Projected entrainment of fish resulting from aggregate dredging.
Drabble, Ray
2012-02-01
Previous research to assess impacts from aggregate dredging has focussed on infaunal species with few studies made of fish entrainment. Entrainment evidence from hydraulic dredging studies is reviewed to develop a sensitivity index for benthic fish. Environmental monitoring attendant with the granting of new licences in the Eastern Channel Region (ECR) in 2006 offers a unique opportunity to assess the effects of dredging upon fish. Projected theoretical fish entrainment rates are calculated based upon: abundance data from 4m beam trawl sampling of fish species over the period 2005-2008; sensitivity data; and dredging activity and footprint derived from Electronic monitoring System (EMS) data. Results have been compared with actual entrainment rates and also against summary results from independent analysis of the changes in fish population over the period 2005-2008 (Drabble, 2012). The case is made for entrainment surveys to form part of impact monitoring for marine aggregate dredging. Copyright © 2011 Elsevier Ltd. All rights reserved.
Fish entrainment rates through towboat propellers in the Upper Mississippi and Illinois rivers
Jack, Killgore K.; Miranda, L.E.; Murphy, C.E.; Wolff, D.M.; Hoover, J.J.; Keevin, T.M.; Maynord, S.T.; Cornish, M.A.
2011-01-01
Aspecially designed netwas used to study fish entrainment and injury through towboat propellers in 13 pools of the Upper Mississippi and Illinois rivers. The net was attached to the stern of a 48.8-m-long towboat with twin propellers (in Kort propulsion nozzles), and sampling typically took place while the towboat pushed 15 loaded barges upstream at a time. In total, 254 entrainment samples over 894 km of the 13 study pools were collected. The sampling efforts produced 16,005 fish representing 15 families and at least 44 species; fish ranged in total length from 3 to 123 cm, but only 12.5-cm or longer fish were analyzed because smaller fish could escape through the mesh of the trawl. Clupeidae (68% of total catch) and Sciaenidae (21%) were the dominant families. We detected no effects of towboat operation variables (speed and engine [i.e., propeller] revolutions per minute [RPM]) on entrainment rate (i.e., fish/km), but entrainment rate showed a wedge-shaped distribution relative to hydraulic and geomorphic characteristics of the channel. Entrainment rate was low (30 fish/km). Although total entrainment rate was not related to engine RPM, the probability of being struck by a propeller increased with fish length and engine RPM. Limits on engine RPM in narrow, shallow, and sluggish reaches could reduce entrainment impact, particularly for large-bodied fish. ?? American Fisheries Society 2011.
Perry, Russell W.; Brandes, Patricia L.; Burau, Jon R.; Sandstrom, Philip T.; Skalski, John R.
2015-01-01
Juvenile Chinook Salmon Oncorhynchus tshawytscha emigrating from natal tributaries of the Sacramento River, California, must negotiate the Sacramento-San Joaquin River Delta (hereafter, the Delta), a complex network of natural and man-made channels linking the Sacramento River with San Francisco Bay. Fish that enter the interior and southern Delta—the region to the south of the Sacramento River where water pumping stations are located—survive at a lower rate than fish that use alternative migration routes. Consequently, total survival decreases as the fraction of the population entering the interior Delta increases, thus spurring management actions to reduce the proportion of fish that are entrained into the interior Delta. To better inform management actions, we modeled entrainment probability as a function of hydrodynamic variables. We fitted alternative entrainment models to telemetry data that identified when tagged fish in the Sacramento River entered two river channels leading to the interior Delta (Georgiana Slough and the gated Delta Cross Channel). We found that the probability of entrainment into the interior Delta through both channels depended strongly on the river flow and tidal stage at the time of fish arrival at the river junction. Fish that arrived during ebb tides had a low entrainment probability, whereas fish that arrived during flood tides (i.e., when the river's flow was reversed) had a high probability of entering the interior Delta. We coupled our entrainment model with a flow simulation model to evaluate the effect of nighttime closures of the Delta Cross Channel gates on the daily probability of fish entrainment into the interior Delta. Relative to 24-h gate closures, nighttime closures increased daily entrainment probability by 3 percentage points on average if fish arrived at the river junction uniformly throughout the day and by only 1.3 percentage points if 85% of fish arrived at night. We illustrate how our model can be used to evaluate the effects of alternative water management actions on fish entrainment into the interior Delta.
Poletto, Jamilynn B.; Cocherell, Dennis E.; Mussen, Timothy D.; Ercan, Ali; Bandeh, Hossein; Kavvas, M. Levent; Cech, Joseph J.; Fangue, Nann A.
2015-01-01
Diversion (i.e. extraction) of water from rivers and estuaries can potentially affect native wildlife populations if operation is not carefully managed. For example, open, unmodified water diversions can act as a source of injury or mortality to resident or migratory fishes from entrainment and impingement, and can cause habitat degradation and fragmentation. Fish-protection devices, such as exclusion screens, louvres or sensory deterrents, can physically or behaviourally deter fish from approaching or being entrained into water diversions. However, empirical assessment of their efficacy is often lacking or is investigated only for particular economically or culturally important fishes, such as salmonids. The Southern population of anadromous green sturgeon (Acipenser medirostris) is listed as threatened in California, and there is a high density of water diversions located within their native range (the Sacramento–San Joaquin watershed). Coupled with their unique physiology and behaviour compared with many other fishes native to California, the green sturgeon is susceptible to entrainment into diversions and is an ideal species with which to study the efficacy of mitigation techniques. Therefore, we investigated juvenile green sturgeon (188–202 days post-hatch) in the presence of several fish-protection devices to assess behaviour and entrainment risk. Using a large experimental flume (∼500 kl), we found that compared with an open diversion pipe (control), the addition of a trash-rack box, louvre box, or perforated cylinder on the pipe inlet all significantly reduced the proportion of fish that were entrained through the pipe (P = 0.03, P = 0.028, and P = 0.028, respectively). Likewise, these devices decreased entrainment risk during a single movement past the pipe by between 60 and 96%. These fish-protection devices should decrease the risk of fish entrainment during water-diversion activities. PMID:27293725
Estimating mortality rates of adult fish from entrainment through the propellers of river towboats
Gutreuter, S.; Dettmers, J.M.; Wahl, David H.
2003-01-01
We developed a method to estimate mortality rates of adult fish caused by entrainment through the propellers of commercial towboats operating in river channels. The method combines trawling while following towboats (to recover a fraction of the kills) and application of a hydrodynamic model of diffusion (to estimate the fraction of the total kills collected in the trawls). The sampling problem is unusual and required quantifying relatively rare events. We first examined key statistical properties of the entrainment mortality rate estimators using Monte Carlo simulation, which demonstrated that a design-based estimator and a new ad hoc estimator are both unbiased and converge to the true value as the sample size becomes large. Next, we estimated the entrainment mortality rates of adult fishes in Pool 26 of the Mississippi River and the Alton Pool of the Illinois River, where we observed kills that we attributed to entrainment. Our estimates of entrainment mortality rates were 2.52 fish/km of towboat travel (80% confidence interval, 1.00-6.09 fish/km) for gizzard shad Dorosoma cepedianum, 0.13 fish/km (0.00-0.41) for skipjack herring Alosa chrysochloris, and 0.53 fish/km (0.00-1.33) for both shovelnose sturgeon Scaphirhynchus platorynchus and smallmouth buffalo Ictiobus bubalus. Our approach applies more broadly to commercial vessels operating in confined channels, including other large rivers and intracoastal waterways.
Effectiveness of common fish screen materials to protect lamprey ammocoetes
Rose, Brien P.; Mesa, Matthew G.
2012-01-01
Understanding the effects of irrigation diversions on populations of Pacific lampreyLampetra tridentata in the Columbia River basin is needed for their recovery. We tested the effectiveness of five common fish screen materials for excluding lamprey ammocoetes: interlock (IL), vertical bar (VB), perforated plate (PP), and 12-gauge and 14-gauge wire cloth (WC12) and (WC14). When fish (28–153 mm) were exposed for 60 min to screen panels perpendicular to an approach velocity of 12 cm/s in a recirculating flume, the percentage of ammocoetes entrained (i.e., passed through the screen) was 26% for the IL, 18% for the PP, 33% for the VB, 62% for the WC14, and 65% for the WC12 screens. For all screens, most fish were entrained within the first 15–20 min. Fish length significantly influenced entrainment, with the PP, VB, and IL screens preventing fish greater than 50–65 mm from entrainment and the WC14 and WC12 screens preventing entrainment of fish greater than 90–110 mm. Fish of all sizes repeatedly became impinged (i.e., contacting the screen for more than 1 s) on the screens, with the frequency of impingement events increasing during the first 5 min and becoming relatively stable thereafter. Impingement ranges were highest on the IL screen (36–62%), lowest on the WC14 and WC12 screens (13–31%), and intermediate on the PP and VB screens (23–54%). However, the WC14 and WC12 screens had fewer and larger fish remaining as time elapsed because so many were entrained. For all screen types, injuries were rare and minor, and no fish died after overnight posttest holding. Our results indicate that wire cloth screens should be replaced, where practical, with perforated plate, vertical bar, or interlocking bar screens to reduce lamprey entrainment at water diversions.
Davis, Jeremiah J.; Jackson, P. Ryan; Engel, Frank; LeRoy, Jessica Z.; Neeley, Rebecca N.; Finney, Samuel T.; Murphy, Elizabeth A.
2016-01-01
Large Electric Dispersal Barriers were constructed in the Chicago Sanitary and Ship Canal (CSSC) to prevent the transfer of invasive fish species between the Mississippi River Basin and the Great Lakes Basin while simultaneously allowing the passage of commercial barge traffic. We investigated the potential for entrainment, retention, and transport of freely swimming fish within large gaps (> 50 m3) created at junction points between barges. Modified mark and capture trials were employed to assess fish entrainment, retention, and transport by barge tows. A multi-beam sonar system enabled estimation of fish abundance within barge junction gaps. Barges were also instrumented with acoustic Doppler velocity meters to map the velocity distribution in the water surrounding the barge and in the gap formed at the junction of two barges. Results indicate that the water inside the gap can move upstream with a barge tow at speeds near the barge tow travel speed. Water within 1 m to the side of the barge junction gaps was observed to move upstream with the barge tow. Observed transverse and vertical water velocities suggest pathways by which fish may potentially be entrained into barge junction gaps. Results of mark and capture trials provide direct evidence that small fish can become entrained by barges, retained within junction gaps, and transported over distances of at least 15.5 km. Fish entrained within the barge junction gap were retained in that space as the barge tow transited through locks and the Electric Dispersal Barriers, which would be expected to impede fish movement upstream.
Plumb, John M.; Adams, Noah S.; Perry, Russell W.; Holbrook, Christopher; Romine, Jason G.; Blake, Aaron R.; Burau, Jon R.
2016-01-01
In the Sacramento-San Joaquin River Delta, California, tidal forces that reverse river flows increase the proportion of water and juvenile late fall-run Chinook salmon diverted into a network of channels that were constructed to support agriculture and human consumption. This area is known as the interior delta, and it has been associated with poor fish survival. Under the rationale that the fish will be diverted in proportion to the amount of water that is diverted, the Delta Cross Channel (DCC) has been prescriptively closed during the winter out-migration to reduce fish entrainment and mortality into the interior delta. The fish are thought to migrate mostly at night, and so daytime operation of the DCC may allow for water diversion that minimizes fish entrainment and mortality. To assess this, the DCC gate was experimentally opened and closed while we released 2983 of the fish with acoustic transmitters upstream of the DCC to monitor their arrival and entrainment into the DCC. We used logistic regression to model night-time arrival and entrainment probabilities with covariates that included the proportion of each diel period with upstream flow, flow, rate of change in flow and water temperature. The proportion of time with upstream flow was the most important driver of night-time arrival probability, yet river flow had the largest effect on fish entrainment into the DCC. Modelling results suggest opening the DCC during daytime while keeping the DCC closed during night-time may allow for water diversion that minimizes fish entrainment into the interior delta.
Fish Oil Accelerates Diet-Induced Entrainment of the Mouse Peripheral Clock via GPR120
Itokawa, Misa; Nagahama, Hiroki; Ohtsu, Teiji; Furutani, Naoki; Kamagata, Mayo; Yang, Zhi-Hong; Hirasawa, Akira; Tahara, Yu; Shibata, Shigenobu
2015-01-01
The circadian peripheral clock is entrained by restricted feeding (RF) at a fixed time of day, and insulin secretion regulates RF-induced entrainment of the peripheral clock in mice. Thus, carbohydrate-rich food may be ideal for facilitating RF-induced entrainment, although the role of dietary oils in insulin secretion and RF-induced entrainment has not been described. The soybean oil component of standard mouse chow was substituted with fish or soybean oil containing docosahexaenoic acid (DHA) and/or eicosapentaenoic acid (EPA). Tuna oil (high DHA/EPA), menhaden oil (standard), and DHA/EPA dissolved in soybean oil increased insulin secretion and facilitated RF-induced phase shifts of the liver clock as represented by the bioluminescence rhythms of PER2::LUCIFERASE knock-in mice. In this model, insulin depletion blocked the effect of tuna oil and fish oil had no effect on mice deficient for GPR120, a polyunsaturated fatty acid receptor. These results suggest food containing fish oil or DHA/EPA is ideal for adjusting the peripheral clock. PMID:26161796
Perry, R.W.; Romine, J.G.; Adams, N.S.; Blake, A.R.; Burau, J.R.; Johnston, S.V.; Liedtke, T.L.
2012-01-01
Anthropogenic alterations to river systems, such as irrigation and hydroelectric development, can negatively affect fish populations by reducing survival when fish are routed through potentially dangerous locations. Non-physical barriers using behavioural stimuli are one means of guiding fish away from such locations without obstructing water flow. In the Sacramento–San Joaquin River Delta, we evaluated a bio-acoustic fish fence (BAFF) composed of strobe lights, sound and a bubble curtain, which was intended to divert juvenile Chinook salmon (Oncorhynchus tshawytscha) away from Georgiana Slough, a low-survival migration route that branches off the Sacramento River. To quantify fish response to the BAFF, we estimated individual entrainment probabilities from two-dimensional movement paths of juvenile salmon implanted with acoustic transmitters. Overall, 7.7% of the fish were entrained into Georgiana Slough when the BAFF was on, and 22.3% were entrained when the BAFF was off, but a number of other factors influenced the performance of the BAFF. The effectiveness of the BAFF declined with increasing river discharge, likely because increased water velocities reduced the ability of fish to avoid being swept across the BAFF into Georgiana Slough. The BAFF reduced entrainment probability by up to 40 percentage points near the critical streakline, which defined the streamwise division of flow vectors entering each channel. However, the effect of the BAFF declined moving in either direction away from the critical streakline. Our study shows how fish behaviour and the environment interacted to influence the performance of a non-physical behavioural barrier in an applied setting.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldwin, Casey; Polacek, Matt; Bonar, Scott
2002-11-01
Pelagic fishes, such as kokanee and rainbow trout, provide an important fishery in Lake Roosevelt; however, spawner returns and creel results have been below management goals in recent years. Our objective was to identify factors that potentially limit pelagic fish production in Lake Roosevelt including entrainment, food limitation, piscivory, and other abiotic factors. We estimated the ratio of total fish entrained through Grand Coulee Dam to the pelagic fish abundance for September and October, 1998. If the majority of these fish were pelagic species, then entrainment averaged 10-13% of pelagic fish abundance each month. This rate of entrainment could imposemore » considerable losses to pelagic fish populations on an annual basis. Therefore, estimates of species composition of entrained fish will be important in upcoming years to estimate the proportion of stocked pelagic fish lost through the dam. Food was not limiting for kokanee or rainbow trout populations since growth rates were high and large zooplankton were present in the reservoir. Estimates of survival for kokanee were low (< 0.01 annual) and unknown for rainbow trout. We estimated that the 1997 standing stock biomass of large (>1.1 mm) Daphnia could have supported 0.08 annual survival by kokanee and rainbow trout before fish consumption would have exceeded available biomass during late winter and early spring. Therefore, if recruitment goals are met in the future there may be a bottleneck in food supply for pelagic planktivores. Walleye and northern pikeminnow were the primary piscivores of salmonids in 1996 and 1997. Predation on salmonid prey was rare for rainbow trout and not detected for burbot or smallmouth bass. Northern pikeminnow had the greatest individual potential as a salmonid predator due to their high consumptive demand; however, their overall impact was limited because of their low relative abundance. We modeled the predation impact of 273,524 walleye in 1996, and 39,075 northern pikeminnow in 1997 because diet data revealed predation on salmonids during these years. We could not determine the absolute impact of piscivores on each salmonid species because identification of fish prey was limited to families. Our estimate of salmonid consumption by walleye in 1996 and northern pikeminnow in 1997 shows that losses of stocked kokanee and rainbow trout could be substantial (up to 73% of kokanee) if piscivores were concentrating on one salmonid species, but were most likely lower, assuming predation was spread among kokanee, rainbow trout, and whitefish. Dissolved oxygen was never limiting for kokanee or rainbow trout, but temperatures were up to 6 EC above the growth optimum for kokanee from July to September in the upper 33 meters of water. Critical data needed for a more complete analysis in the future include species composition of entrainment estimates, entrainment estimates expanded to include unmonitored turbines, seasonal growth of planktivorous salmonids, species composition of salmonid prey, piscivore diet during hatchery releases of salmonids, and collection of temperature and dissolved oxygen data throughout all depths of the reservoir during warm summer months.« less
Romine, Jason G.; Perry, Russell W.; Pope, Adam C.; Stumpner, Paul; Liedtke, Theresa L.; Kumagai, Kevin K; Reeves, Ryan L
2016-01-01
Survival of out-migrating juvenile Chinook salmon (Oncorhynchus tshawytscha) in the Sacramento–San Joaquin River delta, California, USA, varies by migration route. Survival of salmonids that enter the interior and southern Delta can be as low as half that of salmonids that remain in the main-stem Sacramento River. Reducing entrainment into the higher-mortality routes, such as Georgiana Slough, should increase overall survival. In spring 2014, a floating fish-guidance structure (FFGS) designed to reduce entrainment into Georgiana Slough was deployed just upstream of the Georgiana Slough divergence. We used acoustic telemetry to evaluate the effect of the FFGS on Chinook entrainment to Georgiana Slough. At intermediate discharge (200–400 m3 s–1), entrainment into Georgiana Slough was five percentage points lower when the FFGS was in the on state (19.1% on; 23.9% off). At higher discharge (>400 m3 s–1), entrainment was higher when the FFGS was in the on state (19.3% on; 9.7% off), and at lower discharge (0–200 m3 s–1) entrainment was lower when the FFGS was in the on state (43.7% on; 47.3% off). We found that discharge, cross-stream fish position, time of day, and proportion of flow remaining in the Sacramento River contributed to the probability of being entrained to Georgiana Slough.
Poletto, Jamilynn B.; Cocherell, Dennis E.; Mussen, Timothy D.; Ercan, Ali; Bandeh, Hossein; Levent Kavvas, M.; Cech, Joseph J.; Fangue, Nann A.
2014-01-01
Water projects designed to extract fresh water for local urban, industrial and agricultural use throughout rivers and estuaries worldwide have contributed to the fragmentation and degradation of suitable habitat for native fishes. The number of water diversions located throughout the Sacramento–San Joaquin watershed in California's Central Valley exceeds 3300, and the majority of these are unscreened. Many anadromous fish species are susceptible to entrainment into these diversions, potentially impacting population numbers. In the laboratory, juvenile green sturgeon (Acipenser medirostris) have been shown to have high entrainment rates into unscreened diversions compared with those of other native California fish species, which may act as a significant source of mortality for this already-threatened species. Therefore, we tested the efficacy of a sensory deterrent (strobe light) and two structural pipe modifications (terminal pipe plate and upturned pipe configuration) in decreasing the entrainment of juvenile green sturgeon (mean mass ± SEM = 162.9 ± 4.0 g; mean fork length = 39.4 ± 0.3 cm) in a large (>500 kl) outdoor flume fitted with a water-diversion pipe 0.46 m in diameter. While the presence of the strobe light did not affect fish entrainment rates, the terminal pipe plate and upturned pipe modifications significantly decreased the proportion of fish entrained out of the total number tested relative to control conditions (0.13 ± 0.02 and 0.03 ± 0.02 vs. 0.44 ± 0.04, respectively). These data suggest that sensory deterrents using visual stimuli are not an effective means to reduce diversion pipe interactions for green sturgeon, but that structural alterations to diversions can successfully reduce entrainment for this species. Our results are informative for the development of effective management strategies to mitigate the impacts of water diversions on sturgeon populations and suggest that effective restoration strategies that balance agricultural needs with conservation programmes are possible. PMID:27293677
Indicators of AEI applied to the Delaware Estuary.
Barnthouse, Lawrence W; Heimbuch, Douglas G; Anthony, Vaughn C; Hilborn, Ray W; Myers, Ransom A
2002-05-18
We evaluated the impacts of entrainment and impingement at the Salem Generating Station on fish populations and communities in the Delaware Estuary. In the absence of an agreed-upon regulatory definition of "adverse environmental impact" (AEI), we developed three independent benchmarks of AEI based on observed or predicted changes that could threaten the sustainability of a population or the integrity of a community. Our benchmarks of AEI included: (1) disruption of the balanced indigenous community of fish in the vicinity of Salem (the "BIC" analysis); (2) a continued downward trend in the abundance of one or more susceptible fish species (the "Trends" analysis); and (3) occurrence of entrainment/impingement mortality sufficient, in combination with fishing mortality, to jeopardize the future sustainability of one or more populations (the "Stock Jeopardy" analysis). The BIC analysis utilized nearly 30 years of species presence/absence data collected in the immediate vicinity of Salem. The Trends analysis examined three independent data sets that document trends in the abundance of juvenile fish throughout the estuary over the past 20 years. The Stock Jeopardy analysis used two different assessment models to quantify potential long-term impacts of entrainment and impingement on susceptible fish populations. For one of these models, the compensatory capacities of the modeled species were quantified through meta-analysis of spawner-recruit data available for several hundred fish stocks. All three analyses indicated that the fish populations and communities of the Delaware Estuary are healthy and show no evidence of an adverse impact due to Salem. Although the specific models and analyses used at Salem are not applicable to every facility, we believe that a weight of evidence approach that evaluates multiple benchmarks of AEI using both retrospective and predictive methods is the best approach for assessing entrainment and impingement impacts at existing facilities.
Code of Federal Regulations, 2012 CFR
2012-01-01
... early life stages 2 SMALL, MODERATE, OR LARGE. The impacts of entrainment are small at many plants but... fish and shellfish in early life stages 1 SMALL. Entrainment of fish has not been found to be a problem... questionable. In particular, science cannot rule out the possibility that there will be no cancer fatalities...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, Gary E.; Ploskey, Gene R.; Hedgepeth, J.
2008-07-29
Dams impact the survival of juvenile anadromous fishes by obstructing migration corridors, lowering water quality, delaying migrations, and entraining fish in turbine discharge. To reduce these impacts, structural and operational modifications to dams— such as voluntary spill discharge, turbine intake guidance screens, and surface flow outlets—are instituted. Over the last six years, we have used acoustic imaging technology to evaluate the effects of these modifications on fish behavior, passage rates, entrainment zones, and fish/flow relationships at hydroelectric projects on the Columbia River. The imaging technique has evolved from studies documenting simple movement patterns to automated tracking of images to mergingmore » and analysis with concurrent hydraulic data. This chapter chronicles this evolution and shows how the information gleaned from the scientific evaluations has been applied to improve passage conditions for juvenile salmonids. We present data from Bonneville and The Dalles dams that document fish behavior and entrainment zones at sluiceway outlets (14 to 142 m3/s), fish passage rates through a gap at a turbine intake screen, and the relationship between fish swimming effort and hydraulic conditions. Dam operators and fisheries managers have applied these data to support decisions on operational and structural changes to the dams for the benefit of anadromous fish populations in the Columbia River basin.« less
The role of mechanical resonance in the neural control of swimming in fishes.
Tytell, Eric D; Hsu, Chia-Yu; Fauci, Lisa J
2014-02-01
The bodies of many fishes are flexible, elastic structures; if you bend them, they spring back. Therefore, they should have a resonant frequency: a bending frequency at which the output amplitude is maximized for a particular input. Previous groups have hypothesized that swimming at this resonant frequency could maximize efficiency, and that a neural circuit called the central pattern generator might be able to entrain to a mechanical resonance. However, fishes swim in water, which may potentially damp out many resonant effects. Additionally, their bodies are elongated, which means that bending can occur in complicated ways along the length of the body. We review previous studies of the mechanical properties of fish bodies, and then present new data that demonstrate complex bending properties of elongated fish bodies. Resonant peaks in amplitude exist, but there may be many of them depending on the body wavelength. Additionally, they may not correspond to the maximum swimming speed. Next, we describe experiments using a closed-loop preparation of the lamprey, in which a preparation of the spinal cord is linked to a real-time simulation of the muscle and body properties, allowing us to examine resonance entrainment as we vary the simulated resonant frequency. We find that resonance entrainment does occur, but is rare. Gain had a significant, though weak, effect, and a nonlinear muscle model produced resonance entrainment more often than a linear filter. We speculate that resonance may not be a critical effect for efficient swimming in elongate, anguilliform swimmers, though it may be more important for stiffer carangiform and thunniform fishes. Copyright © 2014 Elsevier GmbH. All rights reserved.
Hooley-Underwood, Zachary; Mandeville, Elizabeth G.; Gerrity, Paul C.; Deromedi, J. W.; Johnson, Kevin; Walters, Annika W.
2018-01-01
Dams and water diversions fragment habitat, entrain fish, and alter fish movement. Many Burbot Lota lota populations are declining, with dams and water diversions thought to be a major threat. We used multiple methods to identify Burbot movement patterns and assess entrainment into an irrigation system in the Wind River, Wyoming. We assessed seasonal movement of Burbot with a mark–recapture (PIT tagging) study, natal origins of entrained fish with otolith microchemistry, and historic movement with genotyping by sequencing. We found limited evidence of entrainment in irrigation waters across all approaches. The mark–recapture study indicated that out‐migration from potential source populations could be influenced by flow regime but was generally low. Otolith and genomic results suggested the presence of a self‐sustaining population within the irrigation network. We conclude that emigration from natural tributary populations is not the current source of the majority of Burbot found in irrigation waters. Instead, reservoir and irrigation canal construction has created novel habitat in which Burbot have established a population. Using a multi‐scale approach increased our inferential abilities and mechanistic understanding of movement patterns between natural and managed systems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baldwin, Casey; Polacek, Matt
2009-03-01
Hatchery supplementation of kokanee Oncorhynchus nerka and rainbow trout O. mykiss has been the primary mitigation provided by Bonneville Power Administration for loss of anadromous fish to the waters above Grand Coulee Dam (GCD). The hatchery program for rainbow trout has consistently met management goals and provided a substantial contribution to the fishery; however, spawner returns and creel survey results for kokanee have been below management goals. Our objective was to identify factors that limit limnetic fish production in Lake Roosevelt by evaluating abiotic conditions, food limitations, piscivory, and entrainment. Dissolved oxygen concentration was adequate throughout most of the year;more » however, levels dropped to near 6 mg/L in late July. For kokanee, warm water temperatures during mid-late summer limited their nocturnal distribution to 80-100 m in the lower section of the reservoir. Kokanee spawner length was consistently several centimeters longer than in other Pacific Northwest systems, and the relative weights of rainbow trout and large kokanee were comparable to national averages. Large bodied daphnia (> 1.7 mm) were present in the zooplankton community during all seasons indicating that top down effects were not limiting secondary productivity. Walleye Stizostedion vitreum were the primary piscivore of salmonids in 1998 and 1999. Burbot Lota lota smallmouth bass Micropterus dolomieui, and northern pikeminnow Ptychocheilus oregonensis preyed on salmonids to a lesser degree. Age 3 and 4 walleye were responsible for the majority (65%) of the total walleye consumption of salmonids. Bioenergetics modeling indicated that reservoir wide consumption by walleye could account for a 31-39% loss of stocked kokanee but only 6-12% of rainbow trout. Size at release was the primary reason for differential mortality rates due to predation. Entrainment ranged from 2% to 16% of the monthly abundance estimates of limnetic fish, and could account for 30% of total mortality of limnetic fishes, depending on the contribution of littoral zone fishes. Inflow to GCD forebay showed the strongest negative relationship with entrainment whereas reservoir elevation and fish vertical distribution had no direct relationship with entrainment. Our results indicate that kokanee and rainbow trout in Lake Roosevelt were limited by top down impacts including predation and entrainment, whereas bottom up effects and abiotic conditions were not limiting.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmons, M.; Johnson, Robert; McKinstry, C.
The construction of Grand Coulee and Chief Joseph dams on the Columbia River resulted in the complete extirpation of the anadromous fishery upstream of these structures. Today, this area is totally dependent upon resident fish resources to support local fisheries. The resident fishing is enhanced by an extensive stocking program for target species in the existing fishery, including kokanee (Oncorhynchus nerka kennerlyi) and rainbow trout (O. mykiss). The kokanee fishery in Lake Roosevelt has not been meeting the return goals set by fisheries managers despite the stocking program. Investigations of physical and biological factors that could affect the kokanee populationmore » found predation and entrainment had a significant impact on the fish population. In 1999 and 2000, walleye (Sander vitreum) consumed between 15% and 9%, respectively, of the hatchery kokanee within 41 days of their release, while results from a study in the late 1990s estimated that entrainment at Grand Coulee Dam could account for up to 30% of the total mortality of the stocked fish. To address the entrainment loss, the Bonneville Power Administration commissioned a study to determine if fish would avoid areas illuminated by strobe lights in the forebay of the third powerplant. This work was conducted by Pacific Northwest National Laboratory (PNNL) in conjunction with the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes). From 2002 through 2004, six strobe lights were suspended in the center of the opening to the third powerplant forebay during summer months. Results from those studies indicated that fish appeared to be attracted to the illuminated area but only at night and when flow conditions within the third powerplant forebay were minimal. However, small but consistent results from these studies indicated that under high flow conditions, fish might be avoiding the lights. The 2005 study was designed to examine whether, under high flow conditions near the penstock openings, fish would avoid the lighted regions. Four omnidirectional strobe lights were deployed on the one trash rack directly in front of one turbine penstock. Seven splitbeam transducers were deployed to monitor fish approaching three penstock openings either from in front of the trash racks or moving down the dam behind the trash racks. Four key results emerged from the 2005 study. The results provide insight into the current level of entrainment and how fish respond to strobe lights under high flow conditions. First, very few fish were detected inside the trash racks. Of the more than 3,200 targets identified by the data processing, less than 100 were detected inside the trash racks. Only 23 fish were found inside the trash racks behind the strobe lights. Of those 21 fish, 13 were detected when the lights were on. Most of the fish detected behind the trash racks were above the turbine penstock but were headed downward. No fish were detected at night when minimal flows occurred between midnight and 4:00 a.m. Second, significantly more fish (P < 0.001) were detected in front of the trash racks when the lights were on at night. On a count-per-hour basis, the difference between lights off and lights on was apparent in the early morning hours at depths between 25 m and 50 m from the transducers. The lights were approximately 34 m below the splitbeam transducers, and fish detected at night with lights on were found at a median depth of approximately 35 m, compared to a median depth of from 20.6 to 23.5 m when the lights were off. The differences in depth between lights on and off at night were also significant (P < 0.001). Additionally, the increase in fish occurred only in front of the trash rack where the strobe lights were mounted; there was no increase in the number of detections by the transducers aimed away from the lights. Third, fish clearly manifested a behavioral response to the strobe lights during the day. When the lights were on, fish detected by three of the four transducers generally were swimming north, parallel to the face of the dam. However, the distribution of swimming directions for fish detected by the transducer immediately to the north of the lights was bimodal, with some fish swimming south toward the lighted region. This behavior was similar to that seen at night when the lights were on. Fourth, kokanee, rainbow trout, and walleye were detected near the strobe lights. Data were obtained from three sources: fish size from the hydroacoustic sensors and fish species from gill netting and video recording. Fish ranging in length from 30 to 600 mm (averaging 125 mm) were detected by the splitbeam transducers. There was little difference in target strength for fish detected above 25 m depth with respect to time of day or light treatment. Below 25 m and closer to the strobe lights, larger fish were present when the lights were on during the night, and smaller fish were present during the day.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmons, M.; McKinstry, C.; Cook, C.
Since 1995, the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes) have managed the Chief Joseph Kokanee Enhancement Project as part of the Northwest Power Planning Council (NWPPC) Fish and Wildlife Program. Project objectives have focused on understanding natural production of kokanee (a land-locked sockeye salmon) and other fish stocks in the area above Grand Coulee and Chief Joseph Dams on the Columbia River. A 42-month investigation from 1996 to 1999 determined that from 211,685 to 576,676 fish were entrained annually at Grand Coulee Dam. Analysis of the entrainment data found that 85% of the total entrainment occurred atmore » the dam's third powerplant. These numbers represent a significant loss to the tribal fisheries upstream of the dam. In response to a suggestion by the NWPPC Independent Scientific Review Panel, the scope of work for the Chief Joseph Kokanee Enhancement Project was expanded to include a multiyear pilot test of a strobe light system to help mitigate fish entrainment. This report details the work conducted during the third year of the strobe light study by researchers of the Colville Confederated Tribes in collaboration with the Pacific Northwest National Laboratory. The objective of the study is to determine the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee and rainbow trout under field conditions. The prototype system consists of six strobe lights affixed to an aluminum frame suspended 15 m vertically underwater from a barge secured in the center of the entrance to the third powerplant forebay. The lights, controlled by a computer, illuminate a region directly upstream of the barge. The 2003 study period extended from June 16 through August 1. Three light treatments were used: all six lights on for 24 hours, all lights off for 24 hours, and three of six lights cycled on and off every hour for 24 hours. These three treatment conditions were assigned randomly within a 3-day block throughout the study period. Hydroacoustic technology was used to evaluate the effectiveness of the strobe lights in eliciting a negative phototactic response in fish. The hydroacoustic system in 2003 comprised seven splitbeam transducers arrayed in front of the strobe lights, two multibeam transducers behind the lights, and a mobile splitbeam system. The seven splitbeam transducers were deployed so they tracked fish entering and within the region illuminated by the strobe lights. These transducers were spaced approximately 4 m apart on an aluminum frame floating upstream of the barge and looked vertically downward. The multibeam transducers monitored the distribution of fish directly behind and to both sides of the lights, while the mobile splitbeam system looked at the distribution of fish within the third powerplant forebay. To augment the hydroacoustic data, additional studies were conducted. The hydrodynamic characteristics of the third powerplant forebay were measured, and acoustically tagged juvenile kokanee were released upstream of the strobe lights and tracked within the forebay and downstream of the dam. Analysis of the effect of strobe lights on kokanee and rainbow trout focused on the number of fish detected in each of the areas covered by one of the downlooking transducers, the timing of fish arrivals after the status of the strobe lights changed, fish swimming effort (detected velocity minus flow velocity), and fish swimming direction. Water velocity measurements were used to determine fish swimming effort. The tracking of tagged kokanee provided data on fish movements into and out of the third powerplant forebay, including entrainment.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2008-12-18
During this contract, we continued testing underwater strobe lights to determine their effectiveness at repelling kokanee Oncorhynchus nerka away from Dworshak Dam. We tested one set of nine strobe lights flashing at a rate of 360 flashes/min in front of turbine 3 while operating at higher discharges than previously tested. The density and distribution of fish, (thought to be mostly kokanee), were monitored with a split-beam echo sounder. We then compared fish counts and densities during nights when the lights were flashing to counts and densities during adjacent nights without the lights on. On five nights between January 31 andmore » February 28, 2006, when no lights were present, fish counts near turbine 3 averaged eight fish and densities averaged 91 fish/ha. When strobe lights were turned on during five adjacent nights during the same period, mean counts dropped to four fish and densities dropped to 35 fish/ha. The decline in counts (49%) was not statistically significant (p = 0.182), but decline in densities (62%) was significant (p = 0.049). There appeared to be no tendency for fish to habituate to the lights during the night. Test results indicated that strobe lights were able to reduce fish densities by at least 50% in front of turbines operating at higher discharges, which would be sufficient to improve sportfish harvest. We also used split-beam hydroacoustics to monitor the kokanee population in Dworshak Reservoir during 2005. Estimated abundance of kokanee decreased from the 2004 population estimate. Based on hydroacoustic surveys, we estimated 3,011,626 kokanee (90% CI {+-} 15.2%) in Dworshak Reservoir, July 2005. This included 2,135,986 age-0 (90% CI {+-} 15.9%), 769,175 age-1 (90% CI {+-} 16.0%), and 107,465 age-2 (90% CI {+-} 15.2%). Poor survival of kokanee from age-1 to age-2 continued to keep age-2 densities below the management goal of 30-50 adults/ha. Entrainment sampling was conducted with fixed-site split-beam hydroacoustics a minimum of two days per month for a continuous 24 h period when dam operations permitted. The highest fish detection rates from entrainment assessments were again found during nighttime periods and lowest during the day. Fish detection rates were low during high discharges throughout the spring and summer and highest during low discharges in September and November. High discharge during drawdowns for anadromous fish flows in July and August again resulted in low detection rates and susceptibility to entrainment. Index counts of spawning kokanee in four tributary streams totaled 12,742 fish. This data fits the previously developed relationship between spawner counts and adult kokanee abundance in the reservoir.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None
2008-12-18
During this contract, we continued testing underwater strobe lights to determine their effectiveness at repelling kokanee Oncorhynchus nerka away from Dworshak Dam. Strobe light tests were conducted on four nights from April 24-27, 2006, in front of the middle reservoir outlet (RO) 2. The density and distribution of fish, (thought to be mostly kokanee), were monitored with a split-beam echo sounder. We then compared fish counts and densities during nights when the lights were flashing to counts and densities during adjacent nights without the lights on. On two nights, April 25 and 27, 2006, when no lights were present, fishmore » counts near RO 2 averaged 12.4 fish and densities averaged 31.0 fish/ha. When strobe lights were turned on during the nights of April 24 and 26, mean counts dropped to 4.7 fish and densities dropped to 0.5 fish/ha. The decline in counts (62%) and densities (99%) was statistically significant (p = 0.009 and 0.002, respectively). Test results indicated that strobe lights were able to reduce fish densities by at least 50% in front of a discharging reservoir outlet, which would be sufficient to improve sport fish harvest. We also used split-beam hydroacoustics to monitor the kokanee population in Dworshak Reservoir during 2006. Estimated abundance of kokanee increased from the 2005 population estimate. Based on hydroacoustic surveys, we estimated approximately 5,815,000 kokanee (90% CI {+-} 27.6%) in Dworshak Reservoir in August 2006. This included 2,183,000 age-0 (90% CI {+-} 24.2%), 1,509,000 age-1 (90% CI {+-} 29.0%), and 2,124,000 age-2 (90% CI {+-} 27.6%) kokanee. This resulted in a density of age-2 kokanee above the management goal of 30-50 adults/ha. Entrainment sampling was conducted with fixed-site, split-beam hydroacoustics from May through September for a continuous 24 h period when dam operations permitted. The highest fish detection rates from entrainment assessments were found during dawn periods, unlike previous year's results, which were highest during nighttime. The lowest detection rate was found during the day period, which was consistent with previous findings. Fish detection rates were generally low during high discharges throughout the summer and highest during low discharges in May and June. Low detection rates were found during high discharge periods during drawdowns for anadromous fish flows in July and August, which resulted in low susceptibility to entrainment. Counts of spawning kokanee in four tributary streams totaled 29,743 fish. These data fit the previously developed relationship between spawner counts and adult kokanee abundance in the reservoir.« less
Entrainment of Juvenile and Adult American Shad at a Pumped Storage Facility
Mathur, Dilip; Heisey, Paul G.; Royer, Doug D.; ...
2017-12-13
The American Shad Alosa sapidissima has been targeted for restoration to the upper Susquehanna River, and entrainment losses at hydroelectric facilities on the river, including the Muddy Run Pumped Storage Facility, are of concern for the potential growth of the American Shad population. Based on the integration of pumping volume, time of entrainment, and literature–reported diel emigration of juvenile American Shad, the entrainment rate (N = 145; 53 exposed to pumping) was estimated at 3.5%. The entrainment rate for adults (N = 507) was estimated at 0.3–3.9%. Using multistate mark–recapture models, the estimated entrainment probabilities (Ψ) of radio–tagged juveniles weremore » higher during periods of extended pumping (>1 h; Ψ = 0.093; 95% confidence interval [CI] = 0.054–0.156) than at periods of no pumping or short–duration pumping (<1 h; Ψ < 0.0001; 95% CI = 0.0–0.001); the high extended pumping occurred between 2300 and 0600 hours. Entrainment probabilities for adults were low (Ψ < 0.02); the highest probability occurred for fish detected downstream of the intake during the peak portion of the run (Ψ = 0.015; 95% CI = 0.004–0.047). Entrainment probability for most adult fish did not differ from zero. The low values of Ψ for both life stages were attributed to (1) the deep location of the intake (intake ceiling >11.7 m below the water surface), (2) the surface orientation of American Shad (upper 3.1 m), (3) the low overlap between high–volume pumping and peak emigration/migration times, (4) the pumping volume relative to prevailing river flows, and (5) the prolonged, robust swimming speed of American Shad, particularly that of adults (>2.2 m/s), which exceeded the intake velocity (0.2–0.9 m/s). Entrainment of juveniles increased with co–occurrence of low incoming river flows, high pumping volume, and peak emigration times. Furthermore, quantification of migratory species’ entrainment at pumped storage facilities requires integration of diel migration/emigration times with the frequency, timing, and duration of pumping volume.« less
Entrainment of Juvenile and Adult American Shad at a Pumped Storage Facility
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mathur, Dilip; Heisey, Paul G.; Royer, Doug D.
The American Shad Alosa sapidissima has been targeted for restoration to the upper Susquehanna River, and entrainment losses at hydroelectric facilities on the river, including the Muddy Run Pumped Storage Facility, are of concern for the potential growth of the American Shad population. Based on the integration of pumping volume, time of entrainment, and literature–reported diel emigration of juvenile American Shad, the entrainment rate (N = 145; 53 exposed to pumping) was estimated at 3.5%. The entrainment rate for adults (N = 507) was estimated at 0.3–3.9%. Using multistate mark–recapture models, the estimated entrainment probabilities (Ψ) of radio–tagged juveniles weremore » higher during periods of extended pumping (>1 h; Ψ = 0.093; 95% confidence interval [CI] = 0.054–0.156) than at periods of no pumping or short–duration pumping (<1 h; Ψ < 0.0001; 95% CI = 0.0–0.001); the high extended pumping occurred between 2300 and 0600 hours. Entrainment probabilities for adults were low (Ψ < 0.02); the highest probability occurred for fish detected downstream of the intake during the peak portion of the run (Ψ = 0.015; 95% CI = 0.004–0.047). Entrainment probability for most adult fish did not differ from zero. The low values of Ψ for both life stages were attributed to (1) the deep location of the intake (intake ceiling >11.7 m below the water surface), (2) the surface orientation of American Shad (upper 3.1 m), (3) the low overlap between high–volume pumping and peak emigration/migration times, (4) the pumping volume relative to prevailing river flows, and (5) the prolonged, robust swimming speed of American Shad, particularly that of adults (>2.2 m/s), which exceeded the intake velocity (0.2–0.9 m/s). Entrainment of juveniles increased with co–occurrence of low incoming river flows, high pumping volume, and peak emigration times. Furthermore, quantification of migratory species’ entrainment at pumped storage facilities requires integration of diel migration/emigration times with the frequency, timing, and duration of pumping volume.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polgar, T.T.; Summers, J.K.; Haire, M.S.
1979-10-01
Power plant cooling system entrainment and plume entrainment may reduce the sizes of fish, benthic and other populations through the destruction of early life stages. This document has been prepared to estimate the potential effects and impacts of entrainment by the Morgantown (PEPCO) and Possum Point (VEPCO) steam electric generating stations. Maryland water quality regulation requires the determination of entrainment effects on spawning and nursery areas of consequence for the Representative Important Species (RIS) designated within the regulation. The purpose of this evaluation is to provide information for regulatory decisions regarding the need for alternative cooling modes at existing facilities.more » Caclulation schemes are presented to estimate the individual and cumulative entrainment effects due to the operations of both the Morgantown and Possum Point facilities. Potential adult population losses due to the entrainment of early life stages were estimated for 24 RIS populations.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, R.; McKinstry, C.; Cook, C.
This report documents a four-year study(a) to assess the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee (Oncorhynchus nerka kennerlyi) and rainbow trout (O. mykiss) at the entrance to the forebay of the third powerplant at Grand Coulee Dam. The work was conducted for the Bonneville Power Administration, U.S. Department of Energy, by Pacific Northwest National Laboratory (PNNL) in conjunction with the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes). In this report, emphasis is placed on the methodology and results associated with the fourth project year and compared with findings frommore » the previous years to provide an overall project summary. Since 1995, the Colville Confederated Tribes have managed the Chief Joseph Kokanee Enhancement Project as part of the Northwest Power and Conservation Council Fish and Wildlife Program. Project objectives have focused on understanding natural production of kokanee (a land-locked sockeye salmon) and other fish stocks in the area above Grand Coulee and Chief Joseph dams on the Columbia River (Figure S.1). A 42-month investigation from 1996 to 1999 determined that from 211,685 to 576,676 fish, including kokanee and rainbow trout, were entrained annually at Grand Coulee Dam. Analysis of the data found that 85% of the total entrainment occurred at the dam's third powerplant. Because these entrainment rates represent a significant loss to the tribal fisheries upstream of the dam, they have been judged unacceptable to fishery managers responsible for perpetuating the fishery in Lake Roosevelt. In an effort to reduce fish entrainment rates, the scope of work for the Chief Joseph Kokanee Enhancement Project was modified in 2001 to include a multiyear study of the efficacy of using strobe lights to deter fish from entering the third powerplant forebay. Pacific Northwest National Laboratory initiated the four-year study in collaboration with Colville Tribal Fisheries. The objective of the study was to determine the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee and rainbow trout under field conditions.« less
NASA Astrophysics Data System (ADS)
Nakata, S.; Yoshikawa, K.; Kawakami, H.
1992-10-01
We propose a new sensing method of varios chemical species based on information on the mode of entrainment in an electrochemically forced oscillator. It is demonstrated that the presence of one of the four basic taste compounds (salty, sweet, bitter, and sour) changes the mode of entrainment in a unique way. Thus a characteristics change of the entrainment allows us to obtain information on the properties of the electrochemical system. The response of the mode of entrainment to the taste compounds is related to the nonlinear properties of the studied electrochemical system, i.e., its voltage dependent capacitance and conductance. The experimental results are compared with computer simulations of a model system in which the capacitance is a nonlinear function of the voltage.
Stated Preference Survey Estimating the Willingness to Pay ...
A national stated preference survey designed to elicit household willingness to pay for reductions in impinged and entrained fish at cooling water intake structures. To improve estimation of environmental benefits estimation
Managing water to protect fish: A review of California's environmental water account, 2001-2005
Brown, L.R.; Kimmerer, W.; Brown, R.
2009-01-01
The Sacramento-San Joaquin Delta, the landward reach of the San Francisco Estuary, provides habitat for threatened delta smelt, endangered winter-run Chinook salmon, and other species of concern. It is also the location of huge freshwater diversion facilities that entrain large numbers of fish. Reducing the entrainment of listed fishes into these facilities has required curtailment of pumping, reducing the reliability of water deliveries. We reviewed the first 5 years (2001-2005) of the Environmental Water Account (EWA), a program instituted to resolve conflicts between protecting listed fishes and providing a reliable water supply. The EWA provided fishery agencies with control over 0.2-0.4 km3 of water to be used for fish protection at no cost to users of exported water, and fish agencies guaranteed no disruption of water supply for fish protection. The EWA was successful in reducing uncertainty in water supply; however, its contribution to the recovery of listed fishes was unclear. We estimated the effectiveness of the EWA to be modest, increasing the survival of winter-run Chinook salmon by 0-6% (dependent on prescreen mortality), adult delta smelt by 0-1%, and juvenile delta smelt by 2-4%. Allocating EWA water for a single life stage of one species could provide larger gains in survival. An optimally allocated EWA of equal size to the median of the first 5 years could increase abundance of juvenile delta smelt up to 7% in the springs of dry years. If the EWA is to become a long-term program, estimates of efficacy should be refined. If the program is to be held accountable for quantitative increases in fish populations, it will be necessary to integrate scientific, possibly experimental, approaches. ?? 2008 Springer Science+Business Media, LLC.
Barriers Keep Drops Of Water Out Of Infrared Gas Sensors
NASA Technical Reports Server (NTRS)
Murray, Sean K.
1996-01-01
Infrared-sensor cells used for measuring partial pressures of CO(2) and other breathable gases modified to prevent entry of liquid water into sensory optical paths of cells. Hydrophobic membrane prevents drops of water entrained in flow from entering optical path from lamp to infrared detectors.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stark, Eric J.
2008-12-18
During this contract, we continued testing underwater strobe lights to determine their effectiveness at repelling kokanee Oncorhynchus nerka away from Dworshak Dam. Strobe light tests were conducted on four nights from April 24-27, 2006, in front of the middle reservoir outlet (RO) 2. The density and distribution of fish, (thought to be mostly kokanee), were monitored with a split-beam echo sounder. We then compared fish counts and densities during nights when the lights were flashing to counts and densities during adjacent nights without the lights on. On two nights, April 25 and 27, 2006, when no lights were present, fishmore » counts near RO 2 averaged 12.4 fish and densities averaged 31.0 fish/ha. When strobe lights were turned on during the nights of April 24 and 26, mean counts dropped to 4.7 fish and densities dropped to 0.5 fish/ha. The decline in counts (62%) and densities (99%) was statistically significant (p = 0.009 and 0.002, respectively). Test results indicated that strobe lights were able to reduce fish densities by at least 50% in front of a discharging reservoir outlet, which would be sufficient to improve sport fish harvest. We also used split-beam hydroacoustics to monitor the kokanee population in Dworshak Reservoir during 2006. Estimated abundance of kokanee increased from the 2005 population estimate. Based on hydroacoustic surveys, we estimated approximately 5,815,000 kokanee (90% CI {+-} 27.6%) in Dworshak Reservoir in August 2006. This included 2,183,000 age-0 (90% CI {+-} 24.2%), 1,509,000 age-1 (90% CI {+-} 29.0%), and 2,124,000 age-2 (90% CI {+-} 27.6%) kokanee. This resulted in a density of age-2 kokanee above the management goal of 30-50 adults/ha. Entrainment sampling was conducted with fixed-site, split-beam hydroacoustics from May through September for a continuous 24 h period when dam operations permitted. The highest fish detection rates from entrainment assessments were found during dawn periods, unlike previous year's results, which were highest during nighttime. The lowest detection rate was found during the day period, which was consistent with previous findings. Fish detection rates were generally low during high discharges throughout the summer and highest during low discharges in May and June. Low detection rates were found during high discharge periods during drawdowns for anadromous fish flows in July and August, which resulted in low susceptibility to entrainment. Counts of spawning kokanee in four tributary streams totaled 29,743 fish. These data fit the previously developed relationship between spawner counts and adult kokanee abundance in the reservoir.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
The Sensor Fish collects information that can be used to evaluate conditions encountered by juvenile salmonids and other fish as they pass through hydroelectric dams on their way to the ocean. Sensor Fish are deployed in turbines, spillways, and sluiceways and measure changes in pressure, angular rate of change, and linear acceleration during passage. The software is need to make Sensor Fish fully functional and easy to use. Sensor Fish Communicator (SFC) links to Sensor Fish, allowing users to control data collection settings and download data. It may also be used to convert native raw data (.raw2) files into Commamore » Separated Variable (.csv) files and plot the results. The multiple capabilities of the SFC allow hardware communication, data conversion, and data plotting with one application.« less
Kock, Tobias J.; Evans, Scott D.; Liedtke, Theresa L.; Rondorf, Dennis W.; Kohn, Mike
2009-01-01
We conducted a radiotelemetry evaluation to determine if strobe lights could be used to decrease turbine entrainment of juvenile steelhead (Oncorhynchus mykiss) at Cowlitz Falls Dam, Washington. We found that radio-tagged juvenile steelhead approached and entered two spillbays (one lighted, one unlighted) in equal proportions. However, the presence of strobe lights was associated with decreased spillbay residence time of juvenile steelhead and increased passage through induction slots (secondary turbine intakes located upstream of the ogee on the spillway). Mean residence time of tagged fish inside the lighted spillbay was 14 min compared to 62 min inside the unlighted spillbay. Radio-tagged steelhead passed through induction slots at a higher proportion in the lighted spillbay (55%) than in the unlighted spillbay (26%). Recent studies have suggested that strobe lights can induce torpor in juvenile salmonids. We believe that strobe light exposure affected fish in our study at a location where they were susceptible to high flows thereby reducing mean residence time and increasing the proportion of tagged fish entering induction slots in the lighted spillbay. Our results suggest that factors such as deployment location, exposure, and flow are important variables that should be considered when evaluating strobe lights as a potential fish-deterring management tool.
Six-Degree-of-Freedom Sensor Fish Design and Instrumentation
Deng, Zhiqun; Carlson, Thomas J.; Duncan, Joanne P.; Richmond, Marshall C.
2007-01-01
Fish passing through dams may be injured or killed despite advances in turbine design, project operations and other fish bypass systems. The six-degree-of-freedom (6DOF) Sensor Fish device is an autonomous sensor package that characterizes the physical conditions and physical stresses to which fish are exposed when they pass through complex hydraulic environments. It has been used to identify the locations and operations where conditions are severe enough to injure or kill fish. During the design process, a set of governing equations of motion for the Sensor Fish was derived and simulated to understand the design implications of instrument selection and placement within the body of the device. The Sensor Fish package includes three rotation sensors, three acceleration sensors, a pressure sensor, and a temperature sensor with a sampling frequency of 2,000 Hz. Its housing is constructed of clear polycarbonate plastic. It is 24.5 mm in diameter and 90 mm in length and weighs about 43 g, similar to the size and density of a yearling salmon smolt. The accuracy of the pressure sensor was determined to be within 0.2 psi. In laboratory acceptance tests, the relative errors of both the linear acceleration and angular velocity measurements were determined to be less than 5%. An exposure is defined as a significant event when the acceleration reaches predefined thresholds. Based on the different characteristic of acceleration and rotation velocities, the exposure event is categorized as either a collision between the Sensor Fish and a solid structure or shear caused by turbulence. Since its development in 2005, the 6DOF Sensor Fish has been deployed successfully at many major dams in the United States. PMID:28903301
Status of downstream fish passage at hydroelectric projects in the northeast, USA
Odeh, Mufeed; Orvis, Curtis
1997-01-01
In the northeastern United States several guidance, protection, and conveyance methods have been employed to assist downstream migrating fish. Overlay racks, standard bar racks with close spacing, louvers, curtain walls, guide walls, netting, and other means have been used to guide and protect fish from entrainment. The design process of these facilities comprises consideration of various factors, including flow approach, attraction flow, guidance and protection devices, bypass location, conveyance mechanism, and plunge pool conditions. This paper presents the status of the design criteria for downstream fish passage facilities at hydroelectric sites in the northeast part of the United States. Examples of existing facilities are given.
NASA Astrophysics Data System (ADS)
Sur, Ritobrata; Sun, Kai; Jeffries, Jay B.; Hanson, Ronald K.; Pummill, Randy J.; Waind, Travis; Wagner, David R.; Whitty, Kevin J.
2014-07-01
Tunable diode laser absorption spectroscopy based in situ sensors for CO (2.33 μm), CO2 (2.02 μm), CH4 (2.29 μm) and H2O (1.35 μm) were deployed in a pilot-scale (1 ton/day), high-pressure (up to 18 atm), entrained flow, oxygen-blown, slagging coal gasifier at the University of Utah. Measurements of species mole fraction with 3-s time resolution were taken at the pre- and post-filtration stages of the gasifier synthesis gas (called here syngas) output flow. Although particulate scattering makes pre-filter measurements more difficult, this location avoids the time delay of flow through the filtration devices. With the measured species and known N2 concentrations, the H2 content was obtained via balance. The lower heating value and the Wobbe index of the gas mixture were estimated using the measured gas composition. The sensors demonstrated here show promise for monitoring and control of the gasification process.
Sensor Fish: an autonomous sensor package for characterizing complex flow fields and fish passage
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Zhiqun; Martinez, Jayson J.; Lu, Jun
Fish passing through dams or other hydraulic structures may be injured or killed despite advances in turbine design, project operations, and other fish bypass systems. The Sensor Fish (SF) device is an autonomous sensor package that characterizes the physical conditions and stressors to which fish are exposed during passage through hydro facilities. It was designed to move passively as a neutrally buoyant object through severe hydraulic environments, while collecting high-resolution sensor data. Since its first generation1, the SF device has been successfully deployed in many fish passage studies and has evolved to be a major tool for characterizing fish passagemore » conditions during fish passage in the Columbia River Basin. To better accelerate hydropower development, the U.S. Department of Energy Water Power Program provided funding to develop a new generation (Gen 2 SF) to incorporate more capabilities and accommodate a wider range of users over a broader range of turbine designs and operating environments. The Gen 2 SF (Figure 1) is approximately the size and density of a yearling salmon smolt and is nearly neutrally buoyant. It contains three-dimensional (3D) rotation sensors, 3D linear acceleration sensors, a pressure sensor, a temperature sensor, a 3D orientation sensor, a radiofrequency (RF) transmitter, and a recovery module2. A low-power microcontroller collects data from the sensors and stores up to 5 min of data on internal flash memory at a sampling frequency of 2048 Hz. The recovery module makes the SF positively buoyant after a pre-programmed period of time, causing it to float to the surface for recovery.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Johnson, R.; McKinstry, C.; Simmons, C.
Since 1995, the Confederated Tribes of the Colville Reservation (Colville Confederated Tribes) have managed the Chief Joseph Kokanee Enhancement Project as part of the Northwest Power Planning Council (NWPPC) Fish and Wildlife Program. Project objectives have focused on understanding natural production of kokanee (a land-locked sockeye salmon) and other fish stocks in the area above Grand Coulee and Chief Joseph Dams on the Columbia River. A 42-month investigation concluded that entrainment at Grand Coulee Dam ranged from 211,685 to 576,676 fish annually. Further analysis revealed that 85% of the total entrainment occurred at the dam's third powerplant. These numbers representmore » a significant loss to the tribal fisheries upstream of the dam. In response to a suggestion by the NWPPC Independent Scientific Review Panel, the scope of work for the Chief Joseph Kokanee Enhancement Project was expanded to include a multiyear pilot test of a strobe light system to help mitigate fish entrainment. This report details the work conducted during the second year of the study by researchers of the Colville Confederated Tribes in collaboration with the Pacific Northwest National Laboratory. The 2002 study period extended from May 18 through July 30. The objective of the study was to determine the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee and rainbow trout. The prototype system consisted of six strobe lights affixed to an aluminum frame suspended vertically underwater from a barge secured in the center of the entrance to the third powerplant forebay. The lights, controlled by a computer, were aimed to illuminate a specific region directly upstream of the barge. Three light level treatments were used: 6 of 6 lights on, 3 of 6 lights on, and all lights off. These three treatment conditions were applied for an entire 24-hr day and were randomly assigned within a 3-day block throughout the study period. A seven-transducer splitbeam hydroacoustic system was used to evaluate the effectiveness of the strobe lights in eliciting a negative phototactic response in fish. The transducers were deployed so they tracked fish entering and within the region illuminated by the strobe lights. Two of the seven transducers were mounted to the frame containing the strobe lights and were oriented horizontally. The remaining five transducers were spaced approximately 4 m apart on individual floating frames upstream of the barge, with the transducers looking vertically downward.« less
NASA Astrophysics Data System (ADS)
Hauer, Whitney Blanchard
Ocean thermal energy conversion (OTEC) is a marine renewable energy technology that uses the temperature difference of large volumes of cold deep and warm surface seawater in tropical regions to generate electricity. One anticipated environmental impact of OTEC operations is the entrainment and subsequent mortality of ichthyoplankton (fish eggs and larvae) from the withdrawal of cold and warm seawater. The potential ichthyoplankton loss from the warm water intake was estimated for a proposed 10 MW OTEC pilot plant offshore Oahu, HI based on ambient vertical distribution data. The estimated losses due to entrainment from the warm water intake were 8.418E+02 larvae/1000 m3, 3.26E+06 larvae/day, and 1.19E+09 larvae/year. The potential entrained larvae/year is 1.86 X greater than at the Kahe Generating Station (Kapolei, HI), a 582 MW oil-fired power plant. Extrapolating to age-1 equivalence (9.2E+02 and 2.9E+02 yellowfin and skipjack tuna, respectively), the estimated yearly losses from warm water entrainment of yellowfin and skipjack tuna fish eggs and larvae represent 0.25-0.26 % and 0.09-0.11 % of Hawaii's commercial yellowfin and skipjack tuna industry in 2011 and 2012. An environmental life cycle assessment (LCA) was developed for the proposed OTEC plant operating for 20 and 40 years with availability factors of 0.85, 0.95, and 1.0 to determine the global warming potential (GWP) and cumulative energy demand (CED) impacts. For a 20 year operational OTEC plant, the GWP, CED, energy return on investment (EROI), and energy payback time (EPBT) ranged from 0.047 to 0.055 kg CO2eq/kWh, 0.678 to 0.798 MJ/kWh, 4.51 to 5.31 (unitless), and 3.77 to 4.43 years, respectively. For a 40 year operational OTEC plant, the GWP, CED, EROI, and EBPT ranged from 0.036 to 0.043 kg CO2eq/kWh, 0.527 to 0.620 MJ/kWh, 5.81 to 6.83 (unitless), and 5.85 to 6.89 years, respectively. The GWP impacts are within the range of renewable energy technologies and less than conventional electricity generation, with the exception of nuclear power. As part of the LCA, an ichthyoplankton entrainment impact assessment method was developed to estimate potential loss from the warm water intake for the proposed OTEC plant and for six coastal nuclear power facilities that use once-through cooling technology. Larval fish entrainment (#/kWh) was significantly greater (p<0.026) for the proposed OTEC facility, ranging from 10.0 to 11.7 larvae/kWh due to different capacity factors, than for the six nuclear power facilities that ranged from 0.08 to 0.78 larvae/kWh. While this research did not investigate OTEC technology development and economics, OTEC would be a favorable option for reducing the GWP and the reliance on fossil fuels for electricity generation in HI. The impact of ichthyoplankton mortality due to warm water entrainment for a 10 MW OTEC plant offshore Oahu, HI would likely be acceptable as there are examples of similar water withdrawals for electricity generation. Biological monitoring of a 10 MW facility would verify estimated environmental impacts of the warm water withdrawal and provide new information on the cold water withdrawal before advancing to a commercial (e.g., 100 MW) scale facility.
Measurement error affects risk estimates for recruitment to the Hudson River stock of striped bass.
Dunning, Dennis J; Ross, Quentin E; Munch, Stephan B; Ginzburg, Lev R
2002-06-07
We examined the consequences of ignoring the distinction between measurement error and natural variability in an assessment of risk to the Hudson River stock of striped bass posed by entrainment at the Bowline Point, Indian Point, and Roseton power plants. Risk was defined as the probability that recruitment of age-1+ striped bass would decline by 80% or more, relative to the equilibrium value, at least once during the time periods examined (1, 5, 10, and 15 years). Measurement error, estimated using two abundance indices from independent beach seine surveys conducted on the Hudson River, accounted for 50% of the variability in one index and 56% of the variability in the other. If a measurement error of 50% was ignored and all of the variability in abundance was attributed to natural causes, the risk that recruitment of age-1+ striped bass would decline by 80% or more after 15 years was 0.308 at the current level of entrainment mortality (11%). However, the risk decreased almost tenfold (0.032) if a measurement error of 50% was considered. The change in risk attributable to decreasing the entrainment mortality rate from 11 to 0% was very small (0.009) and similar in magnitude to the change in risk associated with an action proposed in Amendment #5 to the Interstate Fishery Management Plan for Atlantic striped bass (0.006)--an increase in the instantaneous fishing mortality rate from 0.33 to 0.4. The proposed increase in fishing mortality was not considered an adverse environmental impact, which suggests that potentially costly efforts to reduce entrainment mortality on the Hudson River stock of striped bass are not warranted.
Wireless enzyme sensor system for real-time monitoring of blood glucose levels in fish.
Endo, Hideaki; Yonemori, Yuki; Hibi, Kyoko; Ren, Huifeng; Hayashi, Tetsuhito; Tsugawa, Wakako; Sode, Koji
2009-01-01
Periodic checks of fish health and the rapid detection of abnormalities are thus necessary at fish farms. Several studies indicate that blood glucose levels closely correlate to stress levels in fish and represent the state of respiratory or nutritional disturbance. We prepared a wireless enzyme sensor system to determine blood glucose levels in fish. It can be rapidly and conveniently monitored using the newly developed needle-type enzyme sensor, consisting of a Pt-Ir wire, Ag/AgCl paste, and glucose oxidase. To prevent the effects of interfering anionic species, such as uric acid and ascorbic acid, on the sensor response, the Pt-Ir electrode was coated with Nafion, and then glucose oxidase was immobilized on the coated electrode. The calibration curve of the glucose concentration was linear, from 0.18 to 144mg/dl, and the detection limit was 0.18mg/dl. The sensor was used to wirelessly monitor fish glucose levels. The sensor-calibrated glucose levels and actual blood glucose levels were in excellent agreement. The fluid of the inner sclera of the fish eyeball (EISF) was a suitable site for sensor implantation to obtain glucose sample. There was a close correlation between glucose concentrations in the EISF and those in the blood. Glucose concentrations in fish blood could be monitored in free-swimming fish in an aquarium for 3 days.
Cyclonic entrainment of preconditioned shelf waters into a frontal eddy
NASA Astrophysics Data System (ADS)
Everett, J. D.; Macdonald, H.; Baird, M. E.; Humphries, J.; Roughan, M.; Suthers, I. M.
2015-02-01
The volume transport of nutrient-rich continental shelf water into a cyclonic frontal eddy (entrainment) was examined from satellite observations, a Slocum glider and numerical simulation outputs. Within the frontal eddy, parcels of water with temperature/salinity signatures of the continental shelf (18-19°C and >35.5, respectively) were recorded. The distribution of patches of shelf water observed within the eddy was consistent with the spiral pattern shown within the numerical simulations. A numerical dye tracer experiment showed that the surface waters (≤50 m depth) of the frontal eddy are almost entirely (≥95%) shelf waters. Particle tracking experiments showed that water was drawn into the eddy from over 4° of latitude (30-34.5°S). Consistent with the glider observations, the modeled particles entrained into the eddy sunk relative to their initial position. Particles released south of 33°S, where the waters are cooler and denser, sunk 34 m deeper than their release position. Distance to the shelf was a critical factor in determining the volume of shelf water entrained into the eddy. Entrainment reduced to 0.23 Sv when the eddy was furthest from the shelf, compared to 0.61 Sv when the eddy was within 10 km of the shelf. From a biological perspective, quantifying the entrainment of shelf water into frontal eddies is important, as it is thought to play a significant role in providing an offshore nursery habitat for coastally spawned larval fish.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Simmons, M.A.; McKinstry, C.A.; Simmons, C.S.
Since 1995, the Colville Confederated Tribes have managed the Chief Joseph Kokanee Enhancement Project as part of the Northwest Power Planning Council's (NWPPC) Fish and Wildlife Program. Project objectives have focused on understanding natural production of kokanee (a land-locked sockeye salmon) and other fish stocks in the area above Grand Coulee and Chief Joseph Dams on the Columbia River. A 42-month investigation concluded that entrainment at Grand Coulee Dam ranged from 211,685 to 576,676 fish annually. Further analysis revealed that 85% of the total entrainment occurred at the dam's third powerplant. These numbers represent a significant loss to the tribalmore » fisheries upstream of the dam. In response to a suggestion by the NWPPC's Independent Scientific Review Panel, the scope of work for the Chief Joseph Kokanee Enhancement Project was expanded to include a multiyear pilot test of a strobe light system to help mitigate fish entrainment. This report details the work conducted during the first year of the study by researchers of the Colville Confederated Tribes in collaboration with the Pacific Northwest National Laboratory (PNNL). The objective of the study was to determine the efficacy of a prototype strobe light system to elicit a negative phototactic response in kokanee and rainbow trout. Analysis of the effect of strobe lights on the distribution (numbers) and behavior of kokanee and rainbow trout was based on 51, 683 fish targets detected during the study period (June 30 through August 1, 2001). Study findings include the following: (1) Analysis of the count data indicated that significantly more fish were present when the lights were on compared to off. This was true for both the 24-hr tests as well as the 1-hr tests. Powerplant discharge, distance from lights, and date were significant factors in the analysis. (2) Behavioral results indicated that fish within 14 m of the lights were trying to avoid the lights by swimming across the lighted region or upstream. Fish were also swimming faster and straighter when the lights were on compared to off. (3) The behavioral results were most pronounced for medium- and large-sized fish at night. Medium-sized fish, based on acoustic target strength, were similar to the size of kokanee and rainbow trout released upstream of Grand Coulee Dam. Based on this study and general review of strobe lights, the researchers recommend several modifications and enhancements to the follow-on study in 2002. The recommendations include: (1) modifying the study design to include only the 24-hr on/off treatments, and controlling the discharge at the third powerplant, so it can be included as a design variable; and (2) providing additional data by beginning the study earlier (mid-May) to better capture the kokanee population, deploying an additional splitbeam transducer to sample the region close to the lights, and increasing the number of lights to provide better definition of the lit and unlit region.« less
Preliminary Feasibility and Risk Analysis of a Carbon Dioxide Barrier at Brandon Road Lock and Dam
2017-09-01
designed bubble plume must be maintained. Wuest and Lorke (2003) describe this as natural (i.e., wind induced) turbulent mixing in lakes. Their study is...elevated CO2 concentrations in areas sheltered from wind and wave action (much like the approach channel and immediately upstream of the lock chamber) may...or kill them. As part of the development of fish barriers to prevent entrainment of fish into a pump turbine hydropower system, Nestler et al
Applications of the Sensor Fish Technology
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Zhiqun; Carlson, Thomas J.; Duncan, Joanne P.
2007-08-28
The Sensor Fish is an autonomous device developed at Pacific Northwest National Laboratory for U.S. Department of Energy (DOE) and Army Corps of Engineers (COE) to better understand the physical conditions fish experience during passage through hydro-turbines and other dam bypass alternatives. Since its initial development in 1997, the Sensor Fish has undergone several design changes to improve its function and extend the range of its use. The most recent Sensor Fish design, the six-degree-of-freedom (6DOF) device, has been deployed successfully to characterize the environment fish experience when they pass through several hydroelectric projects along main stem Columbia and Snakemore » Rivers in the Pacific Northwest. Just as information gathered from crash test dummies can affect automobile design with the installation of protective designs to lessen or prevent human injury, having sensor fish data to quantify accelerations, rotations, and pressure changes, helps identify fish injury mechanisms such as strike, turbulent shear, pressure, and inertial effects, including non-lethal ones such as stunning or signs of vestibular disruption that expose fish to a higher risk of predation by birds and piscivorous fish downstream following passage.« less
NASA Technical Reports Server (NTRS)
Morrison, Dennis R.
2005-01-01
The microparticle flow sensor (MFS) is a system for identifying and counting microscopic particles entrained in a flowing liquid. The MFS includes a transparent, optoelectronically instrumented laminar-flow chamber (see figure) and a computer for processing instrument-readout data. The MFS could be used to count microparticles (including micro-organisms) in diverse applications -- for example, production of microcapsules, treatment of wastewater, pumping of industrial chemicals, and identification of ownership of liquid products.
Evaluation of Application Space Expansion for the Sensor Fish
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeRolph, Christopher R.; Bevelhimer, Mark S.
The Pacific Northwest National Laboratory has developed an instrument known as the sensor fish that can be released into downstream passage routes at hydropower facilities to collect data on the physical conditions that a fish might be exposed to during passage through a turbine. The US Department of Energy Wind and Water Power Program sees value in expanding the sensor fish application space beyond large Kaplan turbines in the northwest United States to evaluate conditions to which a greater variety of fish species are exposed. Development of fish-friendly turbines requires an understanding of both physical passage conditions and biological responsesmore » to those conditions. Expanding the use of sensor fish into other application spaces will add to the knowledge base of physical passage conditions and could also enhance the use of sensor fish as a site-specific tool in mitigating potential impacts to fish populations from hydropower. The Oak Ridge National Laboratory (ORNL) National Hydropower Assessment Program (NHAAP) database contains hydropower facility characteristics that, along with national fish distribution data, were used to evaluate potential interactions between fish species and project characteristics related to downstream passage issues. ORNL developed rankings for the turbine types in the NHAAP database in terms of their potential to impact fish through injury or mortality during downstream turbine passage. National-scale fish distributions for 31 key migratory species were spatially intersected with hydropower plant locations to identify facilities where turbines with a high threat to fish injury or mortality overlap with the potential range of a sensitive fish species. A dataset was produced that identifies hydropower facilities where deployment of the sensor fish technology might be beneficial in addressing issues related to downstream fish passage. The dataset can be queried to target specific geographic regions, fish species, license expiration dates, generation capacity levels, ownership characteristics, turbine characteristics, or any combination of these metrics.« less
Assessing hydraulic conditions through Francis turbines using an autonomous sensor device
Fu, Tao; Deng, Zhiqun Daniel; Duncan, Joanne P.; ...
2016-08-19
Downstream migratory fish, including some endangered species, can be injured or killed during turbine passage. In this study an autonomous Sensor Fish device was deployed at Arrowrock Dam, Cougar Dam, and Detroit Dam to evaluate the hydraulic conditions and physical stresses that fish experienced when passing through these Francis turbines. Pressure data was used to identify the location of the Sensor Fish and to calculate the nadir pressure and the magnitude and the rate of change in pressure during turbine passage. Acceleration data was used to identify events (collisions or shear) Sensor Fish experienced and to categorize the severity levelmore » (severe, medium, and slight) of each event. The results showed that Sensor Fish experienced severe events mostly in the stay vane/wicket gate region and the runner region. In the stay vane/wicket gate region, almost all severe events were collisions. In the runner region, Sensor fish experienced both severe collisions and severe shear events. Sensor Fish data at three wicket gate opening treatments at Cougar Dam indicated that the wicket gate opening of the Francis turbine can affect the hydraulic conditions in the turbine runner region. Fewer Sensor Fish experienced severe collisions in the turbine runner region at the peak efficiency than at the minimum opening and the maximum opening treatments. Comparisons between the Francis turbines at the three dams and the AHT Kaplan turbine at Wanapum Dam showed that higher percentage of Sensor Fish experienced severe events in the runner region when passing through Francis turbines than the AHT Kaplan turbine. The nadir pressures of the Francis turbines were lower than those of the AHT Kaplan turbine at Wanapum Dam. Both the magnitude and the rate of change in pressure were higher in Francis turbines than in the AHT Kaplan turbine at Wanapum Dam in the runner region. This study can be used to guide future laboratory studies of fish passing through Francis turbine and help the design of more fish-friendly turbines for new hydroelectric dams or the rehabilitations of existing dams.« less
Assessing hydraulic conditions through Francis turbines using an autonomous sensor device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, Tao; Deng, Zhiqun Daniel; Duncan, Joanne P.
Downstream migratory fish, including some endangered species, can be injured or killed during turbine passage. In this study an autonomous Sensor Fish device was deployed at Arrowrock Dam, Cougar Dam, and Detroit Dam to evaluate the hydraulic conditions and physical stresses that fish experienced when passing through these Francis turbines. Pressure data was used to identify the location of the Sensor Fish and to calculate the nadir pressure and the magnitude and the rate of change in pressure during turbine passage. Acceleration data was used to identify events (collisions or shear) Sensor Fish experienced and to categorize the severity levelmore » (severe, medium, and slight) of each event. The results showed that Sensor Fish experienced severe events mostly in the stay vane/wicket gate region and the runner region. In the stay vane/wicket gate region, almost all severe events were collisions. In the runner region, Sensor fish experienced both severe collisions and severe shear events. Sensor Fish data at three wicket gate opening treatments at Cougar Dam indicated that the wicket gate opening of the Francis turbine can affect the hydraulic conditions in the turbine runner region. Fewer Sensor Fish experienced severe collisions in the turbine runner region at the peak efficiency than at the minimum opening and the maximum opening treatments. Comparisons between the Francis turbines at the three dams and the AHT Kaplan turbine at Wanapum Dam showed that higher percentage of Sensor Fish experienced severe events in the runner region when passing through Francis turbines than the AHT Kaplan turbine. The nadir pressures of the Francis turbines were lower than those of the AHT Kaplan turbine at Wanapum Dam. Both the magnitude and the rate of change in pressure were higher in Francis turbines than in the AHT Kaplan turbine at Wanapum Dam in the runner region. This study can be used to guide future laboratory studies of fish passing through Francis turbine and help the design of more fish-friendly turbines for new hydroelectric dams or the rehabilitations of existing dams.« less
Smart packaging for the monitoring of fish freshness
NASA Astrophysics Data System (ADS)
Pacquit, Alexis; Lau, King Tong; Diamond, Dermot
2005-06-01
The development of chromo-reactive sensor spots for real time monitoring of fish freshness is described. The on-package sensor spots incorporating an immobilized pH sensitive dye, respond through visible colour change to basic volatile spoilage compounds collectively known as Total Volatile Basic Nitrogen (TVB-N). Trials on fresh fish filets have verified that the sensor can be employed for real time monitoring of fish spoilage. The sensor response can be interrogated with a simple, inexpensive reflectance colorimeter that we have developed based on two LEDs and a photodetector.
Development of a mobile sensor for robust assessment of river bed grain forces
NASA Astrophysics Data System (ADS)
Maniatis, G.; Hoey, T.; Sventek, J.; Hodge, R. A.
2013-12-01
The forces experienced by sediment grains at entrainment and during transport, and those exerted on river beds, are significant for the development of river systems and landscape evolution. The assessment of local grain forces has been approached using two different methodologies. The first approach uses static impact sensors at points or cross-sections to measure velocity and/or acceleration. A second approach uses mobile natural or artificial 'smart' pebbles instrumented with inertia micro-sensors for directly measuring the local forces experienced by individual grains. The two approaches have yielded significantly different magnitudes of impact forces. Static sensors (piezoelectric plates connected to accelerometers) temporally smooth the impacts from several grains and infrequently detect the higher forces (up to ×100g) generated by direct single-grain impacts. The second method is currently unable to record the full range of impacts in real rivers due to the low measurement range of the deployed inertia sensors (×3g). Laboratory applications have required only low-range accelerometers, so excluding the magnitude of natural impacts from the design criteria. Here we present the first results from the development of a mobile sensor, designed for the purpose of measuring local grain-forces in a natural riverbed. We present two sets of measurements. The first group presents the calibration of a wide range micro-accelerometer from a set of vertical drop experiments (gravitational acceleration) and further experiments on a shaking table moving with pre-defined acceleration. The second group of measurements are from incipient motion experiments performed in a 9m x0.9m flume (slope 0.001 to 0.018) under steadily increasing discharge. Initially the spherical sensor grain was placed on an artificial surface of hemispheres of identical diameter to the sensor (111mm). Incipient motion was assessed under both whole and half-diameter exposure for each slope. Subsequently, the sensor was placed on a bed of natural gravel of equivalent mean diameter under low slope conditions (0.001). Incipient motion was monitored over a fully covered stable bed and over a partially covered bed developed over an artificial surface constructed to simulate a natural bedrock surface. Statistical analysis of the results describes the relationship between flow conditions and pre-entrainment grain vibration and the acceleration threshold for incipient motion. Finally we perform a preliminary analysis to assess the degree of dependency of the same threshold on the different degrees of alluvial coverage of a river bed and so illustrate the potential to evaluate existing models describing grain entrainment and transport.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jensen, A.L.; Spigarelli, J.A.; Thommes, M.M.
1982-01-01
Two conventional fishery stock assessment models, the surplus-production model and the dynamic-pool model, were applied to assess the impacts of water withdrawals by electricity-generating plants, industries, and municipalities on the standing stocks and yields of alewife Alosa pseudoharengus, rainbow smelt Osmerus mordax, and yellow perch Perca flavescens in Lake Michigan. Impingement and entrainment estimates were based on data collected at 15 power plants. The surplus-production model was fitted to the three populations with catch and effort data from the commercial fisheries. Dynamic-pool model parameters were estimated from published data. The numbers entrained and impinged are large, but the proportions ofmore » the standing stocks impinged and the proportions of the eggs and larvae entrained are small. The reductions in biomass of the stocks and in maximum sustainable yields are larger than the proportions impinged. The reductions in biomass, based on 1975 data and an assumed full water withdrawal, are 2.86% for alewife, 0.76% for rainbow smelt, and 0.28% for yellow perch. Fishery models are an economical means of impact assessment in situations where catch and effort data are available for estimation of model parameters.« less
NASA Astrophysics Data System (ADS)
Sutton, Virginia Kay
This paper examines statistical issues associated with estimating paths of juvenile salmon through the intakes of Kaplan turbines. Passive sensors, hydrophones, detecting signals from ultrasonic transmitters implanted in individual fish released into the preturbine region were used to obtain the information to estimate fish paths through the intake. Aim and location of the sensors affects the spatial region in which the transmitters can be detected, and formulas relating this region to sensor aiming directions are derived. Cramer-Rao lower bounds for the variance of estimators of fish location are used to optimize placement of each sensor. Finally, a statistical methodology is developed for analyzing angular data collected from optimally placed sensors.
Entrainment of bed sediment by debris flows: results from large-scale experiments
Reid, Mark E.; Iverson, Richard M.; Logan, Matthew; LaHusen, Richard G.; Godt, Jonathan W.; Griswold, Julie P.
2011-01-01
When debris flows grow by entraining sediment, they can become especially hazardous owing to increased volume, speed, and runout. To investigate the entrainment process, we conducted eight largescale experiments in the USGS debris-flow flume. In each experiment, we released a 6 m3 water-saturated debris flow across a 47-m long, ~12-cm thick bed of partially saturated sediment lining the 31º flume. Prior to release, we used low-intensity overhead sprinkling and real-time monitoring to control the bed-sediment wetness. As each debris flow descended the flume, we measured the evolution of flow thickness, basal total normal stress, basal pore-fluid pressure, and sediment scour depth. When debris flows traveled over relatively dry sediment, net scour was minimal, but when debris flows traveled over wetter sediment (volumetric water content > 0.22), debris-flow volume grew rapidly and flow speed and runout were enhanced. Data from scour sensors showed that entrainment occurred by rapid (5-10 cm/s), progressive scour rather than by mass failure at depth. Overriding debris flows rapidly generated high basal pore-fluid pressures when they loaded and deformed bed sediment, and in wetter beds these pressures approached lithostatic levels. Reduction of intergranular friction within the bed sediment thereby enhanced scour efficiency, entrainment, and runout.
Electric fish as natural models for technical sensor systems
NASA Astrophysics Data System (ADS)
von der Emde, Gerhard; Bousack, Herbert; Huck, Christina; Mayekar, Kavita; Pabst, Michael; Zhang, Yi
2009-05-01
Instead of vision, many animals use alternative senses for object detection. Weakly electric fish employ "active electrolocation", during which they discharge an electric organ emitting electrical current pulses (electric organ discharges, EOD). Local EODs are sensed by electroreceptors in the fish's skin, which respond to changes of the signal caused by nearby objects. Fish can gain information about attributes of an object, such as size, shape, distance, and complex impedance. When close to the fish, each object projects an 'electric image' onto the fish's skin. In order to get information about an object, the fish has to analyze the object's electric image by sampling its voltage distribution with the electroreceptors. We now know a great deal about the mechanisms the fish use to gain information about objects in their environment. Inspired by the remarkable capabilities of weakly electric fish in detecting and recognizing objects with their electric sense, we are designing technical sensor systems that can solve similar sensing problems. We applied the principles of active electrolocation to devices that produce electrical current pulses in water and simultaneously sense local current densities. Depending on the specific task, sensors can be designed which detect an object, localize it in space, determine its distance, and measure certain object properties such as material properties, thickness, or material faults. We present first experiments and FEM simulations on the optimal sensor arrangement regarding the sensor requirements e. g. localization of objects or distance measurements. Different methods of the sensor read-out and signal processing are compared.
A Review of Artificial Lateral Line in Sensor Fabrication and Bionic Applications for Robot Fish.
Liu, Guijie; Wang, Anyi; Wang, Xinbao; Liu, Peng
2016-01-01
Lateral line is a system of sense organs that can aid fishes to maneuver in a dark environment. Artificial lateral line (ALL) imitates the structure of lateral line in fishes and provides invaluable means for underwater-sensing technology and robot fish control. This paper reviews ALL, including sensor fabrication and applications to robot fish. The biophysics of lateral line are first introduced to enhance the understanding of lateral line structure and function. The design and fabrication of an ALL sensor on the basis of various sensing principles are then presented. ALL systems are collections of sensors that include carrier and control circuit. Their structure and hydrodynamic detection are reviewed. Finally, further research trends and existing problems of ALL are discussed.
A Newton-Euler Description for Sediment Movement.
NASA Astrophysics Data System (ADS)
Maniatis, G.; Hoey, T.; Drysdale, T.; Hodge, R. A.; Valyrakis, M.
2015-12-01
We present progress from the development of a purpose specific sensing system for sediment transport (Maniatis et al. 2013). This system utilises the capabilities of contemporary inertial micro-sensors (strap-down accelerometers and gyroscopes) to record fluvial transport from the moving body-frame of artificial pebbles modelled precisely to represent the motion of real, coarse sediment grains (D90=100 mm class). This type of measurements can be useful in the context of sediment transport only if the existing mathematical understanding of the process is updated. We test a new mathematical model which defines specifically how the data recorded in the body frame of the sensor (Lagrangian frame of reference) can be generalised to the reference frame of the flow (channel, Eulerian frame of reference). Given the association of the two most widely used models for sediment transport with those frames of reference (Shields' to Eulerian frame and HA. Einstein's to Lagrangian frame), this description builds the basis for the definition of explicit incipient motion criteria (Maniatis et al. 2015) and for the upscaling from point-grain scale measurements to averaged, cross-sectional, stream related metrics. Flume experiments where conducted in the Hydraulics laboratory of the University of Glasgow where a spherical sensor of 800 mm diameter and capable of recoding inertial dynamics at 80Hz frequency was tested under fluvial transport conditions. We managed to measure the dynamical response of the unit during pre-entrainment/entrainment transitions, on scaled and non-scaled to the sensor's diameter bed and for a range of hydrodynamic conditions (slope up to 0.02 and flow increase rate up to 0.05m3.s-1. Preliminary results from field deployment on a mixed bedrock-alluvial channel are also presented. Maniatis et. al 2013 J. Sens. Actuator Netw. 2013, 2(4), 761-779; Maniatis et. al 2015: "CALCULATION OF EXPLICIT PROBABILITY OF ENTRAINMENT BASED ON INERTIAL ACCELERATION MEASUREMENTS" J. Hydraulic Engineering, Under review.
"Smart pebble" design for environmental monitoring applications
NASA Astrophysics Data System (ADS)
Valyrakis, Manousos; Pavlovskis, Edgars
2014-05-01
Sediment transport, due to primarily the action of water, wind and ice, is one of the most significant geomorphic processes responsible for shaping Earth's surface. It involves entrainment of sediment grains in rivers and estuaries due to the violently fluctuating hydrodynamic forces near the bed. Here an instrumented particle, namely a "smart pebble", is developed to investigate the exact flow conditions under which individual grains may be entrained from the surface of a gravel bed. This could lead in developing a better understanding of the processes involved, while focusing on the response of the particle during a variety of flow entrainment events. The "smart pebble" is a particle instrumented with MEMS sensors appropriate for capturing the hydrodynamic forces a coarse particle might experience during its entrainment from the river bed. A 3-axial gyroscope and accelerometer registers data to a memory card via a microcontroller, embedded in a 3D-printed waterproof hollow spherical particle. The instrumented board is appropriately fit and centred into the shell of the pebble, so as to achieve a nearly uniform distribution of the mass which could otherwise bias its motion. The "smart pebble" is powered by an independent power to ensure autonomy and sufficiently long periods of operation appropriate for deployment in the field. Post-processing and analysis of the acquired data is currently performed offline, using scientific programming software. The performance of the instrumented particle is validated, conducting a series of calibration experiments under well-controlled laboratory conditions. "Smart pebble" allows for a wider range of environmental sensors (e.g. for environmental/pollutant monitoring) to be incorporated so as to extend the range of its application, enabling accurate environmental monitoring which is required to ensure infrastructure resilience and preservation of ecological health.
Blancas, A; González-García, S D; Rodríguez, K; Escobar, C
2014-12-05
Scheduled and restricted access to a palatable snack, i.e. chocolate, elicits a brief and strong anticipatory activation and entrains brain areas related with reward and motivation. This behavioral and neuronal activation persists for more than 7days when this protocol is interrupted, suggesting the participation of a time-keeping system. The process that initiates this anticipation may provide a further understanding of the time-keeping system underlying palatable food entrainment. The aim of this study was to analyze how this entraining protocol starts and to dissect neuronal structures that initiate a chocolate-entrained activation. We assessed the development of anticipation of 5g of chocolate during the first 8days of the entrainment protocol. General activity of control and chocolate-entrained rats was continuously monitored with movement sensors. Moreover, motivation to obtain the chocolate was assessed by measuring approaches and interaction responses toward a wire-mesh box containing chocolate. Neuronal activation was determined with c-Fos in reward-related brain areas. We report a progressive increase in the interaction with a box to obtain chocolate parallel to a progressive neuronal activation. A significant anticipatory activation was observed in the prefrontal cortex on day 3 of entrainment and in the nucleus accumbens on day 5, while the arcuate nucleus and pyriform cortex reached significant activation on day 8. The gradual response observed with this protocol indicates that anticipation of a rewarding food requires repetitive and predictable experiences in order to acquire a temporal estimation. We also confirm that anticipation of palatable food involves diverse brain regions. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
A Review of Artificial Lateral Line in Sensor Fabrication and Bionic Applications for Robot Fish
Wang, Anyi; Wang, Xinbao; Liu, Peng
2016-01-01
Lateral line is a system of sense organs that can aid fishes to maneuver in a dark environment. Artificial lateral line (ALL) imitates the structure of lateral line in fishes and provides invaluable means for underwater-sensing technology and robot fish control. This paper reviews ALL, including sensor fabrication and applications to robot fish. The biophysics of lateral line are first introduced to enhance the understanding of lateral line structure and function. The design and fabrication of an ALL sensor on the basis of various sensing principles are then presented. ALL systems are collections of sensors that include carrier and control circuit. Their structure and hydrodynamic detection are reviewed. Finally, further research trends and existing problems of ALL are discussed. PMID:28115825
Chang, Liang-Yu; Chuang, Ming-Yen; Zan, Hsiao-Wen; Meng, Hsin-Fei; Lu, Chia-Jung; Yeh, Ping-Hung; Chen, Jian-Nan
2017-04-28
In this work, we successfully demonstrate a fast method to determine the fish freshness by using a sensing system containing an ultrasensitive amine gas sensor to detect the volatile amine gas from the raw fish meat. When traditional titration method takes 4 h and complicated steps to test the total volatile basic nitrogen (TVB-N) as a worldwide standard for fish freshness, our sensor takes 1 min to deliver an electrical sensing response that is highly correlated with the TVB-N value. When detecting a fresh fish with a TVB-N as 18 mg/100 g, the sensor delivers an effective ammonia concentration as 100 ppb. For TVB-N as 28-35 mg/100 g, a well-accepted freshness limit, the effective ammonia concentration is as 200-300 ppb. The ppb-regime sensitivity of the sensor and the humidity control in the sensing system are the keys to realizing fast and accurate detection. It is expected that the results in this report enable the development of on-site freshness detection and real-time monitoring in a fish factory.
Parra, Lorena; García, Laura
2018-01-01
The monitoring of farming processes can optimize the use of resources and improve its sustainability and profitability. In fish farms, the water quality, tank environment, and fish behavior must be monitored. Wireless sensor networks (WSNs) are a promising option to perform this monitoring. Nevertheless, its high cost is slowing the expansion of its use. In this paper, we propose a set of sensors for monitoring the water quality and fish behavior in aquaculture tanks during the feeding process. The WSN is based on physical sensors, composed of simple electronic components. The system proposed can monitor water quality parameters, tank status, the feed falling and fish swimming depth and velocity. In addition, the system includes a smart algorithm to reduce the energy waste when sending the information from the node to the database. The system is composed of three nodes in each tank that send the information though the local area network to a database on the Internet and a smart algorithm that detects abnormal values and sends alarms when they happen. All the sensors are designed, calibrated, and deployed to ensure its suitability. The greatest efforts have been accomplished with the fish presence sensor. The total cost of the sensors and nodes for the proposed system is less than 90 €. PMID:29494560
Parra, Lorena; Sendra, Sandra; García, Laura; Lloret, Jaime
2018-03-01
The monitoring of farming processes can optimize the use of resources and improve its sustainability and profitability. In fish farms, the water quality, tank environment, and fish behavior must be monitored. Wireless sensor networks (WSNs) are a promising option to perform this monitoring. Nevertheless, its high cost is slowing the expansion of its use. In this paper, we propose a set of sensors for monitoring the water quality and fish behavior in aquaculture tanks during the feeding process. The WSN is based on physical sensors, composed of simple electronic components. The system proposed can monitor water quality parameters, tank status, the feed falling and fish swimming depth and velocity. In addition, the system includes a smart algorithm to reduce the energy waste when sending the information from the node to the database. The system is composed of three nodes in each tank that send the information though the local area network to a database on the Internet and a smart algorithm that detects abnormal values and sends alarms when they happen. All the sensors are designed, calibrated, and deployed to ensure its suitability. The greatest efforts have been accomplished with the fish presence sensor. The total cost of the sensors and nodes for the proposed system is less than 90 €.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-05-18
... Butte Dam. This new facility will protect fish in Lake Billy Chinook from being entrained into turbines... as ``to harass, harm, pursue, hunt, shoot, wound, trap, capture, or collect, or attempt to engage in... upstream of the Wind River, Washington, and the Hood River, Oregon (exclusive), up to, and including, the...
Federal Register 2010, 2011, 2012, 2013, 2014
2011-04-20
... substantially reducing the harmful effects of impingement and entrainment. As a result, the Agency anticipates... simply EA). This document presents the analysis of compliance costs, closures, energy supply effects, and... propagation of fish, shellfish, and wildlife and provides for recreation in and on the water. 33 U.S.C. 1251(a...
Deng, Zhiqun; Carlson, Thomas J.; Duncan, Joanne P.; ...
2010-10-13
Hydropower is the largest renewable energy resource in the United States and the world. However, hydropower dams have adverse ecological impacts because migrating fish may be injured or killed when they pass through hydroturbines. In the Columbia and Snake River basins, dam operators and engineers are required to make those hydroelectric facilities more fish-friendly through changes in hydroturbine design and operation after fish population declines and the subsequent listing of several species of Pacific salmon under the Endangered Species Act of 1973. Public Utility District No. 2 of Grant County, Washington, requested authorization from the Federal Energy Regulatory Commission tomore » replace the ten turbines at Wanapum Dam with advanced hydropower turbines designed to improve survival for fish passing through the turbines while improving operation efficiency and increasing power generation. As an additional measure to the primary metric of direct injury and mortality rates of juvenile Chinook salmon using balloon tag-recapture methodology, this study used an autonomous sensor device - the Sensor Fish - to provide insight into the specific hydraulic conditions and physical stresses experienced by the fish as well as the specific causes of fish biological response. We found that the new hydroturbine blade shape and the corresponding reduction of turbulence in the advanced hydropower turbine were effective in meeting the objectives of improving fish survival while enhancing operational efficiency of the dam. The frequency of severe events based on Sensor Fish pressure and acceleration measurements showed trends similar to those of fish survival determined by the balloon tag-recapture methodology. In addition, the new turbine provided a better pressure and rate of pressure change environment for fish passage. Altogether, the Sensor Fish data indicated that the advanced hydroturbine design improved passage of juvenile salmon at Wanapum Dam.« less
Laboratory measurements of grain-bedrock interactions using inertial sensors.
NASA Astrophysics Data System (ADS)
Maniatis, Georgios; Hoey, Trevor; Hodge, Rebecca; Valyrakis, Manousos; Drysdale, Tim
2016-04-01
Sediment transport in steep mountain streams is characterized by the movement of coarse particles (diameter c.100 mm) over beds that are not fully sediment-covered. Under such conditions, individual grain dynamics become important for the prediction of sediment movement and subsequently for understanding grain-bedrock interaction. Technological advances in micro-mechanical-electrical systems now provide opportunities to measure individual grain dynamics and impact forces from inside the sediments (grain inertial frame of reference) instead of trying to infer them indirectly from water flow dynamics. We previously presented a new prototype sensor specifically developed for monitoring sediment transport [Maniatis et al. EGU 2014], and have shown how the definition of the physics of the grain using the inertial frame and subsequent derived measurements which have the potential to enhance the prediction of sediment entrainment [Maniatis et al. 2015]. Here we present the latest version of this sensor and we focus on beginning of the cessation of grain motion: the initial interaction with the bed after the translation phase. The sensor is housed in a spherical case, diameter 80mm, and is constructed using solid aluminum (density = 2.7 kg.m-3) after detailed 3D-CAD modelling. A complete Inertial Measurement Unit (a combination of micro- accelerometer, gyroscope and compass) was placed at the center of the mass of the assembly, with measurement ranges of 400g for acceleration, and 1200 rads/sec for angular velocity. In a 0.9m wide laboratory flume, bed slope = 0.02, the entrainment threshold of the sensor was measured, and the water flow was then set to this value. The sensor was then rolled freely from a static cylindrical bar positioned exactly on the surface of the flowing water. As the sensor enters the flow we record a very short period of transport (1-1.5 sec) followed by the impact on the channel bed. The measured Total Kinetic Energy (Joules) includes the translational energy component of transport (defined as a function of 3-dimensional translational velocity) as well as the rotational component (a function of the 3-axis angular velocity measurements from the gyroscope) which is neglected in the majority of contemporary saltation models. The results suggest that, for this grain scale, the magnitude of the impact of mobile grains on the bed is primarily controlled by their inertia. References Maniatis et al. 2014 EGU General assembly http://meetingorganizer.copernicus.org/EGU2014/EGU2014-12829.pdf Maniatis et. al 2015: "CALCULATION OF EXPLICIT PROBABILITY OF ENTRAINMENT BASED ON INERTIAL ACCELERATION MEASUREMENTS" J. Hydraulic Engineering, Under review.
Entrainment sampling at the Savannah River Site (SRS) Savannah River water intakes (1991)
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paller, M.
1990-11-01
Cooling water for the Westinghouse Savannah River Company (WSRC) L-Reactor, K-Reactor, and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pumphouses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water. They are passed through the reactor heat exchangers where temperatures may reach 70{degree}C during full power operation. Ichthyoplankton mortality under such conditions is presumably 100%. Apart from a small pilot study conducted in 1989, ichthyoplankton samples have not been collected from the vicinity of the SRS intake canals since 1985.more » The Department of Energy (DOE) has requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory (SRL) resume ichthyoplankton sampling for the purpose of assessing entrainment at the SRS Savannah River intakes. This request is due to the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River. The following scope of work presents a sampling plan that will collect information on the spatial and temporal distribution of fish eggs and larvae near the SRS intake canal mouths. This data will be combined with information on water movement patterns near the canal mouths in order to determine the percentage of ichthyoplankton that are removed from the Savannah River by the SRS intakes. The following sampling plan incorporates improvements in experimental design that resulted from the findings of the 1989 pilot study. 1 fig.« less
NASA Astrophysics Data System (ADS)
Sanchez, K.; Roberts, G.; Calmer, R.; Nicoll, K.; Hashimshoni, E.; Rosenfeld, D.; Ovadnevaite, J.; Preissler, J.; Ceburnis, D.; O'Dowd, C. D. D.; Russell, L. M.
2017-12-01
Top-down and bottom-up aerosol-cloud shortwave radiative flux closures were conducted at the Mace Head atmospheric research station in Galway, Ireland in August 2015. Instrument platforms include ground-based, unmanned aerial vehicles (UAV), and satellite measurements of aerosols, clouds and meteorological variables. The ground-based and airborne measurements of aerosol size distributions and cloud condensation nuclei (CCN) concentration were used to initiate a 1D microphysical aerosol-cloud parcel model (ACPM). UAVs were equipped for a specific science mission, with an optical particle counter for aerosol distribution profiles, a cloud sensor to measure cloud extinction, or a 5-hole probe for 3D wind vectors. These are the first UAV measurements at Mace Head. ACPM simulations are compared to in-situ cloud extinction measurements from UAVs to quantify closure in terms of cloud shortwave radiative flux. Two out of seven cases exhibit sub-adiabatic vertical temperature profiles within the cloud, which suggests that entrainment processes affect cloud microphysical properties and lead to an overestimate of simulated cloud shortwave radiative flux. Including an entrainment parameterization and explicitly calculating the entrainment fraction in the ACPM simulations both improved cloud-top radiative closure. Entrainment reduced the difference between simulated and observation-derived cloud-top shortwave radiative flux (δRF) by between 25 W m-2 and 60 W m-2. After accounting for entrainment, satellite-derived cloud droplet number concentrations (CDNC) were within 30% of simulated CDNC. In cases with a well-mixed boundary layer, δRF is no greater than 20 W m-2 after accounting for cloud-top entrainment, and up to 50 W m-2 when entrainment is not taken into account. In cases with a decoupled boundary layer, cloud microphysical properties are inconsistent with ground-based aerosol measurements, as expected, and δRF is as high as 88 W m-2, even high (> 30 W m-2) after accounting for cloud-top entrainment. This work demonstrates the need to take in-situ measurements of aerosol properties for cases where the boundary layer is decoupled as well as consider cloud-top entrainment to accurately model stratocumulus cloud radiative flux.
NASA Astrophysics Data System (ADS)
Sanchez, K.; Roberts, G.; Calmer, R.; Nicoll, K.; Hashimshoni, E.; Rosenfeld, D.; Ovadnevaite, J.; Preissler, J.; Ceburnis, D.; O'Dowd, C. D. D.; Russell, L. M.
2016-12-01
Top-down and bottom-up aerosol-cloud shortwave radiative flux closures were conducted at the Mace Head atmospheric research station in Galway, Ireland in August 2015. Instrument platforms include ground-based, unmanned aerial vehicles (UAV), and satellite measurements of aerosols, clouds and meteorological variables. The ground-based and airborne measurements of aerosol size distributions and cloud condensation nuclei (CCN) concentration were used to initiate a 1D microphysical aerosol-cloud parcel model (ACPM). UAVs were equipped for a specific science mission, with an optical particle counter for aerosol distribution profiles, a cloud sensor to measure cloud extinction, or a 5-hole probe for 3D wind vectors. These are the first UAV measurements at Mace Head. ACPM simulations are compared to in-situ cloud extinction measurements from UAVs to quantify closure in terms of cloud shortwave radiative flux. Two out of seven cases exhibit sub-adiabatic vertical temperature profiles within the cloud, which suggests that entrainment processes affect cloud microphysical properties and lead to an overestimate of simulated cloud shortwave radiative flux. Including an entrainment parameterization and explicitly calculating the entrainment fraction in the ACPM simulations both improved cloud-top radiative closure. Entrainment reduced the difference between simulated and observation-derived cloud-top shortwave radiative flux (δRF) by between 25 W m-2 and 60 W m-2. After accounting for entrainment, satellite-derived cloud droplet number concentrations (CDNC) were within 30% of simulated CDNC. In cases with a well-mixed boundary layer, δRF is no greater than 20 W m-2 after accounting for cloud-top entrainment, and up to 50 W m-2 when entrainment is not taken into account. In cases with a decoupled boundary layer, cloud microphysical properties are inconsistent with ground-based aerosol measurements, as expected, and δRF is as high as 88 W m-2, even high (> 30 W m-2) after accounting for cloud-top entrainment. This work demonstrates the need to take in-situ measurements of aerosol properties for cases where the boundary layer is decoupled as well as consider cloud-top entrainment to accurately model stratocumulus cloud radiative flux.
ABS-FishCount: An Agent-Based Simulator of Underwater Sensors for Measuring the Amount of Fish.
García-Magariño, Iván; Lacuesta, Raquel; Lloret, Jaime
2017-11-13
Underwater sensors provide one of the possibilities to explore oceans, seas, rivers, fish farms and dams, which all together cover most of our planet's area. Simulators can be helpful to test and discover some possible strategies before implementing these in real underwater sensors. This speeds up the development of research theories so that these can be implemented later. In this context, the current work presents an agent-based simulator for defining and testing strategies for measuring the amount of fish by means of underwater sensors. The current approach is illustrated with the definition and assessment of two strategies for measuring fish. One of these two corresponds to a simple control mechanism, while the other is an experimental strategy and includes an implicit coordination mechanism. The experimental strategy showed a statistically significant improvement over the control one in the reduction of errors with a large Cohen's d effect size of 2.55.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duncan, Joanne P.
Fish passage conditions over a modified deflector in Spillbay 20 at John Day Dam were evaluated by Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers (USACE), Portland District, using Sensor Fish devices. The objectives of the study were to describe and compare passage exposure conditions at two spill discharges, 2.4 and 4.0 thousand cubic feet per second (kcfs), identifying potential fish injury regions within the routes, and to evaluate a low-tailwater condition at the 2.4-kcfs discharge. The study was performed in April 2010 concurrent with HI-Z balloon-tag studies by Normandeau Associates, Inc. Sensor Fish data were analyzedmore » to estimate 1) exposure conditions, particularly exposure to severe collision and shear events; 2) differences in passage conditions between treatments; and 3) relationships to live-fish injury and mortality data estimates. Nearly all Sensor Fish significant events were classified as collisions; the most severe occurred at the gate, on the spillbay chute, or at the deflector transition. Collisions in the gate region were observed only during the 2.4-kcfs discharge, when the tainter gate was open 1.2 ft. One shear event was observed during the evaluation, occurring at the deflector transition during passage at the 2.4-kcfs discharge at low tailwater. Flow quality, computed using the Sensor Fish turbulence index, was best for passage at the low-flow low-tailwater condition as well. The worst flow quality was observed for the 4.0-kcfs test condition. Contrasting the passage exposure conditions, the 2.4-kcfs low-tailwater treatment would be most deleterious to fish survival and well-being.« less
Current knowledge on the melatonin system in teleost fish.
Falcón, J; Migaud, H; Muñoz-Cueto, J A; Carrillo, M
2010-02-01
Melatonin is a much conserved feature in vertebrates that plays a central role in the entrainment of daily and annual physiological rhythms. Investigations aiming at understanding how melatonin mediates the effects of photoperiod on crucial functions and behaviors have been very active in the last decades, particularly in mammals. In fish a clear-cut picture is still missing. Here we review the available data on (i) the sites of melatonin production in fish, (ii) the mechanisms that control its daily and annual rhythms of production and (iii) the characterization of its different receptor subtypes, their location and regulation. The in vivo and in vitro data on melatonin effects on crucial neuroendocrine regulations, including reproduction, growth, feeding and behavioral responses, are also reviewed. Finally we discuss how manipulation of the photic cues impact on fish circannual clock and annual cycle of reproduction, and how this can be used for aquaculture purposes. Copyright 2009 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duncan, Joanne P.
2010-01-29
Fish passage conditions through two spillways at Detroit Dam on the North Santiam River in Oregon were evaluated by Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers (USACE), Portland District, using Sensor Fish devices. The objective of the study was to describe and compare passage exposure conditions through Spillbay 3 and Spillbay 6 at 1.5- and 3.5-ft gate openings, identifying potential fish injury regions of the routes. The study was performed in July 2009, concurrent with HI-Z balloon-tag studies by Normandeau Associates, Inc. Sensor Fish and live fish were deployed at elevations approximately 3 ft above structuremore » at depths determined using a computational fluid dynamics model. Data collected were analyzed to estimate 1) exposure conditions, particularly exposure to severe collision and shear events by passage route sub-regions; 2) differences in passage conditions between passage routes; and 3) relationships to live-fish injury and mortality data estimates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paller, M.
1992-03-26
Cooling water for L and K Reactors and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pump houses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water and passed through the reactor's heat exchangers where temperatures may reach 70[degrees]C during full power operation. Ichthyoplankton mortality under such conditions is assumed to be 100 percent. The number of ichthyoplankton entrained into the cooling system depends on a variety of variables, including time of year, density and distribution of ichthyoplankton in themore » river, discharge levels in the river, and the volume of water withdrawn by the pumps. Entrainment at the 1 G pump house, which is immediately downstream from the confluence of Upper Three Runs Creek and the Savannah River, is also influenced by discharge rates and ichthyoplankton densities in Upper Three Runs Creek. Because of the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River, the Department of Energy requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory sample ichthyoplankton at the SRS Savannah River intakes. Dams Moore, Inc., under a contract with Westinghouse Savannah River Company performed the sampling and data analysis for the ESS.« less
Sediment entrainment by debris flows: In situ measurements from the headwaters of a steep catchment
McCoy, S.W.; Kean, Jason W.; Coe, Jeffrey A.; Tucker, G.E.; Staley, Dennis M.; Wasklewicz, T.A.
2012-01-01
Debris flows can dramatically increase their volume, and hence their destructive potential, by entraining sediment. Yet quantitative constraints on rates and mechanics of sediment entrainment by debris flows are limited. Using an in situ sensor network in the headwaters of a natural catchment we measured flow and bed properties during six erosive debris-flow events. Despite similar flow properties and thicknesses of bed sediment entrained across all events, time-averaged entrainment rates were significantly faster for bed sediment that was saturated prior to flow arrival compared with rates for sediment that was dry. Bed sediment was entrained from the sediment-surface downward in a progressive fashion and occurred during passage of dense granular fronts as well as water-rich, inter-surge flow.En massefailure of bed sediment along the sediment-bedrock interface was never observed. Large-magnitude, high-frequency fluctuations in total normal basal stress were dissipated within the upper 5 cm of bed sediment. Within this near surface layer, concomitant fluctuations in Coulomb frictional resistance are expected, irrespective of the influence of pore fluid pressure or fluctuations in shear stress. If the near-surface sediment was wet as it was overridden by a flow, additional large-magnitude, high-frequency pore pressure fluctuations were measured in the near-surface bed sediment. These pore pressure fluctuations propagated to depth at subsonic rates and in a diffusive manner. The depth to which large excess pore pressures propagated was typically less than 10 cm, but scaled as (D/fi)0.5, in which D is the hydraulic diffusivity and fi is the frequency of a particular pore pressure fluctuation. Shallow penetration depths of granular-normal-stress fluctuations and excess pore pressures demonstrate that only near-surface bed sediment experiences the full dynamic range of effective-stress fluctuations, and as a result, can be more easily entrained than deeper sediment. These data provide robust tests for mechanical models of entrainment and demonstrate that a debris flow over wet bed sediment will be larger than the same flow over dry bed sediment.
ABS-FishCount: An Agent-Based Simulator of Underwater Sensors for Measuring the Amount of Fish
2017-01-01
Underwater sensors provide one of the possibilities to explore oceans, seas, rivers, fish farms and dams, which all together cover most of our planet’s area. Simulators can be helpful to test and discover some possible strategies before implementing these in real underwater sensors. This speeds up the development of research theories so that these can be implemented later. In this context, the current work presents an agent-based simulator for defining and testing strategies for measuring the amount of fish by means of underwater sensors. The current approach is illustrated with the definition and assessment of two strategies for measuring fish. One of these two corresponds to a simple control mechanism, while the other is an experimental strategy and includes an implicit coordination mechanism. The experimental strategy showed a statistically significant improvement over the control one in the reduction of errors with a large Cohen’s d effect size of 2.55. PMID:29137165
Determination of fish swimming speed by ultrasonic telemetry.
Voegeli, F A; Pincock, D G
1980-01-01
Design of a small and simple sensor for direct measurement of swimming speed of fish and its incorporation into ultrasonic telemetry transmitters is described. The sensor used measures the speed of rotation of a free-wheeling propeller which is exposed to water flow. Two transmitters incorporating this sensor are described. The first is a very simple one providing swimming speed while the second incorporates two temperature sensors as well.
Structural analysis of stratocumulus convection
NASA Technical Reports Server (NTRS)
Siems, S. T.; Baker, M. B.; Bretherton, C. S.
1990-01-01
The 1 and 20 Hz data are examined from the Electra flights made on July 5, 1987. The flight legs consisted of seven horizontal turbulent legs at the inversion, midcloud, and below clouds, plus 4 soundings made within the same period. The Rosemont temperature sensor and the top and bottom dewpoint sensors were used to measure temperature and humidity at 1 Hz. Inversion structure and entrainment; local dynamics and large scale forcing; convective elements; and decoupling of cloud and subcloud are discussed in relationship to the results of the Electra flight.
Hansel, Hal C.; Romine, Jason G.; Perry, Russell W.
2017-11-08
The Columbia River, in Washington and Oregon, and Coos Bay, in Oregon, are economically important shipping channels that are inhabited by several fishes protected under the Endangered Species Act (ESA). Maintenance of shipping channels involves dredge operations to maintain sufficient in-channel depths to allow large ships to navigate the waterways safely. Fishes entrained by dredge equipment often die or experience delayed mortality. Other potential negative effects of dredging include increased turbidity, reductions in prey resources, and the release of harmful contaminants from the dredged sediments. One species of concern is the ESA-listed green sturgeon (Acipenser medirostris; Southern Distinct Population Segment). In this study, we used acoustic telemetry to identify habitat use, arrival and departure timing, and the extent of upstream migration of green sturgeon in the Columbia River and Coos Bay to help inform dredge operations to minimize potential take of green sturgeon. Autonomous acoustic receivers were deployed in Coos Bay from the mouth to river kilometer (rkm) 21.6 from October 2009 through October 2010. In the Columbia River Estuary, receivers were deployed between the mouth and rkm 37.8 from April to November in 2010 and 2011. A total of 29 subadult and adult green sturgeon were tagged with temperature and pressure sensor tags and released during the study, primarily in Willapa Bay and Grays Harbor, Washington, and the Klamath River, Oregon. Green sturgeon detected during the study but released by other researchers also were included in the study.The number of tagged green sturgeon detected in the two estuaries differed markedly. In Coos Bay, only one green sturgeon was detected for about 2 hours near the estuary mouth. In the Columbia River Estuary, 9 green sturgeon were detected in 2010 and 10 fish were detected in 2011. Green sturgeon entered the Columbia River from May through October during both years, with the greatest numbers of fish being present in August and September. One green sturgeon was detected at the uppermost receiver station (rkm 37.8), but overall, the number of fish detected upriver decreased rapidly with distance from the estuary mouth. Residence times of fish that were only detected in the lower 4.8 rkm generally were less than 24 hours, but fish detected farther upriver had a median residence time greater than 10 days. Green sturgeon were widely dispersed among channel and non-channel habitats in the lower estuary in 2010. In 2011, the fish were more concentrated near the estuary mouth. The intensity of use, measured as the total number of fish detections at each station, generally was greatest from Point Ellice (rkm 20.1) to Rice Island (rkm 33.0) in channel and shallow shoal areas, and lowest at the stations west of Point Ellice with the exception of the area near the entrance to the Ilwaco Channel.Sensor tag data indicated that the deeper South and North Channel habitats (bottom depth ≥10 m) were used, as were the more shallow sandy shoal, shoreline, and bay habitats (bottom depth <10 m). Median fish depths among fish and receiver locations ranged from 2.5 to 28.2 m below water surface (bws) and water temperatures ranged from 9.1 to 22.0 °C during late May through mid-October. In the deeper channel habitat, near the Ilwaco Channel, fish inhabited water with median temperatures ranging from 11.4 to 16.7 °C, whereas east of Point Ellice, predominantly in shallow non-channel habitats, fish inhabited water with median temperatures ranging from about 17.0 to 21.0 °C.
Tilapia fish microbial spoilage monitored by a single optical gas sensor.
Semeano, Ana T S; Maffei, Daniele F; Palma, Susana; Li, Rosamaria W C; Franco, Bernadette D G M; Roque, Ana C A; Gruber, Jonas
2018-07-01
As consumption of fish and fish-based foods increases, non-destructive monitoring of fish freshness also becomes more prominent. Fish products are very perishable and prone to microbiological growth, not always easily detected by organoleptic evaluation. The analysis of the headspace of fish specimens through gas sensing is an interesting approach to monitor fish freshness. Here we report a gas sensing method for monitoring Tilapia fish spoilage based on the application of a single gas sensitive gel material coupled to an optical electronic nose. The optical signals of the sensor and the extent of bacterial growth were followed over time, and results indicated good correlation between the two determinations, which suggests the potential application of this simple and low cost system for Tilapia fish freshness monitoring.
A new sensor system for accurate and precise determination of sediment dynamics and position.
NASA Astrophysics Data System (ADS)
Maniatis, Georgios; Hoey, Trevor; Sventek, Joseph; Hodge, Rebecca
2014-05-01
Sediment transport processes control many significant geomorphological changes. Consequently, sediment transport dynamics are studied across a wide range of scales leading to application of a variety of conceptually different mathematical descriptions (models) and data acquisition techniques (sensing). For river sediment transport processes both Eulerian and Lagrangian formulations are used. Data are gathered using a very wide range of sensing techniques that are not always compatible with the conceptual formulation applied. We are concerned with small to medium sediment grain-scale motion in gravel-bed rivers, and other coarse-grained environments, and: a) are developing a customised environmental sensor capable of providing coherent data that reliably record the motion; and, b) provide a mathematical framework in which these data can be analysed and interpreted, this being compatible with current stochastic approaches to sediment transport theory. Here we present results from three different aspects of the above developmental process. Firstly, we present a requirement analysis for the sensor based on the state of the art of the existing technologies. We focus on the factors that enhance data coherence and representativeness, extending the common practice for optimization which is based exclusively on electronics/computing related criteria. This analysis leads to formalization of a method that permits accurate control on the physical properties of the sensor using contemporary rapid prototyping techniques [Maniatis et al. 2013]. Secondly the first results are presented from a series of entrainment experiments in a 5 x 0.8 m flume in which a prototype sensor was deployed to monitor entrainment dynamics under increasing flow conditions (0.037 m3.s-1). The sensor was enclosed in an idealized spherical case (111 mm diameter) and placed on a constructed bed of hemispheres of the same diameter. We measured 3-axial inertial acceleration (as a measure of flow stress), with sampling frequency 4 to 10Hz, for two different initial positions over a range of slopes (from 0.026 to 0.57). The results reveal forces during the pre-entrainment phase and show the effect of slope on the temporal characteristics of the process. Finally we present results from the simulations using a mathematical framework developed to integrate the inertial-dynamics data (corresponding to the above experimental procedure and sensing conceptualization) [Abeywardana et al. 2012] with the mathematical techniques used in contemporary localization applications [Zanella et al. 2012]. We specifically assess different signal filtering techniques in terms of: a) how informative they are regarding the complexity of sediment movement; and, b) how possible it is to reduce rapidly accumulating errors that occur during sensing and increase positional accuracy. References Maniatis, G.; Hoey, T.; Sventek, J. Sensor Enclosures: Example Application and Implications for Data Coherence. J. Sens. Actuator Netw. 2013, 2, 761-779. Abeywardana, D. K., A. P. Hu, and N. Kularatna. "IPT charged wireless sensor module for river sedimentation detection." Sensors Applications Symposium (SAS), 2012 IEEE. IEEE, 2012. Zannella, Fillipo, and Angelo Cenedese. "Multi-agent tracking in wireless sensor networks: implementation." WSEAS Int. Conf. on Information Technology and Computer Networks (ITCN). 2012.
Environmental Statement, Lake City Station, Unit One.
1973-09-17
quality, ecological effects, energy demand, entrainment, environmental effects, fish and wildlife values, Lake Erie, pollution control, social and...Creek on the northern part of the site. That portion of the site, adjacent to Lake Erie and Elk Creek, is wooded with the remaining portions being...loam to loanm, fine sand (Reference 2-1). 2-1 - - i Approximately 60 percent of the area is covered with mixed hard woods and conifers, however, the
Assessing Impacts of Navigation Dredging on Atlantic Sturgeon (Acipenser oxyrinchus)
2014-11-01
fishes and insect larvae (Smith 1985, Dadswell 2006). Shallow water shoals located adjacent to both sides of the Federal navigation channel, provide a...incision was closed using sterile resorbitive suture material with four to five simple interrupted stitches. An iodine disinfectant was applied to the...1976). Assessment of techniques used to quantify salmon smolt entrainment by a hydraulic suction hopper dredge in the Fraser River estuary. Environment
Taguchi, Masashige; Liao, James C.
2011-01-01
SUMMARY Measuring the rate of consumption of oxygen () during swimming reveals the energetics of fish locomotion. We show that rainbow trout have substantially different oxygen requirements for station holding depending on which hydrodynamic microhabitats they choose to occupy around a cylinder. We used intermittent flow respirometry to show that an energetics hierarchy, whereby certain behaviors are more energetically costly than others, exists both across behaviors at a fixed flow velocity and across speeds for a single behavior. At 3.5 L s–1 (L is total body length) entraining has the lowest , followed by Kármán gaiting, bow waking and then free stream swimming. As flow speed increases the costs associated with a particular behavior around the cylinder changes in unexpected ways compared with free stream swimming. At times, actually decreases as flow velocity increases. Entraining demands the least oxygen at 1.8 L s–1 and 3.5 L s–1, whereas bow waking requires the least oxygen at 5.0 L s–1. Consequently, a behavior at one speed may have a similar cost to another behavior at another speed. We directly confirm that fish Kármán gaiting in a vortex street gain an energetic advantage from vortices beyond the benefit of swimming in a velocity deficit. We propose that the ability to exploit velocity gradients as well as stabilization costs shape the complex patterns of oxygen consumption for behaviors around cylinders. Measuring for station holding in turbulent flows advances our attempts to develop ecologically relevant approaches to evaluating fish swimming performance. PMID:21490251
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barnthouse, L. W.; Van Winkle, W.; Golumbek, J.
1982-04-01
This volume includes a series of four exhibits relating to impacts of impingement on fish populations, together with a collection of critical evaluations of testimony prepared for the utilities by their consultants. The first exhibit is a quantitative evaluation of four sources of bias (collection efficiency, reimpingement, impingement on inoperative screens, and impingement survival) affecting estimates of the number of fish killed at Hudson River power plants. The two following exhibits contain, respectively, a detailed assessment of the impact of impingement on the Hudson River white perch population and estimates of conditional impingement mortality rates for seven Hudson River fishmore » populations. The fourth exhibit is an evaluation of the engineering feasibility and potential biological effectiveness of several types of modified intake structures proposed as alternatives to cooling towers for reducing impingement impacts. The remainder of Volume II consists of critical evaluations of the utilities' empirical evidence for the existence of density-dependent growth in young-of-the-year striped bass and white perch, of their estimate of the age-composition of the striped bass spawning stock in the Hudson River, and of their use of the Lawler, Matusky, and Skelly (LMS) Real-Time Life Cycle Model to estimate the impact of entrainment and impingement on the Hudson River striped bass population.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Paller, M.
1992-03-26
Cooling water for L and K Reactors and makeup water for Par Pond is pumped from the Savannah River at the 1G, 3G, and 5G pump houses. Ichthyoplankton (drifting fish larvae and eggs) from the river are entrained into the reactor cooling systems with the river water and passed through the reactor`s heat exchangers where temperatures may reach 70{degrees}C during full power operation. Ichthyoplankton mortality under such conditions is assumed to be 100 percent. The number of ichthyoplankton entrained into the cooling system depends on a variety of variables, including time of year, density and distribution of ichthyoplankton in themore » river, discharge levels in the river, and the volume of water withdrawn by the pumps. Entrainment at the 1 G pump house, which is immediately downstream from the confluence of Upper Three Runs Creek and the Savannah River, is also influenced by discharge rates and ichthyoplankton densities in Upper Three Runs Creek. Because of the anticipated restart of several SRS reactors and the growing concern surrounding striped bass and American shad stocks in the Savannah River, the Department of Energy requested that the Environmental Sciences Section (ESS) of the Savannah River Laboratory sample ichthyoplankton at the SRS Savannah River intakes. Dams & Moore, Inc., under a contract with Westinghouse Savannah River Company performed the sampling and data analysis for the ESS.« less
Temperature compensation and temperature sensation in the circadian clock
Kidd, Philip B.; Young, Michael W.; Siggia, Eric D.
2015-01-01
All known circadian clocks have an endogenous period that is remarkably insensitive to temperature, a property known as temperature compensation, while at the same time being readily entrained by a diurnal temperature oscillation. Although temperature compensation and entrainment are defining features of circadian clocks, their mechanisms remain poorly understood. Most models presume that multiple steps in the circadian cycle are temperature-dependent, thus facilitating temperature entrainment, but then insist that the effect of changes around the cycle sums to zero to enforce temperature compensation. An alternative theory proposes that the circadian oscillator evolved from an adaptive temperature sensor: a gene circuit that responds only to temperature changes. This theory implies that temperature changes should linearly rescale the amplitudes of clock component oscillations but leave phase relationships and shapes unchanged. We show using timeless luciferase reporter measurements and Western blots against TIMELESS protein that this prediction is satisfied by the Drosophila circadian clock. We also review evidence for pathways that couple temperature to the circadian clock, and show previously unidentified evidence for coupling between the Drosophila clock and the heat-shock pathway. PMID:26578788
DOE Office of Scientific and Technical Information (OSTI.GOV)
Baumgartner, L. J.; Thorncraft, G.; Phonekhampheng, O.
Fluid shear arises when two bodies of water, travelling at different velocities, intersect. Fish entrained at the interface of these two water masses will experience shear stress; which can be harmful. The stress magnitude is dependent on waterbody mass and velocity; with the fish impact largely related to body size. Elevated shear stress occurs where rapidly flowing water passes near spillways, across screens, within turbine draft tubes or other passage routes. A flume was used to determine critical tolerances of silver shark (Balantiocheilos melanopterus) to different shear stress rates generated by a high velocity jet. Fish experienced higher levels ofmore » injury and mortality as shear stress was increased. Excessive shear forces had damaging impacts on fish. Mortality occurred at shear levels higher that 600/s. It is important that developers should attempt to model potential shear profiles expected during turbine passage in selected designs. These data will be critical to determine potential impacts on fish. If the likelihood of adverse impact is high, then alternative designs which have lower shear stress could be explored.« less
Development of a custom-made "smart-sphere" to assess incipient entrainment by rolling
NASA Astrophysics Data System (ADS)
Valyrakis, Manousos; Kitsikoudis, Vasileios; Alexakis, Athanasios; Trinder, Jon
2017-04-01
The most widely applied criterion for sediment incipient motion in engineering applications is the time- and space-averaged approach of critical Shields shear stress. Nonetheless, in the recent years published research has highlighted the importance of turbulence fluctuations in sediment incipient motion and its stochastic character. The present experimental study investigates statistically the link of the response of a "smart-pebble" to hydrodynamics in near-critical flow conditions and discusses how such a device can be utilized in engineering design. A set of specifically designed fluvial experiments monitoring the entrainment conditions for a "smart-pebble", were carried out in a tilting, recirculating flume in turbulent flow conditions while three-dimensional flow measurements were obtained with an acoustic Doppler velocimeter. The "smart-pebble" employed herein is a custom-made instrumented sphere with 7 cm diameter, which has a number of sensors embedded within its waterproof 3D-printed plastic shell. Specifically, the "smart-pebble" is equipped with miniaturized, off the shelf, low-cost, three-dimensional acceleration, orientation and angular displacement sensors. A 3D-printed local micro topography of known geometry was installed in the flume's test section and the "smart-pebble" was placed there in order to facilitate the analysis. Every time the "smart-sphere" is displaced by the flow a downstream located pin blocks its full entrainment. This allows for continuous recording of the entrainment events due to the passage of energetic events, after which the "smart-pebble" returns to its resting pocket. The "smart-pebble" device under such a configuration allows the recording of normally indiscernible (with the naked eye) vibrations, twitching motions, and full entrainments for the studied particle, allowing its analysis from a Langrangian framework. During the incipient motion experiments the retrieved data are stored in an internal memory unit or transferred online with short-range Wi-Fi antennas. In addition, two high-speed commercial cameras are used to monitor the process and provide additional information. The hydrodynamic force that the "smart-pebble" is subject to is expressed with the recently proposed impulse and energy criteria, which imply that a sufficient energetic turbulent flow structure requires not only a hydrodynamic force above a certain threshold but this force has to be exerted for sufficient time for momentum transfer to occur efficiently. It is found that the probability of entrainment for the "smart-pebble" is linked to the number of energetic flow events above a threshold level. The findings of this experimental study aim to shed more light in coarse sediment incipient motion and pave the way for the utilization of such devices in the field in actual engineering applications.
The mobilisation of sediment by demersal otter trawls.
O'Neill, F G; Summerbell, K
2011-05-01
The mobilisation of sediment by towed demersal fishing gears has been related to the release of nutrients, benthic infaunal mortality and the resuspension of phytoplankton cysts and copepod eggs. Hence, to understand the broader environmental and ecological implications of demersal fishing, it is important to be able to estimate accurately the amount of sediment put into the water column by towed gears. Experimental trials were carried out in the Moray Firth, Scotland, to measure the quantity of sediment remobilised by trawl gear components. It is demonstrated, for a given sediment type, that there is a relationship between the hydrodynamic drag of the gear element and the mass of sediment entrained behind it. A better understanding of this relationship and the hydrodynamic processes involved will lead to the development of accurate predictive models and aid the design of fishing gears of reduced impact. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.
Zhao, Wei; Tang, Zhenmin; Yang, Yuwang; Wang, Lei; Lan, Shaohua
2014-01-01
This paper presents a searching control approach for cooperating mobile sensor networks. We use a density function to represent the frequency of distress signals issued by victims. The mobile nodes' moving in mission space is similar to the behaviors of fish-swarm in water. So, we take the mobile node as artificial fish node and define its operations by a probabilistic model over a limited range. A fish-swarm based algorithm is designed requiring local information at each fish node and maximizing the joint detection probabilities of distress signals. Optimization of formation is also considered for the searching control approach and is optimized by fish-swarm algorithm. Simulation results include two schemes: preset route and random walks, and it is showed that the control scheme has adaptive and effective properties. PMID:24741341
Zhao, Wei; Tang, Zhenmin; Yang, Yuwang; Wang, Lei; Lan, Shaohua
2014-01-01
This paper presents a searching control approach for cooperating mobile sensor networks. We use a density function to represent the frequency of distress signals issued by victims. The mobile nodes' moving in mission space is similar to the behaviors of fish-swarm in water. So, we take the mobile node as artificial fish node and define its operations by a probabilistic model over a limited range. A fish-swarm based algorithm is designed requiring local information at each fish node and maximizing the joint detection probabilities of distress signals. Optimization of formation is also considered for the searching control approach and is optimized by fish-swarm algorithm. Simulation results include two schemes: preset route and random walks, and it is showed that the control scheme has adaptive and effective properties.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duncan, Joanne P.; Carlson, Thomas J.
2011-05-06
Fish passage conditions through two spillways, a Francis turbine, and a regulating outlet (RO) at Detroit Dam on the North Santiam River in Oregon were evaluated by Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers (USACE), Portland District, using Sensor Fish devices. The objective of the study was to describe and compare passage exposure conditions, identifying potential fish injury regions within the routes. The study was performed in July, October, and December 2009 concurrent with HI-Z balloon-tag studies by Normandeau Associates, Inc. Sensor Fish data were analyzed to estimate 1) exposure conditions, particularly exposure to severe strike,more » collision, and shear events by passage route sub-regions; 2) differences in passage conditions between passage routes; and 3) relationships to live-fish injury and mortality data estimates. Comparison of the three passage routes evaluated at Detroit Dam indicates that the RO passage route through the 5-ft gate opening was relatively the safest route for fish passage under the operating conditions tested; turbine passage was the most deleterious. These observations were supported also by the survival and malady estimates obtained from live-fish testing. Injury rates were highest for turbine and spillway passage. However, none of the passage routes tested is safe for juvenile salmonid passage.« less
Fish freshness detection by a computer screen photoassisted based gas sensor array.
Alimelli, Adriano; Pennazza, Giorgio; Santonico, Marco; Paolesse, Roberto; Filippini, Daniel; D'Amico, Arnaldo; Lundström, Ingemar; Di Natale, Corrado
2007-01-23
In the last years a large number of different measurement methodologies were applied to measure the freshness of fishes. Among them the connection between freshness and headspace composition has been considered by gas chromatographic analysis and from the last two decades by a number of sensors and biosensors aimed at measuring some characteristic indicators (usually amines). More recently also the so-called artificial olfaction systems gathering together many non-specific sensors have shown a certain capability to transduce the global composition of the fish headspace capturing the differences between fresh and spoiled products. One of the main objectives related to the introduction of sensor systems with respect to the analytical methods is the claimed possibility to distribute the freshness control since sensors are expected to be "portable" and "simple". In spite of these objectives, until now sensor systems did not result in any tool that may be broadly distributed. In this paper, we present a chemical sensor array where the optical features of layers of chemicals, sensitive to volatile compounds typical of spoilage processes in fish, are interrogated by a very simple platform based on a computer screen and a web cam. An array of metalloporphyrins is here used to classify fillets of thawed fishes according to their storage days and to monitor the spoilage in filleted anchovies for a time of 8 h. Results indicate a complete identification of the storage days of thawed fillets and a determination of the storage time of anchovies held at room temperature with a root mean square error of validation of about 30 min. The optical system produces a sort of spectral fingerprint containing information about both the absorbance and the emission of the sensitive layer. The system here illustrated, based on computer peripherals, can be easily scaled to any device endowed with a programmable screen and a camera such as cellular phones offering for the first time the possibility to fulfil the sensor expectation of diffused and efficient analytical capabilities.
Injury and mortality of juvenile salmon entrained in a submerged jet entering still water
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Zhiqun; Mueller, Robert P.; Richmond, Marshall C.
Juvenile salmon can be injured and killed when they pass through hydroelectric turbines and other downstream passage alternatives. The hydraulic conditions in these complex environments that pose a risk to the health of fish include turbulent shear flows, collisions with hydraulic structures, cavitation, and rapid change of pressure. Improvements in the understating of the biological responses of juvenile salmon in turbulent shear flows can reduce salmon injury and mortality. In a series of studies, juvenile fall Chinook salmon (Oncorhynchus tshawythscha) were exposed to turbulent shear flows in two mechanisms: 1) the slow-fish-to-fast-water mechanism, where test fish were introduced into amore » turbulent jet from slow-moving water through an introduction tube placed just outside the edge of the jet; 2) the fast-fish-to-slow-water mechanism, where test fish were carried by the fast-moving water of a submerged turbulent jet into the slow-moving water of a flume. All fish exposures to the water jet were recorded by two high-speed, high-resolution cameras. Motion-tracking analysis was then performed on the digital videos to quantify associated kinematic and dynamic parameters. The main results for the slow-fish-to-fast-water mechanism were described in Deng et al (2005). This chapter will discuss the test results of the fast-fish-to-slow-water mechanism and compare the results of the two mechanisms.« less
Acoustic sand detector for fluid flowstreams
Beattie, Alan G.; Bohon, W. Mark
1993-01-01
The particle volume and particle mass production rate of particulate solids entrained in fluid flowstreams such as formation sand or fracture proppant entrained in oil and gas production flowstreams is determined by a system having a metal probe interposed in a flow conduit for transmitting acoustic emissions created by particles impacting the probe to a sensor and signal processing circuit which produces discrete signals related to the impact of each of the particles striking the probe. The volume or mass flow rate of particulates is determined from making an initial particle size distribution and particle energy distribution and comparing the initial energy distribution and/or the initial size distribution with values related to the impact energies of a predetermined number of recorded impacts. The comparison is also used to recalibrate the system to compensate for changes in flow velocity.
"Smart pebble" designs for sediment transport monitoring
NASA Astrophysics Data System (ADS)
Valyrakis, Manousos; Alexakis, Athanasios; Pavlovskis, Edgars
2015-04-01
Sediment transport, due to primarily the action of water, wind and ice, is one of the most significant geomorphic processes responsible for shaping Earth's surface. It involves entrainment of sediment grains in rivers and estuaries due to the violently fluctuating hydrodynamic forces near the bed. Here an instrumented particle, namely a "smart pebble", is developed to investigate the exact flow conditions under which individual grains may be entrained from the surface of a gravel bed. This could lead in developing a better understanding of the processes involved, focusing on the response of the particle during a variety of flow entrainment events. The "smart pebble" is a particle instrumented with MEMS sensors appropriate for capturing the hydrodynamic forces a coarse particle might experience during its entrainment from the river bed. A 3-axial gyroscope and accelerometer registers data to a memory card via a microcontroller, embedded in a 3D-printed waterproof hollow spherical particle. The instrumented board is appropriately fit and centred into the shell of the pebble, so as to achieve a nearly uniform distribution of the mass which could otherwise bias its motion. The "smart pebble" is powered by an independent power to ensure autonomy and sufficiently long periods of operation appropriate for deployment in the field. Post-processing and analysis of the acquired data is currently performed offline, using scientific programming software. The performance of the instrumented particle is validated, conducting a series of calibration experiments under well-controlled laboratory conditions.
NASA Astrophysics Data System (ADS)
Dusek, J.; Kottapalli, A. G. P.; Woo, M. E.; Asadnia, M.; Miao, J.; Lang, J. H.; Triantafyllou, M. S.
2013-01-01
The lateral line found on most species of fish is a sensory organ without analog in humans. Using sensory feedback from the lateral line, fish are able to track prey, school, avoid obstacles, and detect vortical flow structures. Composed of both a superficial component, and a component contained within canals beneath the fish’s skin, the lateral line acts in a similar fashion to an array of differential pressure sensors. In an effort to enhance the situational and environmental awareness of marine vehicles, lateral-line-inspired pressure sensor arrays were developed to mimic the enhanced sensory capabilities observed in fish. Three flexible and waterproof pressure sensor arrays were fabricated for use as a surface-mounted ‘smart skin’ on marine vehicles. Two of the sensor arrays were based around the use of commercially available piezoresistive sensor dies, with innovative packaging schemes to allow for flexibility and underwater operation. The sensor arrays employed liquid crystal polymer and flexible printed circuit board substrates with metallic circuits and silicone encapsulation. The third sensor array employed a novel nanocomposite material set that allowed for the fabrication of a completely flexible sensor array. All three sensors were surface mounted on the curved hull of an autonomous kayak vehicle, and tested in both pool and reservoir environments. Results demonstrated that all three sensors were operational while deployed on the autonomous vehicle, and provided an accurate means for monitoring the vehicle dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ronafalvy, J.P.; Cheesman, R.R.; Matejek, W.M.
This paper summarizes modifications made to the Salem Generating Station`s (Salem) Circulating Water Traveling Screens (CWTS) as required by Salem`s New Jersey Pollutant Discharge Elimination System Permit (NJPDES Permit). The modifications incorporated newly designed CWTS baskets with hydrodynamically improved fish buckets (greatly reduced turbulence in the bucket); smooth woven mesh screens with 0.250 x 0.500 inch rectangular mesh openings (formerly 0.375 inch square mesh openings); lighter composite basket frame material allowing increased screen rotation speed; improved low and high pressure spray wash patterns; improved screen to sluice trough flap seal design and miscellaneous reliability improvements. In order to address themore » overall effects of the CWTS modifications on fish losses, the effect of both entrainment and impingement by fish size was addressed in a comparison study between modified and unmodified units. The results of the assessment indicate a 51% reduction in overall weakfish (Cynoscion regales) losses (expressed as equivalent adults, larger than 187 mm total length individuals). These modifications also enhanced debris removal capability of the CWTSs. 5 refs., 5 figs.« less
NASA Astrophysics Data System (ADS)
Sanchez, Kevin J.; Roberts, Gregory C.; Calmer, Radiance; Nicoll, Keri; Hashimshoni, Eyal; Rosenfeld, Daniel; Ovadnevaite, Jurgita; Preissler, Jana; Ceburnis, Darius; O'Dowd, Colin; Russell, Lynn M.
2017-08-01
Top-down and bottom-up aerosol-cloud shortwave radiative flux closures were conducted at the Mace Head Atmospheric Research Station in Galway, Ireland, in August 2015. This study is part of the BACCHUS (Impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding) European collaborative project, with the goal of understanding key processes affecting aerosol-cloud shortwave radiative flux closures to improve future climate predictions and develop sustainable policies for Europe. Instrument platforms include ground-based unmanned aerial vehicles (UAVs)1 and satellite measurements of aerosols, clouds and meteorological variables. The ground-based and airborne measurements of aerosol size distributions and cloud condensation nuclei (CCN) concentration were used to initiate a 1-D microphysical aerosol-cloud parcel model (ACPM). UAVs were equipped for a specific science mission, with an optical particle counter for aerosol distribution profiles, a cloud sensor to measure cloud extinction or a five-hole probe for 3-D wind vectors. UAV cloud measurements are rare and have only become possible in recent years through the miniaturization of instrumentation. These are the first UAV measurements at Mace Head. ACPM simulations are compared to in situ cloud extinction measurements from UAVs to quantify closure in terms of cloud shortwave radiative flux. Two out of seven cases exhibit sub-adiabatic vertical temperature profiles within the cloud, which suggests that entrainment processes affect cloud microphysical properties and lead to an overestimate of simulated cloud shortwave radiative flux. Including an entrainment parameterization and explicitly calculating the entrainment fraction in the ACPM simulations both improved cloud-top radiative closure. Entrainment reduced the difference between simulated and observation-derived cloud-top shortwave radiative flux (δRF) by between 25 and 60 W m-2. After accounting for entrainment, satellite-derived cloud droplet number concentrations (CDNCs) were within 30 % of simulated CDNC. In cases with a well-mixed boundary layer, δRF is no greater than 20 W m-2 after accounting for cloud-top entrainment and up to 50 W m-2 when entrainment is not taken into account. In cases with a decoupled boundary layer, cloud microphysical properties are inconsistent with ground-based aerosol measurements, as expected, and δRF is as high as 88 W m-2, even high (> 30 W m-2) after accounting for cloud-top entrainment. This work demonstrates the need to take in situ measurements of aerosol properties for cases where the boundary layer is decoupled as well as consider cloud-top entrainment to accurately model stratocumulus cloud radiative flux. 1The regulatory term for UAV is remotely piloted aircraft (RPA).
DOE Office of Scientific and Technical Information (OSTI.GOV)
Duncan, Joanne P.
2011-05-23
Fish passage conditions through a Francis turbine and a regulating outlet (RO) at Cougar Dam on the south fork of the McKenzie River in Oregon were evaluated by Pacific Northwest National Laboratory for the U.S. Army Corps of Engineers, Portland District, using Sensor Fish devices. The objective of the study was to describe and compare passage exposure conditions, identifying potential fish injury regions encountered during passage via specific routes. The RO investigation was performed in December 2009 and the turbine evaluation in January 2010, concurrent with HI-Z balloon-tag studies by Normandeau Associates, Inc. Sensor Fish data were analyzed to estimatemore » 1) exposure conditions, particularly exposure to severe collision, strike, and shear events by passage route sub-regions; 2) differences in passage conditions between passage routes; and 3) relationships to live-fish injury and mortality data estimates. Comparison of the three passage routes evaluated at Cougar Dam indicates that the RO passage route through the 3.7-ft gate opening was relatively the safest route for fish passage under the operating conditions tested; turbine passage was the most deleterious. These observations were supported also by the survival and malady estimates obtained from live-fish testing. Injury rates were highest for turbine passage. Compared to mainstem Columbia River passage routes, none of the Cougar Dam passage routes as tested are safe for juvenile salmonid passage.« less
Deng, Z D; Lu, J; Myjak, M J; Martinez, J J; Tian, C; Morris, S J; Carlson, T J; Zhou, D; Hou, H
2014-11-01
Acceleration in development of additional conventional hydropower requires tools and methods to perform laboratory and in-field validation of turbine performance and fish passage claims. The new-generation Sensor Fish has been developed with more capabilities to accommodate a wider range of users over a broader range of turbine designs and operating environments. It provides in situ measurements of three-dimensional (3D) linear accelerations, 3D rotational velocities, 3D orientation, pressure, and temperature at a sampling frequency of 2048 Hz. It also has an automatic floatation system and built-in radio-frequency transmitter for recovery. The relative errors of the pressure, acceleration, and rotational velocity were within ±2%, ±5%, and ±5%, respectively. The accuracy of orientation was within ±4° and accuracy of temperature was ±2 °C. The new-generation Sensor Fish is becoming a major technology and being deployed for evaluating the conditions for fish passage of turbines or other hydraulic structures in both the United States and several other countries.
Woskov, Paul P.; Cohn, Daniel R.; Titus, Charles H.; Surma, Jeffrey E.
1997-01-01
Microwave-induced plasma for continuous, real time trace element monitoring under harsh and variable conditions. The sensor includes a source of high power microwave energy and a shorted waveguide made of a microwave conductive, high temperature capability refractory material communicating with the source of the microwave energy to generate a plasma. The high power waveguide is constructed to be robust in a hot, hostile environment. It includes an aperture for the passage of gases to be analyzed and a spectrometer is connected to receive light from the plasma. Provision is made for real time in situ calibration. The spectrometer disperses the light, which is then analyzed by a computer. The sensor is capable of making continuous, real time quantitative measurements of desired elements, such as the heavy metals lead and mercury. The invention may be incorporated into a high temperature process device and implemented in situ for example, such as with a DC graphite electrode plasma arc furnace. The invention further provides a system for the elemental analysis of process streams by removing particulate and/or droplet samples therefrom and entraining such samples in the gas flow which passes through the plasma flame. Introduction of and entraining samples in the gas flow may be facilitated by a suction pump, regulating gas flow, gravity or combinations thereof.
NASA Astrophysics Data System (ADS)
Maniatis, Georgios
2017-04-01
Fluvial sediment transport is controlled by hydraulics, sediment properties and arrangement, and flow history across a range of time scales. One reference frame descriptions (Eulerian or Lagrangian) yield useful results but restrict the theoretical understanding of the process as differences between the two phases (liquid and solid) are not explicitly accounted. Recently, affordable Inertial Measurement Units (IMUs) that can be embedded in coarse (100 mm diameter scale) natural or artificial particles became available. These sensors are subjected to technical limitations when deployed for natural sediment transport. However, they give us the ability to measure for the first time the inertial dynamics (acceleration and angular velocity) of moving sediment grains under fluvial transport. Theoretically, the assumption of an ideal (IMU), rigidly attached at the centre of the mass of a sediment particle can simplify greatly the derivation of a general Eulerian-Lagrangian (E-L) model. This approach accounts for inertial characteristics of particles in a Lagrangian (particle fixed) frame, and for the hydrodynamics in an independent Eulerian frame. Simplified versions of the E-L model have been evaluated in laboratory experiments using real-IMUs [Maniatis et. al 2015]. Here, experimental results are presented relevant to the evaluation of the complete E-L model. Artificial particles were deployed in a series of laboratory and field experiments. The particles are equipped with an IMU capable of recording acceleration at ± 400 g and angular velocities at ± 1200 rads/sec ranges. The sampling frequency ranges from 50 to 200 Hz for the total IMU measurement. Two sets of laboratory experiments were conducted in a 0.9m wide laboratory flume. The first is a set of entrainment threshold experiments using two artificial particles: a spherical of D=90mm (A) and an ellipsoid with axes of 100, 70 and 30 mm (B). For the second set of experiments, a spherical artificial enclosure of D=75 mm (C) was released to roll freely in a (> threshold for entrainment) flow and over surfaces of different roughness. Finally, the coarser spherical and elliptical sensor- assemblies (A and B) were deployed in a steep mountain stream during active sediment transport flow conditions. The results include the calculation of the inertial acceleration, the instantaneous particle velocity and the total kinetic energy of the mobile particle (including the rotational component using gyroscope measurements). The comparison of the field deployments with the laboratory experiments suggests that E-L model can be generalised from laboratory to natural conditions. Overall, the inertia of individual coarse particles is a statistically significant effect for all the modes of sediment transport (entrainment, translation, deposition) in both natural and laboratory regimes. Maniatis et. al 2015: "Calculating the Explicit Probability of Entrainment Based on Inertial Acceleration Measurements", J. Hydraulic Engineering, 04016097
A Blind Circadian Clock in Cavefish Reveals that Opsins Mediate Peripheral Clock Photoreception
Cavallari, Nicola; Frigato, Elena; Vallone, Daniela; Fröhlich, Nadine; Lopez-Olmeda, Jose Fernando; Foà, Augusto; Berti, Roberto; Sánchez-Vázquez, Francisco Javier; Bertolucci, Cristiano; Foulkes, Nicholas S.
2011-01-01
The circadian clock is synchronized with the day-night cycle primarily by light. Fish represent fascinating models for deciphering the light input pathway to the vertebrate clock since fish cell clocks are regulated by direct light exposure. Here we have performed a comparative, functional analysis of the circadian clock involving the zebrafish that is normally exposed to the day-night cycle and a cavefish species that has evolved in perpetual darkness. Our results reveal that the cavefish retains a food-entrainable clock that oscillates with an infradian period. Importantly, however, this clock is not regulated by light. This comparative study pinpoints the two extra-retinal photoreceptors Melanopsin (Opn4m2) and TMT-opsin as essential upstream elements of the peripheral clock light input pathway. PMID:21909239
Modeling Total Dissolved Gas for Optimal Operation of Multireservoir Systems
Politano, Marcela; Castro, Alejandro; Hadjerioua, Boualem
2017-02-09
One important environmental issue of hydropower in the Columbia and Snake River Basins (Pacific Northwest region of United States) is elevated total dissolved gas (TDG) downstream of a dam, which has the potential to cause gas bubble disease in affected fish. Gas supersaturation in the Columbia River Basin primarily occurs due to dissolution of bubbles entrained during spill events. This paper presents a physically based TDG model that can be used to optimize spill operations in multireservoir hydropower systems. Independent variables of the model are forebay TDG, tailwater elevation, spillway and powerhouse discharges, project head, and environmental parameters such asmore » temperature and atmospheric pressure. The model contains seven physically meaningful experimental parameters, which were calibrated and validated against TDG data collected downstream of Rock Island Dam (Washington) from 2008 to 2012. In conclusion, a sensitivity analysis was performed to increase the understanding of the relationships between TDG downstream of the dam and processes such as air entrainment, lateral powerhouse flow, and dissolution.« less
The importance of defining technical issues in interagency environmental negotiations
Lamb, B.L.; Burkardt, N.; Taylor, J.G.
2001-01-01
The role of technical clarity in successful multiparty negotiations was studied. Investigations involved in-depth interviews with the principal participants in six consultations conducted under the U.S. Federal Energy Regulatory Commission’s hydroelectric power project licensing procedures. Technical clarity was especially important in these cases because they concerned science-based questions. The principal issues in the six cases were fish passage, instream flow for fish habitat, and entrainment of fish in hydropower turbines. It was concluded that technical clarity was one of the most critical elements in resolving these conflicts. In the least successful negotiations, parties failed to address the basic values of the dispute before plunging into technical studies. The results of those studies usually highlighted the potential for negative outcomes and increased polarization between the participants. In the most successful negotiations, the various parties shared an understanding of each of their basic values. These shared understandings led to technical studies that cast the negotiation in a positive light and illuminated possible solutions.
Perry, Russell W.; Romine, Jason G.; Pope, Adam C.; Evans, Scott D.
2018-02-27
The California Department of Water Resources and Bureau of Reclamation propose new water intake facilities on the Sacramento River in northern California that would convey some of the water for export to areas south of the Sacramento-San Joaquin River Delta (hereinafter referred to as the Delta) through tunnels rather than through the Delta. The collection of water intakes, tunnels, pumping facilities, associated structures, and proposed operations are collectively referred to as California WaterFix. The water intake facilities, hereinafter referred to as the North Delta Diversion (NDD), are proposed to be located on the Sacramento River downstream of the city of Sacramento and upstream of the first major river junction where Sutter Slough branches from the Sacramento River. The NDD can divert a maximum discharge of 9,000 cubic feet per second (ft3/s) from the Sacramento River, which reduces the amount of Sacramento River inflow into the Delta.In this report, we conducted three analyses to investigate the effect of the NDD and its proposed operation on entrainment of juvenile Chinook salmon (Oncorhynchus tshawytscha) into Georgiana Slough and the Delta Cross Channel (DCC). Fish that enter the interior Delta (the network of channels to the south of the Sacramento River) through Georgiana Slough and the DCC survive at lower rates than fish that use other migration routes (Sacramento River, Sutter Slough, and Steamboat Slough). Therefore, fisheries managers were concerned about the extent to which operation of the NDD would increase the proportion of the population entering the interior Delta, which, all else being equal, would lower overall survival through the Delta by increasing the fraction of the population subject to lower survival rates. Operation of the NDD would reduce flow in the Sacramento River, which has the potential to increase the magnitude and duration of reverse flows of the Sacramento River downstream of Georgiana Slough.In the first analysis, we evaluate the effect of the NDD bypass rules on flow reversals of the Sacramento River downstream of Georgiana Slough. The NDD bypass rules are a set of operational criteria designed to minimize upstream transport of fish into Georgiana Slough and the DCC, and were developed based on previous studies showing that the magnitude and duration of flow reversals increase the proportion of fish entering Georgiana Slough and the DCC. We estimated the frequency and duration of reverse-flow conditions of the Sacramento River downstream of Georgiana Slough under each of the prescribed minimum bypass flows described in the NDD bypass rules. To accommodate adaptive levels of protection during different times of year when juvenile salmon are migrating through the Delta, the NDD bypass rules prescribe a series of minimum allowable bypass flows that vary depending on (1) month of the year, and (2) progressively decreasing levels of protection following a pulse flow event.We determined that the NDD bypass rules increased the frequency and duration of reverse flows of the Sacramento River downstream of Georgiana Slough, with the magnitude of increase varying among scenarios. Constant low-level pumping, the most protective bypass rule that limits diversion to 10 percent of the maximum diversion and is implemented following a pulse-flow event, led to the smallest increase in frequency and duration of flow reversals. In contrast, we found that some scenarios led to sizeable increases in the fraction of the day with reverse flow. The conditions under which the proportion of the day with reverse flow can increase by greater than or equal to 10 percentage points between October and June, when juvenile salmon are present in the Delta, include October–November bypass rules and level-3 post-pulse operations during December–June. These conditions would be expected to increase the proportion of juvenile salmon entering the interior Delta through Georgiana Slough.In the second analysis, we assessed bias in Delta Simulation Model 2 (DSM2) flow predictions at the junction of the Sacramento River, DCC, and Georgiana Slough. Because DSM2 was being used to simulate California WaterFix operations, understanding the extent of bias relative to USGS streamgages was important since fish routing models were based on flow data at streamgages. We determined that river flow predicted by DSM2 was biased for Georgiana Slough and the Sacramento River. Therefore, for subsequent analysis, we bias-corrected the DSM2 flow predictions using measured stream flows as predictor variables.In the third analysis, we evaluated the effect of the NDD on the daily probability of fish entering Georgiana Slough and the DCC. We applied an existing model to predict entrainment from 15-minute flow simulations for an 82-year time series of flows simulated by DSM2 under the Proposed Action (PA), where the North Delta Diversion is implemented under California WaterFix, and the No Action Alternative (NAA), where the diversion is not implemented. To estimate the daily fraction of fish entering each river channel, entrainment probabilities were averaged over each day. To evaluate the two scenarios, we then compared mean annual entrainment probabilities by month, water year classification, and three different assumed run timings. Overall, the probability of remaining in the Sacramento River was lower under the PA scenario, but the magnitude of the difference was small (3/s. At flows greater than 41,000 ft3/s, we hypothesize that entrainment into the interior Delta is relatively constant, which would have caused little difference between scenarios at higher flows.
Stream temperature and stage monitoring using fisherman looking for fish.
NASA Astrophysics Data System (ADS)
Hut, Rolf; Tyler, Scott
2015-04-01
Fly Fishing is a popular pastime in large parts of the world. Two key facts that fly fisherman need to know to find the ideal fishing spot is water depth and water temperature. These are also two parameters of interest to hydrologist, especially those interested in the hyporheic zone. We present a device that serves both fisherman and hydrologists: sensor-waders. A classic pair of waders is equipped with temperature and water height sensors. Measurement values are communicated to an app on the smartphone of the fisherman. This app provides the fisherman with real time information on local conditions. By using the geolocation of the smartphone, the measurement values are also send to a remote server for use in hydrological research. We will present a first proof of concept of the sensor-waders.
Roseman, E.F.; Tomichek, C.A.; Maynard, T.; Burton, J.A.
2005-01-01
Grubby (Myoxocephalus aenaeus, Cottidae) is a common benthic fish of inshore waters and estuaries of eastern Long Island Sound; however, little information exists on their life history or population demographics. This study utilised a long-term data series (1976-2002) to assess grubby life history and population demographics and explores trends in the Niantic River and Niantic Bay populations. In addition, we examined the age, size, and fecundity of adult grubby in 2001-02 to determine the population characteristics in the region. Mean grubby catch per unit effort (CPUE) in Niantic Bay ranged from 0.4 per trawl in 1976 to 2.9 per trawl in 1984 while river CPUE ranged from 0.4 per trawl in 1977 to 7.6 per trawl in 1989. Catch of grubby in bottom trawls varied seasonally with highest CPUE occurring in winter. Highest entrainment of grubby larvae occurred in 2001 while the lowest entrainment observed was in 1991. Four age classes, 0+ through III+, were derived from otolith analysis (N = 51) although length frequency analysis suggested the possibility of older fish in the population. The total number of eggs in ovaries ranged from 286 to 16 451 for grubby (N = 64) between 52 mm and 155 mm TL. Results of this study indicated a decline in abundance of adult grubby over the 26-year period, possibly related to concurrent declines in eelgrass (Zostera marina) abundance and/or increased water temperature. ?? 2005 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Roseman, Edward F.; Tomichek, Christine A.; Maynard, Tracy; Burton, Jennifer A.
2005-04-01
Grubby ( Myoxocephalus aenaeus, Cottidae) is a common benthic fish of inshore waters and estuaries of eastern Long Island Sound; however, little information exists on their life history or population demographics. This study utilised a long-term data series (1976-2002) to assess grubby life history and population demographics and explores trends in the Niantic River and Niantic Bay populations. In addition, we examined the age, size, and fecundity of adult grubby in 2001-02 to determine the population characteristics in the region. Mean grubby catch per unit effort (CPUE) in Niantic Bay ranged from 0.4 per trawl in 1976 to 2.9 per trawl in 1984 while river CPUE ranged from 0.4 per trawl in 1977 to 7.6 per trawl in 1989. Catch of grubby in bottom trawls varied seasonally with highest CPUE occurring in winter. Highest entrainment of grubby larvae occurred in 2001 while the lowest entrainment observed was in 1991. Four age classes, 0+ through III+, were derived from otolith analysis (N = 51) although length frequency analysis suggested the possibility of older fish in the population. The total number of eggs in ovaries ranged from 286 to 16 451 for grubby (N = 64) between 52 mm and 155 mm TL. Results of this study indicated a decline in abundance of adult grubby over the 26-year period, possibly related to concurrent declines in eelgrass ( Zostera marina) abundance and/or increased water temperature.
A western boundary current eddy characterisation study
NASA Astrophysics Data System (ADS)
Ribbe, Joachim; Brieva, Daniel
2016-12-01
The analysis of an eddy census for the East Australian Current (EAC) region yielded a total of 497 individual short-lived (7-28 days) cyclonic and anticyclonic eddies for the period 1993 to 2015. This was an average of about 23 eddies per year. 41% of the tracked individual cyclonic and anticyclonic eddies were detected off southeast Queensland between about 25 °S and 29 °S. This is the region where the flow of the EAC intensifies forming a swift western boundary current that impinges near Fraser Island on the continental shelf. This zone was also identified as having a maximum in detected short-lived cyclonic eddies. A total of 94 (43%) individual cyclonic eddies or about 4-5 per year were tracked in this region. The census found that these potentially displaced entrained water by about 115 km with an average displacement speed of about 4 km per day. Cyclonic eddies were likely to contribute to establishing an on-shelf longshore northerly flow forming the western branch of the Fraser Island Gyre and possibly presented an important cross-shelf transport process in the life cycle of temperate fish species of the EAC domain. In-situ observations near western boundary currents previously documented the entrainment, off-shelf transport and export of near shore water, nutrients, sediments, fish larvae and the renewal of inner shelf water due to short-lived eddies. This study found that these cyclonic eddies potentially play an important off-shelf transport process off the central east Australian coast.
Mesa, Matthew G.; Liedtke, Theresa L.; Weiland, Lisa K.; Christiansen, Helena E.
2017-12-14
In previous tests of the effectiveness of four common fish screen materials for excluding lamprey ammocoetes, we determined that woven wire (WW) allowed substantially more entrainment than perforated plate (PP), profile bar (PB), or Intralox (IL) material. These tests were simplistic because they used small vertically-oriented screens positioned perpendicular to the flow without a bypass or a sweeping velocity (SV). In the subsequent test discussed in this report, we exposed ammocoetes to much larger (2.5-m-wide) screen panels with flows up to 10 ft3 /s, a SV component, and a simulated bypass channel. The addition of a SV modestly improved protection of lamprey ammocoetes for all materials tested. A SV of 35 cm/s with an approach velocity (AV) of 12 cm/s, was able to provide protection for fish about 5–15 mm smaller than the protection provided by an AV of 12 cm/s without a SV component. The best-performing screen panels (PP, IL, and PB) provided nearly complete protection from entrainment for fish greater than 50-mm toal length, but the larger openings in the WW material only protected fish greater than 100-mm total length. Decreasing the AV and SV by 50 percent expanded the size range of protected lampreys by about 10–15 mm for those exposed to IL and WW screens, and it decreased the protective ability of PP screens by about 10 mm. Much of the improvement for IL and WW screens under the reduced flow conditions resulted from an increase in the number of lampreys swimming away from the screen. Fish of all sizes became impinged (that is, stuck on the screen surface for more than 1 s) on the screens, with the rate of impingement highest on PP (39– 72 percent) and lowest on WW (7–22 percent). Although impingements were common, injuries were rare, and 24-h post-test survival was greater than 99 percent. Our results refined the level of protection provided by these screen materials when both an AV and SV are present and confirmed our earlier recommendation that WW screens be replaced with more effective materials. Future work should focus on determining the risks associated with other screen types (for example, rotary drum screens, horizontal flat plate screens) and exploring the effectiveness of higher SV:AV ratios, because it may help expand the range of sizes protected by the best performing materials.
NASA Astrophysics Data System (ADS)
Nikora, Vladimir; Cameron, Stuart; Amir, Mohammad; Stewart, Mark; Witz, Matthew
2015-04-01
In spite of significant efforts of geoscientists and engineers, the exact mechanics of sediment entrainment and transport by turbulent flows remains unclear and continues to be the focus of many research groups worldwide. The talk outlines current developments in this direction at the University of Aberdeen, where an extensive experimental programme has recently been completed. The experiments were conducted in the Aberdeen Open Channel Facility (AOCF, 20 m long, 1.18 m wide) over wide ranges of flow submergence (1.9-8.0), bulk Reynolds number (4400-83000), and channel aspect ratio (9-39). The flume bed was covered by hexagonally-packed glass beads 16 mm in diameter. For entrainment experiments, selected glass particles were replaced with lighter particles (nylon and delrin). Instantaneous velocity fields before, during, and after entrainment were measured with an advanced multi-mode Particle Image Velocimetry (PIV) system developed by S. Cameron. This system was also used for 3D particle tracking in the entrainment experiments. The main types of experiments included: (1) multi-mode turbulence measurements with fixed-bed conditions to assess the background flow structure (10 min to 120 min duration of velocity records); (2) simultaneous measurements of fluctuating differential pressure acting on 23 fixed particles with in-built pressure sensors, synchronously with PIV; (3) measurements of waiting times for particle entrainment, employing a specially designed system (SMC-1) for automatic placement of the particles on the bed and subsequent measurement of the time before entrainment; (4) long-term direct measurements of the instantaneous drag force acting on a single particle (attached to the bed) at different protrusions, synchronously with PIV; and (5) synchronous measurements of the flow field around a particle before, at, and during entrainment, supplemented with 3D particle tracking. The key results include: (1) the refined turbulence structure of a rough-bed open-channel flow assessed with multiple-order bulk velocity statistics, spectra, correlations, and structure functions; (2) identification and quantification of coherent motions, with particular focus on 'superstructures' (or 'very large scale motions' up to 40 flow depths in length); (3) assessment of secondary current effects on the flow structure; (4) statistical characteristics of fluctuating pressure acting on multiple bed particles, including spatial pressure correlations and their relations to the coherent structures; (5) estimates and statistical tests of waiting time distributions; (6) statistics of particle trajectories with particular focus on the initial stages of motion; and (7) identification of typical flow features accompanying particle entrainment. Among other findings, it has been shown, for the first time, that particle entrainment is likely to be associated with interactions between flow superstructures. The 'collisions' of superstructures, 'meandering' across the flow, generate regions of a particular velocity pattern leading to the particle entrainment. This study was supported by an EPSRC (UK) Grant EP/G056404/1, which was directly linked to DFG (Germany) Grants FR 1593/5-1/2, focus of which was on direct numerical simulations of mobile-bed flows. The authors are grateful to M. Uhlmann and C. Chan-Braun (Karlsruhe Institute of Technology) and J. Frohlich and B. Vowinckel (Dresden Technical University) for their useful suggestions and insightful discussions throughout the course of this project.
NASA Astrophysics Data System (ADS)
Gottwald, Martin; Mayekar, Kavita; Reiswich, Vladislav; Bousack, Herbert; Damalla, Deepak; Biswas, Shubham; Metzen, Michael G.; von der Emde, Gerhard
2011-04-01
During their nocturnal activity period, weakly electric fish employ a process called "active electrolocation" for navigation and object detection. They discharge an electric organ in their tail, which emits electrical current pulses, called electric organ discharges (EOD). Local EODs are sensed by arrays of electroreceptors in the fish's skin, which respond to modulations of the signal caused by nearby objects. Fish thus gain information about the size, shape, complex impedance and distance of objects. Inspired by these remarkable capabilities, we have designed technical sensor systems which employ active electrolocation to detect and analyse the walls of small, fluid filled pipes. Our sensor systems emit pulsed electrical signals into the conducting medium and simultaneously sense local current densities with an array of electrodes. Sensors can be designed which (i) analyse the tube wall, (ii) detect and localize material faults, (iii) identify wall inclusions or objects blocking the tube (iv) and find leakages. Here, we present first experiments and FEM simulations on the optimal sensor arrangement for different types of sensor systems and different types of tubes. In addition, different methods for sensor read-out and signal processing are compared. Our biomimetic sensor systems promise to be relatively insensitive to environmental disturbances such as heat, pressure, turbidity or muddiness. They could be used in a wide range of tubes and pipes including water pipes, hydraulic systems, and biological systems. Medical applications include catheter based sensors which inspect blood vessels, urethras and similar ducts in the human body.
NASA Astrophysics Data System (ADS)
Carranza, M. M.; Gille, S. T.; Franks, P. J. S.; Johnson, K. S.; Girton, J. B.
2016-02-01
The Southern Ocean is under the influence of strong atmospheric synoptic activity and contains some of the oceans deepest mixed layers. Deep mixed layers can transport phytoplankton below the euphotic zone, and phytoplankton growth is hypothesized to be co-limited by iron and light. Atmospheric forcing drives changes in the mixed-layer depth (MLD) that influence light levels and nutrient input to the euphotic zone. In summer, when the MLD is shallow and close to the euphotic depth, high satellite Chl-a correlate with high winds, consistent with wind-driven entrainment that can potentially increase nutrient concentrations in the euphotic zone. However, correlations between Chl-a and diurnal winds are largest at zero time lag. High winds can inject nutrients on short timescales (< 1 day), but in situ incubation experiments after iron addition indicate phytoplankton growth on slightly longer timescales (> 3-4 days), suggesting that the correlations are not a result of growth. High winds can also entrain Chl-a from a subsurface Chl-a maximum. Novel bio-optical sensors mounted on elephant seals and autonomous floats allow us to examine the vertical structure of Chl-a in the Southern Ocean. In this study, we investigate the occurrence of subsurface Chl-a maxima. We find that surface Chl-a is a relatively good proxy for depth-integrated Chl-a within the euphotic zone but gives an inadequate representation of biomass within the mixed layer, particularly in the summer. Subsurface Chl-a maxima are not uncommon and may occur in all seasons. Chl-a maxima that correlate with particle backscattering in summer and fall are found near the base of the mixed layer, closer to the nutrient maximum than the light maximum, suggesting that nutrient limitation (i.e., essentially iron) can play a greater role than light limitation in governing productivity, and that high winds potentially entrain a subsurface Chl-a maximum into the summer mixed layer.
Remote bioenergetics measurements in wild fish: Opportunities and challenges.
Cooke, Steven J; Brownscombe, Jacob W; Raby, Graham D; Broell, Franziska; Hinch, Scott G; Clark, Timothy D; Semmens, Jayson M
2016-12-01
The generalized energy budget for fish (i.e., Energy Consumed=Metabolism+Waste+Growth) is as relevant today as when it was first proposed decades ago and serves as a foundational concept in fish biology. Yet, generating accurate measurements of components of the bioenergetics equation in wild fish is a major challenge. How often does a fish eat and what does it consume? How much energy is expended on locomotion? How do human-induced stressors influence energy acquisition and expenditure? Generating answers to these questions is important to fisheries management and to our understanding of adaptation and evolutionary processes. The advent of electronic tags (transmitters and data loggers) has provided biologists with improved opportunities to understand bioenergetics in wild fish. Here, we review the growing diversity of electronic tags with a focus on sensor-equipped devices that are commercially available (e.g., heart rate/electrocardiogram, electromyogram, acceleration, image capture). Next, we discuss each component of the bioenergetics model, recognizing that most research to date has focused on quantifying the activity component of metabolism, and identify ways in which the other, less studied components (e.g., consumption, specific dynamic action component of metabolism, somatic growth, reproductive investment, waste) could be estimated remotely. We conclude with a critical but forward-looking appraisal of the opportunities and challenges in using existing and emerging electronic sensor-tags for the study of fish energetics in the wild. Electronic tagging has become a central and widespread tool in fish ecology and fisheries management; the growing and increasingly affordable toolbox of sensor tags will ensure this trend continues, which will lead to major advances in our understanding of fish biology over the coming decades. Copyright © 2016 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Cao, Jingtai; Zhao, Xiaohui; Li, Zhaokun; Liu, Wei; Gu, Haijun
2017-11-01
The performance of free space optical (FSO) communication system is limited by atmospheric turbulent extremely. Adaptive optics (AO) is the significant method to overcome the atmosphere disturbance. Especially, for the strong scintillation effect, the sensor-less AO system plays a major role for compensation. In this paper, a modified artificial fish school (MAFS) algorithm is proposed to compensate the aberrations in the sensor-less AO system. Both the static and dynamic aberrations compensations are analyzed and the performance of FSO communication before and after aberrations compensations is compared. In addition, MAFS algorithm is compared with artificial fish school (AFS) algorithm, stochastic parallel gradient descent (SPGD) algorithm and simulated annealing (SA) algorithm. It is shown that the MAFS algorithm has a higher convergence speed than SPGD algorithm and SA algorithm, and reaches the better convergence value than AFS algorithm, SPGD algorithm and SA algorithm. The sensor-less AO system with MAFS algorithm effectively increases the coupling efficiency at the receiving terminal with fewer numbers of iterations. In conclusion, the MAFS algorithm has great significance for sensor-less AO system to compensate atmospheric turbulence in FSO communication system.
Granular motions near the threshold of entrainment
NASA Astrophysics Data System (ADS)
Valyrakis, Manousos; Alexakis, athanasios-Theodosios
2016-04-01
Our society is continuously impacted by significant weather events many times resulting in catastrophes that interrupt our normal way of life. In the context of climate change and increasing urbanisation these "extreme" hydrologic events are intensified both in magnitude and frequency, inducing costs of the order of billions of pounds. The vast majority of such costs and impacts (even more to developed societies) are due to water related catastrophes such as the geomorphic action of flowing water (including scouring of critical infrastructure, bed and bank destabilisation) and flooding. New tools and radically novel concepts are in need, to enable our society becoming more resilient. This presentation, emphasises the utility of inertial sensors in gaining new insights on the interaction of flow hydrodynamics with the granular surface at the particle scale and for near threshold flow conditions. In particular, new designs of the "smart-sphere" device are discussed with focus on the purpose specific sets of flume experiments, designed to identify the exact response of the particle resting at the bed surface for various below, near and above threshold flow conditions. New sets of measurements are presented for particle entrainment from a Lagrangian viewpoint. Further to finding direct application in addressing real world challenges in the water sector, it is shown that such novel sensor systems can also help the research community (both experimentalists and computational modellers) gain a better insight on the underlying processes governing granular dynamics.
Blake, Aaron R.; Stumpner, Paul; Burau, Jon R.
2017-01-01
During water year 2016 the U.S. Geological Survey California Water Science Center (USGS) collaborated with the California Department of Water Resources (DWR) to conduct a joint hydrodynamic and fisheries study to acquire data that could be used to evaluate the effects of proposed modifications to the Fremont Weir on outmigrating juvenile Chinook salmon. During this study the USGS surgically implanted acoustic tags in juvenile late fall run Chinook salmon from the Coleman National Fish Hatchery, released the acoustically tagged juvenile salmon into the Sacramento River upstream of the Fremont Weir, and tracked their movements as they emigrated past the western end of the Fremont Weir.The USGS analyzed tracking data from the acoustically tagged juvenile salmon along with detailed hydrodynamic data collected in the Sacramento River during the winter/spring of water year 2016 in the vicinity of the western end of the Fremont Weir to assess the potential for enhancing the entrainment of Sacramento River Chinook salmon onto the Yolo Bypass under six different Fremont Weir modification scenarios. Each modification scenario consists of a notch or multiple notches in the Fremont Weir which are designed to divert a portion of the Sacramento River onto the Yolo Bypass when the Sacramento River is below the crest of the Fremont Weir. The primary goal of this entrainment analysis was to investigate how the location of the notch or notches in each scenario affected the entrainment of juvenile Chinook salmon onto the Yolo Bypass, and to predict the notch location or locations that would result in maximum entrainment under each modification scenario. Stumpner et al.’s (in review) analysis of hydraulic data collected during the 2016 study period showed that backwater effects in the Sacramento River created significant variability in the relationship between Sacramento River stage and the proportion of the Sacramento River flow that we expect to be diverted onto the Yolo Bypass under the modification scenarios. Because of this variability, accurately evaluating the entrainment potential of possible notch locations for each scenario required combining historic abundance data for juvenile Sacramento River Chinook salmon with historic hydraulic data for the Sacramento River in the vicinity of the Fremont Weir, so that the entrainment estimates would reflect the covariance between Sacramento River stage, Sacramento River discharge, and juvenile salmon abundance within the historic record.We used a Monte Carlo simulation framework to combine the high resolution hydrodynamic data and acoustic tag track data collected in 2016 with historic juvenile salmon abundance, Sacramento River stage, and Sacramento River discharge data from a period spanning water years 1996-2010 to assess the entrainment potential of different weir modification scenarios under historic conditions. The scenarios we simulated consisted of four single notch configurations, and two multiple notch configurations in the vicinity of the western end of the Fremont Weir. For each notch configuration the 15-water-year entrainment simulation was repeated for 63 possible notch locations in the vicinity of the western end of the Fremont Weir. This approach allowed us to assess the effect of notch location on the entrainment of juvenile salmonids onto the Yolo Bypass for each of the six notch configurations that we evaluated.The entrainment simulations showed that the location of each notch configuration had a major impact on the entrainment for each scenario; the predicted entrainment of some scenarios varied by as much as 400% based on where the notch (or notches) was (were) located in the study area. All of the single notch scenarios performed best when they were located within a 330 ft (100 meter) long section of the Sacramento River bank adjacent to the western terminus of the Fremont Weir (Table 1). Both of the multiple notch scenarios performed best when their upstream notches were located about 660 ft (200 meters) upstream of the western terminus of the Fremont Weir (Table 1). The results of the entrainment simulations indicated that for each notch configuration the same notch location produced near-maximum entrainment regardless of run abundance timing; this result suggests that there are areas within the study are where a notch (or notches) can be sited to achieve maximum entrainment for all runs (barring significant behavioral or physiological differences between runs). In addition, the simulation results indicate that for each notch configuration the same location is expected to produce nearmaximum entrainment for both wet water years and dry water years.Based on the results of the entrainment simulation we make three general recommendations for strategies to improve the entrainment potential of a notch in the Fremont Weir:1) Comparisons between the maximum entrainment potential for each scenario suggested that total entrainment of winter run, spring run, and fall run salmon onto the Yolo Bypass can be increased by increasing the amount of water entering a notch when the Sacramento River stage is between 19 ft and 22 ft NAVD88; this could be accomplished by lowering notch invert elevations or by adding a control section to the Sacramento River to raise stage for a given discharge.2) The relationship between Sacramento River stage and entrainment for each scenario indicated that entrainment efficiency for each scenario declined significantly once Sacramento River stage exceeded bankfull (approximately 28.5 ft NAVD88). This effect was likely due to inundation of the floodplain between the Sacramento River and the Fremont Weir; Stumpner et. al (In Review) have documented a reduction in the strength of the secondary circulation and centralization of the downwelling zone in the Sacramento River when this floodplain is inundated. Therefore, increasing the height of the river right bank of the Sacramento River to coincide with the height of the Fremont Weir is recommended to increase entrainment at higher stages. 3) Bathymetric features upstream of notch openings appeared to have a major impact on the entrainment potential of the simulated notches. For this reason we recommend taking care to avoid siting notches immediately downstream of bank features that alter the sidewall boundary layer, and we expect that smoothing the bank bathymetry upstream of a notch will enhance entrainment. Finally, we caution that the entrainment simulation was based on the behavior of large hatchery smolts, so it is likely that our results will be sensitive to any differences in behavior and physiology between these hatchery surrogates and naturally migrating juvenile salmon.
Fish-bone-structured acoustic sensor toward silicon cochlear systems
NASA Astrophysics Data System (ADS)
Harada, Muneo; Ikeuchi, Naoki; Fukui, Shoichi; Ando, Shigeru
1998-09-01
This paper describes a micro mechanical acoustic sensor modeling the basilar membrane of the human cochlea. The skeleton of the acoustic sensor is an array of resonators each of specific frequency selectivity. The mechanical structure of the sensor is designed using FEM analysis to have a particular geometrical structure looking like a fish bone that consists of cantilever ribs extending out from a backbone. Acoustic wave is supposed to be introduced to the diaphragm placed at one end of the backbone to travel in one way along the backbone. During traveling each frequency component of the wave is delivered to the corresponding cantilever according to its resonant frequency. The mechanical vibrations of each cantilever are detected in parallel by use of piezoresistors. The fish-bone structure is fabricated to be suspended in the air on a silicon substrate using silicon micromachining technology. We observe the frequency response of each cantilever to verify fairly sharp frequency selectivity associated with the one- way flow of the vibration energy. The present results encourage us to implement the human auditory system on a silicon chip toward the goal of silicon cochlea.
Dagamseh, Ahmad; Wiegerink, Remco; Lammerink, Theo; Krijnen, Gijs
2013-01-01
In Nature, fish have the ability to localize prey, school, navigate, etc., using the lateral-line organ. Artificial hair flow sensors arranged in a linear array shape (inspired by the lateral-line system (LSS) in fish) have been applied to measure airflow patterns at the sensor positions. Here, we take advantage of both biomimetic artificial hair-based flow sensors arranged as LSS and beamforming techniques to demonstrate dipole-source localization in air. Modelling and measurement results show the artificial lateral-line ability to image the position of dipole sources accurately with estimation error of less than 0.14 times the array length. This opens up possibilities for flow-based, near-field environment mapping that can be beneficial to, for example, biologists and robot guidance applications. PMID:23594816
Collision recognition and direction changes for small scale fish robots by acceleration sensors
NASA Astrophysics Data System (ADS)
Na, Seung Y.; Shin, Daejung; Kim, Jin Y.; Lee, Bae-Ho
2005-05-01
Typical obstacles are walls, rocks, water plants and other nearby robots for a group of small scale fish robots and submersibles that have been constructed in our lab. Sonar sensors are not employed to make the robot structure simple enough. All of circuits, sensors and processor cards are contained in a box of 9 x 7 x 4 cm dimension except motors, fins and external covers. Therefore, image processing results are applied to avoid collisions. However, it is useful only when the obstacles are located far enough to give images processing time for detecting them. Otherwise, acceleration sensors are used to detect collision immediately after it happens. Two of 2-axes acceleration sensors are employed to measure the three components of collision angles, collision magnitudes, and the angles of robot propulsion. These data are integrated to calculate the amount of propulsion direction change. The angle of a collision incident upon an obstacle is the fundamental value to obtain a direction change needed to design a following path. But there is a significant amount of noise due to a caudal fin motor. Because caudal fin provides the main propulsion for a fish robot, there is a periodic swinging noise at the head of a robot. This noise provides a random acceleration effect on the measured acceleration data at the collision. We propose an algorithm which shows that the MEMS-type accelerometers are very effective to provide information for direction changes in spite of the intrinsic noise after the small scale fish robots have made obstacle collision.
NASA Astrophysics Data System (ADS)
Shi, Ce; Liu, Ying; Yi, Mengmeng; Zheng, Jimeng; Tian, Huiqin; Du, Yishuai; Li, Xian; Sun, Guoxiang
2017-07-01
Although it has been hypothesized that a predictable feeding regime in animals allows physiological variables to be adjusted to maximize nutrient utilization and, hence, better growth performance, the assumption has rarely been tested. This study compares the effects of time-restricted versus free access self-feeding on the growth, feeding behavior and daily digestive enzyme rhythms of Atlantic salmon ( Salmo salar). In an experiment that lasted 6 weeks, fish (109.9 g) were divided into two groups: group 1 had free access to a self-feeder (FA); group 2 received three meals per day (2 h per meal) at dawn, midday and dusk via a time-restricted self-feeder (TR). At the end of the experiment, the fish were sampled every 3 h over a 24-h period. The results showed that the TR fish quickly synchronized their feeding behavior to the feeding window and their blood glucose showed a significant postprandial increase, while FA fish displayed no statistically significant rhythms ( P>0.05). Pepsin activity of TR fish also showed a significant daily rhythm ( P<0.05) with the acrophase at the second feed and a decrease over the next 12 h. Average daily trypsin, lipase and amylase levels of FA fish were significantly lower than those of TR fish ( P<0.01); however, the growth performance of both groups was similar ( P>0.05). In conclusion, the study failed to confirm a link between the entrainment of daily digestive enzyme profiles and growth performance, with the TR group showing comparatively poor blood glucose regulation.
Generalized fish life-cycle poplulation model and computer program
DOE Office of Scientific and Technical Information (OSTI.GOV)
DeAngelis, D. L.; Van Winkle, W.; Christensen, S. W.
1978-03-01
A generalized fish life-cycle population model and computer program have been prepared to evaluate the long-term effect of changes in mortality in age class 0. The general question concerns what happens to a fishery when density-independent sources of mortality are introduced that act on age class 0, particularly entrainment and impingement at power plants. This paper discusses the model formulation and computer program, including sample results. The population model consists of a system of difference equations involving age-dependent fecundity and survival. The fecundity for each age class is assumed to be a function of both the fraction of females sexuallymore » mature and the weight of females as they enter each age class. Natural mortality for age classes 1 and older is assumed to be independent of population size. Fishing mortality is assumed to vary with the number and weight of fish available to the fishery. Age class 0 is divided into six life stages. The probability of survival for age class 0 is estimated considering both density-independent mortality (natural and power plant) and density-dependent mortality for each life stage. Two types of density-dependent mortality are included. These are cannibalism of each life stage by older age classes and intra-life-stage competition.« less
Alessi, Alessio; Accoto, Dino; Guglielmelli, Eugenio
2015-08-01
Underactuated compliant swimming robots are characterized by a simple mechanical structure, capable to mimic the body undulation of many fish species. One of the design issue for these robots is the generation and control of best performing swimming gaits. In this paper we propose a new controller, based on AFO oscillators, to address this issue. After analyzing the effects of the motion on the robot natural frequencies, we show that the closed loop system is able to generate self-sustained oscillations, at a characteristic frequency, while maximizing swimming velocity.
Perry, R.W.; Farley, M.J.; Hansen, G.S.; Shurtleff, D.J.; Rondorf, D.W.; LeCaire, R.
2003-01-01
In 1995, the Chief Joseph Kokanee Enhancement Project was established to mitigate the loss of anadromous fish due to the construction of Chief Joseph and Grand Coulee dams. The objectives of the Chief Joseph Enhancement Project are to determine the status of resident kokanee (Oncorhynchus nerka) populations above Chief Joseph and Grand Coulee dams and to enhance kokanee and rainbow trout (Oncorhynchus mykiss) populations. Studies conducted at Grand Coulee Dam documented substantial entrainment of kokanee through turbines at the third powerhouse.
Polyvalent cation receptor proteins (CaRs) are salinity sensors in fish.
Nearing, J; Betka, M; Quinn, S; Hentschel, H; Elger, M; Baum, M; Bai, M; Chattopadyhay, N; Brown, E M; Hebert, S C; Harris, H W
2002-07-09
To determine whether calcium polyvalent cation-sensing receptors (CaRs) are salinity sensors in fish, we used a homology-based cloning strategy to isolate a 4.1-kb cDNA encoding a 1,027-aa dogfish shark (Squalus acanthias) kidney CaR. Expression studies in human embryonic kidney cells reveal that shark kidney senses combinations of Ca(2+), Mg(2+), and Na(+) ions at concentrations present in seawater and kidney tubules. Shark kidney is expressed in multiple shark osmoregulatory organs, including specific tubules of the kidney, rectal gland, stomach, intestine, olfactory lamellae, gill, and brain. Reverse transcriptase-PCR amplification using specific primers in two teleost fish, winter flounder (Pleuronectes americanus) and Atlantic salmon (Salmo salar), reveals a similar pattern of CaR tissue expression. Exposure of the lumen of winter flounder urinary bladder to the CaR agonists, Gd(3+) and neomycin, reversibly inhibit volume transport, which is important for euryhaline teleost survival in seawater. Within 24-72 hr after transfer of freshwater-adapted Atlantic salmon to seawater, there are increases in their plasma Ca(2+), Mg(2+), and Na(+) that likely serve as a signal for internal CaRs, i.e., brain, to sense alterations in salinity in the surrounding water. We conclude that CaRs act as salinity sensors in both teleost and elasmobranch fish. Their tissue expression patterns in fish provide insights into CaR functions in terrestrial animals including humans.
Takase, Mai; Murata, Masataka; Hibi, Kyoko; Huifeng, Ren; Endo, Hideaki
2014-04-01
We developed a wireless monitoring system to monitor fish condition by tracking the change in whole cholesterol concentration. The whole cholesterol concentration of fish is a source of steroid hormones or indicator of immunity level, which makes its detection important for tracking physiological condition of fish. Wireless monitoring system comprises of mediator-type biosensor and wireless transmission device. Biosensor is implantable to fish body, and transmission device is so light, in that fish is allowed to swim freely during monitoring. Cholesterol esterase and oxidase were fixated on to the detection site of biosensor and used to detect the whole cholesterol concentration. However, cholesterol oxidase incorporates oxidation-reduction reaction of oxygen for detection, which concentration fluctuates easily due to change in environmental condition. Meanwhile, mediator-type biosensor enables monitoring of whole cholesterol concentration by using mediator to substitute that oxidation-reduction reaction of oxygen. Characteristic of fabricated mediator-type biosensor was tested. The sensor output current of mediator-type biosensor remained stable compared to output current of non-mediator-type biosensor under fluctuating oxygen concentration of 0-8 ppm, which implied that this sensor is less affected by change in dissolved oxygen concentration. That biosensor was then implanted into fish for wireless monitoring. As a result, approximately 48 h of real-time monitoring was successful.
Navigation system for a mobile robot with a visual sensor using a fish-eye lens
NASA Astrophysics Data System (ADS)
Kurata, Junichi; Grattan, Kenneth T. V.; Uchiyama, Hironobu
1998-02-01
Various position sensing and navigation systems have been proposed for the autonomous control of mobile robots. Some of these systems have been installed with an omnidirectional visual sensor system that proved very useful in obtaining information on the environment around the mobile robot for position reckoning. In this article, this type of navigation system is discussed. The sensor is composed of one TV camera with a fish-eye lens, using a reference target on a ceiling and hybrid image processing circuits. The position of the robot, with respect to the floor, is calculated by integrating the information obtained from a visual sensor and a gyroscope mounted in the mobile robot, and the use of a simple algorithm based on PTP control for guidance is discussed. An experimental trial showed that the proposed system was both valid and useful for the navigation of an indoor vehicle.
A computational fluid dynamics modeling study of guide walls for downstream fish passage
Mulligan, Kevin; Towler, Brett; Haro, Alexander J.; Ahlfeld, David P.
2017-01-01
A partial-depth, impermeable guidance structure (or guide wall) for downstream fish passage is typically constructed as a series of panels attached to a floating boom and anchored across a water body (e.g. river channel, reservoir, or power canal). The downstream terminus of the wall is generally located nearby to a fish bypass structure. If guidance is successful, the fish will avoid entrainment in a dangerous intake structure (i.e. turbine intakes) while passing from the headpond to the tailwater of a hydroelectric facility through a safer passage route (i.e. the bypass). The goal of this study is to determine the combination of guide wall design parameters that will most likely increase the chance of surface-oriented fish being successfully guided to the bypass. To evaluate the flow field immediately upstream of a guide wall, a parameterized computational fluid dynamics model of an idealized power canal was constructed in © ANSYS Fluent v 14.5 (ANSYS Inc., 2012). The design parameters investigated were the angle and depth of the guide wall and the average approach velocity in the power canal. Results call attention to the importance of the downward to sweeping flow ratio and demonstrate how a change in guide wall depth and angle can affect this important hydraulic cue to out-migrating fish. The key findings indicate that a guide wall set at a small angle (15° is the minimum in this study) and deep enough such that sweeping flow dominant conditions prevail within the expected vertical distribution of fish approaching the structure will produce hydraulic conditions that are more likely to result in effective passage.
Towards fish-eye camera based in-home activity assessment.
Bas, Erhan; Erdogmus, Deniz; Ozertem, Umut; Pavel, Misha
2008-01-01
Indoors localization, activity classification, and behavioral modeling are increasingly important for surveillance applications including independent living and remote health monitoring. In this paper, we study the suitability of fish-eye cameras (high-resolution CCD sensors with very-wide-angle lenses) for the purpose of monitoring people in indoors environments. The results indicate that these sensors are very useful for automatic activity monitoring and people tracking. We identify practical and mathematical problems related to information extraction from these video sequences and identify future directions to solve these issues.
2015-09-30
an AUV mounted acoustic source, 2) moored multi-element SHRU acoustic receiver arrays, 3) a shipboard acoustic resonator, 4) fish-attraction...devices (FAD’s), 5) a three- AUV fish-field mapping effort (employing sidescan sonar plus optics) and 6) ScanFish, ADCP, and moored sensor oceanographic...The acoustic model has been further refined. To obtain a better estimate of source positions, the navigation data of the source AUV (Snoopy) was
Asadnia, Mohsen; Kottapalli, Ajay Giri Prakash; Miao, Jianmin; Warkiani, Majid Ebrahimi; Triantafyllou, Michael S
2015-10-06
Using biological sensors, aquatic animals like fishes are capable of performing impressive behaviours such as super-manoeuvrability, hydrodynamic flow 'vision' and object localization with a success unmatched by human-engineered technologies. Inspired by the multiple functionalities of the ubiquitous lateral-line sensors of fishes, we developed flexible and surface-mountable arrays of micro-electromechanical systems (MEMS) artificial hair cell flow sensors. This paper reports the development of the MEMS artificial versions of superficial and canal neuromasts and experimental characterization of their unique flow-sensing roles. Our MEMS flow sensors feature a stereolithographically fabricated polymer hair cell mounted on Pb(Zr(0.52)Ti(0.48))O3 micro-diaphragm with floating bottom electrode. Canal-inspired versions are developed by mounting a polymer canal with pores that guide external flows to the hair cells embedded in the canal. Experimental results conducted employing our MEMS artificial superficial neuromasts (SNs) demonstrated a high sensitivity and very low threshold detection limit of 22 mV/(mm s(-1)) and 8.2 µm s(-1), respectively, for an oscillating dipole stimulus vibrating at 35 Hz. Flexible arrays of such superficial sensors were demonstrated to localize an underwater dipole stimulus. Comparative experimental studies revealed a high-pass filtering nature of the canal encapsulated sensors with a cut-off frequency of 10 Hz and a flat frequency response of artificial SNs. Flexible arrays of self-powered, miniaturized, light-weight, low-cost and robust artificial lateral-line systems could enhance the capabilities of underwater vehicles. © 2015 The Author(s).
Asadnia, Mohsen; Kottapalli, Ajay Giri Prakash; Miao, Jianmin; Warkiani, Majid Ebrahimi; Triantafyllou, Michael S.
2015-01-01
Using biological sensors, aquatic animals like fishes are capable of performing impressive behaviours such as super-manoeuvrability, hydrodynamic flow ‘vision’ and object localization with a success unmatched by human-engineered technologies. Inspired by the multiple functionalities of the ubiquitous lateral-line sensors of fishes, we developed flexible and surface-mountable arrays of micro-electromechanical systems (MEMS) artificial hair cell flow sensors. This paper reports the development of the MEMS artificial versions of superficial and canal neuromasts and experimental characterization of their unique flow-sensing roles. Our MEMS flow sensors feature a stereolithographically fabricated polymer hair cell mounted on Pb(Zr0.52Ti0.48)O3 micro-diaphragm with floating bottom electrode. Canal-inspired versions are developed by mounting a polymer canal with pores that guide external flows to the hair cells embedded in the canal. Experimental results conducted employing our MEMS artificial superficial neuromasts (SNs) demonstrated a high sensitivity and very low threshold detection limit of 22 mV/(mm s−1) and 8.2 µm s−1, respectively, for an oscillating dipole stimulus vibrating at 35 Hz. Flexible arrays of such superficial sensors were demonstrated to localize an underwater dipole stimulus. Comparative experimental studies revealed a high-pass filtering nature of the canal encapsulated sensors with a cut-off frequency of 10 Hz and a flat frequency response of artificial SNs. Flexible arrays of self-powered, miniaturized, light-weight, low-cost and robust artificial lateral-line systems could enhance the capabilities of underwater vehicles. PMID:26423435
Kiryukhin, Maxim V; Lau, Hooi Hong; Goh, Seok Hong; Teh, Cathleen; Korzh, Vladimir; Sadovoy, Anton
2018-05-15
A new Membrane Film Sensor (MFS) has been developed to measure pH of fluids. MFS comprises a polyelectrolyte multilayer film with uniformly distributed compartments (microchambers) where a fluorescent sensing dye is encapsulated. Fabricated film is sealed onto a polyethylene film for a future use. MFS was applied to report changes in golden pomfret fillet upon its storage at 5 °C. MFS pH readings were correlated to bacteriological analysis of fish samples. A hike in pH of fish juices happens after 10 days of storage signaling bacterial spoilage of fish. The design of developed MFS allows easy integration with transparent packaging materials for future development of "SMART" packaging sensing food freshness. Copyright © 2018 Elsevier B.V. All rights reserved.
Movement and collision of Lagrangian particles in hydro-turbine intakes: a case study
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romero-Gomez, Pedro; Richmond, Marshall C.
Studies of the stress/survival of migratory fish during downstream passage through operating hydro-turbines are normally conducted to determine the fish-friendliness of units. One field approach consisting of recording extreme hydraulics with autonomous sensors is largely sensitive to the conditions of sensor release and the initial trajectories at the turbine intake. This study applies a modelling strategy based on flow simulations using computational fluid dynamics and Lagrangian particle tracking to represent the travel of live fish and autonomous sensor devices through hydro-turbine intakes. For the flow field calculation, the simulations were conducted with both a time-averaging turbulence model and an eddy-resolvingmore » technique. For the particle tracking calculation, different modelling assumptions for turbulence forcing, mass formulation, buoyancy, and release condition were tested. The modelling assumptions are evaluated with respect to data sets collected using a laboratory physical model and an autonomous sensor device deployed at Ice Harbor Dam (Snake River, State of Washington, U.S.A.) at the same discharge and release point as in the present computer simulations. We found an acceptable agreement between the simulated results and observed data and discuss relevant features of Lagrangian particle movement that are critical in turbine design and in the experimental design of field studies.« less
Cohen, Michael X; Gulbinaite, Rasa
2017-02-15
Steady-state evoked potentials (SSEPs) are rhythmic brain responses to rhythmic sensory stimulation, and are often used to study perceptual and attentional processes. We present a data analysis method for maximizing the signal-to-noise ratio of the narrow-band steady-state response in the frequency and time-frequency domains. The method, termed rhythmic entrainment source separation (RESS), is based on denoising source separation approaches that take advantage of the simultaneous but differential projection of neural activity to multiple electrodes or sensors. Our approach is a combination and extension of existing multivariate source separation methods. We demonstrate that RESS performs well on both simulated and empirical data, and outperforms conventional SSEP analysis methods based on selecting electrodes with the strongest SSEP response, as well as several other linear spatial filters. We also discuss the potential confound of overfitting, whereby the filter captures noise in absence of a signal. Matlab scripts are available to replicate and extend our simulations and methods. We conclude with some practical advice for optimizing SSEP data analyses and interpreting the results. Copyright © 2016 Elsevier Inc. All rights reserved.
Ong, Joyce J L; Rountrey, Adam N; Black, Bryan A; Nguyen, Hoang Minh; Coulson, Peter G; Newman, Stephen J; Wakefield, Corey B; Meeuwig, Jessica J; Meekan, Mark G
2018-05-01
Entrainment of growth patterns of multiple species to single climatic drivers can lower ecosystem resilience and increase the risk of species extinction during stressful climatic events. However, predictions of the effects of climate change on the productivity and dynamics of marine fishes are hampered by a lack of historical data on growth patterns. We use otolith biochronologies to show that the strength of a boundary current, modulated by the El Niño-Southern Oscillation, accounted for almost half of the shared variance in annual growth patterns of five of six species of tropical and temperate marine fishes across 23° of latitude (3000 km) in Western Australia. Stronger flow during La Niña years drove increased growth of five species, whereas weaker flow during El Niño years reduced growth. Our work is the first to link the growth patterns of multiple fishes with a single oceanographic/climate phenomenon at large spatial scales and across multiple climate zones, habitat types, trophic levels and depth ranges. Extreme La Niña and El Niño events are predicted to occur more frequently in the future and these are likely to have implications for these vulnerable ecosystems, such as a limited capacity of the marine taxa to recover from stressful climatic events. © 2018 John Wiley & Sons Ltd.
Mapping Reef Fish and the Seascape: Using Acoustics and Spatial Modeling to Guide Coastal Management
Costa, Bryan; Taylor, J. Christopher; Kracker, Laura; Battista, Tim; Pittman, Simon
2014-01-01
Reef fish distributions are patchy in time and space with some coral reef habitats supporting higher densities (i.e., aggregations) of fish than others. Identifying and quantifying fish aggregations (particularly during spawning events) are often top priorities for coastal managers. However, the rapid mapping of these aggregations using conventional survey methods (e.g., non-technical SCUBA diving and remotely operated cameras) are limited by depth, visibility and time. Acoustic sensors (i.e., splitbeam and multibeam echosounders) are not constrained by these same limitations, and were used to concurrently map and quantify the location, density and size of reef fish along with seafloor structure in two, separate locations in the U.S. Virgin Islands. Reef fish aggregations were documented along the shelf edge, an ecologically important ecotone in the region. Fish were grouped into three classes according to body size, and relationships with the benthic seascape were modeled in one area using Boosted Regression Trees. These models were validated in a second area to test their predictive performance in locations where fish have not been mapped. Models predicting the density of large fish (≥29 cm) performed well (i.e., AUC = 0.77). Water depth and standard deviation of depth were the most influential predictors at two spatial scales (100 and 300 m). Models of small (≤11 cm) and medium (12–28 cm) fish performed poorly (i.e., AUC = 0.49 to 0.68) due to the high prevalence (45–79%) of smaller fish in both locations, and the unequal prevalence of smaller fish in the training and validation areas. Integrating acoustic sensors with spatial modeling offers a new and reliable approach to rapidly identify fish aggregations and to predict the density large fish in un-surveyed locations. This integrative approach will help coastal managers to prioritize sites, and focus their limited resources on areas that may be of higher conservation value. PMID:24454886
Alignment strategies for the entrainment of music and movement rhythms.
Moens, Bart; Leman, Marc
2015-03-01
Theories of entrainment assume that spontaneous entrainment emerges from dynamic laws that operate via mediators on interactions, whereby entrainment is facilitated if certain conditions are fulfilled. In this study, we show that mediators can be built that affect the entrainment of human locomotion to music. More specifically, we built D-Jogger, a music player that functions as a mediator between music and locomotion rhythms. The D-Jogger makes it possible to manipulate the timing differences between salient moments of the rhythms (beats and footfalls) through the manipulation of the musical period and phase, which affect the condition in which entrainment functions. We conducted several experiments to explore different strategies for manipulating the entrainment of locomotion and music. The results of these experiments showed that spontaneous entrainment can be manipulated, thereby suggesting different strategies on how to embark. The findings furthermore suggest a distinction among different modalities of entrainment: finding the beat (the most difficult part of entrainment), keeping the beat (easier, as a temporal scheme has been established), and being in phase (no entrainment is needed because the music is always adapted to the human rhythm). This study points to a new avenue of research on entrainment and opens new perspectives for the neuroscience of music. © 2014 New York Academy of Sciences.
Exploring Entrainment Patterns of Human Emotion in Social Media
Luo, Chuan; Zhang, Zhu
2016-01-01
Emotion entrainment, which is generally defined as the synchronous convergence of human emotions, performs many important social functions. However, what the specific mechanisms of emotion entrainment are beyond in-person interactions, and how human emotions evolve under different entrainment patterns in large-scale social communities, are still unknown. In this paper, we aim to examine the massive emotion entrainment patterns and understand the underlying mechanisms in the context of social media. As modeling emotion dynamics on a large scale is often challenging, we elaborate a pragmatic framework to characterize and quantify the entrainment phenomenon. By applying this framework on the datasets from two large-scale social media platforms, we find that the emotions of online users entrain through social networks. We further uncover that online users often form their relations via dual entrainment, while maintain it through single entrainment. Remarkably, the emotions of online users are more convergent in nonreciprocal entrainment. Building on these findings, we develop an entrainment augmented model for emotion prediction. Experimental results suggest that entrainment patterns inform emotion proximity in dyads, and encoding their associations promotes emotion prediction. This work can further help us to understand the underlying dynamic process of large-scale online interactions and make more reasonable decisions regarding emergency situations, epidemic diseases, and political campaigns in cyberspace. PMID:26953692
Exploring Entrainment Patterns of Human Emotion in Social Media.
He, Saike; Zheng, Xiaolong; Zeng, Daniel; Luo, Chuan; Zhang, Zhu
2016-01-01
Emotion entrainment, which is generally defined as the synchronous convergence of human emotions, performs many important social functions. However, what the specific mechanisms of emotion entrainment are beyond in-person interactions, and how human emotions evolve under different entrainment patterns in large-scale social communities, are still unknown. In this paper, we aim to examine the massive emotion entrainment patterns and understand the underlying mechanisms in the context of social media. As modeling emotion dynamics on a large scale is often challenging, we elaborate a pragmatic framework to characterize and quantify the entrainment phenomenon. By applying this framework on the datasets from two large-scale social media platforms, we find that the emotions of online users entrain through social networks. We further uncover that online users often form their relations via dual entrainment, while maintain it through single entrainment. Remarkably, the emotions of online users are more convergent in nonreciprocal entrainment. Building on these findings, we develop an entrainment augmented model for emotion prediction. Experimental results suggest that entrainment patterns inform emotion proximity in dyads, and encoding their associations promotes emotion prediction. This work can further help us to understand the underlying dynamic process of large-scale online interactions and make more reasonable decisions regarding emergency situations, epidemic diseases, and political campaigns in cyberspace.
Doing Duo - a case study of entrainment in William Forsythe's choreography "Duo".
Waterhouse, Elizabeth; Watts, Riley; Bläsing, Bettina E
2014-01-01
Entrainment theory focuses on processes in which interacting (i.e., coupled) rhythmic systems stabilize, producing synchronization in the ideal sense, and forms of phase related rhythmic coordination in complex cases. In human action, entrainment involves spatiotemporal and social aspects, characterizing the meaningful activities of music, dance, and communication. How can the phenomenon of human entrainment be meaningfully studied in complex situations such as dance? We present an in-progress case study of entrainment in William Forsythe's choreography Duo, a duet in which coordinated rhythmic activity is achieved without an external musical beat and without touch-based interaction. Using concepts of entrainment from different disciplines as well as insight from Duo performer Riley Watts, we question definitions of entrainment in the context of dance. The functions of chorusing, turn-taking, complementary action, cues, and alignments are discussed and linked to supporting annotated video material. While Duo challenges the definition of entrainment in dance as coordinated response to an external musical or rhythmic signal, it supports the definition of entrainment as coordinated interplay of motion and sound production by active agents (i.e., dancers) in the field. Agreeing that human entrainment should be studied on multiple levels, we suggest that entrainment between the dancers in Duo is elastic in time and propose how to test this hypothesis empirically. We do not claim that our proposed model of elasticity is applicable to all forms of human entrainment nor to all examples of entrainment in dance. Rather, we suggest studying higher order phase correction (the stabilizing tendency of entrainment) as a potential aspect to be incorporated into other models.
Mesa, Matthew G.; Rose, Brien P.; Copeland, Elizabeth S.
2012-01-01
Screens are installed at water diversion sites to reduce entrainment of fish. Recently, the Farmers Irrigation District (Oregon) developed a unique flat-plate screen (the “Farmers Screen”) that operates passively and may offer reduced installation and operating costs. To evaluate the effectiveness of this screen on fish, we conducted two separate field experiments. First, juvenile coho salmon Oncorhynchus kisutch were released over a working version of this screen under a range of inflows (0.02–0.42 m3/s) and diversion flows (0.02–0.34 m3/s) at different water depths. Mean approach velocities ranged from 0 to 5 cm/s and sweeping velocities ranged from 36 to 178 cm/s. Water depths over the screen surface ranged from 1 to 25 cm and were directly related to inflow. Passage of fish over the screen under these conditions did not severely injure them or cause delayed mortality, and no fish were observed becoming impinged on the screen surface. Second, juvenile coho salmon and steelhead O. mykiss were released at the upstream end of a 34-m flume and allowed to volitionally move downstream and pass over a 3.5-m section of the Farmers Screen to determine whether fish would refuse to pass over the screen after encountering its leading edge. For coho salmon, 75–95% of the fish passed over the screen within 5 min and 82–98% passed within 20 min, depending on hydraulic conditions. For steelhead, 47–90% of the fish passed over the screen within 5 min and 79–95% passed within 20 min. Our results indicate that when operated within its design criteria, the Farmers Screen provides safe and efficient downstream passage of juvenile salmonids under a variety of hydraulic conditions.
A Theoretical Study on Seasonality
Schmal, Christoph; Myung, Jihwan; Herzel, Hanspeter; Bordyugov, Grigory
2015-01-01
In addition to being endogenous, a circadian system must be able to communicate with the outside world and align its rhythmicity to the environment. As a result of such alignment, external Zeitgebers can entrain the circadian system. Entrainment expresses itself in coinciding periods of the circadian oscillator and the Zeitgeber and a stationary phase difference between them. The range of period mismatches between the circadian system and the Zeitgeber that Zeitgeber can overcome to entrain the oscillator is called an entrainment range. The width of the entrainment range usually increases with increasing Zeitgeber strength, resulting in a wedge-like Arnold tongue. This classical view of entrainment does not account for the effects of photoperiod on entrainment. Zeitgebers with extremely small or large photoperiods are intuitively closer to constant environments than equinoctial Zeitgebers and hence are expected to produce a narrower entrainment range. In this paper, we present theoretical results on entrainment under different photoperiods. We find that in the photoperiod-detuning parameter plane, the entrainment zone is shaped in the form of a skewed onion. The bottom and upper points of the onion are given by the free-running periods in DD and LL, respectively. The widest entrainment range is found near photoperiods of 50%. Within the onion, we calculated the entrainment phase that varies over a range of 12 h. The results of our theoretical study explain the experimentally observed behavior of the entrainment phase in dependence on the photoperiod. PMID:25999912
NASA Astrophysics Data System (ADS)
Dias, N. L.; Gonçalves, J. E.; Freire, L. S.; Hasegawa, T.; Malheiros, A. L.
2012-10-01
We present a simple but effective small unmanned aerial vehicle design that is able to make high-resolution temperature and humidity measurements of the atmospheric boundary layer. The air model used is an adapted commercial design, and is able to carry all the instrumentation (barometer, temperature and humidity sensor, and datalogger) required for such measurements. It is fitted with an autopilot that controls the plane's ascent and descent in a spiral to 1800 m above ground. We describe the results obtained on three different days when the plane, called Aerolemma-3, flew continuously throughout the day. Surface measurements of the sensible virtual heat flux made simultaneously allowed the calculation of all standard convective turbulence scales for the boundary layer, as well as a rigorous test of existing models for the entrainment flux at the top of the boundary layer, and for its growth. A novel approach to calculate the entrainment flux from the top-down, bottom-up model of Wynagaard and Brost is used. We also calculated temperature fluctuations by means of a spectral high-pass filter, and calculated their spectra. Although the time series are small, tapering proved ineffective in this case. The spectra from the untapered series displayed a consistent -5/3 behaviour, and from them it was possible to calculate a dimensionless dissipation function, which exhibited the expected similarity behaviour against boundary-layer bulk stability. The simplicity, ease of use and economy of such small aircraft make us optimistic about their usefulness in boundary-layer research.
Development of the Astyanax mexicanus circadian clock and non-visual light responses.
Frøland Steindal, Inga A; Beale, Andrew D; Yamamoto, Yoshiyuki; Whitmore, David
2018-06-23
Most animals and plants live on the planet exposed to periods of rhythmic light and dark. As such, they have evolved endogenous circadian clocks to regulate their physiology rhythmically, and non-visual light detection mechanisms to set the clock to the environmental light-dark cycle. In the case of fish, circadian pacemakers are not only present in the majority of tissues and cells, but these tissues are themselves directly light-sensitive, expressing a wide range of opsin photopigments. This broad non-visual light sensitivity exists to set the clock, but also impacts a wide range of fundamental cell biological processes, such as DNA repair regulation. In this context, Astyanax mexicanus is a very intriguing model system with which to explore non-visual light detection and circadian clock function. Previous work has shown that surface fish possess the same directly light entrainable circadian clocks, described above. The same is true for cave strains of Astyanax in the laboratory, though no daily rhythms have been observed under natural dark conditions in Mexico. There are, however, clear alterations in the cave strain light response and changes to the circadian clock, with a difference in phase of peak gene expression and a reduction in amplitude. In this study, we expand these early observations by exploring the development of non-visual light sensitivity and clock function between surface and cave populations. When does the circadian pacemaker begin to oscillate during development, and are there differences between the various strains? Is the difference in acute light sensitivity, seen in adults, apparent from the earliest stages of development? Our results show that both cave and surface populations must experience daily light exposure to establish a larval gene expression rhythm. These oscillations begin early, around the third day of development in all strains, but gene expression rhythms show a significantly higher amplitude in surface fish larvae. In addition, the light induction of clock genes is developmentally delayed in cave populations. Zebrafish embryonic light sensitivity has been shown to be critical not only for clock entrainment, but also for transcriptional activation of DNA repair processes. Similar downstream transcriptional responses to light also occur in Astyanax. Interestingly, the establishment of the adult timing profile of clock gene expression takes several days to become apparent. This fact may provide mechanistic insight into the key differences between the cave and surface fish clock mechanisms. Copyright © 2018. Published by Elsevier Inc.
Doing Duo – a case study of entrainment in William Forsythe’s choreography “Duo”
Waterhouse, Elizabeth; Watts, Riley; Bläsing, Bettina E.
2014-01-01
Entrainment theory focuses on processes in which interacting (i.e., coupled) rhythmic systems stabilize, producing synchronization in the ideal sense, and forms of phase related rhythmic coordination in complex cases. In human action, entrainment involves spatiotemporal and social aspects, characterizing the meaningful activities of music, dance, and communication. How can the phenomenon of human entrainment be meaningfully studied in complex situations such as dance? We present an in-progress case study of entrainment in William Forsythe’s choreography Duo, a duet in which coordinated rhythmic activity is achieved without an external musical beat and without touch-based interaction. Using concepts of entrainment from different disciplines as well as insight from Duo performer Riley Watts, we question definitions of entrainment in the context of dance. The functions of chorusing, turn-taking, complementary action, cues, and alignments are discussed and linked to supporting annotated video material. While Duo challenges the definition of entrainment in dance as coordinated response to an external musical or rhythmic signal, it supports the definition of entrainment as coordinated interplay of motion and sound production by active agents (i.e., dancers) in the field. Agreeing that human entrainment should be studied on multiple levels, we suggest that entrainment between the dancers in Duo is elastic in time and propose how to test this hypothesis empirically. We do not claim that our proposed model of elasticity is applicable to all forms of human entrainment nor to all examples of entrainment in dance. Rather, we suggest studying higher order phase correction (the stabilizing tendency of entrainment) as a potential aspect to be incorporated into other models. PMID:25374522
DOE Office of Scientific and Technical Information (OSTI.GOV)
McLellan, Holly J.; Scholz, Allan T.; McLellan, Jason G.
2001-07-01
Lake Whatcom stock kokanee have been planted in Lake Roosevelt since 1988 with the primary goal of establishing a self-sustaining fishery. Returns of hatchery kokanee to egg collection facilities and recruitment to the creel have been minimal. Therefore, four experiments were conducted to determine the most appropriate release strategy that would increase kokanee returns. The first experiment compared morpholine and non-morpholine imprinted kokanee return rates, the second experiment compared early and middle run Whatcom kokanee, the third experiment compared early and late release dates, and the fourth experiment compared three net pen release strategies: Sherman Creek hatchery vs. Sherman Creekmore » net pens, Colville River net pens vs. Sherman Creek net pens, and upper vs. lower reservoir net pen releases. Each experiment was tested in three ways: (1) returns to Sherman Creek, (2) returns to other tributaries throughout the reservoir, and (3) returns to the creel. Chi-square analysis of hatchery and tributary returns indicated no significant difference between morpholine imprinted and non-imprinted fish, early run fish outperformed middle run fish, early release date outperformed late release fish, and the hatchery outperformed all net pen releases. Hatchery kokanee harvest was estimated at 3,323 fish, which was 33% of the total harvest. Return rates (1998 = 0.52%) of Whatcom kokanee were low indicating an overall low performance that could be caused by high entrainment, predation, and precocity. A kokanee stock native to the upper Columbia, as opposed to the coastal Whatcom stock, may perform better in Lake Roosevelt.« less
Hydroacoustic Evaluation of Fish Passage Through Bonneville Dam in 2005
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ploskey, Gene R.; Weiland, Mark A.; Zimmerman, Shon A.
2006-12-04
The Portland District of the U.S. Army Corps of Engineers requested that the Pacific Northwest National Laboratory (PNNL) conduct fish-passage studies at Bonneville Dam in 2005. These studies support the Portland District's goal of maximizing fish-passage efficiency (FPE) and obtaining 95% survival for juvenile salmon passing Bonneville Dam. Major passage routes include 10 turbines and a sluiceway at Powerhouse 1 (B1), an 18-bay spillway, and eight turbines and a sluiceway at Powerhouse 2 (B2). In this report, we present results of two studies related to juvenile salmonid passage at Bonneville Dam. The studies were conducted between April 16 and Julymore » 15, 2005, encompassing most of the spring and summer migrations. Studies included evaluations of (1) Project fish passage efficiency and other major passage metrics, and (2) smolt approach and fate at B1 Sluiceway Outlet 3C from the B1 forebay. Some of the large appendices are only presented on the compact disk (CD) that accompanies the final report. Examples include six large comma-separated-variable (.CSV) files of hourly fish passage, hourly variances, and Project operations for spring and summer from Appendix E, and large Audio Video Interleave (AVI) files with DIDSON-movie clips of the area upstream of B1 Sluiceway Outlet 3C (Appendix H). Those video clips show smolts approaching the outlet, predators feeding on smolts, and vortices that sometimes entrained approaching smolts into turbines. The CD also includes Adobe Acrobat Portable Document Files (PDF) of the entire report and appendices.« less
Research on Flow Field Perception Based on Artificial Lateral Line Sensor System.
Liu, Guijie; Wang, Mengmeng; Wang, Anyi; Wang, Shirui; Yang, Tingting; Malekian, Reza; Li, Zhixiong
2018-03-11
In nature, the lateral line of fish is a peculiar and important organ for sensing the surrounding hydrodynamic environment, preying, escaping from predators and schooling. In this paper, by imitating the mechanism of fish lateral canal neuromasts, we developed an artificial lateral line system composed of micro-pressure sensors. Through hydrodynamic simulations, an optimized sensor structure was obtained and the pressure distribution models of the lateral surface were established in uniform flow and turbulent flow. Carrying out the corresponding underwater experiment, the validity of the numerical simulation method is verified by the comparison between the experimental data and the simulation results. In addition, a variety of effective research methods are proposed and validated for the flow velocity estimation and attitude perception in turbulent flow, respectively and the shape recognition of obstacles is realized by the neural network algorithm.
Monitoring of freeze-thaw cycles in concrete using embedded sensors and ultrasonic imaging.
Ranz, Javier; Aparicio, Sofía; Romero, Héctor; Casati, María Jesús; Molero, Miguel; González, Margarita
2014-01-29
This paper deals with the study of damage produced during freeze-thaw (F-T) cycles using two non-destructive measurement approaches-the first approach devoted to continuous monitoring using embedded sensors during the cycles, and the second one, performing ultrasonic imaging before and after the cycles. Both methodologies have been tested in two different types of concrete specimens, with and without air-entraining agents. Using the first measurement approach, the size and distribution of pores were estimated using a thermoporometrical model and continuous measurements of temperature and ultrasonic velocity along cycles. These estimates have been compared with the results obtained using mercury porosimetry testing. In the second approach, the damage due to F-T cycles has been evaluated by automated ultrasonic transmission and pulse-echo inspections made before and after the cycles. With these inspections the variations in the dimensions, velocity and attenuation caused by the accelerated F-T cycles were determined.
Monitoring of Freeze-Thaw Cycles in Concrete Using Embedded Sensors and Ultrasonic Imaging
Ranz, Javier; Aparicio, Sofía; Romero, Héctor; Casati, María Jesús; Molero, Miguel; González, Margarita
2014-01-01
This paper deals with the study of damage produced during freeze-thaw (F-T) cycles using two non-destructive measurement approaches—the first approach devoted to continuous monitoring using embedded sensors during the cycles, and the second one, performing ultrasonic imaging before and after the cycles. Both methodologies have been tested in two different types of concrete specimens, with and without air-entraining agents. Using the first measurement approach, the size and distribution of pores were estimated using a thermoporometrical model and continuous measurements of temperature and ultrasonic velocity along cycles. These estimates have been compared with the results obtained using mercury porosimetry testing. In the second approach, the damage due to F-T cycles has been evaluated by automated ultrasonic transmission and pulse-echo inspections made before and after the cycles. With these inspections the variations in the dimensions, velocity and attenuation caused by the accelerated F-T cycles were determined. PMID:24481231
Majdinasab, Marjan; Hosseini, Seyed Mohammad Hashem; Sepidname, Marziyeh; Negahdarifar, Manizheh; Li, Peiwu
2018-05-01
Alginate is a non-toxic, renewable, and linear copolymer obtained from the brown algae Laminaria digitata that can be easily shaped into beads. Its good gel forming properties have made it useful for entrapping food and pharmaceutical ingredients. In this study, alginate beads were used in a novel application as a colorimetric sensor in food intelligent packaging. Colorimetric sensor was developed through entrapping red cabbage extract as a pH indicator in alginate beads. The pH indicator beads were used in rainbow trout packaging for monitoring fillets spoilage. Color change of beads during fish storage was measured using the CIELab method. The alginate bead colorimetric sensor is validated by measuring total volatile basic nitrogen (TVB-N) levels and microbial populations in fish samples. Moreover, peroxide value (PV) and thiobarbituric acid reactive substances (TBARS) were evaluated during storage. Results indicated that increasing the bacterial population during storage and production of proteolytic enzymes resulted in protein degradation, accumulation of volatile amine compounds, increase in the pH and finally color change of alginate beads. The values of TVB-N, pH, PV and TBARS increased with time of storage. The results of TVB-N and microbial growth were in accordance with color change of beads and CIELab data. Therefore, the proposed system enjoys a high sensitivity to pH variations and is capable of monitoring the spoilage of fish or other protein-rich products through its wide range of color changes. The alginate beads containing the red cabbage extract can, thus, be used as a low-cost colorimetric sensor for intelligent packaging applications.
Entrainment versus Dilution in Tropical Deep Convection
Hannah, Walter M.
2017-11-01
In this paper, the distinction between entrainment and dilution is investigated with cloud-resolving simulations of deep convection in a tropical environment. A method for estimating the rate of dilution by entrainment and detrainment is presented and calculated for a series of bubble simulations with a range of initial radii. Entrainment generally corresponds to dilution of convection, but the two quantities are not well correlated. Core dilution by entrainment is significantly reduced by the presence of a shell of moist air around the core. Dilution by entrainment also increases with increasing updraft velocity but only for sufficiently strong updrafts. Entrainment contributesmore » significantly to the total net dilution, but detrainment and the various source/sink terms play large roles depending on the variable in question. Detrainment has a concentrating effect on average that balances out the dilution by entrainment. The experiments are also used to examine whether entrainment or dilution scale with cloud radius. The results support a weak negative relationship for dilution but not for entrainment. The sensitivity to resolution is briefly discussed. A toy Lagrangian thermal model is used to demonstrate the importance of the cloud shell as a thermodynamic buffer to reduce the dilution of the core by entrainment. Finally, the results suggest that explicit cloud heterogeneity may be a useful consideration for future convective parameterization development.« less
Design of aquaponics water monitoring system using Arduino microcontroller
NASA Astrophysics Data System (ADS)
Murad, S. A. Z.; Harun, A.; Mohyar, S. N.; Sapawi, R.; Ten, S. Y.
2017-09-01
This paper describes the design of aquaponics water monitoring system using Arduino microcontroller. Arduino Development Environment (IDE) software is used to develop a program for the microcontroller to communicate with multiple sensors and other hardware. The circuit of pH sensor, temperature sensor, water sensor, servo, liquid crystal displays (LCD), peristaltic pump, solar and Global System for Mobile communication (GSM) are constructed and connected to the system. The system powered by a rechargeable battery using solar energy. When the results of pH, temperature and water sensor are out of range, a notification message will be sent to a mobile phone through GSM. If the pH of water is out of range, peristaltic pump is automatic on to maintain back the pH value of water. The water sensor is fixed in the siphon outlet water flow to detect water flow from grow bed to the fish tank. In addition, servo is used to auto feeding the fish for every 12 hours. Meanwhile, the LCD is indicated the pH, temperature, siphon outlet water flow and remaining time for the next feeding cycle. The pH and temperature of water are set in the ranges of 6 to 7 and 25 °C to 30 °C, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, Howard; Braun, James E.
This report describes models of building faults created for OpenStudio to support the ongoing development of fault detection and diagnostic (FDD) algorithms at the National Renewable Energy Laboratory. Building faults are operating abnormalities that degrade building performance, such as using more energy than normal operation, failing to maintain building temperatures according to the thermostat set points, etc. Models of building faults in OpenStudio can be used to estimate fault impacts on building performance and to develop and evaluate FDD algorithms. The aim of the project is to develop fault models of typical heating, ventilating and air conditioning (HVAC) equipment inmore » the United States, and the fault models in this report are grouped as control faults, sensor faults, packaged and split air conditioner faults, water-cooled chiller faults, and other uncategorized faults. The control fault models simulate impacts of inappropriate thermostat control schemes such as an incorrect thermostat set point in unoccupied hours and manual changes of thermostat set point due to extreme outside temperature. Sensor fault models focus on the modeling of sensor biases including economizer relative humidity sensor bias, supply air temperature sensor bias, and water circuit temperature sensor bias. Packaged and split air conditioner fault models simulate refrigerant undercharging, condenser fouling, condenser fan motor efficiency degradation, non-condensable entrainment in refrigerant, and liquid line restriction. Other fault models that are uncategorized include duct fouling, excessive infiltration into the building, and blower and pump motor degradation.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cheung, Howard; Braun, James E.
2015-12-31
This report describes models of building faults created for OpenStudio to support the ongoing development of fault detection and diagnostic (FDD) algorithms at the National Renewable Energy Laboratory. Building faults are operating abnormalities that degrade building performance, such as using more energy than normal operation, failing to maintain building temperatures according to the thermostat set points, etc. Models of building faults in OpenStudio can be used to estimate fault impacts on building performance and to develop and evaluate FDD algorithms. The aim of the project is to develop fault models of typical heating, ventilating and air conditioning (HVAC) equipment inmore » the United States, and the fault models in this report are grouped as control faults, sensor faults, packaged and split air conditioner faults, water-cooled chiller faults, and other uncategorized faults. The control fault models simulate impacts of inappropriate thermostat control schemes such as an incorrect thermostat set point in unoccupied hours and manual changes of thermostat set point due to extreme outside temperature. Sensor fault models focus on the modeling of sensor biases including economizer relative humidity sensor bias, supply air temperature sensor bias, and water circuit temperature sensor bias. Packaged and split air conditioner fault models simulate refrigerant undercharging, condenser fouling, condenser fan motor efficiency degradation, non-condensable entrainment in refrigerant, and liquid line restriction. Other fault models that are uncategorized include duct fouling, excessive infiltration into the building, and blower and pump motor degradation.« less
Spontaneous motor entrainment to music in multiple vocal mimicking species.
Schachner, Adena; Brady, Timothy F; Pepperberg, Irene M; Hauser, Marc D
2009-05-26
The human capacity for music consists of certain core phenomena, including the tendency to entrain, or align movement, to an external auditory pulse [1-3]. This ability, fundamental both for music production and for coordinated dance, has been repeatedly highlighted as uniquely human [4-11]. However, it has recently been hypothesized that entrainment evolved as a by-product of vocal mimicry, generating the strong prediction that only vocal mimicking animals may be able to entrain [12, 13]. Here we provide comparative data demonstrating the existence of two proficient vocal mimicking nonhuman animals (parrots) that entrain to music, spontaneously producing synchronized movements resembling human dance. We also provide an extensive comparative data set from a global video database systematically analyzed for evidence of entrainment in hundreds of species both capable and incapable of vocal mimicry. Despite the higher representation of vocal nonmimics in the database and comparable exposure of mimics and nonmimics to humans and music, only vocal mimics showed evidence of entrainment. We conclude that entrainment is not unique to humans and that the distribution of entrainment across species supports the hypothesis that entrainment evolved as a by-product of selection for vocal mimicry.
Entrainment vs. Dilution in Tropical Deep Convection
NASA Astrophysics Data System (ADS)
Hannah, W.
2017-12-01
The distinction between entrainment and dilution is investigated with cloud resolving simulations of deep convection in a tropical environment. A method for estimating the rate of dilution by entrainment and detrainment is calculated for a series of bubble simulations with a range of initial radii. Entrainment generally corresponds to dilution of convection, but the two quantities are not well correlated. Core dilution by entrainment is significantly reduced by the presence of a shell of moist air around the core. Entrainment contributes significantly to the total net dilution, but detrainment and the various source/sink terms play large roles depending on the variable in question. Detrainment has a concentrating effect on average that balances out the dilution by entrainment. The experiments are also used to examine whether entrainment or dilution scale with cloud radius. The results support a weak negative relationship for dilution, but not for entrainment. The sensitivity to resolution is briefly discussed. A toy Lagrangian thermal model is used to demonstrate the importance of the cloud shell as a thermodynamic buffer to reduce the dilution of the core by entrainment. The results suggest that explicit cloud heterogeneity may be a useful consideration for future convective parameterization development.
This presentation presented information on entrainment models. Entrainment models use entrainment hypotheses to express the continuity equation. The advantage is that plume boundaries are known. A major disadvantage is that the problems that can be solved are rather simple. The ...
NASA Astrophysics Data System (ADS)
Gemmell, Brad; Sheng, Jian; Buskey, Ed
2008-11-01
Copepods are an important planktonic food source for most of the world's fish species. This high predation pressure has led copepods to evolve an extremely effective escape response, with reaction times to hydrodynamic disturbances of less than 4 ms and escape speeds of over 500 body lengths per second. Using 3D high speed digital holographic cinematography (up to 2000 frames per second) we elucidate the role of entrainment flow fields generated by a natural visual predator, the dwarf seahorse (Hippocampus zosterae) during attacks on its prey, Acartia tonsa. Using phytoplankton as a tracer, we recorded and reconstructed 3D flow fields around the head of the seahorse and its prey during both successful and unsuccessful attacks to better understand how some attacks lead to capture with little or no detection from the copepod while others result in failed attacks. Attacks start with a slow approach to minimize the hydro-mechanical disturbance which is used by copepods to detect the approach of a potential predator. Successful attacks result in the seahorse using its pipette-like mouth to create suction faster than the copepod's response latency. As these characteristic scales of entrainment increase, a successful escape becomes more likely.
Human Chronotypes from a Theoretical Perspective
Kramer, Achim; Herzel, Hanspeter
2013-01-01
The endogenous circadian timing system has evolved to synchronize an organism to periodically recurring environmental conditions. Those external time cues are called Zeitgebers. When entrained by a Zeitgeber, the intrinsic oscillator adopts a fixed phase relation to the Zeitgeber. Here, we systematically study how the phase of entrainment depends on clock and Zeitgeber properties. We combine numerical simulations of amplitude-phase models with predictions from analytically tractable models. In this way we derive relations between the phase of entrainment to the mismatch between the endogenous and Zeitgeber period, the Zeitgeber strength, and the range of entrainment. A core result is the “180° rule” asserting that the phase varies over a range of about 180° within the entrainment range. The 180° rule implies that clocks with a narrow entrainment range (“strong oscillators”) exhibit quite flexible entrainment phases. We argue that this high sensitivity of the entrainment phase contributes to the wide range of human chronotypes. PMID:23544070
Lake Roosevelt Volunteer Net Pens, Lake Roosevelt Rainbow Trout Net Pens, 2002-2003 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, Gene
2003-11-01
The completion of Grand Coulee Dam for power production, flood control, and irrigation resulted in the creation of a blocked area above the dam and in the loss of anadromous fish. Because of lake level fluctuations required to meet the demands for water release or storage, native or indigenous fish were often threatened. For many years very little effort was given to stocking the waters above the dam. However, studies by fish biologists showed that there was a good food base capable of supporting rainbow and kokanee (Gangmark and Fulton 1949, Jagielo 1984, Scholz etal 1986, Peone etal 1990). Furthermore » studies indicated that artificial production might be a way of restoring or enhancing the fishery. In the 1980's volunteers experimented with net pens. The method involved putting fingerlings in net pens in the fall and rearing them into early summer before release. The result was an excellent harvest of healthy fish. The use of net pens to hold the fingerlings for approximately nine months appears to reduce predation and the possibility of entrainment during draw down and to relieve the hatcheries to open up available raceways for future production. The volunteer net pen program grew for a few years but raising funds to maintain the pens and purchase food became more and more difficult. In 1995 the volunteer net pen project (LRDA) was awarded a grant through the Northwest Power Planning Council's artificial production provisions.« less
Singh, Kshetrimayum Manisana; Saha, Saurav; Gupta, Braj Bansh Prasad
2017-08-01
Arylalkylamine N-acetyltransferase (AANAT) activity, aanat gene expression and melatonin production have been reported to exhibit prominent circadian rhythm in the pineal organ of most species of fish. Three types of aanat genes are expressed in fish, but the fish pineal organ predominantly expresses aanat2 gene. Increase and decrease in daylength is invariably associated with increase and decrease in temperature, respectively. But so far no attempt has been made to delineate the role of photoperiod and temperature in regulation of the circadian rhythm of aanat2 gene expression in the pineal organ of any fish with special reference to seasons. Therefore, we studied effects of various lighting regimes (12L-12D, 16L-8D, 8L-16D, LL and DD) at a constant temperature (25°C) and effects of different temperatures (15°, 25° and 35°C) under a common photoperiod 12L-12D on circadian rhythm of aanat2 gene expression in the pineal organ of Clarias gariepinus during summer and winter seasons. Aanat2 gene expression in fish pineal organ was studied by measuring aanat2 mRNA levels using Real-Time PCR. Our findings indicate that the pineal organ of C. gariepinus exhibits a prominent circadian rhythm of aanat2 gene expression irrespective of photoperiods, temperatures and seasons, and the circadian rhythm of aanat2 gene expression responds differently to different photoperiods and temperatures in a season-dependent manner. Existence of circadian rhythm of aanat2 gene expression in pineal organs maintained in vitro under 12L-12D and DD conditions as well as a free running rhythm of the gene expression in pineal organ of the fish maintained under LL and DD conditions suggest that the fish pineal organ possesses an endogenous circadian oscillator, which is entrained by light-dark cycle. Copyright © 2017 Elsevier B.V. All rights reserved.
Research on Flow Field Perception Based on Artificial Lateral Line Sensor System
Wang, Anyi; Wang, Shirui; Yang, Tingting
2018-01-01
In nature, the lateral line of fish is a peculiar and important organ for sensing the surrounding hydrodynamic environment, preying, escaping from predators and schooling. In this paper, by imitating the mechanism of fish lateral canal neuromasts, we developed an artificial lateral line system composed of micro-pressure sensors. Through hydrodynamic simulations, an optimized sensor structure was obtained and the pressure distribution models of the lateral surface were established in uniform flow and turbulent flow. Carrying out the corresponding underwater experiment, the validity of the numerical simulation method is verified by the comparison between the experimental data and the simulation results. In addition, a variety of effective research methods are proposed and validated for the flow velocity estimation and attitude perception in turbulent flow, respectively and the shape recognition of obstacles is realized by the neural network algorithm. PMID:29534499
Joshi, D S; Vanlalnghaka, C
2005-01-01
The study aimed to determine the influence of repeated natural dawn and dusk twilight pulses in entraining the circadian flight activity rhythm of the microchiropteran bat, Hipposideros speoris, free-running in constant darkness in a natural cave. The bats were exposed to repeated dawn or dusk twilight pulses at eight circadian phases. All bats exposed to dawn twilight pulses were entrained by advancing transients, and the stable entrainment was reached when the onset of activity occurred about 12 h before the lights-on of the pulses, irrespective of the initial phase at which the bats were exposed to twilight. All bats exposed to dusk twilight pulses, however, were entrained by delaying transients, and the stable entrainment was reached when the onset of activity occurred about 1.6 h after the lights-on of the pulses. The entrainment caused by dawn and dusk twilight pulses is discussed in the context of the postulated two photoreceptors: the short wavelength sensitive (S) photoreceptors mediating entrainment via dusk twilight, and the medium wavelength sensitive (M) photoreceptors mediating entrainment via dawn twilight.
Crowley, Stephanie J; Lee, Clara; Tseng, Christine Y; Fogg, Louis F; Eastman, Charmane I
2004-09-15
To assess performance, alertness, and mood during the night shift and subsequent daytime sleep in relation to the degree of re-alignment (re-entrainment) of circadian rhythms with a night-work, day-sleep schedule. Subjects spent 5 consecutive night shifts (11:00 pm-7:00 am) in the lab and slept at home in darkened bedrooms (8:30 am-3:30 pm). Subjects were categorized by the degree of re-entrainment attained after the 5 night shifts. Completely re-entrained: temperature minimum in the second half of daytime sleep; partially re-entrained: temperature minimum in the first half of daytime sleep; not re-entrained: temperature minimum did not delay enough to reach daytime sleep. See above. Young healthy adults (n = 67) who were not shift workers. Included bright light during the night shifts, sunglasses worn outside, a fixed dark daytime sleep episode, and melatonin. The effects of various combinations of these interventions on circadian re-entrainment were previously reported. Here we report how the degree of re-entrainment affected daytime sleep and measures collected during the night shift. Salivary melatonin was collected every 30 minutes in dim light (<20 lux) before and after the night shifts to determine the dim light melatonin onset, and the temperature minimum was estimated by adding a constant (7 hours) to the dim light melatonin onset. Subjects kept sleep logs, which were verified by actigraphy. The Neurobehavioral Assessment Battery was completed several times during each night shift. Baseline sleep schedules and circadian phase differed among the 3 re-entrainment groups, with later times resulting in more re-entrainment. The Neurobehavioral Assessment Battery showed that performance, sleepiness, and mood were better in the groups that re-entrained compared to the group that did not re-entrain, but there were no significant differences between the partial and complete re-entrainment groups. Subjects slept almost all of the allotted 7 hours during the day, and duration did not significantly differ among the re-entrainment groups. In young people, complete re-entrainment to the night-shift day-sleep schedule is not necessary to produce substantial benefits in neurobehavioral measures; partial re-entrainment (delaying the temperature minimum into the beginning of daytime sleep) is sufficient. The group that did not re-entrain shows that a reasonable amount of daytime sleep is not enough to produce good neurobehavioral performance during the night shift. Therefore, some re-alignment of circadian rhythms is recommended.
An observational study of entrainment rate in deep convection
Guo, Xiaohao; Lu, Chunsong; Zhao, Tianliang; ...
2015-09-22
This study estimates entrainment rate and investigates its relationships with cloud properties in 156 deep convective clouds based on in-situ aircraft observations during the TOGA-COARE (Tropical Ocean Global Atmosphere Coupled Ocean Atmosphere Response Experiment) field campaign over the western Pacific. To the authors’ knowledge, this is the first study on the probability density function of entrainment rate, the relationships between entrainment rate and cloud microphysics, and the effects of dry air sources on the calculated entrainment rate in deep convection from an observational perspective. Results show that the probability density function of entrainment rate can be well fitted by lognormal,more » gamma or Weibull distribution, with coefficients of determination being 0.82, 0.85 and 0.80, respectively. Entrainment tends to reduce temperature, water vapor content and moist static energy in cloud due to evaporative cooling and dilution. Inspection of the relationships between entrainment rate and microphysical properties reveals a negative correlation between volume-mean radius and entrainment rate, suggesting the potential dominance of homogeneous mechanism in the clouds examined. The entrainment rate and environmental water vapor content show similar tendencies of variation with the distance of the assumed environmental air to the cloud edges. Their variation tendencies are non-monotonic due to the relatively short distance between adjacent clouds.« less
An observational study of entrainment rate in deep convection
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Xiaohao; Lu, Chunsong; Zhao, Tianliang
This study estimates entrainment rate and investigates its relationships with cloud properties in 156 deep convective clouds based on in-situ aircraft observations during the TOGA-COARE (Tropical Ocean Global Atmosphere Coupled Ocean Atmosphere Response Experiment) field campaign over the western Pacific. To the authors’ knowledge, this is the first study on the probability density function of entrainment rate, the relationships between entrainment rate and cloud microphysics, and the effects of dry air sources on the calculated entrainment rate in deep convection from an observational perspective. Results show that the probability density function of entrainment rate can be well fitted by lognormal,more » gamma or Weibull distribution, with coefficients of determination being 0.82, 0.85 and 0.80, respectively. Entrainment tends to reduce temperature, water vapor content and moist static energy in cloud due to evaporative cooling and dilution. Inspection of the relationships between entrainment rate and microphysical properties reveals a negative correlation between volume-mean radius and entrainment rate, suggesting the potential dominance of homogeneous mechanism in the clouds examined. The entrainment rate and environmental water vapor content show similar tendencies of variation with the distance of the assumed environmental air to the cloud edges. Their variation tendencies are non-monotonic due to the relatively short distance between adjacent clouds.« less
NASA Technical Reports Server (NTRS)
1999-01-01
Under a data purchase agreement with Goddard Space Flight Center, Orbital Sciences Corporation has been able to contract building of the Sea-Viewing Wide-Field-of-View Sensor (SeaWIFS). Orbital Sciences was then able commercialized the data that the satellite produces. These data are used to create daily fish finding maps, allowing fishing fleets to focus on locations where many commercially important surface feeding fish, like tuna and swordfish, congregate. In agriculture and forestry, SeaWIFS' images offer an alternative to direct on-site inspection or expensive serial photography.
An Integrated Intrusion Detection Model of Cluster-Based Wireless Sensor Network.
Sun, Xuemei; Yan, Bo; Zhang, Xinzhong; Rong, Chuitian
2015-01-01
Considering wireless sensor network characteristics, this paper combines anomaly and mis-use detection and proposes an integrated detection model of cluster-based wireless sensor network, aiming at enhancing detection rate and reducing false rate. Adaboost algorithm with hierarchical structures is used for anomaly detection of sensor nodes, cluster-head nodes and Sink nodes. Cultural-Algorithm and Artificial-Fish-Swarm-Algorithm optimized Back Propagation is applied to mis-use detection of Sink node. Plenty of simulation demonstrates that this integrated model has a strong performance of intrusion detection.
Review Article: Advances in modeling of bed particle entrainment sheared by turbulent flow
NASA Astrophysics Data System (ADS)
Dey, Subhasish; Ali, Sk Zeeshan
2018-06-01
Bed particle entrainment by turbulent wall-shear flow is a key topic of interest in hydrodynamics because it plays a major role to govern the planetary morphodynamics. In this paper, the state-of-the-art review of the essential mechanisms governing the bed particle entrainment by turbulent wall-shear flow and their mathematical modeling is presented. The paper starts with the appraisal of the earlier multifaceted ideas in modeling the particle entrainment highlighting the rolling, sliding, and lifting modes of entrainment. Then, various modeling approaches of bed particle entrainment, such as deterministic, stochastic, and spatiotemporal approaches, are critically analyzed. The modeling criteria of particle entrainment are distinguished for hydraulically smooth, transitional, and rough flow regimes. In this context, the responses of particle size, particle exposure, and packing condition to the near-bed turbulent flow that shears the particles to entrain are discussed. From the modern experimental outcomes, the conceptual mechanism of particle entrainment from the viewpoint of near-bed turbulent coherent structures is delineated. As the latest advancement of the subject, the paper sheds light on the origin of the primitive empirical formulations of bed particle entrainment deriving the scaling laws of threshold flow velocity of bed particle motion from the perspective of the phenomenological theory of turbulence. Besides, a model framework that provides a new look on the bed particle entrainment phenomenon stemming from the stochastic-cum-spatiotemporal approach is introduced. Finally, the future scope of research is articulated with open questions.
Irregular Speech Rate Dissociates Auditory Cortical Entrainment, Evoked Responses, and Frontal Alpha
Kayser, Stephanie J.; Ince, Robin A.A.; Gross, Joachim
2015-01-01
The entrainment of slow rhythmic auditory cortical activity to the temporal regularities in speech is considered to be a central mechanism underlying auditory perception. Previous work has shown that entrainment is reduced when the quality of the acoustic input is degraded, but has also linked rhythmic activity at similar time scales to the encoding of temporal expectations. To understand these bottom-up and top-down contributions to rhythmic entrainment, we manipulated the temporal predictive structure of speech by parametrically altering the distribution of pauses between syllables or words, thereby rendering the local speech rate irregular while preserving intelligibility and the envelope fluctuations of the acoustic signal. Recording EEG activity in human participants, we found that this manipulation did not alter neural processes reflecting the encoding of individual sound transients, such as evoked potentials. However, the manipulation significantly reduced the fidelity of auditory delta (but not theta) band entrainment to the speech envelope. It also reduced left frontal alpha power and this alpha reduction was predictive of the reduced delta entrainment across participants. Our results show that rhythmic auditory entrainment in delta and theta bands reflect functionally distinct processes. Furthermore, they reveal that delta entrainment is under top-down control and likely reflects prefrontal processes that are sensitive to acoustical regularities rather than the bottom-up encoding of acoustic features. SIGNIFICANCE STATEMENT The entrainment of rhythmic auditory cortical activity to the speech envelope is considered to be critical for hearing. Previous work has proposed divergent views in which entrainment reflects either early evoked responses related to sound encoding or high-level processes related to expectation or cognitive selection. Using a manipulation of speech rate, we dissociated auditory entrainment at different time scales. Specifically, our results suggest that delta entrainment is controlled by frontal alpha mechanisms and thus support the notion that rhythmic auditory cortical entrainment is shaped by top-down mechanisms. PMID:26538641
ENTRAINMENT BY LIGAMENT-CONTROLLED EFFERVESCENT ATOMIZER-PRODUCED SPRAYS
Entrainment of ambient air into sprays produced by a new type of effervescent atomizer is reported. Entrainment data were obtained using a device similar to that described by Ricou & Spalding (1961). Entrainment data were analyzed using the model of Bush & Sojka (1994), in concer...
Sasaki, Hiroyuki; Hattori, Yuta; Ikeda, Yuko; Kamagata, Mayo; Iwami, Shiho; Yasuda, Shinnosuke; Tahara, Yu; Shibata, Shigenobu
2016-01-01
Exercise during the inactive period can entrain locomotor activity and peripheral circadian clock rhythm in mice; however, mechanisms underlying this entrainment are yet to be elucidated. Here, we showed that the bioluminescence rhythm of peripheral clocks in PER2::LUC mice was strongly entrained by forced treadmill and forced wheel-running exercise rather than by voluntary wheel-running exercise at middle time during the inactivity period. Exercise-induced entrainment was accompanied by increased levels of serum corticosterone and norepinephrine in peripheral tissues, similar to the physical stress-induced response. Adrenalectomy with norepinephrine receptor blockers completely blocked the treadmill exercise-induced entrainment. The entrainment of the peripheral clock by exercise is independent of the suprachiasmatic nucleus clock, the main oscillator in mammals. The present results suggest that the response of forced exercise, but not voluntary exercise, may be similar to that of stress, and possesses the entrainment ability of peripheral clocks through the activation of the adrenal gland and the sympathetic nervous system. PMID:27271267
NASA Technical Reports Server (NTRS)
Cohen, Charles
1998-01-01
Deep cumulonimbus clouds are simulated using a model that makes accurate diagnoses of entrainment and detrainment rates and of the properties of entrained and detrained air. Clouds generated by a variety of initial thermodynamic soundings are compared. In the simulations, updraft entrainment rates are large near and above cloud base, through the entire depth of the conditionally unstable layer. Stronger updrafts in a more unstable environment are better able to entrain relatively undisturbed environmental air, while weaker updrafts can entrain only air that has been modified by the clouds. When the maximum buoyancy is large, the updraft includes parcels with a wide range of buoyancies, while weaker clouds are more horizontally uniform. Strong downdrafts originate from levels at which updrafts detrain, and their mass flux depends on the mass flux of the updraft. The magnitude of mixing between cloud and environment, not the entrainment rate, varies inversely with the cloud radius. How much of the mixed air is entrained depends on the buoyancy.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perry, Russlee; Farley, M.; Hansen, Gabriel
In 1995, the Chief Joseph Kokanee Enhancement Project was established to mitigate the loss of anadromous fish due to the construction of Chief Joseph and Grand Coulee dams. The objectives of the Chief Joseph Enhancement Project are to determine the status of resident kokanee (Oncorhynchus nerka) populations above Chief Joseph and Grand Coulee dams and to enhance kokanee and rainbow trout (Oncorhynchus mykiss) populations. Studies conducted at Grand Coulee Dam documented substantial entrainment of kokanee through turbines at the third powerhouse. In response to finding high entrainment at Grand Coulee Dam, the Independent Scientific Review Panel (ISRP) recommended investigating themore » use of strobe lights to repel fish from the forebay of the third powerhouse. Therefore, our study focused on the third powerhouse and how strobe lights affected fish behavior in this area. The primary objective of our study was to assess the behavioral response of kokanee and rainbow trout to strobe lights using 3D acoustic telemetry, which yields explicit spatial locations of fish in three dimensions. Our secondary objectives were to (1) use a 3D acoustic system to mobile track tagged fish in the forebay and upriver of Grand Coulee Dam and (2) determine the feasibility of detecting fish using a hydrophone mounted in the tailrace of the third powerhouse. Within the fixed hydrophone array located in the third powerhouse cul-de-sac, we detected 50 kokanee and 30 rainbow trout, accounting for 47% and 45% respectively, of the fish released. Kokanee had a median residence time of 0.20 h and rainbow trout had a median residence time of 1.07 h. We detected more kokanee in the array at night compared to the day, and we detected more rainbow trout during the day compared to the night. In general, kokanee and rainbow trout approached along the eastern shore and the relative frequency of kokanee and rainbow trout detections was highest along the eastern shoreline of the 3D array. However, because we released fish near the eastern shore, this approach pattern may have resulted from our release location. A high percentage of rainbow trout (60%) approached within 35 m of the eastern shore, while fewer kokanee (40%) approached within 35 m of the eastern shore and were more evenly distributed across the entrance to the third powerhouse cul-de-sac area. During each of the strobe light treatments there were very few fish detected within 25 m of the strobe lights. The spatial distribution of fish detections showed relatively few tagged fish swam through the center of the array where the strobe lights were located. We detected 11 kokanee and 12 rainbow trout within 25 m of the strobe lights, accounting for 10% and 18% respectively, of the fish released. Both species exhibited very short residence times within 25 m of the strobe lights No attraction or repulsion behavior was observed within 25 m of the strobe lights. Directional vectors of both kokanee and rainbow trout indicate that both species passed the strobe lights by moving in a downstream direction and slightly towards the third powerhouse. We statistically analyzed fish behavior during treatments using a randomization to compare the mean distance fish were detected from the strobe lights. We compared treatments separately for day and night and with the data constrained to three distances from the strobe light (< 85m, < 50 m, and < 25 m). For kokanee, the only significant randomization test (of 10 tests) occurred with kokanee during the day for the 3-On treatment constrained to within 85 m of the strobe lights, where kokanee were significantly further away from the strobe lights than during the Off treatment (randomization test, P < 0.004, Table 1.5). However, one other test had a low P-value (P = 0.064) where kokanee were closer to the lights during the 3-On treatment at night within 85 m of the strobe lights compared to the Off treatment. For rainbow trout, none of the 11 tests were significant, but one test had a low P-value (P = 0.04), and fish were further away from the strobe lights during the 6-On treatment, within 50 m, during the day (Table 1.5). During 2002, it is unclear whether tagged fish truly had little response to the strobe lights, or whether too few fish near the strobe lights and short residence times prevented us from detecting a behavioral response to the strobe lights. Although fish tended to be slightly further away from the strobe lights during 3-On and 6-On treatments compared to the Off treatment, only one of the 21 statistical tests indicated that these differences were significant. However, within 25 m of the strobe lights we may have had little power to detect a difference due to the few fish available for statistical comparison. We detected 32 kokanee and 7 rainbow trout in the tailrace of Grand Coulee Dam, accounting for 30% and 12%, respectively of the fish released.« less
Percentage entrainment of constituent loads in urban runoff, south Florida
Miller, R.A.
1985-01-01
Runoff quantity and quality data from four urban basins in south Florida were analyzed to determine the entrainment of total nitrogen, total phosphorus, total carbon, chemical oxygen demand, suspended solids, and total lead within the stormwater runoff. Land use of the homogeneously developed basins are residential (single family), highway, commercial, and apartment (multifamily). A computational procedure was used to calculate, for all storms that had water-quality data, the percentage of constituent load entrainment in specified depths of runoff. The plot of percentage of constituent load entrained as a function of runoff is termed the percentage-entrainment curve. Percentage-entrainment curves were developed for three different source areas of basin runoff: (1) the hydraulically effective impervious area, (2) the contributing area, and (3) the drainage area. With basin runoff expressed in inches over the contributing area, the depth of runoff required to remove 90 percent of the constituent load ranged from about 0.4 inch to about 1.4 inches; and to remove 80 percent, from about 0.3 to 0.9 inch. Analysis of variance, using depth of runoff from the contributing area as the response variable, showed that the factor 'basin' is statistically significant, but that the factor 'constituent' is not statistically significant in the forming of the percentage-entrainment curve. Evidently the sewerage design, whether elongated or concise in plan dictates the shape of the percentage-entrainment curve. The percentage-entrainment curves for all constituents were averaged for each basin and plotted against basin runoff for three source areas of runoff-the hydraulically effective impervious area, the contributing area, and the drainage area. The relative positions of the three curves are directly related to the relative sizes of the three source areas considered. One general percentage-entrainment curve based on runoff from the contributing area was formed by averaging across both constituents and basins. Its coordinates are: 0.25 inch of runoff for 50-percent entrainment, 0.65 inch of runoff for 80-percent entrainment, and 0.95 inch of runoff for 90-percent entrainment. The general percentage-entrainment curve based on runoff from the hydraulically effective impervious area has runoff values of 0.35, 0.95, 1.6 inches, respectively.
Broadening of cloud droplet spectra through turbulent entrainment and eddy hopping
NASA Astrophysics Data System (ADS)
Abade, Gustavo; Grabowski, Wojciech; Pawlowska, Hanna
2017-11-01
This work discusses the effect of cloud turbulence and turbulent entrainment on the evolution of the cloud droplet-size spectrum. We simulate an ensemble of idealized turbulent cloud parcels that are subject to entrainment events, modeled as a random Poisson process. Entrainment events, subsequent turbulent mixing inside the parcel, supersaturation fluctuations, and the resulting stochastic droplet growth by condensation are simulated using a Monte Carlo scheme. Quantities characterizing the turbulence intensity, entrainment rate and the mean fraction of environmental air entrained in an event are specified as external parameters. Cloud microphysics is described by applying Lagrangian particles, the so-called superdroplets. They are either unactivated cloud condensation nuclei (CCN) or cloud droplets that form from activated CCN. The model accounts for the transport of environmental CCN into the cloud by the entraining eddies at the cloud edge. Turbulent mixing of the entrained dry air with cloudy air is described using a linear model. We show that turbulence plays an important role in aiding entrained CCN to activate, providing a source of small cloud droplets and thus broadening the droplet size distribution. Further simulation results will be reported at the meeting.
Wu, Haiyun; Ohnuki, Hitoshi; Ota, Shirei; Murata, Masataka; Yoshiura, Yasutoshi; Endo, Hideaki
2017-07-15
Fishes display a wide variation in their physiological responses to stress, which is clearly evident in the plasma corticosteroid changes, chiefly cortisol levels in fish. As a well-known indicator of fish stress, a simple and rapid method for detecting cortisol changes especially sudden increases is desired. In this study, we describe an enzyme-functionalized label-free immunosensor system for detecting fish cortisol levels. Detection of cortisol using amperometry was achieved by immobilizing both anti-cortisol antibody (selective detection of cortisol) and glucose oxidase (signal amplification and non-toxic measurement) on an Au electrode surface with a self-assembled monolayer. This system is based on the maximum glucose oxidation output current change induced by the generation of a non-conductive antigen-antibody complex, which depends on the levels of cortisol in the sample. The immunosensor responded to cortisol levels with a linear decrease in the current in the range of 1.25-200ngml -1 (R=0.964). Since the dynamic range of the sensor can cover the normal range of plasma cortisol in fish, the samples obtained from the fish did not need to be diluted. Further, electrochemical measurement of one sample required only ~30min. The sensor system was applied to determine the cortisol levels in plasma sampled from Nile tilapia (Oreochromis niloticus), which were then compared with levels of the same samples determined using the conventional method (ELISA). Values determined using both methods were well correlated. These findings suggest that the proposed label-free immunosensor could be useful for rapid and convenient analysis of cortisol levels in fish without sample dilution. We also believe that the proposed system could be integrated in a miniaturized potentiostat for point-of-care cortisol detection and useful as a portable diagnostic in fish farms in the future. Copyright © 2016 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Philip, Jimmy; Mistry, Dhiren; Dawson, James; Marusic, Ivan
2016-11-01
The net entrainment in a jet is the product of the mean surface area (S ̲) and the mean entrainment velocity, V ̲ S ̲ , where, V ̲ = αUc with α the entrainment coefficient and Uc the mean centreline velocity. Instantaneously, however, entrainment velocity (v) at a point on the interface is the difference between the interface and the fluid velocities, and the total entrainment ∫ vds = VS , where S is the corrugated interface surface area and V the area averaged entrainment velocity. Using time-resolved multi-scale PIV/PLIF measurements of velocity and scalar in an axisymmetric jet at Re = 25000 , we evaluate V and S directly at the smallest resolved scales, and by filtering the data at different scales (Δ) we find their multi-scales counterparts, VΔ and SΔ. We show that V ̲ S ̲ =VΔ SΔ = V S , independent of the scale. Furthermore, S is found to have a fractal dimension D3 2 . 32 +/- 0 . 1 . Independently, we find that VΔ Δ 0 . 31 , indicating increasing entrainment velocity with increasing length scale. This is consistent with a constant net entrainment across scales, and suggests α as a scale-dependent quantity. Engineering and Physical Sciences Research Council (research Grant No. EP/I005879/1), David Crighton Fellowship from the DAMTP, Univ of Cambridge, and the Australian Research Council.
NASA Astrophysics Data System (ADS)
Gu, Changgui; Yang, Huijie; Wang, Man
2017-11-01
Living beings on the Earth are subjected to and entrained (synchronized) to the natural 24-h light-dark cycle. Interestingly, they can also be entrained to an external artificial cycle of non-24-h periods. The range of these periods is called the entrainment range and it differs among species. In mammals, the entrainment range is regulated by a main clock located in the suprachiasmatic nucleus (SCN) which is composed of 10 000 neurons in the brain. Previous works have found that the entrainment range depends on the cellular coupling strength in the SCN. In particular, the entrainment range decreases with the increase of the cellular coupling strength, provided that all the neuronal oscillators are identical. However, the SCN neurons differ in the intrinsic periods that follow a normal distribution in a range from 22 to 28 h. In the present study, taking the dispersion of the intrinsic neuronal periods into account, we examined the relationship between the entrainment range and the coupling strength. Results from numerical simulations and theoretical analyses both show that the relationship is altered to be paraboliclike if the intrinsic neuronal periods are nonidentical, and the maximal entrainment range is obtained with a suitable coupling strength. Our results shed light on the role of the cellular coupling in the entrainment ability of the SCN network.
Partial entrainment of gravel bars during floods
Konrad, Christopher P.; Booth, Derek B.; Burges, Stephen J.; Montgomery, David R.
2002-01-01
Spatial patterns of bed material entrainment by floods were documented at seven gravel bars using arrays of metal washers (bed tags) placed in the streambed. The observed patterns were used to test a general stochastic model that bed material entrainment is a spatially independent, random process where the probability of entrainment is uniform over a gravel bar and a function of the peak dimensionless shear stress τ0* of the flood. The fraction of tags missing from a gravel bar during a flood, or partial entrainment, had an approximately normal distribution with respect to τ0* with a mean value (50% of the tags entrained) of 0.085 and standard deviation of 0.022 (root‐mean‐square error of 0.09). Variation in partial entrainment for a given τ0* demonstrated the effects of flow conditioning on bed strength, with lower values of partial entrainment after intermediate magnitude floods (0.065 < τ0*< 0.08) than after higher magnitude floods. Although the probability of bed material entrainment was approximately uniform over a gravel bar during individual floods and independent from flood to flood, regions of preferential stability and instability emerged at some bars over the course of a wet season. Deviations from spatially uniform and independent bed material entrainment were most pronounced for reaches with varied flow and in consecutive floods with small to intermediate magnitudes.
Ground-Based Remote Retrievals of Cumulus Entrainment Rates
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wagner, Timothy J.; Turner, David D.; Berg, Larry K.
2013-07-26
While fractional entrainment rates for cumulus clouds have typically been derived from airborne observations, this limits the size and scope of available data sets. To increase the number of continental cumulus entrainment rate observations available for study, an algorithm for retrieving them from ground-based remote sensing observations has been developed. This algorithm, called the Entrainment Rate In Cumulus Algorithm (ERICA), uses the suite of instruments at the Southern Great Plains (SGP) site of the United States Department of Energy's Atmospheric Radiation Measurement (ARM) Climate Research Facility as inputs into a Gauss-Newton optimal estimation scheme, in which an assumed guess ofmore » the entrainment rate is iteratively adjusted through intercomparison of modeled liquid water path and cloud droplet effective radius to their observed counterparts. The forward model in this algorithm is the Explicit Mixing Parcel Model (EMPM), a cloud parcel model that treats entrainment as a series of discrete entrainment events. A quantified value for measurement uncertainty is also returned as part of the retrieval. Sensitivity testing and information content analysis demonstrate the robust nature of this method for retrieving accurate observations of the entrainment rate without the drawbacks of airborne sampling. Results from a test of ERICA on three months of shallow cumulus cloud events show significant variability of the entrainment rate of clouds in a single day and from one day to the next. The mean value of 1.06 km-¹ for the entrainment rate in this dataset corresponds well with prior observations and simulations of the entrainment rate in cumulus clouds.« less
Turbulent entrainment across turbulent-nonturbulent interfaces in stably stratified mixing layers
NASA Astrophysics Data System (ADS)
Watanabe, T.; Riley, J. J.; Nagata, K.
2017-10-01
The entrainment process in stably stratified mixing layers is studied in relation to the turbulent-nonturbulent interface (TNTI) using direct numerical simulations. The statistics are calculated with the interface coordinate in an Eulerian frame as well as with the Lagrangian fluid particles entrained from the nonturbulent to the turbulent regions. The characteristics of entrainment change as the buoyancy Reynolds number Reb decreases and the flow begins to layer. The baroclinic torque delays the enstrophy growth of the entrained fluids at small Reb, while this effect is less efficient for large Reb. The entrained particle movement within the TNTI layer is dominated by the small dissipative scales, and the rapid decay of the kinetic energy dissipation rate due to buoyancy causes the entrained particle movement relative to the interface location to become slower. Although the Eulerian statistics confirm that there exists turbulent fluid with strong vorticity or with large buoyancy frequency near the TNTI, the entrained fluid particles circumvent these regions by passing through the TNTI in strain-dominant regions or in regions with small buoyancy frequency. The multiparticle statistics show that once the nonturbulent fluid volumes are entrained, they are deformed into flattened shapes in the vertical direction and diffuse in the horizontal direction. When Reb is large enough for small-scale turbulence to exist, the entrained fluid is able to penetrate into the turbulent core region. Once the flow begins to layer with decreasing Reb, however, the entrained fluid volume remains near the outer edge of the turbulent region and forms a stably stratified layer without vertical overturning.
Expandable and retractable self-rolled structures based on metal/polymer thin film for flow sensing
NASA Astrophysics Data System (ADS)
Zhu, Jianzhong; White, Carl; Saadat, Mehdi; Bart-Smith, Hilary
2015-11-01
Most aquatic animals such as fish rely heavily on their ability of detect and respond to ambient flows in order to explore and inhabit various habitats or survive predator-prey encounters. Fish utilize neuromasts in their skin surface and lateral lines in their bodies to align themselves while swimming upstream for migration, avoid obstacles, reduce locomotion cost, and detect flow variations caused by potential predators. In this study, a thin film MEMS sensor analogous to a fish neuromast has been designed for flow sensing. Residual stress arises in many thin film materials during processing. Metal and polymer thin film materials with a significant difference in elastic modular were chosen to form a multiple-layer structure. Upon releasing, the structure rolls into a tube due to mechanical property mismatch. The self-rolled tube can expand or retract, depending on the existence of external force such as flow. An embedded strain sensor detects the deformation of the tube and hence senses the ambient flow. Numerical simulations were conducted to optimize the structural design. Experiments were performed in a flow tank to quantify the performance of the sensor. This research is supported by the Office of Naval Research under the MURI Grant N00014-14-1-0533.
NASA Technical Reports Server (NTRS)
Boers, R.; Eloranta, E. W.
1986-01-01
Lidar data of the atmospheric entrainment zone from six days of clear air convection obtained in central Illinois during July 1979 are presented. A new method to measure the potential temperature jump across the entrainment zone based on only one temperature sounding and continuous lidar measurements of the mixed layer height is developed. An almost linear dependence is found between the normalized entrainment rate and the normalized thickness of the entrainment zone.
Simulations and observations of cloudtop processes
NASA Technical Reports Server (NTRS)
Siems, S. T.; Bretherton, C. S.; Baker, M. B.
1990-01-01
Turbulent entrainment at zero mean shear stratified interfaces has been studied extensively in the laboratory and theoretically for the classical situation in which density is a passive tracer of the mixing and the turbulent motions producing the entrainment are directed toward the interface. It is the purpose of the numerical simulations and data analysis to investigate these processes and, specifically, to focus on the following questions: (1) Can local cooling below cloudtop play an important role in setting up convective circulations within the cloud, and bringing about entrainment; (2) Can Cloudtop Entrainment Instability (CEI) alone lead to runaway entrainment under geophysically realistic conditions; and (3) What are the important mechanisms of entrainment at cloudtop under zero or low mean shear conditions.
NASA Astrophysics Data System (ADS)
Ramón Casañas, Cintia; Burau, Jon; Blake, Aaron; Acosta, Mario; Rueda, Francisco
2017-04-01
River junctions where water may follow two or more alternative pathways (diffluences) could be critical points in river networks where aquatic migratory species select different migration routes. Federally listed Sacramento River Chinook salmon juveniles must survive passage through the tidal Sacramento - San Joaquin River Delta in order to successfully out-migrate to the ocean. Two of the four main migration routes identified for salmon in the Sacramento River direct them to the interior of the delta, where salmon survival is known to decrease dramatically. Migration route selection is thought to be advection-dominated, but the combination of physical and biological processes that control route selection is still poorly understood. The reach in the Sacramento-River where the entrances of the two lower-survival migration routes are located is strongly influenced by the tides, with flows reversing twice daily, and the two diffluences are located in the outside of the same Sacramento River bend where secondary circulation occurs. Three dimensional simulations are conducted, both in the Eularian and Lagrangian frame, to understand tidal and secondary-circulation effects on the migration route selection of juveniles within this reach of the Sacramento River. Although salmon behavior is reduced to the simplest (passively-driven neutrally-buoyant particles), the preliminary results here presented are consistent with previous studies that show that during the flood tide almost all the flow, and thus, all the salmon, are directed to the interior delta through these two migration routes. Simulated fish entrainment rates into the interior of the delta tend to be larger than those expected from flow entrainment calculations alone, particularly during ebb tides. Several factors account for these tendencies. First, the fraction of the flow diverted to the side channel in the shallowest layers tend to be higher than in the deeper layers, as a result of the secondary circulation that develops in the main river. The secondary circulation acting upstream also causes the surface-biased salmon distribution to be skewed towards the outside of the bend as they approach the entrance to the migration routes. As a result of these effects, the fraction of entrained particles in the shallowest 4 m of the water column remains higher than 50% during the course of a tidal cycle.
Sensing Structures Inspired by Blind Cave Fish
NASA Astrophysics Data System (ADS)
McConney, Michael E.; Chen, Nannan; Lu, David; Anderson, Kyle D.; Hu, Huan; Liu, Chang; Tsukruk, Vladimir V.
2009-03-01
Blind cave fish, with degenerated non-functioning eyes, have evolved to ``see'' their hydrodynamic environment by using the flow receptors of the lateral line system. The hair-cell receptors are encapsulated in a hydrogel-like material, called a cupula, which increases the sensitivity of the hair-cell receptors by coupling their motion to the surrounding flowing media. We characterized the viscoelastic properties and of blind cave fish cupulae by using colloidal-probe spectroscopy in fluid. A photo-patternable hydrogel with similar properties was developed to mimic the fish receptor coupling structure. Flow-based measurements indicated that the hydrogels enhance drag through increased surface area, but also inherent material properties. These bio-inspired structures endowed micro-fabricated flow sensors with sensitivities rivaling that of fish.
How to Achieve Fast Entrainment? The Timescale to Synchronization
Granada, Adrián E.; Herzel, Hanspeter
2009-01-01
Entrainment, where oscillators synchronize to an external signal, is ubiquitous in nature. The transient time leading to entrainment plays a major role in many biological processes. Our goal is to unveil the specific dynamics that leads to fast entrainment. By studying a generic model, we characterize the transient time to entrainment and show how it is governed by two basic properties of an oscillator: the radial relaxation time and the phase velocity distribution around the limit cycle. Those two basic properties are inherent in every oscillator. This concept can be applied to many biological systems to predict the average transient time to entrainment or to infer properties of the underlying oscillator from the observed transients. We found that both a sinusoidal oscillator with fast radial relaxation and a spike-like oscillator with slow radial relaxation give rise to fast entrainment. As an example, we discuss the jet-lag experiments in the mammalian circadian pacemaker. PMID:19774087
Borrie, Stephanie A.; Lubold, Nichola; Pon-Barry, Heather
2015-01-01
Conversational entrainment, a pervasive communication phenomenon in which dialogue partners adapt their behaviors to align more closely with one another, is considered essential for successful spoken interaction. While well-established in other disciplines, this phenomenon has received limited attention in the field of speech pathology and the study of communication breakdowns in clinical populations. The current study examined acoustic-prosodic entrainment, as well as a measure of communicative success, in three distinctly different dialogue groups: (i) healthy native vs. healthy native speakers (Control), (ii) healthy native vs. foreign-accented speakers (Accented), and (iii) healthy native vs. dysarthric speakers (Disordered). Dialogue group comparisons revealed significant differences in how the groups entrain on particular acoustic–prosodic features, including pitch, intensity, and jitter. Most notably, the Disordered dialogues were characterized by significantly less acoustic-prosodic entrainment than the Control dialogues. Further, a positive relationship between entrainment indices and communicative success was identified. These results suggest that the study of conversational entrainment in speech pathology will have essential implications for both scientific theory and clinical application in this domain. PMID:26321996
Tomioka, K; Miyasako, Y; Umezaki, Y
2008-01-01
Drosophila shows bimodal circadian locomotor rhythms with peaks around light-on (morning peak) and before light-off (evening peak). The rhythm synchronizes to light and temperature cycles and the synchronization is achieved by two sets of clocks: one entrains to light cycles and the other to temperature cycles. The light-entrainable clock consists of the clock neurons located in the lateral protocerebrum (LNs) and the temperature-entrainable clock involves those located in the dorsal protocerebrum (DNs) and the cells located in the posterior lateral protocerebrum (LPNs). To understand the interaction between the light-entrainable and the temperature-entrainable clock neurons, locomotor rhythms of the mutant flies lacking PDF or PDF-positive clock neurons were examined. Under the light cycles, they showed altered phase of the evening peak. When exposed to temperature cycles of lower temperature levels, the onset of evening peak showed larger advance in contrast to those of wild-type flies. The termination of the peak also advanced while that of wild-type flies remained almost at the same phase as in the constant temperature. These results support our hypothesis that the PDF-positive light entrainable cells regulate the phase of the temperature entrainable cells to be synchronized to their own phase using PDF as a coupling mediator.
Design and Implementation of a new Autonomous Sensor Fish to Support Advanced Hydropower Development
Deng, Zhiqun; Lu, Jun; Myjak, Mitchell J.; ...
2014-11-04
Acceleration in development of additional conventional hydropower requires tools and methods to perform laboratory and in-field validation of turbine performance and fish passage claims. The new-generation Sensor Fish has been developed with more capabilities to accommodate a wider range of users over a wider range of turbine designs and operating environments. It provides in situ measurements of three dimensional (3D) accelerations, 3D rotational velocities, 3D orientation, pressure, and temperature at a sampling frequency of 2048 Hz. It also has an automatic floatation system and built-in radio frequency transmitter for recovery. The relative errors of the pressure, acceleration and rotational velocitymore » were within ±2%, ±5%, and ±5%, respectively. The accuracy of orientation was within ±4° and accuracy of temperature was ±2°C. It is being deployed to evaluate the biological effects of turbines or other hydraulic structures in several countries.« less
Examination of turbulent entrainment-mixing mechanisms using a combined approach
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu, C.; Liu, Y.; Niu, S.
2011-10-01
Turbulent entrainment-mixing mechanisms are investigated by applying a combined approach to the aircraft measurements of three drizzling and two nondrizzling stratocumulus clouds collected over the U.S. Department of Energy's Atmospheric Radiation Measurement Southern Great Plains site during the March 2000 cloud Intensive Observation Period. Microphysical analysis shows that the inhomogeneous entrainment-mixing process occurs much more frequently than the homogeneous counterpart, and most cases of the inhomogeneous entrainment-mixing process are close to the extreme scenario, having drastically varying cloud droplet concentration but roughly constant volume-mean radius. It is also found that the inhomogeneous entrainment-mixing process can occur both near the cloudmore » top and in the middle level of a cloud, and in both the nondrizzling clouds and nondrizzling legs in the drizzling clouds. A new dimensionless number, the scale number, is introduced as a dynamical measure for different entrainment-mixing processes, with a larger scale number corresponding to a higher degree of homogeneous entrainment mixing. Further empirical analysis shows that the scale number that separates the homogeneous from the inhomogeneous entrainment-mixing process is around 50, and most legs have smaller scale numbers. Thermodynamic analysis shows that sampling average of filament structures finer than the instrumental spatial resolution also contributes to the dominance of inhomogeneous entrainment-mixing mechanism. The combined microphysical-dynamical-thermodynamic analysis sheds new light on developing parameterization of entrainment-mixing processes and their microphysical and radiative effects in large-scale models.« less
Effect of particle entrainment on the runout of pyroclastic density currents
NASA Astrophysics Data System (ADS)
Fauria, Kristen E.; Manga, Michael; Chamberlain, Michael
2016-09-01
Pyroclastic density currents (PDCs) can erode soil and bedrock, yet we currently lack a mechanistic understanding of particle entrainment that can be incorporated into models and used to understand how PDC bulking affects runout. Here we quantify how particle splash, the ejection of particles due to impact by a projectile, entrains particles into dilute PDCs. We use scaled laboratory experiments to measure the mass of sand ejected by impacts of pumice, wood, and nylon spheres. We then derive an expression for particle splash that we validate with our experimental results as well as results from seven other studies. We find that the number of ejected particles scales with the kinetic energy of the impactor and the depth of the crater generated by the impactor. Last, we use a one-dimensional model of a dilute, compressible density current—where runout distance is controlled by air entrainment and particle exchange with the substrate—to examine how particle entrainment by splash affects PDC density and runout. Splash-driven particle entrainment can increase the runout distance of dilute PDCs by an order of magnitude. Furthermore, the temperature of entrained particles greatly affects runout and PDCs that entrain ambient temperature particles runout farther than those that entrain hot particles. Particle entrainment by splash therefore not only increases the runout of dilute PDCs but demonstrates that the temperature and composition of the lower boundary have consequences for PDC density, temperature, runout, hazards and depositional record.
The performative pleasure of imprecision: a diachronic study of entrainment in music performance.
Geeves, Andrew; McIlwain, Doris J; Sutton, John
2014-01-01
This study focuses in on a moment of live performance in which the entrainment amongst a musical quartet is threatened. Entrainment is asymmetric in so far as there is an ensemble leader who improvises and expands the structure of a last chorus of a piece of music beyond the limits tacitly negotiated during prior rehearsals and performances. Despite the risk of entrainment being disturbed and performance interrupted, the other three musicians in the quartet follow the leading performer and smoothly transition into unprecedented performance territory. We use this moment of live performance to work back through the fieldwork data, building a diachronic study of the development and bases of entrainment in live music performance. We introduce the concept of entrainment and profile previous theory and research relevant to entrainment in music performance. After outlining our methodology, we trace the evolution of the structure of the piece of music from first rehearsal to final performance. Using video clip analysis, interviews and field notes we consider how entrainment shaped and was shaped by the moment of performance in focus. The sense of trust between quartet musicians is established through entrainment processes, is consolidated via smooth adaptation to the threats of disruption. Non-verbal communicative exchanges, via eye contact, gesture, and spatial proximity, sustain entrainment through phase shifts occurring swiftly and on the fly in performance contexts. These exchanges permit smooth adaptation promoting trust. This frees the quartet members to play with the potential disturbance of equilibrium inherent in entrained relationships and to play with this tension in an improvisatory way that enhances audience engagement and the live quality of performance.
The performative pleasure of imprecision: a diachronic study of entrainment in music performance
Geeves, Andrew; McIlwain, Doris J.; Sutton, John
2014-01-01
This study focuses in on a moment of live performance in which the entrainment amongst a musical quartet is threatened. Entrainment is asymmetric in so far as there is an ensemble leader who improvises and expands the structure of a last chorus of a piece of music beyond the limits tacitly negotiated during prior rehearsals and performances. Despite the risk of entrainment being disturbed and performance interrupted, the other three musicians in the quartet follow the leading performer and smoothly transition into unprecedented performance territory. We use this moment of live performance to work back through the fieldwork data, building a diachronic study of the development and bases of entrainment in live music performance. We introduce the concept of entrainment and profile previous theory and research relevant to entrainment in music performance. After outlining our methodology, we trace the evolution of the structure of the piece of music from first rehearsal to final performance. Using video clip analysis, interviews and field notes we consider how entrainment shaped and was shaped by the moment of performance in focus. The sense of trust between quartet musicians is established through entrainment processes, is consolidated via smooth adaptation to the threats of disruption. Non-verbal communicative exchanges, via eye contact, gesture, and spatial proximity, sustain entrainment through phase shifts occurring swiftly and on the fly in performance contexts. These exchanges permit smooth adaptation promoting trust. This frees the quartet members to play with the potential disturbance of equilibrium inherent in entrained relationships and to play with this tension in an improvisatory way that enhances audience engagement and the live quality of performance. PMID:25400567
Fluvial entrainment of low density peat blocks (block carbon)
NASA Astrophysics Data System (ADS)
Warburton, Jeff
2014-05-01
In many fluvial environments low density materials are transported in significant quantities and these form an important part of the stream load and /or have a distinct impact on sedimentation in these environments. However, there are significant gaps in understanding of how these materials are entrained and transported by streams and rivers. Eroding upland peatland environments in particular, frequently have fluvial systems in which large eroded peat blocks, often exceeding 1 m in length; form an important component of the stream material flux. Transport of this material is significant in determining rates of erosion but also has important impacts in terms of damage to infrastructure and carbon loss. This paper describes a field experiment designed to establish for the first time the conditions under which large peat blocks (c. > 0.1 m b axis) are initially entrained from a rough gravel bed. The field site is Trout Beck, in the North Pennines, Northern England which is an upland wandering river channel with occasional lateral and mid channel bars. Mean low flow stage is typically 0.2 m but during flood can rapidly rise, in one to two hours, to over 1.5 m. To study peat block entrainment a bespoke data acquisition system consisting of two pressure transducers, four release triggers and time lapse camera was set up. The pressure transducers provided a record of local depth and the release triggers were embedded in peat blocks to record initial motion and arranged on the rough stream bed. The time lapse camera provided verification of timing of block entrainment (during daylight hours) and also provided information on the mechanism of initial movement. Peat blocks were cut from a local source and were equidimensional, ranging in size from 0.1 to 0.7 m. The derived entrainment function is related to a critical depth of entrainment. Results demonstrate that peat blocks are entrained when the local depth approximates the height of the peat block. Blocks frequently shift position prior to entrainment but once entrained are rapidly transported downstream. Because of the rough stream bed local depth, measured on the four sides of the block varies markedly and needs to be considered in developing an appropriate entrainment function and; is useful in explaining initial movement prior to entrainment. In some experiments a small accelerometer (HOBO Pendant G data logger) was used to investigate transport dynamics following entrainment. Further work will seek to improve the entrainment function by extending the size range of tests, developing a shear stress related function and investigating the importance of block shape (rounding) on entrainment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pearson, Walter H.; Kohn, Nancy P.; Skalski, J. R.
2006-09-30
Proposed dredging of the Columbia River has raised concerns about related impacts on Dungeness crab in the Columbia River Estuary (CRE). This study follows two major efforts, sponsored by the Portland District of the U. S. Army Corps of Engineers (USACE) to quantify the number of crabs entrained by a hopper dredge working in the CRE. From June 2002 through September 2002, Pacific Northwest National Laboratory (PNNL) conducted direct measurements of crab entrainment in the CRE from the mouth of the Columbia River (MCR, river mile -3 to +3) upriver as far as Miller Sands (river mile 21 to 24).more » These studies constituted a major step in quantifying crab entrainment in the CRE, and allowed statistically bounded projections of adult equivalent loss (AEL) for Dungeness crab populations under a range of future construction dredging and maintenance dredging scenarios (Pearson et al. 2002, 2003). In 2004, PNNL performed additional measurements to improve estimates of crab entrainment at Desdemona Shoals and at Flavel Bar, a reach near Astoria that had not been adequately sampled in 2002 (Figure 1). The 2004 data were used to update the crab loss projections for channel construction to 43 ft MLLW. In addition, a correlation between bottom salinity and adult (age 2+ and 3+, >100 mm carapace width) crab entrainment was developed using 2002 data, and elaborated upon with the 2004 data. This crab salinity model was applied to forecasting seasonal (monthly) entrainment rates and AEL using seasonal variations in salinity (Pearson et al. 2005). In the previous studies, entrainment rates in Desdemona Shoals were more variable than in any of the other reaches. Pearson et al. (2005) concluded that ?the dynamics behind the variable entrainment rates at Desdemona Shoals are not fully understood,? as well as finding that juvenile crab entrainment was not significantly correlated with salinity as it was for older crab. The present study was undertaken to address the question of whether the high age 1+ entrainment rate at Desdemona Shoals in June 2002 unusual, or would it be observed again under similar conditions? PNNL and USACE personnel directly measured crab entrainment by the USACE hopper dredge Essayons working in Desdemona Shoals in June 2006. In addition to quantifying crab entrainment of all age classes, bottom salinity was directly measured in as many samples as possible, so that the relationship between crab entrainment and salinity could be further evaluated. All 2006 data were collected and analyzed in a manner consistent with the previous entrainment studies (Pearson et al. 2002, 2003, 2005).« less
The ichthyoplankton assemblage of the Canaries-African Coastal Transition Zone: A review
NASA Astrophysics Data System (ADS)
Rodriguez, J. M.; Moyano, M.; Hernandez-Leon, S.
2009-12-01
In this paper we review information on the ichthyoplankton assemblage of the Canaries-African Coastal Transition Zone (C-ACTZ). This CTZ shows the singularity that the Canary Archipelago interrupts the main flow of the Canary Current and Trade Winds, introducing large mesoscale variability, in the form of island warm wakes and cyclonic and anticyclonic eddies downstream of the islands. Besides, upwelling filaments stretch towards the archipelago from the African coastal upwelling, transporting phytoplankton, zooplankton and fish larvae. They also interact with eddies shed from the islands to exchange water properties and biogenic material. All these mesoscale features influence the composition, structure, abundance and distribution of the larval fish community (LFC) of the region. The Canary Current (CC) and eddies shed from the islands drag larvae of island neritic fish species into the oceanic region and contribute, along warm wakes, to the horizontal distribution of fish larvae. Upwelling and upwelling filaments transport larvae of African neritic species into the oceanic region. These larvae dominate the LFC and account for the relatively high average larval fish abundance found in the C-ACTZ during the summer upwelling season. Filaments originated in the region of Cape Juby-Cape Bojador are entrained around a quasi-permanent cyclonic eddy, trapped between Gran Canaria Island and the African coast, forming a system through which most of the African neritic larvae may return to the African shelf. However, some larvae reach the eastern islands of the Canary archipelago and they may be spread all over the neritic region of the archipelago by eddies shed from the islands. Also in summer, the distribution of the LFC of the C-ACTZ is vertically stratified and fish larvae seem to carry out little or not diel vertical migration. Overall, this study highlights the strong relationship between mesoscale oceanographic processes and the LFC in the C-ACTZ.
Mesa, Matthew G.; Rose, Brien P.; Copeland, Elizabeth S.
2010-01-01
Screens are commonly installed at water diversion sites to reduce entrainment of fish. Recently, the Farmers Irrigation District in Hood River, Oregon, developed a new flat-plate screen design that offers passive operation and may result in reduced operation and installation costs to irrigators. To evaluate the performance (its biological effect on fish) of this type of screen, two size classes of juvenile coho salmon (Oncorhynchus kistuch) were released over a small version of this screen in the field-the Herman Creek screen. The performance of the screen was evaluated over a range of inflow [0.02 to 0.42 m3/s (cubic meters per second)] and diversion flows (0.02 to 0.34 m3/s) at different weir wall heights. The mean approach velocities for the screen ranged from 0 to 5 cm/s (centimeters per second) and mean sweeping velocities ranged from 36 to 178 cm/s. Water depths over the screen surface ranged from 1 to 25 centimeters and were directly related to weir wall height and inflow. Passage of juvenile coho salmon over the screen under a variety of hydraulic conditions did not severely injure them or cause delayed mortality. For all fish, the mean percentage of body surface area that was injured after passage over the screen ranged from about 0.4 to 3.0%. This occurred even though many fish contacted the screen surface during passage. No fish were observed becoming impinged on the screen surface (greater than 1 second contact with the screen). When operated within its design criteria (diversion flows of about 0.28 m3/s), the screen provided safe and effective downstream passage of juvenile salmonids under a variety of hydraulic conditions. However, we do not recommend operating the screen at inflows less than 0.14 m3/s (5 ft3/s) because water depth can get quite shallow and the screen can completely dewater, particularly at very low flows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schilt, C.R.; Vu, P.D.; Nestler, J.M.
1995-12-31
At Richard B. Russell Dam on the Savannah River we have been monitoring the magnitude (numbers and masses) and species compositions as well as possible survival of fish entrained in operation of four 85 MW Francis pump turbines. In this paper we review our progress in net design for hydropower application. We also discuss basic net handling and introduce a method for net management in a very turbulent tailrace. This report is meant to share what we have learned at Russell Dam in hopes that it will facilitate similar efforts elsewhere. The commercial fishing industry has evolved methods of netmore » construction and handling that may be applied, with appropriate modification, at dams. The nets we use are most appropriately called trawls in that they have the form of a long sock placed over the penstock or draft tube. These nets are superficially similar to those used in commercial trawling for fish. Important differences are that: (1) the net remains relatively stationary while the water moves through it, not vice versa; (2) water velocities and turbulence are much greater at dams than in commercial fishing operations and (3) mesh sizes are much smaller for environmental sampling than for commercial trawling. And while a fouled trawl may stop the boat that pulls it, the water passed in generation or pumpback (about 140 ft. head at Russell) is for all practical purposes unstoppable. Our nets fish in a very turbulent discharge at 7,000 cu. ft./sec/turbine. Their strength and their ability to pass water effectively under all possible operating conditions are primary concerns. Trawl length, mesh sizes, and hanging ratios are important factors. Although we have had setbacks (usually in the form of torn nets) as this study has developed, we have incrementally improved our net design and handling. We review our net failures and the solutions we have found thus far in both construction and handling.« less
Fish Passage though Hydropower Turbines: Simulating Blade Strike using the Discrete Element Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Richmond, Marshall C.; Romero Gomez, Pedro DJ
mong the hazardous hydraulic conditions affecting anadromous and resident fish during their passage though turbine flows, two are believed to cause considerable injury and mortality: collision on moving blades and decompression. Several methods are currently available to evaluate these stressors in installed turbines, i.e. using live fish or autonomous sensor devices, and in reduced-scale physical models, i.e. registering collisions from plastic beads. However, a priori estimates with computational modeling approaches applied early in the process of turbine design can facilitate the development of fish-friendly turbines. In the present study, we evaluated the frequency of blade strike and nadir pressure environmentmore » by modeling potential fish trajectories with the Discrete Element Method (DEM) applied to fish-like composite particles. In the DEM approach, particles are subjected to realistic hydraulic conditions simulated with computational fluid dynamics (CFD), and particle-structure interactions—representing fish collisions with turbine blades—are explicitly recorded and accounted for in the calculation of particle trajectories. We conducted transient CFD simulations by setting the runner in motion and allowing for better turbulence resolution, a modeling improvement over the conventional practice of simulating the system in steady state which was also done here. While both schemes yielded comparable bulk hydraulic performance, transient conditions exhibited a visual improvement in describing flow variability. We released streamtraces (steady flow solution) and DEM particles (transient solution) at the same location from where sensor fish (SF) have been released in field studies of the modeled turbine unit. The streamtrace-based results showed a better agreement with SF data than the DEM-based nadir pressures did because the former accounted for the turbulent dispersion at the intake but the latter did not. However, the DEM-based strike frequency is more representative of blade-strike probability than the steady solution is, mainly because DEM particles accounted for the full fish length, thus resolving (instead of modeling) the collision event.« less
Sameiro-Barbosa, Catia M; Geiser, Eveline
2016-01-01
The auditory system displays modulations in sensitivity that can align with the temporal structure of the acoustic environment. This sensory entrainment can facilitate sensory perception and is particularly relevant for audition. Systems neuroscience is slowly uncovering the neural mechanisms underlying the behaviorally observed sensory entrainment effects in the human sensory system. The present article summarizes the prominent behavioral effects of sensory entrainment and reviews our current understanding of the neural basis of sensory entrainment, such as synchronized neural oscillations, and potentially, neural activation in the cortico-striatal system.
Jiang, Donglei; Liu, Yan; Jiang, Hui; Rao, Shengqi; Fang, Wu; Wu, Mangang; Yuan, Limin; Fang, Weiming
2018-04-15
A novel screen-printed cell-based electrochemical sensor was developed to assess bacterial quorum signaling molecules, N-acylhomoserine lactones (AHLs). Screen-printed carbon electrode (SPCE), which possesses excellent properties such as low-cost, disposable and energy-efficient, was modified with multi-walled carbon nanotubes (MWNTs) to improve electrochemical signals and enhance the sensitivity. Rat basophilic leukemia (RBL-2H3) mast cells encapsulated in alginate/graphene oxide (NaAgl/GO) hydrogel were immobilized on the MWNTs/SPCE to serve as recognition element. Electrochemical impedance spectroscopy (EIS) was employed to record the cell impedance signal as-influenced by Pseudomonas aeruginosa quorum-sensing molecule, N-3-oxododecanoyl homoserine lactone (3OC 12 -HSL). Experimental results show that 3OC 12 -HSL caused a significant decrease in cell viability in a dose dependent manner. The EIS value decreased with concentrations of 3OC 12 -HSL in the range of 0.1-1μM, and the detection limit for 3OC 12 -HSL was calculated to be 0.094μM. These results were confirmed via cell viability, SEM, TEM analysis. Next, the sensor was successfully applied to monitoring the production of AHLs by spoilage bacteria in three different freshwater fish juice samples which efficiently proved the practicability of this cell based method. Therefore, the proposed cell sensor may serve as an innovative and effective approach to the measurement of quorum signaling molecule and thus provides a new avenue for real-time monitoring the spoilage bacteria in freshwater fish production. Copyright © 2017 Elsevier B.V. All rights reserved.
Understanding blue-light photoreceptors
NASA Astrophysics Data System (ADS)
Crane, Brian
Blue-light sensing proteins coordinate many biological processes that include phototropism, photomorphism, stress responses, virulence and the entrainment of circadian clocks. Three major types of blue-light sensors all bind flavin nucleotides as chromophores, but the photochemistry employed and conformational responses invoked differ considerably among the classes. Nevertheless, photoinduced electron transfer reactions play a key role in many mechanisms. How such reactivity leads to conformational signaling will be discussed for both cryptochromes (CRYs) and light- oxygen- voltage (LOV) domains. In CRYs, blue-light mediated flavin reduction promotes proton transfer within the active center that then leads to displacement of a key signaling element. For LOV proteins, blue light causes formation of a covalent cysteinyl-flavin adduct, which rearranges hydrogen bonding and restructures the N-terminal region of the protein. Interestingly, a new class of LOV-like sensor does not undergo adduct formation and instead can operate by flavin photoreduction, like CRY. Conserved aspects of reactivity in these proteins provide lessons for the design of new photosensors, which may find use as tools in optogenetics Supported by NIH GM079679.
Holbrook, Christopher M.; Perry, Russell W.; Adams, Noah S.
2009-01-01
Acoustic telemetry was used to obtain the movement histories of 915 juvenile fall-run Chinook salmon (Oncorhynchus tshawytscha) through the lower San Joaquin River and Sacramento-San Joaquin Delta, California, in 2008. Data were analyzed within a release-recapture framework to estimate survival, route distribution, and detection probabilities among three migration pathways through the Delta. The pathways included the primary route through the San Joaquin River and two less direct routes (Old River and Turner Cut). Strong inferences about survival were limited by premature tag failure, but estimates of fish distribution among migration routes should be unaffected by tag failure. Based on tag failure tests (N = 66 tags), we estimated that only 55-78 percent of the tags used in this study were still functioning when the last fish was detected exiting the study area 15 days after release. Due to premature tag failure, our 'survival' estimates represent the joint probability that both the tag and fish survived, not just survival of fish. Low estimates of fish-tag survival could have been caused by fish mortality or fish travel times that exceeded the life of the tag, but we were unable to differentiate between the two. Fish-tag survival through the Delta (from Durham Ferry to Chipps Island by all routes) ranged from 0.05 +or- 0.01 (SE) to 0.06 +or- 0.01 between the two weekly release groups. Among the three migration routes, fish that remained in the San Joaquin River exhibited the highest joint fish-tag survival (0.09 +or- 0.02) in both weeks, but only 22-33 percent of tagged fish used this route, depending on the week of release. Only 4-10 percent (depending on week) of tagged fish traveled through Turner Cut, but no tagged fish that used this route were detected exiting the Delta. Most fish (63-68 percent, depending on week of release) migrated through Old River, but fish-tag survival through this route (0.05 +or- 0.01) was only about one-half that of fish that remained in the San Joaquin River. Once tagged fish entered Old River, only fish collected at two large water conveyance projects and transported through the Delta by truck were detected exiting the Delta, suggesting that this route was the only successful migration pathway for fish that entered Old River. The rate of entrainment of tagged juvenile salmon into Old River was similar to the fraction of San Joaquin River discharge flowing into Old River, which averaged 63 percent but varied tidally and ranged from 33 to 100 percent daily. Although improvements in transmitter battery life are clearly needed, this information will help guide the development of future research and monitoring efforts in this system.
Nature as a model for biomimetic sensors
NASA Astrophysics Data System (ADS)
Bleckmann, H.
2012-04-01
Mammals, like humans, rely mainly on acoustic, visual and olfactory information. In addition, most also use tactile and thermal cues for object identification and spatial orientation. Most non-mammalian animals also possess a visual, acoustic and olfactory system. However, besides these systems they have developed a large variety of highly specialized sensors. For instance, pyrophilous insects use infrared organs for the detection of forest fires while boas, pythons and pit vipers sense the infrared radiation emitted by prey animals. All cartilaginous and bony fishes as well as some amphibians have a mechnaosensory lateral line. It is used for the detection of weak water motions and pressure gradients. For object detection and spatial orientation many species of nocturnal fish employ active electrolocation. This review describes certain aspects of the detection and processing of infrared, mechano- and electrosensory information. It will be shown that the study of these seemingly exotic sensory systems can lead to discoveries that are useful for the construction of technical sensors and artificial control systems.
Coral reefs as buffers during the 2009 South Pacific tsunami, Upolu Island, Samoa
NASA Astrophysics Data System (ADS)
McAdoo, Brian G.; Ah-Leong, Joyce Samuelu; Bell, Lui; Ifopo, Pulea; Ward, Juney; Lovell, Edward; Skelton, Posa
2011-07-01
The coral reef bordering the coastline of Samoa affected by the 29 September 2009 tsunami provides a variety of ecosystem services — from nurseries for fisheries and inshore source of food for local communities, to aesthetics for tourists, and the width of the lagoon may have been a factor in reducing the onshore wave height. To understand the complex interactions between the onshore human population and the offshore coral, we formed an interdisciplinary survey team to document the effects the tsunami had on the nearshore coral reef, and how these changes might affect local inhabitants. The scale of reef damage varied from severe, where piles of freshly-killed coral fragments and mortality were present, to areas that exhibited little impact, despite being overrun by the tsunami. We found that many coral colonies were impacted by tsunami-entrained coral debris, which had been ripped up and deposited on the fore reef by repeated cyclones and storm waves. In other places, large surface area tabular coral sustained damage as the tsunami velocity increased as it was funneled through channels. Areas that lacked debris entrained by the waves as well as areas in the lee of islands came through relatively unscathed, with the exception of the delicate corals that lived on a sandy substrate. In the lagoon on the south coast with its steep topography, coral colonies were damaged by tsunami-generated debris from onshore entrained in the backwash. Despite the potential for severe tsunami-related damage, there were no noticeable decreases in live coral cover between successive surveys at two locations, although algal cover was higher with the increased nutrients mobilized by the tsunami. While there was an immediate decrease in fish takes in the month following the tsunami, when supporting services were likely impacted, both volume and income have rapidly increased to pre-tsunami levels. Long-term monitoring should be implemented to determine if nursery services were affected.
Light directs zebrafish period2 expression via conserved D and E boxes.
Vatine, Gad; Vallone, Daniela; Appelbaum, Lior; Mracek, Philipp; Ben-Moshe, Zohar; Lahiri, Kajori; Gothilf, Yoav; Foulkes, Nicholas S
2009-10-01
For most species, light represents the principal environmental signal for entraining the endogenous circadian clock. The zebrafish is a fascinating vertebrate model for studying this process since unlike mammals, direct exposure of most of its tissues to light leads to local clock entrainment. Importantly, light induces the expression of a set of genes including certain clock genes in most zebrafish cell types in vivo and in vitro. However, the mechanism linking light to gene expression remains poorly understood. To elucidate this key mechanism, here we focus on how light regulates transcription of the zebrafish period2 (per2) gene. Using transgenic fish and stably transfected cell line-based assays, we define a Light Responsive Module (LRM) within the per2 promoter. The LRM lies proximal to the transcription start site and is both necessary and sufficient for light-driven gene expression and also for a light-dependent circadian clock regulation. Curiously, the LRM sequence is strongly conserved in other vertebrate per2 genes, even in species lacking directly light-sensitive peripheral clocks. Furthermore, we reveal that the human LRM can substitute for the zebrafish LRM to confer light-regulated transcription in zebrafish cells. The LRM contains E- and D-box elements that are critical for its function. While the E-box directs circadian clock regulation by mediating BMAL/CLOCK activity, the D-box confers light-driven expression. The zebrafish homolog of the thyrotroph embryonic factor binds efficiently to the LRM D-box and transactivates expression. We demonstrate that tef mRNA levels are light inducible and that knock-down of tef expression attenuates light-driven transcription from the per2 promoter in vivo. Together, our results support a model where a light-dependent crosstalk between E- and D-box binding factors is a central determinant of per2 expression. These findings extend the general understanding of the mechanism whereby the clock is entrained by light and how the regulation of clock gene expression by light has evolved in vertebrates.
EEG oscillations entrain their phase to high-level features of speech sound.
Zoefel, Benedikt; VanRullen, Rufin
2016-01-01
Phase entrainment of neural oscillations, the brain's adjustment to rhythmic stimulation, is a central component in recent theories of speech comprehension: the alignment between brain oscillations and speech sound improves speech intelligibility. However, phase entrainment to everyday speech sound could also be explained by oscillations passively following the low-level periodicities (e.g., in sound amplitude and spectral content) of auditory stimulation-and not by an adjustment to the speech rhythm per se. Recently, using novel speech/noise mixture stimuli, we have shown that behavioral performance can entrain to speech sound even when high-level features (including phonetic information) are not accompanied by fluctuations in sound amplitude and spectral content. In the present study, we report that neural phase entrainment might underlie our behavioral findings. We observed phase-locking between electroencephalogram (EEG) and speech sound in response not only to original (unprocessed) speech but also to our constructed "high-level" speech/noise mixture stimuli. Phase entrainment to original speech and speech/noise sound did not differ in the degree of entrainment, but rather in the actual phase difference between EEG signal and sound. Phase entrainment was not abolished when speech/noise stimuli were presented in reverse (which disrupts semantic processing), indicating that acoustic (rather than linguistic) high-level features play a major role in the observed neural entrainment. Our results provide further evidence for phase entrainment as a potential mechanism underlying speech processing and segmentation, and for the involvement of high-level processes in the adjustment to the rhythm of speech. Copyright © 2015 Elsevier Inc. All rights reserved.
Impact of Air Entraining Method on the Resistance of Concrete to Internal Cracking
NASA Astrophysics Data System (ADS)
Wawrzeńczyk, Jerzy; Molendowska, Agnieszka
2017-10-01
This paper presents the test results of air entrained concrete mixtures made at a constant W/C ratio of 0.44. Three different air entraining agents were used: polymer microspheres, glass microspheres and a conventional air entraining admixture. The aim of this study was to compare the effectiveness of the air entraining methods. Concrete mixture tests were performed for consistency (slump test), density and, in the case of AEA series, air content by pressure method. Hardened concrete tests were performed for compressive strength, water absorption, resistance to chloride ingress, and freeze-thaw durability - resistance to internal cracking tests were conducted in accordance with PN-88/B-06250 on cube specimens and with the modified ASTM C666 A test method on beam specimens; porosity characteristics (A, A300, \\bar L) were determined to PN-EN 480-11:1998. No significant mass and length changes were recorded for the concrete air entrained with the conventional methods or with polymer microspheres. The results indicate that polymer microspheres are a very good alternative to traditional air entraining methods for concrete, providing effective air entrainment and protection from freezing and thawing. The glass microsphere-based concretes showed insufficient freeze-thaw resistance. The test results indicate that both the conventional methods (AEA) and the air entrainment by polymer microspheres are effective air entraining methods. It has to be noted that in the case of the use of polymer microspheres, a comparable value of \\bar L and a very good freeze-thaw resistance can be achieved at a noticeably lower air and micropore contents and at lower strength loss.
Speech Rate Entrainment in Children and Adults With and Without Autism Spectrum Disorder.
Wynn, Camille J; Borrie, Stephanie A; Sellers, Tyra P
2018-05-03
Conversational entrainment, a phenomenon whereby people modify their behaviors to match their communication partner, has been evidenced as critical to successful conversation. It is plausible that deficits in entrainment contribute to the conversational breakdowns and social difficulties exhibited by people with autism spectrum disorder (ASD). This study examined speech rate entrainment in children and adult populations with and without ASD. Sixty participants including typically developing children, children with ASD, typically developed adults, and adults with ASD participated in a quasi-conversational paradigm with a pseudoconfederate. The confederate's speech rate was digitally manipulated to create slow and fast speech rate conditions. Typically developed adults entrained their speech rate in the quasi-conversational paradigm, using a faster rate during the fast speech rate conditions and a slower rate during the slow speech rate conditions. This entrainment pattern was not evident in adults with ASD or in children populations. Findings suggest that speech rate entrainment is a developmentally acquired skill and offers preliminary evidence of speech rate entrainment deficits in adults with ASD. Impairments in this area may contribute to the conversational breakdowns and social difficulties experienced by this population. Future work is needed to advance this area of inquiry.
2003-08-18
KENNEDY SPACE CENTER, FLA. - Researchers conduct underwater acoustic research in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.
Rhythmic entrainment as a musical affect induction mechanism.
J Trost, W; Labbé, C; Grandjean, D
2017-02-01
One especially important feature of metrical music is that it contains periodicities that listeners' bodily rhythms can adapt to. Recent psychological frameworks have introduced the notion of rhythmic entrainment, among other mechanisms, as an emotion induction principle. In this review paper, we discuss rhythmic entrainment as an affect induction mechanism by differentiating four levels of entrainment in humans-perceptual, autonomic physiological, motor, and social-all of which could contribute to a subjective feeling component. We review the theoretical and empirical literature on rhythmic entrainment to music that supports the existence of these different levels of entrainment by describing the phenomena and characterizing the associated underlying brain processes. The goal of this review is to present the theoretical implications and empirical findings about rhythmic entrainment as an important principle at the basis of affect induction via music, since it rests upon the temporal dimension of music, which is a specificity of music as an affective stimulus. Copyright © 2017 Elsevier Ltd. All rights reserved.
The ecology of entrainment: Foundations of coordinated rhythmic movement.
Phillips-Silver, Jessica; Aktipis, C Athena; Bryant, Gregory A
2010-09-01
Entrainment has been studied in a variety of contexts including music perception, dance, verbal communication and motor coordination more generally. Here we seek to provide a unifying framework that incorporates the key aspects of entrainment as it has been studied in these varying domains. We propose that there are a number of types of entrainment that build upon pre-existing adaptations that allow organisms to perceive stimuli as rhythmic, to produce periodic stimuli, and to integrate the two using sensory feedback. We suggest that social entrainment is a special case of spatiotemporal coordination where the rhythmic signal originates from another individual. We use this framework to understand the function and evolutionary basis for coordinated rhythmic movement and to explore questions about the nature of entrainment in music and dance. The framework of entrainment presented here has a number of implications for the vocal learning hypothesis and other proposals for the evolution of coordinated rhythmic behavior across an array of species.
The ecology of entrainment: Foundations of coordinated rhythmic movement
Phillips-Silver, Jessica; Aktipis, C. Athena; Bryant, Gregory A.
2011-01-01
Entrainment has been studied in a variety of contexts including music perception, dance, verbal communication and motor coordination more generally. Here we seek to provide a unifying framework that incorporates the key aspects of entrainment as it has been studied in these varying domains. We propose that there are a number of types of entrainment that build upon pre-existing adaptations that allow organisms to perceive stimuli as rhythmic, to produce periodic stimuli, and to integrate the two using sensory feedback. We suggest that social entrainment is a special case of spatiotemporal coordination where the rhythmic signal originates from another individual. We use this framework to understand the function and evolutionary basis for coordinated rhythmic movement and to explore questions about the nature of entrainment in music and dance. The framework of entrainment presented here has a number of implications for the vocal learning hypothesis and other proposals for the evolution of coordinated rhythmic behavior across an array of species. PMID:21776183
Henry, Molly J.; Herrmann, Björn; Kunke, Dunja; Obleser, Jonas
2017-01-01
Healthy aging is accompanied by listening difficulties, including decreased speech comprehension, that stem from an ill-understood combination of sensory and cognitive changes. Here, we use electroencephalography to demonstrate that auditory neural oscillations of older adults entrain less firmly and less flexibly to speech-paced (∼3 Hz) rhythms than younger adults’ during attentive listening. These neural entrainment effects are distinct in magnitude and origin from the neural response to sound per se. Non-entrained parieto-occipital alpha (8–12 Hz) oscillations are enhanced in young adults, but suppressed in older participants, during attentive listening. Entrained neural phase and task-induced alpha amplitude exert opposite, complementary effects on listening performance: higher alpha amplitude is associated with reduced entrainment-driven behavioural performance modulation. Thus, alpha amplitude as a task-driven, neuro-modulatory signal can counteract the behavioural corollaries of neural entrainment. Balancing these two neural strategies may present new paths for intervention in age-related listening difficulties. PMID:28654081
An avenue of eddies: Quantifying the biophysical properties of mesoscale eddies in the Tasman Sea
NASA Astrophysics Data System (ADS)
Everett, J. D.; Baird, M. E.; Oke, P. R.; Suthers, I. M.
2012-08-01
The Tasman Sea is unique - characterised by a strong seasonal western boundary current that breaks down into a complicated field of mesoscale eddies almost immediately after separating from the coast. Through a 16-year analysis of Tasman Sea eddies, we identify a region along the southeast Australian coast which we name ‘Eddy Avenue’ where eddies have higher sea level anomalies, faster rotation and greater sea surface temperature and chlorophyll a anomalies. The density of cyclonic and anticyclonic eddies within Eddy Avenue is 23% and 16% higher respectively than the broader Tasman Sea. We find that Eddy Avenue cyclonic and anticyclonic eddies have more strongly differentiated biological properties than those of the broader Tasman Sea, as a result of larger anticyclonic eddies formed from Coral Sea water depressing chl. a concentrations, and for coastal cyclonic eddies due to the entrainment of nutrient-rich shelf waters. Cyclonic eddies within Eddy Avenue have almost double the chlorophyll a (0.35 mg m-3) of anticyclonic eddies (0.18 mg m-3). The average chlorophyll a concentration for cyclonic eddies is 16% higher in Eddy Avenue and 28% lower for anticyclonic eddies when compared to the Tasman Sea. With a strengthening East Australian Current, the propagation of these eddies will have significant implications for heat transport and the entrainment and connectivity of plankton and larval fish populations.
Estimating Bulk Entrainment With Unaggregated and Aggregated Convection
NASA Astrophysics Data System (ADS)
Becker, Tobias; Bretherton, Christopher S.; Hohenegger, Cathy; Stevens, Bjorn
2018-01-01
To investigate how entrainment is influenced by convective organization, we use the ICON (ICOsahedral Nonhydrostatic) model in a radiative-convective equilibrium framework, with a 1 km spatial grid mesh covering a 600 by 520 km2 domain. We analyze two simulations, with unaggregated and aggregated convection, and find that, in the lower free troposphere, the bulk entrainment rate increases when convection aggregates. The increase of entrainment rate with aggregation is caused by a strong increase of turbulence in the close environment of updrafts, masking other effects like the increase of updraft size and of static stability with aggregation. Even though entrainment rate increases with aggregation, updraft buoyancy reduction through entrainment decreases because aggregated updrafts are protected by a moist shell. Parameterizations that wish to represent mesoscale convective organization would need to model this moist shell.
A New Approach for Estimating Entrainment Rate in Cumulus Clouds
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lu C.; Liu, Y.; Yum, S. S.
2012-02-16
A new approach is presented to estimate entrainment rate in cumulus clouds. The new approach is directly derived from the definition of fractional entrainment rate and relates it to mixing fraction and the height above cloud base. The results derived from the new approach compare favorably with those obtained with a commonly used approach, and have smaller uncertainty. This new approach has several advantages: it eliminates the need for in-cloud measurements of temperature and water vapor content, which are often problematic in current aircraft observations; it has the potential for straightforwardly connecting the estimation of entrainment rate and the microphysicalmore » effects of entrainment-mixing processes; it also has the potential for developing a remote sensing technique to infer entrainment rate.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerstein, Alan R.; Sayler, Bentley J.; Wunsch, Scott Edward
2010-11-01
Numerical simulations using the One-Dimensional-Turbulence model are compared to water-tank measurements [B. J. Sayler and R. E. Breidenthal, J. Geophys. Res. 103 (D8), 8827 (1998)] emulating convection and entrainment in stratiform clouds driven by cloud-top cooling. Measured dependences of the entrainment rate on Richardson number, molecular transport coefficients, and other experimental parameters are reproduced. Additional parameter variations suggest more complicated dependences of the entrainment rate than previously anticipated. A simple algebraic model indicates the ways in which laboratory and cloud entrainment behaviors might be similar and different.
NASA Technical Reports Server (NTRS)
Palm, Stephen P.; Schwemmer, Geary K.; Vandemark, Doug; Evans, Keith; Miller, David O.; Demoz, Belay B.; Starr, David OC. (Technical Monitor)
2001-01-01
A new technique combining active and passive remote sensing instruments for the estimation of surface latent heat flux over the ocean is presented. This synergistic method utilizes aerosol lidar backscatter data, multi-channel infrared radiometer data, and microwave scatterometer data acquired onboard the NASA P-313 research aircraft during an extended field campaign over the Atlantic ocean in support of the Lidar In-space Technology Experiment (LITE) in September of 1994. The 10 meter wind speed derived from scatterometers and lidar-radiometer inferred near-surface moisture are used to obtain an estimate of the surface flux of moisture via a bulk aerodynamic formula. The results are compared with the Special Sensor Microwave Imager (SSM/I) daily average latent heat flux and show reasonable agreement. However, the SSM/I values are biased low by about 15 W/sq m. In addition, the Marine Atmospheric Boundary Layer (MABL) height, entrainment zone thickness and integrated lidar backscatter intensity are computed from the lidar data and compared with the magnitude of the surface fluxes. The results show that the surface latent heat flux is most strongly correlated with entrainment zone depth, MABL height and the integrated MABL lidar backscatter, with corresponding correlation coefficients of 0.39, 0.43 and 0.71, respectively.
NASA Technical Reports Server (NTRS)
Palm, Stephen P.; Miller, David O.; Schwemmer, Geary
2000-01-01
A new technique combining active and passive remote sensing instruments for the estimation of surface latent heat flux over the ocean is presented. This synergistic method uses aerosol lidar backscatter data, multi-channel infrared radiometer data and microwave scatterometer data acquired onboard the NASA P-3B research aircraft during an extended field campaign over the Atlantic ocean in support of the Lidar In-space Technology Experiment (LITE) in September of 1994. The 10 meter wind speed derived from the scatterometers and the lidar-radiometer inferred near-surface moisture are used to obtain an estimate of the surface flux of moisture via bulk aerodynamic formulae. The results are compared with the Special Sensor Microwave Imager (SSM/I) daily average latent heat flux and show reasonable agreement with an rms error and bias of about 50 and 25 W per square meters, respectively. In addition, the MABL height, entrainment zone thickness and integrated lidar backscatter intensity are computed from the lidar data and compared with the magnitude of the surface fluxes. The results show that the surface latent heat flux is most strongly correlated with entrainment zone top, bottom and the integrated MABL lidar backscatter, with corresponding correlation coefficients of 0.62, 0.67 and 0.61, respectively.
Role of head of turbulent 3-D density currents in mixing during slumping regime
NASA Astrophysics Data System (ADS)
Bhaganagar, Kiran
2017-02-01
A fundamental study was conducted to shed light on entrainment and mixing in buoyancy-driven Boussinesq density currents. Large-eddy simulation was performed on lock-exchange (LE) release density currents—an idealized test bed to generate density currents. As dense fluid was released over a sloping surface into an ambient lighter fluid, the dense fluid slumps to the bottom and forms a characteristic head of the current. The dynamics of the head dictated the mixing processes in LE currents. The key contribution of this study is to resolve an ongoing debate on mixing: We demonstrate that substantial mixing occurs in the early stages of evolution in an LE experiment and that entrainment is highly inhomogeneous and unsteady during the slumping regime. Guided by the flow physics, entrainment is calculated using two different but related perspectives. In the first approach, the entrainment parameter (E) is defined as the fraction of ambient fluid displaced by the head that entrains into the current. It is an indicator of the efficiency in which ambient fluid is displaced into the current and it serves as an important metric to compare the entrainment of dense currents over different types of surfaces, e.g., roughness configuration. In the second approach, E measures the net entrainment in the current at an instantaneous time t over the length of the current. Net entrainment coefficient is a metric to compare the effects of flow dynamical conditions, i.e., lock-aspect ratio that dictates the fraction of buoyancy entering the head, and also the effect of the sloping angle. Together, the entrainment coefficient and the net entrainment coefficient provide an insight into the entrainment process. The "active" head of the current acts as an engine that mixes the ambient fluid with the existing dense fluid, the 3-D lobes and clefts on the frontal end of the current causes recirculation of the ambient fluid into the current, and Kelvin-Helmholtz rolls are the mixers that entrain the ambience into the current. Buoyancy and shear production occur at the interface in the head region of the current, and transport of turbulence kinetic energy (TKE) by Reynolds stresses results in high TKE.
NASA Astrophysics Data System (ADS)
Knowles, Richard Thomas
This exploratory study compared the efficacy of a novel brainwave electromagnetic (EM) entrainment technology against a more conventional technology utilizing the photic-driving technique. Both experimental conditions were also compared with a 7-minute control session that took place immediately before each stimulation session. The Schumann Resonance (SR) frequency was selected as the delivery signal and was chosen because of previous findings suggesting that entrainment to this frequency can often produce transpersonal if not paranormal, experiences in the entrainee, which sometimes resemble remote viewing or out-of-body experiences. A pilot study determined which of two novel entrainment modalities (a copper coil or a 16-solenoid headset) worked most effectively for use with the rest of the study. In the main study, an artificial SR signal at 7.8Hz was delivered during the photic-driving sessions, but a recording of the real-time SR was used to deliver the entrainment signal during sessions devoted to the electromagnetic entrainment modality. Sixteen participants were recruited from the local area, and EEG recordings were acquired via a 32-channel Deymed electroencephalography system. Comparative analyses were performed between the control and experimental portions of each session to assess for efficacy of the novel entrainment modality used, and, in the main study, between the electromagnetic and photic-driving sessions, to assess for differential entrainment efficacy between these groups. A follow-up study was additionally performed primarily to determine whether responders could replicate their entrainment effect from the main study. Results showed that EM entrainment appeared to be possible but is not nearly as robust or reliable as photic driving. Additionally, no profound transpersonal or paranormal experiences were elicited during the course of the study, and, when asked, participants were not able to determine with any degree of success, when the stimulation coil was turned on or off.
Circadian adaptations to meal timing: neuroendocrine mechanisms
Patton, Danica F.; Mistlberger, Ralph E.
2013-01-01
Circadian rhythms of behavior and physiology are generated by central and peripheral circadian oscillators entrained by periodic environmental or physiological stimuli. A master circadian pacemaker in the hypothalamic suprachiasmatic nucleus (SCN) is directly entrained by daily light-dark (LD) cycles, and coordinates the timing of other oscillators by direct and indirect neural, hormonal and behavioral outputs. The daily rhythm of food intake provides stimuli that entrain most peripheral and central oscillators, some of which can drive a daily rhythm of food anticipatory activity if food is restricted to one daily mealtime. The location of food-entrainable oscillators (FEOs) that drive food anticipatory rhythms, and the food-related stimuli that entrain these oscillators, remain to be clarified. Here, we critically examine the role of peripheral metabolic hormones as potential internal entrainment stimuli or outputs for FEOs controlling food anticipatory rhythms in rats and mice. Hormones for which data are available include corticosterone, ghrelin, leptin, insulin, glucagon, and glucagon-like peptide 1. All of these hormones exhibit daily rhythms of synthesis and secretion that are synchronized by meal timing. There is some evidence that ghrelin and leptin modulate the expression of food anticipatory rhythms, but none of the hormones examined so far are necessary for entrainment. Ghrelin and leptin likely modulate food-entrained rhythms by actions in hypothalamic circuits utilizing melanocortin and orexin signaling, although again food-entrained behavioral rhythms can persist in lesion and gene knockout models in which these systems are disabled. Actions of these hormones on circadian oscillators in central reward circuits remain to be evaluated. Food-entrained activity rhythms are likely mediated by a distributed system of circadian oscillators sensitive to multiple feeding related inputs. Metabolic hormones appear to play a modulatory role within this system. PMID:24133410
Elementary theory of bed-sediment entrainment by debris flows and avalanches
Iverson, Richard M.
2012-01-01
Analyses of mass and momentum exchange between a debris flow or avalanche and an underlying sediment layer aid interpretations and predictions of bed-sediment entrainment rates. A preliminary analysis assesses the behavior of a Coulomb slide block that entrains bed material as it descends a uniform slope. The analysis demonstrates that the block's momentum can grow unstably, even in the presence of limited entrainment efficiency. A more-detailed, depth-integrated continuum analysis of interacting, deformable bodies identifies mechanical controls on entrainment efficiency, and shows that entrainment rates satisfy a jump condition that involves shear-traction and velocity discontinuities at the flow-bed boundary. Explicit predictions of the entrainment rateEresult from making reasonable assumptions about flow velocity profiles and boundary shear tractions. For Coulomb-friction tractions, predicted entrainment rates are sensitive to pore fluid pressures that develop in bed sediment as it is overridden. In the simplest scenario the bed sediment liquefies completely, and the entrainment-rate equation reduces toE = 2μ1gh1 cos θ(1 − λ1)/ , where θ is the slope angle, μ1 is the flow's Coulomb friction coefficient, h1 is its thickness, λ1 is its degree of liquefaction, and is its depth-averaged velocity. For values ofλ1ranging from 0.5 to 0.8, this equation predicts entrainment rates consistent with rates of 0.05 to 0.1 m/s measured in large-scale debris-flow experiments in which wet sediment beds liquefied almost completely. The propensity for bed liquefaction depends on several factors, including sediment porosity, permeability, and thickness, and rates of compression and shear deformation that occur when beds are overridden.
Pathik, Bhupesh; Lee, Geoffrey; Nalliah, Chrishan; Joseph, Stephen; Morton, Joseph B; Sparks, Paul B; Sanders, Prashanthan; Kistler, Peter M; Kalman, Jonathan M
2017-10-01
With the recent advent of high-density (HD) 3-dimensional (3D) mapping, the utility of entrainment is uncertain. However, the limitations of visual representation and interpretation of these high-resolution 3D maps are unclear. The purpose of this study was to determine the strengths and limitations of both HD 3D mapping and entrainment mapping during mapping of right atrial macroreentry. Fifteen patients were studied. The number and type of circuits accounting for ≥90% of the tachycardia cycle length using HD 3D mapping were verified using systematic entrainment mapping. Entrainment sites with an unexpectedly long postpacing interval despite proximity to the active circuit were evaluated. Based on HD 3D mapping, 27 circuits were observed: 12 peritricuspid, 2 upper loop reentry, 10 lower loop reentry, and 3 lateral wall circuits. With entrainment, 17 of the 27 circuits were active: all 12 peritricuspid and 2 upper loop reentry. However, lower loop reentry was confirmed in only 3 of 10, and none of the 3 lateral wall circuits were present. Mean percentage of tachycardia cycle length covered by active circuits was 98% ± 1% vs 97% ± 2% for passive circuits (P = .09). None of the 345 entrainment runs terminated tachycardia or changed tachycardia mechanism. In 8 of 15 patients, 13 examples of unexpectedly long postpacing interval were observed at entrainment sites located distal to localized zones of slow conduction seen on HD 3D mapping. Using HD 3D mapping, "visual reentry" may be due to passive circuitous propagation rather than a critical reentrant circuit. HD 3D mapping provides new insights into regional conduction and helps explain unusual entrainment phenomena. Copyright © 2017 Heart Rhythm Society. Published by Elsevier Inc. All rights reserved.
Visual cortex entrains to sign language.
Brookshire, Geoffrey; Lu, Jenny; Nusbaum, Howard C; Goldin-Meadow, Susan; Casasanto, Daniel
2017-06-13
Despite immense variability across languages, people can learn to understand any human language, spoken or signed. What neural mechanisms allow people to comprehend language across sensory modalities? When people listen to speech, electrophysiological oscillations in auditory cortex entrain to slow ([Formula: see text]8 Hz) fluctuations in the acoustic envelope. Entrainment to the speech envelope may reflect mechanisms specialized for auditory perception. Alternatively, flexible entrainment may be a general-purpose cortical mechanism that optimizes sensitivity to rhythmic information regardless of modality. Here, we test these proposals by examining cortical coherence to visual information in sign language. First, we develop a metric to quantify visual change over time. We find quasiperiodic fluctuations in sign language, characterized by lower frequencies than fluctuations in speech. Next, we test for entrainment of neural oscillations to visual change in sign language, using electroencephalography (EEG) in fluent speakers of American Sign Language (ASL) as they watch videos in ASL. We find significant cortical entrainment to visual oscillations in sign language <5 Hz, peaking at [Formula: see text]1 Hz. Coherence to sign is strongest over occipital and parietal cortex, in contrast to speech, where coherence is strongest over the auditory cortex. Nonsigners also show coherence to sign language, but entrainment at frontal sites is reduced relative to fluent signers. These results demonstrate that flexible cortical entrainment to language does not depend on neural processes that are specific to auditory speech perception. Low-frequency oscillatory entrainment may reflect a general cortical mechanism that maximizes sensitivity to informational peaks in time-varying signals.
Engineering biomimetic hair bundle sensors for underwater sensing applications
NASA Astrophysics Data System (ADS)
Kottapalli, Ajay Giri Prakash; Asadnia, Mohsen; Karavitaki, K. Domenica; Warkiani, Majid Ebrahimi; Miao, Jianmin; Corey, David P.; Triantafyllou, Michael
2018-05-01
We present the fabrication of an artificial MEMS hair bundle sensor designed to approximate the structural and functional principles of the flow-sensing bundles found in fish neuromast hair cells. The sensor consists of micro-pillars of graded height connected with piezoelectric nanofiber "tip-links" and encapsulated by a hydrogel cupula-like structure. Fluid drag force actuates the hydrogel cupula and deflects the micro-pillar bundle, stretching the nanofibers and generating electric charges. These biomimetic sensors achieve an ultrahigh sensitivity of 0.286 mV/(mm/s) and an extremely low threshold detection limit of 8.24 µm/s. A complete version of this paper has been published [1].
Tateda, Yutaka; Tsumune, Daisuke; Tsubono, Takaki; Misumi, Kazuhiro; Yamada, Masatoshi; Kanda, Jota; Ishimaru, Takashi
2016-01-01
Radiocesium ((134)Cs and (137)Cs) released into the Fukushima coastal environment was transferred to marine biota inhabiting the Pacific Ocean coastal waters of eastern Japan. Though the levels in most of the edible marine species decreased overtime, radiocesium concentrations in some fishes were still remained higher than the Japanese regulatory limit for seafood products. In this study, a dynamic food chain transfer model was applied to reconstruct (137)Cs levels in olive flounder by adopting the radiocesium concentrations in small demersal fish which constitute an important fraction of the diet of the olive flounder particularly inhabiting area near Fukushima. In addition, (137)Cs levels in slime flounder were also simulated using reported radiocesium concentrations in some prey organisms. The simulated results from Onahama on the southern border of the Fukushima coastline, and at Choshi the southernmost point where the contaminated water mass was transported by the Oyashio current, were assessed in order to identify what can be explained from present information, and what remains to be clarified three years after the Fukushima Dai-ichi nuclear power plant (1FNPP) accident. As a result, the observed (137)Cs concentrations in planktivorous fish and their predator fish could be explained by the theoretically-derived simulated levels. On the other hand, the slow (137)Cs depuration in slime flounder can be attributed to uptake from unknown sources for which the uptake fluxes were of a similar magnitude as the excretion fluxes. Since the reported (137)Cs concentrations in benthic invertebrates off Onahama were higher than the simulated values, radiocesium transfer from these benthic detritivorous invertebrates to slime flounder via ingestion was suggested as a cause for the observed slow depuration of (137)Cs in demersal fish off southern Fukushima. Furthermore, the slower depuration in the demersal fish likely required an additional source of (137)Cs, i.e. contaminated detritus or sediment which was entrained with the prey during the active sediment feeding of this fish species. Copyright © 2015 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lewis, Mike; Polacek, Matt; Knuttgen, Kamia
2002-11-01
The Washington Department of Fish and Wildlife implemented the Banks Lake Fishery Evaluation Project (BLFEP) in September 2001 with funds from the Bonneville Power Administration. The first year of the BLFEP was used to gather historic information, establish methods and protocols, collect limnology data, and conduct the first seasonal fish surveys. Water quality parameters were collected monthly from February to May and bi-monthly from June to August. Banks Lake water temperatures began to increase in April and stratification was apparent by June at all 3 limnology collection sites. By late August, the thermocline had dropped to nearly 20 m deep,more » with 19-20 C temperatures throughout the epilimnion. Dissolved oxygen levels were generally above 10 mg/L until mid summer when dissolved oxygen dropped near or below 5 mg/L below 20-m deep. Secchi depths ranged from 3-10 m and varied by location and date. Nearshore and offshore fish surveys were conducted in May and July using boat electrofishing, fyke net, gill net, and hydroacoustic surveys. Smallmouth bass Micropterous dolomieui (24%) and lake whitefish Coregonus clupeaformis (20%) dominated the nearshore species composition in May; however, by July yellow perch Perca flavescens (26%) were the second most common species to smallmouth bass (30%). Lake whitefish dominated the offshore catch during May (72%) and July (90%). The May hydroacoustic survey revealed highest densities of fish in the upper 1/3 of the water column in the mid- to northern sections of the reservoir near Steamboat Rock. In the future, data from seasonal surveys will be used to identify potential factors that may limit the production and harvest of kokanee, rainbow trout, and various spiny-rayed fishes in Banks Lake. The limiting factors that will be examined consist of: abiotic factors including water temperature, dissolved oxygen levels, habitat, exploitation and entrainment; and biotic factors including food limitation and predation. The BLFEP will also evaluate the success of several rearing and stocking strategies for hatchery kokanee in Banks Lake.« less
Heat integrated ethanol dehydration flowsheets
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hutahaean, L.S.; Shen, W.H.; Brunt, V. Van
1995-04-01
zA theoretical evaluation of heat-integrated heterogeneous-azeotropic ethanol-water distillation flowsheets is presented. Simulations of two column flowsheets using several different hydrocarbon entrainers reveal a region of potential heat integration and substantial reduction in operating energy. In this paper, methods for comparing hydrocarbon entrainers are shown. Two aspects of entrainers are related to operating and capital costs. The binary azeotropic composition of the entrainer-ethanol mixture is related to the energy requirements of the flowsheet. A temperature difference in the azeotrophic column is related to the size of the column and overall process staging requirements. Although the hydrophobicity of an entrainer is essentialmore » for specification of staging in the dehydration column, no substantial increase in operating energy results from an entrainer that has a higher water content. Likewise, liquid-liquid equilibria between several entrainer-ethanol-water mixtures have no substantial effect on either staging or operation. Rather, increasing the alcohol content of the entrainer-ethanol azeotrope limits its recovery in the dehydration column, and increases the recycle and reflux streams. These effects both contribute to increasing the separation energy requirements and reducing the region of potential heat integration. A cost comparison with a multieffect extractive distillation flowsheet reveals that the costs are comparable; however, the extractive distillation flowsheet is more cost effective as operating costs increase.« less
Development of an Implantable Fish Spawning Sensor Tag
2013-09-24
Manatee Hatchery Facility, Port Manatee , Florida) using a Millar Instruments pressure catheter inserted a fixed distance (15cm) into the ovary before and...red drum aquaculture facility in Port Manatee , Florida (or similar aquaculture facility where spawning fishes are kept). This facility maintains a...at the Port Manatee hatchery and phase three tests on goliath grouper in the field. RESULTS *Please refer to other sections for more details and
Entrainment to an auditory signal: Is attention involved?
Kunert, Richard; Jongman, Suzanne R
2017-01-01
Many natural auditory signals, including music and language, change periodically. The effect of such auditory rhythms on the brain is unclear however. One widely held view, dynamic attending theory, proposes that the attentional system entrains to the rhythm and increases attention at moments of rhythmic salience. In support, 2 experiments reported here show reduced response times to visual letter strings shown at auditory rhythm peaks, compared with rhythm troughs. However, we argue that an account invoking the entrainment of general attention should further predict rhythm entrainment to also influence memory for visual stimuli. In 2 pseudoword memory experiments we find evidence against this prediction. Whether a pseudoword is shown during an auditory rhythm peak or not is irrelevant for its later recognition memory in silence. Other attention manipulations, dividing attention and focusing attention, did result in a memory effect. This raises doubts about the suggested attentional nature of rhythm entrainment. We interpret our findings as support for auditory rhythm perception being based on auditory-motor entrainment, not general attention entrainment. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Wu, Zan; Wadekar, Vishwas; Wang, Chenglong; Sunden, Bengt
2018-01-01
This study aims to reveal the effects of liquid entrainment, initial entrained fraction and tube diameter on liquid film dryout in vertical upward annular flow for flow boiling. Entrainment and deposition rates of droplets were included in mass conservation equations to estimate the local liquid film mass flux in annular flow, and the critical vapor quality at dryout conditions. Different entrainment rate correlations were evaluated using flow boiling data of water and organic liquids including n-pentane, iso-octane and R134a. Effect of the initial entrained fraction (IEF) at the churn-to-annular flow transition was also investigated. A transitional Boiling number was proposed to separate the IEF-sensitive region at high Boiling numbers and the IEF-insensitive region at low Boiling numbers. Besides, the diameter effect on dryout vapor quality was studied. The dryout vapor quality increases with decreasing tube diameter. It needs to be pointed out that the dryout characteristics of submillimeter channels might be different because of different mechanisms of dryout, i.e., drying of liquid film underneath long vapor slugs and flow boiling instabilities.
The role of the endocrine system in feeding-induced tissue-specific circadian entrainment.
Sato, Miho; Murakami, Mariko; Node, Koichi; Matsumura, Ritsuko; Akashi, Makoto
2014-07-24
The circadian clock is entrained to environmental cycles by external cue-mediated phase adjustment. Although the light input pathway has been well defined, the mechanism of feeding-induced phase resetting remains unclear. The tissue-specific sensitivity of peripheral entrainment to feeding suggests the involvement of multiple pathways, including humoral and neuronal signals. Previous in vitro studies with cultured cells indicate that endocrine factors may function as entrainment cues for peripheral clocks. However, blood-borne factors that are well characterized in actual feeding-induced resetting have yet to be identified. Here, we report that insulin may be involved in feeding-induced tissue-type-dependent entrainment in vivo. In ex vivo culture experiments, insulin-induced phase shift in peripheral clocks was dependent on tissue type, which was consistent with tissue-specific insulin sensitivity, and peripheral entrainment in insulin-sensitive tissues involved PI3K- and MAPK-mediated signaling pathways. These results suggest that insulin may be an immediate early factor in feeding-mediated tissue-specific entrainment. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.
Chen, Er-Xia; Fu, Hong-Ru; Lin, Rui; Tan, Yan-Xi; Zhang, Jian
2014-12-24
A cobalt imidazolate (im) framework material [Co(im)2]n was employed to use as a trimethylamine (TMA) gas sensor and the [Co(im)2]n sensor can be easily fabricated by using Ag-Pd interdigitated electrodes. Gas sensing measurement indicated that the [Co(im)2]n sensor shows excellent selectivity, high gas response and a low detection limit level of 2 ppm to TMA at 75 °C. The good selectivity and high response to TMA of the sensor based on [Co(im)2]n may be attributed to the weak interaction between the TMA molecules and the [Co(im)2]n framework. That may provide an ideal candidate for detecting freshness of fish and seafood.
NASA Astrophysics Data System (ADS)
Benage, M. C.; Dufek, J.; Mothes, P. A.
2016-07-01
The entrainment of air into pyroclastic density currents (PDCs) impacts the dynamics and thermal history of these highly mobile currents. However, direct measurement of entrainment in PDCs is hampered due to hazardous conditions and opaqueness of these flows. We combine three-dimensional multiphase Eulerian-Eulerian-Lagrangian calculations with proxies of thermal conditions preserved in deposits to quantify air entrainment in PDCs at Tungurahua volcano, Ecuador. We conclude that small-volume PDCs develop a particle concentration gradient that results in disparate thermal characteristics for the concentrated bed load (>600 to ~800 K) and the overlying dilute suspended load (~300-600 K). The dilute suspended load has effective entrainment coefficients 2-3 times larger than the bed load. This investigation reveals a dichotomy in entrainment and thermal history between two regions in the current and provides a mechanism to interpret the depositional thermal characteristics of small-volume but frequently occurring PDCs.
Experimental study of near-field entrainment of moderately overpressured jets
Solovitz, S.A.; Mastin, L.G.; Saffaraval, F.
2011-01-01
Particle image velocimetry (PIV) experiments have been conducted to study the velocity flow fields in the developing flow region of high-speed jets. These velocity distributions were examined to determine the entrained mass flow over a range of geometric and flow conditions, including overpressured cases up to an overpressure ratio of 2.83. In the region near the jet exit, all measured flows exhibited the same entrainment up until the location of the first shock when overpressured. Beyond this location, the entrainment was reduced with increasing overpressure ratio, falling to approximately 60 of the magnitudes seen when subsonic. Since entrainment ratios based on lower speed, subsonic results are typically used in one-dimensional volcanological models of plume development, the current analytical methods will underestimate the likelihood of column collapse. In addition, the concept of the entrainment ratio normalization is examined in detail, as several key assumptions in this methodology do not apply when overpressured.
Biobriefcase aerosol collector
Bell, Perry M [Tracy, CA; Christian, Allen T [Madison, WI; Bailey, Christopher G [Pleasanton, CA; Willis, Ladona [Manteca, CA; Masquelier, Donald A [Tracy, CA; Nasarabadi, Shanavaz L [Livermore, CA
2009-09-22
A system for sampling air and collecting particles entrained in the air that potentially include bioagents. The system comprises providing a receiving surface, directing a liquid to the receiving surface and producing a liquid surface. Collecting samples of the air and directing the samples of air so that the samples of air with particles entrained in the air impact the liquid surface. The particles potentially including bioagents become captured in the liquid. The air with particles entrained in the air impacts the liquid surface with sufficient velocity to entrain the particles into the liquid but cause minor turbulence. The liquid surface has a surface tension and the collector samples the air and directs the air to the liquid surface so that the air with particles entrained in the air impacts the liquid surface with sufficient velocity to entrain the particles into the liquid, but cause minor turbulence on the surface resulting in insignificant evaporation of the liquid.
Freeze-thaw durability of microwave cured air-entrained concrete
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pheeraphan, T.; Leung, C.K.Y.
1997-03-01
The strength development of concrete can be greatly accelerated by curing with microwave energy. Microwave curing can therefore be beneficial to construction operations such as concrete precasting and repair. To provide freeze-thaw durability for infrastructure applications, air entrainment has to be introduced. In this investigation, the freeze-thaw resistance of microwave cured air-entrained concrete is measured, and compared to that of air-entrained concrete under normal curing. Their compressive strength at 14 days and air-void characteristics are also measured and compared. The test results indicate that microwave curing can impair the freeze-thaw durability of high w/c concrete but not for low w/cmore » concrete. Also, under microwave curing, the decrease in strength due to air entrainment becomes more significant. Based on these observations, it is recommended that for microwave cured air-entrained concrete, a low w/c ratio should be employed.« less
A mechanism for crustal recycling on Venus
NASA Technical Reports Server (NTRS)
Lenardic, A.; Kaula, W. M.; Bindschadler, D. L.
1993-01-01
Entrainment of lower crust by convective mantle downflows is proposed as a crustal recycling mechanism on Venus. The mechanism is characterized by thin sheets of crust being pulled into the mantle by viscous flow stresses. Finite element models of crust/mantle interaction are used to explore tectonic conditions under which crustal entrainment may occur. The recycling scenarios suggested by the numerical models are analogous to previously studied problems for which analytic and experimental relationships assessing entrainment rates have been derived. We use these relationships to estimate crustal recycling rates on Venus. Estimated rates are largely determined by (1) strain rate at the crust/mantle interface (higher strain rate leads to greater entrainment); and (2) effective viscosity of the lower crust (viscosity closer to that of mantle lithosphere leads to greater entrainment). Reasonable geologic strain rates and available crustal flow laws suggest entrainment can recycle approximately equal 1 cu km of crust per year under favorable conditions.
Romps, David M.
2016-03-01
Convective entrainment is a process that is poorly represented in existing convective parameterizations. By many estimates, convective entrainment is the leading source of error in global climate models. As a potential remedy, an Eulerian implementation of the Stochastic Parcel Model (SPM) is presented here as a convective parameterization that treats entrainment in a physically realistic and computationally efficient way. Drawing on evidence that convecting clouds comprise air parcels subject to Poisson-process entrainment events, the SPM calculates the deterministic limit of an infinite number of such parcels. For computational efficiency, the SPM groups parcels at each height by their purity, whichmore » is a measure of their total entrainment up to that height. This reduces the calculation of convective fluxes to a sequence of matrix multiplications. The SPM is implemented in a single-column model and compared with a large-eddy simulation of deep convection.« less
2012-03-01
water and ozone across the EIL. The scalar variables from this flight (not shown) suggest significant horizontal variation in the free- troposphere ...near the cloud top where mixing occurs between dry free- troposphere air and moist turbulent air. Although the concept of the entrainment zone is...mixing occurs between dry free- troposphere air and moist turbulent air. Although the concept of the entrainment zone is clear, defining the top and
Neurobiological foundations of neurologic music therapy: rhythmic entrainment and the motor system
Thaut, Michael H.; McIntosh, Gerald C.; Hoemberg, Volker
2015-01-01
Entrainment is defined by a temporal locking process in which one system’s motion or signal frequency entrains the frequency of another system. This process is a universal phenomenon that can be observed in physical (e.g., pendulum clocks) and biological systems (e.g., fire flies). However, entrainment can also be observed between human sensory and motor systems. The function of rhythmic entrainment in rehabilitative training and learning was established for the first time by Thaut and colleagues in several research studies in the early 1990s. It was shown that the inherent periodicity of auditory rhythmic patterns could entrain movement patterns in patients with movement disorders (see for a review: Thaut et al., 1999). Physiological, kinematic, and behavioral movement analysis showed very quickly that entrainment cues not only changed the timing of movement but also improved spatial and force parameters. Mathematical models have shown that anticipatory rhythmic templates as critical time constraints can result in the complete specification of the dynamics of a movement over the entire movement cycle, thereby optimizing motor planning and execution. Furthermore, temporal rhythmic entrainment has been successfully extended into applications in cognitive rehabilitation and speech and language rehabilitation, and thus become one of the major neurological mechanisms linking music and rhythm to brain rehabilitation. These findings provided a scientific basis for the development of neurologic music therapy. PMID:25774137
Neurobiological foundations of neurologic music therapy: rhythmic entrainment and the motor system.
Thaut, Michael H; McIntosh, Gerald C; Hoemberg, Volker
2014-01-01
Entrainment is defined by a temporal locking process in which one system's motion or signal frequency entrains the frequency of another system. This process is a universal phenomenon that can be observed in physical (e.g., pendulum clocks) and biological systems (e.g., fire flies). However, entrainment can also be observed between human sensory and motor systems. The function of rhythmic entrainment in rehabilitative training and learning was established for the first time by Thaut and colleagues in several research studies in the early 1990s. It was shown that the inherent periodicity of auditory rhythmic patterns could entrain movement patterns in patients with movement disorders (see for a review: Thaut et al., 1999). Physiological, kinematic, and behavioral movement analysis showed very quickly that entrainment cues not only changed the timing of movement but also improved spatial and force parameters. Mathematical models have shown that anticipatory rhythmic templates as critical time constraints can result in the complete specification of the dynamics of a movement over the entire movement cycle, thereby optimizing motor planning and execution. Furthermore, temporal rhythmic entrainment has been successfully extended into applications in cognitive rehabilitation and speech and language rehabilitation, and thus become one of the major neurological mechanisms linking music and rhythm to brain rehabilitation. These findings provided a scientific basis for the development of neurologic music therapy.
Predator Foraging in Response to the Mcmurdo Sound Preyscape
NASA Astrophysics Data System (ADS)
Daly, K. L.; Ainley, D. G.; Saenz, B.; Ballard, G.; Kim, S.; Jongsomjit, D.
2016-02-01
Growing recent evidence indicates that the Ross Sea, Antarctica, food web is structured as a `wasp-waist' system, in which krill and fish constitute the restriction. The abundance/availability of these prey appears to be affected by top-down predation, and to have only minimal coupling with phytoplankton/primary productivity processes. We investigated this issue further by quantifying prey abundance, depth and distribution along the McMurdo Sound fast-ice edge, using an ROV equipped with acoustic sensors and fluorescence sensors and a CTD equipped with a fluorometer, at the same time that we bio-logged the foraging behavior of Adélie Penguins from an adjacent colony and logged the abundance of trophically competing cetaceans and seals. Early in the study period, concentrations of seals and emperor penguins coincided with a location at which high abundance of an under-ice dwelling fish occurred; these predators disappeared with reduction in that prey's abundance and/or the arrival of seal/penguin-eating killer whales at the fast ice edge. The diet of Adélie penguins changed from 100% krill to 50% krill-fish upon the arrival of minke and fish-eating killer whales. Penguin diving depth did not change, nor did they lengthen foraging range as has been observed in the past upon cetacean arrival. However, the prevalence of the mid-water dwelling forage fish (silverfish) decreased within the penguins' foraging range. Apparently, given the chance penguins and cetaceans appear to have targeted the high-energy dense fish instead of krill, and as a result changed prey availability. Penguin diving depth was just beneath an intense phytoplankton bloom of markedly reduced visibility. Our study brings added support for a food web in which top-down forcing is as important as primary production, having implications for managing fisheries in the region.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, Robert P.; Neitzel, Duane A.; Amidan, Brett G.
2001-12-01
Laboratory tests were conducted using juvenile chinook salmon Oncorhynchus tshawytscha, brook trout Salvelinus fontinalis, and rainbow trout O. mykiss to determine specific behavior responses to infrasound (< 20 Hz) and flashing strobe lights. The objective of these tests was to determine if juvenile salmonids could be deterred from entrainment at water diversion structures. Caged fish were acclimated in a static test tank and their behavior was recorded using low light cameras. Species-specific behavior was characterized by measuring movements of the fish within the cage and by observing startle and habituation responses. Wild chinook salmon (40-45 mm TL) and hatchery rearedmore » chinook salmon (45-50 mm TL) exhibited avoidance responses when initially exposed to a 10-Hz volume displacement source of infrasound. Rainbow and eastern brook trout (25-100 mm TL) did not respond with avoidance or other behaviors to infrasound. Evidence of habituation to the infrasound source was evident for chinook salmon during repeated exposures. Wild and hatchery chinook displayed a higher proportion of movement during the initial exposures to infrasound when the acclimation period in the test tank was 2-3 h as compared to a 12-15 h acclimation period. A flashing strobe light produced consistent movement in wild chinook salmon (60% of the tests), hatchery reared chinook salmon (50%), and rainbow trout (80%). No measurable responses were observed for brook trout. Results indicate that consistent, repeatable responses can be elicited from some fish using high-intensity strobe lights under a controlled laboratory testing. The species specific behaviors observed in these experiments might be used to predict how fish might react to low-frequency sound and strobe lights in a screening facility.« less
van der Hoop, Julie M; Byron, Margaret L; Ozolina, Karlina; Miller, David L; Johansen, Jacob L; Domenici, Paolo; Steffensen, John F
2018-06-12
Fish swimming energetics are often measured in laboratory environments which attempt to minimize turbulence, though turbulent flows are common in the natural environment. To test whether the swimming energetics and kinematics of shiner perch, Cymatogaster aggregata (a labriform swimmer), were affected by turbulence, two flow conditions were constructed in a swim-tunnel respirometer. A low-turbulence flow was created using a common swim-tunnel respirometry setup with a flow straightener and fine-mesh grid to minimize velocity fluctuations. A high-turbulence flow condition was created by allowing large velocity fluctuations to persist without a flow straightener or fine grid. The two conditions were tested with particle image velocimetry to confirm significantly different turbulence properties throughout a range of mean flow speeds. Oxygen consumption rate of the swimming fish increased with swimming speed and pectoral fin beat frequency in both flow conditions. Higher turbulence also caused a greater positional variability in swimming individuals (versus low-turbulence flow) at medium and high speeds. Surprisingly, fish used less oxygen in high-turbulence compared with low-turbulence flow at medium and high swimming speeds. Simultaneous measurements of swimming kinematics indicated that these reductions in oxygen consumption could not be explained by specific known flow-adaptive behaviours such as Kármán gaiting or entraining. Therefore, fish in high-turbulence flow may take advantage of the high variability in turbulent energy through time. These results suggest that swimming behaviour and energetics measured in the lab in straightened flow, typical of standard swimming respirometers, might differ from that of more turbulent, semi-natural flow conditions. © 2018. Published by The Company of Biologists Ltd.
Performance improvement of IPMC flow sensors with a biologically-inspired cupula structure
NASA Astrophysics Data System (ADS)
Lei, Hong; Sharif, Montassar Aidi; Paley, Derek A.; McHenry, Matthew J.; Tan, Xiaobo
2016-04-01
Ionic polymer-metal composites (IPMCs) have inherent underwater sensing and actuation properties. They can be used as sensors to collect flow information. Inspired by the hair-cell mediated receptor in the lateral line system of fish, the impact of a flexible, cupula-like structure on the performance of IPMC flow sensors is experimentally explored. The fabrication method to create a silicone-capped IPMC sensor is reported. Experiments are conducted to compare the sensing performance of the IPMC flow sensor before and after the PDMS coating under the periodic flow stimulus generated by a dipole source in still water and the laminar flow stimulus generated in a flow tank. Experimental results show that the performance of IPMC flow sensors is significantly improved under the stimulus of both periodic flow and laminar flow by the proposed silicone-capping.
2003-08-18
KENNEDY SPACE CENTER, FLA. - Research team members work with acoustic cable during underwater acoustic research being conducted in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.
2003-08-18
KENNEDY SPACE CENTER, FLA. - Researchers utilize several types of watercraft to conduct underwater acoustic research in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.
Localization of source with unknown amplitude using IPMC sensor arrays
NASA Astrophysics Data System (ADS)
Abdulsadda, Ahmad T.; Zhang, Feitian; Tan, Xiaobo
2011-04-01
The lateral line system, consisting of arrays of neuromasts functioning as flow sensors, is an important sensory organ for fish that enables them to detect predators, locate preys, perform rheotaxis, and coordinate schooling. Creating artificial lateral line systems is of significant interest since it will provide a new sensing mechanism for control and coordination of underwater robots and vehicles. In this paper we propose recursive algorithms for localizing a vibrating sphere, also known as a dipole source, based on measurements from an array of flow sensors. A dipole source is frequently used in the study of biological lateral lines, as a surrogate for underwater motion sources such as a flapping fish fin. We first formulate a nonlinear estimation problem based on an analytical model for the dipole-generated flow field. Two algorithms are presented to estimate both the source location and the vibration amplitude, one based on the least squares method and the other based on the Newton-Raphson method. Simulation results show that both methods deliver comparable performance in source localization. A prototype of artificial lateral line system comprising four ionic polymer-metal composite (IPMC) sensors is built, and experimental results are further presented to demonstrate the effectiveness of IPMC lateral line systems and the proposed estimation algorithms.
NASA Astrophysics Data System (ADS)
Pollock, N. M.; Brand, B. D.; Roche, O.
2016-10-01
Evidence in the deposits from the May 18, 1980 eruption at Mount St Helens demonstrates that pyroclastic density currents (PDCs) produced during the afternoon of the eruption became intermittently erosive. Using detailed componentry and granulometry we constrain the sources for lithic blocks in the deposits and identify deposits from PDCs that became locally erosive. The componentry of the lithics in the fall deposits is used as a proxy for vent erosion and assumed to represent the starting componentry for PDCs prior to entrainment from any other source. We find little evidence in the PDC deposits nearest to the base of the volcano for entrainment from the steep flanks; however, significant evidence indicates that PDCs eroded into the debris avalanche hummocks, suggesting that entrainment is favored as PDCs interact with highly irregular topography. Evidence for locally entrained material downstream from debris avalanche hummocks decreases with height in the outcrop, suggesting that less entrainment occurs as local relief decreases and upstream topography is buried. The prevalence of lithofacies containing locally entrained material at the base of unit contacts and only 10s of meters downstream from debris avalanche hummocks suggests that the majority of entrainment occurs at or near the head of the current. Occasionally, entrained material is located high above unit contacts and deposited well after the initial head of the current is inferred to have passed, indicating that entrainment can occur during periods of non-deposition either from the semi-sustained body of the current or from a pulsating current. Additionally, self-channelization of PDCs, either by levee deposition or scouring into earlier PDC deposits, occurs independently of interaction with topographic obstacles and can affect carrying capacity and runout distance. While we begin to explore the mechanisms and effects of erosion on current dynamics, additional laboratory and numerical studies are necessary to fully understand these processes.
Investigating the Sensitivity of Model Intraseasonal Variability to Minimum Entrainment
NASA Astrophysics Data System (ADS)
Hannah, W. M.; Maloney, E. D.
2008-12-01
Previous studies have shown that using a Relaxed Arakawa-Schubert (RAS) convective parameterization with appropriate convective triggers and assumptions about rain re-evaporation produces realistic intraseasonal variability. RAS represents convection with an ensemble of clouds detraining at different heights, each with different entrainment rate, the highest clouds having the lowest entrainment rates. If tropospheric temperature gradients are weak and boundary layer moist static energy is relatively constant, then by limiting the minimum entrainment rate deep convection is suppressed in the presence of dry tropospheric air. This allows moist static energy to accumulate and be discharged during strong intraseasonal convective events, which is consistent with the discharge/recharge paradigm. This study will examine the sensitivity of intra-seasonal variability to changes in minimum entrainment rate in the NCAR-CAM3 with the RAS scheme. Simulations using several minimum entrainment rate thresholds will be investigated. A frequency-wavenumber analysis will show the improvement of the MJO signal as minimum entrainment rate is increased. The spatial and vertical structure of MJO-like disturbances will be examined, including an analysis of the time evolution of vertical humidity distribution for each simulation. Simulated results will be compared to observed MJO events in NCEP-1 reanalysis and CMAP precipitation.
Evaluation of Fish Passage Sites in the Walla Walla River Basin, 2008
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chamness, Mickie A.
2008-08-29
In 2008, Pacific Northwest National Laboratory evaluated the Hofer Dam fish screen and provided technical assistance at two other fish passage sites as requested by the Bonneville Power Administration, the Walla Walla Watershed Council, or the Confederated Tribes of the Umatilla Indian Reservation. Evaluation of new sites such as Hofer Dam focuses on their design, construction, operation, and maintenance to determine if they effectively provide juvenile salmonids with safe passage through irrigation diversions. There were two requests for technical assistance in 2008. In the first, the Confederated Tribes of the Umatilla Indian Reservation requested an evaluation of the Nursery Bridgemore » fish screens associated with the fish ladder on the east side of the Walla Walla River. One set of brushes that clean the screens was broken for an extended period. Underwater videography and water velocity measurements were used to determine there were no potential adverse effects on juvenile salmonids when the west set of screens was clean enough to pass water normally. A second request, received from the National Marine Fisheries Service and the Walla Walla Watershed Council, asked for evaluation of water velocities through relatively new head gates above and adjacent to the Eastside Ditch fish screens on the Walla Walla River. Water moving through the head gates and not taken for irrigation is diverted to provide water for the Nursery Bridge fish ladder on the east side of the river. Elevations used in the design of the head gates were incorrect, causing excessive flow through the head gates that closely approached or exceeded the maximum swimming burst speed of juvenile salmonids. Hofer Dam was evaluated in June 2008. PNNL researchers found that conditions at Hofer Dam will not cause impingement or entrainment of juvenile salmonids but may provide habitat for predators and lack strong sweeping flows to encourage juvenile salmonid passage downstream. Further evaluation of velocities at the Eastside Ditch and wasteway gates should occur as changes are made to compensate for the design problems. These evaluations will help determine whether further changes are required. Hofer Dam also should be evaluated again under more normal operating conditions when the river levels are typical of those when fish are emigrating and the metal plate is not affecting flows.« less
Veil, John A.; Puder, Markus G.; Littleton, Debra J.; ...
2002-01-01
Section 316(b) of the Clean Water Act (CWA) requires that “the location, design, construction, and capacity of cooling water intake structures reflect the best technology available for minimizing adverse environmental impact.” As the U.S. Environmental Protection Agency (EPA) develops new regulations to implement Section 316(b), much of the debate has centered on adverse impingement and entrainment impacts of cooling-water intake structures. Depending on the specific location and intake layout, once-through cooling systems withdrawing many millions of gallons of water per day can, to a varying degree, harm fish and other aquatic organisms in the water bodies from which the coolingmore » water is withdrawn. Therefore, opponents of once-through cooling systems have encouraged the EPA to require wet or dry cooling tower systems as the best technology available (BTA), without considering site-specific conditions. However, within the context of the broader scope of the CWA mandate, this focus seems too narrow. Therefore, this article examines the phrase “minimizing adverse environmental impact” in a holistic light. Emphasis is placed on the analysis of the terms “environmental” and “minimizing.” Congress chose “environmental” in lieu of other more narrowly focused terms like “impingement and entrainment,” “water quality,” or “aquatic life.” In this light, BTA for cooling-water intake structures must minimize the entire suite of environmental impacts, as opposed to just those associated with impingement and entrainment. Wet and dry cooling tower systems work well to minimize entrainment and impingement, but they introduce other equally important impacts because they impose an energy penalty on the power output of the generating unit. The energy penalty results from a reduction in plant operating efficiency and an increase in internal power consumption. As a consequence of the energy penalty, power companies must generate additional electricity to achieve the same net output. This added production leads to additional environmental impacts associated with extraction and processing of the fuel, air emissions from burning the fuel, and additional evaporation of freshwater supplies during the cooling process. Wet towers also require the use of toxic biocides that are subsequently discharged or disposed. The other term under consideration, “minimizing,” does not equal “eliminating.” Technologies may be available to minimize but not totally eliminate adverse environmental impacts.« less
Gu, Changgui; Yang, Huijie; Ruan, Zhongyuan
2017-04-01
Mammals not only can be synchronized to the natural 24-h light-dark cycle, but also to a cycle with a non-24-h period. The range of the period of the external cycle, for which the animals can be entrained to, is called the entrainment range, which differs among species. The entrainment range as a characteristic of the animal is determined by the main circadian clock, i.e., the suprachiasmatic nucleus (SCN) in the brain. The SCN is composed of ∼10000 heterogeneous neurons, which can be divided into two subgroups, i.e., the ventrolateral subgroup (VL) directly receiving the light information from the retina and relaying the information to the dorsomedial subgroup (DM). Among the SCN neurons, the amplitudes are different; however, it is unclear that the amplitude is related to the location of the neurons in experiments. In the present study, we examined the effect of the difference in the neuronal amplitude between the VL and the DM on the entrainment range of the SCN, based on a mathematical model, i.e., the Poincaré model, which is used to describe the circadian clock. We find that the maximal entrainment range is obtained when the difference is equal to a critical point. If the difference of the amplitudes of the VL neurons to the amplitudes of the DM neurons is smaller than a critical point, with the increase of the difference, the entrainment range of the SCN increases, while if the difference is larger than the critical point, the entrainment range decreases with the increase of the difference. Our finding may give a potential explanation for the diversity of the entrainment range among species.
NASA Astrophysics Data System (ADS)
Hussin, H. Y.; Luna, B. Quan; van Westen, C. J.; Christen, M.; Malet, J.-P.; van Asch, Th. W. J.
2012-10-01
The occurrence of debris flows has been recorded for more than a century in the European Alps, accounting for the risk to settlements and other human infrastructure that have led to death, building damage and traffic disruptions. One of the difficulties in the quantitative hazard assessment of debris flows is estimating the run-out behavior, which includes the run-out distance and the related hazard intensities like the height and velocity of a debris flow. In addition, as observed in the French Alps, the process of entrainment of material during the run-out can be 10-50 times in volume with respect to the initially mobilized mass triggered at the source area. The entrainment process is evidently an important factor that can further determine the magnitude and intensity of debris flows. Research on numerical modeling of debris flow entrainment is still ongoing and involves some difficulties. This is partly due to our lack of knowledge of the actual process of the uptake and incorporation of material and due the effect of entrainment on the final behavior of a debris flow. Therefore, it is important to model the effects of this key erosional process on the formation of run-outs and related intensities. In this study we analyzed a debris flow with high entrainment rates that occurred in 2003 at the Faucon catchment in the Barcelonnette Basin (Southern French Alps). The historic event was back-analyzed using the Voellmy rheology and an entrainment model imbedded in the RAMMS 2-D numerical modeling software. A sensitivity analysis of the rheological and entrainment parameters was carried out and the effects of modeling with entrainment on the debris flow run-out, height and velocity were assessed.
NASA Astrophysics Data System (ADS)
Gu, Changgui; Yang, Huijie; Ruan, Zhongyuan
2017-04-01
Mammals not only can be synchronized to the natural 24-h light-dark cycle, but also to a cycle with a non-24-h period. The range of the period of the external cycle, for which the animals can be entrained to, is called the entrainment range, which differs among species. The entrainment range as a characteristic of the animal is determined by the main circadian clock, i.e., the suprachiasmatic nucleus (SCN) in the brain. The SCN is composed of ˜10 000 heterogeneous neurons, which can be divided into two subgroups, i.e., the ventrolateral subgroup (VL) directly receiving the light information from the retina and relaying the information to the dorsomedial subgroup (DM). Among the SCN neurons, the amplitudes are different; however, it is unclear that the amplitude is related to the location of the neurons in experiments. In the present study, we examined the effect of the difference in the neuronal amplitude between the VL and the DM on the entrainment range of the SCN, based on a mathematical model, i.e., the Poincaré model, which is used to describe the circadian clock. We find that the maximal entrainment range is obtained when the difference is equal to a critical point. If the difference of the amplitudes of the VL neurons to the amplitudes of the DM neurons is smaller than a critical point, with the increase of the difference, the entrainment range of the SCN increases, while if the difference is larger than the critical point, the entrainment range decreases with the increase of the difference. Our finding may give a potential explanation for the diversity of the entrainment range among species.
What's All the Talc About? Air Entrainment in Dilute Pyroclastic Density Currents
NASA Astrophysics Data System (ADS)
Marshall, B. J.; Andrews, B. J.; Fauria, K.
2015-12-01
A quantitative understanding of air entrainment is critical to predicting the behaviors of dilute Pyroclastic Density Currents (PDCs), including runout distance, liftoff, and mass fractionation into co-PDC plumes. We performed experiments in an 8.5x6x2.6 meter tank using 20 micron talc powder over a range of conditions to describe air entrainment as a function of temperature, duration and mass flux. The experiments are reproducible and are scaled with respect to the densimetric and thermal Richardson numbers (Ri and RiT), Froude number, thermal to kinetic energy density ratio (TEb/KE), Stokes number, and Settling number, such that they are dynamically similar to natural dilute PDCs. Experiments are illuminated with a swept laser sheet and imaged at 1000 Hz to create 3D reconstructions of the currents, with ~1-2 cm resolution, at up to 1.5 Hz. An array of 30 high-frequency thermocouples record the precise temperature in the currents at 3 Hz. Bulk entrainment rates are calculated based on measured current volumes, surface areas, temperatures and velocities. Entrainment rates vary from ~0-0.9 and do not show simple variation with TEb/KE, Ri, or RiT. Entrainment does, however, increase with decreasing eruption duration and increasing mass flux. Our results suggest that current heads entrain air more efficiently than current bodies (>0.5 compared to ~0.1). Because shorter duration currents have proportionally larger heads, their bulk entrainment rates are controlled by those heads, whereas longer duration currents are dominated by their bodies. Our experiments demonstrate that air entrainment, which exerts a fundamental control on PDC runout and liftoff, varies spatially and temporally within PDCs.
External and internal controls of lunar-related reproductive rhythms in fishes.
Takemura, A; Rahman, M S; Park, Y J
2010-01-01
Reproductive activities of many fish species are, to some extent, entrained to cues from the moon. During the spawning season, synchronous spawning is repeated at intervals of c. 1 month (lunar spawning cycle) and 2 weeks (semi-lunar spawning cycle) or daily according to tidal changes (tidal spawning cycle). In species showing lunar-related spawning cycles, oocytes in the ovary develop towards and mature around a specific moon phase for lunar spawners, around spring tides for semi-lunar spawners and at daytime high tides for tidal spawners. The production of sex steroid hormones also changes in accordance with synchronous oocyte development. Since the production of the steroid hormones with lunar-related reproductive periodicity is regulated by gonadotropins, it is considered that the higher parts of the hypothalamus-pituitary-gonad axis play important roles in the perception and regulation of lunar-related periodicity. It is likely that fishes perceive cues from the moon by sensory organs; however, it is still unknown how lunar cues are transduced as an endogenous rhythm exerting lunar-related spawning rhythmicity. Recent research has revealed that melatonin fluctuated according to the brightness at night, magnetic fields and the tidal cycle. In addition, cyclic changes in hydrostatic pressure had an effect on monoamine contents in the brain. These factors may be indirectly related to the exertion of lunar-related periodicity. Molecular approaches have revealed that mRNA expressions of light-sensitive clock genes change with moonlight, suggesting that brightness at night plays a role in phase-shifting or resetting of biological clocks. Some species may have evolved biological clocks in relation to lunar cycles, although it is still not known how lunar periodicities are endogenously regulated in fishes. This review demonstrates that lunar-related periodicity is utilized and incorporated by ecological and physiological mechanisms governing the reproductive success of fishes.
76 FR 51972 - Environmental Impacts Statements; Notice of Availability
Federal Register 2010, 2011, 2012, 2013, 2014
2011-08-19
... as a Proof of Concept for the Restoration of Shallow Water Habitat that Currently Support Fish and.... 20110269, Draft Supplement, USN, 00, Surveillance Towed Array Sensor System Low Frequency Active (SURTASS...
NASA Astrophysics Data System (ADS)
Smith, James; Rice, Stephen; Hodgkins, Richard
2017-04-01
Despite increasing recognition that animals play important roles in geomorphological systems (zoogeomorphology), with important ecological implications for the animals and their ecosystems (ecosystem engineering), sediment transport continues to be regarded as an abiotic process. This research challenges that orthodoxy by investigating the biotic processes associated with bioturbation in rivers caused by feeding bream (Abramis brama (L.)) and quantifying their impact on fine sediment suspension and sediment yield. Experiments in lakes have demonstrated that bream negatively influence ecosystem dynamics through bottom up mechanisms as a result of physical bioturbation caused by benthivorous feeding. Although this level of bioturbation, and thus sediment entrainment, can alter the fundamental biogeochemical cycles and food web dynamics in lentic ecosystems, research is yet to assess this potential effect in riverine ecosystems or evaluate this bioturbation mechanism as a driver of fluvial sediment flux - even though they are common in rivers across mainland Europe. A series of ex-situ mesocosm experiments have investigated the controls of fine sediment entrainment by bream, assessing the roles of both biomass (size and number) and food density on suspended sediment concentration and turbidity. Bream create large volumes of suspended sediment during feeding (highest recorded turbidity 1172 NTU) and there are significant (p < 0.001) increases in turbidity associated with each experimental parameter: number of fish, fish size and food density. Supplementary experiments have assessed bream as ecosystem engineers in the presence of the congener species, roach (Rutilus rutilus (L.)), which share the same ecological niche. In the presence of roach, the impact of bream on turbidity increased by an average of 120% (6.6 NTU to 15 NTU) and increased further at the 90th percentile by 240% (32 NTU to 110 NTU). In light of these findings, the extensive geographical distribution of bream and the observation that shoals of bream commonly exceed one thousand individuals, it is plausible that bream are an important biological constituent of the fine sediment cascade within riverine systems. Complementary field work is underway to quantify the frequency-magnitude characteristics of the fine sediment plumes that feeding shoals of bream generate in lowland UK rivers.
Laser-absorption sensing of gas composition of products from coal gasification
NASA Astrophysics Data System (ADS)
Jeffries, Jay B.; Sur, Ritobrata; Sun, Kai; Hanson, Ronald K.
2014-06-01
A prototype in-situ laser-absorption sensor for the real-time composition measurement (CO, CH4, H2O and CO2) of synthesis gas products of coal gasification (called here syngas) was designed, tested in the laboratory, and demonstrated during field-measurement campaigns in a pilot-scale entrained flow gasifier at the University of Utah and in an engineering-scale, fluidized-bed transport gasifier at the National Carbon Capture Center (NCCC). The prototype design and operation were improved by the lessons learned from each field test. Laser-absorption measurements are problematic in syngas flows because efficient gasifiers operate at elevated pressures (10-50 atm) where absorption transitions are collision broadened and absorption transitions that are isolated at 1 atm become blended into complex features, and because syngas product streams can contain significant particulate, producing significant non-absorption scattering losses of the transmission of laser light. Thus, the prototype sensor used a new wavelength-scanned, wavelength-modulation spectroscopy strategy with 2f-detection and 1f-normalization (WMS-2f/1f) that can provide sensitive absorption measurements of species with spectra blended by collision broadening even in the presence of large non-absorption laser transmission losses (e.g., particulate scattering, beam steering, etc.). The design of the sensor for detection of CO, CH4, H2O and CO2 was optimized for the specific application of syngas monitoring at the output of large-scale gasifiers. Sensor strategies, results and lessons learned from these field measurement campaigns are discussed.
Applications of space observations to the management and utilization of coastal fishery resources
NASA Technical Reports Server (NTRS)
Kemmerer, A. J.; Savastano, K. J.; Faller, K. H.
1977-01-01
Information needs of those concerned with the harvest and management of coastal fishery resources can be satisfied in part through applications of satellite remote sensing. Recently completed and ongoing investigations have demonstrated potentials for defining fish distribution patterns from multispectral data, monitoring fishing distribution and effort with synthetic aperture radar systems, forecasting recruitment of certain estuarine-dependent species, and tracking marine mammals. These investigations, which are reviewed in this paper, have relied on Landsat 1 and 2, Skylab-3, and Nimbus-6 supported sensors and sensors carried by aircraft and mounted on surface platforms to simulate applications from Seasat-A and other future spacecraft systems. None of the systems are operational as all were designed to identify and demonstrate applications and to aid in the specification of requirements for future spaceborne systems.
Searching for roots of entrainment and joint action in early musical interactions.
Phillips-Silver, Jessica; Keller, Peter E
2012-01-01
When people play music and dance together, they engage in forms of musical joint action that are often characterized by a shared sense of rhythmic timing and affective state (i.e., temporal and affective entrainment). In order to understand the origins of musical joint action, we propose a model in which entrainment is linked to dual mechanisms (motor resonance and action simulation), which in turn support musical behavior (imitation and complementary joint action). To illustrate this model, we consider two generic forms of joint musical behavior: chorusing and turn-taking. We explore how these common behaviors can be founded on entrainment capacities established early in human development, specifically during musical interactions between infants and their caregivers. If the roots of entrainment are found in early musical interactions which are practiced from childhood into adulthood, then we propose that the rehearsal of advanced musical ensemble skills can be considered to be a refined, mimetic form of temporal and affective entrainment whose evolution begins in infancy.
Effect of fast freeze-thaw cycles on mechanical properties of ordinary-air-entrained concrete.
Shang, Huai-shuai; Cao, Wei-qun; Wang, Bin
2014-01-01
Freezing-thawing resistance is a very significant characteristic for concrete in severe environment (such as cold region with the lowest temperature below 0°C). In this study, ordinary-air-entrained (O-A-E) concrete was produced in a laboratory environment; the compressive strength, cubic compressive strength of C50, C40, C30, C25, and C20 ordinary-air-entrained concrete, tensile strength, and cleavage strength of C30 ordinary-air-entrained concrete were measured after fast freeze-thaw cycles. The effects of fast freeze-thaw cycles on the mechanical properties (compressive strength and cleavage strength) of ordinary-air-entrained concrete materials are investigated on the basis of the experimental results. And the concise mathematical formula between mechanical behavior and number of fast freeze-thaw cycles was established. The experiment results can be used as a reference in design, maintenance, and life prediction of ordinary-air-entrained concrete structure (such as dam, offshore platform, etc.) in cold regions.
Searching for Roots of Entrainment and Joint Action in Early Musical Interactions
Phillips-Silver, Jessica; Keller, Peter E.
2012-01-01
When people play music and dance together, they engage in forms of musical joint action that are often characterized by a shared sense of rhythmic timing and affective state (i.e., temporal and affective entrainment). In order to understand the origins of musical joint action, we propose a model in which entrainment is linked to dual mechanisms (motor resonance and action simulation), which in turn support musical behavior (imitation and complementary joint action). To illustrate this model, we consider two generic forms of joint musical behavior: chorusing and turn-taking. We explore how these common behaviors can be founded on entrainment capacities established early in human development, specifically during musical interactions between infants and their caregivers. If the roots of entrainment are found in early musical interactions which are practiced from childhood into adulthood, then we propose that the rehearsal of advanced musical ensemble skills can be considered to be a refined, mimetic form of temporal and affective entrainment whose evolution begins in infancy. PMID:22375113
Effect of Fast Freeze-Thaw Cycles on Mechanical Properties of Ordinary-Air-Entrained Concrete
Shang, Huai-shuai; Cao, Wei-qun; Wang, Bin
2014-01-01
Freezing-thawing resistance is a very significant characteristic for concrete in severe environment (such as cold region with the lowest temperature below 0°C). In this study, ordinary-air-entrained (O-A-E) concrete was produced in a laboratory environment; the compressive strength, cubic compressive strength of C50, C40, C30, C25, and C20 ordinary-air-entrained concrete, tensile strength, and cleavage strength of C30 ordinary-air-entrained concrete were measured after fast freeze-thaw cycles. The effects of fast freeze-thaw cycles on the mechanical properties (compressive strength and cleavage strength) of ordinary-air-entrained concrete materials are investigated on the basis of the experimental results. And the concise mathematical formula between mechanical behavior and number of fast freeze-thaw cycles was established. The experiment results can be used as a reference in design, maintenance, and life prediction of ordinary-air-entrained concrete structure (such as dam, offshore platform, etc.) in cold regions. PMID:24895671
A multi-electrode biomimetic electrolocation sensor
NASA Astrophysics Data System (ADS)
Mayekar, K.; Damalla, D.; Gottwald, M.; Bousack, H.; von der Emde, G.
2012-04-01
We present the concept of an active multi-electrode catheter inspired by the electroreceptive system of the weakly electric fish, Gnathonemus petersii. The skin of this fish exhibits numerous electroreceptor organs which are capable of sensing a self induced electrical field. Our sensor is composed of a sending electrode and sixteen receiving electrodes. The electrical field produced by the sending electrode was measured by the receiving electrodes and objects were detected by the perturbation of the electrical field they induce. The intended application of such a sensor is in coronary diagnostics, in particular in distinguishing various types of plaques, which are major causes of heart attack. For calibration of the sensor system, finite element modeling (FEM) was performed. To validate the model, experimental measurements were carried out with two different systems. The physical system was glass tubing with metal and plastic wall insertions as targets. For the control of the experiment and for data acquisition, the software LabView designed for 17 electrodes was used. Different parameters of the electric images were analyzed for the prediction of the electrical properties and size of the inserted targets in the tube. Comparisons of the voltage modulations predicted from the FEM model and the experiments showed a good correspondence. It can be concluded that this novel biomimetic method can be further developed for detailed investigations of atherosclerotic lesions. Finally, we discuss various design strategies to optimize the output of the sensor using different simulated models to enhance target recognition.
Cortical entrainment to music and its modulation by expertise
Doelling, Keith B.; Poeppel, David
2015-01-01
Recent studies establish that cortical oscillations track naturalistic speech in a remarkably faithful way. Here, we test whether such neural activity, particularly low-frequency (<8 Hz; delta–theta) oscillations, similarly entrain to music and whether experience modifies such a cortical phenomenon. Music of varying tempi was used to test entrainment at different rates. In three magnetoencephalography experiments, we recorded from nonmusicians, as well as musicians with varying years of experience. Recordings from nonmusicians demonstrate cortical entrainment that tracks musical stimuli over a typical range of tempi, but not at tempi below 1 note per second. Importantly, the observed entrainment correlates with performance on a concurrent pitch-related behavioral task. In contrast, the data from musicians show that entrainment is enhanced by years of musical training, at all presented tempi. This suggests a bidirectional relationship between behavior and cortical entrainment, a phenomenon that has not previously been reported. Additional analyses focus on responses in the beta range (∼15–30 Hz)—often linked to delta activity in the context of temporal predictions. Our findings provide evidence that the role of beta in temporal predictions scales to the complex hierarchical rhythms in natural music and enhances processing of musical content. This study builds on important findings on brainstem plasticity and represents a compelling demonstration that cortical neural entrainment is tightly coupled to both musical training and task performance, further supporting a role for cortical oscillatory activity in music perception and cognition. PMID:26504238
Cortical entrainment to music and its modulation by expertise.
Doelling, Keith B; Poeppel, David
2015-11-10
Recent studies establish that cortical oscillations track naturalistic speech in a remarkably faithful way. Here, we test whether such neural activity, particularly low-frequency (<8 Hz; delta-theta) oscillations, similarly entrain to music and whether experience modifies such a cortical phenomenon. Music of varying tempi was used to test entrainment at different rates. In three magnetoencephalography experiments, we recorded from nonmusicians, as well as musicians with varying years of experience. Recordings from nonmusicians demonstrate cortical entrainment that tracks musical stimuli over a typical range of tempi, but not at tempi below 1 note per second. Importantly, the observed entrainment correlates with performance on a concurrent pitch-related behavioral task. In contrast, the data from musicians show that entrainment is enhanced by years of musical training, at all presented tempi. This suggests a bidirectional relationship between behavior and cortical entrainment, a phenomenon that has not previously been reported. Additional analyses focus on responses in the beta range (∼15-30 Hz)-often linked to delta activity in the context of temporal predictions. Our findings provide evidence that the role of beta in temporal predictions scales to the complex hierarchical rhythms in natural music and enhances processing of musical content. This study builds on important findings on brainstem plasticity and represents a compelling demonstration that cortical neural entrainment is tightly coupled to both musical training and task performance, further supporting a role for cortical oscillatory activity in music perception and cognition.
Using Gunshot Detection Systems to Fight Explosive Fishing Practices
NASA Astrophysics Data System (ADS)
Showen, R. L.; Dunson, J. C.; Woodman, G.; Christopher, S.; Wilson, S.
2015-12-01
Blast fishing (using explosives to catch fish) causes extensive damage to coral reefs, especially in the Coral Triangle in Southeast Asia. Subsistence fishermen and larger consortiums, often with criminal links, throw an explosive into a school of fish, killing all sea life within range. This unsustainable practice is becoming more prevalent, and threatens the protein supply of as many as a billion people. Ending blast fishing will require combined technical and societal methods aimed at both deterring the practice, and catching those responsible. Our work aims to significantly improve enforcement. We are re-purposing SST's ShotSpotter gunshot detection system, (trusted and valued by police around the world), substituting hydrophones for the present microphones. Using multilateration and trained human reviewers, the system can give prompt blast alerts, location data, and acoustic waveforms to law enforcement officials. We hope to establish a prototype system in Malaysia in 2015, and have already secured governmental approvals for installation and tests with local law enforcement. The Scubazoo media firm in Malaysia is working with resorts, dive operations, and celebrity sponsors, and is planning to produce videos to illustrate the severity of the problem to both governments and the public. Because there is little hard data concerning the prevalence of blast fishing in either marine protected areas or open waters, the system can also indicate to the world the actual blast rates and patterns of use. The Teng Hoi environmental NGO in Hong Kong showed in 2004 that acoustic waves from typical bombs propagate on the order of 20 km, so an underwater locator system with a small number of sensors can feasibly cover a sizable coral region. Our present plans are to mount sensors on piers, buoys, and boats, but if possible we would also like to integrate with other existing acoustic arrays to strengthen the fight against blast fishing.
Tian, Xiu-Ying; Cai, Qiang; Zhang, Yong-Ming
2012-01-01
We report a method for building a simple and reproducible electronic nose based on commercially available metal oxide sensors (MOS) to monitor the freshness of hairtail fish and pork stored at 15, 10, and 5 °C. After assembly in the laboratory, the proposed product was tested by a manufacturer. Sample delivery was based on the dynamic headspace method, and two features were extracted from the transient response of each sensor using an unsupervised principal component analysis (PCA) method. The compensation method and pattern recognition based on PCA are discussed in the current paper. PCA compensation can be used for all storage temperatures, however, pattern recognition differs according to storage conditions. Total volatile basic nitrogen (TVBN) and aerobic bacterial counts of the samples were measured simultaneously with the standard indicators of hairtail fish and pork freshness. The PCA models based on TVBN and aerobic bacterial counts were used to classify hairtail fish samples as "fresh" (TVBN ≤ 25 g and microbial counts ≤ 10(6) cfu/g) or "spoiled" (TVBN ≥ 25 g and microbial counts ≥ 10(6) cfu/g) and pork samples also as "fresh" (TVBN ≤ 15 g and microbial counts ≤ 10(6) cfu/g) or "spoiled" (TVBN ≥ 15 g and microbial counts ≥ 10(6) cfu/g). Good correlation coefficients between the responses of the electronic nose and the TVBN and aerobic bacterial counts of the samples were obtained. For hairtail fish, correlation coefficients were 0.97 and 0.91, and for pork, correlation coefficients were 0.81 and 0.88, respectively. Through laboratory simulation and field application, we were able to determine that the electronic nose could help ensure the shelf life of hairtail fish and pork, especially when an instrument is needed to take measurements rapidly. The results also showed that the electronic nose could analyze the process and level of spoilage for hairtail fish and pork.
Free, Brian A; Paley, Derek A
2018-03-14
Obstacles and swimming fish in flow create a wake with an alternating left/right vortex pattern known as a Kármán vortex street and reverse Kármán vortex street, respectively. An energy-efficient fish behavior resembling slaloming through the vortex street is called Kármán gaiting. This paper describes the use of a bioinspired array of pressure sensors on a Joukowski foil to estimate and control flow-relative position in a Kármán vortex street using potential flow theory, recursive Bayesian filtering, and trajectory-tracking feedback control. The Joukowski foil is fixed in downstream position in a flowing water channel and free to move on air bearings in the cross-stream direction by controlling its angle of attack to generate lift. Inspired by the lateral-line neuromasts found in fish, the sensing and control scheme is validated using off-the-shelf pressure sensors in an experimental testbed that includes a flapping device to create vortices. We derive a potential flow model that describes the flow over a Joukowski foil in a Kármán vortex street and identify an optimal path through a Kármán vortex street using empirical observability. The optimally observable trajectory is one that passes through each vortex in the street. The estimated vorticity and location of the Kármán vortex street are used in a closed-loop control to track either the optimally observable path or the energetically efficient gait exhibited by fish. Results from the closed-loop control experiments in the flow tank show that the artificial lateral line in conjunction with a potential flow model and Bayesian estimator allow the robot to perform fish-like slaloming behavior in a Kármán vortex street. This work is a precursor to an autonomous robotic fish sensing the wake of another fish and/or performing pursuit and schooling behavior.
Flow Behavior Around a Fast-Starting Robotic Fish
NASA Astrophysics Data System (ADS)
Ma, Ganzhong; Currier, Todd; Modarres-Sadeghi, Yahya
2017-11-01
A robotic fish is used to study the flow behavior around the body of a fast-starting fish as it experiences a fast-start. The robotic fish is designed and built emulating a Northern Pike, Esox Lucius, which can accelerate at up to 245 m/s2. In previous studies, we had focused on the flow around the tail during the fast-start, by using a tail which acted flexibly in the preparatory stage and rigidly in the propulsive stage. We have extended that study by including the fish body in the experimental setup, where the body can bend into a C-shape, so that the influence of the body motion on the resulting flow around the structure can be understood as well. In the tests, the fish can rotate about a vertical axis, where a multi-axis force sensor measures flow forces acting on the body. Synchronized with the force measurement, flow visualizations using bubble image velocimetry are conducted, and the observed shed vortices are related to the peak forces observed during the maneuver.
No Time To Kill: Entrainment and Accelerating Courseware Development.
ERIC Educational Resources Information Center
Millington, Paula Crnkovich
This paper examines the concept of time in multimedia, World Wide Web-based courseware development. The biological concept of entrainment (the alignment of rhythms within and between systems) to accelerate courseware development is explored. The discussion begins with the foundational concepts of entrainment from biological systems and social…
Cloud-Top Entrainment in Stratocumulus Clouds
NASA Astrophysics Data System (ADS)
Mellado, Juan Pedro
2017-01-01
Cloud entrainment, the mixing between cloudy and clear air at the boundary of clouds, constitutes one paradigm for the relevance of small scales in the Earth system: By regulating cloud lifetimes, meter- and submeter-scale processes at cloud boundaries can influence planetary-scale properties. Understanding cloud entrainment is difficult given the complexity and diversity of the associated phenomena, which include turbulence entrainment within a stratified medium, convective instabilities driven by radiative and evaporative cooling, shear instabilities, and cloud microphysics. Obtaining accurate data at the required small scales is also challenging, for both simulations and measurements. During the past few decades, however, high-resolution simulations and measurements have greatly advanced our understanding of the main mechanisms controlling cloud entrainment. This article reviews some of these advances, focusing on stratocumulus clouds, and indicates remaining challenges.
The entrainment rate for a row of turbulent jets. M.S. Thesis Final Report
NASA Technical Reports Server (NTRS)
Gordon, Eliott B.; Greber, Isaac
1990-01-01
Entrainment rates for a row of isothermal circular air jets issuing into a quiescent environment are found by integrating velocity distributions measured by a linearized hot-wire anemometer. Jet spacing to jet diameter ratios of 2.5, 5, 10, and 20 are studied at jet Reynold's numbers ranging from 5110 to 12070. Velocity distributions are determined at regular downstream intervals at axial distances equal to 16.4 to 164 jet diameters from the jet source. The entrainment rates for the four spacing configurations vary monotonically with increasing spacing/diameter between the limiting case of the slot jet entrainment rate (where the jet spacing to diameter ratio is zero) and the circular jet entrainment rate (in which the spacing to diameter ratio is infinity).
Merchant, Hugo; Honing, Henkjan
2013-01-01
We propose a decomposition of the neurocognitive mechanisms that might underlie interval-based timing and rhythmic entrainment. Next to reviewing the concepts central to the definition of rhythmic entrainment, we discuss recent studies that suggest rhythmic entrainment to be specific to humans and a selected group of bird species, but, surprisingly, is not obvious in non-human primates. On the basis of these studies we propose the gradual audiomotor evolution hypothesis that suggests that humans fully share interval-based timing with other primates, but only partially share the ability of rhythmic entrainment (or beat-based timing). This hypothesis accommodates the fact that non-human primates (i.e., macaques) performance is comparable to humans in single interval tasks (such as interval reproduction, categorization, and interception), but show differences in multiple interval tasks (such as rhythmic entrainment, synchronization, and continuation). Furthermore, it is in line with the observation that macaques can, apparently, synchronize in the visual domain, but show less sensitivity in the auditory domain. And finally, while macaques are sensitive to interval-based timing and rhythmic grouping, the absence of a strong coupling between the auditory and motor system of non-human primates might be the reason why macaques cannot rhythmically entrain in the way humans do.
Hartley, Paul S; Sheward, John; Scholefield, Emma; French, Karen; Horn, Jacqueline M; Holmes, Megan C; Harmar, Anthony J
2009-07-01
Circadian (c. 24 h) rhythms of physiology are entrained to either the environmental light-dark cycle or the timing of food intake. In the current work the hypothesis that rhythms of platelet turnover in mammals are circadian and entrained by food intake was explored in mice. Mice were entrained to 12 h light-dark cycles and given either ad libitum (AL) or restricted access (RF) to food during the light phase. Blood and megakaryocytes were then collected from mice every 4 h for 24 h. It was found that total and reticulated platelet numbers, plasma thrombopoietin (TPO) concentration and the mean size of mature megakaryocytes were circadian but not entrained by food intake. In contrast, a circadian rhythm in the expression of Arnt1 in megakaryocytes was entrained by food. Although not circadian, the expression in megakaryocytes of Nfe2, Gata1, Itga2b and Tubb1 expression was downregulated by RF, whereas Ccnd1 was not significantly affected by the feeding protocol. It is concluded that circadian rhythms of total platelet number, reticulated platelet number and plasma TPO concentration are entrained by the light-dark cycle rather than the timing of food intake. These findings imply that circadian clock gene expression regulates platelet turnover in mammals.
Sunlight Intensity Based Global Positioning System for Near-Surface Underwater Sensors
Gómez, Javier V.; Sandnes, Frode E.; Fernández, Borja
2012-01-01
Water monitoring is important in domains including documenting climate change, weather prediction and fishing. This paper presents a simple and energy efficient localization strategy for near surface buoy based sensors. Sensors can be dropped randomly in the ocean and thus self-calibrate in terms of geographic location such that geo-tagged observations of water quality can be made without the need for costly and energy consuming GPS-hardware. The strategy is based on nodes with an accurate clock and light sensors that can regularly sample the level of light intensity. The measurements are fitted into a celestial model of the earth motion around the sun. By identifying the trajectory of the sun across the skies one can accurately determine sunrise and sunset times, and thus extract the longitude and latitude of the sensor. Unlike previous localization techniques for underwater sensors, the current approach does not rely on stationary or mobile reference points. PMID:22438746
Sunlight intensity based global positioning system for near-surface underwater sensors.
Gómez, Javier V; Sandnes, Frode E; Fernández, Borja
2012-01-01
Water monitoring is important in domains including documenting climate change, weather prediction and fishing. This paper presents a simple and energy efficient localization strategy for near surface buoy based sensors. Sensors can be dropped randomly in the ocean and thus self-calibrate in terms of geographic location such that geo-tagged observations of water quality can be made without the need for costly and energy consuming GPS-hardware. The strategy is based on nodes with an accurate clock and light sensors that can regularly sample the level of light intensity. The measurements are fitted into a celestial model of the earth motion around the sun. By identifying the trajectory of the sun across the skies one can accurately determine sunrise and sunset times, and thus extract the longitude and latitude of the sensor. Unlike previous localization techniques for underwater sensors, the current approach does not rely on stationary or mobile reference points.
Entiat 4Mile WELLs Completion Report, 2006.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Malinowksi, Richard
2007-01-01
The Entiat 4-mile Wells (Entiat 4-mile) project is located in the Entiat subbasin and will benefit Upper Columbia steelhead, spring Chinook and bull trout. The goal of this project is to prevent juvenile fish from being diverted into an out-of-stream irrigation system and to eliminate impacts due to the annual maintenance of an instream pushup dam. The objectives include eliminating a surface irrigation diversion and replacing it with two wells, which will provide Bonneville Power Administration (BPA) and the Bureau of Reclamation (Reclamation) with a Federal Columbia River Power System (FCRPS) BiOp metric credit of one. Wells were chosen overmore » a new fish screen based on biological benefits and costs. Long-term biological benefits are provided by completely eliminating the surface diversion and the potential for fish entrainment in a fish screen. Construction costs for a new fish screen were estimated at $150,000, which does not include other costs associated with implementing and maintaining a fish screening project. Construction costs for a well were estimated at $20,000 each. The diversion consisted of a pushup dam that diverted water into an off-channel pond. Water was then pumped into a pressurized system for irrigation. There are 3 different irrigators who used water from this surface diversion, and each has multiple water right claims totaling approximately 5 cfs. Current use was estimated at 300 gallons per minute (approximately 0.641 cfs). Some irrigated acreage was taken out of orchard production less than 5 years ago. Therefore, approximately 6.8 acre-feet will be put into the State of Washington Trust Water Right program. No water will be set aside for conservation savings. The construction of the two irrigation wells for three landowners was completed in September 2006. The Lower Well (Tippen/Wick) will produce up to 175 gpm while the Upper Well (Griffith) will produce up to 275 gpm during the irrigation season. The eight inch diameter wells were developed to a depth of 75 feet and 85 feet, respectively, and will be pumped with Submersible Turbine pumps. The irrigation wells have been fitted with new electric boxes and Siemens flowmeters (MAG8000).« less
Uncertainty associated with convective wet removal of entrained aerosols in a global climate model
NASA Astrophysics Data System (ADS)
Croft, B.; Pierce, J. R.; Martin, R. V.; Hoose, C.; Lohmann, U.
2012-11-01
The uncertainties associated with the wet removal of aerosols entrained above convective cloud bases are investigated in a global aerosol-climate model (ECHAM5-HAM) under a set of limiting assumptions for the wet removal of the entrained aerosols. The limiting assumptions for the wet removal of entrained aerosols are negligible scavenging and vigorous scavenging (either through activation, with size-dependent impaction scavenging, or with the prescribed fractions of the standard model). To facilitate this process-based study, an explicit representation of cloud-droplet-borne and ice-crystal-borne aerosol mass and number, for the purpose of wet removal, is introduced into the ECHAM5-HAM model. This replaces and is compared with the prescribed cloud-droplet-borne and ice-crystal-borne aerosol fraction scavenging scheme of the standard model. A 20% to 35% uncertainty in simulated global, annual mean aerosol mass burdens and optical depth (AOD) is attributed to different assumptions for the wet removal of aerosols entrained above convective cloud bases. Assumptions about the removal of aerosols entrained above convective cloud bases control modeled upper tropospheric aerosol concentrations by as much as one order of magnitude. Simulated aerosols entrained above convective cloud bases contribute 20% to 50% of modeled global, annual mean aerosol mass convective wet deposition (about 5% to 10% of the total dry and wet deposition), depending on the aerosol species, when including wet scavenging of those entrained aerosols (either by activation, size-dependent impaction, or with the prescribed fraction scheme). Among the simulations, the prescribed fraction and size-dependent impaction schemes yield the largest global, annual mean aerosol mass convective wet deposition (by about two-fold). However, the prescribed fraction scheme has more vigorous convective mixed-phase wet removal (by two to five-fold relative to the size-dependent impaction scheme) since nearly all entrained accumulation and coarse mode aerosols are assumed to be cloud-droplet borne or ice-crystal borne, and evaporation due to the Bergeron-Findeisen process is neglected. The simulated convective wet scavenging of entrained accumulation and coarse mode aerosols has feedbacks on new particle formation and the number of Aitken mode aerosols, which control stratiform and convective cloud droplet number concentrations and yield precipitation changes in the ECHAM5-HAM model. However, the geographic distribution of aerosol annual mean convective wet deposition change in the model is driven by changes to the assumptions regarding the scavenging of aerosols entrained above cloud bases rather than by precipitation changes, except for sea salt deposition in the tropics. Uncertainty in the seasonal, regional cycles of AOD due to assumptions about entrained aerosol wet scavenging is similar in magnitude to the estimated error in the AOD retrievals. The uncertainty in aerosol concentrations, burdens, and AOD attributed to different assumptions for the wet scavenging of aerosols entrained above convective cloud bases in a global model motivates the ongoing need to better understand and model the activation and impaction processes that aerosols undergo after entrainment into convective updrafts.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Albrecht, Bruce; Fang, Ming; Ghate, Virendra
2016-02-01
Observations from an upward-pointing Doppler cloud radar are used to examine cloud-top entrainment processes and parameterizations in a non-precipitating continental stratocumulus cloud deck maintained by time varying surface buoyancy fluxes and cloud-top radiative cooling. Radar and ancillary observations were made at the Atmospheric Radiation Measurement (ARM)’s Southern Great Plains (SGP) site located near Lamont, Oklahoma of unbroken, non-precipitating stratocumulus clouds observed for a 14-hour period starting 0900 Central Standard Time on 25 March 2005. The vertical velocity variance and energy dissipation rate (EDR) terms in a parameterized turbulence kinetic energy (TKE) budget of the entrainment zone are estimated using themore » radar vertical velocity and the radar spectrum width observations from the upward-pointing millimeter cloud radar (MMCR) operating at the SGP site. Hourly averages of the vertical velocity variance term in the TKE entrainment formulation correlates strongly (r=0.72) to the dissipation rate term in the entrainment zone. However, the ratio of the variance term to the dissipation decreases at night due to decoupling of the boundary layer. When the night -time decoupling is accounted for, the correlation between the variance and the EDR term increases (r=0.92). To obtain bulk coefficients for the entrainment parameterizations derived from the TKE budget, independent estimate of entrainment were obtained from an inversion height budget using ARM SGP observations of the local time derivative and the horizontal advection of the cloud-top height. The large-scale vertical velocity at the inversion needed for this budget from EMWF reanalysis. This budget gives a mean entrainment rate for the observing period of 0.76±0.15 cm/s. This mean value is applied to the TKE budget parameterizations to obtain the bulk coefficients needed in these parameterizations. These bulk coefficients are compared with those from previous and are used to in the parameterizations to give hourly estimates of the entrainment rates using the radar derived vertical velocity variance and dissipation rates. Hourly entrainment rates were estimated from a convective velocity w* parameterization depends on the local surface buoyancy fluxes and the calculated radiative flux divergence, parameterization using a bulk coefficient obtained from the mean inversion height budget. The hourly rates from the cloud turbulence estimates and the w* parameterization, which is independent of the radar observations, are compared with the hourly we values from the budget. All show rough agreement with each other and capture the entrainment variability associated with substantial changes in the surface flux and radiative divergence at cloud top. Major uncertainties in the hourly estimates from the height budget and w* are discussed. The results indicate a strong potential for making entrainment rate estimates directly from the radar vertical velocity variance and the EDR measurements—a technique that has distinct advantages over other methods for estimating entrainment rates. Calculations based on the EDR alone can provide high temporal resolution (for averaging intervals as small as 10 minutes) of the entrainment processes and do not require an estimate of the boundary layer depth, which can be difficult to define when the boundary layer is decoupled.« less
NASA Astrophysics Data System (ADS)
Voepel, Hal; Ahmed, Sharif; Hodge, Rebecca; Leyland, Julian; Sear, David
2017-04-01
One of the major causes of uncertainty in estimates of bedload transport rates in gravel-bed rivers is a lack of understanding of grain-scale sediment structure, and the impact that this structure has on the force required to entrain sediment. There are at least two factors that standard entrainment models do not consider. The first is the way in which the spatial arrangement and orientation of grains and the resultant forces varies throughout a channel and over time, ways that have yet to be fully quantified. The second is that sediment entrainment is a 3D process, yet calculations of entrainment thresholds for sediment grains are typically based on 2D diagrams where we calculate static moments of force vectors about a pivot angle, represented as a single point rather than as a more realistic axis of rotation. Our research addresses these limitations by quantifying variations in 3D sediment structure and entrainment force requirements across two key parameters: morphological location within a riffle-pool sequence (reflecting variation in hydraulic conditions), and the fine sediment content of the gravel-bed (sand and clay). We report results from a series of flume experiments in which we water-worked a gravel-bed with a riffle-pool morphology containing varying amounts of fine sediment. After each experimental run intact samples of the bed at different locations were extracted and the internal structure of the bed was measured using non-destructive, micro-focus X-ray computed tomography (CT) imaging. The CT images were processed to measure the properties of individual grains, including volume, center of mass, dimension, and contact points. From these data we were able to quantify the sediment structure and entrainment force requirements through measurement of 3D metrics including grain pivot angles, grain exposure and protrusion. Comparison of the metrics across different morphological locations and fine sediment content demonstrates how these factors affect the bed structure and entrainment force requirement. These results have implications for the development of sediment entrainment models for gravel-bed rivers. Keywords: fluvial sediment, geomorphology, entrainment models, X-ray computed tomography, 3D imaging, vector mechanics
Frank, David W; Evans, Jennifer A; Gorman, Michael R
2010-04-01
Bright light has been established as the most ubiquitous environmental cue that entrains circadian timing systems under natural conditions. Light equivalent in intensity to moonlight (<1 lux), however, also strongly modulates circadian function in a number of entrainment paradigms. For example, compared to completely dark nights, dim nighttime illumination accelerated re-entrainment of hamster activity rhythms to 4-hour phase advances and delays of an otherwise standard laboratory photocycle. The purpose of this study was to determine if a sensitive period existed in the night during which dim illumination had a robust influence on speed of re-entrainment. Male Siberian hamsters were either exposed to dim light throughout the night, for half of the night, or not at all. Compared to dark nights, dim illumination throughout the entire night decreased by 29% the time for the midpoint of the active phase to re-entrain to a 4-hour phase advance and by 26% for a 4-hour delay. Acceleration of advances and delays were also achieved with 5 hours of dim light per night, but effects depended on whether dim light was present in the first half, second half, or first and last quarters of the night. Both during phase shifting and steady-state entrainment, partially lit nights also produced strong positive and negative masking effects, as well as entrainment aftereffects in constant darkness. Thus, even in the presence of a strong zeitgeber, light that might be encountered under a natural nighttime sky potently modulates the circadian timing system of hamsters.
The Impact of Rhythmic Entrainment on a Person with Autism.
ERIC Educational Resources Information Center
Orr, Tracy Jo; Myles, Brenda Smith; Carlson, Judith K.
1998-01-01
A study investigated the impact of rhythmic entrainment on an 11-year-old girl with autism who engaged in head jerking and screaming. Rhythmic entrainment intervention was more effective when she exhibited behavior that resulted from a moderate level of stress and less effective when stressors were more severe. (CR)
Tracer gas studies were conducted around four model houses in a wind tunnel, and around one house in the field, to quantify re-entrainment and dispersion of exhaust gases released from residential indoor radon reduction systems. Re-entrainment tests in the field suggest that acti...
Passive scalar entrainment and mixing in a forced, spatially-developing mixing layer
NASA Technical Reports Server (NTRS)
Lowery, P. S.; Reynolds, W. C.; Mansour, N. N.
1987-01-01
Numerical simulations are performed for the forced, spatially-developing plane mixing layer in two and three dimensions. Transport of a passive scalar field is included in the computation. This, together with the allowance for spatial development in the simulations, affords the opportunity for study of the asymmetric entrainment of irrotational fluid into the layer. The inclusion of a passive scalar field provides a means for simulating the effect of this entrainment asymmetry on the generation of 'products' from a 'fast' chemical reaction. Further, the three-dimensional simulations provide useful insight into the effect of streamwise structures on these entrainment and 'fast' reaction processes. Results from a two-dimensional simulation indicate 1.22 parts high-speed fluid are entrained for every one part low-speed fluid. Inclusion of streamwise vortices at the inlet plane of a three-dimensional simulation indicate a further increase in asymmetric entrainment - 1.44:1. Results from a final three-dimensional simulation are presented. In this case, a random velocity perturbation is imposed at the inlet plane. The results indicate the 'natural' development of the large spanwise structures characteristic of the mixing layer.
Cook, Peter; Rouse, Andrew; Wilson, Margaret; Reichmuth, Colleen
2013-11-01
Is the ability to entrain motor activity to a rhythmic auditory stimulus, that is "keep a beat," dependent on neural adaptations supporting vocal mimicry? That is the premise of the vocal learning and synchronization hypothesis, recently advanced to explain the basis of this behavior (A. Patel, 2006, Musical Rhythm, Linguistic Rhythm, and Human Evolution, Music Perception, 24, 99-104). Prior to the current study, only vocal mimics, including humans, cockatoos, and budgerigars, have been shown to be capable of motoric entrainment. Here we demonstrate that a less vocally flexible animal, a California sea lion (Zalophus californianus), can learn to entrain head bobbing to an auditory rhythm meeting three criteria: a behavioral response that does not reproduce the stimulus; performance transfer to a range of novel tempos; and entrainment to complex, musical stimuli. These findings show that the capacity for entrainment of movement to rhythmic sounds does not depend on a capacity for vocal mimicry, and may be more widespread in the animal kingdom than previously hypothesized.
Getting the beat: entrainment of brain activity by musical rhythm and pleasantness.
Trost, Wiebke; Frühholz, Sascha; Schön, Daniele; Labbé, Carolina; Pichon, Swann; Grandjean, Didier; Vuilleumier, Patrik
2014-12-01
Rhythmic entrainment is an important component of emotion induction by music, but brain circuits recruited during spontaneous entrainment of attention by music and the influence of the subjective emotional feelings evoked by music remain still largely unresolved. In this study we used fMRI to test whether the metric structure of music entrains brain activity and how music pleasantness influences such entrainment. Participants listened to piano music while performing a speeded visuomotor detection task in which targets appeared time-locked to either strong or weak beats. Each musical piece was presented in both a consonant/pleasant and dissonant/unpleasant version. Consonant music facilitated target detection and targets presented synchronously with strong beats were detected faster. FMRI showed increased activation of bilateral caudate nucleus when responding on strong beats, whereas consonance enhanced activity in attentional networks. Meter and consonance selectively interacted in the caudate nucleus, with greater meter effects during dissonant than consonant music. These results reveal that the basal ganglia, involved both in emotion and rhythm processing, critically contribute to rhythmic entrainment of subcortical brain circuits by music. Copyright © 2014 Elsevier Inc. All rights reserved.
Entrainment and capture by swimming cells
NASA Astrophysics Data System (ADS)
Mathijssen, Arnold; Jeanneret, Raphael; Polin, Marco
Floating particles that collide with a micro-swimmer can be entrained for long distances, which provides an opportunity for numerous biological processes to occur with prolonged contact times, including the capture of nutrients and virus infection. Here, we show that the entrainment mechanism is universal for different organisms, C. reinhardtii, T. subcordiforms and O. marina, regardless of diversity in propulsion mechanism and hydrodynamic signature. The flows generated near these microbes are simulated throughout the swimming stroke, and the resulting entrainment lengths compared with our experiments. We find a series of compromises: Flagella can reduce contact times with less tidy interactions, but the entrainment frequency increases as flagella pull particles towards the body. The contact time grows quadratically with swimmer size, but decreases with swimming speed or encounter rate. With the inclusion of Brownian noise, there is an optimal particle size for each swimmer and, conversely, there is an optimal organism for each floating object. We analyse the features of the entrainment mechanism with a Taylor-dispersion theory, and demonstrate how the presented trade-offs may be tuned quantitatively in various biological situations.
COPS-GREAT: CO in ProtoStars with GREAT
NASA Astrophysics Data System (ADS)
Kristensen, Lars
2013-10-01
Low-mass embedded protostars drive strong bipolar jets, which shock the surrounding gas on 100-1000 AU scales and entrain colder gas in outflows on 10,000 AU and larger scales. The aim of this proposal is to analyze the transition between shocks and entrainment and to quantify the mass in each component. We plan to do this by observing the CO 13-12 line with GREAT in five sources. Outflows from young protostars are a major source of feedback on both protostellar and cloud scales. However, our understanding of how they entrain or impact the protostellar envelope is still in its infancy. High-J CO observations are required to analyze in detail the transition where the outflowing gas goes from being colder (T ~ 100 K) entrained outflowing gas to being directly excited by the shocks causing the entrainment. These observations will allow us to quantify the amount of currently shocked gas with respect to the entrained gas, as well as examine shock properties as a function of velocity, and thereby quantify the feedback from a protostar on its natal material.
COPS-GREAT2: CO in ProtoStars with GREAT
NASA Astrophysics Data System (ADS)
Yildiz, Umut
Low-mass embedded protostars drive strong bipolar jets, which shock the surrounding gas on 100-1000 AU scales and entrain colder gas in outflows on 10,000 AU and larger scales. The aim of this proposal is to analyze the transition between shocks and entrainment and to quantify the mass in each component. We plan to do this by observing the CO 11-10 line with GREAT in nine sources. Outflows from young protostars are a major source of feedback on both protostellar and cloud scales. However, our understanding of how they entrain or impact the protostellar envelope is still in its infancy. High-J CO observations are required to analyze in detail the transition where the outflowing gas goes from being colder (T 100 K) entrained outflowing gas to being directly excited by the shocks causing the entrainment. These observations will allow us to quantify the amount of currently shocked gas with respect to the entrained gas, as well as examine shock properties as a function of velocity, and thereby quantify the feedback from a protostar on its natal material.
Entrainment of a Bacterial Synthetic Gene Oscillator through Proteolytic Queueing.
Butzin, Nicholas C; Hochendoner, Philip; Ogle, Curtis T; Mather, William H
2017-03-17
Internal chemical oscillators (chemical clocks) direct the behavior of numerous biological systems, and maintenance of a given period and phase among many such oscillators may be important for their proper function. However, both environmental variability and fundamental molecular noise can cause biochemical oscillators to lose coherence. One solution to maintaining coherence is entrainment, where an external signal provides a cue that resets the phase of the oscillators. In this work, we study the entrainment of gene networks by a queueing interaction established by competition between proteins for a common proteolytic pathway. Principles of queueing entrainment are investigated for an established synthetic oscillator in Escherichia coli. We first explore this theoretically using a standard chemical reaction network model and a map-based model, both of which suggest that queueing entrainment can be achieved through pulsatile production of an additional protein competing for a common degradation pathway with the oscillator proteins. We then use a combination of microfluidics and fluorescence microscopy to verify that pulse trains modulating the production rate of a fluorescent protein targeted to the same protease (ClpXP) as the synthetic oscillator can entrain the oscillator.
Nonphotic entrainment of the human circadian pacemaker
NASA Technical Reports Server (NTRS)
Klerman, E. B.; Rimmer, D. W.; Dijk, D. J.; Kronauer, R. E.; Rizzo, J. F. 3rd; Czeisler, C. A.
1998-01-01
In organisms as diverse as single-celled algae and humans, light is the primary stimulus mediating entrainment of the circadian biological clock. Reports that some totally blind individuals appear entrained to the 24-h day have suggested that nonphotic stimuli may also be effective circadian synchronizers in humans, although the nonphotic stimuli are probably comparatively weak synchronizers, because the circadian rhythms of many totally blind individuals "free run" even when they maintain a 24-h activity-rest schedule. To investigate entrainment by nonphotic synchronizers, we studied the endogenous circadian melatonin and core body temperature rhythms of 15 totally blind subjects who lacked conscious light perception and exhibited no suppression of plasma melatonin in response to ocular bright-light exposure. Nine of these fifteen blind individuals were able to maintain synchronization to the 24-h day, albeit often at an atypical phase angle of entrainment. Nonphotic stimuli also synchronized the endogenous circadian rhythms of a totally blind individual to a non-24-h schedule while living in constant near darkness. We conclude that nonphotic stimuli can entrain the human circadian pacemaker in some individuals lacking ocular circadian photoreception.
Positive feedback and momentum growth during debris-flow entrainment of wet bed sediment
Iverson, R.M.; Reid, M.E.; Logan, M.; LaHusen, R.G.; Godt, J.W.; Griswold, J.P.
2011-01-01
Debris flows typically occur when intense rainfall or snowmelt triggers landslides or extensive erosion on steep, debris-mantled slopes. The flows can then grow dramatically in size and speed as they entrain material from their beds and banks, but the mechanism of this growth is unclear. Indeed, momentum conservation implies that entrainment of static material should retard the motion of the flows if friction remains unchanged. Here we use data from large-scale experiments to assess the entrainment of bed material by debris flows. We find that entrainment is accompanied by increased flow momentum and speed only if large positive pore pressures develop in wet bed sediments as the sediments are overridden by debris flows. The increased pore pressure facilitates progressive scour of the bed, reduces basal friction and instigates positive feedback that causes flow speed, mass and momentum to increase. If dryer bed sediment is entrained, however, the feedback becomes negative and flow momentum declines. We infer that analogous feedbacks could operate in other types of gravity-driven mass flow that interact with erodible beds. ?? 2011 Macmillan Publishers Limited. All rights reserved.
The neural basis of audiomotor entrainment: an ALE meta-analysis
Chauvigné, Léa A. S.; Gitau, Kevin M.; Brown, Steven
2014-01-01
Synchronization of body movement to an acoustic rhythm is a major form of entrainment, such as occurs in dance. This is exemplified in experimental studies of finger tapping. Entrainment to a beat is contrasted with movement that is internally driven and is therefore self-paced. In order to examine brain areas important for entrainment to an acoustic beat, we meta-analyzed the functional neuroimaging literature on finger tapping (43 studies) using activation likelihood estimation (ALE) meta-analysis with a focus on the contrast between externally-paced and self-paced tapping. The results demonstrated a dissociation between two subcortical systems involved in timing, namely the cerebellum and the basal ganglia. Externally-paced tapping highlighted the importance of the spinocerebellum, most especially the vermis, which was not activated at all by self-paced tapping. In contrast, the basal ganglia, including the putamen and globus pallidus, were active during both types of tapping, but preferentially during self-paced tapping. These results suggest a central role for the spinocerebellum in audiomotor entrainment. We conclude with a theoretical discussion about the various forms of entrainment in humans and other animals. PMID:25324765
Dorsal light response and changes of its responses under varying acceleration conditions
NASA Astrophysics Data System (ADS)
Watanabe, S.; Takabayashi, A.; Takagi, S.; von Baumgarten, R.; Wetzig, J.
In order to improve our understanding about functions of the gravity sensors, we have conducted four experiments in goldfish: 1) To define the effect of visual information influx on the static labyrinthine response, the dorsal light response (DLR) which had been proposed by von Holst as a model for postural adjustment in fish was reexamined with a newly designed, rotatory illumination device. The fish responded to illumination from the upper half of the visual field and a narrow range around 180 degrees of the lower half visual field. The maximal tilting angle of normal fish was about 40 degrees under horizontal illumination. 2) Under the changes of the gravito-inertial force level produced by a linear sled, the threshold of the gravity sensors was determined from postural adjustment responses. 3) Under hypogravic conditions during the parabolic flight of an airplane, the light-dependent behavior was investigated in intact and labyrinthectomized goldfish. 4) As one of the most likely candidates of the neural centers for the DLR, the valvula cerebelli, which receives its visual information not through the optic tectum but through the pretectal areas, is confirmed by the brain lesion experiments.
Neural Entrainment to Rhythmically Presented Auditory, Visual, and Audio-Visual Speech in Children
Power, Alan James; Mead, Natasha; Barnes, Lisa; Goswami, Usha
2012-01-01
Auditory cortical oscillations have been proposed to play an important role in speech perception. It is suggested that the brain may take temporal “samples” of information from the speech stream at different rates, phase resetting ongoing oscillations so that they are aligned with similar frequency bands in the input (“phase locking”). Information from these frequency bands is then bound together for speech perception. To date, there are no explorations of neural phase locking and entrainment to speech input in children. However, it is clear from studies of language acquisition that infants use both visual speech information and auditory speech information in learning. In order to study neural entrainment to speech in typically developing children, we use a rhythmic entrainment paradigm (underlying 2 Hz or delta rate) based on repetition of the syllable “ba,” presented in either the auditory modality alone, the visual modality alone, or as auditory-visual speech (via a “talking head”). To ensure attention to the task, children aged 13 years were asked to press a button as fast as possible when the “ba” stimulus violated the rhythm for each stream type. Rhythmic violation depended on delaying the occurrence of a “ba” in the isochronous stream. Neural entrainment was demonstrated for all stream types, and individual differences in standardized measures of language processing were related to auditory entrainment at the theta rate. Further, there was significant modulation of the preferred phase of auditory entrainment in the theta band when visual speech cues were present, indicating cross-modal phase resetting. The rhythmic entrainment paradigm developed here offers a method for exploring individual differences in oscillatory phase locking during development. In particular, a method for assessing neural entrainment and cross-modal phase resetting would be useful for exploring developmental learning difficulties thought to involve temporal sampling, such as dyslexia. PMID:22833726
Treadmill vs. overground walking: different response to physical interaction.
Ochoa, Julieth; Sternad, Dagmar; Hogan, Neville
2017-10-01
Rehabilitation of human motor function is an issue of growing significance, and human-interactive robots offer promising potential to meet the need. For the lower extremity, however, robot-aided therapy has proven challenging. To inform effective approaches to robotic gait therapy, it is important to better understand unimpaired locomotor control: its sensitivity to different mechanical contexts and its response to perturbations. The present study evaluated the behavior of 14 healthy subjects who walked on a motorized treadmill and overground while wearing an exoskeletal ankle robot. Their response to a periodic series of ankle plantar flexion torque pulses, delivered at periods different from, but sufficiently close to, their preferred stride cadence, was assessed to determine whether gait entrainment occurred, how it differed across conditions, and if the adapted motor behavior persisted after perturbation. Certain aspects of locomotor control were exquisitely sensitive to walking context, while others were not. Gaits entrained more often and more rapidly during overground walking, yet, in all cases, entrained gaits synchronized the torque pulses with ankle push-off, where they provided assistance with propulsion. Furthermore, subjects entrained to perturbation periods that required an adaption toward slower cadence, even though the pulses acted to accelerate gait, indicating a neural adaptation of locomotor control. Lastly, during 15 post-perturbation strides, the entrained gait period was observed to persist more frequently during overground walking. This persistence was correlated with the number of strides walked at the entrained gait period (i.e., longer exposure), which also indicated a neural adaptation. NEW & NOTEWORTHY We show that the response of human locomotion to physical interaction differs between treadmill and overground walking. Subjects entrained to a periodic series of ankle plantar flexion torque pulses that shifted their gait cadence, synchronizing ankle push-off with the pulses (so that they assisted propulsion) even when gait cadence slowed. Entrainment was faster overground and, on removal of torque pulses, the entrained gait period persisted more prominently overground, indicating a neural adaptation of locomotor control. Copyright © 2017 the American Physiological Society.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kerstein, Alan R.; Sayler, B. J.; Wunsch, S.
2010-05-01
Recent work suggests that cloud effects remain one of the largest sources of uncertainty in model-based estimates of climate sensitivity. In particular, the entrainment rate in stratocumulus-topped mixed layers needs better models. More than thirty years ago a clever laboratory experiment was conducted by McEwan and Paltridge to examine an analog of the entrainment process at the top of stratiform clouds. Sayler and Breidenthal extended this pioneering work and determined the effect of the Richardson number on the dimensionless entrainment rate. The experiments gave hints that the interaction between molecular effects and the one-sided turbulence seems to be crucial formore » understanding entrainment. From the numerical point of view large-eddy simulation (LES) does not allow explicitly resolving all the fine scale processes at the entrainment interface. Direct numerical simulation (DNS) is limited due to the Reynolds number and is not the tool of choice for parameter studies. Therefore it is useful to investigate new modeling strategies, such as stochastic turbulence models which allow sufficient resolution at least in one dimension while having acceptable run times. We will present results of the One-Dimensional Turbulence stochastic simulation model applied to the experimental setup of Sayler and Breidenthal. The results on radiatively induced entrainment follow quite well the scaling of the entrainment rate with the Richardson number that was experimentally found for a set of trials. Moreover, we investigate the influence of molecular effects, the fluids optical properties, and the artifact of parasitic turbulence experimentally observed in the laminar layer. In the simulations the parameters are varied systematically for even larger ranges than in the experiment. Based on the obtained results a more complex parameterization of the entrainment rate than currently discussed in the literature seems to be necessary.« less
Ellsworth, Craig M.; Tyler, Torrey J.; VanderKooi, Scott P.
2010-01-01
A small irrigation diversion dam near Chiloquin, Oregon, was removed and replaced with a pump station to improve fish passage for Lost River suckers (Deltistes luxatus) and shortnose suckers (Chasmistes brevirostris) entering the Sprague River on their spawning migrations. During the developmental phase of the pump station, a need was identified to better understand the larval drift characteristics of these endangered catostomids in order to reduce entrainment into the irrigation system. The spatial, seasonal, and diel distribution of drifting larvae was measured during the 2004 spawning season at two proposed sites on the Williamson River where the pump station could be located. Larval drift for both species coincided with the irrigation season making them subject to entrainment into the irrigation system. Drift occurred almost exclusively at night with larvae entering the drift at sunset and exiting the drift at sunrise. Nighttime larval densities were concentrated near the surface and at midchannel at both sites. Densities were generally greater on the side of mid-channel with greater flow. During early morning sampling we detected a general shift in larval drift from surface to subsurface drift. We also observed an increase in larval densities towards the shore opposite from the proposed pump station at the upper site whereas larval densities remained high at midchannel at the lower site. During daytime sampling, the few larvae that were collected were distributed throughout the water column at both pump sites. This study found that larvae drifting during all time periods were generally distributed further across the cross section, deeper in the water column, and closer to where the proposed water withdrawal structure would be built at the downstream site when compared to the upstream site. Recommendations were provided to locate the withdrawal facility at the upstream site and operate it in a manner such that larval entrainment would likely be minimized.
Oscillation of a polymer gel entrained with a periodic force.
Shiota, Takaya; Ikura, Yumihiko S; Nakata, Satoshi
2013-02-21
The oscillation of a polymer gel induced by the Belousov-Zhabotinsky (BZ) reaction was investigated under an external force composed of a square wave. The oscillation of the BZ reaction entrained to the periodic force and the features of this entrainment changed depending on the period and duty cycle of the square wave. The experimental results suggest that the change in the volume of the gel also gave feedback to the BZ reaction. The mechanism of entrainment is discussed in relation to the compression of the gel and the reaction-diffusion system in the BZ reaction.
Method and apparatus for controlling the flow rate of mercury in a flow system
Grossman, Mark W.; Speer, Richard
1991-01-01
A method for increasing the mercury flow rate to a photochemical mercury enrichment utilizing an entrainment system comprises the steps of passing a carrier gas over a pool of mercury maintained at a first temperature T1, wherein the carrier gas entrains mercury vapor; passing said mercury vapor entrained carrier gas to a second temperature zone T2 having temperature less than T1 to condense said entrained mercury vapor, thereby producing a saturated Hg condition in the carrier gas; and passing said saturated Hg carrier gas to said photochemical enrichment reactor.
Remote sensing and extractable biological resources
NASA Technical Reports Server (NTRS)
Cronin, L. E.
1972-01-01
The nature and quantity of extractable biological resources available in the Chesapeake Bay are discussed. The application of miniaturized radio sensors to track the movement of fish and birds is described. The specific uses of remote sensors for detecting and mapping areas of algae, red tide, thermal pollution, and vegetation beds are presented. The necessity for obtaining information on the physical, chemical, and meteorological features of the entire bay in order to provide improved resources management is emphasized.
2003-08-19
KENNEDY SPACE CENTER, FLA. - Researchers are positioned on one of the watercraft being utilized to conduct underwater acoustic research in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.
2003-08-18
KENNEDY SPACE CENTER, FLA. - Researchers utilize several types of watercraft to conduct underwater acoustic research in the Launch Complex 39 turn basin near Launch Pad 39A. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.
2003-08-18
KENNEDY SPACE CENTER, FLA. - Dr. Grant Gilmore (left), Dynamac Corp., talks to another member of the research team conducting underwater acoustic research in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.
2003-08-18
KENNEDY SPACE CENTER, FLA. - Research team members roll out acoustic cable to the water's edge during underwater acoustic research being conducted in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.
2003-08-18
KENNEDY SPACE CENTER, FLA. - Joe Bartoszek, NASA, is a member of the research team conducting underwater acoustic research in the Launch Complex 39 turn basin near Launch Pad 39A. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.
2003-08-19
KENNEDY SPACE CENTER, FLA. - Research team members take their places on one of the watercraft being utilized to conduct underwater acoustic research in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.
2003-08-18
KENNEDY SPACE CENTER, FLA. - Dr. Grant Gilmore, Dynamac Corp., utilizes a laptop computer to explain aspects of the underwater acoustic research under way in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.
Biological interference of optical backscatterance sensors in Tampa Bay, Florida
Schoellhamer, D.H.
1993-01-01
Optical backscatterance (OBS, D&A Instruments, Inc.1 1 Use of brand, firm, or trade names in this paper is for identification purposes only and does not constitute endorsement by the U.S. Geological Survey.) sensors for measuring suspended-solids concentrations have been deployed in Tampa Bay to monitor resuspension of bottom sediments. This paper describes biological factors that affected the OBS sensors deployed in Tampa Bay and discusses deployment strategies that minimize biological interference. Phytoplankton may interfere with the OBS sensors when the suspended-solids concentration is near or below the sensor response threshold. Fish swimming in front of the OBS sensors caused spikes in the OBS sensor output, so the median average was more appropriate than the mean average. An algal slime on the OBS sensors caused excessive backscatterance that dominated the backscatterance from suspended material. Because of the fouling problem, deployments were limited to less than a week, and OBS sensors were cleaned daily, if possible. Calibration of OBS sensors with water samples collected from Tampa Bay was satisfactory when biological interference was not significant. When properly deployed, the OBS sensors can successfully monitor sediment resuspension in Tampa Bay and similar subtropical estuaries. ?? 1993.
Battery-free radio frequency identification (RFID) sensors for food quality and safety
Potyrailo, Radislav A.; Nagraj, Nandini; Tang, Zhexiong; Mondello, Frank J.; Surman, Cheryl; Morris, William
2012-01-01
The market demands for new sensors for food quality and safety stimulate the development of new sensing technologies that can provide an unobtrusive sensor form factor, battery-free operation, and minimal sensor cost. Intelligent labeling of food products to indicate and report their freshness and other conditions is one of important possible applications of such new sensors. We have applied passive (battery-free) radio frequency identification (RFID) sensors for highly sensitive and selective detection of food freshness and bacterial growth. In these sensors, the electric field generated in the RFID sensor antenna extends out from the plane of the RFID sensor and is affected by the ambient environment providing the opportunity for sensing. This environment may be in the form of a food sample within the electric field of the sensing region or a sensing film deposited onto the sensor antenna. Examples of applications include monitoring of freshness of milk, freshness of fish, and bacterial growth in a solution. Unlike other food freshness monitoring approaches that require a thin film battery for operation of an RFID sensor and fabrication of custom-made sensors, our developed passive RFID sensing approach combines advantages of both battery-free and cost-effective sensor design and offers response selectivity that is impossible to achieve with other individual sensors. PMID:22881825
Battery-free radio frequency identification (RFID) sensors for food quality and safety.
Potyrailo, Radislav A; Nagraj, Nandini; Tang, Zhexiong; Mondello, Frank J; Surman, Cheryl; Morris, William
2012-09-05
Market demands for new sensors for food quality and safety stimulate the development of new sensing technologies that can provide an unobtrusive sensor form, battery-free operation, and minimal sensor cost. Intelligent labeling of food products to indicate and report their freshness and other conditions is one important possible application of such new sensors. This study applied passive (battery-free) radio frequency identification (RFID) sensors for the highly sensitive and selective detection of food freshness and bacterial growth. In these sensors, the electric field generated in the RFID sensor antenna extends from the plane of the RFID sensor and is affected by the ambient environment, providing the opportunity for sensing. This environment may be in the form of a food sample within the electric field of the sensing region or a sensing film deposited onto the sensor antenna. Examples of applications include monitoring of milk freshness, fish freshness, and bacterial growth in a solution. Unlike other food freshness monitoring approaches that require a thin film battery for operation of an RFID sensor and fabrication of custom-made sensors, the passive RFID sensing approach developed here combines the advantages of both battery-free and cost-effective sensor design and offers response selectivity that is impossible to achieve with other individual sensors.
Entrainment of Air into Vertical Jets in a Crosswind
NASA Astrophysics Data System (ADS)
Roberts, K. K.; Solovitz, S.; Freedland, G.; Camp, E.; Cal, R. B.; Mastin, L. G.
2015-12-01
During volcanic eruptions, ash concentration must be determined for aviation safety, but the limiting threshold is difficult to distinguish visually. Computational models are typically used to predict ash concentrations, using inputs such as plume height, eruptive duration, and wind speeds. The models also depend on empirical parameters, such as the entrainment of atmospheric air as a ratio of the air inflow speed and the jet speed. Entrainment of atmospheric air plays a critical role in the behavior of volcanic plumes in the atmosphere, impacting the mass flow rate, buoyancy, and particle concentration of the plume. This process is more complex in a crosswind, leading to greater uncertainty in the model results. To address these issues, a laboratory-scale study has been conducted to improve the entrainment models. Observations of a vertical, unconfined jet are performed using Particle Image Velocimetry, while varying jet density using different compressed gases and Reynolds number. To test the effects of a crosswind on plume entrainment rates, these are then compared with similar jet experiments in a wind tunnel. A series of jet geometries, jet speeds and tunnel speeds are considered. The measured velocities are used to determine the entrainment response, which can be used to determine ash concentration over time as atmospheric air is entrained into the plume. We also quantify the mean and the fluctuations in flow velocity.
Meat and Fish Freshness Inspection System Based on Odor Sensing
Hasan, Najam ul; Ejaz, Naveed; Ejaz, Waleed; Kim, Hyung Seok
2012-01-01
We propose a method for building a simple electronic nose based on commercially available sensors used to sniff in the market and identify spoiled/contaminated meat stocked for sale in butcher shops. Using a metal oxide semiconductor-based electronic nose, we measured the smell signature from two of the most common meat foods (beef and fish) stored at room temperature. Food samples were divided into two groups: fresh beef with decayed fish and fresh fish with decayed beef. The prime objective was to identify the decayed item using the developed electronic nose. Additionally, we tested the electronic nose using three pattern classification algorithms (artificial neural network, support vector machine and k-nearest neighbor), and compared them based on accuracy, sensitivity, and specificity. The results demonstrate that the k-nearest neighbor algorithm has the highest accuracy. PMID:23202222
Modeling of neutral entrainment in an FRC thruster
DOE Office of Scientific and Technical Information (OSTI.GOV)
Brackbill, Jeremiah; Gimelshein, Natalia; Gimelshein, Sergey
2012-11-27
Neutral entrainment in a field reversed configuration thruster is modeled numerically with an implicit PIC code extended to include thermal and chemical interactions between plasma and neutral particles. The contribution of charge exchange and electron impact ionization reactions is analyzed, and the sensitivity of the entrainment efficiency to the plasmoid translation velocity and neutral density is evaluated.
CubeSat Nighttime Earth Observations
NASA Astrophysics Data System (ADS)
Pack, D. W.; Hardy, B. S.; Longcore, T.
2017-12-01
Satellite monitoring of visible emissions at night has been established as a useful capability for environmental monitoring and mapping the global human footprint. Pioneering work using Defense Meteorological Support Program (DMSP) sensors has been followed by new work using the more capable Visible Infrared Imaging Radiometer Suite (VIIRS). Beginning in 2014, we have been investigating the ability of small visible light cameras on CubeSats to contribute to nighttime Earth science studies via point-and-stare imaging. This paper summarizes our recent research using a common suite of simple visible cameras on several AeroCube satellites to carry out nighttime observations of urban areas and natural gas flares, nighttime weather (including lighting), and fishing fleet lights. Example results include: urban image examples, the utility of color imagery, urban lighting change detection, and multi-frame sequences imaging nighttime weather and large ocean areas with extensive fishing vessel lights. Our results show the potential for CubeSat sensors to improve monitoring of urban growth, light pollution, energy usage, the urban-wildland interface, the improvement of electrical power grids in developing countries, light-induced fisheries, and oil industry flare activity. In addition to orbital results, the nighttime imaging capabilities of new CubeSat sensors scheduled for launch in October 2017 are discussed.
Herrera, Pedro Javier; Pajares, Gonzalo; Guijarro, Maria; Ruz, José J.; Cruz, Jesús M.; Montes, Fernando
2009-01-01
This paper describes a novel feature-based stereovision matching process based on a pair of omnidirectional images in forest stands acquired with a stereovision sensor equipped with fish-eye lenses. The stereo analysis problem consists of the following steps: image acquisition, camera modelling, feature extraction, image matching and depth determination. Once the depths of significant points on the trees are obtained, the growing stock volume can be estimated by considering the geometrical camera modelling, which is the final goal. The key steps are feature extraction and image matching. This paper is devoted solely to these two steps. At a first stage a segmentation process extracts the trunks, which are the regions used as features, where each feature is identified through a set of attributes of properties useful for matching. In the second step the features are matched based on the application of the following four well known matching constraints, epipolar, similarity, ordering and uniqueness. The combination of the segmentation and matching processes for this specific kind of sensors make the main contribution of the paper. The method is tested with satisfactory results and compared against the human expert criterion. PMID:22303134
HYDRODYNAMIC SIMULATIONS OF H ENTRAINMENT AT THE TOP OF He-SHELL FLASH CONVECTION
DOE Office of Scientific and Technical Information (OSTI.GOV)
Woodward, Paul R.; Lin, Pei-Hung; Herwig, Falk, E-mail: paul@lcse.umn.edu, E-mail: fherwig@uvic.ca
2015-01-01
We present the first three-dimensional, fully compressible gas-dynamics simulations in 4π geometry of He-shell flash convection with proton-rich fuel entrainment at the upper boundary. This work is motivated by the insufficiently understood observed consequences of the H-ingestion flash in post-asymptotic giant branch (post-AGB) stars (Sakurai's object) and metal-poor AGB stars. Our investigation is focused on the entrainment process at the top convection boundary and on the subsequent advection of H-rich material into deeper layers, and we therefore ignore the burning of the proton-rich fuel in this study. We find that for our deep convection zone, coherent convective motions of nearmore » global scale appear to dominate the flow. At the top boundary convective shear flows are stable against Kelvin-Helmholtz instabilities. However, such shear instabilities are induced by the boundary-layer separation in large-scale, opposing flows. This links the global nature of thick shell convection with the entrainment process. We establish the quantitative dependence of the entrainment rate on grid resolution. With our numerical technique, simulations with 1024{sup 3} cells or more are required to reach a numerical fidelity appropriate for this problem. However, only the result from the 1536{sup 3} simulation provides a clear indication that we approach convergence with regard to the entrainment rate. Our results demonstrate that our method, which is described in detail, can provide quantitative results related to entrainment and convective boundary mixing in deep stellar interior environments with very stiff convective boundaries. For the representative case we study in detail, we find an entrainment rate of 4.38 ± 1.48 × 10{sup –13} M {sub ☉} s{sup –1}.« less
Li, Ai-Jun; Dinh, Thu T.; Jansen, Heiko T.; Ritter, Sue
2013-01-01
Previously, we investigated the role of neuropeptide Y and leptin-sensitive networks in the mediobasal hypothalamus in sleep and feeding and found profound homeostatic and circadian deficits with an intact suprachiasmatic nucleus. We propose that the arcuate nuclei (Arc) are required for the integration of homeostatic circadian systems, including temperature and activity. We tested this hypothesis using saporin toxin conjugated to leptin (Lep-SAP) injected into Arc in rats. Lep-SAP rats became obese and hyperphagic and progressed through a dynamic phase to a static phase of growth. Circadian rhythms were examined over 49 days during the static phase. Rats were maintained on a 12:12-h light-dark (LD) schedule for 13 days and, thereafter, maintained in continuous dark (DD). After the first 13 days of DD, food was restricted to 4 h/day for 10 days. We found that the activity of Lep-SAP rats was arrhythmic in DD, but that food anticipatory activity was, nevertheless, entrainable to the restricted feeding schedule, and the entrained rhythm persisted during the subsequent 3-day fast in DD. Thus, for activity, the circuitry for the light-entrainable oscillator, but not for the food-entrainable oscillator, was disabled by the Arc lesion. In contrast, temperature remained rhythmic in DD in the Lep-SAP rats and did not entrain to restricted feeding. We conclude that the leptin-sensitive network that includes the Arc is required for entrainment of activity by photic cues and entrainment of temperature by food, but is not required for entrainment of activity by food or temperature by photic cues. PMID:23986359
NASA Astrophysics Data System (ADS)
Eastman, R. M.; Wood, R.
2017-12-01
This study observes the 24-hour Lagrangian evolution of stratocumulus cloud amount and PBL depth in four eastern subtropical ocean basins: the NE Pacific, SE Pacific, SE Atlantic, and E Indian. Nearly 170,000 trajectories are computed using the 2-D wind field at 925mb and cloud properties are sampled along these trajectories twice daily as the A-Train satellite constellation passes overhead. Concurrent measurements of the overlying humidity and temperature profiles are interpolated from the ERA-Interim reanalysis grids. Cloud properties are sampled by MODIS and a measure of planetary boundary layer (PBL) depth is calculated using MODIS cloud top temperatures, CALIPSO lidar observations of cloud top heights, and ERA-Interim sea surface temperatures. High humidity overlying the PBL can reduce cloud top cooling by counteracting radiative cooling and by reducing evaporation within the entrainment zone. Both of these effects can slow the entrainment rate and change cloud evolution. To discern which effect is more important the humidity profile is broken into two distinct components: the specific humidity directly above the inversion, which is entraining into the boundary layer, and the column of specific humidity above that layer, which is radiatively interacting with the PBL, but not directly entraining. These two measures of humidity are compared in the Lagrangian framework. Results suggest that humidity above the PBL has a stronger effect on the Lagrangian PBL deepening rate compared to lower tropospheric stability. A comparison of PBL deepening rates driven by the entraining humidity versus the radiating humidity shows that the radiative effects of overlying humidity are dominant with respect to entrainment. However, the entraining effects of humidity are more important in prolonging cloud lifetime.
NASA Astrophysics Data System (ADS)
Zhang, Wei; He, Zhiguo; Jiang, Houshuo
2017-11-01
Time-resolved particle image velocimetry (PIV) has been used to measure instantaneous two-dimensional velocity vector fields of laboratory-generated turbulent buoyant plumes in linearly stratified saltwater over extended periods of time. From PIV-measured time-series flow data, characteristics of plume mean flow and turbulence have been quantified. To be specific, maximum plume penetration scaling and entrainment coefficient determined from the mean flow agree well with the theory based on the entrainment hypothesis for buoyant plumes in stratified fluids. Besides the well-known persistent entrainment along the plume stem (i.e., the 'plume-stem' entrainment), the mean plume velocity field shows persistent entrainment along the outer edge of the plume cap (i.e., the 'plume-cap' entrainment), thereby confirming predictions from previous numerical simulation studies. To our knowledge, the present PIV investigation provides the first measured flow field data in the plume cap region. As to measured plume turbulence, both the turbulent kinetic energy field and the turbulence dissipation rate field attain their maximum close to the source, while the turbulent viscosity field reaches its maximum within the plume cap region; the results also show that maximum turbulent viscosity scales as νt,max = 0.030(B/N)1/2, where B is source buoyancy flux and N is ambient buoyancy frequency. These PIV data combined with previously published numerical simulation results have implications for understanding the roles of hydrothermal plume turbulence, i.e. plume turbulence within the cap region causes the 'plume-cap' entrainment that plays an equally important role as the 'plume-stem' entrainment in supplying the final volume flux at the plume spreading level.
Nozaradan, Sylvie; Peretz, Isabelle; Keller, Peter E.
2016-01-01
The current study aims at characterizing the mechanisms that allow humans to entrain the mind and body to incoming rhythmic sensory inputs in real time. We addressed this unresolved issue by examining the relationship between covert neural processes and overt behavior in the context of musical rhythm. We measured temporal prediction abilities, sensorimotor synchronization accuracy and neural entrainment to auditory rhythms as captured using an EEG frequency-tagging approach. Importantly, movement synchronization accuracy with a rhythmic beat could be explained by the amplitude of neural activity selectively locked with the beat period when listening to the rhythmic inputs. Furthermore, stronger endogenous neural entrainment at the beat frequency was associated with superior temporal prediction abilities. Together, these results reveal a direct link between cortical and behavioral measures of rhythmic entrainment, thus providing evidence that frequency-tagged brain activity has functional relevance for beat perception and synchronization. PMID:26847160
Nozaradan, Sylvie; Peretz, Isabelle; Keller, Peter E
2016-02-05
The current study aims at characterizing the mechanisms that allow humans to entrain the mind and body to incoming rhythmic sensory inputs in real time. We addressed this unresolved issue by examining the relationship between covert neural processes and overt behavior in the context of musical rhythm. We measured temporal prediction abilities, sensorimotor synchronization accuracy and neural entrainment to auditory rhythms as captured using an EEG frequency-tagging approach. Importantly, movement synchronization accuracy with a rhythmic beat could be explained by the amplitude of neural activity selectively locked with the beat period when listening to the rhythmic inputs. Furthermore, stronger endogenous neural entrainment at the beat frequency was associated with superior temporal prediction abilities. Together, these results reveal a direct link between cortical and behavioral measures of rhythmic entrainment, thus providing evidence that frequency-tagged brain activity has functional relevance for beat perception and synchronization.
NASA Technical Reports Server (NTRS)
Shy, Shenqyang S.
1990-01-01
The existence and persistence of marine stratocumulus play a significant role in the overall energy budget of the earth. Their stability and entrainment process are important in global climate studies, as well as for local weather forecasting. The purposes of the experimental simulations are to study this process and to address this paradox. The effects of buoyancy reversal is investigated, followed by two types of experiments. An instability experiment involves the behavior of a fully turbulent wake near the inversion generated by a sliding plate. Due to buoyancy reversal, the heavy, mixed fluid starts to sink, turning the potential energy created by the mixing process into kinetic energy, thereby increasing the entrainment rate. An entrainment experiment, using a vertically oscillating grid driven by a controllable speed motor, produces many eddy-induced entrainments at a surface region on scales much less than the depth of the layer.
Measurements of near-bed intra-wave sediment entrainment above vortex ripples
NASA Astrophysics Data System (ADS)
Thorne, Peter D.; Davies, Alan G.; Williams, Jon J.
2003-10-01
In general, descriptions of suspended sediment transport beneath surface waves are based on the turbulent diffusion concept. However, it is recognised that this approach is questionable for the suspension of sediment when the seabed is rippled. In this case, at least if the ripples are sufficiently steep, the entrainment process is likely to be well organised, and associated with vortex formation and shedding from the ripples. To investigate the entrainment process above ripples, a study was carried out in a large-scale wave flume facility. Utilising acoustic techniques, visualisations of the intra-wave sediment entrainment above vortex ripples have been generated. The observations provide a detailed description of entrainment, which is interpreted here in relation to the process of vortex formation and shedding. It is anticipated that such measurements will contribute to the development of improved physical process models of sediment transport in the rippled bed regime.
Zydlewski, Joseph D.; Gorsky, Dimitry; Balsey, David
2016-01-01
Seasonal and daily vertical activity of lake whitefish Coregonus clupeaformis was studied in Clear Lake, Maine (253 ha), using acoustic telemetry from November 2004 to June 2009. Twenty adult lake whitefish were tagged with acoustic tags that had either a depth sensor or both depth and temperature sensors to assess vertical habitat use at a seasonal and daily resolution. Vertical habitat selection varied seasonally and was strongly influenced by temperature. Between December and April, when the lake was covered with ice, surface temperature was below 2°C and tagged individuals occupied deep areas of the lake (∼15 m). After ice-out, fish ascended into shallow waters (∼5 m), responding to increased water temperature and possibly to greater foraging opportunity. When surface water temperatures exceeded 20°C, fish descended below the developing thermocline (∼9 m), where they remained until surface temperatures fell below 20°C; fish then ascended into shallower depths, presumably for feeding and spawning. Through the winter, fish remained in thermal habitats that were warmer than the surface temperatures; in the summer, they selected depths with thermal habitats below 15°C. Though the amplitude varied greatly across seasons, lake whitefish displayed a strong diurnal pattern of activity as measured by vertical velocities. Fish were twofold more active during spring, summer, and fall than during winter. Lake whitefish exhibited diel vertical migrations, rising in the water column during nighttime and occupying deeper waters during the day. This pattern was more pronounced in the spring and fall and far less prominent during winter and summer. The strong linkage between temperature and habitat use may limit the current range of lake whitefish and may be directly impacted by climatic change.
Federal Register 2010, 2011, 2012, 2013, 2014
2011-02-04
... Nonattainment and Maintenance Areas'' (EPA-420-B-10-040, December 2010). \\2\\ For estimating road dust from... maintenance areas and any PM 2.5 nonattainment and maintenance areas where re-entrained road dust is a... January 2011 AP-42 Method for Estimating Re-Entrained Road Dust From Paved Roads AGENCY: Environmental...
Comparison of entrainment in constant volume and constant flux dense currents over sloping bottoms
NASA Astrophysics Data System (ADS)
Bhaganagar, K.; Nayamatullah, M.; Cenedese, C.
2014-12-01
Three dimensional high resolution large eddy simulations (LES) are employed to simulate lock-exchange and constant flux dense flows over inclined surface with the aim of investigating, visualizing and describing the turbulent structure and the evolution of bottom-propagating compositional density current at the channel bottom. The understanding of dynamics of density current is largely determined by the amount of interfacial mixing or entrainment between the ambient and dense fluids. No previous experimental or numerical studies have been done to estimate entrainment in classical lock-exchange system. The differences in entrainment between the lock-exchange and constant flux are explored. Comparing the results of flat bed with inclined surface results, flow exhibits significant differences near the leading edge or nose of the front of the density currents due to inclination of surface. Further, the instabilities are remarkably enhanced resulting Kelvin-Helmholtz and lobe-cleft type of instabilities arises much earlier in time. In this study, a brief analysis of entrainment on lock-exchange density current is presented using different bed slopes and a set of reduced gravity values (g'). We relate the entrainment value with different flow parameters such as Froude number (Fr) and Reynolds number (Re).
Impact of reduced near-field entrainment of overpressured volcanic jets on plume development
Saffaraval, Farhad; Solovitz, Stephen A.; Ogden, Darcy E.; Mastin, Larry G.
2012-01-01
Volcanic plumes are often studied using one-dimensional analytical models, which use an empirical entrainment ratio to close the equations. Although this ratio is typically treated as constant, its value near the vent is significantly reduced due to flow development and overpressured conditions. To improve the accuracy of these models, a series of experiments was performed using particle image velocimetry, a high-accuracy, full-field velocity measurement technique. Experiments considered a high-speed jet with Reynolds numbers up to 467,000 and exit pressures up to 2.93 times atmospheric. Exit gas densities were also varied from 0.18 to 1.4 times that of air. The measured velocity was integrated to determine entrainment directly. For jets with exit pressures near atmospheric, entrainment was approximately 30% less than the fully developed level at 20 diameters from the exit. At pressures nearly three times that of the atmosphere, entrainment was 60% less. These results were introduced into Plumeria, a one-dimensional plume model, to examine the impact of reduced entrainment. The maximum column height was only slightly modified, but the critical radius for collapse was significantly reduced, decreasing by nearly a factor of two at moderate eruptive pressures.
Role of entrainment in convectively-coupled equatorial waves in an aquaplanet model
NASA Astrophysics Data System (ADS)
Peatman, Simon; Methven, John; Woolnough, Steve
2016-04-01
Equatorially-trapped waves are known to be one of the key phenomena in determining the distribution of convective precipitation in the tropics as well as being crucial to the dynamics of the Madden-Julian Oscillation. However, numerical weather prediction models struggle to sustain such waves for a realistic length of time, which has a significant impact on forecasting precipitation for regions such as equatorial Africa. It has been found in the past that enhancing the rate of moisture entrainment can improve certain aspects of parametrized tropical convection in climate models. A parameter F controls the rate of entrainment into the convective plume for deep- and mid-level convection, with F = 1 denoting the control case. Here it is found in an aquaplanet simulation that F > 1 produces more convective precipitation at all zonal wavenumbers. Furthermore, Kelvin wave activity increases for waves with low frequency and zonal wavenumber but is slightly suppressed for shorter, higher-frequency waves, and vice versa for westward-propagating waves. A change in entrainment rate also brings about a change in the basic state wind and humidity fields. Therefore, the question arises as to whether changes in wave activity are due directly to changes in the coupling to the humidity in the waves by entrainment or due to changes in the basic state. An experiment was devised in which the convective parametrization scheme is allowed to entrain a weighted sum of the environmental humidity and a prescribed zonally-symmetric climatology, with a parameter α controlling the extent of the decoupling from the environment. Experiments with this new mechanism in the parametrization scheme reveal a complex relationship. For long waves at low frequency (period > ˜13 days), removing zonal asymmetry in the humidity seen by the entrainment scheme has very little influence on the ratio of eastward- to westward-propagating power. At higher frequencies and zonal wavenumbers, removing this zonal asymmetry acts to suppress wave activity. Enhanced entrainment rate relative to the control case is also shown to slow the phase speed of Kelvin waves by around 20%. The phase speed depends also on the decoupling parameter α, with the minimum speed occurring around the special case α = 1 - 1/F , when the basic state humidity is entrained at the enhanced rate and perturbations from it are entrained at the control rate.
NASA Astrophysics Data System (ADS)
Heyl, T. P.; Nizinski, M. S.; Kinlan, B. P.; Shank, T. M.
2016-02-01
Submarine canyons are important productive habitats in the deep-sea, as well as downslope conduits for transporting sediment and organic material that enhances local and regional species diversity, including species and ecosystems vulnerable to anthropogenic activities. In 2012 and 2013, we documented and characterized deep-sea coral and sponge ecosystems in virtually unexplored northeast and mid-Atlantic canyons using WHOI's TowCam towed imaging system on the FSV Bigelow. Specifically, thirty-eight digital image TowCam surveys were completed in 10 canyons, with more than 91,000 images documenting not only deep-sea coral and sponge ecosystems and habitat features, but also anthropogenic debris. Canyons surveyed cover most of the latitudinal range of the northeast US region and include Toms Canyon complex, Ryan, Veatch, Gilbert, Powell, and Munson canyons. Each of these canyon hosted debris across depths of 550 to 2100m, consisting mostly of fisheries equipment, including fishing lines, traps, and nets. Potentially-land-based debris (e.g., plastic bags and magazines) was also present in all canyons surveyed. These substrates likely enhance colonization and often served as habitat for specific sessile and mobile species. Comparisons of debris in these canyons revealed depth-related differences, likely due to offshore extent of fishing activities, and will be compared to density and abundances of other deep-sea environments. The occurrence of anthropogenic debris on Northeast US canyon floors suggests major sources via transport ship and fishing-related activities and perhaps the rapid transport of debris through near-shore zones and entrainment in bottom currents.
NASA Astrophysics Data System (ADS)
Guo, Xiaohao; Lu, Chunsong; Zhao, Tianliang; Liu, Yangang; Zhang, Guang Jun; Luo, Shi
2018-01-01
This study investigates the influence of entrainment rate (λ) on relative dispersion (ε) of cloud droplet size distributions (CDSD) in the 99 growing precipitating deep convective clouds during TOGA-COARE. The results show that entrainment suppresses ε, which is opposite to the traditional understanding that entrainment-mixing broadens CDSD. To examine how the relationship between ε and λ is affected by droplets with different sizes, CDSDs are divided into three portions with droplet radius < 3.75 μm (N1), radius in the range of 3.75-12.75 μm (N2) and 12.75-23.25 μm (N3), respectively. The results indicate that although the droplet concentration at different sizes generally decrease simultaneously as λ increases, the variation of standard deviation (σ) depends mainly on N3, while the mean radius (rm) decreases with decreasing N3, but increases with decreasing N1. So the influence of entrainment on CDSD causes a more dramatical decrease in σ than that in rm, and further leads to the decrease of ε as entrainment enhances. In addition, a conceptual model of CDSD evolution during entrainment-mixing processes is developed to illustrate the possible scenarios entailing different relationships between ε and λ. The number concentration of small droplets and the degree of evaporation of small droplets are found to be key factors that shift the sign (i.e., positive or negative) of the ε-λ relationship.
Light and the human circadian clock.
Roenneberg, Till; Kantermann, Thomas; Juda, Myriam; Vetter, Céline; Allebrandt, Karla V
2013-01-01
The circadian clock can only reliably fulfil its function if it is stably entrained. Most clocks use the light-dark cycle as environmental signal (zeitgeber) for this active synchronisation. How we think about clock function and entrainment has been strongly influenced by the early concepts of the field's pioneers, and the astonishing finding that circadian rhythms continue a self-sustained oscillation in constant conditions has become central to our understanding of entrainment.Here, we argue that we have to rethink these initial circadian dogmas to fully understand the circadian programme and how it entrains. Light is also the prominent zeitgeber for the human clock, as has been shown experimentally in the laboratory and in large-scale epidemiological studies in real life, and we hypothesise that social zeitgebers act through light entrainment via behavioural feedback loops (zeitnehmer). We show that human entrainment can be investigated in detail outside of the laboratory, by using the many 'experimental' conditions provided by the real world, such as daylight savings time, the 'forced synchrony' imposed by the introduction of time zones, or the fact that humans increasingly create their own light environment. The conditions of human entrainment have changed drastically over the past 100 years and have led to an increasing discrepancy between biological and social time (social jetlag). The increasing evidence that social jetlag has detrimental consequences for health suggests that shift-work is only an extreme form of circadian misalignment, and that the majority of the population in the industrialised world suffers from a similarly 'forced synchrony'.
Forward, Richard B; Sanchez, Kevin G; Riley, Paul P
2016-02-01
The subtidal crab Dyspanopeus sayi has a circadian rhythm in larval release with a free-running period of 24.1 h. Under constant conditions, eggs hatch primarily in the 4-h interval after the time of sunset. The study tested the new model for entrainment in subtidal crabs, which proposes that the female perceives the environmental cycles and entrains the endogenous rhythm in the embryos. Results verified the model for D. sayi. Hatching by embryos collected from the field when they had not yet developed eye pigments, and were kept in constant conditions attached to their mother, exhibited the circadian hatching rhythm. Attached embryos could also be entrained to a new photoperiod in the laboratory before they developed eye pigments. Further, mature embryos removed from the female hatched rhythmically, indicating that a circadian rhythm resides in the embryos. However, if mature embryos with eye pigments were removed from the female and exposed to a new light-dark cycle, they could not be entrained to the new cycle; rather, they hatched according to the timing of the original light-dark cycle. Nevertheless, detached, mature embryos would entrain to a new light-dark cycle if they were in chemical, but not physical, contact with the female. Thus, the female perceives the light-dark cycle, and uses chemical cues to entrain the circadian rhythm of hatching by the embryos. © 2016 Marine Biological Laboratory.
A Heuristic Probabilistic Approach to Estimating Size-Dependent Mobility of Nonuniform Sediment
NASA Astrophysics Data System (ADS)
Woldegiorgis, B. T.; Wu, F. C.; van Griensven, A.; Bauwens, W.
2017-12-01
Simulating the mechanism of bed sediment mobility is essential for modelling sediment dynamics. Despite the fact that many studies are carried out on this subject, they use complex mathematical formulations that are computationally expensive, and are often not easy for implementation. In order to present a simple and computationally efficient complement to detailed sediment mobility models, we developed a heuristic probabilistic approach to estimating the size-dependent mobilities of nonuniform sediment based on the pre- and post-entrainment particle size distributions (PSDs), assuming that the PSDs are lognormally distributed. The approach fits a lognormal probability density function (PDF) to the pre-entrainment PSD of bed sediment and uses the threshold particle size of incipient motion and the concept of sediment mixture to estimate the PSDs of the entrained sediment and post-entrainment bed sediment. The new approach is simple in physical sense and significantly reduces the complexity and computation time and resource required by detailed sediment mobility models. It is calibrated and validated with laboratory and field data by comparing to the size-dependent mobilities predicted with the existing empirical lognormal cumulative distribution function (CDF) approach. The novel features of the current approach are: (1) separating the entrained and non-entrained sediments by a threshold particle size, which is a modified critical particle size of incipient motion by accounting for the mixed-size effects, and (2) using the mixture-based pre- and post-entrainment PSDs to provide a continuous estimate of the size-dependent sediment mobility.
NASA Astrophysics Data System (ADS)
Hirota, N.; Takayabu, Y. N.; Watanabe, M.; Kimoto, M.; Chikira, M.
2013-12-01
This study shows that a proper treatment of convective entrainment is essential in determining spatial distributions and temporal variations of precipitation by numerical experiments. They have performed and compared four experiments with different entrainment characteristics: a control (Ctl), no entrainment (NoEnt), original Arakawa Schubert (AS), and AS with simple empirical suppression of convection (ASRH). The fractional entrainment rate of AS and ASRH are constant for each cloud type and are very small near cloud base compared to Ctl, in which half of buoyancy-generated energy is consumed by the entrainment. Ctl well reproduces the spatial and temporal variations, whereas NoEnt and AS, which are very similar to each other, significantly underestimated the variations with the so-called the double ITCZ problem. The enhanced variations in Ctl are due to the larger entrainment that strengthens the coupling of convection and free tropospheric humidity. Time variations are also more realistic in Ctl; mid-height convection moistens mid-troposphere and large precipitation events occur after sufficient moisture is available. In contrast, deep convection is more frequent but with smaller precipitation amount in NoEnt and AS. ASRH shows smaller spatial but excessive temporal variations suggesting that its empirical suppression condition is too simple and a more sophisticated formulation is required for more realistic precipitation variations. This study was supported by the Ministry of Education, Culture, Sports, Science and Technology (GRENE), and by the Ministry of the Environment (2A-1201), Japan.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Guo, Xiaohao; Lu, Chunsong; Zhao, Tianliang
We investigate the influence of entrainment rate (λ) on relative dispersion (ε) of cloud droplet size distributions (CDSD) in the 99 growing precipitating deep convective clouds during TOGA-COARE. The results show that entrainment suppresses ε, which is opposite to the traditional understanding that entrainment-mixing broadens CDSD. To examine how the relationship between ε and λ is affected by droplets with different sizes, CDSDs are divided into three portions with droplet radius < 3.75 μm (N 1), radius in the range of 3.75–12.75 μm (N 2) and 12.75–23.25 μm (N 3), respectively. Our results indicate that although the droplet concentration atmore » different sizes generally decrease simultaneously as λ increases, the variation of standard deviation (σ) depends mainly on N 3, while the mean radius (r m) decreases with decreasing N 3, but increases with decreasing N 1. So the influence of entrainment on CDSD causes a more dramatical decrease in σ than that in r m, and further leads to the decrease of ε as entrainment enhances. In addition, a conceptual model of CDSD evolution during entrainment-mixing processes is developed to illustrate the possible scenarios entailing different relationships between ε and λ. The number concentration of small droplets and the degree of evaporation of small droplets are found to be key factors that shift the sign (i.e., positive or negative) of the ε-λ relationship.« less
Guo, Xiaohao; Lu, Chunsong; Zhao, Tianliang; ...
2017-09-23
We investigate the influence of entrainment rate (λ) on relative dispersion (ε) of cloud droplet size distributions (CDSD) in the 99 growing precipitating deep convective clouds during TOGA-COARE. The results show that entrainment suppresses ε, which is opposite to the traditional understanding that entrainment-mixing broadens CDSD. To examine how the relationship between ε and λ is affected by droplets with different sizes, CDSDs are divided into three portions with droplet radius < 3.75 μm (N 1), radius in the range of 3.75–12.75 μm (N 2) and 12.75–23.25 μm (N 3), respectively. Our results indicate that although the droplet concentration atmore » different sizes generally decrease simultaneously as λ increases, the variation of standard deviation (σ) depends mainly on N 3, while the mean radius (r m) decreases with decreasing N 3, but increases with decreasing N 1. So the influence of entrainment on CDSD causes a more dramatical decrease in σ than that in r m, and further leads to the decrease of ε as entrainment enhances. In addition, a conceptual model of CDSD evolution during entrainment-mixing processes is developed to illustrate the possible scenarios entailing different relationships between ε and λ. The number concentration of small droplets and the degree of evaporation of small droplets are found to be key factors that shift the sign (i.e., positive or negative) of the ε-λ relationship.« less
Emergency Fish Restoration Project; Final Report 2002.
DOE Office of Scientific and Technical Information (OSTI.GOV)
LeCaire, Richard
Lake Roosevelt is a 151-mile impoundment created by the construction of Grand Coulee Dam during the early 1940's. The construction of the dam permanently and forever blocked the once abundant anadromous fish runs to the upper Columbia Basin. Since the construction of Grand Coulee Dam in 1943 and Chief Joseph Dam in 1956 this area is known as the blocked area. The blocked area is totally dependant upon resident fish species to provide a subsistence, recreational and sport fishery. The sport fishery of lake Roosevelt is varied but consists mostly of Rainbow trout (Oncorhynchus mykiss), Kokanee salmon (Oncorhynchus nerka), Walleyemore » (Stizostedion vitreum) Small mouth bass (Micropterus dolomieui) and white sturgeon (Acipenser transmontanus). Currently, Bonneville Power Administration funds and administers two trout/kokanee hatcheries on Lake Roosevelt. The Spokane Tribe of Indians operates one hatchery, the Washington Department of Fish and Wildlife the other. In addition to planting fish directly into Lake Roosevelt, these two hatcheries also supply fish to a net pen operation that also plants the lake. The net pen project is administered by Bonneville Power funded personnel but is dependant upon volunteer labor for daily feeding and monitoring operations. This project has demonstrated great success and is endorsed by the Colville Confederated Tribes, the Spokane Tribe of Indians, the Washington Department of Fish and Wildlife, local sportsmen associations, and the Lake Roosevelt Forum. The Lake Roosevelt/Grand Coulee Dam area is widely known and its diverse fishery is targeted by large numbers of anglers annually to catch rainbow trout, kokanee salmon, small mouth bass and walleye. These anglers contribute a great deal to the local economy by fuel, grocery, license, tackle and motel purchases. Because such a large portion of the local economy is dependant upon the Lake Roosevelt fishery and tourism, any unusual operation of the Lake Roosevelt system may have a substantial impact to the economy. During the past several years the Chief Joseph Kokanee Enhancement project has been collecting data pertaining to fish entraining out of the lake through Grand Coulee Dam. During 1996 and 1997 the lake was deeply drawn down to accommodate the limited available water during a drought year and for the highly unusual draw-down of Lake Roosevelt during the critical Northwest power shortage. The goal of the project is to enhance the resident rainbow trout fishery in Lake Roosevelt lost as a result of the unusual operation of Grand Coulee dam during the drought/power shortage.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vucelick, Jessica A.; McMichael, Geoffrey A.
2003-11-01
The Pacific Northwest National Laboratory (PNNL) evaluated the fish screens at the Nursery Bridge Fishway and at the newly constructed Garden City-Lowden II site west of Walla Walla, Washington in the Walla Walla River Basin during the spring and summer of 2003. Both fish screen facilities were examined to determine if they were being effectively operated and maintained to provide for safe fish passage. At the Nursery Bridge Fishway, the screens were evaluated specifically to determine whether the louvers that aid in controlling water flow from behind the screens could be adjusted so that the screens would meet fish protectionmore » criteria. Data were collected to determine whether velocities in front of the screens and in the bypasses met current National Oceanic and Atmospheric Administration Fisheries ((NOAA Fisheries), formerly National Marine Fisheries Service (NMFS)) criteria to promote safe and timely fish passage before and after changing the louver settings. Rock weirs downstream of the dam were also evaluated to determine whether they might impede upstream migration of juvenile salmonids during low flow conditions. At the Garden City-Lowden II site, data were collected to establish a baseline for operating conditions and to determine whether any changes in the baffle settings were needed. Based on the results of our studies in 2003, we concluded: Nursery Bridge Site: (1) 68% of the initial velocity measurements on the west screen exceeded the NOAA Fisheries criteria of 0.4 ft/s for approach velocity; (2) A simple adjustment of the existing louvers was not sufficient to fix the problem; (3) The sediment and debris load in the river upstream of the screens exceeded the design criteria for the site, which had frequent breakdowns in the screen cleaning systems; and (4) The rock weirs downstream of the dam would not be expected to impede upstream movement of juvenile fish during low flow conditions. Garden City-Lowden II: (1) The flat inclined-plate screen design appeared to be efficiently protecting juvenile fish from entrainment, impingement and migration delay; (2) Approach velocities met the NMFS criteria of less than 0.4 ft/s in June, and no change in baffle settings was needed; (3) Sweep velocities were generally lower than approach velocities and did not increase toward the downstream end of the site; and (4) The automated cleaning system at the Garden City-Lowden II site works adequately when sediment loads are low, though its effectiveness at cleaning the screens decreases as sediment and debris loads and algal growth increase.« less
Underwater Sensor Network Redeployment Algorithm Based on Wolf Search
Jiang, Peng; Feng, Yang; Wu, Feng
2016-01-01
This study addresses the optimization of node redeployment coverage in underwater wireless sensor networks. Given that nodes could easily become invalid under a poor environment and the large scale of underwater wireless sensor networks, an underwater sensor network redeployment algorithm was developed based on wolf search. This study is to apply the wolf search algorithm combined with crowded degree control in the deployment of underwater wireless sensor networks. The proposed algorithm uses nodes to ensure coverage of the events, and it avoids the prematurity of the nodes. The algorithm has good coverage effects. In addition, considering that obstacles exist in the underwater environment, nodes are prevented from being invalid by imitating the mechanism of avoiding predators. Thus, the energy consumption of the network is reduced. Comparative analysis shows that the algorithm is simple and effective in wireless sensor network deployment. Compared with the optimized artificial fish swarm algorithm, the proposed algorithm exhibits advantages in network coverage, energy conservation, and obstacle avoidance. PMID:27775659
Evaluation of Boundary Dam spillway using an Autonomous Sensor Fish Device
DOE Office of Scientific and Technical Information (OSTI.GOV)
Deng, Z. D.; Duncan, J. P.; Arnold, J. L.
Fish passage conditions over spillways are important for the operations of hydroelectric dams because spillways are usually considered as a common alternative passage route to divert fish from the turbines. The objectives of this study were to determine the relative potential of fish injury during spillway passage both before and after the installation of baffle blocks at Boundary Dam, and to provide validation data for a model being used to predict total dissolved gas levels. Sensor Fish were deployed through a release system mounted on the face of the dam in the forebay. Three treatments, based on the lateral positionmore » on the spillway, were evaluated for both the baseline and post-modification evaluations: Left Middle, Right Middle, and Right. No significant acceleration events were detected in the forebay, gate, or transition regions for any release location; events were only observed on the chute and in the tailrace. Baseline acceleration events observed in the chute region were all classified as strikes, whereas post-modification events included strike and shear on the chute. While the addition of baffle blocks increased the number of significant events observed on the spillway chute, overall fewer events were observed in the tailrace post-modification. Analysis of lateral positioning of passage indicated that the Right Middle treatment was potentially less injurious to fish based on relative frequency of significant events at each location. The construction of baffle blocks on the spillway visibly changed the flow regime. Prior to installation the flow jet was relatively thin, impacting the tailrace as a coherent stream that plunged deeply, possibly contributing to total dissolved gas production. Following baffle block construction, the discharge jet was more fragmented, potentially disrupting the plunge depth and decreasing the time that bubbles would be at depth in the plunge pool. The results in this study support the expected performance of the modified spillway chute: the addition of the baffle blocks generally lessened the depth and impact of entry. This study provides information that can be used to help design and operate spillways for improving fish passage conditions.« less
Speech entrainment enables patients with Broca’s aphasia to produce fluent speech
Hubbard, H. Isabel; Hudspeth, Sarah Grace; Holland, Audrey L.; Bonilha, Leonardo; Fromm, Davida; Rorden, Chris
2012-01-01
A distinguishing feature of Broca’s aphasia is non-fluent halting speech typically involving one to three words per utterance. Yet, despite such profound impairments, some patients can mimic audio-visual speech stimuli enabling them to produce fluent speech in real time. We call this effect ‘speech entrainment’ and reveal its neural mechanism as well as explore its usefulness as a treatment for speech production in Broca’s aphasia. In Experiment 1, 13 patients with Broca’s aphasia were tested in three conditions: (i) speech entrainment with audio-visual feedback where they attempted to mimic a speaker whose mouth was seen on an iPod screen; (ii) speech entrainment with audio-only feedback where patients mimicked heard speech; and (iii) spontaneous speech where patients spoke freely about assigned topics. The patients produced a greater variety of words using audio-visual feedback compared with audio-only feedback and spontaneous speech. No difference was found between audio-only feedback and spontaneous speech. In Experiment 2, 10 of the 13 patients included in Experiment 1 and 20 control subjects underwent functional magnetic resonance imaging to determine the neural mechanism that supports speech entrainment. Group results with patients and controls revealed greater bilateral cortical activation for speech produced during speech entrainment compared with spontaneous speech at the junction of the anterior insula and Brodmann area 47, in Brodmann area 37, and unilaterally in the left middle temporal gyrus and the dorsal portion of Broca’s area. Probabilistic white matter tracts constructed for these regions in the normal subjects revealed a structural network connected via the corpus callosum and ventral fibres through the extreme capsule. Unilateral areas were connected via the arcuate fasciculus. In Experiment 3, all patients included in Experiment 1 participated in a 6-week treatment phase using speech entrainment to improve speech production. Behavioural and functional magnetic resonance imaging data were collected before and after the treatment phase. Patients were able to produce a greater variety of words with and without speech entrainment at 1 and 6 weeks after training. Treatment-related decrease in cortical activation associated with speech entrainment was found in areas of the left posterior-inferior parietal lobe. We conclude that speech entrainment allows patients with Broca’s aphasia to double their speech output compared with spontaneous speech. Neuroimaging results suggest that speech entrainment allows patients to produce fluent speech by providing an external gating mechanism that yokes a ventral language network that encodes conceptual aspects of speech. Preliminary results suggest that training with speech entrainment improves speech production in Broca’s aphasia providing a potential therapeutic method for a disorder that has been shown to be particularly resistant to treatment. PMID:23250889
Rhythm as an affordance for the entrainment of movement.
Cummins, Fred
2009-01-01
A general account of rhythm in human behaviour is provided, according to which rhythm inheres in the affordance that a signal provides for the entrainment of movement on the part of a perceiver. This generic account is supported by an explication of the central concepts of affordance and entrainment. When viewed in this light, rhythm appears as the correct explanandum to account for coordinated behaviour in a wide variety of situations, including such core senses as dance and the production of music. Speech may appear to be only marginally rhythmical under such an account, but several experimental studies reveal that speech, too, has the potential to entrain movement. (c) 2009 S. Karger AG, Basel.
hydropower biological evaluation tools
DOE Office of Scientific and Technical Information (OSTI.GOV)
This software is a set of analytical tools to evaluate the physical and biological performance of existing, refurbished, or newly installed conventional hydro-turbines nationwide where fish passage is a regulatory concern. The current version is based on information collected by the Sensor Fish. Future version will include other technologies. The tool set includes data acquisition, data processing, and biological response tools with applications to various turbine designs and other passage alternatives. The associated database is centralized, and can be accessed remotely. We have demonstrated its use for various applications including both turbines and spillways
Pitti, Alexandre; Lungarella, Max; Kuniyoshi, Yasuo
2009-01-01
Pattern generators found in the spinal cord are no more seen as simple rhythmic oscillators for motion control. Indeed, they achieve flexible and dynamical coordination in interaction with the body and the environment dynamics giving to rise motor synergies. Discovering the mechanisms underlying the control of motor synergies constitutes an important research question not only for neuroscience but also for robotics: the motors coordination of high dimensional robotic systems is still a drawback and new control methods based on biological solutions may reduce their overall complexity. We propose to model the flexible combination of motor synergies in embodied systems via partial phase synchronization of distributed chaotic systems; for specific coupling strength, chaotic systems are able to phase synchronize their dynamics to the resonant frequencies of one external force. We take advantage of this property to explore and exploit the intrinsic dynamics of one specified embodied system. In two experiments with bipedal walkers, we show how motor synergies emerge when the controllers phase synchronize to the body's dynamics, entraining it to its intrinsic behavioral patterns. This stage is characterized by directed information flow from the sensors to the motors exhibiting the optimal situation when the body dynamics drive the controllers (mutual entrainment). Based on our results, we discuss the relevance of our findings for modeling the modular control of distributed pattern generators exhibited in the spinal cord, and for exploring the motor synergies in robots. PMID:20011216
NASA Astrophysics Data System (ADS)
Lucero, Catherine L.; Bentz, Dale P.; Hussey, Daniel S.; Jacobson, David L.; Weiss, W. Jason
Air entrainment is commonly added to concrete to help in reducing the potential for freeze thaw damage. It is hypothesized that the entrained air voids remain unsaturated or partially saturated long after the smaller pores fill with water. Small gel and capillary pores in the cement matrix fill quickly on exposure to water, but larger pores (entrapped and entrained air voids) require longer times or other methods to achieve saturation. As such, it is important to quantitatively determine the water content and degree of saturation in air entrained cementitious materials. In order to further investigate properties of cement-based mortar, a model based on Beer's Law has been developed to interpret neutron radiographs. This model is a powerful tool for analyzing images acquired from neutron radiography. A mortar with a known volume of aggregate, water to cement ratio and degree of hydration can be imaged and the degree of saturation can be estimated.
Noise facilitates transcriptional control under dynamic inputs.
Kellogg, Ryan A; Tay, Savaş
2015-01-29
Cells must respond sensitively to time-varying inputs in complex signaling environments. To understand how signaling networks process dynamic inputs into gene expression outputs and the role of noise in cellular information processing, we studied the immune pathway NF-κB under periodic cytokine inputs using microfluidic single-cell measurements and stochastic modeling. We find that NF-κB dynamics in fibroblasts synchronize with oscillating TNF signal and become entrained, leading to significantly increased NF-κB oscillation amplitude and mRNA output compared to non-entrained response. Simulations show that intrinsic biochemical noise in individual cells improves NF-κB oscillation and entrainment, whereas cell-to-cell variability in NF-κB natural frequency creates population robustness, together enabling entrainment over a wider range of dynamic inputs. This wide range is confirmed by experiments where entrained cells were measured under all input periods. These results indicate that synergy between oscillation and noise allows cells to achieve efficient gene expression in dynamically changing signaling environments. Copyright © 2015 Elsevier Inc. All rights reserved.
NASA Astrophysics Data System (ADS)
Mäder, A.; Fleischmann, A.; Fang, Ye; Ruck, W.; Krahl, J.
2012-05-01
In this work we analyzed the strength of the intermolecular forces between biodiesel and the entrainer and their influence on the entrainer's ability to interact with biodiesel. Furthermore we investigated the influence of the chemical structure of an entrainer to the interaction with biodiesel. For this purpose the activity coefficients γ∞ at infinite dilution of acids, aldehydes, ketones and alcohols in biodiesel were measured with the method of headspace gas chromatography (HSGC). Short-chained acids showed the highest interaction of the analyzed entrainers caused by their ability to build hydrogen bonds with biodiesel. Increased chain length of the acids cause reduced interaction with biodiesel, which is mainly due to the higher obstruction of the acid molecule and therefore the reduced ability to build hydrogen bonds with biodiesel. Aldehydes, ketones and alcohols showed lower interaction with biodiesel compared to the acids. Longer-chained alcohols showed increased interaction with biodiesel due to the raised London Forces and an inductive +I effect of the molecule chain.
Experimental Study of Load Carrying Capacity of Point Contacts at Zero Entrainment Velocity
NASA Technical Reports Server (NTRS)
Shogin, B. A.; Jones, W. R., Jr.; Kingsbury, E. P.; Jansen, M. J.; Prahl, J. M.
1998-01-01
A capacitance technique was used to monitor the film thickness separating two steel balls while subjecting the ball-ball contact to highly stressed, zero entrainment velocity conditions. Tests were performed in a nitrogen atmosphere and utilized 52100 steel balls and a polyalphaolefin lubricant. Capacitance to film thickness accuracy was verified under pure rolling conditions using established EHL theory. Zero entrainment velocity tests were performed at sliding speeds from 6.0 to 10.0 m/s and for sustained amounts of time to 28.8 min. The protective lubricant film separating the specimens at zero entrainment velocity had a film thickness between 0.10 to 0.14 microns (4 to 6 micro in.), which corresponded to a k value of 4. The formation of an immobile surface film formed by lubricant entrapment is discussed as an explanation of the load carrying capacity at zero entrainment velocity conditions, relevant to the ball-ball contacts occurring in retainerless ball bearings.
Speech Rhythms and Multiplexed Oscillatory Sensory Coding in the Human Brain
Gross, Joachim; Hoogenboom, Nienke; Thut, Gregor; Schyns, Philippe; Panzeri, Stefano; Belin, Pascal; Garrod, Simon
2013-01-01
Cortical oscillations are likely candidates for segmentation and coding of continuous speech. Here, we monitored continuous speech processing with magnetoencephalography (MEG) to unravel the principles of speech segmentation and coding. We demonstrate that speech entrains the phase of low-frequency (delta, theta) and the amplitude of high-frequency (gamma) oscillations in the auditory cortex. Phase entrainment is stronger in the right and amplitude entrainment is stronger in the left auditory cortex. Furthermore, edges in the speech envelope phase reset auditory cortex oscillations thereby enhancing their entrainment to speech. This mechanism adapts to the changing physical features of the speech envelope and enables efficient, stimulus-specific speech sampling. Finally, we show that within the auditory cortex, coupling between delta, theta, and gamma oscillations increases following speech edges. Importantly, all couplings (i.e., brain-speech and also within the cortex) attenuate for backward-presented speech, suggesting top-down control. We conclude that segmentation and coding of speech relies on a nested hierarchy of entrained cortical oscillations. PMID:24391472
NASA Astrophysics Data System (ADS)
Li, T.; Griffiths, W. D.
2016-03-01
In the casting of light alloys, the oxidised film on the melt surface can be folded due to surface turbulence, thus forming entrainment defects that have a significant negative effect on the mechanical properties of castings. Previous researchers reported that the surface film of Mg alloys formed in an atmosphere containing SF6 had a complicated structure composed of MgO and MgF2. The work reported here aims to investigate the behaviour of entrainment defects formed in magnesium alloys protected by SF6-containing atmospheres. Tensile test bars of commercial purity Mg were cast in an unsealed environment under a cover gas of pure SF6. 34Scanning electron microscopy (SEM) of the fracture surface of the test bars indicated entrainment defects that consisted of symmetrical films containing MgO, but also sulphur and fluorine. The results of these examinations of the symmetrical films were used to infer the potential formation and development of entrainment defects in commercial purity Mg alloy.
Air Entrainment in Steady Breaking Waves
NASA Astrophysics Data System (ADS)
Li, C. Y.; Duncan, J. H.; Wenz, A.; Full, O. E.
1997-11-01
Air entrainment due to steady breaking waves generated by fully submerged hydrofoils moving at constant speed and angle of attack is investigated experimentally. Three hydrofoils with the same shape (NACA 0012) but different chords (15, 20 and 30 cm) are used with Froude scaled operating conditions to generate the breaking waves. In this way, the effect of scale due to the combined influence of surface tension and viscosity on the bubble entrainment process is investigated. The bubbles are measured from plan-view and side-view 35-mm photographs of the wake. It is found that the number and average size of the bubbles increases dramatically with scale. High-speed movies of the turbulent breaking region that rides on the forward face of the wave are also used to observe bubble entrainment events. It is found that the bubbles are entrained periodically when the leading edge of the breaking region rushes forward and plunges over a pocket of air. This plunging process appears to become more frequent and more violent as the scale of the breaker increases.
APPLICATIONS OF AUTOMATED BIOMONITORING FOR WATERSHED MANAGEMENT
Over three decades of progress have been made since John Cairns and his associates first coined a new scientific endeavor known as automated biomonitoring. Implementations have ranged from designs for early warning of toxicity in wastewater discharges using fish as sensors, to co...
2003-08-19
KENNEDY SPACE CENTER, FLA. - Research team members aboard one of the watercraft being utilized to conduct underwater acoustic research in the Launch Complex 39 turn basin monitor some of the project's equipment just released into the water. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.
2003-08-18
KENNEDY SPACE CENTER, FLA. - Justin Manley, of the National Oceanic and Atmospheric Administration, is a member of the research team conducting underwater acoustic research in the Launch Complex 39 turn basin near Launch Pad 39A. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.
2003-08-19
KENNEDY SPACE CENTER, FLA. - Research team members aboard one of the watercraft being utilized to conduct underwater acoustic research in the Launch Complex 39 turn basin release some of the project's equipment into the water. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.
2003-08-19
KENNEDY SPACE CENTER, FLA. - Research team members aboard one of the watercraft being utilized to conduct underwater acoustic research in the Launch Complex 39 turn basin retrieve some of the project's equipment from the water. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.
2003-08-19
KENNEDY SPACE CENTER, FLA. - A research team member aboard one of the watercraft being utilized to conduct underwater acoustic research in the Launch Complex 39 turn basin lifts some of the project's equipment from the water. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.
2003-08-19
KENNEDY SPACE CENTER, FLA. - A research team member aboard one of the watercraft being utilized to conduct underwater acoustic research in the Launch Complex 39 turn basin releases some of the project's equipment into the water. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.
2003-08-19
KENNEDY SPACE CENTER, FLA. - Research team members aboard one of the watercraft being utilized to conduct underwater acoustic research in the Launch Complex 39 turn basin prepare to release some of the project's equipment into the water. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.
2003-08-19
KENNEDY SPACE CENTER, FLA. - Research team members aboard one of the watercraft being utilized to conduct underwater acoustic research in the Launch Complex 39 turn basin secure some of the project's equipment back into the vessel. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.
2003-08-19
KENNEDY SPACE CENTER, FLA. - A research team member aboard one of the watercraft being utilized to conduct underwater acoustic research in the Launch Complex 39 turn basin prepares some of the project's equipment for placement in the water. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.
2003-08-18
KENNEDY SPACE CENTER, FLA. - Research team members roll out acoustic cable to the water's edge as others stand by in a watercraft during underwater acoustic research being conducted in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASA’s Jet Propulsion Laboratory, and mobile robotic sensors from the Navy’s Mobile Diving and Salvage Unit.
Zhou, Hong; Melloni, Lucia; Poeppel, David; Ding, Nai
2016-01-01
Brain activity can follow the rhythms of dynamic sensory stimuli, such as speech and music, a phenomenon called neural entrainment. It has been hypothesized that low-frequency neural entrainment in the neural delta and theta bands provides a potential mechanism to represent and integrate temporal information. Low-frequency neural entrainment is often studied using periodically changing stimuli and is analyzed in the frequency domain using the Fourier analysis. The Fourier analysis decomposes a periodic signal into harmonically related sinusoids. However, it is not intuitive how these harmonically related components are related to the response waveform. Here, we explain the interpretation of response harmonics, with a special focus on very low-frequency neural entrainment near 1 Hz. It is illustrated why neural responses repeating at f Hz do not necessarily generate any neural response at f Hz in the Fourier spectrum. A strong neural response at f Hz indicates that the time scales of the neural response waveform within each cycle match the time scales of the stimulus rhythm. Therefore, neural entrainment at very low frequency implies not only that the neural response repeats at f Hz but also that each period of the neural response is a slow wave matching the time scale of a f Hz sinusoid.
NASA Astrophysics Data System (ADS)
Gu, Changgui; Tang, Ming; Rohling, Jos H. T.; Yang, Huijie
2016-11-01
In mammals, the circadian rhythms of behavioral and physiological activities are regulated by an endogenous clock located in the suprachiasmatic nucleus (SCN). The SCN is composed of ~20,000 neurons, of which some are capable of self-sustained oscillations, while the others do not oscillate in a self-sustainable manner, but show arrhythmic patterns or damped oscillations. Thus far, the effects of these non-self-sustained oscillatory neurons are not fully explored. Here, we examined how the proportion of the non-self-sustained oscillators affects the free running period under constant darkness and the ability to entrain to the light-dark cycle. We find that the proportion does not affect the free running period, but plays a significant role in the range of entrainment. We also find that its effect on the entrainment range depends on the region where the non-self-sustained oscillators are located. If the non-self-sustained oscillatory neurons are situated in the light-sensitive subregion, the entrainment range narrows when the proportion increases. If they are situated in the light-insensitive subregion, however, the entrainment range broadens with the increase of the proportion. We suggest that the heterogeneity within the light-sensitive and light-insensitive subregions of the SCN has important consequences for how the clock works.
Assessment of the Effects of Entrainment and Wind Shear on Nuclear Cloud Rise Modeling
NASA Astrophysics Data System (ADS)
Zalewski, Daniel; Jodoin, Vincent
2001-04-01
Accurate modeling of nuclear cloud rise is critical in hazard prediction following a nuclear detonation. This thesis recommends improvements to the model currently used by DOD. It considers a single-term versus a three-term entrainment equation, the value of the entrainment and eddy viscous drag parameters, as well as the effect of wind shear in the cloud rise following a nuclear detonation. It examines departures from the 1979 version of the Department of Defense Land Fallout Interpretive Code (DELFIC) with the current code used in the Hazard Prediction and Assessment Capability (HPAC) code version 3.2. The recommendation for a single-term entrainment equation, with constant value parameters, without wind shear corrections, and without cloud oscillations is based on both a statistical analysis using 67 U.S. nuclear atmospheric test shots and the physical representation of the modeling. The statistical analysis optimized the parameter values of interest for four cases: the three-term entrainment equation with wind shear and without wind shear as well as the single-term entrainment equation with and without wind shear. The thesis then examines the effect of cloud oscillations as a significant departure in the code. Modifications to user input atmospheric tables are identified as a potential problem in the calculation of stabilized cloud dimensions in HPAC.
Entrainment to the CIECAM02 and CIELAB colour appearance models in the human cortex.
Thwaites, Andrew; Wingfield, Cai; Wieser, Eric; Soltan, Andrew; Marslen-Wilson, William D; Nimmo-Smith, Ian
2018-04-01
In human visual processing, information from the visual field passes through numerous transformations before perceptual attributes such as colour are derived. The sequence of transforms involved in constructing perceptions of colour can be approximated by colour appearance models such as the CIE (2002) colour appearance model, abbreviated as CIECAM02. In this study, we test the plausibility of CIECAM02 as a model of colour processing by looking for evidence of its cortical entrainment. The CIECAM02 model predicts that colour is split in to two opposing chromatic components, red-green and cyan-yellow (termed CIECAM02-a and CIECAM02-b respectively), and an achromatic component (termed CIECAM02-A). Entrainment of cortical activity to the outputs of these components was estimated using measurements of electro- and magnetoencephalographic (EMEG) activity, recorded while healthy subjects watched videos of dots changing colour. We find entrainment to chromatic component CIECAM02-a at approximately 35 ms latency bilaterally in occipital lobe regions, and entrainment to achromatic component CIECAM02-A at approximately 75 ms latency, also bilaterally in occipital regions. For comparison, transforms from a less physiologically plausible model (CIELAB) were also tested, with no significant entrainment found. Copyright © 2018 Elsevier Ltd. All rights reserved.
Entrainment of spontaneously hypertensive rat fibroblasts by temperature cycles.
Sládek, Martin; Sumová, Alena
2013-01-01
The functional state of the circadian system of spontaneously hypertensive rats (SHR) differs in several characteristics from the functional state of normotensive Wistar rats. Some of these changes might be due to the compromised ability of the central pacemaker to entrain the peripheral clocks. Daily body temperature cycles represent one of the important cues responsible for the integrity of the circadian system, because these cycles are driven by the central pacemaker and are able to entrain the peripheral clocks. This study tested the hypothesis that the aberrant peripheral clock entrainment of SHR results from a compromised peripheral clock sensitivity to the daily temperature cycle resetting. Using cultured Wistar rat and SHR fibroblasts transfected with the circadian luminescence reporter Bmal1-dLuc, we demonstrated that two consecutive square-wave temperature cycles with amplitudes of 2.5 °C are necessary and sufficient to restart the dampened oscillations and entrain the circadian clocks in both Wistar rat and SHR fibroblasts. We also generated a phase response curve to temperature cycles for fibroblasts of both rat strains. Although some of the data suggested a slight resistance of SHR fibroblasts to temperature entrainment, we concluded that the overall effect it too weak to be responsible for the differences between the SHR and Wistar in vivo circadian phenotype.
Predictive rhythmic tapping to isochronous and tempo changing metronomes in the nonhuman primate.
Gámez, Jorge; Yc, Karyna; Ayala, Yaneri A; Dotov, Dobromir; Prado, Luis; Merchant, Hugo
2018-04-30
Beat entrainment is the ability to entrain one's movements to a perceived periodic stimulus, such as a metronome or a pulse in music. Humans have a capacity to predictively respond to a periodic pulse and to dynamically adjust their movement timing to match the varying music tempos. Previous studies have shown that monkeys share some of the human capabilities for rhythmic entrainment, such as tapping regularly at the period of isochronous stimuli. However, it is still unknown whether monkeys can predictively entrain to dynamic tempo changes like humans. To address this question, we trained monkeys in three tapping tasks and compared their rhythmic entrainment abilities with those of humans. We found that, when immediate feedback about the timing of each movement is provided, monkeys can predictively entrain to an isochronous beat, generating tapping movements in anticipation of the metronome pulse. This ability also generalized to a novel untrained tempo. Notably, macaques can modify their tapping tempo by predicting the beat changes of accelerating and decelerating visual metronomes in a manner similar to humans. Our findings support the notion that nonhuman primates share with humans the ability of temporal anticipation during tapping to isochronous and smoothly changing sequences of stimuli. © 2018 New York Academy of Sciences.
Entrainment of Spontaneously Hypertensive Rat Fibroblasts by Temperature Cycles
Sládek, Martin; Sumová, Alena
2013-01-01
The functional state of the circadian system of spontaneously hypertensive rats (SHR) differs in several characteristics from the functional state of normotensive Wistar rats. Some of these changes might be due to the compromised ability of the central pacemaker to entrain the peripheral clocks. Daily body temperature cycles represent one of the important cues responsible for the integrity of the circadian system, because these cycles are driven by the central pacemaker and are able to entrain the peripheral clocks. This study tested the hypothesis that the aberrant peripheral clock entrainment of SHR results from a compromised peripheral clock sensitivity to the daily temperature cycle resetting. Using cultured Wistar rat and SHR fibroblasts transfected with the circadian luminescence reporter Bmal1-dLuc, we demonstrated that two consecutive square-wave temperature cycles with amplitudes of 2.5°C are necessary and sufficient to restart the dampened oscillations and entrain the circadian clocks in both Wistar rat and SHR fibroblasts. We also generated a phase response curve to temperature cycles for fibroblasts of both rat strains. Although some of the data suggested a slight resistance of SHR fibroblasts to temperature entrainment, we concluded that the overall effect it too weak to be responsible for the differences between the SHR and Wistar in vivo circadian phenotype. PMID:24116198
Stupacher, Jan; Witte, Matthias; Hove, Michael J; Wood, Guilherme
2016-12-01
The fusion of rhythm, beat perception, and movement is often summarized under the term "entrainment" and becomes obvious when we effortlessly tap our feet or snap our fingers to the pulse of music. Entrainment to music involves a large network of brain structures, and neural oscillations at beat-related frequencies can help elucidate how this network is connected. Here, we used EEG to investigate steady-state evoked potentials (SSEPs) and event-related potentials (ERPs) during listening and tapping to drum clips with different rhythmic structures that were interrupted by silent breaks of 2-6 sec. This design allowed us to address the question of whether neural entrainment processes persist after the physical presence of musical rhythms and to link neural oscillations and event-related neural responses. During stimulus presentation, SSEPs were elicited in both tasks (listening and tapping). During silent breaks, SSEPs were only present in the tapping task. Notably, the amplitude of the N1 ERP component was more negative after longer silent breaks, and both N1 and SSEP results indicate that neural entrainment was increased when listening to drum rhythms compared with an isochronous metronome. Taken together, this suggests that neural entrainment to music is not solely driven by the physical input but involves endogenous timing processes. Our findings break ground for a tighter linkage between steady-state and transient evoked neural responses in rhythm processing. Beyond music perception, they further support the crucial role of entrained oscillatory activity in shaping sensory, motor, and cognitive processes in general.
Plasticity of the Intrinsic Period of the Human Circadian Timing System
Scheer, Frank A.J.L.; Wright, Kenneth P.; Kronauer, Richard E.; Czeisler, Charles A.
2007-01-01
Human expeditions to Mars will require adaptation to the 24.65-h Martian solar day-night cycle (sol), which is outside the range of entrainment of the human circadian pacemaker under lighting intensities to which astronauts are typically exposed. Failure to entrain the circadian time-keeping system to the desired rest-activity cycle disturbs sleep and impairs cognitive function. Furthermore, differences between the intrinsic circadian period and Earth's 24-h light-dark cycle underlie human circadian rhythm sleep disorders, such as advanced sleep phase disorder and non-24-hour sleep-wake disorders. Therefore, first, we tested whether exposure to a model-based lighting regimen would entrain the human circadian pacemaker at a normal phase angle to the 24.65-h Martian sol and to the 23.5-h day length often required of astronauts during short duration space exploration. Second, we tested here whether such prior entrainment to non-24-h light-dark cycles would lead to subsequent modification of the intrinsic period of the human circadian timing system. Here we show that exposure to moderately bright light (∼450 lux; ∼1.2 W/m2) for the second or first half of the scheduled wake episode is effective for entraining individuals to the 24.65-h Martian sol and a 23.5-h day length, respectively. Estimations of the circadian periods of plasma melatonin, plasma cortisol, and core body temperature rhythms collected under forced desynchrony protocols revealed that the intrinsic circadian period of the human circadian pacemaker was significantly longer following entrainment to the Martian sol as compared to following entrainment to the 23.5-h day. The latter finding of after-effects of entrainment reveals for the first time plasticity of the period of the human circadian timing system. Both findings have important implications for the treatment of circadian rhythm sleep disorders and human space exploration. PMID:17684566
Spokane Tribal Hatchery, 2004 Annual Report.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Peone, Tim L.
2005-03-01
Due to the construction and operation of Grand Coulee Dam (1939), anadromous salmon have been eradicated and resident fish populations permanently altered in the upper Columbia River region. Federal and private hydropower dam operations throughout the Columbia River system severely limits indigenous fish populations in the upper Columbia. Artificial production has been determined appropriate for supporting a harvestable fishery for kokanee salmon (Oncorhynchus nerka) and rainbow trout (Oncorhynchus mykiss) in Lake Roosevelt and Banks Lake (Grand Coulee Dam impoundments). A collaborative multi-agency artificial production program for the Lake Roosevelt and Banks Lake fisheries exists consisting of the Spokane Tribal Hatchery,more » Sherman Creek Hatchery, Ford Trout Hatchery and the Lake Roosevelt Kokanee and Rainbow Trout Net Pen Rearing Projects. These projects operate complementary of one another to target an annual release of 1 million yearling kokanee and 500,000 yearling rainbow trout for Lake Roosevelt and 1.4 million kokanee fry/fingerlings for Banks Lake. Fish produced by this project in 2004 to meet collective fish production and release goals included: 1,655,722 kokanee fingerlings, 537,783 rainbow trout fingerlings and 507,660 kokanee yearlings. Kokanee yearlings were adipose fin clipped before release. Stock composition consisted of Lake Whatcom kokanee, 50:50 diploid-triploid Spokane Trout Hatchery (McCloud River) rainbow trout and Phalon Lake red-band rainbow trout. All kokanee were marked with either thermal, oxytetracyline or fin clips prior to release. Preliminary 2004 Lake Roosevelt fisheries investigations indicate hatchery/net pen stocking significantly contributed to harvestable rainbow trout and kokanee salmon fisheries. An increase in kokanee harvest was primarily owing to new release strategies. Walleye predation, early maturity and entrainment through Grand Coulee Dam continues to have a negative impact on adult kokanee returns and limits the success of hatchery/net pen stocking on the number of harvestable fish. Recommendations for future hatchery/net pen operations include use of stocks compatible or native to the upper Columbia River, continue hatchery-rearing practices to reduce precocity rates of kokanee and continue new kokanee stocking strategies associated with increased kokanee harvest rates.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polacek, Matt; Knuttgen, Kamia; Baldwin, Casey
2003-03-01
The Washington Department of Fish and Wildlife implemented the Banks Lake Fishery Evaluation Project (BLFEP) in September 2001 with funds from the Bonneville Power Administration. The first year of the BLFEP was used to gather historic information, establish methods and protocols, collect limnology data, and conduct the first seasonal fish surveys. Water quality parameters were collected monthly from February to May and bi-monthly from June to August. Banks Lake water temperatures began to increase in April and stratification was apparent by June at all 3 limnology collection sites. By late August, the thermocline had dropped to nearly 20 m deep,more » with 19-20 C temperatures throughout the epilimnion. Dissolved oxygen levels were generally above 10 mg/L until mid summer when dissolved oxygen dropped near or below 5 mg/L below 20-m deep. Secchi depths ranged from 3-10 m and varied by location and date. Nearshore and offshore fish surveys were conducted in May and July using boat electrofishing, fyke net, gill net, and hydroacoustic surveys. Smallmouth bass Micropterous dolomieui (24%) and lake whitefish Coregonus clupeaformis (20%) dominated the nearshore species composition in May; however, by July yellow perch Perca flavescens (26%) were the second most common species to smallmouth bass (30%). Lake whitefish dominated the offshore catch during May (72%) and July (90%). The May hydroacoustic survey revealed highest densities of fish in the upper 1/3 of the water column in the mid- to northern sections of the reservoir near Steamboat Rock. In the future, data from seasonal surveys will be used to identify potential factors that may limit the production and harvest of kokanee, rainbow trout, and various spiny-rayed fishes in Banks Lake. The limiting factors that will be examined consist of: abiotic factors including water temperature, dissolved oxygen levels, habitat, exploitation and entrainment; and biotic factors including food limitation and predation. The BLFEP will also evaluate the success of several rearing and stocking strategies for hatchery kokanee in Banks Lake.« less
NASA Astrophysics Data System (ADS)
Subarna, D.
2018-03-01
The volume of landing fish of the Sadeng Fishing Port within certain months showed an increase from year to year, especially during June, July and August (JJA). While in other months the fish production was low. The purpose of this research was to understand the influence of monsoon variability on fish landing in the Sadeng Fishing Port. Data were analyzed descriptively as spatial and temporal catch. Data were namely catch fish production collected from fishing port, while satellite and HYCOM model during 2011–2012 period were selected. The wind data, sea surface temperature (SST) and chlorophyll-a were analyzed from ASCAT and MODIS sensors during the Southeast Monsoon. The result showed the wind from the southeasterly provide wind stress at sea level and caused Ekman Transport to move away water mass from the sea shore. The lost water mass in the ocean surface was replaced by cold water from deeper layer which was rich in nutrients. The distribution of chlorophyll-a during the Southeast Monsoon was relatively higher in the southern coast of Java than during the Northwest monsoon. The SST showed approximately 25.3 °C. The abundance of nutrients indicated by the distribution of chlorophyll-a around the coast during the Southeast Monsoon, will enhance the arrival of larger fish. Thus, it can be understood that during June, July, and August the catch production is higher than the other months.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schwabe, Lawrence; Tiley, Mark; Perkins, Raymond R.
2000-11-01
The purpose of this study is to document the seasonal distribution of adult/sub-adult bull trout (Salvelinus confluentus) in the Malheur River basin. Due to the decline of bull trout in the Columbia Basin, the United States Fish and Wildlife Service listed bull trout as a threatened species in June 1998. Past land management activities; construction of dams; and fish eradication projects in the North Fork and Middle Fork Malheur River by poisoning have worked in concert to cumulatively impact native species in the Malheur Basin (Bowers et. al. 1993). Survival of the remaining bull trout populations is severely threatened (Buchananmore » 1997). 1999 Research Objects are: (1) Document the migratory patterns of adult/sub-adult bull trout in the North Fork Malheur River; (2) Determine the seasonal bull trout use of Beulah Reservoir and bull trout entrainment; and (3) Timing and location of bull trout spawning in the North Fork Malheur River basin. The study area includes the Malheur basin from the mouth of the Malheur River located near Ontario, Oregon to the headwaters of the North Fork Malheur River (Map 1). All fish collected and most of the telemetry effort was done on the North Fork Malheur River subbasin (Map 2). Fish collection was conducted on the North Fork Malheur River at the tailwaters of Beulah Reservoir (RK 29), Beulah Reservoir (RK 29-RK 33), and in the North Fork Malheur River at Crane Crossing (RK 69) to the headwaters of the North Fork Malheur. Radio telemetry was done from the mouth of the Malheur River in Ontario, Oregon to the headwaters of the North Fork Malheur. This report will reflect all migration data collected from 3/1/99 to 12/31/99.« less
Johnson, G.E.; Anglea, S.M.; Adams, N.S.; Wik, T.O.
2005-01-01
A surface flow bypass takes advantage of the natural surface orientation of most juvenile salmon Oncorhynchus spp. and steelhead O. mykiss by providing a route in the upper water column that downstream migrant fishes can use to pass a hydroelectric dam safely. A prototype structure, called the surface bypass and collector (SBC), was retrofitted on the powerhouse of Lower Granite Dam and was evaluated annually with biotelemetry and hydroacoustic techniques during the 5-year life span of the structure (1996-2000) to determine the entrance configuration that maximized passage efficiency and minimized forebay residence time. The best tested entrance configuration had maximum inflow (99 m 3/s) concentrated in a single surface entrance (5 m wide, 8.5 m deep). We identified five important considerations for future surface flow bypass development in the lower Snake River and elsewhere: (1) an extensive flow net should be formed in the forebay by use of relatively high surface flow bypass discharge (>7% of total project discharge); (2) a gradual increase in water velocity with increasing proximity to the surface flow bypass (ideally, acceleration 3 m/s) to entrain the subject juvenile fishes; (4) the shape and orientation of the surface entrance(s) should be adapted to fit site-specific features; and (5) construction of a forebay wall to increase fish availability to the surface flow bypass should be considered. The efficiency of the SBC was not high enough (maximum of 62% relative to passage at turbine units 4-5) for the SBC to operate as a stand-alone bypass. Anywhere that surface-oriented anadromous fish must negotiate hydroelectric dams, surface flow bypass systems can provide cost-effective use of typically limited water supplies to increase the nonturbine passage, and presumably survival, of downstream migrants. ??Copyright by the American Fisheries Society 2005.
Experimental study of near-field air entrainment by subsonic volcanic jets
Solovitz, Stephen A.; Mastin, Larry G.
2009-01-01
The flow structure in the developing region of a turbulent jet has been examined using particle image velocimetry methods, considering the flow at steady state conditions. The velocity fields were integrated to determine the ratio of the entrained air speed to the jet speed, which was approximately 0.03 for a range of Mach numbers up to 0.89 and Reynolds numbers up to 217,000. This range of experimental Mach and Reynolds numbers is higher than previously considered for high-accuracy entrainment measures, particularly in the near-vent region. The entrainment values are below those commonly used for geophysical analyses of volcanic plumes, suggesting that existing 1-D models are likely to understate the tendency for column collapse.
Air entrainment in hairy surfaces
NASA Astrophysics Data System (ADS)
Nasto, Alice; Regli, Marianne; Brun, P.-T.; Alvarado, José; Clanet, Christophe; Hosoi, A. E.
2016-07-01
Motivated by diving semiaquatic mammals, we investigate the mechanism of dynamic air entrainment in hairy surfaces submerged in liquid. Hairy surfaces are cast out of polydimethylsiloxane elastomer and plunged into a fluid bath at different velocities. Experimentally, we find that the amount of air entrained is greater than what is expected for smooth surfaces. Theoretically, we show that the hairy surface can be considered as a porous medium and we describe the air entrainment via a competition between the hydrostatic forcing and the viscous resistance in the pores. A phase diagram that includes data from our experiments and biological data from diving semiaquatic mammals is included to place the model system in a biological context and predict the regime for which the animal is protected by a plastron of air.
Light-driven changes in energy metabolism directly entrain the cyanobacterial circadian oscillator
Rust, Michael J.; Golden, Susan S.; O'Shea, Erin K.
2012-01-01
Circadian clocks are self-sustained biological oscillators that can be entrained by environmental cues. Though this phenomenon has been studied in many organisms, the molecular mechanisms of entrainment remain unclear. Three cyanobacterial proteins and ATP are sufficient to generate oscillations in phosphorylation in vitro. We show that changes in illumination that induce a phase shift in cultured cyanobacteria also cause changes in the ATP/ADP ratio. When these nucleotide changes are simulated in the in vitro oscillator, they cause phase shifts similar to those observed in vivo. Physiological concentrations of ADP inhibit kinase activity in the oscillator and a mathematical model constrained by data shows that this effect is sufficient to quantitatively explain entrainment of the cyanobacterial circadian clock. PMID:21233390
Metal Oxide Sensors for Electronic Noses and Their Application to Food Analysis
Berna, Amalia
2010-01-01
Electronic noses (E-noses) use various types of electronic gas sensors that have partial specificity. This review focuses on commercial and experimental E-noses that use metal oxide semi-conductors. The review covers quality control applications to food and beverages, including determination of freshness and identification of contaminants or adulteration. Applications of E-noses to a wide range of foods and beverages are considered, including: meat, fish, grains, alcoholic drinks, non-alcoholic drinks, fruits, milk and dairy products, olive oils, nuts, fresh vegetables and eggs. PMID:22319332
Is the food-entrainable circadian oscillator in the digestive system?
NASA Technical Reports Server (NTRS)
Davidson, A. J.; Poole, A. S.; Yamazaki, S.; Menaker, M.
2003-01-01
Food-anticipatory activity (FAA) is the increase in locomotion and core body temperature that precedes a daily scheduled meal. It is driven by a circadian oscillator but is independent of the suprachiasmatic nuclei. Recent results that reveal meal-entrained clock gene expression in rat and mouse peripheral organs raise the intriguing possibility that the digestive system is the site of the feeding-entrained oscillator (FEO) that underlies FAA. We tested this possibility by comparing FAA and Per1 rhythmicity in the digestive system of the Per1-luciferase transgenic rat. First, rats were entrained to daytime restricted feeding (RF, 10 days), then fed ad libitum (AL, 10 days), then food deprived (FD, 2 days). As expected FAA was evident during RF and disappeared during subsequent AL feeding, but returned at the correct phase during deprivation. The phase of Per1 in liver, stomach and colon shifted from a nocturnal to a diurnal peak during RF, but shifted back to nocturnal phase during the subsequent AL and remained nocturnal during food deprivation periods. Second, rats were entrained to two daily meals at zeitgeber time (ZT) 0400 and ZT 1600. FAA to both meals emerged after about 10days of dual RF. However, all tissues studied (all five liver lobes, esophagus, antral stomach, body of stomach, colon) showed entrainment consistent with only the night-time meal. These two results are inconsistent with the hypothesis that FAA arises as an output of rhythms in the gastrointestinal (GI) system. The results also highlight an interesting diversity among peripheral oscillators in their ability to entrain to meals and the direction of the phase shift after RF ends.
Temporal Organization of the Sleep-Wake Cycle under Food Entrainment in the Rat
Castro-Faúndez, Javiera; Díaz, Javier; Ocampo-Garcés, Adrián
2016-01-01
Study Objectives: To analyze the temporal organization of the sleep-wake cycle under food entrainment in the rat. Methods: Eighteen male Sprague-Dawley rats were chronically implanted for polysomnographic recording. During the baseline (BL) protocol, rats were recorded under a 12:12 light-dark (LD) schedule in individual isolation chambers with food and water ad libitum. Food entrainment was performed by means of a 4-h food restriction (FR) protocol starting at photic zeitgeber time 5. Eight animals underwent a 3-h phase advance of the FR protocol (A-FR). We compared the mean curves and acrophases of wakefulness, NREM sleep, and REM sleep under photic and food entrainment and after a phase advance in scheduled food delivery. We further evaluated the dynamics of REM sleep homeostasis and the NREM sleep EEG delta wave profile. Results: A prominent food-anticipatory arousal interval was observed after nine or more days of FR, characterized by increased wakefulness and suppression of REM sleep propensity and dampening of NREM sleep EEG delta activity. REM sleep exhibited a robust nocturnal phase preference under FR that was not explained by a nocturnal REM sleep rebound. The mean curve of sleep-wake states and NREM sleep EEG delta activity remained phase-locked to the timing of meals during the A-FR protocol. Conclusions: Our results support the hypothesis that under food entrainment, the sleep-wake cycle is coupled to a food-entrainable oscillator (FEO). Our findings suggest an unexpected interaction between FEO output and NREM sleep EEG delta activity generators. Citation: Castro-Faúndez J, Díaz J, Ocampo-Garcés A. Temporal organization of the sleep-wake cycle under food entrainment in the rat. SLEEP 2016;39(7):1451–1465. PMID:27091526
NASA Astrophysics Data System (ADS)
Stevens, Bjorn; Moeng, Chin-Hoh; Sullivan, Peter P.
1999-12-01
Large-eddy simulations of a smoke cloud are examined with respect to their sensitivity to small scales as manifest in either the grid spacing or the subgrid-scale (SGS) model. Calculations based on a Smagorinsky SGS model are found to be more sensitive to the effective resolution of the simulation than are calculations based on the prognostic turbulent kinetic energy (TKE) SGS model. The difference between calculations based on the two SGS models is attributed to the advective transport, diffusive transport, and/or time-rate-of-change terms in the TKE equation. These terms are found to be leading order in the entrainment zone and allow the SGS TKE to behave in a way that tends to compensate for changes that result in larger or smaller resolved scale entrainment fluxes. This compensating behavior of the SGS TKE model is attributed to the fact that changes that reduce the resolved entrainment flux (viz., values of the eddy viscosity in the upper part of the PBL) simultaneously tend to increase the buoyant production of SGS TKE in the radiatively destabilized portion of the smoke cloud. Increased production of SGS TKE in this region then leads to increased amounts of transported, or fossil, SGS TKE in the entrainment zone itself, which in turn leads to compensating increases in the SGS entrainment fluxes. In the Smagorinsky model, the absence of a direct connection between SGS TKE in the entrainment and radiatively destabilized zones prevents this compensating mechanism from being active, and thus leads to calculations whose entrainment rate sensitivities as a whole reflect the sensitivities of the resolved-scale fluxes to values of upper PBL eddy viscosities.
First UAV Measurements of Entrainment Layer Fluxes with Coupled Cloud Property Measurements
NASA Astrophysics Data System (ADS)
Thomas, R. M.; Praveen, P. S.; Wilcox, E. M.; Pistone, K.; Bender, F.; Ramanathan, V.
2012-12-01
This study details entrainment flux measurements made from a lightweight unmanned aerial vehicle (UAV) containing turbulent water vapor flux instrumentation (Thomas et al., 2012). The system was flown for 26 flights during the Cloud, Aerosol, Radiative forcing, Dynamics EXperiment (CARDEX) in the Maldives in March 2012 to study interrelationships between entrainment, aerosols, water budget, cloud microphysics and radiative fluxes in a trade wind cumulus cloud regime. A major advantage of using this lightweight, precision autopiloted UAV system with scientific telemetry is the ability to target small-scale features in the boundary layer, such as an entrainment layer, with minimal aircraft induced disruption. Results are presented from two UAVs flown in stacked formation: one UAV situated in-cloud measuring cloud-droplet size distribution spectra and liquid water content, and another co-located 100m above measuring turbulent properties and entrainment latent heat flux (λEE). We also show latent heat flux and turbulence measurements routinely made at the entrainment layer base and altitudes from the surface up to 4kft. Ratios of λEE to corresponding surface tower values (λES) display a bimodal frequency distribution with ranges 0.22-0.53 and 0.79-1.5, with occasional events >7. Reasons for this distribution are discussed drawing upon boundary layer and free tropospheric dynamics and meteorology, turbulence length scales, surface conditions, and cloud interactions. Latent heat flux profiles are combined with in-cloud UAV Liquid Water Content (LWC) data and surface based Liquid Water Path (LWP) and Precipitable Water Vapor (PWV) measurements to produce observationally constrained vertical water budgets, providing insights into diurnal coupling of λEE and λES. Observed λEE, λES, water budgets, and cloud microphysical responses to entrainment are then contextualized with respect to measured aerosol loading profiles and airmass history.
Endogenous Delta/Theta Sound-Brain Phase Entrainment Accelerates the Buildup of Auditory Streaming.
Riecke, Lars; Sack, Alexander T; Schroeder, Charles E
2015-12-21
In many natural listening situations, meaningful sounds (e.g., speech) fluctuate in slow rhythms among other sounds. When a slow rhythmic auditory stream is selectively attended, endogenous delta (1‒4 Hz) oscillations in auditory cortex may shift their timing so that higher-excitability neuronal phases become aligned with salient events in that stream [1, 2]. As a consequence of this stream-brain phase entrainment [3], these events are processed and perceived more readily than temporally non-overlapping events [4-11], essentially enhancing the neural segregation between the attended stream and temporally noncoherent streams [12]. Stream-brain phase entrainment is robust to acoustic interference [13-20] provided that target stream-evoked rhythmic activity can be segregated from noncoherent activity evoked by other sounds [21], a process that usually builds up over time [22-27]. However, it has remained unclear whether stream-brain phase entrainment functionally contributes to this buildup of rhythmic streams or whether it is merely an epiphenomenon of it. Here, we addressed this issue directly by experimentally manipulating endogenous stream-brain phase entrainment in human auditory cortex with non-invasive transcranial alternating current stimulation (TACS) [28-30]. We assessed the consequences of these manipulations on the perceptual buildup of the target stream (the time required to recognize its presence in a noisy background), using behavioral measures in 20 healthy listeners performing a naturalistic listening task. Experimentally induced cyclic 4-Hz variations in stream-brain phase entrainment reliably caused a cyclic 4-Hz pattern in perceptual buildup time. Our findings demonstrate that strong endogenous delta/theta stream-brain phase entrainment accelerates the perceptual emergence of task-relevant rhythmic streams in noisy environments. Copyright © 2015 Elsevier Ltd. All rights reserved.
Discussion: Numerical study on the entrainment of bed material into rapid landslides
Iverson, Richard M.
2013-01-01
A paper recently published in this journal (Pirulli & Pastor, 2012) uses numerical modelling to study the important problem of entrainment of bed material by landslides. Unfortunately, some of the basic equations employed in the study are flawed, because they violate the principle of linear momentum conservation. Similar errors exist in some other studies of entrainment, and the errors appear to stem from confusion about the role of bed-sediment inertia in differing frames of reference.
Influence of musical groove on postural sway.
Ross, Jessica M; Warlaumont, Anne S; Abney, Drew H; Rigoli, Lillian M; Balasubramaniam, Ramesh
2016-03-01
Timescales of postural fluctuation reflect underlying neuromuscular processes in balance control that are influenced by sensory information and the performance of concurrent cognitive and motor tasks. An open question is how postural fluctuations entrain to complex environmental rhythms, such as in music, which also vary on multiple timescales. Musical groove describes the property of music that encourages auditory-motor synchronization and is used to study voluntary motor entrainment to rhythmic sounds. The influence of groove on balance control mechanisms remains unexplored. We recorded fluctuations in center of pressure (CoP) of standing participants (N = 40) listening to low and high groove music and during quiet stance. We found an effect of musical groove on radial sway variability, with the least amount of variability in the high groove condition. In addition, we observed that groove influenced postural sway entrainment at various temporal scales. For example, with increasing levels of groove, we observed more entrainment to shorter, local timescale rhythmic musical occurrences. In contrast, we observed more entrainment to longer, global timescale features of the music, such as periodicity, with decreasing levels of groove. Finally, musical experience influenced the amount of postural variability and entrainment at local and global timescales. We conclude that groove in music and musical experience can influence the neural mechanisms that govern balance control, and discuss implications of our findings in terms of multiscale sensorimotor coupling. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
NASA Astrophysics Data System (ADS)
Hogg, Charlie A. R.; Dalziel, Stuart B.; Huppert, Herbert E.; Imberger, Jörg
2015-09-01
In many important natural and industrial systems, gravity currents of dense fluid feed basins. Examples include lakes fed by dense rivers and auditoria supplied with cooled air by ventilation systems. As we will show, the entrainment into such buoyancy driven currents can be influenced by viscous forces. Little work, however, has examined this viscous influence and how entrainment varies with the Reynolds number, Re. Using the idea of an entrainment coefficient, E, we derive a mathematical expression for the rise of the front at the top of the dense fluid ponding in a basin, where the horizontal cross-sectional area of the basin varies linearly with depth. We compare this expression to experiments on gravity currents with source Reynolds numbers, Res, covering the broad range 100 < Res < 1500. The form of the observed frontal rises was well approximated by our theory. By fitting the observed frontal rises to the theoretical form with E as the free parameter, we find a linear trend for E(Res) over the range 350 < Res < 1100, which is in the transition to turbulent flow. In the experiments, the entrainment coefficient, E, varied from 4 × 10-5 to 7 × 10-2. These observations show that viscous damping can be a dominant influence on gravity current entrainment in the laboratory and in geophysical flows in this transitional regime.
Entrainment of oviposition in the fowl using bright and dim light cycles.
Morris, T R; Bhatti, B M
1978-05-01
1. Nine short trial, involving 96 different treatments, were used to investigate the critical intensities and duration of bright and dim periods of lighting needed to entrain oviposition in cycles ranging from 21 to 30 h. 2. Entrainment was shown to depend upon the contrast between bright and dim lighting, and to be independent of the absolute light intensity. 3. A bright: dim ratio of 13:1 fully entrained oviposition in cycles of 25 h and 27 h. For 23-h and 28-h cycles a 30:1 ratio was required. Twenty-one-hour cycles required a ratio of 300:1 and with 30-h cycles a ratio of 1000:1 was needed to achieve full entrainment of oviposition. 4. In 24-h cycles, 1 h of bright lighting at 02.00 h was sufficient to override other environmental signals and cause eggs to be laid in the late evening, but a minimum bright period of 6 h was needed to cause full phase setting with 21-h cycles. 5. Circadian periodicity can easily be imposed on hens by providing a short exposure to bright light with a background of continuous dim light; but the signal must be increased (by providing a greater contrast between bright and dim lights and/or a longer period of bright lighting) to entrain oviposition when the cycle deviates markedly from the natural period of 24 h.
Reduced BOLD response to periodic visual stimulation.
Parkes, Laura M; Fries, Pascal; Kerskens, Christian M; Norris, David G
2004-01-01
The blood oxygenation level-dependent (BOLD) response to entrained neuronal firing in the human visual cortex and lateral geniculate nuclei was investigated. Periodic checkerboard flashes at a range of frequencies (4-20 Hz) were used to drive the visual cortex neurons into entrained oscillatory firing. This is compared to a checkerboard flashing aperiodically, with the same average number of flashes per unit time. A magnetoencephalography (MEG) measurement was made to confirm that the periodic paradigm elicited entrainment. We found that for frequencies of 10 and 15 Hz, the periodic stimulus gave a smaller BOLD response than for the aperiodic stimulus. Detailed investigation at 15 Hz showed that the aperiodic stimulus gave a similar BOLD increase regardless of the magnitude of jitter (+/-17 ms compared to +/-33 ms), indicating that flashes need to be precise to at least 17 ms to maintain entrainment. This is also evidence that for aperiodic stimuli, the amplitude of the BOLD response ordinarily reflects the total number of flashes per unit time, irrespective of the precise spacing between them, suggesting that entrainment is the main cause of the BOLD reduction in the periodic condition. The results indicate that, during entrainment, there is a reduction in the neuronal metabolic demand. We suggest that because of the selective frequency band of this effect, it could be connected to synchronised reverberations around an internal feedback loop.
Morphologic and transport properties of natural organic floc
Larsen, Laurel G.; Harvey, Judson W.; Crimaldi, John P.
2009-01-01
The morphology, entrainment, and settling of suspended aggregates (“floc”) significantly impact fluxes of organic carbon, nutrients, and contaminants in aquatic environments. However, transport properties of highly organic floc remain poorly understood. In this study detrital floc was collected in the Florida Everglades from two sites with different abundances of periphyton for use in a settling column and in racetrack flume entrainment experiments. Although Everglades flocs are similar to other organic aggregates in terms of morphology and settling rates, they tend to be larger and more porous than typical mineral flocs because of biostabilization processes and relatively low prevailing shear stresses typical of wetlands. Flume experiments documented that Everglades floc was entrained at a low bed shear stress of 1.0 × 10−2 Pa, which is considerably smaller than the typical entrainment threshold of mineral floc. Because of similarities between Everglades floc and other organic floc populations, floc transport characteristics in the Everglades typify the behavior of floc in other organic‐rich shallow‐water environments. Highly organic floc is more mobile than less organic floc, but because bed shear stresses in wetlands are commonly near the entrainment threshold, wetland floc dynamics are often transport‐limited rather than supply limited. Organic floc transport in these environments is therefore governed by the balance between entrainment and settling fluxes, which has implications for ecosystem metabolism, materials cycling, and even landscape evolution.
NASA Technical Reports Server (NTRS)
Wright, K. P. Jr; Hughes, R. J.; Kronauer, R. E.; Dijk, D. J.; Czeisler, C. A.
2001-01-01
Endogenous circadian clocks are robust regulators of physiology and behavior. Synchronization or entrainment of biological clocks to environmental time is adaptive and important for physiological homeostasis and for the proper timing of species-specific behaviors. We studied subjects in the laboratory for up to 55 days each to determine the ability to entrain the human clock to a weak circadian synchronizing stimulus [scheduled activity-rest cycle in very dim (approximately 1.5 lux in the angle of gaze) light-dark cycle] at three approximately 24-h periods: 23.5, 24.0, and 24.6 h. These studies allowed us to test two competing hypotheses as to whether the period of the human circadian pacemaker is near to or much longer than 24 h. We report here that imposition of a sleep-wake schedule with exposure to the equivalent of candle light during wakefulness and darkness during sleep is usually sufficient to maintain circadian entrainment to the 24-h day but not to a 23.5- or 24.6-h day. Our results demonstrate functionally that, in normally entrained sighted adults, the average intrinsic circadian period of the human biological clock is very close to 24 h. Either exposure to very dim light and/or the scheduled sleep-wake cycle itself can entrain this near-24-h intrinsic period of the human circadian pacemaker to the 24-h day.
Characteristics of Air Entrainment in Hydraulic Jump
NASA Astrophysics Data System (ADS)
Albarkani, M. S. S.; Tan, L. W.; Al-Gheethi, A.
2018-04-01
The characteristics of hydraulic jump, especially the air entrainment within jump is still not properly understood. Therefore, the current work aimed to determine the size and number of air entrainment formed in hydraulic jump at three different Froude numbers and to obtain the relationship between Froude number with the size and number of air entrainment in hydraulic jump. Experiments of hydraulic jump were conducted in a 10 m long and 0.3 m wide Armfield S6MKII glass-sided tilting flume. Hydraulic jumps were produced by flow under sluice gate with varying Froude number. The air entrainment of the hydraulic jump was captured with a Canon Power Shot SX40 HS digital camera in video format at 24 frames per second. Three discharges have been considered, i.e. 0.010 m3/s, 0.011 m3/s, and 0.013 m3/s. For hydraulic jump formed in each discharge, 32 frames were selected for the purpose of analysing the size and number of air entrainment in hydraulic jump. The results revealed that that there is a tendency to have greater range in sizes of air bubbles as Fr1 increases. Experiments with Fr1 = 7.547. 7.707, and 7.924 shown that the number of air bubbles increases exponentially with Fr1 at a relationship of N = 1.3814 e 0.9795Fr1.
NASA Astrophysics Data System (ADS)
Philen, Michael
2011-04-01
This manuscript is an overview of the research that is currently being performed as part of a 2009 NSF Office of Emerging Frontiers in Research and Innnovation (EFRI) grant on BioSensing and BioActuation (BSBA). The objectives of this multi-university collaborative research are to achieve a greater understanding of the hierarchical organization and structure of the sensory, muscular, and control systems of fish, and to develop advanced biologically-inspired material systems having distributed sensing, actuation, and intelligent control. New experimental apparatus have been developed for performing experiments involving live fish and robotic devices, and new bio-inspired haircell sensors and artificial muscles are being developed using carbonaceous nanomaterials, bio-derived molecules, and composite technology. Results demonstrating flow sensing and actuation are presented.
Exploring how musical rhythm entrains brain activity with electroencephalogram frequency-tagging
Nozaradan, Sylvie
2014-01-01
The ability to perceive a regular beat in music and synchronize to this beat is a widespread human skill. Fundamental to musical behaviour, beat and meter refer to the perception of periodicities while listening to musical rhythms and often involve spontaneous entrainment to move on these periodicities. Here, we present a novel experimental approach inspired by the frequency-tagging approach to understand the perception and production of rhythmic inputs. This approach is illustrated here by recording the human electroencephalogram responses at beat and meter frequencies elicited in various contexts: mental imagery of meter, spontaneous induction of a beat from rhythmic patterns, multisensory integration and sensorimotor synchronization. Collectively, our observations support the view that entrainment and resonance phenomena subtend the processing of musical rhythms in the human brain. More generally, they highlight the potential of this approach to help us understand the link between the phenomenology of musical beat and meter and the bias towards periodicities arising under certain circumstances in the nervous system. Entrainment to music provides a highly valuable framework to explore general entrainment mechanisms as embodied in the human brain. PMID:25385771
Heiland, Ines; Bodenstein, Christian; Hinze, Thomas; Weisheit, Olga; Ebenhoeh, Oliver; Mittag, Maria; Schuster, Stefan
2012-06-01
Endogenous circadian rhythms allow living organisms to anticipate daily variations in their natural environment. Temperature regulation and entrainment mechanisms of circadian clocks are still poorly understood. To better understand the molecular basis of these processes, we built a mathematical model based on experimental data examining temperature regulation of the circadian RNA-binding protein CHLAMY1 from the unicellular green alga Chlamydomonas reinhardtii, simulating the effect of temperature on the rates by applying the Arrhenius equation. Using numerical simulations, we demonstrate that our model is temperature-compensated and can be entrained to temperature cycles of various length and amplitude. The range of periods that allow entrainment of the model depends on the shape of the temperature cycles and is larger for sinusoidal compared to rectangular temperature curves. We show that the response to temperature of protein (de)phosphorylation rates play a key role in facilitating temperature entrainment of the oscillator in Chlamydomonas reinhardtii. We systematically investigated the response of our model to single temperature pulses to explain experimentally observed phase response curves.
Entrainment range of nonidentical circadian oscillators by a light-dark cycle
NASA Astrophysics Data System (ADS)
Gu, Changgui; Xu, Jinshan; Liu, Zonghua; Rohling, Jos H. T.
2013-08-01
The suprachiasmatic nucleus (SCN) is a principal circadian clock in mammals, which controls physiological and behavioral daily rhythms. The SCN has two main features: Maintaining a rhythmic cycle of approximately 24 h in the absence of a light-dark cycle (free-running period) and the ability to entrain to external light-dark cycles. Both free-running period and range of entrainment vary from one species to another. To understand this phenomenon, we investigated the diversity of a free-running period by the distribution of coupling strengths in our previous work [Phys. Rev. EPLEEE81539-375510.1103/PhysRevE.80.030904 80, 030904(R) (2009)]. In this paper we numerically found that the dispersion of intrinsic periods among SCN neurons influence the entrainment range of the SCN, but has little influence on the free-running periods under constant darkness. This indicates that the dispersion of coupling strengths determines the diversity in free-running periods, while the dispersion of intrinsic periods determines the diversity in the entrainment range. A theoretical analysis based on two coupled neurons is presented to explain the results of numerical simulations.
Lu, Chunsong; Liu, Yangang; Zhang, Guang J.; ...
2016-02-01
This work examines the relationships of entrainment rate to vertical velocity, buoyancy, and turbulent dissipation rate by applying stepwise principal component regression to observational data from shallow cumulus clouds collected during the Routine AAF [Atmospheric Radiation Measurement (ARM) Aerial Facility] Clouds with Low Optical Water Depths (CLOWD) Optical Radiative Observations (RACORO) field campaign over the ARM Southern Great Plains (SGP) site near Lamont, Oklahoma. The cumulus clouds during the RACORO campaign simulated using a large eddy simulation (LES) model are also examined with the same approach. The analysis shows that a combination of multiple variables can better represent entrainment ratemore » in both the observations and LES than any single-variable fitting. Three commonly used parameterizations are also tested on the individual cloud scale. A new parameterization is therefore presented that relates entrainment rate to vertical velocity, buoyancy and dissipation rate; the effects of treating clouds as ensembles and humid shells surrounding cumulus clouds on the new parameterization are discussed. Physical mechanisms underlying the relationships of entrainment rate to vertical velocity, buoyancy and dissipation rate are also explored.« less
An experimental study of planar heterogeneous supersonic confined jets
NASA Astrophysics Data System (ADS)
Tanis, Frederick J., Jr.
1994-12-01
The effects of varying the exit pressure of a supersonic helium jet exhausting coaxially with two parallel supersonic air streams into a constant area duct were investigated. The method used to evaluate the mass entrainment rate was to measure helium molar concentration profiles and mass flux across the duct using a binary gas probe then calculate the mass entrainment into the helium jet. In order to conduct this study a novel binary gas probe was developed which allowed helium concentration and mass flux data to be obtained during continuous traverses across the supersonic flowfield. High exit pressure ratio (EPR) led to improved overall mixing compared to the baseline case with an EPR near unity. The high EPR caused low mass entrainment along the jet shear layers due to high convective Mach numbers and velocity ratios, but the high EPR caused oblique shocks to form which reflected off the duct walls and intersected with the helium jet several times causing significant mass entrainment due to numerous shock-shear layer interactions (SSLI's). A correlation between the vorticity generated during a SSLI and the mass entrainment into the jet was developed.
NASA Technical Reports Server (NTRS)
Wilmoth, R. G.
1980-01-01
A viscous-inviscid interaction model was developed to account for jet entrainment effects in the prediction of the subsonic flow over nozzle afterbodies. The model is based on the concept of a weakly interacting shear layer in which the local streamline deflections due to entrainment are accounted for by a displacement-thickness type of correction to the inviscid plume boundary. The entire flow field is solved in an iterative manner to account for the effects on the inviscid external flow of the turbulent boundary layer, turbulent mixing and chemical reactions in the shear layer, and the inviscid jet exhaust flow. The components of the computational model are described, and numerical results are presented to illustrate the interactive effects of entrainment on the overall flow structure. The validity of the model is assessed by comparisons with data obtained form flow-field measurements on cold-air jet exhausts. Numerical results and experimental data are also given to show the entrainment effects on nozzle boattail drag under various jet exhaust and free-stream flow conditions.
The CRTC1-SIK1 Pathway Regulates Entrainment of the Circadian Clock
Jagannath, Aarti; Butler, Rachel; Godinho, Sofia I.H.; Couch, Yvonne; Brown, Laurence A.; Vasudevan, Sridhar R.; Flanagan, Kevin C.; Anthony, Daniel; Churchill, Grant C.; Wood, Matthew J.A.; Steiner, Guido; Ebeling, Martin; Hossbach, Markus; Wettstein, Joseph G.; Duffield, Giles E.; Gatti, Silvia; Hankins, Mark W.; Foster, Russell G.; Peirson, Stuart N.
2013-01-01
Summary Retinal photoreceptors entrain the circadian system to the solar day. This photic resetting involves cAMP response element binding protein (CREB)-mediated upregulation of Per genes within individual cells of the suprachiasmatic nuclei (SCN). Our detailed understanding of this pathway is poor, and it remains unclear why entrainment to a new time zone takes several days. By analyzing the light-regulated transcriptome of the SCN, we have identified a key role for salt inducible kinase 1 (SIK1) and CREB-regulated transcription coactivator 1 (CRTC1) in clock re-setting. An entrainment stimulus causes CRTC1 to coactivate CREB, inducing the expression of Per1 and Sik1. SIK1 then inhibits further shifts of the clock by phosphorylation and deactivation of CRTC1. Knockdown of Sik1 within the SCN results in increased behavioral phase shifts and rapid re-entrainment following experimental jet lag. Thus SIK1 provides negative feedback, acting to suppress the effects of light on the clock. This pathway provides a potential target for the regulation of circadian rhythms. PMID:23993098
Queueing-Based Synchronization and Entrainment for Synthetic Gene Oscillators
NASA Astrophysics Data System (ADS)
Mather, William; Butzin, Nicholas; Hochendoner, Philip; Ogle, Curtis
Synthetic gene oscillators have been a major focus of synthetic biology research since the beginning of the field 15 years ago. They have proven to be useful both for biotechnological applications as well as a testing ground to significantly develop our understanding of the design principles behind synthetic and native gene oscillators. In particular, the principles governing synchronization and entrainment of biological oscillators have been explored using a synthetic biology approach. Our work combines experimental and theoretical approaches to specifically investigate how a bottleneck for protein degradation, which is present in most if not all existing synthetic oscillators, can be leveraged to robustly synchronize and entrain biological oscillators. We use both the terminology and mathematical tools of queueing theory to intuitively explain the role of this bottleneck in both synchronization and entrainment, which extends prior work demonstrating the usefulness of queueing theory in synthetic and native gene circuits. We conclude with an investigation of how synchronization and entrainment may be sensitive to the presence of multiple proteolytic pathways in a cell that couple weakly through crosstalk. This work was supported by NSF Grant #1330180.
Jannasch, Anita; Mahamdeh, Mohammed; Schäffer, Erik
2011-11-25
The random thermal force acting on Brownian particles is often approximated in Langevin models by a "white-noise" process. However, fluid entrainment results in a frequency dependence of this thermal force giving it a "color." While theoretically well understood, direct experimental evidence for this colored nature of the noise term and how it is influenced by a nearby wall is lacking. Here, we directly measured the color of the thermal noise intensity by tracking a particle strongly confined in an ultrastable optical trap. All our measurements are in quantitative agreement with the theoretical predictions. Since Brownian motion is important for microscopic, in particular, biological systems, the colored nature of the noise and its distance dependence to nearby objects need to be accounted for and may even be utilized for advanced sensor applications.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Romero Gomez, Pedro DJ; Richmond, Marshall C.
2014-04-17
Evaluating the consequences from blade-strike of fish on marine hydrokinetic (MHK) turbine blades is essential for incorporating environmental objectives into the integral optimization of machine performance. For instance, experience with conventional hydroelectric turbines has shown that innovative shaping of the blade and other machine components can lead to improved designs that generate more power without increased impacts to fish and other aquatic life. In this work, we used unsteady computational fluid dynamics (CFD) simulations of turbine flow and discrete element modeling (DEM) of particle motion to estimate the frequency and severity of collisions between a horizontal axis MHK tidal energymore » device and drifting aquatic organisms or debris. Two metrics are determined with the method: the strike frequency and survival rate estimate. To illustrate the procedure step-by-step, an exemplary case of a simple runner model was run and compared against a probabilistic model widely used for strike frequency evaluation. The results for the exemplary case showed a strong correlation between the two approaches. In the application case of the MHK turbine flow, turbulent flow was modeled using detached eddy simulation (DES) in conjunction with a full moving rotor at full scale. The CFD simulated power and thrust were satisfactorily comparable to experimental results conducted in a water tunnel on a reduced scaled (1:8.7) version of the turbine design. A cloud of DEM particles was injected into the domain to simulate fish or debris that were entrained into the turbine flow. The strike frequency was the ratio of the count of colliding particles to the crossing sample size. The fish length and approaching velocity were test conditions in the simulations of the MHK turbine. Comparisons showed that DEM-based frequencies tend to be greater than previous results from Lagrangian particles and probabilistic models, mostly because the DEM scheme accounts for both the geometric aspects of the passage event ---which the probabilistic method does--- as well as the fluid-particle interactions ---which the Lagrangian particle method does. The DEM-based survival rates were comparable to laboratory results for small fish but not for mid-size fish because of the considerably different turbine diameters. The modeling framework can be used for applications that aim at evaluating the biological performance of MHK turbine units during the design phase and to provide information to regulatory agencies needed for the environmental permitting process.« less
Does turbidity induced by Carassius carassius limit phytoplankton growth? A mesocosm study.
He, Hu; Hu, En; Yu, Jinlei; Luo, Xuguang; Li, Kuanyi; Jeppesen, Erik; Liu, Zhengwen
2017-02-01
It is well established that benthivorous fish in shallow lakes can create turbid conditions that influence phytoplankton growth both positively, as a result of elevated nutrient concentration in the water column, and negatively, due to increased attenuation of light. The net effect depends upon the degree of turbidity induced by the benthivores. Stocked Carassius carassius dominate the benthivorous fish fauna in many nutrient-rich Chinese subtropical and tropical shallow lakes, but the role of the species as a potential limiting factor in phytoplankton growth is ambiguous. Clarification of this relationship will help determine the management strategy and cost of restoring eutrophic lakes in China and elsewhere. Our outdoor mesocosm experiment simulating the effect of high density of crucian carp on phytoplankton growth and community structure in eutrophic shallow lakes suggests that stocking with this species causes resuspension of sediment, thereby increasing light attenuation and elevating nutrient concentrations. However, the effect of light attenuation was insufficient to offset the impact of nutrient enhancement on phytoplankton growth, and significant increases in both phytoplankton biomass and chlorophyll a concentrations were recorded. Crucian carp stocking favored the dominance of diatoms and led to lower percentages (but not biomass) of buoyant cyanobacteria. The dominance of diatoms may be attributed to a competitive advantage of algal cells with high sedimentation velocity in an environment subjected to frequent crucian carp-induced resuspension and entrainment of benthic algae caused by the fish foraging activities. Our study demonstrates that turbidity induced by stocked crucian carp does not limit phytoplankton growth in eutrophic waters. Thus, removal of this species (and presumably other similar taxa) from subtropical or tropical shallow lakes, or suspension of aquaculture, is unlikely to boost phytoplankton growth, despite the resulting improvements in light availability.
Kerr, James R; Manes, Costantino; Kemp, Paul S
2016-11-01
It is commonly assumed that stream-dwelling fish should select positions where they can reduce energetic costs relative to benefits gained and enhance fitness. However, the selection of appropriate hydrodynamic metrics that predict space use is the subject of recent debate and a cause of controversy. This is for three reasons: (1) flow characteristics are often oversimplified, (2) confounding variables are not always controlled and (3) there is limited understanding of the explanatory mechanisms that underpin the biophysical interactions between fish and their hydrodynamic environment. This study investigated the space use of brown trout, Salmo trutta, in a complex hydrodynamic flow field created using an array of different sized vertically oriented cylinders in a large open-channel flume in which confounding variables were controlled. A hydrodynamic drag function (D) based on single-point time-averaged velocity statistics that incorporates the influence of turbulent fluctuations was used to infer the energetic cost of steady swimming. Novel hydrodynamic preference curves were developed and used to assess the appropriateness of D as a descriptor of space use compared with other commonly used metrics. Zones in which performance-enhancing swimming behaviours (e.g. Kármán gaiting, entraining and bow riding) that enable fish to hold position while reducing energetic costs (termed 'specialised behaviours') were identified and occupancy was recorded. We demonstrate that energy conservation strategies play a key role in space use in an energetically taxing environment with the majority of trout groups choosing to frequently occupy areas in which specialised behaviours may be adopted or by selecting low-drag regions. © 2016. Published by The Company of Biologists Ltd.
A Fisheries Application of a Dual-Frequency Identification Sonar Acoustic Camera
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moursund, Russell A.; Carlson, Thomas J.; Peters, Rock D.
2003-06-01
The uses of an acoustic camera in fish passage research at hydropower facilities are being explored by the U.S. Army Corps of Engineers. The Dual-Frequency Identification Sonar (DIDSON) is a high-resolution imaging sonar that obtains near video-quality images for the identification of objects underwater. Developed originally for the Navy by the University of Washington?s Applied Physics Laboratory, it bridges the gap between existing fisheries assessment sonar and optical systems. Traditional fisheries assessment sonars detect targets at long ranges but cannot record the shape of targets. The images within 12 m of this acoustic camera are so clear that one canmore » see fish undulating as they swim and can tell the head from the tail in otherwise zero-visibility water. In the 1.8 MHz high-frequency mode, this system is composed of 96 beams over a 29-degree field of view. This high resolution and a fast frame rate allow the acoustic camera to produce near video-quality images of objects through time. This technology redefines many of the traditional limitations of sonar for fisheries and aquatic ecology. Images can be taken of fish in confined spaces, close to structural or surface boundaries, and in the presence of entrained air. The targets themselves can be visualized in real time. The DIDSON can be used where conventional underwater cameras would be limited in sampling range to < 1 m by low light levels and high turbidity, and where traditional sonar would be limited by the confined sample volume. Results of recent testing at The Dalles Dam, on the lower Columbia River in Oregon, USA, are shown.« less
Mednick, R. Lawrence; Blum, David B.
1987-01-01
Methanol is made in a liquid-phase methanol reactor by entraining a methanol-forming catalyst in an inert liquid and contacting said entrained catalyst with a synthesis gas comprising hydrogen and carbon monoxide.
NASA Technical Reports Server (NTRS)
Kadambi, Jaikrishnan R. (Inventor); Wernet, Mark P. (Inventor); Mielke, Amy F. (Inventor)
2005-01-01
A method for determining a mass flux of an entrained phase in a planar two-phase flow records images of particles in the two-phase flow. Respective sizes of the particles (the entrained phase) are determined as a function of a separation between spots identified on the particle images. Respective velocities of the particles are determined. The mass flux of the entrained phase is determined as a function of the size and velocity of the particles.
NASA Technical Reports Server (NTRS)
1992-01-01
Mike Morris, former Associate Director of STAC, formed pHish Doctor, Inc. to develop and sell a pH monitor for home aquariums. The monitor, or pHish Doctor, consists of a sensor strip and color chart that continually measures pH levels in an aquarium. This is important because when the level gets too high, ammonia excreted by fish is highly toxic; at low pH, bacteria that normally break down waste products stop functioning. Sales have run into the tens of thousands of dollars. A NASA Tech Brief Technical Support Package later led to a salt water version of the system and a DoE Small Business Innovation Research (SBIR) grant for development of a sensor for sea buoys. The company, now known as Ocean Optics, Inc., is currently studying the effects of carbon dioxide buildup as well as exploring other commercial applications for the fiber optic sensor.
NASA Astrophysics Data System (ADS)
Lee, D. B.; Jerolmack, D. J.
2017-12-01
Bed-load transport is notoriously unpredictable, in part due to stochastic fluctuations in grain entrainment and deposition. A general statistical mechanical framework has been proposed by Furbish and colleagues to formally derive average bed-load flux from grain-scale motion, and its application requires an intimate understanding of the probabilistic motion of individual grains. Recent work by Ancey et al. suggests that, near threshold, particles are entrained collectively. If so, understanding the scales of correlation is a necessary step to complete the probabilistic framework describing bed-load flux. We perform a series of experiments in a steep-sloped channel that directly quantifies fluctuations in grain motion as a function of the feed rate of particles (marbles). As the feed rate is increased, the necessary averaging time is decreased (i.e. transport grows less variable in time). Collective grain motion is defined as spatially clustered movement of several grains at once. We find that entrainment of particles is generally collective, but that these entrained particles deposit independently of each other. The size distribution of collective motion events follows an exponential decay that is consistent across sediment feed rates. To first order, changing feed rate does not change the kinematics of mobile grains, just the frequency of motion. For transport within a given region of the bed, we show that the total displacement of all entrained grains is proportional to the kinetic energy deposited into the bed by impacting grains. Individual grain-bed impacts are the likely cause of both collective and individual grain entrainment. The picture that emerges is similar to generic avalanching dynamics in sandpiles: "avalanches" (collective entrainment events) of a characteristic size relax with a characteristic timescale regardless of feed rate, but the frequency of avalanches increases in proportion to the feed rate. At high enough feed rates the avalanches merge, leading to progressively smoother and continuous transport. As most bed-load transport occurs in the intermittent regime, the length scale of collective entrainment should be considered a fundamental addition to a probabilistic framework that hopes to infer flux from grain motion.
NASA Astrophysics Data System (ADS)
An, C.; Parker, G.; Ma, H.; Naito, K.; Moodie, A. J.; Fu, X.
2017-12-01
Models of river morphodynamics consist of three elements: (1) a treatment of flow hydraulics, (2) a formulation relating some aspect of sediment transport to flow hydraulics, and (3) a description of sediment conservation. In the case of unidirectional river flow, the Exner equation of sediment conservation is commonly described in terms of a flux-based formulation, in which bed elevation variation is related to the streamwise gradient of sediment transport rate. An alternate formulation of the Exner equation, however, is the entrainment-based formulation in which bed elevation variation is related to the difference between the entrainment rate of bed sediment into suspension and the deposition rate of suspended sediment onto the bed. In the flux-based formulation, sediment transport is regarded to be in a local equilibrium state (i.e., sediment transport rate locally equals sediment transport capacity). However, the entrainment-based formulation does not require this constraint; the sediment transport rate may lag in space and time behind the changing flow conditions. In modeling the fine-grained Lower Yellow River, it is usual to treat sediment conservation in terms of an entrainment-based (nonequilibrium) rather than a flux-based (equilibrium) formulation with the consideration that fine-grained sediment may be entrained at one place but deposited only at some distant location downstream. However, the differences in prediction between the two formulations are still not well known, and the entrainment formulation may not always be necessary for the Lower Yellow River. Here we study this problem by comparing the results of flux-based and entrainment-based morphodynamics under conditions typical of the Yellow River, using sediment transport equations specifically designed for the Lower Yellow River. We find, somewhat unexpectedly, that in a treatment of a 200-km reach using uniform sediment, there is little difference between the two formulations unless the sediment fall velocity is arbitrarily greatly reduced. A consideration of sediment mixtures, however, shows that the two formulations give very different patterns of grain sorting. We explain this in terms of the structures of the two Exner equations for sediment mixtures, and define conditions for applicability of each formulation.
Nakahata, Yasukazu; Akashi, Makoto; Trcka, Daniel; Yasuda, Akio; Takumi, Toru
2006-01-01
Background Circadian rhythms are endogenous, self-sustained oscillations with approximately 24-hr rhythmicity that are manifested in various physiological and metabolic processes. The circadian organization of these processes in mammals is governed by the master oscillator within the suprachiasmatic nuclei (SCN) of the hypothalamus. Recent findings revealed that circadian oscillators exist in most organs, tissues, and even in immortalized cells, and that the oscillators in peripheral tissues are likely to be coordinated by SCN, the master oscillator. Some candidates for endogenous entrainment factors have sporadically been reported, however, their details remain mainly obscure. Results We developed the in vitro real-time oscillation monitoring system (IV-ROMS) by measuring the activity of luciferase coupled to the oscillatory gene promoter using photomultiplier tubes and applied this system to screen and identify factors able to influence circadian rhythmicity. Using this IV-ROMS as the primary screening of entrainment factors for circadian clocks, we identified 12 candidates as the potential entrainment factor in a total of 299 peptides and bioactive lipids. Among them, four candidates (endothelin-1, all-trans retinoic acid, 9-cis retinoic acid, and 13-cis retinoic acid) have already been reported as the entrainment factors in vivo and in vitro. We demonstrated that one of the novel candidates, 15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), a natural ligand of the peroxisome proliferator-activated receptor-γ (PPAR-γ), triggers the rhythmic expression of endogenous clock genes in NIH3T3 cells. Furthermore, we showed that 15d-PGJ2 transiently induces Cry1, Cry2, and Rorα mRNA expressions and that 15d-PGJ2-induced entrainment signaling pathway is PPAR-γ – and MAPKs (ERK, JNK, p38MAPK)-independent. Conclusion Here, we identified 15d-PGJ2 as an entrainment factor in vitro. Using our developed IV-ROMS to screen 299 compounds, we found eight novel and four known molecules to be potential entrainment factors for circadian clocks, indicating that this assay system is a powerful and useful tool in initial screenings. PMID:16483373
NASA Astrophysics Data System (ADS)
Pähtz, Thomas; Durán, Orencio
2017-07-01
In steady sediment transport, the deposition of transported particles is balanced by the entrainment of soil bed particles by the action of fluid forces or particle-bed impacts. Here we propose a proxy to determine the role of impact entrainment relative to entrainment by the mean turbulent flow: the "bed velocity" Vb, which is an effective near-bed-surface value of the average horizontal particle velocity that generalizes the classical slip velocity, used in studies of aeolian saltation transport, to sediment transport in an arbitrary Newtonian fluid. We study Vb for a wide range of the particle-fluid-density ratio s , Galileo number Ga , and Shields number Θ using direct sediment transport simulations with the numerical model of Durán et al. [Phys. Fluids 24, 103306 (2012), 10.1063/1.4757662], which couples the discrete element method for the particle motion with a continuum Reynolds-averaged description of hydrodynamics. We find that transport is fully sustained through impact entrainment (i.e., Vb is constant in natural units) when the "impact number" Im =Ga √{s +0.5 }≳20 or Θ ≳5 /Im . These conditions are obeyed for the vast majority of transport regimes, including steady turbulent bedload, which has long been thought to be sustained solely through fluid entrainment. In fact, we find that transport is fully sustained through fluid entrainment (i.e., Vb scales with the near-bed horizontal fluid velocity) only for sufficiently viscous bedload transport at grain scale (i.e., for Im ≲20 and Θ ≲1 /Im ). Finally, we do not find a strong correlation between Vb, or the classical slip velocity, and the transport-layer-averaged horizontal particle velocity vx¯, which challenges the long-standing consensus that predominant impact entrainment is responsible for a linear scaling of the transport rate with Θ . For turbulent bedload in particular, vx¯ increases with Θ despite Vb remaining constant, which we propose is linked to the formation of a liquidlike bed on top of the static-bed surface.
Bed-material entrainment potential, Roaring Fork River at Basalt, Colorado
Elliott, John G.
2002-01-01
The Roaring Fork River at Basalt, Colorado, has a frequently mobile streambed composed of gravel, cobbles, and boulders. Recent urban and highway development on the flood plain, earlier attempts to realign and confine the channel, and flow obstructions such as bridge openings and piers have altered the hydrology, hydraulics, sediment transport, and sediment deposition areas of the Roaring Fork. Entrainment and deposition of coarse sediment on the streambed and in large alluvial bars have reduced the flood-conveying capacity of the river. Previous engineering studies have identified flood-prone areas and hazards related to inundation and high streamflow velocity, but those studies have not evaluated the potential response of the channel to discharges that entrain the coarse streambed. This study builds upon the results of earlier flood studies and identifies some potential areas of concern associated with bed-material entrainment. Cross-section surveys and simulated water-surface elevations from a previously run HEC?RAS model were used to calculate the boundary shear stress on the mean streambed, in the thalweg, and on the tops of adjacent alluvial bars for four reference streamflows. Sediment-size characteristics were determined for surficial material on the streambed, on large alluvial bars, and on a streambank. The median particle size (d50) for the streambed samples was 165 millimeters and for the alluvial bars and bank samples was 107 millimeters. Shear stresses generated by the 10-, 50-, and 100-year floods, and by a more common flow that just inundated most of the alluvial bars in the study reach were calculated at 14 of the cross sections used in the Roaring Fork River HEC?RAS model. The Shields equation was used with a Shields parameter of 0.030 to estimate the critical shear stress for entrainment of the median sediment particle size on the mean streambed, in the thalweg, and on adjacent alluvial bar surfaces at the 14 cross sections. Sediment-entrainment potential for a specific geomorphic surface was expressed as the ratio of the flood-generated boundary shear stress to the critical shear stress (to/tc) with respect to two threshold conditions. The partial entrainment threshold (to/tc=1) is the condition where the mean boundary shear stress (to) equals the critical shear stress for the median particle size (tc) at that cross section. At this threshold discharge, the d50 particle size becomes entrained, but movement of d50-size particles may be limited to a few individual particles or in a small area of the streambed surface. The complete entrainment threshold (to/tc=2) is the condition where to is twice the critical shear stress for the median particle size, the condition where complete or widespread mobilization of the d50 particle-size fraction is anticipated. Entrainment potential for a specific reference streamflow varied greatly in the downstream direction. At some cross sections, the bed or bar material was mobile, whereas at other cross sections, the bed or bar material was immobile for the same discharge. The significance of downstream variability is that sediment entrained at one cross section may be transported into, but not through, a cross section farther downstream, a situation resulting in sediment deposition and possibly progressive aggradation and loss of channel conveyance. Little or no sediment in the d50-size range is likely to be entrained or transported through much of the study reach by the bar-inundating streamflow. However, the entrainment potential at this discharge increases abruptly to more than twice the critical value, then decreases abruptly, at a series of cross sections located downstream from the Emma and Midland Avenue Bridges. Median particle-size sediment is mobile at most cross sections in the study reach during the 10-year flood; however, the bed material is immobile at cross sections just upstream from the Upper Bypass and Midland Avenue Bridges. A similar s
Tian, Fang-Bao; Luo, Haoxiang; Zhu, Luoding; Liao, James C.; Lu, Xi-Yun
2012-01-01
We have introduced a modified penalty approach into the flow-structure interaction solver that combines an immersed boundary method (IBM) and a multi-block lattice Boltzmann method (LBM) to model an incompressible flow and elastic boundaries with finite mass. The effect of the solid structure is handled by the IBM in which the stress exerted by the structure on the fluid is spread onto the collocated grid points near the boundary. The fluid motion is obtained by solving the discrete lattice Boltzmann equation. The inertial force of the thin solid structure is incorporated by connecting this structure through virtual springs to a ghost structure with the equivalent mass. This treatment ameliorates the numerical instability issue encountered in this type of problems. Thanks to the superior efficiency of the IBM and LBM, the overall method is extremely fast for a class of flow-structure interaction problems where details of flow patterns need to be resolved. Numerical examples, including those involving multiple solid bodies, are presented to verify the method and illustrate its efficiency. As an application of the present method, an elastic filament flapping in the Kármán gait and the entrainment regions near a cylinder is studied to model fish swimming in these regions. Significant drag reduction is found for the filament, and the result is consistent with the metabolic cost measured experimentally for the live fish. PMID:23564971
NASA Astrophysics Data System (ADS)
Tian, Fang-Bao; Luo, Haoxiang; Zhu, Luoding; Liao, James C.; Lu, Xi-Yun
2011-08-01
We have introduced a modified penalty approach into the flow-structure interaction solver that combines an immersed boundary method (IBM) and a multi-block lattice Boltzmann method (LBM) to model an incompressible flow and elastic boundaries with finite mass. The effect of the solid structure is handled by the IBM in which the stress exerted by the structure on the fluid is spread onto the collocated grid points near the boundary. The fluid motion is obtained by solving the discrete lattice Boltzmann equation. The inertial force of the thin solid structure is incorporated by connecting this structure through virtual springs to a ghost structure with the equivalent mass. This treatment ameliorates the numerical instability issue encountered in this type of problems. Thanks to the superior efficiency of the IBM and LBM, the overall method is extremely fast for a class of flow-structure interaction problems where details of flow patterns need to be resolved. Numerical examples, including those involving multiple solid bodies, are presented to verify the method and illustrate its efficiency. As an application of the present method, an elastic filament flapping in the Kármán gait and the entrainment regions near a cylinder is studied to model fish swimming in these regions. Significant drag reduction is found for the filament, and the result is consistent with the metabolic cost measured experimentally for the live fish.
77 FR 51761 - Proposed Information Collection; Comment Request; Groundfish Tagging Program
Federal Register 2010, 2011, 2012, 2013, 2014
2012-08-27
... required by the Paperwork Reduction Act of 1995. DATES: Written comments must be submitted on or before... are two general categories of tags. Simple plastic tags (spaghetti tags) are external tags... fish. Archival tags are microchips with sensors encased in plastic cylinders that record the depth...
The Importance of Stochastic Effects for Explaining Entrainment in the Zebrafish Circadian Clock.
Heussen, Raphaela; Whitmore, David
2015-01-01
The circadian clock plays a pivotal role in modulating physiological processes and has been implicated, either directly or indirectly, in a range of pathological states including cancer. Here we investigate how the circadian clock is entrained by external cues such as light. Working with zebrafish cell lines and combining light pulse experiments with simulation efforts focused on the role of synchronization effects, we find that even very modest doses of light exposure are sufficient to trigger some entrainment, whereby a higher light intensity or duration correlates with strength of the circadian signal. Moreover, we observe in the simulations that stochastic effects may be considered an essential feature of the circadian clock in order to explain the circadian signal decay in prolonged darkness, as well as light initiated resynchronization as a strong component of entrainment.
Turbulence and entrainment length scales in large wind farms.
Andersen, Søren J; Sørensen, Jens N; Mikkelsen, Robert F
2017-04-13
A number of large wind farms are modelled using large eddy simulations to elucidate the entrainment process. A reference simulation without turbines and three farm simulations with different degrees of imposed atmospheric turbulence are presented. The entrainment process is assessed using proper orthogonal decomposition, which is employed to detect the largest and most energetic coherent turbulent structures. The dominant length scales responsible for the entrainment process are shown to grow further into the wind farm, but to be limited in extent by the streamwise turbine spacing, which could be taken into account when developing farm layouts. The self-organized motion or large coherent structures also yield high correlations between the power productions of consecutive turbines, which can be exploited through dynamic farm control.This article is part of the themed issue 'Wind energy in complex terrains'. © 2017 The Author(s).
Flowmeter for gas-entrained solids flow
Porges, Karl G.
1990-01-01
An apparatus and method for the measurement of solids feedrate in a gas-entrained solids flow conveyance system. The apparatus and method of the present invention include a vertical duct connecting a source of solids to the gas-entrained flow conveyance system, a control valve positioned in the vertical duct, and a capacitive densitometer positioned along the duct at a location a known distance below the control valved so that the solid feedrate, Q, of the gas entrained flow can be determined by Q=S.rho..phi.V.sub.S where S is the cross sectional area of the duct, .rho. is the density of the solid, .phi. is the solid volume fraction determined by the capacitive densitometer, and v.sub.S is the local solid velocity which can be inferred from the konown distance of the capacitive densitometer below the control valve.
Turbulence and entrainment length scales in large wind farms
2017-01-01
A number of large wind farms are modelled using large eddy simulations to elucidate the entrainment process. A reference simulation without turbines and three farm simulations with different degrees of imposed atmospheric turbulence are presented. The entrainment process is assessed using proper orthogonal decomposition, which is employed to detect the largest and most energetic coherent turbulent structures. The dominant length scales responsible for the entrainment process are shown to grow further into the wind farm, but to be limited in extent by the streamwise turbine spacing, which could be taken into account when developing farm layouts. The self-organized motion or large coherent structures also yield high correlations between the power productions of consecutive turbines, which can be exploited through dynamic farm control. This article is part of the themed issue ‘Wind energy in complex terrains’. PMID:28265028
Numerically modeling oxide entrainment in the filling of castings: The effect of the webber number
NASA Astrophysics Data System (ADS)
Cuesta, Rafael; Delgado, Angel; Maroto, Antonio; Mozo, David
2006-11-01
In the casting of aluminum alloys and, in general, in the casting of film-forming alloys, the entrainment of oxides into the bulk liquid severely reduces the strength of the cast part. To avoid this, the melt velocity must be kept below a certain value, namely critical velocity, which is widely assumed to be 0.5 m/s. In this paper the authors investigate, by means of fluid-dynamic computer simulation, the dependence of critical veiocity on geometrical features of the running channels and thermophysical properties of the molten metal. For each of the geometries studied, once the critical velocity is exceeded, the amount of oxide entrained in the liquid is quantified. The analysis of the results reveals that surface entrainment is much more related to the non-dimensional Webber number than to melt velocity.
NASA Astrophysics Data System (ADS)
Aubry, Thomas J.; Jellinek, A. Mark
2018-05-01
The turbulent entrainment of atmosphere and the condensation of water vapor govern the heights of explosive volcanic plumes. These processes thus determine the delivery and the lifetime of volcanic ash and aerosols into the atmosphere. Predictions of plume heights using one-dimensional "integral" models of volcanic plumes, however, suffer from very large uncertainties, related to parameterizations for entrainment and condensation. In particular, the wind entrainment coefficient β, which governs the contribution of crosswinds to turbulent entrainment, is subject to uncertainties of one order of magnitude, leading to relative uncertainties of the order of 50% on plume height. In this study, we use a database of 94 eruptive phases with independent estimates of mass eruption rate and plume height to constrain and evaluate four popular 1D models. We employ re-sampling methods to account for observational uncertainties. We show that plume height predictions are significantly improved when: i) the contribution of water vapor condensation to the plume buoyancy flux is excluded; and ii) the wind entrainment coefficient β is held constant between 0.1 and 0.4. We explore implications of these results for predicting the climate impacts of explosive eruptions and the likelihood that eruptions will form stable umbrella clouds or devastating pyroclastic flows. Last, we discuss the sensitivity of our results to the definition of plume height in the model in light of a recent set of laboratory experiments and draw conclusions for improving future databases of eruption parameters.
Heitmuller, Franklin T.; Asquith, William H.
2008-01-01
The Texas Department of Transportation spends considerable money for maintenance and replacement of low-water crossings of streams in the Edwards Plateau in Central Texas as a result of damages caused in part by the transport of cobble- and gravel-sized bed material. An investigation of the problem at low-water crossings was made by the U.S. Geological Survey in cooperation with the Texas Department of Transportation, and in collaboration with Texas Tech University, Lamar University, and the University of Houston. The bed-material entrainment problem for low-water crossings occurs at two spatial scales - watershed scale and channel-reach scale. First, the relative abundance and activity of cobble- and gravel-sized bed material along a given channel reach becomes greater with increasingly steeper watershed slopes. Second, the stresses required to mobilize bed material at a location can be attributed to reach-scale hydraulic factors, including channel geometry and particle size. The frequency of entrainment generally increases with downstream distance, as a result of decreasing particle size and increased flood magnitudes. An average of 1 year occurs between flows that initially entrain bed material as large as the median particle size, and an average of 1.5 years occurs between flows that completely entrain bed material as large as the median particle size. The Froude numbers associated with initial and complete entrainment of bed material up to the median particle size approximately are 0.40 and 0.45, respectively.
Speech Entrainment Compensates for Broca's Area Damage
Fridriksson, Julius; Basilakos, Alexandra; Hickok, Gregory; Bonilha, Leonardo; Rorden, Chris
2015-01-01
Speech entrainment (SE), the online mimicking of an audiovisual speech model, has been shown to increase speech fluency in patients with Broca's aphasia. However, not all individuals with aphasia benefit from SE. The purpose of this study was to identify patterns of cortical damage that predict a positive response SE's fluency-inducing effects. Forty-four chronic patients with left hemisphere stroke (15 female) were included in this study. Participants completed two tasks: 1) spontaneous speech production, and 2) audiovisual SE. Number of different words per minute was calculated as a speech output measure for each task, with the difference between SE and spontaneous speech conditions yielding a measure of fluency improvement. Voxel-wise lesion-symptom mapping (VLSM) was used to relate the number of different words per minute for spontaneous speech, SE, and SE-related improvement to patterns of brain damage in order to predict lesion locations associated with the fluency-inducing response to speech entrainment. Individuals with Broca's aphasia demonstrated a significant increase in different words per minute during speech entrainment versus spontaneous speech. A similar pattern of improvement was not seen in patients with other types of aphasia. VLSM analysis revealed damage to the inferior frontal gyrus predicted this response. Results suggest that SE exerts its fluency-inducing effects by providing a surrogate target for speech production via internal monitoring processes. Clinically, these results add further support for the use of speech entrainment to improve speech production and may help select patients for speech entrainment treatment. PMID:25989443
Ronconi, Luca; Melcher, David
2017-11-01
Recent behavioral, neuroimaging, and neurophysiological studies have renewed the idea that the information processing within different temporal windows is linked to the phase and/or frequency of the ongoing oscillations, predominantly in the theta/alpha band (∼4-7 and 8-12 Hz, respectively). However, being correlational in nature, this evidence might reflect a nonfunctional byproduct rather than having a causal role. A more direct link can be shown with methods that manipulate oscillatory activity. Here, we used audiovisual entrainment at different frequencies in the prestimulus period of a temporal integration/segregation task. We hypothesized that entrainment would align ongoing oscillations and drive them toward the stimulation frequency. To reveal behavioral oscillations in temporal perception after the entrainment, we sampled the segregation/integration performance densely in time. In Experiment 1, two groups of human participants (both males and females) received stimulation either at the lower or the upper boundary of the alpha band (∼8.5 vs 11.5 Hz). For both entrainment frequencies, we found a phase alignment of the perceptual oscillation across subjects, but with two different power spectra that peaked near the entrainment frequency. These results were confirmed when perceptual oscillations were characterized in the time domain with sinusoidal fittings. In Experiment 2, we replicated the findings in a within-subject design, extending the results for frequencies in the theta (∼6.5 Hz), but not in the beta (∼15 Hz), range. Overall, these findings show that temporal segregation can be modified by sensory entrainment, providing evidence for a critical role of ongoing oscillations in the temporal organization of perception. SIGNIFICANCE STATEMENT The continuous flow of sensory input is not processed in an analog fashion, but rather is grouped by the perceptual system over time. Recent studies pinpointed the phase and/or frequency of the neural oscillations in the theta/alpha band (∼4-12 Hz) as possible mechanisms underlying temporal windows in perception. Here, we combined two innovative methodologies to provide more direct support for this evidence. We used sensory entrainment to align neural oscillations to different frequencies and then characterized the resultant perceptual oscillation with a temporal dense sampling of the integration/segregation performance. Our results provide the first evidence that the frequency of temporal segregation can be modified by sensory entrainment, supporting a critical role of ongoing oscillations in the integration/segregation of information over time. Copyright © 2017 Ronconi and Melcher.
Cold water corals - Converting short term scientific excitement into long term public interest
NASA Astrophysics Data System (ADS)
Maestad, K.
2009-04-01
The Vesteraalen area off the Northern Norwegian coast is of ecological importance as a spawning ground for several fish stocks and as a corridor for migrating mature fish and drifting fish larvae for other stocks. The area is also of great interest to oil exploration companies for its hitherto untapped energy supplies. In the midst of it all, there are a number of cold-water coral reefs. Researchers at the Institute of Marine Research in Norway have constructed a sophisticated system for monitoring habitats around the cold-water corals and their environment over time. Two so-called landers will be placed next to coral reefs, will be equipped with echo sounders, camera, hydrophone, acoustic current profiler, CTD-sensor and sediment traps in March 09. This will provide high quality data regarding both physical conditions and biological activity. The sensors will make it possible to observe how different species interact with each other, with particular focus on the activity of fish and how they use the reef habitat. The system will have the capacity to transmit data live from the ocean floor. Creating attention in national media regarding such a ground-breaking project is not all that difficult. Already, the Norwegian national TV channel NRK has confirmed participation on the cruise that will deploy the landers. However, this project also presents communication challenges. One of which is to find a way of making echogram images of the reef understandable ("readable") to people not familiar with interpreting echo sounder signals. This will be especially important if it is decided to make the data from the coral reef available live on the internet. Furthermore, the aim will be to create interest amongst specific audiences in following the life in and around the coral reef over time.
Design and application of a fish-shaped lateral line probe for flow measurement
NASA Astrophysics Data System (ADS)
Tuhtan, J. A.; Fuentes-Pérez, J. F.; Strokina, N.; Toming, G.; Musall, M.; Noack, M.; Kämäräinen, J. K.; Kruusmaa, M.
2016-04-01
We introduce the lateral line probe (LLP) as a measurement device for natural flows. Hydraulic surveys in rivers and hydraulic structures are currently based on time-averaged velocity measurements using propellers or acoustic Doppler devices. The long-term goal is thus to develop a sensor system, which includes spatial gradients of the flow field along a fish-shaped sensor body. Interpreting the biological relevance of a collection of point velocity measurements is complicated by the fact that fish and other aquatic vertebrates experience the flow field through highly dynamic fluid-body interactions. To collect body-centric flow data, a bioinspired fish-shaped probe is equipped with a lateral line pressure sensing array, which can be applied both in the laboratory and in the field. Our objective is to introduce a new type of measurement device for body-centric data and compare its output to estimates of conventional point-based technologies. We first provide the calibration workflow for laboratory investigations. We then provide a review of two velocity estimation workflows, independent of calibration. Such workflows are required as existing field investigations consist of measurements in environments where calibration is not feasible. The mean difference for uncalibrated LLP velocity estimates from 0 to 50 cm/s under in a closed flow tunnel and open channel flume was within 4 cm/s when compared to conventional measurement techniques. Finally, spatial flow maps in a scale vertical slot fishway are compared for the LLP, direct measurements, and 3D numerical models where it was found that the LLP provided a slight overestimation of the current velocity in the jet and underestimated the velocity in the recirculation zone.
Exploring how musical rhythm entrains brain activity with electroencephalogram frequency-tagging.
Nozaradan, Sylvie
2014-12-19
The ability to perceive a regular beat in music and synchronize to this beat is a widespread human skill. Fundamental to musical behaviour, beat and meter refer to the perception of periodicities while listening to musical rhythms and often involve spontaneous entrainment to move on these periodicities. Here, we present a novel experimental approach inspired by the frequency-tagging approach to understand the perception and production of rhythmic inputs. This approach is illustrated here by recording the human electroencephalogram responses at beat and meter frequencies elicited in various contexts: mental imagery of meter, spontaneous induction of a beat from rhythmic patterns, multisensory integration and sensorimotor synchronization. Collectively, our observations support the view that entrainment and resonance phenomena subtend the processing of musical rhythms in the human brain. More generally, they highlight the potential of this approach to help us understand the link between the phenomenology of musical beat and meter and the bias towards periodicities arising under certain circumstances in the nervous system. Entrainment to music provides a highly valuable framework to explore general entrainment mechanisms as embodied in the human brain. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Seizure entrainment with polarizing low-frequency electric fields in a chronic animal epilepsy model
NASA Astrophysics Data System (ADS)
Sunderam, Sridhar; Chernyy, Nick; Peixoto, Nathalia; Mason, Jonathan P.; Weinstein, Steven L.; Schiff, Steven J.; Gluckman, Bruce J.
2009-08-01
Neural activity can be modulated by applying a polarizing low-frequency (Lt100 Hz) electric field (PLEF). Unlike conventional pulsed stimulation, PLEF stimulation has a graded, modulatory effect on neuronal excitability, and permits the simultaneous recording of neuronal activity during stimulation suitable for continuous feedback control. We tested a prototype system that allows for simultaneous PLEF stimulation with minimal recording artifact in a chronic tetanus toxin animal model (rat) of hippocampal epilepsy with spontaneous seizures. Depth electrode local field potentials recorded during seizures revealed a characteristic pattern of field postsynaptic potentials (fPSPs). Sinusoidal voltage-controlled PLEF stimulation (0.5-25 Hz) was applied in open-loop cycles radially across the CA3 of ventral hippocampus. For stimulated seizures, fPSPs were transiently entrained with the PLEF waveform. Statistical significance of entrainment was assessed with Thomson's harmonic F-test, with 45/132 stimulated seizures in four animals individually demonstrating significant entrainment (p < 0.04). Significant entrainment for multiple presentations at the same frequency (p < 0.01) was observed in three of four animals in 42/64 stimulated seizures. This is the first demonstration in chronically implanted freely behaving animals of PLEF modulation of neural activity with simultaneous recording.
Suppression of competing speech through entrainment of cortical oscillations
D'Zmura, Michael; Srinivasan, Ramesh
2013-01-01
People are highly skilled at attending to one speaker in the presence of competitors, but the neural mechanisms supporting this remain unclear. Recent studies have argued that the auditory system enhances the gain of a speech stream relative to competitors by entraining (or “phase-locking”) to the rhythmic structure in its acoustic envelope, thus ensuring that syllables arrive during periods of high neuronal excitability. We hypothesized that such a mechanism could also suppress a competing speech stream by ensuring that syllables arrive during periods of low neuronal excitability. To test this, we analyzed high-density EEG recorded from human adults while they attended to one of two competing, naturalistic speech streams. By calculating the cross-correlation between the EEG channels and the speech envelopes, we found evidence of entrainment to the attended speech's acoustic envelope as well as weaker yet significant entrainment to the unattended speech's envelope. An independent component analysis (ICA) decomposition of the data revealed sources in the posterior temporal cortices that displayed robust correlations to both the attended and unattended envelopes. Critically, in these components the signs of the correlations when attended were opposite those when unattended, consistent with the hypothesized entrainment-based suppressive mechanism. PMID:23515789
Simple estimate of entrainment rate of pollutants from a coastal discharge into the surf zone.
Wong, Simon H C; Monismith, Stephen G; Boehm, Alexandria B
2013-10-15
Microbial pollutants from coastal discharges can increase illness risks for swimmers and cause beach advisories. There is presently no predictive model for estimating the entrainment of pollution from coastal discharges into the surf zone. We present a novel, quantitative framework for estimating surf zone entrainment of pollution at a wave-dominant open beach. Using physical arguments, we identify a dimensionless parameter equal to the quotient of the surf zone width l(sz) and the cross-flow length scale of the discharge la = M(j) (1/2)/U(sz), where M(j) is the discharge's momentum flux and U(sz) is a representative alongshore velocity in the surf zone. We conducted numerical modeling of a nonbuoyant discharge at an alongshore uniform beach with constant slope using a wave-resolving hydrodynamic model. Using results from 144 numerical experiments we develop an empirical relationship between the surf zone entrainment rate α and l(sz)/(la). The empirical relationship can reasonably explain seven measurements of surf zone entrainment at three diverse coastal discharges. This predictive relationship can be a useful tool in coastal water quality management and can be used to develop predictive beach water quality models.
NASA Astrophysics Data System (ADS)
Ackerman, A. S.; Kelley, M.; Cheng, Y.; Fridlind, A. M.; Del Genio, A. D.; Bauer, S.
2017-12-01
Reduction in cloud-water sedimentation induced by increasing droplet concentrations has been shown in large-eddy simulations (LES) and direct numerical simulation (DNS) to enhance boundary-layer entrainment, thereby reducing cloud liquid water path and offsetting the Twomey effect when the overlying air is sufficiently dry, which is typical. Among recent upgrades to ModelE3, the latest version of the NASA Goddard Institute for Space Studies (GISS) general circulation model (GCM), are a two-moment stratiform cloud microphysics treatment with prognostic precipitation and a moist turbulence scheme that includes an option in its entrainment closure of a simple parameterization for the effect of cloud-water sedimentation. Single column model (SCM) simulations are compared to LES results for a stratocumulus case study and show that invoking the sedimentation-entrainment parameterization option indeed reduces the dependence of cloud liquid water path on increasing aerosol concentrations. Impacts of variations of the SCM configuration and the sedimentation-entrainment parameterization will be explored. Its impact on global aerosol indirect forcing in the framework of idealized atmospheric GCM simulations will also be assessed.
Can the circadian system of a diurnal and a nocturnal rodent entrain to ultraviolet light?
Hut, R A; Scheper, A; Daan, S
2000-01-01
Spectral measurements of sunlight throughout the day show close correspondence between the timing of above ground activity of the European ground squirrel and the presence of ultraviolet light in the solar spectrum. However, in a standard entrainment experiment ground squirrels show no entrainment to ultraviolet light, while Syrian hamsters do entrain under the same protocol. Presented transmittance spectra for lenses, corneas, and vitreous bodies may explain the different results of the entrainment experiment. We found ultraviolet light transmittance in the colourless hamster lens (50% cut-off at 341 nm), but not in the yellow ground squirrel lens (50% cut-off around 493 nm). Ultraviolet sensitivity in the ground squirrels based upon possible fluorescence mechanisms was not evident. Possible functions of ultraviolet lens filters in diurnal mammals are discussed, and compared with nocturnal mammals and diurnal birds. Species of the latter two groups lack ultraviolet filtering properties of their lenses and their circadian system is known to respond to ultraviolet light, a feature that does not necessarily has to depend on ultraviolet photoreceptors. Although the circadian system of several species responds to ultraviolet light, we argue that the role of ultraviolet light as a natural Zeitgeber is probably limited.
Laboratory simulations of cumulus cloud flows explain the entrainment anomaly
NASA Astrophysics Data System (ADS)
Narasimha, Roddam; Diwan, Sourabh S.; Subrahmanyam, Duvvuri; Sreenivas, K. R.; Bhat, G. S.
2010-11-01
In the present laboratory experiments, cumulus cloud flows are simulated by starting plumes and jets subjected to off-source heat addition in amounts that are dynamically similar to latent heat release due to condensation in real clouds. The setup permits incorporation of features like atmospheric inversion layers and the active control of off-source heat addition. Herein we report, for the first time, simulation of five different cumulus cloud types (and many shapes), including three genera and three species (WMO Atlas 1987), which show striking resemblance to real clouds. It is known that the rate of entrainment in cumulus cloud flows is much less than that in classical plumes - the main reason for the failure of early entrainment models. Some of the previous studies on steady-state jets and plumes (done in a similar setup) have attributed this anomaly to the disruption of the large-scale turbulent structures upon the addition of off-source heat. We present estimates of entrainment coefficients from these measurements which show a qualitatively consistent variation with height. We propose that this explains the observed entrainment anomaly in cumulus clouds; further experiments are planned to address this question in the context of starting jets and plumes.
Inertial particles in a shearless mixing layer: direct numerical simulations
NASA Astrophysics Data System (ADS)
Ireland, Peter; Collins, Lance
2010-11-01
Entrainment, the drawing in of external fluid by a turbulent flow, is present in nearly all turbulent processes, from exhaust plumes to oceanic thermoclines to cumulus clouds. While the entrainment of fluid and of passive scalars in turbulent flows has been studied extensively, comparatively little research has been undertaken on inertial particle entrainment. We explore entrainment of inertial particles in a shearless mixing layer across a turbulent-non-turbulent interface (TNI) and a turbulent-turbulent interface (TTI) through direct numerical simulation (DNS). Particles are initially placed on one side of the interface and are advanced in time in decaying turbulence. Our results show that the TTI is more efficient in mixing droplets than the TNI. We also find that without the influence of gravity, over the range of Stokes numbers present in cumulus clouds, particle concentration statistics are essentially independent of the dissipation scale Stokes number. The DNS data agrees with results from experiments performed in a wind tunnel with close parametric overlap. We anticipate that a better understanding of the role of gravity and turbulence in inertial particle entrainment will lead to improved cloud evolution predictions and more accurate climate models. Sponsored by the U.S. NSF.
Proceedings of a workshop on American Eel passage technologies
Haro, Alexander J.
2013-01-01
Recent concerns regarding a decline in recruitment of American eels (Anguilla rostrata) have prompted efforts to restore this species to historic habitats by providing passage for both upstream migrant juveniles and downstream migrant adults at riverine barriers, including low-head and hydroelectric dams (Castonguay et al. 1994, Haro et al. 2000). These efforts include development of management plans and stock assessment reviews in both the US and Canada (COSEWIC 2006, Canadian Eel Working Group 2009, DFO 2010, MacGregor et al. 2010, ASMFC 2000, ASMFC 2006, ASMFC 2008, Williams and Threader 2007), which target improvement of upstream and downstream passage for eels, as well as identification and prioritization of research needs for development of new and more effective passage technologies for American eels. Traditional upstream fish passage structures, such as fishways and fish lifts, are often ineffective passing juvenile eels, and specialized passage structures for this species are needed. Although designs for such passage structures are available and diverse (Knights and White 1998, Porcher 2002, FAO/DVWK 2002, Solomon and Beach 2004a,b, Environment Agency UK 2011), many biologists, managers, and engineers are unfamiliar with eel pass design and operation, or unaware of the technical options available for upstream eel passage, Better coordination is needed to account for eel passage requirements during restoration efforts for other diadromous fish species. Also, appropriately siting eel passes at hydropower projects is critical, and siting can be difficult and complex due to physical restrictions in access to points of natural concentrations of eels, dynamic hydraulics of tailrace areas, and presence of significant competing flows from turbine outfalls or spill. As a result, some constructed eel passes are sited poorly and may pass only a fraction of the number of eels attempting to pass the barrier. When sited and constructed appropriately, however, eel passes can effectively pass thousands of individuals in a season (Appendix D). technologies for preventing impingement and entrainment mortality and injury of downstream migrant eels at hydropower projects are not well developed. Traditional downstream fish passage mitigative techniques originally developed for salmonids and other species are frequently ineffective passing eels (Richkus and Dixon 2003, EPRI 2001, Bruijs and Durif 2009). Large hydropower projects, with high project flows or intake openings that cannot be fitted with racks or screens with openings small enough to exclude eels, pose significant passage problems for this species, and turbine impingement and entrainment mortality of eels can be as high as 100%. Spill mortality and injury may also be significant for eels, given their tendency to move during high flow events when projects typically spill large amounts of flow. Delays in migration of eels that have difficulty locating and utilizing bypass entrances can also be significant. Therefore, downstream passage technologies are at a much more nebulous state of development than upstream passage technologies, and require further evaluation and improvement before rigorous design guidelines can be established. There have been few studies conducted to evaluate effectiveness of current mitigative measures for both upstream and downstream passage of eels. Research is needed to determine eel migratory timing, behavior, and appropriate mitigation technologies for specific sites and eel life history stages. Both upstream and downstream eel passage structures can be difficult to evaluate in terms of performance, and examples of how evaluation and monitoring can be accomplished were reviewed at the workshop.
Císař, Petr; Labbé, Laurent; Souček, Pavel; Pelissier, Pablo; Kerneis, Thierry
2018-01-01
The main aim of this study was to develop a new objective method for evaluating the impacts of different diets on the live fish skin using image-based features. In total, one-hundred and sixty rainbow trout (Oncorhynchus mykiss) were fed either a fish-meal based diet (80 fish) or a 100% plant-based diet (80 fish) and photographed using consumer-grade digital camera. Twenty-three colour features and four texture features were extracted. Four different classification methods were used to evaluate fish diets including Random forest (RF), Support vector machine (SVM), Logistic regression (LR) and k-Nearest neighbours (k-NN). The SVM with radial based kernel provided the best classifier with correct classification rate (CCR) of 82% and Kappa coefficient of 0.65. Although the both LR and RF methods were less accurate than SVM, they achieved good classification with CCR 75% and 70% respectively. The k-NN was the least accurate (40%) classification model. Overall, it can be concluded that consumer-grade digital cameras could be employed as the fast, accurate and non-invasive sensor for classifying rainbow trout based on their diets. Furthermore, these was a close association between image-based features and fish diet received during cultivation. These procedures can be used as non-invasive, accurate and precise approaches for monitoring fish status during the cultivation by evaluating diet’s effects on fish skin. PMID:29596375
Saberioon, Mohammadmehdi; Císař, Petr; Labbé, Laurent; Souček, Pavel; Pelissier, Pablo; Kerneis, Thierry
2018-03-29
The main aim of this study was to develop a new objective method for evaluating the impacts of different diets on the live fish skin using image-based features. In total, one-hundred and sixty rainbow trout ( Oncorhynchus mykiss ) were fed either a fish-meal based diet (80 fish) or a 100% plant-based diet (80 fish) and photographed using consumer-grade digital camera. Twenty-three colour features and four texture features were extracted. Four different classification methods were used to evaluate fish diets including Random forest (RF), Support vector machine (SVM), Logistic regression (LR) and k -Nearest neighbours ( k -NN). The SVM with radial based kernel provided the best classifier with correct classification rate (CCR) of 82% and Kappa coefficient of 0.65. Although the both LR and RF methods were less accurate than SVM, they achieved good classification with CCR 75% and 70% respectively. The k -NN was the least accurate (40%) classification model. Overall, it can be concluded that consumer-grade digital cameras could be employed as the fast, accurate and non-invasive sensor for classifying rainbow trout based on their diets. Furthermore, these was a close association between image-based features and fish diet received during cultivation. These procedures can be used as non-invasive, accurate and precise approaches for monitoring fish status during the cultivation by evaluating diet's effects on fish skin.
NASA Technical Reports Server (NTRS)
2003-01-01
KENNEDY SPACE CENTER, FLA. Researchers conduct underwater acoustic research in the Launch Complex 39 turn basin. Several government agencies, including NASA, NOAA, the Navy, the Coast Guard, and the Florida Fish and Wildlife Commission are involved in the testing. The research involves demonstrations of passive and active sensor technologies, with applications in fields ranging from marine biological research to homeland security. The work is also serving as a pilot project to assess the cooperation between the agencies involved. Equipment under development includes a passive acoustic monitor developed by NASAs Jet Propulsion Laboratory, and mobile robotic sensors from the Navys Mobile Diving and Salvage Unit.
Fluvial experiments using inertial sensors.
NASA Astrophysics Data System (ADS)
Maniatis, Georgios; Valyrakis, Manousos; Hodge, Rebecca; Drysdale, Tim; Hoey, Trevor
2017-04-01
During the last four years we have announced results on the development of a smart pebble that is constructed and calibrated specifically for capturing the dynamics of coarse sediment motion in river beds, at a grain scale. In this presentation we report details of our experimental validation across a range of flow regimes. The smart pebble contains Inertial Measurements Units (IMUs), which are sensors capable of recording the inertial acceleration and the angular velocity of the rigid bodies into which they are attached. IMUs are available across a range of performance levels, with commensurate increase in size, cost and performance as one progresses from integrated-circuit devices for use in commercial applications such as gaming and mobile phones, to larger brick-sized systems sometimes found in industrial applications such as vibration monitoring and quality control, or even the rack-mount equipment used in some aerospace and navigation applications (which can go as far as to include lasers and optical components). In parallel with developments in commercial and industrial settings, geomorphologists started recently to explore means of deploying IMUs in smart pebbles. The less-expensive, chip-scale IMUs have been shown to have adequate performance for this application, as well as offering a sufficiently compact form-factor. Four prototype sensors have been developed so far, and the latest (400 g acceleration range, 50-200 Hz sampling frequency) has been tested in fluvial laboratory experiments. We present results from three different experimental regimes designed for the evaluation of this sensor: a) an entrainment threshold experiment ; b) a bed impact experiment ; and c) a rolling experiment. All experiments used a 100 mm spherical sensor, and set a) were repeated using an equivalent size elliptical sensor. The experiments were conducted in the fluvial laboratory of the University of Glasgow (0.9 m wide flume) under different hydraulic conditions. The use of IMU results into direct parametrization of the inertial forces of grains which for the tested grain sizes were, as expected, always comparable to the independently measured hydrodynamic forces. However, the validity of IMU measurements is subjected to specific design, processing and experimental considerations, and we present the results of our analysis of these.
NASA Astrophysics Data System (ADS)
Fuller, Charles; Ringgold, Kristyn
The circadian pacemaker can be phase shifted and entrained by appropriately timed locomotor activity, however the mechanism(s) involved remain poorly understood. Recent work in our lab has suggested the involvement of the vestibular otolith organs in activity-induced changes within the circadian timing system (CTS). For example, we have shown that changes in circa-dian period and phase in response to locomotion (wheel running) require functional macular gravity receptors. We believe the neurovestibular system is responsible for the transduction of gravitoinertial input associated with the types of locomotor activity that are known to af-fect the pacemaker. This study investigated the hypothesis that daily, timed gravitoinertial stimuli, as applied by centrifugation. would induce entrainment of circadian rhythms in only those animals with functional afferent vestibular input. To test this hypothesis, , chemically labyrinthectomized (Labx) mice, mice lacking macular vestibular input (head tilt or hets) and wildtype (WT) littermates were implanted i.p. with biotelemetry and individually housed in a 4-meter diameter centrifuge in constant darkness (DD). After 2 weeks in DD, the mice were exposed daily to 2G via centrifugation from 1000-1200 for 9 weeks. Only WT mice showed entrainment to the daily 2G pulse. The 2G pulse was then re-set to occur at 1200-1400 for 4 weeks. Only WT mice demonstrated a phase shift in response to the re-setting of the 2G pulse and subsequent re-entrainment to the new centrifugation schedule. These results provide further evidence that gravitoinertial stimuli require a functional vestibular system to both en-train and phase shift the CTS. Entrainment among only WT mice supports the role of macular gravity receptive cells in modulation of the CTS while also providing a functional mechanism by which gravitoinertial stimuli, including locomotor activity, may affect the pacemaker.
NASA Astrophysics Data System (ADS)
Hodge, R. A.; Voepel, H.; Leyland, J.; Sear, D. A.; Ahmed, S. I.
2017-12-01
The shear stress at which a grain is entrained is determined by the balance between the applied fluid forces, and the resisting forces of the grain. Recent research has tended to focus on the applied fluid forces; calculating the resisting forces requires measurement of the geometry of in-situ sediment grains which has previously been very difficult to measure. We have used CT scanning to measure the grain geometry of in-situ water-worked grains, and from these data have calculated metrics that are relevant to grain entrainment. We use these metrics to parameterise a new, fully 3D, moment-balance model of grain entrainment. Inputs to the model are grain dimensions, exposed area, elevation relative to the velocity profile, the location of grain-grain contact points, and contact area with fine matrix sediment. The new CT data and model mean that assumptions of previous grain-entrainment models (e.g. spherical grains, 1D measurements of protrusion, entrainment in the downstream direction) are no longer necessary. The model calculates the critical shear stress for each possible set of contact points, and outputs the lowest value. Consequently, metrics including pivot angle and the direction of grain entrainment are now model outputs, rather than having to be pre-determined. We use the CT data and model to calculate the critical shear stress of 1092 in-situ grains from baskets that were buried and water-worked in a flume prior to scanning. We find that there is no consistent relationship between relative grain size (D/D50) and pivot angle, whereas there is a negative relationship between D/D50 and protrusion. Out of all measured metrics, critical shear stress is most strongly controlled by protrusion. This finding suggests that grain-scale topographic data could be used to estimate grain protrusion and hence improve estimates of critical shear stress.
Margaliot, Michael; Sontag, Eduardo D; Tuller, Tamir
2014-01-01
Periodic oscillations play an important role in many biomedical systems. Proper functioning of biological systems that respond to periodic signals requires the ability to synchronize with the periodic excitation. For example, the sleep/wake cycle is a manifestation of an internal timing system that synchronizes to the solar day. In the terminology of systems theory, the biological system must entrain or phase-lock to the periodic excitation. Entrainment is also important in synthetic biology. For example, connecting several artificial biological systems that entrain to a common clock may lead to a well-functioning modular system. The cell-cycle is a periodic program that regulates DNA synthesis and cell division. Recent biological studies suggest that cell-cycle related genes entrain to this periodic program at the gene translation level, leading to periodically-varying protein levels of these genes. The ribosome flow model (RFM) is a deterministic model obtained via a mean-field approximation of a stochastic model from statistical physics that has been used to model numerous processes including ribosome flow along the mRNA. Here we analyze the RFM under the assumption that the initiation and/or transition rates vary periodically with a common period T. We show that the ribosome distribution profile in the RFM entrains to this periodic excitation. In particular, the protein synthesis pattern converges to a unique periodic solution with period T. To the best of our knowledge, this is the first proof of entrainment in a mathematical model for translation that encapsulates aspects such as initiation and termination rates, ribosomal movement and interactions, and non-homogeneous elongation speeds along the mRNA. Our results support the conjecture that periodic oscillations in tRNA levels and other factors related to the translation process can induce periodic oscillations in protein levels, and may suggest a new approach for re-engineering genetic systems to obtain a desired, periodic, protein synthesis rate.
Experimental Exploration of Scale Effects and Factors Controlling Bed Load Sediment Entrainment
NASA Astrophysics Data System (ADS)
Fathel, S. L.; Furbish, D. J.; Schmeeckle, M. W.
2015-12-01
Detailed measurements of individual sand grains moving on a streambed allow us to obtain a deeper understanding of the characteristics of incipient motion and evaluate spatial and temporal trends in particle entrainment. We use bed load particle motions measured from high-speed imaging (250 Hz) of uniform, coarse grained sand from two flume experiments, which have different mean fluid velocities near the bed. Particle tracking reveals more than 6,000 entrainment events in 5 seconds (Run 1) and over 5,000 events in 2 seconds (Run 2). We manually track particles, at sub-pixel resolution, from entrainment to either disentrainment or until the particle leaves the frame. Within these experiments we find that over 90% of all initial motions contain a cross-stream component of motion where approximately a third of the motions may be cross-stream dominated, and furthermore, up to 7% of the motions may be negative (i.e. move backwards). We propose that the variability in the direction of initial motion is, in part, a product of the bed topography, where we find that with increasing mean fluid velocity, the initial motion of the sand particles are less sensitive to bed topography, and are more likely to be dominated by the fluid. The high resolution of this data set, containing positions of particles measured start-to-stop, allows us to calculate the characteristic timescale required for a particle to become streamwise, or fluid, dominated in these systems. We also evaluate these data to further show whether the nature of entrainment is a memoryless, uncorrelated process, a correlated process related to the number of particles already in motion (i.e., possibly reflecting collective entrainment), or some combination of the two. This work suggests that the probability of entrainment depends on physical factors such as bed microtopography and the magnitude of the fluid velocity, in addition to varying with space and time scales.
NASA Astrophysics Data System (ADS)
Trousdell, J.; Faloona, I. C.
2017-12-01
In situ flight data collected in the San Joaquin Valley of California during the summer of 2016 is used to measure boundary layer entrainment rates, ozone photochemical production, regional methane and NOx emissions. The San Joaquin Valley is plagued with air quality issues including a high frequency of ozone exceedances in the summer and an aerosol issue in the winter exacerbated by a complex mesoscale environment with a different mountain range on three sides creating an effective cul-de-sac which limits outflow and ventilation. In addition, higher elevation air brought over top of the valley can influence the valley air by entrainment at the top of the turbulent daytime atmospheric boundary layer. The flights were conducted during the California Baseline Ozone Transport Study (CABOTS). Flights are valley wide between the cities of Fresno and Visalia with a thorough probing of the atmospheric boundary layer (ABL) including vertical profiling to diagnose the ABL height and its growth rate. Entrainment velocities, which are the parameterized mixing of free tropospheric air into the boundary layer, are determined by a detailed budget equation of the inversion height. A novel scalar budgeting technique is then applied to expose residual terms of individual equations that amount to ozone photochemical production and emission rates, including; NOx and methane. The budget equations are closed out by our predicted entrainment velocities, time rate of change and horizontal advection all determined via flight data. The results of our NOx budget suggests that the California Air Resources Board emission estimates for soil NOx is grossly underestimated. A strong relationship between entrainment rates and vertical wind shear has been observed, suggesting a significant contribution to entrainment driven by vertical shear compared to the surface buoyancy flux which drives the turbulent vertical motions in the boundary layer.
A Balanced Diet Is Necessary for Proper Entrainment Signals of the Mouse Liver Clock
Hirao, Akiko; Tahara, Yu; Kimura, Ichiro; Shibata, Shigenobu
2009-01-01
Background The peripheral circadian clock in mice is entrained not only by light-dark cycles but also by daily restricted feeding schedules. Behavioral and cell culture experiments suggest an increase in glucose level as a factor in such feeding-induced entrainment. For application of feeding-induced entrainment in humans, nutrient content and dietary variations should be considered. Principal Finding To elucidate the food composition necessary for dietary entrainment, we examined whether complete or partial substitution of dietary nutrients affected phase shifts in liver clocks of mice. Compared with fasting mice or ad libitum fed mice, the liver bioluminescence rhythm advanced by 3–4 h on the middle day in Per2::luciferase knock-in mice that were administered a standard mouse diet, i.e. AIN-93M formula [0.6–0.85 g/10 g mouse BW] (composition: 14% casein, 47% cornstarch, 15% gelatinized cornstarch, 10% sugar, 4% soybean oil, and 10% other [fiber, vitamins, minerals, etc.]), for 2 days. When each nutrient was tested alone (100% nutrient), an insignificant weak phase advance was found to be induced by cornstarch and soybean oil, but almost no phase advance was induced by gelatinized cornstarch, high-amylose cornstarch, glucose, sucrose, or casein. A combination of glucose and casein without oil, vitamin, or fiber caused a significant phase advance. When cornstarch in AIN-93M was substituted with glucose, sucrose, fructose, polydextrose, high-amylose cornstarch, or gelatinized cornstarch, the amplitude of phase advance paralleled the increase in blood glucose concentration. Conclusions Our results strongly suggest the following: (1) balanced diets containing carbohydrates/sugars and proteins are good for restricted feeding-induced entrainment of the peripheral circadian clock and (2) a balanced diet that increases blood glucose, but not by sugar alone, is suitable for entrainment. These findings may assist in the development of dietary recommendations for on-board meals served to air travelers and shift workers to reduce jet lag-like symptoms. PMID:19738906
NASA Astrophysics Data System (ADS)
Cortesi, A. B.; Smith, B. L.; Yadigaroglu, G.; Banerjee, S.
1999-01-01
The direct numerical simulation (DNS) of a temporally-growing mixing layer has been carried out, for a variety of initial conditions at various Richardson and Prandtl numbers, by means of a pseudo-spectral technique; the main objective being to elucidate how the entrainment and mixing processes in mixing-layer turbulence are altered under the combined influence of stable stratification and thermal conductivity. Stratification is seen to significantly modify the way by which entrainment and mixing occur by introducing highly-localized, convective instabilities, which in turn cause a substantially different three-dimensionalization of the flow compared to the unstratified situation. Fluid which was able to cross the braid region mainly undisturbed (unmixed) in the unstratified case, pumped by the action of rib pairs and giving rise to well-formed mushroom structures, is not available with stratified flow. This is because of the large number of ribs which efficiently mix the fluid crossing the braid region. More efficient entrainment and mixing has been noticed for high Prandtl number computations, where vorticity is significantly reinforced by the baroclinic torque. In liquid sodium, however, for which the Prandtl number is very low, the generation of vorticity is very effectively suppressed by the large thermal conduction, since only small temperature gradients, and thus negligible baroclinic vorticity reinforcement, are then available to counterbalance the effects of buoyancy. This is then reflected in less efficient entrainment and mixing. The influence of the stratification and the thermal conductivity can also be clearly identified from the calculated entrainment coefficients and turbulent Prandtl numbers, which were seen to accurately match experimental data. The turbulent Prandtl number increases rapidly with increasing stratification in liquid sodium, whereas for air and water the stratification effect is less significant. A general law for the entrainment coefficient as a function of the Richardson and Prandtl numbers is proposed, and critically assessed against experimental data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Foust, J.; Hecker, G.; Li, S.
2011-10-01
The Alden turbine was developed through the U.S. Department of Energy's (DOE's) former Advanced Hydro Turbine Systems Program (1994-2006) and, more recently, through the Electric Power Research Institute (EPRI) and the DOE's Wind & Water Power Program. The primary goal of the engineering study described here was to provide a commercially competitive turbine design that would yield fish passage survival rates comparable to or better than the survival rates of bypassing or spilling flow. Although the turbine design was performed for site conditions corresponding to 92 ft (28 m) net head and a discharge of 1500 cfs (42.5 cms), themore » design can be modified for additional sites with differing operating conditions. During the turbine development, design modifications were identified for the spiral case, distributor (stay vanes and wicket gates), runner, and draft tube to improve turbine performance while maintaining features for high fish passage survival. Computational results for pressure change rates and shear within the runner passage were similar in the original and final turbine geometries, while predicted minimum pressures were higher for the final turbine. The final turbine geometry and resulting flow environments are expected to further enhance the fish passage characteristics of the turbine. Computational results for the final design were shown to improve turbine efficiencies by over 6% at the selected operating condition when compared to the original concept. Prior to the release of the hydraulic components for model fabrication, finite element analysis calculations were conducted for the stay vanes, wicket gates, and runner to verify that structural design criteria for stress and deflections were met. A physical model of the turbine was manufactured and tested with data collected for power and efficiency, cavitation limits, runaway speed, axial and radial thrust, pressure pulsations, and wicket gate torque. All parameters were observed to fall within ranges expected for conventional radial flow machines. Based on these measurements, the expected efficiency peak for prototype application is 93.64%. These data were used in the final sizing of the supporting mechanical and balance of plant equipment. The preliminary equipment cost for the design specification is $1450/kW with a total supply schedule of 28 months. This equipment supply includes turbine, generator, unit controls, limited balance of plant equipment, field installation, and commissioning. Based on the selected head and flow design conditions, fish passage survival through the final turbine is estimated to be approximately 98% for 7.9-inch (200-mm) fish, and the predicted survival reaches 100% for fish 3.9 inches (100 mm) and less in length. Note that fish up to 7.9- inches (200 mm) in length make up more than 90% of fish entrained at hydro projects in the United States. Completion of these efforts provides a mechanical and electrical design that can be readily adapted to site-specific conditions with additional engineering development comparable to costs associated with conventional turbine designs.« less
Tagging the neuronal entrainment to beat and meter.
Nozaradan, Sylvie; Peretz, Isabelle; Missal, Marcus; Mouraux, André
2011-07-13
Feeling the beat and meter is fundamental to the experience of music. However, how these periodicities are represented in the brain remains largely unknown. Here, we test whether this function emerges from the entrainment of neurons resonating to the beat and meter. We recorded the electroencephalogram while participants listened to a musical beat and imagined a binary or a ternary meter on this beat (i.e., a march or a waltz). We found that the beat elicits a sustained periodic EEG response tuned to the beat frequency. Most importantly, we found that meter imagery elicits an additional frequency tuned to the corresponding metric interpretation of this beat. These results provide compelling evidence that neural entrainment to beat and meter can be captured directly in the electroencephalogram. More generally, our results suggest that music constitutes a unique context to explore entrainment phenomena in dynamic cognitive processing at the level of neural networks.
NASA Astrophysics Data System (ADS)
Sueki, Kenta; Niino, Hiroshi
2016-12-01
The characteristics of typhoons that spawned tornadoes (tornadic typhoons: TTs) in Japan from 1991 to 2013 were investigated by composite analysis using the Japanese 55 year Reanalysis and compared with those of typhoons that did not spawn tornadoes (nontornadic typhoons: NTs). We found that convective available potential energy (CAPE), which considers the effects of entrainment (entraining CAPE: E-CAPE), and storm-relative environmental helicity (SREH) are significantly large in the northeast quadrant of TTs where tornadoes frequently occur and that E-CAPE and SREH in that quadrant for TTs are larger than those for NTs. On the other hand, ordinary CAPE without entrainment does not account for the spatial distribution of tornado occurrences nor does it distinguish TTs from NTs. E-CAPE is sensitive to humidity in the midtroposphere; thus, it is effective for detecting a conditionally unstable layer up to about 550 hPa, which is distinctive of TTs.
Entraining the topology and the dynamics of a network of phase oscillators
NASA Astrophysics Data System (ADS)
Sendiña-Nadal, I.; Leyva, I.; Buldú, J. M.; Almendral, J. A.; Boccaletti, S.
2009-04-01
We show that the topology and dynamics of a network of unsynchronized Kuramoto oscillators can be simultaneously controlled by means of a forcing mechanism which yields a phase locking of the oscillators to that of an external pacemaker in connection with the reshaping of the network’s degree distribution. The entrainment mechanism is based on the addition, at regular time intervals, of unidirectional links from oscillators that follow the dynamics of a pacemaker to oscillators in the pristine graph whose phases hold a prescribed phase relationship. Such a dynamically based rule in the attachment process leads to the emergence of a power-law shape in the final degree distribution of the graph whenever the network is entrained to the dynamics of the pacemaker. We show that the arousal of a scale-free distribution in connection with the success of the entrainment process is a robust feature, characterizing different networks’ initial configurations and parameters.
Arvanitogiannis, A; Amir, S
1999-12-01
The authors examined the ability of a conditioned stimulus (CS; mild air disturbance) previously paired with an entraining light pulse to reset the circadian pacemaker in rats. Rats were entrained to a single 30-min light stimulus delivered every 25 hr or 24 hr (T cycle). Each daily light presentation was paired with the CS. After at least 20 days of stable entrainment to each of the T cycles, the rats were allowed to free run and were then presented with the CS at circadian time 15. CS-induced phase shifts in wheel-running activity rhythms were taken as evidence for conditioning. For the most part, conditioning occurred after CS-light pairings on the 25-hr but not 24-hr T cycle. The results suggest that CS control of the circadian clock phase depends on the effect that the entraining light pulse has on the clock during conditioning.
PTV analysis of the entrained air into the diesel spray at high-pressure injection
NASA Astrophysics Data System (ADS)
Toda, Naoki; Yamashita, Hayato; Mashida, Makoto
2014-08-01
In order to clarify the effect of high-pressure injection on soot reduction in terms of the air entrainment into spray, the air flow surrounding the spray and set-off length indicating the distance from the nozzle tip to the flame region in diffusion diesel combustion were investigated using 300MPa injection of a multi-hole injector. The measurement of the air entrainment flow was carried out at non-evaporating condition using consecutive PTV (particle tracking velocimetry) method with a high-speed camera and a high-frequency pulse YAG laser. The set-off length was measured at highpressure and high-temperature using the combustion bomb of constant volume and optical system of shadow graph method. And the amount of air entrainment into spray until reaching set-off length in diffusion combustion was studied as a factor of soot formation.
Global dynamics of selective attention and its lapses in primary auditory cortex.
Lakatos, Peter; Barczak, Annamaria; Neymotin, Samuel A; McGinnis, Tammy; Ross, Deborah; Javitt, Daniel C; O'Connell, Monica Noelle
2016-12-01
Previous research demonstrated that while selectively attending to relevant aspects of the external world, the brain extracts pertinent information by aligning its neuronal oscillations to key time points of stimuli or their sampling by sensory organs. This alignment mechanism is termed oscillatory entrainment. We investigated the global, long-timescale dynamics of this mechanism in the primary auditory cortex of nonhuman primates, and hypothesized that lapses of entrainment would correspond to lapses of attention. By examining electrophysiological and behavioral measures, we observed that besides the lack of entrainment by external stimuli, attentional lapses were also characterized by high-amplitude alpha oscillations, with alpha frequency structuring of neuronal ensemble and single-unit operations. Entrainment and alpha-oscillation-dominated periods were strongly anticorrelated and fluctuated rhythmically at an ultra-slow rate. Our results indicate that these two distinct brain states represent externally versus internally oriented computational resources engaged by large-scale task-positive and task-negative functional networks.
NASA Astrophysics Data System (ADS)
Balasubramanian, Sridhar; Zhong, Qiang
2018-05-01
Gravity currents modify their flow characteristics by entraining ambient fluid, which depends on a variety of governing parameters such as the initial density, Δρ, the total initial height of the fluid, H, and the slope of the terrain, α, from where it is released. It is imperative to study the entrainment dynamics of a gravity current in order to have a clear understanding of mixing transitions that govern the flow physics, the velocity mixing layer thickness, δu, and the density mixing layer thickness, δρ. Experiments were conducted in a lock-exchange facility in which the dense fluid was separated from the ambient lighter fluid using a gate. As the gate is released instantaneously, an energy conserving gravity current is formed, for which the only governing parameter is the Reynolds number defined as R e =U/h ν , where U is the front velocity of the gravity current and h is the height of the current. In our study, the bulk Richardson number (inverse of Froude number, Fr), Rib = g/'H Ub2 = 1, takes a constant value for all the experiments, with Ub being the bulk velocity of the current defined as Ub = √{g'H }. Simultaneous particle image velocimetry and planar laser induced fluorescence measurement techniques are employed to get the velocity and density statistics. Using the buoyancy conservation equation, a new flux-based method was formulated for calculating the entrainment coefficient, EF, near the front and head of the propagating gravity current for a Reynolds number range of Re ≈ 485-12 270 used in our experiments. At the head of the current, the results show a mixing transition at Re ≈ 2700 that is attributed to the flow transitioning from weak Holmboe waves to Kelvin-Helmholtz instabilities, in the form of Kelvin-Helmholtz vortex rolls. Following this mixing transition, the entrainment coefficient continued to increase with increasing Reynolds number owing to the occurrence of three-dimensional Kelvin-Helmholtz billows that promote further small-scale local mixing. Such a mixing transition indicates that a fully turbulent state is not reached even at Re = 12 270 and the amount of entrainment and ensuing mixing depends on the type of flow instability and presence of small-scale secondary structures. The entrainment dynamics were further substantiated using the ratio of δu and δρ. It was observed that δ/u δρ decreases with increasing Re and reaches a constant value of δ/u δρ ≈ 1 at high values of Re. This trend is in contrast to the entrainment coefficient EF, which never reaches a constant value even at high enough Re. This disparity could be explained by the fact that EF accounts for small-scale scalar mixing, which is not captured by the ratio of mixing layer thicknesses. Experimentally, it was also observed that the EF value near the front of gravity current was 2-9 times higher than the head value depending on the value of the Reynolds numbers. At low Reynolds numbers, the entrainment near the front is an order of magnitude higher than the head and the value decreases with increasing Re. This could be attributed to different modes of entrainment near the front (dominated by vortical structures) and the head (dominated by turbulent flux exchange triggered by the nature of the flow instability). The results from this study improve our understanding of entrainment dynamics and would be useful in developing empirical parameterizations for mixing in stratified flows.
Distributed flow sensing for closed-loop speed control of a flexible fish robot.
Zhang, Feitian; Lagor, Francis D; Yeo, Derrick; Washington, Patrick; Paley, Derek A
2015-10-23
Flexibility plays an important role in fish behavior by enabling high maneuverability for predator avoidance and swimming in turbulent flow. This paper presents a novel flexible fish robot equipped with distributed pressure sensors for flow sensing. The body of the robot is molded from soft, hyperelastic material, which provides flexibility. Its Joukowski-foil shape is conducive to modeling the fluid analytically. A quasi-steady potential-flow model is adopted for real-time flow estimation, whereas a discrete-time vortex-shedding flow model is used for higher-fidelity simulation. The dynamics for the flexible fish robot yield a reduced model for one-dimensional swimming. A recursive Bayesian filter assimilates pressure measurements to estimate flow speed, angle of attack, and foil camber. The closed-loop speed-control strategy combines an inverse-mapping feedforward controller based on an average model derived for periodic actuation of angle-of-attack and a proportional-integral feedback controller utilizing the estimated flow information. Simulation and experimental results are presented to show the effectiveness of the estimation and control strategy. The paper provides a systematic approach to distributed flow sensing for closed-loop speed control of a flexible fish robot by regulating the flapping amplitude.
Arendt, Andreas; Baz, El-Sayed; Stengl, Monika
2017-04-01
The circadian pacemaker of the Madeira cockroach, Rhyparobia (Leucophaea) maderae, is located in the accessory medulla (AME). Ipsi- and contralateral histaminergic compound eyes are required for photic entrainment. Light pulses delay locomotor activity rhythm during the early night and advance it during the late night. Thus, different neuronal pathways might relay either light-dependent delays or advances to the clock. Injections of neuroactive substances combined with running-wheel assays suggested that GABA, pigment-dispersing factor, myoinhibitory peptides (MIPs), and orcokinins (ORCs) were part of both entrainment pathways, whereas allatotropin (AT) only delayed locomotor rhythms at the early night. To characterize photic entrainment further, histamine and corazonin were injected. Histamine injections resulted in light-like phase delays and advances, indicating that the neurotransmitter of the compound eyes participates in both entrainment pathways. Because injections of corazonin only advanced during the late subjective night, it was hypothesized that corazonin is only part of the advance pathway. Multiple-label immunocytochemistry in combination with neurobiotin backfills demonstrated that a single cell expressed corazonin in the optic lobes that belonged to the group of medial AME interneurons. It colocalized GABA and MIP but not AT or ORC immunoreactivity. Corazonin-immunoreactive (-ir) terminals overlapped with projections of putatively light-sensitive interneurons from the ipsi- and contralateral compound eye. Thus, we hypothesize that the corazonin-ir medial neuron integrates ipsi- and contralateral light information as part of the phase-advancing light entrainment pathway to the circadian clock. J. Comp. Neurol. 525:1250-1272, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Sasaki, Masashi; Tanimoto, Koshi; Kohno, Kazukiyo; Takahashi, Sadamu; Kometani, Hideo; Hashimoto, Hiromu
High-speed winding of paper web sometimes leads the winding system into unstable states, interlayer slippage of wound roll, paper breakage and so on, due to the excessive air-entrainment at the roll-inlet of nip contact region. These phenomena are more frequently observed on coated paper or plastic film comparing with newspaper, because the former allows little permeation of air and their surface roughness is small. Therefore, it is of vital importance to clarify the in-roll stress of wound roll considering the effect of air-entrainment. Generally, it is known that the amount of air-entrainment is affected by grooving shape of nip roll surface. In this paper, we focused on the grooving shape and investigated the relationship with the air-entrainment into two rolls being pressed each other and the grooving shape in order to achieve stable winding at high speed. We conducted experiments using small sized test machine. Entrained air-film thickness was evaluated applying the solution of the elasto-hydrodynamic lubrication for foil bearing with the consideration of nip profile at the grooved area. Air film thickness was measured to ensure the applicability of the above theory. Consequently, we found that the air film thickness can be estimated considering the effect of grooves on the nip roll surface, and that the validity of the above estimations was ensured from experimental investigations. Furthermore, it became to be able to propose the optimal shape of grooves on nip roll surface to maintain the stable winding at high speed and at large-diameter in reel.
Roberts, Scott A.; Rao, Rekha R.
2011-10-01
Continuous jets of non-Newtonian fluids impinging on a fluid surface exhibit instabilities from jet buckling and coiling at low Reynolds numbers to delayed die swell, mounding, and air entrainment at higher Reynolds numbers. Filling containers with complex fluids is an important process for many industries, where the need for high throughput requires operating at high Reynolds numbers. In this regime, air entrainment can produce a visually unappealing product, causing a major quality control issue. Just prior to the onset of air entrainment, however, there exists an ideal filling regime which we term “planar filling,” as it is characterized by amore » relatively flat free surface that maintains its shape over time. In this paper, we create a steady-state, 2-D axisymmetric finite element model to study the transition from planar filling to the onset of air entrainment in a container filling process with generalized-Newtonian fluids. We use this model to explore the operating window for Newtonian and shear-thinning (or, more generally, deformation-rate-thinning) fluids, demonstrating that the flow behavior is characterized by a balance between inertial, viscous, and gravitational forces, as characterized by the Reynolds and Froude numbers. A scaling analysis suggests that the relevant parameters for calculating these dimensionless numbers are located where the jet impacts the liquid surface, and simulations show that the transition from planar filling to air entrainment often occurs when Re ~ O(10). Our study found that the bottom and side surfaces of the container drastically influence this transition to entrainment, stabilizing the flow.« less
Giraudin, Aurore; Le Bon-Jégo, Morgane; Cabirol, Marie-Jeanne; Simmers, John; Morin, Didier
2012-08-22
The coordination of locomotion and respiration is widespread among mammals, although the underlying neural mechanisms are still only partially understood. It was previously found in neonatal rat that cyclic electrical stimulation of spinal cervical and lumbar dorsal roots (DRs) can fully entrain (1:1 coupling) spontaneous respiratory activity expressed by the isolated brainstem/spinal cord. Here, we used a variety of preparations to determine the type of spinal sensory inputs responsible for this respiratory rhythm entrainment, and to establish the extent to which limb movement-activated feedback influences the medullary respiratory networks via direct or relayed ascending pathways. During in vivo overground locomotion, respiratory rhythm slowed and became coupled 1:1 with locomotion. In hindlimb-attached semi-isolated preparations, passive flexion-extension movements applied to a single hindlimb led to entrainment of fictive respiratory rhythmicity recorded in phrenic motoneurons, indicating that the recruitment of limb proprioceptive afferents could participate in the locomotor-respiratory coupling. Furthermore, in correspondence with the regionalization of spinal locomotor rhythm-generating circuitry, the stimulation of DRs at different segmental levels in isolated preparations revealed that cervical and lumbosacral proprioceptive inputs are more effective in this entraining influence than thoracic afferent pathways. Finally, blocking spinal synaptic transmission and using a combination of electrophysiology, calcium imaging and specific brainstem lesioning indicated that the ascending entraining signals from the cervical or lumbar limb afferents are transmitted across first-order synapses, probably monosynaptic, in the spinal cord. They are then conveyed to the brainstem respiratory centers via a brainstem pontine relay located in the parabrachial/Kölliker-Fuse nuclear complex.
NASA Astrophysics Data System (ADS)
Sepman, A.; Ögren, Y.; Gullberg, M.; Wiinikka, H.
2016-02-01
This paper reports on the development of the tunable diode laser absorption spectroscopy sensor near 4350 cm-1 (2298 nm) for measurements of CO and H2O mole fractions and soot volume fraction under gasification conditions. Due to careful selection of the molecular transitions [CO ( υ″ = 0 → υ' = 2) R34-R36 and H2O at 4349.337 cm-1], a very weak (negligible) sensitivity of the measured species mole fractions to the temperature distribution inside the high-temperature zone (1000 K < T < 1900 K) of the gasification process is achieved. The selected transitions are covered by the tuning range of single diode laser. The CO and H2O concentrations measured in flat flames generally agree better than 10 % with the results of 1-D flame simulations. Calibration-free absorption measurements of studied species in the reactor core of atmospheric pilot-scale entrained-flow gasifier operated at 0.1 MW power are reported. Soot concentration is determined from the measured broadband transmittance. The estimated uncertainties in the reactor core CO and H2O measurements are 15 and 20 %, respectively. The reactor core average path CO mole fractions are in quantitative agreement with the µGC CO concentrations sampled at the gasifier output.
Portland cement concrete air content study.
DOT National Transportation Integrated Search
1987-04-20
This study took the analysis of Portland cement concrete air content. Based on the information gathered, this study hold the results were : 1) air-entrained concrete was more durable than non-air entrained concrete all other factors being equal; 2) A...
Investigation of concrete mixtures incorporating hollow plastic microspheres.
DOT National Transportation Integrated Search
1981-01-01
This study investigated the potential of hollow plastic microspheres, HPM, for providing non-air-entrained portland cement concrete resistance to damage from cycles of freezing and thawing. In the study, a mixture with an air-entraining agent (vinsol...
Derivation and application of the energy dissipation factor in the design of fishways
Towler, Brett; Mulligan, Kevin; Haro, Alexander J.
2015-01-01
Reducing turbulence and associated air entrainment is generally considered advantageous in the engineering design of fish passage facilities. The well-known energy dissipation factor, or EDF, correlates with observations of the phenomena. However, inconsistencies in EDF forms exist and the bases for volumetric energy dissipation rate criteria are often misunderstood. A comprehensive survey of EDF criteria is presented. Clarity in the application of the EDF and resolutions to these inconsistencies are provided through formal derivations; it is demonstrated that kinetic energy represents only 1/3 of the total energy input for the special case of a broad-crested weir. Specific errors in published design manuals are identified and resolved. New, fundamentally sound, design equations for culvert outlet pools and standard Denil Fishway resting pools are developed. The findings underscore the utility of EDF equations, demonstrate the transferability of volumetric energy dissipation rates, and provide a foundation for future refinement of component-, species-, and life-stage-specific EDF criteria.
Listeners feel the beat: entrainment to English and French speech rhythms.
Lidji, Pascale; Palmer, Caroline; Peretz, Isabelle; Morningstar, Michele
2011-12-01
Can listeners entrain to speech rhythms? Monolingual speakers of English and French and balanced English-French bilinguals tapped along with the beat they perceived in sentences spoken in a stress-timed language, English, and a syllable-timed language, French. All groups of participants tapped more regularly to English than to French utterances. Tapping performance was also influenced by the participants' native language: English-speaking participants and bilinguals tapped more regularly and at higher metrical levels than did French-speaking participants, suggesting that long-term linguistic experience with a stress-timed language can differentiate speakers' entrainment to speech rhythm.
Colling, Lincoln J; Williamson, Kellie
2014-01-01
Joint actions, such as music and dance, rely crucially on the ability of two, or more, agents to align their actions with great temporal precision. Within the literature that seeks to explain how this action alignment is possible, two broad approaches have appeared. The first, what we term the entrainment approach, has sought to explain these alignment phenomena in terms of the behavioral dynamics of the system of two agents. The second, what we term the emulator approach, has sought to explain these alignment phenomena in terms of mechanisms, such as forward and inverse models, that are implemented in the brain. They have often been pitched as alternative explanations of the same phenomena; however, we argue that this view is mistaken, because, as we show, these two approaches are engaged in distinct, and not mutually exclusive, explanatory tasks. While the entrainment approach seeks to uncover the general laws that govern behavior the emulator approach seeks to uncover mechanisms. We argue that is possible to do both and that the entrainment approach must pay greater attention to the mechanisms that support the behavioral dynamics of interest. In short, the entrainment approach must be transformed into a neuroentrainment approach by adopting a mechanistic view of explanation and by seeking mechanisms that are implemented in the brain.
Statistical analysis of kinetic energy entrainment in a model wind turbine array boundary layer
NASA Astrophysics Data System (ADS)
Cal, Raul Bayoan; Hamilton, Nicholas; Kang, Hyung-Suk; Meneveau, Charles
2012-11-01
For large wind farms, kinetic energy must be entrained from the flow above the wind turbines to replenish wakes and enable power extraction in the array. Various statistical features of turbulence causing vertical entrainment of mean-flow kinetic energy are studied using hot-wire velocimetry data taken in a model wind farm in a scaled wind tunnel experiment. Conditional statistics and spectral decompositions are employed to characterize the most relevant turbulent flow structures and determine their length-scales. Sweep and ejection events are shown to be the largest contributors to the vertical kinetic energy flux, although their relative contribution depends upon the location in the wake. Sweeps are shown to be dominant in the region above the wind turbine array. A spectral analysis of the data shows that large scales of the flow, about the size of the rotor diameter in length or larger, dominate the vertical entrainment. The flow is more incoherent below the array, causing decreased vertical fluxes there. The results show that improving the rate of vertical kinetic energy entrainment into wind turbine arrays is a standing challenge and would require modifying the large-scale structures of the flow. This work was funded in part by the National Science Foundation (CBET-0730922, CBET-1133800 and CBET-0953053).
Optimizing the Entrainment Geometry of a Dry Powder Inhaler: Methodology and Preliminary Results.
Kopsch, Thomas; Murnane, Darragh; Symons, Digby
2016-11-01
For passive dry powder inhalers (DPIs) entrainment and emission of the aerosolized drug dose depends strongly on device geometry and the patient's inhalation manoeuvre. We propose a computational method for optimizing the entrainment part of a DPI. The approach assumes that the pulmonary delivery location of aerosol can be determined by the timing of dose emission into the tidal airstream. An optimization algorithm was used to iteratively perform computational fluid dynamic (CFD) simulations of the drug emission of a DPI. The algorithm seeks to improve performance by changing the device geometry. Objectives were to achieve drug emission that was: A) independent of inhalation manoeuvre; B) similar to a target profile. The simulations used complete inhalation flow-rate profiles generated dependent on the device resistance. The CFD solver was OpenFOAM with drug/air flow simulated by the Eulerian-Eulerian method. To demonstrate the method, a 2D geometry was optimized for inhalation independence (comparing two breath profiles) and an early-bolus delivery. Entrainment was both shear-driven and gas-assisted. Optimization for a delay in the bolus delivery was not possible with the chosen geometry. Computational optimization of a DPI geometry for most similar drug delivery has been accomplished for an example entrainment geometry.
Potent circadian effects of dim illumination at night in hamsters.
Gorman, Michael R; Evans, Jennifer A; Elliott, Jeffrey A
2006-01-01
Conventional wisdom holds that the circadian pacemaker of rodents and humans is minimally responsive to light of the intensity provided by dim moonlight and starlight. However, dim illumination (<0.005 lux) provided during the daily dark periods markedly alters entrainment in hamsters. Under dimly lit scotophases, compared to completely dark ones phases, the upper range of entrainment is increased by approximately 4 h, and re-entrainment is accelerated following transfer from long to short day lengths. Moreover, the incidence of bimodal entrainment to 24 h light:dark:light:dark cycles is increased fourfold. Notably, the nocturnal illumination inducing these pronounced effects is equivalent in photic energy to that of a 2 sec, 100 lux light pulse. These effects may be parsimoniously interpreted as an action of dim light on the phase relations between multiple oscillators comprising the circadian pacemaker. An action of dim light distinct from that underlying bright-light phase-resetting may promote more effective entrainment. Together, the present results refute the view that scotopic illumination is environmental "noise" and indicate that clock function is conspicuously altered by nighttime illumination like that experienced under dim moonlight and starlight. We interpret our results as evidence for a novel action of dim light on the coupling of multiple circadian oscillators.
NASA Astrophysics Data System (ADS)
Eglit, M. E.; Yakubenko, A. E.; Yakubenko, T. A.
2017-10-01
This paper deals with the mathematical and numerical modeling of the propagation stage of geophysical gravity-driven flows, such as snow avalanches, mudflows, and rapid landslides. New mathematical models are presented which are based on full, not-depth-averaged equations of mechanics of continuous media. The models account for three important issues: non-Newtonian rheology of the moving material, entrainment of the bed material by the flow, and turbulence. The main objective is to investigate the effect of these three factors on the flow dynamics and on the value of the entrainment rate. To exclude the influence of many other factors, e.g., the complicated slope topography, only the motion down a long uniform slope with a constant inclination angle is studied numerically. Moreover, the entire flow from the front to the rear area was not modeled, but only its middle part where the flow is approximately uniform in length. One of the qualitative results is that in motion along homogeneous slope the mass entrainment increases the flow velocity and depth while the entrainment rate at large time tends to become constant which depends on the physical properties of the flow and the underlying material but not on the current values of the flow velocity and depth.
Entrainment at a sediment concentration interface in turbulent channel flow
NASA Astrophysics Data System (ADS)
Salinas, Jorge; Shringarpure, Mrugesh; Cantero, Mariano; Balachandar, S.
2016-11-01
In this work we address the role of turbulence on entrainment at a sediment concentration interface. This process can be conceived as the entrainment of sediment-free fluid into the bottom sediment-laden flow, or alternatively, as the entrainment of sediment into the top sediment-free flow. We have performed direct numerical simulations for fixed Reynolds and Schmidt numbers while varying the values of Richardson number and particle settling velocity. The analysis performed shows that the ability of the flow to pick up a given sediment size decreases with the distance from the bottom, and thus only fine enough sediment particles are entrained across the sediment concentration interface. For these cases, the concentration profiles evolve to a final steady state in good agreement with the well-known Rouse profile. The approach towards the Rouse profile happens through a transient self-similar state. Detailed analysis of the three dimensional structure of the sediment concentration interface shows the mechanisms by which sediment particles are lifted up by tongues of sediment-laden fluid with positive correlation between vertical velocity and sediment concentration. Finally, the mixing ability of the flow is addressed by monitoring the center of mass of the sediment-laden layer. With the support of ExxonMobil, NSF, ANPCyT, CONICET.
Synchrony of plant cellular circadian clocks with heterogeneous properties under light/dark cycles.
Okada, Masaaki; Muranaka, Tomoaki; Ito, Shogo; Oyama, Tokitaka
2017-03-22
Individual cells in a plant can work independently as circadian clocks, and their properties are the basis of various circadian phenomena. The behaviour of individual cellular clocks in Lemna gibba was orderly under 24-h light/dark cycles despite their heterogeneous free-running periods (FRPs). Here, we reveal the entrainment habits of heterogeneous cellular clocks using non-24-h light/dark cycles (T-cycles). The cellular rhythms of AtCCA1::LUC under T = 16 h cycles showed heterogeneous entrainment that was associated with their heterogeneous FRPs. Under T = 12 h cycles, most cells showed rhythms having ~24-h periods. This suggested that the lower limit of entrainment to the light/dark cycles of heterogeneous cellular circadian clocks is set to a period longer than 12 h, which enables them to be synchronous under ~24-h daily cycles without being perturbed by short light/dark cycles. The entrainment habits of individual cellular clocks are likely to be the basis of the circadian behaviour of plant under the natural day-night cycle with noisy environmental fluctuations. We further suggest that modifications of EARLY FLOWERING3 (ELF3) in individual cells deviate the entrainability to shorter T-cycles possibly by altering both the FRPs and light responsiveness.
The neurochemical basis of photic entrainment of the circadian pacemaker
NASA Technical Reports Server (NTRS)
Rea, Michael A.; Buckley, Becky; Lutton, Lewis M.
1992-01-01
Circadian rhythmicity in mammals is controlled by the action of a light-entrainable hypothalamus, in association with two cell clusters known as the supra chiasmatic nuclei (SCN). In the absence of temporal environmental clues, this pacemaker continues to measure time by an endogenous mechanism (clock), driving biochemical, physiological, and behavioral rhythms that reflect the natural period of the pacemaker oscillation. This endogenous period usually differs slightly from 24 hours (i.e., circadian). When mammals are maintained under a 24 hour light-dark (LD) cycle, the pacemaker becomes entrained such that the period of the pacemaker oscillation matches that of the LD cycle. Potentially entraining photic information is conveyed to the SCN via a direct retinal projection, the retinohypothalamic tract (RHT). RHT neurotransmission is thought to be mediated by the release of excitatory amino acids (EAA) in the SCN. In support of this hypothesis, recent experiments using nocturnal rodents have shown that EAA antagonists block the effects of light on pacemaker-driven behavioral rhythms, and attenuate light induced gene expression in SCN cells. An understanding of the neurochemical basis of the photic entrainment process would facilitate the development of pharmacological strategies for maintaining synchrony among shift workers in environments, such as the Space Station, which provide unreliable or conflicting temporal photic clues.
Seizure entrainment with polarizing low frequency electric fields in a chronic animal epilepsy model
Sunderam, Sridhar; Chernyy, Nick; Peixoto, Nathalia; Mason, Jonathan P.; Weinstein, Steven L.; Schiff, Steven J.; Gluckman, Bruce J.
2009-01-01
Neural activity can be modulated by applying a polarizing low frequency (≪ 100 Hz) electric field (PLEF). Unlike conventional pulsed stimulation, PLEF stimulation has a graded, modulatory effect on neuronal excitability, and permits the simultaneous recording of neuronal activity during stimulation suitable for continuous feedback control. We tested a prototype system that allows for simultaneous PLEF stimulation with minimal recording artifact in a chronic tetanus toxin animal model (rat) of hippocampal epilepsy with spontaneous seizures. Depth electrode local field potentials recorded during seizures revealed a characteristic pattern of field postsynaptic potentials (fPSPs). Sinusoidal voltage-controlled PLEF stimulation (0.5–25 Hz) was applied in open-loop cycles radially across the CA3 of ventral hippocampus. For stimulated seizures, fPSPs were transiently entrained with the PLEF waveform. Statistical significance of entrainment was assessed with Thomson’s harmonic F-test, with 45/132 stimulated seizures in 4 animals individually demonstrating significant entrainment (p < 0.04). Significant entrainment for multiple presentations at the same frequency (p < 0.01) was observed in 3 of 4 animals in 42/64 stimulated seizures. This is the first demonstration in chronically implanted freely behaving animals of PLEF modulation of neural activity with simultaneous recording. PMID:19602730
Kottapalli, Ajay Giri Prakash; Bora, Meghali; Asadnia, Mohsen; Miao, Jianmin; Venkatraman, Subbu S.; Triantafyllou, Michael
2016-01-01
We present the development and testing of superficial neuromast-inspired flow sensors that also attain high sensitivity and resolution through a biomimetic hyaulronic acid-based hydrogel cupula dressing. The inspiration comes from the spatially distributed neuromasts of the blind cavefish that live in completely dark undersea caves; the sensors enable the fish to form three-dimensional flow and object maps, enabling them to maneuver efficiently in cluttered environments. A canopy shaped electrospun nanofibril scaffold, inspired by the cupular fibrils, assists the drop-casting process allowing the formation of a prolate spheroid-shaped artificial cupula. Rheological and nanoindentation characterizations showed that the Young’s modulus of the artificial cupula closely matches the biological cupula (10–100 Pa). A comparative experimental study conducted to evaluate the sensitivities of the naked hair cell sensor and the cupula-dressed sensor in sensing steady-state flows demonstrated a sensitivity enhancement by 3.5–5 times due to the presence of hydrogel cupula. The novel strategies of sensor development presented in this report are applicable to the design and fabrication of other biomimetic sensors as well. The developed sensors can be used in the navigation and maneuvering of underwater robots, but can also find applications in biomedical and microfluidic devices. PMID:26763299
Potential impacts of the Deepwater Horizon oil spill on large pelagic fishes
NASA Astrophysics Data System (ADS)
Frias-Torres, Sarrah; Bostater, Charles R., Jr.
2011-11-01
Biogeographical analyses provide insights on how the Deepwater Horizon oil spill impacted large pelagic fishes. We georeferenced historical ichthyoplankton surveys and published literature to map the spawning and larval areas of bluefin tuna, swordfish, blue marlin and whale shark sightings in the Gulf of Mexico with daily satellite-derived images detecting surface oil. The oil spill covered critical areas used by large pelagic fishes. Surface oil was detected in 100% of the northernmost whale shark sightings, in 32.8 % of the bluefin tuna spawning area and 38 % of the blue marlin larval area. No surface oil was detected in the swordfish spawning and larval area. Our study likely underestimates the extend of the oil spill due to satellite sensors detecting only the upper euphotic zone and the use of dispersants altering crude oil density, but provides a previously unknown spatio-temporal analysis.
Cortical oscillations and entrainment in speech processing during working memory load.
Hjortkjaer, Jens; Märcher-Rørsted, Jonatan; Fuglsang, Søren A; Dau, Torsten
2018-02-02
Neuronal oscillations are thought to play an important role in working memory (WM) and speech processing. Listening to speech in real-life situations is often cognitively demanding but it is unknown whether WM load influences how auditory cortical activity synchronizes to speech features. Here, we developed an auditory n-back paradigm to investigate cortical entrainment to speech envelope fluctuations under different degrees of WM load. We measured the electroencephalogram, pupil dilations and behavioural performance from 22 subjects listening to continuous speech with an embedded n-back task. The speech stimuli consisted of long spoken number sequences created to match natural speech in terms of sentence intonation, syllabic rate and phonetic content. To burden different WM functions during speech processing, listeners performed an n-back task on the speech sequences in different levels of background noise. Increasing WM load at higher n-back levels was associated with a decrease in posterior alpha power as well as increased pupil dilations. Frontal theta power increased at the start of the trial and increased additionally with higher n-back level. The observed alpha-theta power changes are consistent with visual n-back paradigms suggesting general oscillatory correlates of WM processing load. Speech entrainment was measured as a linear mapping between the envelope of the speech signal and low-frequency cortical activity (< 13 Hz). We found that increases in both types of WM load (background noise and n-back level) decreased cortical speech envelope entrainment. Although entrainment persisted under high load, our results suggest a top-down influence of WM processing on cortical speech entrainment. © 2018 The Authors. European Journal of Neuroscience published by Federation of European Neuroscience Societies and John Wiley & Sons Ltd.
Mistraletti, Giovanni; Giacomini, Matteo; Sabbatini, Giovanni; Pinciroli, Riccardo; Mantovani, Elena S; Umbrello, Michele; Palmisano, Debora; Formenti, Paolo; Destrebecq, Anne L L; Iapichino, Gaetano
2013-02-01
The performances of 2 noninvasive CPAP systems (high flow and low flow air-entrainment masks) were compared to the Boussignac valve in 3 different scenarios. Scenario 1: pneumatic lung simulator with a tachypnea pattern (tidal volume 800 mL at 40 breaths/min). Scenario 2: Ten healthy subjects studied during tidal breaths and tachypnea. Scenario 3: Twenty ICU subjects enrolled for a noninvasive CPAP session. Differences between set and effective CPAP level and F(IO(2)), as well as the lowest airway pressure and the pressure swing around the imposed CPAP level, were analyzed. The lowest airway pressure and swing were correlated to the pressure-time product (area of the airway pressure curve below the CPAP level) measured with the simulator. P(aO(2)) was a subject's further performance index. Lung simulator: Boussignac F(IO(2)) was 0.54, even if supplied with pure oxygen. The air-entrainment masks had higher swing than the Boussignac (P = .007). Pressure-time product correlated better with pressure swing (Spearman correlation coefficient [ρ] = 0.97) than with lowest airway pressure (ρ = 0.92). In healthy subjects, the high-flow air-entrainment mask showed lower difference between set and effective F(IO(2)) (P < .001), and lowest airway pressure (P < .001), compared to the Boussignac valve. In all measurements the Boussignac valve showed higher than imposed CPAP level (P < .001). In ICU subjects the high-flow mask had lower swing than the Boussignac valve (P = .03) with similar P(aO(2)) increase. High-flow air-entrainment mask showed the best performance in human subjects. During high flow demand, the Boussignac valve delivered lower than expected F(IO(2)) and showed higher dynamic hyper-pressurization than the air-entrainment masks. © 2013 Daedalus Enterprises.
Streambed Mobility and Dispersal of Aquatic Insect Larvae: Results from a Laboratory Study.
NASA Astrophysics Data System (ADS)
Kenworthy, S. T.
2002-12-01
Three series of flume experiments were conducted to quantify relationships between entrainment of surface layer gravels and displacement of benthic insect larvae. One series (B) utilized a sediment mixture with a median size 6.9 mm, maximum size 45 mm, and 10% < 2mm. Two other series examined the effects of locally coarsening the bed surface (Bc) and increasing the < 2mm fraction to 20% (S). Aquatic insect larvae were collected in the field and placed in an upstream segment of the flume bed. Flow rate, flume slope, and sediment transport rate were varied systematically among experiments. Displaced larvae were collected in a net at the end of the flume. The distribution of larvae remaining in the bed was obtained by sorting larvae from the sediment in 25 channel segments. Flow rate and mean boundary shear stress varied among runs by factors of 1.2 and 2.4 respectively. Proportional entrainment of >11mm surface grains ranged from <0.05 to >0.90. Displacement of insect larvae increased in a regular and consistent manner with increasing flow strength and surface sediment entrainment. Significant displacement occurred for some types of larvae (Ephemerellid mayflies) over a relatively low range of shear stress and bed surface entrainment. Other larvae (Atherix sp.) were displaced only at the highest levels of bed surface entrainment. Displacement was lower from coarsened bed surfaces in series Bc, and higher from sandier sediments in series S experiments. The differential effects of bed surface entrainment upon various types of larvae are consistent with anatomical and behavioral differences that influence exposure to near-bed flow and bedload transport. These results suggest that spatial patterns of sediment mobilization are important for understanding patterns of dispersal and disturbance of streambed communities.
Neural entrainment to rhythmic speech in children with developmental dyslexia
Power, Alan J.; Mead, Natasha; Barnes, Lisa; Goswami, Usha
2013-01-01
A rhythmic paradigm based on repetition of the syllable “ba” was used to study auditory, visual, and audio-visual oscillatory entrainment to speech in children with and without dyslexia using EEG. Children pressed a button whenever they identified a delay in the isochronous stimulus delivery (500 ms; 2 Hz delta band rate). Response power, strength of entrainment and preferred phase of entrainment in the delta and theta frequency bands were compared between groups. The quality of stimulus representation was also measured using cross-correlation of the stimulus envelope with the neural response. The data showed a significant group difference in the preferred phase of entrainment in the delta band in response to the auditory and audio-visual stimulus streams. A different preferred phase has significant implications for the quality of speech information that is encoded neurally, as it implies enhanced neuronal processing (phase alignment) at less informative temporal points in the incoming signal. Consistent with this possibility, the cross-correlogram analysis revealed superior stimulus representation by the control children, who showed a trend for larger peak r-values and significantly later lags in peak r-values compared to participants with dyslexia. Significant relationships between both peak r-values and peak lags were found with behavioral measures of reading. The data indicate that the auditory temporal reference frame for speech processing is atypical in developmental dyslexia, with low frequency (delta) oscillations entraining to a different phase of the rhythmic syllabic input. This would affect the quality of encoding of speech, and could underlie the cognitive impairments in phonological representation that are the behavioral hallmark of this developmental disorder across languages. PMID:24376407
NASA Astrophysics Data System (ADS)
Green, Kim; Brardinoni, Francesco; Alila, Younes
2014-05-01
We monitor bedload transport and water discharge at six stations in two forested headwater streams of the Columbia Mountains, Canada. The monitoring network of sediment traps is designed to examine the effects of channel bed texture, and the influence of alluvial (i.e., step pools, and riffle pools) and semi-alluvial morphologies (i.e., boulder cascades and forced step pools) on bedload entrainment and transport. Results suggest that patterns of bedload entrainment are influenced by flow resistance while the value of the critical dimensionless shear stress for mobilization of the surface D50 varies due to channel gradient, grain sheltering effects and, to a less extent, flow resistance. Regardless of channel morphology we observe: (i) equal-threshold entrainment for all mobile grains in channels with high grain and/or form resistance; and (ii) initial equal-threshold entrainment of calibers ≤ 22mm, and subsequent size-selective entrainment of coarser material in channels with low form resistance (e.g. riffle pool). Scaled fractional analysis reveals that in reaches with high flow resistance most bedload transport occurs in partial mobility fashion relative to the available bed material and that only material finer than 16mm attains full mobility during over-bank flows. Equal mobility transport for a wider range of grain sizes is achieved in reaches with reduced flow resistance. Evaluation of bedload rating curves across sites identifies that grain effects predominate with respect to bedload flux whereas morphological effects (i.e. form resistance) play a secondary role. Application of selected empirical formulae developed in steep alpine channels present variable success in predicting transport rates in the study reaches.
Vitamin B12 affects non-photic entrainment of circadian locomotor activity rhythms in mice.
Ebihara, S; Mano, N; Kurono, N; Komuro, G; Yoshimura, T
1996-07-15
Administration of vitamin B12 (VB12) has been reported to normalize human sleep-wake rhythm disorders such as non-24-h sleep-wake syndrome (HNS), delayed sleep phase syndrome (DSPS) or insomnia. However, the mechanisms of the action of VB12 on the rhythm disorders are unknown. In the present study, therefore, effects of VB12 on circadian rhythms of locomotor activity were examined in mice. In the first experiment, CBA/J mice were maintained under continuous light condition (LL) or blinded, and after free-running rhythms became stable, the mice were intraperitoneally injected with either VB12 or saline at a fixed time every day. In all the mice with tau > 24 h, saline injections resulted in entrainment of circadian rhythms, whereas not all the mice with tau < 24 h entrained to the injection. In contrast to saline injections, VB12 injections did not always induce entrainment and about half of the mice with tau > 24 h free-ran during the injection. In the second experiment, the amount of phase advances of circadian rhythms induced by a single injection of saline at circadian time (CT) 11 under LL was compared between the mice with and without VB12 silastic tubes. The results showed that the amplitude of phase advances was smaller in the mice with VB12 than those without VB12. In the third experiment, daily injections of saline were given to the mice with VB12 silastic tubes maintained under LL. In this chronic treatment of VB12 as well, attenuating effects of VB12 on saline-induced entrainment were observed. These results suggest that VB12 affects the mechanisms implicated in non-photic entrainment of circadian rhythms in mice.