Sample records for entire operating range

  1. Voltage controlled current source

    DOEpatents

    Casne, Gregory M.

    1992-01-01

    A seven decade, voltage controlled current source is described for use in testing intermediate range nuclear instruments that covers the entire test current range of from 10 picoamperes to 100 microamperes. High accuracy is obtained throughout the entire seven decades of output current with circuitry that includes a coordinated switching scheme responsive to the input signal from a hybrid computer to control the input voltage to an antilog amplifier, and to selectively connect a resistance to the antilog amplifier output to provide a continuous output current source as a function of a preset range of input voltage. An operator controlled switch provides current adjustment for operation in either a real-time simulation test mode or a time response test mode.

  2. Results of an Advanced Fan Stage Operating Over a Wide Range of Speed and Bypass Ratio. Part 2; Comparison of CFD and Experimental Results

    NASA Technical Reports Server (NTRS)

    Celestina, Mark L.; Suder, Kenneth L.; Kulkarni, Sameer

    2010-01-01

    NASA and GE teamed to design and build a 57 percent engine scaled fan stage for a Mach 4 variable cycle turbofan/ramjet engine for access to space with multipoint operations. This fan stage was tested in NASA's transonic compressor facility. The objectives of this test were to assess the aerodynamic and aero mechanic performance and operability characteristics of the fan stage over the entire range of engine operation including: 1) sea level static take-off; 2) transition over large swings in fan bypass ratio; 3) transition from turbofan to ramjet; and 4) fan wind-milling operation at high Mach flight conditions. This paper will focus on an assessment of APNASA, a multistage turbomachinery analysis code developed by NASA, to predict the fan stage performance and operability over a wide range of speeds (37 to 100 percent) and bypass ratios.

  3. Cyclic growth in Atlantic region continental crust

    NASA Technical Reports Server (NTRS)

    Goodwin, A. M.

    1986-01-01

    Atlantic region continental crust evolved in successive stages under the influence of regular, approximately 400 Ma-long tectonic cycles. Data point to a variety of operative tectonic processes ranging from widespread ocean floor consumption (Wilson cycle) to entirely ensialic (Ampferer-style subduction or simple crustal attenuation-compression). Different processes may have operated concurrently in some or different belts. Resolving this remains the major challenge.

  4. Planetary Hyperspectral Imager (PHI)

    NASA Technical Reports Server (NTRS)

    Silvergate, Peter

    1996-01-01

    A hyperspectral imaging spectrometer was breadboarded. Key innovations were use of a sapphire prism and single InSb focal plane to cover the entire spectral range, and a novel slit optic and relay optics to reduce thermal background. Operation over a spectral range of 450 - 4950 nm (approximately 3.5 spectral octaves) was demonstrated. Thermal background reduction by a factor of 8 - 10 was also demonstrated.

  5. High Speed, High Temperature, Fault Tolerant Operation of a Combination Magnetic-Hydrostatic Bearing Rotor Support System for Turbomachinery

    NASA Technical Reports Server (NTRS)

    Jansen, Mark; Montague, Gerald; Provenza, Andrew; Palazzolo, Alan

    2004-01-01

    Closed loop operation of a single, high temperature magnetic radial bearing to 30,000 RPM (2.25 million DN) and 540 C (1000 F) is discussed. Also, high temperature, fault tolerant operation for the three axis system is examined. A novel, hydrostatic backup bearing system was employed to attain high speed, high temperature, lubrication free support of the entire rotor system. The hydrostatic bearings were made of a high lubricity material and acted as journal-type backup bearings. New, high temperature displacement sensors were successfully employed to monitor shaft position throughout the entire temperature range and are described in this paper. Control of the system was accomplished through a stand alone, high speed computer controller and it was used to run both the fault-tolerant PID and active vibration control algorithms.

  6. Aqueous Solution Heat Pipe Transport: Qu-Tube vs. Capillary-Pumped Heat Pipe

    DTIC Science & Technology

    2013-07-01

    independently of gravity , exhibit very high conductivity, work over large distances and temperature ranges, and operate at a lower pressure than...tubes” or “Qu-tubes.” These purportedly superior tubes were claimed to have such desirable qualities as entirely dry operation, gravity -independence... gravity -dependent. Our detailed and quantitative findings suggest that the devices we purchased are not revolutionary in performance, and may in fact

  7. Rotor instability due to a gear coupling connected to a bearingless sun wheel of a planetary gear

    NASA Technical Reports Server (NTRS)

    Buehlmann, E. T.; Luzi, A.

    1989-01-01

    A 21 MW electric power generating unit comprises a gas turbine, a planetary gear, and a generator connected together by gear couplings. For simplicity of the design and high performance the pinion of the gear has no bearing. It is centered by the planet wheels only. The original design showed a strong instability and a natural frequency increasing with the load between 2 and 6.5 MW. In this operating range the natural frequency was below the operating speed of the gas turbine, n sub PT = 7729 RPM. By shortening the pinion shaft and reduction of its moment of inertia the unstable natural frequency was shifted well above the operating speed. With that measure the unit now operates with stability in the entire load range.

  8. Comparison of Performance and Component Frontal Areas of Hypothetical Two-spool and One-spool Turbojet Engines

    NASA Technical Reports Server (NTRS)

    Dugan, James F , Jr

    1956-01-01

    For constant-mechanical-speed operation, the two-spool thrust values are as great as or greater than the one-spool thrust values over the entire flight range considered, while the specific fuel consumption for the two engines agrees within 1 percent. The maximum difference in thrust occurs at Mach 2.8 in the stratosphere, where the two-spool thrust advantage is about 9 percent for operation with the after burning.

  9. Forty Gb/s hybrid silicon Mach-Zehnder modulator with low chirp.

    PubMed

    Chen, Hui-Wen; Peters, Jonathan D; Bowers, John E

    2011-01-17

    We demonstrate a hybrid silicon modulator operating up to 40 Gb/s with 11.4 dB extinction ratio. The modulator has voltage-length product of 2.4 V-mm and chirp of -0.75 over the entire bias range. As a switch, it has a switching time less than 20 ps.

  10. Liquid-phase epitaxy grown PbSnTe distributed feedback laser diodes with broad continuous single-mode tuning range

    NASA Technical Reports Server (NTRS)

    Hsieh, H.-H.; Fonstad, C. G.

    1980-01-01

    Distributed feedback (DFB) pulsed laser operation has been demonstrated in stripe geometry Pb(1-x)Sn(x)Te double-heterostructures grown by liquid-phase epitaxy. The grating structure of 0.79 micron periodicity operates in first order near 12.8 microns and was fabricated prior to the liquid-phase epitaxial growth using holographic exposure techniques. These DFB lasers had moderate thresholds, 3.6 kA/sq cm, and the output power versus current curves exhibited a sharp turn-on free of kinks. Clean, single-mode emission spectra, continuously tunable over a range in excess of 20 per cm, centered about 780 per cm (12.8 microns), and at an average rate of 1.2 per cm-K from 9 to 26 K, were observed. While weaker modes could at times be seen in the spectrum, substantially single-mode operation was obtained over the entire operating range and to over 10 times threshold.

  11. Review of isothermal haze chamber performance

    NASA Technical Reports Server (NTRS)

    Fitzgerald, J. W.; Rogers, C. F.; Hudson, J. G.

    1981-01-01

    The theory of this method of characterizing cloud condensation nuclei (CCN) over the critical supersaturation range of about 0.01% to 0.2% was reviewed, and guidelines for the design and operation of IHC's are given. IHC data are presented and critically analyzed. Two of the four IHC's agree to about 40% over the entire range of critical. a third chamber shows similar agreement with the first two over the lower part of the critical supersaturation range but only a factor of two agreement at higher supersaturation. Some reasons for the discrepancies are given.

  12. Status of Technological Advancements for Reducing Aircraft Gas Turbine Engine Pollutant Emissions

    NASA Technical Reports Server (NTRS)

    Rudey, R. A.

    1975-01-01

    Combustor test rig results indicate that substantial reductions from current emission levels of carbon monoxide (CO), total unburned hydrocarbons (THC), oxides of nitrogen (NOx), and smoke are achievable by employing varying degrees of technological advancements in combustion systems. Minor to moderate modifications to existing conventional combustors produced significant reductions in CO and THC emissions at engine low power (idle/taxi) operating conditions but did not effectively reduce NOx at engine full power (takeoff) operating conditions. Staged combusiton techniques were needed to simultaneously reduce the levels of all the emissions over the entire engine operating range (from idle to takeoff). Emission levels that approached or were below the requirements of the 1979 EPA standards were achieved with the staged combustion systems and in some cases with the minor to moderate modifications to existing conventional combustion systems. Results from research programs indicate that an entire new generation of combustor technology with extremely low emission levels may be possible in the future.

  13. Internal combustion engine with rotary valve assembly having variable intake valve timing

    DOEpatents

    Hansen, Craig N.; Cross, Paul C.

    1995-01-01

    An internal combustion engine has rotary valves associated with movable shutters operable to vary the closing of intake air/fuel port sections to obtain peak volumetric efficiency over the entire range of speed of the engine. The shutters are moved automatically by a control mechanism that is responsive to the RPM of the engine. A foot-operated lever associated with the control mechanism is also used to move the shutters between their open and closed positions.

  14. Delineating generalized species boundaries from species distribution data and a species distribution model

    Treesearch

    Matthew P. Peters; Stephen N. Matthews; Louis R. Iverson; Anantha M. Prasad

    2013-01-01

    Species distribution models (SDM) are commonly used to provide information about species ranges or extents, and often are intended to represent the entire area of potential occupancy or suitable habitat in which individuals occur. While SDMs can provide results over various geographic extents, they normally operate within a grid and cannot delimit distinct, smooth...

  15. 36 CFR 51.45 - Will a concessioner that has operated for less than the entire term of a concession contract be...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 36 Parks, Forests, and Public Property 1 2010-07-01 2010-07-01 false Will a concessioner that has operated for less than the entire term of a concession contract be considered a satisfactory operator? 51... for less than the entire term of a concession contract be considered a satisfactory operator? The...

  16. Sampling and mapping forest volume and biomass using airborne LIDARs

    Treesearch

    Erik Naesset; Terje Gobakken; Ross Nelson

    2009-01-01

    Since around 1995, extensive research efforts have been made in Scandinavia to develop airborne Light Detection and Ranging (LIDAR) as an operational tool for wall-to-wall mapping of forest stands for planning purposes. Scanning LIDAR has the ability to capture the entire three-dimensional structure of forest canopies and has therefore proved to be a very efficient...

  17. An Overview of National Transonic Facility Investigations for High Performance Military Aerodynamics (Invited)

    NASA Technical Reports Server (NTRS)

    Luckring, J. M.

    2001-01-01

    A review of National Transonic Facility (NTF) investigations for high-performance military aerodynamics has been completed. The review spans the entire operational period of the tunnel, and includes configurations ranging from full aircraft to basic research geometries. The intent for this document is to establish a comprehensive summary of these experiments with selected technical results

  18. Diesel Engine With Air Boosted Turbocharger

    DTIC Science & Technology

    2010-05-26

    of the exhaust turbocharger over the entire RPM range of the internal combustion engine . To this end, the...Kriegler, discloses that in order to utilize recycling of exhaust gases at high engine loads in an internal- combustion engine with an exhaust gas...October 29, 2002) to Cook, discloses an apparatus for and method of exhaust gas recirculation in an internal combustion engine that operates

  19. Operational support and service concepts for observatories

    NASA Astrophysics Data System (ADS)

    Emde, Peter; Chapus, Pierre

    2014-08-01

    The operational support and service for observatories aim at the provision, the preservation and the increase of the availability and performance of the entire structural, mechanical, drive and control systems of telescopes and the related infrastructure. The operational support and service levels range from the basic service with inspections, preventive maintenance, remote diagnostics and spare parts supply over the availability service with telephone hotline, online and on-site support, condition monitoring and spare parts logistics to the extended service with operations and site and facility management. For the level of improvements and lifecycle management support they consist of expert assessments and studies, refurbishments and upgrades including the related engineering and project management activities.

  20. Achieving comb formation over the entire lasing range of quantum cascade lasers.

    PubMed

    Yang, Yang; Burghoff, David; Reno, John; Hu, Qing

    2017-10-01

    Frequency combs based on quantum cascade lasers (QCLs) are finding promising applications in high-speed broadband spectroscopy in the terahertz regime, where many molecules have their "fingerprints." To form stable combs in QCLs, an effective control of group velocity dispersion plays a critical role. The dispersion of the QCL cavity has two main parts: a static part from the material and a dynamic part from the intersubband transitions. Unlike the gain, which is clamped to a fixed value above the lasing threshold, dispersion associated with the intersubband transitions changes with bias, even above the threshold, and this reduces the dynamic range of comb formation. Here, by incorporating tunability into the dispersion compensator, we demonstrate a QCL device exhibiting comb operation from I th to I max , which greatly expands the operation range of the frequency combs.

  1. Computational fluid dynamics analysis of a maglev centrifugal left ventricular assist device.

    PubMed

    Burgreen, Greg W; Loree, Howard M; Bourque, Kevin; Dague, Charles; Poirier, Victor L; Farrar, David; Hampton, Edward; Wu, Z Jon; Gempp, Thomas M; Schöb, Reto

    2004-10-01

    The fluid dynamics of the Thoratec HeartMate III (Thoratec Corp., Pleasanton, CA, U.S.A.) left ventricular assist device are analyzed over a range of physiological operating conditions. The HeartMate III is a centrifugal flow pump with a magnetically suspended rotor. The complete pump was analyzed using computational fluid dynamics (CFD) analysis and experimental particle imaging flow visualization (PIFV). A comparison of CFD predictions to experimental imaging shows good agreement. Both CFD and experimental PIFV confirmed well-behaved flow fields in the main components of the HeartMate III pump: inlet, volute, and outlet. The HeartMate III is shown to exhibit clean flow features and good surface washing across its entire operating range.

  2. The soft X-ray polychromator for the Solar Maximum Mission

    NASA Technical Reports Server (NTRS)

    Acton, L. W.; Finch, M. L.; Gilbreth, C. W.; Culhane, J. L.; Bentley, R. D.; Bowles, J. A.; Guttridge, P.; Gabriel, A. H.; Firth, J. G.; Hayes, R. W.

    1980-01-01

    The paper considers the soft X-ray polychromator (XRP) operating in the 1.4-22.4 A range of the soft X-ray spectrum which includes many emission lines important for the diagnosis of plasmas in the 1.5-50 million deg temperature range. The flat crystal scanning spectrometer provides for a channel polychromatic mapping of flares and active regions in the resonance lines of O VIII, Ne IX, and Mg XI; in its spectral scanning mode it covers essentially the entire 1.4-22.5 A region.

  3. The soft X-ray polychromator for the Solar Maximum Mission

    NASA Astrophysics Data System (ADS)

    Acton, L. W.; Culhane, J. L.; Gabriel, A. H.; Bentley, R. D.; Bowles, J. A.; Firth, J. G.; Finch, M. L.; Gilbreth, C. W.; Guttridge, P.; Hayes, R. W.; Joki, E. G.; Jones, B. B.; Kent, B. J.; Leibacher, J. W.; Nobles, R. A.; Patrick, T. J.; Phillips, K. J. H.; Rapley, C. G.; Sheather, P. H.; Sherman, J. C.; Stark, J. P.; Springer, L. A.; Turner, R. F.; Wolfson, C. J.

    1980-02-01

    The paper considers the soft X-ray polychromator (XRP) operating in the 1.4-22.4 A range of the soft X-ray spectrum which includes many emission lines important for the diagnosis of plasmas in the 1.5-50 million deg temperature range. The flat crystal scanning spectrometer provides for a channel polychromatic mapping of flares and active regions in the resonance lines of O VIII, Ne IX, and Mg XI; in its spectral scanning mode it covers essentially the entire 1.4-22.5 A region.

  4. Modelling and identification for control of gas bearings

    NASA Astrophysics Data System (ADS)

    Theisen, Lukas R. S.; Niemann, Hans H.; Santos, Ilmar F.; Galeazzi, Roberto; Blanke, Mogens

    2016-03-01

    Gas bearings are popular for their high speed capabilities, low friction and clean operation, but suffer from poor damping, which poses challenges for safe operation in presence of disturbances. Feedback control can achieve enhanced damping but requires low complexity models of the dominant dynamics over its entire operating range. Models from first principles are complex and sensitive to parameter uncertainty. This paper presents an experimental technique for "in situ" identification of a low complexity model of a rotor-bearing-actuator system and demonstrates identification over relevant ranges of rotational speed and gas injection pressure. This is obtained using parameter-varying linear models that are found to capture the dominant dynamics. The approach is shown to be easily applied and to suit subsequent control design. Based on the identified models, decentralised proportional control is designed and shown to obtain the required damping in theory and in a laboratory test rig.

  5. St. Fergus terminal gets turboexpanders for critical service

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lillard, J.K.; Nicol, G.

    1994-09-05

    To expand the St. Fergus gas-reception terminal for the Scottish Area Gas Evacuation (SAGE) system, Mobil North Sea Ltd. is adding a second separation train and two treatment trains. To meet pipeline-gas specifications over a wide range of low rates and feed-gas compositions, single-stage turboexpander chilling was selected over Joule-Thomson valve expansion. Four turboexpanders (two per process train) will operate in parallel to achieve the required performance over the entire flow range of 90--575 MMscfd per process train. Unusual operating conditions for the turboexpanders include dense-phase inlet gas, expansion near the cricondenbar, and high equilibrium liquid content at the exhaustmore » (up to 50 wt %). The two turboexpanders in each train share common suction and discharge facilities as do their associated brake compressor. Details of the more than 400 million pounds Sterling Phase B discussed here include commissioning, start-up, and operation.« less

  6. A Nuclear Ramjet Flyer for Exploration of Jovian Atmosphere

    NASA Astrophysics Data System (ADS)

    Maise, G.; Powell, J.; Paniagua, J.; Lecat, R.

    2001-01-01

    We investigated the design, operation, and data gathering possibilities of a nuclear-powered ramjet flyer in the Jovian atmosphere. The MITEE nuclear rocket engine can be modified to operate as a ramjet in planetary atmospheres. (Note: MITEE is a compact, ultra-light-weight thermal nuclear rocket which uses hydrogen as the propellant.) To operate as a ramjet, MITEE requires a suitable inlet and diffuser to substitute for the propellant that is pumped from the supply tanks in a nuclear rocket engine. Such a ramjet would fly in the upper Jovian atmosphere, mapping in detail temperatures, pressures, compositions, lightning activity, and wind speeds in the highly turbulent equatorial zone and the Great Red Spot. The nuclear ramjet could operate for months because: (1) the Jovian atmosphere has unlimited propellant, (2) the MITEE nuclear reactor is a (nearly) unlimited power source, and (3) with few moving parts, mechanical wear should be minimal. This paper presents a conceptual design of a ramjet flyer and its nuclear engine. The flyer incorporates a swept-wing design with instruments located in the twin wing-tip pods (away from the radiation source and readily shielded, if necessary). The vehicle is 2 m long with a 2 m wingspan. Its mass is 220 kg, and its nominal flight Mach number is 1.5. Based on combined neutronic and thermal/hydraulic analyses, we calculated that the ambient pressure range over which the flyer can operate to be from about 0.04 to 4 (terrestrial) atmospheres. This altitude range encompasses the three uppermost cloud layers in the Jovian atmosphere: (1) the entire uppermost visible NH3 ice cloud layer (where lightning has been observed), (2) the entire NH4HS ice cloud layer, and (3) the upper portion of the H2O ice cloud layer.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beaucage, Timothy R; Beenfeldt, Eric P; Speakman, Scott A

    Among the langasite family of crystals (LGX), the three most popular materials are langasite (LGS, La3Ga5SiO14), langatate (LGT, La3Ga5.5Ta0.5O14) and langanite (LGN, La3Ga5.5Nb0.5O14). The LGX crystals have received significant attention for acoustic wave (AW) device applications due to several properties, which include: (1) piezoelectric constants about two and a half times those of quartz, thus allowing the design of larger bandwidth filters; (2) existence of temperature compensated orientations; (3) high density, with potential for reduced vibration and acceleration sensitivity; and (4) possibility of operation at high temperatures, since the LGX crystals do not present phase changes up to their meltingmore » point above 1400degC. The LGX crystals' capability to operate at elevated temperatures calls for an investigation on the growth quality and the consistency of these materials' properties at high temperature. One of the fundamental crystal properties is the thermal expansion coefficients in the entire temperature range where the material is operational. This work focuses on the measurement of the LGT thermal expansion coefficients from room temperature (25degC) to 1200degC. Two methods of extracting the thermal expansion coefficients have been used and compared: (a) dual push-rod dilatometry, which provides the bulk expansion; and (b) x-ray powder diffraction, which provides the lattice expansion. Both methods were performed over the entire temperature range and considered multiple samples taken from <001> Czochralski grown LGT material. The thermal coefficients of expansion were extracted by approximating each expansion data set to a third order polynomial fit over three temperature ranges reported in this work: 25degC to 400degC, 400degC to 900degC, 900degC to 1200degC. An accuracy of fit better than 35ppm for the bulk expansion and better than 10ppm for the lattice expansion have been obtained with the aforementioned polynomial fitting. The percentage difference between the bulk and the lattice fitted expansion responses over the entire temperature range of 25degC to 1200degC is less than 2% for the three crystalline axes, which indicates the high quality and growth consistency of the LGT crystal measured« less

  8. Variable-speed Generators with Flux Weakening

    NASA Technical Reports Server (NTRS)

    Fardoun, A. A.; Fuchs, E. F.; Carlin, P. W.

    1993-01-01

    A cost-competitive, permanent-magnet 20 kW generator is designed such that the following criteria are satisfied: an (over) load capability of at least 30 kW over the entire speed range of 60-120 rpm, generator weight of about 550 lbs with a maximum radial stator flux density of 0.82 T at low speed, unity power factor operation, acceptably small synchronous reactances and operation without a gear box. To justify this final design four different generator designs are investigated: the first two designs are studied to obtain a speed range from 20 to 200 rpm employing rotor field weakening, and the latter two are investigated to obtain a maximum speed range of 40 to 160 rpm based on field weakening via the stator excitation. The generator reactances and induced voltages are computed using finite element/difference solutions. Generator losses and efficiencies are presented for all four designs at rated temperature of Tr=120C.

  9. Ultra-wideband Ge-rich silicon germanium integrated Mach-Zehnder interferometer for mid-infrared spectroscopy.

    PubMed

    Vakarin, Vladyslav; Ramírez, Joan Manel; Frigerio, Jacopo; Ballabio, Andrea; Le Roux, Xavier; Liu, Qiankun; Bouville, David; Vivien, Laurent; Isella, Giovanni; Marris-Morini, Delphine

    2017-09-01

    This Letter explores the use of Ge-rich Si 0.2 Ge 0.8 waveguides on graded Si 1-x Ge x substrate for the demonstration of ultra-wideband photonic integrated circuits in the mid-infrared (mid-IR) wavelength range. We designed, fabricated, and characterized broadband Mach-Zehnder interferometers fully covering a range of 3 μm in the mid-IR band. The fabricated devices operate indistinctly in quasi-TE and quasi-TM polarizations, and have an extinction ratio higher than 10 dB over the entire operating wavelength range. The obtained results are in good correlation with theoretical predictions, while numerical simulations indicate that the device bandwidth can reach one octave with low additional losses. This Letter paves the way for further realization of mid-IR integrated spectrometers using low-index-contrast Si 1-x Ge x waveguides with high germanium concentration.

  10. Examination of the U.S. Air Force's Science, Technology, Engineering, and Mathematics (STEM) Workforce Needs in the Future and Its Strategy to Meet Those Needs

    ERIC Educational Resources Information Center

    National Academies Press, 2010

    2010-01-01

    The Air Force requires technical skills and expertise across the entire range of activities and processes associated with the development, fielding, and employment of air, space, and cyber operational capabilities. The growing complexity of both traditional and emerging missions is placing new demands on education, training, career development,…

  11. Cyber Security: A Road Map for Turkey

    DTIC Science & Technology

    2012-03-19

    Cyber warfare is a form of information warfare, sometimes seen as analogous to conventional warfare, among a range of potential actors, including...nation states, non-state groups, and a complex hybrid of conflict involving both state and non-state actors. Cyber warfare is a tool of national power...An entire nation s ability to operate and fight in the information age is vital toward survival. Nowadays, cyber warfare is mostly focused on

  12. The Evryscopes: monitoring the entire sky for exciting events

    NASA Astrophysics Data System (ADS)

    Law, Nicholas; Corbett, Hank; Howard, Ward S.; Fors, Octavi; Ratzloff, Jeff; Barlow, Brad; Hermes, JJ

    2018-01-01

    The Evryscope is a new type of array telescope which monitors the entire accessible sky in each exposure. The system, with 700 MPix covering an 8000-square-degree field of view, is building many-year-length, high-cadence light curves for every accessible object brighter than ∼16th magnitude. Every night, we add 600 million object detections to our databases, including exoplanet transits, microlensing events, nearby extragalactic transients, and a wide range of other short timescale events. I will present our science plans, the status of our current Evryscope systems (operational in Chile and soon California), the big-data analysis required to explore the petabyte-scale dataset we are collecting over the next few years, and the first results from the telescopes.

  13. On the effects of surrogacy of energy dissipation in determining the intermittency exponent in fully developed turbulence

    NASA Astrophysics Data System (ADS)

    Cleve, J.; Greiner, M.; Sreenivasan, K. R.

    2003-03-01

    The two-point correlation function of the energy dissipation, obtained from a one-point time record of an atmospheric boundary layer, reveals a rigorous power law scaling with intermittency exponent μ approx 0.20 over almost the entire inertial range of scales. However, for the related integral moment, the power law scaling is restricted to the upper part of the inertial range only. This observation is explained in terms of the operational surrogacy of the construction of energy dissipation, which influences the behaviour of the correlation function for small separation distances.

  14. ADVANCEMENT OF THE RHIC BEAM ABORT KICKER SYSTEM.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ZHANG,W.AHRENS,L.MI,J.OERTER,B.SANDBERG,J.WARBURTON,D.

    2003-05-12

    As one of the most critical system for RHIC operation, the beam abort kicker system has to be highly available, reliable, and stable for the entire operating range. Along with the RHIC commission and operation, consistent efforts have been spend to cope with immediate issues as well as inherited design issues. Major design changes have been implemented to achieve the higher operating voltage, longer high voltage hold-off time, fast retriggering and redundant triggering, and improved system protection, etc. Recent system test has demonstrated for the first time that both blue ring and yellow ring beam abort systems have achieved moremore » than 24 hours hold off time at desired operating voltage. In this paper, we report break down, thyratron reverse arcing, and to build a fast re-trigger system to reduce beam spreading in event of premature discharge.« less

  15. A Wide Range Temperature Sensor Using SOI Technology

    NASA Technical Reports Server (NTRS)

    Patterson, Richard L.; Elbuluk, Malik E.; Hammoud, Ahmad

    2009-01-01

    Silicon-on-insulator (SOI) technology is becoming widely used in integrated circuit chips for its advantages over the conventional silicon counterpart. The decrease in leakage current combined with lower power consumption allows electronics to operate in a broader temperature range. This paper describes the performance of an SOIbased temperature sensor under extreme temperatures and thermal cycling. The sensor comprised of a temperature-to-frequency relaxation oscillator circuit utilizing an SOI precision timer chip. The circuit was evaluated under extreme temperature exposure and thermal cycling between -190 C and +210 C. The results indicate that the sensor performed well over the entire test temperature range and it was able to re-start at extreme temperatures.

  16. Coupling of the phosphatase activity of Ci-VSP to its voltage sensor activity over the entire range of voltage sensitivity

    PubMed Central

    Sakata, Souhei; Hossain, Md. Israil; Okamura, Yasushi

    2011-01-01

    Abstract The voltage sensing phosphatase Ci-VSP is composed of a voltage sensor domain (VSD) and a cytoplasmic phosphatase domain. Upon membrane depolarization, movement of the VSD triggers the enzyme's phosphatase activity. To gain further insight into its operating mechanism, we studied the PI(4,5)P2 phosphatase activity of Ci-VSP expressed in Xenopus oocytes over the entire range of VSD motion by assessing the activity of coexpressed Kir2.1 channels or the fluorescence signal from a pleckstrin homology domain fused with green fluorescent protein (GFP) (PHPLC-GFP). Both assays showed greater phosphatase activity at 125 mV than at 75 mV, which corresponds to ‘sensing’ charges that were 90% and 75% of maximum, respectively. On the other hand, the activity at 160 mV (corresponding to 98% of the maximum ‘sensing’ charge) was indistinguishable from that at 125 mV. Modelling the kinetics of the PHPLC-GFP fluorescence revealed that its time course was dependent on both the level of Ci-VSP expression and the diffusion of PHPLC-GFP beneath the plasma membrane. Enzyme activity was calculated by fitting the time course of PHPLC-GFP fluorescence into the model. The voltage dependence of the enzyme activity was superimposable on the Q–V curve, which is consistent with the idea that the enzyme activity is tightly coupled to VSD movement over the entire range of membrane potentials that elicit VSD movement. PMID:21486809

  17. A Method of Determining the Equilibrium Performance and the Stability of an Engine Equipped with an Exhaust Turbosupercharger

    NASA Technical Reports Server (NTRS)

    Rea, James Buchanan

    1941-01-01

    The performance of an exhaust turbine driving a supercharger is investigated by means of a sample calculation based on reasonable assumptions for the purpose of determining whether the assumed installation is stable with respect to changes in the mass of gas handled, boost pressure, etc. The arrangement was found to be stable throughout the entire range of operation. The method developed can be generally applied.

  18. Robust Airborne Networking Extensions (RANGE)

    DTIC Science & Technology

    2008-02-01

    IMUNES [13] project, which provides an entire network stack virtualization and topology control inside a single FreeBSD machine . The emulated topology...Multicast versus broadcast in a manet.” in ADHOC-NOW, 2004, pp. 14–27. [9] J. Mukherjee, R. Atwood , “ Rendezvous point relocation in protocol independent...computer with an Ethernet connection, or a Linux virtual machine on some other (e.g., Windows) operating system, should work. 2.1 Patching the source code

  19. Plastic scintillator block as photon beam monitor for EGRET calibration

    NASA Technical Reports Server (NTRS)

    Lin, Y. C.; Hofstadter, R.; Nolan, P. L.; Walker, A. H.; Mattox, J. R.; Hughes, E. B.

    1991-01-01

    The EGRET (Energetic Gamma Ray Experiment Telescope) detector has been calibrated at SLAC (Stanford Linear Accelerator) and, to a lesser degree, at the MIT Bates Linear Accelerator Center. To monitor the photon beams for the calibration, a plastic scintillator block, 5 cm x 5 cm in cross section, 15 cm in length, and viewed by a single photomultiplier tube, was used for the entire beam energy range of 15 MeV to 10 GeV. The design operation, and method of analysis of the beam intensity are presented. A mathematical framework has been developed to treat the general case of a beam with multiphoton beam pulses and with a background component. A procedure to deal with the fluctuations of the beam intensity over a data-taking period was also developed. The photon beam monitor is physically sturdy, electronically steady, simple to construct, and easy to operate. Its major merits lie in its sheer simplicity of construction and operation and in the wide energy range it can cover.

  20. Wide-Band Spatially Tunable Photonic Bandgap in Visible Spectral Range and Laser based on a Polymer Stabilized Blue Phase

    PubMed Central

    Lin, Jia-De; Wang, Tsai-Yen; Mo, Ting-Shan; Huang, Shuan-Yu; Lee, Chia-Rong

    2016-01-01

    This work successfully develops a largely-gradient-pitched polymer-stabilized blue phase (PSBP) photonic bandgap (PBG) device with a wide-band spatial tunability in nearly entire visible region within a wide blue phase (BP) temperature range including room temperature. The device is fabricated based on the reverse diffusion of two injected BP-monomer mixtures with a low and a high chiral concentrations and afterwards through UV-curing. This gradient-pitched PSBP can show a rainbow-like reflection appearance in which the peak wavelength of the PBG can be spatially tuned from the blue to the red regions at room temperature. The total tuning spectral range for the cell is as broad as 165 nm and covers almost the entire visible region. Based on the gradient-pitched PSBP, a spatially tunable laser is also demonstrated in this work. The temperature sensitivity of the lasing wavelength for the laser is negatively linear and approximately −0.26 nm/°C. The two devices have a great potential for use in applications of photonic devices and displays because of their multiple advantages, such as wide-band tunability, wide operated temperature range, high stability and reliability, no issue of hysteresis, no need of external controlling sources, and not slow tuning speed (mechanically). PMID:27456475

  1. Evaluation of drilled-ball bearings at DN values to three million. 1: Variable oil flow tests

    NASA Technical Reports Server (NTRS)

    Holmes, P. W.

    1932-01-01

    Two 125-mm-bore solid ball bearings and two similar drilled ball bearings were operated at speeds up to 24,000 rpm (3.0 million DN) with a 13,000 newton (3000 lb) thrust load. The oil flow rate was varied from 0.045 to 0.121 kilograms per second (6 to 16 lb/min). The solid ball bearings operated satisfactorily over the entire range of conditions. The drilled ball bearing experienced cage rub with marginal lubrication at 0.045 kilograms per second (6 lb/min). The drilled ball bearing generally ran cooler than the solid ball bearings.

  2. Protecting the health of U.S. military forces in Romania: endemic disease threat considerations.

    PubMed

    Perkins, Dana

    2009-01-01

    In 2005 the United States and Romania signed a historic access agreement establishing the first U.S. military bases in the former Soviet bloc country of Romania. The bases will host joint exercises aimed at developing regional military cooperation with forces throughout the entire 92-country USEUCOM area of responsibility (AOR). These forward operating bases (FOBs) or "lily pads" will include the Smârdan Training Range, Babadag Training Range, Mihail Kogălniceanu (MK) Air Base, and Cincu Training Range. They will be under the command of Joint Task Force East (JTF-East), headquartered at the MK Air Base. Here described are the naturally occurring pathogens of clinical significance that exist in the region, including those of known biowarfare/bioterrorism (BW/BT) potential. Notwithstanding the length of deployment for training, proactive clinical and environmental surveillance should be linked to the implementation of adequate Force Health Protection (FHP) measures to minimize the impact these medical threats may have on JTF-East operations.

  3. Thermal and dynamic range characterization of a photonics-based RF amplifier

    NASA Astrophysics Data System (ADS)

    Noque, D. F.; Borges, R. M.; Muniz, A. L. M.; Bogoni, A.; Cerqueira S., Arismar, Jr.

    2018-05-01

    This work reports a thermal and dynamic range characterization of an ultra-wideband photonics-based RF amplifier for microwave and mm-waves future 5G optical-wireless networks. The proposed technology applies the four-wave mixing nonlinear effect to provide RF amplification in analog and digital radio-over-fiber systems. The experimental analysis from 300 kHz to 50 GHz takes into account different figures of merit, such as RF gain, spurious-free dynamic range and RF output power stability as a function of temperature. The thermal characterization from -10 to +70 °C demonstrates a 27 dB flat photonics-assisted RF gain over the entire frequency range under real operational conditions of a base station for illustrating the feasibility of the photonics-assisted RF amplifier for 5G networks.

  4. Noncontact true temperature measurement, 2

    NASA Technical Reports Server (NTRS)

    Lee, Mark C.; Allen, James L.

    1988-01-01

    A laser pyrometer was developed for acquiring the true temperature of a levitated sample. The reflectivity is measured by first expanding the laser beam to cover the entire cross-sectional surface of the diffuse target. The reflectivity calibration of this system is determined from the surface emissivity of a target with a blackbody cavity. The emissivity of the real target can then be calculated. The overall system constant is obtained by passively measuring the radiance of the blackbody cavity (emissivity = 1.0) at a known, arbitrary temperature. Since the photosensor used is highly linear over the entire operating temperature range, the true temperature of the target can then be computed. The latest results available from this on-going research indicate that true temperatures thus obtained are in very good quantitative agreement with thermocouple measured temperatures.

  5. The MSG Central Facility - A Mission Control System for Windows NT

    NASA Astrophysics Data System (ADS)

    Thompson, R.

    The MSG Central Facility, being developed by Science Systems for EUMETSAT1, represents the first of a new generation of satellite mission control systems, based on the Windows NT operating system. The system makes use of a range of new technologies to provide an integrated environment for the planning, scheduling, control and monitoring of the entire Meteosat Second Generation mission. It supports packetised TM/TC and uses Science System's Space UNiT product to provide automated operations support at both Schedule (Timeline) and Procedure levels. Flexible access to historical data is provided through an operations archive based on ORACLE Enterprise Server, hosted on a large RAID array and off-line tape jukebox. Event driven real-time data distribution is based on the CORBA standard. Operations preparation and configuration control tools form a fully integrated element of the system.

  6. JANUS: A Compilation System for Balancing Parallelism and Performance in OpenVX

    NASA Astrophysics Data System (ADS)

    Omidian, Hossein; Lemieux, Guy G. F.

    2018-04-01

    Embedded systems typically do not have enough on-chip memory for entire an image buffer. Programming systems like OpenCV operate on entire image frames at each step, making them use excessive memory bandwidth and power. In contrast, the paradigm used by OpenVX is much more efficient; it uses image tiling, and the compilation system is allowed to analyze and optimize the operation sequence, specified as a compute graph, before doing any pixel processing. In this work, we are building a compilation system for OpenVX that can analyze and optimize the compute graph to take advantage of parallel resources in many-core systems or FPGAs. Using a database of prewritten OpenVX kernels, it automatically adjusts the image tile size as well as using kernel duplication and coalescing to meet a defined area (resource) target, or to meet a specified throughput target. This allows a single compute graph to target implementations with a wide range of performance needs or capabilities, e.g. from handheld to datacenter, that use minimal resources and power to reach the performance target.

  7. Thermal Characterization of a NASA 30-cm Ion Thruster Operated up to 5 kW

    NASA Technical Reports Server (NTRS)

    SarverVerhey, Timothy R.; Domonkos, Matthew T.; Patterson, Michael J.

    2001-01-01

    A preliminary thermal characterization of a newly-fabricated NSTAR-derived test-bed thruster has recently been performed. The temperature behavior of the rare-earth magnets are reported because of their critical impact on thruster operation. The results obtained to date showed that the magnet temperatures did not exceed the stabilization Emit during thruster operation up to 4.6 kW. Magnet temperature data were also obtained for two earlier NSTAR Engineering Model Thrusters and are discussed in this report. Comparison between these thrusters suggests that the test-bed engine in its present condition is able to operate safely at higher power because of the lower discharge losses over the entire operating power range of this engine. However, because of the 'burn-in' behavior of the NSTAR thruster, magnet temperatures are expected to increase as discharge losses increase with accumulated thruster operation. Consequently, a new engineering solution may be required to achieve 5-kW operation with acceptable margin.

  8. Thermal characteristics of the 12-gigahertz, 200-watt output stage tube for the communications technology satellite

    NASA Technical Reports Server (NTRS)

    Curren, A. N.

    1978-01-01

    A description of the methods used to measure component temperatures and heat-rejection rates in a simulated space environment on output stage tubes (OST's) developed for the Communications Technology Satellite is presented along with summaries of experimentally determined values. The OST's were operated over the entire anticipated operating drive range, from the dc beam (zero drive) condition to the 6-db overdrive condition. The baseplate temperature was varied from -10 to 58 C with emphasis placed on the testing done at 45 C, the normal anticipated operating temperature. The heat-rejection rate of the OST baseplate ranged from 7.6 W at the dc beam condition to 184.5 W at the 6-db overdrive condition; the heat-rejection rate of the multistage depressed collector (MDC) cover ranged from 192.2 to 155.9 W for the same conditions. The maximum OST temperature measured on the MDC cover was 227 C during a dc beam test. The minimum temperature measured, also on the MDC cover, was -67.5 C at the end of an extended simulated eclipse test period. No effects were observed on the OST thermal characteristics due to vibration testing or temperature-reversal cycle testing.

  9. Achieving comb formation over the entire lasing range of quantum cascade lasers

    DOE PAGES

    Yang, Yang; Burghoff, David; Reno, John; ...

    2017-01-01

    Frequency combs based on quantum cascade laser (QCL) are finding promising applications in highspeed broadband spectroscopy in the terahertz regime, where many molecules have their "fingerprints". To form stable combs in QCLs, an effective control of group velocity dispersion plays a critical role. The dispersion of the QCL cavity has two main parts: a static part from the material and a dynamic part from the intersubband transitions. Unlike the gain, which is clamped to a fixed value above the lasing threshold, dispersion associated with the intersubband transitions changes with bias even above the threshold, and this reduces the dynamic rangemore » of comb formation. Here, by incorporating tunability into the dispersion compensator, we demonstrate a QCL device exhibiting comb operation from I th to I max, which greatly expands the operation range of the frequency combs.« less

  10. Design Evolution and Performance Characterization of the GTX Air-Breathing Launch Vehicle Inlet

    NASA Technical Reports Server (NTRS)

    DeBonis, J. R.; Steffen, C. J., Jr.; Rice, T.; Trefny, C. J.

    2002-01-01

    The design and analysis of a second version of the inlet for the GTX rocket-based combine-cycle launch vehicle is discussed. The previous design did not achieve its predicted performance levels due to excessive turning of low-momentum comer flows and local over-contraction due to asymmetric end-walls. This design attempts to remove these problems by reducing the spike half-angle to 10- from 12-degrees and by implementing true plane of symmetry end-walls. Axisymmetric Reynolds-Averaged Navier-Stokes simulations using both perfect gas and real gas, finite rate chemistry, assumptions were performed to aid in the design process and to create a comprehensive database of inlet performance. The inlet design, which operates over the entire air-breathing Mach number range from 0 to 12, and the performance database are presented. The performance database, for use in cycle analysis, includes predictions of mass capture, pressure recovery, throat Mach number, drag force, and heat load, for the entire Mach range. Results of the computations are compared with experimental data to validate the performance database.

  11. Volttron version 5.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    VOLTTRON is an agent execution platform providing services to its agents that allow them to easily communicate with physical devices and other resources. VOLTTRON delivers an innovative distributed control and sensing software platform that supports modern control strategies, including agent-based and transaction-based controls. It enables mobile and stationary software agents to perform information gathering, processing, and control actions. VOLTTRON can independently manage a wide range of applications, such as HVAC systems, electric vehicles, distributed energy or entire building loads, leading to improved operational efficiency.

  12. Environmental and Water Quality Operational Studies. Biota of Selected Aquatic Habitats of the McClellan-Kerr Arkansas River Navigation System.

    DTIC Science & Technology

    1985-07-01

    of the commercial fisher- S men to whom we spoke had captured any during 1982. None of the recent rotenone collections of the Arkansas Game & Fish...stable * in the entire range of the species," and he noted that commercial fisher- men frequently took shovelnose sturgeon. Neither of these species...colonizing the natural banks. This spe- cies is normally found upon submerged plants or animals; however, speci- mens have been collected from mud and even

  13. Agile Walking Robot

    NASA Technical Reports Server (NTRS)

    Larimer, Stanley J.; Lisec, Thomas R.; Spiessbach, Andrew J.; Waldron, Kenneth J.

    1990-01-01

    Proposed agile walking robot operates over rocky, sandy, and sloping terrain. Offers stability and climbing ability superior to other conceptual mobile robots. Equipped with six articulated legs like those of insect, continually feels ground under leg before applying weight to it. If leg sensed unexpected object or failed to make contact with ground at expected point, seeks alternative position within radius of 20 cm. Failing that, robot halts, examines area around foot in detail with laser ranging imager, and replans entire cycle of steps for all legs before proceeding.

  14. Performance monitoring can boost turboexpander efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIntire, R.

    1982-07-05

    Focuses on the turboexpander/refrigeration system's radial expander and radial compressor. Explains that radial expander efficiency depends on mass flow rate, inlet pressure, inlet temperature, discharge pressure, gas composition, and shaft speed. Discusses quantifying the performance of the separate components over a range of operating conditions; estimating the increase in performance associated with any hardware change; and developing an analytical (computer) model of the entire system by using the performance curve of individual components. Emphasizes antisurge control and modifying Q/N (flow rate/ shaft speed).

  15. Thermal Design and Analysis for the Cryogenic MIDAS Experiment

    NASA Technical Reports Server (NTRS)

    Amundsen, Ruth McElroy

    1997-01-01

    The Materials In Devices As Superconductors (MIDAS) spaceflight experiment is a NASA payload which launched in September 1996 on the Shuttle, and was transferred to the Mir Space Station for several months of operation. MIDAS was developed and built at NASA Langley Research Center (LaRC). The primary objective of the experiment was to determine the effects of microgravity and spaceflight on the electrical properties of high-temperature superconductive (HTS) materials. The thermal challenge on MIDAS was to maintain the superconductive specimens at or below 80 K for the entire operation of the experiment, including all ground testing and 90 days of spaceflight operation. Cooling was provided by a small tactical cryocooler. The superconductive specimens and the coldfinger of the cryocooler were mounted in a vacuum chamber, with vacuum levels maintained by an ion pump. The entire experiment was mounted for operation in a stowage locker inside Mir, with the only heat dissipation capability provided by a cooling fan exhausting to the habitable compartment. The thermal environment on Mir can potentially vary over the range 5 to 40 C; this was the range used in testing, and this wide range adds to the difficulty in managing the power dissipated from the experiment's active components. Many issues in the thermal design are discussed, including: thermal isolation methods for the cryogenic samples; design for cooling to cryogenic temperatures; cryogenic epoxy bonds; management of ambient temperature components self-heating; and fan cooling of the enclosed locker. Results of the design are also considered, including the thermal gradients across the HTS samples and cryogenic thermal strap, electronics and thermal sensor cryogenic performance, and differences between ground and flight performance. Modeling was performed in both SINDA-85 and MSC/PATRAN (with direct geometry import from the CAD design tool Pro/Engineer). Advantages of both types of models are discussed. Correlation of several models to ground testing and flight data (where available) is presented. Both SINDA and PATRAN models predicted the actual thermal performance of the experiment well, even without post-flight correlation adjustments of the models.

  16. Noncontact true temperature measurement. [of levitated sample using laser pyrometer

    NASA Technical Reports Server (NTRS)

    Lee, Mark C.; Allen, James L.

    1987-01-01

    A laser pyrometer has been developed for acquiring the true temperature of a levitated sample. The laser beam is first expanded to cover the entire cross-sectional surface of the target. For calibration of such a system, the reflectivity signal of an ideal 0.95 cm diameter gold-coated sphere (reflectivity = 0.99) is used as the reference for any other real targets. The emissivity of the real target can then be calculated. The overall system constant is obtained by passively measuring the radiance of a blackbody furnace (emissivity = 1.0) at a known, arbitrary temperature. Since the photo sensor used is highly linear over the entire operating temperature range, the true temperature of the target can then be computed. Preliminary results indicate that true temperatures thus obtained are in excellent correlation with thermocouple measured temperatures.

  17. High-temperature-resistant distributed Bragg reflector fiber laser written in Er/Yb co-doped fiber.

    PubMed

    Guan, Bai-Ou; Zhang, Yang; Wang, Hong-Jun; Chen, Da; Tam, Hwa-Yaw

    2008-03-03

    We present a high-temperature-resistant distributed Bragg reflector fiber laser photowritten in Er/Yb codoped phosphosilicate fiber that is capable of long-term operation at 500 degrees C. Highly saturated Bragg gratings are directly inscribed into the Er/Yb fiber without hydrogen loading by using a 193 nm excimer laser and phase mask method. After annealing at elevated temperature, the remained gratings are strong enough for laser oscillation. The laser operates in robust single mode with output power more than 1 dBm and signal-to-noise ratio better than 70 dB over the entire temperature range from room temperature to 500 degrees C.

  18. A Three-Dimensional Unsteady CFD Model of Compressor Stability

    NASA Technical Reports Server (NTRS)

    Chima, Rodrick V.

    2006-01-01

    A three-dimensional unsteady CFD code called CSTALL has been developed and used to investigate compressor stability. The code solved the Euler equations through the entire annulus and all blade rows. Blade row turning, losses, and deviation were modeled using body force terms which required input data at stations between blade rows. The input data was calculated using a separate Navier-Stokes turbomachinery analysis code run at one operating point near stall, and was scaled to other operating points using overall characteristic maps. No information about the stalled characteristic was used. CSTALL was run in a 2-D throughflow mode for very fast calculations of operating maps and estimation of stall points. Calculated pressure ratio characteristics for NASA stage 35 agreed well with experimental data, and results with inlet radial distortion showed the expected loss of range. CSTALL was also run in a 3-D mode to investigate inlet circumferential distortion. Calculated operating maps for stage 35 with 120 degree distortion screens showed a loss in range and pressure rise. Unsteady calculations showed rotating stall with two part-span stall cells. The paper describes the body force formulation in detail, examines the computed results, and concludes with observations about the code.

  19. Entropy-Based Performance Analysis of Jet Engines; Methodology and Application to a Generic Single-Spool Turbojet

    NASA Astrophysics Data System (ADS)

    Abbas, Mohammad

    Recently developed methodology that provides the direct assessment of traditional thrust-based performance of aerospace vehicles in terms of entropy generation (i.e., exergy destruction) is modified for stand-alone jet engines. This methodology is applied to a specific single-spool turbojet engine configuration. A generic compressor performance map along with modeled engine component performance characterizations are utilized in order to provide comprehensive traditional engine performance results (engine thrust, mass capture, and RPM), for on and off-design engine operation. Details of exergy losses in engine components, across the entire engine, and in the engine wake are provided and the engine performance losses associated with their losses are discussed. Results are provided across the engine operating envelope as defined by operational ranges of flight Mach number, altitude, and fuel throttle setting. The exergy destruction that occurs in the engine wake is shown to be dominant with respect to other losses, including all exergy losses that occur inside the engine. Specifically, the ratio of the exergy destruction rate in the wake to the exergy destruction rate inside the engine itself ranges from 1 to 2.5 across the operational envelope of the modeled engine.

  20. Braiding by Majorana tracking and long-range CNOT gates with color codes

    NASA Astrophysics Data System (ADS)

    Litinski, Daniel; von Oppen, Felix

    2017-11-01

    Color-code quantum computation seamlessly combines Majorana-based hardware with topological error correction. Specifically, as Clifford gates are transversal in two-dimensional color codes, they enable the use of the Majoranas' non-Abelian statistics for gate operations at the code level. Here, we discuss the implementation of color codes in arrays of Majorana nanowires that avoid branched networks such as T junctions, thereby simplifying their realization. We show that, in such implementations, non-Abelian statistics can be exploited without ever performing physical braiding operations. Physical braiding operations are replaced by Majorana tracking, an entirely software-based protocol which appropriately updates the Majoranas involved in the color-code stabilizer measurements. This approach minimizes the required hardware operations for single-qubit Clifford gates. For Clifford completeness, we combine color codes with surface codes, and use color-to-surface-code lattice surgery for long-range multitarget CNOT gates which have a time overhead that grows only logarithmically with the physical distance separating control and target qubits. With the addition of magic state distillation, our architecture describes a fault-tolerant universal quantum computer in systems such as networks of tetrons, hexons, or Majorana box qubits, but can also be applied to nontopological qubit platforms.

  1. Climate science in the tropics: waves, vortices and PDEs

    NASA Astrophysics Data System (ADS)

    Khouider, Boualem; Majda, Andrew J.; Stechmann, Samuel N.

    2013-01-01

    Clouds in the tropics can organize the circulation on planetary scales and profoundly impact long range seasonal forecasting and climate on the entire globe, yet contemporary operational computer models are often deficient in representing these phenomena. On the other hand, contemporary observations reveal remarkably complex coherent waves and vortices in the tropics interacting across a bewildering range of scales from kilometers to ten thousand kilometers. This paper reviews the interdisciplinary contributions over the last decade through the modus operandi of applied mathematics to these important scientific problems. Novel physical phenomena, new multiscale equations, novel PDEs, and numerical algorithms are presented here with the goal of attracting mathematicians and physicists to this exciting research area.

  2. Calibration of space instruments at the Metrology Light Source

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, R., E-mail: roman.klein@ptb.de; Fliegauf, R.; Gottwald, A.

    2016-07-27

    PTB has more than 20 years of experience in the calibration of space-based instruments using synchrotron radiation to cover the UV, VUV and X-ray spectral range. New instrumentation at the electron storage ring Metrology Light Source (MLS) opens up extended calibration possibilities within this framework. In particular, the set-up of a large vacuum vessel that can accommodate entire space instruments opens up new prospects. Moreover, a new facility for the calibration of radiation transfer source standards with a considerably extended spectral range has been put into operation. Besides, characterization and calibration of single components like e.g. mirrors, filters, gratings, andmore » detectors is continued.« less

  3. Bolometric detectors for the Planck surveyor

    NASA Technical Reports Server (NTRS)

    Yun, M.; Koch, T.; Bock, J.; Holmes, W.; Hustead, L.; Wild, L.; Mulder, J.; Turner, A.; Lange, A.; Bhatia, R.

    2002-01-01

    The High Frequency Instrument on the NASA/ESA Planck Surveyor, scheduled for launch in 2007, will map the entire sky in 6 frequency bands ranging from 100 GHz to 857 GHz to probe Cosmic Microwave Background (CMB) anisotropy and polarization with angular resolution ranging from 9' to 5'. The HFI focal plane will contain 48 silicon nitride micromesh bolometers operating from a 100 mK heat sink. Four detectors in each of the 6 bands will detect unpolarized radiation. An additional 4 pairs of detectors will provide sensitivity to linear polarization of emission at 143, 217 and 353 GHz. We report on the development and characterization of these detectors before delivery to the European HFI consortium.

  4. Optimisation of the Sputnik-VAD design.

    PubMed

    Selishchev, Sergey V; Telyshev, Dmitry V

    2016-10-10

    Miniaturisation of VADs can offer important benefits, including less invasive implantation techniques and more versatility in patient selection. The aim of this work was to reduce the weight, size, and energy consumption of the Sputnik VAD. The second generation of the Sputnik VAD was developed with a set of changes in construction. The head pressure-flow rate (H-Q) and power consumption-flow rate curves for the Sputnik VADs were measured at different rotational speeds. Computational fluid dynamics (CFD) were used for operating condition simulation and the LVADs were compared under the simulated physiological conditions. The slope of the H-Q curves for the Sputnik 1 VAD remains almost invariable over the entire range of the measured flow rate, in contrast to the curves for the Sputnik 2 VAD, which become flat in the high flow-rate region. Despite the design modification, the operating rotor speed remained invariable. The preload sensitivity of the Sputnik VAD is higher than that of the other rotary blood pumps and amounts to 0.111 ± 0.0092 L min-1 mmHg-1. The power consumption for the Sputnik 2 VAD is lower over the entire speed range, except for at 5,000 rpm. The pump weight was reduced from 246 to 205 g, the pump length was decreased from 82 to 66 mm, and the pump diameter was decreased from 32 to 29 mm. The total energy consumption of the pump was reduced by 15%.

  5. Single-mode temperature and polarisation-stable high-speed 850nm vertical cavity surface emitting lasers

    NASA Astrophysics Data System (ADS)

    Nazaruk, D. E.; Blokhin, S. A.; Maleev, N. A.; Bobrov, M. A.; Kuzmenkov, A. G.; Vasil'ev, A. P.; Gladyshev, A. G.; Pavlov, M. M.; Blokhin, A. A.; Kulagina, M. M.; Vashanova, K. A.; Zadiranov, Yu M.; Fefelov, A. G.; Ustinov, V. M.

    2014-12-01

    A new intracavity-contacted design to realize temperature and polarization-stable high-speed single-mode 850 nm vertical cavity surface emitting lasers (VCSELs) grown by molecular-beam epitaxy is proposed. Temperature dependences of static and dynamic characteristics of the 4.5 pm oxide aperture InGaAlAs VCSEL were investigated in detail. Due to optimal gain-cavity detuning and enhanced carrier localization in the active region the threshold current remains below 0.75 mA for the temperature range within 20-90°C, while the output power exceeds 1 mW up to 90°C. Single-mode operation with side-mode suppression ratio higher than 30 dB and orthogonal polarization suppression ratio more than 18 dB was obtained in the whole current and temperature operation range. Device demonstrates serial resistance less than 250 Ohm, which is rather low for any type of single-mode short- wavelength VCSELs. VCSEL demonstrates temperature robust high-speed operation with modulation bandwidth higher than 13 GHz in the entire temperature range of 20-90°C. Despite high resonance frequency the high-speed performance of developed VCSELs was limited by the cut-off frequency of the parasitic low pass filter created by device resistances and capacitances. The proposed design is promising for single-mode high-speed VCSEL applications in a wide spectral range.

  6. High Temperature Operation of Al 0.45Ga 0.55N/Al 0.30Ga 0.70 N High Electron Mobility Transistors

    DOE PAGES

    Baca, Albert G.; Armstrong, Andrew M.; Allerman, Andrew A.; ...

    2017-08-01

    AlGaN-channel high electron mobility transistors (HEMTs) are among a class of ultra wide-bandgap transistors that have a bandgap greater than ~3.4 eV, beyond that of GaN and SiC, and are promising candidates for RF and power applications. Long-channel Al xGa 1-xN HEMTs with x = 0.3 in the channel have been built and evaluated across the -50°C to +200°C temperature range. Room temperature drain current of 70 mA/mm, absent of gate leakage, and with a modest -1.3 V threshold voltage was measured. A very large I on/I off current ratio, greater than 10 8 was demonstrated over the entire temperaturemore » range, indicating that off-state leakage is below the measurement limit even at 200°C. Finally, combined with near ideal subthreshold slope factor that is just 1.3× higher than the theoretical limit across the temperature range, the excellent leakage properties are an attractive characteristic for high temperature operation.« less

  7. A steady-state high-temperature apparatus for measuring thermal conductivity of ceramics

    NASA Astrophysics Data System (ADS)

    Filla, B. James

    1997-07-01

    A one-sided very-high-temperature guarded hot plate has been built to measure thermal conductivity of monolithic ceramics, ceramic composites, thermal barrier coatings, functional graded materials, and high-temperature metal alloys. It is an absolute, steady-state measurement device with an operational temperature range of 400-1400 K. Measurements are made in an atmosphere of low-pressure helium. Specimens examined in this apparatus are 70 mm in diameter, with thicknesses ranging between 1 and 8 mm. Optimal specimen thermal conductivities fall in the range of 0.5-30 W/(mK). Internal heated components are composed entirely of high-purity aluminum oxide, boron nitride, beryllium oxide, and fibrous alumina insulation board. Pure nickel and thermocouple-grade platinum-based alloys are the only metals used in the system. Apparatus design, modeling, and operation are described, along with the methods of data analysis that are unique to this system. An analysis of measurement uncertainty yields a combined measurement uncertainty of ±5%. Experimental measurements on several materials are presented to illustrate the precision and bias of the apparatus.

  8. High Temperature Operation of Al 0.45Ga 0.55N/Al 0.30Ga 0.70 N High Electron Mobility Transistors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baca, Albert G.; Armstrong, Andrew M.; Allerman, Andrew A.

    AlGaN-channel high electron mobility transistors (HEMTs) are among a class of ultra wide-bandgap transistors that have a bandgap greater than ~3.4 eV, beyond that of GaN and SiC, and are promising candidates for RF and power applications. Long-channel Al xGa 1-xN HEMTs with x = 0.3 in the channel have been built and evaluated across the -50°C to +200°C temperature range. Room temperature drain current of 70 mA/mm, absent of gate leakage, and with a modest -1.3 V threshold voltage was measured. A very large I on/I off current ratio, greater than 10 8 was demonstrated over the entire temperaturemore » range, indicating that off-state leakage is below the measurement limit even at 200°C. Finally, combined with near ideal subthreshold slope factor that is just 1.3× higher than the theoretical limit across the temperature range, the excellent leakage properties are an attractive characteristic for high temperature operation.« less

  9. Sustainable energy at the 100 W level for scientific sites on the Antarctic Plateau: Lessons learned from the Polar Experiment Network for Geospace Upper atmosphere Investigations-Automatic Geophysical Observatory project

    NASA Astrophysics Data System (ADS)

    Melville, R.; Stillinger, A.; Gerrard, A.; Weatherwax, A.

    2014-04-01

    The need to provide power to unmanned instrumentation over the course of an entire year on the Antarctic plateau presents a large number of engineering and logistical challenges. Designs formulated in ideal laboratory environments often fail in the Antarctic due to the harsh operating conditions, and field experience is necessary to achieve year-round operation in the 100 W power range. In this paper we present our current power design for the Automatic Geophysical Observatories; a design based on over two decades of experience on the ice and allows for relatively continuous operation at the aforementioned power level. We also discuss our various implementation methods, both failures and successes, in an effort assist other unmanned deployments on the ice.

  10. Sustainable energy at the 100 W level for scientific sites on the Antarctic Plateau: lessons learned from the Polar Experiment Network for Geospace Upper atmosphere Investigations-Automatic Geophysical Observatory project.

    PubMed

    Melville, R; Stillinger, A; Gerrard, A; Weatherwax, A

    2014-04-01

    The need to provide power to unmanned instrumentation over the course of an entire year on the Antarctic plateau presents a large number of engineering and logistical challenges. Designs formulated in ideal laboratory environments often fail in the Antarctic due to the harsh operating conditions, and field experience is necessary to achieve year-round operation in the 100 W power range. In this paper we present our current power design for the Automatic Geophysical Observatories; a design based on over two decades of experience on the ice and allows for relatively continuous operation at the aforementioned power level. We also discuss our various implementation methods, both failures and successes, in an effort assist other unmanned deployments on the ice.

  11. PIV measurements of the flow at the inlet of a turbocharger centrifugal compressor with recirculation casing treatment near the inducer

    NASA Astrophysics Data System (ADS)

    Gancedo, Matthieu; Gutmark, Ephraim; Guillou, Erwann

    2016-02-01

    Turbocharging reciprocating engines is a viable solution in order to meet the new regulations for emissions and fuel efficiency in part because turbochargers allow to use smaller, more efficient engines (downsizing) while maintaining power. A major challenge is to match the flow range of a dynamic turbomachine (the centrifugal compressor in the turbocharger) with a positive displacement pump (the engine) as the flow range of the latter is typically higher. The operating range of the compressor is thus of prime interest. At low mass flow rate (MFR), the compressor range is limited by the occurrence of surge. To control and improve it, numerous and varied methods have been used. Yet, an automotive application requires that the solution remains relatively simple and preferably passive. A common feature that has been demonstrated to improve the surge line is the use of flow recirculation in the inducer region through a circumferential bleed slot around the shroud, also called "ported shroud", similar to what has been developed for axial compressors in the past. The compressor studied here features such a device. In order to better understand the effect of the recirculation slot on the compressor functioning, flow measurements were performed at the inlet using particle image velocimetry and the results were correlated with pressure measurements nearby. Measurements were taken on a compressor with and without recirculation and across the full range of normal operation and during surge using a phase-locking method to obtain average flow fields throughout the entire surge cycle. When the recirculation is blocked, it was found that strong backflow develops at low MFR perturbing the incoming flow and inducing significant preswirl. The slot eliminated most of the backflow in front of the inducer making the compressor operation more stable. The measurements performed during surge showed strong backflow occurring periodically during the outlet pressure drop and when the instantaneous MFR is near 0 or negative. The flow motion at the inlet is highly three dimensional as flow enters in the center of the inducer at all times, even when the instantaneous flow rate is negative, compared to the reversed flow observed in the entire inlet for surging axial compressors.

  12. Autonomous microfluidic system for phosphate detection.

    PubMed

    McGraw, Christina M; Stitzel, Shannon E; Cleary, John; Slater, Conor; Diamond, Dermot

    2007-02-28

    Miniaturization of analytical devices through the advent of microfluidics and micro total analysis systems is an important step forward for applications such as medical diagnostics and environmental monitoring. The development of field-deployable instruments requires that the entire system, including all necessary peripheral components, be miniaturized and packaged in a portable device. A sensor for long-term monitoring of phosphate levels has been developed that incorporates sampling, reagent and waste storage, detection, and wireless communication into a complete, miniaturized system. The device employs a low-power detection and communication system, so the entire instrument can operate autonomously for 7 days on a single rechargeable, 12V battery. In addition, integration of a wireless communication device allows the instrument to be controlled and results to be downloaded remotely. This autonomous system has a limit of detection of 0.3mg/L and a linear dynamic range between 0 and 20mg/L.

  13. Prereduction and melting of domestic titaniferous materials

    NASA Astrophysics Data System (ADS)

    Nafziger, R. H.; Jordan, R. R.

    1983-03-01

    Two domestic ilmenites and one titaniferous magnetite were prereduced by the United States Department of the Interior, Bureau of Mines, in a batch rotary kiln with coal char to assess the feasibility of this technique in improving melting operations and subsequent electric furnace processing. All three prereduced titaniferous materials were melted satisfactorily in an electric arc furnace to produce iron as a metal suitable for further refining to steel; metallizations ranging from 63 to 83 pct of the iron oxides were achieved. The ilmenites yielded titanium enriched slags that were amenable to further processing by conventional methods. Prereduction decreased electrode consumption during furnace operation and also conserved expensive electrical energy that otherwise must be used to reduce and melt totally the entire titaniferous materials charge.

  14. Aerodynamic studies of delta-wing shuttle orbiters. Part 1: Low speed

    NASA Technical Reports Server (NTRS)

    Freeman, D. C., Jr.; Ellison, J. C.

    1972-01-01

    Numerous wind tunnel tests conducted on the evolving delta-wing orbiters have generated a fairly large aerodynamic data base over the entire entry operation range of these vehicles. A limited assessment is made of some of the aerodynamics of the current HO type orbiters, and several specific problem areas selected from the broad data base are discussed. These include, from a subsonic viewpoint, discussions of trim drag effect; effects of the installation of main rocket engine nozzles, OMS and RCS packages, Reynolds number effects, lateral-directional stability characteristics, and landing characteristics.

  15. Eye-Safe Lidar

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1989-01-01

    Laser infrared radar (lidar) undergoing development harmless to human eyes, consists almost entirely of solid-state components, and offers high range resolution. Operates at wavelength of about 2 micrometers. If radiation from such device strikes eye, almost completely absorbed by cornea without causing damage, even if aimed directly at eye. Continuous-wave light from laser oscillator amplified and modulated for transmission from telescope. Small portion of output of oscillator fed to single-mode fiber coupler, where mixed with return pulses. Intended for remote Doppler measurements of winds and differential-absorption measurements of concentrations of gases in atmosphere.

  16. Integrated Advance Microwave Sounding Unit-A (AMSU-A). Performance Verification Report: EOS AMSU-A1 and AMSU-A2 Receivers Assemblies

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This test report presents the test data of the EOS AMSU-A Flight Model No.1 (FM-1) receiver subsystem. The tests are performed per the Acceptance Test Procedure for the AMSU-A Reseiver Subsystem, AE-26002/6A. The functional performance tests are conducted either at the component or subsystem level. While the component-level tests are performed over the entire operating temperature range predicted by thermal analysis, the subsystem-level test are conducted at ambient temperature only.

  17. Dynamic range considerations for EUV MAMA detectors. [Extreme UV Multianode Microchannel Array

    NASA Technical Reports Server (NTRS)

    Illing, Rainer M. E.; Bybee, Richard L.; Timothy, J. G.

    1990-01-01

    The multianode microchannel array (MAMA) has been chosen as the detector for two instruments on the ESA/NASA Solar Heliospheric Observatory. The response of the MAMA to the two extreme types of solar spectra, disk and corona, have been modeled with a view toward evaluating dynamic range effects present. The method of MAMA operation is discussed, with emphasis given to modeling the effect of electron cloud charge spreading to several detector anodes and amplifiers (n-fold events). Representative synthetic EUV spectra have been created. The detector response to these spectra is modeled by dissecting the input photon radiation field across the detector array into contributions to the various amplifier channels. The results of this dissection are shown for spectral regions across the entire wavelength region of interest. These results are used to identify regions in which total array photon counting rate or individual amplifier rate may exceed the design limits. This allows the design or operational modes to be tailored to eliminate the problem areas.

  18. Developments of the European Flood Awareness System (EFAS)

    NASA Astrophysics Data System (ADS)

    Thiemig, Vera; Olav Skøien, Jon; Salamon, Peter; Pappenberger, Florian; Wetterhall, Fredrik; Holst, Bo; Asp, Sara-Sophia; Garcia Padilla, Mercedes; Garcia, Rafael J.; Schweim, Christoph; Ziese, Markus

    2017-04-01

    EFAS (http://www.efas.eu) is an operational system for flood forecasting and early warning for the entire Europe, which is fully operational as part of the Copernicus Emergency Management Service since 2012. The prime aim of EFAS is to gain time for preparedness measures before major flood events - particularly in trans-national river basins - strike. This is achieved by providing complementary, added value information to the national and regional services holding the mandate for flood warning as well as to the ERCC (European Response and Coordination Centre). Using a coherent model for all of Europe forced with a range of deterministic and ensemble weather forecasts, the system can give a probabilistic flood forecast for a medium range lead time (up to 10 days) independent of country borders. The system is under continuous development, and we will present the basic set up, some prominent examples of recent and ongoing developments (such as the rapid impact assessment, seasonal outlook and the extended domain) and the future challenges.

  19. Laparoscopic pancreatic cystogastrostomy.

    PubMed

    Obermeyer, Robert J; Fisher, William E; Salameh, Jihad R; Jeyapalan, Manjula; Sweeney, John F; Brunicardi, F Charles

    2003-08-01

    The purpose of the review was to evaluate the feasibility and outcome of laparoscopic pancreatic cystogastrostomy for operative drainage of symptomatic pancreatic pseudocysts. A retrospective review of all patients who underwent laparoscopic pancreatic cystogastrostomy between June 1997 and July 2001 was performed. Data regarding etiology of pancreatitis, size of pseudocyst, operative time, complications, and pseudocyst recurrence were collected and reported as median values with ranges. Laparoscopic pancreatic cystogastrostomy was attempted in 6 patients. Pseudocyst etiology included gallstone pancreatitis (3), alcohol-induced pancreatitis (2), and post-ERCP pancreatitis (1). The cystogastrostomy was successfully performed laparoscopically in 5 of 6 patients. However, the procedure was converted to open after creation of the cystgastrostomy in 1 of these patients. There were no complications in the cases completed laparoscopically and no deaths in the entire group. No pseudocyst recurrences were observed with a median followup of 44 months (range 4-59 months). Laparoscopic pancreatic cystgastrostomy is a feasible surgical treatment of pancreatic pseudocysts with a resultant low pseudocyst recurrence rate, length of stay, and low morbidity and mortality.

  20. Sensitivity analysis of physiological factors in space habitat design

    NASA Technical Reports Server (NTRS)

    Billingham, J.

    1982-01-01

    The costs incurred by design conservatism in space habitat design are discussed from a structural standpoint, and areas of physiological research into less than earth-normal conditions that offer the greatest potential decrease in habitat construction and operating costs are studied. The established range of human tolerance limits is defined for those physiological conditions which directly affect habitat structural design. These entire ranges or portions thereof are set as habitat design constraints as a function of habitat population and degree of ecological closure. Calculations are performed to determine the structural weight and cost associated with each discrete population size and its selected environmental conditions, on the basis of habitable volume equivalence for four basic habitat configurations: sphere, cylinder with hemispherical ends, torus, and crystal palace.

  1. Protecting coherence by environmental decoherence: a solvable paradigmatic model

    NASA Astrophysics Data System (ADS)

    Torres, Juan Mauricio; Seligman, Thomas H.

    2017-11-01

    We consider a particularly simple exactly solvable model for a qubit coupled to sequentially nested environments. The purpose is to exemplify the coherence conserving effect of a central system, that has been reported as a result of increasing the coupling between near and far environment. The paradigmatic example is the Jaynes-Cummings Hamiltonian, which we introduce into a Kossakowski-Lindblad master equation using alternatively the lowering operator of the oscillator or its number operator as Lindblad operators. The harmonic oscillator is regarded as the near environment of the qubit, while effects of a far environment are accounted for by the two options for the dissipative part of the master equation. The exact solution allows us to cover the entire range of coupling strength from the perturbative regime to strong coupling analytically. The coherence conserving effect of the coupling to the far environment is confirmed throughout.

  2. Design of a Clinical Information Management System to Support DNA Analysis Laboratory Operation

    PubMed Central

    Dubay, Christopher J.; Zimmerman, David; Popovich, Bradley

    1995-01-01

    The LabDirector system has been developed at the Oregon Health Sciences University to support the operation of our clinical DNA analysis laboratory. Through an iterative design process which has spanned two years, we have produced a system that is both highly tailored to a clinical genetics production laboratory and flexible in its implementation, to support the rapid growth and change of protocols and methodologies in use in the field. The administrative aspects of the system are integrated with an enterprise schedule management system. The laboratory side of the system is driven by a protocol modeling and execution system. The close integration between these two aspects of the clinical laboratory facilitates smooth operations, and allows management to accurately measure costs and performance. The entire application has been designed and documented to provide utility to a wide range of clinical laboratory environments.

  3. Evaluation of dissociated and steam-reformed methanol as automotive engine fuels

    NASA Technical Reports Server (NTRS)

    Lalk, T. R.; Mccall, D. M.; Mccanlies, J. M.

    1984-01-01

    Dissociated and steam reformed methanol were evaluated as automotive engine fuels. Advantages and disadvantages in using methanol in the reformed rather than liquid state were discussed. Engine dynamometer tests were conducted with a four cylinder, 2.3 liter, spark ignition automotive engine to determine performance and emission characteristics operating on simulated dissociated and steam reformed methanol (2H2 + CO and 3H2 + CO2 respectively), and liquid methanol. Results are presented for engine performance and emissions as functions of equivalence ratio, at various throttle settings and engine speeds. Operation on dissociated and steam reformed methanol was characterized by flashback (violent propagation of a flame into the intake manifold) which limited operation to lower power output than was obtainable using liquid methanol. It was concluded that: an automobile could not be operated solely on dissociated or steam reformed methanol over the entire required power range - a supplementary fuel system or power source would be necessary to attain higher powers; the use of reformed mechanol, compared to liquid methanol, may result in a small improvement in thermal efficiency in the low power range; dissociated methanol is a better fuel than steam reformed methanol for use in a spark ignition engine; and use of dissociated or steam reformed methanol may result in lower exhaust emissions compared to liquid methanol.

  4. Noise in any frequency range can enhance information transmission in a sensory neuron

    NASA Astrophysics Data System (ADS)

    Levin, Jacob E.

    1997-05-01

    The effect of noise on the neural encoding of broadband signals was investigated in the cricket cercal system, a mechanosensory system sensitive to small near-field air particle disturbances. Known air current stimuli were presented to the cricket through audio speakers in a controlled environment in a variety of background noise conditions. Spike trains from the second layer of neuronal processing, the primary sensory interneurons, were recorded with intracellular Electrodes and the performance of these neurons characterized with the tools of information theory. SNR, mutual information rates, and other measures of encoding accuracy were calculated for single frequency, narrowband, and broadband signals over the entire amplitude sensitivity range of the cells, in the presence of uncorrelated noise background also spanning the cells' frequency and amplitude sensitivity range. Significant enhancements of transmitted information through the addition of external noise were observed regardless of the frequency range of either the signal or noise waveforms, provided both were within the operating range of the cell. Considerable improvements in signal encoding were observed for almost an entire order of magnitude of near-threshold signal amplitudes. This included sinusoidal signals embedded in broadband white noise, broadband signals in broadband noise, and even broadband signals presented with narrowband noise in a completely non-overlapping frequency range. The noise related increases in mutual information rate for broadband signals were as high as 150%, and up to 600% increases in SNR were observed for sinusoidal signals. Additionally, it was shown that the amount of information about the signal carried, on average, by each spike was INCREASED for small signals when presented with noise—implying that added input noise can, in certain situations, actually improve the accuracy of the encoding process itself.

  5. Development of the methodology of exhaust emissions measurement under RDE (Real Driving Emissions) conditions for non-road mobile machinery (NRMM) vehicles

    NASA Astrophysics Data System (ADS)

    Merkisz, J.; Lijewski, P.; Fuc, P.; Siedlecki, M.; Ziolkowski, A.

    2016-09-01

    The paper analyzes the exhaust emissions from farm vehicles based on research performed under field conditions (RDE) according to the NTE procedure. This analysis has shown that it is hard to meet the NTE requirements under field conditions (engine operation in the NTE zone for at least 30 seconds). Due to a very high variability of the engine conditions, the share of a valid number of NTE windows in the field test is small throughout the entire test. For this reason, a modification of the measurement and exhaust emissions calculation methodology has been proposed for farm vehicles of the NRMM group. A test has been developed composed of the following phases: trip to the operation site (paved roads) and field operations (including u-turns and maneuvering). The range of the operation time share in individual test phases has been determined. A change in the method of calculating the real exhaust emissions has also been implemented in relation to the NTE procedure.

  6. Determining the microwave coupling and operational efficiencies of a microwave plasma assisted chemical vapor deposition reactor under high pressure diamond synthesis operating conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nad, Shreya; Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824; Gu, Yajun

    2015-07-15

    The microwave coupling efficiency of the 2.45 GHz, microwave plasma assisted diamond synthesis process is investigated by experimentally measuring the performance of a specific single mode excited, internally tuned microwave plasma reactor. Plasma reactor coupling efficiencies (η) > 90% are achieved over the entire 100–260 Torr pressure range and 1.5–2.4 kW input power diamond synthesis regime. When operating at a specific experimental operating condition, small additional internal tuning adjustments can be made to achieve η > 98%. When the plasma reactor has low empty cavity losses, i.e., the empty cavity quality factor is >1500, then overall microwave discharge coupling efficienciesmore » (η{sub coup}) of >94% can be achieved. A large, safe, and efficient experimental operating regime is identified. Both substrate hot spots and the formation of microwave plasmoids are eliminated when operating within this regime. This investigation suggests that both the reactor design and the reactor process operation must be considered when attempting to lower diamond synthesis electrical energy costs while still enabling a very versatile and flexible operation performance.« less

  7. Ultra-high resolution AMOLED

    NASA Astrophysics Data System (ADS)

    Wacyk, Ihor; Prache, Olivier; Ghosh, Amal

    2011-06-01

    AMOLED microdisplays continue to show improvement in resolution and optical performance, enhancing their appeal for a broad range of near-eye applications such as night vision, simulation and training, situational awareness, augmented reality, medical imaging, and mobile video entertainment and gaming. eMagin's latest development of an HDTV+ resolution technology integrates an OLED pixel of 3.2 × 9.6 microns in size on a 0.18 micron CMOS backplane to deliver significant new functionality as well as the capability to implement a 1920×1200 microdisplay in a 0.86" diagonal area. In addition to the conventional matrix addressing circuitry, the HDTV+ display includes a very lowpower, low-voltage-differential-signaling (LVDS) serialized interface to minimize cable and connector size as well as electromagnetic emissions (EMI), an on-chip set of look-up-tables for digital gamma correction, and a novel pulsewidth- modulation (PWM) scheme that together with the standard analog control provides a total dimming range of 0.05cd/m2 to 2000cd/m2 in the monochrome version. The PWM function also enables an impulse drive mode of operation that significantly reduces motion artifacts in high speed scene changes. An internal 10-bit DAC ensures that a full 256 gamma-corrected gray levels are available across the entire dimming range, resulting in a measured dynamic range exceeding 20-bits. This device has been successfully tested for operation at frame rates ranging from 30Hz up to 85Hz. This paper describes the operational features and detailed optical and electrical test results for the new AMOLED WUXGA resolution microdisplay.

  8. Entirely passive heat pipe apparatus capable of operating against gravity

    DOEpatents

    Koenig, Daniel R.

    1982-01-01

    The disclosure is directed to an entirely passive heat pipe apparatus capable of operating against gravity for vertical distances in the order of 3 to 7 meters and more. A return conduit into which an inert gas is introduced is used to lower the specific density of the working fluid so that it may be returned a greater vertical distance from condenser to evaporator.

  9. Entirely passive heat-pipe apparatus capable of operating against gravity

    DOEpatents

    Koenig, D.R.

    1981-02-11

    The disclosure is directed to an entirely passive heat pipe apparatus capable of operating against gravity for vertical distances in the order of 3 to 7 and more. A return conduit into which an inert gas is introduced is used to lower the specific density of the working fluid so that it may be returned a greater vertical distance from condenser to evaporator.

  10. The Astrophysics Science Division Annual Report 2008

    NASA Technical Reports Server (NTRS)

    Oegerle, William; Reddy, Francis; Tyler, Pat

    2009-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radio wavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. This report includes the Division's activities during 2008.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stein, Joshua; Burnham, Laurie; Jones, Christian Birk

    The U.S. DOE Regional Test Center for Solar Technologies program was established to validate photovoltaic (PV) technologies installed in a range of different climates. The program is funded by the Energy Department's SunShot Initiative. The initiative seeks to make solar energy cost competitive with other forms of electricity by the end of the decade. Sandia National Laboratory currently manages four different sites across the country. The National Renewable Energy Laboratory manages a fifth site in Colorado. The entire PV portfolio currently includes 20 industry partners and almost 500 kW of installed systems. The program follows a defined process that outlinesmore » tasks, milestones, agreements, and deliverables. The process is broken out into four main parts: 1) planning and design, 2) installation, 3) operations, and 4) decommissioning. This operations manual defines the various elements of each part.« less

  12. From the GKLS Equation to the Theory of Solar and Fuel Cells

    NASA Astrophysics Data System (ADS)

    Alicki, R.

    The mathematically sound theory of quantum open systems, formulated in the ’70s and highlighted by the discovery of Gorini-Kossakowski-Lindblad-Sudarshan (GKLS) equation, found a wide range of applications in various branches of physics and chemistry, notably in the field of quantum information and quantum thermodynamics. However, it took 40 years before this formalism has been applied to explain correctly the operation principles of long existing energy transducers like photovoltaic, thermoelectric and fuel cells. This long path is briefly reviewed from the author’s perspective. Finally, the new, fully quantum model of chemical engine based on GKLS equation and applicable to fuel cells or replicators is outlined. The model illustrates the difficulty with an entirely quantum operational definition of work, comparable to the problem of quantum measurement.

  13. Control of a lithium-ion battery storage system for microgrid applications

    NASA Astrophysics Data System (ADS)

    Pegueroles-Queralt, Jordi; Bianchi, Fernando D.; Gomis-Bellmunt, Oriol

    2014-12-01

    The operation of future microgrids will require the use of energy storage systems employing power electronics converters with advanced power management capacities. This paper presents the control scheme for a medium power lithium-ion battery bidirectional DC/AC power converter intended for microgrid applications. The switching devices of a bidirectional DC converter are commanded by a single sliding mode control law, dynamically shaped by a linear voltage regulator in accordance with the battery management system. The sliding mode controller facilitates the implementation and design of the control law and simplifies the stability analysis over the entire operating range. Control parameters of the linear regulator are designed to minimize the impact of commutation noise in the DC-link voltage regulation. The effectiveness of the proposed control strategy is illustrated by experimental results.

  14. Frequency domain near-infrared multiwavelength imager design using high-speed, direct analog-to-digital conversion

    NASA Astrophysics Data System (ADS)

    Zimmermann, Bernhard B.; Fang, Qianqian; Boas, David A.; Carp, Stefan A.

    2016-01-01

    Frequency domain near-infrared spectroscopy (FD-NIRS) has proven to be a reliable method for quantification of tissue absolute optical properties. We present a full-sampling direct analog-to-digital conversion FD-NIR imager. While we developed this instrument with a focus on high-speed optical breast tomographic imaging, the proposed design is suitable for a wide-range of biophotonic applications where fast, accurate quantification of absolute optical properties is needed. Simultaneous dual wavelength operation at 685 and 830 nm is achieved by concurrent 67.5 and 75 MHz frequency modulation of each laser source, respectively, followed by digitization using a high-speed (180 MS/s) 16-bit A/D converter and hybrid FPGA-assisted demodulation. The instrument supports 25 source locations and features 20 concurrently operating detectors. The noise floor of the instrument was measured at <1.4 pW/√Hz, and a dynamic range of 115+ dB, corresponding to nearly six orders of magnitude, has been demonstrated. Titration experiments consisting of 200 different absorption and scattering values were conducted to demonstrate accurate optical property quantification over the entire range of physiologically expected values.

  15. Frequency domain near-infrared multiwavelength imager design using high-speed, direct analog-to-digital conversion

    PubMed Central

    Zimmermann, Bernhard B.; Fang, Qianqian; Boas, David A.; Carp, Stefan A.

    2016-01-01

    Abstract. Frequency domain near-infrared spectroscopy (FD-NIRS) has proven to be a reliable method for quantification of tissue absolute optical properties. We present a full-sampling direct analog-to-digital conversion FD-NIR imager. While we developed this instrument with a focus on high-speed optical breast tomographic imaging, the proposed design is suitable for a wide-range of biophotonic applications where fast, accurate quantification of absolute optical properties is needed. Simultaneous dual wavelength operation at 685 and 830 nm is achieved by concurrent 67.5 and 75 MHz frequency modulation of each laser source, respectively, followed by digitization using a high-speed (180  MS/s) 16-bit A/D converter and hybrid FPGA-assisted demodulation. The instrument supports 25 source locations and features 20 concurrently operating detectors. The noise floor of the instrument was measured at <1.4  pW/√Hz, and a dynamic range of 115+ dB, corresponding to nearly six orders of magnitude, has been demonstrated. Titration experiments consisting of 200 different absorption and scattering values were conducted to demonstrate accurate optical property quantification over the entire range of physiologically expected values. PMID:26813081

  16. Effect of Elevated Free Stream Turbulence on the Hydrodynamic Performance of a Tidal Turbine Blade Section

    NASA Astrophysics Data System (ADS)

    Vinod, Ashwin; Lawrence, Angela; Banerjee, Arindam

    2016-11-01

    The effects of elevated freestream turbulence (FST) on the performance of a tidal turbine blade is studied using laboratory experiments. Of interest for the current investigation is elevated levels of FST in the range of 6-24% that is prevalent in deployment sites of tidal turbines. A constant chord, no twist blade section (SG6043) is tested at an operating Reynolds number of 1.5x105 and at angles of attack ranging from -90o to +90o. The parameter space encompasses the entire operational range of a tidal turbine that includes flow reversal. Multiple levels of controlled FST are achieved using an active grid type turbulence generator placed at the entrance to the water tunnel test section. The hydrodynamic loads experienced by the blade section are measured using a 3-axis load cell; a Stereo-PIV technique is used to analyze the flow field around the blade. The results indicate that elevated levels of FST cause a delay in flow separation when compared to the case of a laminar freestream. Furthermore, the lift to drag ratio of the blade is considerably altered depending on the level of FST and angle of attack tested.

  17. Cryogen-free superconducting magnet system for multifrequency electron paramagnetic resonance up to 12.1 T

    NASA Astrophysics Data System (ADS)

    Smirnov, Alex I.; Smirnova, Tatyana I.; MacArthur, Ryan L.; Good, Jeremy A.; Hall, Renny

    2006-03-01

    Multifrequency and high field/high frequency (HF) electron paramagnetic resonance (EPR) is a powerful spectroscopy for studying paramagnetic spin systems ranging from organic-free radicals to catalytic paramagnetic metal ion centers in metalloproteins. Typically, HF EPR experiments are carried out at resonant frequencies ν =95-300GHz and this requires magnetic fields of 3.4-10.7T for electronic spins with g ≈2.0. Such fields could be easily achieved with superconducting magnets, but, unlike NMR, these magnets cannot operate in a persistent mode in order to satisfy a wide range of resonant fields required by the experiment. Operating and maintaining conventional passively cooled superconducting magnets in EPR laboratories require frequent transfer of cryogens by trained personnel. Here we describe and characterize a versatile cryogen-free magnet system for HF EPR at magnetic fields up to 12.1T that is suitable for ramping the magnetic field over the entire range, precision scans around the target field, and/or holding the field at the target value. We also demonstrate that in a nonpersistent mode of operation the magnetic field can be stabilized to better than 0.3ppm/h over 15h period by employing a transducer-controlled power supply. Such stability is sufficient for many HF EPR experiments. An important feature of the system is that it is virtually maintenance-free because it is based on a cryogen-free technology and therefore does not require any liquid cryogens (liquid helium or nitrogen) for operation. We believe that actively cooled superconducting magnets are ideally suited for a wide range of HF EPR experiments including studies of spin-labeled nucleic acids and proteins, single-molecule magnets, and metalloproteins.

  18. Alternative Fuels Data Center: Golden Eagle Distributors Inc. to Convert

    Science.gov Websites

    several years. Golden Eagle will convert all fleet vehicles to CNG in their six branch operations Entire Fleet to CNG Golden Eagle Distributors Inc. to Convert Entire Fleet to CNG to someone by E-mail Share Alternative Fuels Data Center: Golden Eagle Distributors Inc. to Convert Entire Fleet

  19. Hydrodynamic effects in a misaligned radial face seal

    NASA Technical Reports Server (NTRS)

    Etsion, I.

    1978-01-01

    Hydrodynamic effects in a flat seal having an angular misalignment are analyzed, taking into account the radial variation in seal clearance. An analytical solution for axial force, restoring moment, and transverse moment is presented that covers the whole range from zero to full angular misalignment. Both low pressure seals with cavitating flow and high pressure seals with full fluid film are considered. Strong coupling is demonstrated between angular misalignment and transverse moment which leads the misalignment vector by 90 degrees. This transverse moment, which is entirely due to hydrodynamic effects, may be a significant factor in seal operating mechanism.

  20. Hydrodynamic effects in a misaligned radial face seal

    NASA Technical Reports Server (NTRS)

    Etsion, I.

    1977-01-01

    Hydrodynamic effects in a flat seal having an angular misalignment are analyzed, taking into account the radial variation in seal clearance. An analytical solution for axial force, restoring moment, and transverse moment is presented that covers the whole range from zero to full angular misalignment. Both low pressure seals with cavitating flow and high pressure seals with full fluid film are considered. Strong coupling is demonstrated between angular misalignment and transverse moment which leads the misalignment vector by 90 degrees. This transverse moment, which is entirely due to hydrodynamic effects, is a significant factor in the seal operating mechanism.

  1. Temperature insensitive and ultra wideband silica-based dual polarization optical hybrid for coherent receiver with highly symmetrical interferometer design.

    PubMed

    Nasu, Yusuke; Mizuno, Takayuki; Kasahara, Ryoichi; Saida, Takashi

    2011-12-12

    To extend the operation wavelength range of dual-polarization optical hybrids (DPOH), we propose a highly symmetrical interferometer design for a polarization beam splitter and an optical hybrid to reduce temperature and wavelength dependence. The design successfully decreases this dependence, and a fabricated DPOH with silica-based planar lightwave circuits provides temperature-insensitive performance with a polarization extinction ratio of over 25 dB and phase errors of less than 3 degrees over the entire C- and L-bands. © 2011 Optical Society of America

  2. Remote monitoring of sub ppb levels of vinyl chloride, dichloroethylene and trichloroethylene via modem operated automated GC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Linenberg, A.; Lander, N.J.

    1994-12-31

    The need for remote monitoring of certain compounds in a sparsely populated area with limited user assistance led to the development and manufacture of a self contained, portable gas chromatography with the appropriate software. Part per billion levels of vinyl chloride, cis 1,2 dichloroethylene and trichloroethylene were detected in air using a trap for preconcentration of the compounds. The units were continuously calibrated with certified standards from Scott Specialty Gases, which in one case was 1 part per billion of the aforementioned compounds. The entire operation of the units, including monitoring instrument responses, changing operating parameters, data transfer, data reviewmore » and data reporting was done entirely on a remote basis from approximately 600 miles away using a remote computer with a modem and remote operating software. The entire system concept promises the availability of highly sensitive remote monitoring in sparsely populated areas for long periods of time.« less

  3. CPLOAS_2 user manual

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sallaberry, Cedric Jean-Marie.; Helton, Jon Craig

    2012-10-01

    Weak link (WL)/strong link (SL) systems are important parts of the overall operational design of high-consequence systems. In such designs, the SL system is very robust and is intended to permit operation of the entire system under, and only under, intended conditions. In contrast, the WL system is intended to fail in a predictable and irreversible manner under accident conditions and render the entire system inoperable before an accidental operation of the SL system. The likelihood that the WL system will fail to deactivate the entire system before the SL system fails (i.e., degrades into a configuration that could allowmore » an accidental operation of the entire system) is referred to as probability of loss of assured safety (PLOAS). This report describes the Fortran 90 program CPLOAS_2 that implements the following representations for PLOAS for situations in which both link physical properties and link failure properties are time-dependent: (i) failure of all SLs before failure of any WL, (ii) failure of any SL before failure of any WL, (iii) failure of all SLs before failure of all WLs, and (iv) failure of any SL before failure of all WLs. The effects of aleatory uncertainty and epistemic uncertainty in the definition and numerical evaluation of PLOAS can be included in the calculations performed by CPLOAS_2.« less

  4. 20. RW Meyer Sugar Mill: 18761889. Boiling House Interior, 1878. ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    20. RW Meyer Sugar Mill: 1876-1889. Boiling House Interior, 1878. View: Remains of south wall. The molasses storage pits are below the floor in the foreground. The remaining piece of floor indicates the form of the entire floor. The sorghum pan and boiling range flue slope from left to right (east to west) and permitted batches of cane juice to flow through the boiling pan by gravity. The beams, joists, truss work are built of northwest pine. The sides and floor boards are built of redwood. The boiling range flue is built of fire-brick, masonry, and portland cement. The corrugated roof appears to be a later addition, not contemporary with mill operation. - R. W. Meyer Sugar Mill, State Route 47, Kualapuu, Maui County, HI

  5. Extended-Range High-Resolution Dynamical Downscaling over a Continental-Scale Domain

    NASA Astrophysics Data System (ADS)

    Husain, S. Z.; Separovic, L.; Yu, W.; Fernig, D.

    2014-12-01

    High-resolution mesoscale simulations, when applied for downscaling meteorological fields over large spatial domains and for extended time periods, can provide valuable information for many practical application scenarios including the weather-dependent renewable energy industry. In the present study, a strategy has been proposed to dynamically downscale coarse-resolution meteorological fields from Environment Canada's regional analyses for a period of multiple years over the entire Canadian territory. The study demonstrates that a continuous mesoscale simulation over the entire domain is the most suitable approach in this regard. Large-scale deviations in the different meteorological fields pose the biggest challenge for extended-range simulations over continental scale domains, and the enforcement of the lateral boundary conditions is not sufficient to restrict such deviations. A scheme has therefore been developed to spectrally nudge the simulated high-resolution meteorological fields at the different model vertical levels towards those embedded in the coarse-resolution driving fields derived from the regional analyses. A series of experiments were carried out to determine the optimal nudging strategy including the appropriate nudging length scales, nudging vertical profile and temporal relaxation. A forcing strategy based on grid nudging of the different surface fields, including surface temperature, soil-moisture, and snow conditions, towards their expected values obtained from a high-resolution offline surface scheme was also devised to limit any considerable deviation in the evolving surface fields due to extended-range temporal integrations. The study shows that ensuring large-scale atmospheric similarities helps to deliver near-surface statistical scores for temperature, dew point temperature and horizontal wind speed that are better or comparable to the operational regional forecasts issued by Environment Canada. Furthermore, the meteorological fields resulting from the proposed downscaling strategy have significantly improved spatiotemporal variance compared to those from the operational forecasts, and any time series generated from the downscaled fields do not suffer from discontinuities due to switching between the consecutive forecasts.

  6. Thermodynamics of Quantum Gases for the Entire Range of Temperature

    ERIC Educational Resources Information Center

    Biswas, Shyamal; Jana, Debnarayan

    2012-01-01

    We have analytically explored the thermodynamics of free Bose and Fermi gases for the entire range of temperature, and have extended the same for harmonically trapped cases. We have obtained approximate chemical potentials for the quantum gases in closed forms of temperature so that the thermodynamic properties of the quantum gases become…

  7. System Modeling of a MEMS Vibratory Gyroscope and Integration to Circuit Simulation.

    PubMed

    Kwon, Hyukjin J; Seok, Seyeong; Lim, Geunbae

    2017-11-18

    Recently, consumer applications have dramatically created the demand for low-cost and compact gyroscopes. Therefore, on the basis of microelectromechanical systems (MEMS) technology, many gyroscopes have been developed and successfully commercialized. A MEMS gyroscope consists of a MEMS device and an electrical circuit for self-oscillation and angular-rate detection. Since the MEMS device and circuit are interactively related, the entire system should be analyzed together to design or test the gyroscope. In this study, a MEMS vibratory gyroscope is analyzed based on the system dynamic modeling; thus, it can be mathematically expressed and integrated into a circuit simulator. A behavioral simulation of the entire system was conducted to prove the self-oscillation and angular-rate detection and to determine the circuit parameters to be optimized. From the simulation, the operating characteristic according to the vacuum pressure and scale factor was obtained, which indicated similar trends compared with those of the experimental results. The simulation method presented in this paper can be generalized to a wide range of MEMS devices.

  8. A Multipopulation Coevolutionary Strategy for Multiobjective Immune Algorithm

    PubMed Central

    Shi, Jiao; Gong, Maoguo; Ma, Wenping; Jiao, Licheng

    2014-01-01

    How to maintain the population diversity is an important issue in designing a multiobjective evolutionary algorithm. This paper presents an enhanced nondominated neighbor-based immune algorithm in which a multipopulation coevolutionary strategy is introduced for improving the population diversity. In the proposed algorithm, subpopulations evolve independently; thus the unique characteristics of each subpopulation can be effectively maintained, and the diversity of the entire population is effectively increased. Besides, the dynamic information of multiple subpopulations is obtained with the help of the designed cooperation operator which reflects a mutually beneficial relationship among subpopulations. Subpopulations gain the opportunity to exchange information, thereby expanding the search range of the entire population. Subpopulations make use of the reference experience from each other, thereby improving the efficiency of evolutionary search. Compared with several state-of-the-art multiobjective evolutionary algorithms on well-known and frequently used multiobjective and many-objective problems, the proposed algorithm achieves comparable results in terms of convergence, diversity metrics, and running time on most test problems. PMID:24672330

  9. Modern Space Craft - Antique Specifications

    NASA Technical Reports Server (NTRS)

    Brewer, Ron; Trout, Dawn

    2006-01-01

    Spacecraft now and of the future are being controlled by EMC requirements of the past. Little has been done by the launch vehicle/spacecraft manufacturers to abandon MIL-STD-461C which was released in 1986 because most of the electronics equipment being used aboard current launch vehicles is approved by similarity and heritage to MIL-STD-46 1 C and its predecessors. Twenty years later these electronic equipment items are still not tested to today's MIL-STD-461E requirements because there is a risk that the items will fail to meet the requirements and thus the cost will increase if it becomes necessary to redesign the equipment. That cost is insignificant compared with the cost of losing an entire mission! In the 20 years that have elapsed since MIL-STD-461C was released, the EMC environment has undergone major changes. High speed digital devices have been created that have fundamental clock and bus frequencies that span the entire LV/SC frequency range from the Flight Termination Systems through C and S-Band telemetry. Personnel involved in ground operations routinely carry and use hand held transceivers and cellular telephones close by sensitive electronics equipment. There are now many more orbiting receivers and emitters, plus range assets have increased dramatically since 2001. It's way past time to bring requirements up-to-date!

  10. An Investigation of the Effects of Nose and Lip Shapes for an Underslung Scoop Inlet at Mach Numbers from 0 to 1.9

    NASA Technical Reports Server (NTRS)

    Pfyl, Frank A.

    1955-01-01

    An experimental investigation was conducted to determine the performance characteristics an underslung nose-scoop air-induction system for a supersonic airplane. Five different nose shapes, three lip shapes, and two internal diffusers were investigated. Tests were made at Mach numbers from 0 to 1.9, angles of attack from 0 deg to approximately l5 deg, and mass-flow ratios from 0 to maximum obtainable. It was found that the underslung nose-scoop inlet was able to operate at Mach numbers from 0.6 to 1.9 over a large positive angle-of-attack range without adverse effects on the pressure recovery. Although there was no one inlet configuration that was markedly superior over the entire range of operating variables, the arrangement having a nose designed to give increased supersonic compression at low angles of attack, and a sharp lip (configuration designated N3L3) showed the most favorable performance characteristics over the supersonic Mach number range. Inlets with sizable lip radii gave satisfactory performance up to a Mach number of 1.5; however, as a result of an increase in drag, the performance of such inlets was markedly inferior to the sharp-lip configuration above Mach numbers of 1.5. Throughout the range of test Mach numbers all inlet configurations evidenced stable air-flow characteristics over the mass-flow range for normal engine operation. Analysis of the inlet performance on the basis of a propulsive thrust parameter showed that a fixed inlet area could be used for Mach numbers up to 1.5 with only a small sacrifice in performance.

  11. DMI's Baltic Sea Coastal operational forecasting system

    NASA Astrophysics Data System (ADS)

    Murawski, Jens; Berg, Per; Weismann Poulsen, Jacob

    2017-04-01

    Operational forecasting is challenged with bridging the gap between the large scales of the driving weather systems and the local, human scales of the model applications. The limit of what can be represented by local model has been continuously shifted to higher and higher spatial resolution, with the aim to better resolve the local dynamic and to make it possible to describe processes that could only be parameterised in older versions, with the ultimate goal to improve the quality of the forecast. Current hardware trends demand a str onger focus on the development of efficient, highly parallelised software and require a refactoring of the code with a solid focus on portable performance. The gained performance can be used for running high resolution model with a larger coverage. Together with the development of efficient two-way nesting routines, this has made it possible to approach the near-coastal zone with model applications that can run in a time effective way. Denmarks Meteorological Institute uses the HBM(1) ocean circulation model for applications that covers the entire Baltic Sea and North Sea with an integrated model set-up that spans the range of horizontal resolution from 1nm for the entire Baltic Sea to approx. 200m resolution in local fjords (Limfjord). For the next model generation, the high resolution set-ups are going to be extended and new high resolution domains in coastal zones are either implemented or tested for operational use. For the first time it will be possible to cover large stretches of the Baltic coastal zone with sufficiently high resolution to model the local hydrodynamic adequately. (1) HBM stands for HIROMB-BOOS-Model, whereas HIROMB stands for "High Resolution Model for the Baltic Sea" and BOOS stands for "Baltic Operational Oceanography System".

  12. Performance of Axial-Flow Supersonic Compressor of the XJ55-FF-1 Turbojet Engine. IV - Analysis of Compressor Operation over a Range of Equivalent Tip Speeds from 801 to 1614 Feet Per Second

    NASA Technical Reports Server (NTRS)

    Graham, Robert C.; Hartmann, Melvin J.

    1949-01-01

    An investigation was conducted to determine the performance characteristics of the axial-flow supersonic compressor of the XJ55-FF-1 turbojet engine. An analysis of the performance of the rotor was made based on detailed flow measurements behind the rotor. The compressor apparently did not obtain the design normal-shock configuration in this investigation. A large redistribution of mass occurred toward the root of the rotor over the entire speed range; this condition was so acute at design speed that the tip sections were completely inoperative. The passage pressure recovery at maximum pressure ratio at 1614 feet per second varied from a maximum of 0.81 near the root to 0.53 near the tip, which indicated very poor efficiency of the flow process through the rotor. The results, however, indicated that the desired supersonic operation may be obtained by decreasing the effective contraction ratio of the rotor blade passage.

  13. Optical pH Sensor Covering the Range from pH 0-14 Compatible with Mobile-Device Readout and Based on a Set of Rationally Designed Indicator Dyes.

    PubMed

    Gotor, Raúl; Ashokkumar, Pichandi; Hecht, Mandy; Keil, Karin; Rurack, Knut

    2017-08-15

    In this work, a family of pH-responsive fluorescent probes has been designed in a rational manner with the aid of quantum chemistry tools, covering the entire pH range from 0-14. Relying on the boron-dipyrromethene (BODIPY) core, all the probes as well as selected reference dyes display very similar spectroscopic properties with ON-OFF fluorescence switching responses, facilitating optical readout in simple devices used for detection and analysis. Embedding of the probes and reference dyes into hydrogel spots on a plastic strip yielded a test strip that reversibly indicates pH with a considerably small uncertainty of ∼0.1 pH units. These strips are not only reusable but, combined with a 3D-printed case that can be attached to a smartphone, the USB port of which drives the integrated LED used for excitation, allows for autonomous operation in on-site or in-the-field applications; the developed Android application software ("app") further simplifies operation for unskilled users.

  14. Preparing GMAT for Operational Maneuver Planning of the Advanced Composition Explorer (ACE)

    NASA Technical Reports Server (NTRS)

    Qureshi, Rizwan Hamid; Hughes, Steven P.

    2014-01-01

    The General Mission Analysis Tool (GMAT) is an open-source space mission design, analysis and trajectory optimization tool. GMAT is developed by a team of NASA, private industry, public and private contributors. GMAT is designed to model, optimize and estimate spacecraft trajectories in flight regimes ranging from low Earth orbit to lunar applications, interplanetary trajectories and other deep space missions. GMAT has also been flight qualified to support operational maneuver planning for the Advanced Composition Explorer (ACE) mission. ACE was launched in August, 1997 and is orbiting the Sun-Earth L1 libration point. The primary science objective of ACE is to study the composition of both the solar wind and the galactic cosmic rays. Operational orbit determination, maneuver operations and product generation for ACE are conducted by NASA Goddard Space Flight Center (GSFC) Flight Dynamics Facility (FDF). This paper discusses the entire engineering lifecycle and major operational certification milestones that GMAT successfully completed to obtain operational certification for the ACE mission. Operational certification milestones such as gathering of the requirements for ACE operational maneuver planning, gap analysis, test plans and procedures development, system design, pre-shadow operations, training to FDF ACE maneuver planners, shadow operations, Test Readiness Review (TRR) and finally Operational Readiness Review (ORR) are discussed. These efforts have demonstrated that GMAT is flight quality software ready to support ACE mission operations in the FDF.

  15. Global and regional kinematics with VLBI

    NASA Technical Reports Server (NTRS)

    Ma, Chopo

    1994-01-01

    Since a VLBI station cannot operate in isolation and since simultaneous operation of the entire VLBI network is impractical, it is necessary to design observing programs with periodic observing sessions using networks of 3-7 stations that, when treated together, will have the necessary interstation data and network overlaps to determine the desired rates of change. Thus, there has been a mix of global, intercontinental, transcontinental, and regional networks to make measurements ranging from plate motions to deformation over a few hundred km. Over time, even networks focusing on regional deformation using mobile VLBI included large stations removed by several thousand km to increase sensitivity, determine EOP more accurately, and provide better ties to the terrestrial reference frame (TRF). Analysis products have also evolved, beginning with baseline components, and then to full three-dimensional site velocities in a global TRF.

  16. Entire radial solutions of elliptic systems and inequalities of the mean curvature type

    NASA Astrophysics Data System (ADS)

    Filippucci, Roberta

    2007-10-01

    In this paper we study first nonexistence of radial entire solutions of elliptic systems of the mean curvature type with a singular or degenerate diffusion depending on the solution u. In particular we extend a previous result given in [R. Filippucci, Nonexistence of radial entire solutions of elliptic systems, J. Differential Equations 188 (2003) 353-389]. Moreover, in the scalar case we obtain nonexistence of all entire solutions, radial or not, of differential inequalities involving again operators of the mean curvature type and a diffusion term. We prove that in the scalar case, nonexistence of entire solutions is due to the explosion of the derivative of every nonglobal radial solution in the right extremum of the maximal interval of existence, while in that point the solution is bounded. This behavior is qualitatively different with respect to what happens for the m-Laplacian operator, studied in [R. Filippucci, Nonexistence of radial entire solutions of elliptic systems, J. Differential Equations 188 (2003) 353-389], where nonexistence of entire solutions is due, even in the vectorial case, to the explosion in norm of the solution at a finite point. Our nonexistence theorems for inequalities extend previous results given by Naito and Usami in [YE Naito, H. Usami, Entire solutions of the inequality div(A(=u)=u)[greater-or-equal, slanted]f(u), Math. Z. 225 (1997) 167-175] and Ghergu and Radulescu in [M. Ghergu, V. Radulescu, Existence and nonexistence of entire solutions to the logistic differential equation, Abstr. Appl. Anal. 17 (2003) 995-1003].

  17. Probability of loss of assured safety in systems with multiple time-dependent failure modes.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Helton, Jon Craig; Pilch, Martin.; Sallaberry, Cedric Jean-Marie.

    2012-09-01

    Weak link (WL)/strong link (SL) systems are important parts of the overall operational design of high-consequence systems. In such designs, the SL system is very robust and is intended to permit operation of the entire system under, and only under, intended conditions. In contrast, the WL system is intended to fail in a predictable and irreversible manner under accident conditions and render the entire system inoperable before an accidental operation of the SL system. The likelihood that the WL system will fail to deactivate the entire system before the SL system fails (i.e., degrades into a configuration that could allowmore » an accidental operation of the entire system) is referred to as probability of loss of assured safety (PLOAS). Representations for PLOAS for situations in which both link physical properties and link failure properties are time-dependent are derived and numerically evaluated for a variety of WL/SL configurations, including PLOAS defined by (i) failure of all SLs before failure of any WL, (ii) failure of any SL before failure of any WL, (iii) failure of all SLs before failure of all WLs, and (iv) failure of any SL before failure of all WLs. The effects of aleatory uncertainty and epistemic uncertainty in the definition and numerical evaluation of PLOAS are considered.« less

  18. Characterization of Industrial Coolant Fluids and Continuous Ageing Monitoring by Wireless Node-Enabled Fiber Optic Sensors.

    PubMed

    Sachat, Alexandros El; Meristoudi, Anastasia; Markos, Christos; Sakellariou, Andreas; Papadopoulos, Aggelos; Katsikas, Serafim; Riziotis, Christos

    2017-03-11

    Environmentally robust chemical sensors for monitoring industrial processes or infrastructures are lately becoming important devices in industry. Low complexity and wireless enabled characteristics can offer the required flexibility for sensor deployment in adaptable sensing networks for continuous monitoring and management of industrial assets. Here are presented the design, development and operation of a class of low cost photonic sensors for monitoring the ageing process and the operational characteristics of coolant fluids used in an industrial heavy machinery infrastructure. The chemical, physical and spectroscopic characteristics of specific industrial-grade coolant fluids were analyzed along their entire life cycle range, and proper parameters for their efficient monitoring were identified. Based on multimode polymer or silica optical fibers, wide range (3-11) pH sensors were developed by employing sol-gel derived pH sensitive coatings. The performances of the developed sensors were characterized and compared, towards their coolants' ageing monitoring capability, proving their efficiency in such a demanding application scenario and harsh industrial environment. The operating characteristics of this type of sensors allowed their integration in an autonomous wireless sensing node, thus enabling the future use of the demonstrated platform in wireless sensor networks for a variety of industrial and environmental monitoring applications.

  19. Characterization of Industrial Coolant Fluids and Continuous Ageing Monitoring by Wireless Node—Enabled Fiber Optic Sensors

    PubMed Central

    El Sachat, Alexandros; Meristoudi, Anastasia; Markos, Christos; Sakellariou, Andreas; Papadopoulos, Aggelos; Katsikas, Serafim; Riziotis, Christos

    2017-01-01

    Environmentally robust chemical sensors for monitoring industrial processes or infrastructures are lately becoming important devices in industry. Low complexity and wireless enabled characteristics can offer the required flexibility for sensor deployment in adaptable sensing networks for continuous monitoring and management of industrial assets. Here are presented the design, development and operation of a class of low cost photonic sensors for monitoring the ageing process and the operational characteristics of coolant fluids used in an industrial heavy machinery infrastructure. The chemical, physical and spectroscopic characteristics of specific industrial-grade coolant fluids were analyzed along their entire life cycle range, and proper parameters for their efficient monitoring were identified. Based on multimode polymer or silica optical fibers, wide range (3–11) pH sensors were developed by employing sol-gel derived pH sensitive coatings. The performances of the developed sensors were characterized and compared, towards their coolants’ ageing monitoring capability, proving their efficiency in such a demanding application scenario and harsh industrial environment. The operating characteristics of this type of sensors allowed their integration in an autonomous wireless sensing node, thus enabling the future use of the demonstrated platform in wireless sensor networks for a variety of industrial and environmental monitoring applications. PMID:28287488

  20. Combustion characteristics of hydrogen. Carbon monoxide based gaseous fuels

    NASA Technical Reports Server (NTRS)

    Notardonato, J. J.; White, D. J.; Kubasco, A. J.; Lecren, R. T.

    1981-01-01

    An experimental rig program was conducted with the objective of evaluating the combuston performance of a family of fuel gases based on a mixture of hydrogen and carbon monoxide. These gases, in addition to being members of a family, were also representative of those secondary fuels that could be produced from coal by various gasification schemes. In particular, simulated Winkler, Lurgi, and Blue-water low and medium energy content gases were used as fuels in the experimental combustor rig. The combustor used was originally designed as a low NOx rich-lean system for burning liquid fuels with high bound nitrogen levels. When used with the above gaseous fuels this combustor was operated in a lean-lean mode with ultra long residence times. The Blue-water gas was also operated in a rich-lean mode. The results of these tests indicate the possibility of the existence of an 'optimum' gas turbine hydrogen - carbon monoxide based secondary fuel. Such a fuel would exhibit NOx and high efficiency over the entire engine operating range. It would also have sufficient stability range to allow normal light-off and engine acceleration. Solar Turbines Incorporated would like to emphasize that the results presented here have been obtained with experimental rig combustors. The technologies generated could, however, be utilized in future commercial gas turbines.

  1. Control Performance of General Electric Fuel and Torque Regulator Operating on T31-3 Turbine-Propeller Engine in Sea-Level Test Stand

    NASA Technical Reports Server (NTRS)

    Oppenheimer, Frank L.; Lazar, James

    1951-01-01

    A .General Electric fuel and torque regulator was tested in conjunction with a T31-3 turbine-propeller engine in the sea-level static test stand at the NACA Lewis laboratory. The engine and control were operated over the entire speed range: 11,000 rpm, nominal flight idle, to 13,000 rpm, full power. Steady-state and transient data were recorded and are presented with a description of the four control loops being used in the system. Results of this investigation indicated that single-lever control operation was satisfactory under conditions of test. Transient data presented showed that turbine-outlet temperature did overshoot maximum operating value on acceleration but that the time duration of overshoot did not exceed approximately 1 second. This temperature limiting resulted from a control on fuel flow as a function of engine speed. Speed and torque first reached their desired values 0.4 second from the time of change in power-setting lever position. Maximum speed overshoot was 3 percent.

  2. The Herschel mission and observing opportunities

    NASA Astrophysics Data System (ADS)

    Pilbratt, G. L.

    Herschel is the fourth cornerstone mission in the European Space Agency (ESA) science programme. It will perform imaging photometry and spectroscopy in the far infrared and submillimetre part of the spectrum, covering approximately the 55--672 μm range and thus bridging the traditional space infrared range with the groundbased capabilities. The key science objectives emphasize fundamental issues connected to the formation and evolution of galaxies and stars and stellar systems. However, Herschel will be an observatory facility and its unique capabilities will be available to the entire astronomical community for a wide range of observations. Herschel is equipped with a passively cooled 3.5 m diameter classical Cassegrain telescope. The science payload complement two cameras/medium resolution spectrometers (PACS and SPIRE) and a very high resolution heterodyne spectrometer (HIFI) is housed in a superfluid helium cryostat. The ground segment is jointly developed by the ESA, the three instrument consortia, and NASA/IPAC. Herschel is scheduled to be launched into a transfer trajectory towards its operational orbit around the Earth-Sun L2 point by an Ariane 5 ECA (shared with the ESA cosmic background mapping mission Planck) in 2009. Once operational about half a year after launch, Herschel will offer 3 years of routine science operations. Almost 20 000 hours of observing time will nominally be made available for astronomy, 32% is guaranteed time, the remainder is open time which is offered to the worldwide general astronomical community through a standard competitive proposal procedure.

  3. Circularly polarized measurements of radar backscatter from terrain

    NASA Astrophysics Data System (ADS)

    Wilson, E. A.; Brunfeldt, D. R.; Ulaby, F. T.; Holtzman, J. C.

    1980-02-01

    This report documents the design changes to the University of Kansas MAS 8-18/35 scatterometer system required to incorporate a circular polarization capability and a subsequent backscatter measurement program. The modifications enable the MAS 8-18/35 system to acquire both linear (HH, HV, VV) and circular (RR, RL, LL) radar backscatter data over its entire operating range of 8-18 GHz and 35 GHz. The measurement program described herein consisted of measurements of the backscatter coefficient, as a function of the angle of incidence (0-80) at selected frequencies in the 8-18 GHz range using circular polarization. Targets studied included coniferous and deciduous trees, wet and dry asphalt and concrete and bare and plowed ground at various moisture conditions. Coniferous and deciduous tree measurements were taken in both August and November so that seasonal changes could be observed.

  4. The EUV spectrophotometer on Atmosphere Explorer.

    NASA Technical Reports Server (NTRS)

    Hinteregger, H. E.; Bedo, D. E.; Manson, J. E.

    1973-01-01

    An extreme ultraviolet (EUV) spectrophotometer for measurements of solar radiation at wavelengths ranging from 140 to 1850 A will be included in the payload of each of the three Atmosphere-Explorer (AE) missions, AE-C, -D, and -E. The instrument consists of 24 grating monochromators, 12 of which can be telecommanded either to execute 128-step scans each covering a relatively small section of the total spectrophotometer wavelength range or to maintain fixed (command-selected) wavelength positions. The remaining 12 nonscan monochromators operate at permanently fixed wavelengths and view only a small fraction of the solar disk except for one viewing the whole sun in H Lyman alpha. Ten of the 12 scan-capable monochromators also view the entire solar disk since their primary function is to measure the total fluxes independent of the distribution of sources across the solar disk.

  5. Mounting structure

    NASA Technical Reports Server (NTRS)

    Ganssle, Eugene Robert (Inventor); Scott, Ralph Richard (Inventor); Williams, Richard Jean (Inventor)

    1978-01-01

    A mounting platform for heat producing instruments operated in a narrow equilibrium temperature range comprises a grid-like structure with relatively large openings therein. The instruments are secured to and thermally coupled with the grid surface facing the instruments. Excess heat from the instruments is selectively radiated to the ambient through openings in the grid, the grid surfaces at these openings exhibiting low thermal emissivity and adsorptivity. The remainder of the grid is maintained at the equilibrium temperature and is covered with a thermal insulating blanket. Thus, the entire system including the platform and instruments is maintained substantially isothermal, whereby the instruments remain in fixed physical relationship to one another.

  6. Scintillator high-gain avalanche rushing photoconductor active-matrix flat panel imager: Zero-spatial frequency x-ray imaging properties of the solid-state SHARP sensor structure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wronski, M.; Zhao, W.; Tanioka, K.

    Purpose: The authors are investigating the feasibility of a new type of solid-state x-ray imaging sensor with programmable avalanche gain: scintillator high-gain avalanche rushing photoconductor active matrix flat panel imager (SHARP-AMFPI). The purpose of the present work is to investigate the inherent x-ray detection properties of SHARP and demonstrate its wide dynamic range through programmable gain. Methods: A distributed resistive layer (DRL) was developed to maintain stable avalanche gain operation in a solid-state HARP. The signal and noise properties of the HARP-DRL for optical photon detection were investigated as a function of avalanche gain both theoretically and experimentally, and themore » results were compared with HARP tube (with electron beam readout) used in previous investigations of zero spatial frequency performance of SHARP. For this new investigation, a solid-state SHARP x-ray image sensor was formed by direct optical coupling of the HARP-DRL with a structured cesium iodide (CsI) scintillator. The x-ray sensitivity of this sensor was measured as a function of avalanche gain and the results were compared with the sensitivity of HARP-DRL measured optically. The dynamic range of HARP-DRL with variable avalanche gain was investigated for the entire exposure range encountered in radiography/fluoroscopy (R/F) applications. Results: The signal from HARP-DRL as a function of electric field showed stable avalanche gain, and the noise associated with the avalanche process agrees well with theory and previous measurements from a HARP tube. This result indicates that when coupled with CsI for x-ray detection, the additional noise associated with avalanche gain in HARP-DRL is negligible. The x-ray sensitivity measurements using the SHARP sensor produced identical avalanche gain dependence on electric field as the optical measurements with HARP-DRL. Adjusting the avalanche multiplication gain in HARP-DRL enabled a very wide dynamic range which encompassed all clinically relevant medical x-ray exposures. Conclusions: This work demonstrates that the HARP-DRL sensor enables the practical implementation of a SHARP solid-state x-ray sensor capable of quantum noise limited operation throughout the entire range of clinically relevant x-ray exposures. This is an important step toward the realization of a SHARP-AMFPI x-ray flat-panel imager.« less

  7. Kestrel: force protection and Intelligence, Surveillance, and Reconnaissance (ISR) persistent surveillance on aerostats

    NASA Astrophysics Data System (ADS)

    Luber, David R.; Marion, John E.; Fields, David

    2012-05-01

    Logos Technologies has developed and fielded the Kestrel system, an aerostat-based, wide area persistent surveillance system dedicated to force protection and ISR mission execution operating over forward operating bases. Its development included novel imaging and stabilization capability for day/night operations on military aerostat systems. The Kestrel system's contribution is a substantial enhancement to aerostat-based, force protection systems which to date have relied on narrow field of view ball gimbal sensors to identify targets of interest. This inefficient mechanism to conduct wide area field of view surveillance is greatly enhanced by Kestrel's ability to maintain a constant motion imagery stare of the entire forward operating base (FOB) area. The Kestrel airborne sensor enables 360° coverage out to extended ranges which covers a city sized area at moderate resolution, while cueing a narrow field of view sensor to provide high resolution imagery of targets of interest. The ground station exploitation system enables operators to autonomously monitor multiple regions of interest in real time, and allows for backtracking through the recorded imagery, while continuing to monitor ongoing activity. Backtracking capability allows operators to detect threat networks, their CONOPS, and locations of interest. Kestrel's unique advancement has already been utilized successfully in OEF operations.

  8. Maximizing water use efficiency in designing microirrigation unit (IrriLab Software)

    NASA Astrophysics Data System (ADS)

    Baiamonte, Giorgio

    2016-04-01

    As the year 2050 approaches, the world population will reach 9 billion - so does the challenge of doubling crop yields. To meet this crop yields demand, the associated dramatic improving of water productivity (WP) must necessarily be accompanied by maximization of water use efficiency (WUE) (Ragab 2011, UNEP 2014). In this work, a recently developed software (IrriLab, https://www.facebook.com/irrilab) moving in this direction is presented. IrriLab is a very simple toll allows to design microirrigation unit optimizing WUE, pressure energy and irrigation unit costs. Irrigation software available in commerce provide microirrigation system designs, by mainly looking at the maximum flow rate uniformity criteria. Thus, each emitter installed along the laterals operates with an operating pressure head occurring in between an established range of pressure head variability (Dh < Dhadm). However, the latter condition does not always corresponds to the cheapest and to the maximizing WUE solution; in fact, it is not assured if the entire range of the admitted pressure head is profited and used by the emitters. IrriLab allows this occurrence because, for the entire Irrigation Unit Area, IUA, each design solution assures that at least two emitters rigorously operates, one with the minimum admitted pressure head, and the other one with the maximum admitted (Dh = Dhadm), (Baiamonte et al., 2015; Baiamonte, 2016). The same extreme values of pressure head are those that in the common design criteria delimit the range of pressure head, but without assuring their achievement. Compared to the common design criteria, this condition i) for fixed laterals' length and inside diameter, allows reducing the inlet required pressure head whereas, ii) for fixed pressure head at the inlet, provides an increasing in laterals and manifold lengths and in the associated IUA. Based on analytical solutions, IrriLab follows a very simple rectangular sketch, any way oriented in the space, and defined by two slope values, one for the laterals and one for the manifold. By considering the possible combinations of i) horizontal, downward or upward sloped laterals and manifold, ii) the manifold position in respect to the laterals and iii) the inlet position in respect to the manifold, which can be equal to 0%, 24% or 50%, in respect to their lengths (Baiamonte, 2016), IrriLab accounts for 25 optimal irrigation unit layouts, for each of them providing maximum WUE.

  9. Upgrades to improve the usability, reliability, and spectral range of the MST Thomson scattering diagnostic

    NASA Astrophysics Data System (ADS)

    Kubala, S. Z.; Borchardt, M. T.; Den Hartog, D. J.; Holly, D. J.; Jacobson, C. M.; Morton, L. A.; Young, W. C.

    2016-11-01

    The Thomson scattering diagnostic on MST records both equilibrium and fluctuating electron temperature with a range capability of 10 eV-5 keV. Standard operation with two modified commercial Nd:YAG lasers allows measurements at rates of 1 kHz-25 kHz. Several subsystems of the diagnostic are being improved. The power supplies for the avalanche photodiode detectors (APDs) that record the scattered light are being replaced to improve usability, reliability, and maintainability. Each of the 144 APDs will have an individual rack mounted switching supply, with bias voltage adjustable to match the APD. Long-wavelength filters (1140 nm center, 80 nm bandwidth) have been added to the polychromators to improve capability to resolve non-Maxwellian distributions and to enable directed electron flow measurements. A supercontinuum (SC) pulsed white light source has replaced the tungsten halogen lamp previously used for spectral calibration of the polychromators. The SC source combines substantial brightness produced in nanosecond pulses with a spectrum that covers the entire range of the polychromators.

  10. Upgrades to improve the usability, reliability, and spectral range of the MST Thomson scattering diagnostic.

    PubMed

    Kubala, S Z; Borchardt, M T; Den Hartog, D J; Holly, D J; Jacobson, C M; Morton, L A; Young, W C

    2016-11-01

    The Thomson scattering diagnostic on MST records both equilibrium and fluctuating electron temperature with a range capability of 10 eV-5 keV. Standard operation with two modified commercial Nd:YAG lasers allows measurements at rates of 1 kHz-25 kHz. Several subsystems of the diagnostic are being improved. The power supplies for the avalanche photodiode detectors (APDs) that record the scattered light are being replaced to improve usability, reliability, and maintainability. Each of the 144 APDs will have an individual rack mounted switching supply, with bias voltage adjustable to match the APD. Long-wavelength filters (1140 nm center, 80 nm bandwidth) have been added to the polychromators to improve capability to resolve non-Maxwellian distributions and to enable directed electron flow measurements. A supercontinuum (SC) pulsed white light source has replaced the tungsten halogen lamp previously used for spectral calibration of the polychromators. The SC source combines substantial brightness produced in nanosecond pulses with a spectrum that covers the entire range of the polychromators.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coughanowr, C.A.

    The electrochemical machining (ECM) of a cemented titanium carbide/10% nickel composite has been investigated and compared to the ECM of the pure components, TiC and Ni. All three materials were machined in 2M KNO/sub 3/ electrolyte, under current densities ranging from 17 to 100 A/cm/sup 2/. The ECM behavior of the TiC/Ni composite was found to be intermediate to that of its components. The apparent valences of dissolution for all three materials were independent of current density in the range studied: 2.8 eq/gmol for Ni, and 6.6 and 6.5 eq/gmol for TiC and TiC/Ni, respectively. Linear cell voltage versus currentmore » density relationships were obtained for all three materials. Surface analysis of the TiC/Ni composite showed preferential dissolution of the TiC phase over the nickel phase for the entire range of operating conditions investigated. A polishing regime could not be identified for cemented TiC/Ni.« less

  12. The effect of prewhirl on the internal aerodynamics and performance of a mixed flow research centrifugal compressor

    NASA Technical Reports Server (NTRS)

    Bryan, William B.; Fleeter, Sanford

    1987-01-01

    The internal three-dimensional steady and time-varying flow through the diffusing elements of a centrifugal impeller were investigated using a moderate scale, subsonic, mixed flow research compressor facility. The characteristics of the test facility which permit the measurement of internal flow conditions throughout the entire research compressor and radial diffuser for various operating conditions are described. Results are presented in the form of graphs and charts to cover a range of mass flow rates with inlet guide vane settings varying from minus 15 degrees to plus 45 degrees. The static pressure distributions in the compressor inlet section and on the impeller and exit diffuser vanes, as well as the overall pressure and temperature rise and mass flow rate, were measured and analyzed at each operating point to determine the overall performance as well as the detailed aerodynamics throughout the compressor.

  13. Novel snapshot hyperspectral imager for fluorescence imaging

    NASA Astrophysics Data System (ADS)

    Chandler, Lynn; Chandler, Andrea; Periasamy, Ammasi

    2018-02-01

    Hyperspectral imaging has emerged as a new technique for the identification and classification of biological tissue1. Benefitting recent developments in sensor technology, the new class of hyperspectral imagers can capture entire hypercubes with single shot operation and it shows great potential for real-time imaging in biomedical sciences. This paper explores the use of a SnapShot imager in fluorescence imaging via microscope for the very first time. Utilizing the latest imaging sensor, the Snapshot imager is both compact and attachable via C-mount to any commercially available light microscope. Using this setup, fluorescence hypercubes of several cells were generated, containing both spatial and spectral information. The fluorescence images were acquired with one shot operation for all the emission range from visible to near infrared (VIS-IR). The paper will present the hypercubes obtained images from example tissues (475-630nm). This study demonstrates the potential of application in cell biology or biomedical applications for real time monitoring.

  14. Applications of tunable high energy/pressure pulsed lasers to atmospheric transmission and remote sensing

    NASA Technical Reports Server (NTRS)

    Hess, R. V.; Seals, R. K.

    1974-01-01

    Atmospheric transmission of high energy C12 O2(16) lasers were improved by pulsed high pressure operation which, due to pressure broadening of laser lines, permits tuning the laser 'off' atmospheric C12 O2(16) absorption lines. Pronounced improvement is shown for horizontal transmission at altitudes above several kilometers, and for vertical transmission through the entire atmosphere. The atmospheric transmission of tuned C12 O2(16) lasers compares favorably with C12 O2(18) isotope lasers and CO lasers. The advantages of tunable, high energy, high pressure pulsed lasers over tunable diode lasers and waveguide lasers, in combining high energies with a large tuning range, are evaluated for certain applications to remote sensing of atmospheric constituents and pollutants. Pulsed operation considerably increases the signal to noise ratio without seriously affecting the high spectral resolution of signal detection obtained with laser heterodyning.

  15. STARR: shortwave-targeted agile Raman robot for the detection and identification of emplaced explosives

    NASA Astrophysics Data System (ADS)

    Gomer, Nathaniel R.; Gardner, Charles W.

    2014-05-01

    In order to combat the threat of emplaced explosives (land mines, etc.), ChemImage Sensor Systems (CISS) has developed a multi-sensor, robot mounted sensor capable of identification and confirmation of potential threats. The system, known as STARR (Shortwave-infrared Targeted Agile Raman Robot), utilizes shortwave infrared spectroscopy for the identification of potential threats, combined with a visible short-range standoff Raman hyperspectral imaging (HSI) system for material confirmation. The entire system is mounted onto a Talon UGV (Unmanned Ground Vehicle), giving the sensor an increased area search rate and reducing the risk of injury to the operator. The Raman HSI system utilizes a fiber array spectral translator (FAST) for the acquisition of high quality Raman chemical images, allowing for increased sensitivity and improved specificity. An overview of the design and operation of the system will be presented, along with initial detection results of the fusion sensor.

  16. Spatiotemporal evolution of the completeness magnitude of the Icelandic earthquake catalogue from 1991 to 2013

    NASA Astrophysics Data System (ADS)

    Panzera, Francesco; Mignan, Arnaud; Vogfjörð, Kristin S.

    2017-07-01

    In 1991, a digital seismic monitoring network was installed in Iceland with a digital seismic system and automatic operation. After 20 years of operation, we explore for the first time its nationwide performance by analysing the spatiotemporal variations of the completeness magnitude. We use the Bayesian magnitude of completeness (BMC) method that combines local completeness magnitude observations with prior information based on the density of seismic stations. Additionally, we test the impact of earthquake location uncertainties on the BMC results, by filtering the catalogue using a multivariate analysis that identifies outliers in the hypocentre error distribution. We find that the entire North-to-South active rift zone shows a relatively low magnitude of completeness Mc in the range 0.5-1.0, highlighting the ability of the Icelandic network to detect small earthquakes. This work also demonstrates the influence of earthquake location uncertainties on the spatiotemporal magnitude of completeness analysis.

  17. Performance monitoring can boost turboexpander efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McIntire, R.

    1982-07-05

    This paper discusses ways of improving the productivity of the turboexpander/refrigeration system's radial expander and radial compressor through systematic review of component performance. It reviews several techniques to determine the performance of an expander and compressor. It suggests that any performance improvement program requires quantifying the performance of separate components over a range of operating conditions; estimating the increase in performance associated with any hardware change; and developing an analytical (computer) model of the entire system by using the performance curve of individual components. The model is used to quantify the economic benefits of any change in the system, eithermore » a change in operating procedures or a hardware modification. Topics include proper ways of using antisurge control valves and modifying flow rate/shaft speed (Q/N). It is noted that compressor efficiency depends on the incidence angle of blade at the rotor leading edge and the angle of the incoming gas stream.« less

  18. Barrier infrared detector

    NASA Technical Reports Server (NTRS)

    Ting, David Z. (Inventor); Khoshakhlagh, Arezou (Inventor); Soibel, Alexander (Inventor); Hill, Cory J. (Inventor); Gunapala, Sarath D. (Inventor)

    2012-01-01

    A superlattice-based infrared absorber and the matching electron-blocking and hole-blocking unipolar barriers, absorbers and barriers with graded band gaps, high-performance infrared detectors, and methods of manufacturing such devices are provided herein. The infrared absorber material is made from a superlattice (periodic structure) where each period consists of two or more layers of InAs, InSb, InSbAs, or InGaAs. The layer widths and alloy compositions are chosen to yield the desired energy band gap, absorption strength, and strain balance for the particular application. Furthermore, the periodicity of the superlattice can be "chirped" (varied) to create a material with a graded or varying energy band gap. The superlattice based barrier infrared detectors described and demonstrated herein have spectral ranges covering the entire 3-5 micron atmospheric transmission window, excellent dark current characteristics operating at least 150K, high yield, and have the potential for high-operability, high-uniformity focal plane arrays.

  19. CPLOAS_2 User Manual.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sallaberry, Cedric Jean-Marie; Helton, Jon C.

    2015-05-01

    Weak link (WL)/strong link (SL) systems are important parts of the overall operational design of high - consequence systems. In such designs, the SL system is very robust and is intended to permit operation of the entire system under, and only under, intended conditions. In contrast, the WL system is intended to fail in a predictable and irreversible manner under accident conditions and render the entire system inoperable before an accidental operation of the SL system. The likelihood that the WL system will fail to d eactivate the entire system before the SL system fails (i.e., degrades into a configurationmore » that could allow an accidental operation of the entire system) is referred to as probability of loss of assured safety (PLOAS). This report describes the Fortran 90 program CPLOAS_2 that implements the following representations for PLOAS for situations in which both link physical properties and link failure properties are time - dependent: (i) failure of all SLs before failure of any WL, (ii) failure of any SL before f ailure of any WL, (iii) failure of all SLs before failure of all WLs, and (iv) failure of any SL before failure of all WLs. The effects of aleatory uncertainty and epistemic uncertainty in the definition and numerical evaluation of PLOAS can be included in the calculations performed by CPLOAS_2. Keywords: Aleatory uncertainty, CPLOAS_2, Epistemic uncertainty, Probability of loss of assured safety, Strong link, Uncertainty analysis, Weak link« less

  20. Operation of a New Half-Bridge Gate Driver for Enhancement - Mode GaN FETs, Type LM5113, Over a Wide Temperature Range

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad

    2011-01-01

    A new commercial-off-the-shelf (COTS) gate driver designed to drive both the high-side and the low-side enhancement-mode GaN FETs, National Semiconductor's type LM5113, was evaluated for operation at temperatures beyond its recommended specified limits of -40 C to +125 C. The effects of limited thermal cycling under the extended test temperature, which ranged from -194 C to +150 C, on the operation of this chip as well as restart capability at the extreme cryogenic and hot temperatures were also investigated. The driver circuit was able to maintain good operation throughout the entire test regime between -194 C and +150 C without undergoing any major changes in its outputs signals and characteristics. The limited thermal cycling performed on the device also had no effect on its performance, and the driver chip was able to successfully restart at each of the extreme temperatures of -194 C and +150 C. The plastic packaging of this device was also not affected by either the short extreme temperature exposure or the limited thermal cycling. These preliminary results indicate that this new commercial-off-the-shelf (COTS) halfbridge eGaN FET driver integrated circuit has the potential for use in space exploration missions under extreme temperature environments. Further testing is planned under long-term cycling to assess the reliability of these parts and to determine their suitability for extended use in the harsh environments of space.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayala, Alicia; Corral, Erica L.; Loehman, Ronald E.

    A tape casting procedure for fabricating ceramic magnesium oxide tapes has been developed as a method to produce flat sheets of sintered MgO that are thin and porous. Thickness of single layer tapes is in the range of 200-400 {micro}m with corresponding surface roughness values in the range of 10-20 {micro}m as measured by laser profilometry. Development of the tape casting technique required optimization of pretreatment for the starting magnesium oxide (MgO) powder as well as a detailed study of the casting slurry preparation and subsequent heat treatments for sintering and final tape flattening. Milling time of the ceramic powder,more » plasticizer, and binder mixture was identified as a primary factor affecting surface morphology of the tapes. In general, longer milling times resulted in green tapes with a noticeably smoother surface. This work demonstrates that meticulous control of the entire tape casting operation is necessary to obtain high-quality MgO tapes.« less

  2. Progress in Cherenkov femtosecond fiber lasers

    PubMed Central

    Liu, Xiaomin; Svane, Ask S.; Lægsgaard, Jesper; Tu, Haohua; Boppart, Stephen A.; Turchinovich, Dmitry

    2016-01-01

    We review the recent developments in the field of ultrafast Cherenkov fiber lasers. Two essential properties of such laser systems – broad wavelength tunability and high efficiency of Cherenkov radiation wavelength conversion are discussed. The exceptional performance of the Cherenkov fiber laser systems are highlighted - dependent on the realization scheme, the Cherenkov lasers can generate the femtosecond output tunable across the entire visible and even the UV range, and for certain designs more than 40 % conversion efficiency from the pump to Cherenkov signal can be achieved. The femtosecond Cherenkov laser with all-fiber architecture is presented and discussed. Operating in the visible range, it delivers 100–200 fs wavelength-tunable pulses with multimilliwatt output power and exceptionally low noise figure an order of magnitude lower than the traditional wavelength tunable supercontinuum-based femtosecond sources. The applications for Cherenkov laser systems in practical biophotonics and biomedical applications, such as bio-imaging and microscopy, are discussed. PMID:27110037

  3. Broadband quantitative NQR for authentication of vitamins and dietary supplements

    NASA Astrophysics Data System (ADS)

    Chen, Cheng; Zhang, Fengchao; Bhunia, Swarup; Mandal, Soumyajit

    2017-05-01

    We describe hardware, pulse sequences, and algorithms for nuclear quadrupole resonance (NQR) spectroscopy of medicines and dietary supplements. Medicine and food safety is a pressing problem that has drawn more and more attention. NQR is an ideal technique for authenticating these substances because it is a non-invasive method for chemical identification. We have recently developed a broadband NQR front-end that can excite and detect 14N NQR signals over a wide frequency range; its operating frequency can be rapidly set by software, while sensitivity is comparable to conventional narrowband front-ends over the entire range. This front-end improves the accuracy of authentication by enabling multiple-frequency experiments. We have also developed calibration and signal processing techniques to convert measured NQR signal amplitudes into nuclear spin densities, thus enabling its use as a quantitative technique. Experimental results from several samples are used to illustrate the proposed methods.

  4. The GLAST Burst Monitor

    NASA Technical Reports Server (NTRS)

    Meegan, Charles A.

    2004-01-01

    The Gamma Ray Large Area Space Telescope (GLAST) observatory, scheduled for launch in 2007, comprises the Large Area Telescope (LAT) and the GLAST Burst Monitor (GBM). spectral changes that are known to occur within GRBs. between the NASA Marshall Space Flight Center, the University of Alabama in Huntsville, and the Max Planck Institute for Extraterrestrial Physics. It consists of an array of NaI and BGO scintillation detectors operating in the 10 kev to 25 MeV range. The field of view includes the entire unocculted sky when the observatory is pointing close to the zenith. The GBM will enhance LAT observations of GRBs by extending the spectral coverage into the range of current GRB databases, and will provide a trigger for reorienting the spacecraft to observe delayed emission from bursts outside the LAT field of view. GBM is expected to trigger on about 200 bursts per year, and will provide on-board locations of strong bursts accurate to better than 10 degrees.

  5. Summary of NASA/DOE Aileron-Control Development Program for Wind Turbines

    NASA Technical Reports Server (NTRS)

    Miller, D. R.

    1986-01-01

    The development of aileron-control for wind turbines is discussed. Selected wind tunnel test results and full-scale rotor test results are presented for various types of ailerons. Finally, the current status of aileron-control development is discussed. Aileron-control was considered as a method of rotor control for use on wind turbines based on its potential to reduce rotor weight and cost. Following an initial feasibility study, a 20 percent chord aileron-control rotor was fabricated and tested on the NASA/DOE Mod-0 experimental wind turbine. Results from these tests indicated that the 20 percent chord ailerons regulated power and provided overspeed protection, but only over a very limited windspeed range. The next aileron-control rotor to be tested on the Mod-0 had 38 percent chord ailerons and test results showed these ailerons provided overspeed protection and power regulation over the Mod-0's entire operational windspeed range.

  6. Progress in Cherenkov femtosecond fiber lasers.

    PubMed

    Liu, Xiaomin; Svane, Ask S; Lægsgaard, Jesper; Tu, Haohua; Boppart, Stephen A; Turchinovich, Dmitry

    2016-01-20

    We review the recent developments in the field of ultrafast Cherenkov fiber lasers. Two essential properties of such laser systems - broad wavelength tunability and high efficiency of Cherenkov radiation wavelength conversion are discussed. The exceptional performance of the Cherenkov fiber laser systems are highlighted - dependent on the realization scheme, the Cherenkov lasers can generate the femtosecond output tunable across the entire visible and even the UV range, and for certain designs more than 40 % conversion efficiency from the pump to Cherenkov signal can be achieved. The femtosecond Cherenkov laser with all-fiber architecture is presented and discussed. Operating in the visible range, it delivers 100-200 fs wavelength-tunable pulses with multimilliwatt output power and exceptionally low noise figure an order of magnitude lower than the traditional wavelength tunable supercontinuum-based femtosecond sources. The applications for Cherenkov laser systems in practical biophotonics and biomedical applications, such as bio-imaging and microscopy, are discussed.

  7. A study of payload specialist station monitor size constraints. [space shuttle orbiters

    NASA Technical Reports Server (NTRS)

    Kirkpatrick, M., III; Shields, N. L., Jr.; Malone, T. B.

    1975-01-01

    Constraints on the CRT display size for the shuttle orbiter cabin are studied. The viewing requirements placed on these monitors were assumed to involve display of imaged scenes providing visual feedback during payload operations and display of alphanumeric characters. Data on target recognition/resolution, target recognition, and range rate detection by human observers were utilized to determine viewing requirements for imaged scenes. Field-of-view and acuity requirements for a variety of payload operations were obtained along with the necessary detection capability in terms of range-to-target size ratios. The monitor size necessary to meet the acuity requirements was established. An empirical test was conducted to determine required recognition sizes for displayed alphanumeric characters. The results of the test were used to determine the number of characters which could be simultaneously displayed based on the recognition size requirements using the proposed monitor size. A CRT display of 20 x 20 cm is recommended. A portion of the display area is used for displaying imaged scenes and the remaining display area is used for alphanumeric characters pertaining to the displayed scene. The entire display is used for the character alone mode.

  8. Advanced Solar Cells for Satellite Power Systems

    NASA Technical Reports Server (NTRS)

    Flood, Dennis J.; Weinberg, Irving

    1994-01-01

    The multiple natures of today's space missions with regard to operational lifetime, orbital environment, cost and size of spacecraft, to name just a few, present such a broad range of performance requirements to be met by the solar array that no single design can suffice to meet them all. The result is a demand for development of specialized solar cell types that help to optimize overall satellite performance within a specified cost range for any given space mission. Historically, space solar array performance has been optimized for a given mission by tailoring the features of silicon solar cells to account for the orbital environment and average operating conditions expected during the mission. It has become necessary to turn to entirely new photovoltaic materials and device designs to meet the requirements of future missions, both in the near and far term. This paper will outline some of the mission drivers and resulting performance requirements that must be met by advanced solar cells, and provide an overview of some of the advanced cell technologies under development to meet them. The discussion will include high efficiency, radiation hard single junction cells; monolithic and mechanically stacked multiple bandgap cells; and thin film cells.

  9. Advanced solar cells for satellite power systems

    NASA Astrophysics Data System (ADS)

    Flood, Dennis J.; Weinberg, Irving

    1994-11-01

    The multiple natures of today's space missions with regard to operational lifetime, orbital environment, cost and size of spacecraft, to name just a few, present such a broad range of performance requirements to be met by the solar array that no single design can suffice to meet them all. The result is a demand for development of specialized solar cell types that help to optimize overall satellite performance within a specified cost range for any given space mission. Historically, space solar array performance has been optimized for a given mission by tailoring the features of silicon solar cells to account for the orbital environment and average operating conditions expected during the mission. It has become necessary to turn to entirely new photovoltaic materials and device designs to meet the requirements of future missions, both in the near and far term. This paper will outline some of the mission drivers and resulting performance requirements that must be met by advanced solar cells, and provide an overview of some of the advanced cell technologies under development to meet them. The discussion will include high efficiency, radiation hard single junction cells; monolithic and mechanically stacked multiple bandgap cells; and thin film cells.

  10. The statistical extended-range (10-30-day) forecast of summer rainfall anomalies over the entire China

    NASA Astrophysics Data System (ADS)

    Zhu, Zhiwei; Li, Tim

    2017-01-01

    The extended-range (10-30-day) rainfall forecast over the entire China was carried out using spatial-temporal projection models (STPMs). Using a rotated empirical orthogonal function analysis of intraseasonal (10-80-day) rainfall anomalies, China is divided into ten sub-regions. Different predictability sources were selected for each of the ten regions. The forecast skills are ranked for each region. Based on temporal correlation coefficient (TCC) and Gerrity skill score, useful skills are found for most parts of China at a 20-25-day lead. The southern China and the mid-lower reaches of Yangtze River Valley show the highest predictive skills, whereas southwestern China and Huang-Huai region have the lowest predictive skills. By combining forecast results from ten regional STPMs, the TCC distribution of 8-year (2003-2010) independent forecast for the entire China is investigated. The combined forecast results from ten STPMs show significantly higher skills than the forecast with just one single STPM for the entire China. Independent forecast examples of summer rainfall anomalies around the period of Beijing Olympic Games in 2008 and Shanghai World Expo in 2010 are presented. The result shows that the current model is able to reproduce the gross pattern of the summer intraseasonal rainfall over China at a 20-day lead. The present study provides, for the first time, a guide on the statistical extended-range forecast of summer rainfall anomalies for the entire China. It is anticipated that the ideas and methods proposed here will facilitate the extended-range forecast in China.

  11. Long-range and wide field of view optical coherence tomography for in vivo 3D imaging of large volume object based on akinetic programmable swept source.

    PubMed

    Song, Shaozhen; Xu, Jingjiang; Wang, Ruikang K

    2016-11-01

    Current optical coherence tomography (OCT) imaging suffers from short ranging distance and narrow imaging field of view (FOV). There is growing interest in searching for solutions to these limitations in order to expand further in vivo OCT applications. This paper describes a solution where we utilize an akinetic swept source for OCT implementation to enable ~10 cm ranging distance, associated with the use of a wide-angle camera lens in the sample arm to provide a FOV of ~20 x 20 cm 2 . The akinetic swept source operates at 1300 nm central wavelength with a bandwidth of 100 nm. We propose an adaptive calibration procedure to the programmable akinetic light source so that the sensitivity of the OCT system over ~10 cm ranging distance is substantially improved for imaging of large volume samples. We demonstrate the proposed swept source OCT system for in vivo imaging of entire human hands and faces with an unprecedented FOV (up to 400 cm 2 ). The capability of large-volume OCT imaging with ultra-long ranging and ultra-wide FOV is expected to bring new opportunities for in vivo biomedical applications.

  12. Long-range and wide field of view optical coherence tomography for in vivo 3D imaging of large volume object based on akinetic programmable swept source

    PubMed Central

    Song, Shaozhen; Xu, Jingjiang; Wang, Ruikang K.

    2016-01-01

    Current optical coherence tomography (OCT) imaging suffers from short ranging distance and narrow imaging field of view (FOV). There is growing interest in searching for solutions to these limitations in order to expand further in vivo OCT applications. This paper describes a solution where we utilize an akinetic swept source for OCT implementation to enable ~10 cm ranging distance, associated with the use of a wide-angle camera lens in the sample arm to provide a FOV of ~20 x 20 cm2. The akinetic swept source operates at 1300 nm central wavelength with a bandwidth of 100 nm. We propose an adaptive calibration procedure to the programmable akinetic light source so that the sensitivity of the OCT system over ~10 cm ranging distance is substantially improved for imaging of large volume samples. We demonstrate the proposed swept source OCT system for in vivo imaging of entire human hands and faces with an unprecedented FOV (up to 400 cm2). The capability of large-volume OCT imaging with ultra-long ranging and ultra-wide FOV is expected to bring new opportunities for in vivo biomedical applications. PMID:27896012

  13. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cournoyer, Michael E; George, Gerald L; Dodge, Robert L

    Programmatic operations at the Los Alamos National Laboratory Plutonium Facility (TA-55) involve working with various amounts of plutonium and other highly toxic, alpha-emitting materials. The spread of radiological contamination on surfaces, airborne contamination, and excursions of contaminants into the operator's breathing zone are prevented through the use of a variety of gloveboxes (the glovebox, coupled with an adequate negative pressure gradient, provides primary confinement). Radiation shielding is commonly used to protect the glovebox worker from unintentional direct and secondary radiation exposure, while working with plutonium-238 and plutonium-239. In these environments, low-energy photons, i.e., those less than 250 keY, are encountered.more » Shielding glove box gloves are traditionally composed of lead-based materials, but these are now considered hazardous waste. This has prompted the development of new, nonhazardous- shielding gJovebox gloves. No studies, however, have investigated the effectiveness of these new glovebox gloves. We examined both leaded and nonhazardous- shielding glovebox gloves and compared their attenuation effectiveness over the energy range of interest at TA-55. All measurements are referenced to lead sheets, allowing direct comparisons to the common industry standard of 0.1 mm lead equivalent material. The attenuation properties of both types of glovebox gloves vary with energy, making it difficult for manufacturers to claim lead equivalency across the entire energy range used at TA-55. The positions of materials' photon energy absorption edges, which are particularly important to improved attenuation performance, depending upon the choice of radiation energy range, are discussed. This effort contributes to the Los Alamos National Laboratory Continuous Improvement Program by improving the efficiency, cost effectiveness, and formality of glovebox operations.« less

  14. 26 CFR 1.103-11 - Bonds held by substantial users.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... subleases space to a restaurant operator at an annual rental of $25,000 for the operation of a canteen and... by the restaurant operator are more than 5 percent of the respective amounts with respect to the entire facility. Both X and the restaurant operator are substantial users. However, absent special...

  15. High Response Dew Point Measurement System for a Supersonic Wind Tunnel

    NASA Technical Reports Server (NTRS)

    Blumenthal, Philip Z.

    1996-01-01

    A new high response on-line measurement system has been developed to continuously display and record the air stream dew point in the NASA Lewis 10 x 10 supersonic wind tunnel. Previous instruments suffered from such problems as very slow response, erratic readings, and high susceptibility to contamination. The system operates over the entire pressure level range of the 10 x 10 SWT, from less than 2 psia to 45 psia, without the need for a vacuum pump to provide sample flow. The system speeds up tunnel testing, provides large savings in tunnel power costs and provides the dew point input for the data-reduction subroutines which calculate test section conditions.

  16. Development of a motorized cryovalve for the control of superfluid liquid helium

    NASA Technical Reports Server (NTRS)

    Lorell, K. R.; Aubrun, J-N.; Zacharie, D. F.; Frank, D. J.

    1988-01-01

    Recent advances in the technology of infrared detectors have made possible a wide range of scientific measurements and investigations. One of the requirements for the use of sensitive IR detectors is that the entire instrument be cooled to temperatures approaching absolute zero. The cryogenic cooling system for these instruments is commonly designed as a large dewar containing liquid helium which completely surrounds the apparatus. Thus, there is a need for a remotely controlled, motorized cryovalve that is simple, reliable, and compact and can operate over extended periods of time in cryo-vac conditions. The design, development, and test of a motorized cryovalve with application to a variety of cryogenic systems currently under development is described.

  17. Feasibility of modern airships - Preliminary assessment

    NASA Technical Reports Server (NTRS)

    Ardema, M. D.

    1977-01-01

    Attention is given to the NASA program, Feasibility Study of Modern Airships, initiated to investigate potential research and technology programs associated with airship development. A historical survey of the program is presented, including the development of past airship concepts, aerodynamical and design improvements, structure and material concepts, and research in controls, avionics, instrumentation, flight operations, and ground handling. A mission analysis was carried out which considered passenger and cargo transportation, heavy-lift, short-haul applications, surveillance missions, and the transportation of natural gas. A vehicle parametric analysis examined the entire range of airship concepts, discussing both conventional airships and hybrids. Various design options were evaluated, such as choice of structural materials, use of boundary-layer control, and choice of lifting gas.

  18. Dynamic analysis of a photovoltaic power system with battery storage capability

    NASA Technical Reports Server (NTRS)

    Merrill, W. C.; Blaha, R. J.; Pickrell, R. L.

    1979-01-01

    A photovolataic power system with a battery storage capability is analyzed. A dual battery current control concept is proposed, which enables the battery to either supply or accept power depending upon system environment and load conditions. A simulation of the power system, including the battery current control, is developed and evaluated. The evaulation demonstrate the visbility of the battery control concept of switch the battery from a charge to discharge mode and back as required by load and environmental conditions. An acceptable system operation is demonstrated over the entire insolation range. Additionally, system sensitivity, bandwidth, and damping characteristics of the battery control are shown to be acceptable for a projected hardware implementation.

  19. 88 kilowatt automotive inverter with new 900 Volt silicon carbide MOSFET technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casady, Jeffrey; Olejniczak, Kraig; McNutt, Ty

    This final report is on the design and experimental verification of a 200 kVA traction inverter using three 900 V, 2.5 mΩ, SiC MOSFET-based half-bridge power modules comprising the power stage. Each dual power module contains four 900 V, 10 mΩ SiC MOSFETs per switch position and uses synchronous conduction to achieve high average and peak efficiencies over its entire operating region to meet the demands of hybrid, plug-in hybrid, and extended-range electrified vehicle architectures. Significant performance improvement, via conduction, switching, and reverse-recovery loss metrics, from this SiC MOSFET-based inverter—especially at light load conditions—will be discussed.

  20. Turboexpanders for OTEC power plants

    NASA Astrophysics Data System (ADS)

    Holm, J.

    1981-12-01

    Centripetal (radial inflow) turboexpanders are well adapted to energy conservation schemes. A mini OTEC demonstration program, completed in 1979, uses a closed ammonia cycle to drive a 50 kw turboexpander generator unit. The turboexpander, which incorporates mechanical designs of low temperature and high speed machinery, has very high levels of reliability and efficiency. Stiff shaft designs have eliminated shaft and bearing criticals in the entire operating range. Rotor resonance problems are almost totally eliminated, and thrust bearing problems can be accurately monitored and controlled. Condensing streams and dust in gas can also be handled without erosion. Designs for radial inflow turboexpanders in sizes up to 70 MWe are presently available for use in OTEC and other power plants.

  1. Project Explorer's unique experiments: Get Away Special #007

    NASA Technical Reports Server (NTRS)

    Henderson, A. J., Jr.

    1986-01-01

    The Project Explorer payload represents the first attempt at broadcasting digitized voice signals via a Space Shuttle flight on amateur radio frequencies. These amateur ham-radio frequencies will be transmitting real time data while the experiments are operating. Experiments 1, 2, and 3 represent the work of students ranging from materials processing to the science of biology. Experiment 1 will study the solidification of two hypereutectic alloys, lead-antimony and aluminum-copper. Experiment 2 will investigate the examination and growth of radish seeds in space. Experiment 3 will examine the electrochemical growth process of potassium tetrocyonoplatinate hydrate crystals and Experiment 4 involves amateur radio transmissions, monitoring and support of the entire Get Away Special (GAS) 007 payload.

  2. Effects of Alternate Leading Edge Cutback on the Space Shuttle Main Engine Low Pressure Fuel Pump

    NASA Technical Reports Server (NTRS)

    Mulder, Andrew; Skelley, Stephen

    2016-01-01

    A higher order cavitation oscillation observed in the SSME low pressure fuel pump has been eliminated in water flow testing of a modified subscale replica of the inducer. The low pressure pump was modified by removing the outboard sections of two opposing blades of the four-bladed inducer, blending the "cutback" regions into the blades at the leading edge and tip, and removing material on the suction sides to decrease the exposed leading edge thickness. The leading edge tips of the cutback blades were moved approximately 25 degrees from their previous locations, thereby increasing one blade to blade spacing, decreasing the second, while simultaneously moving the cutback tips downstream. The test was conducted in MSFC's inducer test loop at scaled operating conditions in degassed and filtered water. In addition to eliminating HOC across the entire scaled operating regime, rotating cavitation was suppressed while the range of both alternate blade and asymmetric cavitation were increased. These latter phenomena, and more significantly, the shifts between these cavitation modes also resulted in significant changes to the head coefficient at low cavitation numbers. Reverse flow was detected at a slightly larger flow coefficient with the cutback inducer and suction capability was reduced by approximately 1 velocity head at and above approximately 90% of the reference flow coefficient. These performance changes along with more intense reverse flow are consistent with poor flow area management and increased incidence in the cutback region. Although the test demonstrated that the inducer modification was successful at eliminating the higher order cavitation across the entire scaled operating regime, different, previously unobserved, cavitation oscillations were introduced and significant performance penalties were imposed.

  3. Project CHECO Southeast Asia Report. BUFFALO HUNTER 1970 - 1972

    DTIC Science & Technology

    1973-07-24

    era, however, the drone’s use was no longer a secret. This report examines the entire BUFFALO HUNTER operation -- management , targeting, drone capabilities, mission planning and execution, and operational results.

  4. Long term remediation of highly polluted acid mine drainage: a sustainable approach to restore the environmental quality of the Odiel river basin.

    PubMed

    Caraballo, Manuel A; Macías, Francisco; Rötting, Tobias S; Nieto, José Miguel; Ayora, Carlos

    2011-12-01

    During 20 months of proper operation the full scale passive treatment in Mina Esperanza (SW Spain) produced around 100 mg/L of ferric iron in the aeration cascades, removing an average net acidity up to 1500 mg/L as CaCO(3) and not having any significant clogging problem. Complete Al, As, Cd, Cr, Cu, Ti and V removal from the water was accomplished through almost the entire operation time while Fe removal ranged between 170 and 620 mg/L. The system operated at a mean inflow rate of 43 m(3)/day achieving an acid load reduction of 597 g·(m(2) day)(-1), more than 10 times higher than the generally accepted 40 g·(m(2) day)(-1) value commonly used as a passive treatment system designing criteria. The high performance achieved by the passive treatment system at Mina Esperanza demonstrates that this innovative treatment design is a simple, efficient and long lasting remediation option to treat highly polluted acid mine drainage. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Tunable and switchable dual-waveband ultrafast fiber laser with 100 GHz repetition-rate.

    PubMed

    Tan, Xiao-Mei; Chen, Hong-Jie; Cui, Hu; Lv, Yao-Kun; Zhao, Guan-Kai; Luo, Zhi-Chao; Luo, Ai-Ping; Xu, Wen-Cheng

    2017-07-10

    We demonstrate a tunable and switchable dual-waveband 100 GHz high-repetition-rate (HRR) ultrafast fiber laser based on dissipative four-wave-mixing (DFWM) mode-locked technique. Each waveband maintains HRR operation. The DFWM effect was realized by combining a Fabry-Perot (F-P) filter and a piece of highly nonlinear fiber (HNLF). The tunable and switchable operations were achieved by nonlinear polarization rotation (NPR) technique. Through appropriately controlling the filtering effect induced by NPR, the laser could operate at two kinds of tunable regimes. One is that the spacing between these two wavebands could be tuned while keeping their center at 1559 nm. The other is that the central position of the entire dual-waveband is tunable while with the same separation between these two wavebands of 13.2 nm. Moreover, the laser could switch between these two wavebands. Correspondingly, the center of the single-waveband has a tuning range of 15.2 nm. This versatile ultrafast fiber laser may find applications in fields of optical frequency combs, high speed optical communications, where HRR pulses are necessary.

  6. A dark-field microscope for background-free detection of resonance fluorescence from single semiconductor quantum dots operating in a set-and-forget mode

    NASA Astrophysics Data System (ADS)

    Kuhlmann, Andreas V.; Houel, Julien; Brunner, Daniel; Ludwig, Arne; Reuter, Dirk; Wieck, Andreas D.; Warburton, Richard J.

    2013-07-01

    Optically active quantum dots, for instance self-assembled InGaAs quantum dots, are potentially excellent single photon sources. The fidelity of the single photons is much improved using resonant rather than non-resonant excitation. With resonant excitation, the challenge is to distinguish between resonance fluorescence and scattered laser light. We have met this challenge by creating a polarization-based dark-field microscope to measure the resonance fluorescence from a single quantum dot at low temperature. We achieve a suppression of the scattered laser exceeding a factor of 107 and background-free detection of resonance fluorescence. The same optical setup operates over the entire quantum dot emission range (920-980 nm) and also in high magnetic fields. The major development is the outstanding long-term stability: once the dark-field point has been established, the microscope operates for days without alignment. The mechanical and optical designs of the microscope are presented, as well as exemplary resonance fluorescence spectroscopy results on individual quantum dots to underline the microscope's excellent performance.

  7. 40 CFR 190.10 - Standards for normal operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards for the Uranium Fuel Cycle § 190.10 Standards for normal operations. Operations covered by this... radioactive materials, radon and its daughters excepted, to the general environment from uranium fuel cycle... the general environment from the entire uranium fuel cycle, per gigawatt-year of electrical energy...

  8. Feasibility study of solid oxide fuel cell engines integrated with sprinter gas turbines: Modeling, design and control

    NASA Astrophysics Data System (ADS)

    Jia, Zhenzhong; Sun, Jing; Dobbs, Herb; King, Joel

    2015-02-01

    Conventional recuperating solid oxide fuel cell (SOFC)/gas turbine (GT) system suffers from its poor dynamic capability and load following performance. To meet the fast, safe and efficient load following requirements for mobile applications, a sprinter SOFC/GT system concept is proposed in this paper. In the proposed system, an SOFC stack operating at fairly constant temperature provides the baseline power with high efficiency while the fast dynamic capability of the GT-generator is fully explored for fast dynamic load following. System design and control studies have been conducted by using an SOFC/GT system model consisting of experimentally-verified component models. In particular, through analysis of the steady-state simulation results, an SOFC operation strategy is proposed to maintain fairly constant SOFC power (less than 2% power variation) and temperature (less than 2 K temperature variation) over the entire load range. A system design procedure well-suited to the proposed system has also been developed to help determining component sizes and the reference steady-state operation line. In addition, control analysis has been studied for both steady-state and transient operations. Simulation results suggest that the proposed system holds the promise to achieve fast and safe transient operations by taking full advantage of the fast dynamics of the GT-generator.

  9. Automatic readout micrometer

    DOEpatents

    Lauritzen, Ted

    1982-01-01

    A measuring system is disclosed for surveying and very accurately positioning objects with respect to a reference line. A principal use of this surveying system is for accurately aligning the electromagnets which direct a particle beam emitted from a particle accelerator. Prior art surveying systems require highly skilled surveyors. Prior art systems include, for example, optical surveying systems which are susceptible to operator reading errors, and celestial navigation-type surveying systems, with their inherent complexities. The present invention provides an automatic readout micrometer which can very accurately measure distances. The invention has a simplicity of operation which practically eliminates the possibilities of operator optical reading error, owning to the elimination of traditional optical alignments for making measurements. The invention has an extendable arm which carries a laser surveying target. The extendable arm can be continuously positioned over its entire length of travel by either a coarse or fine adjustment without having the fine adjustment outrun the coarse adjustment until a reference laser beam is centered on the target as indicated by a digital readout. The length of the micrometer can then be accurately and automatically read by a computer and compared with a standardized set of alignment measurements. Due to its construction, the micrometer eliminates any errors due to temperature changes when the system is operated within a standard operating temperature range.

  10. Automatic readout micrometer

    DOEpatents

    Lauritzen, T.

    A measuring system is described for surveying and very accurately positioning objects with respect to a reference line. A principle use of this surveying system is for accurately aligning the electromagnets which direct a particle beam emitted from a particle accelerator. Prior art surveying systems require highly skilled surveyors. Prior art systems include, for example, optical surveying systems which are susceptible to operator reading errors, and celestial navigation-type surveying systems, with their inherent complexities. The present invention provides an automatic readout micrometer which can very accurately measure distances. The invention has a simplicity of operation which practically eliminates the possibilities of operator optical reading error, owning to the elimination of traditional optical alignments for making measurements. The invention has an extendable arm which carries a laser surveying target. The extendable arm can be continuously positioned over its entire length of travel by either a coarse of fine adjustment without having the fine adjustment outrun the coarse adjustment until a reference laser beam is centered on the target as indicated by a digital readout. The length of the micrometer can then be accurately and automatically read by a computer and compared with a standardized set of alignment measurements. Due to its construction, the micrometer eliminates any errors due to temperature changes when the system is operated within a standard operating temperature range.

  11. Increasing the efficiency of the condensing boiler

    NASA Astrophysics Data System (ADS)

    Zaytsev, O. N.; Lapina, E. A.

    2017-11-01

    Analysis of existing designs of boilers with low power consumption showed that the low efficiency of the latter is due to the fact that they work in most cases when the heating period in the power range is significantly less than the nominal power. At the same time, condensing boilers do not work in the most optimal mode (in condensing mode) in the central part of Russia, a significant part of their total operating time during the heating season. This is due to existing methods of equipment selection and joint operation with heating systems with quantitative control of the coolant. It was also revealed that for the efficient operation of the heating system, it is necessary to reduce the inertia of the heat generating equipment. Theoretical patterns of thermal processes in the furnace during combustion gas at different radiating surfaces location schemes considering the influence of the very furnace configuration, characterized in that to reduce the work condensing boiler in conventional gas boiler operation is necessary to maintain a higher temperature in the furnace (in the part where spiral heat exchangers are disposed), which is possible when redistributing heat flow - increase the proportion of radiant heat from the secondary burner emitter allow Perey For the operation of the condensing boiler in the design (condensation) mode practically the entire heating period.

  12. 10 CFR 36.67 - Entering and leaving the radiation room.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... radiation room of a panoramic irradiator after an irradiation, the irradiator operator shall use a survey... irradiation, the irradiator operator shall: (1) Visually inspect the entire radiation room to verify that no...

  13. 10 CFR 36.67 - Entering and leaving the radiation room.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... radiation room of a panoramic irradiator after an irradiation, the irradiator operator shall use a survey... irradiation, the irradiator operator shall: (1) Visually inspect the entire radiation room to verify that no...

  14. 10 CFR 36.67 - Entering and leaving the radiation room.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... radiation room of a panoramic irradiator after an irradiation, the irradiator operator shall use a survey... irradiation, the irradiator operator shall: (1) Visually inspect the entire radiation room to verify that no...

  15. 10 CFR 36.67 - Entering and leaving the radiation room.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... radiation room of a panoramic irradiator after an irradiation, the irradiator operator shall use a survey... irradiation, the irradiator operator shall: (1) Visually inspect the entire radiation room to verify that no...

  16. 10 CFR 36.67 - Entering and leaving the radiation room.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... radiation room of a panoramic irradiator after an irradiation, the irradiator operator shall use a survey... irradiation, the irradiator operator shall: (1) Visually inspect the entire radiation room to verify that no...

  17. Contiguity and Entire Separability of States on von Neumann Algebras

    NASA Astrophysics Data System (ADS)

    Haliullin, Samigulla

    2017-12-01

    We introduce the notions of the contiguity and entirely separability for two sequences of states on von Neumann algebras. The ultraproducts technique allows us to reduce the study of the contiguity to investigation of the equivalence for two states. Here we apply the Ocneanu ultraproduct and the Groh-Raynaud ultraproduct (see Ocneanu (1985), Groh (J. Operator Theory, 11, 2, 395-404 1984), Raynaud (J. Operator Theory, 48, 1, 41-68, 2002), Ando and Haagerup (J. Funct. Anal., 266, 12, 6842-6913, 2014)), as well as the technique developed in Mushtari and Haliullin (Lobachevskii J. Math., 35, 2, 138-146, 2014).

  18. Development and Applications of a Stage Stacking Procedure

    NASA Technical Reports Server (NTRS)

    Kulkarni, Sameer; Celestina, Mark L.; Adamczyk, John J.

    2012-01-01

    The preliminary design of multistage axial compressors in gas turbine engines is typically accomplished with mean-line methods. These methods, which rely on empirical correlations, estimate compressor performance well near the design point, but may become less reliable off-design. For land-based applications of gas turbine engines, off-design performance estimates are becoming increasingly important, as turbine plant operators desire peaking or load-following capabilities and hot-day operability. The current work develops a one-dimensional stage stacking procedure, including a newly defined blockage term, which is used to estimate the off-design performance and operability range of a 13-stage axial compressor used in a power generating gas turbine engine. The new blockage term is defined to give mathematical closure on static pressure, and values of blockage are shown to collapse to curves as a function of stage inlet flow coefficient and corrected shaft speed. In addition to these blockage curves, the stage stacking procedure utilizes stage characteristics of ideal work coefficient and adiabatic efficiency. These curves are constructed using flow information extracted from computational fluid dynamics (CFD) simulations of groups of stages within the compressor. Performance estimates resulting from the stage stacking procedure are shown to match the results of CFD simulations of the entire compressor to within 1.6% in overall total pressure ratio and within 0.3 points in overall adiabatic efficiency. Utility of the stage stacking procedure is demonstrated by estimation of the minimum corrected speed which allows stable operation of the compressor. Further utility of the stage stacking procedure is demonstrated with a bleed sensitivity study, which estimates a bleed schedule to expand the compressors operating range.

  19. 34 CFR 602.24 - Additional procedures certain institutional accreditors must have.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... revenues and expenditures and cash flow at the branch campus; and (iii) The operation, management, and... that the branch campus has sufficient educational, financial, operational, management, and physical... institution notifies the agency that it intends to cease operations entirely or close a location that provides...

  20. 7 CFR 58.241 - Packaging, repackaging and storage.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 3 2011-01-01 2011-01-01 false Packaging, repackaging and storage. 58.241 Section 58... Service 1 Operations and Operating Procedures § 58.241 Packaging, repackaging and storage. (a) Containers... palleting or dry storage areas. (c) Repackaging. The entire repackaging operation shall be conducted in a...

  1. 7 CFR 58.241 - Packaging, repackaging and storage.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 7 Agriculture 3 2013-01-01 2013-01-01 false Packaging, repackaging and storage. 58.241 Section 58... Service 1 Operations and Operating Procedures § 58.241 Packaging, repackaging and storage. (a) Containers... palleting or dry storage areas. (c) Repackaging. The entire repackaging operation shall be conducted in a...

  2. 14 CFR 121.99 - Communications facilities-domestic and flag operations.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... communication approved by the FAA certificate holding district office, is available over the entire route. The... communications under normal operating conditions between each airplane and the appropriate dispatch office, and... dispatch office must be independent of any system operated by the United States. (c) Each certificate...

  3. 14 CFR 121.99 - Communications facilities-domestic and flag operations.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... communication approved by the FAA certificate holding district office, is available over the entire route. The... communications under normal operating conditions between each airplane and the appropriate dispatch office, and... dispatch office must be independent of any system operated by the United States. (c) Each certificate...

  4. Global lunar-surface mapping experiment using the Lunar Imager/Spectrometer on SELENE

    NASA Astrophysics Data System (ADS)

    Haruyama, Junichi; Matsunaga, Tsuneo; Ohtake, Makiko; Morota, Tomokatsu; Honda, Chikatoshi; Yokota, Yasuhiro; Torii, Masaya; Ogawa, Yoshiko

    2008-04-01

    The Moon is the nearest celestial body to the Earth. Understanding the Moon is the most important issue confronting geosciences and planetary sciences. Japan will launch the lunar polar orbiter SELENE (Kaguya) (Kato et al., 2007) in 2007 as the first mission of the Japanese long-term lunar exploration program and acquire data for scientific knowledge and possible utilization of the Moon. An optical sensing instrument called the Lunar Imager/Spectrometer (LISM) is loaded on SELENE. The LISM requirements for the SELENE project are intended to provide high-resolution digital imagery and spectroscopic data for the entire lunar surface, acquiring these data for scientific knowledge and possible utilization of the Moon. Actually, LISM was designed to include three specialized sub-instruments: a terrain camera (TC), a multi-band imager (MI), and a spectral profiler (SP). The TC is a high-resolution stereo camera with 10-m spatial resolution from a SELENE nominal altitude of 100 km and a stereo angle of 30° to provide stereo pairs from which digital terrain models (DTMs) with a height resolution of 20 m or better will be produced. The MI is a multi-spectral imager with four and five color bands with 20 m and 60 m spatial resolution in visible and near-infrared ranges, which will provide data to be used to distinguish the geological units in detail. The SP is a line spectral profiler with a 400-m-wide footprint and 300 spectral bands with 6-8 nm spectral resolution in the visible to near-infrared ranges. The SP data will be sufficiently powerful to identify the lunar surface's mineral composition. Moreover, LISM will provide data with a spatial resolution, signal-to-noise ratio, and covered spectral range superior to that of past Earth-based and spacecraft-based observations. In addition to the hardware instrumentation, we have studied operation plans for global data acquisition within the limited total data volume allotment per day. Results show that the TC and MI can achieve global observations within the restrictions by sharing the TC and MI observation periods, adopting appropriate data compression, and executing necessary SELENE orbital plane change operations to ensure global coverage by MI. Pre-launch operation planning has resulted in possible global TC high-contrast imagery, TC stereoscopic imagery, and MI 9-band imagery in one nominal mission period. The SP will also acquire spectral line profiling data for nearly the entire lunar surface. The east-west interval of the SP strip data will be 3-4 km at the equator by the end of the mission and shorter at higher latitudes. We have proposed execution of SELENE roll cant operations three times during the nominal mission period to execute calibration site observations, and have reached agreement on this matter with the SELENE project. We present LISM global surface mapping experiments for instrumentation and operation plans. The ground processing systems and the data release plan for LISM data are discussed briefly.

  5. Revisional bariatric surgery for failed gastric banding in Asia: a review of choice of revisional procedure, surgical technique and postoperative complication rates.

    PubMed

    Bhasker, A; Gadgil, M; Muda, N H; Lotwala, V; Lakdawala, M A

    2011-02-01

    In Asia, long-term weight loss results of gastric banding have been unsatisfactory. Bands are associated with higher complication rates, which result in a high reoperation rate. The aim of this paper is to discuss the choice of revisional procedure, operative technique and evaluate the postoperative complication rates. Between January 2007 and January 2010, we operated on 41 patients who were included retrospectively in this series. The most common reason for band removal was failure to lose adequate weight. Of those patients, 40 underwent band removal and conversion to a revisional bariatric surgery concomitantly; one patient's procedure was deferred to a later date. LSG was performed in 26 and LRYGB in 15. The highlights of the operative technique were meticulous dissection, complete removal of the pseudocapsule, choosing the right stapler cartridge, oversewing and inverting the entire staple line, and complete dissection of the left crus and pars flaccid. The median duration of surgery was 85 min (range, 55-180 min). There was no conversion to open surgery. The median stay in the hospital was 4 d (range, 2-7 d). There were no leaks or any other major complications in the postoperative period. Concomitant revisional procedure after removal of gastric band is safe and feasible. The operative technique followed at our center has had an extremely low postoperative morbidity rate and a 0% leak rate. © 2010 Japan Society for Endoscopic Surgery, Asia Endosurgery Task Force and Blackwell Publishing Asia Pty Ltd.

  6. Automotive collision avoidance system field operational test

    DOT National Transportation Integrated Search

    2005-03-01

    The Automotive Collision Avoidance System field operational test (or ACAS FOT) program was led by General Motors (GM) under a cooperative agreement with the U.S. Department of Transportation. This report summarizes the activities of the entire progra...

  7. Some Memories Are Odder than Others: Judgments of Episodic Oddity Violate Known Decision Rules

    ERIC Educational Resources Information Center

    O'Connor, Akira R.; Guhl, Emily N.; Cox, Justin C.; Dobbins, Ian G.

    2011-01-01

    Current decision models of recognition memory are based almost entirely on one paradigm, single item old/new judgments accompanied by confidence ratings. This task results in receiver operating characteristics (ROCs) that are well fit by both signal-detection and dual-process models. Here we examine an entirely new recognition task, the judgment…

  8. Control System for Prosthetic Devices

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J. (Inventor)

    1996-01-01

    A control system and method for prosthetic devices is provided. The control system comprises a transducer for receiving movement from a body part for generating a sensing signal associated with that of movement. The sensing signal is processed by a linearizer for linearizing the sensing signal to be a linear function of the magnitude of the distance moved by the body part. The linearized sensing signal is normalized to be a function of the entire range of body part movement from the no-shrug position of the moveable body part through the full-shrg position of the moveable body part. The normalized signal is divided into a plurality of discrete command signals. The discrete command signals are used by typical converter devices which are in operational association with the prosthetic device. The converter device uses the discrete command signals for driving the moveable portions of the prosthetic device and its sub-prosthesis. The method for controlling a prosthetic device associated with the present invention comprises the steps of receiving the movement from the body part, generating a sensing signal in association with the movement of the body part, linearizing the sensing signal to be a linear function of the magnitude of the distance moved by the body part, normalizing the linear signal to be a function of the entire range of the body part movement, dividing the normalized signal into a plurality of discrete command signals, and implementing the plurality of discrete command signals for driving the respective moveable prosthesis device and its sub-prosthesis.

  9. Control method for prosthetic devices

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1995-01-01

    A control system and method for prosthetic devices is provided. The control system comprises a transducer for receiving movement from a body part for generating a sensing signal associated with that movement. The sensing signal is processed by a linearizer for linearizing the sensing signal to be a linear function of the magnitude of the distance moved by the body part. The linearized sensing signal is normalized to be a function of the entire range of body part movement from the no-shrug position of the moveable body part. The normalized signal is divided into a plurality of discrete command signals. The discrete command signals are used by typical converter devices which are in operational association with the prosthetic device. The converter device uses the discrete command signals for driving the moveable portions of the prosthetic device and its sub-prosthesis. The method for controlling a prosthetic device associated with the present invention comprises the steps of receiving the movement from the body part, generating a sensing signal in association with the movement of the body part, linearizing the sensing signal to be a linear function of the magnitude of the distance moved by the body part, normalizing the linear signal to be a function of the entire range of the body part movement, dividing the normalized signal into a plurality of discrete command signals, and implementing the plurality of discrete command signals for driving the respective moveable prosthesis device and its sub-prosthesis.

  10. Control system and method for prosthetic devices

    NASA Technical Reports Server (NTRS)

    Bozeman, Richard J., Jr. (Inventor)

    1992-01-01

    A control system and method for prosthetic devices is provided. The control system comprises a transducer for receiving movement from a body part for generating a sensing signal associated with that movement. The sensing signal is processed by a linearizer for linearizing the sensing signal to be a linear function of the magnitude of the distance moved by the body part. The linearized sensing signal is normalized to be a function of the entire range of body part movement from the no-shrug position of the movable body part through the full-shrug position of the movable body part. The normalized signal is divided into a plurality of discrete command signals. The discrete command signals are used by typical converter devices which are in operational association with the prosthetic device. The converter device uses the discrete command signals for driving the movable portions of the prosthetic device and its sub-prosthesis. The method for controlling a prosthetic device associated with the present invention comprises the steps of receiving the movement from the body part, generating a sensing signal in association with the movement of the body part, linearizing the sensing signal to be a linear function of the magnitude of the distance moved by the body part, normalizing the linear signal to be a function of the entire range of the body part movement, dividing the normalized signal into a plurality of discrete command signals, and implementing the plurality of discrete command signals for driving the respective movable prosthesis device and its sub-prosthesis.

  11. [Relationship between multi-slice spiral CT angiography imaging features and in-hospital death of patients with aortic dissection].

    PubMed

    Xiao, Z Y; Wang, H J; Yao, C L; Gu, G R; Xue, Y; Yin, J; Chen, J; Zhang, C; Tong, C Y; Song, Z J

    2017-03-24

    Objective: To explore the imaging manifestations of multi-slice spiral CT angiography (CTA) and relationship with in-hospital death in patients with aortic dissection (AD). Methods: The clinical data of 429 patients with AD who underwent CTA in Zhongshan Hospital of Fudan University between January 2009 and January 2016 were retrospectively analyzed. AD patients were divided into 2 groups, including operation group who underwent surgery or interventional therapy (370 cases) and non-operation group who underwent medical conservative treatment(59 cases). The multi-slice spiral CTA imaging features of AD were analyzed, and multivariate logistic regression analysis was used to investigate the relationship between imaging manifestations and in-hospital death in AD patients. Results: There were 12 cases (3.24%) of in-hospital death in operation group, and 28 cases (47.46%) of in-hospital death in non-operation group( P <0.001). AD involved different vascular branches. Multi-slice spiral CTA can clearly show the dissection of true and false lumen, and intimal tear was detected in 363 (84.62%) cases, outer wall calcification was revealed in 63 (14.69%) cases, and thrombus formation was present in 227 (52.91%) cases. The multivariate logistic regression analysis showed that the number of branch vessels involved ( OR =1.374, 95% CI 1.081-1.745, P =0.009) and tearing false lumen range( OR =2.059, 95% CI 1.252-3.385, P =0.004) were independent risk factors of in-hospital death in AD patients, and the number of branch vessels involved ( OR =1.600, 95% CI 1.062-2.411, P =0.025) was independent risk factor of in-hospital death in the operation group, while the tearing false lumen range ( OR =2.315, 95% CI 1.019-5.262, P =0.045) was independent risk factor of in-hospital death of non-operation group. Conclusions: Multi-slice spiral CTA can clearly show the entire AD, true and false lumen, intimal tear, wall calcification and thrombosis of AD patients. The number of branch vessels involved and tearing false lumen range are the independent risk factors of in-hospital death in AD patients.

  12. Multi-Color QWIP FPAs for Hyperspectral Thermal Emission Instruments

    NASA Technical Reports Server (NTRS)

    Soibel, Alexander; Luong, Ed; Mumolo, Jason M.; Liu, John; Rafol, Sir B.; Keo, Sam A.; Johnson, William; Willson, Dan; Hill, Cory J.; Ting, David Z.-Y.; hide

    2012-01-01

    Infrared focal plane arrays (FPAs) covering broad mid- and long-IR spectral ranges are the central parts of the spectroscopic and imaging instruments in several Earth and planetary science missions. To be implemented in the space instrument these FPAs need to be large-format, uniform, reproducible, low-cost, low 1/f noise, and radiation hard. Quantum Well Infrared Photodetectors (QWIPs), which possess all needed characteristics, have a great potential for implementation in the space instruments. However a standard QWIP has only a relatively narrow spectral coverage. A multi-color QWIP, which is compromised of two or more detector stacks, can to be used to cover the broad spectral range of interest. We will discuss our recent work on development of multi-color QWIP for Hyperspectral Thermal Emission Spectrometer instruments. We developed QWIP compromising of two stacks centered at 9 and 10.5 ?m, and featuring 9 grating regions optimized to maximize the responsivity in the individual subbands across the 7.5-12 ?m spectral range. The demonstrated 1024x1024 QWIP FPA exhibited excellent performance with operability exceeding 99% and noise equivalent differential temperature of less than 15 mK across the entire 7.5-12 ?m spectral range.

  13. Strategic management system in a healthcare setting--moving from strategy to results.

    PubMed

    Devitt, Rob; Klassen, Wolf; Martalog, Julian

    2005-01-01

    One of the historical challenges in the healthcare system has been the identification and collection of meaningful data to measure an organization's progress towards the achievement of its strategic goals and the concurrent alignment of internal operating practices with this strategy. Over the last 18 months the Toronto East General Hospital (TEGH) has adopted a strategic management system and organizing framework that has led to a metric-based strategic plan. It has allowed for formal and measurable linkages across a full range of internal business processes, from the annual operating plan to resource allocation decisions, to the balanced scorecard and individual performance evaluations. The Strategic Management System (SMS) aligns organizational planning and performance measurement, facilitates an appropriate balance between organizational priorities and resolving "local" problems, and encourages behaviours that are consistent with the values upon which the organization is built. The TEGH Accountability Framework serves as the foundation for the entire system. A key tool of the system is the rolling three-year strategic plan for the organization that sets out specific annual improvement targets on a number of key strategic measures. Individual program/department plans with corresponding measures ensure that the entire organization is moving forward strategically. Each year, all plans are reviewed, with course adjustments made to reflect changes in the hospital's environment and with re-calibration of performance targets for the next three years to ensure continued improvement and organizational progress. This system has been used through one annual business cycle. Results from the past year show measurable success. The hospital has improved on 12 of the 15 strategic plan metrics, including achieving the targeted 1% operating surplus while operating in an environment of tremendous change and uncertainty. This article describes the strategic management system used at TEGH and demonstrates the formal integration of the plan into its operating and decision making processes. It also provides examples of the metrics, their use in decision-making and the variance reporting and improvement mechanisms. The article also demonstrates that a measurement-oriented approach to the planning and delivery of community hospital service is both achievable and valuable in terms of accountability and organizational responsiveness.

  14. Quantum efficiency and dark current evaluation of a backside illuminated CMOS image sensor

    NASA Astrophysics Data System (ADS)

    Vereecke, Bart; Cavaco, Celso; De Munck, Koen; Haspeslagh, Luc; Minoglou, Kyriaki; Moore, George; Sabuncuoglu, Deniz; Tack, Klaas; Wu, Bob; Osman, Haris

    2015-04-01

    We report on the development and characterization of monolithic backside illuminated (BSI) imagers at imec. Different surface passivation, anti-reflective coatings (ARCs), and anneal conditions were implemented and their effect on dark current (DC) and quantum efficiency (QE) are analyzed. Two different single layer ARC materials were developed for visible light and near UV applications, respectively. QE above 75% over the entire visible spectrum range from 400 to 700 nm is measured. In the spectral range from 260 to 400 nm wavelength, QE values above 50% over the entire range are achieved. A new technique, high pressure hydrogen anneal at 20 atm, was applied on photodiodes and improvement in DC of 30% for the BSI imager with HfO2 as ARC as well as for the front side imager was observed. The entire BSI process was developed 200 mm wafers and evaluated on test diode structures. The knowhow is then transferred to real imager sensors arrays.

  15. Radiometric calibration of the vacuum-ultraviolet spectrograph SUMER on the SOHO spacecraft with the B detector.

    PubMed

    Schühle, U; Curdt, W; Hollandt, J; Feldman, U; Lemaire, P; Wilhelm, K

    2000-01-20

    The Solar Ultraviolet Measurement of Emitted Radiation (SUMER) vacuum-ultraviolet spectrograph was calibrated in the laboratory before the integration of the instrument on the Solar and Heliospheric Observatory (SOHO) spacecraft in 1995. During the scientific operation of the SOHO it has been possible to track the radiometric calibration of the SUMER spectrograph since March 1996 by a strategy that employs various methods to update the calibration status and improve the coverage of the spectral calibration curve. The results for the A Detector were published previously [Appl. Opt. 36, 6416 (1997)]. During three years of operation in space, the B detector was used for two and one-half years. We describe the characteristics of the B detector and present results of the tracking and refinement of the spectral calibration curves with it. Observations of the spectra of the stars alpha and rho Leonis permit an extrapolation of the calibration curves in the range from 125 to 149.0 nm. Using a solar coronal spectrum observed above the solar disk, we can extrapolate the calibration curves by measuring emission line pairs with well-known intensity ratios. The sensitivity ratio of the two photocathode areas can be obtained by registration of many emission lines in the entire spectral range on both KBr-coated and bare parts of the detector's active surface. The results are found to be consistent with the published calibration performed in the laboratory in the wavelength range from 53 to 124 nm. We can extrapolate the calibration outside this range to 147 nm with a relative uncertainty of ?30% (1varsigma) for wavelengths longer than 125 nm and to 46.5 nm with 50% uncertainty for the short-wavelength range below 53 nm.

  16. Power electronics for low power arcjets

    NASA Technical Reports Server (NTRS)

    Hamley, John A.; Hill, Gerald M.

    1991-01-01

    In anticipation of the needs of future light-weight, low-power spacecraft, arcjet power electronics in the 100 to 400 W operating range were developed. Limited spacecraft power and thermal control capacity of these small spacecraft emphasized the need for high efficiency. Power topologies similar to those in the higher 2 kW and 5 to 30 kW power range were implemented, including a four transistor bridge switching circuit, current mode pulse-width modulated control, and an output current averaging inductor with an integral pulse generation winding. Reduction of switching transients was accomplished using a low inductance power distribution network, and no passive snubber circuits were necessary for power switch protection. Phase shift control of the power bridge was accomplished using an improved pulse width modulation to phase shift converter circuit. These features, along with conservative magnetics designs allowed power conversion efficiencies of greater than 92.5 percent to be achieved into resistive loads over the entire operating range of the converter. Electromagnetic compatibility requirements were not considered in this work, and control power for the converter was derived from AC mains. Addition of input filters and control power converters would result in an efficiency of on the order of 90 percent for a flight unit. Due to the developmental nature of arcjet systems at this power level, the exact nature of the thruster/power processor interface was not quantified. Output regulation and current ripple requirements of 1 and 20 percent respectively, as well as starting techniques, were derived from the characteristics of the 2 kW system but an open circuit voltage in excess of 175 V was specified. Arcjet integration tests were performed, resulting in successful starts and stable arcjet operation at power levels as low as 240 W with simulated hydrazine propellants.

  17. Development of a Multiple-Stage Differential Mobility Analyzer (MDMA)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Da-Ren; Cheng, Mengdawn

    2007-01-01

    A new DMA column has been designed with the capability of simultaneously extracting monodisperse particles of different sizes in multiple stages. We call this design a multistage DMA, or MDMA. A prototype MDMA has been constructed and experimentally evaluated in this study. The new column enables the fast measurement of particles in a wide size range, while preserving the powerful particle classification function of a DMA. The prototype MDMA has three sampling stages, capable of classifying monodisperse particles of three different sizes simultaneously. The scanning voltage operation of a DMA can be applied to this new column. Each stage ofmore » MDMA column covers a fraction of the entire particle size range to be measured. The covered size fractions of two adjacent stages of the MDMA are designed somewhat overlapped. The arrangement leads to the reduction of scanning voltage range and thus the cycling time of the measurement. The modular sampling stage design of the MDMA allows the flexible configuration of desired particle classification lengths and variable number of stages in the MDMA. The design of our MDMA also permits operation at high sheath flow, enabling high-resolution particle size measurement and/or reduction of the lower sizing limit. Using the tandem DMA technique, the performance of the MDMA, i.e., sizing accuracy, resolution, and transmission efficiency, was evaluated at different ratios of aerosol and sheath flowrates. Two aerosol sampling schemes were investigated. One was to extract aerosol flows at an evenly partitioned flowrate at each stage, and the other was to extract aerosol at a rate the same as the polydisperse aerosol flowrate at each stage. We detail the prototype design of the MDMA and the evaluation result on the transfer functions of the MDMA at different particle sizes and operational conditions.« less

  18. Wide speed range turboshaft study

    NASA Technical Reports Server (NTRS)

    Dangelo, Martin

    1995-01-01

    NASA-Lewis and NASA-Ames have sponsored a series of studies over the last few years to identify key high speed rotorcraft propulsion and airframe technologies. NASA concluded from these studies that for near term aircraft with cruise speeds up to 450 kt, tilting rotor rotorcraft concepts are the most economical and technologically viable. The propulsion issues critical to tilting rotor rotorcraft are: (1) high speed cruise propulsion system efficiency and (2) adequate power to hover safely with one engine inoperative. High speed cruise propeller efficiency can be dramatically improved by reducing rotor speed, yet high rotor speed is critical for good hover performance. With a conventional turboshaft, this wide range of power turbine operating speeds would result in poor engine performance at one or more of these critical operating conditions. This study identifies several wide speed range turboshaft concepts, and analyzes their potential to improve performance at the diverse cruise and hover operating conditions. Many unique concepts were examined, and the selected concepts are simple, low cost, relatively low risk, and entirely contained within the power turbine. These power turbine concepts contain unique, incidence tolerant airfoil designs that allow the engine to cruise efficiently at 51 percent of the hover rotor speed. Overall propulsion system efficiency in cruise is improved as much as 14 percent, with similar improvements in engine weight and cost. The study is composed of a propulsion requirement survey, a concept screening study, a preliminary definition and evaluation of selected concepts, and identification of key technologies and development needs. In addition, a civil transport tilting rotor rotorcraft mission analysis was performed to show the benefit of these concepts versus a conventional turboshaft. Other potential applications for this technology are discussed.

  19. Fully Packaged Blue Energy Harvester by Hybridizing a Rolling Triboelectric Nanogenerator and an Electromagnetic Generator.

    PubMed

    Wang, Xin; Wen, Zhen; Guo, Hengyu; Wu, Changsheng; He, Xu; Lin, Long; Cao, Xia; Wang, Zhong Lin

    2016-12-27

    Ocean energy, in theory, is an enormous clean and renewable energy resource that can generate electric power much more than that required to power the entire globe without adding any pollution to the atmosphere. However, owing to a lack of effective technology, such blue energy is almost unexplored to meet the energy requirement of human society. In this work, a fully packaged hybrid nanogenerator consisting of a rolling triboelectric nanogenerator (R-TENG) and an electromagnetic generator (EMG) is developed to harvest water motion energy. The outstanding output performance of the R-TENG (45 cm 3 in volume and 28.3 g in weight) in the low-frequency range (<1.8 Hz) complements the ineffective output of EMG (337 cm 3 in volume and 311.8 g in weight) in the same range and thus enables the hybrid nanogenerator to deliver valuable outputs in a broad range of operation frequencies. Therefore, the hybrid nanogenerator can maximize the energy conversion efficiency and broaden the operating frequency simultaneously. In terms of charging capacitors, this hybrid nanogenerator provides not only high voltage and consistent charging from the TENG component but also fast charging speed from the EMG component. The practical application of the hybrid nanogenerator is also demonstrated to power light-emitting diodes by harvesting energy from stimulated tidal flow. The high robustness of the R-TENG is also validated based on the stable electrical output after continuous rolling motion. Therefore, the hybrid R-TENG and EMG device renders an effective and sustainable approach toward large-scale blue energy harvesting in a broad frequency range.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zabelin, A.I.; Shmelev, V.E.

    Radiolysis of the coolant proceeds at a higher rate in a boiling water reactor as compared to a water-moderated, water-cooled reactor. The radiolytic gases (hydrogen and oxygen) exiting the reactor together with steam can form a potentially explosive mixture. Special interest attaches to the results obtained under the codnitions of prolonged operation of the VK-50 reactor. Tests of various water-chemistry conditions which were performed in the experimental reactor showed their critical influence on the rate of progress of radiolytic processes. The entire period of operation of the reactor may be arbitrarily divided into three stages, each of which is characterizedmore » by its own peculiar conditions of water chemistry and range of thermal power. From stage to stage, there is a noticeable improvement in the coolant quality which to a limited extent is reflected in the exit of radiolytic gases with the steam. The concentration of radiolytic gases increases with decreased power and with an increased content of corrosion products and other contaminants in the coolant.« less

  1. An effective system to produce smoke solutions from dried plant tissue for seed germination studies1

    PubMed Central

    Coons, Janice; Coutant, Nancy; Lawrence, Barbara; Finn, Daniel; Finn, Stephanie

    2014-01-01

    • Premise of the study: An efficient and inexpensive system was developed to produce smoke solutions from plant material to research the influence of water-soluble compounds from smoke on seed germination. • Methods and Results: Smoke solutions (300 mL per batch) were produced by burning small quantities (100–200 g) of dried plant material from a range of species in a bee smoker attached by a heater hose to a side-arm flask. The flask was attached to a vacuum water aspirator, to pull the smoke through the water. The entire apparatus was operated in a laboratory fume hood. • Conclusions: Compared with other smoke solution preparation systems, the system described is easy to assemble and operate, inexpensive to build, and effective at producing smoke solutions from desired species in a small indoor space. Quantitative measurements can be made when using this system, allowing for replication of the process. PMID:25202613

  2. Battery Thermal Characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keyser, Matthew A

    The operating temperature is critical in achieving the right balance between performance, cost, and life for both Li-ion batteries and ultracapacitors. The chemistries of advanced energy-storage devices - such as lithium-based batteries - are very sensitive to operating temperature. High temperatures degrade batteries faster while low temperatures decrease their power and capacity, affecting vehicle range, performance, and cost. Understanding heat generation in battery systems - from the individual cells within a module, to the inter-connects between the cells, and across the entire battery system - is imperative for designing effective thermal-management systems and battery packs. At NREL, we have developedmore » unique capabilities to measure the thermal properties of cells and evaluate thermal performance of battery packs (air or liquid cooled). We also use our electro-thermal finite element models to analyze the thermal performance of battery systems in order to aid battery developers with improved thermal designs. NREL's tools are used to meet the weight, life, cost, and volume goals set by the U.S. Department of Energy for electric drive vehicles.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuhlmann, Andreas V.; Houel, Julien; Warburton, Richard J.

    Optically active quantum dots, for instance self-assembled InGaAs quantum dots, are potentially excellent single photon sources. The fidelity of the single photons is much improved using resonant rather than non-resonant excitation. With resonant excitation, the challenge is to distinguish between resonance fluorescence and scattered laser light. We have met this challenge by creating a polarization-based dark-field microscope to measure the resonance fluorescence from a single quantum dot at low temperature. We achieve a suppression of the scattered laser exceeding a factor of 10{sup 7} and background-free detection of resonance fluorescence. The same optical setup operates over the entire quantum dotmore » emission range (920–980 nm) and also in high magnetic fields. The major development is the outstanding long-term stability: once the dark-field point has been established, the microscope operates for days without alignment. The mechanical and optical designs of the microscope are presented, as well as exemplary resonance fluorescence spectroscopy results on individual quantum dots to underline the microscope's excellent performance.« less

  4. Suzaku Wide-band All-sky Monitor (WAM) observations of GRBs and SGRs

    NASA Astrophysics Data System (ADS)

    Yamaoka, Kazutaka; Ohno, Masanori; Tashiro, Makoto S.; Hurley, Kevin; Krimm, Hans A.; Lien, Amy Y.; Ohmori, Norisuke; Sugita, Satoshi; Urata, Yuji; Yasuda, Tetsuya; Enomoto, Junichi; Fujinuma, Takeshi; Fukazawa, Yasushi; Hanabata, Yoshitaka; Iwakiri, Wataru; Kawano, Takafumi; Kinoshita, Ryuuji; Kokubun, Motohide; Makishima, Kazuo; Matsuoka, Shunsuke; Nagayoshi, Tsutomu; Nakagawa, Yujin; Nakaya, Souhei; Nakazawa, Kazuhiro; Nishioka, Yusuke; Sakamoto, Takanori; Takahashi, Tadayuki; Takeda, Sawako; Terada, Yukikatsu; Yabe, Seiya; Yamauchi, Makoto; Yoshida, Hiraku

    2017-06-01

    We will review results for gamma-ray bursts (GRBs) and soft gamma repeaters (SGRs), obtained from the Suzaku Wide-band All-sky Monitor (WAM) which operated for about 10 years from 2005 to 2015. The WAM is a BGO (bismuth germanate: Bi4Ge3O12) lateral shield for the Hard X-ray Detector (HXD), used mainly for rejecting its detector background, but it also works as an all-sky monitor for soft gamma-ray transients in the 50-5000 keV range thanks to its large effective area (˜600 cm2 at 1 MeV for one detector) and wide field of view (about half of the entire sky). The WAM actually detected more than 1400 GRBs and 300 bursts from SGRs, and this detection number is comparable to that of other GRB-specific instruments. Based on the 10 years of operation, we describe timing and spectral performance for short GRBs, weak GRBs with high redshifts, and time-resolved pulses with good statistics.

  5. Incorporation of nanovoids into metallic gratings for broadband plasmonic organic solar cells.

    PubMed

    Lee, Sangjun; In, Sungjun; Mason, Daniel R; Park, Namkyoo

    2013-02-25

    We present investigation and optimization of a newly proposed plasmonic organic solar cell geometry based on the incorporation of nanovoids into conventional rectangular backplane gratings. Hybridization of strongly localized plasmonic modes of the nanovoids with Fabry-Perot cavity modes originating from surface plasmon reflection at the grating elements is shown to significantly boost performance in the long wavelength regime. This constitutes improved broadband operation while maintaining absorption enhancements at short wavelengths derived from conventional rectangular grating. Our calculations predict a figure of merit enhancement of up to 41% compared to when the nanovoid indented grating is absent. This is a significant improvement over the previously considered rectangular grating structures, which is further shown to be maintained over the entire angular range.

  6. The use of laser in hysteroscopic surgery.

    PubMed

    Nappi, Luigi; Sorrentino, Felice; Angioni, Stefano; Pontis, Alessandro; Greco, Pantaleo

    2016-12-01

    The term laser, an acronym for light amplification by stimulated emission of radiation, covers a wide range of devices. Lasers are commonly described by the emitted wavelength that covers the entire light spectrum from infrared to ultraviolet and the active lasing medium. Currently, over forty different types of lasers have found application in medicine. Moreover, advances made by gynecologists in the field of operative hysteroscopy have developed a very great interest in the use of surgical lasers. Technical improvements in hysteroscopes and lasers have led several gynecologists to evaluate their use in the surgical treatment of intrauterine pathologies. This narrative review concerns the most common used lasers in hysteroscopic surgery with particular attention to the latest promising results of the laser technology.

  7. Broadband gradient index microwave quasi-optical elements based on non-resonant metamaterials.

    PubMed

    Liu, Ruopeng; Cheng, Qiang; Chin, Jessie Y; Mock, Jack J; Cui, Tie Jun; Smith, David R

    2009-11-09

    Utilizing non-resonant metamaterial elements, we demonstrate that complex gradient index optics can be constructed exhibiting low material losses and large frequency bandwidth. Although the range of structures is limited to those having only electric response, with an electric permittivity always equal to or greater than unity, there are still numerous metamaterial design possibilities enabled by leveraging the non-resonant elements. For example, a gradient, impedance matching layer can be added that drastically reduces the return loss of the optical elements due to reflection. In microwave experiments, we demonstrate the broadband design concepts with a gradient index lens and a beam-steering element, both of which are confirmed to operate over the entire X-band (roughly 8-12 GHz) frequency spectrum.

  8. Characterization of an in-vacuum PILATUS 1M detector.

    PubMed

    Wernecke, Jan; Gollwitzer, Christian; Müller, Peter; Krumrey, Michael

    2014-05-01

    A dedicated in-vacuum X-ray detector based on the hybrid pixel PILATUS 1M detector has been installed at the four-crystal monochromator beamline of the PTB at the electron storage ring BESSY II in Berlin, Germany. Owing to its windowless operation, the detector can be used in the entire photon energy range of the beamline from 10 keV down to 1.75 keV for small-angle X-ray scattering (SAXS) experiments and anomalous SAXS at absorption edges of light elements. The radiometric and geometric properties of the detector such as quantum efficiency, pixel pitch and module alignment have been determined with low uncertainties. The first grazing-incidence SAXS results demonstrate the superior resolution in momentum transfer achievable at low photon energies.

  9. Deep-Earth reactor: nuclear fission, helium, and the geomagnetic field.

    PubMed

    Hollenbach, D F; Herndon, J M

    2001-09-25

    Geomagnetic field reversals and changes in intensity are understandable from an energy standpoint as natural consequences of intermittent and/or variable nuclear fission chain reactions deep within the Earth. Moreover, deep-Earth production of helium, having (3)He/(4)He ratios within the range observed from deep-mantle sources, is demonstrated to be a consequence of nuclear fission. Numerical simulations of a planetary-scale geo-reactor were made by using the SCALE sequence of codes. The results clearly demonstrate that such a geo-reactor (i) would function as a fast-neutron fuel breeder reactor; (ii) could, under appropriate conditions, operate over the entire period of geologic time; and (iii) would function in such a manner as to yield variable and/or intermittent output power.

  10. Broadband pump-probe spectroscopy at 20-MHz modulation frequency.

    PubMed

    Preda, Fabrizio; Kumar, Vikas; Crisafi, Francesco; Figueroa Del Valle, Diana Gisell; Cerullo, Giulio; Polli, Dario

    2016-07-01

    We introduce an innovative high-sensitivity broadband pump-probe spectroscopy system, based on Fourier-transform detection, operating at 20-MHz modulation frequency. A common-mode interferometer employing birefringent wedges creates two phase-locked delayed replicas of the broadband probe pulse, interfering at a single photodetector. A single-channel lock-in amplifier demodulates the interferogram, whose Fourier transform provides the differential transmission spectrum. Our approach combines broad spectral coverage with high sensitivity, due to high-frequency modulation and detection. We demonstrate its performances by measuring two-dimensional differential transmission maps of a carbon nanotubes sample, simultaneously acquiring the signal over the entire 950-1350 nm range with 2.7·10-6  rms noise over 1.5 s integration time.

  11. Turboexpanders for OTEC power plants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holm, J.

    1981-01-01

    Centripetal (radial inflow) turboexpanders are well adapted to energy conservation schemes. A mini OTEC demonstration program, completed in 1979, uses a closed ammonia cycle to drive a 50 kw turboexpander generator unit. The turboexpander, which incorporates mechanical designs of low temperature and high speed machinery, has very high levels of reliability and efficiency. Stiff shaft designs have eliminated shaft and bearing criticals in the entire operating range. Rotor resonance problems are almost totally eliminated, and thrust bearing problems can be accurately monitored and controlled. Condensing streams and dust in gas can also be handled without erosion. Designs for radial inflowmore » turboexpanders in sizes up to 70 MWe are presently available for use in OTEC and other power plants.« less

  12. Parallel processing for pitch splitting decomposition

    NASA Astrophysics Data System (ADS)

    Barnes, Levi; Li, Yong; Wadkins, David; Biederman, Steve; Miloslavsky, Alex; Cork, Chris

    2009-10-01

    Decomposition of an input pattern in preparation for a double patterning process is an inherently global problem in which the influence of a local decomposition decision can be felt across an entire pattern. In spite of this, a large portion of the work can be massively distributed. Here, we discuss the advantages of geometric distribution for polygon operations with limited range of influence. Further, we have found that even the naturally global "coloring" step can, in large part, be handled in a geometrically local manner. In some practical cases, up to 70% of the work can be distributed geometrically. We also describe the methods for partitioning the problem into local pieces and present scaling data up to 100 CPUs. These techniques reduce DPT decomposition runtime by orders of magnitude.

  13. Inverse Scattering Problem For The Schrödinger Equation With An Additional Quadratic Potential On The Entire Axis

    NASA Astrophysics Data System (ADS)

    Guseinov, I. M.; Khanmamedov, A. Kh.; Mamedova, A. F.

    2018-04-01

    We consider the Schrödinger equation with an additional quadratic potential on the entire axis and use the transformation operator method to study the direct and inverse problems of the scattering theory. We obtain the main integral equations of the inverse problem and prove that the basic equations are uniquely solvable.

  14. Optimal integration strategies for a syngas fuelled SOFC and gas turbine hybrid

    NASA Astrophysics Data System (ADS)

    Zhao, Yingru; Sadhukhan, Jhuma; Lanzini, Andrea; Brandon, Nigel; Shah, Nilay

    This article aims to develop a thermodynamic modelling and optimization framework for a thorough understanding of the optimal integration of fuel cell, gas turbine and other components in an ambient pressure SOFC-GT hybrid power plant. This method is based on the coupling of a syngas-fed SOFC model and an associated irreversible GT model, with an optimization algorithm developed using MATLAB to efficiently explore the range of possible operating conditions. Energy and entropy balance analysis has been carried out for the entire system to observe the irreversibility distribution within the plant and the contribution of different components. Based on the methodology developed, a comprehensive parametric analysis has been performed to explore the optimum system behavior, and predict the sensitivity of system performance to the variations in major design and operating parameters. The current density, operating temperature, fuel utilization and temperature gradient of the fuel cell, as well as the isentropic efficiencies and temperature ratio of the gas turbine cycle, together with three parameters related to the heat transfer between subsystems are all set to be controllable variables. Other factors affecting the hybrid efficiency have been further simulated and analysed. The model developed is able to predict the performance characteristics of a wide range of hybrid systems potentially sizing from 2000 to 2500 W m -2 with efficiencies varying between 50% and 60%. The analysis enables us to identify the system design tradeoffs, and therefore to determine better integration strategies for advanced SOFC-GT systems.

  15. Simulation and evaluation of phase noise for optical amplification using semiconductor optical amplifiers in DPSK applications

    NASA Astrophysics Data System (ADS)

    Hong, Wei; Huang, Dexiu; Zhang, Xinliang; Zhu, Guangxi

    2008-01-01

    A thorough simulation and evaluation of phase noise for optical amplification using semiconductor optical amplifier (SOA) is very important for predicting its performance in differential phase-shift keyed (DPSK) applications. In this paper, standard deviation and probability distribution of differential phase noise at the SOA output are obtained from the statistics of simulated differential phase noise. By using a full-wave model of SOA, the noise performance in the entire operation range can be investigated. It is shown that nonlinear phase noise substantially contributes to the total phase noise in case of a noisy signal amplified by a saturated SOA and the nonlinear contribution is larger with shorter SOA carrier lifetime. It is also shown that Gaussian distribution can be useful as a good approximation of the total differential phase noise statistics in the whole operation range. Power penalty due to differential phase noise is evaluated using a semi-analytical probability density function (PDF) of receiver noise. Obvious increase of power penalty at high signal input powers can be found for low input OSNR, which is due to both the large nonlinear differential phase noise and the dependence of BER vs. receiving power curvature on differential phase noise standard deviation.

  16. [Operative laparoscopy in the management of perforated peptic ulcer].

    PubMed

    Schirru, Angelo; Cavaliere, Davide; Caristo, Ilario; Bianchi, Massimo; Cosce, Umberto; Mariani, Federica; Scarimbolo, Monica; Cavaliere, Paolo

    2004-01-01

    The aim of this retrospective study was to assess the feasibility, safety and efficacy of the laparoscopic approach in the management of perforated peptic ulcers. From January 1997 to December 2002, all patients referred to our community hospital for abdominal surgical emergencies were routinely managed by laparoscopic surgery. A review was carried out on 39 consecutive patients suffering from perforated peptic ulcers with or without generalised peritonitis. The study population comprised 24 male and 15 female patients, aged 30 to 94 years (mean age: 62 +/- 18). Laparoscopic repair was attempted in all patients. Laparoscopy afforded the correct diagnosis in all cases. Laparoscopic peritoneal washout (irrigation and suction of the entire abdominal cavity) with simple suture of the perforation proved successful in 34 patients. An additional omental patching was performed in 15 of these cases. Conversion to conventional open surgery was necessary in 5 patients. The morbidity and mortality rates were 13% and 10%, respectively. The mean operative time was 77 minutes (range: 40-120) and the mean hospital stay 9 days (range: 3-22). Laparoscopic repair of perforated ulcers is technically feasible but requires sound experience in laparoscopic abdominal emergencies. This study shows that the mini-invasive procedure is safe and effective, offering a valid alternative to traditional laparotomy.

  17. The SuperNova Integral Field Spectrograph

    NASA Astrophysics Data System (ADS)

    Aldering, Gregory S.; Supernova Factory, Nearby

    2007-05-01

    The SuperNova Integral Field Spectrograph (SNIFS) is operated at the University of Hawaii 2.2 meter telescope on Mauna Kea by the Nearby Supernova Factory. The IFU has a 6x6 arcsecond field of view, and the combined blue and red channels simultaneously cover the full optical (320-1000 nm) spectral range. SNIFS was designed to allow spectrophotometry of supernovae under both photometric and non-photometric conditions. SNIFS is operated entirely remotely, in a quasi-automated mode, from as nearby as Hilo, Hawaii and as far away as Paris, France. Being mounted at the south bent Cassegrain focus of the UH 2.2-m, SNIFS is always available, either for regular Nearby Supernova Factory observations, or any of a range of programs conducted by astronomers at the University of Hawaii Institute for Astronomy. We illustrate some of the unique features of SNIFS and some of the science programs that have been undertaken using it. This work is supported in part by the Director, Office of Science, Office of High Energy and Nuclear Physics, of the U.S. Department of Energy under Contracts No. DE-FG0-92ER40704, by a grant from the Gordon & Betty Moore Foundation, and in France by CNRS/IN2P3, CNRS/INSU and PNC.

  18. Energy management and multi-layer control of networked microgrids

    NASA Astrophysics Data System (ADS)

    Zamora, Ramon

    Networked microgrids is a group of neighboring microgrids that has ability to interchange power when required in order to increase reliability and resiliency. Networked microgrid can operate in different possible configurations including: islanded microgrid, a grid-connected microgrid without a tie-line converter, a grid-connected microgrid with a tie-line converter, and networked microgrids. These possible configurations and specific characteristics of renewable energy offer challenges in designing control and management algorithms for voltage, frequency and power in all possible operating scenarios. In this work, control algorithm is designed based on large-signal model that enables microgrid to operate in wide range of operating points. A combination between PI controller and feed-forward measured system responses will compensate for the changes in operating points. The control architecture developed in this work has multi-layers and the outer layer is slower than the inner layer in time response. The main responsibility of the designed controls are to regulate voltage magnitude and frequency, as well as output power of the DG(s). These local controls also integrate with a microgrid level energy management system or microgrid central controller (MGCC) for power and energy balance for. the entire microgrid in islanded, grid-connected, or networked microgid mode. The MGCC is responsible to coordinate the lower level controls to have reliable and resilient operation. In case of communication network failure, the decentralized energy management will operate locally and will activate droop control. Simulation results indicate the superiority of designed control algorithms compared to existing ones.

  19. Digital tracking loops for a programmable digital modem

    NASA Technical Reports Server (NTRS)

    Poklemba, John J.

    1992-01-01

    In this paper, an analysis and hardware emulation of the tracking loops for a very flexible programmable digital modem (PDM) will be presented. The modem is capable of being programmed for 2, 4, 8, 16-PSK, 16-QAM, MSK, and Offset-QPSK modulation schemes over a range of data rates from 2.34 to 300 Mbps with programmable spectral occupancy from 1.2 to 1.8 times the symbol rate; these operational parameters are executable in burst or continuous mode. All of the critical processing in both the modulator and demodulator is done at baseband with very high-speed digital hardware and memory. Quadrature analog front-ends are used for translation between baseband and the IF center frequency. The modulator is based on a table lookup approach, where precomputed samples are stored in memory and clocked out according to the incoming data pattern. The sample values are predistorted to counteract the effects of the other filtering functions in the link as well as any transmission impairments. The demodulator architecture was adapted from a joint estimator-detector (JED) mathematical analysis. Its structure is applicable to most signalling formats that can be represented in a two-dimensional space. The JED realization uses interdependent, mutually aiding tracking loops with post-detection data feedback. To expedite and provide for more reliable synchronization, initial estimates for these loops are computed in a parallel acquisition processor. The cornerstone of the demodulator realization is the pre-averager received data filter which allows operation over a broad range of data rates without any hardware changes and greatly simplifies the implementation complexity. The emulation results confirmed tracking loop operation over the entire range of operational parameters listed above, as well as the capability of achieving and maintaining synchronization at BER's in excess of 10(exp -1). The emulation results also showed very close agreement with the tracking loop analysis, and validated the resolution apportionment of the various hardware elements in the tracking loops.

  20. ISACC in Operations

    DTIC Science & Technology

    2014-06-01

    19th floor of a Hotel to overlook the entire event. Page 12 of 17 Figure 6: The SPF Operations Centre overlooking the Event Lessons...have a cheap system to help them solve their immediate operational needs. b. Medium enterprises, that need to have quick customization of the...Optimize” tools to help them advance their current operations to a higher service satisfaction level seen by the public. 32. Common across all

  1. Operating room fires in periocular surgery.

    PubMed

    Connor, Michael A; Menke, Anne M; Vrcek, Ivan; Shore, John W

    2018-06-01

    A survey of ophthalmic plastic and reconstructive surgeons as well as seven-year data regarding claims made to the Ophthalmic Mutual Insurance Company (OMIC) is used to discuss operating room fires in periocular surgery. A retrospective review of all closed claim operating room fires submitted to OMIC was performed. A survey soliciting personal experiences with operating room fires was distributed to all American Society of Oculoplastic and Reconstructive Surgeons. Over the last 2 decades, OMIC managed 7 lawsuits resulting from an operating room fire during periocular surgery. The mean settlement per lawsuit was $145,285 (range $10,000-474,994). All six patients suffered burns to the face, and three required admission to a burn unit. One hundred and sixty-eight surgeons participated in the online survey. Approximately 44% of survey respondents have experienced at least one operating room fire. Supplemental oxygen was administered in 88% of these cases. Most surgical fires reported occurred in a hospital-based operating room (59%) under monitored anesthesia care (79%). Monopolar cautery (41%) and thermal, high-temperature cautery (41%) were most commonly reported as the inciting agents. Almost half of the patients involved in a surgical fire experienced a complication from the fire (48%). Sixty-nine percent of hospital operating rooms and 66% of ambulatory surgery centers maintain an operating room fire prevention policy. An intraoperative fire can be costly for both the patient and the surgeon. Ophthalmic surgeons operate in an oxygen rich and therefore flammable environment. Proactive measures can be undertaken to reduce the incidence of surgical fires periocular surgery; however, a fire can occur at any time and the entire operating room team must be constantly vigilant to prevent and manage operating room fires.

  2. Calculating Correlated Color Temperatures Across the Entire Gamut of Daylight and Skylight Chromaticities

    DTIC Science & Technology

    1999-09-20

    c o i b f t c c c c w n c s p t s Calculating correlated color temperatures across the entire gamut of daylight and skylight chromaticities Javier...temperature ~CCT!, yet existing equations for calculating CCT from chromaticity coordinates span only part of this range. To improve both the gamut and accuracy...00-1999 to 00-00-1999 4. TITLE AND SUBTITLE Calculating correlated color temperatures across the entire gamut of daylight and skylight

  3. Indian programme on middle atmosphere - Some results

    NASA Astrophysics Data System (ADS)

    Mitra, A. P.

    An account of the very extensive program on the middle atmosphere carried out in India since 1982 is presented. Three rocket ranges (Thumba, SHAR and Balasore), a high altitude balloon facility at Hyderabad, a lidar at Thumba, a laser heterodyning system at Delhi, a meteor radar in Thumba, a network of UVB and multiwavelength radiometers, and a host of conventional ground based facilities scattered over the entire subcontinent were used. These facilities covered a range of latitudes from 8 deg N to 34 deg N and largely around the same longitude zone of 75 deg E. The nature of the Indian effort is the emphasis on campaign mode operations, knitting special rocket and balloon efforts with more conventional ground based activities around specific themes. Major campaigns carried out included: (1) Indo-Soviet Ozone Intercomparison campaigns in 1983 and 1987, (2) Aerosol campaign (3), Ionization and conductivity campaigns, (4) Equatorial Wave Campaign, (5) Antarctic Ozone Hole campaign in Dakshin Gangotri. A few of the more important findings are outlined.

  4. Fiber optic shape sensing for monitoring of flexible structures

    NASA Astrophysics Data System (ADS)

    Lally, Evan M.; Reaves, Matt; Horrell, Emily; Klute, Sandra; Froggatt, Mark E.

    2012-04-01

    Recent advances in materials science have resulted in a proliferation of flexible structures for high-performance civil, mechanical, and aerospace applications. Large aspect-ratio aircraft wings, composite wind turbine blades, and suspension bridges are all designed to meet critical performance targets while adapting to dynamic loading conditions. By monitoring the distributed shape of a flexible component, fiber optic shape sensing technology has the potential to provide valuable data during design, testing, and operation of these smart structures. This work presents a demonstration of such an extended-range fiber optic shape sensing technology. Three-dimensional distributed shape and position sensing is demonstrated over a 30m length using a monolithic silica fiber with multiple optical cores. A novel, helicallywound geometry endows the fiber with the capability to convert distributed strain measurements, made using Optical Frequency-Domain Reflectometry (OFDR), to a measurement of curvature, twist, and 3D shape along its entire length. Laboratory testing of the extended-range shape sensing technology shows

  5. Science-Driven Computing: NERSC's Plan for 2006-2010

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Simon, Horst D.; Kramer, William T.C.; Bailey, David H.

    NERSC has developed a five-year strategic plan focusing on three components: Science-Driven Systems, Science-Driven Services, and Science-Driven Analytics. (1) Science-Driven Systems: Balanced introduction of the best new technologies for complete computational systems--computing, storage, networking, visualization and analysis--coupled with the activities necessary to engage vendors in addressing the DOE computational science requirements in their future roadmaps. (2) Science-Driven Services: The entire range of support activities, from high-quality operations and user services to direct scientific support, that enable a broad range of scientists to effectively use NERSC systems in their research. NERSC will concentrate on resources needed to realize the promise ofmore » the new highly scalable architectures for scientific discovery in multidisciplinary computational science projects. (3) Science-Driven Analytics: The architectural and systems enhancements and services required to integrate NERSC's powerful computational and storage resources to provide scientists with new tools to effectively manipulate, visualize, and analyze the huge data sets derived from simulations and experiments.« less

  6. 7 CFR 7.5 - Eligible voters.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation... the supervision and conduct of the farming operations on an entire farm, are eligible to vote for... entity, as determined by the Deputy Administrator, Field Operations, FSA. (e) Each county office will...

  7. 7 CFR 7.5 - Eligible voters.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... race, color, national origin, gender, religion, age, disability, political beliefs, sexual orientation... the supervision and conduct of the farming operations on an entire farm, are eligible to vote for... entity, as determined by the Deputy Administrator, Field Operations, FSA. (e) Each county office will...

  8. FREQUENCY OF WOUND INFECTION IN NON-PERFORATED APPENDICITIS WITH USE OF SINGLE DOSE PREOPERATIVE ANTIBIOTICS.

    PubMed

    Ali, Kishwar; Latif, Humera; Ahmad, Sajjad

    2015-01-01

    Antibiotics are used both pre and post-operatively in acute appendicitis for preventing wound infection. It has been observed that the routine use of post-operative antibiotics is not necessary in cases of non-perforated appendicitis as only prophylactic antibiotics are sufficient to prevent wound infection. The aim of this study was to see the frequency of wound infection in non-perforated appendicitis with single dose preoperative antibiotics only. This observational study was conducted at the Department of Surgery, Ayub Medical College, Abbottabad from May to November 2014. A total of 121 patients with non-perforated appendicitis were included in the study. Only single dose preoperative antibiotics were used. The patients were followed for wound infection till 8th post-operative day. 121 patients, 56 (46.28%) male and 65 (53.72%) female were included in the study. The mean age of patients was 27.41 +/- 7.12 years with an age range of 18 to 45 years. In the entire series, 7 (5.78%) patients developed wound infection. The infection was minor which settled with conservative therapy. Prophylactic antibiotics were found efficacious in 114 (94.21%) patients. There was no significant association between wound infection and age and gender. Single dose preoperative antibiotics were found effective in controlling post-operative wound infection without the need of extending the antibiotics to post-operative period in cases of non-perforated appendicitis.

  9. Prediction of three-dimensional femoral offset from AP pelvis radiographs in primary hip osteoarthritis.

    PubMed

    Merle, C; Waldstein, W; Pegg, E C; Streit, M R; Gotterbarm, T; Aldinger, P R; Murray, D W; Gill, H S

    2013-08-01

    In pre-operative planning for total hip arthroplasty (THA), femoral offset (FO) is frequently underestimated on AP pelvis radiographs as a result of inaccurate patient positioning, imprecise magnification, and radiographic beam divergence. The aim of the present study was to evaluate the accuracy and reliability of predicting three-dimensional (3-D) FO from standardised AP pelvis radiographs. In a retrospective cohort study, pre-operative AP pelvis radiographs, AP hip radiographs and CT scans of a consecutive series of 345 patients (345 hips, 146 males, 199 females, mean age 60 (range: 40-79) years, mean body-mass-index 27 (range: 19-57)kg/m(2)) with primary end-stage hip OA were reviewed. Patients were positioned according to a standardised protocol and all images were calibrated. Using validated custom programmes, FO was measured on corresponding radiographs and CT scans. Measurement reliability was evaluated using intra-class-correlation-coefficients. To predict 3-D FO from AP pelvis measurements and to assess the accuracy compared to CT, the entire cohort was randomly split into subgroups A and B. Gender specific regression equations were derived from group A (245 patients) and the accuracy of prediction was evaluated in group B (100 patients) using Bland-Altman plots. In the entire cohort, mean FO was 39.2mm (95%CI: 38.5-40.0mm) on AP pelvis radiographs, 44.1mm (95%CI: 43.4-44.9mm) on AP hip radiographs and 44.6mm (95%CI: 44.0-45.2mm) on CT scans. In group B, we observed no significant difference between gender specific predicted FO (males: 48.0mm, 95%CI: 47.1-48.8mm; females: 42.0mm, 95%CI: 41.1-42.8mm) and FO as measured on CT (males: 47.7mm, 95%CI: 46.1-49.4mm, p=0.689; females: 41.6mm, 95%CI: 40.3-43.0mm, p=0.607). The present study suggests that FO can be accurately and reliably predicted from AP pelvis radiographs in patients with primary end-stage hip osteoarthritis. Our findings support the surgeon in pre-operative templating on AP-pelvis radiographs and may improve offset and limb length restoration in THA without the routine performance of additional radiographs or CT. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  10. Environmental sentinel biomonitors: integrated response systems for monitoring toxic chemicals

    NASA Astrophysics Data System (ADS)

    van der Schalie, William H.; Reuter, Roy; Shedd, Tommy R.; Knechtges, Paul L.

    2002-02-01

    Operational environments for military forces are becoming potentially more dangerous due to the increased number, use, and misuse of toxic chemicals across the entire range of military missions. Defense personnel may be exposed to harmful chemicals as a result of industrial accidents or intentional or unintentional action of enemy, friendly forces, or indigenous populations. While there has been a significant military effort to enable forces to operate safely and survive and sustain operations in nuclear, biological, chemical warfare agent environments, until recently there has not been a concomitant effort associated with potential adverse health effects from exposures of deployed personnel to toxic industrial chemicals. To provide continuous real-time toxicity assessments across a broad spectrum of individual chemicals or chemical mixtures, an Environmental Sentinel Biomonitor (ESB) system concept is proposed. An ESB system will integrate data from one or more platforms of biologically-based systems and chemical detectors placed in the environment to sense developing toxic conditions and transmit time-relevant data for use in risk assessment, mitigation, and/or management. Issues, challenges, and next steps for the ESB system concept are described, based in part on discussions at a September 2001 workshop sponsored by the U.S. Army Center for Environmental Health Research.

  11. Crystal Growth Control

    NASA Technical Reports Server (NTRS)

    Duval, Walter M. B.; Batur, Celal; Bennett, Robert J.

    1997-01-01

    We present an innovative design of a vertical transparent multizone furnace which can operate in the temperature range of 25 C to 750 C and deliver thermal gradients of 2 C/cm to 45 C/cm for the commercial applications to crystal growth. The operation of the eight zone furnace is based on a self-tuning temperature control system with a DC power supply for optimal thermal stability. We show that the desired thermal profile over the entire length of the furnace consists of a functional combination of the fundamental thermal profiles for each individual zone obtained by setting the set-point temperature for that zone. The self-tuning system accounts for the zone to zone thermal interactions. The control system operates such that the thermal profile is maintained under thermal load, thus boundary conditions on crystal growth ampoules can be predetermined prior to crystal growth. Temperature profiles for the growth of crystals via directional solidification, vapor transport techniques, and multiple gradient applications are shown to be easily implemented. The unique feature of its transparency and ease of programming thermal profiles make the furnace useful for scientific and commercial applications for the determination of process parameters to optimize crystal growth conditions.

  12. The Design of a Transparent Vertical Multizone Furnace: Application to Thermal Field Tuning and Crystal Growth

    NASA Technical Reports Server (NTRS)

    Duvual, Walter M. B.; Batur, Celal; Bennett, Robert J.

    1998-01-01

    We present an innovative design of a vertical transparent multizone furnace which can operate in the temperature range of 25 C to 750 C and deliver thermal gradients of 2 C/cm to 45 C/cm for the commercial applications to crystal growth. The operation of the eight zone furnace is based on a self-tuning temperature control system with a DC power supply for optimal thermal stability. We show that the desired thermal profile over the entire length of the furnace consists of a functional combination of the fundamental thermal profiles for each individual zone obtained by setting the set-point temperature for that zone. The self-tuning system accounts for the zone to zone thermal interactions. The control system operates such that the thermal profile is maintained under thermal load, thus boundary conditions on crystal growth ampoules can be predetermined prior to crystal growth. Temperature profiles for the growth of crystals via directional solidification, vapor transport techniques, and multiple gradient applications are shown to be easily implemented. The unique feature of its transparency and ease of programming thermal profiles make the furnace useful in scientific and commercial applications for determining the optimized process parameters for crystal growth.

  13. Measured Performance of a Low Temperature Air Source Heat Pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, R. K.

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor 'boosted heat pump' technology. The Low Temperature Heat Pumpsystem operates with four increasing levels of capacity (heat output) as the outdoor temperature drops. The system was shown to select capacity correctly, supplying the appropriate amount of heat to the house across the full range of outdoor temperatures. The system'smore » Coefficient of Performance (Seasonal COP, or SCOP) over two entire winters was calculated, based on measured data, to be 3.29over the first winter and 2.68 over the second winter. A second seasonal efficiency calculation by a different method yielded a SCOP of 2.78 for the first winter and 2.83 for the second winter. This second seasonal efficiency calculation was determined by comparing measured heat pump energy use to the in situ energy use with resistance heat alone. This method is the ratio of the slopes of thedaily energy use load lines.« less

  14. Plasma Properties of Microwave Produced Plasma in a Toroidal Device

    NASA Astrophysics Data System (ADS)

    Singh, Ajay; Edwards, W. F.; Held, Eric

    2011-10-01

    We have modified a small tokamak, STOR-1M, on loan from University of Saskatchewan, to operate as a low-temperature (~5 eV) toroidal plasma machine with externally induced toroidal magnetic fields ranging from zero to ~50 G. The plasma is produced using microwave discharges at relatively high pressures. Microwaves are produced by a kitchen microwave-oven magnetron operating at 2.45 GHz in continuous operating mode, resulting in pulses ~0.5 s in duration. Initial measurements of plasma formation in this device with and without applied magnetic fields are presented. Plasma density and temperature profiles have been measured using Langmuir probes and the magnetic field profile inside the plasma has been obtained using Hall probes. When the discharge is created with no applied toroidal magnetic field, the plasma does not fill the entire torus due to high background pressure. However, when a toroidal magnetic field is applied, the plasma flows along the applied field, filling the torus. Increasing the applied magnetic field seems to aid plasma formation - the peak density increases and the density gradient becomes steeper. Above a threshold magnetic field, the plasma develops low-frequency density oscillations due to probable excitation of flute modes in the plasma.

  15. Software Architecture to Support the Evolution of the ISRU RESOLVE Engineering Breadboard Unit 2 (EBU2)

    NASA Technical Reports Server (NTRS)

    Moss, Thomas; Nurge, Mark; Perusich, Stephen

    2011-01-01

    The In-Situ Resource Utilization (ISRU) Regolith & Environmental Science and Oxygen & Lunar Volatiles Extraction (RESOLVE) software provides operation of the physical plant from a remote location with a high-level interface that can access and control the data from external software applications of other subsystems. This software allows autonomous control over the entire system with manual computer control of individual system/process components. It gives non-programmer operators the capability to easily modify the high-level autonomous sequencing while the software is in operation, as well as the ability to modify the low-level, file-based sequences prior to the system operation. Local automated control in a distributed system is also enabled where component control is maintained during the loss of network connectivity with the remote workstation. This innovation also minimizes network traffic. The software architecture commands and controls the latest generation of RESOLVE processes used to obtain, process, and quantify lunar regolith. The system is grouped into six sub-processes: Drill, Crush, Reactor, Lunar Water Resource Demonstration (LWRD), Regolith Volatiles Characterization (RVC) (see example), and Regolith Oxygen Extraction (ROE). Some processes are independent, some are dependent on other processes, and some are independent but run concurrently with other processes. The first goal is to analyze the volatiles emanating from lunar regolith, such as water, carbon monoxide, carbon dioxide, ammonia, hydrogen, and others. This is done by heating the soil and analyzing and capturing the volatilized product. The second goal is to produce water by reducing the soil at high temperatures with hydrogen. This is done by raising the reactor temperature in the range of 800 to 900 C, causing the reaction to progress by adding hydrogen, and then capturing the water product in a desiccant bed. The software needs to run the entire unit and all sub-processes; however, throughout testing, many variables and parameters need to be changed as more is learned about the system operation. The Master Events Controller (MEC) is run on a standard laptop PC using Windows XP. This PC runs in parallel to another laptop that monitors the GC, and a third PC that monitors the drilling/ crushing operation. These three PCs interface to the process through a CompactRIO, OPC Servers, and modems.

  16. Experiment results of high temperature superconducting Maglev vehicle

    NASA Astrophysics Data System (ADS)

    Wang, J. S.; Wang, S. Y.; Ren, Z. Y.; Jiang, H.; Zhu, M.; Wang, X. R.; Shen, X. M.; Song, H. H.

    2003-04-01

    The first man-loading high temperature superconducting (HTS) magnetic levitation (Maglev) test vehicle in the world has normally operated over one year after its birth on December 31, 2000. Heretofore over 23 000 passengers have taken the vehicle, and it operates very well from first running to now. The HTS Maglev vehicle is over guideway, which consists of two parallel permanent magnetic tracks. The levitation force of the entire Maglev vehicle is measured. Three times measurement results on December 24, 2000, July 1, 2001, and December 24, 2001 are reported respectively, it will be seen from this that the levitation forces do not change nearly after long running. Total levitation force of entire vehicle is 1050 kg at the 8 mm net levitation gap, which the gap between the bottom of liquid nitrogen vessels and guideway face. A measuring equipment of the guidance force of the entire Maglev vehicle is designed and manufactured. The guidance force of the vehicle is obtained by the equipment.

  17. Operational Risk and the American Way of Warfare

    DTIC Science & Technology

    2011-12-01

    tactical level. That conclusion however, fails to account for the entire context. The cumulative effect is one of operational complacency. The...largely come at the cost of any operational thinking about risk. The operational risk in the current fight is not easily discernible because it seems...traditional American answers to risk. This addiction to annihilation through firepower has come with a high cost . The culture of annihilation through

  18. 14 CFR 101.29 - Information requirements.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...—High-Power Rocket requires a certificate of waiver or authorization, the person planning the operation... certificate of waiver or authorization the person planning the operation must provide the information below... characteristics for the entire flight profile, (4) A description of all major rocket systems, including structural...

  19. 14 CFR 101.29 - Information requirements.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...—High-Power Rocket requires a certificate of waiver or authorization, the person planning the operation... certificate of waiver or authorization the person planning the operation must provide the information below... characteristics for the entire flight profile, (4) A description of all major rocket systems, including structural...

  20. 14 CFR 101.29 - Information requirements.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...—High-Power Rocket requires a certificate of waiver or authorization, the person planning the operation... certificate of waiver or authorization the person planning the operation must provide the information below... characteristics for the entire flight profile, (4) A description of all major rocket systems, including structural...

  1. 14 CFR 101.29 - Information requirements.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...—High-Power Rocket requires a certificate of waiver or authorization, the person planning the operation... certificate of waiver or authorization the person planning the operation must provide the information below... characteristics for the entire flight profile, (4) A description of all major rocket systems, including structural...

  2. PACKMAN-Net: A Distributed, Open-Access, and Scalable Network of User-Friendly Space Weather Stations

    NASA Astrophysics Data System (ADS)

    Zorzano, M.-P.; Martín-Torres, J.; Mathanlal, T.; Vakkada Ramachandran, A.; Ramirez-Luque, J.-A.

    2018-04-01

    The purpose of this work is to demonstrate the operability of a network of small-sized detectors of the PACKMAN instrument, operated simultaneously to provide real time cosmic ray and solar activity monitoring over the entire planet.

  3. Locomotive dynamic performance under traction/braking conditions considering effect of gear transmissions

    NASA Astrophysics Data System (ADS)

    Chen, Zaigang; Zhai, Wanming; Wang, Kaiyun

    2018-07-01

    Traction or braking operations are usually applied to trains or locomotives for acceleration, speed adjustment, and stopping. During these operations, gear transmission equipment plays a very significant role in the delivery of traction or electrical braking power. Failures of the gear transmissions are likely to cause power loses and even threaten the operation safety of the train. Its dynamic performance is closely related to the normal operation and service safety of the entire train, especially under some emergency braking conditions. In this paper, a locomotive-track coupled vertical-longitudinal dynamics model is employed with considering the dynamic action from the gear transmissions. This dynamics model enables the detailed analysis and more practical simulation on the characteristics of power transmission path, namely motor-gear transmission-wheelset-longitudinal motion of locomotive, especially for traction or braking conditions. Multi-excitation sources, such as time-varying mesh stiffness and nonlinear wheel-rail contact excitations, are considered in this study. This dynamics model is then validated by comparing the simulated results with the experimental test results under braking conditions. The calculated results indicate that involvement of gear transmission could reveal the load reduction of the wheelset due to transmitted forces. Vibrations of the wheelset and the motor are dominated by variation of the gear dynamic mesh forces in the low speed range and by rail geometric irregularity in the higher speed range. Rail vertical geometric irregularity could also cause wheelset longitudinal vibrations, and do modulations to the gear dynamic mesh forces. Besides, the hauling weight has little effect on the locomotive vibrations and the dynamic mesh forces of the gear transmissions for both traction and braking conditions under the same running speed.

  4. Regression to fuzziness method for estimation of remaining useful life in power plant components

    NASA Astrophysics Data System (ADS)

    Alamaniotis, Miltiadis; Grelle, Austin; Tsoukalas, Lefteri H.

    2014-10-01

    Mitigation of severe accidents in power plants requires the reliable operation of all systems and the on-time replacement of mechanical components. Therefore, the continuous surveillance of power systems is a crucial concern for the overall safety, cost control, and on-time maintenance of a power plant. In this paper a methodology called regression to fuzziness is presented that estimates the remaining useful life (RUL) of power plant components. The RUL is defined as the difference between the time that a measurement was taken and the estimated failure time of that component. The methodology aims to compensate for a potential lack of historical data by modeling an expert's operational experience and expertise applied to the system. It initially identifies critical degradation parameters and their associated value range. Once completed, the operator's experience is modeled through fuzzy sets which span the entire parameter range. This model is then synergistically used with linear regression and a component's failure point to estimate the RUL. The proposed methodology is tested on estimating the RUL of a turbine (the basic electrical generating component of a power plant) in three different cases. Results demonstrate the benefits of the methodology for components for which operational data is not readily available and emphasize the significance of the selection of fuzzy sets and the effect of knowledge representation on the predicted output. To verify the effectiveness of the methodology, it was benchmarked against the data-based simple linear regression model used for predictions which was shown to perform equal or worse than the presented methodology. Furthermore, methodology comparison highlighted the improvement in estimation offered by the adoption of appropriate of fuzzy sets for parameter representation.

  5. Computation and analysis of the instantaneous-discharge record for the Colorado River at Lees Ferry, Arizona : May 8, 1921, through September 30, 2000

    USGS Publications Warehouse

    Topping, David J.; Schmidt, John C.; Vierra, L.E.

    2003-01-01

    A gaging station has been operated by the U.S. Geological Survey at Lees Ferry, Arizona, since May 8, 1921. In March 1963, Glen Canyon Dam was closed 15.5 miles upstream, cutting off the upstream sediment supply and regulating the discharge of the Colorado River at Lees Ferry for the first time in history. To evaluate the pre-dam variability in the hydrology of the Colorado River, and to determine the effect of the operation of Glen Canyon Dam on the downstream hydrology of the river, a continuous record of the instantaneous discharge of the river at Lees Ferry was constructed and analyzed for the entire period of record between May 8, 1921, and September 30, 2000. This effort involved retrieval from the Federal Records Centers and then synthesis of all the raw historical data collected by the U.S. Geological Survey at Lees Ferry. As part of this process, the peak discharges of the two largest historical floods at Lees Ferry, the 1884 and 1921 floods, were reanalyzed and recomputed. This reanalysis indicates that the peak discharge of the 1884 flood was 210,000?30,000 cubic feet per second (ft3/s), and the peak discharge of the 1921 flood was 170,000?20,000 ft3/s. These values are indistinguishable from the peak discharges of these floods originally estimated or published by the U.S. Geological Survey, but are substantially less than the currently accepted peak discharges of these floods. The entire continuous record of instantaneous discharge of the Colorado River at Lees Ferry can now be requested from the U.S. Geological Survey Grand Canyon Monitoring and Research Center, Flagstaff, Arizona, and is also available electronically at http://www.gcmrc.gov. This record is perhaps the longest (almost 80 years) high-resolution (mostly 15- to 30-minute precision) times series of river discharge available. Analyses of these data, therefore, provide an unparalleled characterization of both the natural variability in the discharge of a river and the effects of dam operations on a river. Following the construction and quality-control checks of the continuous record of instantaneous discharge, analyses of flow duration, sub-daily flow variability, and flood frequency were conducted on the pre- and post-dam parts of the record. These analyses indicate that although the discharge of the Colorado River varied substantially prior to the closure of Glen Canyon Dam in 1963, operation of the dam has caused changes in discharge that are more extreme than the pre-dam natural variability. Operation of the dam has eliminated flood flows and base flows, and thereby has effectively 'flattened' the annual hydrograph. Prior to closure of the dam, the discharge of the Colorado River at Lees Ferry was lower than 7,980 ft3/s half of the time. Discharges lower than about 9,000 ft3/s were important for the seasonal accumulation and storage of sand in the pre-dam river downstream from Lees Ferry. The current operating plan for Glen Canyon Dam no longer allows sustained discharges lower than 8,000 ft3/s to be released. Thus, closure of the dam has not only cut off the upstream supply of sediment, but operation of the dam has also largely eliminated discharges during which sand could be demonstrated to accumulate in the river. In addition to radically changing the hydrology of the river, operation of the dam for hydroelectric-power generation has introduced large daily fluctuations in discharge. During the pre-dam era, the median daily range in discharge was only 542 ft3/s, although daily ranges in discharge exceeding 20,000 ft3/s were observed during the summer thunderstorm season. Relative to the pre-dam period of record, dam operations have increased the daily range in discharge during all but 0.1 percent of all days. The post-dam median daily range in discharge, 8,580 ft3/s, exceeds the pre-dam median discharge of 7,980 ft3/s. Operation of the dam has also radically changed the frequency of floods on the Colorado River at Lees Ferry. The frequency of f

  6. 32 CFR 525.3 - Criteria.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... AUTHORIZATION REGULATION FOR KWAJALEIN MISSILE RANGE § 525.3 Criteria. (a) General. (1) Entry authorizations may... efficiency, capability or effectiveness of any military installation located within Kwajalein Missile Range... area entirely within the borders of Kwajalein Missile Range is not authorized except when such entry...

  7. 32 CFR 525.3 - Criteria.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... AUTHORIZATION REGULATION FOR KWAJALEIN MISSILE RANGE § 525.3 Criteria. (a) General. (1) Entry authorizations may... efficiency, capability or effectiveness of any military installation located within Kwajalein Missile Range... area entirely within the borders of Kwajalein Missile Range is not authorized except when such entry...

  8. 32 CFR 525.3 - Criteria.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... AUTHORIZATION REGULATION FOR KWAJALEIN MISSILE RANGE § 525.3 Criteria. (a) General. (1) Entry authorizations may... efficiency, capability or effectiveness of any military installation located within Kwajalein Missile Range... area entirely within the borders of Kwajalein Missile Range is not authorized except when such entry...

  9. 32 CFR 525.3 - Criteria.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... AUTHORIZATION REGULATION FOR KWAJALEIN MISSILE RANGE § 525.3 Criteria. (a) General. (1) Entry authorizations may... efficiency, capability or effectiveness of any military installation located within Kwajalein Missile Range... area entirely within the borders of Kwajalein Missile Range is not authorized except when such entry...

  10. 32 CFR 525.3 - Criteria.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... AUTHORIZATION REGULATION FOR KWAJALEIN MISSILE RANGE § 525.3 Criteria. (a) General. (1) Entry authorizations may... efficiency, capability or effectiveness of any military installation located within Kwajalein Missile Range... area entirely within the borders of Kwajalein Missile Range is not authorized except when such entry...

  11. Mortality among members of a heavy construction equipment operators union with potential exposure to diesel exhaust emissions.

    PubMed Central

    Wong, O; Morgan, R W; Kheifets, L; Larson, S R; Whorton, M D

    1985-01-01

    A historical prospective mortality study was conducted on a cohort of 34 156 male members of a heavy construction equipment operators union with potential exposure to diesel exhaust emissions. This cohort comprised all individuals who were members of the International Union of Operating Engineers, Locals 3 and 3A, for at least one year between 1 January 1964 and 31 December 1978. The mortality experience of the entire cohort and several subcohorts was compared with that of United States white men, adjusted for age and calendar time. The comparison statistic was the commonly used standardised mortality ratio (SMR). Historical environmental measurements did not exist, but partial work histories were available for some cohort members through the union dispatch computer tapes. An attempt was made to relate mortality experience to the union members' dispatch histories. Overall mortality for the entire cohort and several subgroups was significantly lower than expected. When cause specific mortality was examined, however, the study provided suggestive evidence for the existence of several potential health problems in this cohort. Mortality from liver cancer for the entire cohort was significantly high. Although mortality from lung cancer for the entire cohort was similar to expected, a positive trend by latency was observed for lung cancer. A significant excess of mortality from lung cancer was found among the retirees and the group for whom no dispatch histories were available. Other dispatch groups showed no evidence of lung cancer excess. In addition, the total cohort experienced significant mortality excess from emphysema and accidental deaths. PMID:2410010

  12. Optimization of USMC Hornet Inventory

    DTIC Science & Technology

    2016-06-01

    maintenance activities while adhering to the required number of aircraft for 22 operational use. He introduced an optimization based on an ILP... operational requirements across the entire planning process. In dealing with tail assignment as an optimization problem instead of a feasibility...aircraft and the goal is to minimize the penalties associated with failing to meet operational requirements. This research focuses on the optimal

  13. Phase matrix induced symmetrics for multiple scattering using the matrix operator method

    NASA Technical Reports Server (NTRS)

    Hitzfelder, S. J.; Kattawar, G. W.

    1973-01-01

    Entirely rigorous proofs of the symmetries induced by the phase matrix into the reflection and transmission operators used in the matrix operator theory are given. Results are obtained for multiple scattering in both homogeneous and inhomogeneous atmospheres. These results will be useful to researchers using the method since large savings in computer time and storage are obtainable.

  14. Performance of the PHOBOS silicon sensors

    NASA Astrophysics Data System (ADS)

    Decowski, M. P.; Back, B. B.; Baker, M. D.; Barton, D. S.; Betts, R. R.; Bindel, R.; Budzanowski, A.; Busza, W.; Carroll, A.; Garcia, E.; George, N.; Gulbrandsen, K.; Gushue, S.; Halliwell, C.; Hamblen, J.; Heintzelman, G. A.; Henderson, C.; Hołyński, R.; Hofman, D. J.; Holzman, B.; Johnson, E.; Kane, J. L.; Katzy, J.; Khan, N.; Kucewicz, W.; Kulinich, P.; Lin, W. T.; Manly, S.; McLeod, D.; Michałowski, J.; Mignerey, A. C.; Mülmenstädt, J.; Nouicer, R.; Olszewski, A.; Pak, R.; Park, I. C.; Pernegger, H.; Reed, C.; Remsberg, L. P.; Reuter, M.; Roland, C.; Roland, G.; Rosenberg, L.; Sarin, P.; Sawicki, P.; Skulski, W.; Steadman, S. G.; Stephans, G. S. F.; Steinberg, P.; Stodulski, M.; Sukhanov, A.; Tang, J.-L.; Teng, R.; Trzupek, A.; Vale, C.; van Nieuwenhuizen, G. J.; Verdier, R.; Wadsworth, B.; Wolfs, F. L. H.; Wosiek, B.; Woźniak, K.; Wuosmaa, A. H.; Wysłouch, B.

    2002-02-01

    The PHOBOS detector is designed to study the physics of Au+Au collisions at the Relativistic Heavy Ion Collider. The detector is almost entirely made of silicon pad detectors and was fully operational during the first year of operation. The detector is described, and key performance characteristics are summarized.

  15. Geometrical calibration of an AOTF hyper-spectral imaging system

    NASA Astrophysics Data System (ADS)

    Špiclin, Žiga; Katrašnik, Jaka; Bürmen, Miran; Pernuš, Franjo; Likar, Boštjan

    2010-02-01

    Optical aberrations present an important problem in optical measurements. Geometrical calibration of an imaging system is therefore of the utmost importance for achieving accurate optical measurements. In hyper-spectral imaging systems, the problem of optical aberrations is even more pronounced because optical aberrations are wavelength dependent. Geometrical calibration must therefore be performed over the entire spectral range of the hyper-spectral imaging system, which is usually far greater than that of the visible light spectrum. This problem is especially adverse in AOTF (Acousto- Optic Tunable Filter) hyper-spectral imaging systems, as the diffraction of light in AOTF filters is dependent on both wavelength and angle of incidence. Geometrical calibration of hyper-spectral imaging system was performed by stable caliber of known dimensions, which was imaged at different wavelengths over the entire spectral range. The acquired images were then automatically registered to the caliber model by both parametric and nonparametric transformation based on B-splines and by minimizing normalized correlation coefficient. The calibration method was tested on an AOTF hyper-spectral imaging system in the near infrared spectral range. The results indicated substantial wavelength dependent optical aberration that is especially pronounced in the spectral range closer to the infrared part of the spectrum. The calibration method was able to accurately characterize the aberrations and produce transformations for efficient sub-pixel geometrical calibration over the entire spectral range, finally yielding better spatial resolution of hyperspectral imaging system.

  16. Urologic Oncologic SurveyRobotic level III inferior vena cava tumor thrombectomy: Initial series. Gill IS, Metcalfe C, Abreu A, Duddalwar V, Chopra S, Cunningham M, Thangathurai D, Ukimura O, Satkunasivam R, Hung A, Papalia R, Aron M, Desai M, Gallucci M. J Urol. 2015 Oct;194(4):929-938. [Epub 2015 Apr 6]. doi: 10.1016/j.juro.2015.03.119.

    PubMed

    Meng, Max

    2017-05-01

    Level III inferior vena cava tumor thrombectomy for renal cancer is one of the most challenging open urologic surgeries. We present the initial series of completely intracorporeal robotic level III inferior vena cava tumor thrombectomy. Nine patients underwent robotic level III inferior vena cava thrombectomy and 7 patients underwent level II thrombectomy. The entire operation (high intrahepatic inferior vena cava control, caval exclusion, tumor thrombectomy, inferior vena cava repair, radical nephrectomy, and retroperitoneal lymphadenectomy) was performed exclusively robotically. To minimize the chances of intraoperative inferior vena cava thrombus embolization, an "inferior vena cava-first, kidney-last" robotic technique was developed. Data were accrued prospectively. All 16 robotic procedures were successful, without open conversion or mortality. For level III cases (9), median primary kidney (right 6, left 3) cancer size was 8.5cm (range: 5.3-10.8) and inferior vena cava thrombus length was 5.7cm (range: 4-7). Median operative time was 4.9 hours (range: 4.5-6.3), estimated blood loss was 375ml (range: 200-7,000), and hospital stay was 4.5 days. All surgical margins were negative. There were no intraoperative complications and 1 postoperative complication (Clavien 3b). At a median 7 months of follow-up (range: 1-18) all patients are alive. Compared to level II thrombi the level III cohort trended toward greater inferior vena cava thrombus length (3.3 vs 5.7cm), operative time (4.5 vs 4.9h) and blood loss (290 vs 375ml). With appropriate patient selection, surgical planning and robotic experience, completely intracorporeal robotic level III inferior vena cava thrombectomy is feasible and can be performed efficiently. Larger experience, longer follow-up and comparison with open surgery are needed to confirm these initial outcomes. Copyright © 2017. Published by Elsevier Inc.

  17. Research and Technology: 2003 Annual Report of the John F Kennedy Space Center

    NASA Technical Reports Server (NTRS)

    2003-01-01

    The John F. Kennedy Space Center (KSC) is America's Spaceport Technology Center. The KSC technology development program encompasses the efforts of the entire KSC team, consisting of Government and contractor personnel, working in partnership with academic institutions and commercial industry. KSC's assigned mission areas are space launch operations and spaceport and range technologies. KSC's technology development customers include current space transportation programs, future space transportation programs / initiatives, and enabling technical programs. The KSC Research and Technology 2003 Annual Report encompasses the efforts of contributors to the KSC advanced technology development program and KSC technology transfer activities. Dr. Dave Bartine, KSC Chief Technologist, (321) 867-7069, is responsible for publication of this report and should be contacted for any desired information regarding KSC's research and technology development activities.

  18. Studies of the Coldest Brown Dwarfs With The James Webb Space Telescope

    NASA Astrophysics Data System (ADS)

    Roellig, Thomas L.; Greene, Thomas P.; Beichman, Charles; Meyer, Michael; Rieke, Marcia

    2016-07-01

    The coolest T and Y-class Brown Dwarf objects are very faint and are therefore very poorly understood, since they are barely detectable with the current astronomical instrumentation. The upcoming James Webb Space Telescope now in development for a launch in the Fall of 2018 will have vastly increased sensitivity in the near and mid-infrared compared to any current facilities and will not be affected by telluric absorption over its entire wavelength range of operations. As a result it will be an ideal tool to obtain information about the composition and temperature-pressure structure in these objects' atmospheres. This presentation outlines the JWST guaranteed time observing plans for these studies. These plans comprise both spectro-photometric and spectroscopic observations of a selection of late T and Y-dwarf targets.

  19. Ongoing drought-induced uplift in the western United States.

    USGS Publications Warehouse

    Borsa, Adrian Antal; Agnew, Duncan Carr; Cayan, Daniel R.

    2014-01-01

    The western United States has been experiencing severe drought since 2013. The solid earth response to the accompanying loss of surface and near-surface water mass should be a broad region of uplift. We use seasonally adjusted time series from continuously operating global positioning system stations to measure this uplift, which we invert to estimate mass loss. The median uplift is 5 millimeters (mm), with values up to 15 mm in California’s mountains. The associated pattern of mass loss, ranging up to 50 centimeters (cm) of water equivalent, is consistent with observed decreases in precipitation and streamflow. We estimate the total deficit to be ~240 gigatons, equivalent to a 10-cm layer of water over the entire region, or the annual mass loss from the Greenland Ice Sheet.

  20. Advanced Gas Turbine (AGT) powertrain system development for automotive applications

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Preliminary layouts were made for the exhaust system, air induction system, and battery installation. Points of interference were identified and resolved by altering either the vehicle or engine designs. An engine general arrangement evolved to meet the vehicle engine compartment constraints while minimizing the duct pressure losses and the heat rejection. A power transfer system (between gasifier and power turbines) was developed to maintain nearly constant temperatures throughout the entire range of engine operation. An advanced four speed automatic transmission was selected to be used with the engine. Performance calculations show improvements in component efficiencies and an increase in fuel economy. A single stage centrifugal compressor design was completed and released for procurement. Gasifier turbine, power turbine, combustor, generator, secondary systems, materials, controls, and transmission development are reported.

  1. Deep-Earth reactor: Nuclear fission, helium, and the geomagnetic field

    PubMed Central

    Hollenbach, D. F.; Herndon, J. M.

    2001-01-01

    Geomagnetic field reversals and changes in intensity are understandable from an energy standpoint as natural consequences of intermittent and/or variable nuclear fission chain reactions deep within the Earth. Moreover, deep-Earth production of helium, having 3He/4He ratios within the range observed from deep-mantle sources, is demonstrated to be a consequence of nuclear fission. Numerical simulations of a planetary-scale geo-reactor were made by using the SCALE sequence of codes. The results clearly demonstrate that such a geo-reactor (i) would function as a fast-neutron fuel breeder reactor; (ii) could, under appropriate conditions, operate over the entire period of geologic time; and (iii) would function in such a manner as to yield variable and/or intermittent output power. PMID:11562483

  2. Optical properties of InGaN thin films in the entire composition range

    NASA Astrophysics Data System (ADS)

    Kazazis, S. A.; Papadomanolaki, E.; Androulidaki, M.; Kayambaki, M.; Iliopoulos, E.

    2018-03-01

    The optical properties of thick InGaN epilayers, with compositions spanning the entire ternary range, are studied in detail. High structural quality, single phase InxGa1-xN (0001) films were grown heteroepitaxially by radio-frequency plasma assisted molecular-beam epitaxy on freestanding GaN substrates. Their emission characteristics were investigated by low temperature photoluminescence spectroscopy, whereas variable angle spectroscopic ellipsometry was applied to determine the complex dielectric function of the films, in the 0.55-4.0 eV photon range. Photoluminescence lines were intense and narrow, in the range of 100 meV for Ga-rich InGaN films (x < 0.3), around 150 meV for mid-range composition films (0.3 < x < 0.6), and in the range of 50 meV for In-rich alloys (x > 0.6). The composition dependence of the strain-free emission energy was expressed by a bowing parameter of b = 2.70 ± 0.12 eV. The films' optical dielectric function dispersion was obtained by the analysis of the ellipsometric data employing a Kramers-Kronig consistent parameterized optical model. The refractive index dispersion was obtained for alloys in the entire composition range, and the corresponding values at the band edge show a parabolic dependence on the InN mole fraction expressed by a bowing parameter of b = 0.81 ± 0.04. The bowing parameter describing the fundamental energy bandgap was deduced to be equal to 1.66 ± 0.07 eV, consistent with the ab initio calculations for statistically random (non-clustered) InGaN alloys.

  3. The Laser Ranging Experiment of the Lunar Reconnaissance Orbiter: Five Years of Operations and Data Analysis

    NASA Technical Reports Server (NTRS)

    Mao, Dandan; McGarry, Jan F.; Mazarico, Erwan; Neumann, Gregory A.; Sun, Xiaoli; Torrence, Mark H.; Zagwodzki, Thomas W.; Rowlands, David D.; Hoffman, Evan D.; Horvath, Julie E.; hide

    2016-01-01

    We describe the results of the Laser Ranging (LR) experiment carried out from June 2009 to September 2014 in order to make one-way time-of-flight measurements of laser pulses between Earth-based laser ranging stations and the Lunar Reconnaissance Orbiter (LRO) orbiting the Moon. Over 4,000 hours of successful LR data are obtained from 10 international ground stations. The 20-30 centimeter precision of the full-rate LR data is further improved to 5-10 centimeter after conversion into normal points. The main purpose of LR is to utilize the high accuracy normal point data to improve the quality of the LRO orbits, which are nomi- nally determined by the radiometric S-band tracking data. When independently used in the LRO precision orbit determination process with the high-resolution GRAIL (Gravity Recovery and Interior Laboratory) gravity model, LR data provide good orbit solutions, with an average difference of approximately 50 meters in total position, and approximately 20 centimeters in radial direction, compared to the definitive LRO trajectory. When used in combination with the S-band tracking data, LR data help to improve the orbit accuracy in the radial direction to approximately 15 centimeters. In order to obtain highly accurate LR range measurements for precise orbit determination results, it is critical to closely model the behavior of the clocks both at the ground stations and on the spacecraft. LR provides a unique data set to calibrate the spacecraft clock. The LRO spacecraft clock is characterized by the LR data to a timing knowledge of 0.015 milliseconds over the entire 5 years of LR operation. We here present both the engineering setup of the LR experiments and the detailed analysis results of the LR data.

  4. Electrocatalytic performance of fuel cell reactions at low catalyst loading and high mass transport.

    PubMed

    Zalitis, Christopher M; Kramer, Denis; Kucernak, Anthony R

    2013-03-28

    An alternative approach to the rotating disk electrode (RDE) for characterising fuel cell electrocatalysts is presented. The approach combines high mass transport with a flat, uniform, and homogeneous catalyst deposition process, well suited for studying intrinsic catalyst properties at realistic operating conditions of a polymer electrolyte fuel cell (PEFC). Uniform catalyst layers were produced with loadings as low as 0.16 μgPt cm(-2) and thicknesses as low as 200 nm. Such ultra thin catalyst layers are considered advantageous to minimize internal resistances and mass transport limitations. Geometric current densities as high as 5.7 A cm(-2)Geo were experimentally achieved at a loading of 10.15 μgPt cm(-2) for the hydrogen oxidation reaction (HOR) at room temperature, which is three orders of magnitude higher than current densities achievable with the RDE. Modelling of the associated diffusion field suggests that such high performance is enabled by fast lateral diffusion within the electrode. The electrodes operate over a wide potential range with insignificant mass transport losses, allowing the study of the ORR at high overpotentials. Electrodes produced a specific current density of 31 ± 9 mA cm(-2)Spec at a potential of 0.65 V vs. RHE for the oxygen reduction reaction (ORR) and 600 ± 60 mA cm(-2)Spec for the peak potential of the HOR. The mass activity of a commercial 60 wt% Pt/C catalyst towards the ORR was found to exceed a range of literature PEFC mass activities across the entire potential range. The HOR also revealed fine structure in the limiting current range and an asymptotic current decay for potentials above 0.36 V. These characteristics are not visible with techniques limited by mass transport in aqueous media such as the RDE.

  5. Orion Pad Abort 1 Flight Test - Ground and Flight Operations

    NASA Technical Reports Server (NTRS)

    Hackenbergy, Davis L.; Hicks, Wayne

    2011-01-01

    This paper discusses the ground and flight operations aspects to the Pad Abort 1 launch. The paper details the processes used to plan all operations. The paper then discussions the difficulties of integration and testing, while detailing some of the lessons learned throughout the entire launch campaign. Flight operational aspects of the launc are covered in order to provide the listener with the full suite of operational issues encountered in preparation for the first flight test of the Orion Launch Abort System.

  6. ICD-10: from assessment to remediation to strategic opportunity.

    PubMed

    Dugan, John K

    2012-02-01

    Healthcare finance teams should perform an enterprisewide assessment to determine what ICD-10 means to their organization, strategically, operationally, and financially. CFOs should strategically evaluate the impact of ICD-10 on the organization's entire financial operation. Organizations should have a contingency plan in place across all processes.

  7. 40 CFR 63.2334 - Am I subject to this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Standards for Hazardous Air Pollutants: Organic Liquids Distribution (Non-Gasoline) What This Subpart Covers... part of, a major source of HAP emissions. An OLD operation may occupy an entire plant site or be collocated with other industrial (e.g., manufacturing) operations at the same plant site. (b) Organic liquid...

  8. 47 CFR 90.1407 - Spectrum use in the network.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... exclusion and/or immediate preemption of any commercial use on a dynamic, real-time priority basis, and to... network. (a) Spectrum use. The Shared Wireless Broadband Network will operate using spectrum associated... Block licensee and the Operating Company for the entire remaining term of the Public Safety Broadband...

  9. 78 FR 13607 - Minimum Training Requirements for Entry-Level Commercial Motor Vehicle Operators; Public...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-28

    ... analyses, including cost/benefit considerations. The entire day's proceedings will be webcast. DATES: The... Vehicle Operators; Public Listening Session AGENCY: Federal Motor Carrier Safety Administration (FMCSA), DOT. ACTION: Notice of public listening session. SUMMARY: FMCSA announces that it will hold a public...

  10. 34 CFR 200.25 - Schoolwide programs in general.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... throughout a school so that all students, particularly the lowest-achieving students, demonstrate proficiency... with §§ 200.25 through 200.29. (f) Prekindergarten program. A school operating a schoolwide program may... improving the entire educational program of the school. (b) Eligibility. (1) A school may operate a...

  11. 46 CFR 69.121 - Engine room deduction.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... necessary for the safe operation and maintenance of the propelling machinery, the entire space, or, if... machinery space is not bulkheaded off or is larger than necessary for the safe operation and maintenance of... room deduction is either a percentage of the vessel's total propelling machinery spaces or a percentage...

  12. 78 FR 59755 - Petition for Waiver of Compliance

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-09-27

    ... waiver of compliance from certain provisions of the Federal railroad safety regulations contained at... Boundary, MN (Milepost 44.9), a distance of 43.8 miles. Approximately 15 trains per day are operated over this segment. Each train that traverses this territory is operated by the same crew. The entire Sprague...

  13. Inference for an Experiment based on Repeated Majority Votes.

    DTIC Science & Technology

    1985-10-15

    with the experimental setup used, if paranormal abilities do exist they may operate on the sequence as a whole, and the trials may not be independent so...assumption in the ESP experiment, since paranormal abilities, if they exist, may operate on the entire sequence as a whole. With this assumption

  14. 43 CFR 3203.10 - How are lands included in a competitive sale?

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... within the legal subdivision, section, township, and range; (2) For unsurveyed lands, describe the lands..., include an entire section, township, and range. Do not divide protracted sections into aliquot parts; (4...

  15. Space infrared telescope facility wide field and diffraction limited array camera (IRAC)

    NASA Technical Reports Server (NTRS)

    Fazio, Giovanni G.

    1988-01-01

    The wide-field and diffraction limited array camera (IRAC) is capable of two-dimensional photometry in either a wide-field or diffraction-limited mode over the wavelength range from 2 to 30 microns with a possible extension to 120 microns. A low-doped indium antimonide detector was developed for 1.8 to 5.0 microns, detectors were tested and optimized for the entire 1.8 to 30 micron range, beamsplitters were developed and tested for the 1.8 to 30 micron range, and tradeoff studies of the camera's optical system performed. Data are presented on the performance of InSb, Si:In, Si:Ga, and Si:Sb array detectors bumpbonded to a multiplexed CMOS readout chip of the source-follower type at SIRTF operating backgrounds (equal to or less than 1 x 10 to the 8th ph/sq cm/sec) and temperature (4 to 12 K). Some results at higher temperatures are also presented for comparison to SIRTF temperature results. Data are also presented on the performance of IRAC beamsplitters at room temperature at both 0 and 45 deg angle of incidence and on the performance of the all-reflecting optical system baselined for the camera.

  16. AIRES: an Airborne Infra-Red Echelle Spectrometer for SOFIA

    NASA Astrophysics Data System (ADS)

    Erickson, E. F.; Haas, M. R.; Colgan, S. W. J.; Roellig, T.; Simpson, J. P.; Telesco, C. M.; Pina, R. K.; Young, E. T.; Wolf, J.

    1997-12-01

    The Stratospheric Observatory for Infrared Astronomy, SOFIA, is a 2.7 meter telescope which is scheduled to begin observations in a Boeing 747 in October 2001. Among other SOFIA science instruments recently selected for development is the facility spectrometer AIRES. AIRES is designed for studies of a broad range of phenomena occuring in the interstellar medium (ISM) which are uniquely enabled by SOFIA. Examples include accretion and outflow in protostars and young stellar objects, the morphology, dynamics, and excitation of neutral and ionized gas at the Galactic center, and the recycling of material to the ISM from evolved stars. Astronomers using AIRES will be able to select any wavelength from 17 to 210 mu m., with corresponding spectral resolving powers ranging from 60,000 to 4000 in less than a minute. This entire wavelength range is important because it contains spectral features, often widely separated in wavelength, which characterize fundamental ISM processes. AIRES will utilize two-dimensional detector arrays and a large echelle grating to achieve spectral imaging with excellent sensitivity and unparalleled angular resolution at these wavelengths. As a facility science instrument, AIRES will provide guest investigators frequent opportunities for far infrared spectroscopic observations when SOFIA begins operations.

  17. Mitigating Dam Impacts Using Environmental Flow Releases

    NASA Astrophysics Data System (ADS)

    Richter, B. D.

    2017-12-01

    One of the most ecologically disruptive impacts of dams is their alteration of natural river flow variability. Opportunities exist for modifying the operations of existing dams to recover many of the environmental and social benefits of healthy ecosystems that have been compromised by present modes of dam operation. The potential benefits of dam "re-operation" include recovery of fish, shellfish, and other wildlife populations valued both commercially and recreationally, including estuarine species; reactivation of the flood storage and water purification benefits that occur when floods are allowed to flow into floodplain forests and wetlands; regaining some semblance of the naturally dynamic balance between river erosion and sedimentation that shapes physical habitat complexity, and arresting problems associated with geomorphic imbalances; cultural and spiritual uses of rivers; and many other socially valued products and services. Assessing the potential benefits of dam re-operation begins by characterizing the dam's effects on the river flow regime, and formulating hypotheses about the ecological and social benefits that might be restored by releasing water from the dam in a manner that more closely resembles natural flow patterns. These hypotheses can be tested by implementing a re-operation plan, tracking the response of the ecosystem, and continually refining dam operations through adaptive management. This presentation will highlight a number of land and water management strategies useful in implementing a dam re-operation plan, with reference to a variety of management contexts ranging from individual dams to cascades of dams along a river to regional energy grids. Because many of the suggested strategies for dam re-operation are predicated on changes in the end-use of the water, such as reductions in urban or agricultural water use during droughts, a systemic perspective of entire water management systems will be required to attain the fullest possible benefits of dam re-operations.

  18. Building an environment model using depth information

    NASA Technical Reports Server (NTRS)

    Roth-Tabak, Y.; Jain, Ramesh

    1989-01-01

    Modeling the environment is one of the most crucial issues for the development and research of autonomous robot and tele-perception. Though the physical robot operates (navigates and performs various tasks) in the real world, any type of reasoning, such as situation assessment, planning or reasoning about action, is performed based on information in its internal world. Hence, the robot's intentional actions are inherently constrained by the models it has. These models may serve as interfaces between sensing modules and reasoning modules, or in the case of telerobots serve as interface between the human operator and the distant robot. A robot operating in a known restricted environment may have a priori knowledge of its whole possible work domain, which will be assimilated in its World Model. As the information in the World Model is relatively fixed, an Environment Model must be introduced to cope with the changes in the environment and to allow exploring entirely new domains. Introduced here is an algorithm that uses dense range data collected at various positions in the environment to refine and update or generate a 3-D volumetric model of an environment. The model, which is intended for autonomous robot navigation and tele-perception, consists of cubic voxels with the possible attributes: Void, Full, and Unknown. Experimental results from simulations of range data in synthetic environments are given. The quality of the results show great promise for dealing with noisy input data. The performance measures for the algorithm are defined, and quantitative results for noisy data and positional uncertainty are presented.

  19. Design of a Kaplan turbine for a wide range of operating head -Curved draft tube design and model test verification-

    NASA Astrophysics Data System (ADS)

    KO, Pohan; MATSUMOTO, Kiyoshi; OHTAKE, Norio; DING, Hua

    2016-11-01

    As for turbomachine off-design performance improvement is challenging but critical for maximising the performing area. In this paper, a curved draft tube for a medium head Kaplan type hydro turbine is introduced and discussed for its significant effect on expanding operating head range. Without adding any extra structure and working fluid for swirl destruction and damping, a carefully designed outline shape of draft tube with the selected placement of center-piers successfully supresses the growth of turbulence eddy and the transport of the swirl to the outlet. Also, more kinetic energy is recovered and the head lost is improved. Finally, the model test results are also presented. The obvious performance improvement was found in the lower net head area, where the maximum efficiency improvement was measured up to 20% without compromising the best efficiency point. Additionally, this design results in a new draft tube more compact in size and so leads to better construction and manufacturing cost performance for prototype. The draft tube geometry parameter designing process was concerning the best efficiency point together with the off-design points covering various water net heads and discharges. The hydraulic performance and flow behavior was numerically previewed and visualized by solving Reynolds-Averaged Navier-Stokes equations with Shear Stress Transport turbulence model. The simulation was under the assumption of steady-state incompressible turbulence flow inside the flow passage, and the inlet boundary condition was the carefully simulated flow pattern from the runner outlet. For confirmation, the corresponding turbine efficiency performance of the entire operating area was verified by model test.

  20. TBCC Fan Stage Operability and Performance

    NASA Technical Reports Server (NTRS)

    Suder, Kenneth L.

    2007-01-01

    NASA s Fundamental Aeronautics Program is investigating turbine-based propulsion systems for access to space because it provides the potential for aircraft-like, space-launch operations that may significantly reduce launch costs and improve safety. Studies performed under NASA s NGLT and the NASP High Speed Propulsion Assessment (HiSPA) program indicated a variable cycle turbofan/ramjet was the best configuration to satisfy access-to-space mission requirements because this configuration maximizes the engine thrust-to-weight ratio while minimizing frontal area. To this end, NASA and GE teamed to design a Mach 4 variable cycle turbofan/ramjet engine for access to space. To enable the wide operating range of a Mach 4+ variable cycle turbofan ramjet required the development of a unique fan stage design capable of multi-point operation to accommodate variations in bypass ratio (10X), fan speed (7X), inlet mass flow (3.5X), inlet pressure (8X), and inlet temperature (3X). The primary goal of the fan stage was to provide a high pressure ratio level with good efficiency at takeoff through the mid range of engine operation, while avoiding stall and losses at the higher flight Mach numbers, without the use of variable inlet guide vanes. Overall fan performance and operability therefore requires major consideration, as competing goals at different operating points and aeromechanical issues become major drivers in the design. To mitigate risk of meeting the unique design requirements for the fan stage, NASA and GE teamed to design and build a 57% engine scaled fan stage to be tested in NASA s transonic compressor facility. The objectives of this test are to assess the aerodynamic and aero mechanic performance and operability characteristics of the fan stage over the entire range of engine operation including: 1) sea level static take-off, 2) transition over large swings in fan bypass ratio, 3) transition from turbofan to ramjet, and 4) fan windmilling operation at high Mach flight conditions. In addition, the fan stage design was validated by performing pre-test CFD analysis using both GE proprietary and NASA s APNASA codes. Herein we will discuss 1) the fan stage design, 2) the experiment including the unique facility and instrumentation, and 3) the comparison of pre-test CFD analysis to initial aerodynamic test results for the baseline fan stage configuration. Measurements and pre-test analysis will be compared at 37%, 50%, 80%, 90%, and 100% of design speed to assess the ability of state-of-the-art design and analysis tools to meet the fan stage performance and operability requirements for turbine based propulsion for access to space.

  1. Tilted Magnetic Levitation Enables Measurement of the Complete Range of Densities of Materials with Low Magnetic Permeability.

    PubMed

    Nemiroski, Alex; Soh, Siowling; Kwok, Sen Wai; Yu, Hai-Dong; Whitesides, George M

    2016-02-03

    Magnetic levitation (MagLev) of diamagnetic or weakly paramagnetic materials suspended in a paramagnetic solution in a magnetic field gradient provides a simple method to measure the density of small samples of solids or liquids. One major limitation of this method, thus far, has been an inability to measure or manipulate materials outside of a narrow range of densities (0.8 g/cm(3) < ρ < 2.3 g/cm(3)) that are close in density to the suspending, aqueous medium. This paper explores a simple method-"tilted MagLev"-to increase the range of densities that can be levitated magnetically. Tilting the MagLev device relative to the gravitational vector enables the magnetic force to be decreased (relative to the magnetic force) along the axis of measurement. This approach enables many practical measurements over the entire range of densities observed in matter at ambient conditions-from air bubbles (ρ ≈ 0) to osmium and iridium (ρ ≈ 23 g/cm(3)). The ability to levitate, simultaneously, objects with a broad range of different densities provides an operationally simple method that may find application to forensic science (e.g., for identifying the composition of miscellaneous objects or powders), industrial manufacturing (e.g., for quality control of parts), or resource-limited settings (e.g., for identifying and separating small particles of metals and alloys).

  2. Device Rotates Bearing Balls For Inspection

    NASA Technical Reports Server (NTRS)

    Burley, R. K.

    1988-01-01

    Entire surface of ball inspected automatically and quickly. Device holds and rotates bearing ball for inspection by optical or mechanical surface-quality probe, eddy-current probe for detection of surface or subsurface defects, or circumference-measuring tool. Ensures entire surface of ball moves past inspection head quickly. New device saves time and increases reliability of inspections of spherical surfaces. Simple to operate and provides quick and easy access for loading and unloading of balls during inspection.

  3. Towards a coastal ocean forecasting system in Southern Adriatic Northern Ionian seas based on unstructured-grid model

    NASA Astrophysics Data System (ADS)

    Federico, Ivan; Oddo, Paolo; Pinardi, Nadia; Coppini, Giovanni

    2014-05-01

    The Southern Adriatic Northern Ionian Forecasting System (SANIFS) operational chain is based on a nesting approach. The large scale model for the entire Mediterranean basin (MFS, Mediterranean Forecasting system, operated by INGV, e.g. Tonani et al. 2008, Oddo et al. 2009) provides lateral open boundary conditions to the regional model for Adriatic and Ionian seas (AIFS, Adriatic Ionian Forecasting System) which provides the open-sea fields (initial conditions and lateral open boundary conditions) to SANIFS. The latter, here presented, is a coastal ocean model based on SHYFEM (Shallow HYdrodynamics Finite Element Model) code, which is an unstructured grid, finite element three-dimensional hydrodynamic model (e.g. Umgiesser et al., 2004, Ferrarin et al., 2013). The SANIFS hydrodynamic model component has been designed to provide accurate information of hydrodynamics and active tracer fields in the coastal waters of Southern Eastern Italy (Apulia, Basilicata and Calabria regions), where the model is characterized by a resolution of about of 200-500 m. The horizontal resolution is also accurate in open-sea areas, where the elements size is approximately 3 km. During the development phase the model has been initialized and forced at the lateral open boundaries through a full nesting strategy directly with the MFS fields. The heat fluxes has been computed by bulk formulae using as input data the operational analyses of European Centre for Medium-Range Weather Forecasts. Short range pre-operational forecast tests have been performed in different seasons to evaluate the robustness of the implemented model in different oceanographic conditions. Model results are validated by means of comparison with MFS operational results and observations. The model is able to reproduce the large-scale oceanographic structures of the area (keeping similar structures of MFS in open sea), while in the coastal area significant improvements in terms of reproduced structures and dynamics are evident.

  4. Thermal and Irradiation Creep Behavior of a Titanium Aluminide in Advanced Nuclear Plant Environments

    NASA Astrophysics Data System (ADS)

    Magnusson, Per; Chen, Jiachao; Hoffelner, Wolfgang

    2009-12-01

    Titanium aluminides are well-accepted elevated temperature materials. In conventional applications, their poor oxidation resistance limits the maximum operating temperature. Advanced reactors operate in nonoxidizing environments. This could enlarge the applicability of these materials to higher temperatures. The behavior of a cast gamma-alpha-2 TiAl was investigated under thermal and irradiation conditions. Irradiation creep was studied in beam using helium implantation. Dog-bone samples of dimensions 10 × 2 × 0.2 mm3 were investigated in a temperature range of 300 °C to 500 °C under irradiation, and significant creep strains were detected. At temperatures above 500 °C, thermal creep becomes the predominant mechanism. Thermal creep was investigated at temperatures up to 900 °C without irradiation with samples of the same geometry. The results are compared with other materials considered for advanced fission applications. These are a ferritic oxide-dispersion-strengthened material (PM2000) and the nickel-base superalloy IN617. A better thermal creep behavior than IN617 was found in the entire temperature range. Up to 900 °C, the expected 104 hour stress rupture properties exceeded even those of the ODS alloy. The irradiation creep performance of the titanium aluminide was comparable with the ODS steels. For IN617, no irradiation creep experiments were performed due to the expected low irradiation resistance (swelling, helium embrittlement) of nickel-base alloys.

  5. Identification and quantification analysis of nonlinear dynamics properties of combustion instability in a diesel engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Li-Ping, E-mail: yangliping302@hrbeu.edu.cn; Ding, Shun-Liang; Song, En-Zhe

    The cycling combustion instabilities in a diesel engine have been analyzed based on chaos theory. The objective was to investigate the dynamical characteristics of combustion in diesel engine. In this study, experiments were performed under the entire operating range of a diesel engine (the engine speed was changed from 600 to 1400 rpm and the engine load rate was from 0% to 100%), and acquired real-time series of in-cylinder combustion pressure using a piezoelectric transducer installed on the cylinder head. Several methods were applied to identify and quantitatively analyze the combustion process complexity in the diesel engine including delay-coordinate embedding, recurrencemore » plot (RP), Recurrence Quantification Analysis, correlation dimension (CD), and the largest Lyapunov exponent (LLE) estimation. The results show that the combustion process exhibits some determinism. If LLE is positive, then the combustion system has a fractal dimension and CD is no more than 1.6 and within the diesel engine operating range. We have concluded that the combustion system of diesel engine is a low-dimensional chaotic system and the maximum values of CD and LLE occur at the lowest engine speed and load. This means that combustion system is more complex and sensitive to initial conditions and that poor combustion quality leads to the decrease of fuel economy and the increase of exhaust emissions.« less

  6. Identification and quantification analysis of nonlinear dynamics properties of combustion instability in a diesel engine.

    PubMed

    Yang, Li-Ping; Ding, Shun-Liang; Litak, Grzegorz; Song, En-Zhe; Ma, Xiu-Zhen

    2015-01-01

    The cycling combustion instabilities in a diesel engine have been analyzed based on chaos theory. The objective was to investigate the dynamical characteristics of combustion in diesel engine. In this study, experiments were performed under the entire operating range of a diesel engine (the engine speed was changed from 600 to 1400 rpm and the engine load rate was from 0% to 100%), and acquired real-time series of in-cylinder combustion pressure using a piezoelectric transducer installed on the cylinder head. Several methods were applied to identify and quantitatively analyze the combustion process complexity in the diesel engine including delay-coordinate embedding, recurrence plot (RP), Recurrence Quantification Analysis, correlation dimension (CD), and the largest Lyapunov exponent (LLE) estimation. The results show that the combustion process exhibits some determinism. If LLE is positive, then the combustion system has a fractal dimension and CD is no more than 1.6 and within the diesel engine operating range. We have concluded that the combustion system of diesel engine is a low-dimensional chaotic system and the maximum values of CD and LLE occur at the lowest engine speed and load. This means that combustion system is more complex and sensitive to initial conditions and that poor combustion quality leads to the decrease of fuel economy and the increase of exhaust emissions.

  7. Use of lean and six sigma methodology to improve operating room efficiency in a high-volume tertiary-care academic medical center.

    PubMed

    Cima, Robert R; Brown, Michael J; Hebl, James R; Moore, Robin; Rogers, James C; Kollengode, Anantha; Amstutz, Gwendolyn J; Weisbrod, Cheryl A; Narr, Bradly J; Deschamps, Claude

    2011-07-01

    Operating rooms (ORs) are resource-intense and costly hospital units. Maximizing OR efficiency is essential to maintaining an economically viable institution. OR efficiency projects often focus on a limited number of ORs or cases. Efforts across an entire OR suite have not been reported. Lean and Six Sigma methodologies were developed in the manufacturing industry to increase efficiency by eliminating non-value-added steps. We applied Lean and Six Sigma methodologies across an entire surgical suite to improve efficiency. A multidisciplinary surgical process improvement team constructed a value stream map of the entire surgical process from the decision for surgery to discharge. Each process step was analyzed in 3 domains, ie, personnel, information processed, and time. Multidisciplinary teams addressed 5 work streams to increase value at each step: minimizing volume variation; streamlining the preoperative process; reducing nonoperative time; eliminating redundant information; and promoting employee engagement. Process improvements were implemented sequentially in surgical specialties. Key performance metrics were collected before and after implementation. Across 3 surgical specialties, process redesign resulted in substantial improvements in on-time starts and reduction in number of cases past 5 pm. Substantial gains were achieved in nonoperative time, staff overtime, and ORs saved. These changes resulted in substantial increases in margin/OR/day. Use of Lean and Six Sigma methodologies increased OR efficiency and financial performance across an entire operating suite. Process mapping, leadership support, staff engagement, and sharing performance metrics are keys to enhancing OR efficiency. The performance gains were substantial, sustainable, positive financially, and transferrable to other specialties. Copyright © 2011 American College of Surgeons. Published by Elsevier Inc. All rights reserved.

  8. High speed turbogenerator for power recovery from fluid flow within conduit

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Irvine, M. D.

    1985-11-26

    A high speed turbogenerator functionally combining, in one machine, an electrical generator and an expansion turbine. The electrical generator itself has a shaft supported on two bearings and the expansion turbine comprises an expander wheel overhung on the generator shaft and which rotates as a high pressure gas is let down in the expansion turbine to a lower pressure at a minimum predetermined flow rate and pressure drop. The shaft operates at speeds of about 6,000 rpm to 32,000 rpm, preferably at the higher end of such range, i.e. 20,000 to 24,000 rpm. The unit is sufficiently compact that amore » new use for the electrical generator is to modify the same such that the entire high speed turbogenerator is contained within the conduit carrying the gas to be let down in pressure and only electrical wires need be led through the conduit. The integrity of the conduit is thus retained to the extent possible and only a high pressure cable fitting extends through the conduit. In the preferred embodiment, the high speed turbogenerator is entirely fitted within a natural gas conduit in a gas distribution station, thereby achieving the pressure letdown and also obtaining useful electrical power.« less

  9. Is bigger always better? An economic study of U.S. ETO vehicle architectures

    NASA Technical Reports Server (NTRS)

    Eimers, Dan R.; Kakazu, Karen L.

    1991-01-01

    This analysis, performed as part of NASA's Space Transportation Infrastructure Study, compares the cost efficiency of two candidate launch vehicle families, used in conjunction with existing expendable launch vehicles and the Shuttle, to accomplish the nation's future space missions through 2030. Missions analyzed include those identified in NASA's Civil Needs Data Base (CNDB) and Space Exploration Initiative (SEI) Option E program, as well as estimates of commercial and U.S. Department of Defense flights. A family of Shuttle-derived In-line vehicles is compared against a family designed around a vehicle optimized for large (250t) payloads. The analysis is performed within the context of an entire space transportation architecture. The goal is to determine which architecture best captures the required missions most cost-effectively. Results indicate that, for the particular mission model analyzed, neither option is clearly superior across the entire payload range. The Shuttle-derived family displays a better evolutionary path for supporting the total mission model (CNDB plus SEI missions). It also reduces earth-to-orbit (ETO) peak funding by 20 percent. The architecture incorporating the Heavy Lift ETO family minimizes SEI program cost and on-orbit operations but is subject to greater schedule risk because of the need for concurrent ETO core and engine development.

  10. Small Body Populations According to NEOWISE

    NASA Astrophysics Data System (ADS)

    Mainzer, A.

    The Wide-field Infrared Survey Explorer (WISE) surveyed the entire sky in four infrared wavelengths (3.4, 4.6, 12 and 22 microns) over the course of one year. From its sun-synchronous orbit, WISE imaged the entire sky multiple times with significant improvements in spatial resolution and sensitivity over its predecessor, the Infrared Astronomical Satellite. Enhancements to the WISE science data processing pipeline to support solar system science, collectively known as NEOWISE, enabled the indi- vidual exposures to be archived and new moving objects to be discovered. When the solid hydrogen used to cool the 12 and 22 micron detectors and telescope was depleted, NASA supported the continuation of the survey in the 3.4 and 4.6 micron bands for an additional four months to search for near-Earth objects and to complete a survey of the inner solar system. In total, NEOWISE detected more than 158,000 minor planets, including >34,000 new discoveries. This mid-infrared synoptic survey has resulted in range of scientific investigations throughout our solar system and beyond. Following one year of survey operations, the WISE spacecraft was put into hibernation in early 2011. NASA has recently opted to resurrect the mission as NEOWISE for the purpose of discovering and characterizing near-Earth objects.

  11. Long-range nanopositioning and nanomeasuring machine for application to micro- and nanotechnology

    NASA Astrophysics Data System (ADS)

    Jäger, Gerd; Hausotte, Tino; Büchner, Hans-Joachim; Manske, Eberhard; Schmidt, Ingomar; Mastylo, Rostyslav

    2006-03-01

    The paper describes the operation of a high-precision long range three-dimensional nanopositioning and nanomeasuring machine (NPM-Machine). The NPM-Machine has been developed by the Institute of Process Measurement and Sensor Technology of the Technische Universität Ilmenau. The machine was successfully tested and continually improved in the last few years. The machines are operating successfully in several German and foreign research institutes including the Physikalisch-Technische Bundesanstalt (PTB). Three plane mirror miniature interferometers are installed into the NPM-machine having a resolution of less than 0,1 nm over the entire positioning and measuring range of 25 mm x 25 mm x 5 mm. An Abbe offset-free design of the three miniature plane mirror interferometers and applying a new concept for compensating systematic errors resulting from mechanical guide systems provide extraordinary accuracy with an expanded uncertainty of only 5 - 10 nm. The integration of several, optical and tactile probe systems and nanotools makes the NPM-Machine suitable for various tasks, such as large-area scanning probe microscopy, mask and wafer inspection, nanostructuring, biotechnology and genetic engineering as well as measuring mechanical precision workpieces, precision treatment and for engineering new material. Various developed probe systems have been integrated into the NPM-Machine. The measurement results of a focus sensor, metrological AFM, white light sensor, tactile stylus probe and of a 3D-micro-touch-probe are presented. Single beam-, double beam- and triple beam interferometers built in the NPM-Machine for six degrees of freedom measurements are described.

  12. Anterior segment and retinal OCT imaging with simplified sample arm using focus tunable lens technology (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Grulkowski, Ireneusz; Karnowski, Karol; Ruminski, Daniel; Wojtkowski, Maciej

    2016-03-01

    Availability of the long-depth-range OCT systems enables comprehensive structural imaging of the eye and extraction of biometric parameters characterizing the entire eye. Several approaches have been developed to perform OCT imaging with extended depth ranges. In particular, current SS-OCT technology seems to be suited to visualize both anterior and posterior eye in a single measurement. The aim of this study is to demonstrate integrated anterior segment and retinal SS-OCT imaging using a single instrument, in which the sample arm is equipped with the electrically tunable lens (ETL). ETL is composed of the optical liquid confined in the space by an elastic polymer membrane. The shape of the membrane, electrically controlled by a specific ring, defines the radius of curvature of the lens surface, thus it regulates the power of the lens. ETL can be also equipped with additional offset lens to adjust the tuning range of the optical power. We characterize the operation of the tunable lens using wavefront sensing. We develop the optimized optical set-up with two adaptive operational states of the ETL in order to focus the light either on the retina or on the anterior segment of the eye. We test the performance of the set-up by utilizing whole eye phantom as the object. Finally, we perform human eye in vivo imaging using the SS-OCT instrument with versatile imaging functionality that accounts for the optics of the eye and enables dynamic control of the optical beam focus.

  13. Indicator methods to evaluate the hygienic performance of industrial scale operating Biowaste Composting Plants.

    PubMed

    Martens, Jürgen

    2005-01-01

    The hygienic performance of biowaste composting plants to ensure the quality of compost is of high importance. Existing compost quality assurance systems reflect this importance through intensive testing of hygienic parameters. In many countries, compost quality assurance systems are under construction and it is necessary to check and to optimize the methods to state the hygienic performance of composting plants. A set of indicator methods to evaluate the hygienic performance of normal operating biowaste composting plants was developed. The indicator methods were developed by investigating temperature measurements from indirect process tests from 23 composting plants belonging to 11 design types of the Hygiene Design Type Testing System of the German Compost Quality Association (BGK e.V.). The presented indicator methods are the grade of hygienization, the basic curve shape, and the hygienic risk area. The temperature courses of single plants are not distributed normally, but they were grouped by cluster analysis in normal distributed subgroups. That was a precondition to develop the mentioned indicator methods. For each plant the grade of hygienization was calculated through transformation into the standard normal distribution. It shows the part in percent of the entire data set which meet the legal temperature requirements. The hygienization grade differs widely within the design types and falls below 50% for about one fourth of the plants. The subgroups are divided visually into basic curve shapes which stand for different process courses. For each plant the composition of the entire data set out of the various basic curve shapes can be used as an indicator for the basic process conditions. Some basic curve shapes indicate abnormal process courses which can be emended through process optimization. A hygienic risk area concept using the 90% range of variation of the normal temperature courses was introduced. Comparing the design type range of variation with the legal temperature defaults showed hygienic risk areas over the temperature courses which could be minimized through process optimization. The hygienic risk area of four design types shows a suboptimal hygienic performance.

  14. Electric drive motors for industrial robots

    NASA Astrophysics Data System (ADS)

    Fichtner, K.

    1985-04-01

    In robotized industrial plants it is possible to use electric motors in the technological process and also for control, assembly, transport, testing, and measurements. Particularly suitable for these applications are permanent-magnet d.c. motors. A new special series was developed for industrial robots with hinge joints in kinematic pairs. The complete drive includes thyristors or transistor controls with regulators and, if necessary, a line transformer as well as a servomotor with tachometer and odometer for speed, current, and position control. The drive is coupled to a robot tong through mechanical torque and force converters. In addition to a 0 to 4000 rpm speed regulation, without wobble at low speeds, and a high torque-to-weight ratio for repetitive short-time heavy duty, these low-inertia motors develop high starting and accelerating torques over the entire speed range. They operate from a 1 to O 220 V a.c. line through a rectifier. The motors are totally enclosed, or of open construction for better ventilation. Their windings have class F insulation for operation at ambient temperatures up to 40 C.

  15. Goddard's Astrophysics Science Division Annual Report 2011

    NASA Technical Reports Server (NTRS)

    Centrella, Joan; Reddy, Francis; Tyler, Pat

    2012-01-01

    The Astrophysics Science Division(ASD) at Goddard Space Flight Center(GSFC)is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radiowavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contract imaging techniques to serch for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, and provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and suppport the astronomical community, and enable future missions by conceiving new conepts and inventing new technologies.

  16. The Astrophysics Science Division Annual Report 2009

    NASA Technical Reports Server (NTRS)

    Oegerle, William (Editor); Reddy, Francis (Editor); Tyler, Pat (Editor)

    2010-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum - from gamma rays to radio wavelengths - as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for three orbiting astrophysics missions - WMAP, RXTE, and Swift, as well as the Science Support Center for the Fermi Gamma-ray Space Telescope. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contrast imaging techniques to search for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and support the astronomical community, and enable future missions by conceiving new concepts and inventing new technologies.

  17. Resonant Frequency Control For the PIP-II Injector Test RFQ: Control Framework and Initial Results

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edelen, A. L.; Biedron, S. G.; Milton, S. V.

    For the PIP-II Injector Test (PI-Test) at Fermilab, a four-vane radio frequency quadrupole (RFQ) is designed to accelerate a 30-keV, 1-mA to 10-mA, H- beam to 2.1 MeV under both pulsed and continuous wave (CW) RF operation. The available headroom of the RF amplifiers limits the maximum allowable detuning to 3 kHz, and the detuning is controlled entirely via thermal regulation. Fine control over the detuning, minimal manual intervention, and fast trip recovery is desired. In addition, having active control over both the walls and vanes provides a wider tuning range. For this, we intend to use model predictive controlmore » (MPC). To facilitate these objectives, we developed a dedicated control framework that handles higher-level system decisions as well as executes control calculations. It is written in Python in a modular fashion for easy adjustments, readability, and portability. Here we describe the framework and present the first control results for the PI-Test RFQ under pulsed and CW operation.« less

  18. Operational Implementation of a Pc Uncertainty Construct for Conjunction Assessment Risk Analysis

    NASA Technical Reports Server (NTRS)

    Newman, Lauri K.; Hejduk, Matthew D.; Johnson, Lauren C.

    2016-01-01

    Earlier this year the NASA Conjunction Assessment and Risk Analysis (CARA) project presented the theoretical and algorithmic aspects of a method to include the uncertainties in the calculation inputs when computing the probability of collision (Pc) between two space objects, principally uncertainties in the covariances and the hard-body radius. The output of this calculation approach is to produce rather than a single Pc value an entire probability density function that will represent the range of possible Pc values given the uncertainties in the inputs and bring CA risk analysis methodologies more in line with modern risk management theory. The present study provides results from the exercise of this method against an extended dataset of satellite conjunctions in order to determine the effect of its use on the evaluation of conjunction assessment (CA) event risk posture. The effects are found to be considerable: a good number of events are downgraded from or upgraded to a serious risk designation on the basis of consideration of the Pc uncertainty. The findings counsel the integration of the developed methods into NASA CA operations.

  19. Combined Euler column vibration isolation and energy harvesting

    NASA Astrophysics Data System (ADS)

    Davis, R. B.; McDowell, M. D.

    2017-05-01

    A new device that combines vibration isolation and energy harvesting is modeled, simulated, and tested. The vibration isolating portion of the device uses post-buckled beams as its spring elements. Piezoelectric film is applied to the beams to harvest energy from their dynamic flexure. The entire device operates passively on applied base excitation and requires no external power or control system. The structural system is modeled using the elastica, and the structural response is applied as forcing on the electric circuit equation to predict the output voltage and the corresponding harvested power. The vibration isolation and energy harvesting performance is simulated across a large parameter space and the modeling approach is validated with experimental results. Experimental transmissibilities of 2% and harvested power levels of 0.36 μW are simultaneously demonstrated. Both theoretical and experimental data suggest that there is not necessarily a trade-off between vibration isolation and harvested power. That is, within the practical operational range of the device, improved vibration isolation will be accompanied by an increase in the harvested power as the forcing frequency is increased.

  20. Preliminary measurements of the edge magnetic field pitch from 2-D Doppler backscattering in MAST and NSTX-U (invited)

    NASA Astrophysics Data System (ADS)

    Vann, R. G. L.; Brunner, K. J.; Ellis, R.; Taylor, G.; Thomas, D. A.

    2016-11-01

    The Synthetic Aperture Microwave Imaging (SAMI) system is a novel diagnostic consisting of an array of 8 independently phased antennas. At any one time, SAMI operates at one of the 16 frequencies in the range 10-34.5 GHz. The imaging beam is steered in software post-shot to create a picture of the entire emission surface. In SAMI's active probing mode of operation, the plasma edge is illuminated with a monochromatic source and SAMI reconstructs an image of the Doppler back-scattered (DBS) signal. By assuming that density fluctuations are extended along magnetic field lines, and knowing that the strongest back-scattered signals are directed perpendicular to the density fluctuations, SAMI's 2-D DBS imaging capability can be used to measure the pitch of the edge magnetic field. In this paper, we present preliminary pitch angle measurements obtained by SAMI on the Mega Amp Spherical Tokamak (MAST) at Culham Centre for Fusion Energy and on the National Spherical Torus Experiment Upgrade at Princeton Plasma Physics Laboratory. The results demonstrate encouraging agreement between SAMI and other independent measurements.

  1. The Successful Development of an Automated Rendezvous and Capture (AR&C) System for the National Aeronautics and Space Administration

    NASA Technical Reports Server (NTRS)

    Roe, Fred D.; Howard, Richard T.

    2003-01-01

    During the 1990's, the Marshall Space Flight Center (MSFC) conducted pioneering research in the development of an automated rendezvous and capture/docking (AR&C) system for U.S. space vehicles. Development and demonstration of a rendezvous sensor was identified early in the AR&C Program as the critical enabling technology that allows automated proximity operations and docking. A first generation rendezvous sensor, the Video Guidance Sensor (VGS), was developed and successfully flown on STS-87 and STS-95, proving the concept of a video- based sensor. A ground demonstration of the entire system and software was successfully tested. Advances in both video and signal processing technologies and the lessons learned from the two successful flight experiments provided a baseline for the development, by the MSFC, of a new generation of video based rendezvous sensor. The Advanced Video Guidance Sensor (AGS) has greatly increased performance and additional capability for longer-range operation with a new target designed as a direct replacement for existing ISS hemispherical reflectors.

  2. Compact USB-powered mobile ELISA-based pathogen detection: design and implementation challenges

    NASA Astrophysics Data System (ADS)

    Starodubov, Dmitry; Asanbaeva, Anya; Berezhnyy, Ihor; Chao, Chung-Yen; Koziol, Richard; Miller, David; Patton, Edward; Trehan, Sushma; Ulmer, Chris

    2011-05-01

    Physical Optics Corporation (POC) presents a novel Mobile ELISA-based Pathogen Detection system that is based on a disposable microfluidic chip for multiple-threat detection and a highly sensitive portable microfluidic fluorescence measurement unit that also controls the flow of samples and reagents through the microfluidic channels of the chip. The fluorescence detection subsystem is composed of a commercial 635-nm diode laser, an avalanche photodiode (APD) that measures fluorescence, and three filtering mirrors that provide more than 100 dB of excitation line suppression in the signal detection channel. Special techniques to suppress the fluorescence and scattering background allow optimizing the dynamic range for a compact package. Concentrations below 100 ng/mL can be reliably identified. The entire instrument is powered using a USB port of a notebook PC and operates as a plug-and-play human-interface device, resulting in a truly peripheral biosensor. The operation of the system is fully automated, with minimal user intervention through the detection process. The resolved challenges of the design and implementation are presented in detail in this publication.

  3. Goddard's Astrophysics Science Division Annual Report 2013

    NASA Technical Reports Server (NTRS)

    Weaver, Kimberly A. (Editor); Reddy, Francis J. (Editor); Tyler, Patricia A. (Editor)

    2014-01-01

    The Astrophysics Science Division (ASD) at Goddard Space Flight Center (GSFC) is one of the largest and most diverse astrophysical organizations in the world, with activities spanning a broad range of topics in theory, observation, and mission and technology development. Scientific research is carried out over the entire electromagnetic spectrum from gamma rays to radio wavelengths as well as particle physics and gravitational radiation. Members of ASD also provide the scientific operations for two orbiting astrophysics missions Fermi Gamma-ray Space Telescope and Swift as well as the Science Support Center for Fermi. A number of key technologies for future missions are also under development in the Division, including X-ray mirrors, space-based interferometry, high contrast imaging techniques to search for exoplanets, and new detectors operating at gamma-ray, X-ray, ultraviolet, infrared, and radio wavelengths. The overriding goals of ASD are to carry out cutting-edge scientific research, provide Project Scientist support for spaceflight missions, implement the goals of the NASA Strategic Plan, serve and support the astronomical community, and enable future missions by conceiving new concepts and inventing new technologies.

  4. Performance of the Satellite Test Assistant Robot in JPL's Space Simulation Facility

    NASA Technical Reports Server (NTRS)

    Mcaffee, Douglas; Long, Mark; Johnson, Ken; Siebes, Georg

    1995-01-01

    An innovative new telerobotic inspection system called STAR (the Satellite Test Assistant Robot) has been developed to assist engineers as they test new spacecraft designs in simulated space environments. STAR operates inside the ultra-cold, high-vacuum, test chambers and provides engineers seated at a remote Operator Control Station (OCS) with high resolution video and infrared (IR) images of the flight articles under test. STAR was successfully proof tested in JPL's 25-ft (7.6-m) Space Simulation Chamber where temperatures ranged from +85 C to -190 C and vacuum levels reached 5.1 x 10(exp -6) torr. STAR's IR Camera was used to thermally map the entire interior of the chamber for the first time. STAR also made several unexpected and important discoveries about the thermal processes occurring within the chamber. Using a calibrated test fixture arrayed with ten sample spacecraft materials, the IR camera was shown to produce highly accurate surface temperature data. This paper outlines STAR's design and reports on significant results from the thermal vacuum chamber test.

  5. Alaskan Auroral All-Sky Images on the World Wide Web

    NASA Technical Reports Server (NTRS)

    Stenbaek-Nielsen, H. C.

    1997-01-01

    In response to a 1995 NASA SPDS announcement of support for preservation and distribution of important data sets online, the Geophysical Institute, University of Alaska Fairbanks, Alaska, proposed to provide World Wide Web access to the Poker Flat Auroral All-sky Camera images in real time. The Poker auroral all-sky camera is located in the Davis Science Operation Center at Poker Flat Rocket Range about 30 miles north-east of Fairbanks, Alaska, and is connected, through a microwave link, with the Geophysical Institute where we maintain the data base linked to the Web. To protect the low light-level all-sky TV camera from damage due to excessive light, we only operate during the winter season when the moon is down. The camera and data acquisition is now fully computer controlled. Digital images are transmitted each minute to the Web linked data base where the data are available in a number of different presentations: (1) Individual JPEG compressed images (1 minute resolution); (2) Time lapse MPEG movie of the stored images; and (3) A meridional plot of the entire night activity.

  6. A simplified technique for continent urinary diversion: an all-stapled colonic reservoir.

    PubMed

    Parra, R O

    1991-12-01

    A simple continent colonic reservoir was constructed in its entirety with the aid of surgical stapling techniques in 17 men and 10 women. In 5 men an orthotopic pouch was created and in the rest a continent stoma was designed. Detubularization of the entire colonic segment assures a low pressure system with disruption of directional peristaltic activity. The ureters are implanted by simply burying them in a mucosal furrow. Operative time required for the creation of the reservoir (excluding time for cystectomy) has ranged between 70 and 140 minutes (mean 95.4 minutes). With a followup of 9 to 60 months (mean 22.8 months) continence has been achieved in all but 1 patient with no ureteral reflux or obstruction. Urodynamically the pouch has achieved a large capacity (mean 750 cc) with low filling pressures (8.1 cm. water) because of technical ease of construction together with a shortened operative time due to the stapling techniques. This form of bladder replacement offers an option for select patients in whom continent urinary diversion is contemplated.

  7. Low-loss, efficient, wide-angle 1  ×  4 power splitter at ∼1.55  μm wavelengths for four play applications built with a monolithic photonic crystal slab.

    PubMed

    Zhou, Jian; Tian, Huiping; Yang, Daquan; Liu, Qi; Huang, Lijun; Ji, Yuefeng

    2014-12-01

    We exhibit a low-loss, efficient, and wide-angle 1×4 power splitter based on a silicon monolithic photonic crystal slab with triangular lattice air holes. A distinctive power-splitting ratio can be obtained depending on the hole shift in the bending region and the structure adjustment at the junction area with regard to the power splitter designed. Simulation results achieved with a rigorous finite-difference time-domain technique show that the TE-polarized light is designed to ensure single-mode operation and the transmitted power is distributed almost equally, with a total transmission of 93.4% at the 1550 nm optical operation wavelength. Furthermore, we demonstrate ultralow-loss output of the optimized power splitter, with a transmittance above 22.5% (-6.48  dB) achieved in the ranges of 1524-1594 and 1610-1620 nm, which cover the entire C-band and a large portion of the L-band of optical communication.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    A Rasmussen, Andrew P.; Hale, Layton; Kim, Peter

    Meeting the science goals for the Large Synoptic Survey Telescope (LSST) translates into a demanding set of imaging performance requirements for the optical system over a wide (3.5{sup o}) field of view. In turn, meeting those imaging requirements necessitates maintaining precise control of the focal plane surface (10 {micro}m P-V) over the entire field of view (640 mm diameter) at the operating temperature (T {approx} -100 C) and over the operational elevation angle range. We briefly describe the hierarchical design approach for the LSST Camera focal plane and the baseline design for assembling the flat focal plane at room temperature.more » Preliminary results of gravity load and thermal distortion calculations are provided, and early metrological verification of candidate materials under cold thermal conditions are presented. A detailed, generalized method for stitching together sparse metrology data originating from differential, non-contact metrological data acquisition spanning multiple (non-continuous) sensor surfaces making up the focal plane, is described and demonstrated. Finally, we describe some in situ alignment verification alternatives, some of which may be integrated into the camera's focal plane.« less

  9. Preliminary measurements of the edge magnetic field pitch from 2-D Doppler backscattering in MAST and NSTX-U (invited).

    PubMed

    Vann, R G L; Brunner, K J; Ellis, R; Taylor, G; Thomas, D A

    2016-11-01

    The Synthetic Aperture Microwave Imaging (SAMI) system is a novel diagnostic consisting of an array of 8 independently phased antennas. At any one time, SAMI operates at one of the 16 frequencies in the range 10-34.5 GHz. The imaging beam is steered in software post-shot to create a picture of the entire emission surface. In SAMI's active probing mode of operation, the plasma edge is illuminated with a monochromatic source and SAMI reconstructs an image of the Doppler back-scattered (DBS) signal. By assuming that density fluctuations are extended along magnetic field lines, and knowing that the strongest back-scattered signals are directed perpendicular to the density fluctuations, SAMI's 2-D DBS imaging capability can be used to measure the pitch of the edge magnetic field. In this paper, we present preliminary pitch angle measurements obtained by SAMI on the Mega Amp Spherical Tokamak (MAST) at Culham Centre for Fusion Energy and on the National Spherical Torus Experiment Upgrade at Princeton Plasma Physics Laboratory. The results demonstrate encouraging agreement between SAMI and other independent measurements.

  10. Higgs Amplitudes from N=4 Supersymmetric Yang-Mills Theory.

    PubMed

    Brandhuber, Andreas; Kostacińska, Martyna; Penante, Brenda; Travaglini, Gabriele

    2017-10-20

    Higgs plus multigluon amplitudes in QCD can be computed in an effective Lagrangian description. In the infinite top-mass limit, an amplitude with a Higgs boson and n gluons is computed by the form factor of the operator TrF^{2}. Up to two loops and for three gluons, its maximally transcendental part is captured entirely by the form factor of the protected stress tensor multiplet operator T_{2} in N=4 supersymmetric Yang-Mills theory. The next order correction involves the calculation of the form factor of the higher-dimensional, trilinear operator TrF^{3}. We present explicit results at two loops for three gluons, including the subleading transcendental terms derived from a particular descendant of the Konishi operator that contains TrF^{3}. These are expressed in terms of a few universal building blocks already identified in earlier calculations. We show that the maximally transcendental part of this quantity, computed in nonsupersymmetric Yang-Mills theory, is identical to the form factor of another protected operator, T_{3}, in the maximally supersymmetric theory. Our results suggest that the maximally transcendental part of Higgs amplitudes in QCD can be entirely computed through N=4 super Yang-Mills theory.

  11. The energy radiated by the 26 December 2004 Sumatra-Andaman earthquake estimated from 10-minute P-wave windows

    USGS Publications Warehouse

    Choy, G.L.; Boatwright, J.

    2007-01-01

    The rupture process of the Mw 9.1 Sumatra-Andaman earthquake lasted for approximately 500 sec, nearly twice as long as the teleseismic time windows between the P and PP arrival times generally used to compute radiated energy. In order to measure the P waves radiated by the entire earthquake, we analyze records that extend from the P-wave to the S-wave arrival times from stations at distances ?? >60??. These 8- to 10-min windows contain the PP, PPP, and ScP arrivals, along with other multiply reflected phases. To gauge the effect of including these additional phases, we form the spectral ratio of the source spectrum estimated from extended windows (between TP and TS) to the source spectrum estimated from normal windows (between TP and TPP). The extended windows are analyzed as though they contained only the P-pP-sP wave group. We analyze four smaller earthquakes that occurred in the vicinity of the Mw 9.1 mainshock, with similar depths and focal mechanisms. These smaller events range in magnitude from an Mw 6.0 aftershock of 9 January 2005 to the Mw 8.6 Nias earthquake that occurred to the south of the Sumatra-Andaman earthquake on 28 March 2005. We average the spectral ratios for these four events to obtain a frequency-dependent operator for the extended windows. We then correct the source spectrum estimated from the extended records of the 26 December 2004 mainshock to obtain a complete or corrected source spectrum for the entire rupture process (???600 sec) of the great Sumatra-Andaman earthquake. Our estimate of the total seismic energy radiated by this earthquake is 1.4 ?? 1017 J. When we compare the corrected source spectrum for the entire earthquake to the source spectrum from the first ???250 sec of the rupture process (obtained from normal teleseismic windows), we find that the mainshock radiated much more seismic energy in the first half of the rupture process than in the second half, especially over the period range from 3 sec to 40 sec.

  12. 47 CFR 36.123 - Operator systems equipment-Category 1.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... apportioned on the basis of the relative processor real time (i.e., actual seconds) required to process TSPS... relative processor real time (i.e., actual seconds) for the entire TSPS complex. [52 FR 17229, May 6, 1987... 47 Telecommunication 2 2014-10-01 2014-10-01 false Operator systems equipment-Category 1. 36.123...

  13. 47 CFR 36.123 - Operator systems equipment-Category 1.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... apportioned on the basis of the relative processor real time (i.e., actual seconds) required to process TSPS... relative processor real time (i.e., actual seconds) for the entire TSPS complex. [52 FR 17229, May 6, 1987... 47 Telecommunication 2 2013-10-01 2013-10-01 false Operator systems equipment-Category 1. 36.123...

  14. 47 CFR 36.123 - Operator systems equipment-Category 1.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... apportioned on the basis of the relative processor real time (i.e., actual seconds) required to process TSPS... relative processor real time (i.e., actual seconds) for the entire TSPS complex. [52 FR 17229, May 6, 1987... 47 Telecommunication 2 2012-10-01 2012-10-01 false Operator systems equipment-Category 1. 36.123...

  15. 47 CFR 36.123 - Operator systems equipment-Category 1.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... apportioned on the basis of the relative processor real time (i.e., actual seconds) required to process TSPS... relative processor real time (i.e., actual seconds) for the entire TSPS complex. [52 FR 17229, May 6, 1987... 47 Telecommunication 2 2011-10-01 2011-10-01 false Operator systems equipment-Category 1. 36.123...

  16. 40 CFR 63.2840 - What emission requirements must I meet?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... entire calendar month in which the source operated under an initial startup period subject to § 63.2850(c... operating months, as determined in § 63.2853. Oilseed = Tons of each oilseed type “i” processed during the... Loss Factors for Determining Allowable HAP Loss Type of oilseed process A source that... Oilseed...

  17. 40 CFR 63.2840 - What emission requirements must I meet?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... entire calendar month in which the source operated under an initial startup period subject to § 63.2850(c... operating months, as determined in § 63.2853. Oilseed = Tons of each oilseed type “i” processed during the... Loss Factors for Determining Allowable HAP Loss Type of oilseed process A source that... Oilseed...

  18. 40 CFR 63.2840 - What emission requirements must I meet?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... entire calendar month in which the source operated under an initial startup period subject to § 63.2850(c... operating months, as determined in § 63.2853. Oilseed = Tons of each oilseed type “i” processed during the... Loss Factors for Determining Allowable HAP Loss Type of oilseed process A source that... Oilseed...

  19. 18 CFR 284.12 - Standards for pipeline business operations and communications.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Standards for pipeline business operations and communications. 284.12 Section 284.12 Conservation of Power and Water Resources... access requirement; (B) Users must be able to search an entire document online for selected words, and...

  20. 47 CFR 36.123 - Operator systems equipment-Category 1.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... apportioned on the basis of the relative processor real time (i.e., actual seconds) required to process TSPS... relative processor real time (i.e., actual seconds) for the entire TSPS complex. [52 FR 17229, May 6, 1987... 47 Telecommunication 2 2010-10-01 2010-10-01 false Operator systems equipment-Category 1. 36.123...

  1. 40 CFR 60.692-3 - Standards: Oil-water separators.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Emissions From Petroleum Refinery Wastewater Systems § 60.692-3 Standards: Oil-water separators. (a) Each... wastewater shall, in addition to the requirements in paragraph (a) of this section, be equipped and operated... wastewater which was equipped and operated with a fixed roof covering the entire separator tank or a portion...

  2. 40 CFR 60.692-3 - Standards: Oil-water separators.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Emissions From Petroleum Refinery Wastewater Systems § 60.692-3 Standards: Oil-water separators. (a) Each... wastewater shall, in addition to the requirements in paragraph (a) of this section, be equipped and operated... wastewater which was equipped and operated with a fixed roof covering the entire separator tank or a portion...

  3. Time value of emission and technology discounting rate for off-grid electricity generation in India using intermediate pyrolysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patel, Amit, E-mail: amitrp@iitrpr.ac.in; Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Vadodara 390001, Gujarat; Sarkar, Prabir

    The environmental impact assessment of a process over its entire operational lifespan is an important issue. Estimation of life cycle emission helps in predicting the contribution of a given process to abate (or to pollute) the environmental emission scenario. Considering diminishing and time-dependent effect of emission, assessment of the overall effect of emissions is very complex. The paper presents a generalized methodology for arriving at a single emission discounting number for a process option, using the concept of time value of carbon emission flow. This number incorporates the effect of the emission resulting from the process over the entire operationalmore » lifespan. The advantage of this method is its quantitative aspect as well as its flexible nature. It can be applied to any process. The method is demonstrated with the help of an Intermediate Pyrolysis process when used to generate off-grid electricity and opting biochar route for disposing straw residue. The scenarios of very high net emission to very high net carbon sequestration is generated using process by careful selection of process parameters for different scenarios. For these different scenarios, the process discounting rate was determined and its outcome is discussed. The paper also proposes a process specific eco-label that mentions the discounting rates. - Highlight: • Methodology to obtain emission discounting rate for a process is proposed. • The method includes all components of life cycle emission converts into a time dependent discounting number. • A case study of Intermediate Pyrolysis is used to obtain such number for a range of processes. • The method is useful to determine if the effect from the operation of a process will lead to a net absorption of emission or net accumulation of emission in the environment.« less

  4. Comparison Tools for Assessing the Microgravity Environment of Missions, Carriers and Conditions

    NASA Technical Reports Server (NTRS)

    DeLombard, Richard; McPherson, Kevin; Moskowitz, Milton; Hrovat, Ken

    1997-01-01

    The Principal Component Spectral Analysis and the Quasi-steady Three-dimensional Histogram techniques provide the means to describe the microgravity acceleration environment of an entire mission on a single plot. This allows a straight forward comparison of the microgravity environment between missions, carriers, and conditions. As shown in this report, the PCSA and QTH techniques bring both the range and median of the microgravity environment onto a single page for an entire mission or another time period or condition of interest. These single pages may then be used to compare similar analyses of other missions, time periods or conditions. The PCSA plot is based on the frequency distribution of the vibrational energy and is normally used for an acceleration data set containing frequencies above the lowest natural frequencies of the vehicle. The QTH plot is based on the direction and magnitude of the acceleration and is normally used for acceleration data sets with frequency content less than 0.1 Hz. Various operating conditions are made evident by using PCSA and QTH plots. Equipment operating either full or part time with sufficient magnitude to be considered a disturbance is very evident as well as equipment contributing to the background acceleration environment. A source's magnitude and/or frequency variability is also evident by the source's appearance on a PCSA plot. The PCSA and QTH techniques are valuable tools for extracting useful information from acceleration data taken over large spans of time. This report shows that these techniques provide a tool for comparison between different sets of microgravity acceleration data, for example different missions, different activities within a mission, and/or different attitudes within a mission. These techniques, as well as others, may be employed in order to derive useful information from acceleration data.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ainsworth, Nathan; Heaps, Colton; Symko-Davies, Martha

    The purpose of this report is to propose a technical roadmap for power supply technology to power the Tactical Assault Light Operator Suit (TALOS), an armored, powered exoskeleton currently in development for U.S. Special Operations Command operators. TALOS' power supply system must meet size targets similar to the size of a large backpack while providing significant electrical power for an entire mission cycle without resupply. This report proposes a staged development path based on three fundamental technical approaches.

  6. The Million-Body Problem: Particle Simulations in Astrophysics

    ScienceCinema

    Rasio, Fred

    2018-05-21

    Computer simulations using particles play a key role in astrophysics. They are widely used to study problems across the entire range of astrophysical scales, from the dynamics of stars, gaseous nebulae, and galaxies, to the formation of the largest-scale structures in the universe. The 'particles' can be anything from elementary particles to macroscopic fluid elements, entire stars, or even entire galaxies. Using particle simulations as a common thread, this talk will present an overview of computational astrophysics research currently done in our theory group at Northwestern. Topics will include stellar collisions and the gravothermal catastrophe in dense star clusters.

  7. Design of Accumulators and Liquid/Gas Charging of Single Phase Mechanically Pumped Fluid Loop Heat Rejection Systems

    NASA Technical Reports Server (NTRS)

    Bhandari, Pradeep; Dudik, Brenda; Birur, Gajanana; Karlmann, Paul; Bame, David; Mastropietro, A. J.

    2012-01-01

    For single phase mechanically pumped fluid loops used for thermal control of spacecraft, a gas charged accumulator is typically used to modulate pressures within the loop. This is needed to accommodate changes in the working fluid volume due to changes in the operating temperatures as the spacecraft encounters varying thermal environments during its mission. Overall, the three key requirements on the accumulator to maintain an appropriate pressure range throughout the mission are: accommodation of the volume change of the fluid due to temperature changes, avoidance of pump cavitation and prevention of boiling in the liquid. The sizing and design of such an accumulator requires very careful and accurate accounting of temperature distribution within each element of the working fluid for the entire range of conditions expected, accurate knowledge of volume of each fluid element, assessment of corresponding pressures needed to avoid boiling in the liquid, as well as the pressures needed to avoid cavitation in the pump. The appropriate liquid and accumulator strokes required to accommodate the liquid volume change, as well as the appropriate gas volumes, require proper sizing to ensure that the correct pressure range is maintained during the mission. Additionally, a very careful assessment of the process for charging both the gas side and the liquid side of the accumulator is required to properly position the bellows and pressurize the system to a level commensurate with requirements. To achieve the accurate sizing of the accumulator and the charging of the system, sophisticated EXCEL based spreadsheets were developed to rapidly come up with an accumulator design and the corresponding charging parameters. These spreadsheets have proven to be computationally fast and accurate tools for this purpose. This paper will describe the entire process of designing and charging the system, using a case study of the Mars Science Laboratory (MSL) fluid loops, which is en route to Mars for an August 2012 landing.

  8. Direct and indirect effects of biological factors on extinction risk in fossil bivalves

    PubMed Central

    Harnik, Paul G.

    2011-01-01

    Biological factors, such as abundance and body size, may contribute directly to extinction risk and indirectly through their influence on other biological characteristics, such as geographic range size. Paleontological data can be used to explicitly test many of these hypothesized relationships, and general patterns revealed through analysis of the fossil record can help refine predictive models of extinction risk developed for extant species. Here, I use structural equation modeling to tease apart the contributions of three canonical predictors of extinction—abundance, body size, and geographic range size—to the duration of bivalve species in the early Cenozoic marine fossil record of the eastern United States. I find that geographic range size has a strong direct effect on extinction risk and that an apparent direct effect of abundance can be explained entirely by its covariation with geographic range. The influence of geographic range on extinction risk is manifest across three ecologically disparate bivalve clades. Body size also has strong direct effects on extinction risk but operates in opposing directions in different clades, and thus, it seems to be decoupled from extinction risk in bivalves as a whole. Although abundance does not directly predict extinction risk, I reveal weak indirect effects of both abundance and body size through their positive influence on geographic range size. Multivariate models that account for the pervasive covariation between biological factors and extinction are necessary for assessing causality in evolutionary processes and making informed predictions in applied conservation efforts. PMID:21808004

  9. Direct and indirect effects of biological factors on extinction risk in fossil bivalves.

    PubMed

    Harnik, Paul G

    2011-08-16

    Biological factors, such as abundance and body size, may contribute directly to extinction risk and indirectly through their influence on other biological characteristics, such as geographic range size. Paleontological data can be used to explicitly test many of these hypothesized relationships, and general patterns revealed through analysis of the fossil record can help refine predictive models of extinction risk developed for extant species. Here, I use structural equation modeling to tease apart the contributions of three canonical predictors of extinction--abundance, body size, and geographic range size--to the duration of bivalve species in the early Cenozoic marine fossil record of the eastern United States. I find that geographic range size has a strong direct effect on extinction risk and that an apparent direct effect of abundance can be explained entirely by its covariation with geographic range. The influence of geographic range on extinction risk is manifest across three ecologically disparate bivalve clades. Body size also has strong direct effects on extinction risk but operates in opposing directions in different clades, and thus, it seems to be decoupled from extinction risk in bivalves as a whole. Although abundance does not directly predict extinction risk, I reveal weak indirect effects of both abundance and body size through their positive influence on geographic range size. Multivariate models that account for the pervasive covariation between biological factors and extinction are necessary for assessing causality in evolutionary processes and making informed predictions in applied conservation efforts.

  10. The power and robustness of maximum LOD score statistics.

    PubMed

    Yoo, Y J; Mendell, N R

    2008-07-01

    The maximum LOD score statistic is extremely powerful for gene mapping when calculated using the correct genetic parameter value. When the mode of genetic transmission is unknown, the maximum of the LOD scores obtained using several genetic parameter values is reported. This latter statistic requires higher critical value than the maximum LOD score statistic calculated from a single genetic parameter value. In this paper, we compare the power of maximum LOD scores based on three fixed sets of genetic parameter values with the power of the LOD score obtained after maximizing over the entire range of genetic parameter values. We simulate family data under nine generating models. For generating models with non-zero phenocopy rates, LOD scores maximized over the entire range of genetic parameters yielded greater power than maximum LOD scores for fixed sets of parameter values with zero phenocopy rates. No maximum LOD score was consistently more powerful than the others for generating models with a zero phenocopy rate. The power loss of the LOD score maximized over the entire range of genetic parameters, relative to the maximum LOD score calculated using the correct genetic parameter value, appeared to be robust to the generating models.

  11. Satellite Power System. Concept development and evaluation program, volume 6: Construction and operations

    NASA Technical Reports Server (NTRS)

    Benson, H.; Jenkins, L. M.

    1981-01-01

    The construction, operation, and maintenance requirements for a solar power satellite, including the space and ground systems, are reviewed. The basic construction guidelines are explained, and construction location options are discussed. The space construction tasks, equipment, and base configurations are discussed together with the operations required to place a solar power satellite in geosynchronous orbit. A rectenna construction technique is explained, and operation with the grid is defined. Maintenance requirements are summarized for the entire system. Key technology issues required for solar power satellite construction operations are defined.

  12. Entire syringomyelia associated with Chiari II malformation and severe scoliosis and hydrocephalus.

    PubMed

    Liang, Jie; Wu, Weifei; Ru, Neng; Chen, Jianfeng

    2017-01-01

    The syrinx can occur in any region of the spinal cord and is common in cervical and/or thoracic region, and distributing along spinal cord is unusual, especially association with Chiari II malformation and scoliosis. To report a first case of entire syringomyelia associated with Chiari II malformation and severe scoliosis and hydrocephalus. The patient began to experience symptoms of bilateral hand weakness in adulthood. In this patient, MR imaging of the brain and spine showed syrinx along entire spine and hydrocephalus, cerebellar tonsillar herniation, and expansion of the fourth ventricle and posterior cranial fossa. The patient underwent operative treatment to prevent the progression of her neurological deficit. At 12 months' follow-up, the patient's neurological deficit remains stable with the scoliosis left untreated. Foramen magnum decompression, duraplasty and syrinx-shunting are effective methods even to CM II and entire syrinx.

  13. Smoke on the water-Oral fluid analysis at sea.

    PubMed

    Griffiths, Andrew; Leonars, Richard; Hadley, Lenore; Stephenson, Mark; Teale, Richard

    2017-09-01

    This study outlines the operational challenges and findings of an illicit drug oral fluid testing program carried out on the skippers (those in charge) of water vessels in Queensland, Australia. Between 2010 and 2016, 953 tests of skippers were conducted on water (waterside) for three proscribed illicit drugs; delta-9-tetrahydrocannabinol (THC), methylamphetamine (MA) and 3,4-methylendioxymethylamphetamine (MDMA). 126 (13%) of the skippers tested returned an on-site positive during waterside testing, 125 were confirmed positive for one or more illicit drug by subsequent laboratory analysis, whilst one skipper did not provide an oral fluid sample for confirmatory analysis. The skippers were entirely male (100%) with an average age of 39 years (range 17-59). THC was by far the most common drug detected (91%); MA was detected in 22% of skippers and a combination or THC and MA in 14% of specimens. MDMA was identified only once during the study, this being in combination with THC. As a single waterside operation can take more than a week, operational pre-planning becomes essential. Aspects of the operation such as, weather, shift times, food, testing consumables, sleeping quarters, hygiene, liaison between different agencies and multiple other factors need to be taken into account prior to commencement. A waterside operation must be mobile and, in Queensland at least, able to cover a large area of water. There is also a much lower volume of vessels likely to be encountered at sea compared to a roadside operation targeting motor vehicles. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Mean Green operators of deformable fiber networks embedded in a compliant matrix and property estimates

    NASA Astrophysics Data System (ADS)

    Franciosi, Patrick; Spagnuolo, Mario; Salman, Oguz Umut

    2018-04-01

    Composites comprising included phases in a continuous matrix constitute a huge class of meta-materials, whose effective properties, whether they be mechanical, physical or coupled, can be selectively optimized by using appropriate phase arrangements and architectures. An important subclass is represented by "network-reinforced matrices," say those materials in which one or more of the embedded phases are co-continuous with the matrix in one or more directions. In this article, we present a method to study effective properties of simple such structures from which more complex ones can be accessible. Effective properties are shown, in the framework of linear elasticity, estimable by using the global mean Green operator for the entire embedded fiber network which is by definition through sample spanning. This network operator is obtained from one of infinite planar alignments of infinite fibers, which the network can be seen as an interpenetrated set of, with the fiber interactions being fully accounted for in the alignments. The mean operator of such alignments is given in exact closed form for isotropic elastic-like or dielectric-like matrices. We first exemplify how these operators relevantly provide, from classic homogenization frameworks, effective properties in the case of 1D fiber bundles embedded in an isotropic elastic-like medium. It is also shown that using infinite patterns with fully interacting elements over their whole influence range at any element concentration suppresses the dilute approximation limit of these frameworks. We finally present a construction method for a global operator of fiber networks described as interpenetrated such bundles.

  15. Numerical simulation of hydrodynamics in a pump-turbine at off-design operating conditions in turbine mode

    NASA Astrophysics Data System (ADS)

    Yan, J. P.; Seidel, U.; Koutnik, J.

    2012-11-01

    The hydrodynamics of a reduced-scaled model of a radial pump-turbine is investigated under off-design operating conditions, involving runaway and "S-shape" turbine brake curve at low positive discharge. It is a low specific speed pump-turbine machine of Francis type with 9 impeller blades and 20 stay vanes as well as 20 guide vanes. The computational domain includes the entire water passage from the spiral casing inlet to the draft tube outlet. Completely structured hexahedral meshes generated by the commercial software ANSYS-ICEM are employed. The unsteady incompressible simulations are performed using the commercial code ANSYS-CFX13. For turbulence modeling the standard k-ε model is applied. The numerical results at different operating points are compared to the experimental results. The predicted pressure amplitude is in good agreement with the experimental data and the amplitude of normal force on impeller is in reasonable range. The detailed analysis reveals the onset of the flow instabilities when the machine is brought from a regular operating condition to runaway and turbine break mode. Furthermore, the rotating stall phenomena are well captured at runaway condition as well as low discharge operating condition with one stall cell rotating inside and around the impeller with about 70% of its frequency. Moreover, the rotating stall is found to be the effect of rotating flow separations developed in several consecutive impeller channels which lead to their blockage. The reliable simulation of S-curve characteristics in pump-turbines is a basic requirement for design and optimization at off-design operating conditions.

  16. Scheduling elective surgeries: the tradeoff among bed capacity, waiting patients and operating room utilization using goal programming.

    PubMed

    Li, Xiangyong; Rafaliya, N; Baki, M Fazle; Chaouch, Ben A

    2017-03-01

    Scheduling of surgeries in the operating rooms under limited competing resources such as surgical and nursing staff, anesthesiologist, medical equipment, and recovery beds in surgical wards is a complicated process. A well-designed schedule should be concerned with the welfare of the entire system by allocating the available resources in an efficient and effective manner. In this paper, we develop an integer linear programming model in a manner useful for multiple goals for optimally scheduling elective surgeries based on the availability of surgeons and operating rooms over a time horizon. In particular, the model is concerned with the minimization of the following important goals: (1) the anticipated number of patients waiting for service; (2) the underutilization of operating room time; (3) the maximum expected number of patients in the recovery unit; and (4) the expected range (the difference between maximum and minimum expected number) of patients in the recovery unit. We develop two goal programming (GP) models: lexicographic GP model and weighted GP model. The lexicographic GP model schedules operating rooms when various preemptive priority levels are given to these four goals. A numerical study is conducted to illustrate the optimal master-surgery schedule obtained from the models. The numerical results demonstrate that when the available number of surgeons and operating rooms is known without error over the planning horizon, the proposed models can produce good schedules and priority levels and preference weights of four goals affect the resulting schedules. The results quantify the tradeoffs that must take place as the preemptive-weights of the four goals are changed.

  17. On the upper part load vortex rope in Francis turbine: Experimental investigation

    NASA Astrophysics Data System (ADS)

    Nicolet, C.; Zobeiri, A.; Maruzewski, P.; Avellan, F.

    2010-08-01

    The swirling flow developing in Francis turbine draft tube under part load operation leads to pressure fluctuations usually in the range of 0.2 to 0.4 times the runner rotational frequency resulting from the so-called vortex breakdown. For low cavitation number, the flow features a cavitation vortex rope animated with precession motion. Under given conditions, these pressure fluctuations may lead to undesirable pressure fluctuations in the entire hydraulic system and also produce active power oscillations. For the upper part load range, between 0.7 and 0.85 times the best efficiency discharge, pressure fluctuations may appear in a higher frequency range of 2 to 4 times the runner rotational speed and feature modulations with vortex rope precession. It has been pointed out that for this particular operating point, the vortex rope features elliptical cross section and is animated of a self-rotation. This paper presents an experimental investigation focusing on this peculiar phenomenon, defined as the upper part load vortex rope. The experimental investigation is carried out on a high specific speed Francis turbine scale model installed on a test rig of the EPFL Laboratory for Hydraulic Machines. The selected operating point corresponds to a discharge of 0.83 times the best efficiency discharge. Observations of the cavitation vortex carried out with high speed camera have been recorded and synchronized with pressure fluctuations measurements at the draft tube cone. First, the vortex rope self rotation frequency is evidenced and the related frequency is deduced. Then, the influence of the sigma cavitation number on vortex rope shape and pressure fluctuations is presented. The waterfall diagram of the pressure fluctuations evidences resonance effects with the hydraulic circuit. The time evolution of the vortex rope volume is compared with pressure fluctuations time evolution using image processing. Finally, the influence of the Froude number on the vortex rope shape and the associated pressure fluctuations is analyzed by varying the rotational speed.

  18. Nuclear Tools For Oilfield Logging-While-Drilling Applications

    NASA Astrophysics Data System (ADS)

    Reijonen, Jani

    2011-06-01

    Schlumberger is an international oilfield service company with nearly 80,000 employees of 140 nationalities, operating globally in 80 countries. As a market leader in oilfield services, Schlumberger has developed a suite of technologies to assess the downhole environment, including, among others, electromagnetic, seismic, chemical, and nuclear measurements. In the past 10 years there has been a radical shift in the oilfield service industry from traditional wireline measurements to logging-while-drilling (LWD) analysis. For LWD measurements, the analysis is performed and the instruments are operated while the borehole is being drilled. The high temperature, high shock, and extreme vibration environment of LWD imposes stringent requirements for the devices used in these applications. This has a significant impact on the design of the components and subcomponents of a downhole tool. Another significant change in the past few years for nuclear-based oilwell logging tools is the desire to replace the sealed radioisotope sources with active, electronic ones. These active radiation sources provide great benefits compared to the isotopic sources, ranging from handling and safety to nonproliferation and well contamination issues. The challenge is to develop electronic generators that have a high degree of reliability for the entire lifetime of a downhole tool. LWD tool testing and operations are highlighted with particular emphasis on electronic radiation sources and nuclear detectors for the downhole environment.

  19. Application of Decision Tree on Collision Avoidance System Design and Verification for Quadcopter

    NASA Astrophysics Data System (ADS)

    Chen, C.-W.; Hsieh, P.-H.; Lai, W.-H.

    2017-08-01

    The purpose of the research is to build a collision avoidance system with decision tree algorithm used for quadcopters. While the ultrasonic range finder judges the distance is in collision avoidance interval, the access will be replaced from operator to the system to control the altitude of the UAV. According to the former experiences on operating quadcopters, we can obtain the appropriate pitch angle. The UAS implement the following three motions to avoid collisions. Case1: initial slow avoidance stage, Case2: slow avoidance stage and Case3: Rapid avoidance stage. Then the training data of collision avoidance test will be transmitted to the ground station via wireless transmission module to further analysis. The entire decision tree algorithm of collision avoidance system, transmission data, and ground station have been verified in some flight tests. In the flight test, the quadcopter can implement avoidance motion in real-time and move away from obstacles steadily. In the avoidance area, the authority of the collision avoidance system is higher than the operator and implements the avoidance process. The quadcopter can successfully fly away from the obstacles in 1.92 meter per second and the minimum distance between the quadcopter and the obstacle is 1.05 meters.

  20. Life cycle assessment of gas atomised sponge nickel for use in alkaline hydrogen fuel cell applications

    NASA Astrophysics Data System (ADS)

    Wilson, Benjamin P.; Lavery, Nicholas P.; Jarvis, David J.; Anttila, Tomi; Rantanen, Jyri; Brown, Stephen G. R.; Adkins, Nicholas J.

    2013-12-01

    This paper presents a cradle-to-grave comparative Life Cycle Assessment (LCA) of new gas atomised (GA) sponge nickel catalysts and evaluates their performance against the both cast and crush (CC) sponge nickel and platinum standards currently used in commercial alkaline fuel cells (AFC). The LCA takes into account the energy used and emissions throughout the entire life cycle of sponge nickel catalysts - ranging from the upstream production of materials (mainly aluminium and nickel), to the manufacturing, to the operation and finally to the recycling and disposal. Through this assessment it was found that the energy and emissions during the operational phase associated with a given catalyst considerably outweigh the primary production, manufacturing and recycling. Primary production of the nickel (and to a lesser extent dopant materials) also has a significant environmental impact but this is offset by operational energy savings over the electrode's estimated lifetime and end of life recyclability. From the results it can be concluded that higher activity spongy nickel catalysts produced by gas atomisation could have a significantly lower environmental impact than either CC nickel or platinum. Doped GA sponge nickel in particular showed comparable performance to that of the standard platinum electrode used in AFCs.

  1. Vertical-Cavity Surface-Emitting 1.55-μm Lasers Fabricated by Fusion

    NASA Astrophysics Data System (ADS)

    Babichev, A. V.; Karachinskii, L. Ya.; Novikov, I. I.; Gladyshev, A. G.; Blokhin, S. A.; Mikhailov, S.; Iakovlev, V.; Sirbu, A.; Stepniak, G.; Chorchos, L.; Turkiewicz, J. P.; Voropaev, K. O.; Ionov, A. S.; Agustin, M.; Ledentsov, N. N.; Egorov, A. Yu.

    2018-01-01

    The results of studies on fabrication of vertical-cavity surface-emitting 1.55-μm lasers by fusing AlGaAs/GaAs distributed-Bragg-reflector wafers and an active region based on thin In0.74Ga0.26 As quantum wells grown by molecular-beam epitaxy are presented. Lasers with a current aperture diameter of 8 μm exhibit continuous lasing with a threshold current below 1.5 mA, an output optical power of 6 mW, and an efficiency of approximately 22%. Single-mode lasing with a side-mode suppression ratio of 40-45 dB is observed in the entire operating current range. The effective modulation frequency of these lasers is as high as 9 GHz and is limited by the low parasitic cutoff frequency and self-heating.

  2. Integration of Tuyere, Raceway and Shaft Models for Predicting Blast Furnace Process

    NASA Astrophysics Data System (ADS)

    Fu, Dong; Tang, Guangwu; Zhao, Yongfu; D'Alessio, John; Zhou, Chenn Q.

    2018-06-01

    A novel modeling strategy is presented for simulating the blast furnace iron making process. Such physical and chemical phenomena are taking place across a wide range of length and time scales, and three models are developed to simulate different regions of the blast furnace, i.e., the tuyere model, the raceway model and the shaft model. This paper focuses on the integration of the three models to predict the entire blast furnace process. Mapping output and input between models and an iterative scheme are developed to establish communications between models. The effects of tuyere operation and burden distribution on blast furnace fuel efficiency are investigated numerically. The integration of different models provides a way to realistically simulate the blast furnace by improving the modeling resolution on local phenomena and minimizing the model assumptions.

  3. The Physical/Chemical Closed-Loop Life Support Research Project

    NASA Technical Reports Server (NTRS)

    Bilardo, Vincent J., Jr.

    1990-01-01

    The various elements of the Physical/Chemical Closed-Loop Life Support Research Project (P/C CLLS) are described including both those currently funded and those planned for implementation at ARC and other participating NASA field centers. The plan addresses the entire range of regenerative life support for Space Exploration Initiative mission needs, and focuses initially on achieving technology readiness for the Initial Lunar Outpost by 1995-97. Project elements include water reclamation, air revitalization, solid waste management, thermal and systems control, and systems integration. Current analysis estimates that each occupant of a space habitat will require a total of 32 kg/day of supplies to live and operate comfortably, while an ideal P/C CLLS system capable of 100 percent reclamation of air and water, but excluding recycling of solid wastes or foods, will reduce this requirement to 3.4 kg/day.

  4. Orthogonal Chirp-Based Ultrasonic Positioning

    PubMed Central

    Khyam, Mohammad Omar; Ge, Shuzhi Sam; Li, Xinde; Pickering, Mark

    2017-01-01

    This paper presents a chirp based ultrasonic positioning system (UPS) using orthogonal chirp waveforms. In the proposed method, multiple transmitters can simultaneously transmit chirp signals, as a result, it can efficiently utilize the entire available frequency spectrum. The fundamental idea behind the proposed multiple access scheme is to utilize the oversampling methodology of orthogonal frequency-division multiplexing (OFDM) modulation and orthogonality of the discrete frequency components of a chirp waveform. In addition, the proposed orthogonal chirp waveforms also have all the advantages of a classical chirp waveform. Firstly, the performance of the waveforms is investigated through correlation analysis and then, in an indoor environment, evaluated through simulations and experiments for ultrasonic (US) positioning. For an operational range of approximately 1000 mm, the positioning root-mean-square-errors (RMSEs) &90% error were 4.54 mm and 6.68 mm respectively. PMID:28448454

  5. Orthogonal Chirp-Based Ultrasonic Positioning.

    PubMed

    Khyam, Mohammad Omar; Ge, Shuzhi Sam; Li, Xinde; Pickering, Mark

    2017-04-27

    This paper presents a chirp based ultrasonic positioning system (UPS) using orthogonal chirp waveforms. In the proposed method, multiple transmitters can simultaneously transmit chirp signals, as a result, it can efficiently utilize the entire available frequency spectrum. The fundamental idea behind the proposed multiple access scheme is to utilize the oversampling methodology of orthogonal frequency-division multiplexing (OFDM) modulation and orthogonality of the discrete frequency components of a chirp waveform. In addition, the proposed orthogonal chirp waveforms also have all the advantages of a classical chirp waveform. Firstly, the performance of the waveforms is investigated through correlation analysis and then, in an indoor environment, evaluated through simulations and experiments for ultrasonic (US) positioning. For an operational range of approximately 1000 mm, the positioning root-mean-square-errors (RMSEs) &90% error were 4.54 mm and 6.68 mm respectively.

  6. An Optical Fiber Sensor and Its Application in UAVs for Current Measurements

    PubMed Central

    Delgado, Felipe S.; Carvalho, João P.; Coelho, Thiago V. N.; Dos Santos, Alexandre B.

    2016-01-01

    In this paper, we propose and experimentally investigate an optical sensor based on a novel combination of a long-period fiber grating (LPFG) with a permanent magnet to measure electrical current in unmanned aerial vehicles (UAVs). The proposed device uses a neodymium magnet attached to the grating structure, which suffers from an electromagnetic force produced when the current flows in the wire of the UAV engine. Therefore, it causes deformation on the sensor and thus, different shifts occur in the resonant bands of the transmission spectrum of the LPFG. Finally, the results show that it is possible to monitor electrical current throughout the entire operating range of the UAV engine from 0 A to 10 A in an effective and practical way with good linearity, reliability and response time, which are desirable characteristics in electrical current sensing. PMID:27801798

  7. Linkages and feedbacks in orogenic systems: An introduction

    USGS Publications Warehouse

    Thigpen, J. Ryan; Law, Richard D.; Merschat, Arthur J.; Stowell, Harold

    2017-01-01

    Orogenic processes operate at scales ranging from the lithosphere to grain-scale, and are inexorably linked. For example, in many orogens, fault and shear zone architecture controls distribution of heat advection along faults and also acts as the primary mechanism for redistribution of heat-producing material. This sets up the thermal structure of the orogen, which in turn controls lithospheric rheology, the nature and distribution of deformation and strain localization, and ultimately, through localized mechanical strengthening and weakening, the fundamental shape of the developing orogenic wedge (Fig. 1). Strain localization establishes shear zone and fault geometry, and it is the motion on these structures, in conjunction with climate, that often focuses erosional and exhumational processes. This climatic focusing effect can even drive development of asymmetry at the scale of the entire wedge (Willett et al., 1993).

  8. Dark Skies, Bright Kids Year 7

    NASA Astrophysics Data System (ADS)

    Bittle, Lauren E.; Johnson, Kelsey E.; Borish, H. Jacob; Burkhardt, Andrew; Firebaugh, Ariel; Hancock, Danielle; Rochford Hayes, Christian; Linden, Sean; Liss, Sandra; Matthews, Allison; Prager, Brian; Pryal, Matthew; Sokal, Kimberly R.; Troup, Nicholas William; Wenger, Trey

    2016-01-01

    We present updates from our seventh year of operation including new club content, continued assessments, and our fifth annual Star Party. Dark Skies, Bright Kids (DSBK) is an entirely volunteer-run outreach organization based out of the Department of Astronomy at the University of Virginia. Our core mission is to enhance elementary science education and literacy in Central Virginia through fun, hands-on activities that introduce basic Astronomy concepts. Our primary focus is hosting an 8-10 week after-school astronomy club at underserved elementary and middle schools. Each week, DSBK volunteers take the role of coaches to introduce astronomy-related concepts ranging from the Solar System to galaxies to astrobiology, and to lead students in interactive learning activities. Another hallmark of DSBK is hosting our Annual Central Virginia Star Party, a free event open to the community featuring star-gazing and planetarium shows.

  9. Soft X-ray variability over the present minimum of solar activity as observed by SphinX

    NASA Astrophysics Data System (ADS)

    Gburek, S.; Siarkowski, M.; Kepa, A.; Sylwester, J.; Kowalinski, M.; Bakala, J.; Podgorski, P.; Kordylewski, Z.; Plocieniak, S.; Sylwester, B.; Trzebinski, W.; Kuzin, S.

    2011-04-01

    Solar Photometer in X-rays (SphinX) is an instrument designed to observe the Sun in X-rays in the energy range 0.85-15.00 keV. SphinX is incorporated within the Russian TESIS X and EUV telescope complex aboard the CORONAS-Photon satellite which was launched on January 30, 2009 at 13:30 UT from the Plesetsk Cosmodrome, northern Russia. Since February, 2009 SphinX has been measuring solar X-ray radiation nearly continuously. The principle of SphinX operation and the content of the instrument data archives is studied. Issues related to dissemination of SphinX calibration, data, repository mirrors locations, types of data and metadata are discussed. Variability of soft X-ray solar flux is studied using data collected by SphinX over entire mission duration.

  10. [Situational awareness: oversimplification of reality].

    PubMed

    Hamming, Jaap

    2015-01-01

    Situational awareness appears to be an attractive term to describe attentiveness when performing complex tasks in an operating theatre, as its meaning seems clear and it is considered useful. It is embraced for describing human behaviour in the aftermath of incidents and appears to provide a clear explanation of what went wrong. But it actually describes a wide range of aspects of human behaviour and therefore comprises a risk of oversimplification. As a consequence, hasty and unwarranted conclusions may be drawn about a complex situation, especially where its outcome is known, leading to hindsight bias. To understand what happened, it is necessary to reconstruct the entire situation as it evolved at the time, considering all the activities, people, circumstances and equipment involved. People are always part of a system, so the proposed monitoring devices will be of only limited use in preventing adverse events.

  11. Mapping the Space Radiation Environment in LEO Orbit by the SATRAM Timepix Payload On Board the Proba-V Satellite

    NASA Astrophysics Data System (ADS)

    Granja, Carlos; Polansky, Stepan; Sospisil, Stanislav; Owens, Alan; Mellab, Karim

    2016-08-01

    The compact spacecraft payload SATRAM is operating in LEO orbit since 2013 on board the Proba-V satellite from ESA and provides high-resolution wide-range radiation monitoring of the satellite environment. Equipped with the pixel detector Timepix, the technology demonstration payload determines the composition (particle types) and spectral characterization (stopping power) of the mixed radiation field with quantum imaging sensitivity, charged particle tracking, energy loss and directionality capability. With a polar orbit (sun synchronous, 98° inclination) and altitude of 820 km the space radiation field is continuously sampled over the entire planet every few days. Results are given in the form of spatial- and time- correlated maps of dose rate and particle flux. Comparison is made between quiescent and geomagnetic storm activity periods.

  12. SU-8 hollow cantilevers for AFM cell adhesion studies

    NASA Astrophysics Data System (ADS)

    Martinez, Vincent; Behr, Pascal; Drechsler, Ute; Polesel-Maris, Jérôme; Potthoff, Eva; Vörös, Janos; Zambelli, Tomaso

    2016-05-01

    A novel fabrication method was established to produce flexible, transparent, and robust tipless hollow atomic force microscopy (AFM) cantilevers made entirely from SU-8. Channels of 3 μm thickness and several millimeters length were integrated into 12 μm thick and 40 μm wide cantilevers. Connected to a pressure controller, the devices showed high sealing performance with no leakage up to 6 bars. Changing the cantilever lengths from 100 μm to 500 μm among the same wafer allowed the targeting of various spring constants ranging from 0.5 to 80 N m-1 within a single fabrication run. These hollow polymeric AFM cantilevers were operated in the optical beam deflection configuration. To demonstrate the performance of the device, single-cell force spectroscopy experiments were performed with a single probe detaching in a serial protocol more than 100 Saccharomyces cerevisiae yeast cells from plain glass and glass coated with polydopamine while measuring adhesion forces in the sub-nanoNewton range. SU-8 now offers a new alternative to conventional silicon-based hollow cantilevers with more flexibility in terms of complex geometric design and surface chemistry modification.

  13. Collective relaxation dynamics of small-world networks

    NASA Astrophysics Data System (ADS)

    Grabow, Carsten; Grosskinsky, Stefan; Kurths, Jürgen; Timme, Marc

    2015-05-01

    Complex networks exhibit a wide range of collective dynamic phenomena, including synchronization, diffusion, relaxation, and coordination processes. Their asymptotic dynamics is generically characterized by the local Jacobian, graph Laplacian, or a similar linear operator. The structure of networks with regular, small-world, and random connectivities are reasonably well understood, but their collective dynamical properties remain largely unknown. Here we present a two-stage mean-field theory to derive analytic expressions for network spectra. A single formula covers the spectrum from regular via small-world to strongly randomized topologies in Watts-Strogatz networks, explaining the simultaneous dependencies on network size N , average degree k , and topological randomness q . We present simplified analytic predictions for the second-largest and smallest eigenvalue, and numerical checks confirm our theoretical predictions for zero, small, and moderate topological randomness q , including the entire small-world regime. For large q of the order of one, we apply standard random matrix theory, thereby overarching the full range from regular to randomized network topologies. These results may contribute to our analytic and mechanistic understanding of collective relaxation phenomena of network dynamical systems.

  14. Oxygen partial pressure dependence of thermoelectric power factor in polycrystalline n-type SrTiO3: Consequences for long term stability in thermoelectric oxides

    NASA Astrophysics Data System (ADS)

    Sharma, Peter A.; Brown-Shaklee, Harlan J.; Ihlefeld, Jon F.

    2017-04-01

    The Seebeck coefficient and electrical conductivity have been measured as functions of oxygen partial pressure over the range of 10-22 to 10-1 atm at 1173 K for a 10% niobium-doped SrTiO3 ceramic with a grain size comparable to the oxygen diffusion length. Temperature-dependent measurements performed from 320 to 1275 K for as-prepared samples reveal metallic-like conduction and good thermoelectric properties. However, upon exposure to progressively increasing oxygen partial pressure, the thermoelectric power factor decreased over time scales of 24 h, culminating in a three order of magnitude reduction over the entire operating range. Identical measurements on single crystal samples show negligible changes in the power factor so that the instability of ceramic samples is primarily tied to the kinetics of grain boundary diffusion. This work provides a framework for understanding the stability of thermoelectric properties in oxides under different atmospheric conditions. The control of the oxygen atmosphere remains a significant challenge in oxide thermoelectrics.

  15. CNO isotopes in red giant stars

    NASA Technical Reports Server (NTRS)

    Wannier, P. G.

    1985-01-01

    The production and distribution of the CNO nuclides is discussed in light of observed abundance ratios in red giants and in the interstellar medium. Isotope abundances have been measured in the atmospheres and in the recent ejecta of cool giants, including carbon stars, S-type stars and red supergiants as well as in oxygen-rich giants making their first ascent of the giant branch. Several of the observations suggest revision of currently accepted nuclear cross-sections and of the mixing processes operating in giant envelopes. By comparing red giant abundances with high-quality observations of the interstellar medium, conclusions are reached about the contribution of intermediate-mass stars to galactic nuclear evolution. The three oxygen isotopes, O-16, -17 and -18, are particularly valuable for such comparison because they reflect three different stages of stellar nucleosynthesis. One remarkable result comes from observations of O-17/O-18 in several classes of red giant stars. The observed range of values for red giants excludes the entire range of values seen in interstellar molecular clouds. Furthermore, both the observations of stars and interstellar clouds exclude the isotopic ratio found in the solar system.

  16. Electron acceleration in solar flares

    NASA Technical Reports Server (NTRS)

    Droge, Wolfgang; Meyer, Peter; Evenson, Paul; Moses, Dan

    1989-01-01

    For the period Spetember 1978 to December 1982, 55 solar flare particle events for which the instruments on board the ISEE-3 spacecraft detected electrons above 10 MeV. Combining data with those from the ULEWAT spectrometer electron spectra in the range from 0.1 to 100 MeV were obtained. The observed spectral shapes can be divided into two classes. The spectra of the one class can be fit by a single power law in rigidity over the entire observed range. The spectra of the other class deviate from a power law, instead exhibiting a steepening at low rigidities and a flattening at high rigidities. Events with power-law spectra are associated with impulsive (less than 1 hr duration) soft X-ray emission, whereas events with hardening spectra are associated with long-duration (more than 1 hr) soft X-ray emission. The characteristics of long-duration events are consistent with diffusive shock acceleration taking place high in the corona. Electron spectra of short-duration flares are well reproduced by the distribution functions derived from a model assuming simultaneous second-order Fermi acceleration and Coulomb losses operating in closed flare loops.

  17. Collective relaxation dynamics of small-world networks.

    PubMed

    Grabow, Carsten; Grosskinsky, Stefan; Kurths, Jürgen; Timme, Marc

    2015-05-01

    Complex networks exhibit a wide range of collective dynamic phenomena, including synchronization, diffusion, relaxation, and coordination processes. Their asymptotic dynamics is generically characterized by the local Jacobian, graph Laplacian, or a similar linear operator. The structure of networks with regular, small-world, and random connectivities are reasonably well understood, but their collective dynamical properties remain largely unknown. Here we present a two-stage mean-field theory to derive analytic expressions for network spectra. A single formula covers the spectrum from regular via small-world to strongly randomized topologies in Watts-Strogatz networks, explaining the simultaneous dependencies on network size N, average degree k, and topological randomness q. We present simplified analytic predictions for the second-largest and smallest eigenvalue, and numerical checks confirm our theoretical predictions for zero, small, and moderate topological randomness q, including the entire small-world regime. For large q of the order of one, we apply standard random matrix theory, thereby overarching the full range from regular to randomized network topologies. These results may contribute to our analytic and mechanistic understanding of collective relaxation phenomena of network dynamical systems.

  18. A high-current rail-type gas switch with preionization by an additional corona discharge

    NASA Astrophysics Data System (ADS)

    Antipov, E. I.; Belozerov, O. S.; Krastelev, E. G.

    2016-12-01

    The characteristics of a high-current rail-type gas switch with preionization of the gas (air) in a spark gap by an additional corona discharge are investigated. The experiments were performed in a voltage range of 10-45 kV using a two-electrode switch consisting of two cylindrical electrodes with a diameter of 22 mm and a length of 100 mm and a set of laterally located corona-discharge needles. The requirements for the position and size of the needles are defined for which a corona discharge is ignited before a breakdown of the main gap and does not change to a sparking form, and the entire length of the rail electrodes is efficiently used. The fulfillment of these requirements ensures stable operation of the switch with a small variation of the pulse breakdown voltage, which is not more than 1% for a fixed voltage-pulse rise time in the range from 150 ns to 3.5 μs. A short delay time of the switch breakdown makes it possible to control the two-electrode switch by an overvoltage pulse of nanosecond duration.

  19. Drought-induced uplift in the western United States as observed by the EarthScope Plate Boundary Observatory GPS network

    NASA Astrophysics Data System (ADS)

    Borsa, A. A.; Agnew, D. C.; Cayan, D. R.

    2014-12-01

    The western United States (WUS) has been experiencing severe drought since 2013. The solid earth response to the accompanying loss of surface and near-surface water mass should be a broad region of uplift. We use seasonally-adjusted time series from continuously operating GPS stations in the EarthScope Plate Boundary Observatory and several smaller networks to measure this uplift, which reaches 15 mm in the California Coastal Ranges and Sierra Nevada and has a median value of 4 mm over the entire WUS. The pattern of mass loss due to the drought, which we recover from an inversion of uplift observations, ranges up to 50 cm of water equivalent and is consistent with observed decreases in precipitation and streamflow. We estimate the total deficit to be 240 Gt, equivalent to a uniform 10 cm layer of water over the entire region, or the magnitude of the current annual mass loss from the Greenland Ice Sheet. In the WUS, interannual changes in crustal loading are driven by changes in cool-season precipitation, which cause variations in surface water, snowpack, soil moisture, and groundwater. The results here demonstrate that the existing network of continuous GPS stations can be used to recover loading changes due to both wet and dry climate patterns. This suggests a new role for GPS networks such as that of the Plate Boundary Observatory. The exceptional stability of the GPS monumentation means that this network is also capable of monitoring the long-term effects of regional climate change. Surface displacement observations from GPS have the potential to expand the capabilities of the current hydrological observing network for monitoring current and future hydrological changes, with obvious social and economic benefits.

  20. Biospecimen Core Resource - TCGA

    Cancer.gov

    The Cancer Genome Atlas (TCGA) Biospecimen Core Resource centralized laboratory reviews and processes blood and tissue samples and their associated data using optimized standard operating procedures for the entire TCGA Research Network.

  1. Airborne Forcible Entry Operations: USAF Airlift Requirements

    DTIC Science & Technology

    1994-06-03

    Azmy’s keystone war fighting doctrine. The June 1993 version of this document had an entire chapter dedicated to 16 force projection operations. This...until the final troop drop of the North African campaign. In that operation, 530 paratroops easily seized two lightly defended air- fields behind German...six tanks, trucks, and artillery cannons landed in ten-foot high elephant gzass, delaying their recovery for up to four hours, Figure 7 in appendix B

  2. 75 FR 74768 - Madison Terminal Railway, LLC-Lease and Operation Exemption-Line of Railroad in Dane County, WI

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-01

    ... DEPARTMENT OF TRANSPORTATION Surface Transportation Board [Docket No. FD 35433] Madison Terminal Railway, LLC--Lease and Operation Exemption-- Line of Railroad in Dane County, WI Madison Terminal Railway... Industrial Lead at milepost 78.02 in Madison, WI, and is located entirely within the property of ProBuild...

  3. Operational Test and Evaluation Manual

    DTIC Science & Technology

    2011-06-28

    Fiscal Office manages all funds received throughout the year for Operations and Maintenance Marine Corps (O&MMC); Research , Development, Test, and... Research , Development, and Acquisition) Assistant Secretary of the Navy ( Research , Development, and Acquisition) (ASN (RDA)) is the DOD’s Component...entire acquisition cycle (SECNAV 2008). This accumulation of data starts with early research and developmental testing and Other tests and

  4. Elementary Principals: A Checklist to Succeed. ACSA Operations Notebook 23.

    ERIC Educational Resources Information Center

    Amato, Ted, Ed.

    This operations notebook is constructed so that it can serve as a practical guide and quick reference for elementary school principals. It has a checklist-type format, and the entire document can be inserted into a three-ring binder. The eight topics covered include preparation for the opening of school, contract management, handling emergencies,…

  5. Improving operating room safety

    PubMed Central

    2009-01-01

    Despite the introduction of the Universal Protocol, patient safety in surgery remains a daily challenge in the operating room. This present study describes one community health system's efforts to improve operating room safety through human factors training and ultimately the development of a surgical checklist. Using a combination of formal training, local studies documenting operating room safety issues and peer to peer mentoring we were able to substantially change the culture of our operating room. Our efforts have prepared us for successfully implementing a standardized checklist to improve operating room safety throughout our entire system. Based on these findings we recommend a multimodal approach to improving operating room safety. PMID:19930577

  6. Equality of the Spectral and Dynamical Definitions of Reflection

    NASA Astrophysics Data System (ADS)

    Breuer, Jonathan; Ryckman, Eric; Simon, Barry

    2010-04-01

    For full-line Jacobi matrices, Schrödinger operators, and CMV matrices, we show that being reflectionless, in the sense of the well-known property of m-functions, is equivalent to a lack of reflection in the dynamics in the sense that any state that goes entirely to x = -∞ as t → -∞ goes entirely to x = ∞ as t → ∞. This allows us to settle a conjecture of Deift and Simon from 1983 regarding ergodic Jacobi matrices.

  7. Small geographic range but not panmictic: how forests structure the endangered Point Arena mountain beaver (Aplodontia rufa nigra)

    Treesearch

    William J. Zielinski; Fredrick V. Schlexer; Sean A. Parks; Kristine L. Pilgrim; Michael K. Schwartz

    2012-01-01

    The landscape genetics framework is typically applied to broad regions that occupy only small portions of a species' range. Rarely is the entire range of a taxon the subject of study. We examined the landscape genetic structure of the endangered Point Arena mountain beaver (Aplodontia rufa nigra), whose isolated geographic range is found in a...

  8. 7 CFR 764.101 - General eligibility requirements.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... operator of a farm business for at least one entire production cycle. The farming experience must have been... degree in agricultural business, horticulture, animal science, agronomy, or other agricultural-related...

  9. Multisensor fusion for the detection of mines and minelike targets

    NASA Astrophysics Data System (ADS)

    Hanshaw, Terilee

    1995-06-01

    The US Army's Communications and Electronics Command through the auspices of its Night Vision and Electronics Sensors Directorate (CECOM-NVESD) is actively applying multisensor techniques to the detection of mine targets. This multisensor research results from the 'detection activity' with its broad range of operational conditions and targets. Multisensor operation justifies significant attention by yielding high target detection and low false alarm statistics. Furthermore, recent advances in sensor and computing technologies make its practical application realistic and affordable. The mine detection field-of-endeavor has since its WWI baptismal investigated the known spectra for applicable mine observation phenomena. Countless sensors, algorithms, processors, networks, and other techniques have been investigated to determine candidacy for mine detection. CECOM-NVESD efforts have addressed a wide range of sensors spanning the spectrum from gravity field perturbations, magentic field disturbances, seismic sounding, electromagnetic fields, earth penetrating radar imagery, and infrared/visible/ultraviolet surface imaging technologies. Supplementary analysis has considered sensor candidate applicability by testing under field conditions (versus laboratory), in determination of fieldability. As these field conditions directly effect the probability of detection and false alarms, sensor employment and design must be considered. Consequently, as a given sensor's performance is influenced directly by the operational conditions, tradeoffs are necessary. At present, mass produced and fielded mine detection techniques are limited to those incorporating a single sensor/processor methodology such as, pulse induction and megnetometry, as found in hand held detectors. The most sensitive fielded systems can detect minute metal components in small mine targets but result in very high false alarm rates reducing velocity in operation environments. Furthermore, the actual speed of advance for the entire mission (convoy, movement to engagement, etc.) is determined by the level of difficulty presented in clearance or avoidance activities required in response to the potential 'targets' marked throughout a detection activity. Therefore the application of fielded hand held systems to convoy operations in clearly impractical. CECOM-NVESD efforts are presently seeking to overcome these operational limitations by substantially increasing speed of detection while reducing the false alarm rate through the application of multisensor techniques. The CECOM-NVESD application of multisensor techniques through integration/fusion methods will be defined in this paper.

  10. A GIS approach to identifying the distribution and structure of coast redwood across its range

    Treesearch

    Peter Cowan; Emily E. Burns; Richard Campbell

    2017-01-01

    To better understand the distribution and current structure of coast redwood (Sequoia sempervirens (D.Don) Endl.) forests throughout the range and how it varies by land ownerships, the Save the Redwoods League has conducted a redwood specific analysis of a high resolution forest structure database encompassing the entire natural coast redwood range...

  11. Persistent and automatic intraoperative 3D digitization of surfaces under dynamic magnifications of an operating microscope

    PubMed Central

    Kumar, Ankur N.; Miga, Michael I.; Pheiffer, Thomas S.; Chambless, Lola B.; Thompson, Reid C.; Dawant, Benoit M.

    2014-01-01

    One of the major challenges impeding advancement in image-guided surgical (IGS) systems is the soft-tissue deformation during surgical procedures. These deformations reduce the utility of the patient’s preoperative images and may produce inaccuracies in the application of preoperative surgical plans. Solutions to compensate for the tissue deformations include the acquisition of intraoperative tomographic images of the whole organ for direct displacement measurement and techniques that combines intraoperative organ surface measurements with computational biomechanical models to predict subsurface displacements. The later solution has the advantage of being less expensive and amenable to surgical workflow. Several modalities such as textured laser scanners, conoscopic holography, and stereo-pair cameras have been proposed for the intraoperative 3D estimation of organ surfaces to drive patient-specific biomechanical models for the intraoperative update of preoperative images. Though each modality has its respective advantages and disadvantages, stereo-pair camera approaches used within a standard operating microscope is the focus of this article. A new method that permits the automatic and near real-time estimation of 3D surfaces (at 1Hz) under varying magnifications of the operating microscope is proposed. This method has been evaluated on a CAD phantom object and on full-length neurosurgery video sequences (~1 hour) acquired intraoperatively by the proposed stereovision system. To the best of our knowledge, this type of validation study on full-length brain tumor surgery videos has not been done before. The method for estimating the unknown magnification factor of the operating microscope achieves accuracy within 0.02 of the theoretical value on a CAD phantom and within 0.06 on 4 clinical videos of the entire brain tumor surgery. When compared to a laser range scanner, the proposed method for reconstructing 3D surfaces intraoperatively achieves root mean square errors (surface-to-surface distance) in the 0.28-0.81mm range on the phantom object and in the 0.54-1.35mm range on 4 clinical cases. The digitization accuracy of the presented stereovision methods indicate that the operating microscope can be used to deliver the persistent intraoperative input required by computational biomechanical models to update the patient’s preoperative images and facilitate active surgical guidance. PMID:25189364

  12. Persistent and automatic intraoperative 3D digitization of surfaces under dynamic magnifications of an operating microscope.

    PubMed

    Kumar, Ankur N; Miga, Michael I; Pheiffer, Thomas S; Chambless, Lola B; Thompson, Reid C; Dawant, Benoit M

    2015-01-01

    One of the major challenges impeding advancement in image-guided surgical (IGS) systems is the soft-tissue deformation during surgical procedures. These deformations reduce the utility of the patient's preoperative images and may produce inaccuracies in the application of preoperative surgical plans. Solutions to compensate for the tissue deformations include the acquisition of intraoperative tomographic images of the whole organ for direct displacement measurement and techniques that combines intraoperative organ surface measurements with computational biomechanical models to predict subsurface displacements. The later solution has the advantage of being less expensive and amenable to surgical workflow. Several modalities such as textured laser scanners, conoscopic holography, and stereo-pair cameras have been proposed for the intraoperative 3D estimation of organ surfaces to drive patient-specific biomechanical models for the intraoperative update of preoperative images. Though each modality has its respective advantages and disadvantages, stereo-pair camera approaches used within a standard operating microscope is the focus of this article. A new method that permits the automatic and near real-time estimation of 3D surfaces (at 1 Hz) under varying magnifications of the operating microscope is proposed. This method has been evaluated on a CAD phantom object and on full-length neurosurgery video sequences (∼1 h) acquired intraoperatively by the proposed stereovision system. To the best of our knowledge, this type of validation study on full-length brain tumor surgery videos has not been done before. The method for estimating the unknown magnification factor of the operating microscope achieves accuracy within 0.02 of the theoretical value on a CAD phantom and within 0.06 on 4 clinical videos of the entire brain tumor surgery. When compared to a laser range scanner, the proposed method for reconstructing 3D surfaces intraoperatively achieves root mean square errors (surface-to-surface distance) in the 0.28-0.81 mm range on the phantom object and in the 0.54-1.35 mm range on 4 clinical cases. The digitization accuracy of the presented stereovision methods indicate that the operating microscope can be used to deliver the persistent intraoperative input required by computational biomechanical models to update the patient's preoperative images and facilitate active surgical guidance. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. A comparison of ROC inferred from FROC and conventional ROC

    NASA Astrophysics Data System (ADS)

    McEntee, Mark F.; Littlefair, Stephen; Pietrzyk, Mariusz W.

    2014-03-01

    This study aims to determine whether receiver operating characteristic (ROC) scores inferred from free-response receiver operating characteristic (FROC) were equivalent to conventional ROC scores for the same readers and cases. Forty-five examining radiologists of the American Board of Radiology independently reviewed 47 PA chest radiographs under at least two conditions. Thirty-seven cases had abnormal findings and 10 cases had normal findings. Half the readers were asked to first locate any visualized lung nodules, mark them and assign a level of confidence [the FROC mark-rating pair] and second give an overall to the entire image on the same scale [the ROC score]. The second half of readers gave the ROC rating first followed by the FROC mark-rating pairs. A normal image was represented with number 1 and malignant lesions with numbers 2-5. A jackknife free-response receiver operating characteristic (JAFROC), and inferred ROC (infROC) was calculated from the mark-rating pairs using JAFROC V4.1 software. ROC based on the overall rating of the image calculated using DBM MRMC software, which was also used to compare infROC and ROC AUCs treating the methods as modalities. Pearson's correlations coefficient and linear regression were used to examine their relationship using SPSS, version 21.0; (SPSS, Chicago, IL). The results of this study showed no significant difference between the ROC and Inferred ROC AUCs (p≤0.25). While Pearson's correlation coefficient was 0.7 (p≤0.01). Inter-reader correlation calculated from Obuchowski- Rockette covariance's ranged from 0.43-0.86 while intra-reader agreement was greater than previously reported ranging from 0.68-0.82.

  14. 37 CFR 380.21 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... operations of which are staffed substantially by students enrolled at, a domestically accredited primary or...; and (ii) Other than ambient music that is background at a public event, does not contain an entire...

  15. How much tumor surgery do early-career orthopaedic oncologists perform?

    PubMed

    Miller, Benjamin J; Rajani, Rajiv; Leddy, Lee; Carmody Soni, Emily E; White, Jeremy R

    2015-02-01

    There are few data on the types of procedures orthopaedic oncologists perform in their first years of practice. Because fellowships are graduating fellows each year and the number of tumor patients is limited, defining the practice patterns of early-career orthopaedic oncologists may help diminish early employment discontent and enhance workforce discussions. The aim of the study was to use the objective case log volumes of a cross-section of early career orthopaedic oncologists to describe (1) the number of operations performed annually; (2) the proportion of tumor, trauma, adult reconstruction, and other operations for individual participants, (3) individual practice characteristics that were associated with the number of tumor procedures; and (4) the sources of satisfaction and challenges in each individual's career and surgical practice. Fifteen fellowship-trained orthopaedic oncologists out of a potential pool of 33 (45%) in their first 4 years of practice responded to a survey by submitting complete operative case lists for a 2-year period. We recorded the type of procedure and determined associations between the annual number of tumor operations and total operative caseload, years in practice, and some details of individual practice patterns. Each participant completed a survey regarding practice-related sources of stress and satisfaction. A total of 5611 surgical cases were available for review. For the entire cohort, there were 3303 (59%) tumor procedures, 973 (17%) trauma, 890 (16%) adult reconstruction, and 445 (8%) other. The median annual number of total operations was 214 (range, 63-356) and median annual number of tumor operations was 135 (range, 47-216). The median proportion of tumor operations in an individual practice was 56% (range, 43%-94%). The annual number of tumor operations correlated with the total annual number of operations (r = 0.73, p < 0.001). Sources of stress and satisfaction were similar to the general membership of the Musculoskeletal Tumor Society (MSTS), apart from more early-career surgeons regarding case volume as important (29 of 104 [28%] of MSTS versus 11 of 15 [73%] of early-career, p < 0.001). The typical early-career orthopaedic tumor surgeon had fewer than 60% of his or her operative procedures directly related to the subject of his or her fellowship training in orthopaedic oncology. Overall, the challenges and rewards of clinical practice are similar to oncologic surgeons later in their career. This study is a first step in assessing early practice characteristics and may be of value to the prospective orthopaedic oncologist, fellowship educators, and the society in workforce discussions. Early-career practice patterns have not been previously presented, to our knowledge, for any subspecialty of orthopaedic surgery, and we hope that this study will stimulate similar efforts throughout the field. Level IV, economic and decision analyses. See Guidelines for Authors for a complete description of levels of evidence.

  16. Army Special Operations Forces Professional Military Education for the Future

    DTIC Science & Technology

    2010-06-01

    generations have done. Jean Piaget (1896–1980) Swiss cognitive psychologist CG: Hey DCO, you’re never going to believe this; come in here and shut...have a “think tank” branch responsible for developing Special Operations theory and pushing it out to the entire SOCOM community, as well as the...COVERED Master’s Thesis 4. TITLE AND SUBTITLE Army Special Operations Forces Professional Military Education for the Future 6. AUTHOR( S ) Bradford M

  17. Space Tug Docking Study. Volume 1: Executive Summary

    NASA Technical Reports Server (NTRS)

    1976-01-01

    Results of a detailed systems analysis of the entire rendezvous and docking operation to be performed by the all-up space tug are presented. Specific areas investigated include: generating of operational requirements and a data base of candidate operational techniques and subsystem mechanizations; selection and ranking of integrated system designs capable of meeting the requirements generated; and definition of this simulation/demonstration program required to select and prove the most effective manual, autonomous, and hybrid rendezvous and docking systems.

  18. GEODYN operations description, volume 3. [computer program for estimation of orbit and geodetic parameters

    NASA Technical Reports Server (NTRS)

    Martin, T. V.; Mullins, N. E.

    1972-01-01

    The operating and set-up procedures for the multi-satellite, multi-arc GEODYN- Orbit Determination program are described. All system output is analyzed. The GEODYN Program is the nucleus of the entire GEODYN system. It is a definitive orbit and geodetic parameter estimation program capable of simultaneously processing observations from multiple arcs of multiple satellites. GEODYN has two modes of operation: (1) the data reduction mode and (2) the orbit generation mode.

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This document is a review journal that covers significant developments in the field of nuclear safety. Its scope includes the analysis and control of hazards associated with nuclear energy, operations involving fissionable materials, and the products of nuclear fission and their effects on the environment. Primary emphasis is on safety in reactor design, construction, and operation; however, the safety aspects of the entire fuel cycle, including fuel fabrication, spent-fuel processing, nuclear waste disposal, handling of radioisotopes, and environmental effects of these operations, are also treated.

  20. Tse computers. [Chinese pictograph character binary image processor design for high speed applications

    NASA Technical Reports Server (NTRS)

    Strong, J. P., III

    1973-01-01

    Tse computers have the potential of operating four or five orders of magnitude faster than present digital computers. The computers of the new design use binary images as their basic computational entity. The word 'tse' is the transliteration of the Chinese word for 'pictograph character.' Tse computers are large collections of devices that perform logical operations on binary images. The operations on binary images are to be performed over the entire image simultaneously.

  1. 46 CFR 535.312 - Vessel charter party-exemption.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... agreement sets forth the entire terms and conditions (including duration, charter hire, and geographical or operational limitations, if any) under which the vessel will be employed. (b) Vessel charter parties, as...

  2. Elementary derivation of the quantum propagator for the harmonic oscillator

    NASA Astrophysics Data System (ADS)

    Shao, Jiushu

    2016-10-01

    Operator algebra techniques are employed to derive the quantum evolution operator for the harmonic oscillator. The derivation begins with the construction of the annihilation and creation operators and the determination of the wave function for the coherent state as well as its time-dependent evolution, and ends with the transformation of the propagator in a mixed position-coherent-state representation to the desired one in configuration space. Throughout the entire procedure, besides elementary operator manipulations, it is only necessary to solve linear differential equations and to calculate Gaussian integrals.

  3. Measurements and Modeling of III-V Solar Cells at High Temperatures up to 400 $${}^{\\circ}$$ C

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perl, Emmett E.; Simon, John; Geisz, John F.

    2016-09-01

    In this paper, we study the performance of 2.0 eV Al0.12Ga0.39In0.49P and 1.4 eV GaAs solar cells over a temperature range of 25-400 degrees C. The temperature-dependent J01 and J02 dark currents are extracted by fitting current-voltage measurements to a two-diode model. We find that the intrinsic carrier concentration ni dominates the temperature dependence of the dark currents, open-circuit voltage, and cell efficiency. To study the impact of temperature on the photocurrent and bandgap of the solar cells, we measure the quantum efficiency and illuminated current-voltage characteristics of the devices up to 400 degrees C. As the temperature is increased,more » we observe no degradation to the internal quantum efficiency and a decrease in the bandgap. These two factors drive an increase in the short-circuit current density at high temperatures. Finally, we measure the devices at concentrations ranging from ~30 to 1500 suns and observe n = 1 recombination characteristics across the entire temperature range. These findings should be a valuable guide to the design of any system that requires high-temperature solar cell operation.« less

  4. Improved operative efficiency using a real-time MRI-guided stereotactic platform for laser amygdalohippocampotomy.

    PubMed

    Ho, Allen L; Sussman, Eric S; Pendharkar, Arjun V; Le, Scheherazade; Mantovani, Alessandra; Keebaugh, Alaine C; Drover, David R; Grant, Gerald A; Wintermark, Max; Halpern, Casey H

    2018-04-01

    OBJECTIVE MR-guided laser interstitial thermal therapy (MRgLITT) is a minimally invasive method for thermal destruction of benign or malignant tissue that has been used for selective amygdalohippocampal ablation for the treatment of temporal lobe epilepsy. The authors report their initial experience adopting a real-time MRI-guided stereotactic platform that allows for completion of the entire procedure in the MRI suite. METHODS Between October 2014 and May 2016, 17 patients with mesial temporal sclerosis were selected by a multidisciplinary epilepsy board to undergo a selective amygdalohippocampal ablation for temporal lobe epilepsy using MRgLITT. The first 9 patients underwent standard laser ablation in 2 phases (operating room [OR] and MRI suite), whereas the next 8 patients underwent laser ablation entirely in the MRI suite with the ClearPoint platform. A checklist specific to the real-time MRI-guided laser amydalohippocampal ablation was developed and used for each case. For both cohorts, clinical and operative information, including average case times and accuracy data, was collected and analyzed. RESULTS There was a learning curve associated with using this real-time MRI-guided system. However, operative times decreased in a linear fashion, as did total anesthesia time. In fact, the total mean patient procedure time was less in the MRI cohort (362.8 ± 86.6 minutes) than in the OR cohort (456.9 ± 80.7 minutes). The mean anesthesia time was significantly shorter in the MRI cohort (327.2 ± 79.9 minutes) than in the OR cohort (435.8 ± 78.4 minutes, p = 0.02). CONCLUSIONS The real-time MRI platform for MRgLITT can be adopted in an expedient manner. Completion of MRgLITT entirely in the MRI suite may lead to significant advantages in procedural times.

  5. Evaluating industrial drying of cellulosic feedstock for bioenergy: A systems approach

    DOE PAGES

    Sokhansanj, Shahab; Webb, Erin

    2016-01-21

    Here, a large portion of herbaceous and woody biomass must be dried following harvest. Natural field drying is possible if the weather cooperates. Mechanical drying is a certain way of reducing the moisture content of biomass. This paper presents an engineering analysis applied to drying of 10 Mg h –1 (exit mass flow) of biomass with an initial moisture content ranging from 25% to 70% (wet mass basis) down to 10% exit moisture content. The requirement for hog fuel to supply heat to the dryer increases from 0.5 dry Mg to 3.8 dry Mg h –1 with the increased initialmore » moisture of biomass. The capital cost for the entire drying system including equipment for biomass size reduction, pollution control, dryer, and biomass combustor sums up to more than 4.7 million dollars. The operating cost (electricity, labor, repair, and maintenance) minus fuel cost for the dryer alone amount to 4.05 Mg –1 of dried biomass. For 50% moisture content biomass, the cost of fuel to heat the drying air is 7.41 dollars/ dry ton of biomass for a total 11.46 dollars per dry ton at 10% moisture content. The fuel cost ranges from a low of 2.21 dollars to a high of 18.54 dollars for a biomass at an initial moisture content of 25% to 75%, respectively. This wide range in fuel cost indicates the extreme sensitivity of the drying cost to initial moisture content of biomass and to ambient air humidity and temperature and highlights the significance of field drying for a cost effective drying operation.« less

  6. Development and characterization of a high yield transportable pulsed neutron source with efficient and compact pulsed power system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Verma, Rishi, E-mail: rishiv9@gmail.com, E-mail: rishiv@barc.gov.in; Mishra, Ekansh; Dhang, Prosenjit

    2016-09-15

    The results of characterization experiments carried out on a newly developed dense plasma focus device based intense pulsed neutron source with efficient and compact pulsed power system are reported. Its high current sealed pseudospark switch based low inductance capacitor bank with maximum stored energy of ∼10 kJ is segregated into four modules of ∼2.5 kJ each and it cumulatively delivers peak current in the range of 400 kA–600 kA (corresponding to charging voltage range of 14 kV–18 kV) in a quarter time period of ∼2 μs. The neutron yield performance of this device has been optimized by discretely varying deuteriummore » filling gas pressure in the range of 6 mbar–11 mbar at ∼17 kV/550 kA discharge. At ∼7 kJ/8.5 mbar operation, the average neutron yield has been measured to be in the order of ∼4 × 10{sup 9} neutrons/pulse which is the highest ever reported neutron yield from a plasma focus device with the same stored energy. The average forward to radial anisotropy in neutron yield is found to be ∼2. The entire system is contained on a moveable trolley having dimensions 1.5 m × 1 m × 0.7 m and its operation and control (up to the distance of 25 m) are facilitated through optically isolated handheld remote console. The overall compactness of this system provides minimum proximity to small as well as large samples for irradiation. The major intended application objective of this high neutron yield dense plasma focus device development is to explore the feasibility of active neutron interrogation experiments by utilization of intense pulsed neutron sources.« less

  7. Assessing Climate Vulnerability and Resilience of a Major Water Resource System - Inverting the Paradigm for Specific Risk Quantification at Decision Making Points of Impact

    NASA Astrophysics Data System (ADS)

    Murphy, K. W.; Ellis, A. W.; Skindlov, J. A.

    2015-12-01

    Water resource systems have provided vital support to transformative growth in the Southwest United States and the Phoenix, Arizona metropolitan area where the Salt River Project (SRP) currently satisfies 40% of the area's water demand from reservoir storage and groundwater. Large natural variability and expectations of climate changes have sensitized water management to risks posed by future periods of excess and drought. The conventional approach to impacts assessment has been downscaled climate model simulations translated through hydrologic models; but, scenario ranges enlarge as uncertainties propagate through sequential levels of modeling complexity. The research often does not reach the stage of specific impact assessments, rendering future projections frustratingly uncertain and unsuitable for complex decision-making. Alternatively, this study inverts the common approach by beginning with the threatened water system and proceeding backwards to the uncertain climate future. The methodology is built upon reservoir system response modeling to exhaustive time series of climate-driven net basin supply. A reservoir operations model, developed with SRP guidance, assesses cumulative response to inflow variability and change. Complete statistical analyses of long-term historical watershed climate and runoff data are employed for 10,000-year stochastic simulations, rendering the entire range of multi-year extremes with full probabilistic characterization. Sets of climate change projections are then translated by temperature sensitivity and precipitation elasticity into future inflow distributions that are comparatively assessed with the reservoir operations model. This approach provides specific risk assessments in pragmatic terms familiar to decision makers, interpretable within the context of long-range planning and revealing a clearer meaning of climate change projections for the region. As a transferable example achieving actionable findings, the approach can guide other communities confronting water resource planning challenges.

  8. Scapular tip and latissimus dorsi osteomyogenous free flap for the reconstruction of a maxillectomy defect: A minimally invasive transaxillary approach.

    PubMed

    Park, Sung Joon; Jeong, Woo-Jin; Ahn, Soon-Hyun

    2017-11-01

    The purpose of this study was to propose a novel, minimally invasive transaxillary approach for harvesting the scapular tip and latissimus dorsi osteomyogenous free flap for the reconstruction of a maxillectomy defect. A retrospective case series study of 4 patients who underwent reconstruction using a scapular tip composite free flap through the transaxillary approach was conducted. The data (age, sex, pathology, previous treatment and adjuvant treatment) were collected and analysed. Total operation time, number of hospital days and the cosmetic and functional outcome of reconstruction were analysed. Two male and two female patients were enrolled in this study. The patients' ages ranged from 52 to 59 years. All the patients had maxillectomy defects, with at least a classification of Okay type II, which were successfully reconstructed using a scapular tip and latissimus dorsi free flap through a minimally invasive transaxillary approach. The entire operation time for the primary tumour surgery and reconstruction ranged from 6.2 to 12.1 h (mean, 11.1 h). The average length of the hospital stay was 13 days (range, 10-16 days). No major donor site morbidity was observed, and there was no graft failure that required revision or exploration surgery. The minimally invasive transaxillary approach for harvesting the scapular tip and latissimus dorsi osteomyogenous free flap for the reconstruction of maxillectomy defect is a promising approach for more favourable functional and aesthetic outcomes when compared to the use of other bone containing free flaps and the classic approach for harvesting scapular tip and latissimus dorsi free flap. Copyright © 2017 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

  9. Design and performance of an ultra-wideband stepped-frequency radar with precise frequency control for landmine and IED detection

    NASA Astrophysics Data System (ADS)

    Phelan, Brian R.; Sherbondy, Kelly D.; Ranney, Kenneth I.; Narayanan, Ram M.

    2014-05-01

    The Army Research Laboratory (ARL) has developed an impulse-based vehicle-mounted forward-looking ultra- wideband (UWB) radar for imaging buried landmines and improvised explosive devices (IEDs). However, there is no control of the radiated spectrum in this system. As part of ARL's Partnerships in Research Transition (PIRT) program, the above deficiency is addressed by the design of a Stepped-Frequency Radar (SFR) which allows for precise control over the radiated spectrum, while still maintaining an effective ultra-wide bandwidth. The SFR utilizes a frequency synthesizer which can be configured to excise prohibited and interfering frequency bands and also implement frequency-hopping capabilities. The SFR is designed to be a forward-looking ground- penetrating (FLGPR) Radar utilizing a uniform linear array of sixteen (16) Vivaldi notch receive antennas and two (2) Quad-ridge horn transmit antennas. While a preliminary SFR consisting of four (4) receive channels has been designed, this paper describes major improvements to the system, and an analysis of expected system performance. The 4-channel system will be used to validate the SFR design which will eventually be augmented in to the full 16-channel system. The SFR has an operating frequency band which ranges from 300 - 2000 MHz, and a minimum frequency step-size of 1 MHz. The radar system is capable of illuminating range swaths that have maximum extents of 30 to 150 meters (programmable). The transmitter has the ability to produce approximately -2 dBm/MHz average power over the entire operating frequency range. The SFR will be used to determine the practicality of detecting and classifying buried and concealed landmines and IEDs from safe stand-off distances.

  10. Laser Range and Bearing Finder with No Moving Parts

    NASA Technical Reports Server (NTRS)

    Bryan, Thomas C.; Howard, Richard T.; Book, Michael L.

    2007-01-01

    A proposed laser-based instrument would quickly measure the approximate distance and approximate direction to the closest target within its field of view. The instrument would not contain any moving parts and its mode of operation would not entail scanning over of its field of view. Typically, the instrument would be used to locate a target at a distance on the order of meters to kilometers. The instrument would be best suited for use in an uncluttered setting in which the target is the only or, at worst, the closest object in the vicinity; for example, it could be used aboard an aircraft to detect and track another aircraft flying nearby. The proposed instrument would include a conventional time-of-flight or echo-phase-shift laser range finder, but unlike most other range finders, this one would not generate a narrow cylindrical laser beam; instead, it would generate a conical laser beam spanning the field of view. The instrument would also include a quadrant detector, optics to focus the light returning from the target onto the quadrant detector, and circuitry to synchronize the acquisition of the quadrant-detector output with the arrival of laser light returning from the nearest target. A quadrant detector constantly gathers information from the entire field of view, without scanning; its output is a direct measure of the position of the target-return light spot on the focal plane and is thus a measure of the direction to the target. The instrument should be able to operate at a repetition rate high enough to enable it to track a rapidly moving target. Of course, a target that is not sufficiently reflective could not be located by this instrument. Preferably, retroreflectors should be attached to the target to make it sufficiently reflective.

  11. Development and characterization of a high yield transportable pulsed neutron source with efficient and compact pulsed power system.

    PubMed

    Verma, Rishi; Mishra, Ekansh; Dhang, Prosenjit; Sagar, Karuna; Meena, Manraj; Shyam, Anurag

    2016-09-01

    The results of characterization experiments carried out on a newly developed dense plasma focus device based intense pulsed neutron source with efficient and compact pulsed power system are reported. Its high current sealed pseudospark switch based low inductance capacitor bank with maximum stored energy of ∼10 kJ is segregated into four modules of ∼2.5 kJ each and it cumulatively delivers peak current in the range of 400 kA-600 kA (corresponding to charging voltage range of 14 kV-18 kV) in a quarter time period of ∼2 μs. The neutron yield performance of this device has been optimized by discretely varying deuterium filling gas pressure in the range of 6 mbar-11 mbar at ∼17 kV/550 kA discharge. At ∼7 kJ/8.5 mbar operation, the average neutron yield has been measured to be in the order of ∼4 × 10 9 neutrons/pulse which is the highest ever reported neutron yield from a plasma focus device with the same stored energy. The average forward to radial anisotropy in neutron yield is found to be ∼2. The entire system is contained on a moveable trolley having dimensions 1.5 m × 1 m × 0.7 m and its operation and control (up to the distance of 25 m) are facilitated through optically isolated handheld remote console. The overall compactness of this system provides minimum proximity to small as well as large samples for irradiation. The major intended application objective of this high neutron yield dense plasma focus device development is to explore the feasibility of active neutron interrogation experiments by utilization of intense pulsed neutron sources.

  12. Fast Modular Exponentiation and Elliptic Curve Group Operation in Maple

    ERIC Educational Resources Information Center

    Yan, S. Y.; James, G.

    2006-01-01

    The modular exponentiation, y[equivalent to]x[superscript k](mod n) with x,y,k,n integers and n [greater than] 1; is the most fundamental operation in RSA and ElGamal public-key cryptographic systems. Thus the efficiency of RSA and ElGamal depends entirely on the efficiency of the modular exponentiation. The same situation arises also in elliptic…

  13. Building Assessment Survey and Evaluation Study Summarized Data - HVAC Characteristics

    EPA Pesticide Factsheets

    In the Building Assessment Survey and Evaluation (BASE) Study Information on the characteristics of the heating, ventilation, and air conditioning (HVAC) system(s) in the entire BASE building including types of ventilation, equipment configurations, and operation and maintenance issues was acquired by examining the building plans, conducting a building walk-through, and speaking with the building owner, manager, and/or operator.

  14. Complexity and the Fractional Calculus

    DTIC Science & Technology

    2013-01-01

    these trajectories over the entire Lotka - Volterra cycle thereby generating the mistaken impression that the resulting average trajectory reaches...interpreted as a form of phase decor- relation process rather than one with friction. The fractional version of the popular Lotka - Volterra ecological...trajectory is an ordinary Lotka - Volterra cycle in the operational time . Transitioning from the operational time to the chronological time spreads

  15. JWST Wavefront Sensing and Control: Operations Plans, Demonstrations, and Status

    NASA Astrophysics Data System (ADS)

    Perrin, Marshall; Acton, D. Scott; Lajoie, Charles-Philippe; Knight, J. Scott; Myers, Carey; Stark, Chris; JWST Wavefront Sensing & Control Team

    2018-01-01

    After JWST launches and unfolds in space, its telescope optics will be aligned through a complex series of wavefront sensing and control (WFSC) steps to achieve diffraction-limited performance. This iterative process will comprise about half of the observatory commissioning time (~ 3 out of 6 months). We summarize the JWST WFSC process, schedule, and expectations for achieved performance, and discuss our team’s activities to prepare for an effective & efficient telescope commissioning. During the recently-completed OTIS cryo test at NASA JSC, WFSC demonstrations showed the flight-like operation of the entire JWST active optics and WFSC system from end to end, including all hardware and software components. In parallel, the same test data were processed through the JWST Mission Operations Center at STScI to demonstrate the readiness of ground system components there (such as the flight operations system, data pipelines, archives, etc). Moreover, using the Astronomer’s Proposal Tool (APT), the entire telescope commissioning program has been implemented, reviewed, and is ready for execution. Between now and launch our teams will continue preparations for JWST commissioning, including further rehearsals and testing, to ensure a successful alignment of JWST’s telescope optics.

  16. An operational wave forecasting system for the east coast of India

    NASA Astrophysics Data System (ADS)

    Sandhya, K. G.; Murty, P. L. N.; Deshmukh, Aditya N.; Balakrishnan Nair, T. M.; Shenoi, S. S. C.

    2018-03-01

    Demand for operational ocean state forecasting is increasing, owing to the ever-increasing marine activities in the context of blue economy. In the present study, an operational wave forecasting system for the east coast of India is proposed using unstructured Simulating WAves Nearshore model (UNSWAN). This modelling system uses very high resolution mesh near the Indian east coast and coarse resolution offshore, and thus avoids the necessity of nesting with a global wave model. The model is forced with European Centre for Medium-Range Weather Forecasts (ECMWF) winds and simulates wave parameters and wave spectra for the next 3 days. The spatial pictures of satellite data overlaid on simulated wave height show that the model is capable of simulating the significant wave heights and their gradients realistically. Spectral validation has been done using the available data to prove the reliability of the model. To further evaluate the model performance, the wave forecast for the entire year 2014 is evaluated against buoy measurements over the region at 4 waverider buoy locations. Seasonal analysis of significant wave height (Hs) at the four locations showed that the correlation between the modelled and observed was the highest (in the range 0.78-0.96) during the post-monsoon season. The variability of Hs was also the highest during this season at all locations. The error statistics showed clear seasonal and geographical location dependence. The root mean square error at Visakhapatnam was the same (0.25) for all seasons, but it was the smallest for pre-monsoon season (0.12 m and 0.17 m) for Puducherry and Gopalpur. The wind sea component showed higher variability compared to the corresponding swell component in all locations and for all seasons. The variability was picked by the model to a reasonable level in most of the cases. The results of statistical analysis show that the modelling system is suitable for use in the operational scenario.

  17. Toward a virtual platform for materials processing

    NASA Astrophysics Data System (ADS)

    Schmitz, G. J.; Prahl, U.

    2009-05-01

    Any production is based on materials eventually becoming components of a final product. Material properties being determined by the microstructure of the material thus are of utmost importance both for productivity and reliability of processing during production and for application and reliability of the product components. A sound prediction of materials properties therefore is highly important. Such a prediction requires tracking of microstructure and properties evolution along the entire component life cycle starting from a homogeneous, isotropic and stress-free melt and eventually ending in failure under operational load. This article will outline ongoing activities at the RWTH Aachen University aiming at establishing a virtual platform for materials processing comprising a virtual, integrative numerical description of processes and of the microstructure evolution along the entire production chain and even extending further toward microstructure and properties evolution under operational conditions.

  18. Optoelectrofluidic field separation based on light-intensity gradients

    PubMed Central

    Lee, Sanghyun; Park, Hyun Jin; Yoon, Jin Sung; Kang, Kwan Hyoung

    2010-01-01

    Optoelectrofluidic field separation (OEFS) of particles under light -intensity gradient (LIG) is reported, where the LIG illumination on the photoconductive layer converts the short-ranged dielectrophoresis (DEP) force to the long-ranged one. The long-ranged DEP force can compete with the hydrodynamic force by alternating current electro-osmosis (ACEO) over the entire illumination area for realizing effective field separation of particles. In the OEFS system, the codirectional illumination and observation induce the levitation effect, compensating the attenuation of the DEP force under LIG illumination by slightly floating particles from the surface. Results of the field separation and concentration of diverse particle pairs (0.82–16 μm) are well demonstrated, and conditions determining the critical radius and effective particle manipulation are discussed. The OEFS with codirectional LIG strategy could be a promising particle manipulation method in many applications where a rapid manipulation of biological cells and particles over the entire working area are of interest. PMID:20697461

  19. Optoelectrofluidic field separation based on light-intensity gradients.

    PubMed

    Lee, Sanghyun; Park, Hyun Jin; Yoon, Jin Sung; Kang, Kwan Hyoung

    2010-07-14

    Optoelectrofluidic field separation (OEFS) of particles under light -intensity gradient (LIG) is reported, where the LIG illumination on the photoconductive layer converts the short-ranged dielectrophoresis (DEP) force to the long-ranged one. The long-ranged DEP force can compete with the hydrodynamic force by alternating current electro-osmosis (ACEO) over the entire illumination area for realizing effective field separation of particles. In the OEFS system, the codirectional illumination and observation induce the levitation effect, compensating the attenuation of the DEP force under LIG illumination by slightly floating particles from the surface. Results of the field separation and concentration of diverse particle pairs (0.82-16 mum) are well demonstrated, and conditions determining the critical radius and effective particle manipulation are discussed. The OEFS with codirectional LIG strategy could be a promising particle manipulation method in many applications where a rapid manipulation of biological cells and particles over the entire working area are of interest.

  20. A focal plane detector design for a wide band Laue-lens telescope

    NASA Astrophysics Data System (ADS)

    Caroli, E.; Auricchio, N.; Bertuccio, G.; Budtz-Jørgensen, C.; Curado da Silva, R. M.; Del Sordo, S.; Frontera, F.; Quadrini, E.; Ubertini, P.; Ventura, G.

    2006-06-01

    The energy range above 50 keV is important for the study of many open problems in high energy astrophysics such as, non thermal mechanisms in SNR, the study of the high energy cut-offs in AGN spectra, and the detection of nuclear and annihilation lines. In the framework of the definition of a new mission concept for hard X and soft gamma ray (GRI- Gamma Ray Imager) for the next decade, the use of Laue lenses with broad energy band-passes from 100 to 1000 keV is under study. This kind of instruments will be used for deep study the hard X-ray continuum of celestial sources. This new telescope will require focal plane detectors with high detection efficiency over the entire operative range, an energy resolution of few keV at 500 keV and a sensitivity to linear polarization. We describe a possible configuration for the focal plane detector based on CdTe/CZT pixelated layers stacked together to achieve the required detection efficiency at high energy. Each layer can either operate as a separate position sensitive detector and a polarimeter or together with other layers in order to increase the overall full energy efficiency. We report on the current state of art in high Z spectrometers development and on some activities undergoing. Furthermore we describe the proposed focal plane option with the required resources and an analytical summary of the achievable performance in terms of efficiency and polarimetry.

  1. Performance of temperature-phased anaerobic digestion (TPAD) system treating dairy cattle wastes.

    PubMed

    Sung, Shihwu; Santha, Harikishan

    2003-04-01

    The performance of temperature-phased anaerobic digestion (TPAD) system in the stabilization of dairy cattle wastes at high solids concentrations has never been evaluated, though the process has been established as a feasible alternative to conventional mesophilic processes for the treatment of municipal wastewater sludges. In this study, the TPAD system operating at a retention time of 14 days was subjected to varying total solids (TS) concentrations (3.46-14.54%) of dairy cattle wastes. At TS concentrations lower than 12.20%, corresponding to system volatile solids (VS) loadings in the range of 1.87-5.82 g VS/L/day, the system achieved an average VS removal of 40.2%. The maximum VS destruction of 42.6% was achieved at a TS concentration of 10.35%. Methane recovery from the wastes was consistently within 0.21-0.22 L/g VS fed. There was a drop in the system performance with respect to VS removal and methane recovery at TS concentrations higher than 10.35%. volatile fatty acid/alkalinity ratios less than 0.35 in the thermophilic reactor and 0.10 in the mesophilic reactor were found favorable for stable operation of the system. For the entire range of TS concentrations, the indicator organism counts in the biosolids were within the limits specified by USEPA in 40 CFR Part 503 regulations for Class A designation. After digestion, nearly 80-85% of total phosphorus was associated with the biosolids. Copyright 2002 Elsevier Science Ltd.

  2. Assessment of noise level and noise propagation generated by light-lift helicopters in mountain natural environments.

    PubMed

    Grigolato, Stefano; Mologni, Omar; Proto, Andrea Rosario; Zimbalatti, Giuseppe; Cavalli, Raffaele

    2018-01-20

    The use of helicopter rises discussion about environmental noise propagation especially when it operates in proximity of environmentally sensitive areas (ESAs) for an extended period because of its potential implications in wildlife behaviours. In order to support decisions on helicopter logging operation management in proximity of ESAs, this study focused on (i) analysing the noise spectrum of a light-lift helicopter during logging operations and on (ii) assessing the noise propagation in the surrounding environments. This study investigated a helicopter logging operation for wood fuel extraction in the eastern part of the Italian Alps. The potential disturbance area covered for the entire helicopter logging operation was evaluated by a specific GIS application according to hearing sensitivity of the most sensitive wildlife species in the study area (different strigiform species). The noise level at the ground appeared to be affected by the location regardless both the use of equivalent continuous sound pressures level dB(A) (LAeq) and the single-event level (SEL) noise metrics. The lowest values were recorded when the helicopter was flown over the sound meter level located under the forest canopy, while the highest was recorded when the helicopter was unhooking the loads at the landing. The GIS application highlighted the consistent of the exceeded noise area (weighted to strigiform hearing range and sensitivity) for the lower frequency bands (0.016-0.250 kHz). A more restricted exceeded noise area concerned instead the most sensitive frequency bands" for the strigiform (1-2 kHz). Graphical abstract ᅟ.

  3. Temperature compensated high-temperature/high-pressure Merrill--Bassett diamond anvil cell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schiferl, D.

    1987-07-01

    A Merrill--Bassett diamond anvil cell for high-temperature/high-pressure studies up to 5 GPa at 1000 K and 13 GPa at 725 K is described. To maintain uniform, well-characterized temperatures, and to protect the diamond anvils from oxidation and graphitization, the entire cell is heated in a vacuum oven. The materials are chosen so that the pressure remains constant to within +-10% over the entire temperature range.

  4. Indium phosphide all air-gap Fabry-Pérot filters for near-infrared spectroscopic applications

    NASA Astrophysics Data System (ADS)

    Ullah, A.; Butt, M. A.; Fomchenkov, S. A.; Khonina, S. N.

    2016-08-01

    Food quality can be characterized by noninvasive techniques such as spectroscopy in the Near Infrared wavelength range. For example, 930 -1450 nm wavelength range can be used to detect diseases and differentiate between meat samples. Miniaturization of such NIR spectrometers is useful for quick and mobile characterization of food samples. Spectrometers can be miniaturized, without compromising the spectral resolution, using Fabry-Pérot (FP) filters consisting of two highly reflecting mirrors with a central cavity in between. The most commonly used mirrors in the design of FP filters are Distributed Bragg Reflections (DBRs) consisting of alternating high and low refractive index material pairs, due to their high reflectivity compared to metal mirrors. However, DBRs have high reflectivity for a selected range of wavelengths known as the stopband of the DBR. This range is usually much smaller than the sensitivity range of the spectrometer detector. Therefore, a bandpass filter is usually required to restrict wavelengths outside the stopband of the FP DBRs. Such bandpass filters are difficult to design and implement. Alternatively, high index contrast materials must be can be used to broaden the stopband width of the FP DBRs. In this work, Indium phosphide all air-gap filters are proposed in conjunction with InGaAs based detectors. The designed filter has a wide stopband covering the entire InGaAs detector sensitivity range. The filter can be tuned in the 950-1450 nm with single mode operation. The designed filter can hence be used for noninvasive meat quality control.

  5. Identifying opportune landing sites in degraded visual environments with terrain and cultural databases

    NASA Astrophysics Data System (ADS)

    Moody, Marc; Fisher, Robert; Little, J. Kristin

    2014-06-01

    Boeing has developed a degraded visual environment navigational aid that is flying on the Boeing AH-6 light attack helicopter. The navigational aid is a two dimensional software digital map underlay generated by the Boeing™ Geospatial Embedded Mapping Software (GEMS) and fully integrated with the operational flight program. The page format on the aircraft's multi function displays (MFD) is termed the Approach page. The existing work utilizes Digital Terrain Elevation Data (DTED) and OpenGL ES 2.0 graphics capabilities to compute the pertinent graphics underlay entirely on the graphics processor unit (GPU) within the AH-6 mission computer. The next release will incorporate cultural databases containing Digital Vertical Obstructions (DVO) to warn the crew of towers, buildings, and power lines when choosing an opportune landing site. Future IRAD will include Light Detection and Ranging (LIDAR) point cloud generating sensors to provide 2D and 3D synthetic vision on the final approach to the landing zone. Collision detection with respect to terrain, cultural, and point cloud datasets may be used to further augment the crew warning system. The techniques for creating the digital map underlay leverage the GPU almost entirely, making this solution viable on most embedded mission computing systems with an OpenGL ES 2.0 capable GPU. This paper focuses on the AH-6 crew interface process for determining a landing zone and flying the aircraft to it.

  6. Drug loss while crushing tablets: Comparison of 24 tablet crushing devices

    PubMed Central

    Thong, Min Yew; Manrique, Yady J.

    2018-01-01

    This study investigated 24 tablet crushing devices for drug loss using different methods to recover the crushed tablet. 24 devices were compared: 3 with disposable cups, 6 with disposable bags, 12 without separate vessels and 3 types of mortar and pestle. One paracetamol tablet was crushed and recovered by tapping the powder out. Where appropriate, depending on crusher size and manufacturer instructions, the powder was also recovered by mixing with water or food. Paracetamol recovery (quantity that can be delivered to a patient) and leftover (quantity remaining in the device) were measured using a validated UV method and the entire experiment was replicated 3 times. Drug recovery ranged from 86.7–98.1% when the crushed tablet was tapped out of the crushers (average loss 5.8%). Significant losses were measured for 18 crushers, particularly manually operated hand-twist crushers with a serrated crushing surface, and some devices with disposable bags or cups. Rinsing the crushed powder with water once resulted in an average of 24.2% drug loss, and this was reduced to 4.2% after a second rinse. If crushing is unavoidable, maximizing medication delivery to the patient is essential. Rinsing twice resulted in similar paracetamol recovery to tapping the powder out; however only water rinses have the potential for direct consumption by the patient, minimizing drug loss across the entire crushing and transfer process. PMID:29494695

  7. Two-gigawatt burst-mode operation of the intense microwave prototype (IMP) free-electron laser (FEL) for the microwave tokamak experiment (MTX)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Felker, B.; Allen, S.; Bell, H.

    1993-10-06

    The MTX explored the plasma heating effects of 140 GHz microwaves from both Gyrotrons and from the IMP FEL wiggler. The Gyrotron was long pulse length (0.5 seconds maximum) and the FEL produced short-pulse length, high-peak power, single and burst modes of 140 GHZ microwaves. Full-power operations of the IMP FEL wiggler were commenced in April of 1992 and continued into October of 1992. The Experimental Test Accelerator H (ETA-II) provided a 50-nanosecond, 6-MeV, 2--3 kAmp electron beam that was introduced co-linear into the IMP FEL with a 140 GHz Gyrotron master oscillator (MO). The FEL was able to amplifymore » the MO signal from approximately 7 kW to peaks consistently in the range of 1--2 GW. This microwave pulse was transmitted into the MTX and allowed the exploration of the linear and non-linear effects of short pulse, intense power in the MTX plasma. Single pulses were used to explore and gain operating experience in the parameter space of the IMP FEL, and finally evaluate transmission and absorption in the MTX. Single-pulse operations were repeatable. After the MTX was shut down burst-mode operations were successful at 2 kHz. This paper will describe the IMP FEL, Microwave Transmission System to MTX, the diagnostics used for calorimetric measurements, and the operations of the entire Microwave system. A discussion of correlated and uncorrelated errors that affect FEL performance will be made Linear and non-linear absorption data of the microwaves in the MTX plasma will be presented.« less

  8. Hybrid simulation: bringing motivation to the art of teamwork training in the operating room.

    PubMed

    Kjellin, A; Hedman, L; Escher, C; Felländer-Tsai, L

    2014-12-01

    Crew resource management-based operating room team training will be an evident part of future surgical training. Hybrid simulation in the operating room enables the opportunity for trainees to perform higher fidelity training of technical and non-technical skills in a realistic context. We focus on situational motivation and self-efficacy, two important factors for optimal learning in light of a prototype course for teams of residents in surgery and anesthesiology and nurses. Authentic operating room teams consisting of residents in anesthesia (n = 2), anesthesia nurses (n = 3), residents in surgery (n = 2), and scrub nurses (n = 6) were, during a one-day course, exposed to four different scenarios. Their situational motivation was self-assessed (ranging from 1 = does not correspond at all to 7 = corresponds exactly) immediately after training, and their self-efficacy (graded from 1 to 7) before and after training. Training was performed in a mock-up operating theater equipped with a hybrid patient simulator (SimMan 3G; Laerdal) and a laparoscopic simulator (Lap Mentor Express; Simbionix). The functionality of the systematic hybrid procedure simulation scenario was evaluated by an exit questionnaire (graded from 1 = disagree entirely to 5 = agree completely). The trainees were mostly intrinsically motivated, engaged for their own sake, and had a rather great degree of self-determination toward the training situation. Self-efficacy among the team members improved significantly from 4 to 6 (median). Overall evaluation showed very good result with a median grading of 5. We conclude that hybrid simulation is feasible and has the possibility to train an authentic operating team in order to improve individual motivation and confidence. © The Finnish Surgical Society 2014.

  9. A Broadband Terahertz Waveguide T-Junction Variable Power Splitter.

    PubMed

    Reichel, Kimberly S; Mendis, Rajind; Mittleman, Daniel M

    2016-06-29

    In order for the promise of terahertz (THz) wireless communications to become a reality, many new devices need to be developed, such as those for routing THz waves. We demonstrate a power splitting router based on a parallel-plate waveguide (PPWG) T-junction excited by the TE1 waveguide mode. By integrating a small triangular septum into the waveguide plate, we are able to direct the THz light down either one of the two output channels with precise control over the ratio between waveguide outputs. We find good agreement between experiment and simulation in both amplitude and phase. We show that the ratio between waveguide outputs varies exponentially with septum translation offset and that nearly 100% transmission can be achieved. The splitter operates over almost the entire range in which the waveguide is single mode, providing a sensitive and broadband method for THz power splitting.

  10. A Broadband Terahertz Waveguide T-Junction Variable Power Splitter

    PubMed Central

    Reichel, Kimberly S.; Mendis, Rajind; Mittleman, Daniel M.

    2016-01-01

    In order for the promise of terahertz (THz) wireless communications to become a reality, many new devices need to be developed, such as those for routing THz waves. We demonstrate a power splitting router based on a parallel-plate waveguide (PPWG) T-junction excited by the TE1 waveguide mode. By integrating a small triangular septum into the waveguide plate, we are able to direct the THz light down either one of the two output channels with precise control over the ratio between waveguide outputs. We find good agreement between experiment and simulation in both amplitude and phase. We show that the ratio between waveguide outputs varies exponentially with septum translation offset and that nearly 100% transmission can be achieved. The splitter operates over almost the entire range in which the waveguide is single mode, providing a sensitive and broadband method for THz power splitting. PMID:27352772

  11. The potential of prison-based democratic therapeutic communities.

    PubMed

    Bennett, Jamie; Shuker, Richard

    2017-03-13

    Purpose The purpose of this paper is to describe the work of HMP Grendon, the only prison in the UK to operate entirely as a series of democratic therapeutic communities and to summarise the research of its effectiveness. Design/methodology/approach The paper is both descriptive, providing an overview of the work of a prison-based therapeutic community, and offers a literature review regarding evidence of effectiveness. Findings The work of HMP Grendon has a wide range of positive benefits including reduced levels of disruption in prison, reduced self-harm, improved well-being, an environment that is experienced as more humane and reduced levels of reoffending. Originality/value The work of HMP Grendon offers a well established and evidenced approach to managing men who have committed serious violent and sexually violent offences. It also promotes and embodies a progressive approach to managing prisons rooted in the welfare tradition.

  12. WaveAR: A software tool for calculating parameters for water waves with incident and reflected components

    NASA Astrophysics Data System (ADS)

    Landry, Blake J.; Hancock, Matthew J.; Mei, Chiang C.; García, Marcelo H.

    2012-09-01

    The ability to determine wave heights and phases along a spatial domain is vital to understanding a wide range of littoral processes. The software tool presented here employs established Stokes wave theory and sampling methods to calculate parameters for the incident and reflected components of a field of weakly nonlinear waves, monochromatic at first order in wave slope and propagating in one horizontal dimension. The software calculates wave parameters over an entire wave tank and accounts for reflection, weak nonlinearity, and a free second harmonic. Currently, no publicly available program has such functionality. The included MATLAB®-based open source code has also been compiled for Windows®, Mac® and Linux® operating systems. An additional companion program, VirtualWave, is included to generate virtual wave fields for WaveAR. Together, the programs serve as ideal analysis and teaching tools for laboratory water wave systems.

  13. Invar alloys: information from the study of iron meteorites.

    NASA Astrophysics Data System (ADS)

    Goldstein, J. I.; Williams, D. B.; Zhang, J.; Clarke, R.

    The iron meteorites were slow cooled (<108years) in their asteroidal bodies and are useful as indicators of the phase transformations which occur in Fe-Ni alloys. In the invar composition range, the iron meteorites contain a cloudy zone structure composed of an ordered tetrataenite phase and a surrounding honeycomb phase either of gamma or alpha phase. This structure is the result of a spinodal reaction below 350°C. The Santa Catharina iron meteorite has the typical invar composition of 36 wt% Ni and its structure is entirely cloudy zone although some of the honeycomb phase has been oxidized by terrestrial corrosion. Invar alloys would contain such a cloudy zone structure if more time was available for cooling. A higher temperature spinodal in the Fe-Ni phase diagram may be operative in invar alloys but has not been observed in the structure of the iron meteorites.

  14. Waveguide integrated low noise NbTiN nanowire single-photon detectors with milli-Hz dark count rate

    PubMed Central

    Schuck, Carsten; Pernice, Wolfram H. P.; Tang, Hong X.

    2013-01-01

    Superconducting nanowire single-photon detectors are an ideal match for integrated quantum photonic circuits due to their high detection efficiency for telecom wavelength photons. Quantum optical technology also requires single-photon detection with low dark count rate and high timing accuracy. Here we present very low noise superconducting nanowire single-photon detectors based on NbTiN thin films patterned directly on top of Si3N4 waveguides. We systematically investigate a large variety of detector designs and characterize their detection noise performance. Milli-Hz dark count rates are demonstrated over the entire operating range of the nanowire detectors which also feature low timing jitter. The ultra-low dark count rate, in combination with the high detection efficiency inherent to our travelling wave detector geometry, gives rise to a measured noise equivalent power at the 10−20 W/Hz1/2 level. PMID:23714696

  15. The prediction of the flash point for binary aqueous-organic solutions.

    PubMed

    Liaw, Horng-Jang; Chiu, Yi-Yu

    2003-07-18

    A mathematical model, which may be used for predicting the flash point of aqueous-organic solutions, has been proposed and subsequently verified by experimentally-derived data. The results reveal that this model is able to precisely predict the flash point over the entire composition range of binary aqueous-organic solutions by way of utilizing the flash point data pertaining to the flammable component. The derivative of flash point with respect to composition (solution composition effect upon flash point) can be applied to process safety design/operation in order to identify as to whether the dilution of a flammable liquid solution with water is effective in reducing the fire and explosion hazard of the solution at a specified composition. Such a derivative equation was thus derived based upon the flash point prediction model referred to above and then verified by the application of experimentally-derived data.

  16. Shutdown characteristics of the Mod-O wind turbine with aileron controls

    NASA Technical Reports Server (NTRS)

    Miller, D. R.; Corrigan, R. D.

    1984-01-01

    Horizontal-axis wind turbines utilize partial or full variable blade pitch to regulate rotor speed. The weight and costs of these systems indicated a need for alternate methods of rotor control. Aileron control is an alternative which has potential to meet this need. The NASA Lewis Research Center has been experimentally testing aileron control rotors on the Mod-U wind turbine to determine their power regulation and shutdown characteristics. Experimental and analytical shutdown test results are presented for a 38 percent chord aileron-control rotor. These results indicated that the 38 percent chord ailerons provided overspeed protection over the entire Mod-O operational windspeed range, and had a no-load equilibrium tip speed ratio of 1.9. Thus, the 38 percent chord ailerons had much improved aerodynamic braking capability when compared with the first aileron-control rotor having 20 percent chord ailerons.

  17. 45-110 GHz Quad-Ridge Horn With Stable Gain and Symmetric Beam

    NASA Astrophysics Data System (ADS)

    Manafi, Sara; Al-Tarifi, Muhannad; Filipovic, Dejan S.

    2017-09-01

    A quad-ridge horn antenna with stabilized gain and minimum difference between Eand H-plane half-power beamwidths (HPBWs) is demonstrated for operation over 45-110 GHz bandwidth. Multistep flaring and corrugations on a finite ground plane are applied to obtain stable radiation patterns with 16-dBi minimum gain over the entire range. The computational studies are validated through measurements of a 3-D printed prototype using the direct metal laser sintering (DMLS) process. Accurate fabrication with achieved surface roughness of < 1.7 μm of the fabricated antenna is verified with digital microscope. The obtained gain variation, VSWR, and HPBW variation with rotation and over 45-110 GHz bandwidth are below 1.7 dB, 1.7:1, and 9°, respectively. This work demonstrates that the DMLS is a viable fabrication process for wideband horn antennas at millimeter-wave frequencies.

  18. Implementation of a MFAC based position sensorless drive for high speed BLDC motors with nonideal back EMF.

    PubMed

    Li, Haitao; Ning, Xin; Li, Wenzhuo

    2017-03-01

    In order to improve the reliability and reduce power consumption of the high speed BLDC motor system, this paper presents a model free adaptive control (MFAC) based position sensorless drive with only a dc-link current sensor. The initial commutation points are obtained by detecting the phase of EMF zero-crossing point and then delaying 30 electrical degrees. According to the commutation error caused by the low pass filter (LPF) and other factors, the relationship between commutation error angle and dc-link current is analyzed, a corresponding MFAC based control method is proposed, and the commutation error can be corrected by the controller in real time. Both the simulation and experimental results show that the proposed correction method can achieve ideal commutation effect within the entire operating speed range. Copyright © 2016 ISA. Published by Elsevier Ltd. All rights reserved.

  19. From Concept-to-Flight: An Active Active Fluid Loop Based Thermal Control System for Mars Science Laboratory Rover

    NASA Technical Reports Server (NTRS)

    Birur, Gajanana C.; Bhandari, Pradeep; Bame, David; Karlmann, Paul; Mastropietro, A. J.; Liu, Yuanming; Miller, Jennifer; Pauken, Michael; Lyra, Jacqueline

    2012-01-01

    The Mars Science Laboratory (MSL) rover, Curiosity, which was launched on November 26, 2011, incorporates a novel active thermal control system to keep the sensitive electronics and science instruments at safe operating and survival temperatures. While the diurnal temperature variations on the Mars surface range from -120 C to +30 C, the sensitive equipment are kept within -40 C to +50 C. The active thermal control system is based on a single-phase mechanically pumped fluid loop (MPFL) system which removes or recovers excess waste heat and manages it to maintain the sensitive equipment inside the rover at safe temperatures. This paper will describe the entire process of developing this active thermal control system for the MSL rover from concept to flight implementation. The development of the rover thermal control system during its architecture, design, fabrication, integration, testing, and launch is described.

  20. Charge reversal at a planar boundary between two dielectrics.

    PubMed

    Wang, Zhi-Yong

    2016-01-01

    Despite the ubiquitous character and relevance of the electric double layer in the entire realm of interface and colloid science, very little is known of the effect that surface heterogeneity exerts on the underlying mechanisms of ion adsorption. Herein, computer simulations offer a perspective that, in sharp contrast to the homogeneously charged surface, discrete groups promote multivalent counterion binding, leading to charge reversal but possibly having not a sign change of the electrophoretic mobility. Counterintuitively, the introduction of dielectric images yields a significantly greater accumulation of counterions, which further facilitates the magnitude of charge reversal. The reported results are very sensitive to both the degree of ion hydration and the representation of surface charges. Our findings shed light on the mechanism for charge reversal over a broad range of coupling regimes operating the adsorption of counterions through surface group bridging attraction with their own images and provide opportunities for experimental studies and theoretical development.

  1. Charge reversal at a planar boundary between two dielectrics

    NASA Astrophysics Data System (ADS)

    Wang, Zhi-Yong

    2016-01-01

    Despite the ubiquitous character and relevance of the electric double layer in the entire realm of interface and colloid science, very little is known of the effect that surface heterogeneity exerts on the underlying mechanisms of ion adsorption. Herein, computer simulations offer a perspective that, in sharp contrast to the homogeneously charged surface, discrete groups promote multivalent counterion binding, leading to charge reversal but possibly having not a sign change of the electrophoretic mobility. Counterintuitively, the introduction of dielectric images yields a significantly greater accumulation of counterions, which further facilitates the magnitude of charge reversal. The reported results are very sensitive to both the degree of ion hydration and the representation of surface charges. Our findings shed light on the mechanism for charge reversal over a broad range of coupling regimes operating the adsorption of counterions through surface group bridging attraction with their own images and provide opportunities for experimental studies and theoretical development.

  2. Statistical Tools for Designing Initial and Post-Removal UXO Characterization Surveys

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pulsipher, Brent A.; Gilbert, Richard O.; Wilson, John E.

    2002-09-06

    The Department of Defense (DoD) is in the process of assessing and remediating closed, transferred, and transferring ranges. It is estimated that over 20 million acres of land in the United States potentially contain UXO. The release of DoD sites for public use will require high confidence that UXO is not present. This high confidence may be achieved solely from an extensive knowledge of historical site operations as documented in the conceptual site model or in combination with geophysical sensor surveys designed to have a sufficiently high probability of finding UXO contaminated zones. Many of these sites involve very largemore » geographical areas such that it is often impractical and/or cost prohibitive to perform 100% surveys of the entire site of interest. In that case, it is necessary to be explicit about the performance required of a survey that covers less than 100% of the site.« less

  3. Progress in high-power continuous-wave quantum cascade lasers [Invited].

    PubMed

    Figueiredo, Pedro; Suttinger, Matthew; Go, Rowel; Tsvid, Eugene; Patel, C Kumar N; Lyakh, Arkadiy

    2017-11-01

    Multi-watt continuous-wave room temperature operation with efficiency exceeding 10% has been demonstrated for quantum cascade lasers essentially in the entire mid-wave and long-wave infrared spectral regions. Along with interband cascade lasers, these devices are the only room-temperature lasers that directly convert electrical power into mid- and long-infrared optical power. In this paper, we review the progress in high-power quantum cascade lasers made over the last 10 years. Specifically, an overview of the most important active region, waveguide, and thermal design techniques is presented, and various aspects of die packaging for high-power applications are discussed. Prospects of power scaling with lateral device dimensions for reaching optical power level in the range from 10 W to 20 W are also analyzed. Finally, coherent and spectral beam-combining techniques for very high-power infrared platforms are discussed.

  4. High-average-power 2-kHz laser for generation of ultrashort x-ray pulses.

    PubMed

    Jiang, Yan; Lee, Taewoo; Li, Wei; Ketwaroo, Gyanprakash; Rose-Petruck, Christoph G

    2002-06-01

    We describe a Ti:sapphire-based laser-x-ray system specifically designed for generation of ultrafast x-ray pulses in the tenths-of-nanometers spectral range at a 2-kHz repetition rate. To obtain high-contrast laser pulses we divide the laser system into a section for generation of microjoule, high-contrast pulses with pulse cleaning and a subsequent section for chirped-pulse amplification and pulse compression. This laser section operates in conjunction with an x-ray-generation section based on a moving copper wire in a He atmosphere. The high reliability of the entire system permits maintenance-free production of x-ray pulses over tens of hours. Average x-ray fluxes of 10(13) photons/(s 4pi sr 1 keV) at 3 keV and 10(9) photons/(s 4pi sr) above 5 keV of photon energy are produced.

  5. Low-temperature THz time domain waveguide spectrometer with butt-coupled emitter and detector crystal.

    PubMed

    Qiao, W; Stephan, D; Hasselbeck, M; Liang, Q; Dekorsy, T

    2012-08-27

    A compact high-resolution THz time-domain waveguide spectrometer that is operated inside a cryostat is demonstrated. A THz photo-Dember emitter and a ZnTe electro-optic detection crystal are directly attached to a parallel copper-plate waveguide. This allows the THz beam to be excited and detected entirely inside the cryostat, obviating the need for THz-transparent windows or external THz mirrors. Since no external bias for the emitter is required, no electric feed-through into the cryostat is necessary. Using asynchronous optical sampling, high resolution THz spectra are obtained in the frequency range from 0.2 to 2.0 THz. The THz emission from the photo-Dember emitter and the absorption spectrum of 1,2-dicyanobenzene film are measured as a function of temperature. An absorption peak around 750 GHz of 1,2-dicyanobenzene displays a blue shift with increasing temperature.

  6. Lunar Orbiter 3 - Photographic Mission Summary

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Systems performance, lunar photography, and launch operations of Lunar Orbiter 3 photographic mission. The third of five Lunar Orbiter spacecraft was successfully launched from Launch Complex 13 at the Air Force Eastern Test Range by an Atlas-Agena launch vehicle at 01:17 GMT on February 5,1967. Tracking data from the Cape Kennedy and Grand Bahama tracking stations were used to control and guide the launch vehicle during Atlas powered flight. The Agena-spacecraft combination was boosted to the proper coast ellipse by the Atlas booster prior to separation. Final 1 maneuvering and acceleration to the velocity required to maintain the 100-nautical-milealtitude Earth orbit was controlled by the preset on-board Agena computer. In addition, the Agena computer determined the maneuver and engine-burn period required to inject the spacecraft on the cislunar trajectory 20 minutes after launch. Tracking data from the downrange stations and the Johannesburg, South Africa station were used to monitor the entire boost trajectory.

  7. Accurate predictions of iron redox state in silicate glasses: A multivariate approach using X-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyar, M. Darby; McCanta, Molly; Breves, Elly

    2016-03-01

    Pre-edge features in the K absorption edge of X-ray absorption spectra are commonly used to predict Fe3+ valence state in silicate glasses. However, this study shows that using the entire spectral region from the pre-edge into the extended X-ray absorption fine-structure region provides more accurate results when combined with multivariate analysis techniques. The least absolute shrinkage and selection operator (lasso) regression technique yields %Fe3+ values that are accurate to ±3.6% absolute when the full spectral region is employed. This method can be used across a broad range of glass compositions, is easily automated, and is demonstrated to yield accurate resultsmore » from different synchrotrons. It will enable future studies involving X-ray mapping of redox gradients on standard thin sections at 1 × 1 μm pixel sizes.« less

  8. Accurate predictions of iron redox state in silicate glasses: A multivariate approach using X-ray absorption spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyar, M. Darby; McCanta, Molly; Breves, Elly

    2016-03-01

    Pre-edge features in the K absorption edge of X-ray absorption spectra are commonly used to predict Fe 3+ valence state in silicate glasses. However, this study shows that using the entire spectral region from the pre-edge into the extended X-ray absorption fine-structure region provides more accurate results when combined with multivariate analysis techniques. The least absolute shrinkage and selection operator (lasso) regression technique yields %Fe 3+ values that are accurate to ±3.6% absolute when the full spectral region is employed. This method can be used across a broad range of glass compositions, is easily automated, and is demonstrated to yieldmore » accurate results from different synchrotrons. It will enable future studies involving X-ray mapping of redox gradients on standard thin sections at 1 × 1 μm pixel sizes.« less

  9. Heavy oil reservoirs recoverable by thermal technology

    NASA Astrophysics Data System (ADS)

    Kujawa, P.

    1981-02-01

    Reservoir, production, and project data for target reservoirs which contain heavy oil in the 8 to 25(0) API gravity range and are susceptible to recovery by in situ combustion and steam drive are presented. The reservoirs for steam recovery are less than 2500 feet deep to comply with state of the art technology. In cases where one reservoir would be a target for in situ combustion or steam drive, that reservoir is reported in both sections. Data were collected from three source types: hands-on, once removed, and twice removed. In all cases, data were sought depicting and characterizing individual reservoirs as opposed to data covering an entire field with more than one producing interval or reservoir. The data sources are listed at the end of each case. A complete listing of operators and projects is included as well as a bibliography of source material.

  10. Chaotic mixing by microswimmers moving on quasiperiodic orbits

    NASA Astrophysics Data System (ADS)

    Jalali, Mir Abbas; Khoshnood, Atefeh; Alam, Mohammad-Reza

    2015-11-01

    Life on the Earth is strongly dependent upon mixing across a vast range of scales. For example, mixing distributes nutrients for microorganisms in aquatic environments, and balances the spatial energy distribution in the oceans and the atmosphere. From industrial point of view, mixing is essential in many microfluidic processes and lab-on-a-chip operations, polymer engineering, pharmaceutics, food engineering, petroleum engineering, and biotechnology. Efficient mixing, typically characterized by chaotic advection, is hard to achieve in low Reynolds number conditions because of the linear nature of the Stokes equation that governs the motion. We report the first demonstration of chaotic mixing induced by a microswimmer that strokes on quasiperiodic orbits with multi-loop turning paths. Our findings can be utilized to understand the interactions of microorganisms with their environments, and to design autonomous robotic mixers that can sweep and mix an entire volume of complex-geometry containers.

  11. Low lift-to-drag aero-assisted orbit transfer vehicles

    NASA Technical Reports Server (NTRS)

    Andrews, D. G.; Savage, R. T.

    1984-01-01

    The results of systems analysis conducted on low life drag ratio (L/D) aero-assisted orbit transfer vehicle (AOTV's) are presented. The objectives for this class of vehicle and formulate technology development plans and funding levels to bring the required technologies to readiness levels, as well as develop a credible decision data base encompassing the entire range of low L/D concepts for use in future NASA Aeroassist Orbit Transfer Vehicles studies. Each candidate low L/D concept, the aerobrake, the lifting brake, and the aeromaneuvering concept could be made to work with technologies achievable by the early 1990's. All concepts require flexible structure with flexible thermal protection system (TPS) to be successfully integrated into the shuttle orbiter for launch, all required improvements in guidance and control to fly the dispersed atmospheres at high altitude, and all concepts had potential to evolve from ground-based to space-based operations.

  12. Laser diodes with 353 nm wavelength enabled by reduced-dislocation-density AlGaN templates

    DOE PAGES

    Crawford, Mary H.; Allerman, Andrew A.; Armstrong, Andrew M.; ...

    2015-10-30

    We fabricated optically pumped and electrically injected ultraviolet (UV) lasers on reduced-threading-dislocation-density (reduced-TDD) AlGaN templates. The overgrowth of sub-micron-wide mesas in the Al 0.32Ga 0.68N templates enabled a tenfold reduction in TDD, to (2–3) × 10 8 cm –2. Optical pumping of AlGaN hetero-structures grown on the reduced-TDD templates yielded a low lasing threshold of 34 kW/cm 2 at 346 nm. Room-temperature pulsed operation of laser diodes at 353 nm was demonstrated, with a threshold of 22.5 kA/cm 2. Furthermore, reduced-TDD templates have been developed across the entire range of AlGaN compositions, presenting a promising approach for extending laser diodesmore » into the deep UV.« less

  13. Experimental and Numerical Study of the Buckling of Composite Profiles with Open Cross Section under Axial Compression

    NASA Astrophysics Data System (ADS)

    Rozylo, Patryk; Teter, Andrzej; Debski, Hubert; Wysmulski, Pawel; Falkowicz, Katarzyna

    2017-10-01

    The object of the research are short, thin-walled columns with an open top-hat cross section made of multilayer laminate. The walls of the investigated profiles are made of plate elements. The entire columns are subjected to uniform compression. A detailed analysis allowed us to determine critical forces and post-critical equilibrium paths. It is assumed that the columns are articulately supported on the edges forming their ends. The numerical investigation is performed by the finite element method. The study involves solving the problem of eigenvalue and the non-linear problem of stability of the structure. The numerical analysis is performed by the commercial simulation software ABAQUS®. The numerical results are then validated experimentally. In the discussed cases, it is assumed that the material operates within a linearly-elastic range, and the non-linearity of the FEM model is due to large displacements.

  14. Concepts and application of dynamic separation for agility and super-maneuverability of aircraft: An assessment

    NASA Technical Reports Server (NTRS)

    Freymuth, Peter

    1992-01-01

    Aims for improvement of fighter aircraft pursued by the unsteady flow community are high agility (the ability of the aircraft to make close turns in a low-speed regime) and super maneuverability (the ability of the aircraft to operate at high angles of attack in a post stall regime during quick maneuvers in a more extended speed range). High agility requires high lift coefficients at low speeds in a dynamic situation and this requirement can be met by dynamically forced separation or by quasistatic stall control. The competing methods will be assessed based on the known physics. Maneuvering into the post stall regime also involves dynamic separation but because even fast maneuvers involving the entire aircraft are 'aerodynamically slow' the resulting dynamic vortex structures should be considered 'elicited' rather than 'forced.' More work seems to be needed in this area of elicited dynamic separation.

  15. A sensitive gas chromatography detector based on atmospheric pressure chemical ionization by a dielectric barrier discharge.

    PubMed

    Kirk, Ansgar T; Last, Torben; Zimmermann, Stefan

    2017-02-03

    In this work, we present a novel concept for a gas chromatography detector utilizing an atmospheric pressure chemical ionization which is initialized by a dielectric barrier discharge. In general, such a detector can be simple and low-cost, while achieving extremely good limits of detection. However, it is non-selective apart from the use of chemical dopants. Here, a demonstrator manufactured entirely from fused silica capillaries and printed circuit boards is shown. It has a size of 75×60×25mm 3 and utilizes only 2W of power in total. Unlike other known discharge detectors, which require high-purity helium, this detector can theoretically be operated using any gas able to form stable ion species. Here, purified air is used. With this setup, limits of detection in the low parts-per-billion range have been obtained for acetone. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Nuclear Safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Silver, E G

    This document is a review journal that covers significant developments in the field of nuclear safety. Its scope includes the analysis and control of hazards associated with nuclear energy, operations involving fissionable materials, and the products of nuclear fission and their effects on the environment. Primary emphasis is on safety in reactor design, construction, and operation; however, the safety aspects of the entire fuel cycle, including fuel fabrication, spent-fuel processing, nuclear waste disposal, handling of radioisotopes, and environmental effects of these operations, are also treated.

  17. Selenium, fluorine, and arsenic in surficial materials of the conterminous United States

    USGS Publications Warehouse

    Shacklette, Hansford T.; Boerngen, Josephine G.; Keith, John R.

    1974-01-01

    Concentrations of selenium, fluorine, and arsenic in 912, 911, and 910 samples, respectively, of soils and other regoliths from sites approximately 50 miles (80 km) apart throughout the United States are represented on maps by symbols showing five ranges of values. Histograms of the concentrations of these elements are also given. The geometric-mean concentrations (ppm) in the samples, grouped by area, are as follows: Selenium-- Entire United States, 0.31; Western United States, 0.25; and Eastern United States, 0.39. Fluorine-- Entire United States, 180; Western United States, 250; and Eastern United States, 115. Arsenic-- Entire United States, 5.8; Western United States, 6.1; and Eastern United States, 5.4.

  18. Building Assessment Survey and Evaluation (BASE) Study: Summarized Data - Test Space HVAC Characteristics

    EPA Pesticide Factsheets

    Information on the characteristics of the heating, ventilation, and air conditioning (HVAC) system(s) in the entire BASE building including types of ventilation, equipment configurations, and operation and maintenance issues

  19. Trimble Use Case Information : A Presentation to DOT Adjacent Band Compatibility Workshop #2

    DOT National Transportation Integrated Search

    2014-12-04

    Trimble Use Case Overview: Heavy Civil Construction - Planning, Designing, Building and Operating: Enhanced information, decision making and control across the entire project lifecycle, generating benefits including: - Faster Completion - Reduced Fue...

  20. Notes on Antarctic aviation

    DOT National Transportation Integrated Search

    1993-01-01

    Antarctic aviation has been evolving for the best part of a century, with regular air operations developing over the past three or four decades. Antarctica is the last continent where aviation still depends almost entirely on expeditionary airfields ...

  1. 18 CFR 35.9 - Requirements for filing rate schedules, tariffs or service agreements.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... entire document except as provided in paragraphs (b) and (c) of this section. (b) Open Access...) OATT and other open access documents filed by Independent System Operators or Regional Transmission...

  2. 18 CFR 35.9 - Requirements for filing rate schedules, tariffs or service agreements.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... entire document except as provided in paragraphs (b) and (c) of this section. (b) Open Access...) OATT and other open access documents filed by Independent System Operators or Regional Transmission...

  3. THE OKLAHOMA MESONET

    EPA Science Inventory

    The Oklahoma Mesonet, operated and maintained by the Oklahoma Climatological Survey, is Oklahoma's premier climatological data collection system. For the area covered, which includes the entire state, no other system within the United States or internationally has the degree of ...

  4. Design of structure and simulation of the three-zone gasifier of dense layer of the inverted process

    NASA Astrophysics Data System (ADS)

    Zagrutdinov, R. Sh; Negutorov, V. N.; Maliykhin, D. G.; Nikishanin, M. S.; Senachin, P. K.

    2017-11-01

    Experts of LLC “New Energy Technologies” have developed gasifiers designs, with the implementation of the three-zone gasification method, which satisfy the following conditions: 1) the generated gas must be free from tar, soot and hydrocarbons, with a given ratio of CO/H2; 2) to use as the fuel source a wide range of low-grade low-value solid fuels, including biomass and various kinds of carbonaceous wastes; 3) have high reliability in operation, do not require qualified operating personnel, be relatively inexpensive to produce and use steam-air blowing instead of expensive steam-oxygen one; 4) the line of standard sizes should be sufficiently wide (with a single unit capacity of fuel from 1 to 50-70 MW). Two models of gas generators of the inverted gasification process with three combustion zones operating under pressure have been adopted for design: 1) gas generator with a remote combustion chamber type GOP-VKS (two-block version) and 2) a gas generator with a common combustion chamber of the GOP-OK type (single-block version), which is an almost ideal model for increasing the unit capacity. There have been worked out various schemes for the preparation of briquettes from practically the entire spectrum of low-grade fuel: high-ash and high-moisture coals, peat and biomass, including all types of waste - solid household waste, crop, livestock, poultry, etc. In the gas generators there are gasified the cylindrical briquettes with a diameter of 20-25 mm and a length of 25-35 mm. There have been developed a mathematical model and computer code for numerical simulation of synthesis gas generation processes in a gasifier of a dense layer of inverted process during a steam-air blast, including: continuity equations for the 8 gas phase components and for the solid phase; the equation of the heat balance for the entire heterogeneous system; the Darcy law equation (for porous media); equation of state for 8 components of the gas phase; equations for the rates of 3 gas-phase and 4 heterogeneous reactions; macro kinetics law of coke combustion; other equations and boundary conditions.

  5. Dielectric and physiochemical study of binary mixture of nitrobenzene with toluene

    NASA Astrophysics Data System (ADS)

    Mohod, Ajay G.; Deshmukh, S. D.; Pattebahadur, K. L.; Undre, P. B.; Patil, S. S.; Khirade, P. W.

    2018-05-01

    This paper presents the study of binary mixture of Nitrobenzene (NB) with Toluene (TOL) for eleven different concentrations at room temperature. The determined Dielectric Constant (ɛ0) Density (ρ) and Refractive index (nD) values of binary mixture are used to calculate the excess properties i.e. Excess Dielectric Constant (ɛ0E), Excess Molar Volume (VmE), Excess Refractive Index (nDE) and Excess Molar Refraction (RmE) of mixture over the entire composition range and fitted to the Redlich-Kister equation. The Kirkwood Correlation Factor (geff) and other parameters were used to discuss the information about the orientation of dipoles and the solute-solvent interaction of binary mixture at molecular level over the entire range of concentration.

  6. A luminescent Lanthanide-free MOF nanohybrid for highly sensitive ratiometric temperature sensing in physiological range.

    PubMed

    Zhou, You; Zhang, Denan; Zeng, Jin; Gan, Ning; Cuan, Jing

    2018-05-01

    Luminescent MOF materials with tunable emissions and energy/charge transfer processes have been extensively explored as ratiometric temperature sensors. However, most of the ratiometric MOF thermometers reported thus far are based on the MOFs containing photoactive lanthanides, which are potentially facing cost issue and serious supply shortage. Here, we present a ratiometric luminescent thermometer based on a dual-emitting lanthanide-free MOF hybrid, which is developed by encapsulation of a fluorescent dye into a robust nanocrystalline zirconium-based MOF through a one-pot synthesis approach. The structure and morphology of the hybrid product was characterized by Powder X-ray diffraction (PXRD), N 2 adsorption-desorption measurement and Scanning electron microscopy (SEM). The pore confinement effect well isolates the guest dye molecules and therefore suppresses the nonradiative energy transfer process between dye molecules. The incorporated dye emission is mainly sensitized by the organic linkers within MOF through fluorescence resonance energy transfer. The ratiometric luminescence of the MOF hybrid shows a significant response to temperature due to the thermal-related back energy transfer process from dye molecules and organic linkers, thus can be exploited for self-calibrated temperature sensing. The maximum thermometric sensitivity is 1.19% °C -1 in the physiological temperature range, which is among the highest for the ratiomtric MOF thermometers that operating in 25-45°C. The temperature resolution is better than 0.1°C over the entire operative range (20-60°C). By integrating the advantages of excellent stability, nanoscale nature, and high sensitivity and precision in the physiological temperature range, this dye@MOF hybrid might have potential application in biomedical diagnosis. What' more, this work has expanded the possibility of non-lanthanide luminescent MOF materials for the development of ratiometric temperature sensors. Copyright © 2018 Elsevier B.V. All rights reserved.

  7. Correlations between human mobility and social interaction reveal general activity patterns.

    PubMed

    Mollgaard, Anders; Lehmann, Sune; Mathiesen, Joachim

    2017-01-01

    A day in the life of a person involves a broad range of activities which are common across many people. Going beyond diurnal cycles, a central question is: to what extent do individuals act according to patterns shared across an entire population? Here we investigate the interplay between different activity types, namely communication, motion, and physical proximity by analyzing data collected from smartphones distributed among 638 individuals. We explore two central questions: Which underlying principles govern the formation of the activity patterns? Are the patterns specific to each individual or shared across the entire population? We find that statistics of the entire population allows us to successfully predict 71% of the activity and 85% of the inactivity involved in communication, mobility, and physical proximity. Surprisingly, individual level statistics only result in marginally better predictions, indicating that a majority of activity patterns are shared across our sample population. Finally, we predict short-term activity patterns using a generalized linear model, which suggests that a simple linear description might be sufficient to explain a wide range of actions, whether they be of social or of physical character.

  8. Simulation Study of Single-Event Burnout in Power Trench ACCUFETs

    NASA Astrophysics Data System (ADS)

    Yu, Cheng-Hao; Wang, Ying; Fei, Xin-Xing; Cao, Fei

    2016-10-01

    This paper presents 2-D numerical simulation results of single-event burnout (SEB) in power trench accumulation mode field effect transistor (ACCUFET) for the first time. In this device, a p+ base region is used to deplete the n- base region to achieve a low leakage current density, and the blocking voltage is supported by the n- drift region. We find that the depth of the p+ base region determines both the leakage current density and SEB performance, as a result, there is a tradeoff relationship between the two characteristics. The 60 V hardened power ACCUFET shown in this paper could demonstrate much better SEB performance without sacrificing the current handling capability compared with the standard UMOSFET. The hardened structure mentioned in this paper indicates that an n buffer layer is added between the epitaxial layer and substrate layer based on a basic power device. As a result, the safe operating area (SOA) of the 60 V, 80 V and 100 V hardened ACCUFET discussed in this paper could reach the value of breakdown voltage when the buffer layer is over a certain value, that can realize safety operation throughout entire LET range.

  9. Analysis of partial discharge activity by a conducting particle in liquid nitrogen under AC voltages adopting UHF technique

    NASA Astrophysics Data System (ADS)

    Sarathi, R.; Giridhar, A. V.; Sethupathi, K.

    2010-01-01

    Liquid nitrogen (LN 2) is used as an insulant as well as coolant in high temperature superconducting power equipments. Particle contamination in liquid nitrogen is one of the major cause for formation of partial discharges during operation. An attempt has been made in the present study to understand the feasibility of using Ultra High Frequency (UHF) sensors for identification of partial discharge (PD) formed due to particle movement in liquid nitrogen under AC voltages. It is observed that the partial discharge formed in LN 2 radiates UHF signal. The results of the study indicate that the conventional partial discharge measurement and UHF peak amplitude measurement have direct correlation. The Phase Resolved Partial Discharge (PRPD) analysis indicates that the partial discharge formed due to particle movement occurs in the entire phase windows of the AC voltage. The PD magnitude increases with increase in applied voltage. The frequency content of UHF signal generated due to particle movement in liquid nitrogen under AC voltages lies in the range of 0.5-1.5 GHz. The UHF sensor output signal analyzed using spectrum analyzer by operating it in zero-span mode, indicates that burst type PD occurs due to particle movement.

  10. Design Optimization of a Variable-Speed Power Turbine

    NASA Technical Reports Server (NTRS)

    Hendricks, Eric S.; Jones, Scott M.; Gray, Justin S.

    2014-01-01

    NASA's Rotary Wing Project is investigating technologies that will enable the development of revolutionary civil tilt rotor aircraft. Previous studies have shown that for large tilt rotor aircraft to be viable, the rotor speeds need to be slowed significantly during the cruise portion of the flight. This requirement to slow the rotors during cruise presents an interesting challenge to the propulsion system designer as efficient engine performance must be achieved at two drastically different operating conditions. One potential solution to this challenge is to use a transmission with multiple gear ratios and shift to the appropriate ratio during flight. This solution will require a large transmission that is likely to be maintenance intensive and will require a complex shifting procedure to maintain power to the rotors at all times. An alternative solution is to use a fixed gear ratio transmission and require the power turbine to operate efficiently over the entire speed range. This concept is referred to as a variable-speed power-turbine (VSPT) and is the focus of the current study. This paper explores the design of a variable speed power turbine for civil tilt rotor applications using design optimization techniques applied to NASA's new meanline tool, the Object-Oriented Turbomachinery Analysis Code (OTAC).

  11. The ORBCOMM data communications system

    NASA Technical Reports Server (NTRS)

    Schoen, David C.; Locke, Paul A.

    1993-01-01

    The ORBCOMM system is designed to provide low-cost, two-way data communications for mobile and remote users. The communications system is ideally configured for low data rate applications where communicating devices are geographically dispersed and two-way communications through terrestrial means is cumbersome and not cost effective. The remote terminals use VHF frequencies which allow for the use of very small, low-cost terminals. ORBCOMM has entered into joint development agreements with several large manufacturers of both consumer and industrial electronics to design and build the remote terminals. Based on prototype work, the estimated retail cost of these units will range from $50 to $400 depending on the complexity of the design. Starting in the fall of 1993, ORBCOMM will begin service with a demonstration network consisting of two operating satellites. By the end of 1994, a full operating network of 26 satellites, four Gateway Earth Stations, and a Network Control Center will be in place. The full constellation will provide full coverage of the entire world with greater than 94 percent communications availability for the continental U.S. This paper describes the ORBCOMM system, the technology used in its implementation, and its applications.

  12. Preliminary measurements of the edge magnetic field pitch from 2-D Doppler backscattering in MAST and NSTX-U (invited)

    DOE PAGES

    Vann, R. G. L.; Brunner, K. J.; Ellis, R.; ...

    2016-09-13

    The Synthetic Aperture Microwave Imaging (SAMI) system is a novel diagnostic consisting of an array of 8 independently phased antennas. At any one time, SAMI operates at one of the 16 frequencies in the range 10-34.5 GHz. The imaging beam is steered in software post-shot to create a picture of the entire emission surface. In SAMI’s active probing mode of operation, the plasma edge is illuminated with a monochromatic source and SAMI reconstructs an image of the Doppler back-scattered (DBS) signal. By assuming that density fluctuations are extended along magnetic field lines, and knowing that the strongest back-scattered signals aremore » directed perpendicular to the density fluctuations, SAMI’s 2-D DBS imaging capability can be used to measure the pitch of the edge magnetic field. In this paper, we present preliminary pitch angle measurements obtained by SAMI on the Mega Amp Spherical Tokamak (MAST) at Culham Centre for Fusion Energy and on the National Spherical Torus Experiment Upgrade at Princeton Plasma Physics Laboratory. Lastly, the results demonstrate encouraging agreement between SAMI and other independent measurements.« less

  13. Automatic thermographic image defect detection of composites

    NASA Astrophysics Data System (ADS)

    Luo, Bin; Liebenberg, Bjorn; Raymont, Jeff; Santospirito, SP

    2011-05-01

    Detecting defects, and especially reliably measuring defect sizes, are critical objectives in automatic NDT defect detection applications. In this work, the Sentence software is proposed for the analysis of pulsed thermography and near IR images of composite materials. Furthermore, the Sentence software delivers an end-to-end, user friendly platform for engineers to perform complete manual inspections, as well as tools that allow senior engineers to develop inspection templates and profiles, reducing the requisite thermographic skill level of the operating engineer. Finally, the Sentence software can also offer complete independence of operator decisions by the fully automated "Beep on Defect" detection functionality. The end-to-end automatic inspection system includes sub-systems for defining a panel profile, generating an inspection plan, controlling a robot-arm and capturing thermographic images to detect defects. A statistical model has been built to analyze the entire image, evaluate grey-scale ranges, import sentencing criteria and automatically detect impact damage defects. A full width half maximum algorithm has been used to quantify the flaw sizes. The identified defects are imported into the sentencing engine which then sentences (automatically compares analysis results against acceptance criteria) the inspection by comparing the most significant defect or group of defects against the inspection standards.

  14. Parametric Analysis of a Hover Test Vehicle using Advanced Test Generation and Data Analysis

    NASA Technical Reports Server (NTRS)

    Gundy-Burlet, Karen; Schumann, Johann; Menzies, Tim; Barrett, Tony

    2009-01-01

    Large complex aerospace systems are generally validated in regions local to anticipated operating points rather than through characterization of the entire feasible operational envelope of the system. This is due to the large parameter space, and complex, highly coupled nonlinear nature of the different systems that contribute to the performance of the aerospace system. We have addressed the factors deterring such an analysis by applying a combination of technologies to the area of flight envelop assessment. We utilize n-factor (2,3) combinatorial parameter variations to limit the number of cases, but still explore important interactions in the parameter space in a systematic fashion. The data generated is automatically analyzed through a combination of unsupervised learning using a Bayesian multivariate clustering technique (AutoBayes) and supervised learning of critical parameter ranges using the machine-learning tool TAR3, a treatment learner. Covariance analysis with scatter plots and likelihood contours are used to visualize correlations between simulation parameters and simulation results, a task that requires tool support, especially for large and complex models. We present results of simulation experiments for a cold-gas-powered hover test vehicle.

  15. The Operational Calculus: It’s Not Art

    DTIC Science & Technology

    2012-05-22

    the running of a business organization . . . it is not entirely rational and that it resides in the moral as well...whole business of war completely within himself.” 2 operational art, while naïve in description, is an attempt to understand the mental calculus... ebooks /10615 (accessed 21 Jan 2012). For a brilliant modern application of the psychology of cognition, see Laurence Gonzalez, Deep Survival (New

  16. 26 CFR 1.1014-6 - Special rule for adjustments to basis where property is acquired from a decedent prior to his death.

    Code of Federal Regulations, 2010 CFR

    2010-04-01

    ... predeceases A, so that, due to the operation of the estate tax, only the present value of the remainder... the operation of the estate tax, only a part of the value of the entire property is included in the... INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES Basis...

  17. 26 CFR 1.1014-6 - Special rule for adjustments to basis where property is acquired from a decedent prior to his death.

    Code of Federal Regulations, 2011 CFR

    2011-04-01

    ... predeceases A, so that, due to the operation of the estate tax, only the present value of the remainder... the operation of the estate tax, only a part of the value of the entire property is included in the... INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES...

  18. 26 CFR 1.1014-6 - Special rule for adjustments to basis where property is acquired from a decedent prior to his death.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... predeceases A, so that, due to the operation of the estate tax, only the present value of the remainder... the operation of the estate tax, only a part of the value of the entire property is included in the... INTERNAL REVENUE SERVICE, DEPARTMENT OF THE TREASURY (CONTINUED) INCOME TAX (CONTINUED) INCOME TAXES...

  19. On the Job Education: An Alternative for Special Operations Forces Officers

    DTIC Science & Technology

    2010-04-01

    flexibility of the ACSC OLMP has great advantages to support the alternative education for SOF majors. The OLMP executes the entire curriculum every...AIR COMMAND AND STAFF COLLEGE AIR UNIVERSITY ON THE JOB EDUCATION : AN ALTERNATIVE FOR SPECIAL OPERATIONS FORCES OFFICERS by...relatively low compared to conventional officers. Conventional officers have educational institutions at the major level that prepare them to understand

  20. Automated and sensitive method for the determination of formoterol in human plasma by high-performance liquid chromatography and electrochemical detection.

    PubMed

    Campestrini, J; Lecaillon, J B; Godbillon, J

    1997-12-19

    An automated high-performance liquid chromatography (HPLC) method for the determination of formoterol in human plasma with improved sensitivity has been developed and validated. Formoterol and CGP 47086, the internal standard, were extracted from plasma (1 ml) using a cation-exchange solid-phase extraction (SPE) cartridge. The compounds were eluted with pH 6 buffer solution-methanol (70:30, v/v) and the eluate was further diluted with water. An aliquot of the extract solution was injected and analyzed by HPLC. The extraction, dilution, injection and chromatographic analysis were combined and automated using the automate (ASPEC) system. The chromatographic separations were achieved on a 5 microm, Hypersil ODS analytical column (200 mm x 3 mm I.D.), using (pH 6 phosphate buffer, 0.035 M + 20 mg/l EDTA)-MeOH-CH3CN (70:25:5, v/v/v) as the mobile phase at a flow-rate of 0.4 ml/min. The analytes were detected with electrochemical detection at an operating potential of +0.63 V. Intra-day accuracy and precision were assessed from the relative recoveries of calibration/quality control plasma samples in the concentration range of 7.14 to 238 pmol/l of formoterol base. The accuracy over the entire concentration range varied from 81 to 105%, and the precision (C.V.) ranged from 3 to 14%. Inter-day accuracy and precision were assessed in the concentration range of 11.9 to 238 pmol/l of formoterol base in plasma. The accuracy over the entire concentration range varied from 98 to 109%, and precision ranged from 8 to 19%. At the limit of quantitation (LOQ) of 11.9 pmol/l for inter-day measurements, the recovery value was 109% and C.V. was 19%. As shown from intra-day accuracy and precision results, favorable conditions (a newly used column, a newly washed detector cell and moderate residual cell current level) allowed us to reach a LOQ of 7.14 pmol/l of formoterol base (3 pg/ml of formoterol fumarate dihydrate). Improvement of the limit of detection by a factor of about 10 was reached as compared to the previously described methods. The method has been applied for quantifying formoterol in plasma after 120 microg drug inhalation to volunteers. Formoterol was still measurable at 24 h post-dosing in most subjects and a slow elimination of formoterol from plasma beyond 6-8 h after inhalation was demonstrated for the first time thanks to the sensitivity of the method.

  1. Performance Evaluation of the NASA GTX RBCC Flowpath

    NASA Technical Reports Server (NTRS)

    Thomas, Scott R.; Palac, Donald T.; Trefny, Charles J.; Roche, Joseph M.

    2001-01-01

    The NASA Glenn Research Center serves as NASAs lead center for aeropropulsion. Several programs are underway to explore revolutionary airbreathing propulsion systems in response to the challenge of reducing the cost of space transportation. Concepts being investigated include rocket-based combined cycle (RBCC), pulse detonation wave, and turbine-based combined cycle (TBCC) engines. The GTX concept is a vertical launched, horizontal landing, single stage to orbit (SSTO) vehicle utilizing RBCC engines. The propulsion pod has a nearly half-axisymmetric flowpath that incorporates a rocket and ram-scramjet. The engine system operates from lift-off up to above Mach 10, at which point the airbreathing engine flowpath is closed off, and the rocket alone powers the vehicle to orbit. The paper presents an overview of the research efforts supporting the development of this RBCC propulsion system. The experimental efforts of this program consist of a series of test rigs. Each rig is focused on development and optimization of the flowpath over a specific operating mode of the engine. These rigs collectively establish propulsion system performance over all modes of operation, therefore, covering the entire speed range. Computational Fluid Mechanics (CFD) analysis is an important element of the GTX propulsion system development and validation. These efforts guide experiments and flowpath design, provide insight into experimental data, and extend results to conditions and scales not achievable in ground test facilities. Some examples of important CFD results are presented.

  2. Proximity Operations for the Robotic Boulder Capture Option for the Asteroid Redirect Mission

    NASA Technical Reports Server (NTRS)

    Reeves, David M.; Naasz, Bo J.; Wright, Cinnamon A.; Pini, Alex J.

    2014-01-01

    In September of 2013, the Asteroid Robotic Redirect Mission (ARRM) Option B team was formed to expand on NASA's previous work on the robotic boulder capture option. While the original Option A concept focuses on capturing an entire smaller Near-Earth Asteroid (NEA) using an inflatable bag capture mechanism, this design seeks to land on a larger NEA and retrieve a boulder off of its surface. The Option B team has developed a detailed and feasible mission concept that preserves many aspects of Option A's vehicle design while employing a fundamentally different technique for returning a significant quantity of asteroidal material to the Earth-Moon system. As part of this effort, a point of departure proximity operations concept was developed complete with a detailed timeline, as well as DeltaV and propellant allocations. Special attention was paid to the development of the approach strategy, terminal descent to the surface, controlled ascent with the captured boulder, and control during the Enhanced Gravity Tractor planetary defense demonstration. The concept of retrieving a boulder from the surface of an asteroid and demonstrating the Enhanced Gravity Tractor planetary defense technique is found to be feasible and within the proposed capabilities of the Asteroid Redirect Vehicle (ARV). While this point of departure concept initially focuses on a mission to Itokawa, the proximity operations design is also shown to be extensible to wide range of asteroids.

  3. Project 0-1800 : NAFTA impacts on operations : executive summary

    DOT National Transportation Integrated Search

    2001-07-01

    Project 0-1800 pioneered the use of modern micro-simulation models to analyze the complex procedures involved in international border crossing in Texas. Animated models simulate the entire southbound commercial traffic flow in two important internati...

  4. 43 CFR 10010.48 - Decision-making procedures.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... in its formal decision-making procedures provisions for consideration of environmental factors and... the environmental impacts of the entire range of alternatives described in any relevant environmental...

  5. 43 CFR 10010.48 - Decision-making procedures.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... in its formal decision-making procedures provisions for consideration of environmental factors and... the environmental impacts of the entire range of alternatives described in any relevant environmental...

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bradley, E.C.; Killough, S.M.; Rowe, J.C.

    The purpose of the Smart Crane Ammunition Transfer System (SCATS) project is to demonstrate robotic/telerobotic controls technology for a mobile articulated crane for missile/ munitions handling, delivery, and reload. Missile resupply and reload have been manually intensive operations up to this time. Currently, reload missiles are delivered by truck to the site of the launcher. A crew of four to five personnel reloads the missiles from the truck to the launcher using a hydraulic-powered crane. The missiles are handled carefully for the safety of the missiles and personnel. Numerous steps are required in the reload process and the entire reloadmore » operation can take over 1 h for some missile systems. Recent U.S. Army directives require the entire operation to be accomplished in a fraction of that time. Current requirements for the development of SCATS are being based primarily on reloading Patriot missiles. The planned development approach will integrate robotic control and sensor technology with a commercially available hydraulic articulated crane. SCATS is being developed with commercially available hardware as much as possible. Development plans include adding a 3-D.F. end effector with a grapple to the articulating crane; closed-loop position control for the crane and end effector; digital microprocessor control of crane functions; simplified operator interface; and operating modes which include rectilinear movement, obstacle avoidance, and partial automated operation. The planned development will include progressive technology demonstrations. Ultimate plans are for this technology to be transferred and utilized in the military fielding process.« less

  7. High Pressure Crystalline Structure and Resistance of Vanadium Dioxide to 13.5 GPa

    NASA Astrophysics Data System (ADS)

    Brady, Nathaniel; Appavoo, Kannatassen; Montgomery, Jeffery; Vohra, Yogesh; Haglund, Richard; Hilton, David

    2013-03-01

    We have investigated the insulator-to-metal transition in thin film vanadium dioxide as a function of pressure at ambient temperature using a designer diamond anvil cell (DAC). Four-point probe resistance measurements show a monotonic decrease over the entire pressure range studied with no significant discontinuity. High-pressure X-ray diffraction measurements observe an M1 (P21 / c) phase at 0 GPa, an M2 (C2/m) phase from 0.8 GPa to 1.1 GPa, and a reentrant M1 phase from 1.1 GPa to 13.5 GPa. Crystal refinement above 1.1 GPa shows a monotonically decreasing a, b and c lattice constants and a minimum in the monoclinic angle, β, near 8.5 +/-0.5 GPa. The atomic positions show that the first V-V nearest neighbor distance (d) decreases over the entire pressure range, the second nearest neighbor distance (s) increases until 5 GPa after which it is constant with s ~ f ~3.2 Å. The next most closely spaced V-V distance (f), which corresponds to V atoms in different unit cells, is approximately constant across the entire pressure range measured. NB and JM acknowledge support from the US Dept. Education GAANN Fellowship (P200A090143). KA and RH acknowledge support from the Office of Science, US Department of Energy (DE- FG02-01ER45916).

  8. Modeling co-occurrence of northern spotted and barred owls: accounting for detection probability differences

    Treesearch

    Larissa L. Bailey; Janice A. Reid; Eric D. Forsman; James D. Nichols

    2009-01-01

    Barred owls (Strix valia) have recently expanded their range and now encompass the entire range of the northern spotted owl (Strix ocddentalis caulina). This expansion has led to two important issues of concern for management of northern spotted owls: (1) possible competitive interactions between the two species that could...

  9. Northeastern plateaus bioregion

    Treesearch

    Gregg M. Riegel; Richard F. Miller; Carl N. Skinner; Sydney E. Smith

    2006-01-01

    Northeastern California landscape is a mixture of vast arid basins and uplands, and forested mountain ranges interspersed with both fresh water and alkaline wetlands. The entire bioregion is significantly influenced by the rain shadow effect of the Cascade Range to the west. Three ecological unit subsections are treated in this chapter: (1) Modoc Plateau Section (M261G...

  10. A new approach on JPSS VIIRS BCS and SVS PRT calibration

    NASA Astrophysics Data System (ADS)

    Wang, Tung R.; Marschke, Steve; Borroto, Michael; Jones, Christopher M.; Chovit, Christopher

    2015-05-01

    A set of calibrated platinum resistance thermometers (PRT's) was used to monitor the temperature of a Blackbody Calibration Source (BCS) and Space View Source (SVS). BCS is Ground Support Equipment (GSE) used to validate the emissive band calibration of Visible Infrared Imaging Radiometer Suite (VIIRS) of the Joint Polar Satellite System (JPSS). Another GSE, the SVS was used as an optical simulator to provide zero radiance sources for all VIIRS bands. The required PRT temperature 1 uncertainty is less than 0.030K. A process was developed to calibrate the PRTs in its thermal block by selecting a single thermal bath fluid that is compatible with spaceflight, is easy to clean and supported the entire temperature range. The process involves thermal cycling the PRTs that are installed in an aluminum housing using RTV566A prior to calibration. The PRTs were calibrated thermal cycled again and then calibrated once more to verify repeatability. Once completed these PRTs were installed on both the BCS and SVS. The PRT calibration uncertainty was estimated and deemed sufficient to support the effective temperature requirements for the operating temperature range of the BCS and SVS.

  11. A high-current rail-type gas switch with preionization by an additional corona discharge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Antipov, E. I.; Belozerov, O. S.; Krastelev, E. G., E-mail: ekrastelev@yandex.ru

    The characteristics of a high-current rail-type gas switch with preionization of the gas (air) in a spark gap by an additional corona discharge are investigated. The experiments were performed in a voltage range of 10–45 kV using a two-electrode switch consisting of two cylindrical electrodes with a diameter of 22 mm and a length of 100 mm and a set of laterally located corona-discharge needles. The requirements for the position and size of the needles are defined for which a corona discharge is ignited before a breakdown of the main gap and does not change to a sparking form, andmore » the entire length of the rail electrodes is efficiently used. The fulfillment of these requirements ensures stable operation of the switch with a small variation of the pulse breakdown voltage, which is not more than 1% for a fixed voltage-pulse rise time in the range from 150 ns to 3.5 μs. A short delay time of the switch breakdown makes it possible to control the two-electrode switch by an overvoltage pulse of nanosecond duration.« less

  12. Low-temperature thermoelectric properties of Pb doped Cu2SnSe3

    NASA Astrophysics Data System (ADS)

    Prasad K, Shyam; Rao, Ashok; Gahtori, Bhasker; Bathula, Sivaiah; Dhar, Ajay; Chang, Chia-Chi; Kuo, Yung-Kang

    2017-09-01

    A series of Cu2Sn1-xPbxSe3 (0 ≤ x ≤ 0.04) compounds was prepared by solid state synthesis technique. The electrical resistivity (ρ) decreased with increase in Pb content up to x = 0.01, thereafter it increased with further increase in x (till x = 0.03). However, the lowest value of electrical resistivity is observed for Cu2Sn0.96Pb0.04Se3. Analysis of electrical resistivity of all the samples suggests that small poloron hoping model is operative in the high temperature regime while variable range hopping is effective in the low temperature regime. The positive Seebeck coefficient (S) for pristine and doped samples in the entire temperature range indicates that the majority charge carriers are holes. The electronic thermal conductivity (κe) of the Cu2Sn1-xPbxSe3 compounds was estimated by the Wiedemann-Franz law and found that the contribution from κe is less than 1% of the total thermal conductivity (κ). The highest ZT 0.013 was achieved at 400 K for the sample Cu2Sn0.98Pb0.02Se3, about 30% enhancement as compared to the pristine sample.

  13. Description of Adsorption in Liquid Chromatography under Nonideal Conditions.

    PubMed

    Ortner, Franziska; Ruppli, Chantal; Mazzotti, Marco

    2018-05-15

    A thermodynamically consistent description of binary adsorption in reversed-phase chromatography is presented, accounting for thermodynamic nonidealities in the liquid and adsorbed phases. The investigated system involves the adsorbent Zorbax 300SB-C18, as well as phenetole and 4- tert-butylphenol as solutes and methanol and water as inert components forming the eluent. The description is based on adsorption isotherms, which are a function of the liquid-phase activities, to account for nonidealities in the liquid phase. Liquid-phase activities are calculated with a UNIQUAC model established in this work, based on experimental phase equilibrium data. The binary interaction in the adsorbed phase is described by the adsorbed solution theory, assuming an ideal (ideal adsorbed solution theory) or real (real adsorbed solution theory) adsorbed phase. Implementation of the established adsorption model in a chromatographic code achieves a quantitative description of experimental elution profiles, with feed compositions exploiting the entire miscible region, and involving a broad range of different eluent compositions (methanol/water). The quantitative agreement of the model and experimental data serves as a confirmation of the underlying physical (thermodynamic) concepts and of their applicability to a broad range of operating conditions.

  14. Ring current proton decay by charge exchange

    NASA Technical Reports Server (NTRS)

    Smith, P. H.; Hoffman, R. A.; Fritz, T.

    1975-01-01

    Explorer 45 measurements during the recovery phase of a moderate magnetic storm have confirmed that the charge exchange decay mechanism can account for the decay of the storm-time proton ring current. Data from the moderate magnetic storm of 24 February 1972 was selected for study since a symmetrical ring current had developed and effects due to asymmetric ring current losses could be eliminated. It was found that after the initial rapid decay of the proton flux, the equatorially mirroring protons in the energy range 5 to 30 keV decayed throughout the L-value range of 3.5 to 5.0 at the charge exchange decay rate calculated by Liemohn. After several days of decay, the proton fluxes reached a lower limit where an apparent equilibrium was maintained, between weak particle source mechanisms and the loss mechanisms, until fresh protons were injected into the ring current region during substorms. While other proton loss mechanisms may also be operating, the results indicate that charge exchange can entirely account for the storm-time proton ring current decay, and that this mechanism must be considered in all studies involving the loss of proton ring current particles.

  15. Muscle shear elastic modulus is linearly related to muscle torque over the entire range of isometric contraction intensity.

    PubMed

    Ateş, Filiz; Hug, François; Bouillard, Killian; Jubeau, Marc; Frappart, Thomas; Couade, Mathieu; Bercoff, Jeremy; Nordez, Antoine

    2015-08-01

    Muscle shear elastic modulus is linearly related to muscle torque during low-level contractions (<60% of Maximal Voluntary Contraction, MVC). This measurement can therefore be used to estimate changes in individual muscle force. However, it is not known if this relationship remains valid for higher intensities. The aim of this study was to determine: (i) the relationship between muscle shear elastic modulus and muscle torque over the entire range of isometric contraction and (ii) the influence of the size of the region of interest (ROI) used to average the shear modulus value. Ten healthy males performed two incremental isometric little finger abductions. The joint torque produced by Abductor Digiti Minimi was considered as an index of muscle torque and elastic modulus. A high coefficient of determination (R(2)) (range: 0.86-0.98) indicated that the relationship between elastic modulus and torque can be accurately modeled by a linear regression over the entire range (0% to 100% of MVC). The changes in shear elastic modulus as a function of torque were highly repeatable. Lower R(2) values (0.89±0.13 for 1/16 of ROI) and significantly increased absolute errors were observed when the shear elastic modulus was averaged over smaller ROI, half, 1/4 and 1/16 of the full ROI) than the full ROI (mean size: 1.18±0.24cm(2)). It suggests that the ROI should be as large as possible for accurate measurement of muscle shear modulus. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Grid Resolution Study over Operability Space for a Mach 1.7 Low Boom External Compression Inlet

    NASA Technical Reports Server (NTRS)

    Anderson, Bernhard H.

    2014-01-01

    This paper presents a statistical methodology whereby the probability limits associated with CFD grid resolution of inlet flow analysis can be determined which provide quantitative information on the distribution of that error over the specified operability range. The objectives of this investigation is to quantify the effects of both random (accuracy) and systemic (biasing) errors associated with grid resolution in the analysis of the Lockheed Martin Company (LMCO) N+2 Low Boom external compression supersonic inlet. The study covers the entire operability space as defined previously by the High Speed Civil Transport (HSCT) High Speed Research (HSR) program goals. The probability limits in terms of a 95.0% confidence interval on the analysis data were evaluated for four ARP1420 inlet metrics, namely (1) total pressure recovery (PFAIP), (2) radial hub distortion (DPH/P), (3) ) radial tip distortion (DPT/P), and (4) ) circumferential distortion (DPC/P). In general, the resulting +/-0.95 delta Y interval was unacceptably large in comparison to the stated goals of the HSCT program. Therefore, the conclusion was reached that the "standard grid" size was insufficient for this type of analysis. However, in examining the statistical data, it was determined that the CFD analysis results at the outer fringes of the operability space were the determining factor in the measure of statistical uncertainty. Adequate grids are grids that are free of biasing (systemic) errors and exhibit low random (precision) errors in comparison to their operability goals. In order to be 100% certain that the operability goals have indeed been achieved for each of the inlet metrics, the Y+/-0.95 delta Y limit must fall inside the stated operability goals. For example, if the operability goal for DPC/P circumferential distortion is =0.06, then the forecast Y for DPC/P plus the 95% confidence interval on DPC/P, i.e. +/-0.95 delta Y, must all be less than or equal to 0.06.

  17. Flat-field VLS spectrometers for laboratory applications

    NASA Astrophysics Data System (ADS)

    Ragozin, Evgeny N.; Belokopytov, Aleksei A.; Kolesnikov, Aleksei O.; Muslimov, Eduard R.; Shatokhin, Aleksei N.; Vishnyakov, Eugene A.

    2017-05-01

    Our intention is to develop high-resolution stigmatic spectral imaging in the XUV (2 - 40 nm). We have designed, aligned and tested a broadband stigmatic spectrometer for a range of 12-30 nm, which makes combined use of a normalincidence multilayer mirror (MM) (in particular, a broadband aperiodic MM) and a grazing-incidence plane varied linespace (VLS) reflection grating. The concave MM produces a slightly astigmatic image of the radiation source (for instance, the entrance slit), and the VLS grating produces a set of its dispersed stigmatic spectral images. The multilayer structure determines the spectral width of the operating range, which may amount to more than an octave in wavelength (e.g. 12.5-30 nm for an aperiodic Mo/Si MM), while the VLS grating controls the spectral focal curve. The stigmatism condition is satisfied simultaneously for two wavelengths, 14 and 27 nm. In this case, the condition of non-rigorous stigmatism is fulfilled for the entire wavelength range. A LiF laser plasma spectrum was recorded in one 0.5 J laser shot. A spatial resolution of 26 μm and a spectral resolution of 900 were demonstrated in the 12.5 - 25 nm range. We also report the design of a set of flat-field spectrometers of Harada type with VLS gratings. VLS gratings were made by ebeam and interference lithography. A technique (analytical + numerical) was developed for calculating optical schemes for writing plane and concave VLS gratings with predefined line density variation.

  18. Quicksilver IV: The Real Operation Fortitude

    DTIC Science & Technology

    2010-06-01

    Fortitude, they have also focused on the personalities that made those operations so fascinating; they have devoted entire books to Juan Garcia...was unclear, I have included explanatory notes, based on my own insights, in an effort to provide clarity. The original text is in normal font . Text...that was handwritten in is in italics. Text that was manually crossed out is in a strikethrough font . Notes on Coordinates and Conversion The

  19. From Humans to Rats and Back Again: Bridging the Divide between Human and Animal Studies of Recognition Memory with Receiver Operating Characteristics

    ERIC Educational Resources Information Center

    Koen, Joshua D.; Yonelinas, Andrew P.

    2011-01-01

    Receiver operating characteristics (ROCs) have been used extensively to study the processes underlying human recognition memory, and this method has recently been applied in studies of rats. However, the extent to which the results from human and animal studies converge is neither entirely clear, nor is it known how the different methods used to…

  20. Does enemy damage vary across the range of exotic plant species? Evidence from two coastal dune plant species in eastern Australia.

    PubMed

    Tabassum, Samiya; Leishman, Michelle R

    2018-02-01

    Release from natural enemies is often cited as a key factor for understanding the success of invasive plant species in novel environments. However, with time invasive species will accumulate native enemies in their invaded range, with factors such as spread distance from the site of introduction, climate and leaf-level traits potentially affecting enemy acquisition rates. However, the influence of such factors is difficult to assess without examining enemy attack across the entire species' range. We tested the significance of factors associated with range expansion (distance from source population and maximum population density), climatic variables (annual temperature and rainfall) and leaf-level traits [specific leaf area (SLA) and foliar nitrogen concentration] in explaining variation in enemy damage across multiple populations of two coastal invasive plants (Gladiolus gueinzii Kunze and Hydrocotyle bonariensis Lam.) along their entire introduced distribution in eastern Australia. We found that for H. bonariensis, amount of foliar damage increased with distance from source population. In contrast, for G. gueinzii, probability and amount of foliar damage decreased with decreasing temperature and increasing rainfall, respectively. Our results show that patterns of enemy attack across species' ranges are complex and cannot be generalised between species or even range edges.

  1. Hazardous Waste Cleanup: Industrial Environmental Systems, Inc. in Saugerties, New York

    EPA Pesticide Factsheets

    Industrial Environmental System Inc. is located entirely within the property of the Northeast Solite Corporation in Old Kings Highway, Saugerties, New York. The Industrial Environmental System began operations in 1976. The facility stored and blended

  2. Water/Ice Heat Sink With Quick-Connect Couplings

    NASA Technical Reports Server (NTRS)

    Lomax, Curtis; Webbon, Bruce

    1996-01-01

    Report presents additional detailed information on apparatus described in "Direct-Interface, Fusible Heat Sink" (ARC-11920). Describes entire apparatus, with special emphasis on features of quick-disconnect couplings governing flow of water under various operating conditions and plumbing configuration.

  3. The Impact of NSCAT Data on Simulating Ocean Circulation

    NASA Technical Reports Server (NTRS)

    Chao, Y.; Cheng, B.; Liu, W.

    1998-01-01

    Wind taken from the National Aeronautics and Space Administration (NASA) scatterometer (NSCAT) is compared with the operational analysis from European Center for Medium-Rnage Forecast (ECMWF) for the entire duration (about 9 months) of the NSCAT mission.

  4. The Applied Meteorology Unit: Nineteen Years Successfully Transitioning Research into Operations for America's Space Program

    NASA Technical Reports Server (NTRS)

    Madura, John T.; Bauman, William H.; Merceret, Francis J.; Roeder, William P.; Brody, Frank C.; Hagemeyer, Bartlett C.

    2010-01-01

    The Applied Meteorology Unit (AMU) provides technology transition and technique development to improve operational weather support to the Space Shuttle and the entire American space program. The AMU is funded and managed by NASA and operated by a contractor that provides five meteorologists with a diverse mix of advanced degrees, operational experience, and associated skills including data processing, statistics, and the development of graphical user interfaces. The AMU's primary customers are the U.S. Air Force 45th Weather Squadron at Patrick Air Force Base, the National Weather Service Spaceflight Meteorology Group at NASA Johnson Space Center, and the National Weather Service Melbourne FL Forecast Office. The AMU has transitioned research into operations for nineteen years and worked on a wide range of topics, including new forecasting techniques for lightning probability, synoptic peak winds,.convective winds, and summer severe weather; satellite tools to predict anvil cloud trajectories and evaluate camera line of sight for Space Shuttle launch; optimized radar scan strategies; evaluated and implemented local numerical models; evaluated weather sensors; and many more. The AMU has completed 113 projects with 5 more scheduled to be completed by the end of 2010. During this rich history, the AMU and its customers have learned many lessons on how to effectively transition research into operations. Some of these lessons learned include collocating with the operational customer and periodically visiting geographically separated customers, operator submitted projects, consensus tasking process, use of operator primary advocates for each project, customer AMU liaisons with experience in both operations and research, flexibility in adapting the project plan based on lessons learned during the project, and incorporating training and other transition assistance into the project plans. Operator involvement has been critical to the AMU's remarkable success and many awards from NASA, the National Weather Association, and two citations from the Navy's Center of Excellence for Best Manufacturing Practices. This paper will present the AMU's proven methods and explain how they may be applied by other organizations to effectively transition research into operations.

  5. Effect of gas velocity and influent concentration on biofiltration of gasoline off-gas from soil vapor extraction.

    PubMed

    Namkoong, Wan; Park, Joon-Seok; VanderGheynst, Jean S

    2004-11-01

    This study was conducted to evaluate the effects of gas inlet concentration and velocity on the biofiltration of gasoline vapor. Gasoline vapor was treated using a compost biofilter operated in an upflow mode for about 3 months. The inlet concentration of gasoline total petroleum hydrocarbon (TPH) ranged from about 300 to 7000 mgm(-3) and gas was injected at velocities of 6 and 15 mh(-1) (empty bed residence time (EBRT)=10 and 4 min, respectively). The maximum elimination capacities of TPH at 6 and 15 mh(-1) found in this research were over 24 and 19 gm(-3) of filling material h(-1), respectively. TPH removal data was fit using a first-order kinetic relationship. In the low concentration range of 300-3000 mg m(-3), the first-order kinetic constants varied between about 0.10 and 0.29 min(-1) regardless of gas velocities. At TPH concentrations greater than 3000 mgm(-3), the first-order kinetic constants were about 0.09 and 0.07 min(-1) at gas velocities of 6 mh(-1) and 15 mh(-1), respectively. To evaluate microbial dynamics, dehydrogenase activity, CO2 generation and microbial species diversity were analyzed. Dehydrogenase activity could be used as an indicator of microbial activity. TPH removal corresponded well with CO2 evolution. The average CO2 recovery efficiency for the entire biofilter ranged between 60% and 70%. When the gas velocity was 6 mh(-1), most of the microbial activity and TPH removal occurred in the first quarter of the biofilter. However, when the gas velocity was 15 mh(-1), the entire column contributed to removal. Spatial and temporal variations in the biofilter microbial population were also observed. Nearly 60% of the colonies isolated from the compost media prior to biofiltration were Bacillus. After 90 days of biofiltration, the predominant species in the lower portion (0-50 cm) of the filter were Rhodococcus, while Pseudomonas and Acinetobacter dominated the upper portion (75-100 cm). copyright 2004 Elsevier Ltd.

  6. Analysis of verbal communication during teaching in the operating room and the potentials for surgical training.

    PubMed

    Blom, E M; Verdaasdonk, E G G; Stassen, L P S; Stassen, H G; Wieringa, P A; Dankelman, J

    2007-09-01

    Verbal communication in the operating room during surgical procedures affects team performance, reflects individual skills, and is related to the complexity of the operation process. During the procedural training of surgeons (residents), feedback and guidance is given through verbal communication. A classification method based on structural analysis of the contents was developed to analyze verbal communication. This study aimed to evaluate whether a classification method for the contents of verbal communication in the operating room could provide insight into the teaching processes. Eight laparoscopic cholecystectomies were videotaped. Two entire cholecystectomies and the dissection phase of six additional procedures were analyzed by categorization of the communication in terms of type (4 categories: commanding, explaining, questioning, and miscellaneous) and content (9 categories: operation method, location, direction, instrument handling, visualization, anatomy and pathology, general, private, undefinable). The operation was divided into six phases: start, dissection, clipping, separating, control, closing. Classification of the communication during two entire procedures showed that each phase of the operation was dominated by different kinds of communication. A high percentage of explaining anatomy and pathology was found throughout the whole procedure except for the control and closing phases. In the dissection phases, 60% of verbal communication concerned explaining. These explaining communication events were divided as follows: 27% operation method, 19% anatomy and pathology, 25% location (positioning of the instrument-tissue interaction), 15% direction (direction of tissue manipulation), 11% instrument handling, and 3% other nonclassified instructions. The proposed classification method is feasible for analyzing verbal communication during surgical procedures. Communication content objectively reflects the interaction between surgeon and resident. This information can potentially be used to specify training needs, and may contribute to the evaluation of different training methods.

  7. Green Infrastructure Modeling Tools

    EPA Pesticide Factsheets

    Modeling tools support planning and design decisions on a range of scales from setting a green infrastructure target for an entire watershed to designing a green infrastructure practice for a particular site.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, G.N.; Postol, T.A.

    Long-range nuclear-armed cruise missiles are highly accurate and are capable of reaching most targets within the United States and the Commonwealth of Independent States (CIS) from launch points beyond their borders. Neither the United States nor the CIS has air surveillance systems capable of providing reliable warning against cruise missiles. Thus it is possible that a small-scale cruise missile attack could go entirely undetected until the nuclear weapons arrived over their targets. Such an attack could destroy the other country's entire strategic bomber force on the ground and severely damage its strategic command and control system, perhaps to the pointmore » of endangering the ability of its ICBM force to be launched on warning. This capability makes long-range nuclear cruise missiles potentially one of the most destabilizing of all nuclear weapons.« less

  9. Calibration of the forward-scattering spectrometer probe - Modeling scattering from a multimode laser beam

    NASA Technical Reports Server (NTRS)

    Hovenac, Edward A.; Lock, James A.

    1993-01-01

    Scattering calculations using a detailed model of the multimode laser beam in the forward-scattering spectrometer probe (FSSP) were carried out using a recently developed extension to Mie scattering theory. From this model, new calibration curves for the FSSP were calculated. The difference between the old calibration curves and the new ones is small for droplet diameters less than 10 microns, but the difference increases to approximately 10 percent at diameters of 50 microns. When using glass beads to calibrate the FSSP, calibration errors can be minimized by using glass beads of many different diameters, over the entire range of the FSSP. If the FSSP is calibrated using one-diameter glass beads, then the new formalism is necessary to extrapolate the calibration over the entire range.

  10. Calibration of the Forward-scattering Spectrometer Probe: Modeling Scattering from a Multimode Laser Beam

    NASA Technical Reports Server (NTRS)

    Hovenac, Edward A.; Lock, James A.

    1993-01-01

    Scattering calculations using a more detailed model of the multimode laser beam in the forward-scattering spectrometer probe (FSSP) were carried out by using a recently developed extension to Mie scattering theory. From this model, new calibration curves for the FSSP were calculated. The difference between the old calibration curves and the new ones is small for droplet diameters less than 10 micrometers, but the difference increases to approximately 10% at diameters of 50 micrometers. When using glass beads to calibrate the FSSP, calibration errors can be minimized, by using glass beads of many different diameters, over the entire range of the FSSP. If the FSSP is calibrated using one-diameter glass beads, then the new formalism is necessary to extrapolate the calibration over the entire range.

  11. Business resilience: Reframing healthcare risk management.

    PubMed

    Simeone, Cynthia L

    2015-09-01

    The responsibility of risk management in healthcare is fractured, with multiple stakeholders. Most hospitals and healthcare systems do not have a fully integrated risk management system that spans the entire organizational and operational structure for the delivery of key services. This article provides insight toward utilizing a comprehensive Business Resilience program and associated methodology to understand and manage organizational risk leading to organizational effectiveness and operational efficiencies, with the fringe benefit of realizing sustainable operational capability during adverse conditions. © 2015 American Society for Healthcare Risk Management of the American Hospital Association.

  12. Synthetic battery cycling techniques

    NASA Technical Reports Server (NTRS)

    Leibecki, H. F.; Thaller, L. H.

    1982-01-01

    Synthetic battery cycling makes use of the fast growing capability of computer graphics to illustrate some of the basic characteristics of operation of individual electrodes within an operating electrochemical cell. It can also simulate the operation of an entire string of cells that are used as the energy storage subsystem of a power system. The group of techniques that as a class have been referred to as Synthetic Battery Cycling is developed in part to try to bridge the gap of understanding that exists between single cell characteristics and battery system behavior.

  13. Storm surge and tidal range energy

    NASA Astrophysics Data System (ADS)

    Lewis, Matthew; Angeloudis, Athanasios; Robins, Peter; Evans, Paul; Neill, Simon

    2017-04-01

    The need to reduce carbon-based energy sources whilst increasing renewable energy forms has led to concerns of intermittency within a national electricity supply strategy. The regular rise and fall of the tide makes prediction almost entirely deterministic compared to other stochastic renewable energy forms; therefore, tidal range energy is often stated as a predictable and firm renewable energy source. Storm surge is the term used for the non-astronomical forcing of tidal elevation, and is synonymous with coastal flooding because positive storm surges can elevate water-levels above the height of coastal flood defences. We hypothesis storm surges will affect the reliability of the tidal range energy resource; with negative surge events reducing the tidal range, and conversely, positive surge events increasing the available resource. Moreover, tide-surge interaction, which results in positive storm surges more likely to occur on a flooding tide, will reduce the annual tidal range energy resource estimate. Water-level data (2000-2012) at nine UK tide gauges, where the mean tidal amplitude is above 2.5m and thus suitable for tidal-range energy development (e.g. Bristol Channel), were used to predict tidal range power with a 0D modelling approach. Storm surge affected the annual resource estimate by between -5% to +3%, due to inter-annual variability. Instantaneous power output were significantly affected (Normalised Root Mean Squared Error: 3%-8%, Scatter Index: 15%-41%) with spatial variability and variability due to operational strategy. We therefore find a storm surge affects the theoretical reliability of tidal range power, such that a prediction system may be required for any future electricity generation scenario that includes large amounts of tidal-range energy; however, annual resource estimation from astronomical tides alone appears sufficient for resource estimation. Future work should investigate water-level uncertainties on the reliability and predictability of tidal range energy with 2D hydrodynamic models.

  14. Tetraethylene glycol promoted two-step, one-pot rapid synthesis of indole-3-[1- 11C]acetic acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sojeong; Qu, Wenchao; Alexoff, David L.

    2014-12-12

    An operationally friendly, two-step, one-pot process has been developed for the rapid synthesis of carbon-11 labeled indole-3-acetic acid ([ 11]IAA or [ 11]auxin). By replacing an aprotic polar solvent with tetraethylene glycol, nucleophilic [ 11]cyanation and alkaline hydrolysis reactions were performed consecutively in a single pot without a time-consuming intermediate purification step. The entire production time for this updated procedure is 55 min, which dramatically simplifies the entire synthesis and reduces the starting radioactivity required for a whole plant imaging study.

  15. Identifying the limitations of conventional biofiltration of diffuse methane emissions at long-term operation.

    PubMed

    Gómez-Cuervo, S; Hernández, J; Omil, F

    2016-08-01

    There is growing international concern about the increasing levels of greenhouse gases in the atmosphere, particularly CO2 and methane. The emissions of methane derived from human activities are associated with large flows and very low concentrations, such as those emitted from landfills and wastewater treatment plants, among others. The present work was focused on the biological methane degradation at diffuse concentrations (0.2% vv(-1)) in a conventional biofilter using a mixture of compost, perlite and bark chips as carrier. An extensive characterization of the process was carried out at long-term operation (250 days) in a fully monitored pilot plant, achieving stable conditions during the entire period. Operational parameters such as waterings, nitrogen addition and inlet loads and contact time influences were evaluated. Obtained results indicate that empty bed residence times within 4-8 min are crucial to maximize elimination rates. Waterings and the type of nitrogen supplied in the nutrient solution (ammonia or nitrate) have a strong impact on the biofilter performance. The better results compatible with a stable operation were achieved using nitrate, with elimination capacities up to 7.6 ± 1.1 g CH4 m(-3 )h(-1). The operation at low inlet concentrations (IC) implied that removal rates obtained were quite limited (ranging 3-8 g CH4 m(-3 )h(-1)); however, these results could be significantly increased (up to 20.6 g CH4 m(-3) h(-1)) at higher IC, which indicates that the mass transfer from the gas to the liquid layer surrounding the biofilm is a key limitation of the process.

  16. A Probabilistic Approach to Network Event Formation from Pre-Processed Waveform Data

    NASA Astrophysics Data System (ADS)

    Kohl, B. C.; Given, J.

    2017-12-01

    The current state of the art for seismic event detection still largely depends on signal detection at individual sensor stations, including picking accurate arrivals times and correctly identifying phases, and relying on fusion algorithms to associate individual signal detections to form event hypotheses. But increasing computational capability has enabled progress toward the objective of fully utilizing body-wave recordings in an integrated manner to detect events without the necessity of previously recorded ground truth events. In 2011-2012 Leidos (then SAIC) operated a seismic network to monitor activity associated with geothermal field operations in western Nevada. We developed a new association approach for detecting and quantifying events by probabilistically combining pre-processed waveform data to deal with noisy data and clutter at local distance ranges. The ProbDet algorithm maps continuous waveform data into continuous conditional probability traces using a source model (e.g. Brune earthquake or Mueller-Murphy explosion) to map frequency content and an attenuation model to map amplitudes. Event detection and classification is accomplished by combining the conditional probabilities from the entire network using a Bayesian formulation. This approach was successful in producing a high-Pd, low-Pfa automated bulletin for a local network and preliminary tests with regional and teleseismic data show that it has promise for global seismic and nuclear monitoring applications. The approach highlights several features that we believe are essential to achieving low-threshold automated event detection: Minimizes the utilization of individual seismic phase detections - in traditional techniques, errors in signal detection, timing, feature measurement and initial phase ID compound and propagate into errors in event formation, Has a formalized framework that utilizes information from non-detecting stations, Has a formalized framework that utilizes source information, in particular the spectral characteristics of events of interest, Is entirely model-based, i.e. does not rely on a priori's - particularly important for nuclear monitoring, Does not rely on individualized signal detection thresholds - it's the network solution that matters.

  17. Coordination preference and magnetic properties of FeII assemblies with a bis-azole bearing 1,2,4-triazole and tetrazole

    NASA Astrophysics Data System (ADS)

    Naik, Anil D.; Railliet, Antoine P.; Dîrtu, Marinela M.; Garcia, Yann

    2012-03-01

    With a new bis-azole molecular fragment ( Htt) bearing 1,2,4-triazole and tetrazole, a mononuclear complex [Fe(tt)2(H2O)4]·2H2O ( 1), a trinuclear complex [Fe3(tt)6(H2O)6]·2H2O ( 2) and a 1D coordination polymer [Fe(tt)(Htt)2]BF4·2CH3OH ( 3) were obtained by varying reaction conditions. Htt acts either as an anionic or neutral ligand depending upon the reaction medium and pH. Thermal variation of spin states of 1- 3 were investigated in the range 77-300 K by 57Fe Mössbauer spectroscopy. 1 totally remains in high-spin state over the entire temperature range whereas no spin crossover was evidenced in 2. Nearly 1:1 high-spin and low-spin population ratio is found in 3, which remains constant over the entire temperature range investigated.

  18. Animal breeding strategies can improve meat quality attributes within entire populations.

    PubMed

    Berry, D P; Conroy, S; Pabiou, T; Cromie, A R

    2017-10-01

    The contribution of animal breeding to changes in animal performance is well documented across a range of species. Once genetic variation in a trait exists, then breeding to improve the characteristics of that trait is possible, if so desired. Considerable genetic variation exists in a range of meat quality attributes across a range of species. The genetic variation that exists for meat quality is as large as observed for most performance traits; thus, within a well-structured breeding program, rapid genetic gain for meat quality could be possible. The rate of genetic gain can be augmented through the integration of DNA-based technologies into the breeding program; such DNA-based technologies should, however, be based on thousands of DNA markers dispersed across the entire genome. Genetic and genomic technologies can also have beneficial impact outside the farm gate as a tool to segregate carcasses or meat cuts based on expected meat quality features. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The effect of vegetation type, microrelief, and incidence angle on radar backscatter

    NASA Technical Reports Server (NTRS)

    Owe, M.; Oneill, P. E.; Jackson, T. J.; Schmugge, T. J.

    1985-01-01

    The NASA/JPL Synthetic Aperture Radar (SAR) was flown over a 20 x 110 km test site in the Texas High Plains regions north of Lubbock during February/March 1984. The effect of incidence angle was investigated by comparing the pixel values of the calibrated and uncalibrated images. Ten-pixel-wide transects along the entire azimuth were averaged in each of the two scenes, and plotted against the calculated incidence angle of the center of each range increment. It is evident from the graphs that both the magnitudes and patterns exhibited by the corresponding transect means of the two images are highly dissimilar. For each of the cross-poles, the uncalibrated image displayed very distinct and systematic positive trends through the entire range of incidence angles. The two like-poles, however, exhibited relatively constant returns. In the calibrated image, the cross-poles exhibited a constant return, while the like-poles demonstrated a strong negative trend across the range of look-angles, as might be expected.

  20. Rapid, Time-Division Multiplexed, Direct Absorption- and Wavelength Modulation-Spectroscopy

    PubMed Central

    Klein, Alexander; Witzel, Oliver; Ebert, Volker

    2014-01-01

    We present a tunable diode laser spectrometer with a novel, rapid time multiplexed direct absorption- and wavelength modulation-spectroscopy operation mode. The new technique allows enhancing the precision and dynamic range of a tunable diode laser absorption spectrometer without sacrificing accuracy. The spectroscopic technique combines the benefits of absolute concentration measurements using calibration-free direct tunable diode laser absorption spectroscopy (dTDLAS) with the enhanced noise rejection of wavelength modulation spectroscopy (WMS). In this work we demonstrate for the first time a 125 Hz time division multiplexed (TDM-dTDLAS-WMS) spectroscopic scheme by alternating the modulation of a DFB-laser between a triangle-ramp (dTDLAS) and an additional 20 kHz sinusoidal modulation (WMS). The absolute concentration measurement via the dTDLAS-technique allows one to simultaneously calibrate the normalized 2f/1f-signal of the WMS-technique. A dTDLAS/WMS-spectrometer at 1.37 μm for H2O detection was built for experimental validation of the multiplexing scheme over a concentration range from 50 to 3000 ppmV (0.1 MPa, 293 K). A precision of 190 ppbV was achieved with an absorption length of 12.7 cm and an averaging time of two seconds. Our results show a five-fold improvement in precision over the entire concentration range and a significantly decreased averaging time of the spectrometer. PMID:25405508

Top