcomes for different substances and viscosities
NASA Astrophysics Data System (ADS)
Sommerfeld, Martin; Kuschel, Matthias
2016-12-01
The main objective of the present study is the derivation of models describing the outcome of binary droplet collisions for a wide range of dynamic viscosities in the well-known collision maps (i.e. normalised lateral droplet displacement at collision, called impact parameter, versus collision Weber number). Previous studies by Kuschel and Sommerfeld (Exp Fluids 54:1440, 2013) for different solution droplets having a range of solids contents and hence dynamic viscosities (here between 1 and 60 mPa s) revealed that the locations of the triple point (i.e. coincidence of bouncing, stretching separation and coalescence) and the critical Weber number (i.e. condition for the transition from coalescence to separation for head-on collisions) show a clear dependence on dynamic viscosity. In order to extend these findings also to pure liquids and to provide a broader data basis for modelling the viscosity effect, additional binary collision experiments were conducted for different alcohols (viscosity range 1.2-15.9 mPa s) and the FVA1 reference oil at different temperatures (viscosity range 3.0-28.2 mPa s). The droplet size for the series of alcohols was around 365 and 385 µm for the FVA1 reference oil, in each case with fixed diameter ratio at Δ= 1. The relative velocity between the droplets was varied in the range 0.5-3.5 m/s, yielding maximum Weber numbers of around 180. Individual binary droplet collisions with defined conditions were generated by two droplet chains each produced by vibrating orifice droplet generators. For recording droplet motion and the binary collision process with good spatial and temporal resolution high-speed shadow imaging was employed. The results for varied relative velocity and impact angle were assembled in impact parameter-Weber number maps. With increasing dynamic viscosity a characteristic displacement of the regimes for the different collision scenarios was also observed for pure liquids similar to that observed for solutions. This displacement could be described on a physical basis using the similarity number and structure parameter K which was obtained through flow process evaluation and optimal proportioning of momentum and energy by Naue and Bärwolff (Transportprozesse in Fluiden. Deutscher Verlag für Grundstoffindustrie GmbH, Leipzig 1992). Two correlations including the structure parameter K could be derived which describe the location of the triple point and the critical We number. All fluids considered, pure liquids and solutions, are very well fitted by these physically based correlations. The boundary model of Jiang et al. (J Fluid Mech 234:171-190, 1992) for distinguishing between coalescence and stretching separation could be adapted to go through the triple point by the two involved model parameters C a and C b, which were correlated with the relaxation velocity u_{{relax}} = {σ/μ}. Based on the predicted critical Weber number, denoting the onset of reflexive separation, the model of Ashgriz and Poo (J Fluid Mech 221:183-204, 1990) was adapted accordingly. The proper performance of the new generalised models was validated based on the present and previous measurements for a wide range of dynamic viscosities (i.e. 1-60 mPa s) and liquid properties. Although the model for the lower boundary of bouncing (Estrade et al. in J Heat Fluid Flow 20:486-491, 1999) could be adapted through the shape factor, it was found not suitable for the entire range of Weber numbers and viscosities.
NASA Astrophysics Data System (ADS)
Leuenberger, Daiana; Pascale, Céline; Guillevic, Myriam; Ackermann, Andreas; Niederhauser, Bernhard
2017-04-01
Three new mobile facilities have been developed at METAS to dynamically generate SI-traceable reference gas mixtures for a variety of reactive compounds at atmospheric amount of substance fractions and at very low levels of uncertainty (Ux < 3%). We present three new portable "Reactive Gas Standard ReGaS" reference gas generators for the realisation of the following substances: ReGaS1: Ammonia and nitrogen dioxide in the nmol/mol (ppb) range ReGaS2: Volatile organic compounds (VOCs), e.g. limonene, alpha-pinene, MVK, MEK in the nmol/mol (ppb) range ReGaS-3: Fluorinated gases (F-gases, i.e. containing fluorine atoms) in the pmol/mol (ppt) range These three mobile generators have been designed and manufactured at METAS in the framework of the three EMRP projects MetNH3, KEY-VOCs and HIGHGAS. The method is based on permeation and subsequent dynamic dilution: A permeation tube containing the pure substance (e.g. NH3) is stored in the permeation chamber at constant temperature, pressure and matrix gas flow (N2, purified air, synthetic air). Under such conditions the pure substance permeates at constant rate into the matrix gas and can be diluted thereafter to the desired amount fractions in one or two subsequent steps. The permeation rate (mass loss over time) of the permeation tube is precisely calibrated in a fully traceable magnetic suspension balance. The carrier gas is previously purified from the compounds of interest using commercially available purification cartridges. The permeation chambers of ReGaS2 and ReGaS3 have multiple individual cells allowing for the generation of mixtures containing up to 5 different components if required. ReGaS1 allows for the generation of one-component mixtures only. These primary mixtures are then diluted to the required amount of substance fractions using thermal mass flow controllers for full flexibility and adaptability of the generation process over the entire range of possible concentrations. In order to considerably reduce adsorption/desorption processes and thus stabilisation time, all electro-polished stainless steel parts of ReGaS1 and ReGaS2 in contact with the reference gas mixtures are passivated with SilcoNert2000® surface coating. These three state-of-the-art mobile reference gas generators are applicable under both, laboratory and field conditions. Moreover the dynamic generation method can be adapted and applied to a large variety of molecules (e.g. BTEX, CFCs, HCFCs, HFCs and other refrigerants) and is particularly suitable for reactive gas species and/or at concentration ranges which are unstable when stored in pressurised cylinders. Acknowledgement: This work was supported by the European Metrology Research Programme (EMRP). The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union
Emergence of resonant mode-locking via delayed feedback in quantum dot semiconductor lasers.
Tykalewicz, B; Goulding, D; Hegarty, S P; Huyet, G; Erneux, T; Kelleher, B; Viktorov, E A
2016-02-22
With conventional semiconductor lasers undergoing external optical feedback, a chaotic output is typically observed even for moderate levels of the feedback strength. In this paper we examine single mode quantum dot lasers under strong optical feedback conditions and show that an entirely new dynamical regime is found consisting of spontaneous mode-locking via a resonance between the relaxation oscillation frequency and the external cavity repetition rate. Experimental observations are supported by detailed numerical simulations of rate equations appropriate for this laser type. The phenomenon constitutes an entirely new mode-locking mechanism in semiconductor lasers.
1978-04-21
The Shuttle Orbiter Enterprise is lowered into the Dynamic Test Stand for Mated Vertical Ground Vibration tests (MVGVT) at the Marshall Space Flight Center. The tests marked the first time ever that the entire shuttle complement (including Orbiter, external tank, and solid rocket boosters) were mated vertically.
1978-10-04
The Shuttle Orbiter Enterprise is being installed into liftoff configuration at Marshall Space Flight Center's Dynamic Test Stand for Mated Vertical Ground Vibration tests (MVGVT). The tests marked the first time ever that the entire shuttle complement (including Orbiter, external tank, and solid rocket boosters) were mated vertically.
Kirchberger, Martin
2016-01-01
Dynamic range compression serves different purposes in the music and hearing-aid industries. In the music industry, it is used to make music louder and more attractive to normal-hearing listeners. In the hearing-aid industry, it is used to map the variable dynamic range of acoustic signals to the reduced dynamic range of hearing-impaired listeners. Hence, hearing-aided listeners will typically receive a dual dose of compression when listening to recorded music. The present study involved an acoustic analysis of dynamic range across a cross section of recorded music as well as a perceptual study comparing the efficacy of different compression schemes. The acoustic analysis revealed that the dynamic range of samples from popular genres, such as rock or rap, was generally smaller than the dynamic range of samples from classical genres, such as opera and orchestra. By comparison, the dynamic range of speech, based on recordings of monologues in quiet, was larger than the dynamic range of all music genres tested. The perceptual study compared the effect of the prescription rule NAL-NL2 with a semicompressive and a linear scheme. Music subjected to linear processing had the highest ratings for dynamics and quality, followed by the semicompressive and the NAL-NL2 setting. These findings advise against NAL-NL2 as a prescription rule for recorded music and recommend linear settings. PMID:26868955
Kirchberger, Martin; Russo, Frank A
2016-02-10
Dynamic range compression serves different purposes in the music and hearing-aid industries. In the music industry, it is used to make music louder and more attractive to normal-hearing listeners. In the hearing-aid industry, it is used to map the variable dynamic range of acoustic signals to the reduced dynamic range of hearing-impaired listeners. Hence, hearing-aided listeners will typically receive a dual dose of compression when listening to recorded music. The present study involved an acoustic analysis of dynamic range across a cross section of recorded music as well as a perceptual study comparing the efficacy of different compression schemes. The acoustic analysis revealed that the dynamic range of samples from popular genres, such as rock or rap, was generally smaller than the dynamic range of samples from classical genres, such as opera and orchestra. By comparison, the dynamic range of speech, based on recordings of monologues in quiet, was larger than the dynamic range of all music genres tested. The perceptual study compared the effect of the prescription rule NAL-NL2 with a semicompressive and a linear scheme. Music subjected to linear processing had the highest ratings for dynamics and quality, followed by the semicompressive and the NAL-NL2 setting. These findings advise against NAL-NL2 as a prescription rule for recorded music and recommend linear settings. © The Author(s) 2016.
PyMUS: Python-Based Simulation Software for Virtual Experiments on Motor Unit System
Kim, Hojeong; Kim, Minjung
2018-01-01
We constructed a physiologically plausible computationally efficient model of a motor unit and developed simulation software that allows for integrative investigations of the input–output processing in the motor unit system. The model motor unit was first built by coupling the motoneuron model and muscle unit model to a simplified axon model. To build the motoneuron model, we used a recently reported two-compartment modeling approach that accurately captures the key cell-type-related electrical properties under both passive conditions (somatic input resistance, membrane time constant, and signal attenuation properties between the soma and the dendrites) and active conditions (rheobase current and afterhyperpolarization duration at the soma and plateau behavior at the dendrites). To construct the muscle unit, we used a recently developed muscle modeling approach that reflects the experimentally identified dependencies of muscle activation dynamics on isometric, isokinetic and dynamic variation in muscle length over a full range of stimulation frequencies. Then, we designed the simulation software based on the object-oriented programing paradigm and developed the software using open-source Python language to be fully operational using graphical user interfaces. Using the developed software, separate simulations could be performed for a single motoneuron, muscle unit and motor unit under a wide range of experimental input protocols, and a hierarchical analysis could be performed from a single channel to the entire system behavior. Our model motor unit and simulation software may represent efficient tools not only for researchers studying the neural control of force production from a cellular perspective but also for instructors and students in motor physiology classroom settings. PMID:29695959
Deconvolving the wedge: maximum-likelihood power spectra via spherical-wave visibility modelling
NASA Astrophysics Data System (ADS)
Ghosh, A.; Mertens, F. G.; Koopmans, L. V. E.
2018-03-01
Direct detection of the Epoch of Reionization (EoR) via the red-shifted 21-cm line will have unprecedented implications on the study of structure formation in the infant Universe. To fulfil this promise, current and future 21-cm experiments need to detect this weak EoR signal in the presence of foregrounds that are several orders of magnitude larger. This requires extreme noise control and improved wide-field high dynamic-range imaging techniques. We propose a new imaging method based on a maximum likelihood framework which solves for the interferometric equation directly on the sphere, or equivalently in the uvw-domain. The method uses the one-to-one relation between spherical waves and spherical harmonics (SpH). It consistently handles signals from the entire sky, and does not require a w-term correction. The SpH coefficients represent the sky-brightness distribution and the visibilities in the uvw-domain, and provide a direct estimate of the spatial power spectrum. Using these spectrally smooth SpH coefficients, bright foregrounds can be removed from the signal, including their side-lobe noise, which is one of the limiting factors in high dynamics-range wide-field imaging. Chromatic effects causing the so-called `wedge' are effectively eliminated (i.e. deconvolved) in the cylindrical (k⊥, k∥) power spectrum, compared to a power spectrum computed directly from the images of the foreground visibilities where the wedge is clearly present. We illustrate our method using simulated Low-Frequency Array observations, finding an excellent reconstruction of the input EoR signal with minimal bias.
Petrovic, Ljubomir M; Zorica, Dusan M; Stojanac, Igor Lj; Krstonosic, Veljko S; Hadnadjev, Miroslav S; Janev, Marko B; Premovic, Milica T; Atanackovic, Teodor M
2015-08-01
In this study we analyze viscoelastic properties of three flowable (Wave, Wave MV, Wave HV) and one universal hybrid resin (Ice) composites, prior to setting. We developed a mathematical model containing fractional derivatives in order to describe their properties. Isothermal experimental study was conducted on a rheometer with parallel plates. In dynamic oscillatory shear test, storage and loss modulus, as well as the complex viscosity where determined. We assumed four different fractional viscoelastic models, each belonging to one particular class, derivable from distributed-order fractional constitutive equation. The restrictions following from the Second law of thermodynamics are imposed on each model. The optimal parameters corresponding to each model are obtained by minimizing the error function that takes into account storage and loss modulus, thus obtaining the best fit to the experimental data. In the frequency range considered, we obtained that for Wave HV and Wave MV there exist a critical frequency for which loss and storage modulus curves intersect, defining a boundary between two different types of behavior: one in which storage modulus is larger than loss modulus and the other in which the situation is opposite. Loss and storage modulus curves for Ice and Wave do not show this type of behavior, having either elastic, or viscous effects dominating in entire frequency range considered. The developed models may be used to predict behavior of four tested composites in different flow conditions (different deformation speed), thus helping to estimate optimal handling characteristics for specific clinical applications. Copyright © 2015 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.
PyMUS: Python-Based Simulation Software for Virtual Experiments on Motor Unit System.
Kim, Hojeong; Kim, Minjung
2018-01-01
We constructed a physiologically plausible computationally efficient model of a motor unit and developed simulation software that allows for integrative investigations of the input-output processing in the motor unit system. The model motor unit was first built by coupling the motoneuron model and muscle unit model to a simplified axon model. To build the motoneuron model, we used a recently reported two-compartment modeling approach that accurately captures the key cell-type-related electrical properties under both passive conditions (somatic input resistance, membrane time constant, and signal attenuation properties between the soma and the dendrites) and active conditions (rheobase current and afterhyperpolarization duration at the soma and plateau behavior at the dendrites). To construct the muscle unit, we used a recently developed muscle modeling approach that reflects the experimentally identified dependencies of muscle activation dynamics on isometric, isokinetic and dynamic variation in muscle length over a full range of stimulation frequencies. Then, we designed the simulation software based on the object-oriented programing paradigm and developed the software using open-source Python language to be fully operational using graphical user interfaces. Using the developed software, separate simulations could be performed for a single motoneuron, muscle unit and motor unit under a wide range of experimental input protocols, and a hierarchical analysis could be performed from a single channel to the entire system behavior. Our model motor unit and simulation software may represent efficient tools not only for researchers studying the neural control of force production from a cellular perspective but also for instructors and students in motor physiology classroom settings.
Optimization of sampling pattern and the design of Fourier ptychographic illuminator.
Guo, Kaikai; Dong, Siyuan; Nanda, Pariksheet; Zheng, Guoan
2015-03-09
Fourier ptychography (FP) is a recently developed imaging approach that facilitates high-resolution imaging beyond the cutoff frequency of the employed optics. In the original FP approach, a periodic LED array is used for sample illumination, and therefore, the scanning pattern is a uniform grid in the Fourier space. Such a uniform sampling scheme leads to 3 major problems for FP, namely: 1) it requires a large number of raw images, 2) it introduces the raster grid artefacts in the reconstruction process, and 3) it requires a high-dynamic-range detector. Here, we investigate scanning sequences and sampling patterns to optimize the FP approach. For most biological samples, signal energy is concentrated at low-frequency region, and as such, we can perform non-uniform Fourier sampling in FP by considering the signal structure. In contrast, conventional ptychography perform uniform sampling over the entire real space. To implement the non-uniform Fourier sampling scheme in FP, we have designed and built an illuminator using LEDs mounted on a 3D-printed plastic case. The advantages of this illuminator are threefold in that: 1) it reduces the number of image acquisitions by at least 50% (68 raw images versus 137 in the original FP setup), 2) it departs from the translational symmetry of sampling to solve the raster grid artifact problem, and 3) it reduces the dynamic range of the captured images 6 fold. The results reported in this paper significantly shortened acquisition time and improved quality of FP reconstructions. It may provide new insights for developing Fourier ptychographic imaging platforms and find important applications in digital pathology.
Fayet, Annette L; Freeman, Robin; Anker-Nilssen, Tycho; Diamond, Antony; Erikstad, Kjell E; Fifield, Dave; Fitzsimmons, Michelle G; Hansen, Erpur S; Harris, Mike P; Jessopp, Mark; Kouwenberg, Amy-Lee; Kress, Steve; Mowat, Stephen; Perrins, Chris M; Petersen, Aevar; Petersen, Ib K; Reiertsen, Tone K; Robertson, Gregory J; Shannon, Paula; Sigurðsson, Ingvar A; Shoji, Akiko; Wanless, Sarah; Guilford, Tim
2017-12-18
Which factors shape animals' migration movements across large geographical scales, how different migratory strategies emerge between populations, and how these may affect population dynamics are central questions in the field of animal migration [1] that only large-scale studies of migration patterns across a species' range can answer [2]. To address these questions, we track the migration of 270 Atlantic puffins Fratercula arctica, a red-listed, declining seabird, across their entire breeding range. We investigate the role of demographic, geographical, and environmental variables in driving spatial and behavioral differences on an ocean-basin scale by measuring puffins' among-colony differences in migratory routes and day-to-day behavior (estimated with individual daily activity budgets and energy expenditure). We show that competition and local winter resource availability are important drivers of migratory movements, with birds from larger colonies or with poorer local winter conditions migrating further and visiting less-productive waters; this in turn led to differences in flight activity and energy expenditure. Other behavioral differences emerge with latitude, with foraging effort and energy expenditure increasing when birds winter further north in colder waters. Importantly, these ocean-wide migration patterns can ultimately be linked with breeding performance: colony productivity is negatively associated with wintering latitude, population size, and migration distance, which demonstrates the cost of competition and migration on future breeding and the link between non-breeding and breeding periods. Our results help us to understand the drivers of animal migration and have important implications for population dynamics and the conservation of migratory species. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tarnacka, M., E-mail: mtarnacka@us.edu.pl; Madejczyk, O.; Kamiński, K.
2015-06-14
Pressure-Volume-Temperature (PVT) measurements and broadband dielectric spectroscopy were carried out to investigate molecular dynamics and to test the validity of thermodynamic scaling of two homologous compounds of pharmaceutical activity: itraconazole and ketoconazole in the wide range of thermodynamic conditions. The pressure coefficients of the glass transition temperature (dT{sub g}/dp) for itraconazole and ketoconazole were determined to be equal to 183 and 228 K/GPa, respectively. However, for itraconazole, the additional transition to the nematic phase was observed and characterized by the pressure coefficient dT{sub n}/dp = 258 K/GPa. From PVT and dielectric data, we obtained that the liquid-nematic phase transition ismore » governed by the relaxation time since it occurred at constant τ {sub α} = 10{sup −5} s. Furthermore, we plotted the obtained relaxation times as a function of T{sup −1}v{sup −γ}, which has revealed that the validity of thermodynamic scaling with the γ exponent equals to 3.69 ± 0.04 and 3.64 ± 0.03 for itraconazole and ketoconazole, respectively. Further analysis of the scaling parameter in itraconazole revealed that it unexpectedly decreases with increasing relaxation time, which resulted in dramatic change of the shape of the thermodynamic scaling master curve. While in the case of ketoconazole, it remained the same within entire range of data (within experimental uncertainty). We suppose that in case of itraconazole, this peculiar behavior is related to the liquid crystals’ properties of itraconazole molecule.« less
High dynamic range image acquisition based on multiplex cameras
NASA Astrophysics Data System (ADS)
Zeng, Hairui; Sun, Huayan; Zhang, Tinghua
2018-03-01
High dynamic image is an important technology of photoelectric information acquisition, providing higher dynamic range and more image details, and it can better reflect the real environment, light and color information. Currently, the method of high dynamic range image synthesis based on different exposure image sequences cannot adapt to the dynamic scene. It fails to overcome the effects of moving targets, resulting in the phenomenon of ghost. Therefore, a new high dynamic range image acquisition method based on multiplex cameras system was proposed. Firstly, different exposure images sequences were captured with the camera array, using the method of derivative optical flow based on color gradient to get the deviation between images, and aligned the images. Then, the high dynamic range image fusion weighting function was established by combination of inverse camera response function and deviation between images, and was applied to generated a high dynamic range image. The experiments show that the proposed method can effectively obtain high dynamic images in dynamic scene, and achieves good results.
Netzel, Pawel
2017-01-01
The United States is increasingly becoming a multi-racial society. To understand multiple consequences of this overall trend to our neighborhoods we need a methodology capable of spatio-temporal analysis of racial diversity at the local level but also across the entire U.S. Furthermore, such methodology should be accessible to stakeholders ranging from analysts to decision makers. In this paper we present a comprehensive framework for visualizing and analyzing diversity data that fulfills such requirements. The first component of our framework is a U.S.-wide, multi-year database of race sub-population grids which is freely available for download. These 30 m resolution grids have being developed using dasymetric modeling and are available for 1990-2000-2010. We summarize numerous advantages of gridded population data over commonly used Census tract-aggregated data. Using these grids frees analysts from constructing their own and allows them to focus on diversity analysis. The second component of our framework is a set of U.S.-wide, multi-year diversity maps at 30 m resolution. A diversity map is our product that classifies the gridded population into 39 communities based on their degrees of diversity, dominant race, and population density. It provides spatial information on diversity in a single, easy-to-understand map that can be utilized by analysts and end users alike. Maps based on subsequent Censuses provide information about spatio-temporal dynamics of diversity. Diversity maps are accessible through the GeoWeb application SocScape (http://sil.uc.edu/webapps/socscape_usa/) for an immediate online exploration. The third component of our framework is a proposal to quantitatively analyze diversity maps using a set of landscape metrics. Because of its form, a grid-based diversity map could be thought of as a diversity “landscape” and analyzed quantitatively using landscape metrics. We give a brief summary of most pertinent metrics and demonstrate how they can be applied to diversity maps. PMID:28358862
Coding the Assembly of Polyoxotungstates with a Programmable Reaction System.
Ruiz de la Oliva, Andreu; Sans, Victor; Miras, Haralampos N; Long, De-Liang; Cronin, Leroy
2017-05-01
Chemical transformations are normally conducted in batch or flow mode, thereby allowing the chemistry to be temporally or spatially controlled, but these approaches are not normally combined dynamically. However, the investigation of the underlying chemistry masked by the self-assembly processes that often occur in one-pot reactions and exploitation of the potential of complex chemical systems requires control in both time and space. Additionally, maintaining the intermediate constituents of a self-assembled system "off equilibrium" and utilizing them dynamically at specific time intervals provide access to building blocks that cannot coexist under one-pot conditions and ultimately to the formation of new clusters. Herein, we implement the concept of a programmable networked reaction system, allowing us to connect discrete "one-pot" reactions that produce the building block{W 11 O 38 } ≡ {W 11 } under different conditions and control, in real time, the assembly of a series of polyoxometalate clusters {W 12 O 42 } ≡ {W 12 }, {W 22 O 74 } ≡ {W 22 } 1a, {W 34 O 116 } ≡ {W 34 } 2a, and {W 36 O 120 } ≡ {W 36 } 3a, using pH and ultraviolet-visible monitoring. The programmable networked reaction system reveals that is possible to assemble a range of different clusters using {W 11 }-based building blocks, demonstrating the relationship between the clusters within the family of iso-polyoxotungstates, with the final structural motif being entirely dependent on the building block libraries generated in each separate reaction space within the network. In total, this approach led to the isolation of five distinct inorganic clusters using a "fixed" set of reagents and using a fully automated sequence code, rather than five entirely different reaction protocols. As such, this approach allows us to discover, record, and implement complex one-pot reaction syntheses in a more general way, increasing the yield and reproducibility and potentially giving access to nonspecialists.
Coding the Assembly of Polyoxotungstates with a Programmable Reaction System
2017-01-01
Chemical transformations are normally conducted in batch or flow mode, thereby allowing the chemistry to be temporally or spatially controlled, but these approaches are not normally combined dynamically. However, the investigation of the underlying chemistry masked by the self-assembly processes that often occur in one-pot reactions and exploitation of the potential of complex chemical systems requires control in both time and space. Additionally, maintaining the intermediate constituents of a self-assembled system “off equilibrium” and utilizing them dynamically at specific time intervals provide access to building blocks that cannot coexist under one-pot conditions and ultimately to the formation of new clusters. Herein, we implement the concept of a programmable networked reaction system, allowing us to connect discrete “one-pot” reactions that produce the building block{W11O38} ≡ {W11} under different conditions and control, in real time, the assembly of a series of polyoxometalate clusters {W12O42} ≡ {W12}, {W22O74} ≡ {W22} 1a, {W34O116} ≡ {W34} 2a, and {W36O120} ≡ {W36} 3a, using pH and ultraviolet–visible monitoring. The programmable networked reaction system reveals that is possible to assemble a range of different clusters using {W11}-based building blocks, demonstrating the relationship between the clusters within the family of iso-polyoxotungstates, with the final structural motif being entirely dependent on the building block libraries generated in each separate reaction space within the network. In total, this approach led to the isolation of five distinct inorganic clusters using a “fixed” set of reagents and using a fully automated sequence code, rather than five entirely different reaction protocols. As such, this approach allows us to discover, record, and implement complex one-pot reaction syntheses in a more general way, increasing the yield and reproducibility and potentially giving access to nonspecialists. PMID:28414229
Local Approximation and Hierarchical Methods for Stochastic Optimization
NASA Astrophysics Data System (ADS)
Cheng, Bolong
In this thesis, we present local and hierarchical approximation methods for two classes of stochastic optimization problems: optimal learning and Markov decision processes. For the optimal learning problem class, we introduce a locally linear model with radial basis function for estimating the posterior mean of the unknown objective function. The method uses a compact representation of the function which avoids storing the entire history, as is typically required by nonparametric methods. We derive a knowledge gradient policy with the locally parametric model, which maximizes the expected value of information. We show the policy is asymptotically optimal in theory, and experimental works suggests that the method can reliably find the optimal solution on a range of test functions. For the Markov decision processes problem class, we are motivated by an application where we want to co-optimize a battery for multiple revenue, in particular energy arbitrage and frequency regulation. The nature of this problem requires the battery to make charging and discharging decisions at different time scales while accounting for the stochastic information such as load demand, electricity prices, and regulation signals. Computing the exact optimal policy becomes intractable due to the large state space and the number of time steps. We propose two methods to circumvent the computation bottleneck. First, we propose a nested MDP model that structure the co-optimization problem into smaller sub-problems with reduced state space. This new model allows us to understand how the battery behaves down to the two-second dynamics (that of the frequency regulation market). Second, we introduce a low-rank value function approximation for backward dynamic programming. This new method only requires computing the exact value function for a small subset of the state space and approximate the entire value function via low-rank matrix completion. We test these methods on historical price data from the PJM Interconnect and show that it outperforms the baseline approach used in the industry.
Vulnerability of artisanal fisheries to climate change in the Venice Lagoon.
Pranovi, F; Caccin, A; Franzoi, P; Malavasi, S; Zucchetta, M; Torricelli, P
2013-10-01
Within the context of global warming, the western coast of the northern Adriatic Sea can be regarded as an extremely vulnerable area. Owing to the local geographic features, this area has been described as the Venetian lacuna, where Mediterranean Sea climatic conditions are replaced by Atlantic Ocean ones, supporting the presence of glacial relicts, such as sprat Sprattus sprattus, flounder Platichthys flesus and brown shrimp Crangon crangon. Nektonic assemblage therefore represents a good candidate in terms of an early proxy for thermal regime alterations. It represents a dynamic component of the lagoon ecosystem, changing in space and time, actively moving through the entire system, and dynamically exchanging with the open sea. Here, the first signals of the change have been already detected, such as the presence of alien thermophilic species. Within this context, since the beginning of the century, sampling of the nektonic assemblage has been carried out, integrating them with landings data from the fish market. Vulnerabilities to thermal regime changes have been tested by (1) categorizing species according to the mean distribution area in terms of latitudinal range (over 45°, 30°-45° and below 30°), and (2) analysing both spatial and temporal variations within fishing grounds. Results indicated a high potential vulnerability of the artisanal fishery to climate change, as the commercial catch is entirely composed of species from cold (>45° N) and temperate (between 45° and 30° N) latitudes. At present no alien thermophilic species have been recorded within the lagoon, which is possibly a sign of good resilience of the assemblage. Finally, abundance of species from cold latitudes has decreased during the past decade. All of this has been discussed in the context of the mean annual temperature trend. © 2013 The Authors. Journal of Fish Biology © 2013 The Fisheries Society of the British Isles.
NASA Astrophysics Data System (ADS)
Singh, D.; Linda, Sneha B.; Giri, Pankaj K.; Mahato, Amritraj; Tripathi, R.; Kumar, Harish; Afzal Ansari, M.; Sathik, N. P. M.; Ali, Rahbar; Kumar, Rakesh; Muralithar, S.; Singh, R. P.
2017-11-01
Spin distributions for several evaporation residues populated in the 16O+154Sm system have been measured at projectile energy ≈ 6.2 MeV/A by using the charged particle-γ-coincidence technique. The measured spin distributions of the evaporation residues populated through incomplete fusion associated with 'fast' α and 2α-emission channels are found to be entirely different from fusion-evaporation channels. It is observed that the mean input angular momentum for the evaporation residues formed in incomplete fusion channel is relatively higher than that observed for evaporation residues in complete fusion channels. The feeding intensity profile of evaporation residues populated through complete fusion and incomplete fusion have also been studied. The incomplete fusion channels are found to have narrow range feeding only for high spin states, while complete fusion channels are strongly fed over a broad spin range and widely populated. Comparison of present results with earlier data suggests that the mean input angular momentum values are relatively smaller for spherical target than that of deformed target using the same projectile and incident energy highlighting the role of target deformation in incomplete fusion dynamics.
Common-pull, multiple-push, vacuum-activated telescope mirror cell.
Ruiz, Elfego; Sohn, Erika; Salas, Luis; Luna, Esteban; Araiza-Durán, José A
2014-11-20
A new concept for push-pull active optics is presented, where the push-force is provided by means of individual airbag type actuators and a common force in the form of a vacuum is applied to the entire back of the mirror. The vacuum provides the pull-component of the system, in addition to gravity. Vacuum is controlled as a function of the zenithal angle, providing correction for the axial component of the mirror's weight. In this way, the push actuators are only responsible for correcting mirror deformations, as well as for supporting the axial mirror weight at the zenith, allowing for a uniform, full dynamic-range behavior of the system along the telescope's pointing range. This can result in the ability to perform corrections of up to a few microns for low-order aberrations. This mirror support concept was simulated using a finite element model and was tested experimentally at the 2.12 m San Pedro Mártir telescope. Advantages such as stress-free attachments, lighter weight, large actuator area, lower system complexity, and lower required mirror-cell stiffness could make this a method to consider for future large telescopes.
The direct simulation of acoustics on Earth, Mars, and Titan.
Hanford, Amanda D; Long, Lyle N
2009-02-01
With the recent success of the Huygens lander on Titan, a moon of Saturn, there has been renewed interest in further exploring the acoustic environments of the other planets in the solar system. The direct simulation Monte Carlo (DSMC) method is used here for modeling sound propagation in the atmospheres of Earth, Mars, and Titan at a variety of altitudes above the surface. DSMC is a particle method that describes gas dynamics through direct physical modeling of particle motions and collisions. The validity of DSMC for the entire range of Knudsen numbers (Kn), where Kn is defined as the mean free path divided by the wavelength, allows for the exploration of sound propagation in planetary environments for all values of Kn. DSMC results at a variety of altitudes on Earth, Mars, and Titan including the details of nonlinearity, absorption, dispersion, and molecular relaxation in gas mixtures are given for a wide range of Kn showing agreement with various continuum theories at low Kn and deviation from continuum theory at high Kn. Despite large computation time and memory requirements, DSMC is the method best suited to study high altitude effects or where continuum theory is not valid.
NASA Technical Reports Server (NTRS)
Pinier, Jeremy T.; Erickson, Gary E.; Paulson, John W.; Tomek, William G.; Bennett, David W.; Blevins, John A.
2015-01-01
A 1.75% scale force and moment model of the Space Launch System was tested in the NASA Langley Research Center 14- by 22-Foot Subsonic Wind Tunnel to quantify the aerodynamic forces that will be experienced by the launch vehicle during its liftoff and transition to ascent flight. The test consisted of two parts: the first was dedicated to measuring forces and moments for the entire range of angles of attack (0deg to 90deg) and roll angles (0 deg. to 360 deg.). The second was designed to measure the aerodynamic effects of the liftoff tower on the launch vehicle for ground winds from all azimuthal directions (0 deg. to 360 deg.), and vehicle liftoff height ratios from 0 to 0.94. This wind tunnel model also included a set of 154 surface static pressure ports. Details on the experimental setup, and results from both parts of testing are presented, along with a description of how the wind tunnel data was analyzed and post-processed in order to develop an aerodynamic database. Finally, lessons learned from experiencing significant dynamics in the mid-range angles of attack due to steady asymmetric vortex shedding are presented.
Hi-alpha forebody design. Part 1: Methodology base and initial parametrics
NASA Technical Reports Server (NTRS)
Mason, William H.; Ravi, R.
1992-01-01
The use of Computational Fluid Dynamics (CFD) has been investigated for the analysis and design of aircraft forebodies at high angle of attack combined with sideslip. The results of the investigation show that CFD has reached a level of development where computational methods can be used for high angle of attack aerodynamic design. The classic wind tunnel experiment for the F-5A forebody directional stability has been reproduced computationally over an angle of attack range from 10 degrees to 45 degrees, and good agreement with experimental data was obtained. Computations have also been made at combined angle of attack and sideslip over a chine forebody, demonstrating the qualitative features of the flow, although not producing good agreement with measured experimental pressure distributions. The computations were performed using the code known as cfl3D for both the Euler equations and the Reynolds equations using a form of the Baldwin-Lomax turbulence model. To study the relation between forebody shape and directional stability characteristics, a generic parametric forebody model has been defined which provides a simple analytic math model with flexibility to capture the key shape characteristics of the entire range of forebodies of interest, including chines.
Cholesteric Liquid Crystal Shells as Enabling Material for Information-Rich Design and Architecture.
Schwartz, Mathew; Lenzini, Gabriele; Geng, Yong; Rønne, Peter B; Ryan, Peter Y A; Lagerwall, Jan P F
2018-05-14
The responsive and dynamic character of liquid crystals (LCs), arising from their ability to self-organize into long-range ordered structures while maintaining fluidity, has given them a role as key enabling materials in the information technology that surrounds us today. Ongoing research hints at future LC-based technologies of entirely different types, for instance by taking advantage of the peculiar behavior of cholesteric liquid crystals (CLCs) subject to curvature. Spherical shells of CLC reflect light omnidirectionally with specific polarization and wavelength, tunable from the UV to the infrared (IR) range, with complex patterns arising when many of them are brought together. Here, these properties are analyzed and explained, and future application opportunities from an interdisciplinary standpoint are discussed. By incorporating arrangements of CLC shells in smart facades or vehicle coatings, or in objects of high value subject to counterfeiting, game-changing future uses might arise in fields spanning information security, design, and architecture. The focus here is on the challenges of a digitized and information-rich future society where humans increasingly rely on technology and share their space with autonomous vehicles, drones, and robots. © 2018 The Authors. Published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Sud, Dhruv; Zhong, Wei; Beer, David G.; Mycek, Mary-Ann
2006-05-01
A fluorescence lifetime imaging microscopy (FLIM) method was developed and applied to investigate metabolic function in living human normal esophageal (HET-1) and Barrett’s adenocarcinoma (SEG-1) cells. In FLIM, image contrast is based on fluorophore excited state lifetimes, which reflect local biochemistry and molecular activity. Unique FLIM system attributes, including variable ultrafast time gating (≥ 200 ps), wide spectral tunability (337.1 - 960 nm), large temporal dynamic range (≥ 600 ps), and short data acquisition and processing times (15 s), enabled the study of two key molecules consumed at the termini of the oxidative phosphorylation pathway, NADH and oxygen, in living cells under controlled and calibrated environmental conditions. NADH is an endogenous cellular fluorophore detectable in living human tissues that has been shown to be a quantitative biomarker of dysplasia in the esophagus. Lifetime calibration of an oxygen-sensitive, ruthenium-based cellular stain enabled in vivo oxygen level measurements with a resolution of 8 μM over the entire physiological range (1 - 300 μM). Starkly higher intracellular oxygen and NADH levels in living SEG-1 vs. HET-1 cells were detected by FLIM and attributed to altered metabolic pathways in malignant cells.
Spliced synthetic genes as internal controls in RNA sequencing experiments.
Hardwick, Simon A; Chen, Wendy Y; Wong, Ted; Deveson, Ira W; Blackburn, James; Andersen, Stacey B; Nielsen, Lars K; Mattick, John S; Mercer, Tim R
2016-09-01
RNA sequencing (RNA-seq) can be used to assemble spliced isoforms, quantify expressed genes and provide a global profile of the transcriptome. However, the size and diversity of the transcriptome, the wide dynamic range in gene expression and inherent technical biases confound RNA-seq analysis. We have developed a set of spike-in RNA standards, termed 'sequins' (sequencing spike-ins), that represent full-length spliced mRNA isoforms. Sequins have an entirely artificial sequence with no homology to natural reference genomes, but they align to gene loci encoded on an artificial in silico chromosome. The combination of multiple sequins across a range of concentrations emulates alternative splicing and differential gene expression, and it provides scaling factors for normalization between samples. We demonstrate the use of sequins in RNA-seq experiments to measure sample-specific biases and determine the limits of reliable transcript assembly and quantification in accompanying human RNA samples. In addition, we have designed a complementary set of sequins that represent fusion genes arising from rearrangements of the in silico chromosome to aid in cancer diagnosis. RNA sequins provide a qualitative and quantitative reference with which to navigate the complexity of the human transcriptome.
The power and robustness of maximum LOD score statistics.
Yoo, Y J; Mendell, N R
2008-07-01
The maximum LOD score statistic is extremely powerful for gene mapping when calculated using the correct genetic parameter value. When the mode of genetic transmission is unknown, the maximum of the LOD scores obtained using several genetic parameter values is reported. This latter statistic requires higher critical value than the maximum LOD score statistic calculated from a single genetic parameter value. In this paper, we compare the power of maximum LOD scores based on three fixed sets of genetic parameter values with the power of the LOD score obtained after maximizing over the entire range of genetic parameter values. We simulate family data under nine generating models. For generating models with non-zero phenocopy rates, LOD scores maximized over the entire range of genetic parameters yielded greater power than maximum LOD scores for fixed sets of parameter values with zero phenocopy rates. No maximum LOD score was consistently more powerful than the others for generating models with a zero phenocopy rate. The power loss of the LOD score maximized over the entire range of genetic parameters, relative to the maximum LOD score calculated using the correct genetic parameter value, appeared to be robust to the generating models.
Mitochondrial dynamics and Parkinson's disease: focus on parkin.
Lim, Kah-Leong; Ng, Xiao-Hui; Grace, Lim Gui-Yin; Yao, Tso-Pang
2012-05-01
Parkinson's disease (PD) is a prevalent neurodegenerative disease affecting millions of individuals worldwide. Despite intensive efforts devoted to drug discovery, the disease remains incurable. To provide more effective medical therapy for PD, better understanding of the underlying causes of the disease is clearly necessary. A broad range of studies conducted over the past few decades have collectively implicated aberrant mitochondrial homeostasis as a key contributor to the development of PD. Supporting this, mutations in several PD-linked genes are directly or indirectly linked to mitochondrial dysfunction. In particular, recent discoveries have identified parkin, whose mutations are causative of recessive parkinsonism, as a key regulator of mitochondrial homeostasis. Parkin appears to be involved in the entire spectrum of mitochondrial dynamics, including organelle biogenesis, fusion/fission, and clearance via mitophagy. How a single protein can regulate such diverse mitochondrial events is as intriguing as it is amazing; the mechanism underlying this is currently under intense research. Here, we provide an overview of mitochondrial dynamics and its relationship with neurodegenerative diseases and discuss current evidence and controversies surrounding the role of parkin in mitochondrial quality control and its relevance to PD pathogenesis. Although the emerging field of parkin-mediated mitochondrial quality control has proven to be exciting, it is important to recognize that PD pathogenesis is likely to involve an intricate network of interacting pathways. Elucidating the reciprocity of pathways, particularly how other PD-related pathways potentially influence mitochondrial homeostasis, may hold the key to therapeutic development.
Khani, Mohammadreza; Xing, Tao; Gibbs, Christina; Oshinski, John N; Stewart, Gregory R; Zeller, Jillynne R; Martin, Bryn A
2017-08-01
A detailed quantification and understanding of cerebrospinal fluid (CSF) dynamics may improve detection and treatment of central nervous system (CNS) diseases and help optimize CSF system-based delivery of CNS therapeutics. This study presents a computational fluid dynamics (CFD) model that utilizes a nonuniform moving boundary approach to accurately reproduce the nonuniform distribution of CSF flow along the spinal subarachnoid space (SAS) of a single cynomolgus monkey. A magnetic resonance imaging (MRI) protocol was developed and applied to quantify subject-specific CSF space geometry and flow and define the CFD domain and boundary conditions. An algorithm was implemented to reproduce the axial distribution of unsteady CSF flow by nonuniform deformation of the dura surface. Results showed that maximum difference between the MRI measurements and CFD simulation of CSF flow rates was <3.6%. CSF flow along the entire spine was laminar with a peak Reynolds number of ∼150 and average Womersley number of ∼5.4. Maximum CSF flow rate was present at the C4-C5 vertebral level. Deformation of the dura ranged up to a maximum of 134 μm. Geometric analysis indicated that total spinal CSF space volume was ∼8.7 ml. Average hydraulic diameter, wetted perimeter, and SAS area were 2.9 mm, 37.3 mm and 27.24 mm2, respectively. CSF pulse wave velocity (PWV) along the spine was quantified to be 1.2 m/s.
Bordbar, Aarash; Palsson, Bernhard O.
2016-01-01
Progress in systems medicine brings promise to addressing patient heterogeneity and individualized therapies. Recently, genome-scale models of metabolism have been shown to provide insight into the mechanistic link between drug therapies and systems-level off-target effects while being expanded to explicitly include the three-dimensional structure of proteins. The integration of these molecular-level details, such as the physical, structural, and dynamical properties of proteins, notably expands the computational description of biochemical network-level properties and the possibility of understanding and predicting whole cell phenotypes. In this study, we present a multi-scale modeling framework that describes biological processes which range in scale from atomistic details to an entire metabolic network. Using this approach, we can understand how genetic variation, which impacts the structure and reactivity of a protein, influences both native and drug-induced metabolic states. As a proof-of-concept, we study three enzymes (catechol-O-methyltransferase, glucose-6-phosphate dehydrogenase, and glyceraldehyde-3-phosphate dehydrogenase) and their respective genetic variants which have clinically relevant associations. Using all-atom molecular dynamic simulations enables the sampling of long timescale conformational dynamics of the proteins (and their mutant variants) in complex with their respective native metabolites or drug molecules. We find that changes in a protein’s structure due to a mutation influences protein binding affinity to metabolites and/or drug molecules, and inflicts large-scale changes in metabolism. PMID:27467583
Mih, Nathan; Brunk, Elizabeth; Bordbar, Aarash; Palsson, Bernhard O
2016-07-01
Progress in systems medicine brings promise to addressing patient heterogeneity and individualized therapies. Recently, genome-scale models of metabolism have been shown to provide insight into the mechanistic link between drug therapies and systems-level off-target effects while being expanded to explicitly include the three-dimensional structure of proteins. The integration of these molecular-level details, such as the physical, structural, and dynamical properties of proteins, notably expands the computational description of biochemical network-level properties and the possibility of understanding and predicting whole cell phenotypes. In this study, we present a multi-scale modeling framework that describes biological processes which range in scale from atomistic details to an entire metabolic network. Using this approach, we can understand how genetic variation, which impacts the structure and reactivity of a protein, influences both native and drug-induced metabolic states. As a proof-of-concept, we study three enzymes (catechol-O-methyltransferase, glucose-6-phosphate dehydrogenase, and glyceraldehyde-3-phosphate dehydrogenase) and their respective genetic variants which have clinically relevant associations. Using all-atom molecular dynamic simulations enables the sampling of long timescale conformational dynamics of the proteins (and their mutant variants) in complex with their respective native metabolites or drug molecules. We find that changes in a protein's structure due to a mutation influences protein binding affinity to metabolites and/or drug molecules, and inflicts large-scale changes in metabolism.
Moritsugu, Kei; Kidera, Akinori; Smith, Jeremy C
2014-07-24
Protein solvation dynamics has been investigated using atom-dependent Langevin friction coefficients derived directly from molecular dynamics (MD) simulations. To determine the effect of solvation on the atomic friction coefficients, solution and vacuum MD simulations were performed for lysozyme and staphylococcal nuclease and analyzed by Langevin mode analysis. The coefficients thus derived are roughly correlated with the atomic solvent-accessible surface area (ASA), as expected from the fact that friction occurs as the result of collisions with solvent molecules. However, a considerable number of atoms with higher friction coefficients are found inside the core region. Hence, the influence of solvent friction propagates into the protein core. The internal coefficients have large contributions from the low-frequency modes, yielding a simple picture of the surface-to-core long-range damping via solvation governed by collective low-frequency modes. To make use of these findings in implicit-solvent modeling, we compare the all-atom friction results with those obtained using Langevin dynamics (LD) with two empirical representations: the constant-friction and the ASA-dependent (Pastor-Karplus) friction models. The constant-friction model overestimates the core and underestimates the surface damping whereas the ASA-dependent friction model, which damps protein atoms only on the solvent-accessible surface, reproduces well the friction coefficients for both the surface and core regions observed in the explicit-solvent MD simulations. Therefore, in LD simulation, the solvent friction coefficients should be imposed only on the protein surface.
High-fidelity simulation capability for virtual testing of seismic and acoustic sensors
NASA Astrophysics Data System (ADS)
Wilson, D. Keith; Moran, Mark L.; Ketcham, Stephen A.; Lacombe, James; Anderson, Thomas S.; Symons, Neill P.; Aldridge, David F.; Marlin, David H.; Collier, Sandra L.; Ostashev, Vladimir E.
2005-05-01
This paper describes development and application of a high-fidelity, seismic/acoustic simulation capability for battlefield sensors. The purpose is to provide simulated sensor data so realistic that they cannot be distinguished by experts from actual field data. This emerging capability provides rapid, low-cost trade studies of unattended ground sensor network configurations, data processing and fusion strategies, and signatures emitted by prototype vehicles. There are three essential components to the modeling: (1) detailed mechanical signature models for vehicles and walkers, (2) high-resolution characterization of the subsurface and atmospheric environments, and (3) state-of-the-art seismic/acoustic models for propagating moving-vehicle signatures through realistic, complex environments. With regard to the first of these components, dynamic models of wheeled and tracked vehicles have been developed to generate ground force inputs to seismic propagation models. Vehicle models range from simple, 2D representations to highly detailed, 3D representations of entire linked-track suspension systems. Similarly detailed models of acoustic emissions from vehicle engines are under development. The propagation calculations for both the seismics and acoustics are based on finite-difference, time-domain (FDTD) methodologies capable of handling complex environmental features such as heterogeneous geologies, urban structures, surface vegetation, and dynamic atmospheric turbulence. Any number of dynamic sources and virtual sensors may be incorporated into the FDTD model. The computational demands of 3D FDTD simulation over tactical distances require massively parallel computers. Several example calculations of seismic/acoustic wave propagation through complex atmospheric and terrain environments are shown.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moritsugu, Kei; Kidera, Akinori; Smith, Jeremy C.
2014-06-25
Protein solvation dynamics has been investigated using atom-dependent Langevin friction coefficients derived directly from molecular dynamics (MD) simulations. To determine the effect of solvation on the atomic friction coefficients, solution and vacuum MD simulations were performed for lysozyme and staphylococcal nuclease and analyzed by Langevin mode analysis. The coefficients thus derived are roughly correlated with the atomic solvent-accessible surface area (ASA), as expected from the fact that friction occurs as the result of collisions with solvent molecules. However, a considerable number of atoms with higher friction coefficients are found inside the core region. Hence, the influence of solvent friction propagatesmore » into the protein core. The internal coefficients have large contributions from the low-frequency modes, yielding a simple picture of the surface-to-core long-range damping via solvation governed by collective low-frequency modes. To make use of these findings in implicit-solvent modeling, we compare the all-atom friction results with those obtained using Langevin dynamics (LD) with two empirical representations: the constant-friction and the ASA-dependent (Pastor Karplus) friction models. The constant-friction model overestimates the core and underestimates the surface damping whereas the ASA-dependent friction model, which damps protein atoms only on the solvent-accessible surface, reproduces well the friction coefficients for both the surface and core regions observed in the explicit-solvent MD simulations. Furthermore, in LD simulation, the solvent friction coefficients should be imposed only on the protein surface.« less
Denommé, Luke T; Mandalfino, Patricia; Cinelli, Michael E
2014-06-01
Changing direction during walking is a common task humans encounter every day. This destabilizing event requires the central nervous system (CNS) to quickly produce an appropriate response, maintain stability, and propel the body in the intended direction. Previous research has demonstrated that 'individuals with multiple sclerosis' (IwMS) with mild balance impairment display differences in gait characteristics during clinical tests compared with controls. The current study used dynamic stability margin [DSM, difference between COM (i.e. the weighted average of the central point of an individual's total body mass) and lateral BOS (i.e. the most lateral border of the foot that is in contact with the ground)] calculations in addition to gait kinematics to determine whether dynamic stability differences during a steering task were present between IwMS with mild balance impairment and 'healthy age-matched individuals' (HAMI) as well as between IwMS with mild balance impairment and 'community-dwelling older adults' (OA). All IwMS reported mild balance impairment with expanded disability status scale scores ranging between 1.0 and 3.0. The steering task required participants to walk 3 m towards a pressure sensitive trigger mat that would illuminate one of five lights to indicate the future direction of travel (i.e. straight, 45° or 60° to the left or right of the midline). Results revealed that IwMS displayed reduced walking speed and cadence during the approach phase in addition to a smaller DSM range (i.e. COM remained close to lateral BOS) during the entire steering task when compared with HAMI. However, when compared to OAs, IwMS did not display differences in any of the gait kinematics or DSM calculations. Findings suggest that the IwMS displayed a conservative gait strategy in order to maintain stability during the steering task. Lack of dynamic stability differences between IwMS and OAs indicate that both groups use similar strategies to adapt locomotion as a result of impaired somatosensory quality and/or processing.
NASA Astrophysics Data System (ADS)
Brandt, Erik G.; Agosta, Lorenzo; Lyubartsev, Alexander P.
2016-07-01
Small-sized wet TiO2 nanoparticles have been investigated by ab initio molecular dynamics simulations. Chemical and physical adsorption of water on the TiO2-water interface was studied as a function of water content, ranging from dry nanoparticles to wet nanoparticles with monolayer coverage of water. The surface reactivity was shown to be a concave function of water content and driven by surface defects. The local coordination number at the defect was identified as the key factor to decide whether water adsorption proceeds through dissociation or physisorption on the surface. A consistent picture of TiO2 nanoparticle wetting at the microscopic level emerges, which corroborates existing experimental data and gives further insight into the molecular mechanisms behind nanoparticle wetting. These calculations will facilitate the engineering of metal oxide nanoparticles with a controlled catalytic water activity.Small-sized wet TiO2 nanoparticles have been investigated by ab initio molecular dynamics simulations. Chemical and physical adsorption of water on the TiO2-water interface was studied as a function of water content, ranging from dry nanoparticles to wet nanoparticles with monolayer coverage of water. The surface reactivity was shown to be a concave function of water content and driven by surface defects. The local coordination number at the defect was identified as the key factor to decide whether water adsorption proceeds through dissociation or physisorption on the surface. A consistent picture of TiO2 nanoparticle wetting at the microscopic level emerges, which corroborates existing experimental data and gives further insight into the molecular mechanisms behind nanoparticle wetting. These calculations will facilitate the engineering of metal oxide nanoparticles with a controlled catalytic water activity. Electronic supplementary information (ESI) available: Simulation data on equilibration of energies and structures (root-mean-square-deviations and coordination numbers); radial distribution functions for all O-Ti pairs over the entire data domain; comparison of coordination number distributions for dry and wet nanoparticles; dynamics of water reactivity; high-resolution electron density for the rutile NP. A movie of the simulation trajectory for the rutile (TiO2)24.30H2O system. See DOI: 10.1039/C6NR02791A
Dynamic range in small-world networks of Hodgkin-Huxley neurons with chemical synapses
NASA Astrophysics Data System (ADS)
Batista, C. A. S.; Viana, R. L.; Lopes, S. R.; Batista, A. M.
2014-09-01
According to Stevens' law the relationship between stimulus and response is a power-law within an interval called the dynamic range. The dynamic range of sensory organs is found to be larger than that of a single neuron, suggesting that the network structure plays a key role in the behavior of both the scaling exponent and the dynamic range of neuron assemblies. In order to verify computationally the relationships between stimulus and response for spiking neurons, we investigate small-world networks of neurons described by the Hodgkin-Huxley equations connected by chemical synapses. We found that the dynamic range increases with the network size, suggesting that the enhancement of the dynamic range observed in sensory organs, with respect to single neurons, is an emergent property of complex network dynamics.
2011-06-01
1. Shock Compression Experimental Techniques ...............................22 a. Target...3 Figure 2. Composite plate (left) shown by Poh defeating Tantalum projectile while armor grade steel (right) failed...entire target buildup used for a shock compression experiment ..................................................................................23 Figure
Prediction and Prescription in Systems Modeling
1988-06-30
are so fascinated by prediction of the future -- whether achieved through horoscopes or otherwise. The future is our future, or at least the future...entirely true , has enormous import for public policy, and could have been inferred from textbook treatments of linear dynamic systems without any
Armen, Roger S; Chen, Jianhan; Brooks, Charles L
2009-10-13
Incorporating receptor flexibility into molecular docking should improve results for flexible proteins. However, the incorporation of explicit all-atom flexibility with molecular dynamics for the entire protein chain may also introduce significant error and "noise" that could decrease docking accuracy and deteriorate the ability of a scoring function to rank native-like poses. We address this apparent paradox by comparing the success of several flexible receptor models in cross-docking and multiple receptor ensemble docking for p38α mitogen-activated protein (MAP) kinase. Explicit all-atom receptor flexibility has been incorporated into a CHARMM-based molecular docking method (CDOCKER) using both molecular dynamics (MD) and torsion angle molecular dynamics (TAMD) for the refinement of predicted protein-ligand binding geometries. These flexible receptor models have been evaluated, and the accuracy and efficiency of TAMD sampling is directly compared to MD sampling. Several flexible receptor models are compared, encompassing flexible side chains, flexible loops, multiple flexible backbone segments, and treatment of the entire chain as flexible. We find that although including side chain and some backbone flexibility is required for improved docking accuracy as expected, docking accuracy also diminishes as additional and unnecessary receptor flexibility is included into the conformational search space. Ensemble docking results demonstrate that including protein flexibility leads to to improved agreement with binding data for 227 active compounds. This comparison also demonstrates that a flexible receptor model enriches high affinity compound identification without significantly increasing the number of false positives from low affinity compounds.
Armen, Roger S.; Chen, Jianhan; Brooks, Charles L.
2009-01-01
Incorporating receptor flexibility into molecular docking should improve results for flexible proteins. However, the incorporation of explicit all-atom flexibility with molecular dynamics for the entire protein chain may also introduce significant error and “noise” that could decrease docking accuracy and deteriorate the ability of a scoring function to rank native-like poses. We address this apparent paradox by comparing the success of several flexible receptor models in cross-docking and multiple receptor ensemble docking for p38α mitogen-activated protein (MAP) kinase. Explicit all-atom receptor flexibility has been incorporated into a CHARMM-based molecular docking method (CDOCKER) using both molecular dynamics (MD) and torsion angle molecular dynamics (TAMD) for the refinement of predicted protein-ligand binding geometries. These flexible receptor models have been evaluated, and the accuracy and efficiency of TAMD sampling is directly compared to MD sampling. Several flexible receptor models are compared, encompassing flexible side chains, flexible loops, multiple flexible backbone segments, and treatment of the entire chain as flexible. We find that although including side chain and some backbone flexibility is required for improved docking accuracy as expected, docking accuracy also diminishes as additional and unnecessary receptor flexibility is included into the conformational search space. Ensemble docking results demonstrate that including protein flexibility leads to to improved agreement with binding data for 227 active compounds. This comparison also demonstrates that a flexible receptor model enriches high affinity compound identification without significantly increasing the number of false positives from low affinity compounds. PMID:20160879
The spatial scale for cisco recruitment dynamics in Lake Superior during 1978-2007
Rook, Benjamin J.; Hansen, Michael J.; Gorman, Owen T.
2012-01-01
The cisco Coregonus artedi was once the most abundant fish species in the Great Lakes, but currently cisco populations are greatly reduced and management agencies are attempting to restore the species throughout the basin. To increase understanding of the spatial scale at which density‐independent and density‐dependent factors influence cisco recruitment dynamics in the Great Lakes, we used a Ricker stock–recruitment model to identify and quantify the appropriate spatial scale for modeling age‐1 cisco recruitment dynamics in Lake Superior. We found that the recruitment variation of ciscoes in Lake Superior was best described by a five‐parameter regional model with separate stock–recruitment relationships for the western, southern, eastern, and northern regions. The spatial scale for modeling was about 260 km (range = 230–290 km). We also found that the density‐independent recruitment rate and the rate of compensatory density dependence varied among regions at different rates. The density‐independent recruitment rate was constant among regions (3.6 age‐1 recruits/spawner), whereas the rate of compensatory density dependence varied 16‐fold among regions (range = −0.2 to −2.9/spawner). Finally, we found that peak recruitment and the spawning stock size that produced peak recruitment varied among regions. Both peak recruitment (0.5–7.1 age‐1 recruits/ha) and the spawning stock size that produced peak recruitment (0.3–5.3 spawners/ha) varied 16‐fold among regions. Our findings support the hypothesis that the factors driving cisco recruitment operate within four different regions of Lake Superior, suggest that large‐scale abiotic factors are more important than small‐scale biotic factors in influencing cisco recruitment, and suggest that fishery managers throughout Lake Superior and the entire Great Lakes basin should address cisco restoration and management efforts on a regional scale in each lake.
General purpose molecular dynamics simulations fully implemented on graphics processing units
NASA Astrophysics Data System (ADS)
Anderson, Joshua A.; Lorenz, Chris D.; Travesset, A.
2008-05-01
Graphics processing units (GPUs), originally developed for rendering real-time effects in computer games, now provide unprecedented computational power for scientific applications. In this paper, we develop a general purpose molecular dynamics code that runs entirely on a single GPU. It is shown that our GPU implementation provides a performance equivalent to that of fast 30 processor core distributed memory cluster. Our results show that GPUs already provide an inexpensive alternative to such clusters and discuss implications for the future.
Marco Todeschini - Space Dynamics and Psycho-Biophysics
NASA Astrophysics Data System (ADS)
Teodorani, M.
2006-03-01
This book is dedicated to the theoretical and experimental research carried out in the 20-th century, by Italian engineer and technical physicist Marco Todeschini. It describes the subjects of "space dynamics" and "psycho-biophysics" - two related physical sciences - whose foundations lay in the existence of the ether and of the vortexes that all bodies with mass produce in it. An entirely new cosmology is derived in which all the bodies in the universe - elementary particles, astronomical bodies, and the human being - are strictly related together.
NASA Astrophysics Data System (ADS)
Wacyk, Ihor; Prache, Olivier; Ghosh, Amal
2011-06-01
AMOLED microdisplays continue to show improvement in resolution and optical performance, enhancing their appeal for a broad range of near-eye applications such as night vision, simulation and training, situational awareness, augmented reality, medical imaging, and mobile video entertainment and gaming. eMagin's latest development of an HDTV+ resolution technology integrates an OLED pixel of 3.2 × 9.6 microns in size on a 0.18 micron CMOS backplane to deliver significant new functionality as well as the capability to implement a 1920×1200 microdisplay in a 0.86" diagonal area. In addition to the conventional matrix addressing circuitry, the HDTV+ display includes a very lowpower, low-voltage-differential-signaling (LVDS) serialized interface to minimize cable and connector size as well as electromagnetic emissions (EMI), an on-chip set of look-up-tables for digital gamma correction, and a novel pulsewidth- modulation (PWM) scheme that together with the standard analog control provides a total dimming range of 0.05cd/m2 to 2000cd/m2 in the monochrome version. The PWM function also enables an impulse drive mode of operation that significantly reduces motion artifacts in high speed scene changes. An internal 10-bit DAC ensures that a full 256 gamma-corrected gray levels are available across the entire dimming range, resulting in a measured dynamic range exceeding 20-bits. This device has been successfully tested for operation at frame rates ranging from 30Hz up to 85Hz. This paper describes the operational features and detailed optical and electrical test results for the new AMOLED WUXGA resolution microdisplay.
Dynamic Breaking Tests of Airplane Parts
NASA Technical Reports Server (NTRS)
Hertel, Heinrich
1933-01-01
The static stresses of airplane parts, the magnitude of which can be determined with the aid of static load assumptions, are mostly superposed by dynamic stresses, the magnitude of which has been but little explored. The object of the present investigation is to show how the strength of airplane parts can best be tested with respect to dynamic stresses with and without superposed static loading, and to what extent the dynamic strength of the parts depends on their structural design. Experimental apparatus and evaluation methods were developed and tried for the execution of vibration-strength tests with entire structural parts both with and without superposed static loading. Altogether ten metal spars and spar pieces and two wooden spars were subjected to vibration breaking tests.
Automatic selection of dynamic data partitioning schemes for distributed memory multicomputers
NASA Technical Reports Server (NTRS)
Palermo, Daniel J.; Banerjee, Prithviraj
1995-01-01
For distributed memory multicomputers such as the Intel Paragon, the IBM SP-2, the NCUBE/2, and the Thinking Machines CM-5, the quality of the data partitioning for a given application is crucial to obtaining high performance. This task has traditionally been the user's responsibility, but in recent years much effort has been directed to automating the selection of data partitioning schemes. Several researchers have proposed systems that are able to produce data distributions that remain in effect for the entire execution of an application. For complex programs, however, such static data distributions may be insufficient to obtain acceptable performance. The selection of distributions that dynamically change over the course of a program's execution adds another dimension to the data partitioning problem. In this paper, we present a technique that can be used to automatically determine which partitionings are most beneficial over specific sections of a program while taking into account the added overhead of performing redistribution. This system is being built as part of the PARADIGM (PARAllelizing compiler for DIstributed memory General-purpose Multicomputers) project at the University of Illinois. The complete system will provide a fully automated means to parallelize programs written in a serial programming model obtaining high performance on a wide range of distributed-memory multicomputers.
Xu, Wenwu; Zhang, Peiyu
2013-02-21
A time-dependent quantum wave packet method is used to investigate the dynamics of the He + HeH(+)(X(1)Σ(+)) reaction based on a new potential energy surface [Liang et al., J. Chem. Phys.2012, 136, 094307]. The coupled channel (CC) and centrifugal-sudden (CS) reaction probabilities as well as the total integral cross sections are calculated. A comparison of the results with and without Coriolis coupling revealed that the number of K states N(K) (K is the projection of the total angular momentum J on the body-fixed z axis) significantly influences the reaction threshold. The effective potential energy profiles of each N(K) for the He + HeH(+) reaction in a collinear geometry indicate that the barrier height gradually decreased with increased N(K). The calculated time evolution of CC and CS probability density distribution over the collision energy of 0.27-0.36 eV at total angular momentum J = 50 clearly suggests a lower reaction threshold of CC probabilities. The CC cross sections are larger than the CS results within the entire energy range, demonstrating that the Coriolis coupling effect can effectively promote the He + HeH(+) reaction.
Optical and Nonlinear Optical Response of Light Sensor Thin Films
Liu, Huimin; Rua, Armando; Vasquez, Omar; Vikhnin, Valentin S.; Fernandez, Felix E.; Fonseca, Luis F.; Resto, Oscar; Weisz, Svi Z.
2005-01-01
For potential ultrafast optical sensor application, both VO2 thin films and nanocomposite crystal-Si enriched SiO2 thin films grown on fused quartz substrates were successfully prepared using pulsed laser deposition (PLD) and RF co-sputtering techniques. In photoluminescence (PL) measurement c-Si/SiO2 film contains nanoparticles of crystal Si exhibits strong red emission with the band maximum ranging from 580 to 750 nm. With ultrashort pulsed laser excitation all films show extremely intense and ultrafast nonlinear optical (NLO) response. The recorded holography from all these thin films in a degenerate-four-wave-mixing configuration shows extremely large third-order response. For VO2 thin films, an optically induced semiconductor-to-metal phase transition (PT) immediately occurred upon laser excitation. it accompanied. It turns out that the fast excited state dynamics was responsible to the induced PT. For c-Si/SiO2 film, its NLO response comes from the contribution of charge carriers created by laser excitation in conduction band of the c-Si nanoparticles. It was verified by introducing Eu3+ which is often used as a probe sensing the environment variations. It turns out that the entire excited state dynamical process associated with the creation, movement and trapping of the charge carriers has a characteristic 500 ps duration.
Dynamic Shade and Irradiance Simulation of Aquatic ...
Penumbra is a landscape shade and irradiance simulation model that simulates how solar energy spatially and temporally interacts within dynamic ecosystems such as riparian zones, forests, and other terrain that cast topological shadows. Direct and indirect solar energy accumulates across landscapes and is the main energy driver for increasing aquatic and landscape temperatures at both local and holistic scales. Landscape disturbances such as landuse change, clear cutting, and fire can cause significant variations in the resulting irradiance reaching particular locations. Penumbra can simulate solar angles and irradiance at definable temporal grains as low as one minute while simulating landscape shadowing up to an entire year. Landscapes can be represented at sub-meter resolutions with appropriate spatial data inputs, such as field data or elevation and surface object heights derived from light detection and ranging (LiDAR) data. This work describes Penumbra’s framework and methodology, external model integration capability, and appropriate model application for a variety of watershed restoration project types. First, an overview of Penumbra’s framework reveals what this model adds to the existing ecological modeling domain. Second, Penumbra’s stand-alone and integration modes are explained and demonstrated. Stand-alone modeling results are showcased within the 3-D visualization tool VISTAS (VISualizing Terrestrial-Aquatic Systems), which fluently summariz
Observing (non)linear lattice dynamics in graphite by ultrafast Kikuchi diffraction
Liang, Wenxi; Vanacore, Giovanni M.; Zewail, Ahmed H.
2014-01-01
In materials, the nature of the strain–stress relationship, which is fundamental to their properties, is determined by both the linear and nonlinear elastic responses. Whereas the linear response can be measured by various techniques, the nonlinear behavior is nontrivial to probe and to reveal its nature. Here, we report the methodology of time-resolved Kikuchi diffraction for mapping the (non)linear elastic response of nanoscale graphite following an ultrafast, impulsive strain excitation. It is found that the longitudinal wave propagating along the c-axis exhibits echoes with a frequency of 9.1 GHz, which indicates the reflections of strain between the two surfaces of the material with a speed of ∼4 km/s. Because Kikuchi diffraction enables the probing of strain in the transverse direction, we also observed a higher-frequency mode at 75.5 GHz, which has a relatively long lifetime, on the order of milliseconds. The fluence dependence and the polarization properties of this nonlinear mode are entirely different from those of the linear, longitudinal mode, and here we suggest a localized breather motion in the a-b plane as the origin of the nonlinear shear dynamics. The approach presented in this contribution has the potential for a wide range of applications because most crystalline materials exhibit Kikuchi diffraction. PMID:24706785
Gheribi, Aïmen E; Chartrand, Patrice
2016-02-28
A theoretical model for the description of thermal conductivity of molten salt mixtures as a function of composition and temperature is presented. The model is derived by considering the classical kinetic theory and requires, for its parametrization, only information on thermal conductivity of pure compounds. In this sense, the model is predictive. For most molten salt mixtures, no experimental data on thermal conductivity are available in the literature. This is a hindrance for many industrial applications (in particular for thermal energy storage technologies) as well as an obvious barrier for the validation of the theoretical model. To alleviate this lack of data, a series of equilibrium molecular dynamics (EMD) simulations has been performed on several molten chloride systems in order to determine their thermal conductivity in the entire range of composition at two different temperatures: 1200 K and 1300 K. The EMD simulations are first principles type, as the potentials used to describe the interactions have been parametrized on the basis of first principle electronic structure calculations. In addition to the molten chlorides system, the model predictions are also compared to a recent similar EMD study on molten fluorides and with the few reliable experimental data available in the literature. The accuracy of the proposed model is within the reported numerical and/or experimental errors.
Long-term dynamics of freshwater red tide in shallow lake in central Japan.
Hirabayashi, Kimio; Yoshizawa, Kazuya; Yoshida, Norihiko; Ariizumi, Kazunori; Kazama, Futaba
2007-01-01
The aim of this study is to clarify the long-term dynamics of the red tide occurring in Lake Kawaguchi. The measurement of environmental factors and water sampling were carried out monthly at a fixed station in Lake Kawaguchi's center basin from April 1993 to March 2004. On June 26, 1995, the horizontal distribution ofPeridinium bipes was investigated using a plastic pipe, obtaining 0∼1-m layers of water column samples at 68 locations across the entire lake. P. bipes showed an explosive growth and formed a freshwater red tide in the early summer of 1995, when the nutrient level was higher than those in the other years, particularly the phosphate concentration in the surface layer. The dissolved total phosphorus (DTP) concentration was sufficient forP. bipes growth in that year. In the study of its horizontal distribution,P. bipes was found at all the locations. The numbers of cells per milliliter ranged from 67 to 5360, averaging 1094±987 cells/ml, with particularly high densities along the northern shore. Since then,P. bipes has annually averaged about 25 cells/ml in Lake Kawaguchi. We observed that the red tide caused byP. bipes correlates with a high DTP concentration in Lake Kawaguchi.
NASA Astrophysics Data System (ADS)
Ramotar, Lokendra; Rohrauer, Greg L.; Filion, Ryan; MacDonald, Kathryn
2017-03-01
The development of a dynamic thermal battery model for hybrid and electric vehicles is realized. A thermal equivalent circuit model is created which aims to capture and understand the heat propagation from the cells through the entire pack and to the environment using a production vehicle battery pack for model validation. The inclusion of production hardware and the liquid battery thermal management system components into the model considers physical and geometric properties to calculate thermal resistances of components (conduction, convection and radiation) along with their associated heat capacity. Various heat sources/sinks comprise the remaining model elements. Analog equivalent circuit simulations using PSpice are compared to experimental results to validate internal temperature nodes and heat rates measured through various elements, which are then employed to refine the model further. Agreement with experimental results indicates the proposed method allows for a comprehensive real-time battery pack analysis at little computational expense when compared to other types of computer based simulations. Elevated road and ambient conditions in Mesa, Arizona are simulated on a parked vehicle with varying quiescent cooling rates to examine the effect on the diurnal battery temperature for longer term static exposure. A typical daily driving schedule is also simulated and examined.
Examining the effect of task on viewing behavior in videos using saliency maps
NASA Astrophysics Data System (ADS)
Alers, Hani; Redi, Judith A.; Heynderickx, Ingrid
2012-03-01
Research has shown that when viewing still images, people will look at these images in a different manner if instructed to evaluate their quality. They will tend to focus less on the main features of the image and, instead, scan the entire image area looking for clues for its level of quality. It is questionable, however, whether this finding can be extended to videos considering their dynamic nature. One can argue that when watching a video the viewer will always focus on the dynamically changing features of the video regardless of the given task. To test whether this is true, an experiment was conducted where half of the participants viewed videos with the task of quality evaluation while the other half were simply told to watch the videos as if they were watching a movie on TV or a video downloaded from the internet. The videos contained content which was degraded with compression artifacts over a wide range of quality. An eye tracking device was used to record the viewing behavior in both conditions. By comparing the behavior during each task, it was possible to observe a systematic difference in the viewing behavior which seemed to correlate to the quality of the videos.
A normal tissue dose response model of dynamic repair processes.
Alber, Markus; Belka, Claus
2006-01-07
A model is presented for serial, critical element complication mechanisms for irradiated volumes from length scales of a few millimetres up to the entire organ. The central element of the model is the description of radiation complication as the failure of a dynamic repair process. The nature of the repair process is seen as reestablishing the structural organization of the tissue, rather than mere replenishment of lost cells. The interactions between the cells, such as migration, involved in the repair process are assumed to have finite ranges, which limits the repair capacity and is the defining property of a finite-sized reconstruction unit. Since the details of the repair processes are largely unknown, the development aims to make the most general assumptions about them. The model employs analogies and methods from thermodynamics and statistical physics. An explicit analytical form of the dose response of the reconstruction unit for total, partial and inhomogeneous irradiation is derived. The use of the model is demonstrated with data from animal spinal cord experiments and clinical data about heart, lung and rectum. The three-parameter model lends a new perspective to the equivalent uniform dose formalism and the established serial and parallel complication models. Its implications for dose optimization are discussed.
Modeling cavitation in a rapidly changing pressure field - application to a small ultrasonic horn.
Žnidarčič, Anton; Mettin, Robert; Dular, Matevž
2015-01-01
Ultrasonic horn transducers are frequently used in applications of acoustic cavitation in liquids. It has been observed that if the horn tip is sufficiently small and driven at high amplitude, cavitation is very strong, and the tip can be covered entirely by the gas/vapor phase for longer time intervals. A peculiar dynamics of the attached cavity can emerge with expansion and collapse at a self-generated frequency in the subharmonic range, i.e. below the acoustic driving frequency. The term "acoustic supercavitation" was proposed for this type of cavitation Žnidarčič et al. (2014) [1]. We tested several established hydrodynamic cavitation models on this problem, but none of them was able to correctly predict the flow features. As a specific characteristic of such acoustic cavitation problems lies in the rapidly changing driving pressures, we present an improved approach to cavitation modeling, which does not neglect the second derivatives in the Rayleigh-Plesset equation. Comparison with measurements of acoustic supercavitation at an ultrasonic horn of 20kHz frequency revealed a good agreement in terms of cavity dynamics, cavity volume and emitted pressure pulsations. The newly developed cavitation model is particularly suited for simulation of cavitating flow in highly fluctuating driving pressure fields. Copyright © 2014 Elsevier B.V. All rights reserved.
Chemical Memory Reactions Induced Bursting Dynamics in Gene Expression
Tian, Tianhai
2013-01-01
Memory is a ubiquitous phenomenon in biological systems in which the present system state is not entirely determined by the current conditions but also depends on the time evolutionary path of the system. Specifically, many memorial phenomena are characterized by chemical memory reactions that may fire under particular system conditions. These conditional chemical reactions contradict to the extant stochastic approaches for modeling chemical kinetics and have increasingly posed significant challenges to mathematical modeling and computer simulation. To tackle the challenge, I proposed a novel theory consisting of the memory chemical master equations and memory stochastic simulation algorithm. A stochastic model for single-gene expression was proposed to illustrate the key function of memory reactions in inducing bursting dynamics of gene expression that has been observed in experiments recently. The importance of memory reactions has been further validated by the stochastic model of the p53-MDM2 core module. Simulations showed that memory reactions is a major mechanism for realizing both sustained oscillations of p53 protein numbers in single cells and damped oscillations over a population of cells. These successful applications of the memory modeling framework suggested that this innovative theory is an effective and powerful tool to study memory process and conditional chemical reactions in a wide range of complex biological systems. PMID:23349679
Chemical memory reactions induced bursting dynamics in gene expression.
Tian, Tianhai
2013-01-01
Memory is a ubiquitous phenomenon in biological systems in which the present system state is not entirely determined by the current conditions but also depends on the time evolutionary path of the system. Specifically, many memorial phenomena are characterized by chemical memory reactions that may fire under particular system conditions. These conditional chemical reactions contradict to the extant stochastic approaches for modeling chemical kinetics and have increasingly posed significant challenges to mathematical modeling and computer simulation. To tackle the challenge, I proposed a novel theory consisting of the memory chemical master equations and memory stochastic simulation algorithm. A stochastic model for single-gene expression was proposed to illustrate the key function of memory reactions in inducing bursting dynamics of gene expression that has been observed in experiments recently. The importance of memory reactions has been further validated by the stochastic model of the p53-MDM2 core module. Simulations showed that memory reactions is a major mechanism for realizing both sustained oscillations of p53 protein numbers in single cells and damped oscillations over a population of cells. These successful applications of the memory modeling framework suggested that this innovative theory is an effective and powerful tool to study memory process and conditional chemical reactions in a wide range of complex biological systems.
NASA Astrophysics Data System (ADS)
Addy, A. L.; Chow, W. L.; Korst, H. H.; White, R. A.
1983-05-01
Significant data and detailed results of a joint research effort investigating the fluid dynamic mechanisms and interactions within separated flows are presented. The results were obtained through analytical, experimental, and computational investigations of base flow related configurations. The research objectives focus on understanding the component mechanisms and interactions which establish and maintain separated flow regions. Flow models and theoretical analyses were developed to describe the base flowfield. The research approach has been to conduct extensive small-scale experiments on base flow configurations and to analyze these flows by component models and finite-difference techniques. The modeling of base flows of missiles (both powered and unpowered) for transonic and supersonic freestreams has been successful by component models. Research on plume effects and plume modeling indicated the need to match initial plume slope and plume surface curvature for valid wind tunnel simulation of an actual rocket plume. The assembly and development of a state-of-the-art laser Doppler velocimeter (LDV) system for experiments with two-dimensional small-scale models has been completed and detailed velocity and turbulence measurements are underway. The LDV experiments include the entire range of base flowfield mechanisms - shear layer development, recompression/reattachment, shock-induced separation, and plume-induced separation.
Cellular and Network Mechanisms Underlying Information Processing in a Simple Sensory System
NASA Technical Reports Server (NTRS)
Jacobs, Gwen; Henze, Chris; Biegel, Bryan (Technical Monitor)
2002-01-01
Realistic, biophysically-based compartmental models were constructed of several primary sensory interneurons in the cricket cercal sensory system. A dynamic atlas of the afferent input to these cells was used to set spatio-temporal parameters for the simulated stimulus-dependent synaptic inputs. We examined the roles of dendritic morphology, passive membrane properties, and active conductances on the frequency tuning of the neurons. The sensitivity of narrow-band low pass interneurons could be explained entirely by the electronic structure of the dendritic arbors and the dynamic sensitivity of the SIZ. The dynamic characteristics of interneurons with higher frequency sensitivity required models with voltage-dependent dendritic conductances.
Study of journal bearing dynamics using 3-dimensional motion picture graphics
NASA Technical Reports Server (NTRS)
Brewe, D. E.; Sosoka, D. J.
1985-01-01
Computer generated motion pictures of three dimensional graphics are being used to analyze journal bearings under dynamically loaded conditions. The motion pictures simultaneously present the motion of the journal and the pressures predicted within the fluid film of the bearing as they evolve in time. The correct prediction of these fluid film pressures can be complicated by the development of cavitation within the fluid. The numerical model that is used predicts the formation of the cavitation bubble and its growth, downstream movement, and subsequent collapse. A complete physical picture is created in the motion picture as the journal traverses through the entire dynamic cycle.
Parameter estimating state reconstruction
NASA Technical Reports Server (NTRS)
George, E. B.
1976-01-01
Parameter estimation is considered for systems whose entire state cannot be measured. Linear observers are designed to recover the unmeasured states to a sufficient accuracy to permit the estimation process. There are three distinct dynamics that must be accommodated in the system design: the dynamics of the plant, the dynamics of the observer, and the system updating of the parameter estimation. The latter two are designed to minimize interaction of the involved systems. These techniques are extended to weakly nonlinear systems. The application to a simulation of a space shuttle POGO system test is of particular interest. A nonlinear simulation of the system is developed, observers designed, and the parameters estimated.
NASA Astrophysics Data System (ADS)
Kim, S.; Russell, M.; Henry, M.; Kim, S. S.; Naik, R. R.; Voevodin, A. A.; Jang, S. S.; Tsukruk, V. V.; Fedorov, A. G.
2015-09-01
We report on the first demonstration of controllable carbon doping of graphene to engineer local electronic properties of a graphene conduction channel using focused electron beam induced deposition (FEBID). Electrical measurements indicate that an ``n-p-n'' junction on graphene conduction channel is formed by partial carbon deposition near the source and drain metal contacts by low energy (<50 eV) secondary electrons due to inelastic collisions of long range backscattered primary electrons generated from a low dose of high energy (25 keV) electron beam (1 × 1018 e- per cm2). Detailed AFM imaging provides direct evidence of the new mechanism responsible for dynamic evolution of the locally varying graphene doping. The FEBID carbon atoms, which are physisorbed and weakly bound to graphene, diffuse towards the middle of graphene conduction channel due to their surface chemical potential gradient, resulting in negative shift of Dirac voltage. Increasing a primary electron dose to 1 × 1019 e- per cm2 results in a significant increase of carbon deposition, such that it covers the entire graphene conduction channel at high surface density, leading to n-doping of graphene channel. Collectively, these findings establish a unique capability of FEBID technique to dynamically modulate the doping state of graphene, thus enabling a new route to resist-free, ``direct-write'' functional patterning of graphene-based electronic devices with potential for on-demand re-configurability.We report on the first demonstration of controllable carbon doping of graphene to engineer local electronic properties of a graphene conduction channel using focused electron beam induced deposition (FEBID). Electrical measurements indicate that an ``n-p-n'' junction on graphene conduction channel is formed by partial carbon deposition near the source and drain metal contacts by low energy (<50 eV) secondary electrons due to inelastic collisions of long range backscattered primary electrons generated from a low dose of high energy (25 keV) electron beam (1 × 1018 e- per cm2). Detailed AFM imaging provides direct evidence of the new mechanism responsible for dynamic evolution of the locally varying graphene doping. The FEBID carbon atoms, which are physisorbed and weakly bound to graphene, diffuse towards the middle of graphene conduction channel due to their surface chemical potential gradient, resulting in negative shift of Dirac voltage. Increasing a primary electron dose to 1 × 1019 e- per cm2 results in a significant increase of carbon deposition, such that it covers the entire graphene conduction channel at high surface density, leading to n-doping of graphene channel. Collectively, these findings establish a unique capability of FEBID technique to dynamically modulate the doping state of graphene, thus enabling a new route to resist-free, ``direct-write'' functional patterning of graphene-based electronic devices with potential for on-demand re-configurability. Electronic supplementary information (ESI) available: Optimization of a PMMA-mediated wet transfer method of graphene, transfer characteristics of all the channels, raw data of drain-source current measured by sweeping a backgate voltage and an AFM topography image and cross-sectional profiles of Fig. 4 and the corresponding electrical measurement along with an estimation of carbon diffusion coefficient. See DOI: 10.1039/c5nr04063a
The Role of Clonal Interference in the Evolutionary Dynamics of Plasmid-Host Adaptation
Hughes, Julie M.; Lohman, Brian K.; Deckert, Gail E.; Nichols, Eric P.; Settles, Matt; Abdo, Zaid; Top, Eva M.
2012-01-01
ABSTRACT Promiscuous plasmids replicate in a wide range of bacteria and therefore play a key role in the dissemination of various host-beneficial traits, including antibiotic resistance. Despite the medical relevance, little is known about the evolutionary dynamics through which drug resistance plasmids adapt to new hosts and thereby persist in the absence of antibiotics. We previously showed that the incompatibility group P-1 (IncP-1) minireplicon pMS0506 drastically improved its stability in novel host Shewanella oneidensis MR-1 after 1,000 generations under antibiotic selection for the plasmid. The only mutations found were those affecting the N terminus of the plasmid replication initiation protein TrfA1. Our aim in this study was to gain insight into the dynamics of plasmid evolution. Changes in stability and genotype frequencies of pMS0506 were monitored in evolving populations of MR-1 (pMS0506). Genotypes were determined by sequencing trfA1 amplicons from individual clones and by 454 pyrosequencing of whole plasmids from entire populations. Stability of pMS0506 drastically improved by generation 200. Many evolved plasmid genotypes with point mutations as well as in-frame and frameshift deletions and duplications in trfA1 were observed in all lineages with both sequencing methods. Strikingly, multiple genotypes were simultaneously present at high frequencies (>10%) in each population. Their relative abundances changed over time, but after 1,000 generations only one or two genotypes dominated the populations. This suggests that hosts with different plasmid genotypes were competing with each other, thus affecting the evolutionary trajectory. Plasmids can thus rapidly improve their stability, and clonal interference plays a significant role in plasmid-host adaptation dynamics. PMID:22761390
40 Years of Glacier Change across the Himalayas
NASA Astrophysics Data System (ADS)
Maurer, J. M.; Schaefer, J. M.; Rupper, S.
2017-12-01
Himalayan glaciers are central to societies, ecologies, and landscapes in South Asia. Retreating glaciers have been observed in the Himalayas from in-situ and satellite remote sensing measurements, yet different approaches provide a wide range of mass budget estimates. As glaciers respond dynamically to climate over decades and centuries, more observations of past glacier states are needed to gain perspective on existing shorter-timespan ice loss estimates, minimize effects of interannual variability, and to robustly evaluate glacier dynamics. Here we use a new suite of DEMs (digital elevation models) to estimate geodetic mass balance for over 1000 Himalayan glaciers spanning a 2000 km transect, during the years 1975-2000 and 2001-2016. Recent advances in DEM extraction from declassified Hexagon filmstrips, along with new public access to the global ASTER database have allowed for this large-scale analysis of regional ice loss. An average trendline (using a 30-glacier moving-window) reveals a spatially coherent ice loss signal across the entire transect during both periods, consistent with atmospheric warming as the primary Himalaya-wide driver of change. Our estimate of mean annual ice losses during the more recent period is approximately twice as negative (-0.39 ± 0.1 m.w.e. a-1) compared to the 1975-2000 baseline (-0.18 ± 0.1 m.w.e. a-1). This two-fold acceleration of ice loss during the 21st century agrees with the global average, parallel with recent observations of increasing rates of sea level rise. These surface-integrated geodetic mass balances are negligibly influenced by ice flow dynamics, thus are indicative of climate-driven glacier responses. Further analyses utilizing satellite-derived ice surface velocities will afford deconvolution of the surface mass balance and ice fluxes, providing additional insights into the dynamic responses of the glaciers.
Gas Flow in the Capillary of the Atmosphere-to-Vacuum Interface of Mass Spectrometers
NASA Astrophysics Data System (ADS)
Skoblin, Michael; Chudinov, Alexey; Soulimenkov, Ilia; Brusov, Vladimir; Kozlovskiy, Viacheslav
2017-10-01
Numerical simulations of a gas flow through a capillary being a part of mass spectrometer atmospheric interface were performed using a detailed laminar flow model. The simulated interface consisted of atmospheric and forevacuum volumes connected via a thin capillary. The pressure in the forevacuum volume where the gas was expanding after passing through the capillary was varied in the wide range from 10 to 900 mbar in order to study the volume flow rate as well as the other flow parameters as functions of the pressure drop between the atmospheric and forevacuum volumes. The capillary wall temperature was varied in the range from 24 to 150 °C. Numerical integration of the complete system of Navier-Stokes equations for a viscous compressible gas taking into account the heat transfer was performed using the standard gas dynamic simulation software package ANSYS CFX. The simulation results were compared with experimental measurements of gas flow parameters both performed using our experimental setup and taken from the literature. The simulated volume flow rates through the capillary differed no more than by 10% from the measured ones over the entire pressure and temperatures ranges. A conclusion was drawn that the detailed digital laminar model is able to quantitatively describe the measured gas flow rates through the capillaries under conditions considered. [Figure not available: see fulltext.
Gas Flow in the Capillary of the Atmosphere-to-Vacuum Interface of Mass Spectrometers.
Skoblin, Michael; Chudinov, Alexey; Soulimenkov, Ilia; Brusov, Vladimir; Kozlovskiy, Viacheslav
2017-10-01
Numerical simulations of a gas flow through a capillary being a part of mass spectrometer atmospheric interface were performed using a detailed laminar flow model. The simulated interface consisted of atmospheric and forevacuum volumes connected via a thin capillary. The pressure in the forevacuum volume where the gas was expanding after passing through the capillary was varied in the wide range from 10 to 900 mbar in order to study the volume flow rate as well as the other flow parameters as functions of the pressure drop between the atmospheric and forevacuum volumes. The capillary wall temperature was varied in the range from 24 to 150 °C. Numerical integration of the complete system of Navier-Stokes equations for a viscous compressible gas taking into account the heat transfer was performed using the standard gas dynamic simulation software package ANSYS CFX. The simulation results were compared with experimental measurements of gas flow parameters both performed using our experimental setup and taken from the literature. The simulated volume flow rates through the capillary differed no more than by 10% from the measured ones over the entire pressure and temperatures ranges. A conclusion was drawn that the detailed digital laminar model is able to quantitatively describe the measured gas flow rates through the capillaries under conditions considered. Graphical Abstract ᅟ.
Rapid, Time-Division Multiplexed, Direct Absorption- and Wavelength Modulation-Spectroscopy
Klein, Alexander; Witzel, Oliver; Ebert, Volker
2014-01-01
We present a tunable diode laser spectrometer with a novel, rapid time multiplexed direct absorption- and wavelength modulation-spectroscopy operation mode. The new technique allows enhancing the precision and dynamic range of a tunable diode laser absorption spectrometer without sacrificing accuracy. The spectroscopic technique combines the benefits of absolute concentration measurements using calibration-free direct tunable diode laser absorption spectroscopy (dTDLAS) with the enhanced noise rejection of wavelength modulation spectroscopy (WMS). In this work we demonstrate for the first time a 125 Hz time division multiplexed (TDM-dTDLAS-WMS) spectroscopic scheme by alternating the modulation of a DFB-laser between a triangle-ramp (dTDLAS) and an additional 20 kHz sinusoidal modulation (WMS). The absolute concentration measurement via the dTDLAS-technique allows one to simultaneously calibrate the normalized 2f/1f-signal of the WMS-technique. A dTDLAS/WMS-spectrometer at 1.37 μm for H2O detection was built for experimental validation of the multiplexing scheme over a concentration range from 50 to 3000 ppmV (0.1 MPa, 293 K). A precision of 190 ppbV was achieved with an absorption length of 12.7 cm and an averaging time of two seconds. Our results show a five-fold improvement in precision over the entire concentration range and a significantly decreased averaging time of the spectrometer. PMID:25405508
NASA Astrophysics Data System (ADS)
Fedchak, J. A.; Bock, Th; Jousten, K.
2014-01-01
This report describes the bilateral key comparison CCM.P-K3.1 between the National Institute of Standards and Technology (NIST) and Physikalisch-Technische Bundesanstalt (PTB) for absolute pressure in the range from 3 × 10-6 Pa to 9 × 10-4 Pa. This comparison was a follow-up to the comparison CCM.P-K3. Two ionization gauges and two spinning rotor gauges (SRGs) were used as the transfer standards for the comparison. The SRGs were used to compare the standards at a pressure of 9 × 10-4 Pa and to normalize the ionization gauge readings. The two ionization gauges were used to compare the standards in the pressure range of from 3 × 10-6 Pa to 3 × 10-4 Pa. Both laboratories used dynamic expansion chambers as standards in the comparison. The two labs showed excellent agreement with each other and with the CCM.P-K3 key comparison reference value (KCRV) over the entire range. Main text. To reach the main text of this paper, click on Final Report. Note that this text is that which appears in Appendix B of the BIPM key comparison database kcdb.bipm.org/. The final report has been peer-reviewed and approved for publication by the CCM, according to the provisions of the CIPM Mutual Recognition Arrangement (CIPM MRA).
NASA Technical Reports Server (NTRS)
Lovell, Powell M., Jr.; Kibry, Robert H.; Smith, Charles C., Jr.
1953-01-01
An investigation is being conducted to determine the dynamic stability and control characteristics of a 0.13-scale flying model of the Convair XFY-1 vertically rising airplane. This paper presents the results of flight tests to determine the stability and control characteristics of the model during constant-altitude slow transitions from hovering to normal unstalled forward flight. The tests indicated that the airplane can be flown through the transition range fairly easily although some difficulty will probably encountered in controlling the yawing motions at angles of attack between about 60 and 40. An increase in the size of the vertical tail will not materially improve the controllability of the yawing motions in this range of angle of attack but the use of a yaw damper will make the yawing motions easy to control throughout the entire transitional flight range. The tests also indicated that the airplane can probably be flown sideways satisfactorily at speeds up to approximately 33 knots (full scale) with the normal control system and up to approximately 37 knots (full scale) with both elevons and rudders rigged to move differentially for roll control. At sideways speeds above these values, the airplane will have a strong tendency to diverge uncontrollably in roll.
Factors Impacting School Closure and Configuration
ERIC Educational Resources Information Center
Corrales, Antonio
2017-01-01
Newly implemented state policy dealing with school finance created several consequences in a school district to include school configuration and restructuring of educational programs. This case describes how a new school finance law changes the entire dynamic of a school district and its newly appointed superintendent. The superintendent…
William J. Zielinski; Fredrick V. Schlexer; Sean A. Parks; Kristine L. Pilgrim; Michael K. Schwartz
2012-01-01
The landscape genetics framework is typically applied to broad regions that occupy only small portions of a species' range. Rarely is the entire range of a taxon the subject of study. We examined the landscape genetic structure of the endangered Point Arena mountain beaver (Aplodontia rufa nigra), whose isolated geographic range is found in a...
Namkoong, Wan; Park, Joon-Seok; VanderGheynst, Jean S
2004-11-01
This study was conducted to evaluate the effects of gas inlet concentration and velocity on the biofiltration of gasoline vapor. Gasoline vapor was treated using a compost biofilter operated in an upflow mode for about 3 months. The inlet concentration of gasoline total petroleum hydrocarbon (TPH) ranged from about 300 to 7000 mgm(-3) and gas was injected at velocities of 6 and 15 mh(-1) (empty bed residence time (EBRT)=10 and 4 min, respectively). The maximum elimination capacities of TPH at 6 and 15 mh(-1) found in this research were over 24 and 19 gm(-3) of filling material h(-1), respectively. TPH removal data was fit using a first-order kinetic relationship. In the low concentration range of 300-3000 mg m(-3), the first-order kinetic constants varied between about 0.10 and 0.29 min(-1) regardless of gas velocities. At TPH concentrations greater than 3000 mgm(-3), the first-order kinetic constants were about 0.09 and 0.07 min(-1) at gas velocities of 6 mh(-1) and 15 mh(-1), respectively. To evaluate microbial dynamics, dehydrogenase activity, CO2 generation and microbial species diversity were analyzed. Dehydrogenase activity could be used as an indicator of microbial activity. TPH removal corresponded well with CO2 evolution. The average CO2 recovery efficiency for the entire biofilter ranged between 60% and 70%. When the gas velocity was 6 mh(-1), most of the microbial activity and TPH removal occurred in the first quarter of the biofilter. However, when the gas velocity was 15 mh(-1), the entire column contributed to removal. Spatial and temporal variations in the biofilter microbial population were also observed. Nearly 60% of the colonies isolated from the compost media prior to biofiltration were Bacillus. After 90 days of biofiltration, the predominant species in the lower portion (0-50 cm) of the filter were Rhodococcus, while Pseudomonas and Acinetobacter dominated the upper portion (75-100 cm). copyright 2004 Elsevier Ltd.
High resolution optical surface metrology with the slope measuring portable optical test system
NASA Astrophysics Data System (ADS)
Maldonado, Alejandro V.
New optical designs strive to achieve extreme performance, and continually increase the complexity of prescribed optical shapes, which often require wide dynamic range and high resolution. SCOTS, or the Software Configurable Optical Test System, can measure a wide range of optical surfaces with high sensitivity using surface slope. This dissertation introduces a high resolution version of SCOTS called SPOTS, or the Slope measuring Portable Optical Test System. SPOTS improves the metrology of surface features on the order of sub-millimeter to decimeter spatial scales and nanometer to micrometer level height scales. Currently there is no optical surface metrology instrument with the same utility. SCOTS uses a computer controlled display (such as an LCD monitor) and camera to measure surface slopes over the entire surface of a mirror. SPOTS differs in that an additional lens is placed near the surface under test. A small prototype system is discussed in general, providing the support for the design of future SPOTS devices. Then the SCOTS instrument transfer function is addressed, which defines the way the system filters surface heights. Lastly, the calibration and performance of larger SPOTS device is analyzed with example measurements of the 8.4-m diameter aspheric Large Synoptic Survey Telescope's (LSST) primary mirror. In general optical systems have a transfer function, which filters data. In the case of optical imaging systems the instrument transfer function (ITF) follows the modulation transfer function (MTF), which causes a reduction of contrast as a function of increasing spatial frequency due to diffraction. In SCOTS, ITF is shown to decrease the measured height of surface features as their spatial frequency increases, and thus the SCOTS and SPOTS ITF is proportional to their camera system's MTF. Theory and simulations are supported by a SCOTS measurement of a test piece with a set of lithographically written sinusoidal surface topographies. In addition, an example of a simple inverse filtering technique is provided. The success of a small SPOTS proof of concept instrument paved the way for a new larger prototype system, which is intended to measure subaperture regions on large optical mirrors. On large optics, the prototype SPOTS is light weight and it rests on the surface being tested. One advantage of this SPOTS is stability over time in maintaining its calibration. Thus the optician can simply place SPOTS on the mirror, perform a simple alignment, collect measurement data, then pick the system up and repeat at a new location. The entire process takes approximately 5 to 10 minutes, of which 3 minutes is spent collecting data. SPOTS' simplicity of design, light weight, robustness, wide dynamic range, and high sensitivity make it a useful tool for optical shop use during the fabrication and testing process of large and small optics.
A GIS approach to identifying the distribution and structure of coast redwood across its range
Peter Cowan; Emily E. Burns; Richard Campbell
2017-01-01
To better understand the distribution and current structure of coast redwood (Sequoia sempervirens (D.Don) Endl.) forests throughout the range and how it varies by land ownerships, the Save the Redwoods League has conducted a redwood specific analysis of a high resolution forest structure database encompassing the entire natural coast redwood range...
12.2-GHz methanol maser MMB follow-up catalogue - IV. Longitude range 20°-60°
NASA Astrophysics Data System (ADS)
Breen, S. L.; Ellingsen, S. P.; Caswell, J. L.; Green, J. A.; Voronkov, M. A.; Avison, A.; Fuller, G. A.; Quinn, L. J.
2016-07-01
This is the fourth and final instalment of a series of catalogues presenting 12.2-GHz methanol maser observations made towards each of the 6.7-GHz methanol masers detected in the Methanol Multibeam (MMB) survey. This final portion of the survey covers the 20°-60° longitude range, increasing the 12.2-GHz follow-up range to the full MMB coverage of 186° ≥ l ≤ 60° and |b| ≤ 2°. Towards a total of 260 6.7-GHz MMB methanol masers (we were unable to observe five of the MMB sources in this longitude range) we detect 116 12.2-GHz masers counterparts, 64 of which were discovered in this survey. Including data from the literature, we find that there are 12.2-GHz methanol masers towards 47.1 per cent of the 6.7-GHz methanol masers in this portion of the Galaxy. Across the entire MMB survey range, we find a detection rate of 45.3 per cent. We find that the detection rate of 12.2-GHz methanol masers as a function of Galactic longitude is not uniform and there is an excess of masers with broad velocity ranges at longitudes near 30° and 330°. Comparing the occurrence of 12.2-GHz methanol masers with MMB-targeted CO observations has shown that those outflows associated with a 12.2-GHz source have a larger average dynamical time-scale than those associated with only 6.7-GHz methanol masers, supporting the notion that the 12.2-GHz masers are associated with a later phase of high-mass star formation.
Image dynamic range test and evaluation of Gaofen-2 dual cameras
NASA Astrophysics Data System (ADS)
Zhang, Zhenhua; Gan, Fuping; Wei, Dandan
2015-12-01
In order to fully understand the dynamic range of Gaofen-2 satellite data and support the data processing, application and next satellites development, in this article, we evaluated the dynamic range by calculating some statistics such as maximum ,minimum, average and stand deviation of four images obtained at the same time by Gaofen-2 dual cameras in Beijing area; then the maximum ,minimum, average and stand deviation of each longitudinal overlap of PMS1,PMS2 were calculated respectively for the evaluation of each camera's dynamic range consistency; and these four statistics of each latitudinal overlap of PMS1,PMS2 were calculated respectively for the evaluation of the dynamic range consistency between PMS1 and PMS2 at last. The results suggest that there is a wide dynamic range of DN value in the image obtained by PMS1 and PMS2 which contains rich information of ground objects; in general, the consistency of dynamic range between the single camera images is in close agreement, but also a little difference, so do the dual cameras. The consistency of dynamic range between the single camera images is better than the dual cameras'.
Size of the California Brown Pelican Metapopulation During a Non-El Nino Year
Anderson, Daniel W.; Henny, Charles J.; Godinez-Reyes, Carlos; Gress, Franklin; Palacios, Eduardo L.; Santos del Prado, Karina; Bredy, James
2007-01-01
Overall, we estimated a total metapopulation within the geographical range of the California brown pelican subspecies (Pelecanus occidentalis californicus) as about 70,680 ? 2,640 breeding pairs (mean ? SD). Little change in at least three decades is indicated in the total metapopulation south of the Southern California Bight (SCB) subpopulation, but significant improvements in the breeding subpopulation size in the SCB reported elsewhere, support the present high numbers observed in this northernmost subpopulation. The largest breeding aggregation within the entire range (consisting of three immediately adjacent sub-colonies), at the San Lorenzo Archipelago, consisted of about 17,225 breeding pairs, or about 24.4% of the metapopulation in 2006. Other, smaller colonies are no less important, however, although each subpopulation defined by us seemed to have a single or small number of large 'core' breeding colonies, plus many smaller colonies (for example, in 2006, one colony consisted of only 2 breeding pairs). Small colonies (< about 70 nests) comprised about 35.6% of the total occupied colonies, but only about 0.87% of the total estimated numbers (values corrected for detectability). The modal colony-size throughout the range was much smaller (about 230 to 1,300 breeding pairs, depending on subpopulation), indicating that small, scattered colonies and sub-colonies, especially on the range peripheries, function in brown pelican population dynamics and are no less important from a conservation viewpoint. These smaller breeding colonies probably represent some colonies of antiquity, but also range expansions and contractions that occur within the typically-defined metapopulation, and local manifestations of source-sink phenomena. Given such dynamics, even unoccupied islands within the range in 2006 have conservation importance from the viewpoint of such dynamics as potential alternate nesting sites. Natural variations in the estimated population levels seem to be related to the natural cycles of El Ni?o/Southern Oscillation (ENSO) phenomena where very low breeding populations (as low as no nesting in many areas) might be expected to occur in these same areas censused in 2006 at least 40% of the time. From the 2006 aerial survey, extensive commercial and sport-fishing activity, resort/tourist developments and associated human activities along the coastal areas and at offshore islands, and extensive aquacultural (and to a lesser degree, agricultural) developments seen from the Rio Colorado Delta region, Sonora, south at least through San Blas, Nayarit (the southern terminus of our 2006 aerial survey) may result in substantial loss of breeding habitat. Juvenile (young of the 2005 breeding season) plus subadult brown pelicans comprised 28.1% ? 0.33% (mean ? 95% CI) of the total numbers in age-ratio samples. Thus, our overall metapopulation estimate for P. o. californicus in 2006 was 195,900 ? 7,225 individuals.
Measuring information transfer in a soft robotic arm.
Nakajima, K; Schmidt, N; Pfeifer, R
2015-05-13
Soft robots can exhibit diverse behaviors with simple types of actuation by partially outsourcing control to the morphological and material properties of their soft bodies, which is made possible by the tight coupling between control, body, and environment. In this paper, we present a method that will quantitatively characterize these diverse spatiotemporal dynamics of a soft body based on the information-theoretic approach. In particular, soft bodies have the ability to propagate the effect of actuation through the entire body, with a certain time delay, due to their elasticity. Our goal is to capture this delayed interaction in a quantitative manner based on a measure called momentary information transfer. We extend this measure to soft robotic applications and demonstrate its power using a physical soft robotic platform inspired by the octopus. Our approach is illustrated in two ways. First, we statistically characterize the delayed actuation propagation through the body as a strength of information transfer. Second, we capture this information propagation directly as local information dynamics. As a result, we show that our approach can successfully characterize the spatiotemporal dynamics of the soft robotic platform, explicitly visualizing how information transfers through the entire body with delays. Further extension scenarios of our approach are discussed for soft robotic applications in general.
Dynamic fields near a crack tip growing in an elastic-perfectly-plastic solid
NASA Technical Reports Server (NTRS)
Nemat-Nasser, S.; Gao, Y. C.
1983-01-01
A full asymptotic solution is presented for the fields in the neighborhood of the tip of a steadily advancing crack in an incompressible elastic-perfectly-plastic solid. There are four findings for mode I crack growth in the plane strain condition. The first is that the entire crack tip in steady crack growth is surrounded by a plastic region and that no elastic unloading is predicted by the complete dynamic asymptotic solution. The second is that, in contrast to the quasi-static solution, the dynamic solution yields strain fields with a logarithmic singularity everywhere near the crack tip. The third is that whereas the stress field varies throughout the entire crack tip neighborhood, it does not exhibit behavior that can be approximated by a constant field followed by an essentially centered-fan field and then by another constant field, especially for small crack growth speeds. The fourth finding is that there are two shock fronts emanating from the crack tip across which certain stress and strain components undergo jump discontinuities. After reviewing the mode III steady-state crack growth, it is concluded that ductile fracture criteria for nonstationary cracks must be based on solutions that include the inertia effects and that for this purpose quasi-static solutions may be inadequate.
Lei, Dongsheng; Rames, Matthew; Zhang, Xing; ...
2016-05-03
Cholesteryl ester transfer protein (CETP) mediates cholesteryl ester (CE) transfer from the atheroprotective high density lipoprotein (HDL) cholesterol to the atherogenic low density lipoprotein cholesterol. In the past decade, this property has driven the development of CETP inhibitors, which have been evaluated in large scale clinical trials for treating cardiovascular diseases. Despite the pharmacological interest, little is known about the fundamental mechanism of CETP in CE transfer. Recent electron microscopy (EM) experiments have suggested a tunnel mechanism, and molecular dynamics simulations have shown that the flexible N-terminal distal end of CETP penetrates into the HDL surface and takes up amore » CE molecule through an open pore. However, it is not known whether a CE molecule can completely transfer through an entire CETP molecule. Here, we used all-atom molecular dynamics simulations to evaluate this possibility. The results showed that a hydrophobic tunnel inside CETP is sufficient to allow a CE molecule to completely transfer through the entire CETP within a predicted transfer time and at a rate comparable with those obtained through physiological measurements. Analyses of the detailed interactions revealed several residues that might be critical for CETP function, which may provide important clues for the effective development of CETP inhibitors and treatment of cardiovascular diseases.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Resco de Dios, Víctor; Gessler, Arthur; Ferrio, Juan Pedro
Background Molecular clocks drive oscillations in leaf photosynthesis, stomatal conductance, and other cell and leaf-level processes over ~24 h under controlled laboratory conditions. The influence of such circadian regulation over whole-canopy fluxes remains uncertain; diurnal CO 2 and H 2O vapor flux dynamics in the field are currently interpreted as resulting almost exclusively from direct physiological responses to variations in light, temperature and other environmental factors. We tested whether circadian regulation would affect plant and canopy gas exchange at the Montpellier European Ecotron. Canopy and leaf-level fluxes were constantly monitored under field-like environmental conditions, and under constant environmental conditions (nomore » variation in temperature, radiation, or other environmental cues). Results We show direct experimental evidence at canopy scales of the circadian regulation of daytime gas exchange: 20–79 % of the daily variation range in CO 2 and H 2O fluxes occurred under circadian entrainment in canopies of an annual herb (bean) and of a perennial shrub (cotton). We also observed that considering circadian regulation improved performance by 8–17 % in commonly used stomatal conductance models. Conclusions Our results show that circadian controls affect diurnal CO 2 and H 2O flux patterns in entire canopies in field-like conditions, and its consideration significantly improves model performance. Lastly, circadian controls act as a ‘memory’ of the past conditions experienced by the plant, which synchronizes metabolism across entire plant canopies.« less
Resco de Dios, Víctor; Gessler, Arthur; Ferrio, Juan Pedro; ...
2016-10-20
Background Molecular clocks drive oscillations in leaf photosynthesis, stomatal conductance, and other cell and leaf-level processes over ~24 h under controlled laboratory conditions. The influence of such circadian regulation over whole-canopy fluxes remains uncertain; diurnal CO 2 and H 2O vapor flux dynamics in the field are currently interpreted as resulting almost exclusively from direct physiological responses to variations in light, temperature and other environmental factors. We tested whether circadian regulation would affect plant and canopy gas exchange at the Montpellier European Ecotron. Canopy and leaf-level fluxes were constantly monitored under field-like environmental conditions, and under constant environmental conditions (nomore » variation in temperature, radiation, or other environmental cues). Results We show direct experimental evidence at canopy scales of the circadian regulation of daytime gas exchange: 20–79 % of the daily variation range in CO 2 and H 2O fluxes occurred under circadian entrainment in canopies of an annual herb (bean) and of a perennial shrub (cotton). We also observed that considering circadian regulation improved performance by 8–17 % in commonly used stomatal conductance models. Conclusions Our results show that circadian controls affect diurnal CO 2 and H 2O flux patterns in entire canopies in field-like conditions, and its consideration significantly improves model performance. Lastly, circadian controls act as a ‘memory’ of the past conditions experienced by the plant, which synchronizes metabolism across entire plant canopies.« less
Smart in Everything Except School.
ERIC Educational Resources Information Center
Getman, G. N.
This book focuses on the prevention of academic failure through focus on developmental processes (especially development of essential visual skills) within the individual learner. A distinction is made between sight and vision with vision involving the entire person and his/her learning experiences The first chapter examines "The Dynamics of the…
47 CFR 90.1407 - Spectrum use in the network.
Code of Federal Regulations, 2012 CFR
2012-10-01
... exclusion and/or immediate preemption of any commercial use on a dynamic, real-time priority basis, and to... network. (a) Spectrum use. The Shared Wireless Broadband Network will operate using spectrum associated... Block licensee and the Operating Company for the entire remaining term of the Public Safety Broadband...
Synchronous genetic turnovers across Western Eurasia in Late Pleistocene collared lemmings.
Palkopoulou, Eleftheria; Baca, Mateusz; Abramson, Natalia I; Sablin, Mikhail; Socha, Paweł; Nadachowski, Adam; Prost, Stefan; Germonpré, Mietje; Kosintsev, Pavel; Smirnov, Nickolay G; Vartanyan, Sergey; Ponomarev, Dmitry; Nyström, Johanna; Nikolskiy, Pavel; Jass, Christopher N; Litvinov, Yuriy N; Kalthoff, Daniela C; Grigoriev, Semyon; Fadeeva, Tatyana; Douka, Aikaterini; Higham, Thomas F G; Ersmark, Erik; Pitulko, Vladimir; Pavlova, Elena; Stewart, John R; Węgleński, Piotr; Stankovic, Anna; Dalén, Love
2016-05-01
Recent palaeogenetic studies indicate a highly dynamic history in collared lemmings (Dicrostonyx spp.), with several demographical changes linked to climatic fluctuations that took place during the last glaciation. At the western range margin of D. torquatus, these changes were characterized by a series of local extinctions and recolonizations. However, it is unclear whether this pattern represents a local phenomenon, possibly driven by ecological edge effects, or a global phenomenon that took place across large geographical scales. To address this, we explored the palaeogenetic history of the collared lemming using a next-generation sequencing approach for pooled mitochondrial DNA amplicons. Sequences were obtained from over 300 fossil remains sampled across Eurasia and two sites in North America. We identified five mitochondrial lineages of D. torquatus that succeeded each other through time across Europe and western Russia, indicating a history of repeated population extinctions and recolonizations, most likely from eastern Russia, during the last 50 000 years. The observation of repeated extinctions across such a vast geographical range indicates large-scale changes in the steppe-tundra environment in western Eurasia during the last glaciation. All Holocene samples, from across the species' entire range, belonged to only one of the five mitochondrial lineages. Thus, extant D. torquatus populations only harbour a small fraction of the total genetic diversity that existed across different stages of the Late Pleistocene. In North American samples, haplotypes belonging to both D. groenlandicus and D. richardsoni were recovered from a Late Pleistocene site in south-western Canada. This suggests that D. groenlandicus had a more southern and D. richardsoni a more northern glacial distribution than previously thought. This study provides significant insights into the population dynamics of a small mammal at a large geographical scale and reveals a rather complex demographical history, which could have had bottom-up effects in the Late Pleistocene steppe-tundra ecosystem. © 2016 John Wiley & Sons Ltd.
Doneanu, Catalin; Fang, Jing; Alelyunas, Yun; Yu, Ying Qing; Wrona, Mark; Chen, Weibin
2018-04-17
The analysis of low-level (1-100 ppm) protein impurities (e.g., host-cell proteins (HCPs)) in protein biotherapeutics is a challenging assay requiring high sensitivity and a wide dynamic range. Mass spectrometry-based quantification assays for proteins typically involve protein digestion followed by the selective reaction monitoring/multiple reaction monitoring (SRM/MRM) quantification of peptides using a low-resolution (Rs ~1,000) tandem quadrupole mass spectrometer. One of the limitations of this approach is the interference phenomenon observed when the peptide of interest has the "same" precursor and fragment mass (in terms of m/z values) as other co-eluting peptides present in the sample (within a 1-Da window). To avoid this phenomenon, we propose an alternative mass spectrometric approach, a high selectivity (HS) MRM assay that combines the ion mobility separation of peptide precursors with the high-resolution (Rs ~30,000) MS detection of peptide fragments. We explored the capabilities of this approach to quantify low-abundance peptide standards spiked in a monoclonal antibody (mAb) digest and demonstrated that it has the sensitivity and dynamic range (at least 3 orders of magnitude) typically achieved in HCP analysis. All six peptide standards were detected at concentrations as low as 0.1 nM (1 femtomole loaded on a 2.1-mm ID chromatographic column) in the presence of a high-abundance peptide background (2 µg of a mAb digest loaded on-column). When considering the MW of rabbit phosphorylase (97.2 kDa), from which the spiked peptides were derived, the LOQ of this assay is lower than 50 ppm. Relative standard deviations (RSD) of peak areas (n = 4 replicates) were less than 15% across the entire concentration range investigated (0.1-100 nM or 1-1,000 ppm) in this study.
NASA Astrophysics Data System (ADS)
Higgins, S. M. W.; Du, H. L.; Smith, L. A.
2012-04-01
Ensemble forecasting on a lead time of seconds over several years generates a large forecast-outcome archive, which can be used to evaluate and weight "models". Challenges which arise as the archive becomes smaller are investigated: in weather forecasting one typically has only thousands of forecasts however those launched 6 hours apart are not independent of each other, nor is it justified to mix seasons with different dynamics. Seasonal forecasts, as from ENSEMBLES and DEMETER, typically have less than 64 unique launch dates; decadal forecasts less than eight, and long range climate forecasts arguably none. It is argued that one does not weight "models" so much as entire ensemble prediction systems (EPSs), and that the marginal value of an EPS will depend on the other members in the mix. The impact of using different skill scores is examined in the limits of both very large forecast-outcome archives (thereby evaluating the efficiency of the skill score) and in very small forecast-outcome archives (illustrating fundamental limitations due to sampling fluctuations and memory in the physical system being forecast). It is shown that blending with climatology (J. Bröcker and L.A. Smith, Tellus A, 60(4), 663-678, (2008)) tends to increase the robustness of the results; also a new kernel dressing methodology (simply insuring that the expected probability mass tends to lie outside the range of the ensemble) is illustrated. Fair comparisons using seasonal forecasts from the ENSEMBLES project are used to illustrate the importance of these results with fairly small archives. The robustness of these results across the range of small, moderate and huge archives is demonstrated using imperfect models of perfectly known nonlinear (chaotic) dynamical systems. The implications these results hold for distinguishing the skill of a forecast from its value to a user of the forecast are discussed.
NASA Astrophysics Data System (ADS)
Spiegelman, M.; Wilson, C. R.
2011-12-01
A quantitative theory of magma production and transport is essential for understanding the dynamics of magmatic plate boundaries, intra-plate volcanism and the geochemical evolution of the planet. It also provides one of the most challenging computational problems in solid Earth science, as it requires consistent coupling of fluid and solid mechanics together with the thermodynamics of melting and reactive flows. Considerable work on these problems over the past two decades shows that small changes in assumptions of coupling (e.g. the relationship between melt fraction and solid rheology), can have profound changes on the behavior of these systems which in turn affects critical computational choices such as discretizations, solvers and preconditioners. To make progress in exploring and understanding this physically rich system requires a computational framework that allows more flexible, high-level description of multi-physics problems as well as increased flexibility in composing efficient algorithms for solution of the full non-linear coupled system. Fortunately, recent advances in available computational libraries and algorithms provide a platform for implementing such a framework. We present results from a new model building system that leverages functionality from both the FEniCS project (www.fenicsproject.org) and PETSc libraries (www.mcs.anl.gov/petsc) along with a model independent options system and gui, Spud (amcg.ese.ic.ac.uk/Spud). Key features from FEniCS include fully unstructured FEM with a wide range of elements; a high-level language (ufl) and code generation compiler (FFC) for describing the weak forms of residuals and automatic differentiation for calculation of exact and approximate jacobians. The overall strategy is to monitor/calculate residuals and jacobians for the entire non-linear system of equations within a global non-linear solve based on PETSc's SNES routines. PETSc already provides a wide range of solvers and preconditioners, from parallel sparse direct to algebraic multigrid, that can be chosen at runtime. In particular, we make extensive use of PETSc's FieldSplit block preconditioners that allow us to use optimal solvers for subproblems (such as Stokes, or advection/diffusion of temperature) as preconditioners for the full problem. Thus these routines let us reuse effective solving recipes/splittings from previous experience while monitoring the convergence of the global problem. These techniques often yield quadratic (Newton like) convergence for the work of standard Picard schemes. We will illustrate this new framework with examples from the Magma Dynamic Demonstration suite (MADDs) of well understood magma dynamics benchmark problems including stokes flow in ridge geometries, magmatic solitary waves and shear-driven melt bands. While development of this system has been driven by magma dynamics, this framework is much more general and can be used for a wide range of PDE based multi-physics models.
NASA Astrophysics Data System (ADS)
Brion, Natacha; Carbonnel, Vincent; Elskens, Marc; Claeys, Philippe; Verbanck, Michel A.
2017-04-01
In densely populated regions, human activities profoundly modify natural water circulation as well as water quality, with increased hydrological risks (floods, droughts,…) and chemical hazards (untreated sewage releases, industrial pollution,…) as consequence. In order to assess water and pollutants dynamics and their mass-balance in strongly modified river system, it is important to take into account high flow events as a significant fraction of water and pollutants loads may occur during these short events which are generally underrepresented in classical mass balance studies. A good example of strongly modified river systems is the Zenne river in and around the city of Brussels (Belgium).The Zenne River (Belgium) is a rather small but dynamic rain fed river (about 10 m3/s in average) that is under the influence of strong contrasting anthropogenic pressures along its stretch. While the upstream part of its basin is rather characterized by agricultural land-use, urban and industrial areas dominate the downstream part. In particular, the city of Brussels (1.1M inhabitants) discharges in the Zenne River amounts of wastewater that are large compared to the natural riverine flow. In order to assess water and pollutants dynamics and their mass-balance in the Zenne hydrographic network, we followed water flows and concentrations of several water quality tracers during several flood episodes with an hourly frequency and at different locations along the stretch of the River. These parameters were chosen as indicators of a whole range of pollutions and anthropogenic activities. Knowledge of the high-frequency pollutants dynamics during floods is required for establishing accurate mass-balances of these elements. We thus report here the dynamics of selected parameters during entire flood events, from the baseline to the decreasing phase and at hourly frequency. Dynamics at contrasting locations, in agricultural or urban environments are compared. In particular, the importance of combined sewer overflows are evaluated and discussed. Results from this study were obtained in the framework of the OSIRIS research project (INNOVIRIS Anticipate 2015-2019).
Marghetis, Tyler; Núñez, Rafael
2013-04-01
The canonical history of mathematics suggests that the late 19th-century "arithmetization" of calculus marked a shift away from spatial-dynamic intuitions, grounding concepts in static, rigorous definitions. Instead, we argue that mathematicians, both historically and currently, rely on dynamic conceptualizations of mathematical concepts like continuity, limits, and functions. In this article, we present two studies of the role of dynamic conceptual systems in expert proof. The first is an analysis of co-speech gesture produced by mathematics graduate students while proving a theorem, which reveals a reliance on dynamic conceptual resources. The second is a cognitive-historical case study of an incident in 19th-century mathematics that suggests a functional role for such dynamism in the reasoning of the renowned mathematician Augustin Cauchy. Taken together, these two studies indicate that essential concepts in calculus that have been defined entirely in abstract, static terms are nevertheless conceptualized dynamically, in both contemporary and historical practice. Copyright © 2013 Cognitive Science Society, Inc.
DSGRN: Examining the Dynamics of Families of Logical Models.
Cummins, Bree; Gedeon, Tomas; Harker, Shaun; Mischaikow, Konstantin
2018-01-01
We present a computational tool DSGRN for exploring the dynamics of a network by computing summaries of the dynamics of switching models compatible with the network across all parameters. The network can arise directly from a biological problem, or indirectly as the interaction graph of a Boolean model. This tool computes a finite decomposition of parameter space such that for each region, the state transition graph that describes the coarse dynamical behavior of a network is the same. Each of these parameter regions corresponds to a different logical description of the network dynamics. The comparison of dynamics across parameters with experimental data allows the rejection of parameter regimes or entire networks as viable models for representing the underlying regulatory mechanisms. This in turn allows a search through the space of perturbations of a given network for networks that robustly fit the data. These are the first steps toward discovering a network that optimally matches the observed dynamics by searching through the space of networks.
High dynamic range subjective testing
NASA Astrophysics Data System (ADS)
Allan, Brahim; Nilsson, Mike
2016-09-01
This paper describes of a set of subjective tests that the authors have carried out to assess the end user perception of video encoded with High Dynamic Range technology when viewed in a typical home environment. Viewers scored individual single clips of content, presented in High Definition (HD) and Ultra High Definition (UHD), in Standard Dynamic Range (SDR), and in High Dynamic Range (HDR) using both the Perceptual Quantizer (PQ) and Hybrid Log Gamma (HLG) transfer characteristics, and presented in SDR as the backwards compatible rendering of the HLG representation. The quality of SDR HD was improved by approximately equal amounts by either increasing the dynamic range or increasing the resolution to UHD. A further smaller increase in quality was observed in the Mean Opinion Scores of the viewers by increasing both the dynamic range and the resolution, but this was not quite statistically significant.
Ruhlandt, A; Töpperwien, M; Krenkel, M; Mokso, R; Salditt, T
2017-07-26
We present an approach towards four dimensional (4d) movies of materials, showing dynamic processes within the entire 3d structure. The method is based on tomographic reconstruction on dynamically curved paths using a motion model estimated by optical flow techniques, considerably reducing the typical motion artefacts of dynamic tomography. At the same time we exploit x-ray phase contrast based on free propagation to enhance the signal from micron scale structure recorded with illumination times down to a millisecond (ms). The concept is demonstrated by observing the burning process of a match stick in 4d, using high speed synchrotron phase contrast x-ray tomography recordings. The resulting movies reveal the structural changes of the wood cells during the combustion.
Optoelectrofluidic field separation based on light-intensity gradients
Lee, Sanghyun; Park, Hyun Jin; Yoon, Jin Sung; Kang, Kwan Hyoung
2010-01-01
Optoelectrofluidic field separation (OEFS) of particles under light -intensity gradient (LIG) is reported, where the LIG illumination on the photoconductive layer converts the short-ranged dielectrophoresis (DEP) force to the long-ranged one. The long-ranged DEP force can compete with the hydrodynamic force by alternating current electro-osmosis (ACEO) over the entire illumination area for realizing effective field separation of particles. In the OEFS system, the codirectional illumination and observation induce the levitation effect, compensating the attenuation of the DEP force under LIG illumination by slightly floating particles from the surface. Results of the field separation and concentration of diverse particle pairs (0.82–16 μm) are well demonstrated, and conditions determining the critical radius and effective particle manipulation are discussed. The OEFS with codirectional LIG strategy could be a promising particle manipulation method in many applications where a rapid manipulation of biological cells and particles over the entire working area are of interest. PMID:20697461
Optoelectrofluidic field separation based on light-intensity gradients.
Lee, Sanghyun; Park, Hyun Jin; Yoon, Jin Sung; Kang, Kwan Hyoung
2010-07-14
Optoelectrofluidic field separation (OEFS) of particles under light -intensity gradient (LIG) is reported, where the LIG illumination on the photoconductive layer converts the short-ranged dielectrophoresis (DEP) force to the long-ranged one. The long-ranged DEP force can compete with the hydrodynamic force by alternating current electro-osmosis (ACEO) over the entire illumination area for realizing effective field separation of particles. In the OEFS system, the codirectional illumination and observation induce the levitation effect, compensating the attenuation of the DEP force under LIG illumination by slightly floating particles from the surface. Results of the field separation and concentration of diverse particle pairs (0.82-16 mum) are well demonstrated, and conditions determining the critical radius and effective particle manipulation are discussed. The OEFS with codirectional LIG strategy could be a promising particle manipulation method in many applications where a rapid manipulation of biological cells and particles over the entire working area are of interest.
Division of Labor, Bet Hedging, and the Evolution of Mixed Biofilm Investment Strategies
McNally, Luke; Ratcliff, William C.
2017-01-01
ABSTRACT Bacterial cells, like many other organisms, face a tradeoff between longevity and fecundity. Planktonic cells are fast growing and fragile, while biofilm cells are often slower growing but stress resistant. Here we ask why bacterial lineages invest simultaneously in both fast- and slow-growing types. We develop a population dynamic model of lineage expansion across a patchy environment and find that mixed investment is favored across a broad range of environmental conditions, even when transmission is entirely via biofilm cells. This mixed strategy is favored because of a division of labor where exponentially dividing planktonic cells can act as an engine for the production of future biofilm cells, which grow more slowly. We use experimental evolution to test our predictions and show that phenotypic heterogeneity is persistent even under selection for purely planktonic or purely biofilm transmission. Furthermore, simulations suggest that maintenance of a biofilm subpopulation serves as a cost-effective hedge against environmental uncertainty, which is also consistent with our experimental findings. PMID:28790201
The Dynamics of Visual Experience, an EEG Study of Subjective Pattern Formation
Elliott, Mark A.; Twomey, Deirdre; Glennon, Mark
2012-01-01
Background Since the origin of psychological science a number of studies have reported visual pattern formation in the absence of either physiological stimulation or direct visual-spatial references. Subjective patterns range from simple phosphenes to complex patterns but are highly specific and reported reliably across studies. Methodology/Principal Findings Using independent-component analysis (ICA) we report a reduction in amplitude variance consistent with subjective-pattern formation in ventral posterior areas of the electroencephalogram (EEG). The EEG exhibits significantly increased power at delta/theta and gamma-frequencies (point and circle patterns) or a series of high-frequency harmonics of a delta oscillation (spiral patterns). Conclusions/Significance Subjective-pattern formation may be described in a way entirely consistent with identical pattern formation in fluids or granular flows. In this manner, we propose subjective-pattern structure to be represented within a spatio-temporal lattice of harmonic oscillations which bind topographically organized visual-neuronal assemblies by virtue of low frequency modulation. PMID:22292053
Ortholog Identification and Comparative Analysis of Microbial Genomes Using MBGD and RECOG.
Uchiyama, Ikuo
2017-01-01
Comparative genomics is becoming an essential approach for identification of genes associated with a specific function or phenotype. Here, we introduce the microbial genome database for comparative analysis (MBGD), which is a comprehensive ortholog database among the microbial genomes available so far. MBGD contains several precomputed ortholog tables including the standard ortholog table covering the entire taxonomic range and taxon-specific ortholog tables for various major taxa. In addition, MBGD allows the users to create an ortholog table within any specified set of genomes through dynamic calculations. In particular, MBGD has a "My MBGD" mode where users can upload their original genome sequences and incorporate them into orthology analysis. The created ortholog table can serve as the basis for various comparative analyses. Here, we describe the use of MBGD and briefly explain how to utilize the orthology information during comparative genome analysis in combination with the stand-alone comparative genomics software RECOG, focusing on the application to comparison of closely related microbial genomes.
Comprehensive Understanding for Vegetated Scene Radiance Relationships
NASA Technical Reports Server (NTRS)
Kimes, D. S.; Deering, D. W.
1984-01-01
The improvement of our fundamental understanding of the dynamics of directional scattering properties of vegetation canopies through analysis of field data and model simulation data is discussed. Directional reflectance distributions spanning the entire existance hemisphere were measured in two field studies; one using a Mark III 3-band radiometer and one using rapid scanning bidirectional field instrument called PARABOLA. Surfaces measured included corn, soybeans, bare soils, grass lawn, orchard grass, alfalfa, cotton row crops, plowed field, annual grassland, stipa grass, hard wheat, salt plain shrubland, and irrigated wheat. Some structural and optical measurements were taken. Field data show unique reflectance distributions ranging from bare soil to complete vegetation canopies. Physical mechanisms causing these trends are proposed based on scattering properties of soil and vegetation. Soil exhibited a strong backscattering peak toward the Sun. Complete vegetation exhibited a bowl distribution with the minimum reflectance near nadir. Incomplete vegetation canopies show shifting of the minimum reflectance off of nadir in the forward scattering direction because both the scattering properties or the vegetation and soil are observed.
Multiplexed in vivo His-tagging of enzyme pathways for in vitro single-pot multienzyme catalysis.
Wang, Harris H; Huang, Po-Yi; Xu, George; Haas, Wilhelm; Marblestone, Adam; Li, Jun; Gygi, Steven P; Forster, Anthony C; Jewett, Michael C; Church, George M
2012-02-17
Protein pathways are dynamic and highly coordinated spatially and temporally, capable of performing a diverse range of complex chemistries and enzymatic reactions with precision and at high efficiency. Biotechnology aims to harvest these natural systems to construct more advanced in vitro reactions, capable of new chemistries and operating at high yield. Here, we present an efficient Multiplex Automated Genome Engineering (MAGE) strategy to simultaneously modify and co-purify large protein complexes and pathways from the model organism Escherichia coli to reconstitute functional synthetic proteomes in vitro. By application of over 110 MAGE cycles, we successfully inserted hexa-histidine sequences into 38 essential genes in vivo that encode for the entire translation machinery. Streamlined co-purification and reconstitution of the translation protein complex enabled protein synthesis in vitro. Our approach can be applied to a growing area of applications in in vitro one-pot multienzyme catalysis (MEC) to manipulate or enhance in vitro pathways such as natural product or carbohydrate biosynthesis.
NASA Astrophysics Data System (ADS)
Mayo, Michael; Pfeifer, Peter; Gheorghiu, Stefan
2008-03-01
The acinar airways lie at the periphery of the human lung and are responsible for the transfer of oxygen from air to the blood during respiration. This transfer occurs by the diffusion-reaction of oxygen over the irregular surface of the alveolar membranes lining the acinar airways. We present an exactly solvable diffusion-reaction model on a hierarchically branched tree, allowing a quantitative prediction of the oxygen current over the entire system of acinar airways responsible for the gas exchange. We discuss the effect of diffusional screening, which is strongly coupled to oxygen transport in the human lung. We show that the oxygen current is insensitive to a loss of permeability of the alveolar membranes over a wide range of permeabilities, similar to a ``constant-current source'' in an electric network. Such fault tolerance has been observed in other treatments of the gas exchange in the lung and is obtained here as a fully analytical result.
Digital Quantification of Proteins and mRNA in Single Mammalian Cells.
Albayrak, Cem; Jordi, Christian A; Zechner, Christoph; Lin, Jing; Bichsel, Colette A; Khammash, Mustafa; Tay, Savaş
2016-03-17
Absolute quantification of macromolecules in single cells is critical for understanding and modeling biological systems that feature cellular heterogeneity. Here we show extremely sensitive and absolute quantification of both proteins and mRNA in single mammalian cells by a very practical workflow that combines proximity ligation assay (PLA) and digital PCR. This digital PLA method has femtomolar sensitivity, which enables the quantification of very small protein concentration changes over its entire 3-log dynamic range, a quality necessary for accounting for single-cell heterogeneity. We counted both endogenous (CD147) and exogenously expressed (GFP-p65) proteins from hundreds of single cells and determined the correlation between CD147 mRNA and the protein it encodes. Using our data, a stochastic two-state model of the central dogma was constructed and verified using joint mRNA/protein distributions, allowing us to estimate transcription burst sizes and extrinsic noise strength and calculate the transcription and translation rate constants in single mammalian cells. Copyright © 2016 Elsevier Inc. All rights reserved.
Liu, Qi; He, Hao; Li, Zhe-Fei; Liu, Yadong; Ren, Yang; Lu, Wenquan; Lu, Jun; Stach, Eric A; Xie, Jian
2014-03-12
We have performed operando synchrotron high-energy X-ray diffraction (XRD) to obtain nonintrusive, real-time monitoring of the dynamic chemical and structural changes in commercial 18650 LiFePO4/C cells under realistic cycling conditions. The results indicate a nonequilibrium lithium insertion and extraction in the LiFePO4 cathode, with neither the LiFePO4 phase nor the FePO4 phase maintaining a static composition during lithium insertion/extraction. On the basis of our observations, we propose that the LiFePO4 cathode simultaneously experiences both a two-phase reaction mechanism and a dual-phase solid-solution reaction mechanism over the entire range of the flat voltage plateau, with this dual-phase solid-solution behavior being strongly dependent on charge/discharge rates. The proposed dual-phase solid-solution mechanism may explain the remarkable rate capability of LiFePO4 in commercial cells.
Explaining the electroweak scale and stabilizing moduli in M theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Acharya, Bobby S.; Bobkov, Konstantin; Kane, Gordon L.
2007-12-15
In a recent paper [B. Acharya, K. Bobkov, G. Kane, P. Kumar, and D. Vaman, Phys. Rev. Lett. 97, 191601 (2006).] it was shown that in fluxless M theory vacua with at least two hidden sectors undergoing strong gauge dynamics and a particular form of the Kaehler potential, all moduli are stabilized by the effective potential and a stable hierarchy is generated, consistent with standard gauge unification. This paper explains the results of [B. Acharya, K. Bobkov, G. Kane, P. Kumar, and D. Vaman, Phys. Rev. Lett. 97, 191601 (2006).] in more detail and generalizes them, finding an essentially uniquemore » de Sitter vacuum under reasonable conditions. One of the main phenomenological consequences is a prediction which emerges from this entire class of vacua: namely, gaugino masses are significantly suppressed relative to the gravitino mass. We also present evidence that, for those vacua in which the vacuum energy is small, the gravitino mass, which sets all the superpartner masses, is automatically in the TeV-100 TeV range.« less
Three-dimensional imaging of dislocation propagation during crystal growth and dissolution
Schenk, Anna S.; Kim, Yi-Yeoun; Kulak, Alexander N.; Campbell, James M.; Nisbet, Gareth; Meldrum, Fiona C.; Robinson, Ian K.
2015-01-01
Atomic level defects such as dislocations play key roles in determining the macroscopic properties of crystalline materials 1,2. Their effects range from increased chemical reactivity 3,4 to enhanced mechanical properties 5,6. Dislocations have been widely studied using traditional techniques such as X-ray diffraction and optical imaging. Recent advances have enabled atomic force microscopy to study single dislocations 7 in two-dimensions (2D), while transmission electron microscopy (TEM) can now visualise strain fields in three-dimensions (3D) with near atomic resolution 8–10. However, these techniques cannot offer 3D imaging of the formation or movement of dislocations during dynamic processes. Here, we describe how Bragg Coherent Diffraction Imaging (BCDI) 11,12 can be used to visualize in 3D, the entire network of dislocations present within an individual calcite crystal during repeated growth and dissolution cycles. These investigations demonstrate the potential of BCDI for studying the mechanisms underlying the response of crystalline materials to external stimuli. PMID:26030304
Acceleration through passive destabilization: protein folding in a weak hydrophobic environment
NASA Astrophysics Data System (ADS)
Jewett, Andrew; Baumketner, Andrij; Shea, Joan-Emma
2004-03-01
The GroEL chaperonin is a biomolecule which assists the folding of an extremely diverse range of proteins in Eubacteria. Some proteins undergo many rounds of ATP-regulated binding and dissociation from GroEL/ES before folding. It has been proposed that transient stress from ATP-regulated binding and release from GroEL/ES frees frustrated proteins from misfolded conformations. However recent evidence suggests that chaperonin-accelerated protein folding can take place entirely within a mutated GroEL+ES cavity that is unable to open and release the protein. Using molecular dynamics, we demonstrate that static confinement within a weakly hydrophobic (attractive) cavity (similar to the interior of the cavity formed by the GroEL+ES complex) is sufficient to significantly accelerate the folding of a highly frustrated protein-like heteropolymer. Our frustrated molecule benifits kinetically from a static hydrophobic environment that destabilizes misfolded conformations. This may shed light on the mechanisms used by other chaperones which do not depend on ATP.
Shear-induced desorption of isolated polymer molecules from a planar wall
NASA Astrophysics Data System (ADS)
Dutta, Sarit; Dorfman, Kevin; Kumar, Satish
2014-03-01
Shear-induced desorption of isolated polymer molecules is studied using Brownian dynamics simulations. The polymer molecules are modeled as freely jointed bead-spring chains interacting with a planar wall via a short-range potential. The simulations include both intrachain and chain-wall hydrodynamic interactions. Shear flow is found to cause chain flattening, resulting at low shear rates in an increased fraction of chain segments bound to the wall. However, above a critical shear rate the chains desorb completely. The desorption process is nucleated by random protrusions in the shear gradient direction which evolve under the combined effect of drag, hydrodynamic interaction, and vorticity-induced rotation, and subsequently lead to recapture. Above the critical shear rate, these protrusions grow in length until the entire chain is peeled off the wall. For free-draining chains, the protrusions are not sustained and no desorption is observed even at shear rates much higher than the critical value. These simulations can help in interpreting experiments on shear-induced desorption of polymer films and brushes.
Workload-Matched Adaptive Automation Support of Air Traffic Controller Information Processing Stages
NASA Technical Reports Server (NTRS)
Kaber, David B.; Prinzel, Lawrence J., III; Wright, Melanie C.; Clamann, Michael P.
2002-01-01
Adaptive automation (AA) has been explored as a solution to the problems associated with human-automation interaction in supervisory control environments. However, research has focused on the performance effects of dynamic control allocations of early stage sensory and information acquisition functions. The present research compares the effects of AA to the entire range of information processing stages of human operators, such as air traffic controllers. The results provide evidence that the effectiveness of AA is dependent on the stage of task performance (human-machine system information processing) that is flexibly automated. The results suggest that humans are better able to adapt to AA when applied to lower-level sensory and psychomotor functions, such as information acquisition and action implementation, as compared to AA applied to cognitive (analysis and decision-making) tasks. The results also provide support for the use of AA, as compared to completely manual control. These results are discussed in terms of implications for AA design for aviation.
Variability and Order in Cytoskeletal Dynamics of Motile Amoeboid Cells
NASA Astrophysics Data System (ADS)
Hsu, Hsin-Fang; Bodenschatz, Eberhard; Westendorf, Christian; Gholami, Azam; Pumir, Alain; Tarantola, Marco; Beta, Carsten
2017-10-01
The chemotactic motion of eukaryotic cells such as leukocytes or metastatic cancer cells relies on membrane protrusions driven by the polymerization and depolymerization of actin. Here we show that the response of the actin system to a receptor stimulus is subject to a threshold value that varies strongly from cell to cell. Above the threshold, we observe pronounced cell-to-cell variability in the response amplitude. The polymerization time, however, is almost constant over the entire range of response amplitudes, while the depolymerization time increases with increasing amplitude. We show that cell-to-cell variability in the response amplitude correlates with the amount of Arp2 /3 , a protein that enhances actin polymerization. A time-delayed feedback model for the cortical actin concentration is consistent with all our observations and confirms the role of Arp2 /3 in the observed cell-to-cell variability. Taken together, our observations highlight robust regulation of the actin response that enables a reliable timing of cell movement.
Systematic analysis of protein turnover in primary cells.
Mathieson, Toby; Franken, Holger; Kosinski, Jan; Kurzawa, Nils; Zinn, Nico; Sweetman, Gavain; Poeckel, Daniel; Ratnu, Vikram S; Schramm, Maike; Becher, Isabelle; Steidel, Michael; Noh, Kyung-Min; Bergamini, Giovanna; Beck, Martin; Bantscheff, Marcus; Savitski, Mikhail M
2018-02-15
A better understanding of proteostasis in health and disease requires robust methods to determine protein half-lives. Here we improve the precision and accuracy of peptide ion intensity-based quantification, enabling more accurate protein turnover determination in non-dividing cells by dynamic SILAC-based proteomics. This approach allows exact determination of protein half-lives ranging from 10 to >1000 h. We identified 4000-6000 proteins in several non-dividing cell types, corresponding to 9699 unique protein identifications over the entire data set. We observed similar protein half-lives in B-cells, natural killer cells and monocytes, whereas hepatocytes and mouse embryonic neurons show substantial differences. Our data set extends and statistically validates the previous observation that subunits of protein complexes tend to have coherent turnover. Moreover, analysis of different proteasome and nuclear pore complex assemblies suggests that their turnover rate is architecture dependent. These results illustrate that our approach allows investigating protein turnover and its implications in various cell types.
The assembly dynamics of the cytolytic pore toxin ClyA
Benke, Stephan; Roderer, Daniel; Wunderlich, Bengt; Nettels, Daniel; Glockshuber, Rudi; Schuler, Benjamin
2015-01-01
Pore-forming toxins are protein assemblies used by many organisms to disrupt the membranes of target cells. They are expressed as soluble monomers that assemble spontaneously into multimeric pores. However, owing to their complexity, the assembly processes have not been resolved in detail for any pore-forming toxin. To determine the assembly mechanism for the ring-shaped, homododecameric pore of the bacterial cytolytic toxin ClyA, we collected a diverse set of kinetic data using single-molecule spectroscopy and complementary techniques on timescales from milliseconds to hours, and from picomolar to micromolar ClyA concentrations. The entire range of experimental results can be explained quantitatively by a surprisingly simple mechanism. First, addition of the detergent n-dodecyl-β-D-maltopyranoside to the soluble monomers triggers the formation of assembly-competent toxin subunits, accompanied by the transient formation of a molten-globule-like intermediate. Then, all sterically compatible oligomers contribute to assembly, which greatly enhances the efficiency of pore formation compared with simple monomer addition. PMID:25652783
Biophysical Constraints Arising from Compositional Context in Synthetic Gene Networks.
Yeung, Enoch; Dy, Aaron J; Martin, Kyle B; Ng, Andrew H; Del Vecchio, Domitilla; Beck, James L; Collins, James J; Murray, Richard M
2017-07-26
Synthetic gene expression is highly sensitive to intragenic compositional context (promoter structure, spacing regions between promoter and coding sequences, and ribosome binding sites). However, much less is known about the effects of intergenic compositional context (spatial arrangement and orientation of entire genes on DNA) on expression levels in synthetic gene networks. We compare expression of induced genes arranged in convergent, divergent, or tandem orientations. Induction of convergent genes yielded up to 400% higher expression, greater ultrasensitivity, and dynamic range than divergent- or tandem-oriented genes. Orientation affects gene expression whether one or both genes are induced. We postulate that transcriptional interference in divergent and tandem genes, mediated by supercoiling, can explain differences in expression and validate this hypothesis through modeling and in vitro supercoiling relaxation experiments. Treatment with gyrase abrogated intergenic context effects, bringing expression levels within 30% of each other. We rebuilt the toggle switch with convergent genes, taking advantage of supercoiling effects to improve threshold detection and switch stability. Copyright © 2017 Elsevier Inc. All rights reserved.
The color-magnitude distribution of small Kuiper Belt objects
NASA Astrophysics Data System (ADS)
Wong, Ian; Brown, Michael E.
2015-11-01
Occupying a vast region beyond the ice giants is an extensive swarm of minor bodies known as the Kuiper Belt. Enigmatic in their formation, composition, and evolution, these Kuiper Belt objects (KBOs) lie at the intersection of many of the most important topics in planetary science. Improved instruments and large-scale surveys have revealed a complex dynamical picture of the Kuiper Belt. Meanwhile, photometric studies have indicated that small KBOs display a wide range of colors, which may reflect a chemically diverse initial accretion environment and provide important clues to constraining the surface compositions of these objects. Notably, some recent work has shown evidence for bimodality in the colors of non-cold classical KBOs, which would have major implications for the formation and subsequent evolution of the entire KBO population. However, these previous color measurements are few and mostly come from targeted observations of known objects. As a consequence, the effect of observational biases cannot be readily removed, preventing one from obtaining an accurate picture of the true color distribution of the KBOs as a whole.We carried out a survey of KBOs using the Hyper Suprime-Cam instrument on the 8.2-meter Subaru telescope. Our observing fields targeted regions away from the ecliptic plane so as to avoid contamination from cold classical KBOs. Each field was imaged in both the g’ and i’ filters, which allowed us to calculate the g’-i’ color of each detected object. We detected more than 500 KBOs over two nights of observation, with absolute magnitudes from H=6 to H=11. Our survey increases the number of KBOs fainter than H=8 with known colors by more than an order of magnitude. We find that the distribution of colors demonstrates a robust bimodality across the entire observed range of KBO sizes, from which we can categorize individual objects into two color sub-populations -- the red and very-red KBOs. We present the very first analysis of the magnitude distributions of the two color sub-populations.
Temperature compensated high-temperature/high-pressure Merrill--Bassett diamond anvil cell
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schiferl, D.
1987-07-01
A Merrill--Bassett diamond anvil cell for high-temperature/high-pressure studies up to 5 GPa at 1000 K and 13 GPa at 725 K is described. To maintain uniform, well-characterized temperatures, and to protect the diamond anvils from oxidation and graphitization, the entire cell is heated in a vacuum oven. The materials are chosen so that the pressure remains constant to within +-10% over the entire temperature range.
Dynamic Hebbian Cross-Correlation Learning Resolves the Spike Timing Dependent Plasticity Conundrum.
Olde Scheper, Tjeerd V; Meredith, Rhiannon M; Mansvelder, Huibert D; van Pelt, Jaap; van Ooyen, Arjen
2017-01-01
Spike Timing-Dependent Plasticity has been found to assume many different forms. The classic STDP curve, with one potentiating and one depressing window, is only one of many possible curves that describe synaptic learning using the STDP mechanism. It has been shown experimentally that STDP curves may contain multiple LTP and LTD windows of variable width, and even inverted windows. The underlying STDP mechanism that is capable of producing such an extensive, and apparently incompatible, range of learning curves is still under investigation. In this paper, it is shown that STDP originates from a combination of two dynamic Hebbian cross-correlations of local activity at the synapse. The correlation of the presynaptic activity with the local postsynaptic activity is a robust and reliable indicator of the discrepancy between the presynaptic neuron and the postsynaptic neuron's activity. The second correlation is between the local postsynaptic activity with dendritic activity which is a good indicator of matching local synaptic and dendritic activity. We show that this simple time-independent learning rule can give rise to many forms of the STDP learning curve. The rule regulates synaptic strength without the need for spike matching or other supervisory learning mechanisms. Local differences in dendritic activity at the synapse greatly affect the cross-correlation difference which determines the relative contributions of different neural activity sources. Dendritic activity due to nearby synapses, action potentials, both forward and back-propagating, as well as inhibitory synapses will dynamically modify the local activity at the synapse, and the resulting STDP learning rule. The dynamic Hebbian learning rule ensures furthermore, that the resulting synaptic strength is dynamically stable, and that interactions between synapses do not result in local instabilities. The rule clearly demonstrates that synapses function as independent localized computational entities, each contributing to the global activity, not in a simply linear fashion, but in a manner that is appropriate to achieve local and global stability of the neuron and the entire dendritic structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pan, Wenxiao; Fedosov, Dmitry A.; Caswell, Bruce
In this work we compare the predictive capability of two mathematical models for red blood cells (RBCs) focusing on blood flow in capillaries and arterioles. Both RBC models as well as their corresponding blood flows are based on the dissipative particle dynamics (DPD) method, a coarse-grained molecular dynamics approach. The first model employs a multiscale description of the RBC (MS-RBC), with its membrane represented by hundreds or even thousands of DPD-particles connected by springs into a triangular network in combination with out-of-plane elastic bending resistance. Extra dissipation within the network accounts for membrane viscosity, while the characteristic biconcave RBC shapemore » is achieved by imposition of constraints for constant membrane area and constant cell volume. The second model is based on a low-dimensional description (LD-RBC) constructed as a closed torus-like ring of only 10 large DPD colloidal particles. They are connected into a ring by worm-like chain (WLC) springs combined with bending resistance. The LD-RBC model can be fitted to represent the entire range of nonlinear elastic deformations as measured by optical-tweezers for healthy and for infected RBCs in malaria. MS-RBCs suspensions model the dynamics and rheology of blood flow accurately for any size vessel but this approach is computationally expensive above 100 microns. Surprisingly, the much more economical suspensions of LD-RBCs also capture the blood flow dynamics and rheology accurately except for vessels with sizes comparable to RBC diameter. In particular, the LD-RBC suspensions are shown to properly capture the experimental data for the apparent viscosity of blood and its cell-free layer (CFL) in tube flow. Taken together, these findings suggest a hierarchical approach in modeling blood flow in the arterial tree, whereby the MS-RBC model should be employed for capillaries and arterioles below 100 microns, the LD-RBC model for arterioles, and the continuum description for arteries.« less
NASA Astrophysics Data System (ADS)
Sáez, Alberto; Godfrey, Linda V.; Herrera, Christian; Chong, Guillermo; Pueyo, Juan J.
2016-08-01
A chronologically robust reconstruction of timing and dynamics of millennial time scale wet episodes encompassing the entire Atacama Desert during the last 15 ka has been constructed. To accomplish this, a new composite paleoclimatic record from Groundwater Discharge Deposits (GWD) in the Sierra de Varas (Domeyko Range, southern Atacama in Chile at 25°S) has been compiled and compared with other published paleohydrologic records from the Atacama region. In Sierra de Varas (SV), three millennial timescale wet climate phases have been characterized: around 14.5 ka cal BP, 12.2-9.8 ka cal BP, and 4.7 ka cal BP to the present day. These wet phases are interpreted from intervals of GWD facies formed during periods when the springs were active. GWD facies include: (1) black organic peat, rooted mudstones and sandstones formed in local wetland environments, and (2) gypsum-carbonate rich layers formed by interstitial growth. GWD intervals alternate with gravelly alluvial material deposited during arid phases. A trend towards less humid conditions during the Late Holocene wet episode characterizes GWD sedimentary series in Sierra the Varas, suggesting the onset of a dry episode over the last few centuries. Around 0.7 ka BP a very short wet episode is recorded in the central part of the desert suggesting this was the time of maximum humidity for the entire late Holocene wet period. A brief arid phase occurred between 1.5 and 2.0 ka BP indicated by the absence of GWD in the Domeyko Range. The paleoclimatic reconstruction encompassing the entire Atacama region shows that both the intensity and occurrence of wetter conditions were governed mainly by the distance to the source of moisture, and secondarily by the elevation of the sites. In the northern Atacama (16-20°S), four wet phases fed by N-NE summer monsoon precipitations have been proposed: Tauca phase (18-14 ka cal BP) and Coipasa phase (13-10 ka cal BP) during the Late Glacial, followed by Early Holocene and Late Holocene phases. In contrast, southern Atacama records (23-28°S) display only three pluvial periods which result from SE summer monsoon precipitation and outbreaks from the Westerlies during wintertime. The Early Holocene in the southern Atacama was a period of aridity, generating important landscape differences to those in the Northern Atacama where conditions were wetter. The core of Atacama (20-23°S) is the overall driest part of the desert because it is located in the distal limits of both N-NE and SE sources of moisture, the Amazon Basin and Gran Chaco areas, respectively.
Computation of the three-dimensional medial surface dynamics of the vocal folds.
Döllinger, Michael; Berry, David A
2006-01-01
To increase our understanding of pathological and healthy voice production, quantitative measurement of the medial surface dynamics of the vocal folds is significant, albeit rarely performed because of the inaccessibility of the vocal folds. Using an excised hemilarynx methodology, a new calibration technique, herein referred to as the linear approximate (LA) method, was introduced to compute the three-dimensional coordinates of fleshpoints along the entire medial surface of the vocal fold. The results were compared with results from the direct linear transform. An associated error estimation was presented, demonstrating the improved accuracy of the new method. A test on real data was reported including computation of quantitative measurements of vocal fold dynamics.
Experimental demonstration of chaotic scattering of microwaves
NASA Astrophysics Data System (ADS)
Doron, E.; Smilansky, U.; Frenkel, A.
1990-12-01
Reflection of microwaves from a cavity is measured in a frequency domain where the underlying classical chaotic scattering leaves a clear mark on the wave dynamics. We check the hypothesis that the fluctuations of the S matrix can be described in terms of parameters characterizing the chaotic classical scatteirng. Absorption of energy in the cavity walls is shown to significantly affect the results, and is linked to time-domain properties of the scattering in a general way. We also show that features whose origin is entirely due to wave dynamics (e.g., the enhancement of the Wigner time delay due to time-reversal symmetry) coexist with other features which characterize the underlying classical dynamics.
Dynamic reorganization of river basins.
Willett, Sean D; McCoy, Scott W; Perron, J Taylor; Goren, Liran; Chen, Chia-Yu
2014-03-07
River networks evolve as migrating drainage divides reshape river basins and change network topology by capture of river channels. We demonstrate that a characteristic metric of river network geometry gauges the horizontal motion of drainage divides. Assessing this metric throughout a landscape maps the dynamic states of entire river networks, revealing diverse conditions: Drainage divides in the Loess Plateau of China appear stationary; the young topography of Taiwan has migrating divides driving adjustment of major basins; and rivers draining the ancient landscape of the southeastern United States are reorganizing in response to escarpment retreat and coastal advance. The ability to measure the dynamic reorganization of river basins presents opportunities to examine landscape-scale interactions among tectonics, erosion, and ecology.
Ellwein, Amy L.; Mahan, Shannon; McFadden, Leslie D.
2015-01-01
Widely used predictive models of eolian system dynamics are typically based entirely on climatic variables and do not account for landscape complexity and geomorphic history. Climate-only assumptions fail to give accurate predictions of the dynamics of this and many other dune fields. A growing body of work suggests that eolian deposits in wind-driven semiarid climates may be more strongly related to increases in sediment supply than to increases in aridity.